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Preface: 
 

We are honoured to bring you this collection of articles and extended abstracts from 
the “10th International Conference on Computational and Mathematical Methods in 
Science and Engineering” (CMMSE 2010), held at Almería, Spain, from 26 to June 30, 
2010.   

 
Society is a human product plenty of works, product of the human action and 

Mathematics is, probably, one of these most wonderful works. Mathematics arises as a 
response to problematic situations that may or not have a mathematical root and the task 
of those dedicated to mathematics is to find answers to this type of questions. 
Mathematics is a dynamic organization since its procedures generate new problems and 
appeal to new results that in turn lead to new results that may tackle and propose new 
questions.  Traditionally, Engineering has got strong connections with basic sciences in 
general and, in particular, with Mathematics, being a fundamental tool in all processes of 
analysis and calculus that an engineer has to carry out.  In the last decades, the idea of 
Mathematics as a tool whose use allows to create models and solve real problems has 
been strengthened at the same time that research on many fields of Science and 
Engineering has growth rapidly due to interaction of these disciplines and computational 
and mathematical methods. Challenges that Science and Engineering face of are so 
complex that only an interdisciplinary relation, where Mathematics plays a principal role, 
will let to solve them.  On the other hand, the influence of a general computerization of a 
part of our culture is leading to a great increasing of interest in computational methods. 
Computation has joint as a third crucial component to the two classical elements of the 
scientific method, experimentation and theory. Computing that only a few years ago was 
intractable today is carried out routinely. Many people expect to control size and 
complexity with the help of more powerful computers but this is a vain hope without the 
existing of an adequate development of Mathematics. CMMSE aims to detach how these 
computational and mathematical methods are, both together, crucial in the development 
of many disciplines.  

 
CMMSE 2010 is a forum where experts of many different scientific fields present 

their latest advances and share ideas and experiences in order to explore new directions in 
Science and Engineering. CMMSE 2010 special sessions represent some of these 
emerging disciplines: from differential equations treated from different points of view, 
with applications to propagation of sound or heat, or electrodynamics to Mathematical 
Biology; from signal or image processing to from Computational Chemistry or 
Information Theory. These special sessions involve numerical solution of differential 
equations, mathematical models in artificial intelligence, computational science 
education, algorithms and computation for complex networks, bio-mathematics, 
computational  chemistry, asymptotic preserving methods for kinetic and hyperbolic 
equations, numerical solutions of PDE’s error estimation and reliability, applications of  
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algebra to cryptography and coding theory, high performance computing, sampling 
theory and meshfree methods, orthogonal polynomials and applications and COMSOL: 
multiphysics for modelling.  
 

Today the resolution of scientific problems is unthinkable without High 
performance computing techniques. For second year, we have the pleasure to work with 
the Spanish Network CAPAP-H "High Performance Computing on Heterogeneous 
Parallel Architectures." We would like to give a special mention to José Ranilla, Esther 
Garzón and Enrique S. Quintana-Ortí for their fabulous and very organized work.  

 
An essential issue in the society of information that we are living in is privacy and 

integrity of communications. We are grateful to the managers of the Spanish Network 
MatSI for their collaboration in the promotion and organization of the mini symposium 
“Applications of Algebra to Cryptography and Coding Theory”. We also would like to 
mention Consuelo Martinez for her support in this organization.     

 
We would like to thank the plenary speakers for their excellent contributions in 

research and leadership in their respective fields. We express our gratitude to special 
session organizers and to all members of the Scientific Committee, who have been a very 
important part of the conference, and, of course, to all participants.  

 
These four volumes contain all the results of the conference. For a question of style, 

volumes I, II and III contain the articles written in LaTeX and volume IV contains the 
articles written in Word and short-abstracts.  

 
We cordially welcome all participants. We hope you enjoy this conference.  

 
Almería, Andalucía, Spain, June 26, 2010  

 
 

J. Vigo-Aguiar,  H. Adeli, Juan A. López-Ramos, S. Oharu, J. Ranilla,  
J. Rosenthal, N. Stollenwerk, Ezio Venturino, Bruce Wade 
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Abstract

A new proof of the general representation for the entries of the inverse of any
unreduced Hessenberg matrix of finite order is found. Also this formulation is
extended to the inverses of reduced Hessenberg matrices. Those entries are given
with proper Hessenbergians from the original matrix. It justifies both the use of
linear recurrences for such computations and some elementary properties of the
inverse matrix. As an application of current interest in the theory of orthogonal
polynomials on the complex plane, the resolvent matrix associated to a finite Hes-
senberg matrix in standard form is calculated. The results are illustrated with two
examples on the unit disk.

Key words: General orthogonal polynomials, Hessenberg matrix, Hessenbergian,
inverse matrix, lower semiseparable (plus diagonal) matrix, resolvent matrix
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1 Introduction

The significance of matrix inversion in many parts of science and engineering and the
methods used for its resolution are well known. The Cayley formula for the entries
of the inverse matrix in terms of the adjoint matrix involves determinants. Both the
computation and the expansion as a sum of products of these determinants present
difficulties. These problems can be avoided by taking advantage of the special structure
of certain matrices, for example tridiagonal, band, or Hessenberg matrices, to develop
less costly algorithms or to identify properties invariant under matrix inversion.

In this direction, algorithms for the inversion of unreduced symmetric tridiagonal
matrices were introduced in [3]. These algorithms were generalized to unreduced Hes-
senberg matrices in [10] and to banded unreduced matrices in [21]. In all of them the
entries of the matrix inverse were represented as a product of two linear recurrences.
The relation between certain elements of the inverse matrix of an unreduced Hessenberg
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matrix and the product of two linear recurrences was proven in [6]. These recurrences
were obtained from a closed formula for the entries on and above the diagonal of the
inverse matrix of a lower Hessenberg matrix in terms of the Hessenbergians, [20], of
its proper principal submatrices. In parallel, the low rank properties of submatrices of
the inverse matrices of tridiagonal and banded matrices were outlined in [1], based on
explicit representations of their minors. The results of [1, 6] were closely related with
the nullity theorem. The subsequent development of this theorem and its implications
for the invariance of low rank properties in the inversion of semiseparable matrices,
[4, 7, 8, 14, 19], have dominated research up to the present time. A first closed and
general representation for all entries of the inverse of any unreduced Hessenberg ma-
trix was given by one of the authors, V. Tomeo, in [17]. Later, analogous expressions
are obtained in [22]. In addition, there is an abundant literature related to general or
specialized algorithms for the inverse of structured matrices. These only work for unre-
duced Hessenberg matrices. Recent algorithms for the inversion of Hessenberg matrices
can be found in [2, 5] .

Without loss of generality we work with upper Hessenberg matrices. The compact
expression for the entries below and on the diagonal is straightforward when using the
Cayley formula and the Sylvester theorem on determinants,

(H−1)i,j =
Aj,i

det H
= (−1)i+j

(
i−j−1∏
k=0

hi−k,i−k−1

)
det Hj−1 detH(i)

n−i
detH

(1)

The submatrix Hj−1 is the left principal one of order j − 1. The submatrix H
(i)
n−i is

the right principal one of order n− i, which begins in the i+ 1-th row and column and
finishes in the n-th row and column. This formula is equivalent those given in [6] for the
entries on and above the diagonal, i ≤ j, for the inverse matrix of a lower Hessenberg
matrix.

The validity of the representation in closed form for all entries of the inverse matrix
H−1, in terms of proper Hessenbergians given in [17, 22] for unreduced Hessenberg ma-
trices is extended here to the reduced case. In addition, a new and more compact proof
is introduced. This class of expressions allows us to solve for all the entries of the matrix
using homogeneous linear recurrences, [11, 12], with well defined coefficients for each
Hessenberg matrix. This approach has been applied in the case of tridiagonal matrices.
A solution for the elements of the inverse matrix using a set of linear recurrences was
introduced in [9]. A more sophisticated method was given in [13], where the solutions
of second order linear difference equations were used in a boundary value problem.
Thus, a compact representation for the inverse matrix of any unreduced tridiagonal
matrix was obtained via combinatorial expressions, equivalent to the Leibniz formula
for determinants.

In Section 2 we introduce a new proof for the representation of all entries of the
inverse matrix of any unreduced Hessenberg matrix, in terms of proper Hessenbergians.
The representation is extended to reduced Hessenberg matrices, although we must
consider the avoidable indeterminacies that could arise. Section 3 is devoted to the
linear recurrences involved in the computation of Hessenbergians and recalls some of
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the elementary properties of the inverse of a Hessenberg matrix. As an interesting
application of our results, in Section 4 a closed formula is given for the elements of the
finite sections of the resolvent matrix associated to any sequence of monic orthogonal
polynomials on a bounded region of the complex plane. It is illustrated with two
examples on the unit disk.

2 Inverses of regular Hessenberg matrices

To begin with there is proved a preliminary lemma which will simplify the later proofs.
For 1 ≤ k ≤ m − 1 < n, we define the upper Hessenberg submatrix HC

m−1−k of order
m − 1 − k associated to a left principal submatrix Hm−1. Its first m − 2 − k columns
are equal to those of Hm−1−k, while the last column comprises the elements of the last
column, m− 1, of Hm−1. For example, for m = 8, k = 3, the resulting matrix HC

4 is

HC
4 =


h11 h12 h13 h17

h21 h22 h23 h27

0 h32 h33 h37

0 0 h43 h47

 .
Lemma 1 The proper Hessenbergians, detHC

i−1, detH(i)
n−i, and first order minors Mj;i

with 1 ≤ j < i, of an upper Hessenberg matrix H of order n satisfy the following
equations

(−1)m−ihi,i−1 detHC
i−1 det H

(i)
n−i =

i−1∑
j=1

hj,m−1(−1)m−1−jMj;i (2)

The submatrix HC
i−1 is defined relative to the left principal submatrix Hm−1, i < m.

Proof. Expanding detHC
i−1 along its last row and using (1), we have

(−1)m−ihi,i−1 detHC
i−1 detH(i)

n−i =

= (−1)m−1−(i−1)hi−1,m−1Mi−1;i + (−1)m−i−1hi,i−1hi−1,i−2 detHC
i−2 detH(i)

n−i

Iterating the procedure, the left side of (2) is equal to

i−1∑
j=i−2

hj,m−1(−1)m−1−jMj;i + (−1)m−i−2

(
2∏

k=0

hi−k,i−k−1

)
detHC

i−3 detH(i)
n−i

After i− 2 iterations, with the convention that detH0 = 1, there results

(−1)m−ihi,i−1 detHC
i−1 detH(i)

n−i =

=
i−1∑
j=2

hj,m−1(−1)m−1−jMj;i + (−1)m−2

(
i−2∏
k=0

hi−k,i−k−1

)
detHC

1 detH(i)
n−i
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=
i−1∑
j=1

hj,m−1(−1)m−1−jMj;i

The centered principal submatrices H(i)
j−i−1 or order j − i − 1 appear in the next

theorem in a role analogous to that played by the submatrices of H in the definitions
given in (1). These matrices are formed from the matrix H, taking the elements from
(i+ 1)-st to the j-th rows and columns .

Theorem 1 Any upper Hessenberg matrix H of order n with complex coefficients sat-
isfies the equations

detH(i)
j−i−1 detH = detHj−1 detH(i)

n−i −

(
j−i−1∏
k=0

hj−k,j−k−1

)
Mj;i (3)

for 1 ≤ i < j ≤ n, where Mj;i is the corresponding first order minor of the matrix H.

Proof. For fixed i, 1 ≤ i < n, we proceed by induction on j, i < j ≤ n.
If j = i + 1, the result follows straightforwardly from expanding detHn along its

j-th row:
1 · detH = detHj−1 detH(j−1)

n−j−1 − hj,j−1Mj;i (4)

We suppose the statement is true for i < j ≤ m − 1 < n. Then, for j = m ≤ n,
expanding the Hessenbergians in (3) for the matrices depending on m along their last
rows and using the induction hypothesis, we have,

detHm−1 detH(i)
n−i − detH(i)

m−i−1 detH =

=

(
m−i−2∏
k=0

h(m−1)−k,(m−1)−k−1

)
hm−1,m−1Mm−1;i

−hm−1,m−2

(
detHC

(m−1)−1 detH(i)
n−i − detH(i)C

(m−1)−i−1 detH
)

The Hessenberg matrices HC
(m−1)−1 and H

(i)C
(m−1)−i−1 are evident in this context and

they are associated to the left principal submatrix Hm−1 and the centered principal
submatrix H(i)

(m−1)−i, respectively.
If we expand the determinants indexed by m along their last rows one more time

and use the induction hypothesis,

detHm−1 detH(i)
n−i − detH(i)

m−i−1 detH =

=

(
m−i−2∏
k=0

h(m−1)−k,(m−1)−k−1

)(
m−1∑
l=m−2

hl,m−1(−1)m−1−lMl;i

)
+

+hm−1,m−2hm−2,m−3

(
detHC

(m−2)−1 detH(i)
n−i − detH(i)C

(m−2)−i−1 detH
)
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After m− i iterations and using the induction hypothesis,

detHm−1 detH(i)
n−i − detH(i)

m−i−1 detH =

=

(
m−i−2∏
k=0

h(m−1)−k,(m−1)−k−1

)
×

×

(
m−1∑
l=i

hl,m−1(−1)m−1−lMl;i + (−1)m−ihi,i−1 detHC
i−1 detH(i)

n−i

)
(5)

The induction hypothesis can be used up to here. We make the convention that any
Hessenbergian of negative order is null. Thus detH(i)C

−1 = 0.
If we invoke Lemma 1, then (5) yields,

detHm−1 detH(i)
n−i − detH(i)

m−i−1 detH =

=

(
m−i−2∏
k=0

h(m−1)−k,(m−1)−k−1

)(
m−1∑
l=1

hl,m−1(−1)m−1−lMl;i

)
(6)

In order conclude the proof, it is sufficient to show that any upper Hessenberg matrix
H of order n satisfies:

m−1∑
l=1

hl,m−1(−1)m−1−lMl;i = hm,m−1Mm;i

For this purpose we give the sum with cofactors of the matrix H,

m−1∑
l=1

hl,m−1(−1)m−1−lMl;i = (−1)m−1−i
m−1∑
l=1

hl,m−1(−1)l+iMl;i

Because m − 1 6= i, the sum of alien cofactors, [20], of the matrix H is null. Taking
into consideration that we are working with an upper Hessenberg matrix of order n,
we have,

(−1)m−1−i
n∑
l=1

hl,m−1(−1)l+iMl;i = (−1)m−1−i
m∑
l=1

hl,m−1(−1)l+iMl;i = 0

The induction step is verified, after an appropriate change in the index k of the product
from equation (6),

detHm−1 detH(i)
n−i − detH(i)

m−i−1 detH =

(
m−i−1∏
k=0

hm−k,m−k−1

)
Mm;i.

This concludes the proof.
The general representation for entries of the inverse of an upper Hessenberg matrix

H as products of proper Hessenbergians, [17, 22], is also a consequence of Theorem 1.
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Corollary 1 A general expression for the elements (H−1)i,j of the inverse matrix of
an upper Hessenberg regular matrix H, is

(H−1)i,j =
(−1)i+j(

∏i
k=2 hk,k−1)

(
detHj−1 detH(i)

n−i − detH(i)
j−i−1 detH

)
(
∏j
k=2 hk,k−1) detH

(7)

That is, the element (H−1)i,j of the inverse matrix can be represented as, [17, 22]

(H−1)i,j =


(−1)i+j (

∏i−j−1
k=0 hi−k,i−k−1)detHj−1 detH

(i)
n−i

detH if i ≥ j,

(−1)i+j
detHj−1 detH

(i)
n−i−detH

(i)
j−i−1 detH

(
∏j−i−1

k=0 hj−k,j−k−1)detH
if i < j.

(8)

The cases with i ≥ j are equation (1). For i < j, when the matrix H is not unreduced,
the result is also valid as a consequence of Theorem 1. Indeed, for i < j,

detHj−1 detH(i)
n−i − detH(i)

j−i−1 detH =

(
j−i−1∏
k=0

hj−k,j−k−1

)
Mj;i

Then, (7) results in,

(H−1)i,j = (−1)i+j

(∏j−i−1
k=0 hj−k,j−k−1

)
Mj;i(∏j−i−1

k=0 hj−k,j−k−1

)
detH

=
Aj;i

detH
,

the Cayley formula for (H−1)i,j .

3 Recurrences for the computation and some elementary
properties of the inverse matrix

Although fast numerical algorithms can be used for the computation of Hessenbergians
from (8), we concentrate on the homogeneous linear recurrences found for them.

Determinants of left principal submatrices, detHi, i = 1, · · · , n and detHn =
detH, of any upper Hessenberg matrix of order n satisfy the following large recurrence
relations, with detH0 = 1,

detHi =
i∑

m=1

(−1)m−1

(
m−1∏
k=1

hi−k+1,i−k

)
hi−m+1,i detHi−m (9)

For Hessenbergians of right principal submatrices, detH(i)
n−i, for i < j ≤ n, the recur-

rences are similar, now with the initial conditions detH(i)
0 = 1 for j = i.

detH(i)
j−i =

j−i∑
m=1

(−1)m−1

(
m−1∏
k=1

hj−k+1,j−k

)
hj−m+1,j detH(i)

j−i−m (10)
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The recurrences for Hessenbergians of the centered principal submatrices, detH(i)
j−i−1,

can be obtained as particular cases of (10). Therefore, when the matrix H is unreduced,
the computation of the elements of its inverse presents no difficulty.

When the matrix H is reduced, the numerical computation of the elements of
its inverse presents no difficulty if i ≥ j, or if i < j and the null elements from the
subdiagonal do not appear in the product of the denominator of (8). The computational
difficulty appears when i < j and one or more null elements of the subdiagonal of the
matrix H appear more than once in the product of the Hessenbergians of the numerator
of (8). This can happen when the minor associated to this element of the inverse matrix
is not a Hessenbergian and it has in its second subdiagonal null and non-null elements
from the subdiagonal of the matrix H.

We overcome indeterminacies by introducing auxiliary parameters in place of the
zeros that can appear in the product of the denominator of (8). We use as an illustration
a reduced Hessenberg matrix of order 6, obtained in a random way

H =



−4 2 −4 1 −4 −1
−1 3 2 0 −1 4
0 0 1 2 4 1
0 0 4 −4 2 −2
0 0 0 0 2 3
0 0 0 0 1 2

 (11)

Elements h32 and h54 of the subdiagonal are null. The element (H−1)2,5 = 331
60 has

associated the minor M5;2, which is not a Hessenbergian. In this case, by (8), using
parameters instead of the zeros in h32 and h54 in the Hessenbergians of the numerator
and in the product of the denominator, we have

(H−1)2,5 = (−1)
detH4 detH(2)

4 − detH(2)
2 detH(∏2

k=0 h4−k,3−k

)
detH

=

=
2648αβ
480αβ

=
331
60

.

We can obtain the right numerical result using the previous recurrences, replacing the
parameters α and β by the value 1.

To calculate the element (H−1)1,6 = −129
20 , we work with the minor M6;1 of the

matrix H, which is also not a Hessenbergian. We proceed in a similar way,

(H−1)1,6 = (−1)
detH5(α, β) detH(1)

5 (α, β)− detH(1)
4 (α, β) detH(α, β)

(−4αβ) (120)

(H−1)1,6 =
−256α2β2 + 768α2β − 1016αβ2 + 3096αβ

−480αβ
=
−32αβ + 96α− 127β + 387

−60
If we give now to the parameters their null values,

(H−1)1,6 = −129
20
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we obtain the right result using the recurrences associated to the Hessenbergians and
elementary symbolic computations. Were we to solve numerically as for the element
previously obtained, replacing the parameters α and β in the recurrences involved in
(8) by the value 1, it is obvious that the result would be inaccurate.

3.1 Some elementary properties of the inverse matrix

It is well known that the inverse of an upper Hessenberg matrix is a lower semiseparable
(plus diagonal) matrix, as can be derived easily from (8) for i ≥ j + k,

det
[

(H−1)i,j (H−1)i,j+k
(H−1)i+l,j (H−1)i+l,j+k

]
= 0

It is also known that the inverse matrix is semiseparable if and only if the matrix H is
tridiagonal. In the unreduced case, more important in applications, if there are zeros
in the diagonal of the inverse matrix, some principal, left or right, submatrices have
non-maximal rank, with null associated Hessenbergians.

Moreover, the low rank property of some of the principal submatrices involved is
a sufficient condition for the nullity of some element above the diagonal for the inverse
matrix of a unreduced Hessenberg matrix H. The next illustrative matrix has an inverse
with null diagonal elements and some elements above the diagonal are also null. This
can be checked using (8).

H =


1 0 1 0
1 0 1 1
0 1 0 0
0 0 1 1

 ; H−1 =


0 1 0 −1
0 0 1 0
1 −1 0 1
−1 1 0 0


The entry (H−1)1,3 is 0, because detH2 and detH(1)

1 are null. Also the entry (H−1)2,4 =
0 because detH3, detH(2)

2 , and detH(2)
1 are null Hessenbergians.

4 General Orthogonal Polynomials: Hessenberg matrices
in standard form

The computation of the resolvent matrices associated to orthogonal polynomials on the
real line and on the unit circle and their associated tridiagonal and pentadiagonal Green
matrices, are of current interest. Our results have application to the more general case
of finite sections of the resolvent matrix associated with any sequence of orthogonal
polynomials on an arbitrary and bounded domain in the complex plane. We will give
two particular examples on the unit disk.

Given an infinite HPD (Hermitian positive definite) matrix, M = (cij)∞i,j=0, whether
it comes from a measure or not, we denote by M ′ the matrix obtained by eliminating
from M its first column. Let Mn and M ′n be the corresponding sections of order n of
M and M ′, respectively, i.e., the corresponding left principal submatrices. As M is an
HPD matrix, an infinite upper Hessenberg matrix D = (dij)∞i,j can be built. Matrix
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D is in standard form. That is, it has a positive subdiagonal. Its sections of order n
satisfy, [18],

Dn = T−1
n M ′nT

−H
n , (12)

where Mn = TnT
H
n is the Cholesky decomposition of Mn, and {P̃n(z)}∞n=0 is its associ-

ated orthogonal sequence of monic polynomials, [16]. From the properties of the matrix
Dn, we have a determinantal expression for P̃n(z). That is, the zeros of the orthogonal
polynomials are the eigenvalues of the Hessenberg matrix:

P̃n(z) = det (zIn −Dn) (13)

If this Hessenbergian is expanded along the last row and the procedure is iterated, we
obtain, as a particular case of (9), the large recurrence relation for monic orthogonal
polynomials:

P̃n(z) = (z − dn,n)P̃n−1(z)−
n−1∑
k=1

dk,n

[
n−1∏
m=k

dm+1,m

]
P̃k−1(z), (14)

with initial condition P̃0(z) = 1.
The matrix obtained when deleting from D its first i rows and columns is denoted

D(i). From D(i) we can build the infinite HPD matrix M(i), for all i ∈ Z+. It defines
an inner product. Then, the associated monic polynomials are defined, for n ≥ i, as

P̃
(i)
n−i(z) = det

(
zIn−i −D(i)

n−i

)
(15)

with P̃
(i)
0 (z) = 1. They are orthogonal with respect to the inner product defined by

M(i). When expanding this Hessenbergian, we obtain, as a particular case of (10), the
large recurrence relation for the associated monic polynomials,

P̃
(i)
n−i(z) = (z − dn,n)P̃ (i)

n−i−1(z)−
n−1∑
k=i+1

dk,n

[
n−1∏
m=k

dm+1,m

]
P̃

(i)
k−i−1(z), (16)

Corollary 2 The elements for finite sections (Inz − Dn)−1, n ≥ 1, of the resolvent
matrix related to the monic orthogonal polynomials coming from the matrix D are

(
(Inz −Dn)−1

)
i,j

=


(−1)i+j

(∏i−j−1
k=0 di−k,i−k−1

)
P̃j−1(z)P̃

(i)
n−i(z)

P̃n(z)
if j ≤ i

(−1)i+j

(
∏j−i−1

k=0 dj−k,j−k−1)

[
P̃j−1(z)P̃

(i)
n−i(z)

P̃n(z)
− P̃ (i)

j−i−1(z)
]

if i < j

(17)

If there are known expressions in closed form for the orthogonal polynomials of
the sequence under analysis and those of its associated sequences, then the closed form
expressions for the finite sections of the resolvent matrix are easily obtained. When
expressions in closed form for the monic polynomials are not known, the entries of the
resolvent matrix, for any complex number z, can be obtained numerically using the
preceding recurrences.
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4.1 A measure with radial symmetry on the unit disk

Let µ be a measure on the unit disk with a radially symmetric weight function constant
on every circle centered on the origin. We suppose also that µ is a probability measure,
i.e. c00 = 1. We have ω(z) = ω(|z|). In this case, writing r = |z|, the moments are

cij =
∫
|z|<1

zizjω(r)dxdy =
∫ 1

0
ω(r)ri+j+1dr

∫ 2π

0
eI(i−j)θdθ,

where the imaginary unit is denoted by I, to avoid confusion with the i index. By
symmetry if i 6= j then cij = 0. We have

cii = 2π
∫ 1

0
ω(r)r2i+1dr, i > 1, with 2π

∫ 1

0
ω(r)dr = 1,

The moment matrix M = (cij)∞i,j=0 is diagonal and the associated Hessenberg matrix
D = (dij)∞i,j=1 satisfies di+1,i =

√
cii

ci−1,i−1
and dij = 0 if i 6= j + 1. The monic polyno-

mials are P̃n(z) = zn and the associated polynomials, for n > i, are P̃ (i)
n−i(z) = zn−i,

with P̃
(0)
n (z) = 1. Using Corollary 2, we obtain the resolvents of the finite sections

(Inz −Dn)−1 =



1/z 0 0 · · · 0√
c11
c00

1
z2

1/z 0 · · · 0√
c22
c00

1
z3

√
c22
c11

1
z2

1/z · · · 0
...

...
...

. . .
...√

cn−1,n−1

c00
1
zn

√
cn−1,n−1

c11
1

zn−1

√
cn−1,n−1

c22
1

zn−2 · · · 1/z


(18)

4.2 A measure without radial symmetry on the unit disk

Now, we give an example partially treated in [15] with a full Hessenberg matrix in
standard form. We consider the density function on the unit closed disk given by
ω(z) = |z − 1|2 with |z| ≤ 1. The density function is null for z = 1 and positive in the
rest of the disk. The moments are obtained by applying Green’s formula,

cij =
1
2I

∫
|z|=1

[
− zi−j

j + 1
+
(

1
j + 1

+
1

j + 2

)
zi−j−1 − zi−j−2

j + 2

]
dz

Therefore, the matrix of moments is

M =


π
(
1 + 1

2

)
−π

2 0 0 · · ·
−π

2 π
(

1
2 + 1

3

)
−π

3 0 · · ·
0 −π

3 π
(

1
3 + 1

4

)
−π

4 · · ·
0 0 −π

4 π
(

1
4 + 1

5

)
· · ·

...
...

...
...

. . .

 (19)
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The elements of the matrix D are given by

dij =


−2
√
i√

(i+1)(i+2)j(j+1)(j+2)
if i ≤ j

√
j(j+3)

j+2 if i = j + 1
0 if i > j + 1

(20)

The monic polynomials are obtained from (13)-(14),

P̃n(z) =
1

(n+ 1)(n+ 2)

n∑
k=0

(k + 2)(k + 1)zk (21)

and the associated monic polynomials, if n > i, from (15)-(16),

P̃
(i)
n−i(z) = zn−i +

2
(i+ 2)(n+ 1)(n+ 2)

n−1∑
k=i

(k + 2)(k + 1− i)zk−i (22)

In the particular case n = j − 1 > i, the monic polynomials P̃ (i)
j−1−i(z) are obtained

from (22).
The resolvent matrices of Dn are readily obtained using Corollary 2, with the

subdiagonal entries of Dn given in (20). The monic polynomials and their associated
polynomials are obtained from (21) and (22), respectively.
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Abstract

Adapting parallel codes to state of the art parallel computers composed of het-
erogeneous multinode-multicore processors is a fundamental problem in parallel
computing. The strong dependence on the parallel architectures means that ap-
plications must be tailored with a high programming effort. We have devoloped
a lightweighted library that allows the dynamic load balancing of iterative codes
in heterogeneous dedicated and non-dedicated systems. The library eases porting
homogeneous parallel codes to heterogeneous platforms, since the code intrusion is
low the programming effort is quite reduced. The preliminary tests developed on
iterative programs show that the overhead introduced by the library is negligible.

Key words: Heterogeneous computing, Dynamic load balancing, Non-dedicated
System

1 Introduction

High performance computing is the field of computational science dealing with engi-
neering and scientific applications of cluster-based computing. It concerns with the
development of models and strategies which allow hard computing applications to be
solved using the most advanced computing platforms. Up to now most of the appli-
cations requiring large computing resources have been solved on supercomputers or
clusters composed by a large number of identical processors. Nowadays, the concept
of cluster computing has been enlarged. Currently, a cluster can be seen as a flexible
reconfigurable computing system which is composed of nodes with different charac-
teristics and performance, which can be simultaneously used by multiple users and
processes. These computing environments are known as non dedicated heterogeneous
computing systems, and there exists a strong demand for developing new strategies for
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adapting the software to this kind of heterogeneous environments. The performance of
this kind of system is very conditioned by the strong dependence that exists between
parallel code and architecture [6] and the process of allocating tasks to processors often
becomes a problem requiring considerable programmer effort [7].

Specifically, we set out to solve the problem of synchronizing parallel programs in
heterogeneous architectures. Given a program developed for a homogeneous system,
we hope to obtain a version that makes use of the system’s heterogeneous abilities
by allocating tasks according to the computational ability of each processing element.
The simplest way to approach the problem consists on manually adapting the code
as required by the architectural characteristics[10]. This approach usually implies at
least a knowledge of said characteristics, such that the parallel program’s tasks can
be allocated according to the computational capacity of each processor. A more gen-
eral approach can be obtained in the context of self-optimization strategies based on
a run time model [8, 11]. In this approach, an analytical model that parametrizes the
architecture and the algorithm is instantiated for each specific case so as to optimize
the program execution. This strategy is considerably more general than the previous
one, though more difficult to apply since the modeling process is not trivial [12], nor is
its subsequent instantiation and minimization for each case. A search of the literature
yields some generic tools such as mpC [14, 13] and HeteroMPI [14, 15] that provide the
mechanisms that allow algorithms to be adapted to heterogeneous architectures, but
which also demand some input from the user and are quite code intrusive. Adaptive
strategies have been also proposed in AMPI [16] and Dyn-MPI [17]. AMPI is built on
Charm++ [18] and allows automatic load balancing based on process virtualization.
Although it is an interesting generic tool, it involves a complex runtime environment.
DynMPI has been implemented as a MPI extension and has a wider range of appli-
cability. However, it is highly code intrusive since data structures, code sections and
communication calls must be instrumented.

Our interest is focussed on the efficient implementation of iterative algorithms on
non dedicated heterogeneous computing systems. This type of algorithms can be found
in a wide set of scientific and engineering problems such as partial differential equations
solvers (PDEs) or image processing algorithms, among others; their common feature
is its iterative behavior [5, 9]. As main goal, we pursue the design of an approach
to be able of dynamically adapt the computational burden related to each processor
according to the computational power supplied by the non dedicated heterogeneous
nodes, where the overhead of the node is also a source of heterogeneity. Additionally,
under this approach the managment of the dynamic heterogeneity of the system must
be hidden to the programmer.

The ULL_Calibrate library presented in [1] facilitates the programmer the task
of tailoring parallel code developed for homogeneous systems to heterogeneous ones,
reducing the runtime on dedicated heterogenous systems. However, this library does
not collect information about the dynamic load on the system, so the approach to
load balance described in [1] is not useful on non dedicated systems. In the same
direction, recently, the ADITHE approach has also been proposed to adapt the iterative
computation on dedicated heterogeneous clusters of multicore nodes [4]. It has been
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shown its ability to automatically load balance on these systems, however it is relevant
the programmer’s effort in order to implement ADITHE in the context of every specific
application.

The goal of this work is to extend the ULL_Calibrate library to non dedicated sys-
tems, without losing its advantages, that is: (1) its use does not require changing any
line of code in existing programs, thus minimizing code intrusion; and (2) it allows
dynamic task balancing within a parallel program running on a non dedicated hetero-
geneous system, while adapting to system conditions during execution. The new library
proposed in this paper facilities the automatic Adaptive Load Balancing of Iterative
Computation (ALBIC) on non dedicated heterogeneous systems. Hereinafter it will be
referred as ALBIC library.

We validated our proposal using as test problem the resource allocation optimiza-
tion via dynamic programming algorithms [9]. The preliminary computational results
show that the benefits yielded by using our balancing library offer substantial time
reductions in every case. The efficiency level obtained, considering the minimum code
intrusion, and the reduced extraoverhead introduced by ALBIC in the load balancing
process makes this library a useful tool in the context of

heterogeneous non-dedicted platforms.

This paper is structured as follows: in Section 2 we introduce the goals and back-
ground of this work; Section 3 shows how to use ALBIC library and the advantages our
approach yields; in Section 4 a model of computational power of non-dedicated proces-
sor and the load balancing algorithm; next, Section 5 shows the preliminary validation
performed on the selected problem (RAP) ; and finally, we close with some conclusions
and future research directions.

2 Background

Our objective is to develop a simple and efficient dynamic adaptation strategy of the
code for heterogeneous systems that minimizes code intrusion, so that the program
can be adapted without any prior knowledge of the architecture and without the need
to develop analytical models. We intend to apply the technique to a wide variety
of problems, specifically to parallel programs which can be expressed as a series of
synchronous iterations. To accomplish this, we have developed ALBIC library with
which to instrument specific sections in the code. The instrumentation required is
minimal, as it is the resulting overhead. Using this instrumentation, the program will
dynamically adapt itself to the destination architecture. This approach is particularly
effective in SPMD applications with replicated data.

Our library’s design is directed at solving the time differences obtained when ex-
ecuting the parallel code. It is based on an iterative scheme, such as that appearing
in Listing 1, which shows a parallel version of the dynamic programming approach
to the resource allocation problem considered as an iterative procedure. The code in-
volves a main loop that executes N iterations where a amount of calculation operation
(work load) is performed for each iteration. Each processor performs calculations in
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accordance with the size of the task allocated, M/nproc. Following this calculation,
a collective communication operation is carried out during which all the processors
synchronize by gathering collecting data before proceeding to the next iteration. Note
that each iteration of the inner loop (the loop in j) has a complexity order of O(j).
That means that when a block data distribution with blocks of the same is used by the
parallel code the load is not balanced among the processors.

// nprocs = Number o f proces sor s
// myid = Process ID
// M = Number o f columns
// N = Number o f rows ( i t e r a t i o n s )
. . .
despl = ( int ∗) malloc ( nprocs ∗ s izeof ( int ) ) ;
count = ( int ∗) malloc ( nprocs ∗ s izeof ( int ) ) ;

// S t a t i c column d i s t r i b u t i o n with b l o c k s
// o f f i x e d s i z e M/nprocs f o r myid proces s
despl [ 0 ] = 0 ; ncols = M/nprocs ;
for (i = 0 ; i< nprocs ; i++) {

count [ i ] = ncols ;
i f (i ) despl [ i ] = despl [ i−1] + count [ i−1] ;

}

for (i = 0 ; i <= N ; i++) {
/∗========begin i t e r a t i v e s e c t i on=========∗/
fin = despl [ myid ] + count [ myid ] ;
for (j = despl [ myid ] ; j < fin ; j++) {

G [ i ] [ j ] = (∗f ) ( i , 0 ) ;
for (x = 0 ; x <= j ; x++) {

fij = G [ i − 1 ] [ j − x ] + (∗f ) ( i , x ) ;
i f (G [ i ] [ j ] < fij )

G [ i ] [ j ] = fij ;
}

}
/∗========end i t e r a t i v e s e c t i on=========∗/
MPI_Allgatherv(&G [ i ] [ despl [ myid ] ] , . . . ) ;
}

Listing 1: Basic algorithm of an iterative scheme.

The load balancing problem consists of allocating on each processor a static load
proportional to its computational capacity. The allocation of tasks according to the
computational power of the processors depends on the processors and also on the ap-
plication. When the processors are non-dedicated it is necessary to devise specific
approaches to estimate dynamically this parameter.

In Section 4 we propose the model of computational power that is key for the
ALBIC library to be able to dynamically balance the load. Before to analyze this
model we describe the more relevant characteristics of ALBIC.
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// nprocs = Number o f proces sor s
// myid = Process ID
// M = Number o f columns
// N = Number o f rows ( i t e r a t i o n s )

. . .
despl = ( int ∗) malloc ( nprocs ∗ s izeof ( int ) ) ;
count = ( int ∗) malloc ( nprocs ∗ s izeof ( int ) ) ;

despl [ 0 ] = 0 ; ncols = M/nprocs ;
for (i = 0 ; i< nprocs ; i++) {

count [ i ] = ncols ;
i f (i ) despl [ i ] = despl [ i−1] + count [ i−1] ;

}
for (i = 0 ; i <= N ; i++) {

ALBIC_MPI_calibrate ( ALBIC_MPI_INIT , i , &counts ,
&displ , threshold , 1 , M+1);

fin = despl [ myid ] + count [ myid ] ;
for (j = displ [ myid ] ; j < fin ; j++) {

G [ i ] [ j ] = (∗f ) ( i , 0 ) ;
for (x = 0 ; x <= j ; x++) {

fij = G [ i − 1 ] [ j − x ] + (∗f ) ( i , x ) ;
i f (G [ i ] [ j ] < fij )

G [ i ] [ j ] = fij ;
}

}
ALBIC_MPI_calibrate( ALBIC_MPI_FIN , i , &counts ,

&displ , threshold , 1 , M+1);
MPI_Allgatherv (&G [ i ] [ displ [ myid ] ] , count [ myid ] , . . . ) ;

}

Listing 2: Calibrated version of the basic algorithm of an iterative scheme.

3 Dynamic task allocation on non dedicated systems based

on ALBIC

The library we developed allows for dynamic balancing with the introduction of just
two calls to the ALBIC_MPI_calibrate() function in the section of code that is to be
balanced, as shown by the code in Listing 2. A call is introduced at the beginning and
end of the section to be balanced, so that each processor can know on runtime how long
it will take to execute the assigned task. The balanced load results from a comparison
of this execution time for each processor and the subsequent task redistribution.

It is worth noting that the collective communication at the end of each iteration
acts as a sort of barrier that forces a high degree of synchronization between all the
processes. Listing 3 shows the interface of the calibrating function. The following are
input arguments to the balancing function:
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int ALBIC_MPI_calibrate ( ALBIC_MPI_Section section , int iteration ,
int ∗∗counts , int ∗∗displs ,
int threshold ,
int size_object , int size_problem ) ;

Listing 3: Prototype of the ALBIC calibrating function.

• section: The section is used to determine the entry point where the routine is
used. It can take the following two values:

– ALBIC MPI Section ALBIC MPI INIT: Indicates the beginning of
the section to be balanced.

– ALBIC MPI Section ALBIC MPI END: Indicates the end of the sec-
tion to be balanced.

• iteration: Indicates the iteration to be balanced. A 0 value indicates whether
the program is on its first or subsequent iterations. The first iteration has a
particular treatment.

• counts[], displs[]: Indicates the task size to be computed by each processor.
counts[] is an integer array containing the amount of work, Wi, that is processed
by i-th processor. displs[] specifies the distance (relative to the work data vector)
at which to place the data processed by each processor.

• threshold: Corresponds to a number of microseconds which indicate whether to
balance or not. The semantics for this parameter in one iteration are as follows:

– Let Ti be the time processor i takes to execute the task assigned.

– Tmax = Maximum(Ti)

– Tmin = Minimum(Ti)

– If (Tmax − Tmin) > threshold then balance. If not, the system has already
balanced the workload.

• size objects: The size of the data type manipulated during computation ex-
pressed as the number of elements to be communicated in the communication
routine.

• size problem: Corresponds to the total problem size to be computed in parallel,
so the calculations of the new task sizes are consistent with the tasks allocated
to each processor counts[], displs[].

Note the library’s ease of use and the minimum code intrusion. The only change
necessary is to add calls to the functions at the beginning (ALBIC_MPI_init_calibratelib())
and end of the code, (ALBIC_MPI_shutdown_calibratelib()).
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4 The balancing algorithm on non-dedicated systems

Before to analyze the details of the balancing algorithm, we describe the model of
computational power which is key on this algorithm.

4.1 Model of computational power on non-dedicated systems

Although a large number of balancing algorithms can be found in the literature [19],
we opted for a simple and efficient strategy that yielded satisfactory results. The
methodology chosen, however, allows for the implementation of balancing algorithms
which may be more efficient.

The computational power of i-th node, denoted by αi, is proportional to the ratio
between the size of task to be computed by the node (countsi) and the run-times (Ti)
to compute the task.

On the other hand, it is well known that to exploit an heterogeneous system com-
posed by a set of procs nodes, the workload on each node i has to be balanced. For a
heterogeneous system this condition means that the workload of every node has to be
proportional to its computational power or speed [2, 3]. So, to balance the workload
on the heterogeneous system, the load distribution has to verify the relation

counts1

α1
= . . . =

countsprocs

αprocs

=
N

∑procs
j=1 αj

⇒ countsi = αi ·
N

∑procs
j=1 αj

(1)

where N = size problem =
∑procs

j=1 countsj is the total load to compute the algorithm.
Then, to adapt the parallel implementation of an algorithm on heterogeneous multi-
processors, it is necessary to know the computational power or speed of each node of
multiprocessor and the total load.

On non dedicated systems the computational power available to every task is a time
depending parameter, then αi(t) has to be periodically measured to dynamically adapt
the load attached to every node. ALBIC library is based on the accurate estimation of
αi(t) by means two timing mechanisms: (1) the information from /proc file updated
every 10 ms by the Linux Operative System and (2) the user-time provided by the C
library getrusage(). The /proc file supplies information about the node load taking
account all the processes computed by the i node, and on the other hand, the time
during the specific process loads the node is get by means getrusage() and it is
denoted by Ti(t). Then, αi(t) can be estimated by the following relation:

αi(t) =
countsi(t)

Ti(t)
1−Li(t)

(2)

where Li(t) denotes the load percentage of i-th node at instant t, 0 ≤ Li(t) < 1,
Li(t) = 0 when the i-th node is absolute free of charge and Li(t) is close to one
when the i-th node is fully overloaded. Thus, the run-time Ti(t) dedicated to the load
countsi(t) is divided by the factor 1 − Li(t) to model the load in the i-th node due to
other processes.
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It is relevant to stress that to obtain the value of parameter Li(t) it is necessary to
compute the exponential moving average of instant loading factor over the l last time
samples [20], to warranty that short temporal high loads do not excessively penalize the
estimation of computational power of the node. In order to measure the load of proces-
sors, Li(t), according this model, an operative system kernel module for Linux, called
Non Dedicated system Load Monitor (NDLM-module), has been developed. NDLM-
module monitories the parameter Li(t) and supplies it to ALBIC_MPI_calibrate() func-
tion on fly by means the /proc file.

4.2 Keys of the balancing algorithm

The call to the ALBIC_MPI_calibrate(...) function must be made by all the processors
and implements the balancing algorithm. All processors perform the same balancing
operations as follows:

• The time required by each processor to carry out the computation in each iteration
has to be given to the algorithm. Since each processor needs the times of the other
processors, the exchange is performed through a collective operation.

– T [] = vector where each processor gathers all the times (Ti).

– L[] = vector where each processor gathers all the processors loads (Li).

– size problem = the size of the problem to be computed in parallel.

– counts[] = vector holding the sizes of the tasks to be computed by each
processor.

• The first step is to verify that the threshold is not being exceeded

if (MAX(T []) - MIN(T [])) > THRESHOLD then, BALANCE

• The computational power αi(t) is calculated for each i processor according the
model before described:

• Finally, the sizes of the new counts are calculated for each processor.

counts[i] = size problem ∗
αi

∑procs−1
i=0 αi

Once the counts vector is computed, the displs vector is also updated. Using
this method, each processor fits the size of the task allocated according to its own
computational capacity. The system could be extended to run on heterogeneous non
dedicated systems and on systems with dynamic load. For that purpose, the array T []
must be fed not only with the execution times but with the loading factor on each
processor.
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5 Evaluation

To evaluate the ALBIC library we have used a multicore dual node composed of two
nodes of 8 Core shared memory system (2 AMD Opteron processors with 4 cores
each), 16 cores in total, and use the resource allocation problem as benchmarking test.
Although the platform is heterogeneous, the irregular inner loop of the test applications
introduces the desired heterogeneity when testing in dedicated mode. To test the library
in non-dedicated mode we artificially introduce extra overload on the cores. The results
can be extrapolated to an heterogeneus platform without loss of generality. We develop
several experiments. First we try to analyze the overhead introduced by ALBIC when
performing the load balance. Then, we check that ALBIC balances properly when
working in non-dedicated clusters and finally the increase of performance obtained
from ALBIC when developing the dynamic load balance in a non-dedicated cluster.
To fulfill it, three versions of the parallel code are considered, the parallel version,
a block homogeneous code, the ULL Calibrate a parallel version where the dynamic
load balance is obtained through the use of the ULL Calibrate library, and the ALBIC
code that performs the dynamic load balance using ALBIC.

Figure 1 shows the running times and efficiency of the three parallel codes when
executed on the homogeneous dedicated system. We can see that as a consecuence of
the dynamic load balance, ULL calibrate and ALBIC outperform to the parallel code.
The natural parallelization by homogeneous blocks produces an unbalanced execution
than can be corrected with our dynamic load balance approach. We can also see that
the overhead introduced by ALBIC is negligible and the improvement obtained from
the dynamic load balance is observable. When the larger number of processors is
used with the bigest problem the curves ULL calibrate and ALBIC almost overlap,
what means that the overhead introduced by our module is compensated by a better
balancing that includes the load of the processors. We also observe in this figure the
gain of the efficiency when using ALBIC. The overhead introduced by ALBIC relative
to ULL calibrate is also quantified in Figure 2.

The lightweighted NDLM introduces a very slow burden that tends to vanish.
When the size of the problem is large enough for the number of processors used, ALBIC
performs even better than ULL calibrate due to the use of the system load on the
metrics. The negative value observed in the relative benefit presented in Figure 2-right
denotes that ULL calibrate performs better than ALBIC in this case, since the size
of the problem per processor decreases when the number of processors increase.

In Figure 3-left a diagram of iterations is presented on a non-dedicated system
where the artificial load is introduced on the first of three processor. We observe as
starting with an unbalanced distribution due to the nature of the problem, after a few
iterations ALBIC converges to a distribution where the first processor (50% artificially
overloaded) receives the half of the work, in terms of execution time. The other two
processors receive double amount of work. Figure 3-right shows the benefit of using
ALBIC on a non-dedicated system, where the 50% of the processors are overloaded
on each execution, the execution with 8 processors overloads only 3 of them. The gain
of ALBIC is clearly stated.
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Figure 1: Left - Execution time. Right - Efficiency.eps

Figure 2: The overhead of the NDLM module. Left - Benefit of ULL calibrate and
ALBIC relative to the parallel code. Right - Relative benefit of ULL calibrate versus
ALBIC

6 Conclusions and future works

We have developed the ALBIC library that allows for the dynamic load balancing of
iterative parallel codes on heterogeneous dedicated and non-dedicated systems. The
preliminary tests described in this work show that the tool achieves a good perfor-
mance, the overhead introduced by the library and the input required from the user
are minimum. In the near future we plan to extend the library to other problem and
architectural domains, considering the dynamic thread allocation in shared memory
architectures.
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Figure 3: Left - A traced exection of ALBIC on a non dedicated system, the first
processor is overloaded. Right - parallel vs ALBIC on a non dedicated system the
50% of the processors are artificially overloaded up to the 50%.
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Luque, G., Petit, J.: Efficient parallel lan/wan algorithms for optimization. the mallba
project. Parallel Computing 32(5-6) (2006) 415–440

[10] Aliaga, J.I., Almeida, F., Bad́ıa-Contelles, J.M., Barrachina-Mir, S., Blanco, V., Castillo,
M.I., Dorta, U., Mayo, R., Quintana-Ort́ı, E.S., Quintana-Ort́ı, G., Rodŕıguez, C.,
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Abstract

We investigate dengue fever epidemiology via a multi-strain model including
seasonality and compare with empirical data from Thailand. The empirically ob-
served fluctuations suggests a crucial role of deterministcal chaos in understanding
the system dynamics.

Key words: dengue fever, seasonality, parameter estimation, deterministic chaos

1 Introduction

For two strain model to capture primary and secondary infection, we have the following
SIR-type model, now labelling the SIR classes for the hosts that have seen the individual
strains. Susceptibles to both strains (S) get infected with strain 1, (I1), or strain 2,
(I2), with force of infection β1 and β2 respectively. They recover from infection with
strain 1 (becoming R1) or from strain 2 (becoming R2), with recovery rate γ. In this
recovered class, people have full immunity against the strain that they were exposed
to and infected, and also, temporary immunity against the other strain (called the
period of temporary cross-immunity). After this, with rate α, they enter again in the
susceptible classes (S1 respectively S2), where the index represents the first infection
strain. Now, S1 can be reinfected with strain 2, to become (I12), meeting I2 with
infection rate β2 or meeting I12 with infection rate φ2β2, and S2 can be reinfected with
strain 1 (becoming I21) meeting I1 or I21 with infections rates β1 and φ1β1 respectively.

The parameter φ in our model also acts decreasing the infectivity of secondary
infection, where people are more likely to be hospitalized because of the severity of
the disease (DHF/DSS), and do not contributed to the force of infection as much as
people with first infection do. Finally, I12 and I21 go to the recovered class (R), immune
against all strains. We include demography of the host population by denoting the birth
and death rate by µ, assuming constant population size N , and seasonality by η. For
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simplicity, we consider β1 = β2 =: β0 and φ1 = φ2, i.e, no epidemiological asymmetry
between strains.

The complete mean field ODE system for the two-strain epidemiological system is
given by

dS

dt
= −

β

N
S(I1 + φ1I21) −

β

N
S(I2 + φ2I12) + µ(N − S)

dI1

dt
=

β

N
S(I1 + φ1I21) − (γ + µ)I1

dI2

dt
=

β

N
S(I2 + φ2I12) − (γ + µ)I2

dR1

dt
= γI1 − (α + µ)R1

dR2

dt
= γI2 − (α + µ)R2 (1)

dS1

dt
= −

β

N
S1(I2 + φ2I12) + αR1 − µS1

dS2

dt
= −

β

N
S2(I1 + φ1I21) + αR2 − µS2

dI12

dt
=

β

N
S1(I2 + φ2I12) − (γ + µ)I12

dI21

dt
=

β

N
S2(I1 + φ1I21) − (γ + µ)I21

dR

dt
= γ(I12 + I21) − µR

where β = β0 ∗ (1.0 + ǫ ∗ cos(ω ∗ t)).
As initial conditions we take: For a constant population size N = 100.0, S =

70, I1 = 20, I2 = 10, R1 = 0, R2 = 0, S1 = 0, S2 = 0, I12 = 0, I21 = 0, R = 0. We fix the
transition rates of the model as far as is known, as it follows, µ = 65y−1, γ = 52, α =
2, andβ = 2γ, and vary the most unknown parameter φ. The seasonality rate is ǫ = 0.1.

We investigate the influence of the seasonal forcing in the infection rate on the
dymanics, which was previously investigated giving deterministic chaos just with the
multi-strain aspect of the dengue model [1, 2, 3].

Empirical data

Empirical data in form of time series of dengue incidences per month are in good
quality avaliable e.g. from Thailand. The time series of provinces in the north of
Thailand, here for the province of Chiang Mai, show irregular epidemics each year
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with a smooth increase and decrease, Fig. 1. On the otehr hand, the times series of
Bangkok, on which much research attention has been focused, presents rather erratic
und uncorrelated dynamics, see Fig. 2, much more noisy than Fig. 1.
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Figure 1: Time series of dengue cases in Chiang Mai.

The time series in Fig. 1 shows clear seasonality, but irregular maxima of dengue
outbreaks each year. On these observations the modelling in terms of ODEs with
possibly deterministically chaotic dynamics might have a chance to at least describe
qualitatively the dynamics of the epidemiological system.
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Figure 2: Time series of dengue cases in Bangkok.

To investigate the case further we add seasonality to the previously investigated
dengue model with temporary cross-immunity which showed bifurcations and deter-
ministic chaos in wide parameter regions. Whereas technical parameter estimation is
notoriously difficult for chaotic time series but temporally local approaches possible (e.g.
the Ionides approach [5] which will be described and applied below), we first invetigate
which parameter regions are most likely to give seasonal outbreak with chaotic max-
ima, based on our previous experience on chaotic parameter regions of the non-seasonal
model.

@CMMSE                                                               Page   27  of 1328                                               ISBN 13: 978-84-613-5510-5



Dengue and seasonality

Simulations with seasonality

For the simulations we use the parameters as given above and vary the parameter of
difference in force of infection between primary and secondary infection, the parameter
φ.
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Figure 3: Simulations for φ = 0.2, for detailed description see main text.

In Fig. 3 we show for φ = 0.2 in a) a time series of the total number of infected with
any strain, in b) the state spcae plot projection for susecptibles and logarithm of total
infected, in c) and d) time series for infected with strain one respectively strain two.
Plotting the individual strains on top of each other shows the phase relation between
the two, in most cases the strains are out of phase. For φ = 0.2 the non-seasonal
model shows a limit cycle after a Hopf bifurcation from a stable fixed point. Hence
here including seasonality we observe a torus in state space which is densely filled.

The following Figures are in the same formate, but for different φ-values, moving
through the bifurcation diagram given before for the non-forced case. The bifurcation
diagram with seasonality is not very informative since we have many local extrema
even for the most simple case of the torus, as observed in Fig. 3 b).
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Figure 4: Simulations for φ = 0.5.
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Figure 5: Simulations for φ = 0.6.
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Figure 6: Simulations for φ = 0.8.
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Figure 7: Simulations for φ = 1.0.
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Figure 8: Simulations for φ = 1.5.
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Figure 9: Simulations for φ = 2.5.
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For φ values up to nearly 1.0 we observe oscillations from the seasonal forcing on
top of the chaotic outbreaks every years observed already for the non-forced model,
whereas for φ = 1.0 and further the troughs become so low that there are no outbreak
for many years observed, making the interplay between non-seasonal chaotic signal and
seasonality less plausible to describe the fluctuations observed in the data time series
of northern Thailand, e.g. with much higher incidence rates than the noisy Bangkok
data.

To further investigate the dynamics of the system, all other pareameters have to
be varied, biologically most unknown are the seasonality and the temporary cross-
immunity. But also the contact rate is not precisely known. A first attempt is shown
in the next section.

Figure 10: Likelihood slices from the parameter estimation using the Ionides approach.
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First parameter estimation

To contrast our model Eq. (1) to data we have used monthly incidence of Dengue
Hemorrhagic Fever (DHF) for the province of Chiang Mai in Thailand, see Fig. 1.
As DHF is expected to occur mostly after secondary infections, we computed monthly
incidence rates as xt =

∫ t

t−1 γ(I12(t) + I21(t))dt therefore considering only secondary
infections. The obtained predicted values (xt) were contrasted to the real monthly
reported incidence, yt, with an observation process characterized by a reporting rate
(ρ). We set Yt|ρt, xt ∼ P (ρt, xt) (where P stands for the Poisson distribution) and,
to account for overdispersion, we allow variability in the reporting rate by assuming
that ρt ∼ Γ( 1

φ
, ρφ), where Γ is the gamma distribution. The observation process can

then be fully described by a negative binomial distribution (NB): Yt|xt ∼ NB(mean =
ρxt, size = 1

φ
).

For better agreement with the data, we have implemented a stochastic version
of Eq. (1) using an Euler-multinomial approximation to the continuous-time Markov
process. To avoid definitive extinctions, we add immigration to the model by intro-
ducing an extra parameter (η) in the force of infection, now defined by β(I + η).
As extra-demographic stochasticity is to be expected in data we added white noise
to the transmission rate of the Markov chain compartment model using the general
framework described in [4]. As DHF is strongly seasonal, see Fig. 1, seasonal forc-
ing was also added on the transmission rate with the following parametric choice:
β(t) = β0(1 + ǫ sin(2π(t + δ) ), with R0 roughly being β0/γ. Whereas in bifurcation
analysis the phase factor d does not play any decisive role, the parameter estimation
process is very sensitive to it, and d has to be estimated from the data as well.

Parameter inference was achieved through an implementation of maximum likeli-
hood via iterated filtering (MIF), the [5] approach written in C. Essentially, one starts
with an number of simulations with ensembles of parameter values and intial conditions
for the first part of the time series and compared the performance with the data part,
then taking the best performers, one goes along the next piece of time series etc., hence
a temporarilly local approach. On top there is a simulated annealing type procedure,
while going several times over the whole time series. Finally the best performing sets
of parameters, called particles, give the best estimate in this approach. Results were
obtained with 1000 particles and an integration time step of 1 days.

Fig. 10 shows the best performing parameters in red, and in addition calculated
likelihood slices to give an idea of the relyability of the estimates, confidence intervals.
E.g. for some parameters the likelihood slice shows a well defined maximum, hence
the corresponding parameter being well estimated, and for other parameters, namely
here α. Finally, Fig. 11 shows a comparison of a realization of the model with the
best parameter set and the actual empirical time series of dengue cases in Chiang Mai.
Remember that the dynamics shows deterministic chaos, hence realizations and data
set never can coinside, but describe the qualitative dynamic features of the system. Jus
short term predictability can be obtained, limited by the prediction horizon given by
the largest Lyapunov exponent.

Further investigations will be needed to obtain definite insight into the realistic
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Dengue and seasonality

Figure 11: Typical trajectory (corrected by reporting rate) of model of Eq. (1) for the
maximum likelihood estimates of the parameters.

parameters and the interplay between noise levels, as well dynamic as observation
noise, with the deterministically chaotic dynamics.
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Abstract

A nondifferentiable multiobjective programming problem is considered. We intro-
duce a new class of generalized dI -univexity in which each component of the objective
and constraint functions is directionally differentiable in its own direction di. Based
upon these generalized functions, sufficient optimality conditions are established for a
feasible point to be efficient and properly efficient under the generalised dI -univexity
requirements, Moreover, weak, strong and strict converse duality theorems are also
derived for Mond-Weir type dual programs.

Key words: Multiobjective programming, Efficient solutions, Properly efficient so-
lutions Generalized dI -univexity, Sufficiency, Duality .
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1. Introduction

The field of multiobjective programming, also known as vector programming, has
grown remarkably in different directions in the setting of optimality conditions and dual-
ity theory. It has been enriched by the applications of various types of generalizations of
convexity theory, with and without differentiability assumptions, and in the framework of
continuous time programming, fractional programming, inverse vector optimization, sad-
dle point theory, symmetric duality and vector variational inequalities etc.

Hanson [1] introduced a class of functions by generalizing the difference vector x − x
in the definition of a convex function to any vector function η(x, x). These functions were
named invex by Craven [2] and η-convex by Kaul and Kaur [3]. Hanson and Mond [4]
defined two new classes of functions called Type I and Type II functions, which were fur-
ther generalized to pseudo Type I and quasi Type I functions by Rueda and Hanson [5].
Zhao [6] established optimality conditions and duality in nonsmooth scalar programming
problems assuming Clarke[7] generalized subgradients under Type I functions.

Kaul et al. [8] extended the concept of type I functions from a single objective to a
multiobjective programming problem by defining the type I and its various generaliza-
tions. They investigated necessary and sufficient optimality conditions and derived Wolfe
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type and Mond-Weir type duality results. Suneja and Srivastava [9] introduced general-
ized d-type I functions in terms of directional derivative for a multiobjective programming
problem and discussed Wolfe type and Mond-Weir type duality results. In [10], Kuk and
Tanino derived optimality conditions and duality theorems for non-smooth multiobjective
programming problems involving generalized Type I vector valued functions. Gulati and
Agarwal [11] discussed sufficiency and duality results for nonsmooth multiobjective prob-
lems and (F,α, ρ, d− type I functions.

Antczak [12] studied d-invexity is one of the generalization of invex function, which is
introduced by [13]. In [12], Antczak established, under weaker assumptions than Ye, the
Fritz John type and Karush-Kuhn-Tucker type necessary optimality conditions for weak
Pareto optimality and duality results which have been stated in terms of the right differen-
tials of functions involved in the considered multiobjective programming problem. Many
authors [14, 15, 16] proved that the Karush-Kuhn-Tucker type necessary conditons [12] are
sufficient conditions under various generalized d-invex functions. Recently, Antczak [17]
corrrected the Karush-Kuhn-Tucker necessary conditions in [17] and discussed the suffi-
ciency and duality under d− r− Type I functions. More recently, Silmani and Radjef [18]
introduced generalzed dI -invexity in which each component of the objective and constraint
functions is directionally differentiable in its own direction and established the necessary
and sufficient conditions for efficient and properly efficient solutions. They also observed
the Karush-Kuhn-Tucker sufficient conditions [14, 15, 16] are not applicable. The duality
results for a Mond-Weir type dual are derived in [18].

In this paper, we introduce dI -V- univexity and generalized dI−V − univexity in which
each component of the objective and constraint functions of a multiobjective programming
problem is directionally differentiable in its own direction di. Various Karush-Kuhn-Tucker
sufficient optimality conditions for efficient and properly efficient solutions to the prob-
lem are establish involving new classes of semidirectionally differentiable generalized type
I functions. Moreover, usual duality theorems are discussed for a Mond-Weir type dual
involving aforesaid assumptions. The results in this paper extend many earlier work ap-
peared in the literature.

2 Preliminaries and definitions

The following conventions for equalities and inequalities will be used. If x = (x1...., xn), y =
(y1...., yn) ∈ Rn, then x = y ⇔ xi = yi, i = 1, ..., n;, x < y ⇔ xi < yi, i = 1, ..., n;,
x ≦ y ⇔ xi ≦ yi, i = 1, ..., n;, x ≤ y ⇔ x ≦ y andx 6= y., We also note Rq

≧
(resp.Rq

≥
or

Rq
≥
) the set of vectors y ∈ Rq with y ≧ 0(resp. y ≥ 0 or y > o)

Definition 1 [19]. Let D be a nonempty subset of Rn, η : D × D → Rn and let x0

be an arbitrary point of D.The set D is said to be invex at x0 with respect to η, if for each
x ∈ D,

x0 + λη(x, x0) ∈ D,∀λ ∈ [0, 1].

D is said to be an invex set with respect to η, if D is invex at each x0 ∈ D with respect to
the same η.

2
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Definition 2 [20]. Let D ⊆ Rn be an invex set with respect to η : D × D → Rn.A
function f : D → R is called pre-invex on D with respect to η, if for all x, x0 ∈ D,

λf(x) + (1 − λ)f(x0) ≧ f(x0 + λη(x, x0)),∀λ ∈ [0, 1].

