
Applied Mathematical Modelling 66 (2019) 548–561 

Contents lists available at ScienceDirect 

Applied Mathematical Modelling 

journal homepage: www.elsevier.com/locate/apm 

Mid-term bio-economic optimization of multi-species 

fisheries 

L. Bayón 

∗, P. Fortuny Ayuso , P.J. García-Nieto, J.A. Otero, P.M. Suárez, C. Tasis 

Department of Mathematics, University of Oviedo, E.P.I. Campus of Viesques, Gijón 33203, Spain 

a r t i c l e i n f o 

Article history: 

Received 27 April 2018 

Revised 4 September 2018 

Accepted 26 September 2018 

Available online 29 September 2018 

Keywords: 

Optimal control 

Pontryagin’s maximum principle 

Shooting method 

Cyclic coordinate descent 

Renewable resources 

a b s t r a c t 

In this paper, we analyze the dynamics of a multi-species fisheries system in the pres- 

ence of harvesting. We solve the problem of finding the optimal harvesting strategy for a 

mid-term horizon with a fixed final stock of each species, while maximizing the expected 

present value of total revenues. The problem is formulated as an optimal control problem. 

For its solution, we combine techniques derived from Pontryagin’s Maximum Principle, 

cyclic coordinate descent and the shooting method. The algorithm we develop can solve 

problems both with inter-species competition and with predator–prey behaviors. Several 

numerical examples are presented to illustrate the different possibilities of the method 

and a study of the dependence of the behavior on some parameters is performed. 
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1. Introduction 

A large number of problems in applied mathematics is concerned with the analysis of dynamical processes in renewable

resources. A classical introductory reference to the topic is the book [1] , whose chapters contain abundant bibliography

related to each of the traditionally considered stocks: fish, forests, or freshwater. More recently, the excellent handbooks

[2] or [3] have appeared. Works centered on each of the stocks are [4] or [5] for the dynamics of fish populations; [6] —using 

Dynamic Programming— for the problem of forest management is studied and, quite recently, Mays [7] uses mathematical

programming and differential dynamic programming techniques to study the optimization of groundwater management 

systems, or freshwater inflows among other topics. 

From the economic point of view, the renewable resources problem is stated as the maximization of profit over a certain

time horizon, where the problem is subject to the biological dynamic of the resource, an initial stock size of fish, and other

technological or political constraints [8] . The economic value includes, by its very nature, a discount factor. The models

related to fishery and marine economics and its relation to the economic foundation are discussed in [9] . In [10] , the authors

present a new approach to solve dynamic decision models in economics. Their is based on an iterative solution of optimal

control problems in finite time horizons. 

In this paper, we deal with the particular case of harvesting of fish [11] . Its optimization in different ways is a complex

problem with both ecological and economical implications. The interaction between these two aspects is nowadays of great

interest, and a large corpus has been written. In [12] , the so-called social-ecological systems, characterized by strong links

between both aspects, are analyzed. An analysis of how the technical tools should be used as a basis for policy making

and management within the European context is presented in [13] . Also, [14] describes how the global economy can be
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restructured to make it compatible with the Earth’s ecosystem. The study presented in [15] maximizes the net present

value of a multi-species fishery where species interact both ecologically (in the ecosystem) and economically (in the output

markets). The interactions taking place in an integrated ecological–economical model are also analyzed in [16] . 

From the biological point of view, most papers have focused on the optimal harvesting policies considering only one fish

species, and an infinite-time horizon [0, ∞ ) (see, for example, [17–19] ). These works deal mostly with long-term stability

and the existence of a steady-state solution. A method developed by Tsur and Zemel [20] calculates the optimal steady-state,

and does not require the solution of the dynamic optimization problem. 

Tsur’s method was applied in [21] for a single-state, infinite-horizon, autonomous (except for the discount factor) model.

The same problem was studied by some of the authors in a previous paper [22] but including, besides the classical infinite-

time horizon problem, an example with long-term horizon. In the latter, we considered a fixed and finite optimization

interval [0, T ], and we assumed it to be long enough for the steady state to be reached in its duration. We observed in those

works that the solution leaves the steady state when approaching the end of the interval and seeks a final stock value. This

optimal value is not part of the statement: it is freely sought by the system. 

In recent years, the development of a proper model incorporating multi-species fisheries has gained interest. The bi-

ological interactions between species play an important role in optimal fisheries management, and it will be one of the

main aspects studied in this paper. This multi-species modelization leads to complex dynamical problems. The most classi-

cal standpoint can be found, for instance, in [23] where the authors assume that the per capita growth rate of each species

is a linear function of population abundance. A more sophisticated multi-species bioeconomic model is analyzed in [24] .

This model (of an archetypal Caribbean coral reef community) includes two focal prey species (parrotfish and snapper)

and a generalist predator (grouper). Again, the predation mortality of the two preys is modeled as linear on the predator

population. 

That type of linear model, with a food chain consisting of only two trophic levels and a prey–predator system is fre-

quently used in the literature (see [25] ). The same authors present, in [26] , a system of n cooperating populations without

harvesting. In this system of logistic populations, each one, by its mere presence, increases the carrying capacity of the

other ones: one species may be a commensal to any number of species and likewise, one species may receive help from

any number of species. 

To cope with these complexities, authors sometimes analyze mainly the stability of the biological system in lack of

fishing [27] . Other times, they use specific models which are only valid for particular groups of species (see [28–30] ), or

they develop more general methods but always under the infinite-horizon assumption and searching the optimal steady-

state [31] . 

There is, then, a large variety of models. In the review paper [32] , an interesting classification of three classes of ecolog-

ical models used for an ecosystem approach to fisheries is presented: Single-species assessments, Models of Intermediate

Complexity for Ecosystem assessments and Whole-of-ecosystem models. In the same reference, a subset of realistic models

is shown (with the appropriate references), with the Region and the Species modeled. Sixteen other examples of population

models with explicitly accounted-for predation mortality are also given in [33] . 

We end this brief survey citing [34] , where the principal ways of modeling interactions between multiple species are pre-

sented. These include (among others): Competition, Predator–Prey, Host-Parasitoid, Infectious Diseases, Plant Competition,

Facilitation. These models aim to incorporate multispecies interactions at large spatial extents using interaction matrices.

Our approach differs radically: we propose first of all, a rather general modelization for studying multi-species interac-

tions, with which we can deal both with pure competence between species and with predator–prey systems (and mixed

competence-predator–prey ones). 

Another important issue which can be taken into account in complex decision problems is the influence of uncertainty

over fisheries. We shall deal, in this work, with a deterministic environment but we cannot omit the citation of several

studies which include stochasticity. The book [2] , includes a part dealing with fisheries management from the deterministic

point of view and a comparison with the stochastic one. An analogue comparative study (but on forestry management)

can be found in the same reference. The effects of uncertainty over fisheries are also covered in [5] . The uncertainties and

climate change impacts on forests has been recently analyzed in [35] , and [36] is an excellent review on forest management.

