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Abstract
One of the most important physical characteristics of a reservoir is the elevation-storage curve. In most cases,
linear simplification is applied to this curve, which is approximated as a linear relationship. However, this simplifi-
cation can produce serious errors in the optimal solution. In this paper we consider a non-linear elevation-storage
curve to be applied to the reservoir and therefore consider a non-linear problem. To obtain the optimal solution,
the problem is formulated within the framework of optimal control theory using Pontryagin’s Maximum Principle.
The advantage of this technique with respect to previous methods lies in the possibility of obtaining theoretical re-
sults whose implementation (and computational complexity) is feasible regardless of the non-linear characteristics
of the problem. Results of the application of the method to a numerical example are presented and we show the
differences between the two approaches.

1 Introduction
This paper deals with the influence of the design of the reservoir in the optimization of hydro-plants,
one of the important optimization problems in a hydrothermal power system. We represent the hydro-
plant at a high level of detail and include inter-temporal constraints such as hydro reserves. We consider
a non-linear elevation-storage curve to be applied to the reservoir and therefore consider a non-linear
problem.

In a hydro-plant, power is derived by converting the potential energy of water to electrical energy
using a hydraulic turbine which is connected to a generator. The output power P (Mw) is given by

P =
qh

G
(1)

where q is the rate of water discharge (m3/h), h is the effective water head (m), and G is the efficiency
(m4/ h .Mw). One of the most important physical characteristics of a reservoir is the elevation-storage
curve (Fig. 1). Elevation y (m) and volume s (m3) are physical relationships linked to each other by
the topography of the surrounding area. A mathematical function of the elevation-storage curve for each
reservoir needs to be approximated. In most cases, linear simplification is applied, and y is approximated
as a linear relationship:

y = α0 + α1s (2)

where y is the elevation of the water surface above a given reference level, and αi are parameters computed
from measured elevation-storage data.
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However this simplification can produce serious errors in the optimal solution. In this paper we
consider the curve to be approximated by second-order polynomial functions:

y = α0 + α1s + α2s
2 (3)

Figure 1. Typical reservoir elevation-storage curve.

Hydraulic optimization problems have been the subject of intensive research and several methods have
been widely employed in their solution: dynamic programming (Wood et al. [7]), mixed integer linear
programming (Torre et al. [5]), Lagrangian relaxation (Redondo et al. [3]), genetic algorithms (Zoumas
et al. [8]), evolutionary programming (Sinha et al. [4]), among others. However, most of these approaches
require substantial simplifying assumptions and present certain disadvantages. The main drawback to
the majority of these methods is the difficulty of treating non-linear large-scale systems.

Of the many problems concerned with ascertaining optimal hydro power, we shall focus in the present
paper on the problem faced by a generation company in a deregulated electricity market when preparing
its offers for the day-ahead market for one hydro-plant. Our model of the spot market represents the
price of electricity π(t) as a known exogenous variable. To obtain the optimal solution, the problem
is formulated within the framework of optimal control theory (OCT) (Vinter [6]) using Pontryagin’s
Maximum Principle (PMP). This feature distinguishes our work from all the aforementioned studies.
The advantage of this technique with respect to previous methods lies in the possibility of obtaining
theoretical results whose implementation (and computational complexity) is feasible regardless of the
non-linear characteristics of the problem.

The paper is organized as follows. In Section 2, we pay special attention to the mathematical modeling
of hydro power, considering two approximations for the elevation-storage curve: one linear and the other
quadratic. In Section 3, we set out our non-linear problem in terms of optimal control in continuous
time, with the Lagrange-type functional and use PMP to obtain the optimal solution. We present the
optimization algorithm that leads to determination of the optimal solution of the hydro-plant. The
algorithm is implemented in the commercial program Mathematica. The results of the application of
the method to a numerical example are presented in Section 4, in which the differences between the two
approaches are highlighted. Finally, Section 5 summarizes the main conclusions of our research.

2 Mathematical models
The appropriate choice of mathematical models for representing the physical system is a crucial aspect
when addressing any optimization problem. Many models for hydro-plant performance exist, for example:
Glimn-Kirchmayer, Hildebrand, Hamilton-Lamont and Arvanitidis-Rosing. We consider the approxima-
tion presented by El-Hawary [2] to be the most appropriate due to its precision and flexibility. Let us
now see the chosen modeling for each element of the problem.

2.1 Effective head model
The effective hydraulic head h at the hydro-plant is equal to the difference between the gross head hg

and the head losses in the penstock hp

h = hg − hp (4)

The gross head hg is defined as the difference between the forebay elevation y and the tailrace elevation
yT

hg = y − yT (5)
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The tailrace elevation is a function of the discharge q as well as the spillage σ. We assume a linear
relationship between the two variables expressed by the following relationship:

yT = yT0 + BT (q + σ) (6)

The forebay elevation is a function of the geometry of the reservoir, natural water inflow, spillage and
water discharge. It is thus necessary to consider reservoir modeling in the case of variable head hydro-
plants.

