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Abstract: We present the design of an original secondary cavity for use in Small-Scale Fresnel
Reflectors in photovoltaic applications. The cavity is similar to the classical V-trough, but the primary
reflector system is configured so that there are two focal points on the aperture. The rays coming from
each side of the primary system reach the opposite side of the cavity, producing a non-symmetrical
distribution of the irradiance. This modifies the acceptance half-angle and allows us to break the
maximum limit for the concentration ratio of ideal symmetric concentrators. Our study is analytic,
and we provide formulas for any number of reflections. Numerical simulations with a ray-tracing
program based on MATLAB are included. We provide a comparison of optical concentration ratio,
height and cost parameter between our system and two classical designs with a single focal point:
the V-trough and the Compound Parabolic concentrators. This way, we verify that our design yields
better concentration ratios while keeping the ray acceptance rate at one. Our solution proves to
be better than both the classical one-focus V-trough and the Compound Parabolic concentrator.
Specifically, the proposed solution is significantly better than the classical one-focus V-trough in
optical concentration ratio, with an increase between 15.02 and 35.95%. As regards the compound
parabolic concentrator, the optical concentration ratio is always slightly better (around 4%). The
height of the cavity, however, is notably less in this design (around 54.33%).

Keywords: V-trough concentrator; concentration ratio; small linear Fresnel reflector

1. Introduction

Human activity is the greatest source of greenhouse gas (GHG) emissions, as fossil
fuels are the main energy source for these activities: hence, the emergence of the term
Anthropocene to describe the human modification of the Earth’s climate [1]. This has led
to the organization of international meetings between representatives of most countries,
the so-called Conferences of Parties (COP). At the last meeting (COP27), in Egypt in 2022,
attended by 196 countries plus the European Union as a whole, stringent decisions to
reduce global greenhouse gas emissions were supported [2].

Renewable energies are possibly the main solution to GHC emissions. In particular,
decentralised energy systems with storage systems [3] give hope to meet the challenge [4].

Photovoltaic systems are one of the main solar energy technologies used to avoid
climate change. A typical application of this technology is concentrator photovoltaic (CPV)
systems. They can be grouped in three classes, according to what is called their geometric
concentration ratio: the ratio between the area of the lens or primary mirror and the
area of the PV cells. The classes are: low, medium and high concentration [5] systems.
This work will focus on low concentration photovoltaic (LCPV) systems with a geometric
concentration coefficient between 2 and 10 suns.

Among the types of concentrators used in the design of LCPVs [6], this work will
focus on the small-scale linear Fresnel reflector (SSLFR). In addition to having a lower
manufacturing cost than other solar concentrators, they showcase a well-proven technology
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that has been the subject of multiple studies (see [7–10], for instance). These reflectors
concentrate the sunlight onto a secondary system by means of a row of longitudinal mirrors.

The geometric concentration ratio [11,12] of an SSLFR is a critical measure of its
efficiency, especially when solar cells are used. Systems with a higher concentration ratio
allow for less (or smaller) cells and prevent complications in the design of the primary field:
the lower the concentration ratio, the thinner the mirrors must be, which makes the system
either costlier or more difficult to maintain, or both (more mirrors are needed, hence more
movable parts, etc.). Another important effect to avoid is a heterogeneous distribution
of the flux of light [13], which causes inefficiencies and may lead to the appearance of
hotspots, which can even lead to the total failure of the system as long as they persist.

Many concentration methods [14] have been proposed to improve the yield of solar
systems. They can be divided in two large categories: nonimaging concentrators (which do
not produce clearly defined images of the Sun on the absorber) and imaging ones (which
form clear images). The former reflect all of the incident radiation towards the receiver
as long as the incidence angle remains in a specific range (acceptance angle). The most
important example of these systems is the compound parabolic concentrator (CPC). Non-
imaging concentrators are usually the most appropriate for use in solar concentration (v.gr.
concentrated photovoltaic systems). Imaging concentrators (such as parabolic reflectors
or Fresnel lenses), for their part, provide wider acceptance angles, higher tolerances for
imperfections and errors, higher solar concentrations, more uniform illumination of the
receiver and greater design flexibility.

Madala and Boehm [15] provide a thorough review of solar concentrators, including
the large family of CPCs (with different reflector and absorber geometries), Fresnel mirrors,
V-trough concentrators, etc. Some conventional imaging type concentrators (such as
parabolic troughs) are also covered in their study. More recent designs can be found in [16]
(v.gr. concentrators with multi-surface and multielement combinations). As we propose a
modification of the classical V-trough concentrator, we are only going to review this one.

Duffie [17] is one of the main references in this area: the acceptance angle (the angle
such that any incident ray forming a lesser angle with the cavity gets to the absorber) is
introduced in that work. He approximates the system using the tangents to a reference circle
passing through one of the end points of the aperture. That reference [17] also contains the
study of linear, two-dimensional, V-trough concentrators. He studies a system with two
flat plate reflectors, an ideal concentrator perfectly aligned with the Sun and with a single
reflection. V-trough concentrators have been considered the best in terms of uniformity of
flux distribution [18]; their reduced complexity and lower manufacturing costs [19] also
make them very convenient.