Finally, Kvamsdal et al. [37] analyzes a continuous, nonlinear bioeconomic model to demonstrate how stochasticity in the

growth of fish stocks affects the optimal exploitation policy when prices are stochastic. 

Once the model, under a deterministic environment, is presented, we focus on an original setting: a multi-species biolog-

ical system (say with n species) and a mid-term finite horizon [0, T ]. In this context, we understand mid-term as a relatively

short time in comparison with the time taken by the system to reach, by itself, a steady state, and at the same time, long

enough that days or even a single fishing campaign are small in comparison. Following our computations, this gives a value

for T of around 10 years. In this horizon, a single manager has a target for the end of the optimization interval: the final

stock of each species x i ( T ) ( i = 1 , . . . , n ) is fixed a priori . This problem of considering a specific final stock, which has barely

appeared in the literature, is essential in today’s society: rather than seeking long-term biological equilibrium by leaving the

system to itself, it is important for authorities to have a tool enabling them to lead the system to a desired state, respecting

its biological laws, while at the same time maximizing the profits of fishing during that time interval. 

To solve the problem, we adapt an algorithm that takes advantage of the main result of Optimal Control: Pontryagin’s

Maximum Principle [38] , combined with the shooting method [39] and an adapted version for functionals of the cyclic

coordinate descent [40] . This resolution method can deal with arbitrarily complex multidimensional problems. The idea
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lies in not trying to solve the problem globally but to deal with it as an iterative sequence of one-dimensional problems

in which, at each step, each species considers the others as known functions. This property, together with other specifics

which we shall show in detail, is what allows the method not to be gravely influenced by the dimensionality of the problem

or by the complexity of the model. 

The paper is organized as follows: Section 2 presents the different modelings needed for the problem being addressed;

in Section 3 , the optimization algorithm is shown; Section 4 shows a numerical example to illustrate the algorithm’s perfor-

mance and the dependence of the model on several variables is illustrated; finally, Section 5 includes the conclusions and

perspectives for further research. 

2. Statement of the problem 

2.1. Biological model 

Denoting by t the time variable (in units of years), we let x ( t ) represent the stock of a single species at time t . We work

in the continuous setting because we are modeling species which have large stocks (cod, capelin, herring, etc.) and because

the fishing events, which are daily, happen at a very small scale relatively to our time interval (and the influence of a single

event on the stock is very small). In this context, x ( t ) will be a continuous function with piecewise continuous derivative

(i.e. the plot of x ( t ) may have corner points but no discontinuities). 

The model for the pattern of biological growth of one resource. The literature [1] presents several models in which the

actual growth rate with respect to time ˙ x (t) , depends on the stock size x ( t ). A commonly used functional form is the simple

logistic function or Verhulst equation (1) , where r > 0 denotes the intrinsic growth rate and k > 0 the carrying capacity of

the species. This model is a good approximation to the natural growth processes of many fish populations and will be the

one we use henceforward. Thus, from now on f l ( x ) will denote the right hand side of (1) : 

˙ x (t) = f l (x ) = rx (t ) 

(
1 − x (t ) 

k 

)
(1) 

In this model, the maximum amount of growth or maximum sustainable yield, x MSY , happens when the stock size is equal

to k /2. We consider upper and lower limits for the stock x ( t ), expressed as x ∈ [ x min , k ] . These are imposed, respectively, by

the biological minimum of the species, x min which allows its reproduction and by the value k of the model. 

There are other generalizations of the logistic growth model such as the modified logistic model (2) or the Gompertz

equation (3) . Model (2) is used, for example, in [28] for cod in Norway, with γ = 2 

˙ x (t) = rx γ (t) 

(
1 − x (t) 

k 

)
; γ > 1 (2) 

˙ x (t) = rx (t) ln 

k 

x (t) 
(3) 

There are also discrete-population models such as the Beverton–Holt model (which can be considered as a discrete version

of the simple logistic function), the Hassell model or the Ricker model (see a review in [41] ). We do not study any of these.

2.2. Harvesting model 

Human harvesting is included in the model as follows: denote by h ( t ) the rate of biomass harvest,which we assume

is a piecewise continuous function. For the sake of simplicity, many authors (see, for example, [1,18,21] ) assume that all

the different dimensions of the harvesting activity (e.g. size of nets, number of trawlers, number of fishing days) can be

aggregated into one single magnitude called effort, E ( t ). Thus, a first model proposed by them is: 

h (t) = qE(t ) x (t ) (4) 

where q is a constant, often called the catchability coefficient, E ( t ) is the fishing effort, and x ( t ) is the fish stock level at time

t . The proportionality constant q encodes the easiness of fish harvesting. This approach has obvious advantages in terms of

mathematical tractability but, in our view, it constitutes an unnecessary simplification. 

In this paper, we model the dynamics in a more general form as: 

˙ x (t) = f l (x (t)) − h (t) (5) 

where h ( t ) does not depend on any other quantities. 

2.3. Economic model 

The economic model for each species follows. Let π ( x ( t ), h ( t )) be the instantaneous net revenue from the harvest of the

stock biomass, given as in [42] : 

π(x (t) , h (t)) = p(h (t)) h (t) − c(x (t) , h (t)) (6)
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where p ( h ( t )) is the price function and c ( x ( t ), h ( t )) the cost function associated with the harvest. We assume an economic

model verifying the following three natural conditions: 

∂ p(h ) 

∂h 

< 0 ; ∂c(x, h ) 

∂h 

> 0 ; ∂c(x, h ) 

∂x 
< 0 (7)

With these assumptions, we adopt the very general models: 

p(h (t)) = p 0 − p 1 h (8)

c(x (t) , h (t)) = 

ch (t) α

x (t) 
(9)

where p 0 is the stock price, p 1 is the strength of demand, c is the cost of exploitation and α is the harvest cost parameter.

These models correspond to real-world fisheries (see [28] where it is used for Norway, Iceland and Denmark, and [30] where

it is used for the Barents Sea) , where the price of the harvest depends on the amount harvested and the cost of harvesting

depends on the stock biomass. Substituting (8) and (9) in (6) , the profit function for each species is: 

π(x (t) , h (t)) = p 0 h (t) − p 1 h (t) 2 − ch (t) α

x (t) 
(10)

We remark that other authors use simpler models, in which either the stock price is constant [31] , or the cost is linear in

the harvesting ( α = 1 ) or even constant [27] . In [30] , some species have constant price and the price of others depend on

the harvesting. As regards the cost of harvesting, in those works it does not depend on the stock for some species. Our

model, inspired by that of [17] , is the most complete. 

