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Abstract
In this paper we consider the classic kinetic problem of the minimization of the oper-
ation time in which a substrate is transformed into a product in multi-step enzymatic
reactions. We propose a realistic formulation that incorporates the enzyme dynam-
ics, and present a method for obtaining the solution for an unbranched scheme and
bi-linear kinetic model in an almost exclusively analytical way. The solution, which
involves the exponential integral, is illustrated with several examples.

Keywords Optimal control · Chemical process · Enzymatic model

Mathematics Subject Classification 80A30 · 49M05 · 49J30

1 Introduction

The optimization of a chemical process involving multi-step enzymatic reactions is
important in chemical kinetics. In this paper, we consider the influence of enzyme
production dynamics in the minimization of the time during which the substrate is
converted into the product.

When the objective is tominimize the transition time, an explicit solution for n = 2,
can be found in [1], while, for n = 5, the authors solved the problem numerically. The
solution for n = 3 is obtained quasi-analytically in [2]; in [3] we presented the quasi-
analytical solution for the general case of n steps. In [4] a combined optimization of the
time taken to reach the new steady state and a measure of enzyme usage is considered.
Later, in [5], and addressing as new objective the minimization of the operation time,
we extended the theoretical analysis.
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In our previous papers [3,5] we assume that the enzymes can be switched on and
off instantaneously. Here we propose a more realistic formulation that incorporates
the enzyme dynamics.

Dynamic enzyme optimization for the activation of chemical pathways has been
considered recently. In themajority ofmodels in the literature, the enzyme degradation
and dilution are modeled as linear functions of the enzyme concentration. In [4] the
enzyme synthesis dynamics is considered to be linear with the expression rate. This
model, also used in [6–8], will be adopted by us. We shall delve into this model and
point out some details which we deem important to properly understand its physical
context.

Then we present a method for obtaining the solution of an n-step system with
unbranched scheme and bi-linear kinetic model in an almost exclusively analytical
way. We develop this method using Pontryagin’s Minimum Principle, as a sequence
of phases or steps.We showhow the solution involves, in some cases, themathematical
function called the Exponential integral. As a byproduct, we also obtain several general
laws both for the enzymes and the metabolites, from which the computation of a
solution becomes much easier. Finally we will present numerical examples for a test-
case.

2 Enzymatic model

In past research [1,3,5] (and in the mayor part of [4]), the enzymes are assumed to be
switched on and off instantaneously. This is a simplification because after the onset
of gene expression, the enzyme is produced gradually and, after down-regulation of
the encoding gene, the enzyme is gradually degraded. Therefore the enzyme synthesis
cannot be as fast as required by the bang-bang profiles. A more realistic solution is
obtained when the model of enzyme production dynamics is included.

The enzyme dynamic equation is a simplified representation of the processes
involved in the enzyme synthesis and destruction. It is known that the concentra-
tion of enzymes is driven by two factors: the enzyme synthesis rate and the dilution
through growth; it is generally assumed that the latter is the major source for protein
degradation. There is also an upper bound on the rate at which it can be synthesized.

On the other hand, enzyme degradation and dilution are typicallymodelled as linear
functions of the enzyme concentration (see, for example, [4,6–8]). In all these works,
the models of the enzyme dynamics are considered to be linear in the expression rate
(ui ). Specifically, the production of enzyme ei is described as:

ėi (t) = ui (t) − λei (t) (1)

where ui (t) is the expression rate of ei (t), (i = 1, . . . , n) and λ (the same for all i)
accounts for the dilution by cell growth and the constituent protein degradation rate.
In [4,8], the following constraints are imposed to limit the amount of enzymes and
their rates:
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0 ≤ ui (t) ≤ ui max (2)

0 ≤ ei (t) ≤ ET (3)

At this pointwe think it necessary to point out some details concerning thismodel. First
of all, we shall assume, without loss of generality, following [4,8], that all the values
of ui max are the same: ui max = umax Ms−1. Secondly, we carry out a normalization
of the problem. We divide all enzyme levels by the maximum enzyme concentration;
we also divide the substrate, intermediate and product levels by the initial substrate
concentration. That is, after normalization, we have ET = 1 M .