A typical linear variation between the head loss characteristic and discharge may be assumed:

hp = hp0 + Bpq (7)

The resulting expression for the effective head is thus

h(t) = y(t)− [(yT0 + hp0) + BT σ(t) + (BT + Bp)q(t)] (8)

2.2 Reservoir model
A reservoir model of interest in our optimization problem is a realistic one that relates the plant’s forebay
elevation y to the discharge q. These parameters determine the active power generation available from
the hydro-plant. The reservoir’s dynamics may be suitably described by the equation

ds(t)
dt

= i(t)− q(t)− σ(t) (9)

where s(t) is the reservoir storage, i(t) the rate of natural inflow adjusted for evaporation and seepage
losses, q(t) the rate of water release through the hydro-plant and σ(t) the rate of water spillage.

The variation in storage in a reservoir of regular shape with elevation can be computed using formulas
for the volumes of solids. For example, if we assume a trapezoidal reservoir representation (Fig. 2), the
forebay elevation y(t) is related to the forebay volume of stored water s(t) by the relation

s(t) = b0 · l · y(t) + l · tan φ · y2(t) (10)

Figure 2. Trapezoidal reservoir configuration.

If we consider vertical-sided reservoirs, we have

y(t) = Bys(t) (11)

where By = 1/b0 · l denote the inverse of the reservoir surface.
The variation of storage with elevation for reservoirs at natural sites is determined from the elevation-

storage curve. This curve can be calculated from the topography of the surrounding area using commercial
software by simply introducing the elevation and the area enclosed within each contour within the reser-
voir site (see Fig. 3). Thus, if we know a number of points of the elevation-storage curve, it can be
approximated (ordinary least-squares polynomial regression) by a general mathematical model of the
form:

y(t) =
N∑

i=0

αis
i(t) (12)
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(a) Contour map of the reservoir. (b) Side view.

Figure 3. Determination of the elevation-storage curve.

It should be noted that natural factors (for example sediment accumulation) will change the configuration
of the reservoir over time and that the reservoir model needs to be updated periodically.

2.3 Hydro-plant model
As can be seen in (1), the hydro-plant’s active power generation is given by

P (t) =
q(t)h(t)

G
(13)

We shall use (8) to calculate the effective hydraulic head h and shall consider two approximations for y(t):
(a) the classic linear relationship, and (b) the second-order approximation, to then compare the results.
For the sake of simplicity, we assume the following to be negligible: σ(t) the rate of water spillage, and
hp the penstock head losses. Thus, we have

h(t) = y(t)− [yT0 + BT q(t)] (14)

(a) Linear elevation-storage curve. If we choose

y(t) = y0 + Bys(t) (15)

expression (13) can be written as

P (t) =
q(t)
G

[y0 − yT0 + Bys(t)−BT q(t)] (16)

From (9), we have that
ds(t)
dt

= i(t)− q(t) (17)

In general, as the natural inflow i is assumed constant,

s(t) = s(0) + i · t−
∫ t

0

q(r)dr = S0 + i · t−Q(t) (18)

Q(t) being the volume discharged up to the instant t by the plant and S0 the initial volume.

P (t) =
q(t)
G

[(y0 − yT0) + By(S0 + i · t−Q(t))−BT q(t)] (19)

For convenience of formulation, we introduce this new notation: q(t) ≡ ż(t);Q(t) ≡ z(t) and we have
that

P (t, z(t), ż(t)) := A(t) · ż(t)−B · z(t) · ż(t)− C · ż2(t) (20)

with

A(t) =
(y0 − yT0) + By(S0 + i · t)

G
; B =

By

G
; C =

BT

G
(21)

This is a variable-head model and the hydro-plant’s hydraulic generation P is a function of z(t) and ż(t).
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(b) Quadratic elevation-storage curve.
If we choose

y(t) = y0 + Bys(t) + Cys2(t) (22)

following the same steps as in (a), we have that

P (t, z(t), ż(t)) := A(t) · ż(t)−B · z(t) · ż(t)− C · ż2(t) + D · z2(t) · ż(t) (23)

with

A(t) =
(y0 − yT0) + By(S0 + i · t) + Cy(S0 + i · t)2

G
; B =

By + 2Cy(S0 + i · t)
G

; C =
BT

G
; D =

Cy

G
(24)

3 Statement of the problem and optimal solution
Let P (t, z(t), ż(t)) be the function of the hydro-plant’s hydraulic generation, z(t) being the volume that is
discharged up to the instant t by the plant, and ż(t) the rate of water discharge of the plant at the instant
t. If we assume that b is the volume of water that must be discharged during the entire optimization
interval [0, T ], the following boundary conditions will have to be fulfilled

z(0) = 0, z(T ) = b (25)