2.4. Multi-species biological model 

Finally, we present the multi-species model for the biological system. As stated in the Introduction, we consider the

classical modeling (see, for example [23] ) as that in which the per capita growth rates of each species is a linear function

of population abundances: 

dn i 

dt 
= 

( 

s ∑ 

j=1 

a i j n j 

) 

n i (11)

where a ij is the effect of species i on the per capita growth rate of species j . The value of a ij is constant in the model,

negative if either species j exploits species i or species j and i compete directly with each other. Its value is positive if, on

the contrary, species i exploits species j and a ji ≤ −a i j . One can also define, following [23] the energy conversion rate from

prey i to predator j as: 

m ji = −a ji 

a i j 

(12)

The pattern above is the most usual. See, for example [27] where two mutually competing fish species are considered,

both subject to harvesting, and both of them have a common unharvested predator. A modified version is shown in the same

reference, where a predator–prey system subject to harvesting is considered using a modified version of the Leslie–Gower

scheme: it is assumed that the reduction in a predator population has a reciprocal relation with per capita availability of its

preferred food. 

See [28] for other more particular models in which linear functions for the relation between two species is also consid-

ered but with power models for each of them separately. In [30] , three fish species (capelin, cod and herring) are studied

and the pairwise interactions are (at times) considered as square roots. The problem with this models is that they are too

specific and unfit for generalization. 

In this work, we are going to adopt a model which is even more general than the one used in [31] , where three species

interact in a linear way but only pairwise: we referred to this type of relation schema in the Introduction, when citing [34] .

In it, three kinds of biological interactions are distinguished: (1) simple qualitative linkages between species; (2) quantitative

interaction coefficients that reflect the power of these interactions; and (3) parameters which measure —by way of a proxy

environmental variable— how the triple interactions affect each species. All the approaches above can be described using

interaction matrices. However, there is no study including all the possible parameters we are going to include. 

We propose a model with the following parameters: 

• The effect c ij of species j on the per-capita growth rate of species i . 
• The simultaneous effect c ijk of both species j and k on the per-capita growth rate of species i . 
• The convexity parameter γ ij of the influence of species j on species i . It needs not be true that effects are linear on

the population: this parameter measures this (possible) non-linearity. 
• The convexity parameter γ ijk of the pairwise influences of species j and k on species i , measured in species j . 
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• The catalysis level β ij of the species i when interacted by species j : it might happen that the rate at which i increases

is lower than the rate at which the influence of j does . 
• The catalysis level β ijk of species i when interacted by both species j, k . 

One should take into account that a linear model assumes explicitly that interactions between individuals are straight-

forward (one more individual means exactly the same change in the quantity of the interaction). This assumption, although

highly successful for basic modeling is a very elementary description of real-world systems. Introducing non-linearity allows

us to provide a richer structure. A very simple case might be that, after some point, the increase in a prey species is irrel-

evant for the increase in a predator one, at least when the size of the predator species is small (or vice versa). This is, for

instance, what β ij and/or γ ij can model, taking their values as > 1 or < 1. This is just for pairwise interactions. For triads

(or larger) of interactions, our model copes perfectly well. 

Hence, in the general case of dimension n , we model the dynamics of the i th species as: 

˙ x i (t) = f l,i (x i ) − g i (t, x 1 , . . . , x i , . . . , x n ) − h i (t) (13)

where x (t) = (x 1 (t ) , . . . , x n (t )) and g i ( x ( t )) is the function representing the competence or “coupling” among the different

species, which we assume is of the form: 

g i (t, x 1 , . . . , x i , . . . , x n ) = 

∑ 

1 ≤ j≤n 
j � = i 

c i j x i (t) βi j x j (t) γi j + 

∑ 

1 ≤ j<k ≤n 
j � = i � = k 

c i jk x i (t) βi jk x j (t) γi jk x k (t) γik j (14)

This function we are proposing expresses the relations between those species which compete with the i th one. It is the

most general one we have found in the literature. It allows modeling with a high degree of detail, including, for instance,

simultaneous interactions of up to 3 species. Notice that this value might be increased without a substantial modification of

the complexity of the underlying problem. Each species x i is influenced by its exponent β ij when affected by species x j . 

If βi j = γi j = 1 , βi jk = γi jk = 0 one obtains the classical models [27,28,31] . In [30] one also finds simultaneous interac-

tions between 3 species, as in our model (but his is a specific case, with the constants already fixed). Notice that (14) can

deal both with problems of pure competence between species and with predator–prey models. In the former ones, the

coefficients c ij and c ijk are positive, whereas in the latter ones, predators have negative c ij and c ijk and preys positive. 

In order to clarify the notation used in (14) , we show now, by way of example, the ground problem we shall analyze

later on and which corresponds to the three-species case, n = 3 which, as seen in [27] , already constitutes a highly dynamic

system. Using the simple logistic function for f l, i , we get: 

˙ x 1 (t) = r 1 x 1 (t) 

(
1 − x 1 (t) 

k 1 

)
− [ c 12 x 1 (t) β12 x 2 (t) γ12 + c 13 x 1 (t) β13 x 3 (t) γ13 + c 123 x 1 (t) β123 x 2 (t) γ123 x 3 (t) γ132 ] − h 1 (t) (15)

˙ x 2 (t) = r 2 x 2 (t) 

(
1 − x 2 (t) 

k 2 

)
− [ c 21 x 2 (t) β21 x 1 (t) γ21 + c 23 x 2 (t) β23 x 3 (t) γ23 + c 213 x 2 (t) β213 x 1 (t) γ213 x 3 (t) γ231 ] − h 2 (t) (16)

˙ x 3 (t) = r 3 x 3 (t) 

(
1 − x 3 (t) 

k 3 

)
− [ c 31 x 3 (t) β31 x 1 (t) γ31 + c 32 x 3 (t) β32 x 2 (t) γ32 + c 312 x 3 (t) β312 x 1 (t) γ312 x 2 (t) γ321 ] − h 3 (t) (17)

Once this complex modelization is adopted, we remark that the choice of the method we are going to develop in the

next section is not just casual. Our resolution method is not intrinsically affected by the complexity of the model: as we use

a cyclic coordinate descent method, what we do is to solve a sequence of one-dimensional problems. In each of these, each

species “considers” the other ones as fixed, so that the modeling of the coupling term is, in this case, of the simple form

g i ( t, x i ). 

2.5. Objective functional 

Our model considers an open-access fishery model, in which a single manager takes the market price of fish as given.