From (1), one immediately deduces that the maximum of ei (t) is reached when
ėi (t) = 0. Therefore, this maximum is attained for:

ET = ui (t)

λ
(4)

So that, after normalization, the model must satisfy the following condition:

ui (t) = λ (5)

We shall see in the forthcoming sections that in our problem, the expression rate will
have a bang-bang profile, so that at each time only one of them will be active, with
constant value umax and the remaining ones with value zero:

u∗
i (t) =

{
umax t ∈ [ti−1,ti )
0 t /∈ [ti−1, ti )

; i = 1, . . . , n (6)

where t0 = 0. From this, Condition (5) can be restated, actually, as:

umax = λ (7)

Figure 1 shows the concentration profile for an enzyme for different values of λ (and,
as a consequence, of umax , due to (7)). We see how the model satisfies the constraint
ei (t) ≤ ET with ET = 1 M , allowing for a simple way of adjusting the rate of
increase.

However, this model presents another remarkable property. If we add all the equa-
tions in (1) for i = 1, . . . , n and use (6), we get:

n∑
i=1

ėi (t) =
n∑

i=1

ui (t) − λ

n∑
i=1

ei (t) ⇒
n∑

i=1

ėi (t) = umax − λ

n∑
i=1

ei (t) (8)

so that, if we call S(t) = ∑n
i=1 ei (t) the total sumof the concentrations of the enzymes,

the following equality also holds:

Ṡ(t) = umax − λS(t) = λ(1 − S(t)) (9)
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Fig. 1 Model of the enzyme
dynamics

so that the maximum value of S(t) is also bounded:

S(t) =
n∑

i=1

ei (t) ≤ 1 (10)

Other authors consider more complex models for particular examples. In [9,10] the
enzyme degradation and dilution are also modelled as linear functions of the enzyme
concentration. But in [9] the synthesis incorporates parameters over the maximal
promoter activity and repression coefficient of gene and the active repressor level is
also considered. On the other hand, in [10], the synthesis is modelled as the sum of a
constant (or basal) expression rate: a set of Hill functions representing the activating or
repressing effects of the transcription factors on the enzyme expression. We shall not
consider these specific models, as our focus will be to analyze, as much as possible,
the general model (1).

3 Statement of the problem

We consider the case of an unbranched metabolic pathway composed of n irreversible
reaction steps converting substrate x1 into product p. The substrate concentration
at time t is denoted x1(t); p(t) is the concentration of the final product; xi (t), (i =
2, . . . , n) the concentrations of the intermediate compounds, and ei (t), (i = 1, . . . , n)

the concentrations of the enzymes catalyzing the i-th reaction:

x1
e1−→ x2

e2−→ x3
e3−→ · · · en−2−→ xn−1

en−1−→ xn
en−→ p (11)

We assume that the rate of the i-th reaction, vi (xi (t), ei (t)) is linear in the enzyme
concentrations, ei :

vi (xi (t), ei (t)) = wi (xi (t)) · ei (t) (12)

123

Author's personal copy



1334 Journal of Mathematical Chemistry (2019) 57:1330–1343

and, in this paper, we use the mass action kinetic model:

wi (xi ) = ki xi (13)

where ki are the catalytic efficiencies of the enzymes. As the dynamical model for the
pathway is driven by the law of conservation of mass:

ẋi (t) = vi−1(xi−1(t), ei−1(t)) − vi (xi (t), ei (t)) (14)

and employing normalized quantities, the dynamic model is given by the set of differ-
ential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −k1e1x1 x1(0) = 1
ė1 = u1 − λe1 e1(0) = 0
ẋ2 = k1e1x1 − k2e2x2 x2(0) = 0
ė2 = u2 − λe2 e2(0) = 0
· · ·
ẋn = kn−1en−1xn−1 − knenxn xn(0) = 0
ėn = un − λen en(0) = 0

(15)

where we shall consider as initial condition, for t = 0, the concentrations of the
intermediate compounds and of the product to be zero.Moreover, the concentrations of
the compounds, xi , and the enzymes, ei , are positive quantities and, after normalization,
the upper bound on the value of the enzymatic concentration is 1.