There is a good amount of literature on V-trough concentrators for different applica-
tions. Shaltout et al. [20] evaluated a V-trough concentrator on a photovoltaic system with
two-axis solar tracing in a hot desert climate. Their system, which has a concetration ratio of
1.6, generates 40% more PV power than the same system without a concentrator. Different
concentrator geometries, depending on the incidence angle of the solar irradiation as well as
the effect of the wall angle of the trough, are considered by Solanki et al. [21], Maiti et al. [22],
Chong et al. [23], Tina and Scandura [24], Singh et al. [19] and Al-Shohani et al. [25]. Re-
cently, Al-Najideen et al. [26] proposed a new design by adding two additional elements
to the Hollands concentrator, resulting in four symmetrical reflectors surrounding the PV
cell. They call their design “Double V-trough Solar Concentrator”. Our proposal follows
their spirit, as we provide a new modification, specifically designed for SSLFR systems: a
V-trough with two foci.

The optical behaviour of the cavity can be described using the method of images
applied to V-trough linear concentrators by Duffie [17]. Other papers also present optimal
designs of concentrators using analytical solutions of the equations describing the number
of reflections of rays through the trough [27]. Fraidenraich [18,28,29] used the method
of images, with an additional condition on the design (the illumination of the module’s
surface has to be uniform) to describe the optical behaviour of the class of V-trough cavities.
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More recently, Tang [30] presented a detailed mathematical procedure for the design of a
V-trough concentrator with attached solar cells. The solution is found using the method of
images and determining the fraction of solar rays arriving at the cells after any number
of reflections.

Another widely used approach uses ray-tracing techniques in order to design, simulate
and optimize different types of V-trough concentrators. For instance, Chong et al. [23] use
this technique implemented in Microsoft Visual C++. Maiti et al. [22] use Monte Carlo
ray-tracing, as does Paul [31]. Narasimman and Selvarasan [32] use the software Trace-Pro
to simulate. Finally, Hadavinia y Singh [33] use Comsol.

The concentration ratio of V-trough concentrators depends on the acceptance half-
angle θc: the largest incidence angle for which no radiation is rejected. When the design
of the system is symmetric and the distribution of irradiance going into the concentrator
is uniform for any θ with |θ| ≤ |θc|, it is well-known [17] that a two-dimensional (linear)
concentrator (such as the V-trough) has a concentration ratio bounded by C2D

ideal = sin−1 θc.
In our design, we take advantage of the nature of an SSLFR in order to develop a configura-
tion of the primary reflector system which gives rise to a non-uniform distribution of the
irradiance on the cavity with two different focal points, so that each side of the SSLFR is
focused on one of them.

As explained above, many authors have tried to determine the acceptance rate ηray
using both analytical and statistical methods. We have a different objective: to maximize
the concentration ratio under the condition ηray = 1 for all the incidence angles less than the
acceptance half-angle θc. We do not use the method of images, only planar mirror geometry,
and we compute the optimal design using closed-form analytic methods. In our study,
we can analyze any number of reflections. The advantage over ray-tracing is obvious: we
provide a universal method for computing the optimal design, regardless of simulations.

The inspiration for this new design comes from a previous study by some of the
authors [34]. In that paper, dedicated to the application of SSLFRs to illumination by means
of optic fiber, two non-symmetrical trapezes were joined along their vertical side, in order
to construct what can be called a “half-trough concentrator”. From the design and the
specific functioning of the SSLFR, the reflected rays reach each of the two cavities from
the corresponding side of the primary field. That way, light from a wider inlet aperture
was concentrated into a narrower area (the absorber). What we have realized is that this
design can be improved, removing the vertical wall but keeping the two different foci of the
(previous) cavities. This reduces the number of reflections required for a ray to reach the
absorber area (by a little less than one-half), and the amount of material required to build
the concentrator. Thus, we both improve the efficiency and reduce costs. Furthermore,
we carry out the whole theoretical study with analytical solutions in this paper, whereas
in [34] only simulations with Maltab were performed.

Each focus of the receiver cavity is reached by rays satisfying the requirement θ ≤ θc
on each side. These conditions are weaker than the global condition |θ| ≤ |θc|, the one
governing the usual one-focus half-trough design. The breakthrough is that this change
of condition for the acceptance angle provides a concentration ratio greater than the one
for symmetric concentrators with uniform irradiance distribution (one focal point)namely
C2D

ideal , and this happens for any acceptance half-angle. As far as we know, there is no such
result in the literature.

All the previous literature covers the single-focus V-trough concentrator and the
compound parabolic concentrator. We have not found any reference dealing with a double-
foci V-trough concentrator.

Thus, the aim of this work is very specific. Starting from a two-focus configuration
that causes a non-symmetric distribution of irradiance at the secondary reflector aperture,
the cavity will be designed with the following property: it must maximise the geometrical
concentration ratio under the condition that the ray acceptance rate is equal to one for all
angles of incidence less than the half-angle of acceptance.We do not impose any restriction
on the height of the cavity.