The manager’s objective is to maximize profits from the harvest schedule of the multi-species over a finite time horizon

[0, T ], fixing a target for the end of the optimization interval: the final stock of each species, x i ( T ). Moreover, the solution

is subject to the dynamic constraint equations (13) and other natural and policy restrictions involving limits for the harvest

and the stock. Hence, letting π i ( x ( t ), h ( t )) as in Eq. (10) be the profit function for each species i , our problem is: 

max 
h i (t) 

∫ T 

0 

n ∑ 

i =1 

πi (x i (t) , h i (t)) e −δt dt 

s.t. ˙ x i (t) = f l,i (x i (t)) − g i (x 1 (t) , . . . , x i (t ) , . . . , x n (t )) − h i (t) 
x i (0) = x i 0 ; x i (T ) = x iT 
h i (t) ∈ H i = [ h i min , h i max ] 
i = 1 , . . . , n 

(18) 

where δ > 0 is the discount rate, x is the initial stock level and x the final desired stock level. 
i 0 iT 
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3. Optimization algorithm 

Notice that Problem (18) can be stated as a Multi-dimensional Optimal Control Problem. The numerical algorithm we

propose for solving it uses a particular strategy related to the cyclic coordinate descent (CCD) method [40] . This method

minimizes a function of n variables cyclically with respect to the coordinates. With our method, the Multi-dimensional

problem with n species can be solved as a sequence of problems with one single species assuming the others fixed (what

we shall call the Unidimensional Problem). Thus, starting from an admissible solution of the multi-dimensional problem, s 0 ,

we compute a sequence ( s k ) and the algorithm will calculate: 

lim 

k →∞ 

s k (19)

We shall also give a necessary condition of maximum for the Unidimensional Problem from which we shall compute the

solution with the following two steps: the construction of x K 
i 

for i = 1 , . . . , n and the calculation of the optimal K . 

With this method, the problem can be solved like a sequence of problems each of whose error functional converges to

zero. 

3.1. Step 1: The multi-dimensional problem 

As explained above, Problem (18) can be stated as a Multi-dimensional Optimal Control Problem simply setting the stock

as the state variable, x (t) = (x 1 (t ) , . . . , x n (t )) and the harvesting u (t) = (h 1 (t ) , . . . , h n (t )) as the control variable. Taking into

account that ˙ x i (t) = f l,i (x i ) − g i (x ) − h i (t) , we can write 

h i (t) = f l,i (x i ) − g i ( x ( t ) ) − ˙ x i (t) = G i (t, x (t) , ˙ x i (t)) (20)

and impose the specified constraints on both variables. 

In what follows, a function F ( t , x, u ) (the integrand) will be given. Whenever a path x (t) = s (t) and a coordinate

i are fixed, we shall denote F s 
i 

the corresponding function F s 
i 
(t) = F (t , s (t ) , u (t )) . There is also a vector function f (t) =

( f 1 (t) , . . . , f n (t)) . 

Remark 1. The following hypotheses are assumed: (i) F s 
i 

and f i are continuous; (ii) F s 
i 

and f i have continuous partial first

derivatives with respect to t and x i ; (iii) the control u i ( t ) is piecewise continuous; (iv) the state variable x i ( t ) is continuous

and its derivative is piecewise continuous (i.e. x i ( t ) admits corner points). The set of admissible controls is compact and con-

vex. These hypothesis arise from the natural assumptions of our continuous model. As is customary, the set of differentiable

functions of a real variable in [0, T ] with continuous derivative is denoted 

ˆ C 1 [0 , T ] . 

The objective is to maximize the discounted profits given the state dynamics and fixing a final value for the stock: 

max 
u (t) 

J = 

∫ T 

0 

F ( t , x (t ) , u (t ) ) dt (21)

where u (t) = (h 1 (t ) , . . . , h n (t )) , subject to satisfying, for each t ∈ [0, T ]: 

˙ x (t) = f ( t, x (t) , u (t) ) ; x (0) = x 0 ; x (T ) = x T (22)

h 1 min ≤ h 1 (t) ≤ h 1 max , . . . , h n min ≤ h n (t) ≤ h n max (23)

Hence, we say that x (t) = (x 1 (t ) , . . . , x n (t )) is an admissible solution if it belongs to the set 

� := { z ∈ 

(
ˆ C 1 [0 , T ] 

)n 
/ z (0) = x 0 , z (T ) = x T , h i min ≤ G i (t , z (t ) , ˙ z i (t )) ≤ h i max , i = 1 , . . . , n } (24)

This problem presents the following remarkable features: First, it is a multidimensional problem. Second, the optimiza-

tion interval is finite and the final stock is fixed. Third, the time t is not explicitly present in the problem (it is a time-

autonomous problem), except in the discount factor and finally —fourth— constraints on the control are imposed. Due to

the nature of problem, Optimal Control Theory, and more specifically Pontryagin’s Maximum Principle [38] applies straight-

forwardly. 

As we explained in the Introduction, we are not interested, in this work, in the equilibrium or steady-state solution, at

which the resource stock size is unchanging over time (a biological equilibrium) and the harvesting is constant. We aim to

find the dynamic solution, i.e. the adjustment path towards the final desired state starting from a given initial value. 

From the Multi-dimensional problem with n species we construct a sequence of problems with one single species, as-

suming the others fixed. 

Let s = (s 1 , . . . , s n ) ∈ �, with u i (t) = h i (t) = G i (t , s (t ) , ˙ s i (t )) and set: 

F s i (t, x i , u i ) := F (s 1 (t) , . . . , s i −1 (t) , x i (t) , s i +1 (t) , . . . , s n (t) , h 1 (t) , . . . , h i −1 (t) , u i (t) , h i +1 (t) , . . . , h n (t)) (25)

The problem which consists in finding: 

max 
u i (t) 

J s i (x i ) := 

∫ T 

0 

F s i (t, x i , u i ) dt (26)
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in the set 

�s 
i := { z i ∈ 

ˆ C 1 [0 , T ] / z i (0) = x i 0 , z i (T ) = x iT , h i min ≤ G i (s 1 (t) , . . . , s i −1 (t) , x i (t) , s i +1 (t) , . . . , s n (t) , ˙ x i (t)) ≤ h i max } 
(27) 

is (certainly) a unidimensional problem. 

We advanced in the Introduction that the solution to the Multi-dimensional problem will be obtained by applying the

following algorithm: 

Remark 2. Notice that Problem (26) with the conditions (27) is a unidimensional optimization problem which admits a

single solution s ∗
i 
(t) . 

Definition 1. We define the i th maximizing map ϕi in � as the map which substitutes the i th state function by the corre-

sponding solution to problem (26) , leaving the others unmodified: let (s 1 , . . . , s n ) ∈ � be an admissible element. Let s ∗
i 

be

the solution of Problem (26) subject to (27) . Then 

ϕ i (s 1 , . . . , s i , . . . , s n ) = (s 1 , . . . , s 
∗
i , . . . , s n ) , (28)

so that J s 
i 
(s ∗) ≥ J s 

i 
(x i ) for all x i ∈ �s 

i 
(i.e. s ∗

i 
maximizes J s 

i 
). 