The objective is to minimize the operation time, i.e. transform x1 into p as fast as
possible; however, the product p(t) needs not be fully synthesized. We impose a pre-
defined aim concentration p(t f ) = C f (0 < C f < 1), where t f is the final time, to
be minimized. The initial substrate x1 is assumed exhaustible. With these conditions,
we obtain:

x1(t f ) + x2(t f ) + · · · + xn(t f ) = 1 − C f (16)

So that the optimization problem may be stated as:

(Pr) : τC f = min
u1,...un

∫ t f
0 dt = min

u1,...un
t f

subject to: (15), (16)
and: u1(t) ≥ 0, . . . un(t) ≥ 0; u1(t) + · · · + un(t) ≤ umax

(17)

3.1 The exponential-integral Ei function

In the next sections a closed form solution will be found, for the first time. In some
cases, it includes the Ei-function. Abramowitz and Stegun [11] first define the expo-
nential integral as:

En(x) =
∫ ∞

1

e−xt

tn
dt; x > 0, n = 0, 1, . . . (18)
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where n is the order of the integral. An alternative definition is:

Ei(x) = −
∫ ∞

−x

e−t

t
dt; x > 0 (19)

This definition must be understood in terms of the Cauchy principal value, due to the
singularity of the integrand at zero. Note that the two previous definitions are related
as follows:

Ei(−x) = −E1(x) (20)

A good algorithm for evaluating Ei is to use the power series for small x and the
asymptotic series for large x . The power series is:

Ei(x) = γ + ln(x) +
∞∑
k=1

xk

k · k! (21)

where γ is the Euler–Mascheroni constant. The asymptotic expansion is:

Ei(x) ∼ ex

x

∞∑
k=0

k!
xk

(22)

4 Optimal solution

Problem (17) stated above is a multi-dimensional optimal control problem, with free
end-time t f and free end state x(t f ), e(t f ). In general Lagrange form, it is:

min
u(t)

J =
∫ t f

0
F(x(t), e(t),u(t), t)dt (23)

subject to:

ẋi (t) = fi (x(t), e(t),u(t), t); xi (0) = xi0; i = 1, . . . , n (24)

ėi (t) = gi (x(t), e(t),u(t), t); ei (0) = ei0; i = 1, . . . , n (25)

u(t) ∈ U (t), 0 ≤ t ≤ t f (26)

where x(t) = (x1(t), . . . , xn(t)) ∈ R
n and e(t) = (e1(t), . . . , en(t)) ∈ R

n are the two
state vectors, and u(t) = (u1(t), . . . , un(t)) ∈ R

n the control vector. The optimum t∗f
is unknown and to be determined. To solve it, we use Pontryagin’s Minimum Principle
(PMP) [12].

In our case, Problem (17) presents some specific propertieswhich permit its solution
in a quasi-analytic way:
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– First, F(x(t), e(t),u(t), t) = 1, so that the functional is

min
u(t)

J = min
u(t)

t f (27)

– Secondly, and this is the most remarkable property, the state equations have the
form:

ẋi (t) = fi (x(t), e(t)); x1(0) = 1, xi (0) = 0, i = 2, . . . , n (28)

ėi (t) = gi (e(t),u(t)); ei (0) = 0, i = 1, . . . , n (29)

So that there is a decoupling between the state vectors x(t), e(t) and the control
vector u(t). The compounds do not appear in the state equation of the enzymes,
while in the state equation of the latter, the control does not appear explicitly.

– Finally, the problem is linear in the controls, wiht ui (t) ≥ 0 and u1(t) + . . . +
un(t) ≤ umax.

These properties allowus to propose an algorithm leading to the quasi-analytic solution
of (17). This procedure has the following steps:

Step 1: Determination of the structure of the optimal solution. When the control
appears linearly, as is the case, the optimal control is said to be of bang-bang type,
because it switches between its upper and lower bounds at discrete instants (which
are called the switching times). The general form of the solution can be described as
follows: there exist n switching times (asmany as enzymes) and the optimal expression
rate of the i-th enzyme is of bang-band type and satisfies:

ui (t) =
{
umax for t ∈ [ti−1, ti )
0 for t /∈ [ti−1, ti )

; i = 1, . . . , n (30)

where {t0, t1, t2, . . . , tn} are the switching times, with t0 = 0 and tn = t f . Certainly,
the switching times are as yet unknown: their values will be kept as variables during
the whole process, and they will be calculated in the last step of the algorithm.