Energies 2023, 16, 1597 4 of 18

The specific contributions of this study can be summarized in the following proposals:

(i) We propose a secondary cavity prepared for low-concentration photovoltaic systems
based on SSLFRs with a large concentration ratio and non-uniform solar irradiance
distribution.

(ii) The design obtains a concentration ratio greater than the maximum possible for
systems with uniform irradiance distribution [17].

The paper is organized as follows: Section 2 contains the basic notions about con-
centrators. A brief description of the SSLFR for concentration PV applications with the
two-foci design and the geometric design of the two-foci V-trough concentrator is given
in Section 3. Section 4 includes numerical results and validations of the proposed design,
which is compared with other classical concentrators (CPC and V-trough) in Section 5.
Finally, Section 6 contains a summary of the main conclusions.

2. Main Parameters of a Concentrator

Duffie [17] states the fundamental problem in the design of concentrators as follows:
“How can radiation which is uniformly distributed over a range of angles |θ| ≤ |θc|
and incident on an aperture of area Aa, be concentrated on a smaller absorber area Aabs,
and what is the highest possible concentration”. He is using the most common definition
of concentration ratio, the area or geometric concentration ratio:

Ca =
aperture area
absorber area

=
Aa

Aabs
(1)

Notice that in his statement, he assumes that the radiation is uniformly distributed
(and uniformly reflected). From this hypothesis, it follows that this ratio has an upper
limit which depends on whether the concentrator is three-dimensional (spherical) or a
two-dimensional (linear) concentrator, such as our V-trough design. From the Second Law
of Thermodynamics, Rabl concludes that the maximum possible concentration ratio for a
given acceptance half angle θc is:

C2D
ideal = sin−1 θc (2)

For two-dimensional (trough-like) concentrators, as he remarks, a concentrator is ideal
if and only if the exchange factor that measures the radiation going from absorber to the
source is one. It is known that compound parabolic concentrators (CPC) actually reach this
limit, so that they have been called “ideal concentrators” [17].

In addition to this index, there are other indices that measure the goodness of a
concentrator, such as the flux concentration ratio. It is defined as the ratio of the average
energy flux on the receiver to that on the aperture; the local flux concentration ratio which
is the ratio of the flux at any point on the receiver to that on the aperture and which
varies across the receiver. In order to avoid confusion, we will use the following notation
(commonly used in the literature, e.g., in [24,25] or [33]):

Copt =
flux at the receiver
flux at the absorber

= Ca · ηray (3)

where Copt is the optical concentration ratio, Ca is the area concentration ratio, and ηray is
the ray acceptance rate, defined as the fraction of incident light rays reaching the absorber.

Duffie [17] presented the following equation for the classical “single-focus” (so to say)
V-concentrator, considering: ideal concentrator, perfectly aligned with the Sun, and with a
single reflection:

Ca = 1 + 2 cos(2Φ) (4)
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where Φ is the trough angle or half angle of the V-shaped cone. Equation (4) has also
been used by [24]. Duffie [17] also used the concept of the half angle of the V-shaped cone,
obtaining the following equation:

Ca =
1

sin(θc + Φ)
(5)

Equation (5) has also been used by [15].
Fraidenraich [28] presented a paper in which he showed that the optical concentra-

tion ratio can be approximated by a function of two parameters: the ray acceptance rate
and the average number of reflections, n. In Fraidenraich [18], the main hypothesis is the
condition of uniform illumination of the absorber’s surface within an angular interval of
light incidence. Using it, he provides analytical expressions relating Ca and Φ and also
a cost analysis. Tang [30] presents a study where he considers Φ and Ca as independent
parameters that determine the geometry of a V-trough concentrator. Rabl [35] shows that
slight errors in the calculation of n are almost irrelevant on the final value of ρn

m.
Finally, thereflector-to-aperture area ratio parameter is defined:

Ra =
reflector area
aperture area

=
Ar

Aa
(6)

It can be intuited that the height of the cavity plays a key role. The Ra parameter is
necessary for cost analysis. For example, the high efficiency of ideal CPC concentrators has
as a negative trade-off their high Ra.

3. Design of a Two-Foci V-Trough Concentrator

In this section, we provide a detailed description of the optimal design of the two-foci
V-trough cavity, using analytical formulas exclusively.

3.1. Brief Description of the SSLFR with Two-Foci V-Trough

An SSLFR consists of a set of flat mirrors (the primary reflector system) concentrating
the direct solar irradiance onto an element with much smaller area which, in our case, is a
row of PV cells. The primary reflector system contains a set of parallel stretched mirrors
mounted on a frame; in order to follow the Sun’s motion, in our design, each mirror
can rotate in the north–south axis. A secondary reflector system—a reflective cavity— is
positioned so that the irradiance reflected from the primary system, which does not fall
directly on the PV cells, is reflected again and directed towards them.