We shall denote by ϕ the map associated with the ascent algorithm, which will be the composition of the i th maximizing

map: 

ϕ := ϕ n ◦ · · · ◦ ϕ 1 (29) 

In every k th iteration of the algorithm, “the n components of s will have been maximized” by means of the i th maximizing

applications for each i = 1 , . . . , n in this order, thus obtaining the new admissible element s k : 

s k = ϕ(s k −1 ) = (ϕ 

n 
◦ ϕ 

n −1 
◦ · · · ◦ ϕ 

2 
◦ ϕ 

1 
)(s k −1 ) (30) 

Starting with some admissible s 0 , we construct the sequence ( s k ) . 

The convergence of the algorithm, taking into account Zangwill’s global convergence Theorem [43] , is justified in the

same way as the authors did in [44] . The limit of this ascending succession 

lim 

k →∞ 

s k (31) 

provides the maximum. 

3.2. Step 2: The unidimensional problem 

Problem (26), (27) is a unidimensional optimal control problem with fixed end-time T , fixed initial state x i (0) and fixed

end state x i ( T ), which can be expressed as 

max 
u i (t) 

J s 
i 

= max 
u i (t) 

∫ T 
0 F s 

i 
(t, x i (t) , u i (t)) dt 

subject to: ˙ x i (t) = f i (t, x i (t) , u i (t)) 
x i (0) = x i 0 ; x i (T ) = x iT 
u i (t) ∈ [ h i min , h i max ] for each t ∈ [0 , T ] 

(32) 

where f i (t, x i (t) , u i (t)) = f l,i (x i ) − g i (s 1 , . . . , s i −1 , x i , s i +1 , . . . , s n ) − u i (t) . 

Based on PMP [38] , we establish the necessary conditions of optimality for our unidimensional problem (32) . We require

the following definition. 

Definition 2. Let x i ∈ �s 
i 
. The coordination function of x i , F x i (t) is the function in [0, T ], defined as follows: 

F x i (t) = 

(
F s i (t , x i (t ) , u i (t )) 

)
u i 

· e 
∫ t 

0 ( f i (t,x i (v ) ,u i (v )) ) x i 
dv + 

∫ t 

0 

((
F s i (t, x i (v ) , u i (v )) 

)
x i 

e 
∫ v 

0 ( f i (t,x i (z) ,u i (z)) ) 
x i 

dz 
)

dv (33) 

where sub-indices ( · · · ) u i or ( · · · ) x i mean partial differentiation with respect to the corresponding coordinate. 

Theorem 1 (A necessary maximum condition) . Let u ∗
i 

be the optimal control; let x ∗
i 

∈ ̂

 C 1 be a solution of the above problem.

Then there exists a constant K ∈ R such that: 

I f h i min < u 

∗
i 

< h i max 
⇒ F x ∗
i 
(t) = K 

I f u 

∗
i 

= h i min 
⇒ F x ∗
i 
(t) ≤ K 

I f u 

∗
i 

= h i max 
⇒ F x ∗
i 
(t) ≥ K 

(34) 

Proof. Let H be the Hamiltonian function associated with the problem 

H(t, x i , u i , λ) = F s ( t, x i , u i ) + λ · f i ( t, x i , u i ) (35) 
i 
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where λ( t ) is the co-state variable. Pontryagin’s Maximum Principle (PMP) asserts that in order for u ∗
i 

∈ [ h i min , h i max ] to be

optimal, a nontrivial function λ must exist satisfying the following conditions: 

˙ x ∗i = H λ = f i 
(
t, x ∗i , u 

∗
i 

)
; x ∗i (0) = x ∗i 0 , x ∗i (T ) = x ∗iT (36)

˙ λ = −
(
H(t, x ∗i , u 

∗
i , λ) 

)
x i 

(37)

H(t, x ∗i , u 

∗
i , λ) = max 

u i (t) ∈ [ h i min ,h i max ] 
H(t, x ∗i , u i , λ) (38)

Eqs. (36) and (37) are a Boundary Value Problem for x ∗
i 

and λ, which has solution as piecewise C 1 functions. Specifically,

λ( t ) satisfies: 

˙ λ(t) = −
(
H(t, x ∗i , u 

∗
i , λ) 

)
x i 

= −
(
F s i 

)
x i 

− λ( t) · ( f i ) x i (39)

and hence: 

λ(t) = 

[
K −

∫ t 

0 

(
F s i 

)
x i 

e 
∫ v 

0 ( f i ) x i 
dz 

dv 
]

e 
− ∫ t 

0 ( f i ) x i 
dv 

(40)

where K = λ(0) . 

From (38) follows that, for each t the value u ∗
i 

maximizes 

H(u i ) := H(t, x ∗i , u i , λ) = F s i 

(
t, x ∗i , u i , u 

)
+ λ · f i 

(
t, x ∗i , u i 

)
, ∀ u i (t) ∈ [ h i min , h i max ] (41)

Bearing in mind that 

∂H(u i ) 

∂u i 

= 

(
F s i 

)
u i 

+ λ(t) ( f i ) u i (42)

there are three possibilities: 

1. h i min < u ∗
i 

< h i max . In this case, 
∂H(u i ) 

∂u i 
= 0 . From (40) and (42) and noticing that ( f i ) u i 

= −1 , we obtain: 

0 = F x ∗
i 
(t) − K ⇒ F x ∗

i 
(t) = K (43)

2. h i min = u ∗
i 
. In this case, 

∂H(u i ) 

∂u i 
≤ 0 . an analogous reasoning gives: 

F x ∗
i 
(t) ≤ K (44)

3. u ∗
i 

= h i max . In this case, 
∂H(u i ) 

∂u i 
≥ 0 and the same argument provides: 

F x ∗
i 
(t) ≥ K (45)

This ends the proof. �

From the computational point of view, the construction of the solution consists of two main steps which we proceed to

explain. 

3.3. Step 3: The construction of x K 
i 

In this section, we describe how, using the i th maximizing map, we compute an approximation to the function x K 
i 

for

a given value K , using the fact that for each i , x K 
i 

maximizes Problem (32) . This approximate construction of x K 
i 

can be

performed using a discretized version of the following equation, which we shall call the coordination equation : 

K = 

(
F s i 

)
u i 

· e 
∫ t 

0 ( f i ) x i 
dv + 

∫ t 

0 

(
F s i 

)
x i 

e 
∫ v 

0 ( f i ) x i 
dz 

dv (46)

For given K , we compute x K 
i 
, by means of (46) . When the values obtained do not obey the control constraints, we force the

solution to belong to the boundary until the moment established by conditions (44) and (45) . This computation is carried

out using polygonals (an adaptation of Euler’s method). 

In summary, we divide the interval [0, T ] using N nodes: 

t 0 < t 1 < · · · < t N−1 (47)

with n = 0 , . . . , N − 1 so that t 0 = 0 and t N−1 = T . 