Step 2. Resolution of the state equations of the enzymes Once the optimal values of
the controls ui are known, we can proceed to solve the state equation of the enzymes:

ėi (t) = ui − λei ; ei (0) = 0; i = 1, . . . , n (31)

and obtain their optimal value. Notice that (31) is not strictly speaking a system of
differential equations but a list of mutually independent equations.

The way to solve these equations consists solving all the equations (31) on each
interval [ti−1, ti ), i = 1, . . . , n. We shall denote by e ji (t) (for i, j = 1, . . . , n) the
optimal j-th enzyme concentration in the i-th interval [ti−1, ti ]. Notice that if ui = 1,

123

Author's personal copy



Journal of Mathematical Chemistry (2019) 57:1330–1343 1337

from the condition: u1 + · · · + un ≤ 1, we get: u j = 0, j 
= i, (i, j = 1, . . . , n). By
way of illustration, let us write the first steps explicitly:

1. In the first interval [0, t1], we have u1 = umax; ui = 0, (i = 2, . . . , n), and:

ė1 = umax − λe1 e1(0) = 0 �⇒ e11(t) = 1 − e−λt

ėi = −λei ei (0) = 0 �⇒ ei1(t) = 0; i = 2, . . . , n
(32)

2. Second interval: [t1, t2]. Now u1 = 0, u2 = umax; ui = 0, (i = 3, . . . , n), and:

ė1 = −λe1 e1(t1) = e11(t1) �⇒ e12(t) = e−λ(t−t1) − e−λt

ė2 = umax − λe2 e2(t1) = 0 �⇒ e22(t) = 1 − e−λ(t−t1)

ėi = −λei ei (t1) = 0 �⇒ ei2(t) = 0; i = 3, . . . , n
(33)

3. Third interval: [t2, t3]. Here u1 = 0, u2 = 0, u3 = umax; ui = 0, (i = 4, . . . , n),
and:

ė1 = −λe1 e1(t2) = e12(t2) �⇒ e13(t) = e−λ(t−t1) − e−λt

ė2 = −λe2 e2(t2) = e22(t2) �⇒ e23(t) = e−λ(t−t2) − e−λ(t−t1)

ė3 = umax − λe3 e3(t2) = 0 �⇒ e33(t) = 1 − e−λ(t−t2)

ėi = −λei ei (t2) = 0 �⇒ ei3(t) = 0; i = 4, . . . , n

(34)

The values for the successive intervals are similarly obtained, by concatenating
the solutions. The optimal solution of the complete system can be described on each
interval, as on the i-th interval, [ti−1, ti ] (for i = 2, . . . , n − 1), there are 3 laws
governing the enzyme concentrations:

(a) The concentration of the enzymes before the i-th are always:

e ji (t) = e−λ(t−t j ) − e−λ(t−t j−1) for j = 1, . . . , i − 1 (35)

(b) The concentration of the i-th enzyme is:

e ji (t) = 1 − e−λ(t−ti−1) for j = i (36)

(c) Finally, enzymes from the i + 1-th on have not been activated yet, so that their
concentration is zero:

e ji (t) = 0 for j = i + 1, . . . , n (37)

Step 3. Resolution of the state equation of the compounds. At this point, we can
solve the state equation of each compound for every interval:

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = −k1e1x1 x1(0) = 1, x1(t) ≥ 0
ẋ2 = k1e1x1 − k2e2x2 x2(0) = 0, x2(t) ≥ 0
· · ·
ẋn = kn−1en−1xn−1 − knenxn xn(0) = 0, xn(t) ≥ 0

(38)
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This is truly a system of differential equations: except in the first one, the i − 1-th
compound influences the evolution of the i-th one. However, the special configuration
of the system allows for its recursive resolution, starting at the first interval and sequen-
tially substituting the previous computed values. Denote by x ji (t) (for i, j = 1, . . . , n)
the optimal j-th metabolite concentration, in the i-th interval [ti−1, ti ). We show how
this step goes in the first two intervals:

1. First interval: [0, t1].

ẋ1 = −k1e1x1 x1(0) = 1 �⇒ x11(t) = e
k1
λ

(1−e−λt−λt)

ẋ2 = k1e1x1 − k2e2x2 x2(0) = 0 �⇒ x21(t) = 1 − x11(t)
ẋi = ki−1ei−1xi−1 − ki ei xi xi (0) = 0 �⇒ xi1(t) = 0; i = 3, . . . , n