Figure 1 shows the schematics of the SSLFR: notice the symmetry of the system (except
for the orientation of the mirrors). Its main constructive magnitudes are: mirror width
(WM), height to the receiver ( f ), separation between two consecutive mirrors (d), distance
from the mirror centers to the center of SSLFR (Li), width of the PV cells (b), aperture of the
secondary reflector system (the V-trough cavity) (B) and number of mirrors on each side of
the SSLFR (Nr = Nl , which we will call N, as we assume the same number of mirrors on
each side). The secondary cavity is symmetric with respect to the central axis, but there are
two different focal points for the optical system: F1 and F2, one on each side.

For each side of the SSLFR, the angle between the vertical line through the focal point
and the line connecting this point with the center of the i-th mirror is:

βi = arctan
Li
f

; 1 ≤ i ≤ N (7)

The maximum βi on each side (that is, βNr = βNl ) is the acceptance angle of the
secondary cavity:

θc = βN (8)
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Finally, notice that we are not fixing (at all) the height of the secondary cavity (H, as we
will see later): in fact, this is one of the most important variables in our design, as a large
value implies a big concentrator, which is undesirable.

Figure 1. SSLFR with two-foci V-trough secondary concentrator.

3.2. Two-Foci V-Trough Reflector

Consider a classical V-trough cavity such as the one depicted in Figure 2. There are
two linear side walls (PQ and P′Q′) which concentrate light from the wider inlet opening
PP′ towards the narrower absorber area QQ′. Four parameters are considered in this study:
the incidence angle of each ray θi on the cavity aperture B, the height H of the cavity and
the trough wall angle τ. Note that the upper width QQ′ of the cavity is not a free parameter
but a constraint because it is equal to the width of the PV cells. Notice that our angle τ
is the complement of Hollands’ and Rabl’s Φ. The central axis OR will be the reference
axis for angles, and we will consider θi to be positive for rays coming from the left side
and negative for those coming from the right. Using the notation of Figure 2:

θi = α0 (9)

For simplicity, we will denote the angle between the ray reaching the cavity and OR
as α0 (i.e., α0 = θi), and each of its successive reflections will be αj, for j = 1, 2, . . .

Figure 2. Two-foci V-trough (Case A).
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As already stated, the key to our design is to assume that on each side of the concen-
trator only the rays coming from the same side of the primary reflector system arrive, each
with an incidence angle θi. The position and orientation of the mirrors of the primary field
create two focal points F1 and F2, one for each set of mirrors on each side of the field; the
left F1 and F2 are on the midpoint of each of the half-bases of B. For simplicity, we will
speak of the right and left sides of the cavity, separated by the axis OR despite there being
no physical separation.

Of course, our design still aims at computing an acceptance angle θc such that the ray
acceptance rate ηray is one, and thus Copt = Ca. However, we do not impose the classical
condition |θi| ≤ |θc|, but instead:

0 ≤ θi ≤ θc on the left side of the cavity
0 ≥ θi ≥ −θc on the right side of the cavity

(10)

We will only state the left-side case (with rays coming from the right of the SSLFR
focused on F1). In these terms, the problem can be stated as: given b, in order to find
the maximum Ca, we will maximize B under the restriction that all the rays reaching PP′,
after a number of reflections, get to the PV cell (whose width is b), that is ηray = 1:

max Ca = max B; 0 ≤ θi ≤ θc (11)

The following property is key to finding the optimal design.

Property 1. In order to achieve (11), the optimal solution of the most unfavorable case is that in
which the vertical component of each reflection on the walls (if there are any) is largest and touches
the base b either on Q or Q′.

We make use of Property 1, forcing the reflected rays to be as high as possible and to
reach the corners Q or Q′ of the basis b. However, we are no longer in a symmetric geometry,
and we have two different cases to consider (see Figures 2 and 3) :

Case A: ray passing through O with θi = θc;

Case B: ray falling on P with θi = 0.

If we make these two rays reach b, any other ray will also, and usually with less reflec-
tions. From Figures 2 and 3, one can obtain the formulas for each number n of reflections.

Let us study each of the cases A and B separately.

Figure 3. Two-foci V-trough (Case B).
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3.2.1. Case A

Using the Law of Reflection, if n is the number of reflections required to reach the PV
cells and starting at θi = α0, the following equalities follow (see Figure 2):

α1 = (π − 2τ) + α0; α2 = (π − 2τ) + α1; · · · ; αn = (π − 2τ) + αn−1 (12)

As for the angle between PP′ and the i−th reflection, called ε j:

ε1 = (2τ − π/2)− α0; ε2 = (2τ − π/2)− α1; · · · ; εn = (2τ − π/2)− αn−1 (13)

Finally, the vertical lengths traveled by the reflected ray li after each reflection are
given by the following equations:

For i = 1 we obtain:
l1 =

B/2
cot τ + tan α0

(14)

For the following ones:

l2 =
B− 2(l1) cot τ

cot τ + tan α1
; l3 =

B− 2(l1 + l2) cot τ

cot τ + tan α2
; · · ·

· · · ; ln =
B− 2 ∑n−1

i=1 (li) cot τ

cot τ + tan αn−1
(15)

We now have the tools required for describing the algorithm which gives the optimal
design (11). The nested structure of the formulas leads to an easily implementable method.