Definition 3 [12]. Let D ⊆ Rn be an invex set with respect to η : D × D → Rn. A
m-dimensional vector valued function Ψ : D → Rm is pre-invex with respect to η, if each
of its components is pre-invex on D with respect to the same function η.

Definition 4[7]. Let D be a nonempty open set in Rn. A function f : D → R is said
to be locally Lipschitz at x0 ∈ D, if there exist a neighborhood υ(x0) of x0 and a constant
K > 0 such that

|f(y) − f(x)| ≦ K‖y − x‖, ∀ x, y ∈ υ(x0),

where ‖.‖ denotes the Euclidean norm. We say that f is locally Lipschitz on D if its locally
Lipschitz at any point of D.

Definition 5 [7]. If f : D ⊆ Rn → R is locally Lipschitz at x0 ∈ D, the clarke general-
ized directional derivative of f at x0 in the direction d ∈ Rn,denoted by f0(x0; d) is given by

f0(x0; d) = lim
y→x0

sup
t→0+

f(y + td) − f(y)

t
.

And the usual one-sided directional derivative of f at x0 in the direction d is defined by

f ′(x0; d) = lim
λ→0+

f(x0 + λd) − f(x0)

λ
,

whenever this limit exists. Obviously, f0(x0; d) ≧ f ′(x0; d).

We say that f is directionally differentiable at x0 if its directional derivative
f ′(x0; d) exists finite for all d ∈ Rn.

Definition 6[13]. Let f : D → Rn be a function defined on a nonempty open set
D ⊂ Rn and directionally differentiable at x0 ∈ D. f is called d-invex at x0 on D with
respect to η, if there exists a vector function η : D × D → Rn, such that for any x ∈ D,

fi(x) − fi(x0) ≧ f
′

i (x0;n(x, x0)), for all i = 1, ....,N, (1)

where f
′

i (x0;n(x, x0)) denotes the directional derivative of fi at x0 in the direction n =

(x, x0) : f
′

i (x0;n(x, x0)) = lim
λ→0+

fi(x0 + λη(x, x0)) − fi(x0)

λ
.

If inequalities (1) are satisfied at any point x0 ∈ D, then f is said to be d-invex on D with
respect to η.

Definition 7[18]. Let D be a nonempty set in Rn and φ : D × D → Rn a function.

3
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• We say that f : D → R is a semi-directionally differentiable at x0 ∈ D,if there exist
a nonempty subset S ⊂ Rn such that f ′(x0; d) exists finite for all d ∈ S

• We say that f is a semi-directionally differentiable at x0 ∈ D in the direction
φ(x, x0), if its directional derivative f ′(x0;φ(x, x0)) exists finite for all x ∈ D.

Definition 8[18]. Let f : D → Rn be a function defined on a nonempty open set
D ⊂ Rn and for all i = 1 · · ·N, fi is semi-directionally differentiable at x0 ∈ D in the
direction ηi : D×D → Rn. f is called dI -invex at x0 on D with respect to (ηi)i=1,N, if for
any x ∈ D,

fi(x) − fi(x0) ≧ f
′

i (x0; ηi(x, x0)), forall i, ...,N, (2)

where f
′

i (x0; ηi(x, x0)) denotes the directional derivative of fi at x0 in the direction

ηi(x, x0) : f
′

i (x0; ηi(x, x0)) = lim
λ→0+

fi(x0 + ληi(x, x0)) − fi(x0)

λ
.

If inequalities (2) are satisfied at any point x0 ∈ D, then f is said to be dI -invex on D
with respect to (ηi)i=1,N,

Consider the following multiobjective programming problem

(MP) Minimize f(x) = (f1(x), f2(x), ..., fN (x))

Subject to g(x) ≦ 0,

x ∈ D,

where f : D → RN , g : D → Rk, D is a nonempty open subset of Rn. Let X = {x ∈
D : g(x) ≦ 0} be the set of feasible solutions of (MP). For x0 ∈ D,we denote by J(x0)
the set {j ∈ {1, ..., k} : gj(x0) = 0}, J = |J(x0)| and by J̃(x0)(resp .J̃(x0))the set {j ∈

{1, ..., k} : gj(x0) < 0(resp.gj(x0) > 0)}. we have J(x0) ∪ J̃(x0) ∪ J(x0) = {1, ..., k} and if
x0 ∈ X,J(x0) = ∅.

We recall some optimality concepts, the most often studied in the literature, for the
problem (MP).

Definition 9 A point x0 ∈ X is said to be a local weakly efficient solution of the
problem (MP),if there exists a neighborhood N(x0) around x0 such that

f(x) ≮ f(x0) for all x ∈ N(x0) ∩ X

Definition 10 A Point x0 ∈ X is said to be a weakly efficient (an efficient) solution
of the problem (MP), if there exists no x ∈ X such that

f(x) < f(x0)(f(x) ≤ f(x0)).

Definition 11 An efficient solution x0 ∈ X of (MP) is said to be properly efficient,if
there exists a positive real number M such that inequality

fi(x0) − fi(x) ≦ M [fj(x) − fj(x0)]

4
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is verified for all i ∈ {1, · · · ,N} and x ∈ X such that fi(x) < fi(x0), and for a certain
j ∈ {1, · · · ,N} such that fi(x) > fj(x0).

Following Jeyakumar and Mond [21] ,Kaul et al.[8]and Slimani and Radjef [18],we give
the following definitions.

Definition 12 (f, g) is dI -V-univex type I at x0 ∈ D if there exist positive real valued
functions αi and βj defined on X × D, nonnegative functions b0 and b1,also defined on
X × D,φ0 : R → R,φ1 : R → R; ηi : X × D → Rn, and θj : X × D → Rn such that

b0(x, a)φ0[fi(x) − fi(x0)] ≧ αi(x, a)f
′

i (x0; ηi(x, x0)) (3)

and
−b1(x1x0)φ1[gj(x0)] ≧ βj(x, x0)g

′

j(x0; θj(x, x0)) (4)

for every x ∈ X and for all i = 1, 2, · · · , p and j = 1, 2, · · · ,m.

If the inequality in (3) is strict ( whenever x 6= x0 ), we say that (MP) is of semistrictly
dI -V-univex type I at x0 with respect to (ηi)i=1,N and(θj)j=1,k

.

Definition 13 (f, g) is quasi-dI-V-univex type I at x0 ∈ D if there exist positive
real valued functions αi and βj , defined on X × D, nonnegative functions b0and b1, also
defined on X × D,φ0 : R → R,φ1 : R → R and (N + k) dimensional vector functions
ηi : X × D → Rn, i = 1,N and θj : X × D → Rn, j = 1, k such that for some vectors
λ ∈ RN

≧
and µ ∈ Rk

≧
:

b0(x, 0)φ0

[
N∑

i=1

λiαi(x, x0)(fi(x) − fi(x0)

]

≦ 0 ⇒
N∑

i=1

λif
′

i (x0; ηi(x, x0)) ≦ 0 ∀x ∈ X

(5)
and

b1(x, 0)φ1




k∑

j=1

µjβj(x, x0)gj(x0)



 ≧ 0 ⇒

k∑

j=1

µjg
′

j(x0; θj(x, x0)) ≦ 0 ∀x ∈ X (6)

If the second inequality in (5) is strict (x 6= x0), we say that (MP) is of semi-strictly quasi
dI -V-univex type I at Xowith respect to (ηi)i=1,N and(θj)j=1,k.

Definition 14 (f, g) is pseudo-dI -V-univex type I at x0 ∈ D if there exist positive
real valued functions αi and βj , defined on X × D, nonnegative functions b0 and b1,also
defined on X × D, φ0 : R → R,φ1 : R → R and (N + k) dimensions vector functions
ηi : X × D → Rn, i = 1,N and θj : X × D → Rn, j = 1, k such that for some vectors
λ ∈ RN

≧
and µ ∈ Rk

≧
:

N∑

i=1

λif
′

i (x0; ηi(x, x0)) ≧ 0 ⇒ b0(x, x0)φ0

[
N∑

i=1

λiαi(x, x0)(fi(x) − fi(x0))

]

≧ 0∀x ∈ X

(7)

5
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and

k∑

j=1

µjg
′

j(x0; θj(x, x0)) ≧ 0 ⇒ b1(x, x0)φ1




k∑

j=1

µjβj(x, x0)gj(x0)



 ≦ 0∀x ∈ X (8)

Definition 15 (f, g) is quasi pseudo-dI -V-univex type I at x0 ∈ D if there exist pos-
itive real valued functions αi and βj, defined on X × D, nonnegative functions b0 and
b1,also defined on X × D,φ0 : R → R,φ1 : R → R and (N + k) dimensions vector
functions ηi : X × D → Rn, i = 1,N and θj : X × D → Rn, j = 1, k such that the rela-
tion (5) and (8) are satisfied. If the second inequality in (8) is strict (x 6= x0, we say that
(V P ) is of quasi strictly-pseudo dI−V−typeI at x0 with respect to (ηi)i=1,N and(θj)j=1,k

Definition 16 (f, g) is pseudoquasi -dI-V-univex type I at x0 ∈ D if there exist pos-
itive real valued functions αi and βj, defined on X × D, nonnegative functions b0 and
b1,also defined on X × D,φ0 : R → R,φ1 : R → R and (N + k) dimensions vector func-
tions ηi : X × D → Rn, i = 1,N and θj : X × D → Rn, j = 1, k such that µ ∈ Rk

≧
the

relations (7) and (6) are satisfied. If the second inequality in (7) is strict (x 6= x0),we
say that (V P ) is of strictly-pseudo quasi dI−V−typeI at x0 with respect to (ηi)i=1,N and
(θj)j=1,k

3.Optimality conditions

In this section , we discuss some sufficient conditions for a point to be an efficient or
properly efficient for (MP) under generalized dI − V − univex type I assumptions.

Theorem 3.1. Let x0 be a feasible solution for (MP) and suppose that there exist
(N + J) vector functions ηi : X × X → Rn, i = 1,N, θj : X × X → Rn, j ∈ J(x0) and

scalars λi ≧ 0, i = 1,N,

N∑

i=1

λi = 1; µj ≧ 0, j ∈ J(x0) such that

N∑

i=1

λif
′

i (x0; ηi(x, x0) +
∑

j∈J(x0)

µjg
′

j(x0; θj(x, x0)) ≧ 0 ∀x ∈ X (9)

Further, assume that one of the following conditions is satisfied:

(a) (i) (f, g) is quasi strictly-pseudo dI−V − univex type I at x0 with respect to (ηi)i=1,N , (θj)j∈J(x0), λ, µ

and for some positive functions αi, i = 1,N, βj , j ∈ J(x0),

(ii) for any u ∈ R, u ≦ 0 ⇒ φ0(u) ≦ 0;φ1(u) < 0 ⇒ u < 0; b0(x, x0) >0, b1(x, x0) > 0;

(b) (i) (f, g) is strictly-pseudo dI − V − univex type I at x0 with respect to (ηi)i=1,N ,

(θj)j∈J(x0), λ, µ and for some positive functions αi, i = 1,N, βj , j ∈ J(x0),

(ii) for any u ∈ R, φ0(u) > 0 ⇒ u > 0;u ≧ 0 ⇒ φ1(u) ≧ 0, b0(x, x0) >0, b1(x, x0) ≧ 0;

Then u is an efficient solution for (MP ).

6
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Proof: Condition (a). Suppose that x0 is not an efficient solution of (MP ). Then
there exists an x ∈ X such that

f(x) ≤ f(x0),

which implies that
N∑

i=1

λiαi(x, x0)[fi(x) − fi(x0)] ≦ 0. (10)

Since b0(x, x0) > 0; u ≦ 0 ⇒ φ0(u) ≦ 0, the above inequality gives

b0(x, x0)φ0[
N∑

i=1

λiαi(x, x0)[fi(x) − fi(x0)] ≦ 0.

From the above inequality and Hypothesis (a)(i), we have

N∑

i=1

λif
′

i (x0; ηi(x, x0)) ≦ 0.

By using the inequality (9) we deduce that

∑

j∈J(x0)

µjg
′

j(x0; θj(x, x0)) ≧ 0,

which implies from the condition a(ii) that

b1(x, x0)φ1[
∑

j µjβj(x, x0)gj(x0)] < 0.

Since b1(x, x0) > 0;φ1(u) < 0 ⇒ (u) < 0, we get

∑

j∈J(x0)

µjβj(x, x0)gj(x0) < 0. (11)

As λ ≧ 0 and gj(x0) = 0;∀j ∈ J(x0), it follows that λjgj(x0) = 0,∀j ∈ J(x0), which
implies that

∑

j∈J(x0)

µjβj(x, x0)gj(x0) = 0.

The above equation contradicts inequality (11) and hence the conclusion of the theorem
follows:

Condition (b) : Since gj(x0) = 0, µj ≧ 0,∀j ∈ J(x0), and βj(x, x0) > 0, j ∈ J(x0), we
obtain ∑

j∈J(x0)

µjβj(x, x0)gj(x0) = 0, ∀x ∈ X.

By Hypothesis (b)(ii), we get

b1(x, x0)φ1[
∑

j∈J(x0)

µjβj(x, x0)] ≧ 0.

7
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From the above inequality and the Hypothesis (b) (i)( in view of reverse implication in
(8), if follows that

∑

j∈J(x0)

µjg
′

j(x0; θj(x, x0)) < 0, ∀x ∈ X\{x0}.

By using inequality (9), we deduce that

N∑

i=1

λif
′

i (x0; ηi(x, x0)) > 0, ∀x ∈ X\{x0}. (12)

which by virtue of relation (7) implies that

b0(x, x0)φ0[

N∑

i=1

λiαi(x, x0)(fi(x) − fi(x0))] > 0, ∀x ∈ X\{x0}.

The above inequality along with Hypothesis (b)(ii) gives

N∑

i=1

λiαi(x, x0)(fi(x) − fi(x0)) > 0 ∀x ∈ X\{x0}. (13)

Since (17) and (18) contradicts each other,and hence the conclusion follows:

Theorem 3.2. Let x0 be a feasible solution for (MP) and suppose that there exist
(N + J) vector functions ηi : X × X → Rn, i = 1,N, θj : X × X → Rnj ∈ J(x0) and

scalars λi ≧ 0, i = 1,N,

N∑

i=1

λi = 1, µj ≧ 0, j ∈ J(x0) such that (9) of Theorem 3.1 is

satisfied.
Moreover, assume that one of the following conditions is satisfied.

(a)(i) (f, g) is pseudo quasi dI − V − univex type I at x0 with respect to (ηi)i=1,N ,

(θj)j∈J(x0), λ, µ and for some positive functions αi, i = 1,N and βj , j ∈ J(x0),

(ii) for any u ∈ R, u ≧ 0 ⇒ φ1(u) ≧ 0, φ0(u) ≧ 0 ⇒ u ≧ 0,
b0(x, x0) > 0, b1(x, x0) ≧ 0;

(b)(i) (f, g) is strictly pseudo dI − V − univex type I at x0 with respect to (ηi)i=1,N ,

(θj)j∈J(x0), λ, µ and for positive functions αi = 1,N and βj , j ∈ J(x0),

(ii) for any u ∈ R u ≦ 0 ⇒ φ0(u) ≦ 0;u ≧ 0 ⇒ φ1(u) ≧ 0; b0(x, x0) >0, b1(x, x0) ≧ 0;

Then x0 is an efficient solution for (MP ). Further Suppose that these exist positive real
numbers ni,mi such that ni < αi(x, x0) < mi, i = 1,N for all feasible x.Then x0 is a
properly efficient solution for (MP ).

8
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Proof: (a): Suppose that x0 is not an efficient solution of (MP ).Then there exists an
x ∈ X0 such that f(x) ≤ f(x0) which implies that

N∑

i=1

λiαi(x, x0)(fi(x) − fi(x0)) < 0. (14)

Since gj(x0) = 0, µj ≧ 0 and βj , (x, x0) > 0 ∀j ∈ J(x0) we obtain

∑

j∈J(x0)

µjβj(x, x0)gj(x0) = 0.

From the above inequality and hypothesis a(ii), we have

b1(x, x0)φ1[
∑

j∈J(x0)

µjβj(x, x0)gj(x0)] ≧ 0.

Using hypothesis a(i), we deduce that

∑

j∈J(x0)

µjβj(x, x0)g
′

j(x0; θj(x, x0)) ≦ 0. (15)

The inequalities (9) and (14) yield that

N∑

i=1

λif
′

i (x0; ηi(x, x0)) ≧ 0,

which by Hypothesis (a)(i), we obtain

b0(x, x0)φ0[
N∑

i=1

λiαi(x, x0)(fi(x) − fi(x0))] ≧ 0, (16)

The inequality (16) and Hypothesis (a)(ii) give

N∑

i=1

λiαi(x, x0)(fi(x) − fi(x0) ≧ 0 (17)

Since (14) and (17) contradict each other,we conclude that x0 is not an efficient solution
of (MP ). The properly efficient solution follows as in Hanson et al. [22]. For the proof
of part (b), we proceed as in part (b) of Theorem (3.1), we get inequality (17). Thus
complete the proof.

4. Mond-Weir type duality

Consider the following multiobjective dual to problem (MP )

(MD) Maximize f(y) = (f1(y), f2(y), . . . fN (y))

9
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subject to

N∑

i=1

λif
′

i (y; ηi(x, y)) +

k∑

j=1

µjg
′

j(y; θj(x, y)) ≧ 0, ∀x ∈ X

µjgj(y) ≧ 0, j = 1, 2, ...., k, y ∈ D,λ ∈ RN
≧ , µ ∈ Rk

≧

ηi : X × D, ∀i = 1, 2, ...,N, θj : X × D → Rn, j = 1, 2, ..., k.

Let Y be the set of feasible solutions of problem (MD); that is,

Y = {(y, λ, µ, (ηi)i, (θj)j) :
N∑

i=1

λif
′

i (y; η2(x, y)) +
k∑

j=1

µjg
′

j(y; θj(x, y)) ≧ 0,

µjgj(y) ≧ 0,∀x ∈ X; y ∈ D,λ ∈ RN
≧ , µ ∈ Rk

≧; ηi : X × D → Rn ∀1, 2, ....,N ;

θj : X × D → Rn ∀j = 1, 2, ..., k}.

We denote by PrDY, the projection of set Y on D.

We state the following duality theorems.

Theorem 4.1 (Weak Duality). Let x and (y, λ, µ, (ηi)i=1,N , (θj)j = 1, k) be feasible
solution for (MP ) and (MD) respectively. Moreover, assume that one of the following
conditions is satisfied:

(a)(i) (f, g) is pseudo quasi dI -V-univex type I at y with respect to λ > 0, µ, (ηi)i=1,N ,
(θj)j=1,k

and for some positive functions αi, βj for i = 1, 2, ..,N and j = 1, 2, .., k,

(ii) for any u ∈ R φ0(u) ≧ 0 ⇒ u ≧ 0; u ≧ 0 ⇒ φ1(u) ≧ 0; b0(x, y) > 0, b1(x, y) ≧ 0;

(b)(i) (f, g) is strictly-pseudo quasi dI -V-univex type I at y with respect to λ, µ, (ηi)i=1,N ,
(θj)j=1,k and for some positive function αi, βj for i = 1, 2, ...,N and J = 1, 2, ..., k,

(ii) for any u ∈ R, φ0(u) ≧ 0 ⇒ u > 0; u ≧ 0 ⇒ φ1(u) ≧ 0; b1(x, y) ≧ 0, b0(x, y) > 0;

(c)(i) (f, g) is quasi strictly-pseudo dI−V -univex type I at y with respect to λ, µ, (ηi)i=1,N , (θj)j=1,k

and for some positive functions αi, βj for i = 1, 2, ..,N
and j = 1, 2, ...k,

(ii) for any u ∈ R,φ0(u) > 0 ⇒ u > 0; u > 0 ⇒ φ1(u) > 0; b0(x, y) > 0, b1(x, y) > 0.

Then f(x) � f(y).

Remark 1: If we omit the assumption λ > 0 in the condition (a)(i) or the word
“strictly” in the condition (b),we obtain, for this part of theorem,f(x) ≮ f(y).

Theorem 4.2 ( Strong Duality ).Let x0 be a weakly efficient solution for (MP ).Assume
that the function g satisfies the dI - constraint qualification at xo with respect to (θj)j=1,k

.
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Then there exist λ ∈ RN
≧ and µ ∈ RK

≧ such that (x0, λ, µ, (ηi)i=1,N , (θj)j=1,k) ∈ Y and ob-

jective functions of (MP ) and (MD) have the same values at x0 and (x0, λ, µ, (ηi)i=1,N , (θJ)
J=1,k

),
respectively. If, further, the weak duality between (MP ) and (MD) in theorem holds
with the condition (a) without λ > 0 ( resp. with the condition (b) or (c)), then
(x0, λ, µ, (ηi)i=1,N , (θj)j=1,k) ∈ Y is a weakly efficient (resp. an efficient) solutions of
(MD).

Theorem 4.3 (Strict Converse Duality ). Let x0 and (y0, λ, µ, (ηi)i=1,N , (θj)j=1,k
) be

feasible solutions for (MP ) and (MD) respectively, such that

N∑

i=1

λifi(x0) =

N∑

i=1

λifi(y0). (18)

(ii) (f, g) is strictly pseudo quasi dI−V − type I at yo with respect to (ηi)i=1,N , (θj)j=1,k

and for λ and µ. Then x0 = y0
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Abstract

The Lagrange interpolation problem in Banach spaces is a crucial point
for some applications of the artificial neural networks. The interpolation
problem is approached by cardinal basis interpolation. A localizing scheme
is then applied and some error estimates are given. Finally, the results of
several numerical tests are reported in order to show the approximation
performances of the proposed interpolants.

Key words: neural networks, interpolation in Banach spaces, cardinal basis

functions

1 Introduction

Three-layers networks are one of the basic structures in the study of neural net-
works; they consists of an input layer, a hidden layer, and an output layer. In
the present paper we consider a linear output F of the type

F (z) =
N∑

i=1

aili(z), (1)

where N is the number of neurons in the hidden layer and ai are the coefficients
of the linear output, belonging to IR. An important case occurs when the li are
determined by an activation function α, that is

F (z) =
N∑

i=1

aiα(z, ci), (2)

where each ci is the center vector for the i-th neuron in the hidden layer. In
particular, α can be taken as a radial function, that is

α(z, ci) = β(‖z − ci‖), (3)
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so to obtain a so-called radial basis function network (see, e.g., [8]). As the output
F is often a multivariate function F : IRp → IR, the norm considered in (3) is
usually the Euclidean distance.

Networks of type (2), and in particular RBF networks (3), can be also nor-
malized. In this case the output is

F (z) =

∑N
i=1 aiα(z, ci)

∑N
k=1 α(z, ck)

=
N∑

i=1

aigi(z), (4)

where

gi(z) =
α(z, ci)

∑N
k=1 α(z, ck)

, i = 1..., n.

If we assume that the ouput is known at a finite number of points, that is,

N couples of input-output data
{
(zk, yk)

}N

k=1
are given, the parameters ai and ci

are determined such that the fit between the artificial output F and the known
values is optimized. Though there are many criteria one can use to choose the
parameters, here we focus our attention on the case in which we require that F
satisfy the interpolation conditions

F (zi) = yi, i = 1, ..., n.

What we obtain is, from a mathematical point of view, a multivariate Lagrange
interpolation problem, which can be solved by many well-known methods (see,
e.g., [5]).

However, in many applications of the artificial neural networks, such as learn-
ing theory (see, e.g., [4]), the classical input domain IRp is unsuited, since the
input data may belong to more general spaces, namely Banach spaces. Then, in
those cases it is essential to develop suitable Lagrange interpolation schemes in
Banach space, which is the topic of the paper.

In the case of Hilbert spaces the interpolation problem can be solved, for
instance, by a sort of generalization of the Lagrange formula (see [9]) constructed
with scalar products, which is a particular case of polynomial operator inter-
polant ([6], [7], see [10]). This interpolant can be modified so to get a cardinal
basis solution to the same problem (see [1]), obtaining acceptable approximation
performances. In a Banach space setting the constructions made using the inner
product cannot be easily generalized, while it seems quite natural to use cardi-
nal basis interpolation, both because Shepard-type functions can be constructed
wherever a norm is present, and because the corresponding interpolant would be
a particular case of normalized neural network.

Section 2 introduces the Lagrange interpolation problem in the Banach space
setting, some basic properties of the cardinal basis interpolants, and Cheney’s
construction of the cardinal basis functions. Then, in Section 3, we apply a
localizing scheme to the interpolant and we are then able to make more accurate
error estimates, especially for the noteworthy case of Shepard-type functions. In
Section 4 we provide examples and numerical tests in the space C[−π, π] equipped
with the infinity norm.
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2 Cardinal Basis Interpolation in Banach Spaces

Let X and Y be Banach spaces on the field IR, let Ω be a bounded open subset
of X, and let S = {z1, ..., zn} ⊂ Ω be a given set of distinct points. We consider
the Lagrange interpolation problem which consists of determining a continuous
function F : X → Y such that

F (zi) = yi, i = 1, ..., n,

where yi ∈ Y , i = 1, ..., n. It is convenient to suppose the existence of an un-
derlying continous function f : X → Y , whose values at the nodes are the data
values, that is yi = f(zi), i = 1, ..., n. A simple way to determine a solution of
(2) is by considering

F (z) =
n∑

i=1

li(z)f(zi), (5)

where li(z), for i = 1, ..., n, are functions from X into IR satifying li(zj) = δij ,
i, j = 1, ..., n. This approach has been studied, in the particular case X = Y
and li polynomials, by Prenter [9], who proved the existence of a (non-unique)
solution but did not succeeded in giving a constructive formula, since the proof is
based on the existence of the projections of X on certain subspaces, which cannot
be explicitly constructed in general. Here, we attempt to solve the problem by a
different and more constructive approach, using as li the cardinal basis functions.

We define the interpolant

F (z) =
n∑

i=1

gi(z)f(zi), (6)

where gi : Ω → IR, i = 1, ..., n, are cardinal basis functions, that is, satisfy

gi ∈ C0(Ω), gi(z) ≥ 0,
n∑

i=1

gi(z) = 1, gi(zj) = δij , (7)

Note that for a given z ∈ Ω, each gi(z) takes a scalar value, while f(zi) ∈ Y , and
so F (z) ∈ Y . From now on we will consider the underlying function f bounded
on Ω.

If f(zi) = c, i = 1, ..., n, we have from (6)

F (z) =
n∑

i=1

gi(z)c = c. (8)

Another noteworthy property is

‖F (z)‖ ≤ max
i

‖f(zi)‖. (9)
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In fact

‖F (z)‖ ≤
n∑

i=1

gi(z)‖f(zi)‖ ≤
n∑

i=1

gi(z)max
i

‖f(zi)‖ = max
i

‖f(zi)‖,

where both the norms in X and Y are represented for simplicity by the same
symbol.

The interpolant (6) has also some good approximation properties. In particular
we can give the rough error bound

‖f(z) − F (z)‖ ≤ ‖
n∑

i=1

gi(z)[f(z) − f(zi)]‖ ≤

max
i

‖f(z) − f(zi)‖ ≤ sup
z∈Ω

max
i

‖f(z) − f(zi)‖. (10)

The dependence of the error bound from the underlying function, the distribution
of the nodes and the diameter of Ω can be better shown by the inequality

‖f(z) − F (z)‖ ≤ ω[f ](max
i

‖z − zi‖) ≤ ω[f ]
(
diam(Ω)

)
, (11)

where

ω[f ](δ) = sup
u,v∈Ω

{‖f(u) − f(v)‖, ‖u − v‖ ≤ δ}

is the modulus of continuity of f . However, these are just rough error bounds,
which does not provide information about the error behaviour when the nodes
get closer and closer to each other.

An important way to construct cardinal basis functions defined on IRp is Cheney’s
method (see [3], pp. 67-68), which can be extended to a Banach space X.

Definition 2.1. Let α : X × X → IR be a continuous function such that

α(zi, zi) = 0, α(z, zi) > 0, i = 1, ..., n.

Then, setting

gi(z) =

n∏

j=1,j 6=i

α(z, zj)

n∑

k=1

n∏

j=1,j 6=k

α(z, zj)

, i = 1, ..., n,

we get Cheney’s cardinal basis functions.

These functions can be also represented in the barycentric form

gi(z) =
1/α(z, zi)

n∑

k=1

1/α(z, zk)

, gi(zi) = 1, i = 1, ..., n,
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which is usually more suitable from a computational point of view. In the fol-
lowing, for simplicity, we will omit to specify gi(zi) = 1, i = 1, ..., n.
The gi(z), i = 1, ..., n, are continuous functions on X, since they are ratios of
continuous functions and the denominators are non-vanishing. So, the interpolant
F (z) in (6) is continuous too, being a linear combination of the values f(zi) with
coefficients gi(z).
The barycentric form of the interpolant clearly shows that Cheney’costruction
corresponds to a normalized network (4).
A natural choice for α is

α(z, w) = ‖z − w‖µ, µ ∈ IR+.

In this case, we have

gi(z) =
1/‖z − zi‖

µ

n∑

k=1

1/‖z − zk‖
µ

, i = 1, ..., n, (12)

that is, a version of Shepard basis functions for Banach spaces.

3 Localizing scheme

In practice, in many cases it is convenient to use a localized version of Cheney’s
construction, that is

F̃ (z) =
n∑

i=1

g̃i(z)f(zi) =
n∑

i=1

τi(z)(1/α(z, zi))∑n
k=1 τk(z)(1/α(z, zk))

f(zi), δ > 0, (13)

where τi : Ω −→ IR+ is a continuous function such that

τ(zi) = 1, τ(z) > 0 for z : ‖z−zi‖ < δ, and τ(z) = 0, for z : ‖z−zi‖ ≥ δ,

and δ is suitably chosen. Hence the interpolant F̃ , when evaluated at any z ∈ Ω,
considers only the nodes closest to z, that is, the nodes zi such that ‖z− zi‖ < δ.
We note that F̃ is a continuous operator like F . We also note that the cardinal
basis functions in (13) are still a partition of unity, and therefore the constant
functions are reproduced by the interpolant. As a consequence of this localization,
the error estimate (11) can be improved:

‖f(z) − F̃ (z)‖ ≤ ω[f ](δ).

If we consider the Shepard-type cardinal basis functions (12), in the sum (6) only
the terms corresponding to the nodes zi closest to z are significantly different
from 0. It seems natural to localize taking, for instance,

τi(z) =
(
1 − ‖z − zi‖/δ

)
+
, z ∈ Ω, i = 1, ..., n,
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so to get the interpolant

F̃ (z) =
n∑

i=1

g̃i(z)f(zi) =
n∑

i=1

(
1 − ‖z − zi‖/δ

)
+
(1/‖z − zi‖

µ)
∑n

k=1

(
1 − ‖z − zk‖/δ

)
+
(1/‖z − zk‖µ)

f(zi), δ > 0.

(14)

The localized version of the Shepard-type interpolant in (14) gives us the op-
portunity to obtain more meaningful error estimates involving the so-called fill
distance

hS,Ω := sup
z∈Ω

min
zi∈S

‖z − zi‖.

To get the following error bound we will assume Ω convex. Let c ∈ Y be any
constant vector and let Iδ be the ball of radius δ centered at z, taking δ = C1hS,Ω

with C1 ≥ 1 real constant. Moreover, let us cosider the neighborhood of z
Jδ = Iδ ∩ Ω; then we have for z ∈ Ω

‖f(z) − F̃ (z)‖ ≤ ‖f(z) − c‖ + ‖c − F̃ (z)‖ = ‖f(z) − c‖ +

∥
∥
∥
∥
∥

n∑

i=1

g̃i(z)[f(zi) − c]

∥
∥
∥
∥
∥

≤ ‖f(z) − c‖ +
n∑

i=1

g̃i(z)‖f(zi) − c‖ ≤
(
1 +

n∑

i=1

g̃i(z)
)

sup
w∈Jδ

‖f(w) − c‖

and, then,
‖f(z) − F̃ (z)‖ ≤ 2 sup

w∈Jδ

‖f(w) − c‖, z ∈ Ω.

This relation shows that the local errors (and the global error as well) depends
on the distance of the interpolated function f from the set of constant vectors.
Then, taking c = f(z0), where z0 is the node (or one of the nodes) closest to z,
we obtain the bound

‖f(z) − F̃ (z)‖ ≤ 2 sup
w∈Jδ

‖f(w) − f(z0)‖,

and, since ‖w − z0‖ < C1hS,Ω for any w ∈ Jδ,

‖f(z) − F̃ (z)‖ ≤ 2 ω[f ](2C1hS,Ω).

Finally, if we suppose that f is Gâteaux-differentiable in Ω, then, by the finite
increment formula applied on the segment [z0, w] ⊂ Jδ, we have

‖f(z) − F̃ (z)‖ ≤ 2 sup
w∈Jδ

sup
0≤θ≤1

‖f ′(z0 + θ∆w)‖‖∆w‖,

with ∆w = w − z0, and, if the derivative is uniformly bounded on Ω, then

‖f(z) − F̃ (z)‖ ≤ 2C1hS,Ω sup
w∈Jδ

‖f ′(w)‖,

where ‖f ′(w)‖ stands for the norm of the operator f ′(w) in the space of linear
and continuous operators from X into Y . This shows that this method has
approximation order O(hS,Ω).
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4 Numerical tests

Now we consider a numerical example. Let X = C[−π, π] with norm

‖z‖∞ = max
t∈[−π,π]

|z(t)|.

and let
Ω = {α sin t + β sin(2t);α, β ∈ [1, 1 + 1/20]},

and Y = IR. Let the nodes be zi = αi sin t + βi sin(2t), (αi, βi) ∈ [1, 1 + 1/20] ×
[1, 1 + 1/20], i = 1, ..., N , and

f(zi) =

∫ π

−π

tzi(t)dt, i = 1, ..., N.

The operator

z(t) →

∫ π

−π

tz(t)dt

plays here the role of a test function. We choose µ = 2 in Shepard-type cardinal
basis functions because, in general, a small value of µ avoids “flat spots ”near the
nodes (see, e.g., [2]). The cardinal basis interpolant, in the barycentric form, is

F (z) =
N∑

i=1

1
/(

max
t∈[−π,π]

|z(t) − zi(t)|
)2

dt

n∑

k=1

1
/(

max
t∈[−π,π]

|z(t) − zk(t)|
)2

∫ π

−π

tzi(t)dt.

Here we tested the interpolant taking nodes with coefficients (αi, βi) first on a
regular r × r grid over [1, 1 + 1/20] × [1, 1 + 1/20] (r = 5, 10, 15, 20, 30, 40), and
then constructing Halton points (with generating primes 2 and 3) on the same
square [5]. Note that this choice for the nodes makes sense, because we have the
inequality

∥
∥[α1 sin t + β1 sin(2t)] − [α2 sin t + β2 sin(2t)]

∥
∥
∞

≤

|α1 − α2| + |β1 − β2| ≤ 2
∥
∥(α1, β1) − (α2, β2)

∥
∥

2
.

The interpolant has been evaluated, using the barycentric formula, at 1089 points
taking the coefficients (α, β) on a regular 33 × 33 grid over [1, 1 + 1/20] × [1, 1 +
1/20]. The results are reported in Table 1 and Table 2.

nodes RMSE nodes RMSE nodes RMSE

4 1.988 · 10−2 25 2.037 · 10−2 400 1.387 · 10−2

9 2.315 · 10−2 100 1.667 · 10−2 900 1.227 · 10−2

16 2.172 · 10−2 225 1.493 · 10−2 1600 1.161 · 10−2

Table 1: Evaluation of test operator by cardinal basis interpolant (nodes on a
regular grid) in C[−π, π] with infinity norm
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nodes RMSE nodes RMSE nodes RMSE

4 5.617 · 10−2 25 3.418 · 10−2 400 1.857 · 10−2

9 4.103 · 10−2 100 2.313 · 10−2 900 1.632 · 10−2

16 3.644 · 10−2 225 2.018 · 10−2 1600 1.510 · 10−2

Table 2: Evaluation of test operator by cardinal basis interpolant (Halton points
as nodes) in C[−π, π] with infinity norm

Then we tested the localized version of the formula considering the same example.
Note that in this slightly different framework the choice of the parameter δ in
(14) is a crucial point. Here we used a stationary approach, that is, δ decreases
proportionally to the fill distance hS,Ω; in particular, for these numerical exper-
iments we set δ = 2hS,Ω. The results, reported in Tables 3-4, show significantly
better approximation errors.

nodes RMSE nodes RMSE nodes RMSE

4 2.887 · 10−2 25 8.398 · 10−3 400 1.844 · 10−3

9 1.606 · 10−2 100 3.819 · 10−3 900 1.204 · 10−3

16 1.102 · 10−2 225 2.480 · 10−3 1600 8.953 · 10−4

Table 3: Evaluation of test operator by localized cardinal basis interpolant (grid-
ded points as nodes) in C[−π, π] with infinity norm

nodes RMSE nodes RMSE nodes RMSE

4 5.168 · 10−2 25 1.853 · 10−2 400 3.599 · 10−3

9 2.938 · 10−2 100 7.348 · 10−3 900 2.150 · 10−3

16 2.356 · 10−2 225 4.906 · 10−3 1600 1.665 · 10−3

Table 4: Evaluation of test operator by localized cardinal basis interpolant (Hal-
ton points as nodes) in C[−π, π] with infinity norm
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Abstract

This paper presents a parameterised shared-memory scheme for parameterised
metaheuristics. The use of a parameterised metaheuristic facilitates experimenta-
tion with different metaheuristics and hybridation/combinations to adapt them to
the particular problem we are working with. Due to the large number of experi-
ments necessary for the metaheuristic selection and tuning, parallelism should be
used to reduce the execution time. To obtain parallel versions of the metaheuristics
and to adapt them to the characteristics of the parallel system, an unified param-
eterised shared-memory scheme is developed. Given a particular computational
system and being fixed the parameters for the sequential metaheuristic, the appro-
priate selection of parameters in the unified parallel scheme eases the development
of parallel efficient metaheuristics.

Key words: parallel metaheuristics, shared-memory

1 Introduction

Currently most of the computational parallel systems are formed by multicore compo-
nents. Laptops and personal computers are multicore, and clusters and supercomputers
are built by connecting multicore nodes. So, the development of efficient multicore ver-
sions of our algorithms is compulsory if we want to efficiently use the systems we have
access to. Multicore systems can be programmed with the shared-memory paradigm,
using OpenMP [10], which we use to develop the unified parameterised parallel shared-
memory scheme of an unified parameterised scheme of metaheuristics.

Given that most of the interesting and attractive combinatorial problems belong
to the NP class, exact methods are not very useful except for small sized problems. For
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this reason many approximation methods have been provided that allow high quality
solutions to be obtained in acceptable running times. In recent decades, metaheuristics
have emerged as an advantageous technology for approximation algorithms [2]. They
bring together methods and ideas from very different fields, such as artificial intelligence,
mathematics and biology. The main concern here lies in their easy and immediate
applicability to hard problems.

The use of a unified parameterised scheme for metaheuristics [9] facilitates the
easy development of new metaheuristics or hybrid metaheuristics for experiment and
adaptation to a particular problem. However, in the process of obtaining a well-tailored
metaheuristic for a problem, it is necessary to experiment with a large number of
metaheuristics and their parameters, and so the time dedicated to the experiments is
very large.

To alleviate this problem, parallel versions of the methods can be developed. There
are a large number of studies on the parallelization of metaheuristics [1]. Each meta-
heuristic may have a different parallel scheme, and some of them could follow a different
paradigm. In our approach, and as main contribution, we consider the common devel-
opment of parallel versions by using a unified metaheuristic scheme to obtain a unified
parallel scheme for metaheuristics.

In addition, the parallel scheme is parameterised, and the values of some algorith-
mic parameters can be selected to optimise the execution of the parallel metaheuristic
obtained from the sequential parameterised scheme of metaheuristics. The optimum
values of the algorithmic parameters will depend of those of the metaheuristic param-
eters and of the characteristics of the computational system.

The rest of the paper is organised as follows. Section 2 presents the parameterised
metaheuristic scheme. The corresponding parameterised shared-memory scheme for
metaheuristics is presented in seciton 3. Section 4 presents some experimental results
obtained when applying the parameterised parallel scheme to a particular problem.
These results confirm the validity of our proposal. Finally, in section 5 the conclusions
are summarised and some future research lines are outlined.

2 Parameterised metaheuristic scheme

The use of a general scheme for metaheuristics (algorithm 1) allows us to quickly
develop and experiment with different metaheuristics to decide which metaheuristic,
combination/hybridation of metaheuristics and tuning parameters are the most suitable
for solving a particular problem. With such a scheme, some of the functions can be
reused for different methods, so facilitating the development of metaheuristics.

Each basic function in this unified metaheuristic scheme can be parameterised so
that different values of the parameters give different metaheuristics, hybridation/com-
bination of metaheuristics or different versions of a particular metaheuristic. In that
way, scheme 1 changes by making the basic functions in it parameterised functions, as
shown in algorithm 2.

Different sets of parameters can be established for the different functions, and it
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Initialize (S )
while ( not EndCondition (S ) ) {

SS = Select (S )
i f ( | SS | > 1) SS1 = Combine (SS )
else SS1 = SS

SS2 = Improve ( SS1 )
S = Include ( SS2 )

}

Algorithm 1: General scheme of a metaheuristic method.

Initialize (S , ParamInit )
while ( not EndCondition (S , ParamEndCond ) ) {

SS = Select (S , ParamSelec )
i f ( | SS | > 1) SS1 = Combine (SS , ParamComb )
else SS1 = SS

SS2 = Improve (SS1 , ParamImpr )
S = Include (SS2 , ParamIncl )

}

Algorithm 2: General parameterised scheme of a metaheuristic method.

is not the objective of this paper to study the best selection of the parameters. As an
example, in the Initialize function ParamInit could be composed by four parameters:
one corresponding to the size of an initial reference set; another for the number of
elements to be improved with some improvement function (which also could be used
in the improvement function inside the while loop); a third parameter to indicate the
intensity of the improvement, as for example how big the neighborhood in a local search
is; and the number of elements in the reference set. Similarly, a set of parameters should
be determined for each function, and for a particular problem different metaheuristics
and combinations of them are obtained by giving different values to those parameters.

3 Parameterised shared-memory scheme for metaheuris-

tics

The parameterised metaheuristic scheme in algorithm 2 can be used to develop the
corresponding unified parameterised shared-memory scheme. To do so, the functions
in the scheme are parallelised independently, and different parallel patterns should be
identified in the basic functions of the scheme. Two basic parallel schemes are identified
for the functions in algorithm 2.

In the first scheme (algorithm 3) the elements in a set are treated independently.
The set of metaheuristic parameters (MetaheurParam) is passed to the function, and the
number of threads to be used in the parallel loop (one-loop-threads) is obtained as a
function of the values of the metaheuristic parameters. This scheme can be used for ex-
ample when crossing elements in a genetic algorithm, when randomly generating the ini-
tial set of elements... For different functions, the optimum value of one-loop-threads
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depends of the values of the parameters of the metaheuristic and also of the cost of the
processing function (cost of crossing function, random generation function...), which
depends of the metaheuristic and the computational system.

one−loop ( MetaheurParam ) :
omp_set_num_threads (one−loop−threads ( MetaheurParam ) )
#pragma omp paral le l for

loop in elements

treat element

Algorithm 3: Parallel scheme for independent treating elements (scheme 1).

The second scheme is a two-level parallelism scheme (algorithm 4), and a number
of threads should be determined for each level. The number of threads to work in
the first level (first-level-threads) is obtained as a function of the parameters
of the metaheuristic (also of its functions, and consequently of the cost of them in
the computational system). Once this number of threads has been determined, the
number of threads to work in the second level (second-level-threads) is obtained as
a function of the metaheuristic parameters and the number of threads working in the
first level. Of course, the first scheme is a particular case of this second scheme when
the number of threads in the second level is fixed to one, but it is better to consider
two different schemes because the number of parameters to obtain and how they are
obtained are different. This type of parallelism appears for example in the improvement
functions, when a number of elements is selected to improve them (which gives a loop
in the number of elements to improve) and each element is improved by analysing some
elements in its neighbourhood (loop in the second level). It can appear in other parts,
as for example when crossing elements if the crossing function is not a simple one and
to parallelize it can contribute to reduce the execution time.

two−level ( MetaheurParam ) :
omp_set_num_threads ( first−level−threads ( MetaheurParam ) )
#pragma omp paral le l for

loop in elements

second−level ( MetaheurParam , first−level−threads )

second−level ( MetaheurParam , first−level−threads ) :
omp_set_num_threads ( second−level−threads ( MetaheurParam , first−

level−threads ) )
#pragma omp paral le l for

loop in elements

treat element

Algorithm 4: Two-level parallel scheme (scheme 2).
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4 Computational results

To validate our proposal, some experiments have been carried out. Here, the results of
some experiments with Simultaneous Equation Models (SEM) are presented. We will
not explain what they are, but the interested reader could refer to some well known
books [4, 5]. SEMs shave been traditionally used in econometrics, but they have begun
to be used in other fields (networks simulation [6], medicine [7]...), so it is a problem
of great interest. Normally they are developed by people with a wealth of experience
in the particular problem represented by the model, but the use of automatic tools to
provide the experts with satisfactory models is interesting in some cases, as for exam-
ple when the dependence of the variables is not clear or when experiments are being
carried out to determine variables to be included in the model. To automatically ob-
tain satisfactory models, it is necessary to evaluate a large amount of candidate models
and to measure their quality according to some criteria, like for example the Akaike
Information Criterion (AIC) [3]. Genetic algorithms have been applied to this prob-
lem [8], and using the parameterised sequential scheme here presented the application
of different metaheuristics to the problem is facilitated. Furthermore, the use of the
parallel scheme allows us to make in a reasonable time the experiments with different
metaheuristics to decide a satisfactory one for the specific model we are working with.

The problem consists of, given a set of values (obtained by experimentation, sur-
vey...), to obtain the variables which appear in each equation in the system, which
means, the model which best represents the variables dependences.

To apply metaheuristic methods to obtain SEMs, a set of models is explored. Each
element in the set is a candidate to be the best model. An element is defined as a
matrix. In each row, an equation is represented using ones and zeros. If variable j

appears in equation i, the value for the (i, j) position is one, and zero if not.

Experiments have been carried out in the supercomputer BenArabi of the Super-
computing Centre of Murcia. The part Ben is a HP Integrity Superdome SX2000 with
128 cores of the processor Intel Itanium-2 dual-core Montvale, and Arabi is a cluster
of 102 nodes, each one with 8 cores of the processor Intel Xeon Quad-Core L5450. So,
experiments have been made in systems with 8 and 128 cores.

Experiments have been carried out by randomly generating a system and the values
of the exogeneous variables, and obtaining from them the values of the endogenous vari-
ables. By selecting the values of the parameter in algorithm 2, different metaheuristics
have been applied. The methods considered to parallelize are: GRASP, a genetic algo-
rithm (Genet), a scatter search (Scatt), two hybrid methods with a GRASP followed
by genetic (GRA+Gen) and scatter search (GRA+Sca), a combination of genetic and
scatter search (Gen+Sca) and a GRASP followed by this combination (GR+Ge+Sc).
The parameters used for each method are shown in table 1. Note the advantage of us-
ing a unified metaheuristic scheme, both for sequential and parallel development, that
allows for the testing of numerous methods and parallelizations. The meaning of the
parameters in the table are: numbers of elements in the initial set (Init. num. elem.),
numbers of elements in the reference set (Num. elem. iter.), percentage of elements
of the initial set to be improved (Perd. impr. init.), intensification of the initial im-
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provement (Int. impr. init.), number of best elements selected for combination (Num.
best elem.), number of worst elements selected for combination (Num. worst elem.),
number of combinations of best elements (Num. best-best), number of combinations
of best elements with worst elements (Num. best-worst), number of combinations of
worst elements (Num. worst-worst), percentage of elements generated by combination
which are improved (Perc. impr. elem.), intensification of the improvement (Int. impr.
elem.), percentage of elements to be mutated (Perc. elem. mut.), intensification in the
improvement of elements obtained by mutation (Int. impr. mut.), and number of best
elements included in the reference set (Num. best elem.). To compare the parallelism,
the number of iterations in genetic and scatter search (or combinations) has been fixed
at 50.

GRASP Genet Scatt GRA+Gen GRA+Sca Gen+Sca GR+Ge+Sc

Init. num. elem. 200 500 100 200 200 100 200

Num. elem. iter. - 500 20 200 20 50 50

Perc. impr. init. 100 0 100 100 100 100 100

Int. impr. init. 10 - 10 10 10 10 10

Num. best elem. - 500 10 200 10 25 25

Num. worst elem. - 0 10 0 10 25 25

Num. best-best - 250 90 100 90 90 90

Num. best-worst - - 100 - 100 100 100

Num. worst-worst - - 90 - 90 90 90

Perc. impr. elem. - 0 100 0 100 100 100

Int. impr. elem. - - 5 - 5 5 5

Perc. elem. mut. - 10 0 10 0 10 10

Int. impr. mut. - 0 - 0 - 5 5

Num. best elem. - 500 10 200 10 25 25

Table 1: Values of the parameters for the different combinations of metaheuristics
considered in the experiments.

Figure 1 shows the speed-up achieved in the two systems with the seven meta-
heuristics, when using the maximum number of cores in the systems (8 in Arabi and
128 in Ben) and without nested parallelism (it is called 8 or 128 in the figure), with
the configuration (number of cores in each parallelism level) which gives the lowest
execution time (lowest), and with the best combination of threads in the initialisation
part and in the iteration part (parts).

In Arabi the speed-up is close to the number of cores, and normally the best
configuration is to use non nested parallelism and 8 cores. Only in two cases do other
combinations give better results. In the metaheuristics with lowest execution time per
iteration the speed-up is lower because the sequential time of the parallelised parts is
very low.

The situation is different in Ben. To use the maximum number of cores is not
a good option, and some strategy to select the number of threads to work on the
solution of the problem is preferable. So, the speed-up is always far from the maximum
achievable (it may be otherwise with bigger problems). Furthermore, the randomness
in the execution in the metaheuristics makes it difficult to draw definitive conclusions,
but experiments with other problem sizes and configurations confirm this behaviour.
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Figure 1: Speed-up of different metaheuristics, with the maximum number of cores,
the maximum achieved speed-up and that obtained with different numbers of threads:
a) Arabi, b) Ben.

5 Conclusions and future research

The use of a parameterised sequential scheme allow us to obtain different metaheuris-
tics and hybridation/combination of metaheuristics by selecting different values for
the parameters in the unified scheme. Furthermore, the parameterised metaheuristic
scheme in algorithm 2 has been parallelized by parallelizing each basic function, with
common parallelization strategies for functions with the same structure. So, a param-
eterised shared-memory scheme of metaheuristics has been obtained, so that parallel
versions of different metaheuristics and combinations are obtained by simply selecting
the values of the parameters of the metaheuristic. In addition, the use of the parame-
terised parallel scheme allows us to adapt the scheme to the metaheuristic (determined
by the values of the parameters in the sequential metaheuristic scheme), the specific
problem to be solved and the characteristics of the parallel system where it is solved.
The applicability of the proposal has been tested with experiments with the problem
of automatically obtaining satisfactory Simultaneous Equation Models from a set of
values of variables.

A satisfactory selection of the values of the parallelism parameters in the different
functions of the parallel produces a reduction in the parallel execution time. At present,
we are working on the inclusion of a decision engine in the parallel scheme to decide
the optimum parallel execution parameters.
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Abstract

Many computational applications rely heavily on numerical linear algebra op-
erations. Part of these applications are data and computation intensive that need
to run in high performance computing environments. On the other hand, Cloud
Computing is emerging as a new computing paradigm which aims to provide re-
liable, customized and QoS guaranteed dynamic computing environments for end
users. For research groups, while the ACTS Collection brings robust and high-end
software tools to the hands of application developers, cloud Computing provides
convenient access to reliable, high-performance clusters and storage without the
need to purchase and maintain sophisticated hardware. In this paper we propose
to join these two paradigms of scientific computing in a framework that allows ex-
ecuting high performance tools included in ACTS in a heterogeneous and dynamic
system.

Key words: Cloud Computing, high performance, Software Tools, ACTS, Python,
Web Services, instructions

1 Introduction

Scientists and engineers in virtually every field are turning to high performance parallel
computers to simulate and solve some of their problems. One reason for this trend
resides in the fact that the models, algorithms, and phenomena are becoming more
complex. Unfortunately, parallel architectures are expensive and hard to configure and
administrate. Only major research centers have the necessary financial and human
resources to manage a center of High Performance Computing.
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In last two years, a new concept is emerging: Cloud Computing [2]. Clouds are
hinting at a future in which we will not compute on local computers, but on central-
ized facilities operated by third-party computing and storage utilities. We can relate
it to other similar technologies, especially grid-computing, but there are significant dif-
ferences show in Table 1. In resume, Cloud computing describes a new supplement,
consumption and delivery model for IT services based on Internet, and it typically
involves the provision of dynamically scalable and often virtualized resources as a ser-
viceover the Internet.

Grid Cloud

Underlying Concept Utility Computing Utility Computing

Main Benefit Solve computationally Provide a scalable
complex problems standard environment for

network-centric application
development, testing

and deployment

Resource distribution Negotiate and manage Simple user
/allocation resource sharing Provider model

schedulers pay-per-use

Domains Multiple domains Single domain

Character/history Non-commercial, Commercial
publicly funded

Figure 1: Main differences between Cloud and Grid Computing

In previous work, OpenCF [8, 11] has been presented as a framework on a Cloud
Computing infrastructure, where users can access to the computing facilities on demand
according to their needs. A significant difference between OpenCF and others Cloud
Computing projects is that OpenCF does not revolve around the creation of virtual
machines as a way to offer services to users. Rather, it allows for direct instances of
applications to be run on the computing servers(SaaSapproach).This, which at first
glance might seem like a disadvantage, is proposed as a way to facilitate access to this
type of tool to end users with limited knowledge of programming or high performance
computing.

This paper proposes the use of scripts such as computing service to users of cloud
computing. That is, in addition to providing access to applications compiled on com-
puting servers, the user can program interpreted Python code programming its own
high performance application to be executed on any platform in the cloud. Users can
make use of precompiled libraries in high performance computing servers through dis-
tributions like PyACTS [5]. Thus, the code can make use of high performance libraries
to the lowest level and to be independent of the platform on which to run.

This paper is arranged as follows. Section 2 and 3 introduces OpenCF and PyACTS
respectively. In section 4, we present the framework that integrates both architectures
and we show several examples that illustrates the advantages of these new paradigm.
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Figure 2: OpenCF and PyACTS’s models

2 OpenCF

This section describes the architecture of OpenCF. OpenCF software architecture is
shown in Figure 2(a). As introduced in [9], OPenCF is highlighted by a modular
design: module server and client module. The modules can be replaced independently
and even extended to provide new functionality without disturbing the rest of the
system components. The client and server implement the three lower layers of the
stack that describes the Web service: Description of Services, XML Messaging and
Transport. The fourth level, Service Discovery has not been implemented for security
reasons. Therefore, system administrators still control access by of customers to parallel
platforms through traditional techniques authentication.

The client provides an interface for the end user and translates the requests queries
to the server. The server receives requests from clients Authenticated and transforms
them into jobs for the queue manager. These modules, in turn, are also modularized.
The module Control Access, Submission Process and Collector can be found on
both the server and client. The client also maintains a database to manage information
generated by the system. The server includes elements for generating scripts and work
release the queuing system.Briefly, we should describe the features of the modules listed.

1. Client Module: The client is the interface between the end user and the system,
where users are registered through a form. Below is a list of sub-modules.
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• The Database stores information about users, servers, work, input and out-
put files, etc.. It has been implemented as a base MySQL relational data [6]
and is accessed through PHP scripts.

• The Request processor is via a Web interface which the user can access the
list of available applications. Each entry in the list shows a short description
of the routine. Tasks grouped according to the servers that support them.
It also manages dynamically generate XHTML form input data according
to the job description.

• The Collector manages the output generated by launched work on the
server. We can also check the status of submissions through the Web inter-
face, and download the results.

2. Server Module: The server handles all matters related to the work, making them
available through the service and monitor its status and implementation.

• The Request Processor consists of a set of PHP scripts that are responsible
for analyzing the requests received from the client. In addition, it is also
responsible to generate and export the Web service, to maintain updated
the WSDL document [13] (Web Service Description Language) encapsulated
with the protocol messages SOAP generated by NuSOAP [12].

• The Queue Manager Interfacemanages the queue of the HPC system. The
server needs to know how to run a work and how to check its status on the
server is installed. Additionally, we need an XML description of each of the
routines available to specify the job. In section 4 we will show an integrated
example with the PyACTS library. In current version of OpenCF, once the
user sends a job request, the server executes the code binary associated with
the supplied arguments. In this way, we can incorporate new services by
adding the file with the XML description with compiled code in the server
module. This is the main difference with the proposed system in 4, where
the application are programmed in a scripting language and not need to be
compiled.

• The Script Generator produces the necessary scripts for execution of work
in different systems of queues. It is composed of a set of templates. We need
a different template for each one of the queue managers supported.

• The Launcher is the interface between OpenCF and operating system. For
security reasons, you need a non-privileged user created to run the OpenCF
code.

3. The collector is the interface that delivers the output data produced by execu-
tion of a job. Once work is complete, the queuing system automatically sends an
email to the user, and moves output files to a temporary directory until they are
downloaded by the client collector.
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PyOpenCF born from the idea of developing OpenCF in a single programming lan-
guage, so that it is more portable and independent as well as more efficient in upgrad-
ing the platform. For this, the language used was Python [7]. Python is an scripting
language widely used by scientific and academic community. Same functions and char-
acteristics of OpenCF have been implemented in this version. In this way, PyOpenCF
offers a platform to submit precompiled jobs to the computing servers. However, if we
would program our algorithm we could do it with an scripting language like Python,
and submit this script with PyOpenCF. The main disadvantage is the bad performance
in scripting languages, but according to [3], an application can be written in Python
but the hard computational tasks can be executed in tunned libraries to each HPC
system, without significant penalty in performance. In this sense, we will introduce
PyACTS concepts in the next section.

3 PyACTS

The Advanced CompuTational Software (ACTS) Collection [4] is a set of software tools
for computational sciences that helps programmers write high performance scientific
codes for high-end computers. ACTS tools are mostly libraries (some are C libraries,
some C++ class libraries, and some are Fortran libraries). They are primarily designed
to run on distributed memory parallel computers. Portability and performance were
both considerations in their design and implementation. The ACTS tools use the
standard Message Passing Interface (MPI) [10] for communication. The computational
model of ScaLAPACK, BLACS and PBLAS (included in the ACTS tools) consists of a
one or two-dimensional process grid, where each process stores pieces of matrices and
vectors. The prime beneficiaries of ACTS tools are developers of parallel engineering
and scientific applications. Many areas of scientific computing are covered by ACTS
tools, and can potentially make use of them. Nevertheless, parallel software can be
more complex than serial software and significantly more expensive to implement.

In this context, we developed PyACTS as a set of modules which can be imported
from the Python interpreter to enlarge the number of users that can make use of
the routines included in ACTS. PyBLACS, PyPBLAS and PyScaLAPACK were our
first steps to achieve our goal: an easy and integrated set of tools that can be used
from Python but offers all the performance of the libraries in the original development
environment (Fortran and C).

In Figure 3, we present a script used to test the interface to the PBLAS level 3
routine (pvgemm, αAB + βC, α, β ∈ IR, A,B,C ∈ IRn×n). This example reads the
data from three text files and stores them in PyACTS Arrays. Note that this reading
is completed by a single process (usually, [0,0] in the process grid) and it sends the data
to the rest of the processes using PyBLACS to obtain a two-dimensional block-cyclic
distribution. After executing Txt2PyACTS in Figure 3, the variables a, b and c are
PyACTS Arrays and can be used as parameters in PyACTS routines. Once the matrix
multiplication is done, the routine PyACTS2Text collects the (distributed) results and
writes them into the text file. It is interesting to compare this script of with a Fortran or
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from PyACTS import *

import PyACTS.PyPBLAS as PyPBLAS

ACTS_lib=PyACTS.ScaLAPACK_ID # ScaLAPACK ID

PyACTS.gridinit() # Grid initialization

alpha=Scal2PyACTS(1.2,ACTS_lib) # Distribute scalars

beta=Scal2PyACTS(2,ACTS_lib)

a=Txt2PyACTS("data_a.txt",ACTS_lib) # Read Text files and

b=Txt2PyACTS("data_b.txt",ACTS_lib) # store in PyACTS Arrays

c=Txt2PyACTS("data_c.txt",ACTS_lib)

result=PyPBLAS.pvgemm(alpha,a,b,beta,c) # Call routine

PyACTS2Text("data_result.txt",result) # Write results

PyACTS.gridexit()

Figure 3: Example of PyPBLAS: pvgemm

C implementation with same functionality. The implementation with python is usually
more readable and easily, allowing faster development. Performance tests demonstrated
that the Python interfaces do not involve a significant performance penalty. In sum,
PyACTS is an intuitive, handy, and powerful tool to access ACTS tools from Python
in a parallel setting.

4 A well-matched couple

We present an evolution of both tools (and PyACTS PyOpenCF) which is precisely
the union and interaction to achieve high performance platform for cloud computing
philosophy. For this purpose, a new service called PyOpenCF&PyACTS Web Client
was added to the PyACTS’ distribution web (http://pyacts.umh.es). Thus, a user
can log into the portal and submit their papers through the web browser, without
need for compilation or libraries linking. The same code can be executed by Python
different computing platforms without being rewritten. The work environment OpenCF
management control processes and their results in the various computer servers as
explained in section 2. The innovation introduced by the union of both tools are the
programming flexibility and power in performance we achieved by making use of ACTS
library routines from the Python language. In Figure 4, the pyacts.umh.es web client
is shown.

The features of the application that has been developed in this version are the
following:

• List of servers: the list of registered computing servers in the system, including
server name and the address on the same.

• List of scripts: shows the user a list of previously existing scripts or stored on a
remote system.
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Figure 4: PyACTS-PyOpenCF Web Client

• Creation of new scripts / applications: allows user to define their own algorithms
and programs using the Python scripting language.

• Launch a job from a script: From a Python uploaded code , user can launch a
job selecting a computing server.

• Job Status: You can view the status of a particular job. It shows both the ID of
the job, as the status in the remote server.

• Download results: if the job produces results as a file, we could it at any time by
downloading from the web service.

• Deleting scripts: You can remove applications you no longer need to use.

In short, it seeks to achieve a more comfortable computing services work without
worrying about the implementation of where or how the computation is done. Com-
puting as a service is achieved with this architecture.