Next, we solve the coordination Eq. (46) at each node. Starting at t 0 = 0 , where x i 0 is known, we compute, from the

discretized version of the coordination Eq. (46) , the corresponding control u i 0 . Using this value for the control, we calculate

the derivative of the state equation 

˙ x i (t) = f i (t, x i (t) , u i (t)) = f l,i (x i ) − g i (s 1 , . . . , s i −1 , x i , s i +1 , . . . , s n ) − u i (t) (48)
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In this case: 

˙ x i 0 = f i ( t, x i 0 , u i 0 ) (49) 

And using this value we jump to the next node, using Euler’s method, imposing the condition: 

x i 1 = x i 0 + f i ( t, x i 0 , u i 0 ) d (50) 

And, in general: 

x ik = x ik −1 + f i ( t, x ik −1 , u ik −1 ) d (51) 

where the step d is: 

d = 

T 

N 

(52) 

That way, for k = 0 , . . . , N − 1 , we go through all the nodes until the whole interval [0, T ] is covered, linking the arcs

continuously. 

We must also take into account the restrictions on the control: 

h i min ≤ u i (t) ≤ h i max , 0 ≤ t ≤ T . (53) 

When these are not verified by the value obtained from solving the coordination Eq. (46) , we force the solution to remain

on the border until the moment established by conditions (44) and (45) : 

F x i (t) ≤ K (54) 

F x i (t) ≥ K (55) 

3.4. Step 4: Computation of the optimal K 

The computation of the optimal K is achieved by means of an adaptation of the shooting method. We search for the

extremal x K 
i 

fulfilling the second boundary condition by varying the coordination constant K (57) . The procedure is similar to

the shooting method used to solve second-order differential equations with boundary conditions, which may be performed

approximately using elemental procedures. Starting from two values for the coordination constant, K: K min and K max and

using a conventional method such as the secant method, our algorithm converges satisfactorily, as we shall see in the

examples. 

In summary, the problem consists in finding, for each K , the function x K 
i 

satisfying the initial condition 

x K i (0) = x i 0 (56) 

the conditions of Theorem 1 and, among these, the one that satisfies the second boundary condition: 

x K i (T ) = x iT (57) 

Consider the shooting function : 

ϕ(K) := x K i (T ) (58) 

Solving our final condition problem is equivalent to solving the (finite dimensional) equation 

ϕ(K) − x iT = 0 (59) 

We solve this equation by means of the secant method, imposing a stopping criterion based on a pre-established tolerance:

error = | ϕ(K) − x iT | ≤ tol K (60) 

The secant method gives: 

K j+1 = K j −
K j − K j−1 

ϕ(K j ) − ϕ(K j−1 ) 
ϕ(K j ) (61) 

Thus, for each i th component, we construct a sequence { K j } j∈ N such that x 
K j 
i 

(T ) converges to x iT . The optimal K is the

one verifying 

lim 

j→∞ 

K j = K (62) 

with x K 
i 
(T ) = x iT . 

The stopping criterion for the algorithm is based on the desired tolerance. We shall see this fact in greater detail in

Example 1 in Section 4 . 

Fig. 1 shows a schematic picture of our algorithm. 



L. Bayón et al. / Applied Mathematical Modelling 66 (2019) 548–561 557 

Fig. 1. Schematic flow of the whole algorithm. 

Table 1 

Parameters of the cost model. 

Specie p 0 p 1 c α

1 0.9 0.01 75 1.1 

2 1.9 0.02 85 1.2 

3 2.8 0.03 60 1.4 

Table 2 

Parameters of the biological models. 

f l, i ( x i ( t )) g i ( x( t ) ) 

r 1 = 0 . 5 c 12 = 2 . 10 −4 c 21 = 10 −5 c 31 = 10 −4 γ12 = 1 . 1 γ123 = 1 . 1 

r 2 = 0 . 3 c 13 = 3 . 10 −5 c 23 = 2 . 10 −5 c 32 = 10 −4 γ13 = 1 . 0 γ132 = 1 . 2 

r 3 = 0 . 2 c 123 = 10 −8 c 213 = 10 −7 c 312 = 0 γ21 = 1 . 0 γ213 = 1 . 0 

k 1 = 10 0 0 β12 = 1 . 0 β21 = 1 . 0 β31 = 1 . 0 γ23 = 1 . 2 γ231 = 1 . 0 

k 2 = 700 β13 = 1 . 2 β23 = 1 . 0 β32 = 1 . 0 γ31 = 1 . 1 γ312 = 0 . 

k 3 = 600 β123 = 0 . 9 β213 = 1 . 0 β312 = 0 . γ32 = 1 . 0 γ321 = 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Numerical examples 

We now show some numerical simulations, with a twofold aim: firstly, to illustrate how our algorithm works; secondly,

to analyze the influence on the solution of some of the parameters of the problem and/or of the model. 

4.1. Example 1: Base case 

Let us begin with what we shall call the base case and which will allow us to compare the results obtained with different

parameters. This is the 3-species model described in (15) –(17) . The values of the cost model are summarized in Table 1 ,

whereas Table 2 shows the parameters of the biological model, including the interactions among the species. Growth is

measured in 10 6 kg, and time in units of years. Prices of the economic parameters are in € /kg and costs are in 10 6 €. 
The values in Table 1 are not taken from any real species but they are inspired by Agnarsson et al. [28] , where a de-

tailed modeling was carried out for cod, capelin and herring in Norway, Iceland and Denmark. We have respected the ratio

between income and cost in the revenue function which they checked against the real revenues. As for the parameters in

Table 2 about species interaction, g i ( x( t ) ) and the simple logistic function f l, i ( x i ( t )), the choice of parameters follows the

ideas in [31] . All our results were obtained using a custom-written software implemented in Mathematica 10.0 ©. 

Fig. 2 shows the solution obtained in the absence of harvesting, that is, the long-term steady-state solution of the bio-

logical model (15) –(17) , with no optimization of the functional. Starting from the initial stock values (in 10 6 kg): 

x 1 (0) = 150 ; x 2 (0) = 250 ; x 3 (0) = 150 (63)

the values obtained for the steady state of the stock (10 6 kg) of each species after 100 years are: 

x ∗1 = 463 . 69 ; x ∗2 = 654 . 65 ; x ∗3 = 146 . 96 (64)

However, our interest is not the steady-state: starting from the known initial stocks (63) , we fix a time horizon of say T = 10

years and, for different reasons, (environmental, economical, ecological, legislative...), we state a final stock for each species
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Fig. 2. Steady state of biological equilibrium, no harvesting. 

Fig. 3. Optimal solution for the stock profile. 

Fig. 4. Optimal solution for the harvest profile. 

Fig. 5. Convergence of the multi-dimensional algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

to reach in that time-span, different from the one set by the free biological evolution of the system (64) . Let us set, in this

example, the following target values: 

x 1 (T ) = 500 ; x 2 (T ) = 500 ; x 3 (T ) = 200 (65)

The solution will optimize the harvesting revenue during that time, by choosing the optimal controls, i.e. how each species

should be fished. We set a δ = 5 percent discount rate. 