Where n is the number of reflections on the lateral walls, the algorithm considers
different cases An, depending on n. The height Hn of the cavity for n reflections is:

Hn(B) = ∑n
i=1 li (16)

substituting into
B = b + 2Hn(B) cot τ (17)

and solving for B, we obtain:

A1 : B1(τ) = b + b cot(α0) cot(τ)

A2 : B2(τ) = −b cos(α0 − 3τ) csc(α0) csc(τ)

A3 : B3(τ) = b cos(α0 − 5τ) csc(α0) csc(τ)

· · ·
An : Bn(τ) = (−1)n−1b cos(α0 − (2n− 1)τ) csc(α0) csc(τ) (18)

The case n = 1 has no physical meaning, as B→ ∞ when τ → 0. The rest of the cases
are possible, though. The algorithm finishes by maximizing, using numerical methods,
the transcendental equations for Bn(τ), thus finding the optimal design angles τ∗n which
give the maximal Ca. Some qualitative properties can be deduced:

(i) The optimal value of τ∗n increases with n, and τ∗ → 90◦ as n→ ∞.
(ii) The optimal value for Ca is reached for n = 3 (A2) and decreases afterwards asymp-

totically towards (2).

For each case An, the number of reflections is n− 1. We will see this in detail in the
next section when we show the example.
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3.2.2. Case B

In this case, we just need to set θi = α0 = 0 in Formulas (12) and (13) to obtain (see
Figure 3):

α1 = (π − 2τ); α2 = (π − 2τ) + α1; · · · ; αn = (π − 2τ) + αn−1 (19)

ε1 = (2τ − π/2); ε2 = (2τ − π/2)− α1; · · · ; εn = (2τ − π/2)− αn−1 (20)

However, the vertical lengths li of the i−th reflected ray are different from Equa-
tion (15). The vertical lengths traveled by the reflected ray li after each reflection are given
by:

l1 =
B

cot τ + tan α1
; l2 =

B− 2(l1) cot τ

cot τ + tan α2
; l3 =

B− 2(l1 + l2) cot τ

cot τ + tan α3
; · · ·

· · · ; ln =
B− 2 ∑n−1

i=1 (li) cot τ

cot τ + tan αn
(21)

Reasoning as above, stating each case Bn and substituting the height Hn

Hn(B) = ∑n
i=1 li (22)

into:
B = b + 2Hn(B) cot τ (23)

and solving for B, we obtain:

B1 : B1(τ) = b(1− 2 cos(2τ))

B2 : B2(τ) = b(1− 2 cos(2τ) + 2 cos(4τ))

B3 : B3(τ) = b(1− 2 cos(2τ) + 2 cos(4τ)− 2 cos(6τ))

· · ·

Bn : Bn(τ) = b
(

1− 2 ∑n
i=1(−1)i cos(2iτ)

)
(24)

First of all, notice that this family of functions does not depend on α0 = θc. Secondly,
and as the main result, when increasing the number of reflections n, we obtain a family of
functions whose maximum (without physical meaning) is the asymptotic value:

max Bn(τ) = lim
τ→90o

Bn(τ) (25)

As a consequence, the concentration ratios Ca tend to

lim Ca = 3, 5, 7, . . . (26)

as we increase the number of reflections n = 1, 2, . . . (obviously, allowing for Hn → ∞).
We think it is remarkable that the classical formula of Hollands for an ideal concentra-

tor which is perfectly aligned with the Sun and with a single reflection:

Ca = 1 + 2 cos(2Φ) (27)

is just a particular case of our family Bn(τ): specifically, B1(τ), as one can verify readily
because Φ = π/2− τ. As a consequence, our study generalizes to any number of reflections
the case of an ideal concentrator (perfectly aligned with the Sun).

From the above, it follows that the aim of this case B is no longer to maximize the
function Bn(τ) but to choose the optimal solutions among the “candidate solutions” An.
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To this end, we need to obtain the general expressions for the heights of the cavity in
each case Bn. The simplest way is to use:

Hn =
Bn − b

2
tan(τ) (28)

which gives:

B1 : H1(τ) = −b cos(2τ) tan(τ)

B2 : H2(τ) = −b(cos(2τ)− cos(4τ)) tan(τ)

B3 : H3(τ) = −b(cos(2τ)− cos(4τ) + cos(6τ)) tan(τ)

· · ·
Bn : Hn(τ) = −b tan(τ)∑n

i=1(−1)i−1 cos(2iτ) (29)

As the value of b is fixed, using the envelope of this family of curves Hn(τ), for each
value of τ we obtain the largest height under the condition ηray = 1. This way it becomes
easier to verify if the optimal candidate solutions (the values τ∗n and H(τ∗n )) computed for
the cases An also satisfy this case B. The example provided in Section 5 clarifies this step.

The process can be made as long as desired, and we can choose the optimal design
depending on the number of reflections n. Qualitatively, the main result is that the larger
n is, the larger Bn is, so that Ca increases as well. Actually, Ca tends asymptotically to the
ideal value (2).