(39)

Notice that, remarkably, solving the second equation is unnecessary on this inter-
val, as there already exists a relation between x21(t) and x11(t). Summing the first
two equations and taking into account that e21(t) = 0, one gets:

ẋ1 = −k1e1x1
ẋ2 = k1e1x1 − k2e2x2

�⇒ ẋ1 + ẋ2 = −k2e2x2 ⇒ ẋ1 + ẋ2 = 0 (40)

so that:

x11(t) + x21(t) = K (41)

from which we infer, as x1(0) = 1:

x21(t) = K − x11(t) = 1 − x11(t) (42)

2. Second interval: [t1, t2]. In the same way as above, we get:

ẋ1 = −k1e1x1 x1(t1) = x11(t1) ⇒ x12(t) = e
k1
λ

(e−λ(t−t1)−e−λt )−k1t1

ẋ2 = k1e1x1 − k2e2x2 x2(t1) = x21(t1) ⇒ x22(t) = F(t, k1, k2, λ, t1)
ẋ3 = k2e2x2 − k3e3x3 x3(t1) = 0 x32(t) = K − [x12(t) + x22(t)]

(43)

for some constant K to be computed later, and

ẋi = ki−1ei−1xi−1 − ki ei xi xi (t1) = 0 �⇒ xi1(t) = 0; i = 4, . . . , n (44)

The value of the function F has been computed, in our case, using the symbolic
algebra system Mathematica™. Notice again how, in this case, the third equation
needs not be solved, as:

ẋ1 + ẋ2 + ẋ3 = 0 (45)

which implies that:

x12(t) + x22(t) + x32(t) = K (46)
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taking into account that x21(t) + x11(t) = 1 by (39), this implies that K = 1, so
that:

x32(t) = [x11(t1) + x21(t1)] − [x12(t) + x22(t)] = 1 − [x12(t) + x22(t)] (47)

This remarkable result can be generalized for the successive intervals with the
general law (obtained with an elementary computation):

x ji (t) = 1 −
j−1∑
k=1

xki (t) for i = 1, . . . , n − 1, j = i + 1, . . . , n (48)

The values for each successive interval are similarly obtained, and the global
solutions are concatenations of these partial ones.
Another adequate computation provides a new general law.

3. In the next interval [t2, t3], one can easily verify that:

ẋ1 = −k1e1x1 x1(t2) = x12(t2) �⇒ x12(t) = e
k1
λ

(e−λ(t−t1)−e−λt )−k1t1 (49)

so that:

x12(t) = x13(t) (50)

and so on, on each interval. Thus, the optimal profile of the j-th metabolite follows
the same function in the intervals [ti−1, ti ] for i = j + 1, . . . , n:

x ji (t) = x ji+1(t) = · · · = x jn(t) (51)

In the end, on each interval, one needs only calculate 3 formulas for the j-th
metabolite (for j = 2, . . . , n), as x ji (t) = 0 for i ≤ j − 2 and x ji (t) = x j j+1(t) for
i ≥ j + 2:

x j j−1(t), x j j (t) and x j j+1(t) (52)

which greatly simplifies the computation of the solution.

Step 4. Calculation of the switching times. Once the optimum values for states
and controls have been obtained, the values of the unknowns (the switching times
t1, . . . , tn−1 and the operation time t f ) need to be computed. In order to do this,
we use restriction (16) which remains unused. Following the Lagrange multipliers
method, we define the augmented functional:

L(t1, t2, . . . , tn−1, t f , β) = t f + β(x1n(t f ) + x2n(t f ) + · · · + xnn(t f ) − C f ) (53)
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where the values of the compounds x1n(t f ), x2n(t f ), . . . , xnn(t f ) are already known
(as functions of the switching times). The nonlinear system of n + 1 equations:

∂L

∂t1
= 0; ∂L

∂t2
= 0; . . . ; ∂L

∂tn−1
= 0; ∂L

∂t f
= 0; ∂L

∂β
= 0 (54)

gives the final solution to the optimization problem.
As a matter of fact, the special structure of the previous system permits the elimi-

nation of the last-but-one equation so that there are only n of them:

∂L

∂t1
= 0; ∂L

∂t2
= 0; . . . ; ∂L

∂tn−1
= 0; ∂L

∂β
= 0 (55)

This eliminates one equation, thus simplifying somehow the resolution of the (itself
already quite complicated) nonlinear system.