For the sake of convenience, throughout the paper we assume that the function of effective hydraulic
generation P (t, z, ż) : ΩP = [0, T ] × R+ × R+ −→ R+ is strictly increasing with respect to the rate of
water discharge ż, i.e., Pż > 0. Let us also assume that P (t, z, ż) is concave with respect to ż, i.e.,
Pżż < 0. The real models meet these two constraints; the former means more power to a higher rate of
water discharge. It can be seen that we shall only admit non-negative volumes, z(t), and rates of water
discharge, ż(t). Besides the previous statement, we consider P (t, z(t), ż(t)) to be bounded by technical
restrictions

Pmin ≤ P (t, z(t), ż(t)) ≤ Pmax, ∀t ∈ [0, T ] (26)

In our problem, the objective function is given by revenue during the optimization interval [0, T ]

F (z) =
∫ T

0

L(t, z(t), ż(t))dt =
∫ T

0

π(t)P (t, z(t), ż(t))dt (27)

Revenue is obtained by multiplying the hydraulic production of the company by the clearing price π(t)
at each hour t. In keeping with the previous statement, our objective functional in continuous time form
is

max
z

F (z) = max
z

∫ T

0

π(t)P (t, z(t), ż(t))dt (28)

on the set

Ω =
{

z ∈ Ĉ1[0, T ]| z(0) = 0, z(T ) = b
Pmin ≤ P (t, z(t), ż(t)) ≤ Pmax, ∀t ∈ [0, T ]

}
(29)

where Ĉ1 is the set of piecewise C1 functions.
To obtain the optimal solution, the problem is formulated in this paper within the framework of

Optimal Control Theory (OCT).
If z satisfies Euler’s equation for the functional F , we have that, ∀t ∈ [0, T ], Euler’s equation is fulfilled

Lz(t, z(t), ż(t))− d

dt
Lż(t, z(t), ż(t)) = 0 (30)

If we divide Euler’s equation by Lż(t, z(t), ż(t)) > 0, ∀t, and integrate, we have that

Lż(t, z(t), ż(t)) · exp
[
−

∫ t

0

Pz(s, z(s), ż(s))
Pż(s, z(s), ż(s))

ds

]
= K ∈ R+, ∀t ∈ [0, T ] (31)
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We shall call this relation the coordination equation for z(t), and the positive constant K ∈ R+ will be
termed the coordination constant of the extremal. Let us term the coordination function of z ∈ Ω the
function in [0, T ], defined as follows

Yz(t) = Lż(t, z(t), ż(t)) · exp
[
−

∫ t

0

Pz(s, z(s), ż(s))
Pż(s, z(s), ż(s))

ds

]
(32)

We present the problem considering the control variable u(t) = P (t, z(t), ż(t)) and the state variable to
be z(t). Moreover, as Pż > 0, the state equation ż = f(t, z, u) can be explicitly defined. The optimal
control problem is thus:

max
u(t)

∫ T

0

L(t, u(t))dt with





ż = f(t, z, u)
z(0) = 0, z(T ) = b
u(t) ∈ {x | Pmin ≤ x ≤ Pmax}

(33)

Using Pontryagin’s Minimum Principle (PMP) (Vinter [6]), it is easy to prove (Bayón et al. [1]) the
following theorem:

Theorem. If z∗ ∈ Ĉ1 is a solution of our problem, then ∃K ∈ R+ such that:

Yz∗(t) is




≤ K if P (t, z∗(t), ż∗(t)) = Pmin

= K if Pmin < P (t, z∗(t), ż∗(t)) < Pmax

≥ K if P (t, z∗(t), ż∗(t)) = Pmax

(34)

On the basis of this theorem, we now present the optimization algorithm that leads to the determination
of the optimal solution of the hydro-plant.

To obtain the optimum operating conditions of the hydro-plant, we shall use the coordination equation

Yz(t) = K, ∀t ∈ [0, T ] (35)

The problem will consist in finding for each K the function zK that satisfies zK(0) = 0 and the condi-
tions of the theorem, and from among these functions, the one that gives rise to an admissible function
(zK(T ) = b). From the computational point of view, the construction of zK can be performed using the
same procedure as in the shooting method, employing a discretized version of the coordination equation.
The exception is that at the instant when the values obtained for z and ż do not obey the constraints,
we force the solution zK to belong to the boundary until the moment when the conditions of leaving the
domain (established in the theorem) are fulfilled. A more detailed explanation of this algorithm can be
consulted in Bayón et al. [1].

4 Example
A program was written using the Mathematica package to apply the results obtained in this paper to an
example of a hydrothermal system made up of one variable-head hydro-plant. The hydro-plant data are
summarized in Table I.