3.3. Number of Reflections in the Two-Foci V-Trough

Finally, in order to compute the approximate value of n, we will use the property
proved by Rabl [35] that the average number of reflections in a V-trough is essentially the
same as those in a CPC. Thus, we consider a truncated CPC with the same height as our
two-foci V-trough, starting with a whole CPC designed for the specific value of θc.

We must not forget that the influence of n on the factor ρn
m is rather small because ρm

is always very near to one.

4. Numerical Results and Validation

In this section, we present an example in order to clarify the method and also as a
verification of our results. We set b = 10 (cm) and θc = α0 = 30◦ (the acceptance angle),
a plausible value for the typical dimensions of an SSLFR [36]. All the computations have
been carried out on a budget PC using the Mathematica™ Computer Algebra System.

We start by computing the candidates to the optimum of case A. Table 1 shows the
concentrations Copt, optimal angles τ∗ and heights corresponding to each An. Recall that
as our method ensures that ηray = 1, we always have Copt = Ca. The lack of influence of
the longitudinal study implies that B = b · Ca.

Table 1. Example of optimal design of a two-foci V-trough.

Case A A2 A3 A4 A5 A6 A7 A8

Copt 2.146 2.047 2.023 2.014 2.009 2.007 2.005
τ∗ (◦) 67.36 77.49 81.25 83.25 84.50 85.36 85.98
H (cm) 13.74 23.59 33.23 42.82 52.40 61.97 71.53
Case B B1

Figure 4 shows in a clearer way the evolution of the three parameters above. Notice
how H is linear in n, but τ∗ is (obviously) not, as it tends asymptotically to 90◦.

The largest value of Copt (these are computed numerically) corresponds to the first
physically possible case, A2. The values decrease with n and approach the ideal value
(2) asymptotically from above (in this specific example, sin−1 θC = 2). This phenomenon
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happens for any value of θc and is quite relevant, as it implies the number of reflections n is
less (so that ρn

m is greater) and also a lesser height H of the cavity (and, hence, less Ra).

Figure 4. Optimal candidate solutions of case A.

Finally, we need to check whether the solutions above are also valid for some case B.
To this end, we use the family of curves Hn(τ) given by (29) (Figure 5 contains the first four
of these). For a fixed b, this sequence of functions is valid for any value θc, which simplifies
the computations. Notice how as τ increases, the largest height (which is given by the
envolvent of the curves) is reached for a greater number of reflections n. Even though the
envolvent gives the maximum value of H, there may be cases Bn with less n which also
satisfy the condition (which is good, as it means a lesser number of reflections).

Figure 5. Choosing from the optimal candidates An using case B.

Thus, the last step of the optimization algorithm consists of taking the first optimal
solution An (for decreasing values of Copt) which also satisfies the condition of case B.
In this example, for A2, we have τ∗ = 67.36, H = 13.74, and

H1(τ
∗) = 16.87 > H = 13.74 (30)

So the best candidate A2 is also valid because the conditions of case B1 hold. However,
this might not always be the case, as we will see later.

Ray Tracing Simulation and Verification

We verified our results using a Matlab™ray-tracing program which models solar
power optical systems [37,38], using geometric optics. This program has already been used
in other studies [38,39].

Figure 6 contains the simulation of our two-foci V-trough concentrator for α0 = 30◦, 40◦

and 50◦. Notice how for θi ≤ θc (the incidence angle), all the rays reaching the base B
end up on the cells at b, as shown in Figure 6a. For θi > θc, part of the rays entering the
cavity end up at b (Figure 6b), and finally, the worst case happens for θi � θc, when no ray
entering the cavity reaches b.
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Figure 6. Two-foci V-trough: several examples of ray-tracing.

In Figure 7 we provide an analysis of the evolution of the ray acceptance rate ηray
for angles θi greater than θc. Recall that in ideal CPCs, this value goes from one to zero
instantaneously [33]. In the classical V-trough [33], ηray decreases depending strongly on
the incidence ray and the design of the cavity. One can see that in our model, one goes from
ηray = 1 for θi ≤ θc to decreasing values in a progressive but not too sharp a way. This is,
in our opinion, another strength of our proposed design.

Figure 7. Plot of ηray in two-foci V-trough for 30◦ = θc <θi < 50◦.

As a cost analysis, we compute the reflector-to-aperture area ration Ra, disregarding
the length, which has no relevance:

Ar = 2
H

sin τ∗
= 2.977

Aa = 2.146

→ Ra =
Ar

Aa
= 1.387 (31)

5. Comparison with Other Classical Receivers

Finally, we compare our design with two different classical concentrators: the classical
V-trough and the ideal CPC. We do this for several acceptance angles θc.