5 Conclusions

In this work we have presented a new web service which provides a framework to
execute user applications in high performance servers in a comfortable and simple way.
Python example has demonstrated that PyACTS is a user friendly interface that hides
the challenges of parallel programming from non professional users, and PyOpenCF
has illustrated a integrated framework for managing jobs in a set of remote servers.
Both architectures allows users writing and submitting their own codes in available
computing servers without worrying about compiling, linking, queue management, etc.
The proposed web client is available for scientific community at pyacts.umh.es.
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Abstract

Neville elimination is a direct method for the resolution of linear systems of
equations alternative to Gaussian elimination, with advantages for some classes
of matrices and in the context of pivoting strategies for parallel implementations.
The growth factor is an indicator of the numerical stability of an algorithm. In the
literature bounds for the growth factor corresponding to Neville elimination with
some pivoting strategies have appeared. In this work we determine all the matrices
such that the minimal upper bound of the growth factor corresponding to Neville
elimination with those pivoting strategies is reached.

Key words: Neville elimination, pivoting strategies, maximal growth factor
MSC 2000: 65F05, 65G05

1 Introduction

The usual direct method to solve a linear system of equations Ax = b is Gaussian elim-
ination (GE). Neville elimination (NE) is an alternative procedure to GE to transform
a square matrix A into an upper triangular matrix U , and it has advantages for some
classes of matrices and in the context of pivoting strategies for parallel implementa-
tions. NE makes zeros in a column of the matrix A by adding to each row a multiple of
the previous one. Here we only give a brief description of this procedure (for a detailed
and formal introduction we refer to [11]). If A ∈ Rn×n, NE consists of at most n − 1
steps:

A = A(1) → Ã(1) → A(2) → Ã(2) → · · · → A(n) = Ã(n) = U,

where U is an upper triangular matrix.
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On the one hand, Ã(t) can be obtained from the matrix A(t) through an adequate
pivoting strategy, so that the rows with a zero entry in column t are the final rows and

ã
(t)
it = 0, i ≥ t ⇒ ã

(t)
ht = 0, ∀h ≥ i.

For example, partial pivoting for NE was already introduced in [12]. On the other hand,
A(t+1) is obtained from Ã(t) making zeros in the column t below the main diagonal by
adding an adequate multiple of the ith row to the (i+ 1)th for i = n− 1, n− 2, . . . , t.
If A is nonsingular, the matrix A(t) has zeros below its main diagonal in the first
t− 1 columns. It has been proved that this process is very useful with totally positive
matrices, sign-regular matrices and other related types of matrices (see [10] and [11]).

A real matrix is called totally positive (TP) if all its minors are nonnegative. TP
matrices arise in a natural way in many areas of Mathematics, Statistics, Economics,
etc. (see [7]). In particular, their application to Approximation Theory and Computer
Aided Geometric Design (CAGD) is of great interest. For example, coefficient matrices
of interpolation or least square problems with a lot of representations in CAGD (the
Bernstein basis, the B-spline basis, etc.) are TP. Some recent applications of such kind
of matrices to CAGD can be found in [16] and [17]. For applications of TP matrices
to other fields see [10]. In [9], [11] and [13] it has been proved that NE is a very useful
alternative to GE when working with TP matrices.

In addition, there are some studies that prove the high performance computing of
NE for any nonsingular matrix (see [6]). In [5] the backward error of NE has also been
analyzed. In [1] we give a sufficient condition that ensures the convergence of iterative
refinement using NE for a system Ax = b with A any nonsingular matrix in Rn×n,
and then we apply it to the case where A is TP. Other applications and a study of the
stability have been presented in [2].

The growth factor is an indicator of the numerical stability of an algorithm. The
growth factor for different pivoting strategies has been studied in [8], [14], [15], [18]
and [4] for both Gaussian and Neville elimination. In addition, in [3] the authors have
presented some examples where NE outperforms GE, showing the relation of this fact
with the growth factor.

2 Matrices with maximal growth factor for Neville elim-
ination

In the backward error analysis of GE with partial pivoting or complete pivoting on a
matrix A performed by Wilkinson (see for example page 108 of [19]) it was shown the
influence of the growth factor defined by

ρn(A) :=
maxi,j,k |a

(k)
ij |

maxi,j |aij |

where a(k)
ij occurring during the elimination process.
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The growth factor corresponding to GE with partial pivoting for a matrix A is
bounded above by 2n−1. In [15] N. J. Higham and D. J. Higham determined all the
matrices for which that bound is reached.

The backward error analysis of NE was performed in [5]. Again the growth factor
plays an important role in the numerical stability of NE. The growth factor correspond-
ing to NE with a row pivoting strategy such that the magnitude of the multipliers are
less than or equal to one for a matrix A is bounded above by 2n−1. For clarity we will
denote this growth factor by ρr

n(A). In this work we determine all the matrices for
which that bound is reached:

Theorem 1 All real n× n matrices A for which ρr
n(A) = 2n−1 are of the form

A = DB

[
T θ d
0

]
where D = diag(±1), B = (bij)1≤i,j≤n is the lower triangular matrix given by

bij =

{
0, if i < j,(

i−1
j−1

)
, if i ≥ j,

T is a nonsingular upper triangular matrix of order n− 1, d is the vector given by

(1,−2, 4, . . . , (−2)n−1)t,

and θ is a scalar such that θ = max1≤i,j≤n |aij |.
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Abstract

This paper analyses the performance of several versions of a block parallel al-
gorithm in order to apply Neville elimination in a distributed memory parallel
computer. Neville elimination is an alternative procedure to Gauss elimination to
transform a square matrix A into an upper triangular one. This analysis must take
into account the algorithm behaviour as far as execution time, efficiency/speedup
and scalability are concerned. Special attention has been paid to the study of the
scalability of the algorithms trying to establish the relationship existing between
the size of the block and the performance obtained in this metric. It is impor-
tant to emphasize the high efficiency achieved for the studied cases. Moreover,
the experimental results confirm the theoretical approximation obtaining a tool of
analysis of high predicting ability.

Key words: Neville elimination, block parallel algorithms, execution time, effi-
ciency, scalability

1 Introduction

This paper analyses the performance of several versions of a block parallel algorithm in
order to apply Neville elimination to a matrix in a parallel computer using a message
passing paradigm and identifying the values of the parameters that are necessary to
obtain an optimal performance.

With regard to Neville elimination, it is an alternative procedure to that of Gauss
to transform a square matrix A into an upper triangular one. Neville elimination makes
zeros on an A column adding a multiple of the previous row to each row (for a detailed
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and formal introduction, we refer to [7]). This strategy has been proved to be specially
useful when using certain types of matrices as is the case of those which are totally
positive or sign-regular matrices (see [1] and [6]).

A real matrix is called totally positive if all its minors are non-negative. It is
possible to come across this sort of matrices in many different branches of science such
as Mathematics, Statistics, Economy (see [6]), or Computer Aided Geometric Design
(see [12] and [11]). According to [9], [5], [8] and [7], Neville elimination is considered
to be an interesting alternative to Gauss elimination for certain types of research.
Furthermore, there are other works (see [2], [3] and [4]) that show the advantages of
the foresaid procedure in the field of High Performance Computing.

In the developing of the parallel algorithms to solve Numeric Linear Algebra prob-
lems, the block-organization seems to be the most efficient one in order to get the
highest performance in current machines when dealing both with the good usage of
the memory hierarchy of shared memory machines and with the harnessing of the ex-
plicit parallelism of those distributed memory ones. Thanks to this organization both
efficient and scalable algorithms are usually obtained. Well-known subroutines such
as Lapack and ScaLapack use the block organization as their main algorithm strategy
design.

In our work, we propose an organization of the block Neville elimination algorithm
for computers with the message passing model and we carry out a general analysis
based on upper bounds for the three metrics: execution time, efficiency/speedup and
scalability. We will concentrate on the most common block distributions and on two dif-
ferent representative machines of the message passing model: a network of workstations
and a multicomputer. Special attention has been paid to the study of the scalability
of the algorithms trying to establish the relationship existing between the size of the
block and the performance obtained in this metric. It should be noted that previous
works (see [2], [3] and [4]) have only addressed the scalability for some particular cases.
However, in this paper we analyze the general cases obtaining general conclusions.

In the rest of this paper we briefly review some of the aspects that will be considered:
the performance model (Section 2), the block parallel algorithm (Section 3) and a
reduced set of experiments obtained (Section 4).

2 Performance model

In multicomputers, the physical environment used to share this information is the inter-
connection network, while the logical paradigm is, in general, so-called Message Passing.
In message passing the information moves from its origin to its destination establishing
communications in which the speakers cooperate actively. In our experiments we have
used this kind of paradigm.

The evaluation of a parallel algorithm requires a minimum study of the character-
istics of the systems and a theoretical model that could predict its behaviour. Several
models have been already proposed and they keep becoming more complex and precise
as well as having a more complex application. Together with several authors, this paper
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has adopted a model based on the compromise between the precision of the predictions
and their simplicity of usage (see [10]).

3 Block parallel algorithm

In order to handle a matrix in parallel, we must divide it in such a way that the
partitions can be assigned to the different processors. The distribution of the matrix
data affects the performance of the parallel system as explained in the following sections.
Therefore, determining the best distribution for each algorithm becomes a relevant
issue. This section studies a type of generic partition where the matrix A = (aij)1≤i,j≤n

is divided into n0 × n1 submatrices A = (Aij)1≤i≤n0,1≤j≤n1 of m0 ×m1 dimension:

A =




A11 A12 · · · A1,n1

A21 A22 · · · A2,n1

...
...

...
...

An0,1 An0,2 · · · An0,n1




,

where n0 = n/m0 and n1 = n/m1. We can assume that n is divisible by m0 and m1.
Let us consider a rectangular mesh of p0×p1 processors where the processor in row

s and column t is denoted as Pst, with 1 ≤ s ≤ p0 and 1 ≤ t ≤ p1. The submatrices
will be distributed in a cyclical way among the processors so that each processor will
contain different non-adjacent blocks.

The number of submatrices assigned to each processor is the same: h0 × h1 where
h0 and h1 are obtained in the following way:

h0 =
n

m0 p0
and h1 =

n

m1 p1
.

Let us study the parallel algorithm performance in a jth stage. In this iteration
the variable xj must be removed. Hence, it is necessary to nullify the elements anj ,
an−1,j , . . . , aj+1,j . So that, the following steps must be accomplished:

1. Each active processor Pst will send the aik elements, with i, k ≥ j, of the last row of
each of its submatrices to the immediately inferior processor; that is: Ps+1,t. The
processors of the last row of the processors mesh will send the foresaid elements
to the corresponding processors of row 1.

2. Those processors containing aij elements, with i > j, of matrix A will be the
ones in charge of calculating the multipliers of the j stage. Let q be the column
of the mesh of processors where these processors are placed then the operative
processors Psq, with 1 ≤ s ≤ p0, will calculate these multipliers.

3. The forementioned processors will communicate the calculated multipliers to the
active processors placed in the same row of the mesh of processors. Therefore,
the broadcast will take place from each active processor Psq, with 1 ≤ s ≤ p0, to
the active processors Psr with 1 ≤ r ≤ p1.
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Figure 1: IBM SP2 (left) and network of PCs (right) scaled efficiency

4. Each active processor will update all the elements of matrix A which correspond
to the rows and columns with index larger than j.

Taking into account the mentioned steps, we analyze the execution time of the
foresaid parallel algorithm in detail. Next we will discuss three particular cases of data
partition. Firstly, we will deal with a bidimensional partition in which the coefficient
matrix of the system is divided into square submatrices (SD). As far as the classic
unidimensional partitions are concerned, we will study those in which the data matrix
is divided into complete consecutive rows (RRD) or columns (RCD). In the three cases,
the submatrices are cyclically distributed among the processors.

4 Experimental results

Once finished the theoretical studies, we will compare the theoretical model with the
empirical values as far as the efficiency and the scalability are concerned.

The experimental results showed in this section have been obtained from two vari-
ants of the distributed memory model: an IBM SP2, subcategory MPP, and a network
of PCs (a cluster subcategory). The programming paradigm used for the communi-
cations is message passing through the implementation MPICH 1.2.7 of the standard
MPI 1.2.

As far as the ability of our first distribution (SD) to keep a constant efficiency is
concerned, figure 1 shows that when increasing n and W (the number of basic operations
required by the fastest-known sequential algorithm to solve the foresaid problem in
one processor) equally the efficiency is slightly weakened in the IBM SP2 while this
weakening is stronger in the network of PCs. For instance, in the IBM SP2 the efficiency
ranges from 0.91 for (n, p) = (1210, 2) to 0.77 for n = 3841 and p = 64. Thus, there
has been a 0.14 loss of efficiency. The efficiency loss is 0.24 in the network of PCs as it
drops from 0.81 to 0.57.

Figure 1 shows the evolution of the scaled efficiency as the number of processors
and W increase equally in the second distribution (RRD). It is obvious that efficiency
does not remain constant being its degradation lower in the IBM SP2 than in the
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network of PCs. Nevertheless, as many other authors have already pointed out, it may
be considered to be almost scalable provided that its scaled efficiency stays higher than
0 (EE(W,p) > 0) (see [13]).

Figure 1 shows the scaled efficiency that corresponds to the RCD. We can also
observe that the efficiency is reduced to 0.60 and to 0.27 in the IBM SP2 and the
network of PCs respectively. In both environments the drop of the efficiency is slightly
sharper than in the other distributions.

5 Conclusions

The capability of the algorithms has been analysed by using three different metrics:
execution time, efficiency/speedup and scalability.

As far as execution time is concerned, the SD and RRD often obtain good results.
Nevertheless, in dealing with this metric, the best distribution is the column-block
oriented one since its communication time does not depend on block size.

In RCD the size of the block can be lowered in order to reduce the calculation time
without increasing the communication time. However, for other distributions, we must
get an optimal device in the size of the block that will not damage the communication
time.

If the focus of the analysis were the efficiency, conclusions would be similar to the
forementioned in relation to execution time.

It is also important to point out that the best distribution is the one based on the
SD, as far as scalability is concerned. In this case, the advantage of the RCD disappears
since the size of the block does not influence the scalability.
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The paper proposes a numerical method to simulate periodic travelling-wave
solutions of some nonlinear dispersive wave equations. The construction of the
method is based on an efficient computation of the elements that characterize
these solutions: the initial profile and the velocity of the wave.
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1 Introduction

The purpose of the paper is to introduce a numerical method to simulate travelling-
wave solutions of the periodic problem for nonlinear dispersive wave equations of the
general form

ut + f(u)x −Mux = 0, x ∈ (−L,L), t > 0. (1)

where u = u(x, t) is a 2L-periodic, real-valued function of the two real independent
variables x, t; f is a smooth, real-valued function of u, representing a nonlinear term
andM is a linear, nonnegative, formally self-adjoint operator, characterized as a Fourier
multiplier operator by its symbol

M̂v(ξ) = α(ξ)v̂(ξ),

wherêdenotes Fourier transform. Equations of the form (1) appear in many models
concerning the propagation of small-amplitude, nonlinear, dispersive long waves, see
e. g. [1, 2] and references therein as a modest representation of the literature on
(1). Important cases are included, such as the generalized KdV equation ( f(s) =
sp/p, p ≥ 2, M = −∂xx), the generalized Benjamin-Ono equation (f(s) = sp/p, p ≥
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2, M = −H∂x, where H stands for the Hilbert transform) or the Benjamin equation
(f(s) = s2, M = −γ1H∂x − γ2∂xx, for some parameters γ1, γ2).

Periodic travelling-wave solutions of (1) are periodic functions of the form ϕ(x−ct),
for c > 0, representing the velocity of the wave, and they play a relevant role in the
models [12]. In general, explicit expressions of these solutions cannot be obtained by
analytical techniques and a numerical treatment is necessary. The numerical method
we describe here is focused on the elements that characterize these solutions. First we
need to implement an efficient computation of the profile ϕ, combining a suitable spatial
discretization with an iterative procedure. On the other hand, a correct simulation of
the velocity determines the selection of the time integrator.

The paper is structured as follows: in Section 2 we make some hypotheses on (1)
and remind some analytical properties of the equations under study that are relevant
for our work. The numerical method is treated in Section 3. It includes a description
of the spatial discretization, the iterative technique to approximate the initial profiles
and the time integration. Some numerical illustrations are shown in Section 4.

2 Preliminaries

Several hypotheses on the nonlinear term f and the symbol α are assumed.

(H1) f is a polynomial of the form f(z) = apz
p + · · ·+ a2z

2 with ap > 0, aj ≥ 0, j =
2, . . . , p− 1, for some p ≥ 2.

(H2) α : R → R is continuous, even, nonnegative with α(0) = 0.

(H3) α is monotone increasing on [0,∞) and there exists m > (p − 1)/p such that
lim infξ→∞α(ξ)/|ξ|m > 0.

We will consider (1) defined in the space X = Hs
per of periodic, Hs functions with

period 2L, for some s ≥ 1/2 and with the usual norm

||u||s =
(∫ ∞

−∞
(1 + |ξ|2)s|û(ξ)|2dξ

)1/2

.

Hypotheses (H1)-(H3) are assumed to guarantee the existence of solutions of (1) [4, 7]
in X and they include the important cases cited above. For initial data in Hs, the
following quantities

I(u) =

∫ L

−L
u(x, t)dx, (2)

V (u) =
1

2

∫ L

−L
u2(x, t)dx, (3)

H(u) =

∫ L

−L

(
1

2
(u(x, t)Mu(x, t))− F (u(x, t))

)
dx, (4)
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where F ′ = f, F (0) = 0, are invariants by the solutions of (1). The quantity (4) is the
Hamiltonian of the problem, that can be written as

ut = J δH(u), u ∈ Hs,

where δ denotes variational derivative and J = ∂x.

A second relevant property we mention here is the existence of periodic travelling-
wave solutions. They are of the form u(x, t) = ϕ(x − ct) where c > 0 represents the
wave velocity and the profile ϕ = ϕc is 2L-periodic and satisfies the equation

J (δH(ϕc) + cδV (ϕc)) = 0,

that can be written as

δH(ϕc) + cδV (ϕc) = AδI(ϕc), (5)

that is

Mϕc − f(ϕc) + cϕc = A, (6)

where A is an integration constant. We also note that the one-parameter group of
translations in space is a symmetry group of (6). This defines an orbit of solutions
{ϕc(x− x0) : x0 ∈ R} whose elements remain in the same level set {φ/V (φ) = V (ϕc)}.
The parameter x0 would play the role of the phase of the wave.

For further purposes (see Section 3) we will make the following assumptions on (6)
[14, 3]:

(H4) f(ϕc(x)) ≥ 0, x ∈ R.

(H5) The linearized operator of (6) at ϕc,

Lc = c+M − f ′(ϕc),

has a unique, negative, simple eigenvalue, the zero eigenvalue is simple and the
rest of its spectrum is bounded away from zero.

3 Description of the numerical method

We shall describe our proposal to simulate periodic travelling-wave solutions of (1),
whose analytical form is, in general, unknown. As mentioned above, the method is
focused on a suitable approximation to the elements that determine these solutions:
the profile ϕ and the velocity c.
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3.1 Spatial discretization

The nonlocal term in (1) makes the spectral-type methods a good selection for the
spatial discretization. Here we approximate the solutions of the 2L-periodic problem
of (1) by a Fourier pseudospectral discretization. First we make the description for the
2π-periodic problem and then we adapt the formulation for any interval of periodicity
(−L,L) [5, 6, 13]. For an even number N of nodes xj = −π + jh, h = 2π/N, j ∈ Z,
we consider the space Sh of periodic functions Z = {Zj}j∈Z defined on the grid, with
Zj+N = Zj . For each Z ∈ Sh, the discrete Fourier coefficients

Ẑp =
1

N

′′∑
0≤j≤N

Zje
−ipjh, −N

2
≤ p ≤ N

2
, (7)

provide the information of Z in the Fourier space. In (7), the double prime in the sum
denotes that the first and last terms are divided by two. The reconstruction of Z from
the Fourier coefficients is carried out by evaluating, at the grid points, the trigonometric
interpolation polynomial

Zh(x) =
′′∑

−N/2≤p≤N/2

Ẑpe
ipx, (8)

in such a way that Zj = Zh(xj).
On the other hand, the pseudospectral differentiation operator on Z is obtained by

differentiating (8) with respect to x and evaluating at the xj :

(DZ)j =
′′∑

−N/2≤p≤N/2

Ẑp(ip)e
ipjh, j ∈ Z.

In terms of the discrete Fourier coefficients, we have

(̂DZ)p = (ip)Ẑp, −N/2 ≤ p ≤ N/2,

which means that, in the Fourier space, the operator D diagonalizes and differentiation
is represented by the product with the diagonal matrix with elements ip,−N/2 ≤ p ≤
N/2.

With the Fourier pseudospectral method based on the xj , the semidiscrete approx-
imation to the 2π-periodic problem of (1) is a map U : [0,∞) → Sh satisfying

dUj

dt
(t) + (D(f(U)))j(t) +M(DU)j(t) = 0, (9)

Uj(0) = u(xj , 0), 0 ≤ j ≤ N − 1,

where

• U(t) = (U0(t), . . . , UN−1(t)) and Uj(t) is an approximation to u(xj , t), j =
0, . . . , N − 1.
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• The expression f(U(t)) denotes (f(U0(t)), . . . , f(UN−1(t))).

Observe that if Ûp(t) is the p-th discrete Fourier component of U(t), the system (9)
can be described in a more suitable form

d

dt
Ûp(t) = (ip)(α(p)Ûp(t) + f̂(U)p(t)) (10)

Ûp(0) = ûp(0),

where ûp(0) denotes the p-th discrete Fourier component of (u(x0, 0), . . . , u(xN−1, 0)).
System (9) is then implemented in the form (10). This system is stiff, which will
influence the choice of the time integrator. On the other hand, the computation of the
nonlinear term can be made by minimizing the generation of aliasing errors [5]. It is
also well known the properties of convergence of the pseudospectral method, depending
on the smoothness of the solution [13]. Finally, the connection with the 2L-periodic
problem of (10) requires to transform the spatial variable in the form X = π(x+L)/L
and to write (1) with the corresponding scaling. In particular, the pseudospectral
differentiation operator must be multiplied by the factor π/L.

3.2 Generation of the initial profile

The combination of the pseudospectral spatial discretization with the adaptation of the
Petviashvili’s method to compute travelling-wave solutions establishes a technique to
generate the initial profile.

Petviashvili’s method [15] was originally implemented to compute solitary waves
of the initial value problem for the KPI equation, and its application to stationary
and solitary-wave solutions of other problems has also been proposed (see e. g. [11]
and references therein). The method can be adapted to the periodic case as follows.
Denoting by ϕ̂(k) the k-th Fourier coefficient of ϕ, equation (6) generates a system for
the Fourier coefficients

(c+ α(k))ϕ̂(k)− f̂(ϕ)(k) = AI(k), k ∈ Z,

where I(k) denotes the k-th Fourier coefficient of the function u = 1. Then the Fourier
coefficients of ϕ satisfy

ϕ̂(k) =
f̂(ϕ)(k) +AI(k)

(c+ α(k))
, k ∈ Z. (11)

Note that if we multiply (6) by ϕ and integrate in (−L,L) then

K = K(ϕ) =

∫ L
−L ϕ((c+M)ϕ)dx∫ L
−L ϕ(A+ f(ϕ))dx

= 1. (12)

For the numerical approximation to the solution of (11), the classical fixed point
iteration usually diverges. The adaptation of the Petviashvili’s method would introduce
a modified iterative scheme with a stabilizing factor

ϕ̂(k)[ν+1] = K(ϕ[ν])γ
f̂(ϕ[ν])(k) +AI(k)

(c+ α(k))
, k ∈ Z, ν = 0, 1, . . . , (13)
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where ϕ̂(k)[ν] stands for the ν-th iteration and γ is a free parameter chosen to make (13)
be convergent. In the case of the initial value problems and solitary wave solutions, local
convergence is obtained under the assumptions (H4)-(H5) and for γ ∈ (1, (p+1)/(p−1))
[14]. Furthermore, the fastest rate of convergence occurs for γ∗ = p/(p− 1).

Having in mind the spatial discretization described in the previous subsection, the
discrete version of the iterative procedure (13) can be written in terms of the discrete
Fourier coefficients of the pseudospectral approximation to the profile ϕ:

Ẑ [ν+1]
p = K̃(Z [ν])γ

f̂(Z [ν])p +AI(p)
(c+ α(p))

, −N/2 ≤ p ≤ N/2, ν = 0, 1, . . . (14)

The stabilizing factor K̃(Z) is obtained as follows. From the Parseval identity, (12) can
be written in terms of the Fourier coefficients as

K(ϕ) =

∑∞
k=−∞(c+ α(k))|ϕ̂(k)|2∑∞

k=−∞(f̂(ϕ)(k) +AI(k))ϕ̂(k)
.

Then, for Z ∈ Sh, we define

K̃(Z) =

∑N/2
p=−N/2(c+ α(p))|Ẑp|2∑N/2

p=−N/2(f̂(Z)p +AI(p))Ẑp

. (15)

3.3 Time integration

The choice of the time integrator is determined by the search of a good simulation of
the velocity parameter of the periodic travelling wave. Classical discretizations of (1)
always include some properties of preservation of discrete versions of the invariants of
the problem in the features of the numerical method. Recently, some results ([3, 8]
and references therein) show that a better simulation of the parameters of travelling
wave solutions is related to the preservation, through the numerical integration, of some
invariants of the problem. Explicitly, the analysis of the time propagation of the error
shows that this is affected by secular components, associated to the parameters of the
wave. These secular terms behave better in those methods that preserve discretized
versions of the invariants of the problem, providing a more suitable, in a qualitative
sense, simulation of the travelling wave. In [8] this was studied for one of the equations
included in (1), the KdV equation, and we conjecture that similar conclusions for the
cases covered by (1), under the hypotheses (H1)-(H5), also hold.

Accordingly to this, it seems that preservation of (2), (3) and (4) should be a desir-
able property for a time integrator in this context. By considering the pseudospectral
spatial discretization, we introduce the discrete versions of the invariants

Ĩ(Z) = h

N−1∑
j=0

Zj , (16)
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Ṽ (Z) =
h

2

N−1∑
j=0

Z2
j , (17)

H̃(Z) = h

N−1∑
j=0

1

2
(Zj(MZ)j)− F (Z)j , (18)

for Z ∈ Sh.
It is also necessary to pay attention to other difficulties of the discretization. Then

in this case our strategy will be to consider the problem of stiffness of (10) as a first
selection criterion of the time integrator to be used, and then studying the preservation
of the invariants. To this end, we first choose the simply diagonally implicit Runge-
Kutta (SDIRK) method of order three and tableau

3+
√
3

6
3+

√
3

6 0
3−

√
3

6
−
√
3

3
3+

√
3

6

1
2

1
2

(19)

The method has a good computational behaviour in the implicit systems for the
intermediate stages to be solved at each step. However, (19) does not preserve discrete
versions of the invariants (3) and (4). The preservation of (17), (18) will be forced
by using the projection technique (see [10, 9]). We can make a brief description of
the method in the case of the preservation of Ṽ (the case of H̃ would be similar).
Assume that V0 is the value of (3) at the initial profile, and let Un be the numerical
approximation to the solution u(t) of (1) at some time discrete value tn. Then the
following approximation Un+1 is carried out in two steps:

(i) Compute Ũn+1 by using (19).

(ii) Project the value Ũn+1 onto the manifold

M0 = {Z ∈ Sh/Ṽ (Z) = V0}

The second step is done by solving a constrained minimization problem, see [10, 9]
for details.

Note that the first quantity (16) is not included since it is linear and therefore it is
preserved by almost all methods used in practice [10]. On the other hand, condition (5)
establishes a relation between the variational derivatives of the invariants (2), (3) and
(4) at the initial profile. When simulating periodic travelling-wave solutions, this has
two consequences. The first one is that we cannot implement a projection to preserve
the three quantities at the same time. The second one is that a better performance
is obtained when the method preserves two of the quantities, but there is no priority
in the selection of the invariants to be conserved (see e. g. [8] for the details). When
simulating perturbations of these periodic travelling waves or other periodic solutions
of (1), then (5) does not hold and the situation may be different.
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4 Numerical experiments

In order to illustrate the numerical performance of the method previously described, in
this section we will consider the periodic Benjamin-Ono equation as the model problem.
This equation is the case of (1) corresponding to f(u) = u2/2 and M = −H∂x where
H is the periodic Hilbert transform

Hu(x) = PV
1

2L

∫ L

−L
cot

( π

2L
y
)
u(x− y)dy,

which has the symbol α(k) = |k|. Since periodic travelling-wave solutions of this
problem are known, this will serve us to illustrate the behaviour of the method. We
will consider the solution (see e. g. [16])

uL(x, t) =
2cδ2

1−
√
1− δ2 cos(cδ(x− ct− x0))

, x ∈ (−L,L), t > 0, (20)

with c > 0, δ = π/(cL), x0 ∈ R. The corresponding profile ϕL(x) = u(x, 0) satisfies
(6) with A = 0. In the next sections, we will take L = 16, c = 1 and x0 = 0. The
numerical experiments, according to the main goals of the method (explained above),
are focused on the computation of the profile and the simulation of the parameters.

4.1 Computation of the profile

As far as the first question is concerned, Table 1 shows, for two different starting
iterations, the error in Euclidean norm between the exact profile at the points xj and
the corresponding numerical approximation given by the iteration (14), controlled by
a maximum number of iterations and a tolerance for the relative error between two
consecutive iterations. The starting profiles are small perturbations of the exact one,

in the form Zj = ϕL(xj) + ϵe−x2
j , with ϵ = 1E − 03 for the second column (ERROR1)

and ϵ = 1E−01 for the third column (ERROR2). The experiments are performed with
γ = 2, which is optimal for the iteration in the case of the initial value problem [14].
The results show the convergence of the iteration, although the third column reveals
its local character, since for an starting value which is not so close to the exact profile,
the convergence is slower. On the other hand, Figure 1 (left) shows the behaviour of

Iteration ERROR1 ERROR2

5 9.8374E-07 9.5179E-03
6 7.3680E-07 7.1284E-03
7 5.5415E-07 5.3611E-03
8 4.1783E-07 4.0423E-03

Table 1: Errors of the iterative method (14). Starting iteration Zj = ϕL(xj) + ϵe−x2
j

with ϵ = 1E − 03 (ERROR1) and ϵ = 1E − 01 (ERROR2).
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the error in the stabilizing factor (15) as a function of the number of iterations, for the
values γ = 1.1, 2, 2.9. In Figure 1 (right), we take γ = 0.8, 3.1. Both are obtained with
the initial data used in the second column of Table 1. We have already mentioned that,
in order to assure the local convergence, for the corresponding iteration in the initial
value problem, γ must be in the range (1, (p+1)/(p− 1)) (p = 2 in our case) [14]. The
numerical computations performed here suggest that this also happens in the case of
the periodic problem. For values of γ out of this interval, the stabilizing factor do not
converge and the the iteration procedure diverges. This is observed in Figure 1 (right).
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Figure 1: Error in the computation of (15) against number of iterations. Left: γ = 2
(∗), γ = 2.9 (+), γ = 1.1 (△). Right: γ = 0.8 (∗), γ = 3.1 (△).

4.2 Numerical simulation of the parameters

In order to illustrate the numerical evolution of the velocity, we have simulated the
periodic problem with two time integrators: the method (19), denoted by SD, as an
example of a nonconservative method, and the scheme (19) combined with a projection
to preserve the quantities (16) and (17), denoted by CSD. A Hamiltonian preserving
method gives similar results and will not be shown here (see the remarks in the previous
section). We have to observe that, although SD preserves (16), the modification to force
the conservation of (17) gives a not I-preserving method, and then it is necessary to
use a projection involving both quantities.

We first measure the differences in a long time simulation between the two methods,
comparing the corresponding approximation with the exact solution (20). Figure 2
shows, in logarithmic scale, the evolution of the error, for different values of the time
step, up to a final time t = 103. Solid lines correspond to SD and broken lines to CSD.
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The slope of the lines show that, for the SD scheme, errors behave as t2, being the
growth only linear in the case of CSD. This reveals a better performance of the latter
for long time simulations.

The most harmful components of the error, considered as a function of time, seem
to be related to the parameters. Figure 3 shows, also in log-log scale, the evolution of
the error between the velocity of the numerical approximation and the exact one for
the same experiments as those of Figure 2. The computation of the numerical velocity
has been made in a standard way ([8] and references therein). Left figure corresponds
to SD and right figure to CSD. Note that, while the simulation of SD provides a
computation of the velocity that grows linearly with time with respect to the exact one,
the CSD method gives a constant in time approximation to the exact c, with no secular
perturbations. Note also that, due to the relation given in (20), the simulation of c will
affect the amplitude of the numerical wave. The experiments performed in this section
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Figure 2: Error vs time in log-log scale. Solid lines: SD. Dashed lines: CSD. The time
steps are ∆t = 1/80, 1/160, 1/320.

for the Benjamin-Ono equation, and the theory explained in [8] for the KdV equation,
suggest the following behaviour of the parameters of the numerical approximations to
periodic travelling-wave solutions of the general problem (1) under the conditions (H1)-
(H5). The numerical solution would contain a travelling wave profile U(x, tn, cn, x0,n)
with the main source of the error. The parameters cn and x0,n are perturbations of c
and x0 respectively, that evolve with time and depend on the integrator used. In the
general case, the dominant terms of x0,n contain quadratic in time perturbations of
the original phase, while the leading behaviour of cn, when comparing with c, is linear
in time. This would explain the performance of the SD method shown in Figures 2
and 3. This behaviour is improved when the method preserves discrete versions of the
quantity (2) and of one of the quantities (3) or (4). In this case, the leading term of
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the perturbation of c is constant in time and the numerical solution is affected by a
change of phase which grows linearly in time. This provides, in a qualitative sense, a
better simulation for long times. We have also made the same experiments as above
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Figure 3: Error in speed vs time in log-log scale. Left: SD with time steps ∆t =
1/80, 1/160, 1/320. Right: CSD with time steps ∆t = 1/80, 1/320.

but with an initial profile obtained after a convergent process using (14) for γ = 2 and
a perturbation of the exact profile as starting iteration. The numerical results in the
simulation where similar to those shown here, that were obtained with the exact profile
as initial data. This suggests to consider this combination of techniques as an efficient
way to approximate periodic travelling-wave solutions of (1) with unknown analytical
expression or to simulate perturbations of these waves.
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Abstract

The s-step methods were proposed by Chronopoulos to gain efficiency in par-
allel programming of iterative methods for linear systems. They converge for all
symmetric, nonsymmetric definite and some nonsymmetric indefinite coefficient
matrices. In this paper we introduce a s-step variant of a general orthogonaliza-
tion algorithm, we prove convergence and obtain error estimates. From this we
derive the well known s-step methods as particular cases, and some new others
to our knowledge. This provides a unified framework to derive and study s-step
methods. The new methods obtained are convergent for every nonsingular matrix.

Key words: Iterative methods; s-step; large linear systems; Krylov subespace;

parallel computation
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1 Introduction

In iterative method solvers for large linear systems most required computations are
vector-vector and matrix-vector operations. In the language of the basic linear alge-
bra subprograms (BLAS) [10], level 1 BLAS operations. On the other hand, BLAS 2
and BLAS 3 operations, based on blocks of submatrices, are much more efficient than
BLAS 1 operations on parallel computers with optimized BLAS kernels.

In order to improve the BLAS 2-3/BLAS 1 ratio, an alternative approach using
BLAS 3 operations in some iterative methods for linear systems was the s-step methods
proposed by Chronopoulos [5, 6]. The efficiency of these methods on parallel computers
is corroborated in [4].

The aim is to generalize these s-step variant to other Conjugated Gradient type
methods in order to obtain iterative algorithms for the resolution of large linear systems,
also valid even in the case of nonsymmetric and/or positive nondefinite matrices, with
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better performance in parallel programming. For such purpose we present a s-step
variant of the general orthogonalization algorithm that can be seen, for example, in
[9] and we obtain different s-step variants of this method by previously fixing two
parameter matrices.

2 Background

It is assumed throughout this paper that A is in general a real nonsingular matrix of
order n, b ∈ R

n a column vector and Mn×s (R) the set of real matrices of order n× s.
Denote the symmetric and the antisymmetric part of any matrix A by AS and AaS

respectively. If v1, . . . , vs are vectors, £{v1, . . . , vs} will stand for the vector subspace
they span. In an analogous way, if A1, . . . , As are real matrices, £{A1, . . . , As} will
stand for the vector subspace spanned by all columns of all matrices. The aim of the
iterative methods, object of this paper, is the numerical resolution of the linear system

Ax = b (1)

whose exact solution will be denoted by c.

We shall now recall some elementary key definitions. For each v ∈ R
n, v 6= 0 and

s ∈ N, s < n, we call the vector subspace £{v,Av,A2v, . . . , As−1v} a Krylov subspace
of order s, and we denote it by Ks(A, v).

If dim(Ks(A, v)) < s, and therefore the dimension of Ks(A, v) were not maximum,
the inverse of A would be a polynomial in A of degree deg(v)− 1 at most and we could
easily construct the exact solution of the system. We often refer to this circumstance
as lucky breakdown, which is highly unlikely in practice.

The s-step variant of the Conjugated Gradient algorithm (s-CG) was introduced
by Chronopoulos and Gear in [5]. Subsequently, in [6], Chronopoulos generalizes this
method for some types of positive not necessarily definite and not necessarily symmetric
matrices. More specifically, article [6] deals with the s-step variants of the Generalized

Conjugated Residual method (s-GCR), of the Minimal Residual (s-MR) and of the
Orthomin(m) (s-Orthomin(m)), and particularly for the case s-Orthomin(1) known by
s-Conjugate Residual method (s-CR).

The convergence of these methods in at most [n/s] iterates is proved in [5, 6]
for symmetric positive definite matrices in s-CG, and for symmetric, nonsymmetric
definite indefinite matrices with definite symmetric part in s-Orthomin(m) and s-GCR.
Therefore these methods are not convergent for every nonsingular matrix.

The s-step variants of the Double Orthogonal Series can be seen in [1], which
converge for every nonsingular matrix. Basing ourselves on them, we shall try to
construct valid methods for a general nonsingular matrix.
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3 s-step variant of the General Orthogonalization Algo-

rithm

If matrix A is neither necessarily symmetric nor positive definite, there is a more general
algorithm than the Conjugate Gradient method, namely the General Orthogonalization

Algorithm (GOA). In what follows we describe this method in a summarized way (see
[9], for example).

Let Ax = b be the linear system of order n with nonsingular matrix A. Let H, K be
square matrices of order n with positive definite symmetric part. We set N = AtHSA
and M = LtNL, where LLt is the Cholesky factorization of the symmetric part of
K, and then KS = LLt. For all r ∈ R

n let us define E(r) =< r,Hr >. From the

equality E(r) =< Htr, r >=< r,Hr > we get E(r) =< r, 12(H +Ht)r >=< r,HSr >.
Then E(r) must be a convex function. Next we write the General Orthogonalization
Algorithm (GOA), which is presented in [9]:

Algorithm 3.1 (GOA).

Let x0 ∈ R
n,

r0 = b−Ax0 = A(x− x0)
g0 = AtHSr0 = AtHSA(x− x0) = N(x− x0)
p0 = Kg0
For i = 0, 1, . . . until convergence Do:

αi =
< gi, pi >

< pi, Npi >
(2)

xi+1 = xi + αipi (3)

gi+1 = gi − αiNpi = AtHSri+1 (4)

βl
i+1 = −

< Kgi+1, Npl >

< pl, Npl >
, l = 0, . . . , i (5)

pi+1 = Kgi+1 +
i

∑

l=0

βl
i+1pl (6)

EndFor

We denote as vectors gi the general residues, and as vectors pi the general descent
directions. The GOA converges in at most n iterations is proved in [9]. Moreover, if we
denote by Ei = E(ri) =< ri, H

Sri >, then the following error estimate is also proved
in [9]:

Ei ≤ E0

(

1−
λmin(L

t(K−1)SL)

cond(M)

)i

(7)

where cond(M) is the condition number of M and λmin(L
t(K−1)SL) the minimum

eigenvalue of the matrix (Lt(K−1)SL). Since matrix K is symmetric:

Ei ≤ E0

(

cond(M)− 1

cond(M) + 1

)2i

. (8)
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Observe that, ifK is a symmetric matrix, then iv) is valid for every i 6= j and taking the
value of Npl from (4) to (5), we get βl

i+1 = 0 for all 0 ≤ l < i and the sum in (6) reduces
to the last term. In this case, storage of the preceding directions pl, l = 0, . . . , i − 1,
is not necessary to compute pi+1. On the contrary, if K is a nonsymmetric matrix,
and more than a few iterations are needed, then the storage requirements become
prohibitive. To circumvent this, the general Orthomin(m) method computes pi+1 by
N -orthogonalizing to the m preceding directions only, m being a parameter previously
chosen. Giving matrix H and K particular values in the General Orthogonalization
Algorithm, we obtain some known methods [9].

Fixed n, s ∈ N and M ∈ Mn×s (R), for v ∈ R
n we define ∆M (v) by the matrix with

column vectors v,Mv,M2v, . . . ,Ms−1v. Then Ks(KN,Kg0) is the vector subspace
generated by the column vectors of the matrix ∆KN (Kg0). We define the s-step variant
of the general orthogonalization algorithm (s-GOA):

Algorithm 3.2 (s-GOA).

Let x0 ∈ R
n

r0 = b−Ax0
g0 = AtHSr0
P0 = ∆KN (Kg0) = Q0

For i = 0, 1, 2, . . . until convergence Do

Wi = (Pi)
tNPi (9)

zi = (Pi)
tgi (10)

yi = (Wi)
−1zi (11)

xi+1 = xi + Piyi (12)

gi+1 = gi −NPiyi = AtHSri+1 (13)

Qi+1 = ∆KN (Kgi+1) (14)

For j = 0, . . . , i Do:

Bj
i+1

= −W−1
j (Pj)

tNQi+1 (15)

EndFor

Pi+1 = Qi+1 +

i
∑

j=0

PjB
j
i+1

(16)

EndFor

By induction on i we can obtain in (13) the following equation for the residual:

ri+1 = ri −APiyi. (17)

Comparing GOA (algorithm 3.1) with s-GOA (algorithm 3.2) it is easy to verify that
BLAS 1 and BLAS 2 become BLAS 2 and BLAS 3 operations, respectively.

We establish the following lemma relating direction and general residual vectors of
s-GOA:
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Lemma 3.1 It holds that:

(a) (Pi)
tNPj = 0 for all i 6= j.

(b) (Pj)
tgi = 0 for all i > j.

(c) (Pi)
tgi = (Qi)

tgi.

(d) (Qj)
tgi = 0 for all i > j.

(e) (Pi)
tNQj = 0 for all i > j.

(f) (Pi)
tNPi = (Pi)

tNQi.

(g) (Pi)
tgj = (Pi)

tg0 for all i ≥ j.

Proof.–

Part (a) is true since we have that (Pj)
tNPi = (Pj)

tNQi + (Pj)
tN

i−1
∑

k=0

PkB
k
i and

(Pj)
tNPjB

j
i = −(Pj)

tNQi. Therefore from equations (9) and (15) in Algorithm 3.2,
we can easily prove by induction on i > j that (Pj)

tNPi = 0. To prove (b), for a fixed
j ∈ N we obtain by induction on i that gi is orthogonal to Pj for all i > j:
If i = j+1, since gj+1 = gj−NPjyj conclude that gj+1 is orthogonal to Pj by definition
of yj , Wj and zj .
Now suppose that gi is orthogonal to Pj , with i > j + 1. Then, the orthogonality
between gi+1 and Pj is a consequence of the induction hypothesis and N -orthogonality
between Pi and Pj . The equality (c) follows from definition of Pi and (b). Since

Qj = Pj −

j−1
∑

k

PkB
k
j then (b) implies (d).Part (e) is also from Qj = Pj −

j−1
∑

k

PkB
k
j

and (a). The equality (f) follows from definition of Pi and (a). The identity gj =
gj−1 −NPj−1yj−1 and induction give (g). �

We denote by {p0, p1, . . . , p(i+1)s−1} the direction vectors computed in GOA and by
p1i , . . . , p

s
i the direction vectors of s-GOA in each iteration, and then Pi = (p1i |. . .| p

s
i ).

Now, we can establish the following lemma relating Krylov and direction subspaces
generated in both algorithms:

Lemma 3.2 Let i, s ∈ N be such that s(i + 1) ≤ n. Suppose that gi 6= 0. If

dimKs(i+1)(KN,Kg0) = s(i+ 1) then:

£{P0, . . . , Pi} =

i
⊕

j=0

Ks(KN,Kgj) = Ks(i+1)(KN,Kg0) = £{p0, p1, . . . , p(i+1)s−1},

(18)
where

⊕

denotes the direct sum of vectorial subspaces.

Moreover ri+1 minimizes E(r) =< ri, H
Sri > over x0 +£{P0, . . . , Pi}.
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Proof.–

It is obvious that

i
⊕

j=0

Ks(KN,Kgj) = £{Q0, . . . , Qi}. Then, the equality

£{P0, . . . , Pi} =

i
⊕

j=0

Ks(KN,Kgj) (19)

is proved by induction since P0 = Q0 and the definition of Pi, from which we can also

obtain that Qi = Pi −
i−1
∑

j=0

PjB
j
i .

The equality
i

⊕

j=0

Ks(KN,Kgj) = Ks(i+1)(KN,Kg0) (20)

is trivial for i = 0. The inclusion

i
⊕

j=0

Ks(KN,Kgj) ⊂ Ks(i+1)(KN,Kg0) (21)

is proved by induction since:

(KN)kKgi = (KN)k(Kgi−1 −KNPi−1yi−1). (22)

for k ∈ {0, . . . , s− 1} and, because of equality (19) and the induction hypothesis

(KN)k+1p1i−1, . . . , (KN)k+1psi−1 ∈ Ks(i+1)(KN,Kg0) (23)

so (k+1)+(s · i−1) = k+s · i ≤ s(i+1)−1, and then (KN)kKgi ∈ Ks(i+1)(KN,Kg0).
The other inclusion

Ks(i+1)(KN,Kg0) ⊂
i

⊕

j=0

Ks(KN,Kgj) (24)

is also proved by induction. Suppose that the inclusion verifies for i − 1, i > 1 fixed.
Since

gi = g0 +
is−1
∑

j=0

λjN(KN)jKg0, (25)

which stems from (19), (21) and by induction in gi = gi−1 − NPi−1yi−1, we have, for
k ∈ {0, . . . , s− 1}

(KN)kKgi = (KN)kKg0 +
is−1
∑

j=0

λj(KN)j+k+1Kg0. (26)

Now, if we prove that λs·i−1 6= 0 then Ks(i+1)(KN,Kg0) ⊂
i

⊕

j=0

Ks(KN,Kgj). But

λs·i−1 6= 0 because if λs·i−1 = 0 in (25), then Kgi ∈ Ks·i(KN,Kg0). From the induction
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hypothesis and (19), Kgi ∈< P0, . . . , Pi−1 >, which implies, by part (b) of Lemma 3.1,
that < gi,Kgi >= 0. This is a contradiction if gi 6= 0 because the symmetric part of
K is positive definite.
The last equality Ks(i+1)(KN,Kg0) = £{p0, p1, . . . , p(i+1)s−1} is result vi) of GOA’s
properties previously cited.
Finally, let ri+1 be the residual which corresponds to iterate xi+1. From definition of
ri+1 and by induction we have

ri+1 = r0 −
i

∑

j=0

(APjyj). (27)

Since (APj)
tHsr0 = (Pj)

tg0 = (Pj)
tgj = zj for all j = 0, . . . , i, using (27) and part (a)

of Lemma 3.1 we have that

E(ri+1) =< r0, H
Sr0 > −2

i
∑

j=0

ytjzj +
i

∑

j=0

ytjWjyj . (28)

Since E(r) is convex, ri+1 is the minimal of E(r) over x0+£{P0, . . . , Pi} if the coefficient
vectors yj , with j = 0, . . . , i, are the solutions of the linear systems Wjyj = zj , but this
is true by the definition of yj in s-GOA. �
We have to observe that Wi is positive definite and consequently nonsingular. From
Lemmas 3.1 and 3.2 we obtain the following convergence theorem:

Theorem 3.1 If all previous hypothesis hold, the s-step general orthogonalization al-

gorithm converges in at most [n/s] iterations.

Proof.–

Let i ∈ N. Since Lemmas 3.1 and 3.2, if gi 6= 0 then gi is orthogonal to Ks·i(KN,Kg0).
But dimKs·i(KN,Kg0) = s · i, and then, if s · i ≥ n it is necessarily gi = 0. This implies
that ri = 0, because gi = AtHSri and AtHS is nonsingular. �

Let r̃i and ri be the residual vectors in the ith iteration of the GOA and s-GOA,
respectively. Since E(r) is a convex function and from Lemma 3.2, if x0 is the same for
GOA and s-GOA then r̃s·i = ri in exact arithmetic. Thus we can establish the error
estimate:

Theorem 3.2 Under the hypothesis of Lemma 3.1, if ri is the residual vector in the

ith iteration of the s-GOA and Ei = E(ri), it verifies:

Ei ≤ E0

(

1−
λmin(L

t(K−1)SL)

cond(M)

)s·i

(29)

Moreover, if the matrix K is symmetric, we have:

Ei ≤ E0

(

cond(M)− 1

cond(M) + 1

)2s·i

. (30)
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Proof.– The proof is obvious from the error estimate (7) and (8) in GOA and since
r̃s·i = ri. �

As seen in GOA, we need all the previous matrices Pj , j = 0, . . . , i in s-GOA, for

the computation of Bj
i+1

. If more than a few iterations are needed, then the storage
requirements become prohibitive. Thanks to the following lemma, when matrix K is
symmetric it will only be necessary to store the last of the series of all previous matrices
Pj for the computation of matrices Bj

i+1
.

Lemma 3.3 If matrix K is symmetric then, for j = 0, . . . , i− 1

(Pj)
tNQi+1 = 0. (31)

Proof.– Let j ∈ {0, . . . , i − 1} fixed. Then (Pj)
tNQi+1 is a square matrix of order s

whose kl element is < (KN)k−1Kgi+1, Nplj >, with k, l ∈ {1, . . . , s}. If K is symmetric
then

< (KN)k−1Kgi+1, Nplj >=< (gi+1, (KN)kplj > . (32)

From Lemma 3.2 we get plj ∈ Ks(j+1)(KN,Kg0) for l = 1, . . . , s. So, if j ≤ i − 1

and k ∈ {1, . . . , s} then (KN)kplj ∈ Ks(i+1)(KN,Kg0) because k + (j + 1)s − 1 ≤
s+ i · s− 1 = s(i+ 1)− 1. But again, from (b) of Lemma 3.1 and Lemma 3.2, gi+1 is
orthogonal to P0, . . . , Pi whose columns span Ks(i+1)(KN,Kg0), then gi+1 is orthogonal
to Ks(i+1)(KN,Kg0) and thus we conclude that if 0 ≤ j ≤ i− 1 then the right side of
(32) is zero. �

In this way, if K is symmetric, equations (15) and (16) of s-GOA becomes:

Bi+1 = −W−1
i (Pi)

tNQi+1 (33)

and
Pi+1 = Qi+1 + PiBi+1. (34)

4 Particular cases of the s-step General Orthogonalization

Algorithm

From particular choices of matricesH andK, first we shall proceed to obtain the known
s-step methods.

Suppose that matrix A is symmetric positive definite. Let H = A−1 and K any
symmetric positive definite matrix. Then N = A and the s-GOA becomes into the
s-step variant of the Preconditioned Conjugate Gradient Algorithm proposed in [4]. In
the particular case of K = I we have the s-step variant of the Conjugate Gradient
Method [5].

Now choose H = I and K = A−1. Then N = A2 and we obtain the s-step
variant of the Generalized Conjugate Residual Algorithm proposed in [6]. If matrix
A is symmetric positive definite, then K is symmetric and this method is the s-step
variant of the Conjugate Residual Algorithm [5].
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Since matrix K is not symmetric in general we can consider the Orthomin(m)
method for this algorithm [6]. The Orthomin(0) is the s-step variant of the Minimal
Residual Algorithm proposed in [6], and the Orthomin(1) is the s-step variant of the
well known Axelsson’s Minimal Residual [2].

If A is a nonsingular matrix, H = I and K = I, then N = AtA and the resulting
algorithm is the s-step variant of the Normal Equation which appears in [3].

4.1 s-Minimal Error Algorithm

Let A be a nonsingular matrix, H = (AAt)−1 and K = AtA. Then K is symmetric
and N = I. In this case we have that gi = A−1ri and zi = P t

i gi. Then vector zi
depends on A−1 whose calculation would render the algorithm useless in practice. To
avoid computing gi we introduce the following matrices:

Ri = ∆AAt(ri), Q0 = R0 and Qi = Ri +Qi−1Bi−1 for i > 0

It is obvious that Pi = AtQi and, since P t
i Pi−1 = 0, we deduce that Qt

i(AAt)Qi−1 = 0.
Thus we propose in this paper the s-step variant of the Minimal Error Algorithm.

Algorithm 4.1 (s-Minimal Error).
Let x0 ∈ R

n

r0 = b−Ax0
Q0 = ∆AAt(r0)
For i = 0, 1, 2, . . . until convergence Do

Pi = AtQi

Wi = P t
i Pi

zi = Qt
iri

yi = W−1
i zi

xi+1 = xi + Piyi
ri+1 = ri −APiyi
Ri+1 = ∆AAt(ri+1)
Bi+1 = −W−1

i (APi)
tRi+1

Qi+1 = Ri+1 +QiBi+1

EndFor

4.2 s-Biconjugate Gradient

If A is a nonsingular matrix, the Biconjugate Gradient method, [8], generates two CG-
like sequences of vectors, one based on a system with the original coefficient matrix
A, and another one with At. In this subsection we propose a s-step variant of the
Biconjugate Gradient method. First, we define the following matrices:

A =

(

0 A
At 0

)

, X =

(

x∗

x

)

, B =

(

b
b∗

)

. (35)

Let

H = (A−1)t =

(

0 (At)−1

A−1 0

)

and K =

(

0 I
I 0

)

, (36)
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then N = AtHA = A is a symmetric matrix. Superscript ∗ denotes the array part
which is associated to the sequence based on At. The s-step variant of the Biconjugate
Gradient method can be derived from the s-GOA method. Next we will write the s-
Biconjugate Gradient method in terms of n-dimensional vectors. For this purpose we
denote by

Pi =

(

P ∗
i

Pi

)

, Qi =

(

Q∗
i

Qi

)

and Ri =

(

ri
r∗i

)

(37)

and enunciate the following lemma:

Lemma 4.1 In the s-Biconjugate Gradient method, and for all k ∈ {0, 1, 2, . . .}, it

holds that:

(a) (Q∗
i )

tAkri = Qt
i

(

At
)k

r∗i

(b) (Q∗
i )

tAkQi = Qt
i

(

At
)k

Q∗
i .

Proof.–

It is obvious from the fact that, for all k ∈ {0, 1, 2, . . .},

rti
(

At
)k

r∗i = (r∗i )
tAkri. (38)

�

The following lemma can be enunciated as a consequence of Lemmas 3.1 and 4.1:

Lemma 4.2 In the s-Biconjugate Gradient method, and for all k ∈ {0, 1, 2, . . .}, it

holds that:

(a) (P ∗
i )

tAkPi = P t
i

(

At
)k

P ∗
i

(b) (P ∗
i )

tAkri+1 = P t
i

(

At
)k

r∗i+1

(c) (P ∗
i )

tri+1 = P t
i r

∗
i+1 = 0

(d) (P ∗
i )

tri = P t
i r

∗
i = (Q∗

i )
tri = Qt

ir
∗
i .

Proof.–

We will prove statements (a) and (b) by induction on i. For i = 0 statements (a)
and (b) are true from Lemma 4.1 and since R1 = R0 −AP0y0. Suppose that (a) and
(b) are true for i− 1 with i ≥ 1, then (P ∗

i )
tAkPi =

= (Q∗
i )

tAkQi + (Q∗
i )

tAkPi−1Bi−1 +Bt
i−1(P

∗
i−1)

tAkQi +Bt
i−1(P

∗
i−1)

tAkPi−1Bi−1 (39)

and

P t
i

(

At
)k

P ∗
i =

= Qt
i(A

t)kQ∗
i +Qt

i(A
t)kP ∗

i−1Bi−1 +Bt
i−1P

t
i−1(A

t)kQ∗
i +Bt

i−1P
t
i−1(A

t)kP ∗
i−1Bi−1 (40)
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The first summands of the second right hand side of (39) and (40) are equal as a
consequence of Lemma 4.1. So are the other corresponding summands by the induction
hypothesis on (a) and (b), which proves (a). On the other hand, (P ∗

i )
tAkri+1 =

(P ∗
i )

tAkri− (P ∗
i )

tAk+1Piyi and P t
i

(

At
)k

r∗i+1 = P t
i

(

At
)k

r∗i −P t
i

(

At
)k+1

(Pi)
∗yi. Then

equality (b) is derived from (a), Lemma 4.1 and induction hypothesis since Pi =
Qi +Pi−1Bi.

Section (c) follows from statement (b) of Lemma 3.1, and statement (d) from
previous (c). �

Now, by the previous Lemma 4.2, we can write Wi = (P ∗
i )

tAPi + P t
iA

tP ∗
i =

2(P ∗
i )

tAPi and then Wiyi = 2(P ∗
i )

tri.
As consequence of section (b) of Lemma 4.2, we have that (P ∗

i )
tAQi+1 = P t

iA
tQ∗

i+1,
and then Bi+1 = −(Wi)

−1
(

P t
iA

tQ∗
i+1 + (P ∗

i )
tAQi+1

)

= −2(Wi)
−1

(

P t
iA

tQ∗
i+1

)

.
Finally, we can write the s-Biconjugate Gradient method in the following way:

Algorithm 4.2 (s-Biconjugate Gradient).
Let x0, x

∗
0 ∈ R

n

r0 = b−Ax0
r∗0 = b∗ −Atx∗0
P0 = ∆A(r0)
P ∗
0 = ∆At(r∗0)

For i = 0, 1, 2, . . . until convergence Do

Wi = (P ∗
i )

tAPi

yi = W−1
i (P ∗

i )
tri

xi+1 = xi + Piyi
ri+1 = ri −APiyi
r∗i+1 = r∗i −AtP ∗

i yi
Qi+1 = ∆A(ri+1)
Q∗

i+1 = ∆At(r∗i+1)
Bi+1 = −(Wi)

−1(P ∗
i )

tAQi+1

Pi+1 = Qi+1 + PiBi+1

P ∗
i+1 = Q∗

i+1 + P ∗
i Bi+1

EndFor

Remark: Since matricesN and K are not positive definite in general, Theorem 3.1
cannot be used to assure the convergence of the s-Biconjugate Gradient. In practice,
we expect convergence to occur in similar conditions to the usual Biconjugate Gradient
method.

5 Conclusions and future work

In this work, a s-step variant of the general orthogonalization algorithm which gener-
alizes conjugate gradient methods has been presented. The s-step variants of known
iterative methods are derived as particular cases (some of which converging for every
nonsingular matrix) and two are unpublished to our knowledge. It has been verified
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that the convergence of these methods is supported in their s-step variants, by proving
some prerequisite lemmas and convergence and error estimate theorems.

The performance gains of parallel implementations of the s-steps methods have
been shown in some of the cited references, alongside the numerical results presented.
The implementation on parallel computers and an exhaustive numerical analysis of
those and other methods is at present under study by the authors.
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Abstract

The aim of the present contribution is to state an asymptotic property P of
type Shannon’s sampling theorem, based on normalized cardinal sines, and keeping
constant the sampling frequency of a not necessarily band–limited signal. It gener-
alizes in the limit the results stated by Marvasti et al. [7] and Agud et al. [1]. We
show that P is fulfilled for any constant signal working for every given sampling
frequency. Moreover, we conjecture that Gaussian maps of the form e−λt

2

, λ ∈ R+,
hold P . We support this conjecture by proving the equality given by P for the
three first coefficients of the power series representation of e−λt

2

.

Key words: Band–limited signal, Shannon’s sampling theorem, Signal theory

MSC 2000: 41A60, 41A46; Secondary 41A30, 41A45, 41A58, 42C10.

1 Introduction and statement of the main results

A central result of the signal theory in engineering is the well–known Shannon–Whittaker–
Kotel’nikov’s theorem (see for instance [9] or [11]) working for band–limited maps of
L2(R) (i.e., for Paley–Wiener signals), and based on the normalized cardinal sinus map
sinc(t) defined by

sinc(t) =

{
1 if t = 0,
sin(πt)

πt
if t 6= 0.

Another philosopher’s stone of the signal processing theory is the Middleton’s sam-
pling theorem for band step functions (see [8]). This result was one of the first modi-
fications of the classic Sampling theorem (see [10]) which only works for band–limited
maps. After this starting point many different extensions and generalizations of this
theorem appeared in the literature trying to obtain approximations of non band–limited
signals (see for instance [2] or [4]). Good surveys on these extensions are [3] or [11].
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In this paper we follow the spirit of the previous results in the sense of trying
to obtain approximations of non band–limited signals by using band–limited ones by
increasing the band size. But our approach is completely different to the previous ones
in the sense that we keep constant the sampling frequency generalizing in the limit the
results of Marvasti et al. [7] and Agud et al. [1] .

In this setting, we state the following asymptotic property of type sampling Shan-
non’s theorem where the convergence is considered in the Cauchy’s principal value for
the series and pointwise for the limit.

Property 1 Let f : R → R be a map and τ ∈ R
+. We say that f holds the property P

for τ if

f(t) = lim
n→∞

(
∑

k∈Z

f
1

n

(
k

τ

)

sinc(τt − k)

)n

. (1)

The statement of the main results is:

Theorem 1 Every constant signal holds property P for every given τ ∈ R
+ .

Conjecture 1 The Gaussian maps, i.e. maps of the form e−λt2 , λ ∈ R
+ hold property

P for every given τ ∈ R
+.

To support our feeling on the truth of the Conjecture 1 we prove, without loss of
generality for λ = 1, that the Gaussian map e−t2 holds expression (1) for the three
first coefficients of the power series representation of e−t2 . Note that since the Gaussian
map is analytical, for proving formula (1) is enough to show the equality between the
coefficients of the power series representation of the Gaussian map and the coefficients
of the series stated in the second member of (1) after proving the analitycity of the
second member of (1). The statement of our result is the following:

Theorem 2 Let e−t2 be a Gaussian map. Then the three first coefficients of the power
series representation of e−t2 are equal to the three first ones of the second member of
expression (1).

The paper is divided into three sections. In Section 2 we present the ideas and
results that have inspired us to formulate property P and Conjecture 1. Section 3 is
devoted to prove Theorem 1 and in Section 4 is proved Theorem 2.

2 On the property P and Conjecture 1

We state as a property P an approximation in the limit, through potentials of band–
limited maps of the original signal, based on [1] and [7].

In [1] is proven that given a sequence {sk}k∈Z ∈ l2/n(Z), B > 0, τ ≥ 2B and n odd,
there exist exactly n band–limited signals {xr} with bandwidth equal to B such that
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xn
r

(
k

τ

)

= sk. Moreover, is shown that xr = erx0, where {er}
n−1
r=0 are the roots of unity

of order n and x0(t) =
∑

k∈Z

s
1/n

k
sinc(2Bt − k).