5 Numerical example

We now give the complete solution to a numerical example and then analyze the
influence of the degradation and dilution parameter λ.

5.1 Base case

This example is inspired by the test case presented in [2] and later in [8], and which
is a three-step linear pathway with mass action kinetics (LPN3B).

x1
e1−→ x2

e2−→ x3
e3−→ p (56)

The pathway consists of three reactions with mass action kinetics. Each reaction is
catalyzed by a specific enzyme ei ; x1 corresponds to the substrate, x2 and x3 to the
intermediate metabolites and p to the product. The objective is the minimization of
the time needed to reach a 90% amount of product (i.e. C f = 0.9 M).

The authors of [2,8], consider the ideal case of an unalterable substrate (buffered
substrate concentration) and in which the enzymes can be instantly activated. We
propose here, as discussed above, two improvements in the modelization, in order
to obtain a more realistic chemical model: (i) we consider the consumption of the
substrate and (ii) we take into account the enzyme dynamics.

We set, in our computations, ki = 1.0 s−1 and λ = 1.0s−1. In Fig. 2, the optimal
enzyme profile is shown and in Fig. 3, the optimal metabolite and product profiles.
The three optimal switching times, in sec, are:

t1 = 3.39406; t2 = 6.82934; t3 = 11.1909 (57)

where the last one is, obviously, t f . At that time, 90% of the product p(t) is obtained,
as seen in Fig. 3. Notice, also in that figure, how the substrate x1(t) is exhaustible. In
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Fig. 2 Optimal enzyme profile

Fig. 3 Optimal metabolite and
product profile

Fig. 2 one can also realize how the restriction:

S(t) = e1(t) + e2(t) + e3(t) ≤ 1 (58)

is obeyed and how the maximum is asymptotically sought in order to reach the maxi-
mum speed. By way of example, we show the expression of the function F for x22(t)
in this case:

x22(t) = e−et1−t−e−t1−t1−t ·
[
−ee

−t1 (
et1 − 1

)
Ei

(
e−t (−1 + 2et1

))

+ ee
−t1 (

et1 − 1
)
Ei

(
2 − e−t1

) + et1+1
(
et1+e−t1 − e

)]
(59)

The remaining ones are computed similarly.

5.2 Sensitivity analysis

Next, we analyze the influence of the value of the degradation and dilution parameter
λ which, as we stated above, permits us to gauge the growth speed of the enzymes.
Table 1 shows the different values of the optimal switching and operation times for
the case n = 2.
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Table 1 Switching times and
operation time of the optimal
solution, n = 2

λ (s−1) t1 (s) t2 ≡ t f (s)

2 2.93786 6.40382

1 3.02187 6.99172

0.75 3.07630 7.35311

0.50 3.21402 8.04757

0.25 3.66502 9.85349

Table 2 Switching times and
operation time of the optimal
solution, n = 3

λ (s−1) t1 (s) t2 (s) t3 ≡ t f (s)

1 3.39406 6.82934 11.1909

0.5 3.51875 7.18176 12.4201

0.25 3.85307 8.04811 14.6923

As in Figure 1, the less the value of λ, the less the growth speed of the enzymes,
which obviously influences the value of the operation time t f . In Table 2, similar data
is shown for the case n = 3 and the same slowing down of the enzymes is visible for
decreasing λ.

Notice how the values t f = 5.93948(s) for n = 2, computed in [5] and t f =
10.0995(s) for n = 3, in the cases where the enzymes can be instantaneously activated
and their dynamics are not considered, are still (logically) smaller.

6 Conclusions

The influence of enzyme production dynamics over the optimal control of a linear
unbranched chemical process has been addressed. The fact that the enzymes are not
instantly activated provides a more realistic modelling at the cost of a more complex
optimization problem. A resolution algorithm which allows tackling and solving the
problem in a quasi-analytic way has been provided. General laws for the enzyme evo-
lution and the metabolites have been found which provide simplifications and reduce
the computational cost of the resolution process. These laws have been found with the
symbolic algebra system MathematicaTMtrademark and in some cases involve the
function Ei. Themodel of enzyme dynamics studied conjoins simplicity and versatility
when trying to properly study a large family of chemical reactions.
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