5.1. One-Focus V-Trough

For ease of comparison with the two-focus design proposed here, the classical one-
focus V-trough design is shown. Using Property 1, we start the iterative algorithm stating
a sequence of different cases Cn for an increasing number of reflections n. We will use,
in each of them, the worst-case condition θi = θc. For each case Cn, the height of the cavity
Hn can now be computed using (12), (13) and (21):

Hn(B) = ∑n
i=1 li (32)
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Now, we substitute the value of Hn(B) into the formula relating b, B and H with τ:

B = b + 2Hn(B) cot τ (33)

and, solving for B, after some easy computations, we obtain:

C1 : B1(τ) = −b cos(α0 − 3τ) sec(α0 − τ)

C2 : B2(τ) = b cos(α0 − 5τ) sec(α0 − τ)

C3 : B3(τ) = −b cos(α0 − 7τ) sec(α0 − τ)

· · ·
Cn : Bn(τ) = (−1)nb cos(α0 − (2n + 1)τ) sec(α0 − τ) (34)

This gives the functions Bn(τ) analytically in terms of b and α0. In the last step of
the algorithm, we need to compute the maximum of those Bn(τ) in order to obtain the
optimum angles τ∗n maximizing B and hence Ca.

The process can be made as long as desired, and we can choose the optimal design
depending on the number of reflections n. From the qualitative point of view, the main
result is that the larger n, the larger Bn, so that Ca increases as well. Actually, Ca tends
asymptotically to the ideal value (2). In each case Cn, the number of reflections is n.

Recall that our design guarantees ηray = 1. Table 2 and Figure 8 summarize our results
for b = 10 and θc = 30◦.

Table 2. Example of optimal design of a V-trough.

Case C C1 C2 C3 C4 C5 C6 C7 C8

Copt 1.369 1.535 1.631 1.694 1.738 1.772 1.797 1.818
τ∗ (◦) 76.44 80.75 82.96 84.31 85.22 85.88 86.38 86.77
H (cm) 7.66 16.43 25.55 34.83 44.18 53.59 63.03 72.49

Notice how Cn approaches the ideal value Copt = sin−1 θC = 2 but forcing the walls
to become practically vertical (τ → 90◦, Φ→ 0◦). This follows easily from (5) (see [35]):

Ca =
1

sin(θC + Φ)
(35)

Quoting [35], “We see that a V-trough can, at least in principle, approach the ideal
concentration if it is very narrow, that is if Φ→ 0◦. In that limit, however, the number of
reflections as well as the aperture to reflector ratio become very unfavorable”. Furthermore,
as n increases, H does so much faster, and the factor ρn

m decreases the power reaching the
PV cells. Table 3 contains the summary of this study for θc ∈ [10, 45] in steps of 5◦.

Figure 8. Sequence of optimal solutions of case C.
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Table 3. Comparative table for several θc.

10◦ V-2F CPC V-1F 30◦ V-2F CPC V-1F

Case A5-B4 C6 Case A2-B1 C2
Copt 5.829 5.759 3.733 Copt 2.146 2.000 1.535
τ 80.99 85.09 τ 67.36 80.75
H 152.5 191.6 158.9 H 13.74 25.98 16.43
n 0.977 1.043 0.989 n 0.468 0.674 0.522
Ra 5.295 6.774 8.55 Ra 1.387 2.674 2.169

15◦ V-2F CPC V-1F 35◦ V-2F CPC V-1F

Case A4-B2 C4 Case A2-B1 C2
Copt 3.934 3.864 2.616 Copt 1.849 1.743 1.418
τ 79.06 83.41 τ 69.27 81.37
H 75.89 90.76 69.95 H 11.22 19.59 13.78
n 0.847 0.902 0.822 n 0.439 0.621 0.502
Ra 3.930 4.813 5.38 Ra 1.298 2.308 1.966

20◦ V-2F CPC V-1F 40◦ V-2F CPC V-1F

Case A3-B2 C3 Case A2-B1 C2
Copt 3.017 2.924 2.067 Copt 1.633 1.555 1.325
τ 75.40 82.16 τ 71.17 82.04
H 38.73 53.90 38.76 H 9.28 15.23 11.63
n 0.701 0.807 0.701 n 0.411 0.572 0.480
Ra 2.653 3.792 3.786 Ra 1.201 2.006 1.773

25◦ V-2F CPC V-1F 45◦ V-2F CPC V-1F

Case A3-B1 C3 Case A2-B1 C2
Copt 2.431 2.366 1.817 Copt 1.471 1.414 1.250
τ 76.44 82.52 τ 73.06 82.76
H 29.68 36.09 31.12 H 7.73 12.07 9.84
n 0.669 0.734 0.684 n 0.382 0.525 0.456
Ra 2.512 3.141 3.455 Ra 1.099 1.743 1.587

5.2. CPC

The design of a CPC is basically a pair of skewed parabolas whose length is such that
at the extremes the parabolic arcs are parallel to the axis of the concentrator. The angle
between the axis of the CPC and the line connecting the focus of one of the parabolas with
the opposite edge of the aperture is the acceptance half-angle θc. When the reflector is
ideal, any radiation entering the aperture at angles between ±θc will be reflected to the
base of the concentrator. However, CPCs must be very high to achieve great concentrations,
and they are usually truncated in order to cut them down from h to an acceptable height hT .
This truncation is convenient for the reflector-to-area ratio, and the decrease in performance
(acceptance angle and concentration ratio) is low. See Appendix A for the relevant formulas.