From this is directly deduced that if we consider an odd number n and a band–

limited signal f with bandwidth B̃ such that the sequence of coefficients

{

f

(
k

τ

)

; k ∈ Z

}

with τ ≥
2B̃

n
holds the properties stated in [1], then the signal admits a recomposition

of Shannon type in the form

f(t) =

(
∑

k∈Z

f
1

n

(
k

τ

)

sinc(τt − k)

)n

, (2)

where clearly the sampling frequency can be choosen bigger than the Nyquist one.

Our aim is to provide a method for approximating non band–limited signal by
band–limited ones and keeping the frequency of the sampling constant. And our idea
is to take limits in (2) obtaining an equality of the form

f(t) = lim
n→∞

(
∑

k∈Z

f
1

n

(
k

τ

)

sinc(τt − k)

)n

,

expressed as a property P.

In Section 3 we prove that property P is held by any constant map for every τ ∈ R
+.

Thus, the universe of non–trivial signals which hold the conjecture is nonempty (note
that f(t) ≡ 0 holds P). Our feeling is that there are a big number of representative
signals in engineering processes which satisfy property P.

We state as Conjecture 1 to prove that any signal of Gaussian type holds the state-
ment. Note that the Gaussian map, which is mathematically important in itself, plays
an important role in the signal theory because the Gaussian map is the unique function
which reachs the minimum of the product of the temporal and frecuential width. This
minimum is given by the Uncertainty Principle, see [6]. We believe in the working of
Conjecture 1 and we support it through Theorem 2 where we show the equality between
the three first coefficients of the power series representation of the Gaussian map and
property P. For proving completely the conjecture, by the analyticity of the Gaussian

map, is enough to prove that expression lim
n→∞

(
∑

k∈Z
e
−

k2

nτ2 sinc(τt − k)

)n

defines an

analytical map and to show that the equality works for the rest of coefficients.

3 Proof of Theorem 1

The following lemma will play a key role in the proof of Theorem 1.

Lemma 3
∑

k∈Z

sinc(z − k) = 1 for every z ∈ C.
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Proof. First of all we shall show that the result works for every t ∈ R. Indeed, if t ∈ Z,
the result is straight because of

∑

k∈Z

sinc(t − k) = 1 +
∑

k∈Z

k 6=t

sinc(t − k) = 1 + 0 = 1.

Therefore, from now on we assume that t ∈ R \ Z. Taking simetric terms in the series
we obtain

∑

k∈Z

sinc(t − k) =
sin(πt)

πt
+
∑

k∈N

(
sin (π(t − k))

π(t − k)
+

sin(π(t + k))

π(t + k)

)

=
sin(πt)

πt
+

2t sin(πt)

π

∑

k∈N

(−1)k+1

k2 − t2
.

(3)

On the other hand, for a given t ∈ R \ Z is known that

tπ

sin(tπ)
= 1 + 2t2

∑

k∈N

(−1)k

t2 − k2
,

and therefore
∑

k∈N

(−1)k+1

k2 − t2
=

−1

2t2
+

π

2t sin(πt)
. (4)

Finally, replacing (4) in expression (3) the proof is over for every real number t.
The prove of the result for complex numbers is a consequence of the use of the

Analytic Prologation Principle. For applying it, is enough to prove that the series∑

k∈Z

sinc(z − k) is an analytic function. Indeed, by (3) the series can be written in the

form
∑

k∈Z

sinc(z − k) =
sin(πz)

πz
+

2z sin(πz)

π

∑

k∈N

(−1)k+1

k2 − z2
.

Obviously, the first term of the previous sum is an analytic map. For proving the

analyticity of the second term of the sum we shall prove that the series
∑

k∈N

(−1)k+1

k2
−z2

uniformly converges on every compact set L ⊂ C\N. In fact, let s = max{|z| : z ∈ L}
and k0 be such that k0 > 2s, then for every k ≥ k0 is |z| < k

2 for every z ∈ L. Therefore,

∣
∣
∣
∣
(−1)k+1

k2 − z2

∣
∣
∣
∣ ≤

4

3k2
,

which guarantees the uniformly convergency of the series in L and the proof is over.

Remark 4 We underline that the fact of the series
∑

k∈Z

sinc(z − k) defines an analytic

function is a direct consequence of the application of the Uniform Convergence Principle
for cardinal Series, see [5, pag. 70] or [11, pag. 22] for a more up-to-date reference. We
present a direct approach in the proof of Lemma 3 for completness of the arguments.
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Proof of Theorem 1. Let f(t) = C be a constant signal and τ ∈ R
+. By Lemma 3 we

have

lim
n→∞

(
∑

k∈Z

f
1

n

(
k

τ

)

sinc (tτ − k)

)n

= lim
n→∞

(

C
1

n

∑

k∈Z

sinc (tτ − k)

)n

= lim
n→∞

C

(
∑

k∈Z

sinc (tτ − k)

)n

= lim
n→∞

C = C.

Thus, is shown that f holds property P ending the proof.

4 Proof of Theorem 2

In the sequel we denote by J a set of consecutive natural numbers in the form {0, 1, 2, ...}
which eventually can be N ∪ {0}. By #(J) we denote the cardinal of the set J and we
assume the arithmetic of the infinity (i.e., ∀k ∈ N,∞ ± k = ∞), therefore by mJ we
denote #(J) − 1.

Given a sequence α = {αn}n∈I of real numbers, by d(α) we denote the diameter of
the sequence α, i.e., d(α) = sup1≤n<#(J){|αn − αn−1|}. As usual by [·] we denote the
integer part.

Lemma 5 Let γ = {γn}n∈J be an increasing bounded sequence of real numbers holding
the following conditions:

i) a = γ0 < γ1 < . . . < γn−1 < γn < . . . < b = sup
n∈J

{γn},

ii) {γn − γn−1}n∈J\{0} is monotonic.

Let f : [a, b] → R be a continuous map of constant sign on [a, b], eventually f can be
equal to zero. Then for every sequence β = {βn}n∈J\{0} such that βk ∈ [γk−1, γk] and
for every ε > 0 there exists δ > 0 such that if d(γ) < δ then

∣
∣
∣
∣
∣

M∑

k=1

f(β2k)(γ2k − γ2k−1) −
1

2

∫ b

a

f(x) dx

∣
∣
∣
∣
∣
< ε (5)

and ∣
∣
∣
∣
∣

L∑

k=0

f(β2k+1)(γ2k+1 − γ2k) −
1

2

∫ b

a

f(x)dx

∣
∣
∣
∣
∣
< ε, (6)

where M =
[mJ

2

]
and L =

[
mJ − 1

2

]

.
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Proof. For proving (5) we assume, without loss of generality, that f ≥ 0 and {γn − γn−1}n∈J\{0}

is a decreasing sequence. We shall use the following notation

To(γ, β) =
L∑

k=0

f(β2k+1)(γ2k+1 − γ2k),

Te(γ, β) =

M∑

k=1

f(β2k)(γ2k − γ2k−1),

Sle(γ) =
M∑

k=1

f(γ2k)(γ2k − γ2k−1),

Sre(γ) =

L∑

k=0

f(γ2k)(γ2k+1 − γ2k),

Sro(γ) =

M∑

k=1

f(γ2k−1)(γ2k − γ2k−1),

Slo(γ) =
L∑

k=0

f(γ2k+1)(γ2k+1 − γ2k).

For a given ε > 0, since To + Te is a Riemann sum of f on [a, b], there exists δ0 > 0
such that if d(γ) < δ0, then

∣
∣
∣
∣To + Te −

∫ b

a

f(x)dx

∣
∣
∣
∣ < ε. (7)

Taking ε1 =
ε

3(b − a)
> 0, since the map f is uniformly continuous on the interval

[a, b], then there exists δ1 > 0 such that if |β2k − γ2k| < δ1 then |f(β2k) − f(γ2k)| < ε1

and consequently if d(γ) < δ1

|Te − Sle| =

∣
∣
∣
∣
∣

M∑

k=1

(f(β2k) − f(γ2k))(γ2k − γ2k−1)

∣
∣
∣
∣
∣

< ε1

M∑

k=1

|γ2k − γ2k−1| < ε1(b − a) =
ε

3
.

(8)

Proceeding in a similar way

|To − Sre| <
ε

3
, |Te − Sro| <

ε

3
and |To − Slo| <

ε

3
. (9)

Now, it is easily deduced that

f(γ2k)(γ2k+1 − γ2k) ≤ f(γ2k)(γ2k − γ2k−1),

and
Sre − Sle ≤ f(γ0)(γ1 − γ0).
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So, taking δ2 = min

{

δ1,
ε

3f(γ0)

}

if f(γ0) 6= 0 and δ2 = δ1 in other case, if d(γ) < δ2

then

Sre − Sle < f(γ0) δ2 <
ε

3
.

Using the previous inequality, (8) and (9) we have that

To − Te = (To − Sre) + (Sle − Te) + (Sre − Sle) < ε. (10)

On the other hand, it is clear that

Sro − Slo ≤ 0 (11)

and so, using (9) and (11)

Te − To = (Te − Sro) + (Slo − To) + (Sro − Slo) <
2ε

3
< ε.

From here and (10), if d(γ) < δ2,

|Te − T0| < ε.

So, taking δ = min{δ0, δ2} and using the previous inequality and (7), if d(γ) < δ

then

∣
∣
∣
∣Te(γ) −

1

2

∫ b

a

f(x)dx

∣
∣
∣
∣ ≤

1

2
|Te(γ) − To(γ)|

+
1

2

∣
∣
∣
∣Te(γ) + To(γ) −

∫ b

a

f(x)dx

∣
∣
∣
∣ < ε,

which is just (5) as we want to show.

The proof of (6) follows in an analogous way.

Lemma 6 Let x ∈ R
+, k ∈ N and lk(x) =

1 − e−k2x

k2x
. Then for every k is lim

x→0+
(lk(x) − lk+1(x)) = 0

uniformly in k.

Proof. Note that for every x ∈ R
+ and every k ∈ N, lk(x) is decreasing in k.

We fixed x ∈ (0, 1). For a given ε > 0 there exist C > 0 holding lk(x) < ε
2 for any

k such that k2x ≥ C and consequently

lk(x) − lk+1(x) < ε. (12)

On the other hand, using the power series representation of the exponential function
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and the Newton’s binomial,

lk(x) − lk+1(x) =

∞∑

p=0

(−1)p

(p + 1)!

(
(k2x)p − ((k + 1)2x)p

)

=
√

x

∞∑

p=0

(−1)p+1

(p + 1)!

2p−1∑

q=0

(
2p

q

)
(
k
√

x
)q

xp−
q+1

2

≤
√

x

∞∑

p=0

1

(p + 1)!

(
1 + k

√
x
)2p

=
√

x
e(1+k

√

x)
2

− 1

(1 + k
√

x)
2

and if k2x < C we have the following inequality

lk(x) − lk+1(x) <
√

x

(
e(1+

√

C)2 − 1
)

.

Since lim
x→0

√
x

(
e(1+

√

C)
2

− 1
)

= 0, using the last inequality and (12) the proof is

over.

The following proposition will play a key role in the proof of Theorem 2.

Proposition 7 Let x ∈ R
+ and L(x) =

∑

k∈N

(−1)k+1lk(x). Then is held

L(x) ≤
π

2
and lim

x→0+
L(x) =

1

2
.

Proof. We consider the functions αk(x) = arctg lk(x) on [0, π
2 ]. Let x ∈ R

+ fixed.
We note that αk(x) is a decreasing sequence on k. It is easily deduced that using the
Intermediate Value Theorem

L(x) =
∑

k∈N

(l2k−1(x) − l2k(x)) =
∑

k∈N

(tg α2k−1(x) − tg α2k(x)) ,

and therefore

L(x) =
∑

k∈N

α2k−1(x) − α2k(x)

cos 2β2k−1
, (13)

for suitable β2k−1 ∈ (α2k(x), α2k−1(x)).

Note that αk(x) ∈ (0, π
4 ] for all k ∈ N and consequently 0 < βk <

π

4
. Thus,

L(x) ≤ 2
∑

k∈N

(α2k−1(x) − α2k(x)) ≤ 2
∑

k∈N

(αk(x) − αk+1(x)) = 2α1(x) ≤
π

2
.
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Since

∫ π
4

0

dt

cos 2t
= 1, then

∣
∣
∣
∣L(x) −

1

2

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
L(x) −

1

2

∫ π
4

0

dt

cos 2t

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
L(x) −

1

2

∫ α1(x)

0

dt

cos 2(t)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

1

2

∫ π
4

α1(x)

dt

cos 2(t)

∣
∣
∣
∣
∣
.

(14)

On the one hand, given ε > 0 clearly there exists δ0 > 0 such that if x < δ0 then
∫ π

4

α1(x)

dt

cos 2t
< ε. (15)

On the other hand, using Lemma 5 for f(x) =
1

cos 2(x)
, γ = {−αr+1}

∞

r=0, β̃ =
{

β̃r

}
∞

r=1

such that β̃k ∈ [γk−1, γk], β̃2k−1 = −β2k−1, a = −α1(x) and b = 0, there exists δ1 > 0
such that if d(γ) < δ1 then

∣
∣
∣
∣
∣
L(x) −

1

2

∫ α1(x)

0

dx

cos 2(x)

∣
∣
∣
∣
∣
<

ε

2
. (16)

Since arctan(·) is a continuous map on (0, π
4 ], for δ1 by Lemma 6 there exists δ2 > 0

such that if x < δ2 then d(α) < δ1.
Therefore, taking x < δ = min {δ0, δ2}, and replacing (15) and (16) in (14) we

obtain ∣
∣
∣
∣L(x) −

1

2

∣
∣
∣
∣ < ε,

finishing the proof.
Proof of Theorem 2. The aim of the proof is to show that the limit of the three first
nonzero coefficients of the power series representations of

(
∑

k∈Z

e
−k2

nτ2 sinc(τt − k)

)n

and e−t2 are equal for every t ∈ R and τ > 0 given. Indeed, for every m ∈ N ∪ {0} and
n ∈ N we fix the following notation

Bτ
m =

(−1)m(πτ)2m

(2m + 1)!
; (17)

Cτ
m,n =






1

2
, if m = 0,

τ2m
∑

k∈N

(−1)k+1

k2m
e

−k2

nτ2 , if m ≥ 1;
(18)

Dτ
m,n =

m∑

p=0

Bτ
pCτ

m−p,n. (19)
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Let

g(t, n) =
∑

k∈Z

e
−k2

nτ2 sinc(τt − k).

Note that by the analitycity is enough to consider pointwise convergence for all t ∈ (0, 1
τ
).

Now, using expressions (17), (18), (19) and the power series of the sine function, the
map g(t, n) can be written in the form

g(t, n) = sinc(τt) +
2τt sin πτt

π

∑

k∈N

(−1)k

τ2t2 − k2
e

−k2

nτ2

=
sin πτt

π

(
1

τt
+ 2τt

∞∑

m=0

t2m

(
∑

k∈N

(−1)k+1
τ2m

k2(m+1)
e

−k2

nτ2

))

=
2t

πτ

(
∞∑

m=0

(−1)m

(2m + 1)!
(πτt)2m+1

)(
∞∑

m=−1

Cτ
m+1,n t2m

)

= 2

(
∞∑

m=0

Bτ
m t2m

)(
∞∑

m=0

Cτ
m,n t2m

)

= 2

∞∑

m=0

Dτ
m,n t2m.

and therefore

(g(t, n))n = 2n

(
∞∑

m=0

Dτ
m,n t2m

)n

= 2n

∞∑

m=0

Eτ
m,n t2m.

For m = 0 it is clear that Eτ
0,n = (Dτ

0,n)n = (Bτ
0 Cτ

0,n)n = 1
2n and hence

lim
n→∞

2nEτ
0,n = 1.

For m = 1 is

Eτ
1,n = n(Dτ

0,n)n−1
Dτ

1,n = n
(
Bτ

0Cτ
0,n

)n−1 (
Bτ

0Cτ
1,n + Bτ

1Cτ
0,n

)

=
n

2n−1

(

Cτ
1,n +

Bτ
1

2

)

=
nτ2

2n−1

(
∑

k∈N

(−1)k+1

k2
e

−k2

nτ2 −
π2

12

)

.

So, using
∞∑

k=1

(−1)k+1

k2
=

π2

12
,

2nEτ
1,n = −2

∑

k∈N

(−1)k+1 1 − e
−k2

nτ2

k2

nτ2

= −2L

(
1

nτ2

)

where L(·) is introduced in Proposition 7 and now by such result we obtain
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lim
n→∞

2nEτ
1,n = −1. (20)

For m = 2 it follows that

Eτ
2,n = n(Dτ

0,n)n−1
Dτ

2,n +
n(n − 1)

2
(Dτ

0,n)n−2 (Dτ
1,n)2

= n(Bτ
0Cτ

0,n)n−1 (
Bτ

2Cτ
0,n + Bτ

1Cτ
1,n + Bτ

0Cτ
2,n

)

+
n(n − 1)

2
(Bτ

0Cτ
0,n)n−2 (

Bτ
0Cτ

1,n + Bτ
1Cτ

0,n

)2

=
n

2n−1

(
Bτ

2

2
+ Bτ

1Cτ
1,n + Cτ

2,n

)

+
n(n − 1)

2n−1

(

Cτ
1,n +

Bτ
1

2

)2

Therefore

2nEτ
2,n = F τ

n + Gτ
n (21)

where

F τ
n = 2n

(
Bτ

2

2
+ Bτ

1Cτ
1,n + Cτ

2,n

)

,

Gτ
n = 2n(n − 1)

(

Cτ
1,n +

Bτ
1

2

)2

.

We will take the limit in each part separately. Since

Gτ
n =

n − 1

2n

(
2nEτ

1,n

)2
,

from (20) we obtain

lim
n→∞

Gτ
n =

1

2
(22)

To determine the limit of F τ
n , replacing each Bτ

j and Cτ
j,n by (17) and (18), we get

F τ
n = 2nτ4π4

(
1

2.5!
−

1

3!π2

∑

k∈N

(−1)k+1

k2
e

−k2

nτ2 +
1

π4

∑

k∈N

(−1)k+1

k4
e

−k2

nτ2

)

= 2nτ4π4



 1

2.5!
+

1

3!π2

∑

k∈N

(−1)k+1 1 − e
−k2

nτ2

k2

+
1

π4

∑

k∈N

(−1)k+1

k4
e

−k2

nτ2 −
1

3!π2

∞∑

k=1

(−1)k+1

k2

)
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Using again

∞∑

k=1

(−1)k+1

k2
=

π2

12
and applying

∞∑

k=1

(−1)k+1

k4
=

7π4

720
, the above expres-

sion becomes

F τ
n = 2nτ4π4



−7

720
+

1

3!π2

∑

k∈N

(−1)k+1 1 − e
−k2

nτ2

k2
+

1

π4

∑

k∈N

(−1)k+1

k4
e

−k2

nτ2





= 2nτ4π4



 1

3!π2

∑

k∈N

(−1)k+1 1 − e
−k2

nτ2

k2
−

1

π4

∑

k∈N

(−1)k+1 1 − e
−k2

nτ2

k4





=
τ2π2

3

∑

k∈N

(−1)k+1 1 − e
−k2

nτ2

k2

nτ2

− 2τ4
∑

k∈N

(−1)k+1 1 − e
−k2

nτ2

k4

n

=
τ2π2

3
L

(
1

nτ2

)

− 2τ2
∑

k∈N

(−1)k+1 1 − e
−k2

nτ2

k4

nτ2

.

Therefore, since lim
n→∞

∑

k∈N

(−1)k+1 1 − e
−k2

nτ2

k4

nτ2

=
∑

k∈N

(−1)k+1

k2
=

π2

12
, using Proposition

7 is

lim
n→∞

F τ
n =

τ2π2

3
·
1

2
− 2τ2 ·

π2

12
= 0.

So, from here and (22), taking limits in (21) we get

lim
n→∞

2nEτ
2,n = 0 +

1

2
=

1

2
.

Note that from the results obtained for m = 0, 1, 2 is stated that the limit of the
three first nonzero coefficients of the power series representations of

(
∑

k∈Z

e
−k2

nτ2 sinc(τt − k)

)n

are equal to (−1)m

m! , coefficients of the power series representation of e−t2 , ending the
proof.
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Abstract

The suitability of different programming languages for scientific computing has
been the subject of many debates and studies. Java is a popular multi-purpose
programming language and it is not surprising that many recent studies have been
conducted on its performances in various application areas, in particular, in the
scientific computing arena. In this instance, one aspect of Java involves its docu-
mented unpredictable behaviour in respect of floating point computations. Since
the Java virtual machine’s floating point behaviour has been designed to adhere
very strictly to IEEE standard for binary floating point systems with the intention
of achieving portability and consistency, we find that this restriction can lead to
inconsistent behaviours across various platforms. Moreover, such behaviour is not
confined to Java alone.

The other aspect which has interested the scientific computing community has
been the speed benchmarks for different languages employed in this arena.

We attempt to gain useful insight into these two performance aspects by port-
ing into Java, C/C++ and Fortran77, a code employing a two-dimensional high-
resolution finite-difference scheme for simulating nonlinear wave propagation a
multi-fluid plasma under electromagnetic fields and comparing the relative per-
formances of these implementations on 32-bit and 64-bit PC platforms.

Key words: Java floating point, IEEE floating point, numerical simulation

1 Introduction

In this report we are concerned, in the first instance, in examining the behaviour of
Java as candidate of the IEEE 754 standard (1985) and revised IEEE 854 (1987, 2008)
standard [1, 2, 3] for binary floating point representation and computation so we briefly
review some salient features of this standard:

Here, floating-point numbers in general are normalized before storage and can be
represented in one of the forms [1, 2]:
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single precision (32 bits):

s E F ≡ s eeee eeee fff ffff ffff ffff ffff ffff

with value (−1)s × 1.F × 2E−127

double precision (64 bits):

s E F ≡ s eee eeee eeee ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff

with value (−1)s × 1.F × 2E−1023

where the sign bit (bit 31) is s = 0 for a positive number and s = −1 for a negative
number, the binary fraction F=fff...ff occupies bits 0-22, the exponent E=eeeeeeee,
which is biased (by 127) to avoid storing negative values occupies bits 23-30 so that
Emax = 111111112 = 255 and Emin = 0 in the first case. These extreme E values are
reserved for special conditions, so that the allowable range of E is 00000001 ... 11111110
(1... 254) giving an exponent range E-127 = -126... +127. Similar considerations apply
to the double precision case. In addition the IEEE standard includes provisions for
extended-precision numbers, for handling denormal numbers, i.e. numbers obtained
from calculations whose results fall in the range between the smallest non-zero number
that can be represented in the floating point system and zero (on the positive side),
for infinities and for not-a-numbers (NANs). Moreover, the default behaviour specified
by the IEEE is to allow the computations to continue in spite of the occurrence(s) of
these special values, by masking such particular exceptions. This may or may not be
desirable in every situation.

Most present day processors have floating point units (FPUs) which implement the
IEEE standard by default. In particular, on Intel x86 processors [4, 5], floating point
behaviour can be controlled by setting its floating point control word register (FPCSR),
a special 16-bit register. Then the current control word in the FPCSR, will control the
arithmetic accuracy employed in calculating intermediate results in the 80-bit FPU
general registers, control how rounding is done when register contents are manipulated
and stored in memory, and how denormals are handled, amongst other effects. Corre-
sponding to the FPCSR, is another floating point status-word register, which the CPU
sets, depending on the result of the last executed floating point instruction.

The x87 instruction set includes the FLDCW (load control word) and FSTCW
(store control word) machine instructions for manipulating the FPCSR. For example,
the instruction

FLDCW 639
will set it to the hexadecimal value 027F, allowing for 53-bit mantissa precision and
rounding to the nearest floating point number, and the instruction

FLDCW 895
will set it to the hexadecimal value 037F, allowing for 64-bit mantissa precision and
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rounding to the nearest floating point number.

In addition, more convenient functions may be available in some operating systems
with particular language bindings.

On more recent Intel processors, additional floating point operations [4, 5] can
carried out on separate processing units within the CPU as streaming pipelined in-
structions (MMX, SSE, SSE2, SSE3, ....) which can be enabled by compiler switches.
These machine instructions can be controlled by a separate combined control-status
word register, MXCSR. This is a 32-bit register which allows one to set flags to handle
denormal processing, rounding and so on. In this paper we shall deal essentially with
the former x87 instructions, since they are the more accurate, as the latter employ the
default IEEE register precision, a crucial aspect for our codes.

2 Code for simulating nonlinear waves in electromagnetic
plasmas

We handle performance issues here by multi-language implementations of a code for
simulating electromagnetic shock-like structures in a plasma fluid consisting of singly
charged ions an electrons subject to the electromagnetic field. A complete description
of the model and algorithm used is given elsewhere[6]. It suffices to mention that it em-
ploys a two-dimensional high-resolution Riemann-solver-free central difference scheme
on staggered grids to numerically solve model equations cast into the first-order PDE
hyperbolic system form [6]:

∂U

∂t
+

∂F (U)
∂x

+
∂G(U)

∂y
= S(U) (1)

In the above U(x, y, z, t) is the unknown (m-dimensional) vector, F (U) is the x-flux
vector, G(U) is the y-flux vector and S(U) is a source vector function, with x and y
the only two spatial coordinates considered (for no variation in the z direction) and t
is the time coordinate.

To numerically integrate this system, a uniform rectangular grid with spacings ∆x
and ∆y in the respective X and Y directions is used to obtain [6],
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This scheme advances the cell average vectors Ūn
j,k where j, k are the spatial dis-

cretization indices and n is the time level index, with time spacing ∆t. It is used in
conjunction with the derivative array aproximations (Ux and Uy) and suitable boundary
conditions. For more details consult [6].

3 Multi-platform implementations

We have coded the complete time-evolutionary algorithm into Fortran 77, C/C++ and
Java and linked the DISLIN package [7] to include real modelling-time graphics. Dou-
ble precision words (64-bits) were used for all the floating-point variables throughout.
The codes were run under Microsoft Windows XP 32-bit (Xp32) on various PC con-
figurations (Pentium IV desktop, Notebook with Intel Centrino CPU, Intel Pentium
Core 2 Quad). Additional tests on the Core 2 Quad machine were done with the Sal-
ford (32-bit) and Gfortran (32- and 64-bit) compilers under the Microsoft windows Xp
64-bit (Xp64) and under SUSE Linux 64-bit (SuSe64) operating systems. By selecting
a somewhat modest-sized problem (XY grid size of 201 × 201 discretization points)
our findings for various compiler suites, with their default settings are tabulated in
summary form below:-

Compiler/OS Stable? Consistent?
Salford FTN95 Yes, over —

(Fortran 77)/Xp32 long times
Mingw g77/ Yes, over Yes, with

Xp32 long times above
Gfortran 32-bit/ Yes, over Yes, with

Xp32 long times above
Mingw C Yes, over Yes, with

(GNU c)/Xp32 long times above
MS Visual C++ Emits NANs No: results
Express 8/Xp32 over long times meaningless

Sun Java 5/ Emits NANs No: results
Xp32 over long times meaningless

Salford FTN95 Emits NANs No: results
(Fortran 77)/Xp64 over long times meaningless
Gfortran 32-bit/ Emits NANs No: results

Xp64 over long times meaningless
Gfortran 64-bit/ Emits NANs No: results

Xp64 over long times meaningless
Gfortran 64-bit/ Yes, over Yes, with

SuSe64 long times above 1st four

We observe that stable and consistent behaviour is obtained in the first four and last
cases in the table with Fig. 1 giving a typical result of the evolution of the electron
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fluid density as a shock wave. Such computations prevail over several thousands time
steps, whilst remaining stable and giving meaningful physical results.

For all other cases the results obtained are unstable and quite meaningless. Fig. 2
depicts such results for codes written in Visual C++ and Sun Java 5.

These codes emit NANs or meaningless results, of no physical significance. Upon
investigation of the discrepancies we find that both MS Visual C++ and Sun Java
adhere to the IEEE standard strictly: in particular, the most significant feature of
departure is that the FPU register precision is 64-bits (53-bit mantissa) whilst all the
first four compilers employ 80-bits (64-bit mantissa). Thus intermediate results in the
FPU registers can suffer from a significant loss in precision even before being rounded to
64-bits double-precision words for storage in memory. On large simulations codes such
as here, such errors can accumulate and swamp the computations over time. Another
IEEE feature is that floating point over/under flows are masked to allow computations
to continue, regardless of the occurrence of NANs at intermediate steps, which is the
situation observed in the last two implementations.

Furthermore, tests were performed on an Intel Core 2 Quad machine by installing
64-bit operating systems and compilers. We find here that, under MS Windows Xp-
64 all the compilers including the Gfortran 64-bit compiler fail to achieve consistency
and stability. However, under SUSE Linux-64 we can again achieve consistency and
stability with the Gfortran 64-bit compiler by setting the appropriate command-line
switches, as indicated in the next section.

4 Code fixes for numerical consistency

4.1 Fortran/C++/Java 5 MS Windows Xp-32 implementations

In the case of Salford FTN95,GCC(MinGW C,C++) and Visual C++ 2008 we can set
the floating point control word either with inline assembly code or by using WIN32
functions, such as the call to the system function

_control87(_PC_64,MCW_PC);

or

_control87(0x0008001F,0xFFFFFFFF);

These details are available in other works [4].
However, for Sun Java we cannot employ these means. We have thus created a

C++ DLL which may be called from Java by employing the following process:

1. Create a (Mingw) C++ project e.g cpplibDLL

2. Set the project options to WIN32 DLL The default output file name will be
cpplibDLL.dll

3. Include the standard header jni.h (Sun Microsystems’) and your cpplibDLL.h

@CMMSE                                                               Page   125  of 1328                                               ISBN 13: 978-84-613-5510-5



Java/C++/Fortran cross-platform performance

FORTRAN

NT= 0

NT= 100

NT= 500

Figure 1: Salford FTN95/GNU C computed electron density shock structures
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JAVA

NT =  0

NT =  100

NT =  120

Figure 2: Sun Java 5/VC++ computed electron density shock structures
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4. Compile/build this into cpplibDLL.dll in your working directory

5. Create the Java invoking program javacppprog.java

6. Compile and run the Java program.

Then the following code implementations may be used:

//cpplibDLLcpp file looks like:
//---------------------------
#include "cpplibDLL.h"
#include "jni.h"
#include <stdio.h>
#include <stdlib.h>
#include <float.h>

//To create an export function for
//the export library:
JNIEXPORT void JNICALL
Java_javacppprog_controlWord(

JNIEnv *env, jobject obj)
{

printf("Hello from C++ function
controlWord()!\n");

printf( "Original: 0x%.8x\n",
_control87(0,0));

//Set FPU control word:
_control87(0x0008001F,0xFFFFFFFF);

//system("PAUSE");
printf( "New: 0x%.8x\n",

_control87(0,0));
return;

}

//etc...for other functions
//-------------------------

//cpplibDLL.h header file
//-----------------------
/*
The header file may be generated by:
javah javacppprog.java
or you can edit the above-
mentioned header such as:
*/

#include "c:\...\jni.h"
#ifndef _Included_cpplibDLL
#define _Included_cpplibDLL

#ifdef __cplusplus
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extern "C" {
#endif

JNIEXPORT void JNICALL
Java_javacppprog_controlWord(

JNIEnv *, jobject);
JNIEXPORT void JNICALL
Java_javacppprog_controlWord2(

JNIEnv *, jobject);
#ifdef __cplusplus
}
#endif
#endif
//end of header file cpplibDLL.h
//------------------------------

//javacppprog.java
//----------------
import java.io.IOException;
import java.text.NumberFormat;
.........

public class javacppprog{
static final int NxPts = 201,

NyPts = 201,
MEQS = 16,

...,
..............
..............
public static native void controlWord();
....
static{System.loadLibrary("cpplibDLL");}
public static void main(String [] args)

{
int NGRIDA, NDH, NT, ........
......................
//Set FPU control word:
controlWord();
.....

//Main Time/While loop
//---------------------
while (NT < NSTEPS)
{
controlWord();
t=t+dt;
.........

}//end main while loop
.....

} //main
} //end of class javacppprog
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Now, setting the FPU control word as in the Fortran/Mingw value we obtain stable
and meaningful results in agreement with those Fig. 1. The results from the similarly
amended Visual C++ program are the same. We note that in both these cases we
found it necessary to repeatedly apply this setting in the time-loop of the code since
returns from certain functions can cause the compiler or Windows default setting to
be resumed. The computational cost of this process is negligible in comparison to the
time-loop traversal time for any realistic simulation.

4.2 Sun Java 6 MS Windows Xp-32 implementations

In the case of Java 6 we find that attempts to set the control word as in the above
section fail, with the results as in Fig. 2 again. In fact Java 6 masks this low-level
function call. At this stage we can only speculate that this must be a deliberate design
feature in order to protect the Java working environment.

4.3 MS Windows Xp-64 implementations

We find, in these cases that even setting the control word as above does not fix the
problem. In fact, the Xp-64 operating system overrides the settings, so that the IEEE
standard is maintained. For instance, the command line to invoke the Gfortran 64-bit
compiler from an install-directory’s bin sub-directory for compilation of some prog.for
and force the generation of code for the the x87 FPU with 80-bit register precision is:

..\bin\x86_64-pc-mingw32-gfortran -c
-mpc80 -mfpmath=387 prog.for

But, even this imposition is ignored under Windows Xp-64, since the latter switches
off access to the MMX and x87 units. It appears that [5] that Microsoft would migrate
to developing code employing floating point computations only for the SSE2 (and suc-
cessor) architectures, thus dropping the x87 legacy architecture, which might explain
our observations.

4.4 SUSE Linux-64 implementations

Here although the default floating point behaviour is IEEE compliant, the use of the
x87 FPU can be enforced by the command-line:

gfortran -c -mpc80 -mfpmath=387 prog.for

5 Speed tests

To gain some insight into the relative performance of Java with respect to speed, we
have conducted some benchmark tests on the Java-, C- and Fortran-code versions and
compare the CPU (user single code/thread + operating system support code) execution
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times of the three versions of our 2D code. The results are summarized in the table for
a 500 time step run in each case:

Compiler/OS CPU time (secs)
Salford FTN95(Fortran 77)/MS Win Xp32 264.141

Mingw C(GNU C)/MS Win Xp32 155.968
Sun Java6/MS Win Xp32 200.031

Thus it is clear that Java is competitive with C and moreover, performs better
than Fortran when the latter is runnning with no code optimizations.

6 Conclusion

By means of multi-language codings of an algorithm for the numerical integration of
hyperbolic systems for 3-D electromagnetic plasma fluid equations allowing wave prop-
agation in two dimensions [6] we have conducted floating point consistency tests and
speed benchmarks. Our findings indicate that for languages, such as Salford Fortran
95 and GNU Mingw Fortran and C/C++, that employ 80-bit FPU accuracy in the
FPU registers for intermediate calculations, overriding the IEEE standard of 64-bit
accuracy, the results over long time runs are stable and consistent, in agreement with
previous results. When, we employ compilers (Sun Java 5/6 and MS Visual C++ Ex-
press 8) that strictly adhere to the IEEE standard in this respect, the results obtained
are not consistent with the previous case, and more so, degenerate into meaningless
computations which just evolve NANs.

However, for 32-bit operating systems and compilers (MS Visual C++ Express 8,
Java 5), when in the latter we set the processor FPU control word to override the IEEE
accuracy to 80-bits we obtain stable and consistent results as before. Exceptionally, in
the case of Java 6 (and later) attempts to set the control word fail.

Under Windows Xp-64, all compilers (32- and 64-bit) are restricted by the operating
system to the IEEE default, and hence the codes fail. Nevertheless, under SUSE
Linux-64, we find Gfortran to exhibit stable behaviour when the compiler is invoked to
generate x87 code.

As far as speed benchmarks are concerned, our tests on 32-bit compilers indicate
the C++ performs best, followed (surprisingly) by Java 6 and then Salford FTN95.
Thus Java may be seen to be competitive for large simulation codes, were it not for
inconsistencies in floating point behaviour.
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Abstract

We present a package, built upon libraries PLAPACK and POOCLAPACK,
that facilitates the use of out-of-core and parallel techniques for the solution of
large-scale dense linear systems to non-experienced programmers. The complexity
of dealing with secondary memory storage necessary to accommodate huge data
structures and the use of parallel distributed-memory message-passing architec-
tures are thus made transparent to users. The techniques described in this work
allow the solution of this type of systems on a wide range of computer facilities,
from commodity workstations to complex high performance computer systems.
Our package is tested on the solution of a real problem arising in condensed mat-
ter physics on a cluster of commodity computers. The experimental results for
systems with up to 100,000 equations illustrate the benefits of exploiting both
process-level and thread-level parallelism as well as demonstrate that the use of
secondary storage exerts a moderate impact on performance.

Key words: Linear systems, high performance computing, out-of-core algo-
rithms, LU factorization.

1 Introduction

Large-scale dense linear algebra problems, involving matrices with hundreds of thou-
sands of rows and columns, arise in boundary element methods for integral equations in
electromagnetism and acoustics, radial function methods, estimation of Earth’s grav-
itational field, molecular dynamic simulations, and quantum chemistry, among oth-
ers [1, 2, 3, 7, 9]. When the data structures involved in these problems are too large
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to fit in memory, the only solution is to rely on disk storage. Although such additional
memory can be accessed via virtual memory, careful design of out-of-core (OOC) algo-
rithms is generally required to attain high performance.

In this paper we extend the POOCLAPACK library [6] with the HDSS package,
a user-friendly application programming interface (API) to build OOC dense linear
algebra objects and to execute its OOC dense linear algebra routines. We believe our
high-level object-oriented API can be of wide appeal to a majority of scientists and engi-
neers, who need this class of environments to elaborate complex analyses, modeling, and
simulations, and who have little or no experience with parallel programming and OOC
techniques. As an additional contribution, our paper evaluates the performance of the
API/POOCLAPACK duo on a linear system with up to O(100, 000) equations arising
in a condensed matter physics application. Both process-level or thread-level paral-
lelism are exploited for the efficient solution of these systems on a cluster of commodity
computers equipped with Intel multi-core technology and connected via a high-speed
Infiniband switch.

The rest of paper is structured as follows. Section 2 exposes the key routines of the
HDSS interface, illustrating their use by means of a simple example. In Section 3 we
evaluate the codes on a problem provided by a group from our university that conducts
research on . Finally, concluding remarks are summarized in the Section 4.

2 The HDSS Package

Our HDSS interface is based on PLAPACK [8] and its extension POOCLAPACK for
OOC computations. PLAPACK (Parallel Linear Algebra Package) provides a collec-
tion of parallel routines for the solution of dense linear algebra operations such as
dense linear systems, linear least-squares problems, and eigenvalue computations on
message-passing architectures. PLAPACK features an a object-based orientation, ab-
stracting the user from the layout of the data among the memory spaces of the nodes
in a distributed-memory platform. POOCLAPACK (Parallel OOC LAPACK) offers
additional flexibility to customize both the in-core and OOC algorithms. This in turn
allows to code OOC algorithms in such a way that data I/O becomes straight-forward,
reducing the porting effort and improving performance.

HDSS builds upon these two libraries, with the primary goal of providing a col-
lection of routines to help non-expert programmers to develop efficient, parallel OOC
codes by hiding details on the storage infrastructure and its use. Figure 1 shows the
layering of the libraries employed in our work and its use from HDSS.

A secondary objective for HDSS is to assist the programmer of parallel dense lin-
ear algebra routines, by easing the extraction of a large fraction of the performance
of current clusters. Moreover, our interface cannot only be used on parallel machines,
but also efficiently profit from modern multi-core commodity computers. In pursue
of this goal, the routines in the interface offer the possibility of exploiting parallelism
at two different levels. At the bottom level, thread-level parallelism can be extracted
by accessing multi-threaded implementation of BLAS (Basic Linear Algebra Subpro-
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Figure 1: Architecture of parallel OOC dense linear algebra libraries.

grams). At the top level, the number of MPI processes and the data layout can be
easily configured from the HDSS routines to optimize the use of task- (or process-)
level parallelism.

HDSS exhibits an object-oriented style akin to those of PLAPACK and POOCLA-
PACK. This paradigm hides programming details which usually entail most of the
errors during the development process (basically, the intricate indexing present in most
traditional linear algebra codes and features related to the storage layout of the data
matrices). HDSS employs objects to represent matrices and vectors, which are defined
in HDSS using the HDSS Obj datatype. These objects are implemented internally as a
structure containing an OOC matrix consisting of a distributed PLA Obj matrix with
an attached file on each MPI process.

The usage of the routines in the HDSS package is illustrated with the excerpt of
Fortran-90 code in Figure 2. The code in that figure can be executed sequentially or
in parallel invoking the mpirun launcher. In the second case, routine hdss_init_env

initializes the parallel environment and routine hdss_finalize terminates it. The code
between the two previous routines can be viewed as a parallel region where all processes
execute the same code by default. Following the MIMD (multiple instruction, multi-
ple data) programming model, code executed by different processes can be customized
using the process’ unique identifier returned by routine hdss_get_myid. Several envi-
ronment parameters can be extracted using the appropriate routines of the API. For
example, routine hdss_get_numprocs returns the number of processes participating in
the parallel region.

Once the environment is initialized and the execution of the parallel region has
begun, the code in Figure 2 performs three main actions: First, it creates and initializes
the objects containing the OOC matrices of the linear system AX = B, namely, A_ooc
for the matrix containing the entries of A ∈ R

ndimA×ndimA and B_ooc for those of
matrix B ∈ R

ndimA×ndimB.

The matrices involved in the problem are so large that they may not fit into the
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1 C /* *********************************************************************** */

2 C /* Initialization misc.: environment, process identifier, etc. */

3
4 call hdss_init_env()

5 call hdss_ooc_set_scratch_dir( ’/state/partition1’ )

6 call hdss_get_myid( me )

7 call hdss_get_slab( slab )

8 call hdss_get_numprocs( nprocs )

9
10 C /* *********************************************************************** */

11 C /* Store ndimA x ndimA matrix in OOC HDSS object A_ooc by slabs of columns */

12
13 allocate( R(ndimA, (slab/nprocs)+1)) )

14 call hdss_ooc_create_matrix( A_ooc, ’A’, ndimA, ndimA )

15 do j = 1, ndimA, slab

16 col_begin = j

17 col_end = min(ndimA, j+slab-1)

18 call hdss_get_mycolumns(col_begin, col_end, me_col_begin, me_col_end )

19
20 C /* initialize slab of columns in-core buffer R */

21 C /* ... */

22
23 call hdss_ooc_matrix_set_columns( R, A_ooc, col_begin, col_end )

24 enddo

25
26 C /* *********************************************************************** */

27 C /* Repeat the process for ndimA x ndimB matrix in OOC HDSS object B_ooc */

28 C /* ... */

29
30 C /* *********************************************************************** */

31 C /* Solve system and store the solution in B_ooc */

32
33 call hdss_ooc_lu(A_ooc, ipiv_ooc)

34 call hdss_ooc_lu_solve(A_ooc, ipiv_ooc, B_ooc)

35
36 C /* *********************************************************************** */

37 C /* Retrieve solution by slabs from OOC B_ooc to in-core buffer R */

38 do j = 1, ndimB, slab

39 col_begin = j

40 col_end = min(ndimB, j+slab-1)

41 call hdss_ooc_matrix_get_columns( B_ooc, R, col_begin, col_end )

42
43 C /* Do something with the solution slab in in-core buffer R */

44 C /* ... */

45 end do

46
47 C /* *********************************************************************** */

48 C /* Free memory and terminate environment */

49 deallocate( R )

50 call hdss_ooc_free_matrix( A_ooc )

51 call hdss_ooc_free_matrix( B_ooc )

52 call hdss_finalize()

Figure 2: Fragment of sample code that allocates and initializes two OOC matrices, A
and B (lines 13–29), solves the linear system AX = B overwriting the contents of B
with the solution (lines 34–35), and retrieves the solution by blocks of columns (lines
39–46).
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aggregated main memory of the cluster nodes. The solution is to rely on the aggregated
secondary memory (i.e., the disks) of the system. Thus, the OOC library stores the
elements on each process on a different file in the local disk the process is running
on. Function hdss_ooc_set_scratch_dir indicates the directory where these files are
stored for each process.

An additional problem of dealing with large matrices is that, during the initializa-
tion, one cannot store all their elements in the main memory of the processors; thus,
this stage also needs to proceed by blocks. In our example, we perform this local
manipulation by blocks of columns, or slabs, that are stored in an in-core buffer R on
the main memory of each processor; see the loop in line 15. During each iteration of
this loop, all processes invoke routine hdss_ooc_matrix_set_columns to initialize a
slab containing columns col_begin to col_end of the matrix. The routine distributes
the block of columns among the different processor following PLAPACK bidimensional
data layout. To assist in this slab-wise (or panel-wise) generation of the matrices, rou-
tine hdss_get_mycolumns returns the indexes of the initial and final columns of each
block of columns, me_col_begin and me_col_end respectively.

After the initialization is completed, the program solves the linear system. It first
uses routine hdss_ooc_lu to compute the LU factorization of matrix A, returning the
pivoting information in the HDSS object ipiv_ooc. It then solves the system invoking
routine hdss_ooc_lu_solve which overwrites object B_ooc with the solution to the
system.

Finally, once the system is solved, the solution is retrieved by slabs, using the in-
core buffer R to store them, with the help of routine hdss_ooc_matrix_get_columns.

In summary, most routines in the HDSS API can be considered collective operations
in the sense that they must be invoked by all processes to perform some collective action
in parallel. For example, all processes perform the same invocation to the routines to
create or fill the HDSS objects with data, to retrieve the data from the objects, or to
perform the LU factorization or the solution of the linear system.

3 Experimental results

All experiments in this section were performed on a cluster composed of 4 nodes, each
equipped with two Intel Quad Core E5520 processors operating at 2.27 GHz, with
36 GB of DDR3 main memory, and a single 250 GB SATA-HD at 7200 rpm. Peak
performance for a single node of this system in single precision arithmetic is 145.28
Gflops (128 × 109 floating-point arithmetic operations per second). Thus, the global
peak performance of the system is 4 × 145.28 = 581.12 Gflops. The interconnect is a
QDR Infiniband high-performance switch. Multi-threaded implementations of BLAS
and LAPACK are provided by MKL 10.2.

In the following, we report the performance of the OOC codes for the LU decompo-
sition in single-precision arithmetic. (The theoretical cost of the LU decomposition of
a dense matrix, in terms of floating-point arithmetic operations, is 2n3/3, and thus this
is the operation that dominates the cost of the system solution procedure via Gaussian
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elimination.) The data matrices appear in the modeling of the electrostatic properties
of recently synthesized metal-semiconductor nanostructures [5, 4]. For realistic models,
the size of the linear systems can be as large as 500, 000 × 500, 000. Single precision
arithmetic provides enough accuracy for the application. With these constraints, stor-
age of a 100, 000 × 100, 000 matrix (the coefficient of the linear system) requires more
than 40 GB of memory, which does not fit into the main memory of a single node.

To check the correction of the solution, in our tests with small problems we com-
puted the relative residual R(X∗) = ‖AX∗−B‖F /‖X∗‖F , where X∗ stands for the com-
puted solution of the system AX = B. In all those tests, we obtained R(X∗) ≤ 10−6.
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Figure 3: Performance of OOC codes in the solution of a linear system of dimension
51,239.

We first evaluate the in-core and OOC versions in order to asses the impact of
the disk storage on performance. In Figure 3 we report the performance of the OOC
codes as well as the maximum performance attained with the execution of the in-core
codes on 1, 2 and 4 nodes for a system with 51,239 equations. For 1 and 2 nodes,
the performance of the OOC codes is close to that of the in-core counterpart. If the
number of nodes is increased up to 4, the difference becomes more significant: when
four nodes are used to solve a problem of this dimension, the time needed to access the
data on disk is comparable to computation time, which yields an important decrease
in performance.

The plots in Figure 4 illustrate that, for the in-core codes, the exploitation of
process-level parallelism (1× 8× 1) clearly outperforms that of thread-level parallelism
(1 × 1 × 8). The behaviour of the OOC codes is similar.
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(c) 2 nodes, in-core
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(e) 4 nodes, in-core
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Figure 4: Performance on 1, 2 and 4 nodes of the in-core and OOC codes. Four different
parallelization alternatives are shown in each plot which illustrate different combina-
tion of the nodes/processes/threads numbers (<nodes>x<process>x<threads>). For
example, pure process-level parallelism is exploited by the tuples <nodes>x8x1 while
pure thread-level parallelism is given by the combinations <nodes>x1x8.
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4 Conclusions

In this paper we present a package that allows the solution of huge linear systems of
equations on a wide variety of platforms, from commodity workstations to large clusters
of computers. Our package is based on an OOC extension of PLAPACK library, namely,
POOCLAPACK.

We have designed our HDSS API so that the codes in these libraries can be easily
used by novel parallel programmers. The routines in the package involve a reduced
number of parameters and hide all the aspects regarding the distribution and storage
of the data and the parallel handling of the different tasks.

We have conducted an experimental analysis on a cluster equipped multi-core pro-
cessors and a high-speed interconnect. The results show that the package allows to solve
systems with up to hundreds of thousands of equations. We have exploited and com-
bined two different levels of parallelism, process-level (using PLAPACK) and thread-
level parallelism (using a multi-threaded implementation of the BLAS kernels). Our
results show good parallel performances, that in the case of the in-core version of the
routines are close to the peak of the processors: 478 Gflops on 32 cores. The per-
formance of the OOC codes is more modest for relatively small systems, but as the
dimension of the problem is increased, the performance gap between the two versions
narrows.
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Abstract

We present a new approach of the decoding algorithm for Gabidulin Codes. In
the same way as efficient erasure decoding for Generalized Reed Solomon codes by
using the structure of the inverse of the VanderMonde matrices, we show that, the
erasure decoding Gabidulin code can be seen as a computation of three matrice
and an affine permutation , instead of computing an inverse from the generator or
parity check matrix. This significantly reduces the decoding complexity compared
to others algorithms
For r erasures, where r = n − k, the erasure algorithm decoding for Gabn,k(g)
Gabidulin code compute the r symbols by simple multiplication of three matrices.
That requires r2+r(k−1) Galois field multiplications, r(r−1)+2rk field additions,
r2 + r(k + 1) field negations and r(k + 1) field inversions.

Key words: Gabidulin Codes, Generalized Reed solomon codes, Vandermonde
matrix, Cauchy matrix

1 Introduction

The Gabidulin codes are introduced in [2]. These codes are maximum rank distance
(MRD). They meet the best possible rank distance d = n + 1 − k, where k is the di-
mension of the code and n its lenght.
The Generalized Reed Solomon Codes are Maximum Distance Separable (MDS) for
the Hamming distance. (i.e. d′ = n′− k′+ 1 where n′ and k′ are respectvely the lenght
and the dimension of code).
Given an [n’, k’] Generalized Reed Solomon Codes (GRS); his generator matrix G(α′, v′)
can be written : G(α′, v′) = V (α′)D(v′) where V (α′) is a Vandermonde matrix and
D(v′) a diagonal matrix.
In [1] we describe the existence of an affine permutation ψ that conserves the Hamming
distance and transforms a Gabidulin code into a GRS code.
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Let be a Gabn,k(g) Gabidulin code, H his parity check matrix, H is also a Gabidulin
code of parameters (n, r). Then ψ(H) is a GRS code. So, we can write ψ(H) =
V (α)D(v). This transformation allows to use the structure of the inverse of the Van-
derMonde matrix in order to construct our algorithm.
This paper is organized as follows. First we recall the definitions known on diagonals,
vandermonde and Cauchy matrices and we recall results on the GRS codes and the
Gabidulin codes which take us in the section 2. In the section 3 we state mains results
and we describe our erasure decoding algorithm. In section 4 we discuss the complexity
of our decoding algorithm.

2 Preliminary

In this section we present the results known that we will use in order to prove our
results.

2.1 Diagonal matrix

Definition 2.1 Let be K a finite field. Given v = (v1, ..., vn), where (v1, ..., vn) ∈ K. we
define D(v) to be the n× n diagonal matrix as

D(v) =




v1 0 . . . 0
0 v2 . . . 0
. . . .
. . . .
. . . .
0 0 . . . vn




2.2 VanderMonde Matrix

Definition 2.2 Given k non-zero and distinct elements α = (α1, ..., αk) we define the
k × k VanderMonde matrix as

V (α) = v(α1, ..., αk) =




1 1 . . . 1
α1 α2 . . . αk

α2
1 α2

2 . α2
k

. . . .

. . . .

αk−1
1 αk−1

2 . . . αk−1
k




2.2.1

Let us put fi(z) =
∏

1≤t≤k,i6=t(z − αt) = Σ1≤r≤kaijz
r.

The inverse of the VanderMonde matrix is given by

(v(α1, ..., αk)−1)ij =
aij∏

1≤t≤k,i 6=t(αi − αt)
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2.3 Cauchy Matrix:

Definition 2.3 Let K be a field, xi ∈ K for 1 ≤ i ≤ k and yj ∈ K for 1 ≤ j ≤ r
such that {x1, ..., xk} are pairwise distinct and {y1, ..., yr} are pairwise distinct and
xi + yj 6= 0 for 1 ≤ i ≤ k and 1 ≤ j ≤ r .
The matrix 



1
x1+y1

1
x1+y2

. . . 1
x1+yr

1
x2+y1

1
x2+y2

. . . 1
x2+yr

. . . .

. . . .

. . . .
1

xk+y1

1
xk+y2

. . . 1
xk+yr




is called a Cauchy matrix over K generated by {x1, ..., xk} and {y1, ..., yr}.

2.4 Generalized Cauchy Matrix :

A k × r matrix A is a generalized Cauchy matrix if A = D(c)CD(d)
Where C is a k × r Cauchy matrix and c = (c1, ..., ck), ci 6= 0 for 1 ≤ i ≤ k and
d = (d1, ..., dr), dj 6= 0 for 1 ≤ j ≤ r.

2.5 Generalized Cauchy Codes

Let k ∈ N and k < n for some n ∈ N.
Let C be k× (n−k) Cauchy matrix over a field K. Let c = (c1, ..., ck) such that ci ∈ K
and ci 6= 0, ∀ 1 ≤ i ≤ k and d = (d1, ..., dn−k) where dj ∈ K and dj 6= 0 ∀ 1 ≤ j ≤ n−k.
Let A = D(c)CD(d) ( A is a generalized Cauchy matrix by definition ). Then the code
generated by the generator matrix [Ik|A] is called the generalized cauchy code.

2.6 Generalized Reed Solomon Codes

Definition 2.4 Let GF (qm) be a finite field with qm elements. Let n ∈ N with
1 ≤ n ≤ qm and α = (α1, ..., αn) an n-tuple of distinct elements of GF (qm) and
let v = (v1, ..., vn) be an n-tuple of non -zero elements of GF (qm). Let k ∈ N with
1 ≤ k ≤ n. Then the Generalized Reed Solomon codes, denoted by : GRSn,k(α, v) is
GRSn,k(α, v) = {v1f(α1), ..., vnf(αn)/f ∈ GF (qm)[x], deg(f) ≤ k − 1}.
We can thus write the generator matrix of Generalized Reed Solomon code as

G =




v1 v2 . . . vn

v1α1 v2α2 vnαn

.

.

. . . . . .
v1α1

k−1 v2α2
k−1 . . . vnαn

k−1




is noted GRSk(α, v).
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The set of GRSk(α, v) codes is called by Generalized REED SOLOMON codes fam-
ily.
So,

G =




1 1 . . . 1
α1 α2 αn

.

.

. . . . . .
α1

k−1 α2
k−1 . . . αn

k−1



×




v1 0 . . . 0
0 v2 0
.
.
. . . . . .
0 0 . . . vn




i.e. G(α, v) = V (α)D(v), where V (α) is a Vandermonde matrix and D(v) a diagonal
matrix.

2.7 Gabidulin Codes

Definition 2.5 Let g1, ..., gn ∈ GF (qm)n be n elements, which are linearly indepen-
dent over GF(q). The matrix

G =




g
[0]
1 . . . g

[0]
n

. . . .

. . .

. . .

g1
[k−1] . . . gn

[k−1]




where [i] = qi is of rank k, is a generator matrix of Gabidulin code.

2.7.1 Properties

• The linear code C with generator matrix G reaches the Singleton bound for
the rank metric, that is, let d be the minimum rank distance of C, we have
d− 1 = n− k.

• The dual of the Gabidulin code is a Gabidulin code.

Remark 2.6 In the sequel, we will note Gabn,k(g) the Gabidulin code of the lenght n,
the dimension k and generated by g

2.7.2 Definition of affine permutation

1. Let be Gabn,k(g) a generator matrix of Gabidulin code generated by g = (g1, ..., gn)
ψij is defined by

ψij : GF (qm) −→ GF (qm)

x 7−→ aijx
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where

aij =

∏

λ1,λ2,...,λk∈GF (q)

(gj − λigi −
k∑

l=1,l 6=i

λlgl)

gj − gi

with λi 6= 0 and (λ1, λ2, ..., λk) 6= (0, 0, ..., 0).
We are going to extend the action of ψij to GF (qm)n by the following form :

ψ : (GF (qm))n −→ (GF (qm))n

(x1, x2, x3, xj , ..., xn) 7−→ (x1, x2, x3, ψij(xj), ..., ψin(xn))

2. φ is affine permutation define by:

φ : (GF (qm))n → (GF (qm))n

(x1, ..., xr, xr+1, ..., xn) 7→ (x1, ..., xr, φi,r+1(xr+1), ..., φi,n(xn))

φ is an extension of φij and φij(xj) = a−1
ij xj for xj ∈ GF (qm)

3 Main results

In this section we state our main results

3.1 The Erasure Decoding Algorithm

Proposition 3.1 if c is a codeword of the Gabidulin code and H its parity matrix, the
following conditions are equivalents

1. Htc = 0

2. ψ(H)tφ(c) = 0.

Proof 3.2 Let us consider the [n, k] Gabidulin code generated by g = (g1, ..., gn). Its
parity matrix H = Gabn,r(h) is such that

H =




h1 h2 . . . hn

h
[1]
1 h

[1]
2 . . . h

[1]
2

. . . . . .

. . . . . .

. . . . . .

h
[d−2]
1 h

[d−2]
2 . . . h

[d−2]
n



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with d = n− k + 1
Let be c = (c1, ..., cn) is a word.
If c is codeword of Gabidulin code, then Htc = 0, that is to say




h1 h2 . . . hn

h
[1]
1 h

[1]
2 . . . h

[1]
2

. . . . . .

. . . . . .

. . . . . .

h
[d−2]
1 h

[d−2]
2 . . . h

[d−2]
n



×




c1

c2

.

.

.
cn




=




0
0
.
.
.
0




=⇒





h1c1 + h2c2 + ... + hncn = 0
h

[1]
1 c1 + h

[1]
2 c2 + ... + h

[1]
n cn = 0

. .

. .

. .

h
[d−2]
1 c1 + h

[d−2]
2 c2 + ... + h

[d−2]
n cn = 0

If c = (c1, ..., cn), then

tφ(c) =




c1

.

.

.
cr

φ(cr+1)
.
.
.

φ(cn)




So,

ψ(H)tφ(c) =




h1 h2 . . . hr ψ1,r+1(hr+1) . . . ψ1,n(hn)
h

[1]
1 h

[1]
2 . . . h

[1]
r ψ2,r+1(h

[1]
r+1) . . . ψ2,n(h[1]

n )
...

...
...

...
...

...
...

h
[d−2]
1 h

[d−2]
2 . . . h

[d−2]
r ψr,r+1(h

[d−2]
r+1 ) . . . ψr,n(h[d−2]

n )


×




c1

.

.

.
cr

φ(cr+1)
.
.
.

φ(cn)




where φ = (φij), with r − 1 ≤ j ≤ n and i depending of the line of the ψ(H) matrix.
So, we have ψ(H)tφ(c) =
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


h1c1 + . . . + hrcr + ψ1,r+1(hr+1)φ1,r+1(cr+1) + . . . + ψ1,n(hn)φ1,n(cn)

h
[1]
1 c1 + . . . + h

[1]
r cr + ψ2,r+1(h

[1]
r+1)φ2,r+1(cr+1) + . . . + ψ2,n(h[1]

n )φ2,n(cn)
...

...
...

...
...

...
h

[d−2]
1 c1 + . . . + h

[d−2]
r cr + ψr,r+1(h

[d−2]
r+1 )φr,r+1(cr+1)+ . . . + ψr,n(h[d−2]

n )φr,n(cn)




since ψij(X) = aijX and φij(y) = a−1
ij , then we have ψij(hj)φij(cj) = hjcj, with

r + 1 ≤ j ≤ n and 1 ≤ i ≤ r
Therefore ψ(H)tφ(c) = 0 is equivalent to Htc = 0

Remark 3.3 Let be Gabn,k(g) a Gabidulin code. If c is not a codeword of Gabidulin
code, we have the following equivalent. Htc 6= 0, then ψ(H)tφ(c) 6= 0.

Theorem 3.4 Let c ∈ Gabn,k(g) and Gabn,k(g)⊥ = Hn,r(h) with r = n − k. Let us
suppose that the erasures are at locations {e1, ..., er} ⊂ {1, ..., n}. Let {d1, ..., dk} =
{1, ..., n} \ {e1, ..., er} be the non-erasure locations, then.




ce1

.

.

.
cer




= −D(y)CD(X)




φd1,d1(cd1),
.
.
.,

φdk,dk
(cdk

)




With y =
(

v−1
1
ξ1

, . . ., v−1
r
ξr

)
, X =

(
vd1ζ1, . . ., vdk

ζk

)
, where (v1, ..., vn) is

come from by calculating ψ(H) = V (u)D((v1, ..., vn))

ξi = Π1≤t≤r(uei − uet) 1 ≤ i ≤ r ei 6= et

ζj = Π1≤t≤r(udj − uet) 1 ≤ j ≤ k

C is a cauchy matrix generated by {−ue1 , ...,−uer} and {ud1 , ..., udk
}

Proof 3.5 Let be G the generator matrix of Gabn,k(g) over GF (qm) and H its parity
matrix. H = Gabn,r(h) where r = n− k
Since ψ(H) is a generator matrix of GRS code i.e. ψ(H) = GRSn,r(u, v),
we have: ψ(H) = [l1, ..., ln] = Vr(u)D(v) where Vr is a r× n VanderMonde matrix and
D is a n× n diagonal matrix.
Let us put ψ(M) = D(v̂)[V (ue1 , ..., uer ]−1ψ(H) where v̂ = (v−1

1 , ..., v−1
r ), ψ(M) is a

r × n matrix.
Let be c = (c1, ..., cr) and φ(c) = (c1, ..., cr, φ(cr+1, ..., φ(cn))
ψ(M)tφ(c) = D(v̂)[V (ue1 , ..., uer ]−1ψ(H)tφ(c)
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Let us show that ψ(M) is a parity matrix of the code of generator matrix φ(G)

if c is a codeword of Gabn,k(g), ψ(H)tφ(c) = 0 according to Proposition3.1.
Moreover D(v̂) 6= 0 and [V (ue1 , ..., uer ]−1 6= 0 because they are invertible matrices.
So, ψ(M)tφ(c) = 0 ⇐⇒ ψ(H)tφ(c) = 0.