The results obtained for the optimal stock profile, x ( t ) (in 10 6 kg), and the optimal harvest path, h ( t ) (in 10 6 kg/year), of

each species are shown in Figs. 3 and 4 respectively. In computing the solution, we used a discretization of 100 sub-intervals.

For each species and for the secant method, we chose a tolerance (60) tol K = 5 · 10 −2 . The stopping criterion for the multi-

dimensional algorithm was that the difference between two consecutive iterations of the values of K was less than 10 −6 .

With these parameters, the algorithm converges in just 9 iterations to the final solution (see Fig. 5 ). The optimal values of

K for each species are, respectively: 

K 

∗
1 = −0 . 0299251 ; K 

∗
2 = 0 . 4474817 ; K 

∗
3 = 1 . 6556858 (66)

and the final revenue after 10 years is 235.381(in 10 6 €). In finding the solution, we have considered the control limited by

u i ( t ) ∈ [0, 25] (in 10 6 kg). Fig. 4 shows how the maximum is not reached at any moment but the minimum is. For species 1,

harvesting stops in the interval [9.2,10], and for species 3, in the interval [8,10]. We consider these two facts quite remark-

able, as they state roughly that the optimum is reached by fishing, mainly, in the middle part of the optimization interval
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Table 3 

Sweeping of the K -values in the shooting function ϕ( K ). 

K −2 −1 . 6 −1 . 2 −0 . 8 −0 . 4 0 0.4 0.8 1.2 1.6 2.0 

x K 1 (T ) 0.03 0.06 0.16 1.16 141.26 340.57 521.67 578.65 580.20 580.20 580.20 

Fig. 6. Admissible interval for the values of the final stock. 

Fig. 7. Optimal controls for the sweeping of the K -values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and practically stopping the harvest at its end. At this point, and almost without the intervention of the control, the system

reaches the desired final state “by itself”. 

4.2. Example 2: Influence of final stock and T 

In this section we fix the biological parameters for each species, which is a fairly realistic assumption for our mid-term

horizon. For the same reason, we fix the economic and price parameters. In this second example, we are going to study

a problem we deem relevant: given some initial stocks, what are the possible achievable final values for them and what

influence does the time-span have on them? 

Varying the coordination constant K. Let us, for the sake of concreteness, assume that the final stocks of species 2 and 3

are imposed and are the same as in the previous example: x 2 (T ) = 500 and x 3 (T ) = 200 (in 10 6 kg). For species 1, starting

from the initial stock x 1 (0) = 150 (in 10 6 kg), what are the final stock values x 1 ( T ) that we can impose that are biologically

possible after T = 10 years? For the sake of simplicity, we shall assume at this point that there are no upper limits for the

controls. 

In order to answer the question above, we are going to perform an adaptation of the algorithm previously presented. We

are going to consider the one-dimensional problem on species 1, imposing, as known stock values, for each t , those obtained

in the base example above, x 2 ( t ) and x 3 ( t ). 

Then, instead of fixing the final state x 1 ( T ), we are going to carry out a sweeping of the admissible interval for the

coordination constant K , using the shooting function: 

ϕ(K) := x K 1 (T ) (67)

Table 3 shows the results obtained for the final stock of x 1 ( T ) in 10 6 kg when sweeping the K -interval [ −2 , 2] . Notice how

the admissible values for x K 
1 
(T ) is the interval [0.03,580.20] (in 10 6 kg). Fig. 6 shows the optimal profiles of x K 

1 
(t) for the

values of K given in Table 3 , whereas Fig. 7 shows the optimal controls obtained for those values. 
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Fig. 8. Histogram corresponding to Table 4 : influence of T on max x K 1 (T ) . 

Table 4 

Influence of T on the admissible interval. 

T 8 10 12 14 

max x K 1 (T ) 538.09 580.20 598.88 605.42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As one can see, we have constructed the extremal field for the variable x 1 ( t ): the zooms on the right side shows how

the extremals do not meet. 

The maximum value for the stock is quickly reached for values of K greater than 1.2 and it corresponds to those cases

where the harvesting (the control) is 0 (see Fig. 7 ). On the other hand, the minimum value of the stock (essentially 0)

is reached with the optimal harvesting profiles shown in Fig. 7 . At the beginning of the interval, the fishing activity is

remarkably large, so that when the stock of species 1 has already been greatly diminished, only the competency effects of

species 2 and 3 and practically no harvesting, species 1 gets to its practical biological demise. Obviously, this is not the

desired value at all: we show it as a validation of the theoretical soundness of our algorithm. 

Influence of T on the admissible interval. This is the second question we are going to address. Table 4 summarizes the results

for the values T = 8 , 10 , 12 and 14 years: the maximum achievable value of x 1 ( T ) for each T is shown (in 10 6 kg), correspond-

ing to the maximum values of K . Notice that the minimum achievable value of x 1 ( T ) is the same in each case, essentially

0 as shown in the previous example. Notice how, the longer the time T , the larger the admissible variation rank for the

final stock of species 1, x 1 ( T ) which is reachable. However, Fig. 8 shows clearly how these increase is not linear. Actually, the

species has a biological limit and, notwithstanding the time-span, the maximum admissible stock does not grow indefinitely.

We consider this result (which is reasonable from the biological point of view) provides an important contingency of which

the harvesting managers have to be aware for the mid-term planning. 

We finish this section by remarking that what we have obtained is just an estimation of the structure of the set of

admissible solutions for x 1 ( T ), as the values of x 2 ( t ) and x 3 ( t ) were chosen from the base case. These values, even starting

from the same initial stock value (each its own) and reaching the same final value (ibid.), might take different intermediate

values and this would, certainly, influence the admissible interval of x 1 ( T ). However, several numerical simulations lead us

to conjecture that this variation should be quite small and that our estimation is rather good. 

5. Conclusions and future perspectives 

Going further than the study of the long-term steady-state solution of the multi-species problem in the renewable re-

sources problem, we have considered a joint finite mid-term horizon and a stock target at the end of the optimization inter-

val. The solution of this problem involves a highly dynamic system which requires the development of a method allowing

to solve it satisfactorily. This algorithm, an adaptation of the cyclic coordinate descent provides a procedure whose com-

plexity is not essentially influenced by the dimensionality of the problem, as it reduces to an iteration of one-dimensional

algorithms. Each of these is tackled by approximately solving what we call the coordination equation . This, together with

a customization of the shooting method, eliminates the multi-dimensionality and thus, removes complexities due to the

biological interactions from the resolution process. 