Table I: Hydro-plant coefficients.

G(m4/ h .Mw) b(m3) i(m3/ h) S0(m3) yT0(m) BT (hm−2)
319840 50 106 133200 2.395 108 5 2.94 10−7

We shall also consider the technical restrictions: Pmin = 0; Pmax = 100. In order for the comparison of
the two models (see Fig. 4) to be reliable, we shall consider the real elevation-storage curve to fit the
following quadratic model perfectly (r2 = 1) :

y(t) = y0 + Bys(t) + Cys2(t) (36)

with y0 = 5(m); By = 4.3407910−8(m−2); Cy = −2.8938610−17(m−5). We now perform a least-squares
polynomial regression to a linear model:

y(t) = y0 + Bys(t) (37)
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obtaining for the fit: y0 = 6.18166; By = 2.8938610−8(m−2) with r2 = 0.983.

Figure 4. Two approximations for y(t).

An optimization interval of T = 24 h . was considered, with a discretization of 24 subintervals. The
solution may be constructed in a simple way by taking into account the above theorem. The secant
method was used to calculate the approximate value of K for which zK(T ) − b = 0. We obtain K =
0.001869288935030247 in 3 iterations for the lineal model and K = 0.002045271714939654 in 10 iterations
for the quadratic model.

Table II presents the optimal solution (optimal rate q(106m3/h) and optimal hydro power P (MW)),
together with the clearing price π(euro/h·MW) for t = 1, . . . , 24 (h) corresponding to the Spanish market.
We use the superscript l to denote the solution obtained using the linear model and the superscript q the
solution obtained with the quadratic model.

Table II: Optimal solution and clearing price.

t ql P l qq P q π
1 0.5861 14.52 0.4029 10.84 76.93
2 0. 0. 0. 0. 68.20
3 0. 0. 0. 0. 68.20
4 0. 0. 0. 0. 60.00
5 0. 0. 0. 0. 55.01
6 0. 0. 0. 0. 56.28
7 0. 0. 0. 0. 69.47
8 0.4337 10.82 0.2325 6.31 75.79
9 4.2426 89.50 4.3555 100. 105.90
10 4.3044 88.93 4.4507 100. 106.50
11 4.6031 91.98 4.5545 100. 110.00
12 4.4909 88.43 4.6684 100. 108.46

t ql P l qq P q π
13 4.1436 81.41 4.2913 91.69 104.08
14 3.8006 74.61 3.9145 83.57 100.00
15 1.6811 36.04 1.5830 36.96 80.50
16 1.3738 29.68 1.2447 29.31 78.23
17 1.1935 25.87 1.0459 24.73 76.93
18 1.2002 25.89 1.0532 24.80 76.93
19 2.8251 56.05 2.8457 61.57 90.00
20 4.3167 78.09 4.4924 88.48 106.89
21 4.0357 72.62 4.1837 81.90 103.00
22 3.8114 68.10 3.9377 76.47 100.00
23 1.4749 29.34 1.3675 29.62 76.93
24 1.4817 29.29 1.3752 29.60 76.93

Figure 5. Optimal hydro-power P .
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Figure 5 presents the optimal hydro-power P for the two approaches. This figure allows a better appreci-
ation of the difference between the optimum solutions corresponding to the two models. This difference
is of up to 10− 15% at peak hours, despite the fact that the linear approximation of y(t) (in the light of
its r2) may be considered very good. It can also be appreciated that the minimum constraint affects the
optimum solution in both cases, while the maximum constraint (100 MW) only does so in the quadratic
case P q.

Furthermore, it should be noted how the different behavior of the plan produces a discrepancy in the
optimum profits depending on the model employed. The greater degree of approximation of the elevation-
storage curve will enable optimum power generation to be achieved at the plant, thus guaranteeing
increased profits. The benefits of the optimal solution is 97936 euro using the linear model and 107021
euro with the quadratic model. The algorithm runs very quickly, the CPU time employed for both models
being 4.0 sec on a personal computer (Pentium IV/2GHz).

5 Conclusions and future perspectives
As we have shown in this paper, linear simplification applied to the elevation-storage curve produces
serious errors in the optimal solution of the hydraulic problem. Perfect knowledge of the optimum power
on the part of electricity generation companies is very important, since in the new pool-based electricity
market, the drawing up of next-day prices is based (among other aspects) on this datum. It is therefore
recommendable to model this curve in detail and even to update the model periodically in order to take
into account the effect of sediments, for instance, which is another crucial aspect not usually considered.

We believe the results presented in this paper open up many future lines of research, such as for
example: higher-degree models for y, the consideration of the tailrace elevation yT also as a quadratic
function of the discharge q, or the analysis of the influence of the rate of water spillage σ(t) and penstock
head losses hp on the optimum solution.
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