In the same way, if c is not a codeword of Gabidulin code, ψ(M)tφ(c) 6= 0 ⇐⇒
ψ(H)tφ(c) 6= 0.
Therefore ψ(M) is a parity matrix of the code of generator matrix φ(G).

Let us put ξ̂ = [ 1
ξ1

, ..., 1
ξr

], with ξi =
∏

1≤t≤r,ei 6=et

(uei − uet)

Let us put fi(z) =
∏

1≤t≤r,ei 6=et

(z − uet) =
∑

1≤s≤r−1

ai,sz
s

[V (ue1 , ..., uer ]
−1 =

( ai,j−1∏

1≤t≤r,ei 6=et

(uei − uet)

)

ij

=
(

1
ξi
× ai,j−1

)
ij

=




1
ξ1

0 . . . 0
0 1

ξ2
... 0

. . .
0 . . . 1

ξr


×




a1,0 . . . a1,r−1
...

. . .
...

ar,0 . . . ar,r−1




We have, by replacing ψ(H) by its expression
ψ(M) = D(v̂)[V (ue1 , ..., uer)]−1ψ(H)

= D(v̂)[V (ue1 , ..., uer)]−1Vr(u)D(v)

= D(v̂)




1
ξ1

0 . . . 0
0 1

ξ2
... 0

. . .
0 . . . 1

ξr


×




a1,0 . . . a1,r−1
...

. . .
...

...
. . .

...
ar,0 . . . ar,r−1




Vr(u)D(v)

ψ(M) =




v−1
1
ξ1

0 . . . 0

0 v−1
2
ξ2

... 0
. . .

0 . . . v−1
r
ξr



×




a1,0 . . . a1,r−1
...

. . .
...

...
. . .

...
ar,0 . . . ar,r−1



×




1 . . . 1
...

. . .
...

...
. . .

...
ur−1

1 . . . ar−1
n




D(v)

Let us put W = D(v̂ξ̂)
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ψ(M) = W




r−1∑

t=0

a1,tu
t
1 . . .

r−1∑

t=0

a1,tu
t
n

...
. . .

...
r−1∑

t=0

ar,tu
t
1 . . .

r−1∑

t=0

ar,tu
t
n




D(v)

Let us put

S =




r−1∑

t=0

a1,tu
t
1 . . .

r−1∑

t=0

a1,tu
t
n

...
. . .

...
r−1∑

t=0

ar,tu
t
1 . . .

r−1∑

t=0

ar,tu
t
n




Let us denote si with 1 ≤ i ≤ n the columns of S , we have S = [S1, ..., Sn], where
Si = [f1(ui), f2(ui), ..., fr(ui)]⊥ with fi defined as in subsection 3.1.
ψ(M) = WSD(v)
ψ(M) = D(v̂ξ̂)SD(v)
ψ(M) = D(v̂)D(ξ̂)SD(v)
Let be i ∈ {e1, ..., er}, let us put i = eλ for λ ∈ {1, ..., r}. Then

Seλ
=




f1(ueλ
)

...
fr(ueλ

)


 =




∏

1≤t≤r,e1 6=et

(ueλ
− uet)

...∏

1≤t≤r,er 6=et

(ueλ
− uet)




Thus, we have

fµ(ueλ
) =





∏

1≤t≤r,eµ 6=et

(ueλ
− uet) if eµ = eλ

0 otherwise

For µ ∈ {1, ..., r}. Since we can write ξµ =
∏

1≤t≤r,eλ 6=et

(ueλ
− uet)

and so, we can rewrite fµ(ueλ
) =

{
ξµ if eµ = eλ

0 otherwise
When i 6∈ {e1, ..., er}, then i = dρ for some ρ ∈ {1, ..., k}
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Then

Sdρ =




f1(udρ)
...

fr(udρ)


 =




∏

1≤t≤r,e1 6=et

(udρ − uet)

...∏

1≤t≤r,er 6=et

(udρ − uet)




= ζσ




1
udρ−ue1

...
1

udρ−uer




where ζµ =
∏

1≤t≤r

(udρ − uet)

Since we have ψ(M)tφ(c) = 0

⇐⇒ D(v̂)D(ξ̂)SD(v)tφ(c) = 0

D(v)tφ(c) =




v1 0 . . . 0
0 v2 0
...
...

. . . 0
0 . . . 0 vn







c1
...
cr

φ(cr+1)
...

φ(cn)




and we can D(v)tφ(c) = [v1c1, ..., vrcr, vr+1φr+1,r+1(cr+1), ..., vnφn,n(cn)]⊥

and so by multiplying by the S matrix at left we have :

SD(v)tφ(c) =
n∏

i=1

sivici

SD(v)tφ(c) =
r∏

i=1

seiveicei +
k∏

i=1

sdivdiφdi,di(cdi)

We have D(v̂)D(ξ̂)SD(v)tφ(c) = WSD(v)tφ(c)

WSD(v)tφ(c) =
r∏

i=1

Wseiveicei +
k∏

i=1

Wsdivdiφdi,di(cdi) (1)

1. Now, when t ∈ {e1, ..., er} and t = eλ

Wseλ
veλ

ceλ
= W




0
...
0

ξeλ
veλ

ceλ

0
...
0



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Wseλ
veλ

ceλ
= D([

v−1
1

ξ1
, ...,

v−1
r

ξr
])




0
...
0

ξeλ
veλ

ceλ

0
...
0




Wseλ
veλ

ceλ
=




v−1
1
ξ1

0 . . . 0

0 v−1
2 0

...
...

. . . 0
0 . . . 0 v−1

r
ξr



×




0
...
0

ξeλ
veλ

ceλ

0
...
0




Where ξeλ
veλ

is at the λth position in the array. Simplifying further we have

Wseλ
veλ

ceλ
=




0
...
0

v−1
eλ

ξeλ
ξeλ

veλ
ceλ

0
...
0




=




0
...
0

ceλ

0
...
0




With ceλ
is at the λth position in the array. Thus, we have

Wseλ
veλ

ceλ
=




0
...
0

ceλ

0
...
0




further we have

r∏

i=1

Wseiveicei =




ce1

...
cer


 (2)
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2. When t 6∈ {e1, .., er} then t ∈ {d1, .., dk} and let us put t = dρ

Wsdρvdρφdρ,dρ(cdρ) = W




1
udρ−ud1

...
1

udρ−udr


 ζρvdρφdρ,dρ(cdρ)

and so,

k∑

i=1

Wsdivdiφdi,di(cdi) = W
k∑

i=1

(




1
udt

−ud1
...
1

udt
−udr


 ζtvdtφdt,dt(cdt))

We can simplifying further by writing

k∑

i=1

(




1
udt

−ud1
...
1

udt
−udr


 ζtvdtφdt,dt(cdt)) =




1
ud1

−ue1
. . . 1

udk
−ue1

...
. . .

...
1

ud1
−uer

. . . 1
ud1

−uer


×




ζ1vd1φd1,d1(cd1)
...

ζkvdk
φdk,dk

(cdk
)




where

C =




1
ud1

−ue1
. . . 1

udk
−ue1

...
. . .

...
1

ud1
−uer

. . . 1
ud1

−uer




is a Cauchy matrix generated by {−ue1 , ...,−uer} and {ud1 , ..., udk
}

Thus ,
k∑

i=1

Wsdivdiφdi,di(cdi) = WC




ζ1vd1φd1,d1(cd1)
...

ζkvdk
φdk,dk

(cdk
)


 (3)

Considering the relations (2) and (3), the relation (1 =) become, since ψ(M)tφ(c) = 0

r∏

i=1

Wseiveicei +
k∏

i=1

Wsdivdiφdi,di(cdi) = 0

Thus 


ce1

...
cer


 + WC




ζ1vd1φd1,d1(cd1)
...

ζkvdk
φdk,dk

(cdk
)


 = 0

⇐⇒




ce1

...
cer


 = −WC




ζ1vd1φd1,d1(cd1)
...

ζkvdk
φdk,dk

(cdk
)




=⇒




ce1

...
cer


 = −D([

v−1
1

ξ1
, ...,

v−1
r

ξr
])C




ζ1vd1φd1,d1(cd1)
...

ζkvdk
φdk,dk

(cdk
)



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So, we have



ce1

...
cer


 = −D([

v−1
1

ξ1
, ...,

v−1
r

ξr
])× C ×D([vd1ζ1, ..., vdk

ζk])×




φd1,d1(cd1)
...

φdk,dk
(cdk

)




3.1.1 Algorithm

1. compute ξi, ζj , the cauchy matrix C and φ

2. compute X ′ =
(

vd1ζ1φd1,d1(cd1), . . ., vdk
ζkφdk,dk

(cdk
)

)

3. compute X̂ = CX ′

4. compute −D
(

v−1
1
ξ1

, . . ., v−1
r
ξr

)
X̂

gives the values at the erasure locations {e1, ..., er}.

4 Analysis of Decoding complexity

In this section we discuss the complexity of the algorithm. Since the codes are defined in
a field GF . It has two operations:addition and multiplication. Thus, we do an analysis
of the complexity of the decoding algorithm by counting the number of additions,
negations (additive inverse of an element),multiplications and inversions (multiplicative
inverse of an element ) required for the decoding algorithm.

Proposition 4.1 The erasure decoding algorithm for Gabidulin codes describe above,
require r2 + r(k + 1) negations, r(r − 1) + 2rk additions, r2 + r(k − 1) multiplications
and r(k + 1) inversions.

Proof 4.2 1. ξi = Π1≤t≤r(αei − αet) 1 ≤ i ≤ r ei 6= et is calculated in r − 1
negations, r − 1 additions and r − 2 multiplications.

2. ζj = Π1≤t≤r(αdj − αet) 1 ≤ j ≤ k. to calculate ζj we need k negations, k
additions and k − 1 multiplications

3. −D
(

v−1
1
ξ1

, . . ., v−1
r
ξr

)
requires r2 negations, r(r − 1) additions, r(r − 1)

multiplications and r inversions

4.
(

vd1ζ1φd1,d1(cd1), . . ., vdk
ζkφdk,dk

(cdk
)

)⊥ requires rk negations, rk addi-
tions and rk multiplications

5. C is a r × k cauchy matrix, we need r negations, rk additions and rk inversions
Thus in total, we need : r2+r(k+1) negations, r(r−1)+2rk additions, r2+r(k−1)

multiplications and r(k + 1) inversions.
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.

Remark 4.3 To decode each codeword, we first calculed
x1 =

[
vd1ζ1φd1,d1(cd1), . . ., vdk

ζkφdk,dk
(cdk

)
]⊥ which takes k multiplications as

vjζj and φdj ,dj
(cdj

) have already been calculated.
Next, we calculate x2 = Cx1 which takes r(k − 1) additions and rk multiplications.
Finally, we calculate 


ce1

...
cer


 = D(−[

v−1
1

ξ1
, ...,

v−1
r

ξr
])x2

, which takes r multiplications.
Thus, in total we have r(k − 1) additions and rk + n multiplications.

If

ψ(M) = −D([
v−1
1

ξ1
, ...,

v−1
r

ξr
])CD(vd1ζ1φd1,d1(cd1), ..., vdk

ζkφdk,dk
(cdk

))

is compute first, then decoding takes rk multiplications and r(k − 1) additions while
setting up the structures for decoding requires further 2rk multiplications. Thus, totaling
:r2 + r(k − 1) + 2rk = r2 + r(3k − 1) multiplications.

5 Conclusion

In this paper we described an erasure decoding algorithm for Gabidulin codes by uti-
lizing the structure of the inverse of the VanderMonde matrix. We have shown that
this new algorithm compute the erasure locations fixed by a single multiplication of
three matrices; two of which are diagonal matrices and the other is a cauchy matrix.
This reduces significantly the decoding complexity compared to matrix inverse based
decoding algorithm.
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Abstract

In this paper we explore the problem of mapping game services of MMOFPS
(First Person Shooter games) games in a hybrid architecture, called OnDeGas
(On Demand Game Service), that combines the functionalities of a centralized
server infrastructure with a distributed P2P topology. We propose and analyze
two mapping strategies, for OnDeGas, that differ in the way that they tackle the
heterogeneity, in the number of cores, of nodes in the P2P area. We show through
simulation that both mapping mechanisms are able to provide a distributed plat-
form that scales on demand. However, they differ in performance, as it can be seen
that taking into account heterogeneity provides a better use of resources and faster
mapping decisions at the expense of having more communication overhead and a
broader variability of latency values.

Key words: MMOFPS, Mapping, Heterogeneity, Distributed System.

1 Introduction

Massively Multiplayer Online Games (MMOG) are the most popular genre in the com-
puter game world [6]. They can be divided into three categories: MMORPG (Mas-
sively Multiplayer Online Role Playing Games), MMORTS (Massively Multiplayer On-
line Real Time Strategy) and MMOFPS (Massively Multiplayer Online First Person
Shooter). The execution requirements vary with the way of playing in each of them
[11]. On the one hand, MMORPG and MMORTS can have thousands of players in
a single party, so bandwidth is an important feature for supporting them [5]. On the
other hand, in MMOFPS, players are divided into many isolated game sessions each
with a handful of players who are continuously interacting. Thus, response latency is
the key factor in this case.

According to that, the strategies to optimize the execution of MMOGs, in current
distributed platforms, are different depending on the category they belong to. In this
paper, we focus on the optimization of MMOFPS games. Traditionally, client-server
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systems have been the platforms to provide service to massively networked games.
However, when the number of players increases, this approach reaches its limits due to
problems of scalability.

The research community has proposed some alternatives to overcome client-server
limits with decentralized structures, where each machine contributes to, and benefits
from, a large service oriented network. Some works have focused on the game itself to
serve MMORPG. These solutions are based on splitting the game world into different
subspaces and distributing them into the decentralized nodes [8] [7], or to group players
according to the load on the map [9]. Unfortunately, these proposals do not fit into the
specific features of the MMOFPS games, mainly due to their low latency requirements
and the length of game sessions. In the specific case of MMOFPS, Bharambe et al [3]
proposes a solution for a pure P2P system. The increase in latency time, inherent to
this kind of architecture, is solved by proposing new rules in many features of current
MMOFPS games, such as the size of the AOI (Area of Interest) of players in order to
decrease the number of messages that players transfer to each other. These improve-
ments need to be included in the internal code of the game, which implies important
implementation efforts. Unlike Bharambe works, our efforts are focused to propose a
scalable architecture oriented to MMOFPS, which assures the players’ latency below a
specific satisfaction threshold without changing the internal code of games.

According to our aims, we propose a new system named OnDeGaS (On Demand
Game Service), devoted to mapping the MMOFPS game sessions without affecting the
game’s internal code. OnDeGaS is a hybrid system, which is made up of a central
server and a set of temporary servers, distributed throughout a P2P topology. The
central server executes several game services as long as it is not overloaded; in the case
of an overload situation in the central server, due to a peak number of players, new
game sessions are mapped into the P2P topology. An initial version of OnDeGaS was
reported in [1], focusing on the assignment of game sessions of a MMOFPS in the dis-
tributed area, without considering physical differences in player’ machines. However,
heterogeneity is an inherent property of these nodes and so, it is a key issue to im-
prove the efficiency of the system. For this reason, in this work, two mapping policies,
Non Heterogeneity aware and Heterogeneity aware, are proposed and analyzed. When-
ever the central server is overloaded, Non Heterogeneity aware mechanism selects a new
distributed game server, among waiting players, taking exclusively latency criteria into
account. The Heterogeneity aware policy applies a variation of previous lookup mecha-
nism taking advantage of all available computational resources throughout the system.
Thus, it maps the new game sessions into the available cores of the game servers already
created.

The effectiveness of our approaches has been evaluated by means of simulation.
Our results show that the OnDeGaS scales on demand. Moreover, the Heterogene-
ity aware mechanism provides a better use of resources and faster mapping decisions,
at expense of having more communication overhead and higher latency variability. How-
ever, Non Heterogeneity aware policy, has more stable latency values, slower mapping
decisions and avoids the communication overhead.

The remainder of this paper is organized as follows. Section 2 describes the OnDe-
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GaS system composed of a set of algorithms and methodologies. Section 3 evaluates
the performance of the proposed mapping policies of the system in terms of scalability
and QoS. Section 4 outlines the main conclusions and future work.

2 OnDeGaS System Description

In this section, the OnDeGaS system is described globally, discussing the components,
their operation and implementation details.

2.1 System Model

Figure 1 shows the OnDeGaS system that is composed of two main areas: one central
area performing central services and a distributed area with several zones that grow in
a P2P like fashion.

Figure 1: OnDeGaS system global vision.

The central area is devoted to performing the global control of the system and
also to supplying players with services. The components of the central area are the
following:

• Master Server (MS). It is the system’s main server and acts as the bootstrap
point. All the players requesting to enter the system will attempt to connect to
it.

• Waiting Queue (WQ). This is a logical space in MS used to insert those players
who cannot be served due to overload situations. It is a transitory state for
players, who will be distributed in a short term.

• Zones Queue (ZQ). This is a logical space in MS used to keep the information
about the created zones updated. This information is used for distributing players
to the already created zones.
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The distributed area is composed of players’ machines that are logically grouped
in zones, which are locally circumscribed places running physically out of the MS con-
forming a distributed platform. A Zone number i, Zi, in the system, has the following
components:

• Zone Server (ZS). This is the current server of the Zone.

• Replicated Zone Server (RZS). This is the current replicated server of the Zone.
It has the role of implementing fault tolerance policies.

Regarding games that are to be executed on this platform, we distinguish the
following elements:

• Player (Pi). A Player number i, Pi, is a client who connects to the system in
order to play a MMOFPS.

• Game Service (GS). It is an instance of a game, where a set of players is connected
to play. Each GS will be hosted in the MS or in a single core of a ZS. At
any moment, each GS can be in two different states: active when players are
interacting in the GS, or over, when the GS has ended due to player disconnections
or caused by the rules of the GSs. Normally, in MMOFPS, the number of players
per GS is in the order of tens, while the length of the GS is in the order of a few
minutes.

• Zones Notifications (ZN). These are the set of N Zones that have sent a message
to the MS to notify that their respective GSs are over. In this case, the MS will
decide if the zone’s players can be reaccepted.

2.2 System Operation

The operation of the OnDeGaS platform is a hybrid between the classical centralized
client-server model, performed in the central area, and the distributed P2P model,
performed in Zones. The main idea of system operation consists of executing a set of
GSs in the central area until it reaches the limit of its capabilities. When no more
players can be accepted by the MS, new zones are dynamically created to avoid large
waiting times for players, and to provide scalability to the system.

The system operation is controlled by the continuous execution of Algorithm 1,
which has two input flows: new player connections (Pi) and the set of zones (ZN ) that
have ended their GS and want to enter the MS.

At each iteration of Algorithm 1, the MS checks its state (MS.state). If it is
overloaded, new player connections will be en-queued to the WQ. After en-queuing, the
MS checks if the number of players in the WQ is greater than or equal to a predefined
value α, or whether the uptime of the WQ is greater than or equal to a predefined value
β, too. If any of these two conditions is true, the MS will execute the mapping function
(MS.mapping(WQ)) to distribute players. This mapping policy can be undertaken
using one of the two following mechanisms that will be discussed in next subsection:
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Input: ∀Pi connecting to MS
Input: ZN = {Zi, Zi+1, . . . , Zn−i, Zn} notifying to MS

while True do
switch MS.state() do

case MS.state() == OVERLOAD
if ∃ Pi then MS.enqueue(WQ,Pi);
if (WQ.size() ≥ α) or (WQ.uptime() ≥ β) then MS.mapping(WQ);

end
case MS.state() == NOT OVERLOADED

if WQ.uptime() ≥ β then
forall Pi in WQ do

MS.accept(Pi);
end

if ZN 6= ∅ then MS.reaccept(Pi);
if ∃ Pi then

if MS.state() == NOT OVERLOADED then
MS.accept(Pi);

else MS.enqueue(WQ,Pi);

end

end

end

Algorithm 1: OnDeGaS main Algorithm.

(a) Non Heterogeneity aware, that distributes one GS per zone independently of the
physical characteristics of nodes and, (b) Heterogeneity aware that distributes GSs to
zones according to the number of cores of player’s nodes.

In the case that the MS state is not overloaded, Algorithm 1 evaluates the three
following conditional statements:

• The first condition evaluates if the uptime of the WQ is greater than or equal to β;
if so, players located in the WQ will be accepted to play in the MS (MS.accept()).
This acceptance flow acts like a FIFO, the first player en-queued in the WQ is the
first to be reconnected to the MS if it has enough space. This way, the OnDeGaS
system rewards the players with more patience.

• The second conditional statement gives priority to enter to the MS, players of
those zones that sent an over message to notify that they have finished the GS,
and they want to start another GS in the MS. This happens whenever a round
of the game has finished and players are waiting for the next round. In this case,
if the set of notifying zones, ZN , is not empty, the MS executes the Reaccept
function. For each Zone, Zi, in ZN , the MS re-accepts it, if it has enough free
space for all players of Zi. In this case, Zi is deleted from ZN . Note that the
algorithm tries to prioritize that all players of the re-accepted Zone are connected
to the same GS in the MS to avoid fragmentation of the zones’ players. If there
is not enough space in the MS, a deny message is sent to Zi notifying that it can
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start a new GS. Note that distributed players are playing continuously in the MS
or in the zones, and the time transitions are of the order of seconds, which is an
acceptable delay for the players.

• The last conditional statement evaluates the existence of new players trying to
connect to the system. These new players will be accepted to the MS if it is not
overloaded, or they will be en-queued to the WQ (MS.enqueue()) in other case.

2.2.1 Mapping function

The mapping function MS.mapping(WQ) is in charge to distribute the players located
in the WQ to a Zone. Depending on the mapping policy, players located in the WQ
will be assigned to a new Zone (Non Heterogeneity aware) or to a to an already created
Zone in the distributed area (Heterogeneity aware).

Note that the two mapping policies proposed in this paper are based on the latency
requirements of such kind of games, and the difference between both is focused on taking
into account heterogeneity of nodes according to the number of cores.

Non Heterogeneity aware. The mapping function MS.mapping(WQ) will create a
new Zone as it is shown in Algorithm 2. This function executes the lowest latency
function to find the best ZS, and the best RZS (the implementation details for the
lowestLatency function are discussed in subsection 2.3). Then, all players in the WQ
are linked to the new ZS (ZS.accept()). In addition, these players are also linked to
RZS (RZS.accept()) with the aim that RZS keeps the same information as ZS updated.
Finally, a Zone Zi comprises the ZS, RZS and the players that both of them manage.
Thus, a fault tolerance mechanism is maintained by the system (see section 2.3).

Input: WQ

MS.mapping(WQ):
begin

ZS, RZS = MS.lowestLatency(WQ);
foreach Pi ∈ WQ do

ZS.accept(Pi);
RZS.accept(Pi);

end
Zi = {ZS ∪ RZS};

end

Algorithm 2: Non Heterogeneity aware mapping function.

Heterogeneity aware. The mapping function MS.mapping(WQ) (see Algorithm 3)
will firstly try to distribute the players located in the WQ to an already created Zone
contained in ZQ. If the previous function fails, then the MS will create a new Zone.

This mapping function begins with a loop that will add, those zones of ZQ whose
ZS has at least one free core (ZS.freeCores()) to a local variable called AvailableZones.
Each free processor can host a GS composed of all players located in the WQ. If there is
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Input: ZQ,WQ

MS.mapping(WQ):
begin

AvailableZones =∅;
forall ((ZS and RZS) ∈ Zi)) ∈ ZQ do

if (ZS.freeCores() and RZS.freeCores()) then
AvailableZones =AvailableZones +{Zi};

end
if (AvailableZones!= ∅) then

Zi=MS.lowestLatency(AvailableZones);
Zi.Accept(WQ);

else
ZS=MS.lowestLatency(WQ);
RZS=MS.lowestLatency(WQ-{ZS});
if (ZS.freeCores() > RZS.freeCores()) then swap(ZS,RZS);
ZS.accept(WQ);
RZS.accept(WQ);
Zi = {ZS ∪ RZS};
ZQ = ZQ + Zi;

end

end

Algorithm 3: Heterogeneity aware Mapping function.

a zone available, the function will select the one which has the lowest latency between
the respective ZS and the MS (MS.lowestLatency()). Then the ZS and RZS of the
selected Zone will accept all players located in the WQ. If no Zone is found, then a
new Zone is created; first of all, it is executed the lowest Latency function to find the
best ZS and the best RZS, in latency and computational resource terms. Moreover, the
function ensures that RZS is able to serve at least the same number of GSs as the ZS to
avoid problems when the fault tolerance mechanisms acts (if statement with function
swap). Then, all players in the WQ are linked to the new ZS (ZS.accept()) and to the
RZS (RZS.accept()) with the aim of RZS keeping the same information as the updated
ZS. Thus, a fault tolerance mechanism is maintained by the system (see section 2.3).
Then, a Zone Zi comprises the ZS, the RZS and the set of players previously located in
the WQ. Finally, the created zone is added to the ZQ variable, in order to reuse them
in future situations of overload in MS.

2.3 Implementation Issues

The following issues need to be considered for the proper performance of the system:

Lowest Latency Functionality. Lowest Latency function presented in Algo-
rithms 2 and 3 is based on a loop that checks the latency of all the ZS located in the
ZQ with respect to the MS. Then, it selects the closest Zone to the MS to assign the
players located in the WQ. It guarantees that the ZS will be very similar to the MS (in
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latency terms) for the most players located in the WQ.

System Overload State. The state of system overload is determined by the
number of concurrent players playing in the MS. According to many authors, this is
the most important factor for determining the overload condition in MMOFPS [2, 11, 5],
as it has been proved experimentally that the number of concurrent players is directly
related to the CPU and network usage.

Free Cores Functionality. In Algorithm 3, the freeCores function is used. This
function returns the number of free cores of the ZS or RZS (depending on which node
executes the function). The studies carried out by Ye and Cheng in [11] show that with
an idle processor, is possible to easily provide an MMOFPS with QoS service. Likewise,
our system assumes that the player’s computational resources are totally dedicated to
the MMOFPS and therefore, it is feasible to take advantage of all these computational
resources of a player. Thus, the maximum number of GSs that a Zone is able to execute
is equal to the number of cores of the ZS, being that, a ZS reserves a core to run its
own GS when the ZS is involved in a player role, apart from the ZS role.

Fault Tolerance. In the OnDeGaS system, the fault tolerance mechanism is
introduced by the use of the RZS. The role of the RZS is to replace the ZS in case of
failure. For this reason, players in the distributed area play against the ZS and its RZS,
and the ZS sends the game state to both, players and the RZS. In the previous work
reported by the authors [1], there is a detailed explanation and performance analysis
of the fault tolerance mechanism, when it is applied to a homogeneous distributed
platform with a simple processor in each node.

3 Experimental Results

In this section, an experimentation process is conducted to demonstrate the feasibility
and good performance of the proposed OnDeGaS system as well as to compare the
influence in performance of the two presented mapping mechanisms for the distributed
area. The idea is to show that it configures a dynamically scalable-on-demand platform
and also that OnDeGaS provides a good game experience system with both mapping
policies, albeit with differences in performance in terms of latency, number of created
zones, waiting time for players located in the WQ and communication costs.

The experimentation was performed through simulation using SimPy [10]. SimPy
is a discrete-event simulation language based on standard Python. SimPy tools have
been used with python classes to implement the nodes of the platform, which can
develop four distinct roles: player, ZS, RZS and MS. SimPy procedures, allow random
behavior of the simulation to be created to represent the real behavior of a gamer.

Each simulation consists of 100, 000 player connections to the MS. The connections
are sequential with constant inter-arrival time (≈ 1 second) to submit the MS to a
constant stress situation or constant peak load, in order to verify that the distributed
area is dynamically adapted to the on-demand queries of players. When the MS reaches
its limit, 2, 000 concurrent players, (since the computational resources of a typical single
machine server can support 2, 000 to 6, 000 concurrent clients [8]), no more players will
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be accepted, and new ones will be distributed to zones. Another important issue is
the calculus of the players’ latency against MS. This is determined by a triangulated
heuristic, delimiting the 2-Dimensional Euclidean Space to (x = [−110,+110], y =
[−110, 110]). This methodology is based on the relative coordinates explained in [4].
Furthermore, each player has a lifetime determined by a Weibull distribution scaled
from 0 seconds up to 24 hours. For the parameters α and β used in Algorithm 1,
we considered the values of 32 players and 120 seconds respectively, it having been
demonstrated in [1], that they are appropriate values to ensure a good performance
of the whole system. The GS of a Zone is over (able to try a reconnection to the
MS) when 900 seconds have passed [3] since the Zone creation on average; following an
exponential distribution.

The platform of the distributed area was considered with one core per node in the
non heterogeneous case, while an even distribution of 2, 4 and 8 cores in each node has
been considered when the Heterogeneity aware mapping policy was applied.

According to the assumptions and functionalities established in the simulation pro-
cess, we show in next Subsection, the performance provided by the OnDeGaS system
according to the mapping mechanisms. The cases of the study are: ability to scale the
distributed area determined by the number of created zones and the QoS of the system,
measured by the zone’s average latency and the waiting queue time.

3.1 Performance Evaluation

(a) Players in MS and Zones. (b) Created Zones.

Figure 2: Study of the scalability performance of the mapping policies.

The scalability of the OnDeGaS system indicates its ability to manage more zones
on demand while the latency values of the whole system are maintained under an
acceptable threshold.

Figure 2a outlines, in logarithmic scale, the number of players served in the central
and the distributed area. The line which starts at time 0 represents the concurrent
MS players over time. When the MS reaches to its limit (2, 000 concurrent players),
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i.e. it is overloaded, no more players will be accepted, and new ones will be distributed
to zones (top line). As can be observed, Figure 2a shows the huge difference between
the number of concurrent players centralized in the MS and those playing distributed
in zones. Note that this extra number of players would be rejected by the server of a
traditional client-server architecture, thus reflecting the benefits of our proposal.

We studied the evolution in the number of created zones, for 50 different simula-
tions, using both mapping policies. Figure 2b shows the average number of created
zones. The top solid line corresponds to Non Heterogeneity aware mapping alternative
with 1 core per node. The bottom dashed line represents the case of Heterogene-
ity aware mapping policy where players can can have 2, 4 or 8 cores with the same
proportion of each. As can be observed, the distribution performed by Heterogene-
ity aware is able to exploit the additional cores of the heterogeneous system, as it
creates a lower number of zones with more GSs in all cases. On average, the number
of created zones falls from 1690 with the Non Heterogeneity aware policy to 400 with
the other mapping policy.

(a) Latency in zones. (b) Players time elapsed in the Waiting Queue.

Figure 3: QoS evaluation of mapping policies.

Figure 3 shows the impact of the two mapping mechanisms in the QoS of the
system. Figure 3a shows the average latency in zones, in ms, with the same system
assumptions that were evaluated in Figure 2b. As can be observed, latency values
have similar average in both cases. However, they flow in a broader interval in the
Heterogeneity aware case. This is due to the fact that in this alternative fewer zones
are created and so, the set of potential ZS to distribute players located in the WQ was
fewer. However, it is worth remarking that in all the cases, for both mapping policies,
latency values are below the maximum acceptable threshold for MMOFPS (180 ms).

Figure 3b shows the waiting time for players located in the WQ before they are
distributed to zones. The experiment reveals a significant impact depending on the
mapping policy. Whenever a new Zone is created, a new ZS and RZS must be searched
for. This process takes some seconds, which can be considered constant (30 seconds on
average). This situation happens continuously with Non Heterogeneity aware mapping
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policy as indicated by the average of 36.9 ms. Nevertheless, this happens less often with
the other mapping mechanism, as more players are mapped to zones already created,
giving an average of 25.12 ms in this case.

Another aspect to consider is the influence in the communication overhead associ-
ated to the process of creating new zones of both mapping policies. There is no need to
check the already created zones for Non Heterogeneity aware, then the communication
cost between the MS and the rest of zones in that case is none. However, for Hetero-
geneity aware, before creating a new Zone, Algorithm 3 checks in ZQ if there is any
ZS and RZS with a free core to host a new GS in order to avoid a new Zone creation.
Then, in the worst case it has to be managed a communication between the MS and
the rest of zones existing in the distributed area before creating a new one.

To conclude, the proposed mapping mechanisms for MMOFPS game sessions are
able both to provide a distributed platform that scales on demand that keeps latency
values under an acceptable threshold. Regarding to differences, we have shown that
the Heterogeneity aware mechanism exploits better the resource capabilities of nodes
and maps players quite faster, while the system is penalized by an increase in commu-
nications between the central and the distributed area and a latency variability.

4 Conclusion and Future Work

In this paper, we presented an hybrid system, called OnDeGaS (On Demand Game Ser-
vice), that fits the scalability and latency requirements of MMOFPS networked games.
The proposed new system is made up of a Master Server, carrying out centralized func-
tionalities, and several zones that make up a distributed P2P network. Whenever the
central server is overloaded, new Zones are created according to two different policies:
Non Heterogeneity aware and Heterogeneity aware policy. Non Heterogeneity aware
mechanism selects a new distributed game server, among waiting players, taking exclu-
sively latency criteria into account. On the other hand, the Heterogeneity aware policy
maps, whenever it is possible, the new game sessions into the available cores of the
game servers already created.

By means of simulation, it has been demonstrated that the system is able to scale
according to the demand. It has also been shown that this scalability does not damage
the average latency, as it is always possible to achieve in distributed area an average
latency below the maximum threshold allowed in MMOFPSs. Moreover, the player’s
waiting time is reduced if Heterogeneity aware mapping policy is applied at the expense
of increasing the communication costs between the central and the distributed area.

Future work is oriented towards modeling MMORPGs requirements and extending
our hybrid architecture to them. Another important key would be to merge the current
simulator with a network simulator, to study the QoS of the game, and test the network
problems derived from an MMOG. Finally, the implementation of a prototype of the
simulated architecture would be an important step for the deployment of this proposal.

@CMMSE                                                               Page   167  of 1328                                               ISBN 13: 978-84-613-5510-5



Acknowledgements

This work was supported by the MEyC-Spain under contract TIN2008-05913 and the
CUR of DIUE of GENCAT and the European Social Fund.

References
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Abstract

In this paper we present an algorithm of quasi-linear complexity for exactly
calculating the infimal convolution of convex quadratic functions. The algorithm
exactly and simultaneously solves a separable uniparametric family of quadratic
programming problems resulting from varying the equality constraint.
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1 Introduction

The infimal convolution operator is well known within the context of convex analysis.
For a survey of the properties of this operation, see [1].

Definition 1. Let F, G : R −→ R̄ := R ∪ {+∞,−∞} be two functions. We denote
as the Infimal Convolution of F and G the operation defined as follows:

(F
⊙

G)(x) := inf
y∈R

{F (x) + G(y − x)}

Furthermore, if A = {1, ..., N}, we have that

(
⊙

i∈AFi)(ξ) = inf∑

i∈A

xi=ξ

∑

i∈A

Fi(xi)

When the functions are considered to be constrained a certain domain, Dom(Fi) =
[mi,Mi], the above definition continues to be valid by redefining Fi(x) = +∞ if x /∈
Dom(Fi). In this case, the equivalent definition may be expressed as follows:

ΨA(ξ) := (
⊙

i∈AFi)(ξ) = min∑

i∈A

xi=ξ

mi≤xi≤Mi

∑

i∈A

Fi(xi)
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A quasi-linear algorithm for calculating the infimal convolution

This operator has a microeconomic interpretation that is quite precise: if ΨA is the
infimal convolution of several production cost functions, ΨA(ξ) represents the joint cost
for a production level ξ when the latter is shared out among the different units in the
most efficient way possible.

In this paper we present an algorithm that leads to the determination of the analytic
optimal solution of a particular quadratic programming (QP) problem: Let {Fi}i∈A be
a family of strictly convex quadratic functions:

Fi(xi) = αi + βixi + γix
2
i

We denote by
{
PrA(ξ)

}
ξ∈R the family of separable convex QP Problems:

minimize:
∑

i∈A

Fi(xi)

subject to:
∑

i∈A

xi = ξ; mi ≤ xi ≤ Mi, ∀i ∈ A

QP problems have long been a subject of interest in the scientific community. Thou-
sands of papers [2] have been published that deal with applying QP algorithms to
diverse problems. Within this extremely wide-ranging field of research, some authors
have sought the analytic solution for certain particular cases of QP problems with ad-
ditional simplifications. For example, [3] presents an algorithm of linear complexity
for the case of a single equality constraint (fixed ξ), only including constraints of the
type xi ≥ 0. The present paper generalizes prior studies, presenting an algorithm of
quasi-linear complexity, O(N log(N)), for the family of problems

{
PrA(ξ)

}
ξ∈R. This

supposes a substantial improvement to a previous paper by the authors [4] in which
an algorithm was presented that, as we shall show in this paper, is one of quadratic
computational complexity, O(N2).

2 Algorithm

In this section, we first present the necessary definitions to build our algorithm.
Definition 2. Let us consider in the set A×{m,M} the binary relation 4 defined

as follows:

(i,m) 4 (j, m) ⇐⇒ F ′
i (mi) < F ′

j(mj) or (F ′
i (mi) = F ′

j(mj) and i ≤ j)

(i,m) 4 (j, M) ⇐⇒ F ′
i (mi) < F ′

j(Mj) or (F ′
i (mi) = F ′

j(Mj) and i ≤ j)

(i,M) 4 (j, m) ⇐⇒ F ′
i (Mi) < F ′

j(mj) or (F ′
i (mi) = F ′

j(Mj) and i ≤ j)

(i,M) 4 (j, M) ⇐⇒ F ′
i (Mi) < F ′

j(Mj) or (F ′
i (mi) = F ′

j(Mj) and i ≤ j)

Definition 3. We denote by g the isomorphism

g(n) := (g1(n), g2(n)), g : ({1, 2, · · · , 2N},≤) −→ (A× {m,M},4)

which at each natural number n ∈ {1, 2, · · · , 2N} corresponds to the n-th element of
A× {m,M} following the order established by 4.
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We now present the optimization algorithm that leads to the determination of the
optimal solution. The algorithm generates all the feasible states of activity/inactivity
of the constraints on the solution of the problem. We build a sequence (Ωn, Θn,Ξn)
starting with the triad (A,∅,∅), which represents the fact that all the constraints on
minimum are active and ending with the triad (∅,∅, A), which represents the fact that
all the constraints on maximum are active. Each step of the process consists in decreas-
ing the number of active constraints on minimum by one unit or increasing the number
of active constraints on maximum by one unit, following the order established by the
relation 4. Let us consider the following recurrent sequence, Xn := (Ωn, Θn,Ξn),
n = 0, . . . , 2N :

Ω0 = A Θ0 = ∅ Ξ0 = ∅
If g2(n) = M : Ωn = Ωn−1 Θn = Θn−1 − {g1(n)} Ξn = Ξn−1 ∪ {g1(n)}
If g2(n) = m : Ωn = Ωn−1 − {g1(n)} Θn = Θn−1 ∪ {g1(n)} Ξn = Ξn−1

We prove the following proposition.
Proposition 1. The function ΨA (infimal convolution) is piecewise quadratic, con-

tinuous and, if Θn 6= ∅, ∀n, 0 < n < 2N , then it also belongs to class C1. Specifically,
if φn ≤ ξ ≤ φn+1, with

φn+1 = φn +
1
2

[sn+1 − sn]
1
γ̂n

; sn =





F ′
g1(n)(mg1(n)) if g2(n) = m

F ′
g1(n)(Mg1 (n)) if g2(n) = M

we have
ΨA(ξ) = α̂n + β̂n(ξ − µn) + γ̂n(ξ − µn)2

where

µn =

{
µn−1 −mg1(n) if g2(n) = m

µn−1 + Mg1(n) if g2(n) = M

α̂n =





α̂n−1 + αg1(n) − (bβn−1+βg1(n))
2

4(bγn−1+γg1(n))
− Fg1(n)

(
mg1(n)

)
if g2(n) = m

α̂n−1 − αg1(n) − (bβn−1−βg1(n))
2

4(bγn−1−γg1(n))
− Fg1(n)

(
Mg1(n)

)
if g2(n) = M

β̂n =





1
bγn−1+γg1(n)

[
β̂n−1 · γg1(n) + βg1(n) · γ̂n

]
if g2(n) = m

1
bγn−1−γg1(n)

[
−β̂n−1 · γg1(n) + βg1(n) · γ̂n

]
if g2(n) = M

γ̂n =





bγn−1·γg1(n)

bγn−1+γg1(n)
if g2(n) = m

− bγn−1·γg1(n)

bγn−1−γg1(n)
if g2(n) = M
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3 Computational Complexity of the Algorithm

In this section we analyze the complexity of the previous algorithm and compare it
to the one presented in [4]. Given the family of strictly convex quadratic functions
Fi(xi) = αi + βixi + γix

2
i with i = 1.....N and Dom(Fi) = [mi,Mi], each one of these

shall be represented by the list {mi,Mi, αi, βi, γi}. The union of all these functions
constitutes the input for the algorithm:

{{m1,M1, α1, β1, γ1}, {m2,M2, α2, β2, γ2}, · · · , {mN ,MN , αN , βN , γN}}

The output shall represents the infimal convolution, which we symbolize as:

{{φ1, φ2, α̂1, β̂1, γ̂1}, · · · , {φn, φn+1, α̂n, β̂n, γ̂n}, · · · , {φ2N−1, φ2N , α̂2N , β̂2N , γ̂2N}}

The algorithm presents the following phases:

A) Construction of the set A× {m,M}.
B) Ordering of the set A× {m,M} following the ordering relation 4 .
C) Construction of the recurrent sequence Xn := (Ωn, Θn, Ξn), n = 0, . . . , 2N.
D) Construction of the sequence sn, n = 0, . . . , 2N.

E) Construction of the sequences α̂n, β̂n, γ̂n, n = 1, . . . , 2N − 1.
F ) Construction of the sequences φn, n = 1, . . . , 2N.

We prove that:
Proposition 2. The complexity of the aforementioned algorithm is quasi-linear:

O(N log(N)), and the complexity of the algorithm [4] is quadratic: O(N2).
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Abstract

In this work, an efficient numerical method based on an adaptive finite element
technique is presented for simulating three-dimensional scroll waves turbulence
in cardiac tissue. The proposed numerical method enhances the accuracy of the
prediction of the electrical wave fronts. Illustrations of the performance of the
proposed method are presented using three-dimensional re-entrant waves.

Key words: Monodomain model, finite element method, anisotropic mesh adap-
tation, FitzHugh-Nagumo model.

1 Introduction

Scroll wave turbulence in cardiac tissue is known as fibrillation and implies cardiac
failure. From mathematical point of view, fibrillations can be represented by the
monodomain model with an appropriate ionic model. The monodomain model is a
reaction-diffusion system and consists of a nonlinear partial differential equation for
the transmembrane potential coupled with an ordinary differential equation for the re-
covery variable. This model is computationally very expensive and is known to require
extremely fine meshes (Bourgault et al. [9]).

To overcome these difficulties, many methods have been developed in the literature.
This includes parallel computing techniques with a fixed spatial mesh (Colli Franzone
and Pavarino [10]), fully and semi implicit time-stepping descritizations (Bourgault and
coauthors [9] and[13]) and operator-splitting methods (Lines et al. [16, 17]).

@CMMSE                                                               Page   173  of 1328                                               ISBN 13: 978-84-613-5510-5



Efficient Simulation of Scroll Wave Turbulence

In our work [5, 4, 7, 6], two- and three-dimensional mesh adaptation methods have
been introduced to capture transmembrane potential fronts using the monodomain
and bidomain model. The technique consists in locating finer mesh cells near the front
position while a coarser mesh is used away from the front. In this work, a three dimen-
sional adaptive algorithm is presented for accurately computing time-evolving scroll
wave. Although the scroll wave is in a noncoherent (turbulent) state, the method
proposed reduces the computational grid size, and concentrates the elements near the
depolarization and repolarization front positions, which leads to an efficient solutions.

This paper is organized as follows. Next section is devoted to the monodomain
model and adaptive mesh technique, and section 3 presents three-dimensional numeri-
cal results showing the accuracy of the proposed method.

2 Mathematical Models and Adaptive Mesh Technique

The monodomain model used in this work takes the following form:






∂U

∂t
= ∇ · (D∇U) + Iion(U, V ) + Is,

∂V

∂t
= G(U, V ).

(1)

Where U describes the transmembrane potential and V describes the recovery vari-
able. Is is the current due to an external stimulus, and the nonlinear terms Iion(U, V )
and G(U, V ) depend on the ionic model. In this work, a modified version of a piecewise
linearized FitzHugh-Nagumo model is used [2]:

Iion = kU(1 − U)

(

U −
V + b

a

)

and G(U, V ) = g(U) − V.

where

g(U) =






0 if U < 1
3

1 − 6.75U(U − 1)2, if 1
3 ≤ U ≤ 1

1 si U > 1.

A finite element method is used to solve the nonlinear system of equation (1). The
variational formulation of this system is straightforward and obtained by multiplying
this system by test functions (φ,ψ) and integrating by parts the second order terms.

In all our numerical simulations, a quadratic (P2) finite elements and a fully implicit
backward second order scheme are employed for the spatial and time discretizations,
respectively. For more details about a comparison between different time-stepping
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schemes and spatial dicretizations, the reader is refereed to Belhamadia [5].

An adaptive time-dependent meshing algorithm for accurately simulating moving
three-dimensional transmembrane potential is now presented. The adaptive strategy
employed in this work uses an error estimators based on a definition of edge lengths
using a solution dependent metric (see Habashi and coauthors [14, 1, 11] and Hecht
and Mohammadi [15],and Belhamadia et al. [8]).

The overall adaptive strategy is the following:

1. Start from the solutions U (n−1), U (n), V (n−1) and V (n) and a mesh M(n) at time
t(n);

2. Solve the system (1) on mesh M(n) to obtain a first approximation of the solutions
(denoted Ũ (n+1) and Ṽ (n+1)) at time t(n+1);

3. Adapt the mesh starting from the mesh M(n) and the solution dependent metric
calculated with the solution time-variations

Ũ (n+1) + U (n) + U (n−1)

3
and

Ṽ (n+1) + V (n) + V (n−1)

3

to obtain a new mesh M(n+1);

4. Reinterpolate U (n−1), U (n), V (n−1) and V (n) on mesh M(n+1);

5. Solve the system (1) on mesh M(n+1) for Un+1 and V n+1.

6. Next time step: go to step 2.

The step 3 depends on time discretizations scheme. In this work, a fully implicit
backward second order scheme for time-stepping is employed. Thus, the mesh is re-
quired to represent the solutions at time t(n−1), t(n), and t(n+1).

3 Numerical Results

In this section, the performance of the adaptive method is presented using a three
dimensional scroll wave turbulence. The computational domain is the cube [0, 60] ×
[0, 60] × [0, 60]. Homogeneous Neumann conditions are imposed on all sides, and the
initial condition is a scroll wave as presented in figure 1. This was obtained with the
technique described in Ezscroll software by Barkley et al. [3, 12] and using the following
parameters:
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a = 0.84 b = 0.08
ǫ = 0.07 D = 1
∆t = 0.1

The scroll wave began to break up after some transient rotations. This wave travels
across the whole computational domain, calling for grids that are uniformly fine. In-
deed, coarse grids lead to wrong propagation speed and wave trajectories. The adaptive
technique presented in this work reduces the total number of element since the mesh
is refined only in the vicinity of the front position while keeping sufficient resolution in
other regions.

Figure 2 presents the adapted meshes and the transmembrane potential at different
times. As can be seen, the adapted mesh evolves with time and, at each time step,
elongated elements are obtained at the appropriate position to capture the depolariza-
tion and repolarization fronts, in spite of the fact that these fronts correspond to sharp
gradients of the transmembrane potential.

4 Conclusions

An efficient numerical method for the scroll wave turbulence in a three-dimensional
reaction-diffusion system was presented. The accuracy of the numerical solutions was
obtained by using an anisotropic time-dependent adaptive method. It will be interesting
to compare the adaptive method with regular meshes and also to see how the method
performs with a realistic heart geometry in case of scroll wave turbulence.
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b) Initial condition

Figure 1: Initial Scroll Wave
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a) t = 3 b) t = 3

c) t = 6 d) t = 6

a) t = 9 b) t = 9

c) t = 12 d) t = 12

Figure 2: Time evolution of adapted meshes and transmembrane potential
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Abstract

Massive convolution is the basic operation in multichannel acoustic signal pro-
cessing. Dealing with multichannel signals takes a big computational cost requiring
the use of multiple resources from the CPU. Graphical Processor Units (GPU), a
high parallel commodity programmable co-processors, can carry out a multichan-
nel convolution faster. However, the fact of transferring data from/to the CPU
to/from the GPU prevents to carry out a real-time application. In this paper, an
algorithm with a pipeline structure is developed, what allows to perform a massive
real-time convolution.

Key words: Massive convolution, Multichannel audio processing, FFT, GPU,
CUDA

1 Introduction

Multichannel acoustic signal processing has experienced a great development in recent
years, due to an increase in the number of sound sources used in playback applications
available to users, and the growing need to incorporate new effects and to improve the
experience of hearing [1].

Several effects, as the synthesis of 3D sound, are achieved through multichannel
signal processing, with an efficient implementation of the massive convolution. It con-
sists of carrying out different convolutions of different channels in a parallel way. All
these operations require high computing capacity.
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GPU offer us the possibility of parallelizing these operations, letting us not only to
obtain the result of the processing in much less time, but also to free up CPU resources.

The paper is organized as follows. Section 2 describes the convolution and the
problem of its implementation on GPU. In Section 3, an efficient GPU implementation
of massive convolution is presented. Section 4 is reserved for the results of different
tests on GPU. Finally Sections 5 is devoted to the conclusions, and the paper closes
with some references.

2 Convolution on GPU

2.1 Convolution Algorithm in GPU

The convolution describes the behavior of a linear, time-invariant discrete-time system
with input signal x and output signal y [2]:

y[n] =
N−1∑

j=0

x[j]h[n− j], (1)

Signal x will the input to the system, in our case, samples from audio signal. The
known signal h is the response of the system to a unit-pulse input. The output signal
y contains the samples of the desired acoustic effects. N , M and L = N + M − 1 will
be the lenghts of x, h and y respectively.

Convolution theorem [2] states that if x and h are padded with zeros to the length
L, then the Discrete Fourier Transform of y is the point-wise product of the Discrete
Fourier Transforms of x and h. In other words, convolution in one domain (e.g., time
domain) equals point-wise multiplication in the other domain (e.g., frequency domain).
This way of computing the convolution is advantageous because the number of opera-
tions is smaller than implementing the convolution in the time domain.

There exist different libraries that implement efficient FFT algorithms. They allow
to obtain the Discrete Fourier Transform of a signal, in a CPU (like MKL [7] or IPP [8])
or in a GPU (like CUFFT [5] from NVIDIA whose performances have been analized in
[9]).

The use of a GPU may offer two benefits: less execution time due to a high level
of parallelization of the computations and the freeing up resources of the CPU.

Let us consider x and input audio signal, h an acoustic filter and y the desired
output audio signal of our system. The execution of the convolution using a GPU
can be enumerated in the next steps: first, the lenghts of x and h must be checked;
then both signals must be transferred from the CPU to the GPU; next, the FFT (from
CUFFT) is applied to each signal obtaining X and H; the frequency domain output
Y is obtained multiplying point-wise X and H; the time domain output y is obtained
applying the IFFT to Y ; Finally, y is transferred from the GPU to the CPU. Figure 1
shows this process.

We can observe that:

1. Long time of the algorithm is spent in transfers between the CPU and the GPU.
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Transfer

x and h

CPU->GPU

Calculate

X=FFT(x)

Calculate

H=FFT(h)

Multiply

 point-wise

Y=X*H

Calculate

y=IFFT(   Y)

Transfer

y

GPU->CPU

Figure 1: Steps in order to calculate convolution of signals x and h on GPU.

2. Signals must be sent to the GPU before beginning the operations, and the whole
output signal must be received at the CPU to be reproduced.

In spite of the parallelism in operations that offered by the GPU, the transfer
time penalty prevents us to carry out a real time application in a GPU. More even, if
the signal x is compound by several channels, then a multiple convolutions would be
required. On the other hand, if a CPU is used to make a massive convolution, all our
resources would be used and no more applications could be run at the same time.

2.2 Convolution of Large Signals

In a real-time environment, the length of signal x can not be known a priori. There
exist techniques that allow us to cut the signal in chunks, and from the convolution of
each chunk we can obtain the convolution of the whole signal. One of these techniques
is called overlap-save [3] and it consists of:

1. Chunks of L samples are taken, where L will be either the next power of two,
bigger than M (length of h) or 512.

2. In the first chunk, the first M − 1 samples will be padded with zeros.

3. From the second and following chunks, the first M −1 samples will be duplicated
from the last M − 1 samples of the previous chunk.

4. Following the steps of the previous subsection, y0[n], y1[n], y2[n], . . . , are obtained
as the result of the convolution of x0[n], x1[n], x2[n], . . . , with h respectively.

5. From each chunk result, the first M − 1 samples will not be valid values so they
will be eliminated.

3 Pipelined Algorithm of convolution on GPU

Recently, the new CUDA toolkit 3.0 [4] lets use CUFFT [5] with the property concurrent
copy and execution. Therefore, the latency of transferring data from the CPU to the
GPU and vice versa can be overlapped by computations. That fits perfectly with the
steps described in the previous section.

In fact, in order to maximize the overlapping of the computations in the GPU and
the communications between CPU and GPU, a matrix can be configured with each
chunk obtained with the signal samples.

@CMMSE                                                               Page   183  of 1328                                               ISBN 13: 978-84-613-5510-5



Multichannel Acoustic Signal Processing on GPU

In this matrix, the first M − 1 values of one row will coincide with the last M −
1 values of the previous one, except the first configured matrix at the start of the
algorithm whose first M − 1 values from the first row will be zeros. This matrix will
have the following shape with R rows and L columns:

The last M − 1 samples from the last row of the matrix will be kept in an internal
buffer in order to occupy the first M − 1 positions of the next matrix to be filled.

L M-1 M-1

R

L M-1 M-1

R

Figure 2: Samples are sent to GPU in a chunks-matrix- configuration. matrixi−1 (left
side) shares a M − 1 samples with, previously sent to matrixi (right side).

The concurrent copy and execution property lets sending the matrixi using the
asynchronous transfer while carrying out the other tasks in parallel:

1. Beginning to configure the next matrix matrixi+1 with new samples.

2. Execution of the convolution algorithm at the GPU with the matrix which was
previously sent matrixi−1. So, R chunk-convolutions (the matrix sent to the
GPU has R rows) will be executed in a parallel way.

3. Chunk-convolutions results from matrixi−2 will be sent back from GPU to the
CPU

The unit-impulse response h will have been sent to the GPU before sending the
first matrix. h will be kept in the GPU memory and reused over and over with all the
convolutions.

All the previous tasks can be viewed in a pipeline configuration as shown in Figure 3.

3.1 Extrapolation to a multichannel signal: Massive Convolution

Dealing with a multichannel-signal will be totally scalable due to an equal distribution
of the resources. So, the matrix that contains the chunks will be divided in the number
of channels of the signal.

In the same way if more than one effect is going to be applied, each of the impulse
responses would be sent and kept in the GPU.
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Figure 3: Pipeline Configuration.

The parallel architecture of the GPU give us freedom to configure several possibil-
ities such as: Apply the same effect to all the channel signals. Apply one specific effect
to one channel and other effect to the rest. Even, apply one effect to a determinate
number of channels.

So, all the combinations are possible, and therefore, the possibilities of mixing
several acoustic effects, as well.

4 Results

Many are the tests that are being carried out in order to know the achievement of
the massive convolution. One of the most significative resolves around the comparison
between the convolution algorithm in GPU, shown at Figure 1 (implemented, for ex-
ample, in [6]), and the pipeline algorithm. In this case, as it can be shown in table 2,
the second achieves the convolution of the signal in half of the time than the first one.

Test has been carried out on a signal x and a impulse-response h compound by
176400 samples and 220 coefficients respectively. Results are shown in Table 1. A time
comparison with the basic convolution algorithm is shown in Table 2.

As it can be appreciated, performance are improved if an algorithm in convolution
with a pipeline configuration is used.

5 Conclusions

With this article, it has been revealed that GPU can be used for carrying out a massive
convolution of multichannel-acoustic signals in real-time. It has been possible thanks
to the pipeline configuration that is now available with the new CUDA Toolkit 3.0. It
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must be pointed that one of the advantages of using a GPU, is the fact of freeing up
CPU resources, letting us to run more applications in the CPU.

R//L 512 1024 2048 4096 8192
32 625.92 833.28 802.83 836.83 870.70
64 730.80 745.64 809.62 890.21 876.21
128 761.43 819.39 865.55 906.63 981.27
256 870.89 913.35 1094.1 995.02 1111.4
512 937.24 951.26 949.20 994.04 1206.3
1024 1005.2 110.51 1080.4 1278.7 1622.8
2048 1089.1 1274.8 1436.7 1603.1 1969.1

Table 1: Time in miliseconds of the pipelined algorithm varying number of rows (R)
and columns (C) of the matrix.

Type of Algorithm Time
Convolution Algorithm in GPU 1330ms
Configuration Pipeline (Best Performance) 802.83ms

Table 2: Comparison between basic and pipelined algorithm.
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Abstract

In this paper we consider an ecoepidemic model with disease in the prey, in
which the disease-carriers are identifiable by other individuals of their own popula-
tion. Therefore the contact with infectious can be avoided and thereby the disease
incidence decreased. We model the situation and investigate the long term behav-
ior of the system, showing that bifurcations leading to sustained limit cycles may
occur.

Key words: Ecoepidemics, identifiable disease-carriers, Capasso-Serio epidemic
model
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1 Introduction

Population theory is a branch of mathematical biology dealing with the study of inter-
acting populations. From the early classical models on single populations, predator-
prey models have been developed in the second decade of the past century. From the
latter, many investigations followed, extending also to other types of interactions, like
competition and commensalism.

Epidemiology investigates the spreading of infectious diseases in populations, with
the goal of fighting and possibly eradicating them. The role of mathematical modeling
of epidemics in this context appears to be fundamental, as the infectious individuals, i.e.
those that are able to propagate by contact the infection, are not usually recognizable.
However, the human behavior is in general different. In fact, when an epidemic spreads,
people tend to take measures in order not to be infected. This has been remarked and
used as the basis for proposing a model, now well known in the literature, [2].

Ecoepidemiology is a rather recent subject of investigation, merging the epidemi-
ological features with those of interacting systems of populations. The issues tackled
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are important, since diseases are present in the real world, and therefore influence en-
vironments in which clearly more than just one species is present. For a summary of
some of the earlier results in this relatively new field of study, see Chapter 7 of [5].

In this paper, we address the problem of how to modify the classical ecoepidemic
models when the disease carriers are identifiable by the other individuals in the popu-
lation, and therefore avoided in order not to catch the disease.

2 Model formulation

We consider here a predator-prey model in which prey can catch an infectious disease,
which spreads by contact among an infectious and a susceptible. The disease is unre-
coverable, i.e. once contracted, the infected individual carries it for its lifespan. We
denote by S the healthy prey, by I the infected prey and by P the predators. The
differential equations describing this ecosystem are:

dS

dt
= rS

(

1 −
S

K

)

− γ
IS

A + I2
− aSP, (1)

dI

dt
= γ

IS

A + I2
− µI − bIP,

dP

dt
= −mP + eaSP + ebIP.

The model is characterized by the interactions among the three populations in the
environment under consideration. To capture their meaning, we focus at first on the
interpretation of the system’s parameters.

The meaning of the parameters of the model are as follows: K is the environment
carrying capacity for the prey; r represents the healthy prey’s reproduction rate; a is the
predation rate on healthy prey, while b is the one upon sick prey; m is the predators’
mortality, µ the sick prey’s mortality; γ denotes the disease incidence rate; e is the
conversion factor, a pure number, i.e. dimensionless, beetween zero to one; A has a
role similar to the half saturation constant in the Holling type II model.

We now describe each equation in the model (1). The first term of the first equa-
tion represents the logistic growth of the prey. The second one in the first equation
represents the disease incidence term, i.e. it counts all the healthy prey which become
sick upon contact with an infected one and leave their class. The new characteristic
of the ecoepidemic model being introduced here is exactly this term. We are indeed
making the assumption that for the particular disease in consideration the disease car-
riers are in fact recognizable. In fact, the functional response of sound prey is to try
to avoid contact with an infectious individual when the disease is widespread i.e. there
are many infectious around. Notice in fact that as I → ∞, for the functional response
we have

lim
I→∞

I

A + I2
= 0.

The third term represents instead the reduction of the prey number due to predation.
As for the second equation the first term is once again the disease incidence, this time
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accounting for the susceptibles that become new infected. The second one represents
the natural plus disease-related prey mortality, and the last one describes losses due
to predation. Note that the predation rate is here different from the one related to
be sound prey. In the third equation the first term is the predators’ mortality; then
there are two growth terms, accounting for gains due to predation of sound and of
infected prey respectively resulting in new individuals. Remark also that in this model
the infected prey do not reproduce, nor do they contribute to intraspecific competition
nor there is vertical transmission of the disease, i.e. newborns are always born sound.

3 Equilibria

We are now interested in finding the equilibrium points Ek ≡ (Sk, Ik, Pk), i.e. the
points to which the system tends as time flows. Easily, the origin E0 = (0, 0, 0) is an
equilibrium point; the other boundary ones are

E1 = (K, 0, 0) , E2 =
( m

ea
, 0,

r

a

(
1 −

m

eaK

))
, E3 =

(
µ

γ
(A + T 2

3 ), T3, 0

)

,

and then there is the coexistence equilibrium

E4 =

(
m − ebT4

ea
, T4,

γm + γebT4 + µAea + µT 2
4 ea

bea(A + T 2
4 )

)

.

In the above expressions, T3 denotes the solution of the following quartic equation

rµx4 + (2rµA − rKγ)x2 + γ2Kx − rKAγ + rµA2 = 0

and T4 represents instead a root of the following cubic equation

reb2x3+(rKeab+a2Kµe−rmb)x2+rAeb2x−aKγm+a2KµAe+rKAeab−rAmb = 0.

The feasibility condition for E2 is as follows

m < eaK, (2)

and one for the interior equilibrium E4 places an upper bound on the location of the
positive root, namely

m

eb
≥ T4. (3)

A condition ensuring a positive root for the quartic is

µA < Kγ. (4)

In fact, we do not have the closed form expression for the point E3, but it is possible to
determine some necessary conditions for existence. From the equations of the system
(1), setting P = 0 we get the equations:

S1 =
K

r

(

r −
γI

A + I2

)

S2 =
µ

γ

(
A + I2

)
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From the graphs of the two functions it is possible to obtain the existence condition
(4) as indicated above.

A condition instead giving a positive root for the cubic is given by

a2KµAe + rKAeab < rAmb + aKγm.