5.3. Results

Table 3 contains the comparison for θc ∈ [10, 45] (◦) between our design and the
other two concentrators. We provide the values of three parameters: optical concentration
ratio Copt, optimum angle τ∗ and height H, and the cost parameter Ra. We also show
the combinations of cases A and B yielding our optimal design. The values for the CPC
correspond to the ideal case (in the formulas of the Appendix A, φT = 2θC, aT = a,
and hT = h). To compute the average number of reflections n, we used the formulas for the
truncated CPC with the same height as our two-foci V-trough. In order to give a meaningful
comparison with the classical V-trough, we have chosen the case Cn with the same height
as our design.

We remark the following:
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1. Our solution is clearly better than the classical one-focus V-trough in optical concen-
tration ratio Copt, with an increase between 15.02 and 35.95%. It is also better from a
cost-analysis point of view, as our Ra is generally 46.63% better.

2. As regards the CPC, our Copt is always slightly better (around 4%). The height H is
notably less in our design (around 54.33%), which leads to a much more compact
element, and Ra is generally 57.63% less. Notice that our design is much easier to
build than the CPC, obviously.

6. Conclusions

The design of the secondary cavity of a small-scale linear Fresnel reflector is key
to maximizing the concentration ratio, which allows for a decrease in the number of
photovoltaic cells required and for an increase in the width of the mirrors of the primary
field, both of which lower the final cost.

In this work, we have computed analytically, the optimal design of a cavity which,
using a non-symmetric distribution of the irradiance reaching its opening, has a concentra-
tion ratio greater than those of classical designs. Our analytic approach provides formulas
for any number of reflections, which are easily implemented as an iterative algorithm.
Furthermore, we prevent the combinatorial explosion inherent in ray-tracing.

We use a two-foci configuration in which rays from each side of the small-scale linear
Fresnel reflector reach the other side of the secondary cavity, so that the distribution of
irradiance cannot be assumed uniform. We show that our design produces an optical
concentration above the ideal value for classical concentrators with uniform distributions.
The values for the reflector-to-aperture area ratio are also better, and the design is both
more compact and easier to build. Finally, our proposal always yields a value of ηray = 1,
as the classical compound parabolic concentrator, but for θi > θc, the values of ηray decrease
progressively but slowly.

Future research might include the possibility of modifying the design to have two
secondary cavities instead of just one, one on each side of the small-scale linear Fresnel
reflector. This would halve the acceptance ratio while notably increasing the concentration.
However, there would probably be a cost increment which should be taken into account.
This study can be applied to daylighting systems using fibre optics.
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Nomenclature

Aa Aperture area (m2)
Aabs Absorber area (m2)
Ar Reflector area (m2)
a Aperture of the secondary (CPC) cavity (m)
B Aperture of the secondary V-trough cavity (m)
b width of the PV cells (m)
Ca Area concentration ratio (dimensionless)
Copt Optical concentration ratio (dimensionless)
d Separation between two consecutive mirrors (m)
f Vertical coordinate of the receiver (m)
Li Position of the i-th mirror (m)
li Vertical length of the i-th reflection (m)
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H Height of the cavity (m)
h Height of the CPC cavity (m)
N Number of mirrors on each side of the SSLFR
n Mean number of reflections
Ra Reflector-to-aperture area ratio (dimensionless)
WM Mirror width (m)

βi
Angle between the horizontal and the line from the focal point to the midpoint of
mirror i (◦)

α0,1,...,n Angle between reflected rays and vertical axis (◦)
εi Angle between the i-th reflection and the horiz. axis (◦)
ηrai Ray acceptance rate (dimensionless)
θc Acceptance angle (◦)
θi Angle between the normal to the mirror and the incidence direction of the Sun rays (◦)
ρm Reflectivity of the mirror (dimensionless)
τ Trough wall angle (◦)
Φ Trough angle or half angle of the V-shaped cone (◦)
CPC Compound parabolic concentrator
CPV Concentrator photovoltaic
LCP Low concentration photovoltaic
SSLFR Small-scale linear Fresnel reflector

Appendix A. Formulas for the CPC

The focal distance of the parabola f , the total length h, the aperture length a and the
concentration Ca are [17]:

f = a′(1 + sin θC); h =
f cos θC

sin2 θC
; a =

a′

sin θC
→ Ca =

a
a′

=
1

sin θC
(A1)

Figure A1. CPC.

When the CPC is truncated to reduce its height from h to hT , we obtain:

hT =
f cos(φT − θC)

sin2(φT/2)
; aT =

f sin(φT − θC)

sin2(φT/2)
− a′ → Ca =

aT
a′

(A2)
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where aT is the aperture area of the truncated system and φT the polar angle at which the
parabola is truncated. For the reflector-to-aperture area ratio Ra and the average number of
reflections n, we have (after fixing some minor errata in [17]):

Ra =
f

aT

[
cos(φ/2)
sin2(φ/2)

+ ln cot
φ

4

]φT

θC+π/2
(A3)

n = max
[

Ca
Ra

2
− x2 − cos2 θC

2(1 + sin θC)
, 1− 1

C

]
(A4)

x =

(
1 + sin θC

cos θC

)(
− sin θC +

√
1 +

hT
h

cot2 θC

)
(A5)
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