In brief, we consider that the main novel characteristics of our work are: 

• The setting of a fixed stock at a mid-term horizon as one of the constraints. 
• The arbitrary dimensionality of the considered problem: we allow for any number of species, with arbitrary simulta-

neous interactions. 
• The flexibility of the model, allowing for nonlinearity in the interactions, which greatly increases the modeling possi-

bilities. 
• The method used to solve the problem: despite the nonlinearity of the model, we have an algorithm whose complex-

ity is not inherently increased by either the dimensionality or the interactions. 
• Our model permits studying problems of very different nature: predator–prey models, competition, host-parasitoid, 
infectious disease, etc. 
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As for the solution we obtain, we remark that it is possible to achieve the desired final stock values while maximizing

the revenues of harvesting during the optimization interval. As a matter of fact, we observe that the optimum is reached in

such a way that the harvesting practically stops near the end of the interval and the biological system evolves by itself to

the desired outcome. We have also analyzed the variation of the range of admissible values for the stock depending on the

duration of the optimization interval: this gives the policy makers an a priori set of limit values of each species which they

can reach without harm to the biological system. One remaining question which we do not know how to tackle yet is the

structure of the joint set of admissible values for each species at the same time. This is an open question which we think

requires a richer set of tools or a deeper insight than we have at present. 
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[25] T. Legovi ́c , J. Klanjšček , S. Ge ̌cek , Maximum sustainable yield and species extinction in ecosystems, Ecol. Modell. 221 (12) (2010) 1569–1574 . 
[26] T. Legovi ́c , S. Ge ̌cek , Impact of maximum sustainable yield on mutualistic communities, Ecol. Modell. 230 (2012) 63–72 . 

[27] T.K. Kar , A. Ghorai , Dynamic behaviour of a delayed predator-prey model with harvesting, Appl. Math. Comput. 217 (22) (2011) 9085–9104 . 

[28] S. Agnarsson , R. Arnason , K. Johannsdottir , L. Ravn-Jonsen , L.K. Sandal , S.I. Steinshamn , N. Vestergaard , in: Comparative evaluation of the fisheries
policies in denmark, Iceland and Norway: multispecies and stochastic issues, Bergen, Norway, 2008 . Report No 25/07. 

[29] S. Aanestad , L.K. Sandal , A. Eide , in: Optimal fishing policy for two species in a three species predator-prey model. the case of capelin, cod and juvenile
herring in the Barents sea, Bergen Norway, 2009 . 

[30] D. Poudel , L.K. Sandal , Stochastic optimization for multispecies fisheries in the barents sea, Natur. Resour. Model. 28 (2015) 219–243 . 
[31] I. Agmour , M. Bentounsi , N. Achtaich , Y. Foutayeni , Optimization of the two fishermen’s profits exploiting three competing species where prices depend

on harvest, 2017, 2017, p. 3157294 . 17 pages. 

[32] E.E. Plagányi , et al. , Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity, Fish Fish. 15
(1) (2014) 1–22 . 

[33] M.C. Tyrrell , J.S. Link , H. Moustahfid , The importance of including predation in fish population models: implications for biological reference points,
Fish. Res. 108 (1) (2011) 1–8 . 

[34] W.D. Kissling , et al. , Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents, J. Biogeogr. 39
(12) (2012) 2163–2178 . 

[35] M. Linder , et al. , Climate change and european forests: what do we know, what are the uncertainties, and what are the implications for forest

management? J. Environ. Manag. Vol. 146 (2014) 69–83 . 
[36] R. Yousefpour , et al. , A review of decision-making approaches to handle uncertainty and risk in adaptive forest management under climate change,

Ann. Forest Sci. 69 (2012) 1–15 . 
[37] S.F. Kvamsdal , D. Poudel , L.K. Sandal , Harvesting in a fishery with stochastic growth and a mean-reverting price, Environ. Resour. Econ. 63 (2016)

643–663 . 
[38] A. Chiang , Elements of Dynamic Optimization, Waveland Press, 20 0 0 . 

[39] M.S. Aronna , J.F. Bonnans , P. Martinon , A shooting algorithm for optimal control problems with singular arcs, J. Optim. Theory Appl. 158 (2) (2013)

419–459 . 
[40] Z.Q. Luo , P. Tseng , On the convergence of the coordinate descent method for convex differentiable minimization, J. Optim. Theory Appl. 72 (1) (1992)

7–35 . 
[41] A. Brannstrom , D.J.T. Sumpter , The role of competition and clustering in population dynamics, Proc. R. Soc. B 272 (2005) 2065–2072 . 

[42] L.K. Sandal , S.I. Steinshamn , A stochastic feedback model for optimal management of renewable resources, Nat. Resour. Model. 10 (1) (1997) 31–52 . 
[43] W.L. Zangwill , Nonlinear Programming: a Unified Approach, Prentice Hall, New Jersey, 1969 . 

[44] L. Bayón , J.M. Grau , M.M. Ruiz , P.M. Suárez , Cyclic coordinate descent in hydrothermal nonsmooth problems., Numer. Algor. 59 (2012) 227–247 . 

http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0001
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0001
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0001
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0001
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0001
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0002
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0002
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0003
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0003
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0003
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0003
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0004
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0004
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0004
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0005
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0005
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0005
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0006
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0006
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0006
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0007
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0007
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0008
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0008
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0008
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0008
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0009
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0009
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0009
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0009
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0010
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0010
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0010
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0010
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0011
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0011
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0012
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0012
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0012
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0013
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0013
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0013
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0013
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0014
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0014
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0015
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0015
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0016
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0016
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0016
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0016
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0016
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0017
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0017
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0017
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0017
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0018
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0018
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0019
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0019
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0019
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0019
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0020
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0020
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0020
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0021
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0021
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0021
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0022
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0022
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0022
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0022
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0022
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0022
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0022
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0023
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0023
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0023
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0024
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0024
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0024
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0024
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0024
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0025
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0025
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0025
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0025
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0026
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0026
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0026
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0027
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0027
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0027
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0028
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0028
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0028
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0028
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0028
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0028
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0028
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0028
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0028
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0029
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0029
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0029
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0029
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0030
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0030
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0030
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0031
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0031
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0031
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0031
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0031
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0031
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0032
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0032
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0032
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0033
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0033
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0033
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0033
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0034
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0034
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0034
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0035
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0035
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0035
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0036
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0036
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0036
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0037
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0037
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0037
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0037
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0038
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0038
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0039
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0039
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0039
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0039
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0040
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0040
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0040
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0041
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0041
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0041
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0043
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0043
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0043
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0044
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0044
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0045
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0045
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0045
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0045
http://refhub.elsevier.com/S0307-904X(18)30474-8/sbref0045

	Mid-term bio-economic optimization of multi-species fisheries
	1 Introduction
	2 Statement of the problem
	2.1 Biological model
	2.2 Harvesting model
	2.3 Economic model
	2.4 Multi-species biological model
	2.5 Objective functional

	3 Optimization algorithm
	3.1 Step 1: The multi-dimensional problem
	3.2 Step 2: The unidimensional problem
	3.3 Step 3: The construction of 
	3.4 Step 4: Computation of the optimal K

	4 Numerical examples
	4.1 Example 1: Base case
	4.2 Example 2: Influence of final stock and T

	5 Conclusions and future perspectives
	 References