Here again, we do not have the closed form expression for the point E4, but it is possible
to determine some necessary conditions for existence as well. From the equations of
the system (1), we find

S3 = K
(µa + rb)(A + I2) + γbI

aKγ + rb(A + I2)
, S4 = −

b

e
I +

m

ea

and by graphing these functions, we get the existence and feasibility condition:

S5 <
m

ea
, S5 =

KA(µa + rb)

aKγ + rbA
.

4 Stability analysis of equilibria.

The general form of the Jacobian matrix of the system (1) at the generic point (S, I, P )
is the following






r − 2rS
K

− γI

A+I2 − aP
γS(I2

−A)
(A+I2)2

−aS

γI

A+I2

γS(A−I2)
(A+I2)2

− µ − bP −bI

eaP ebP −m + eaS + ebI






We begin by considering the origin. One of the eigenvalues of this Jacobian matrix, r,
is positive, the other ones are −µ and −m. Hence E0 is an unstable equilibrium.
We then consider E1: the stability conditions of this equilibrium are

m > eaK, Aµ > γK. (5)

The characteristic equation for E2 factors, to give explicitly an eigenvalue

γS2

A
− µ − bP2,

and then the quadratic equations

λ2Kea + rmλ + rmeaK − rm2 = 0. (6)

For such equation, the Routh Hurwitz conditions ensure two negative roots if and only
if this condition is satisfied

eaK > m (7)

Similarly from the explicit first eigenvalue we obtain

µ +
br

a
>

γm

aeA
+

brm

a2eK
. (8)

We do not have the closed form expression for the points E3 and E4, so that it is
not possible to perform the stability analysis theoretically, to this end we will have to
use numerical simulations.
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5 Biological significance of the results

The instability of equilibrium E0 means that even the presence of a small number of
predators or prey makes the system evolve, toward population values that will never
all be zero at the same time. The equilibrium E1 corresponds to the situation in which
predators and sick prey vanish, i.e. only sound prey survive in the system at the
environment’s carrying capacity K. It is attained if and only if conditions (5) hold,
i.e. the mortality of predators must be higher than a quantity that depends on the
product of the predator’s hunting rate on sound prey a by the conversion factor and
the carrying capacity, e and K. A similar condition holds for the infected. If their
combined, natural plus disease-related mortality µ exceeds a quantity that depends on
the disease incidence coefficient γ, scaled via the constant A, as well as once again on
the the sustem’s prey carrying capacity, K. Combining these result we can claim that
the sound-prey-only equilibrium is attained if the reduced mortality rates of infected
prey and predators do not exceed the carrying capacity of the environment, where
“reduced” means the ratio of each mortality respectively by the assimilation term due
to hunting and the disease incidence, namely

K > max

{
m

ea
, A

µ

γ

}

.

The disease-free equilibrium point E2 is feasible if (2) holds, i.e. the opposite of
that one of stability of previous point, and (8). The requests seem reasonable: the
mortality of predators should be limited, while that of diseased prey must exceed a
threshold value. Note that E1 is stable if and only if E2 is infeasible.

Equilibrium E3 describes the situation where healthy and diseased prey survive,
while the predators become extinct. The simulations indicate that there is a set of
parameters for which the equilibrium is reached.

The interior equilibrium E4 represents the situation when predators thrive together
with healthy and diseased. Again the simulations show that this equilibrium is attained
for a particular set of parameters.

6 Simulations

To verify theoretical results we have done some graphical simulations with Matlab.

We start from point E1. Assigning the following values to the parameters,

r = 0.9, K = 2, γ = 0.1, A = 1, a = 0.1, b = 0.2, µ = 0.9, m = 0.4, e = 0.6

we get the result shown in Figure 1, showing that the equilibrium is indeed attained,
as theoretically predicted. Note indeed that the stability condition (5) is satisfied for
this parameter choice.

For the point E2, we consider the parameter values

r = 0.9, K = 2, γ = 0.1, A = 1, a = 0.9, b = 0.3, µ = 0.9, m = 0.3, e = 0.8
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Figure 1: Equilibrium E1 is reached. On the left the solutions as function of time, on
the right the trajectory in the phase space.
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Figure 2: Stability of the disease-free equilibrium E2. On the left the solutions as
function of time, on the right the trajectory in the phase space.

obtaining the behavior shown in Figure 2. Once more, the disease-free equilibrium
is reached by the system’s trajectories, verifying the theoretical results. Indeed both
conditions (7) and (8) are satisfied, for the above parameter choice.

We do not have the analytical coordinates of the remaining equilibria E3 and E4.
To investigate their behavior, simulations are the only resource. For the former, the
following parameter values

r = 0.3, K = 20, γ = 1, A = 0.8, a = 0.1, b = 0.1, µ = 0.6, m = 0.1, e = 0.9

provide a stable behavior, as depicted in Figure 3.
Around the point E4, the values

r = 10, K = 30, γ = 1, A = 0.01, a = 0.1, b = 0.1, µ = 0.5, m = 0.1, e = 0.9
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Figure 3: Stability of the predator-free equilibrium E3. On the left the solutions as
function of time, on the right the trajectory in the phase space.

provide the empirical verification that the interior equilibrium in such situation is stable
and therefore can be attained, as shown in Figure 4.
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Figure 4: Stability of equilibrium E4 indicating that coexistence of the ecosystem at a
constant level is possible. On the left the solutions as function of time, on the right the
trajectory in the phase space.

At E4 a situation that induces oscillatory behavior arises. In fact if we change the
parameter values and consider

r = 0.9, K = 30, γ = 0.11, A = 0.1, a = 0.1, b = 0.1, µ = 0.5.m = 0.4, e = 0.9

we have the behavior shown in Figure 5.

We have also investigated some of the limit cycles arising. Taking as reference
values for the parameters the following values,

r = 10, K = 30, γ = 1, A = .01, a = .1, b = .1, µ = .5, m = .05, e = .9,
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Figure 5: Limit cycles arising around E4. Thus coexistence can be attained also via
stable oscillations. On the left the solutions as function of time, on the right the
trajectory in the phase space.

and letting one of them vary at each time, we have constructed some bifurcation dia-
grams. We report below some of the results.

In Figure 6 we provide a bifurcation diagram as a function of the parameter m, in
Figure 7 the bifurcation diagram as a function of the parameter a, in Figure 8 the one
relative to the parameter b, in Figure 9 the one relative to γ, finally in Figure 10 the
one of µ. Here, stars denote the largest value of the limit cycle and circles the smallest
one.
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Figure 6: Bifurcation diagram as a function of the parameter m.
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Figure 7: Bifurcation diagram as a function of the parameter a.
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Figure 8: Bifurcation diagram as a function of the parameter b.

7 Conclusions

In this investigation we have introduced a response against infected individuals in
predator-prey ecoepidemic models, in which the disease spreads among prey. We have
examined the equilibria and studied the limit cycles that originate when the latter bi-
furcate. These persistent oscillations are similar to the ones found in the classical model
for these situations, [2], in contrast instead to what is reported in [4]. With respect
to other similar models using Holling type I interaction terms, [6], the oscillations here
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Figure 9: Bifurcation diagram as a function of the parameter γ.
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Figure 10: Bifurcation diagram as a function of the parameter µ.

found constitute a novelty. But a similar model using Holling type II interactions shows
also limit cycles, [3].
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Abstract

In this work we present a numerical method to approximate the solution of the
Volterra integral equation of the second kind. The properties of Schauder bases
and fixed point theorem are the fundamental tools used for this purpose.
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1 Introduction

Modeling many problems of science, engineering, physics and other disciplines leads to
linear and nonlinear Volterra integral equations of the second kind:

x(t) = y0(t) +

∫ t

α
K(t, s, x(s))ds, t ∈ [α, α+ β], (1)

where y0 : [α, α+β]→ R and the kernelK : [α, α+β]2×R→ R are assumed to be known
continuous functions and the unknown function to be determined is x : [α, α+β]→ R.

These are usually difficult to solve analytically and in many cases the solution must
be approximated transforming the integral equation into a linear or nonlinear system
that can be solved by direct or iterative methods (see for example [1] and [4]). The
purpose of this paper is to develop an effective method for approximating the solution of
(1). This is the previous work of an forthcoming paper and generalizes to the nonlinear
case the results for solving the linear case appearing in [2]. Among the main advantages
of our numerical method as opposed to the classical ones, we can point out that it is not
necessary to solve algebraic equation systems and the integrals involved are immediate
and we do not require any quadrature method to calculate them.
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2 Analytical tools to be used

Let C([α, α + β]) be the Banach space of all continuous and real-valued functions on
[α, α + β], endowed with its usual sup-norm. Observe that (1) is equivalent to the
problem of finding fixed points of the operator T : C([α, α + β]) −→ C([α, α + β])
defined by

(Tx)(t) := y0(t) +

∫ t

α
K(t, s, x(s)) ds, t ∈ [α, α+ β] and x ∈ C([α, α+ β]). (2)

To establish the existence of fixed points of (2), we will use the version of the
Banach fixed-point theorem (see [7]) which we enunciate below: Let (X, ‖ · ‖) be
a Banach space, let F : X −→ X and let {µn}n≥1 be a sequence of nonnegative real
numbers such that the series

∑
n≥1 µn is convergent and for all x, y ∈ X and for all

n ≥ 1, ‖Fnx−Fny‖ ≤ µn‖x− y‖. Then F has unique fixed point u ∈ X. Moreover, if
x is an element in X, then we have that for all n ≥ 1, ‖Fnx−u‖ ≤ (

∑∞
i=n µi)‖Fx−x‖.

In particular, u = limn F
n(x).

Schauder bases will be another important tool in development work. They have
been previously used successfully in the numerical study of integral and differential
equations (see [2], [3], [5] and [8]). If {xn}n≥1 is a Schauder basis of a Banach space
X, we denote the sequence of (continuous and linear) finite dimensional projections by
{Pn} and the associated sequence of (continuous and linear) coordinate functionals by
{x∗n}n≥1 in X∗. Reader is referred to [2], [6] and [9], where can see the construction of
the usual Schauder bases {bn}n≥1 in C([α, α+ β]) and {Bn}n≥1 of C([α, α+ β]2).

3 Development of the numerical method and example

Before presenting the proposed method, we establish the following two preliminary
results:

Proposition 1. Assume that in (1) the kernel K satisfies a Lipschitz condition in its
third variable:

|K(t, s, x)−K(t, s, y)| ≤M |x− y| for all t, s ∈ [α, α+ β] and x, y ∈ R

for some constant M > 0. Then the integral equation (1) has a unique solution x ∈
C[α, α+β]. In addition, for each x ∈ C([α, α+β]), the sequence {Tnx}n≥1 in C([α, α+
β]) converges uniformly to the unique solution x and for all n ≥ 1,

‖Tnx− x‖ ≤ (Mβ)n

n!
eMβ‖Tx− x‖.

Proposition 2. Let T : C([α, α + β]) −→ C([α, α + β]) be the continuous integral
operator defined in (2). Let x ∈ C[α, α + β], and let us consider the function Φ ∈
C([α, α + β]2), defined by Φ(t, s) = K(t, s, x(s)). Let {λn}n≥1 be the sequences of
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scalars satisfying Φ =
∑

n≥1 λnBn. Then for all t ∈ [α, α+ β] we have that

(Tx)(t) = y0(t) +
∑
n≥1

λn

∫ t

α
Bn(t, s) ds (3)

where λ1 = Φ(t1, t1) and for n ≥ 2, λn = Φ(ti, tj)−
∑n−1

k=1 B
∗
k(Φ)Bk(ti, tj) with σ(n) =

(i, j), where σ = (σ1, σ2) : N −→ N× N is the bijective mapping defined by

σ(n) :=


(
√
n,
√
n), if [

√
n] =

√
n

(n− [
√
n]2, [

√
n] + 1), if 0 < n− [

√
n]2 ≤ [

√
n]

([
√
n] + 1, n− [

√
n]2 − [

√
n]), if [

√
n] < n− [

√
n]2

.

and [a] denote the integer part of a ∈ R.
In view of Propositions 1 and 2, (3) gives the unique solution x(t) of (1). The

problem is that generally this expression can not be calculated explicitly. The idea of
the proposed method is to truncate to calculate approximately a sequence of iterations
and projections that converge to the solution. More specifically, let x : [α, α+β] −→ R
be a continuous function, and n1, n2, n3, . . . ,∈ N. Consider the continuous functions

z0(t) := x(t), t ∈ [α, α+ β] (4)

and for r ∈ N, we define

Lr−1(t, s) := K(t, s, zr−1(s)) (t, s ∈ [α, α+ β]). (5)

zr(t) := y0(t) +

∫ t

α
Qn2

r
(Lr−1(t, s)) ds (t ∈ [α, α+ β]). (6)

In order to obtain the convergence of the sequence {zr}r≥1 to the unique solution of
(1) we introduce the following notation: If {tn}n≥1 is the dense subset of distinct points
in [α, α+β] we considered to define the Schauder basis, let Tn be the set {tj , 1 ≤ j ≤ n}
ordered in an increasing way for n ≥ 2. Let ∆Tn denote the maximum distance between
two consecutive points of Tn.
Theorem 3. With the previous notation, let x ∈ C([α, α + β], y0 ∈ C1([α, α + β]

and K ∈ C1([α, α + β]2 × R) with K,
∂K

∂t
,
∂K

∂s
,
∂K

∂x
, satisfying the Lipschitz global

condition of the third variable. Then:

a) Then

{
∂Lr−1
∂t

}
r≥1

,

{
∂Lr−1
∂s

}
r≥1

are uniformly bounded.

b) There is ρ > 0 such that for all r ≥ 1 and nr ≥ 2

‖Lr−1 −Qn2
r
(Lr−1)‖ ≤ ρ∆Tnr .

The main result that establishes that the sequence defined in (4), (5) and (6)
approximates the solution of (1) as well as giving an upper bond of the error committed
is given below:
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Theorem 4. Let K ∈ C([α, α + β]2 × R) such that K satisfies a global Lipschitz
condition in the third variable and let x ∈ C([α, α + β]. Let m ∈ N, and assume that
certain positive numbers ε1, . . . , εm satisfy

‖Tzr−1 − zr‖ < εr, r = 1, . . . ,m

and let x be the exact solution of the integral equation (1). Then

‖x− zm‖ ≤
(Mβ)m

m!
eMβ‖Tx− x‖+

m∑
r=1

εr
(Mβ)m−r

(m− r)!
,

where M is the Lipschitz constant of K.

Under the hypothesis of Theorem 3, there is ρ > 0 such that for r ≥ 1 and nr ≥ 2,

‖Tzr−1 − zr‖ ≤ β‖Lr−1 −Qn2
r
(Lr−1)‖ ≤ βρ∆Tnr .

Hence, given certain ε1, . . . , εm > 0, we can find m positive integers n1, . . . , nm such
that ‖Tzr−1−zr‖ < εr, and by Theorem 4 we can state the convergence of {zr}r≥1 and
an estimation of the error.

Example 5. Consider the equation x(t) =
1

3
tcos(t3) + t3 − t

3
+

∫ t

0
t s2 sin(x(s))ds (t ∈ [0, 1])

y(0) = 0
,

whose exact solution is x(t) = t3.

To construct the Schauder basis in C([0, 1]2), we considered the particular choice
t1 = 0, t2 = 1 and for n ∈ N ∪ {0}, ti+1 = 2k+1

2n+1 if i = 2n + k + 1 where 0 ≤ k < 2n are
integers. To define the sequence {zr}r≥1, we take z0(t) = 1 and nr = j (for all r ≥ 1).
In the following table we exhibit, for j = 9 and 17, the absolute errors committed in
eight representative points (ti) of [0, 1] when we approximate the exact solution x by
the iteration z2.

ti 0.125 0.250 0.375 0.5 0.625 0.750 0.875 1

j = 9
|z2(ti)− x(ti)|

1.6E−7 6.0E−6 4.7E−5 2.9E−4 6.2E−4 1.7E−3 3.1E−3 2.1E−3

j = 17
|z2(ti)− x(ti)|

4.7E−8 1.5E−6 1.2E−5 9.4E−5 1.6E−4 4.9E−4 8.7E−4 1.1E−4
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Abstract

In this paper we re-examine the commonly accepted meaning of the two kinetic
constants characterizing any enzymatic reaction, according to Michaelis-Menten
kinetics. Expanding in terms of exponentials the solutions of the ODEs governing
the reaction, we determine a new constant, which corrects some misinterpretations
of current biochemical literature.

Key words: Michaelis-Menten kinetics, quasi-steady state approximations, asymp-
totic expansions
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1 Introduction

The question addressed in the title of this paper is not merely a rethoric one. Our
answer, of course, is definitely yes: we do think that there is still a lot of room in this
field. Formulated more than one century ago, the Michaelis-Menten-Briggs-Haldane
approximation, or standard quasi-steady state approximation (sQSSA) [24, 7, 33], still
represents a milestone in the mathematical modeling of enzymatic reactions. Neverthe-
less, the hypothesis of quasi-steady state is crucial for the interpretation of the reaction
and must be handled with much care. It is based on the assumption that the complex
can be considered “substantially” constant, but this statement has led to many mis-
interpretations of the model. In fact, as Heineken et al. showed in [15], the correct
mathematical interpretation of the quasi-steady state assumption is that when we ex-
pand asymptotically the solutions of the ODEs governing the process with respect to
an appropriate parameter, the sQSSA is the zero order approximation of the solution.
As already observed by Briggs and Haldane by a chemical point of view, when the
parameter of the expansion is sufficiently small this approximation is valid. Heineken
et al. used the parameter given by the ratio of the initial concentrations of enzyme E
and substrate S, obtaining the well-known chemical requirement.
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In 1987 Fraser [13] pointed out that, geometrically speaking, the steady state as-
sumption for chemical reactions is an approximation in the phase space to the slow
manifold, i. e., the singular trajectory which strongly attracts all fast transient flow.
He also described an iterative scheme to approximate this singular trajectory without
any restrictions on the rate constants of the system. The same arguments were applied
to the Michaelis-Menten mechanism in 2006 by Calder and Siegel [8]. In 1988 Segel
[32] and in 1989 Segel and Slemrod [33] obtained the Michaelis-Menten approximation
expanding the solutions in terms of a new parameter, including the Michaelis constant
and showing that the sQSSA is valid in a wider range of parameters than the one
supposed before. However it is well known that while in vitro the condition on the
concentrations can be easily fulfilled, in vivo it is not always respected [34, 35, 36, 1], in
particular when the reaction is not isolated but is part of complex reaction networks.
This means that, though very useful, this approximation cannot always be applied.

Michaelis-Menten kinetics has recently become one of the most important tools in
the field of Systems Biology and in particular of mathematical modeling of intracellu-
lar enzyme reactions, but in most literature any apriori analysis of the applicability of
sQSSA is absent, even in very complex reaction networks. This fact has led to sev-
eral problems concerning the study of particular phenomena, like oscillations [12, 28],
bistability [10], ultrasensitivity [29] or Reverse Engineering [27]. Following [20], recent
papers [6, 38, 39, 26, 10, 29, 40, 23, 11, 28, 2] have introduced and explored a new
approximation, called total quasi-steady state approximation (tQSSA), which has been
shown to be always roughly valid in the case of an isolated reaction. Nevertheless, since
it is in any case an approximation, also the tQSSA can dramatically fail, as shown in
[28], in more complex mechanisms, involving more than one reaction, but it is doubtless
that it is valid in a much wider range of parameter than the sQSSA [10, 26, 27, 28, 31].

One of the main problems of the mathematical treatment of the sQSSA is the misin-
terpretation of the hypothesis that the complex time concentration has zero derivative.
Many papers and even monographies tend to indicate, probably for the sake of sim-
plicity, the ”substantial” equilibrium as a real equilibrium [21, 42, 30, 14], which is
obviously not true; in this case any simplification can be definitely misleading. As ob-
served in [15], p. 97, this use of the equations seems scandalous to any mathematicians
and can bring to results which are absolutely inconsistent and false. In this work we
want to re-examine some mathematical aspects of Michaelis-Menten reaction and of
the sQSSA, trying to clarify some aspects of the enzyme reactions; in particular we dis-
cuss the biochemical and mathematical meaning of the tQSSA, comparing it with the
sQSSA, then we analyse the consequences of the misuse of the sQSSA, reconsidering
the meaning of the two kinetic constants Vmax and KM ; finally we introduce an ex-
pansion in terms of exponentials, which is valid for every choice of the parameters and
enzyme initial concentrations; this expansion is the most appropriate to approximate
the asymptotic behavior of the solution for large values of t, in absence of product
degradation; moreover we use it to solve a serious incoherence present in literature,
related to the biochemical interpretation of the constant KM .
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2 Notations, definitions and main known results

The model of biochemical reactions was set forth by Henri in 1901 [16, 17, 18] and
Michaelis and Menten in 1913 [24] and further developed by Briggs and Haldane in
1925 [7]. This formulation considers a reaction where a substrate S binds an enzyme E
reversibly to form a complex C. The complex can then decay irreversibly to a product
P and the enzyme, which is then free to bind another molecule of the substrate. This
process is summarized in the scheme

E + S
a−→←−
d

C
k−→ E + P, (1)

where a, d and k are kinetic parameters (supposed constant) associated with the reac-
tion rates: a is the second order rate constant of enzyme-substrate association; d is the
rate constant of dissociation of the complex; k is the catalysis rate constant. Following
the mass action principle, which states that the concentration rates are proportional
to the reactant concentrations, the formulation leads to an ODE for each complex and
substrate involved. We refer to this as the full system. From now on we will indicate
with the same symbols the names of the enzymes and their concentrations. The ODEs
describing (1) are

dS
dt = −a(ET − C)S + d C,

dC
dt = a(ET − C)S − (d + k)C,

(2)

with initial conditions
S(0) = ST , C(0) = 0, (3)

and conservation laws

E + C = ET , S + C + P = ST . (4)

Here ET is the total enzyme concentration assumed to be free at time t = 0. Also
the total substrate concentration, ST , is free at t = 0. This is called the Michaelis-
Menten (MM) kinetics [24, 3]. Let us observe that (2) – (4) asimptotically admits
only the trivial solution given by C = S = 0, P = ST and E = ET . This means
that all the substrate eventually becomes product due to the irreversibility, while the
enzyme eventually is free and the complex concentration tends to zero. Assuming
that the complex concentration is approximately constant after a short transient phase
leads to the usual Michaelis-Menten (MM) approximation, or standard quasi-steady
state approximation (sQSSA): we have an ODE for the substrate while the complex is
assumed to be in a quasi-steady state (i. e., dC

dt ≈ 0):

C ∼= ET · S
KM + S

,
dS

dt
∼= −kC ∼= − VmaxS

KM + S
, S(0) = ST , (5)

where
Vmax = k ET , KM =

d + k

a
. (6)
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and KM is the Michaelis constant. Applying a quasi-steady approximation reduces
not only the dimensionality of the system, passing from two equations (full system)
to one (MM approximation or sQSSA). It reduces also its stiffness and thus speeds
up numerical simulations greatly, especially for large networks as found in vivo. It
allows also a theoretical investigation of the system which cannot be obtained with the
numerical integration of the full system. Moreover, the kinetic constants in (1) are
usually not known, whereas finding the kinetic parameters for the MM approximation
is a standard in vitro procedure in biochemistry. See e.g. [3] for a general introduction
to this approach. We stress here that this is an approximation to the full system, and
that it is valid only under suitable hypotheses, e. g., when the enzyme concentration
is much lower than either the substrate concentration or the Michaelis constant KM ,
i. e., (see, for example, [33])

εMM :=
ET

ST + KM
¿ 1 (7)

This condition is usually fulfilled for in vitro experiments, but often breaks down in
vivo [36, 35, 34, 1]. We refer to [31] for a nice, general review of the kinetics and ap-
proximations of (1). It is useful to quote also the recent papers [12, 41, 25, 10, 28] which
discuss the applicability of the sQSSA. In order to solve this problem, in 1955 Laidler
[20], discussing the mathematical theory of the transient phase, found expressions for
the behavior of P in the quasi-steady state and found several sufficient conditions for
the applicability of the approximations. These conditions were much more general than
ET

ST
¿ 1. The importance of Laidler’s results can be understood comparing his ap-

proach to a recent one, based on the total quasi-steady state approximation (tQSSA). It
was introduced by Borghans et al. [6] and refined by Tzafriri [38] for isolated reactions.
It arises introducing the total substrate

S = S + C, (8)

and assuming that the complex is in a quasi-steady state as for the sQSSA. Reaction
(1) then gives the tQSSA [6, 20]:

dS

dt
∼= −k C−(S), S(0) = ST , (9)

where

C−(S) =
(ET + KM + S)−

√
(ET + KM + S)2 − 4ET S

2
. (10)

Numerical integration of (9) gives the time behavior of S and then (8) and (10) give
the corresponding C and S. Tzafriri [38] showed that the tQSSA (9) is valid whenever

εtQSSA :=
K

2ST

(
ET + KM + ST√

(ET + KM + ST )2 − 4ET ST

− 1

)
¿ 1, (11)
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Figure 1: Dynamics of the model (1) for a=1, k=1, d=4, ST = 100, ET = 89. Plots
show (top-left, bottom-right) S, S̄, C, P. Circles: numerical solution of the full system;
dashed line: sQSSA; solid: tQSSA; dotted: first order approximation of tQSSA. Notice
that the sQSSA and the tQSSA, representing only the outer approximations, do not
(and are not expected to) satisfy the initial condition for C. This is why the initial
boundary layer is missed.

(where K =
k

a
), and that this is at least roughly valid for any sets of parameters,

in the sense that εtQSSA ≤ K
4KM

≤ 1
4 . This means that, for any combination of pa-

rameters and initial conditions, (9) gives a decent approximation to the full system
(2). The parameter K is known as the Van Slyke-Cullen constant. The dissociation

constant KD =
d

a
[3] is related to the previous kinetic constants by the simple formula

KD = KM − K. Let us remark that, in recent literature, the sQSSA is applied to
complex enzyme reaction networks, like, e.g., the MAPK cascade, without any a priori
analysis on its applicability, setting to zero not only the derivatives of the complex
concentrations, but also, surprisingly, the complex concentrations themselves (see, e.g.,
[22, 19, 9]). This produces serious inconsistencies with experimental observations and
has resulted in the discovery of the so-called “substrate sequestration” hypothesis [4, 5],
which states that the enzyme can sequester a significant amount of substrate by binding
to it, making this sequestered fraction of the substrate no longer accessible to other
kinases. The importance of the choice of S̄ as one of the system variables lies in the
fact that substrate sequestration is naturally included in the total substrate. Indeed,
the latter takes into account both the free and the “sequestered” substrate.
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Figure 2: Plot of E S
C for a=1, k=0.9, d=0.1, ST = 100, ET = 0.55. Solid line: numerical

solution of the full system; dashed: KM ; dashed-dotted: KW ; dotted: KD. Parameters

and initial conditions were chosen to give KW =
KM + KD
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Figure 3: (A) Plot and (B) zoom of E S
C for a=1, k=0.9, d=0.1, ST = 100, ET = 0.04.

Solid line: numerical solution of the full system; dashed: KM ; dashed-dotted: KW ;
dotted: KD.
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Figure 4: (A) Plot and (B) zoom of E S
C for a=1, k=0.9, d=0.1, ST = 100, ET = 89.

Solid line: numerical solution of the full system; dashed: KM ; dashed-dotted: KW ;
dotted: KD.

3 Use and misuse of the Quasi-Steady State Approxima-
tion (sQSSA)

The roles of Vmax, the maximal reaction velocity, and KM , the Michaelis constant,
become essential when characterizing biochemical reactions in vitro as well as in vivo.
Moreover, the description of cooperative reactions, inhibition and many other biochem-
ical processes have up to now exploited the fundamental ideas of the MM scheme, i. e.,
the sQSSA and the parameters Vmax and KM (see, e.g., [3]). However, these approx-
imations cannot be expected to be valid in vivo. Figure 1 shows that, for particular
values of the parameters and the initial conditions, the sQSSA cannot be adequate to
approximate the solutions of the full system at the beginning of the process, failing
widely also to approximate the time in which the system reaches its equilibrium. This
is due to the fact that (7) is not always fulfilled. The dependence of the product velocity

v :=
dP

dt
= kC (12)

on the concentration of S is based on the a priori (and not always true) assumption
that the sQSSA is valid. In this case

v = kC ∼= Vmax · S
KM + S

. (13)

Consequently Vmax is usually intended as the limit of the “initial velocity” for the S
concentration tending to infinity and KM as the value of S such that

v(S = KM ) =
Vmax

2
. (14)
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Since the tQSSA is much more appropriate than the sQSSA, we can use formula (10)
and very simple algebra to define in a more appropriate way KM (if ST > KM ):

i) when the value of the total substrate is equal to S = KM +
ET

2
, then the rate of P

is equal to
Vmax

2
:

v

(
S = KM +

ET

2

)
=

Vmax

2
(15)

This result can also be found in [37]. Let us remark, by the way, that if we used the
Tzafriri approximating formula , we would obtain the following definition:
ii) when the value of the total substrate is equal to S = KM + ET , then the velocity

of P is equal to
Vmax

2
:

v
(
S = KM + ET

)
=

Vmax

2
(16)

Then the estimate given by (16) becomes largely incorrect for high values of ET .

4 The equilibrium constant revisited

Though the sQSSA is based on the approximation
dC

dt
∼= 0, several biochemistry text-

books (see for example [21, 42, 30, 14]), in order to simplify the mathematics, consider
the approximation as a true equality, leading to a misinterpretation of the QSSA. As a
consequence, the Michaelis constant is determined by equating to zero the right hand
side of the second equation of (2) [42, 30, 14], obtaining

KM =
E · S

C
=

(ET − C) · S
C

. (17)

Actually, as shown in Figure (1), the derivative of C is equal to zero only at time
t = tmax, when C reaches its maximum value. Consequently we cannot declare that
the right hand side in (17) remains constant. On the other hand, we could interpret KM

as the equilibrium value for
E · S

C
, reached for large t (supposing that no degradation,

product inhibition or back reaction phenomena are involved), in the same way as the
dissociation constant KD is interpreted in the original Michaelis-Menten reaction, where
k = 0 [30]. Actually, while this last reaction, which is completely reversible, reaches a
steady-state where both S and C are different from zero, in reaction (1), as remarked
above, S and C tend to zero and consequently we cannot use (17), which gives an

undefined ratio, for t → ∞. Thus the equality KM =
E · S

C
is valid for every reaction

only at t = tmax. We can however try to solve the indetermination of the ratio for t →∞
in the following way. From Figure (1) we can observe that, after the transient phase,
all the reactants seem to follow asymptotically an exponential behavior, with negative
exponent. If we suppose that the asymptotic decay of C is proportional to e−αt, for
some α, formula (12) implies that also ST − P will be asymptotically proportional to
e−αt. By means of the conservation laws (4) we can conclude that also S and ET − E
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will follow the same asymptotic behavior as C. Thus let us expand S and C in powers
of e−αt: we have

S(t) = S0 + S1 e−αt + S2 e−2αt + o(e−2αt) (18)
C(t) = C0 + C1 e−αt + C2 e−2αt + o(e−2αt) (19)

After some computations, we get then

Sas(t) ∼= S1 e−αt (20)

Cas(t) ∼= α

k − α
S1 e−αt (21)

where

α =
a

2
(KM + ET )

[
1−

√
1− 4kET

a(KM + ET )2

]
(22)

There is still an unknown parameter, S1, which could be estimated from experi-
mental data via a least-squares procedure.

We are now in position to state the main results of this section.

Theorem 4.1. For t →∞
E S

C
(t) ∼= Eas Sas

Cas
(t) →

(
k − α

α

)
ET =: KW (23)

The constant KW , here introduced for the first time, gives the exact asymptotic

value of the ratio
E S

C
and, in contrast with biochemical literature [21, 42, 30, 14], in

general is different from KM . This result is clearly illustrated in Figures (2) - (4), where

we have plotted the time course of the ratio
E S

C
, where the values E,S, C are obtained

by the numerical integration of system (2) - (4). Finally, let us state some important
properties of KW .

Theorem 4.2. For any admissible choice of the kinetic parameters and the initial
conditions, the following inequalities hold:

KD ≤ KW ≤ KM . (24)

Varying appropriately the parameter values, we can obtain for KW every value
between KD and KM . In particular,

Theorem 4.3. For any admissible choice of the kinetic parameters and for any K̄ ∈
(KD ,KM ), there exists ĒT such that ES

C → K̄ when t →∞.
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Abstract

A Manufacturing Execution System (MES) is a highly complex, large, multi-
task application that is used to manage production in companies and factories. It
monitors and tracks every aspect of all factory-based manufacturing processes. One
of the challenges of a MES is to find ways of integrating it with other information
techology (IT) systems; i.e., business process management (BPM) systems, so that
compatible information may be shared between both systems. This work studies
the integration of a local company MES into a BMP to assist with budgeting, in
which a data set is gathered from the MES and a soft computing model helps
the expert with cost-level estimation. Various modelling methods are used, such
as fuzzy rule based ones, in order to determine whether white box or black box
models are suitable for the task. The results of the study show how information
may be integrated between manufacturing and business management software.

Key words: Manufacturing Execution Systems, Fuzzy Rule Based Systems, Ap-
plied Soft Computing

1 Introduction

Over recent years, the presence of IT applications in industry has increased consider-
ably. IT has been applied to different tasks such as assisting with production or on-line
process management and manufacturing, which includes what are nowadays known
as Enterprise Requirements Planning (ERP) and Manufacturing Resources Planning
(MRP) [11, 19]. Manufacturing Execution Systems (MES) are information systems that
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are used to manage the way in which manufacturing resources -equipment, employees
and inventories- are planned [2, 18].

The objective of a MES depends on whether it is implemented in the context of
a production control system or for manufacturing monitoring and supervision. In the
former case, the objective is to provide the company with a research laboratory for
products and processes, while in the latter, the MES is considered a computer-aided
system that assists with decision-making processes related to manufacturing.

However, designing and deploying a user-friendly MES, which has to fulfil the
above-mentioned objectives, represents a significant challenge, owing in great part to
the complexity of the different production systems, plants and products in use. In this
study, several soft-computing techniques are applied, in order to assist with budgeting
for a plastic products factory. The main objective of this study, however, is to develop a
computer-based assistant to detect faults and loss of competitiveness in the production
system. The problem is defined in the following section, while in section 3 the chosen
models are described and the results are discussed. Finally, the conclusions and future
lines of work are outlined.

2 The case of a plastic products factory

In this study, the system will be applied to a plastic products factory in Spain. It
manufactures different products, such as tubes, sheets, bags, polypropylene sheets,
garbage bags and others. Its production process is divided into a storage area, an
extrusion area, and a printing and clothing area.

The schema of the local plastic bags factory is depicted in Figure 1, where the
production system is totally supervised and monitored. Each machine includes its own
control system based on Programmable Logic Controllers (PLC). There are up to 75
machines, each producing a range of different products. There are also several Human
Machine Interfaces (HMIs) all connected to an ethernet network; a Data Acquisition
System (DAQ) which collects various process signals, among which pressures and tem-
peratures. The operators can control and operate the machines that are programmed
to manufacture the product. Finally, the monitoring and supervising computers are
connected to this network to request information from the PLCs and DAQs. This is
known as the Manufacturing Control System (MCS). The company has recently started
to store all available data in a data-base management system to broaden the capacity
of its staff to plan production processes in the factory, as the amount of available data
was rather small.

This is the scenario into which the MES has to be integrated. Production dynamics
characteristics should firstly be determined. For this purpose, manufacturing conditions
in the current operational stage have to be defined, in the form of data that may be
gathered from the MCS network. Once the manufacturing dynamics data have been
gathered, then a model of the present production operation may be obtained [4]. In
other words, the relevant variables for measurement and storage need to be determined.
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Figure 1: Schematic diagram of the MES installed in the plastic products factory. The
PLCs controlling each machine and the DAQs and HMIs connected through the field
network constitute the MCS.

2.1 The expected objectives

The final objective of this study is to develop a computer-based assistant to detect faults
and loss of competitiveness in the production system. Consequently, the available data
from the MCS should be examined in order to design the final data base; rather than
storing all the signals, it was only intended to store those signals that were sufficiently
informative of the process evolution in the MCS. As this represents a virtually costless
task, the factory representative and the research group agreed to present a prototype
for a simpler task; the factory would invest in such a system according to the obtained
results.

The simpler task involved assisting the staff in budgeting a manufactured product.
The working method was as follows: a client requests a product, following which a staff
member assigns the job to a certain machine chain and a cost is estimated. This is
not automated yet, so before assigning a machine chain, the employee must analyse
several plots and reports. So, the challenge was to develop a model to automatically
assist the staff in establishing the cost level for a tuple <product, client, machine>.
They collected a data set of 1471 examples, including the available historical records
of 22 input variables such as client identification, product identification, the machine,
the operator, units produced and length of operation, among others. The output of the
data set was a variable indicating whether the cost was high, medium or low.
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3 Generating the models for computer-aided decision mak-

ing

Several tasks were carried out once the data set was defined. Firstly, the data set had to
be analysed and pre-processed, in order to determine whether there were any dependent
variables. It was also analysed to decide whether it was necessary to normalise and
partition the data. KEEL software was used [1] in all the experimental and modelling
stages.

3.1 Soft Computing tools and algorithms used

KEEL stands for Knowledge Extraction based on Evolutionary Learning. KEEL soft-
ware is a research and educational tool for modelling data mining problems which
implements more than one hundred algorithms, including classification, regression, clus-
tering, etc. Moreover, it includes data pre-processing and post-processing algorithms,
statistical tests and reporting facilities. Finally, it has a module for data set analysing
and formatting, which was used for the first task in this experiment.

As the model would be used as a IT support tool, it was considered desirable to
obtain a white box model, such as Fuzzy Rule Based Systems or Decision Trees. Several
different techniques provided the ability to manage the type of available data. Different
techniques compared the results and the viability of the models. The statistical meth-
ods included Quadratic Discriminant Analysis (QDA) [12], the Multinomial Logistic
regression model with a ridge estimator (LOG) [3], the Kernel Classifier (KC with 0.01
and 0.05 sigma values) [12], and the K-nearest neighbour (KNN with 1 and 3 K values)
[7]. The fuzzy rule-based methods included the Fuzzy Adaboost rule learning method
(ADA) [10], the Fuzzy GA-P algorithm (FGAP) [15] and the Ishibuchi Hybrid Fuzzy
GBML (HFG) [9]. Finally, the decision tree and decision tree rule-based methods were
the well-known C4.5 [13] and C4.5 rule-based methods. (C45R) [14].

In the QDA algorithm, the cost of classifying an example X with class k is calcu-
lated through Eq. 1, where πk is the unconditional prior class k probability estimated
from the weighted sample, and µk and Σk are the population mean vector and covari-
ance matrix for the k class. Hence, an example X is assigned with the minimum cost
class as stated in Eq. 2.

dk(X) = (X − µk)
T Σ−1

k
(X − µk) + ln |Σk| − 2 ln πk (1)

d
k̂
(X) = min1≤k≤Kdk(X) (2)

The LOG algorithm is based on the standard logistic regression. The probability
that the class k correctly classifies the example X = {X1, ...,Xp} is calculated following
Eq. 3,where the parameter β = {β1, . . . , βp} is estimated, i.e., with the maximum
likelihood estimation obtained by maximising Eq. 4. It is classified in the class with
the higher probability, as in the example.
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p(k|X) =
exp(

∑p
j=1 βjXj)

1 + exp(
∑K

j=1 βjXj)
(3)

l(β) =
∑

k

[k log p(k|X) + ¬k log{1 − p(k|X)}] (4)

The Kernel method is a classifier that uses the Bayes rule using a ”non-parametric
estimation of the density functions through a Gaussian kernel function” as stated in [8].
In the KEEL software, covariance matrix tuning is carried out by means of an ad-hoc
method. On the other hand, the K-nearest neighbour method classifies the example X

with the majority class in the K examples of the data set with a shorter distance to X.
Note that the use of the KNN implies that a metric is defined in the space to measure
the distance between examples.

The Fuzzy Adaboost method is based on boosting N weak fuzzy classifiers (that
is, N unreliable fuzzy classifiers are weighted according to their reliability) so that the
whole outperforms each of the individual classifiers. Moreover, each example in the
training data set is also weighted and tuned in relation to the evolution of the whole
classifier.

The GAP is a Fuzzy Rule-Based Classifier learned using the Genetic Programming
principles but using the Simulated Annealing algorithm to mutate and to evolve both
the structure of the classifier and the parameters. At each iteration, the whole Fuzzy
Rule set will evolve.

The Ishibushi Hybrid Fuzzy Genetic Based Machine Learning method represents
a Pittsburgh style genetic learning process which is hybridised with the Michigan style
evolution schema: after generating the (Npop − 1) new Fuzzy Rule sets, a Michigan
style evolutionary scheme is applied to each of the rules for all the individuals. Recall
that each individual is a complete Fuzzy Rule set.

The Ishibushi Hybrid Fuzzy Genetic Based Machine Learning method represents
a Pittsburgh-style genetic learning process which is hybridised with the Michigan style
evolution schema: after generating the (Npop − 1) new Fuzzy Rule sets, a Michigan
style evolutionary scheme is applied to each of the rules for all the individuals. Recall
that each individual is a complete Fuzzy Rule set.

Finally, the C4.5 algorithm is a well-known decision-tree method based on infor-
mation entropy and information gain. A node in the decision tree is supposed to
discriminate between examples of a certain class based on a feature value. At each
node, the feature that produces the higher normalised information gain is then chosen.
In the case of C4.5R, the decision tree is presented as rules, where each node in the
path from the root to a leaf is considered an antecedent of the rule. These rules are
then filtered to eliminate redundant or equivalent rules.

3.2 The experimentation and results

After analysing the original data set it was found that most of the examples corre-
sponded to the tuning of the plant, which could therefore be discarded. In addition,

@CMMSE                                                               Page   220  of 1328                                               ISBN 13: 978-84-613-5510-5



Integrating MES and BMS using Soft Computing

Figure 2: Boxplot of the classifiers results for the {Medium, High} experiments.

there was also a large quantity of totally erroneous samples, which were also discarded.
Finally, the data set included 168 examples corresponding to 9 machines.

Several relationships were found, such as the one between the number of faulty units
and the weight of discarded material. In the end, the data set included information
on the product, the machine, client identification and the number of units to produce.
The output variable was the class of the cost level, which could be Low, Medium or
High.

The second task consisted of the modelling step, in which the modelling algorithm
had to be chosen and the statistical tests carried out. The 9 methods described in the
previous Sub-Section were used to obtain a classifier.

Two series of experiments were designed. The first experiment generated two clas-
sifiers. On the one hand, one discriminated between Low and ¬Low classes, on the
other hand, the second classifier, which was run when a ¬Low example was found,
discriminated between Medium and High classes. As a result of the first experiment,
two different data sets were generated: one contained the examples characterised with
class Low or ¬Low, and another one contained only the ¬Low examples characterised
by the corresponding class Medium or High. The second experiment made use of all
150 examples in the data set to generate a 3-class classifier. Finally, in both cases, since
the number of examples was so small, the 10-fold cross-validation schema was selected
and performed in a KEEL environment.

The results from the first experiment are presented in Table 1, Figure 2 and Figure
3. As it can be seen, the kernel methods and Fuzzy AdaBoost, although not inter-
pretable, were found to be the best models. On the other hand, in view of the results
and considering the standard deviation of the FGAP and the HFG algorithms, it could
be said that these two methods may improve their performance by means of a better
definition of their parameters (population and sub-population sizes, number of islands,
etc.) and a larger number of generations. It is worth remarking on the ease with which
the problem of discriminating between Medium and High may be solved, provided no
Low class classifications are involved.
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{Low, ¬Low} {Medium, High}
GCE SGCE CC GCE SGCE CC

C4.5 0.2276 0.0748 0.7724 0.1018 0.1220 0.8982
C4.5R 0.2324 0.0620 0.7676 0.1018 0.1230 0.8982
KC01 0.0949 0.0651 0.9051 0.0949 0.0651 0.9051
KC05 0.1143 0.0879 0.8857 0.1018 0.0758 0.8982
KNN1 0.2860 0.1002 0.7140 0.2464 0.1746 0.7536
KNN3 0.2857 0.0695 0.7143 0.3107 0.2295 0.6893
LOG 0.2504 0.0530 0.7496 0.0750 0.0829 0.9250
QDA 0.3040 0.0858 0.6960 0.0911 0.0820 0.9089
FGAP 0.2335 0.0973 0.7665 0.0893 0.0810 0.9107
ADA 0.0945 0.0598 0.9055 0.0500 0.0829 0.9500
HFG 0.2206 0.0800 0.7794 0.0750 0.0829 0.9250

Table 1: Mean results of the classifiers for the {Low, ¬Low} {Medium, High} experi-
ments. GCE, SGCE and CC stand for Global Classification Error, standard deviation
of the GCE and the percentage of correctly classified examples.

Figure 3: Boxplot of the classifiers results for the {Medium, High} experiments.
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GCE SGCE CC

C4.5 0.2974 0.0441 0.7026
C4.5R 0.3103 0.0967 0.6897
KC01 0.1077 0.0648 0.8922
KC05 0.1077 0.0531 0.8923
KNN1 0.3445 0.0796 0.6555
KNN3 0.3684 0.1120 0.6316
LOG 0.2434 0.0840 0.7566
QDA 0.3338 0.0857 0.6662
FGAP 0.4118 0.0975 0.0975
ADA 0.1783 0.0785 0.8217
HFG 0.3857 0.0799 0.6143

Table 2: Mean results for the {Low, Medium, High} classifier experiment. GCE, SGCE
and CC stand for Global Classification Error, standard deviation of the GCE and the
percentage of correctly classified examples.

The results of the first experiment did not prepare us for the results of the second
experiment. A much poorer performance of the methods was observed, despite method
C4.5, which is unable to manage a three-class problem. Only the kernel methods keep
track of the problem. The reason for these results is related to the kind of features in-
volved in the modelling; several of them being integer valued features with an unknown
upper limit. As an example, the number of units to be produced is quite dependent
on the machine, as each machine has a maximum production rate. But this data was
not given for the experimentation, so it was not possible to normalize those variables
which, in turn, make the classifier worse.

A main conclusion may be drawn from this experimentation: the data set should
be more informative and representative of the problem, if better models are to be
generated. The company should rely on an in-depth analysis of available data and
measurements, but it is also necessary for it to study the relationships between the
variables under study, i.e. using Cooperative Maximum Likelihood Hebbian Learning
(CMLHL) [6] as shown in [17, 16]. The results illustrate the way in which the research
team may help the company to design their MES.

4 Conclusions and future work

A MES development to improve its capacity and link up with other business manage-
ment applications has been tested in this work. A computer assisted-budgeting problem
has been solved through the application of different computing techniques. Neverthe-
less, it was shown that the data gathered from a MCS must be carefully chosen and the
amount of data should be representative and informative of the real process. A clear
list of the objectives to be accomplished by the MES should be prepared prior to the
collection and analysis of relevant data.
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Figure 4: Boxplot of the classifiers results for the {Low,Medium, High} experiments.

Future work will include modelling the relationships between operators, machines,
products and the overall performance of the plant, so that resource planning may be
introduced. More knowledge and data should be gathered from the plant, such as
machine operating limits. Finally, a complete analysis of the data through the use of
well-known techniques (such as CMLHL) would contribute to reliable MES design and
engineering.
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Abstract

Clusters of computers that act in a collaborative manner to execute parallel jobs
are known as multi-clusters. In a multi-cluster environment, it is possible to treat
computational problems that require more resources than those available in only
one cluster. However, the degree of complexity of the scheduling process is greatly
increased to take advantage of multi-cluster capabilities, and the scheduler must
take into account the co-allocation process that distributes the tasks of parallel
jobs across cluster boundaries.

In this work, a scheduling strategy is presented based on a linear programming
model, which brings together the parallel jobs in the system queue that fit into the
system and allocates them simultaneously, instead of assigning them individually
as is usual in the literature. The proposed scheduling technique is shown to reduce
the execution times of the parallel jobs by about 8% on average, and the waiting
times by about a 35% compared with other scheduling techniques in the literature.
This reduction in response time provides greater resource utilization and improved
overall system performance.

Key words: Multi-cluster systems, co-allocation, job scheduling, mixed integer

programming

1 Introduction

Nowadays the use of clusters of computers is becoming common in all kinds of research
laboratories or institutions. Computation problems that would require the use of more
computational resources than just one of these clusters can offer can be resolved by
the use of multiple clusters in a collaborative manner. These environments are known
as multi-clusters and are distinguished from grids by their use of dedicated intercon-
nection networks among clusters with a known topology and predictable performance
characteristics [1].
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A critical aspect of exploiting the resources in a multi-cluster environment is the
challenge of scheduling [2]. Multi-cluster schedulers can take advantage on distributed
resources among different clusters to allocate those jobs that cannot be assigned to one
single cluster or to take profit of the underutilized resources. This allocation strategy,
known as co-allocation, can maximize the job throughput by reducing the queue wait-
ing times and then the job response times [3]. However, mapping jobs across the cluster
boundaries can result in rather poor overall performance when co-allocated jobs con-
tend for inter-cluster network bandwidth. Additionally, the heterogeneity of resources
increases the degree of complexity to the scheduling problem [4][5].

The scheduling process in multi-cluster environments can be solved by two ap-
proaches [2]; (a) using a multi-scheduler mechanism, where each cluster has its own job
queue and scheduler, and all the clusters are coordinated by a global meta-scheduler.
In this situation, the job queue of each cluster can be directly accessed by the user
in order to allocate those jobs that fit into the cluster, and those jobs that do not fit
are delegated to the meta-scheduler to be co-allocated. Or (b), when there is only
one global scheduler with a single system queue, where all jobs to be executed in the
multi-cluster are waiting to be assigned. This second option is the considered in the
present work.

The scheduling strategies by applying co-allocation in multi-cluster environments
have awakened great interest in recent years. The work in [2], analyzes the performance
of four different scheduling strategies to deal with co-allocation, based on job queues,
local to each cluster or global for all of them. This work concludes that using a global
scheduler, as in our case, simply allowing co-allocation without any restriction is not
desirable and requires more complex strategies. Thus, in the literature, the authors have
dealt with the co-allocation process in the multi-cluster environments by developing
different approaches. Some of these, applying load-balancing techniques minimize the
execution time of the jobs from the system queue [6][7]. The work presented in [8]
applies a linear programming based approach for modeling and solving the allocation
of jobs by attempting to avoid inter-cluster links saturation. Another point of view is
presented in [4], which characterizes the bandwidth requirements of the parallel jobs
that are co-allocated in order to minimize the inter-cluster links usage and obtain the
lowest execution time. This work was extended in [3], where the computation needs
are also taken into account to reduce the execution time of the parallel jobs, while
preventing the saturation of the interconnection links.

Nevertheless, those previous works follow a FCFS scheme to allocate the jobs from
the system queue. This means that they consider all the available resources to allocate
the current job, but as they do not take into account the other jobs in the system queue,
the current allocation could affect the next assignments negatively. The main problem,
and also the big challenge, is the capacity of the techniques to extent the scheduling
process to more than one job at the same time.

In the present work, we extend the Mixed-Integer Programming model (MIP) pre-
sented in [3] by adding the power to allocate multiple jobs simultaneously in a het-
erogenous multi-cluster environment, in order to obtain the best overall performance
for a set of parallel jobs. Additionally, we propose a scheduling strategy, named PAS
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for Package Allocation Srategy, which selects those jobs from the system queue that
can be concurrently executed with the available resources. Once the package of jobs is
selected, the MIP model proposed is responsible for finding the best possible allocation
for the set of jobs. With our approach, the best resources for each parallel job are
obtained considering the other applications that can be executed concurrently in the
multi-cluster environment, and thus, the scheduling process will be able to reduce the
global response times while making better use of the resources and also preventing the
saturation of the inter-cluster links.

The rest of the paper is organized as follows. In Section 2, we present the scheduling
strategy proposal based on minimizing the global response time for multiple allocated
jobs by using a Mixed-Integer Programming model that takes into account the het-
erogeneity and non-dedicated nature of multi-cluster resources. Section 3 presents the
experimentation and the results obtained from comparison with other scheduling strate-
gies presented in the literature. Finally, the conclusions and future work are presented
in Section 4.

2 Multiple Job Scheduling Strategy

In [3] we presented a new execution time model for parallel jobs. The goodness of
this model was that it defines the execution time by considering both processing re-
source availability and communication resource utilization. This model was applied in a
Mixed-Integer Programming model (MIP) in order to find the allocation of the current
job that minimizes its execution time, while avoiding the negative effects of sharing the
communication links and processing resources. The drawback of our previous proposal
was that jobs in the system queue were selected and scheduled individually in a FCFS
manner, allocating the best resources for each job without considering the effects on
the execution time of the remaining jobs in the system queue.

One of the main contributions of the present work is the improvement of the Mixed-
Integer Programming model presented in order to achieve the best possible allocation
of multiple jobs, i.e. one that provides the minimum overall execution time.

In subsection 2.1, the execution time model of parallel jobs in heterogeneous multi-
cluster environments is defined and in subsection 2.2, we define the multiple job alloca-
tion problem as a MIP (Mixed-Integer Programming) model where the best solution is
the one that minimizes the global execution time of a set of jobs. Finally in subsection
2.3 the proposed multiple job scheduling strategy is presented.

2.1 Multi-cluster and Parallel Job Models

We define a multi-cluster as a collection of arbitrary sized clusters with heterogeneous
resources. Each cluster has its own internal switch. Clusters are connected to each
other by single dedicated links by means of a central switch.

Formally, a multi-cluster can be defined as a system comprised by α heterogeneous
clusters {C1..Cα} interconnected by means of dedicated links {L1..Lα}, where each
cluster Ci (1 ≤ i ≤ α) is also made up of βi nodes Ci = {N1

i ..N
βi

i }, see Figure 1.
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Figure 1: Diagram of a multi-cluster topology

We assume that parallel jobs are not supposed to be malleable, the processing and
communicating requirements of every job task are very similar, and the job tasks follow
an all-to-all communication pattern.

Taking this assumptions into account, the execution time (Te) of a parallel job
in a heterogeneous and non-dedicated environment can be defined as its execution
time in a dedicated environment (Te) delayed by a slowdown factor (SD) produced
by the heterogeneity and non-dedicated nature of the slowest allocated resources, and
expressed by equation 1.

Te = Te · SD (1)

However, the slowdown of a parallel application depends on the capacity and avail-
ability of resources of both computation and communication, and thus, we can express
SD based on processing SP and communication SC slowdowns by equation 2.

SD = σ · SP + (1− σ) · SC (2)

where σ denotes the weighting factor that measures the relevance of the processing
time with respect to the communication time of the corresponding job.

2.1.1 Processing Characterization

We assume that parallel job tasks are generally similar in size and they are executing
separately, and thus, the job execution time is bounded by the slowest allocated re-
source. Taking this into account, the job processing slowdown (SP ) is obtained from
the allocated resource with maximum processing slowdown, expressed by equation 3.

SP j = max{SPr|r ∈ Pj} (3)
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where Pj denotes the set of processing nodes allocated to job j. In a heterogeneous
and non-dedicated environments the computing resources capabilities can be quite dif-
ferent. To measure these differences we use the Effective Power metric (Γr) defined
in [3], which relates the computing power of each resource with its availability. Thus,
Γr = 1 when resource r has full capacity to run tasks at full speed, and otherwise
Γr < 1. Assuming this, the processing slowdown of such resource SPr is inversely
proportional to its Effective Power weight, SPr = (Γr)

−1.

2.1.2 Communication Characterization

The parallel job co-allocation consumes a certain amount of bandwidth across inter-
cluster network links (BW

j
k ). These are shown by equation 4.

BW
j
k =

(

t
j
k · PNBW j

)

·

(

n
j
T − t

j
k

n
j
T − 1

)

, ∀ k ∈ 1..α (4)

where n
j
T is the total number of tasks of the job j, tjk denotes the total number of

tasks allocated to cluster Ck and PNBW j is the average per-node bandwidth require-
ment by job j from the jobs. The first term in the equation is the total bandwidth
required by all the nodes associated with job j in cluster Ck. The second term repre-
sents the communication percentage of job j in other cluster nodes (not in Ck) that
will use the inter-cluster link k.

The degree of saturation of inter-cluster links relates the available bandwidth of
each link (ABWk) with the bandwidth requirements of the allocated parallel applica-
tions, which is calculated by equation 5.

BW sat
k =

ABWk
∑

j,k BW
j
k

∀ k ∈ 1..α (5)

When the required bandwidth is lower than the available, the link is not saturated
and the communications will not suffer delays. Otherwise, the network link is saturated
drastically reducing the performance of all the jobs sharing the link.

Thus, the job communicating slowdown (SC) is obtained from the slowest, most
saturated, communication link used by the job, calculated as the inverse of the satura-
tion bandwidth by equation 6.

SCj = max{(BW sat
k )−1|k ∈ 1..α} (6)

2.2 Mixed-Integer Programming Model

In [3] we presented a Mixed-Integer Programming model (MIP) in order to find the
best allocation for a parallel job, i.e. one that minimizes its execution time. However,
the allocation of the best available resources to an application without considering the
requirements of the other applications in the system queue impairs the overall system
performance.
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Input arguments:

1. PCK: Queue of jobs to be matched.

2. τ j : number of tasks making up job j ∈ PCK.

3. PNBW j : per-task bandwidth requirement for each job j ∈ PCK.

4. σj : weighting factor that relates the processing and communication time.

5. L: set of inter-cluster links.
6. µ: set of multi-cluster resources.

7. Γr: Effective Power weight of node r ∈ P
8. ABWl: maximum communication capacity for each inter-cluster l link ∈ L

Output parameters:

9. X(j,r), j ∈ PCK and r ∈ P : X(j,r)=1 when j is matched to resource r, and 0 otherwise.

10. Pj : Set of allocated resources to job j, Pj = {r ∈ µ | X(j,r) = 1 and j ∈ PCK}
11. SP j : processing slowdown. SP j = max{SP(j,r) | j ∈ PCK and r ∈ Pj}.
12. SCj : communication slowdown. SCj = max{SC(j,l) | j ∈ PCK and l ∈ L}.

Objective Function:

13. min{
∑

1,j T
j
e · SDj}

Constraints:

14. Gang matching.

15. Non inter-cluster link saturation.

Figure 2: MIP model definition for multiple job allocation

The new proposal is described in Figure 2. The objective function and constraints
correspond to linear expressions that concern the simultaneous allocation of several
parallel jobs on a multi-cluster. In this case, the solution is presented as binary values,
1 or 0, indicating the allocation, or not, of each processing node to each parallel job.
The objective function corresponds to the lowest global execution time for a set of jobs,
giving us the best possible allocation, which may or may not be co-allocated between
different clusters.

In order to find the best allocation, information about job requirements and multi-
cluster status are required (lines 1-8). The information about each job j corresponds
to the number of tasks (τ j), the required per-node bandwidth (PNBW j), and the
weighting factor (σj), which measures the relevance of the processing and communi-
cation time in the total job execution time. For multi-cluster resources, its status is
specified by the Effective Power weight of each resource (Γr) and the availability of the
communications links (ABWl).

The set of output variables (lines 9-12) consists of an array of binary decision
variables X(j,r), with values of 1 or 0 when a task of job j is allocated in node r,
or not, respectively. The SP j and SCj variables, obtained by equations (3) and (6)
respectively, represent the processing and communicating slowdowns obtained for each
allocated job, and provide the job Slowdown SDj using equation 2.
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2.2.1 Objective function

When there are many possible solutions, the objective function defines the quality of
the solution. Our main aim was the allocation of multiple jobs in heterogeneous and
non-dedicated resources over a multi-cluster system, obtaining the lowest execution
time for the job set.

In order to deal with multiple jobs obtaining a fair allocation for all of them, we
attempted to minimizing the global execution time of the entire job set PCK. This is
done by summing the individual obtained execution times for all the allocated jobs, as
shown in equation 7.

min







∑

1,j

T
j
e · SDj







(7)

where the execution time for each allocated job is expressed based on the execution

time measured in a dedicated environment T
j
e lengthened by the job slowdown SDj

obtained by equation 2.

2.2.2 Constraints

The constraints (lines 14-15) define a feasible matching scheme. In this model, two main
constraints that must be satisfied are defined, the gang matching and non-saturation

of the inter-cluster links.

The gang matching constraint ensures that all the tasks in each job are assigned,
according to equation 8.

∑

j∈PCK,r∈P

X(j,r) = τ j (8)

where τ j is the number of tasks for the job j. This ensures that the sum of resources
allocated for each job j corresponds to its number of tasks.

The non-saturation constraint ensures that the bandwidth consumed on inter-
cluster links once the set of jobs is allocated, does not exceed the total capacity of
these links, thus preventing saturation and delay of the parallel jobs. This constraint
is formalized by equation 9.

SCj ≤ 1,∀j ∈ PCK (9)

where SCj is the communication slowdown calculated by eq. (6), for each allocated
job j.

2.3 Package Allocation Scheduling Strategy

A common feature of most on-line scheduling strategies in cluster, multi-cluster and
grid environments, is the individual allocation of resources to applications. First, the
strategy selects the next job to be executed by order of arrival or according to a priority
criteria. When there are insufficient resources to run the selected job, the scheduler can
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wait for the release of enough resources in order to follow a First Come First Served

(FCFS) schema, or select a new job from the system queue that can be executed
with the existing resources by applying such a schema as Fit Processors First Served

(FPFS), backfilling, etc. Once a job is selected, it is individually allocated to the most
appropriate resources according to the chosen allocation strategy.

However, allocating the best available resources to a job without considering the
requirements of the rest of the jobs in the system queue can impair the performance of
future allocations and therefore the overall system performance. The proposed strategy,
named Package Allocation Scheduling (PAS), is able to package those jobs that can be
executed in the available resources and allocates them using the MIP model proposed
in the previous subsection. To do this, the PAS strategy implements a job selection
function (F) that determines the job package that can be simultaneously allocated in
a set of multi-cluster resources, selected under certain criteria. This function can be
expressed by equation 10.

PCK = F(Q,R, C) (10)

whereQ is the set of jobs in the system queue, R is the set of multi-cluster resources
and C denotes the criteria to be met by resources to accommodate the job package.

In this work, under a FCFS schema, the function F selects the set of jobs in the
system queue that fits in the free multi-cluster resources, that is, those computational
nodes non-assigned to other parallel applications. This function is formally expresed
by equation 11.

∃ PCK ⊆ Q |
∑

j∈PCK

τ j 6 |R
′

| (11)

where PCK is the subset of jobs from the system queue (Q) whose total number
of tasks is less than or equal to the multi-cluster resources in R

′

, that represents the
subset of multi-cluster resources (R

′

⊆ R) that meets the criteria (C), which in our
case are those resources non-assigned to other parallel jobs. With this, we attempt to
minimize the job waiting times, and reduce the execution times by applying the MIP
model.

It must be taken into account that this expression can be defined in many other
ways, adapted to the multi-cluster environment, both in the point of view of the re-
sources or the parallel jobs nature to be executed. Any strategy or heuristic is suitable
to be implemented.

3 Experimentation

In this section we assess the performance of the proposed Package Allocation Scheduling

strategy (PAS ) for heterogeneous multi-cluster environments and compare the obtained
results with two other techniques in the literature. The first strategy presented by Jones
in [4], named CBS for Chunk Big Small tries to co-allocate a “large chunk” (75% of the
job tasks) into a single cluster in an attempt to avoid inter-cluster link saturation. The
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second strategy presented by Naik in [8], named JPR for Job Preferences on Resources,
allocates parallel jobs depending on their processing or communication requirements,
selecting the most powerful resources when the jobs are computational intensive and
minimizing the communication saturation when jobs are highly communicative, co-
allocating or not the jobs as needed.

The experimental environment was a multi-cluster made up of 4 clusters, inter-
connected by a dedicated Giga-Ethernet network. Each cluster was made up of 16
nodes with the same characteristics. Heterogeneity was implemented assigning differ-
ent Effective Power weight to each individual cluster, with values of {0.4, 0.6, 0.8, 1.0}
respectively, from lesser to higher capability.

In order to evaluate the performance of each strategy under different workload
conditions, three different kinds of workloads were defined. Each workload was made
up of 35 parallel jobs with different processing and communications requirements with
an inter-arrival time chosen from a Poisson distribution with a mean of 40 seconds.
The Highly Processing workload consisted of cpu-intensive jobs, with a weighting factor
(σj) randomly selected in the range of [0.75, 1]. The Highly Communicative workload
consist of communication-intensive jobs, with a weighting factor randomly selected in
the range of [0.05, 0.35]. Finally, the Mixed workload consisted of a mix of cpu- and
communication- intensive jobs.

The parallel jobs had sizes 10, 20 and 30 of tasks, and appeared in the workload with
an exponential probability distribution, with higher frequency of small jobs than large
ones, as is common in real systems. The execution time of parallel jobs in a dedicated
environment (or base execution time, Te), were randomly selected from the range of
[60, 180] seconds. The average per-node communication requirements PNBW j were
randomly selected from the range of [0.05, 0.1] Gbps, obtaining jobs with low bandwidth
requirements and other with high bandwidth requirements.

Different kinds of metrics were defined to measure the performance of the scheduling
strategies. The Average Response Time measures the mean elapsed time in the system,
by the jobs in the workload. The Average Overhead measures the delay in base time
produced by the allocated resources.

Both metrics help us to measure the goodness of the allocation strategy for the
reduction of the response times and its efficiency from the parallel application point of
view. Makespan measures the total time spent by each scheduling strategy to execute
the workload, and helps us to evaluate the goodness of the allocation strategy for
improving the overall system performance. The results were obtained by using the
CPLEX solver package.

Figure 3 shows the average response time obtained for each scheduling strategy for
different kinds of workload. The average response time is shown divided into its three
basic components, the average base execution times, the average overhead produced by
the allocated resources and the average waiting time.

As can be seen, the PAS scheduling strategy had the lowest average response time.
The fact that this strategy is able to allocate many jobs at a time, minimizes the overall
execution time and reduces considerably the waiting times. This allows the system to
free resources earlier, and thus, improve the response time of the whole workload.
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Figure 3: Comparison of average response times

The JPR strategy attempts to find the best resources by taking into account
the job characterization, i.e. for the Highly Communicative workload, the strategy
selects the best communication resources, while for the Highly Processing workload it
minimizes the processing time. The strategy obtained an 8% higher average response
time compared with the PAS strategy. The CBS groups job tasks in order to reduce
the communications, but does not take into account the processing characteristics of
the jobs or the environment. Due to this, the strategy performs well in the Highly

Communicative workload, but has poor performance in the other two. Overall, it
obtains a 38% higher response time than PAS.

Figure 4 shows the makespan obtained for the three kinds of workload. The x-axis
represents the workloads, while the y-axis represents the makespan of the full workload,
in seconds. A lower makespan implies that the workload finishes its execution earlier.

As can be seen, the PAS obtained the lowest makespan in the three kinds of
workload. The values obtained were overall 3% and 13% lower than those for JPR and
CBS respectively.

Finally, we studied how the small jobs were treated by each strategy. In [2], it
was shown that systematic co-allocation yields the poorest performance, because jobs
with conflicting requirements can make the performance worse than in the absence of
co-allocation. With this, the small jobs are desirable to be allocated without crossing
the cluster boundaries. With lower co-allocation on small jobs it will be more feasible
to maintain free the inter-cluster links for those jobs that must be co-allocated and
then improving the system performance. By this reason, we evaluated the number
of co-allocated small jobs, those composed of 10 tasks, for each one of the compared
strategies.

Figure 5 shows the number of small jobs co-allocated by the strategies for the three
workloads. The total number of small jobs is indicated, between parentheses, in the
label of the workload. The results show that the PAS strategy was able to co-allocate
the lowest number of small jobs on average. In the Highly Communicative, the CBS
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Figure 4: Comparison of Makespans

had the lowest value. This was because, in order to minimize the waiting time, the PAS

co-allocates even the smallest jobs taking advantage of the free resources in different
clusters, as can be seen in Figure 3.

Figure 5: Degree of co-allocation for small jobs

In all workloads, JPR co-allocated the higher amount of jobs. In the case of
the Highly Processing and Mixed workloads, their allocations were based just only on
obtain the better Effective Power resources, instead the co-allocation. For the Highly

Communicative workload, it only treated to not saturate the inter-cluster links without
taking into account to maintain the tasks at the same cluster.

To summarize, under all workloads, the PAS strategy demonstrated its ability to
reduce the response times. This was because evaluating multiple jobs simultaneously
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allowed a fairness allocation for the jobs, and thus a great reduction in the waiting
times was possible. Furthermore, the MIP model obtained the lower Slowdown (SD),
the average execution overhead being the lowest.

4 Conclusions

In the present work a multiple job schedulling strategy, named PAS for Package Allo-

cation Scheduling strategy, is presented, based on a Mixed-Integer Programming model
(MIP). The MIP model minimizes the global execution time for a package of jobs, se-
lected by the PAS strategy from the system queue, taking into account both processing
and communication requirements. Our strategy was tested against others in the litera-
ture, and the results of the experimentation show that we are able to produce solutions
with the lowest execution and waiting times for all the jobs, and also the makespan.

In the future work, we plan to extend our model in a stochastic, to take into account
temporal scenarios where the allocations will be done considering the future jobs in the
queue.
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Abstract

Scalability is one of the most important features in exascale computing. Most
of this systems are heterogeneous and therefore it becomes necessary to develop
models and metrics that take into account this heterogeneity. This paper presents
a new expression of the isoefficiency function called H-isoefficiency. This function
can be applied for both homogeneous and heterogeneous systems and allows to
analyze the scalability of a parallel system. Then, as an example, a theoretical a
priori analysis of the scalability of Floyd’s algorithm is presented. Finally a model
evaluation which demonstrate the correlation between the theoretical analysis and
the experimental results is showed.

Key words: Heterogeneous Computing, Scalability Analisys, Isoefficiency

1 Introduction

The performance of parallel programs must be evaluated together with the computer
system on which they are run. Otherwise, an algorithm that solves a problem well
using a fixed number of processors on a particular architecture may perform poorly
if the number of processors changes [3]. Common speedup graphs teach us that the
speedup of a system does not grow linearly with the number of processors but tend
to saturate. On the other hand, a higher speedup can be obtained as the problem
size increases on the same number of processors [4]. Then, a system is considered
to be scalable if the performance measures remain constant whenever the number of
processors is increased by selecting the appropriate problem size. The system’s degree
of scalability is given by the ratio problem growth to system growth needed to keep
those measures constant. It can be said that scalability has been a desired capability
that means not just the ability to operate a system, but to operate it efficiently and
with an adequate quality of service over the available range of configurations [6].
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But moreover, in the age of exascale computing, a 21st century attempt to push
computing capabilities beyond the existing ones, a quick look to the top500 list reveals 6
machines with more than 100,000 processors (3 of them over 200,000). Since processors
are affordable and quite powerful nowadays (currently up to 12 cores and growing),
other aspects as performance loose importance while scalability emerges as one of the
key concepts in parallel computing.

The study of scalability of homogeneous parallel systems has not come up with
a unique and common way of evaluation, although the isoefficiency metric [3] is the
most accepted and used. In it, the degree of scalability is given by the isoefficiency
function, that expresses the dependence of the problem size on the number of processors
needed to keep the efficiency constant. The smaller the problem size is, the lower is
the isoefficiency value and therefore the higher the scalability of the parallel system is.

This paper presents a new expression of the isoefficiency function, called heteroge-
neous isoefficiency. It is a more general definition than the one presented in [10], since
the functions they use to analyze the overhead time are always linear with respect to
the problem size, so their definition is only valid for the examples they propose. It also
improves other existing extensions, as the ones proposed by Kalinov [7] and Chen et al.
[1], as it is explained in section 2. In order to prove the use of this model it has been
applied to the Floyd algorithm, obtaining from the experiments results quite close to
those predicted by the model.

The rest of the paper is organized as follows: Section 2 presents a brief overview of
the related work. Section 3 presents the new definition of the isoefficiency function for
heterogeneous systems. Section 4 presents the application of this model to a practical
problem. Section 5 shows the experimental results achieved. Finally, conclusions and
future work are summarized in Section 6.

2 Related Work

Despite its importance for parallel and distributed systems, there is no unique and
commonly accepted metric for scalability evaluation. A number of techniques have been
suggested throughout the years. They are typically based on the selection of a metric
which is used for characterizing the behavior of an homogeneous system [5, 8, 12, 14, 18].
Among the most representative works, it can be mentioned the use of latency as a metric
to do an experimental measurement and evaluation of the scalability of programs and
architectures [15, 17]. The model is based on the average latency, a function of the
problem size and the number of processors. It determines the average overhead time
needed so that each processor finishes its assigned work. Scalability is then defined as
a combination of the machine and the implementation of the algorithm.

Another model quite used is the one raised by Sun and Rover [13], who proposed
an isospeed scalability metric to describe the scalability of an algorithm-machine com-
bination in homogeneous environments. This model is based on reducing the response
time by means of increasing the speed. The execution speed of an algorithm is de-
fined as the amount of work needed to complete its execution divided by the response
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time. Ideally, this measure should increase linearly with the size of the system. In
general communication and synchronization overheads prevent such a behavior. Chen
and Wu [1] extended this model to heterogeneous systems. Its main drawback is that
isospeed is an a posteriori measure, so it demands to implement the model and obtain
the measures empirically to be able to decide about the system’s scalability.

The isoefficiency is the most widespread model [9, 3]. It defines scalability as the
ability of a parallel system to keep the parallel efficiency constant when both system
and problem sizes increase. Then, parallel efficiency is defined as the speedup over
the number of processors. Speedup is defined in turn as the ratio sequential execution
time to parallel execution time. Pastor and Bosque [10] proposed an extension to
heterogeneous systems, although their approach lacks of generality, since the functions
they define to analyze the overhead time are linear with respect to the problem size for
every case.

Kalinov [7] has also extended the isoefficiency model to heterogeneous systems. In
this work it is imposed that the system has to keep constant the computational power
of the slowest processor, the computational power of the fastest processor and also the
average computational power of the system. These are indeed three tight restrictions
quite difficult to satisfy when a system is upgraded with new nodes, conditioning its
real heterogeneity.

The model presented in this paper has several advantages over the isospeed model
and the extension to the isoefficiency model presented by Kalinov, since as it is explained
in the following, it is an a priori model that successfully predicts the scalability of a
system and also deals with both power and physical scalability.

3 The Isoefficiency Function for Heterogeneous Clusters

The isoefficiency function depends only on the number of processors assuming all of
them have the same computational power [9, 3]. This is not the case for heterogeneous
systems where the performance of a single processor can affect the overall performance
of the system. In fact, the response time will depend on the slowest node: TR =
maxP

i=1Ti — being P the number of processors and Ti the response time for node i.
In this way the computational power of a heterogeneous system (PT ) can be defined

as the sum of the computational power of its processors (Pi) [10]:

PT =
P∑

i=1

Pi (1)

(2)

Assuming W is the size of the problem, in this work the computational power of
each node has been computed using the following expression:

Pi =
W

Ti

(3)
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3.1 Heterogeneous Efficiency

As previously mentioned the computational power of a heterogeneous system does
not only depend on the number of processors but also depends on each processor’s
computational power. In order to improve the computational power of this type of
systems both the number or the power of some processors have to be increased. The
latter is called physical scalability while the former is referred as power scalability [16].

The efficiency of a parallel (either homogeneous or heterogeneous) system, denoted
by ε, can be defined as the ratio between the ideal response time in a single node
with the same computational power and the real response time achieved [10]. The best
response time is achieved when the workload is evenly distributed and no overhead
time is introduced. This is reflected in the following equation:

ε =
Optimal achievable time

Actual response time
=

W

TR · PT

(4)

For homogeneous systems, it is easy to demonstrate that ε becomes the traditional
efficiency.

3.2 H-Isoefficiency

Ti can be decomposed into computation and overhead times: Ti = tic + tio. The iso-
efficiency function assumes that tc, is constant for all of the processors and therefore
it does not affect the scalability of the system. However, this is not true for heteroge-
neous systems, where not only the number but also the performance of nodes have a
high impact on the scalability of the system.

Based on the definition of the efficiency given in the previous section, an isoef-
ficiency function for heterogeneous systems, H-isoefficiency, can be defined. In the
heterogeneous case the key parameter will be the total computational power of the
system, instead of the number of processors.

Given a heterogeneous parallel system S(P,PT ,W ) with P processors, a total com-
putational power PT and a total amount of work represented by W and given also
S′(P ′, P ′

T ,W ′), a scaled system with P ′
T > PT , it can be said that S is a scalable sys-

tem if, whenever the system is upgraded from S to S’, it is possible to select a problem
size W’ such that the efficiencies of S and S′ are kept constant.

Now the heterogeneous isoefficiency function, H-isoefficiency for heterogeneous par-
allel systems can be computed, starting from the heterogeneous efficiency definition for
S. Furthermore we define the response time of the parallel algorithm as the sum of the
execution time plus the overhead time: TR = Texe +To. Assuming that the workload is
evenly distributed among the nodes proportionally to each node’s computational power,
Texe will be the same for all of the nodes, and it can be determined as Texe = W

PT

. Then

the response time will be given by the following expression: TR = W
PT

+ To. Hence, the
H-Isoefficiency function is defined as:

ε =
W

TR · PT

=
W

W + To · PT

=
1

1 + To·PT

W
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For scalable heterogeneous parallel systems, the efficiency can be maintained at a
desired value if the ratio To·PT

W
in the expression of the efficiency is maintained at a

constant value. To maintain a certain efficiency we can do:

Tp · PT

W
=

1 − ε

ε
⇒ W =

ε

1 − ε
To · PT

Let K = ε
1−ε

be a constant depending on the efficiency. Then the H-isoefficiency
function can be write as:

W = K · To(P ) · PT (P ) (5)

From this expression can be pointed out that the scalability of heterogeneous en-
vironments depends on both, the number of nodes and the total computational power
of the scaled system.

This expression is similar to the one proposed for homogeneous isoefficiency. The
main difference between both is that instead of using a single tc parameter, which
remains constant for the whole set of nodes of the system and which is included in
the K parameter, a new PT parameter is introduced to represent the total aggregated
computational power of the system.

Therefore, when scaling a system, the computational power of new nodes has to
be taken into account in order to increase the size of the problem in a proportional
way. This problem can be seen from a qualitative point of view: if a system is scaled
using nodes more powerful than the system’s, the total response time would be lower
than the time achieved if the nodes had the same computational power. In this way the
total overhead (To) would be a bigger percentage of the response time and the efficiency
would be decreased. This fact makes necessary to increase the size of the problem in
order to achieve the same efficiency as is represented in Eq. 5.

A big advantage of the proposed approach compared to Kalinov’s generalization of
the isoefficiency function [7] is that our approach allows to study the behavior of the
system both when scaling by the number of processors (physical scalability) and when
scaling increasing the power of some of them (power scalability) Kalinov’s work forces
to maintain the average computational power and therefore a power scalability study
can not be done. With our approach a priori studies can be carried out in order to
analyze if a specific algorithm is more suitable for its execution using a large number of
less powerful processors or a lower number of more powerful ones. This is demonstrated
in the experimental results section.

4 Scalability of the Floyd Algorithm

Once the H-isoefficiency has been defined it becomes necessary to experimentally vali-
date and verify it. In this way, as an example, Floyd’s algorithm has been chosen. This
algorithm solves the all-pairs shortest-path problem. In this Section the performance
of a parallel implementation of this algorithm is analyzed in order to obtain both the
isoefficiency and H-isoefficiency. In Section 5 experimental results are presented.
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4.1 Performance Analysis

Let’s assume a model for communication cost in parallel programs. The time spent
in a single point-to-point communication over an uncontested interconnection network
can be well approximated in terms of startup latency (λ) and bandwidth (β). Then the
time to communicate a m word message can be approximated by: TM = λ · m

β
.

A broadcast function to p processors requires ⌈logp⌉ message-passing steps. Hence
the time spent in broadcasting a m word message can be approximated by TB =
λ · m

β
· logp.

The sequential implementation of the Floyd algorithm is composed by three nested
loops, from 0 to n − 1, where n is the dimension of the adjacency matrix. Therefore
the complexity of the sequential Floyd algorithm is Θ(n3).

With respect to the parallel algorithm the innermost loop has complexity Θ(n).
Given a row-wise block-striped decomposition of the adjacency matrix, each process
executes at most ⌈n

p
⌉ iterations of the middle loop. Hence the complexity of the inner

two loops is Θ(n2

p
). Immediately before the middle loop is the broadcast step. Pass-

ing a single message of length n from one processor to another has time complexity
Θ(n). Since broadcasting to p processors requires ⌈logp⌉ message-passing steps, the
overall time complexity of broadcasting each iterations is Θ(nlogp). The outermost
loop executes n times. Hence the overall time complexity of the parallel algorithm is:

Θ(n(nlogp +
n2

p
)) = Θ(

n3

p
+ n2logp)

Now let’s come up with a prediction of the response time of the parallel algo-
rithm. The parallel Floyd program requires n broadcasts, each of them with ⌈logp⌉
steps. Each step involves passing messages that are 4n bytes long. Hence the expected
communication time of the parallel program is:

n⌈logp⌉(λ +
4n

β
)

If tc is the average time needed to update a single cell (a basic algorithm operation),
then the expected computational time of the parallel algorithm is:

n2
⌈n

p

⌉
tc

However it is possible to overlap communication and computation operations. The
computation time per iteration exceeds the time needed to pass messages. For this
reason after the first iteration each process spends the same amount of time waiting
for or setting up messages: ⌈logp⌉λ. If ⌈logp⌉4n

β
< ⌈n

p
⌉ntc, the message transmission

time after the first iteration is completely overlapped by the computational time and
should not be counted toward the total execution time. Hence a better expression for
the execution time of the parallel program is:

TR = n2
⌈
n

p

⌉
tc + n⌈logp⌉λ + ⌈logp⌉

4n

β
) (6)
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4.2 Isoefficiency Function

Let’s determine the isoefficiency function for the parallel implementation of the Floyd’s
algorithm. The sequential algorithm has time complexity Θ(n3). Each of the p pro-
cesses executing the parallel algorithm spends Θ(nlogp) time performing communica-
tions. Therefore the isoefficiency relation is:

n3 ≥ K(nplogp) ⇒ n ≥ K(plogp)
3

2

where K is a constant.

4.3 H-isoefficiency of the Floyd Algorithm

Now let’s determine the H-isoefficiency function of the Floyd’s algorithm. For obtaining
the execution time in a heterogeneous environment, we have to take into account that
the workload is evenly distributed according to each node’s computational power. Then
each node has a computational workload given by wi = W

PT

· Pi.
In such a way, the middle loop executes wi times per each node, but all the nodes

spend the same amount of time W
PT

. A performance analysis similar to the one presented
in Section 4.1 gives the following response time and complexity expressions:

TH
R =

n3

PT

+ n · ⌈logp⌉ · (λ +
4n

β
) ⇒ To = n · ⌈logp⌉ · (λ +

4n

β
) (7)

Θ(
n3

PT

+ n2logp) (8)

Then the H-isoefficiency function is:

W = KPT To ⇒ n3 = KPT (nλ⌈logp⌉ +
4n

β
⌈logp⌉) = KPT nλ⌈logp⌉ + KPT

4n

β
⌈logp⌉

(9)
Analyzing each term independently we reach the same expression for the H-isoefficiency:

Θ((PT logp)
3

2 ). (10)

5 Model Evaluation

A practical experiment was set up in order to test the analytical results presented in
the previous sections and to show how the heterogeneous isoefficiency model could be
applied. The tests were performed on a heterogeneous HP Cluster with up to 142
processors, interconnected with Gigabit Ethernet network. The cluster is composed of
the following resources:

• 20 HP Proliant DL 145 with two 1.8 GHz Dual Core AMD Opteron 265 processors,
labeled as Node Slow (NS) in this paper.
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(a) Efficiency in a heterogeneous cluster (b) Heterogeneous efficiency in a heterogeneous
cluster. eps

Figure 1: Comparison of classic and proposed efficiency figures in a heterogeneous
cluster

• 25 HP Proliant DL 160 with two 3.0 GHz Quad Core INTEL Xeon 5472 proces-
sors, labeled ad Node Fast (NF).

In this cluster the parameters of the model have been measured and they are listed
in Table 1. The application was developed using GNU tools and the MPICH 1.2.7
library [2, 11].

Label Pi tci λ β

Node Fast (NF) 83.988.126 0,0000000119
Node Slow (NS) 34230899 0,0000000292 25 2.000.000.000

Table 1: Parameters of the cluster

The first experiment compared the values of classical and proposed efficiency in a
heterogeneous cluster under variable node count and workload conditions (figures 1(a)
and 1(b)). In all the configurations, the cluster is composed of 2 NS processors while
the rest of processors are NF. It can be seen that the efficiency figures computed using
the classical efficiency definition on the heterogeneous cluster are not consistent. On
the other hand the proposed efficiency yields results very close to those obtained in the
homogeneous cluster.

In the second experiment we have measured the heterogeneous efficiency value for
a cluster composed by two nodes and a dimension of the adjacency matrix of 128.
Then we have estimated the workload needed to maintain constant this efficiency when
the number of nodes is increased in a heterogeneous cluster and compared with the
real measured values. Table 2 presents the results achieved, where P is the number
of nodes, PT is the total computational power, N is the measured workload and H-
isoefficiency is the theoretical computed value for the workload. Additionally the values
of heterogeneous and classical efficiency are shown.
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Table 2 presents the workload computed through Equation 10 (labeled as H-
isoefficiency), necessary to keep the heterogeneous cluster’s efficiency constant at a
value around 0.842. The column N shows the workload actually measured. Keeping
the heterogeneous efficiency constant requires that the problem size must be increased
according to the H-isoefficiency expression rather than with respect to homogeneous
one. The errors between the estimated and measured workload values are very small,
validating the assumption that the H-isoefficiency function provides an accurate, a
priori method for analyzing scalability in heterogeneous clusters.

Table 2 also presents the values of efficiency obtained measuring the sequential
time in both the fast and the slow processors. It has to be noted that these results are
not consistent with the efficiency definition, in the NF processor. On the other hand
the heterogeneous system is not scalable which is not reasonable.

P PT N ε E (NF) E (NS) H-isoeff.

2 68461798 128 0,842 0,842 0,343 128
4 236438050 336 0,841 1,453 0,592 336,40
8 572390554 640 0,841 1,758 0,717 641,05
16 1244295562 1088 0,841 1,910 0,779 1091,38
32 2588105578 1760 0,842 1,989 0,811 1759,79
64 5275725610 2752 0,842 2,027 0,826 2752,34
128 10650965674 4216 0,841 2,045 0,833 4224,05

Table 2: H-isoefficiency for a E=0.842

Finally Table 3 shows the H-isoefficiency and the H-efficiency values for different
cluster configurations with the same number of nodes. It has been to highlight that
H-isoefficiency predicts different values of workload to different configurations, depends
on the total computational power. This predictions are consistent with the measured
values and the H-efficiency can be maintained constant. Again, the figures presented
by classical efficiency are not consistent.

Configuration PT H-isoeff. E(NF) E(NS) ε

128 NF 10750480128 3680,60 0,800 1,964 0,800
114 NF 16 NS 10122340748 3571,45 0,754 1,849 0,800
96 NF 32 NS 9158248864 3397,12 0,682 1,673 0,801
64 NF 64 NS 7566017600 3087,72 0,563 1,382 0,800

Table 3: H-isoefficiency for a E=0.80, P=128 with different cluster configurations

6 Conclusions

This paper presents a new expression of the isoefficieny function, called H-isoefficiency,
which can be applied to homogeneous and heterogeneous systems and which can be used
for predicting algorithm scalability without needing the actual implementation of the
algorithm in the selected architecture. Comparing this model with others previously
described in the literature, it presents several advantages, just like the isoefficiency
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model proposed by Kumar and Rao [9] does. Its most remarkable advantages are that,
on one hand, being an a priori method it does not require the implementation of the
algorithm to be studied in the selected architecture. On the other hand, it deals with
both power and physical scalability without imposing any restriction on the system’s
setup.

The experiments performed have shown that the proposed method yields results
quite close to the values theoretically predicted. This shows that the H-isoefficiency
function is an accurate model that allows performing scalability analysis both for ho-
mogeneous and heterogeneous systems. The results have also verified the strong impact
that different configurations have on the scalability of a heterogeneous environment.

Future work includes the development of more systematic and precise methods
for estimating both overhead and relative node computational power. Additionally the
assumption of the “workload evenly distributed according to each’s node computational
power” will be removed from the scalability theorems.
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Abstract

This paper presents a counterexample to the conjecture that the semi-
explicit Lie-Newmark algorithm is variational. As a consequence the Lie-
Newmark method is not well-suited for long-time simulation of rigid body-
type mechanical systems. The counterexample consists of a rigid body in a
static potential field.
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1 Introduction

In this paper we will focus on the dynamics of a rigid body in a static potential field.
To describe this system, denote by Q(t) ∈ SO(3), W (t) = [W1(t) W2(t) W3(t)]

T ∈
R
3, and I = diag(I1, I2, I3) ∈ R

3×3 the configuration, body angular velocity and
inertia matrix of the body, respectively. Let τ : SO(3) → R

3 be the torque acting
on the body and ̂: R3 → R

3×3 the hat map

̂W =





0 −W3 W2

W3 0 −W1

−W2 W1 0



.
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In terms of this notation, the governing equations are
{

Q̇ = Q̂W (1a)

I Ẇ = IW ×W + τ(Q), (1b)

with initial conditions Q(0) = Q0 ∈ SO(3) and W (0) = W0 ∈ R
3. This rigid body

corresponds to a mechanical system whose Lagrangian is of the form

L(Q,W ) = T (W )− U(Q) (2)

where T (W ) = 1

2
W T

IW and U(Q) are the potential and kinetic energy of the
body, respectively. Notice that the total energy is separable and T (−W ) = T (W ).
The flow of (1) possesses certain structures such as total energy preservation, time-
symmetry, and symplecticity. Moreover, the path Q lies on a configuration mani-
fold SO(3) which possesses a Lie-group structure.

This paper investigates the long-run behavior of two integrators for (1): the
Lie-Newmark [1] and Lie-Verlet methods [2]. Both methods are semi-explicit,
second-order accurate and symmetric. They are also ‘Lie group methods’ because
they respect the Lie group structure of the configuration manifold [3]. The main
difference between the integrators is that the Lie-Verlet method is designed to be
variational, whereas the Lie-Newmark method is not.

Variational integrators are time-integrators adapted to the structure of me-
chanical systems [4, 5, 6]. They are symplectic, and in the presence of symmetry,
momentum preserving. The theory of variational integrators includes discrete ana-
logues of Hamilton’s principle, Noether’s theorem, the Euler-Lagrange equations,
and the Legendre transform. The variational nature of Lie-Verlet guarantees its
excellent long-time behavior. In fact, one can prove this. The basic idea of the
proof is to show that a trajectory of a variational integrator is interpolated by
a level set of a ‘modified’ energy function nearby the true energy [7, 8, 9]. This
implies that a trajectory of the variational integrator is confined to these level
sets for the duration of the simulation. As a consequence variational integrators
nearly preserve the true energy and exhibit linear growth in global error. For these
reasons variational integrators are well-suited for long-time simulation.

Even though the Lie-Newmark integrator is not designed to be variational, this
does not rule out the possibility that the algorithm is variational in a subtle way
like vector space Newmark [10]. Specifically Kane et al. prove that a trajectory
of the vector space Newmark method is shadowed by a trajectory of a variational
algorithm. In other words the Newmark integrator is not directly symplectic,
but a so-called conjugate symplectic method [9]. This possibility was supported
by numerical evidence showing that the Lie-Newmark algorithm exhibits good
behavior analogous to vector space Newmark [11]. In that paper Krysl and Endres
conjecture that the Lie-Newmark algorithm is variational.

This paper disproves this conjecture. In particular, the paper presents a sim-
ple numerical counterexample showing that the Lie-Newmark method exhibits sys-
tematic energy drift. In contrast, the Lie-Verlet method nearly preserves the true
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energy and exhibits the qualitative properties one expects of a variational integra-
tor. In summary, the Lie-Verlet method is well-suited for long-time simulation of
rigid body-type mechanical systems while the Lie-Newmark method is not.

2 Integrators

Lie-Newmark methods were originally proposed in [1]. The methods consist of
a Newmark style discretization of (1b) and a discretization of (1a) that ensures
the configuration update remains on SO(3). This paper focuses on the following
semi-explicit member of the Lie-Newmark family tested in [11].

Given (Qk,Wk) and time-stepsize h, the algorithm determines (Qk+1,Wk+1)
by the following iteration rule:























Wk+ 1

2

= Wk +
h

2
I
−1 (IWk ×Wk + τ(Qk)) (3a)

Qk+1 = Qk cay(hWk+ 1

2

) (3b)

Wk+1 = Wk+ 1

2

+
h

2
I
−1 (IWk+1 ×Wk+1 + τ(Qk+1)) , (3c)

where cay : R3 → SO(3) denotes the Cayley map:

cay(ξ) =

(

I −
̂ξ

2

)

−1(

I +
̂ξ

2

)

= I +
4

4 + ‖ξ‖
̂ξ +

2

4 + ‖ξ‖
̂ξ2. (4)

This integrator is semi-explicit because (3a) and (3b) involve explicit updates,
and (3c) is only implicit in the angular velocity, not in the torque. Hence, the
implicitness of the Lie-Newmark method is not severe. In fact, this numerical
algorithm is called explicit Newmark in [11]. In the Appendix we check for the
reader’s convenience that this algorithm is symmetric and reversible. It is also
second-order accurate. There are other maps one can use in place of the Cayley
map in (3b) (see, e.g., §5.4 of [12]), but the Cayley map is known to be the most
computationally efficient in practice.

The velocity Lie-Verlet integrator was proposed in [2] and inspired by the
theory of discrete and continuous Euler-Poincaré systems [13, 14]. The method
is closely related to, but different from the RATTLE method for constrained me-
chanical systems.

Given (Qk,Wk) and time-stepsize h, the algorithm determines (Qk+1,Wk+1)
by the following iteration rule:


























Wk+ 1

2

=Wk +
h

2
I
−1

[

IWk+ 1

2

×Wk+ 1

2

−
h

2

(

W T
k+ 1

2

IWk+ 1

2

)

Wk+ 1

2

+ τ(Qk)

]

(5a)

Qk+1 = Qk cay(hWk+ 1

2

) (5b)

Wk+1=Wk+ 1

2

+
h

2
I
−1

[

IWk+ 1

2

×Wk+ 1

2

+
h

2

(

W T
k+ 1

2

IWk+ 1

2

)

Wk+ 1

2

+ τ(Qk+1)

]

. (5c)
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Similar to the Lie-Newmark method, this algorithm is symmetric, semi-explicit and
second-order accurate. In particular, the updates in (5b) and (5c) are explicit, and
the implicitness in (5a) does not involve the torque. We emphasize the Lie-Verlet
integrator is variational and refer the reader to [2] for a proof of this result.

3 Numerical Counterexample

This section describes a numerical experiment in which a trajectory of the semi-
explicit Lie-Newmark integrator (3) exhibits systematic drift in total energy. Such
drift proves that the method is not a conjugate symplectic integrator for (1), and
hence, is not variational. The numerical counterexample we discuss is strongly
inspired by a numerical experiment reported in [15, §4.4]. In that paper a sys-
tematic drift in the total energy of a spring pendulum (with exterior forces) was
found when using a fourth-order accurate, implicit, and symmetric Lobatto IIIB
integrator.

Consider the function dist : SO(3)× SO(3) → R defined as

dist(Q1, Q2) :=
√

2 tr(Q2 −Q1) .

Let ‖ · ‖F denote the Frobenius matrix norm. We recall that ‖A‖F :=
√

tr(ATA)
for A ∈ R

n×n. It is straightforward to verify that dist(·, ·) is a distance func-
tion in SO(3) induced by the Frobenius norm using the identity 2 tr(Q2 −Q1) =
= ‖Q2 −Q1‖

2
F .

For the numerical experiment, consider a single rigid body in a static potential
field. Let I ∈ SO(3) be the identity element. The potential energy U : SO(3) → R

is the sum of two contributions and is defined as

U(Q) =
(

dist(Q, I)− 1
)2

−
α

dist(Q,Qm)
. (6)

The first term in the right hand side of (6) is a bounded potential which attains
its minimum value at Q ∈ SO(3) satisfying dist(Q, I) = 1. The second term
is an unbounded potential that generates an attraction toward the configuration
Qm ∈ SO(3). The parameter α is a tuning parameter.

For α = 0, the potential U attains its minimum value on the set

S := {Q ∈ SO(3) : dist(Q, I) = 1},

a two-dimensional surface in SO(3). The set (S, 0) ⊂ SO(3)×R
3 is a stable set (in

the sense of Lyapunov). If we choose the initial condition (Q0,W0) ∈ SO(3) × R
3

so that Q0 is close to S and W0 is small, the resulting trajectory (Q(t),W (t)),
t ≥ 0, stays close to the set S, in the sense that dist(Q(t), I) ≈ 1. Furthermore,
if we choose W0 to have a component ‘tangential’ to the surface S at Q0, then
the rigid body will wander along S reaching configurations quite distant from the
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initial condition Q0 while staying close to the set S. This latter fact will be key to
the numerical experiment we will describe.

For α > 0, the unbounded attractive potential will cause a distortion of the
two-dimensional surface S. On this distorted energy landscape, the rigid body
experiences an attraction toward the configuration Qm. For dist(I,Qm) 6= 1 and
α > 0 sufficiently small, the set S gets distorted into a set, that we label Sα, with
similar stability properties as previously discussed.

Let the inertia matrix be I = diag(2.0, 2.0, 4.0). Select the potential en-
ergy tuning parameter to be α = 0.3. Place the attraction point at Qm =
exp(v̂m), where vm = [2.5 0 2.5]T ∈ R

3. Now select the initial configuration
to be Q0 = exp v̂0, where v0 = [0 0.7227 0]T , and the initial angular velocity to be
W0 = [0 0 0.625]T . Notice that the initial condition (Q0,W0) is selected so that
dist(Q0, I) is nearly one.

In the numerical experiment we test the two integrators, Lie-Newmark (LNE)
and velocity Lie-Verlet (VLV), on a long time interval [0, 15000]. The energy
error obtained with the time-stepsize h = 0.125 is shown in Figure 1(a). The
experiment was repeated with a time-stepsize h = 0.25 and results are reported in
Figure 1(b). A systematic drift for the LNE scheme can be observed in both cases.
The drift appears linear in the time span T and quadratic in the time-stepsize h.
We abbreviate this fact by saying the total energy error behaves like O(Th2). No
energy drift is observed for the VLV scheme. The trajectory generated by Lie-
Newmark for time-stepsize h = 0.25 is shown in the axis/angle representation of
SO(3) in Figure 2. The semi-transparent surfaces correspond to isosurfaces of the
potential energy (6).

The time-precision diagrams, shown in Figures 3(a) and 3(b) confirm that LNE
and VLV are second-order accurate. Observe from the figures that the slope of the
two lines denoting the global error is O(h2). The diagrams have been generated
by computing the global error in the configuration and angular velocity evaluated
at T = 5. The simulations have been performed for a variety of time-stepsizes
as shown in the figures. The reference solution was computed using the function
ode45 in Matlab, with an absolute tolerance 10−14 and relative tolerance 2·10−14.

4 Conclusion

The Lie-Newmark method was proposed as a generalization of the vector-space
Newmark algorithm to Lie groups [1]. However, unlike its counterpart on vector
spaces, this paper shows that the Lie-Newmark method does not possess excellent
long-time behavior when applied to a rigid body in a potential force field. In par-
ticular, the paper presents a numerical experiment which shows systematic energy
drift along a Lie-Newmark trajectory that behaves like O(Th2). The experiment
consisted of simulating a simple rigid body system in a static force field. On the
other hand, the Lie-Verlet method which is designed to be variational does not ex-
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Figure 1: This figure shows the energy error of the Lie-Newmark (LNE) and
velocity Lie-Verlet (VLV) algorithms for the rigid body in the potential energy
landscape defined by (6) for two different timesteps. LNE exhibits a systematic
energy drift. On the other hand, the energy error of VLV method remains bounded
as predicted by theory. The initial conditions and parameters used are provided
in the text.

Figure 2: This figure shows the Lie-Newmark trajectory using the axis/angle rep-
resentation of SO(3) for the initial conditions and parameters provided in the text.
The semi-transparent surfaces are level sets of the potential energy (6). The dot
in the figure corresponds to the attraction point Qm of the potential energy.
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(a) Configuration.
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(b) Body angular velocity.

Figure 3: This figure shows the global error of the Lie-Newmark (LNE) and ve-
locity Lie-Verlet (VLV) algorithms. The global error is evaluated in configuration
and body angular velocity at a physical time of T = 5 for a variety of time-stepsizes.
We use as a reference solution an integration of (1) using the MATLAB function
ode45 with low tolerance. Observe that both integrators are second-order accurate.

hibit energy drift as theory predicts. Since the two methods are semi-explicit and
computationally similar to implement, we conclude that the Lie-Verlet method is
better suited for long-time simulations of rigid body-type systems.
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Appendix A Properties of Lie-Newmark Algorithm

Let us call
Φh : (Qk,Wk) 7→ (Qk+1,Wk+1) ,

the map defined by the Lie-Newmark algorithm (3). For the reader’s convenience
we provide a standard proof that Lie-Newmark is symmetric and reversible.
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Proposition 1. The Lie-Newmark algorithm (3) is symmetric and reversible.

Proof. Exchanging h ↔ −h and (Qk,Wk) ↔ (Qk+1,Wk+1), it is straightforward
to see that the method is unaltered.

Define the involution ρ : (Q,W ) 7→ (Q,−W ). Recall [9] that a numerical
algorithm is ρ−reversible if

Φ−h ◦ ρ = ρ ◦ Φh.

Evaluating Φ−h ◦ ρ(Qk,Wk) = Φ−h(Qk,−Wk), we obtain











W k+1/2 = −Wk −
h
2
I
−1 (IWk ×Wk + τ(Qk))

Qk+1 = Qk cay(−hW k+1/2)

W k+1 = W k+1/2 −
h
2
I
−1
(

IW k+1 ×W k+1 + τ(Qk+1)
)

.

(7)

Comparing (7) with (3), it can be seen that W k+1/2 = −Wk+1/2, which also implies

that Qk+1 = Qk+1. We can thus rewrite the last equation of (7) as

W k+1 = −Wk+1/2 −
h

2
I
−1
(

IW k+1 ×W k+1 + τ(Qk+1)
)

= −

[

Wk+1/2 +
h

2
I
−1
(

IW k+1 ×W k+1 + τ(Qk+1)
)

]

It is straightforward to see that −Wk+1 is a solution for the last equation; moreover,
if h is sufficiently small the implicit function theorem assures that the solution is
unique, that is, W k+1 = −Wk+1.
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Abstract

An attribute based encryption scheme capable of handling multiple authorities
was recently proposed by Chase. The scheme is built upon a single-authority at-
tribute based encryption scheme presented earlier by Sahai and Waters. Chase’s
construction uses a trusted central authority that is inherently capable of decrypt-
ing arbitrary ciphertexts created within the system. We present a multi-authority
attribute based encryption scheme in which only the set of recipients defined by the
encrypting party can decrypt a corresponding ciphertext. The central authority is
viewed as “honest-but-curious”: on the one hand it honestly follows the protocol,
and on the other hand it is curious to decrypt arbitrary ciphertexts thus violating
the intent of the encrypting party. The proposed scheme, which like its predeces-
sors relies on the Bilinear Diffie-Hellman assumption, has a complexity comparable
to that of Chase’s scheme. We prove that our scheme is secure in the selective ID
model and can tolerate an honest-but-curious central authority.

Key words: pairing-based cryptography, attribute based encryption
MSC 2000: 94A60

1 Introduction

In both standard public key encryption and identity based encryption a message is to be
transmitted to a single recipient known at the time of encryption. Similarly, broadcast
encryption addresses scenarios where a sender explicitly specifies a set of receivers (or
revoked users) when encrypting a plaintext. In contrast, in an attribute based encryption
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scheme, the sender does not provide an explicit list of recipients or revoked users when
encrypting a plaintext, but instead, the recipient of a ciphertext is specified through
a set of credentials, also referred to as the attributes, which are sufficient to decrypt a
ciphertext. Fuzzy identity based encryption proposed by Sahai and Waters [7] can be
used to address such a setting, if all attributes are controlled by a single authority.

The starting point of the current paper is a recent proposal of Chase [4] which
considers multi-authority attribute based encryption, therewith solving an open problem
from [7]. Chase’s scheme is capable of handling disjoint sets of attributes that are
distributed among multiple authorities. In this setting, an encrypting party specifies a
set of attributes AC with the attributes in AC being controlled by several authorities.
Let Ak be the set of attributes controlled by authority k. Then the ciphertext C
associated with the attribute set AC can only be decrypted by those users u with a set
of attributes Au for which the cardinality of the intersection Au ∩Ak ∩AC exceeds the
respective threshold dk, for each authority k.

As pointed out in [4], one of the primary challenges in implementing such a multi-
authority attribute based encryption scheme is the prevention of collusion attacks
among users that obtain secret key components from different authorities. Moreover,
it is desirable that there be no communication between the individual authorities. To
overcome these difficulties, Chase’s scheme relies on a trusted central authority. The
resulting scheme is capable of tolerating multiple corrupted authorities, but the honesty
of the central authority remains of vital importance since, by the constriction from [4],
the trusted authority has the capability of decrypting every ciphertext.

Our contribution. Building on Chase’s proposal, we construct a threshold scheme
for multi-authority attribute based encryption which offers the same security guarantees
provided by Chase’s construction, but in addition can tolerate an honest-but-curious
central authority. Assuming the central authority is honest during the initialization
phase, the indistinguishability of encryptions is guaranteed. As in [4], our security
analysis is in the selective ID model and builds on the Decisional Bilinear Diffie Hellman
assumption.

Related work. Since Shamir posed the problem of identity based encryption [8],
various proposals have been made, a very partial list being the work in [6, 9, 10, 2, 5].
Building on the Bilinear Diffie Hellman assumption and the selective ID model [3, 1],
at EUROCRYPT 2005 Waters presented an identity based encryption scheme in the
standard model [11]. Sahai and Water’s proposal for a fuzzy identity based encryption
[7] provides an attribute based encryption with a single authority. Here, fuzzy refers
to an identity id′ being able to decrypt a ciphertext encrypted by an identity id if and
only if id and id′ are close to each other in the “set overlap” distance metric. This
is of interest when dealing with noisy inputs, such as biometric templates. Building
on the ideas from [7], Chase proposed a solution for multi-authority attribute based
encryption, provided that a trusted central authority is available [4]. Our proposal aims
at improving Chase’s construction by imposing a weaker assumption on the central
authority without paying a high cost in terms of efficiency.
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2 Notation and preliminaries

As already mentioned, our proposal relies on the Decisional Bilinear Diffie Hellman
assumption. For the sake of clarity, the next sections review the relevant terminology
related to bilinear maps and multi-authority attribute based encryption. Section 2.3
discusses the security model where, like in [4], we make use of the selective ID model.

2.1 Bilinear maps and the Bilinear Diffie Hellman assumption

Let G1, G2 be groups of prime order p, and let P a generator of G1. We assume p to be
superpolynomial in the security parameter ` and that all group operations in G1 and
G2 can be computed efficiently, i. e., in probabilistic polynomial time. We use additive
notation for G1 and multiplicative notation for G2. By e : G1 ×G1 −→ G2 we denote
an admissible bilinear map, i. e., all of the following hold [2]:

• For all P,Q ∈ G1 and for all α, β ∈ Z we have e(αP, βQ) = e(P,Q)αβ .

• We have e(P, P ) 6= 1, i. e., e(P, P ) is a generator of G2.

• There is a probabilistic polynomial time algorithm that for arbitrary P,Q ∈ G1

computes e(P,Q).

In the above setting, the Decisional Bilinear Diffie Hellman (D-BDH) problem in
(G1, G2, e) is the problem of distinguishing between the challenger’s possible outputs in
the following experiment: The challenger chooses α, β, γ, η ← {0, 1, . . . , p−1} indepen-
dently and uniformly at random, flips a fair binary coin δ ← {0, 1}, and then outputs
the tuple

(P, αP, βP, γP, e(P, P )δ·αβγ+(1−δ)·η).

In other words, with probability 1/2 the last component of the challenger’s output
is e(P, P )αβγ , and with probability 1/2 the last component is a uniformly at random
chosen element from G2. We define the advantage of algorithm A in solving the D-BDH
problem as

Advbdh
A (`) := Pr(δ′ = δ)− 1

2
where δ′ is the output of A when trying to guess the value of the fair binary coin δ. We
say that an algorithm A has a non-negligible advantage in solving the D-BDH problem,
if Advbdh

A is not negligible1 where the probability is over the randomly chosen α, β, γ, η
and the random bits consumed by A.

Definition 1 (Decisional Bilinear Diffie Hellman assumption) The Decisional
Bilinear Diffie Hellman assumption holds for (G1, G2, e) if there exists no probabilistic
polynomial time algorithm having non-negligible advantage in solving the above D-BDH
problem.

1We refer to a function f : N>0 −→ R as negligible, if |f | = |f(`)| ∈ 1

`o(1)
.
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2.2 Authorities, attributes and users

Let K be the polynomial size set of authorities and U the polynomial size set of users we
consider, and denote by Ak the polynomial size set of attributes handled by authority
k ∈ K. We impose that the sets Ak are pairwise disjoint, i. e., the universal attribute
set

A :=
⊎
k∈K
Ak

is the disjoint union of the Ak. In addition to the authorities k ∈ K, there is one central
authority kCA 6∈ K which we will model as honest-but-curious—the central authority
kCA honestly follows the protocol, but will try to decrypt ciphertexts sent by users in the
system. During an initialization phase we allow communication between kCA and k for
each authority k ∈ K, but thereafter no communication between the central authority
and the authorities k ∈ K is possible: while the central authority kCA is involved in
setting up the system, we do not want to rely on kCA being available throughout the
complete lifetime of the system. Also, we do not allow any communication among the
authorities in K.

To distinguish different users, we follow [4] and assume that each user u ∈ U
has a unique identifier. Depending on the application, the identifier could refer to a
social security number or a passport number, for instance. We denote the set of those
attributes in A that are available to user u ∈ U by Au. Similarly, we write AC for
the set of attributes that is associated with a ciphertext C. This set AC is chosen by
the encrypting party as part of the input to the encryption algorithm, the other part
of the input being the plaintext. We associate with each authority k ∈ K a threshold
dk ∈ N>0. The goal is that exactly those users u satisfying

|Au ∩ Ak ∩ AC | ≥ dk for every k ∈ K

are able to decrypt the ciphertext C. In other words, for each authority k, user
u must have at least dk of the attributes that have been specified at the time of en-
cryption. To decrypt a ciphertext, user u ∈ U uses the secret keys obtained during the
initialization phase from the authorities k ∈ K. Figure 1 lists the main components of
a multi-authority attribute based encryption scheme (cf. [4]).

Remark 1 Unlike [4] we do not make use of a central key generation algorithm, run by
the central authority kCA to generate secret keys for users u. Without loss of generality,
in the security model we therefore will not give the adversary the possibility to query
kCA for private user keys. In the scheme we discuss, private user keys are generated by
the attribute authorities k ∈ K only.

A crucial feature of a multi-authority attribute based encryption scheme is the
prevention of collusions among users: we want to prevent that any set of users, each of
which is not able to decrypt a ciphertext C, can combine their information to decrypt
C. The security definition discussed next tries to capture this design goal.
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Setup. A probabilistic polynomial time algorithma that given the security parameter
1`, a list of pairwise disjoint sets of attributes [Ak]k∈K and thresholds [dk]k∈K
generates

• a (public key, secret key)-pair for each attribute authority k ∈ K
• public system parameters.

Attribute key generation. A probabilistic polynomial time algorithm that given
an attribute authority k’s secret key, the corresponding threshold dk, a (unique
identifier of a) user u and a subset Au ⊆ Ak outputs decryption keys for user
u.

Encryption. A probabilistic polynomial time algorithm that given a plaintext, at-
tributes AC ⊆ A and the public system parameters, outputs a ciphertext C.

Decryption. A deterministic polynomial time algorithm that given a set of decryp-
tion keys for a set of attributes Au and a ciphertext C encrypted with attribute
set AC , outputs the corresponding plaintext M if |Au ∩ Ak ∩ AC | ≥ dk for all
attribute authorities k ∈ K; otherwise it outputs an error symbol ⊥.

aIt may be preferable to realize this computation in a distributed fashion, involving individual
attribute authorities and some central authority. Below we will use such a distributed realization.

Figure 1: Algorithms in a multi-authority attribute based encryption scheme.

2.3 Security model

Like [4], we use a selective ID model for the security analysis. The adversary H has to
specify the set of attributes that he wants to attack before receiving any public keys
of the system. Figure 2 shows the game an adversary has to win to defeat the security
of our scheme. As in [4], for our security analysis we impose the technical restriction
that the adversary does not query the same attribute authority twice for private keys
of the same user.

For a multi-authority attribute based encryption scheme to be secure, we require
that there is no efficient algorithm achieving a non-negligible advantage in the game in
Figure 2. More specifically, we define the advantage of an adversary H in the game in
Figure 2 as

Advsid
H (`) := Pr(δ′ = δ)− 1

2

and make the following definition.

Definition 2 (Security in the selective ID model) A scheme for multi-authority
attribute based encryption is secure in the selective ID model, if for all probabilistic
polynomial time adversaries H, the advantage Advsid

H (`) is negligible.
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Setup. 1. Given the security parameter 1`, the adversary H outputs

• a non-empty list U of (unique identifiers of) users
• a non-empty list K of (unique identifiers of) attribute authorities
• a list [(Ak, corrupted, dk)]k∈K of non-empty, pairwise disjoint attribute

sets, each along with a threshold dk ∈ N>0 and a flag indicating if
the respective authority is corrupted. There must be at least one
uncorrupted authority.a

• a non-empty set of attributes AC ⊆
⊎

k∈KAk that will be associated
with the challenge ciphertext.

2. The public and secret keys are generated, and H learns

• the public keys of all attribute authorities
• the public system parameters
• the complete history of all those authorities k ∈ K that are corrupted.

Secret key queries. The adversary can query the authorities k ∈ K for private
user keys for attributes in Ak for user u. Whenever the adversary queries k for
a secret key for attribute a ∈ Ak for user u, the attribute a is added to the
(initially empty) set Au. The only restrictions for secret key queries are the
following:

• at any time, for each user u there is at least one uncorrupted authority
k̂ = k̂(u) with |Au ∩ Ak̂ ∩ AC | < dk̂

b

• for each user u, no authority k ∈ K is queried more than once for private
keys of u.

Challenge. 1. The adversary H outputs two equal length messages M0,M1.

2. The challenger flips a fair binary coin δ ← {0, 1} and then applies the
encryption algorithm to Mδ and the attribute set AC .

3. The resulting ciphertext C is given to the adversary H.

Further secret key queries. The adversary can query for further private keys of
users, subject to the same restrictions as before: for each user u there is at least
one uncorrupted authority k̂ = k̂(u) with |Au ∩ Ak̂ ∩ AC | < dk̂, and for each
user u, no authority k ∈ K is queried more than once for private keys of u.

Guess. The adversary H outputs a guess δ′ for the challenger’s secret coin δ.
aNote that the central authority kCA is not included in this list and in particular cannot be

corrupted.
bThe uncorrupted authority k̂ = k̂(u) may be different for each user u.

Figure 2: Attacking multi-authority attribute based encryption in the selective ID
model.
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The security requirement in Definition 2 does not address the question which in-
formation is available to the central authority. Specifically, in Chase’s scheme [4], the
central authority has the capability of reading arbitrary ciphertexts constructed by the
users within the system. To express a requirement that limits the possibilities of an
honest-but-curious central authority, we take a more detailed look at the setup phase,
which is combined into a single algorithm in Figure 1. More precisely, this step can be
seen as a simple protocol where the central authority kCA securely communicates with
the attribute authorities.

Remark 2 From a practical perspective, it is desirable to have no communication
among attribute authorities, and only very limited interaction of the central author-
ity with each attribute authority. In the protocol in Section 3.1, the central authority
sends one message to each attribute authority and derives the public system parameters
from the replies.

The game in Figure 3 captures a setting where an honest-but-curious central au-
thority tries to violate the indistinguishability of ciphertexts. We introduce a “curious”
algorithm B which, similarly as the “outside adversary” H in Figure 2, fixes the at-
tribute sets and their distribution among the attribute authorities. Further on, B
specifies the set of attributes that will be associated with the challenge ciphertext. At
the end of the setup phase, B learns the complete state of the central authority, and
based on this knowledge then tries to violate the indistinguishability of ciphertexts.
For an algorithm B, we define the advantage in the game in Figure 3 as

Advca
B (`) := Pr(δ′ = δ)− 1

2
.

Definition 3 (Tolerating an honest-but-curious central authority) A scheme
for multi-authority attribute based encryption can tolerate an honest-but-curious central
authority, if for all probabilistic time algorithms B, the advantage Advca

B (`) is negligible.

Remark 3 Unlike for the adversary H in Figure 2, we do not require that an honest-
but-curious central authority specifies the challenge attributes AC in advance: algorithm
B in Figure 3 does not have to provide this set before the challenge phase.

We are now in the position to describe our suggestion for a multi-authority attribute
based encryption scheme and to discuss its security in the sense of both Definition 2
and Definition 3.

3 Proposed protocol

We adopt the notation from Section 2 with G1, G2 being groups of prime order p, P
a generator of G1 and e : G1 × G1 −→ G2 an admissible bilinear map. We assume
the unique identifiers for users u and for the attribute authorities k ∈ K to be public.
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Setup 1. Given the security parameter 1`, the algorithm B outputs

• a non-empty list U of (unique identifiers of) users
• a non-empty list K of (unique identifiers of) attribute authorities
• a list [(Ak, corrupted, dk)]k∈K of non-empty, pairwise disjoint attribute

sets, each along with a threshold dk ∈ N>0 and a flag indicating if
the respective authority is corrupted. There must be at least one
uncorrupted authority.a

2. The public and secret keys of all authorities k ∈ K are generated, and B
learns

• all public keys
• the public system parameters
• the complete history of all those authorities k ∈ K that are corrupted
• the complete history of the central authority kCA.

Challenge 1. The algorithm B outputs two equal length messages M0, M1 and a
non-empty set of attributes AC ⊆

⊎
k∈KAk.

2. The challenger flips a fair binary coin binary δ ← {0, 1} and then applies
the encryption algorithm to Mδ and the attribute set AC .

3. The resulting ciphertext C is given to B.

Guess

The algorithm B outputs a guess δ′ for the challenger’s secret coin δ.
aNote that the central authority kCA is not included in this list and in particular cannot be

corrupted.

Figure 3: Dealing with an honest-but-curious central authority.

Similarly, we assume the sets of attributes Ak and the corresponding threshold dk to be
public—in particular, all these values are known to the central authority kCA, which we
invoke (only) in the setup phase. In order to generate secret keys for users, we assume
that each attribute a ∈ A can be identified with a number ι(a) ∈ {1, . . . , p − 1}—for
practical purposes, ι(a) could be based on a hash value, for instance.

3.1 The proposed protocol

3.1.1 Setup.

The setup phase requires one message to be sent from the central authority to each of
the attribute authorities. It is assumed that the adversary has no possibility to interfere
with or to access this communication:
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The central authority kCA chooses, for each pair (k, u) ∈ K× U , uniformly at random
a secret value sk,u ← {0, . . . , p − 1}. In additon, kCA chooses σ ∈ {0, . . . p − 1}
uniformly at random, and for each u ∈ U computes a “dummy secret” skCA,u :=
σ −

∑
k∈K sk,u. The sequence

[sk,u · P︸ ︷︷ ︸
=:Sk,u

]u∈U

is sent to attribute authority k (k ∈ K), and kCA publishes the public system
parameters (

[skCA,u · P ]u∈U , e(P, P )σ︸ ︷︷ ︸
=:pk

)
.

Remark 4 The value skCA,u · P is only needed by user u. To decrease the size of
the public parameters, instead of publishing the sequence [skCA,u · P ]u∈U , alterna-
tively a scenario could be considered where skCA,u · P is transmitted to u (only).

Attribute authority k ∈ K receives the corresponding sequence of Sk,u-values from kCA

and chooses a value rk ← {0, . . . , p− 1} uniformly at random. Moreover, for each
of its attributes a ∈ Ak, a secret value tk,a ← (Z/pZ)∗ is chosen uniformly at
random by k, and the pair (

e(P, P )rk , [tk,a · P︸ ︷︷ ︸
=:Tk,a

]a∈Ak

)

forms k’s public key. The secret key of k contains the aforementioned values
rk, [Sk,u]u∈U , and [tk,a]a∈Ak

. Finally, for each user u ∈ U , attribute authority k
chooses uniformly at random a secret polynomial fk,u ∈ Fp[X] of degree < dk.

Remark 5 The value e(P, P )rk is only used during encryption and decryption to com-
pute the product pk ·

∏
k∈K e(P, P )rk—which is ciphertext-independent. If one allows

the attribute authorities to contribute to the generation of the public system parameters,
the e(P, P )rk-component in the attribute authorities’ public keys can be omitted. To do
so, the public system parameter pk = e(P, P )σ can be replaced with e(P, P )σ+

P
k∈K rk .

3.1.2 Attribute key generation.

To extract the secret decryption key associated with an attribute a ∈ Ak ∩ Au for a
user u ∈ U , attribute authority k proceeds as follows:

• The secret value Xk,u := Sk,u + (rk − fk,u(0)) ·P , which depends on k and u, but
not the specific attribute a, is computed and given to u.

• The attribute-specific value Dk,u,a := fk,u(ι(a))
tk,a

· P is computed and given to u.
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3.1.3 Encryption.

To encrypt a plaintext M ∈ G2 with associated attribute set AC ⊆ A, the encrypting
party chooses s← {0, . . . , p− 1} uniformly at random and computes the ciphertext((

pk ·
∏

k∈K
e(P, P )rk

)s
·M, s · P, [s · Tk,a]a∈AC

)
.

3.1.4 Decryption.

Let C = ((pk ·
∏

k∈K e(P, P )rk)s ·M, s ·P, [s ·Tk,a]a∈AC
) be a ciphertext with associated

attribute set AC , and suppose that user u’s attribute set Au satisfies |Au ∩ Ak| ≥ dk

for all k ∈ K. Then u can recover the plaintext M as follows.

1. For each k ∈ K, he chooses dk attributes a ∈ Au ∩ Ak, and computes

e(s · Tk,a, Dk,u,a) = e(P, P )fk,u(ι(a))·s.

Then, using Lagrange polynomial interpolation, u computes

e(P, P )fk,u(0)·s.

2. Further on, for each k ∈ K, user u can use the Xk,u-component of his secret key
to compute e(Xk,u, s · P ) = e(P, P )(sk,u+rk−fk,u(0))·s.

3. Multiplying e(s · P, skCA,u · P ) with all of the above values yields

e(s · P, skCA,u · P ) ·
∏
k∈K

e(P, P )fk,u(0)·s · e(P, P )(sk,u+rk−fk,u(0))·s

= e(P, P )s·skCA,u ·e(P, P )s·
P

k∈K(sk,u+rk)

= e(P, P )s·(σ+
P

k∈K rk)

=

(
pk ·

∏
k∈K

e(P, P )rk

)s

.

By inverting this element and multiplying the result with the first component of
the ciphertext, the plaintext M can be recovered.

3.2 Adding new authorities

The “dummy secrets” skCA,u facilitate the introduction of new authorities to a previously
established protocol. To add a new authority k∗, the central authority kCA replaces
the old value σ with a new uniformly at random chosen σ′, and replaces each skCA,u

with σ′ −
∑

k∈K∪{k∗} sk,u. Then the updated “dummy public keys” skCA,u · P have to
be communicated to the users, and the new authority k∗ can compute its secret and
public key as before.
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4 Security analysis

The protocol proposed in Section 3 can be shown to be secure both both in the sense
of Definition 2 and Definition 3. Proofs for the subsequent two theorems are given in
the extended version of this paper.

Theorem 1 Suppose there exists a probabilistic polynomial time adversary H against
the protocol in Section 3.1 having a non-negligible advantage in the game in Figure 2.
Then there is a probabilistic polynomial time algorithm S having a non-negligible ad-
vantage in solving the D-BDH-problem.

Our proof of Theorem 1 builds on the analysis of Chase’s scheme in [4], and it is worth
noting that the reduction to a D-BDH adversary S in the proof is tight: Essentially,
the advantage of the adversary H violating security in the selective ID model is only
halved at the cost of simulating the attribute authorities k and the central authority
kCA.

Theorem 2 Let B be a probabilistic polynomial time adversary against the protocol in
Section 3.1 having a non-negligible advantage in the game in Figure 3. Then there is a
probabilistic polynomial time algorithm S having a non-negligible advantage in solving
the D-BDH-problem.

To prove Theorem 2, i. e., that the proposed scheme can tolerate an honest-but-curious
central authority in the sense of Definition 3, a similar argument as in the proof of
Theorem 1 can be used. It turns out that again there is a tight security reduction:
Essentially, for the price of simulating the central authority and the attribute author-
ities, from an adversary B described in the game from Figure 3, we obtain a D-BDH
adversary whose advantage is half the advantage of B.

5 Conclusion

Building on the proposal for multi-authority based attribute based encryption from [4],
we constructed a scheme where the central authority is no longer capable of decrypting
arbitrary ciphertexts created within the system. In addition to providing security
in the selective ID model, the proposed system can tolerate an honest-but-curious
central authority. Since both Chase’s scheme and the proposed scheme rely on the
same hardness assumption, and have a comparable complexity, the new scheme seems
a viable alternative to Chase’s construction. However, since only the proposed method
is capable of handling a curious yet honest central authority, the proposed scheme is
recommended in applications where security against such a central authority is required.
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Abstract

The problem of approximating/tracking the value of a Wiener process is con-
sidered. The discretization points are placed at times when the value of the process
differs from the approximation by some amount, here denoted by η. It is found
that the limiting difference, as η goes to 0, between the approximation and the
value of the process normalized with η converges in distribution to a triangularly
distributed random variable.
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1 Introduction and preliminaries

An adaptive approximation scheme of the Wiener process is considered. The dis-
cretization points are placed at times when the value of the true process differs from
the approximation by some amount, here denoted by η. This can be seen as a control
problem where we want to track the true value of the process with our approximation,
and where both the process and its approximation are fully observable. The approxi-
mation strategy presented here may be feasible when discretization is associated with
some cost that should be kept low. Examples of related problems is that of discrete time
hedging of derivative contracts in financial markets (see e.g. [3]) and certain space-time
discretization schemes of stochastic differential equations (see e.g. [5]).

Let X be a diffusion process defined by Xt = σWt, where W denotes a one di-
mensional standard Wiener process. Define, for some η > 0, a sequence of stopping
times {tηi }i≥0 by tηi+1 = inf{t > tηi | |Xt − X

t
η

i

| = η}, where tη0 = 0. The compo-

nents of the sequence tη may be seen as epochs of the renewal process Nη defined by
Nη

t = sup{i : tηi ≤ t}. Furthermore, let the sequence {τη
i }i≥1 of interarrival times be

defined by τη
i = tηi − tηi−1, and define the renewal-reward process ϕ by ϕη

t :=
∑N

η

t

i=1 τη
i .
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The process X
ϕ

η

t

may also be seen as a renewal-reward process, but with a reward that

takes the values −η and η with equal probability.

The aim of this work is to investigate the asymptotic behavior of (Xt −X
ϕ

η

t

)/η as

η approaches 0. It will be seen that this quantity converges, pointwise for each t > 0,
in distribution to a stochastic variable which is triagularly distributed.

Before we end this section we will state some resluts regarding barrier crossings and
renewal processes. The main result is presented in Section 2. In Section 3 we perform
a simulation study and investigate the transition to the limiting distribution.

1.1 The Wiener process with two absorbing barriers

Since the components of the sequence {τη
i }i≥1 are independent and identically dis-

tributed, we will let τη denote a stochastic variable with the same properties as these
τη
i ’s, and which may be characterized by τη = inf{t > 0 | |Xt| = η}.

Now, consider the process X absorbed in −η and η, that is Xt∧τ . The transition
density of this process, from X0 = 0, may be represented by (see [1])

pη(t, x) =
∞∑

k=1

1

η2
e
−

1

2

“

kσπ

2η

”2

t
sin

(
kπ

2

)

sin

(
kπ(x + η)

2η

)

, (t, x) ∈ (0,∞) × [−η, η]. (1)

This transition density may also be expressed as an infinite sum over Gaussian kernels
(see [1])

pη(t, x) =

∞∑

k=−∞

1
√

2πσ2t

(

e−
(x−4kη)

2

2σ2t − e−
(x−2η+4kη)

2

2σ2t

)

, (t, x) ∈ [0,∞) × [−η, η]. (2)

Lemma 1. The integral of p1(t, x)

a) with respect to t over the interval [a, b] ⊂ [0,∞) may be represented as

∫ b

a

pη(t, x)dt =

∞∑

k=1

∫ b

a

e
−

1

2

“

kσπ

2η

”2

t

η2
sin

(
kπ

2

)

sin

(
kπ(x + η)

2η

)

dt, x ∈ [−η, η].

b) with respect to x over the interval [a, b] ⊂ [−η, η] may be represented as

∫ b

a

pη(t, x)dx =

∞∑

k=−∞

∫ b

a

e
−

1

2

“

kσπ

2η

”2

t

η2
sin

(
kπ

2

)

sin

(
kπ(x + η)

2η

)

dx , t > 0. (3)

or as

∫ b

a

pη(t, x)dx =

∞∑

k=−∞

∫ b

a

1
√

2πσ2t

(

e−
(x−4kη)

2

2σ2t − e−
(x−2+4kη)

2

2σ2t

)

dx, t ≥ 0. (4)
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Proof. a) Define the functions gF
k and GF

n by

gF
k (t, x) =

e
−

1

2

“

kσπ

2η

”2

t

η2
sin

(
kπ

2

)

sin

(
kπ(x + η)

2η

)

,

and GF
n (t, x) =

∑n
k=1 gF

k (t, x) then limn↑∞ GF
n (t, x) = pη(t, x). Since gF

k (t, 0) ≥ 0
it follows that 0 ≤ GF

n (t, 0) ≤ GF
n+1(t, 0), and consequently by Lebesgues monotone

convergence thorem
∫ b

a
limn↑∞ Gn(t, 0)dt = limn↑∞

∫ b

a
Gn(t, 0)dt. Extending the in-

tegral we get limn↑∞

∫ b

a
Gn(t, 0)dt ≤ limn↑∞

∫
∞

0 Gn(t, 0)dt. Moving the integral in-
side of the sum in Gn(t, 0) and performing the integration over R+ we get the sum
limn↑∞

∑n
k=1 8/(k2π2σ2) = 4/(3σ2), and hence limn↑∞

∫
∞

0 Gn(t, 0)dt < ∞. Since
| sin(kπ/2) sin(kπ(x + η)/(2η))| ≤ 1 it holds that |gF

k (t, x)| ≤ gF
k (t, 0) which implies

that |GF
n (t, x)| ≤ GF

n (t, 0). Since GF
n (t, 0) is bounded by limn↑∞ GF

n (t, 0) the function
GF

n (t, x) is dominated by the integrable function limn↑∞ GF
n (t, 0) and by the domi-

nated convergence theorem it follows that
∫ b

a
limn↑∞ Gn(t, x)dt = limn↑∞

∫ b

a
Gn(t, x)dt.

Moving the integral inside of the sum on the right hand side the claim is proved.
b) Eqn. (3) From the proof of a) we know that GF

n (t, x) ≤ pη(t, 0) = limn↑∞ Gn(t, 0)
which is bounded for every t > 0. Since the set [a, b] is bounded (i.e. [a, b] ⊂ [−η, η]),
the claim now follows from the bounded convergence thorem.

Eqn. (4) Define the functions gG
k and GG

n by

gG
k (t, x) =

e−
(x−k)

2

2σ2t

√
2πσ2t

and GG
n (t, x) =

n∑

k=−n

(gG
4kη(t, x) − gG

2−4kη(t, x)),

then limn↑∞ GG
n (t, x) = pη(t, x). The function GG

n may be decomposed as

GG
n (t, x) = GG,1

n (t, x) + GG,2
n (t, x),

where

GG,1
n (t, x) =

n∑

k=0

(gG
4kη(t, x) − gG

4kη+2(t, x)),

GG,2
n (t, x) =

−n∑

k=−1

(gG
4kη(t, x) − gG

4kη+2(t, x)).

Since each term in GG,1
n is positive and each term in GG,2

n is negative it holds that

0 ≤ GG,1
n (t, x) ≤ GG,1

n+1(t, x) and 0 ≥ GG,2
n (t, x) ≥ GG,2

n+1(t, x).

The claim now follows by Lebesgues monotone convergence theorem.

Lemma 2. It holds that

σ2

∫
∞

0
p1(t, x)dt = (1 − |x|)+.
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Proof. From Lemma 1 a) we have that

∫
∞

0
p1(t, x)dt =

8

π2σ2

∞∑

k=1

1

k
sin

(
kπ

2

)
1

k
sin

(
kπ(x + 1)

2

)

.

The idea is to find a function that can be expressed as a series which corresponds to
the above sum. Let s1 = 1/2 and s2 = (x + 1)/2, then

π2σ2

8

∫
∞

0
p1(t, x)dt =

∞∑

k=1

1

k
sin (kπs1)

1

k
sin (kπs2) .

Define the function hs by

hs(x) =

{
0 , 0 ≤ |x| ≤ s ,
1 , s < |x| ≤ 1 .

The Fourier Cosine coefficients of hs are given by

c0 =

∫ 1

0
hs(x)dx = 1 − s ,

ak = 2

∫ 1

0
cos(kπx)hs(x)dx = −

2 sin(πks)

πk
.

Applying Parseval’s formula yields

∫ 1

0
hs1

(x)hs2
(x)dx = 2

∞∑

k=1

sin(πks1)

πk

sin(πks2)

πk
+ (1 − s1)(1 − s2) .

Assume that x ∈ [0, 1], then 0 ≤ s1 ≤ s2 ≤ 1 and

∞∑

k=1

2

π2k2
sin(πks1) sin(πks2) = 1 − s2 − (1 − s1)(1 − s2) = s1(1 − s2).

Thus

σ2

∫
∞

0
p1(t, x)dt = 4

∞∑

k=1

2

k2π2
sin

(
kπ

2

)

sin

(
kπ(x + 1)

2

)

= (1 − x).

Repeating the argument with x ∈ [−1, 0] yields the result.

One important property in the theory of renewal processes is that of direct Riemann
integrability of a function. A function function H(·) is said to be directly Riemann
integrable over [0,∞) if for any h > 0, the normalized sums

h

∞∑

n=1

inf
0≤δ≤h

H(nh − δ) and h

∞∑

n=1

sup
0≤δ≤h

H(nh − δ),

converge to a common finite limit as h ↓ 0 (see chapter 4.4 in [2]).
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Lemma 3. The function p1(t, x) is directly Riemann integrable with respect to t for
each x ∈ [−1, 1].

Proof. We will start by considering the case when x = 0. The function p1(t, 0) is directly
Riemann integrable if p1(t, 0) is nonegative, monotonically decreasing and Lebesgue
integrable (see chapter 4.4 in [2]). Since each term in the representation (3) is nonegative
and monotonically decreasing for x = 0 so is p1(t, 0), and by Lemma 2 the integral of
p1(t, 0) over [0,∞] is given by

∫
∞

0 p1(t, 0)dt = 1 and thus p1(t, 0) is Lebesgue integrable
which proves that p1(t, 0) is directly Riemann integrable.

Next let x ∈ [−1, 1] \ {0}. The function p(t, x) is directly Riemann integrable
with respect to t if p1(t, x) ≥ 0, p(t, x) is uniformly continuous in t and bounded
from above by a monotonically decreasing integrable function (see chapter 4.4 in [2]).
Since p(t, x) is a probability distribution for each t it is clear that p(t, x) ≥ 0. To
show uniform continuity we will split the interval [0,∞) into two parts, say [0, 1] and
[1,∞), and show that p1(t, x) is uniformly continuous on each part. For the interval
[0, 1] we will use the representation (4). Let gG

k and GG
n be defined as in the proof

of Lemma 1. It is clear that each gG
k is uniformly continuous in t and thus also GG

n

is uniformly continuous for each n < ∞. If we can shown that GG
n (t, x) for each

x ∈ [−1, 1] \ {0} converges uniformly with respect to t over [0, 1] as n ↑ ∞, then also
the limit p(t, x) will be uniformly continuous. Rewrite GG

n as GG
n (t, x) =

∑n
k=0 g̃G

k (t, x)
where g̃G

0 (t, x) = gG
0 (t, x) − gG

2 (t, x) and

g̃G
k (t, x) = gG

4k(t, x) − gG
2−4k(t, x) + gG

−4k(t, x) − gG
2+4k(t, x), for k ≥ 1.

According to Weierstrass M-test, if there is a series of constants Mk such that
∑

∞

k=0 Mk

is convergent and |g̃G
k (t, x)| ≤ Mk for all t ∈ [0, 1] then GG

n converges uniformly in [0, 1]
as n ↑ ∞. The functions gk(t, x) attains its maximum at t = (x−k)2/σ2∧1 for t ∈ [0, 1],
and thus gk(t, x) ≤ gk((x − k)2/σ2 ∧ 1, x). The function g0(x

2/σ2 ∧ 1, x) is bounded
and it is easily seen that the functions gG

k may be bounded by C/(1 + k2), for some
bounded constant C, and which is clearly convergent. Hence, for each x ∈ [−1, 1]\{0},
p(·, x) is uniformly continuous in [0, 1]. To show uniform continuity in [1,∞) we will
use the representation (3). Let t ≥ 1, then

|p1(t + δ, x) − p1(t, x)| ≤
∞∑

k=1

e−
k
2

σ
2

π
2

8
t|e−

k
2

σ
2

π
2

8
δ − 1| ≤

∞∑

k=1

82

k4σ4π4

k2σ2π2

8
δ = δ

3

4σ2

where we used the inequalites e−y ≤ y−2 and |e−y−1| ≤ y which holds for y ≥ 0. Hence
for every ǫ > 0 we may chose δ such that δ < 4σ2ǫ/3 which holds for every t in [1,∞).
Hence p1(·, x) is also uniformly continuous in [1,∞), which together with the previous
result yields that p(·, x) is uniformly continuous in [0,∞). In the proof of Lemma 1 we
showed that p(t, x) ≤ p(t, 0), and that p(t, 0) is a monotonically decreasing Lebesgue
integrable function. Hence, p(t, x) is also directly Riemann integrable with respect to t
for x ∈ [−1, 1] \ {0}, which together with the first result of this proof yeilds that p(t, x)
is directly Riemann integrable for x ∈ [−1, 1].
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The next two lemmas regards properties of the random variable τη defined earlier
in this section. Let Fτη denote the distribution function of τη. Lemma 5 states that
that τη has a density, which we will denote by fτη .

Lemma 4. The expectation of τη is given by E[τη ] = η2/σ2 .

Proof. Let g(x0) = E[τη], where x0 denotes the initial point of the process. The
function g satisfies the following ordinary differential equation (see [1])

σ2

2

d2g

dx2
0

(x0) = −1, m1(−η) = m1(η) = 0 .

The solution to this problem, with x0 = 0, is given by g(0) = η2/σ2, as was to be
shown.

Lemma 5. The random variable τη has a density, denoted by fτη , that may be repre-
sented as

fτη(t) =

∞∑

k=−∞

1

2t
√

2πσ2t

(

(η + 4kη)e−
(η+4kη)

2

2σ2t − (η + 2 − 4kη)e−
(η+2−4kη)

2

2σ2t

+ (η − 4kη)e−
(η−4kη)

2

2σ2t − (η − 2 + 4kη)e−
(η−2+4kη)

2

2σ2t

)

, t ≥ 0.

Proof. In this proof we will use the representation (4). Let gG
k and GG

n be defined as
in the proof of Lemma 1. By the use of Lemma 1 for t ∈ [0,∞)

P (τη ≤ t) = 1 −

∞∑

k=−∞

∫ η

−η

(gG
4kη(t, x) − gG

2−4kη(t, x))dx.

If each term in the sum above is differentiable on [0,∞) and

∞∑

k=−∞

d

dt

∫ η

−η

(gG
4kη(t, x) − gG

2−4kη(t, x))dx (5)

converges uniformly on [0,∞) then

d

dt
P (τη ≤ t) = −

∞∑

k=−∞

d

dt

∫ η

−η

(gG
4kη(t, x) − gG

2−4kη(t, x))dx.

Calculating the integral and differentiating with respect to t we get for each term in (5)

d

dt

∫ η

−η

(gG
4kη(t, x) − gG

2−4kη(t, x))dx

=
1

2t
√

2πσ2t

(

(η + 4kη)e−
(η+4kη)

2

2σ2t − (η + 2 − 4kη)e−
(η+2−4kη)

2

2σ2t

+ (η − 4kη)e−
(η−4kη)

2

2σ2t − (η − 2 + 4kη)e−
(η−2+4kη)

2

2σ2t

)

,

(6)
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The maximum of the function exp{− (x−k)2

2σ2t
}/t3/2 in [0,∞) is attained at t = (x −

k)2/(3σ2). For the first term in the expression above we get that

(η + 4kη)

2t3/2
√

2πσ2
e−

(η+4kη)
2

2σ2t ≤

(
3

2

)3/2 σ2e−
3

2

η2
√

π

1

(1 + 4k)2
,

which may be bounded by C/(1 + k2), where C is a bounded constant. In a similar
manner it can be shown that the rest of the terms in (6) may also be bounded by
C/(1 + k2), and thus

∣
∣
∣
∣
d

dt

∫ η

−η

(gG
4kη(t, x) − gG

2−4kη(t, x))dx

∣
∣
∣
∣ ≤

4C

1 + k2
. (7)

Since
∑

∞

k=−∞

4C/(1 + k2) is a convergent series by Wierstrass M-test the sum (5)
converges uniformly on [0,∞), and hence, the density, fτη , may be represented by the
sum (6). Since the terms in the sum of (6) could be bounded by 4C/(1 + k2) we
have that |fτη(t)| ≤ 4C

∑
∞

k=−∞

1/(1 + k2) < ∞ which shows that fτη(t) is bounded in
[0,∞).

1.2 Renewal processes

In this paragraph we will focus on a renewal process denoted by N with idenpendent
and identically distributed interarrival times {τi}i≥1. Define the renewal function M
by Mt = E[Nt], and let µ denote the mean time between renewals, that is µ = E[τi],
which holds for all i ≥ 1. Next, we will state the well known key renewal theorem that
will be needed later on. For a proof see e.g. [2].

Lemma 6 (Key renewal theorem). If H(·) is a directly Riemann-integrable function
then

lim
t→∞

∫ t

0
H(t − x)dM(x) =

1

µ

∫
∞

0
H(x)dx .

Let Fτ denote the common distribution function of the stochastic variables τi. Since
the components of {τi}i≥1 are idependent and identically distributed the distribution
function of the sum

∑k
i=1 τi may be represented by the k-fold convolution of Fτ (here

denoted F ∗k
τ ), i.e. P (

∑k
i=1 τi < t) = F ∗k

τ (t).

Lemma 7 (Theorem 5.4 in [4]). There exists a one-to-one correspondence between Fτ

and M , and M has the representation Mt =
∑

∞

k=1 F ∗k
τ (t) ..

Under the assumption that Fτ has a density (here denoted fτ ) we have that f∗k
τ (t) =

d
dt

F ∗k
τ (t), where f∗k

τ is the k-th convolution of the density function fτ . We may now
define the renewal density m by

mt :=
d

dt
Mt =

∞∑

k=1

f∗k
τ (t) . (8)
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2 Main result

In this section we state and prove the main result of this paper. To ease the notation
we will let Zη

t = Xη
t − Xη

ϕ
η

t

.

Theorem 1. Fix a point t > 0, then

1

η

(
Xt − X

ϕ
η

t

)
d

−→ Λ as η → 0 ,

where Λ is a stochastic variable with density function fΛ(z) = (1 − |z|)+.

Proof. Denote by Y η
t (u) the quantity Y η

t (u) = Xt − X
ϕ

η

t

|{t − ϕη
t = u}. Because of the

time homogeneity of the process X the following equality in distribution holds

Xt − X
ϕ

η

t

|{t − ϕη
t = u}

d
= Xu|{|Xs| < η, 0 ≤ s ≤ u} .

Consequently the density function of Y η
t (u) can be expressed as

fY
η

t
(u)(y) =

pη(u, y)

P (τη > u)
,

The distribution function of Zη
t is given by

fZ
η

t

(z) =

∫ t

0
fY

η

t
(u)(z)dFt−ϕ

η

t

(u) ,

where

dFt−ϕ
η

t

(u) =

{

δ(u − t)P (τη > t) +

∞∑

k=1

∂

∂u
P (t − ϕη

t ≤ u, Nη
t = k)

}

du .

The probability in the last term of the above expression can be rewritten as

P (t − ϕη
t ≤ u, Nη

t = k) = P



t −

k∑

j=1

τη
j ≤ u,

k∑

j=1

τη
j < t <

k∑

j=1

τη
j + τη

k+1





= P



t −

k∑

j=1

τη
j ≤ u, 0 < t −

k∑

j=1

τη
j < τη

k+1



 =

∫
∞

t−u

∫
∞

t−v

f∗k
τη (v)fτη (z)dz dv ,

where fτη (which exists due to Lemma 5) is the density function of τη, and f∗k
τη denotes

the k-th convolution of fτη . Differentiating the above expression with respect to u
yields

∂

∂u

(∫
∞

t−u

∫
∞

t−v

f∗k
τη (v)fτη (z)dz dv

)

=

∫
∞

u

f∗k
τη (t − u)fτη (z)dz = f∗k

τη (t − u)P (τη > u) .
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This gives us that

dFt−ϕ
η

t

(u) =

{

δ(u − t)P (τη > t) +

∞∑

k=1

f∗k
τη (t − u)P (τη > u)

}

du .

Using the scaling property of the Brownian motion the following two relations are easily

deduced P (τη > t) = P (τ1 > t/η2) and Y η
t (u)/η

d
= Y 1

t (u/η2). The first of these two
relations yields

fτη(t) = −
d

dt
P (τη > t) = −

d

dt
P (τ1 > t/η2) =

1

η2
fτ1(t/η2) ,

and consequently

dFt−ϕ
η

t

(u) =

{

δ(u − t)P (τ1 > t/η2) +

∞∑

k=1

1

η2
f∗k

τ1

(
t − u

η2

)

P (τ1 > u/η2)

}

du .

The relation Y η
t (u)/η

d
= Y 1

t (u/η2) yields
∫ t

0
fY

η

t
(u)/η(y)dFt−ϕ

η

t

(u) =

∫ t

0
fY 1

t
(u/η2)(y)dFt−ϕ

η

t

(u) ,

and thus

fZ
η

t
/η(z) =

∫ t

0

p1(u/η2, z)

P (τ1 > u/η2)
δ(u − t)P (τ1 > t/η2)du

+

∫ t

0

p1(u/η2, z)

P (τ1 > u/η2)

∞∑

k=1

1

η2
f∗k

τ1

(
t − u

η2

)

P (τ1 > u/η2)du

= p1(t/η2, z) +

∫ t

0
p1(u/η2, z)

∞∑

k=1

1

η2
f∗k

τ1

(
t − u

η2

)

du .

Now, by a change of variables (v = (t − u)/η2)

fZ
η

t
/η(z) = p1(t/η2, z) +

∫ t/η2

0
p1

(
t

η2
− v, z

)
∞∑

k=1

f∗k
τ1 (v) dv .

Since |p1(t/η2, x)| ≤
∑

∞

k=1
8η2

k2σ2π2 = 4η2

3σ2 we have that limη→0 pη(y, t/η2) = 0. For the
second term we have using (8), Lemma 4 and Lemma 6

lim
η→0

∫ t/η2

0
p1

(

y,
t

η2
− v

)
∞∑

k=1

f∗k
τ1 (v) dv = σ2

∫
∞

0
p1(y, u)du .

Now by Lemma 2 limη→0 fZ
η

t
/η(z) = (1 − |z|)+, as was to be shown.

Remark 1. Note that the limiting distribution does not depend on σ. This is unlike
the case when discretization takes place on an equidistant grid, where σ affects the
variance of the limiting distribution. Instead, in the case of adaptive approximation, σ
is related to the expected number of discretization points.
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3 Numerical results

In this section the transition of fZ
η

t
/η as η goes from some large value towards zero

is investigated. We will argue that for large values of η the stochastic variable Zη
t /η

is approximately normally distributed, and thus as η approaches zero we will see that
fZ

η

t
/η goes from the density of a normally distributed random variable to the density

of a triangularly distributed random variable.

A total of 50000 trajectories of the process X was simulated, over a period from
t = 0 to t = 0.5, with σ = 1, on a time grid with 200001 equally spaced points.
Trajectories of the approximation Xϕ

η

t

were calculated for a number of different values
of η in the range [0.5, 4.0].

Recall, from the proof of Theorem 1, the expression of the density

fZ
η

t
/η(z) = p1(t/η2, z) +

∫ t/η2

0
p1

(
t

η2
− v, z

)
∞∑

k=1

f∗k
τ1 (v) dv . (9)

It is clear that for large values of η it is the first term in (9) that is the dominant
one. Thus, in this case the density is approximately the same as the absorbed Wiener
process. Furthermore, since η was assumed to be large the density of the absorbed
Wiener process is approximately the same as the Wiener process without absorbing
barriers. Hence, for large η we have that

fZ
η

t
/η(z) ≈

η

σ
√

t
φ

(

z
η

σ
√

t

)

, (10)

where φ denotes the standard normal density function.

In Figure 1 the density of fZ
η

t
/η, at t = 0.5, as we let η go from 4.0 to 0.5 is

depicted. It is seen that when η = 4.0 the distribution is quite close to the normal
distribution. For η = 0.5 the distribution on the other hand is quite close to the
triangular distribution.

To further illustrate the transition from the normal distribution to the triangular
distribution we measured the distance in therms of the Wasserstein metric between the,
from the Monte Carlo simulation, estimated distribution and these two distributions.
The distance between two distributions, with distribution functions F and G, in terms
of the Wasserstein metric is defined by dW (F,G) =

∫
R
|F (x) − G(x)|dx.

In Figure 2 the Wasserstein distance between the empirical distribution and the
triangular distribution as well as the distance between the empirical distribution and
the normal distribution (10), at t = 0.5, as a function of η is depicted. Note that
in the case of the normal distribution (10) not only the empirical distribution but
also the normal distribution that we compare with is dependent of η. It is seen that
for η smaller than 1.25 the empirical distribution is relatively close to the triangular
distribution whereas for values over 2.25 it is close to the normal distribution (10). For
η in the interval (1.25, 2.25) the distribution is probably better explained by a mixture
of the two distributions. The small offset from zero for small values of the distance is
due to the variance of the monte carlo simulation.
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Figure 1: Left (large values of η): kernel estimates of fZ
η

t
/η(z) where η = 4.0 (dotted),

η = 3.25 (dash-dotted) and η = 2.5 (dashed), and the Gaussian distribution (solid).
Right (small values of η): kernel estimates of fZ

η

t
/η(z) where η = 2.5 (dashed), η = 2.0

(dash-dotted) and η = 0.5 (dotted), and the triangular distribution (solid).

Figure 2: Distance in terms of the Wasserstein metric between the triangular distribu-
tion and the empirical distribution (squares), and the normal distribution (10) and the
empirical distribution (circles).
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Figure 3: The variance of Zη
t /η as a function of time where η = 0.50 (dotted), η = 0.75

(thin dash-dotted), η = 1.00 (thin dashed), η = 1.50 (thick dash-dotted) and η = 2.25
(thick dashed), together with the function (t/0.52) ∧ (1/6) (solid).

From (9) it is clear that it is possible to fix η and instead of letting η approach
zero let t approach infinity. To capture this we have plotted the variance of Zη

t /η as
a function of t for a couple of different values of η (see Figure 3). The constant 1/6,
that is the value of the variance of the triangularly distributed random variable, is also
plotted in the figure. As expected it is seen that for low values of η the limiting variance
of 1/6 is attained much faster than for higher values of η. From the argumentation
above regarding high values of η it is also clear that for low values of t the distribution
is approximately normal. Hence, the slope of the lines near zero is given by 1/η2, as is
seen in the figure.
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Abstract

The computation of all nonzero entries of a sparse Jacobian matrix using either
divided differencing or the forward mode of automatic differentiation is considered.
Throughout this article, we assume that the sparsity of the Jacobian stems from a
stencil-based computation of the underlying function which is typical for numerical
applications in computational science and engineering involving partial differential
equations. The minimization of the time needed to compute all nonzero Jacobian
entries is formulated as a combinatorial optimization problem. We present three
different, yet equivalent, representations of that problem and discuss each of its
advantages and disadvantages. Broadly speaking, the three representations belong
to the areas of linear algebra, grid discretization, and graph theory.

Key words: sparsity, derivative computation, graph coloring, partial differential
equations, discretization

MSC 2000: 05C15, 05C50, 90C27, 65D25, 65F50, 68N19

1 Introduction

Various algorithms for the solution of problems arising from scientific computing re-
quire the evaluation of derivatives of some underlying function. Prominent examples
include Newton-type algorithms for the solution of nonlinear systems and continuous
optimization problems. It is not uncommon that the underlying mathematical func-
tions are given in the form of computer programs rather than as formulæ. In practice,
real-world problems from science or engineering give rise to complicated programs writ-
ten in C/C++, Fortran, MATLAB or any other high-level programming language. In
realistic applications from computational science and engineering, the evaluation of a
function f corresponds to the execution of a corresponding program implementing f

that requires substantial amount of computing time. The derivatives of f are either ap-
proximated by divided differencing involving truncation error or computed exactly, i.e.,
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without truncation error, using automatic differentiation. In both cases, the computing
time to evaluate the Jacobian matrix of f is a multiple of the time to evaluate f . For
derivative computations in large-scale problems, it is therefore crucial to exploit any
available structure of the problem at hand to reduce time and/or storage requirement.

If the Jacobian is sparse it is well-known that a given sparsity pattern can be
exploited to reduce the time to evaluate the Jacobian [11]. In this article, we focus on
the special case where the function

f : RMN −→ RMN (1)

is computed by a stencil operation on a regular M × N grid. That is, the value
of a quantity on a grid point is updated by the weighted values of the quantity on
neighboring grid points. We consider only neighbors in space rather than in time. The
neighborship relation for a grid point (m,n) is defined by the stencil N (m,n), the set of
all neighboring grid points whose values influence the new value at (m,n). We assume
that the update of a grid point involves its old value so that (m,n) ∈ N (m,n). The
grid point (m,n) is called the center of the stencil N (m,n).

Since stencil operations perform global sweeps over a possibly large data structure
that exceeds the capacity of available data cache, they typically achieve only a low
fraction of the theoretical peak performance on today’s processors. It is therefore no
surprise that researchers extensively studied the reorganization of stencil operations in
an attempt to better exploit deep memory hierarchies. These performance optimiza-
tions are based on improving locality in both space and time; see [9] and the references
therein. Rather than considering any such performance optimization, the focus of this
paper is on combinatorial optimization problems arising from computing the Jacobian
of some stencil-based function of the form (1). Because of the spatial locality of a sten-
cil, the Jacobian of such a function is sparse. In general, the exploitation of sparsity
in derivative computations leads to a rich set of hard combinatorial optimization prob-
lems [11]. The combinatorial problem considered in the present article consists of min-
imizing the number of function evaluations in divided differencing or, equivalently, the
number of automatic differentiation passes for the computation of all nonzero elements
of a sparse Jacobian of an underlying function that is based on stencil computations.
This combinatorial problem is NP-complete for general nonzero patterns [6] and can
be formulated using different representations. The new contribution of this article is to
bring together three different representations for stencil-based Jacobian computations
where, in contrast to general nonzero patterns, explicit solutions for various special
stencils are known [12,17].

The organization of this article is as follows. In Section 2, we give an outline of
the combinatorial optimization problem using the language of linear algebra. In par-
ticular, matrix-vector and matrix-matrix multiplications are crucial in this context.
In Section 3, the same combinatorial problem is described in terms of the underlying
grid where the spatial neighborhood is extensively addressed. Another contribution
of this paper is presented in Section 4 where a third representation of the combina-
torial problem based on a suitable graph model is sketched for stencil-based Jacobian
computations. A discussion of the three different representations is given in Section 5.

@CMMSE                                                               Page   285  of 1328                                               ISBN 13: 978-84-613-5510-5
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2 Linear Algebra Representation

To describe the combinatorial problem associated with stencil-based Jacobian compu-
tations in terms of matrices and vectors, we first introduce an ordering of the grid points
to map a two-dimensional index of a grid point into a one-dimensional index. To this
end, let ψ(m,n) denote the one-dimensional index used for the grid point (m,n) in such
a numbering scheme. Given a regular M × N grid and a stencil N (m,n) describing
the neighborhood relationship for all grid points 1 ≤ m ≤ M and 1 ≤ n ≤ N , the
sparsity pattern of the MN ×MN Jacobian A = (aij) of the function f defined in (1)
is determined and given as follows. A nonzero Jacobian entry is characterized by

aij 6= 0 ⇐⇒ i = ψ(m,n), j = ψ(k, l), and (k, l) ∈ N (m,n).

An example of a nonzero pattern is illustrated in Fig. 1. Here, we consider a 3× 3 grid
and a five-point stencil defined by

N5pt(m,n) = {(m+ 1, n), (m− 1, n), (m,n), (m,n + 1), (m,n − 1)} (2)

for any grid point (m,n) that is not located on the boundary of the grid. That is,
the neighbors of a grid point are immediately adjacent in the north, south, west, and
east directions. Grid points on the boundary have less neighbors. We assume a natural
ordering where the grid points are numbered starting from left to right and from bottom
to top:

ψ(1, 1) = 1, ψ(1, 2) = 2, ψ(1, 3) = 3, ψ(2, 1) = 4, . . .

As depicted in Fig. 1, the only non-boundary grid point (2, 2) of this small grid induces
five nonzero entries, denoted by crosses, in row/column ψ(2, 2) = 5 of the nonzero
pattern.

The derivative of a vector-valued function f with respect to some vector x into the
direction of a vector s is defined by

∂f

∂x
s = lim

h→0

f(x+ hs) − f(x)

h
.

Let A := ∂f/∂x denote the Jacobian whose columns are given by

A = [a1a2 · · · aMN ].

Then, by choosing s ∈ {0, 1}MN as a binary vector, any sum of columns aj can be
computed where the jth entry of s is nonzero, i.e.,

As =
∑

j with sj=1

aj .

Moreover, the product of the Jacobian A and some MN × p matrix S can be approxi-
mated by p+ 1 evaluations of the function f using divided differencing. Similarly, the
forward mode of automatic differentiation is capable of computing that product, A · S,
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(b)

Figure 1: (a) Five-point stencil (top) and regular 3 × 3 grid (bottom). (b) Nonzero
pattern of Jacobian matrix resulting from a five-point stencil using a natural ordering of
grid points on a 3× 3 grid. Background padding indicates p = 5 groups of structurally
orthogonal columns.

without truncation error using p+ 1 times the time needed to evaluate f . Therefore, p
indicates a rough measure of the time needed to compute the Jacobian.

The idea to reduce p—and hence the time to compute all nonzero entries of a
sparse Jacobian—consists of partitioning the columns of the Jacobian into groups of
those columns whose sum contains all the nonzero elements of the columns in that
group [8]. The property characterizing such a group is introduced in the following
definition.

Definition 1. Two columns aj and ak are structurally orthogonal if and only if they
do not have any nonzero element in the same row, i.e.,

aj ⊥ ak :⇐⇒ ∄i : ai,j 6= 0 ∧ ai,k 6= 0.

In the example given in Fig. 1, the columns a3 and a4 are structurally orthogonal
since there is no row in which both columns have a nonzero element. So, the sum a3+a4

contains all nonzero elements of these two columns. The combinatorial optimization
problem is now formulated as follows.

Problem 1. Given a Jacobian matrix A, partition its columns into a minimal number
of groups of structurally orthogonal columns. More precisely, find a binary MN × p

matrix S such that all nonzero elements of A are contained in the matrix-matrix product
A · S and the number of columns p, representing the number of groups, is minimized.
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There is a solution to that problem. However, the solution may not be unique. For
the example illustrated in Fig. 1, a solution is given by

S =

















1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

















.

Any solution satisfies p = 5 since, from inspection of the fifth row which involves 5
nonzero elements, there is no matrix S with p < 5.

3 Grid Representation

Rather than considering the linear algebra representation we now focus on the underly-
ing regular M ×N grid and the stencil N (m,n). The combinatorial problem can then
be reformulated in terms of the underlying grid. Since a grid point corresponds to a
row/column of the Jacobian matrix we arrive at the following definition that charac-
terizes the property needed to partition the grid points into groups.

Definition 2. Two grid points (i, j) and (k, l) are structurally orthogonal if and only
if their stencils do not overlap, i.e.,

(i, j) ⊥ (k, l) : ⇐⇒ ∄(m,n) : (i, j) ∈ N (m,n) ∧ (k, l) ∈ N (m,n)

⇐⇒ N (i, j) ∩ N (k, l) = ∅.

To illustrate this definition, we resume the example of the five-point stencil given
in the previous section but vary the grid size. The centers of all stencils depicted in
Fig. 2(a) are structurally orthogonal. A group of structurally orthogonal center grid
points is called a cover. In general, there are grid points that are not structurally
orthogonal so that multiple covers are needed to contain all grid points. Therefore, the
corresponding combinatorial optimization problem is given as follows.

Problem 2. Given a grid, partition its grid points into a minimal number of groups of
structurally orthogonal grid points. More precisely, find a sequence of covers containing
all grid points such that stencils within a cover do not overlap and the number of
covers p, representing the number of groups, is minimized.

To reduce the number of covers it is reasonable to construct “compact” covers,
meaning that the non-overlapping stencils are placed close to each other. In this sense,
the cover depicted in Fig. 2(a) is compact since any placement of stencils attempting to
reduce the distance between two stencils would violate the structural orthogonality of its
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(a) (b)

Figure 2: (a) Cover corresponding to a group of structurally orthogonal center points
for the five-point stencil. (b) Sequence of covers obtained from using p = 5 covers of
the form given in (a).

centers. In Fig. 2(b), a solution is shown that was constructed by taking p = 5 covers
of the form shown in Fig. 2(a) and arranging them so as to contain all grid points.
The different covers are depicted in that figure using different background padding.
Since the stencil involves five grid points, there is no solution with p < 5. Hence,
the sequence of covers shown in Fig. 2(b) is indeed a solution to the combinatorial
optimization problem. For this five-point stencil, the open literature [12, 17] gives the
explicit formula to construct the sequence of covers given in Fig. 2(b).

Goldfarb and Toint [12] also present solutions for various other stencils showing
that, in general, the solution does not consist of a sequence of identical covers. For in-
stance, the sequence of covers used for a nine-point stencil is constructed using different
covers. More recently, grids with periodic boundary conditions are analyzed [7].

4 Bipartite Graph Representation

Coleman and Moré [6] were the first authors who modeled the computation of sparse Ja-
cobians by graphs. In particular, they introduced the column intersection graph. Since
then, various graph models were used to describe different sparsity-related derivative
computations [3, 5, 13–15]. In the present article, we follow the approach taken in [11]
where a bipartite graph G(Vr, Vc, E) is introduced. To every grid point, a row and a
column vertex is associated leading to the vertex sets

Vr = {ri | 1 ≤ i ≤MN} and Vc = {cj | 1 ≤ j ≤MN}.

There is an edge (ri, cj) ∈ E if there is a stencil to which the grid points represented by
ri and cj belong. This graph model is illustrated using the five-point stencil again. In
Fig. 3(a), the subgraph representing a single stencil is depicted. There is an edge from
the row vertex ri corresponding to the center of the stencil to the column vertices ci−M ,
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Figure 3: (a) Bipartite subgraph representing a five-point stencil. (b) Bipartite graph
corresponding to a 3× 3 grid with a coloring representing p = 5 groups of structurally
orthogonal column vertices. (c) Corresponding graph for a 5 × 5 grid.

ci−1, ci, ci+1, and ci+M that belong to the stencil. The bipartite graph representing a
regular 3× 3 grid is shown in Fig. 3(b). The graph depicted in Fig. 3(c) corresponds to
a larger grid displaying the structure of the graph more clearly. In particular, the graph
given in Fig. 3(b) contains only a single subgraph of the form displayed in Fig. 3(a)
whereas the larger graph given in Fig. 3(c) contains nine of them.

The following definition is used to partition the column vertices into different
groups.

Definition 3. Two column vertices ci and cj are structurally orthogonal if and only if
they are not connected by a path of length two, i.e.,

ci ⊥ cj :⇐⇒ ∄rk ∈ Vr : (rk, ci) ∈ E ∧ (rk, cj) ∈ E.

An illustration of this definition is given in Fig. 3(b) and Fig. 3(c) where groups of
structurally orthogonal vertices are indicated using the same color. The combinatorial
optimization problem in terms of the bipartite graph is then as follows.

Problem 3. Given a bipartite graph G = (Vr, Vc, E), partition its column vertices into
a minimal number of groups of structurally orthogonal vertices. More precisely, find a
coloring of Vc such that all vertices connected by paths of length 2 are colored differently
and the number of colors p, representing the number of groups, is minimized.

@CMMSE                                                               Page   290  of 1328                                               ISBN 13: 978-84-613-5510-5



Combinatorial Optimization of Stencil-based Jacobian Computations

Recall from the previous sections that a solution of this problem for the five-point
stencil satisfies p = 5. In Fig. 3(b) and Fig. 3(c), a solution is given with p = 5 colors.
There is no solution with p < 5 because the subgraph corresponding to a stencil consists
of 5 column vertices that are pairwise not structurally orthogonal.

5 Discussion

A few comments on the three equivalent representations to describe the combinatorial
optimization problem for stencil-based Jacobian computations are in order. The linear
algebra representation is the one closest to the algorithms that make use of the Jacobian
values. Consider, for instance, Newton’s method for the solution of a nonlinear system.
Here, the algorithm involves the subproblem of solving a system of linear equations
whose coefficient matrix is given by the Jacobian of the underlying function. From that
perspective, the linear algebra representation of the combinatorial problem is therefore
intimately connected to the linear algebra view of the Jacobian in Newton’s method.
However, the linear algebra representation is inherently based on some ordering of the
grid points. A different ordering corresponds to a permutation of the rows and columns
of the Jacobian. Although the minimal number of groups of structurally orthogonal
columns is invariant under such permutations, it could be difficult to expose the problem
structure using an ordering that is not carefully chosen. Moreover, the ordering may
influence the number of groups of structurally orthogonal columns that is computed by
some heuristic.

The advantage of the grid representation is that it offers a clear view on the ori-
gin of the problem including its structure. This could be important for efficient data
handling trying to capture the data locality available in the implementation of the un-
derlying function [9]. A disadvantage of the grid representation is that it tends to be
more difficult to address stencils in three and more space dimensions. In applications
with a high number of space dimensions, it is less intuitive to analyze structural orthog-
onality for stencils. In contrast, the linear algebra and the bipartite graph model both
handle higher spatial dimensions using a one-dimensional representation of all spatial
dimensions which reduces the human effort for the analysis of structural orthogonality.

The bipartite graph representation offers an abstraction on a high level. It also pro-
vides a unified scheme to describe all sorts of different coloring problems associated with
derivative computations [11]. Another advantage is the availability of a rich number
of related results in the matured field of graph theory. For instance, preordering tech-
niques used in various areas of combinatorial scientific computing can also be used for
graph coloring [1, 16,18]. In the graph representation, the sparsity is directly available
and does not need to be encoded in some data structure. In contrast, an implemen-
tation of the linear algebra representation is based on some sparsity-exploiting matrix
data structure geared toward efficient numerical computations on that matrix but may
lead to less efficient data accesses when carrying out algorithms involving neighbor-
ship relations. Moreover, software tools implementing graph coloring heuristics are
available [2–5,10].
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Stencil Grid Size p CPR
NO LFO SLO IDO

N5pt(m,n)
50 × 50 5 7 7 7 6

100 × 100 5 7 7 7 6
200 × 200 5 7 7 7 6

N9pt(m,n)
50 × 50 10 16 17 14 14

100 × 100 10 17 17 14 14
200 × 200 10 17 17 14 14

Table 1: Number of groups of structurally orthogonal grid points for five-point and
nine-point stencil and different grid sizes.

To illustrate the discussion, we consider again the five-point stencil N5pt(m,n)
from (2) and, in addition, the nine-point stencil defined by

N9pt(m,n) = N5pt(m,n) ∪ {(m+ 2, n), (m− 2, n), (m,n + 2), (m,n − 2)}.

In [12], an assignment of every grid point to a group of structurally orthogonal grid
points is derived for both stencils. The explicit formulæ given therein present a solution
of the combinatorial optimization problem with a minimal number of groups. This
minimal number is p = 5 for N5pt(m,n) and p = 10 for N9pt(m,n). We compare
these numbers with the corresponding values obtained from applying the standard
CPR heuristic [8]. This greedy heuristic is designed to solve the general NP-complete
problem. The results of the comparison applied to a set of instances varying the grid
size is summarized in Table 1. In that table, the minimal number of groups p is given
in the third column. The fourth column states the number of groups computed by
the CPR heuristic using the natural ordering (NO). The following three columns are
obtained by CPR with three different preordering algorithms: Largest First Ordering
(LFO) [18], Smallest Last Ordering (SLO) [16], and Incident Degree Ordering (IDO) [1].
For N5pt(m,n), the number of groups resulting from any CPR heuristics is no larger
than p+ 2. The lowest number of groups is computed by IDO. The difference between
the optimal number of groups p and the ones computed by heuristics is larger for
N9pt(m,n). Here, the heuristics compute 14, 16 or 17 groups rather than p = 10. In
summary, the results indicate that there is an influence of the ordering on the number of
groups. This is consistent with the observations of other authors who studied this effect
for general nonzero patterns [1, 6] and shows the potential of using graph-theoretical
elements in that context.

6 Concluding Remarks

The evaluation of derivatives of given functions is important for various techniques in
computational science and engineering. We address the problem of combinatorially
optimizing the number of function evaluations to approximate a Jacobian matrix with
a given sparsity pattern using divided differencing. In automatic differentiation where
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the derivatives are computed exactly, the same combinatorial optimization problem
occurs in the forward mode. Throughout this article we focus on the Jacobian of a
function defined on a regular grid using a stencil operation.

The main contribution of the present article is to present the combinatorial op-
timization problem using a consistent description of three different representations:
linear algebra, grid discretization, and graph theory. We also compare these represen-
tations with their advantages and disadvantages. This collection of representations is
beneficial for researchers who are familiar with the grid representation of their underly-
ing mathematical function and want to explore the potential of exploiting the sparsity
in derivative computations using a different representation. It is also interesting for
educational purposes when teaching combinatorial problems in connection with sci-
entific computing. Furthermore, it paves the way for research directions that involve
more than one of the three representations, for instance, graph-based preconditioning
of Jacobian matrices.
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Abstract

It was constructed circuits with low depth and complexity for multiplication
and inversion in some finite fields of characteristic two.

Key words: : finite field, circuits, complexity .

1 Introduction

We investigate the depth an the complexity of realization of operations of multiplication
and inversion by circuits consisting of two-input logic elements.

Our goal is the minimization of the depth of arithmetic circuits. The depth is
the maximal number of elements in any chain connecting inputs of given circuit and
its outputs. Also we were aimed to minimize the complexity of this circuits. The
complexity is the number of elements in a circuit.

Circuits for finite field arithmetical operations are used in coding (see, for example,
[1], [3], [2]), cryptography (see, for example, [4], [5]), digital signal processing (see, for
example, [6]) etc. In these applications usually the fields of characteristic two are used.

In public key cryptography large dimensional fields are applied. For security it is
necessary to use fields of dimension 1000 and greater. But in ECC — elliptic curve
cryptography (see, for example, [7]) fields of dimension less than 200 are used.

The multipliers in standard bases generated by irreducible trinomials and pen-
tanomials were constructed in the Ph.D. thesis of E.D. Mastrovito [8]. For example, in
[8] the complexity of GF (2n)−multipliers for n = 2, 3, . . . , 16 is equal

7, 17, 31, 49, 71, 97, 148, 161, 199, 241, 351, 371, 478, 449, 537
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and the depth is equal
3, 4, 4, 6, 5, 5, 6, 7, 7, 7, 8, 7, 8, 6, 7.

The general bounds of the complexity (and the depth) of these multipiers are equal
O(n2), O(log n).

By Karatsuba’s method (see, for example, [9]) it is possible to construct the mul-
tipliers with the complexity O(nlog23).

Problems of practical application of Karatsuba’s method for multiplication in a
field GF (2n) are considered in the Ph.D. thesis of C.Paar [10].

In [11] some architectures of multipliers are given for a field GF (24n) Best multi-
pliers for n = 8, 12, 16, 20, 24, 28, 32 have the complexity

117, 216, 390, 546, 813, 1020, 1569,

and the depth 10, 9, 11, 13, 11, 14. For multiplication in normal bases are known the
methods [14], [15], [16].

The best bounds of the depth of inversion in a field GF (2n) is equal O(log n) [17],
[18]. However, this result have only theoretical significance.

In [19] is given the GF (2n) inversion algorithm with the complexity O(n3) log n
and depth O(log2 n). It is based on the identity

x2n−1 =
(
x2dn/2e−1

)2bn/2c
x2bn/2c−1.

High bound of the complexity has the reason in the high complexity of normal basis
multiplication [14] (it is generally equal O(n3).) Main idea of the method [19] is fast
computation of powers x2m−1. This algorithm of powers computation is known since
the thirtieth years and belongs to A.Brauer and A.Scholz ( see [20]).

We propose for inversion in some fields of composite dimension circuits of smaller
depth and smaller complexity than well- known. These fields are considered as the
extension of the subfields and also are called composite fields. For multiplication in
these fields is known the method [15]. For a completeness we give in some special cases
this method with simpler proof, than in [15].

2 Low depth circuits for operations in normal bases of
composite fields

Further we need some definitions and notations

2.1 Normal and optimal normal bases

Finite field of the order qn is denoted by GF (qn). Elements of a field GF (qn) is repre-
sented as polynomials of a degree no more n − 1 with coefficients from a field GF (q).
If the polynomials are represented in a standard base

Bα = {α0, α1, . . . , αn−1}
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( an element α is called the generator of a base), then a multiplication of elements of a
field is a multiplication of polynomials modulo of some irreducible over the field GF (q)
polynomial g(x).

Sometimes instead of a standard base it is more convenient to use a normal base,
namely a base

Bα = {αq0
, αq1

, . . . , αqn−1},
generated by an generator α of a standard base (α is a root of a polynomial g(x)).
Exponentiation in the degree q (and in any degree qm) in a normal base is a shift of
coefficients, because

ζq = xn−1α + x0α
q + x1α

q2
+ · · ·+ xn−2α

qn−1
.

B = {α, αq, αq2 , . . . , αqn−1}
Let T be the matrix, in which i−th line is the vector of coefficients of element ααqi

fields GF (qn) concerning base B The number of nonzero elements in the T is called the
complexity CB of a given normal base. This definition explain by the Massey-Omura
algorithm of multiplication in a normal base B (see, for example, [1]): Let

ξ =
n−1∑

i=0

xiα
qi

ζ =
n−1∑

j=0

yjα
qj

be any elements of the field GF (qn), then product of this elements may be calculated
by the formula

π =
n−1∑

m=0

pmαqm
, pm =

n−1∑

i,j=0

ti−j,m−jxiyj =
n−1∑

i,j=0

ai,jS
m(xi)Sm(yj)

where Sm is a shift of coordinates of the given vector on m positions, and

A(x, y) =
n−1∑

i,j=0

ai,jxiyj

is a bilinear form with a matrix A, defined by the equalities ai,j = ti−j,−j , where i− j
and −j are calculated modulo n.

The complexity of multiplication over normal base of a field GF (qn) is less or equal
to n(2CB + n− 1) operations in the subfield GF (q).

It is known, that the complexity CB of any normal base B of a field GF (qn) is not
less than 2n− 1. Normal bases with the complexity 2n− 1 are called optimal normal
bases. These bases were found in [22].

Optimal normal bases of the first type there exist if n + 1 = p is a prime number,
and q is a primitive element modulo p. A generator of a base is a primitive root of
degree p from 1 in a field GF (qn). Bases of the second type there exist if 2n + 1 = p is
a prime, and q is a primitive element modulo p. Bases of the third type there exist if
2n+1 = p is a prime, p ≡ 3( mod 4), and the order of q modulo p is equal n. Generators
in the last two cases are α = ζ + ζ−1, where ζ is a primitive root of degree p from 1 in
a field GF (q2n).
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2.2 Reduction of inversion in a field GF (n1n2) to inversion in a field
GF (n2).

Let’s present a field GF ((2n1)n2) as the extension of degree n2 of fields GF (2n1). In
the field GF (2n1) we choose any base B1. Suppose the circuits for multiplication
and inversion for this base in this field are constructed with the complexity and the
depth L(M(n1)) = L(MB1(n1)), D(M(n1)) = D(MB1(n1)), L(I(n1)) = L(IB1(n1)),
D(I(n1)) = D(IB1(n1)). In the considered extension we choose any base B2 over the
subfield GF (2n1). Then in the field GF (2n) we choose the base

B = B1 ⊗B2 = {αiβj : αi ∈ B1, βj ∈ B2}.

It is possible according to the following lemma (for example, see [1, Lemma 3.3.12],
[23])

Lemma 1 Let A = {α0, . . . , αm−1} and B = {β0, . . . , βn−1} be a bases of a fields
K = GF (qm) and L = GF (qn) over a field F = GF (q) and g.c.d(m,n) = 1. Then
C = {αiβj : i = 0, . . . ,m − 1; j = 0, . . . , n − 1} is the base in the field GF (qmn) over
the F .

It is valid also (for example, see [1, Theorem 3.3.13], [23])

Theorem 1 Let α and β be generators of normal bases A and B fields K = GF (qm)
and L = GF (qn) over a field F = GF (q) and and g.c.d(m,n) = 1. Then γ = αβ is a
generator of a normal base of the field E = GF (qmn) over the F .

Suppose the constructed circuit for multiplication for base B2 consist of m elements
of multiplication in a subfield GF (2n1) and a elements of addition, where m + a =
L(MB2(n2)) and have depth D(MB2(n2)). Suppose in any chain of elements connecting
inputs and outputs of the circuit there is only one element of multiplication. Then this
circuit generates the circuit of multiplication in base B with the total complexity

L(MB(n)) = mL(MB1(n1)) + an1 ≤ L(MB2(n2))L(MB1(n1)),

with the multiplicative complexity (the number of elements of multiplication)

M(MB(n)) = m(MB1(n1))m(MB2(n2)),

and with the depth

D(MB(n)) = D(MB1(n1)) + D(MB2(n2))− 1.

It is known, that the set of all automorphisms of a field GF ((2n1)n2) over a subfield
GF (2n1) is a cyclical group . This group (is called usually the Galois group of the
given extension) may be represented as the group G = {σ, . . . , σn2} of powers of the
automorphism σ : x → xq, q = 2n1 , such that σn2 = e. ( for example, see [1, Theorem
1.2.2]). The automorphism σ : x → xq is the Frobenius automorphism . For an
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extension E = GF (qn) of a field F = GF (q) with the Galois group generated by an
automorphism σ : x → xq the function

NE/F (x) = xσ(x) . . . σn−1(x) = xq0
xq1

. . . xqn−1
,

of any x ∈ E is called the norm of this element.
Further instead of NE/F (x) we write Nn(x), if the field E is the extension of degree

n of a field F or N(n2/n1), if a field E are the extension of degree n2 of a field GF (2n1).
The norm of any element of extension of a field always belongs to this field (see,

for example, [1, Lemma 1.6.1]).
Using the notation Zn2(x) = σ(x) . . . σn2−1(x), a inverse element can be computed

by the formula x−1 = Zn2(x)(Nn2(x))−1. The multiplication in this formula is multi-
plication an element of the field GF ((2n1)n2) on an element of the subfield GF (2n1),
therefore the complexity of multiplication is equal n2L(MB1(n1)), and the depth is
equal D(MB1(n1)).

Let us the circuit computing simultaneously Nn2(x) and Zn2(x) denote by NZn2(x).
Suppose the complexity of this circuit is equal L(NZn2(n1)), the depth of the subcircuit
computing Nn2(x) is equal D(Nn2(n1)), and depth of the subcircuit computing Zn2(x)
is equal D(Zn2(n1)). Then the circuit In1n2 for inversion in the field GF (2n1n2) can be
constructed from the circuit NZn2 , the circuit for inversion In1 in the subfield GF (2n1)
and circuit of multiplication M(n1n2, n1). The complexity of this circuit is equal

L(In1n2) = L(In1) + L(NZn2(n1)) + n2L(M(n1)), (1)

and the depth is equal

D(In1n2) = max{D(In1) + D(Nn2(n1)), D(Zn2(n1))}+ D(M(n1)). (2)

We need a nontrivial methods of constructions of the circuit NZn2(n1). The trivial
methods give bounds L(NZn2(n1)) ≤ (n2 − 1)L(M(n1)),

D(NZn2(n1)) ≤ dlog2(2n2 − 2)eD(M(n1)).

3 Towers of fields.

3.1 Reduction of inversion in a field GF n1n2n3 to inversion in a field
GF n3.

Applying two times the construction 2.2, it is possible to reduce inversion in the field
GF (((2n1)n2)n3) to inversion in the subfield GF (2n1). The complexity of the obtained
circuit is equal

L(In) = L(In1n2) + L(NZn3(n1n2)) + n3L(M(n1n2)) =

L(In1) + L(NZn1(n2)) + n2L(M(n1)) + L(NZn3(n1n2)) + n3L(M(n1n2))
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and the depth is equal

D(In) = max{D(In1n2) + D(Nn3(n1n2)), D(Zn3(n1n2))}+ D(M(n1n2)) =

max{max{D(In1) + D(Nn2(n1)), D(Zn2(n1))}+ D(M(n1))+

+D(Nn3(n1n2)), D(Zn3(n1n2))}+ D(M(n1n2)).

It is possible to construct the circuit with greater complexity but smaller depth as
follows. Let’s consider the field GF (((2n1)n2)n3) as the extension of degree n2n3 of field
GF (2n1) and once apply the construction of the previous section. Then we obtain the
circuit for inversion with the complexity

L(In) = L(In1) + L(NZn2n3(n1)) + n2n3L(M(n1)),

and the depth

D(In) = max{D(In1) + D(Nn2n3(n1)), D(Zn2n3(n1))}+ D(M(n1)).

Nontrivial constructions for a circuit NZn1n2(n3) are given in the sequel.

3.2 Inversion in towers of fields and circuits NZn1n2(n3).

Let’s consider the extension of degree n1n2 of field GF (2n3) as a field tower consisting
of the extension of degree n2 of field GF (2n3) and the extension of degree n1 of field
GF (2n2n3). It is known, that the Galois group of the field GF (2n) over the subfield
GF (2n3) is cyclical group of the order n1n2. We present this group as

{σ, . . . , σn1n2},

where σ is a generating automorphism. Let’s consider the subgroup of automorphisms
of the field GF (2n) over the subfield GF (2n2n3). This subgroup has the order n1,
therefore it is equal to the subgroup

{σn2 , σ2n2 , . . . , σn1n2},

generated by the automorphism σn2 . Restriction this automorphism(and all other au-
tomorphisms from this subgroup) on the subfield GF (2n2n3) is equal to the identical
automorphism.

Let’s obtain in a convenient kind a well-known property of norm ( see, for example,
[1, the theorem 1.6.8]).

As the norm of the extension of degree n1n2 is equal

Nn1n2(x) = xσ(x) . . . σn1n2−1(x),

and the norm in this field, considered as the extension of degree n1, is equal

Nn1(x) = xσn2(x)σ2n2(x) . . . σ(n1−1)n2(x) = xτ(x) . . . τn1−1(x), τ = σn2 ,
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therefore, putting y = Nn1(x), we have

Nn1n2(x) = xσ(x) . . . σn1n2−1(x) = yσ(y) . . . σn2−1(y), y ∈ GF (2n2n3).

The automorphism σ maps the subfield GF (2n2n3) in itself( so there are no other
subfields of the same order), automorphism σn2 is equal the identical automorphism
on this subfield, and other automorphisms σk, k < n2 are not identical(otherwise it
belong to the subgroup automorphisms of thr field GF (2n) over the subfield GF (2n2n3),
therefore the set of restrictions of automorphisms

{σ, . . . , σn2}

on the subfield GF (2n2n3) form the group of automorphisms this field over the subfield
GF (2n3). Therefore for norm

Nn2(y) = yσ(y) . . . σn2−1(y), y ∈ GF (2n2n3),

the equality is valid

Nn1n2(x) = xσ(x) . . . σn1n2−1(x) = yσ(y) . . . σn2−1(y) = Nn2(y) = Nn2(Nn1(x)).

Deleting in this product the first multiplicand, we obtain the identity

Zn1n2(x) = σ(x) . . . σn1n2−1(x) = Zn1(x)σ(y) . . . σn2−1(y) =

Zn1(x)Zn2(y) = Zn1(x))Zn2(Nn1(x)),

where Zn1(x) = σn2(x)σ2n2(x) . . . σ(n1−1)n2(x) = τ(x) . . . τn1−1(x), τ = σn2 , Zn2(y) =
σ(y) . . . σn2−1(y). Let’s denote by M(n, n2n3) the circuit of multiplication of any ele-
ment of a field GF (2n) on any element of a subfield GF (2n2n3) and denote by NZn2(y)
the circuit for simultaneous computation Nn2(y), Zn2(y). Also we denote by NZn1(x)
the circuit for simultaneous compution Nn1(x), Zn1(x). From these four circuits it is
possible to construct the circuit NZn1n2(x) with the complexity

L(NZn1n2(n3)) = L(NZn1(n2n3)) + L(NZn2(n3)) + L(M(n, n2n3))

and the depth

D(Nn1n2(n2n3)) = D(Nn1(n2n3)) + D(Nn2(n3)),

D(Zn1n2(n2n3)) =

max{D(Zn1(n2n3)), D(Zn2(n3)) + D(Nn1(n2n3))}+ D(M(n, n2n3)).
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3.3 On the circuits M(n, n2n3).

If a base B of the extensions of degree n1n2 of field GF (2n3) is represented as a product
of a base B2 of the extensions of degree n2 of the same field and a base B1 of the
extensions of degree n1 of the field GF (2n2n3), then are valid the equalities

L(M(n, n2n3)) = n1L(M(n2n3)), D(M(n, n2n3)) = D(M(n2n3)),

L(M(n)) ≤ L(MB1(n1))L(M(n2n3)),

D(M(n)) = D(MB1(n1)) + D(M(n2n3))− 1,

where MB1(n1) is the circuit of multiplication in the base B1 consisting of elements
realizing arithmetic operations in the subfield GF (2n2n3). If g.c.d(n1, n2) = 1, then in
the subfield GF (2n1n3) it is possible to choose arbitrary base B1.

As an example we consider Application to the biquadratic extension
It is valid

Theorem 2 If in the field tower GF (((2n)2)2) were chosen the optimal normal base
{α1, α

2
1} and the base {1, α2}, α2

2+α2 = α1 then is valid the following recurrent relations
for the complexity and the depth of multiplication

L(M(4n)) ≤ 9L(M(n)) + 20n,

D(M(4n)) ≤ D(M(n)) + 4,

and for the complexity and the depth of inversion

L(I(4n)) ≤ 14L(M(n)) + 16n + L(I(n)),

D(I(4n)) ≤ 3D(M(n)) + 2 + max{D(I(n)), 2}

4 Table

In the first column the dimension n of a field GF (2n) is given. If the second column is
empty, then the circuit is constructed by computing an explicit inversion formula and
optimizing of the obtained circuit. If the second column is not empty, for example,
it contains the sign

2(st)−→, then it means that the circuit was constructed using of the
quadratic extension and in the field GF (22) was choosen the standard base. By badges
opt and norm denote an optimal normal or an ordinary normal base. The absence of
a badge means that the base is neither normal nor standard. In the fourth column are
given the complexity and the depth of inversion circuits as In = (number, number), the
complexity and the depth of multipliers as Mn = (number, number), the complexity
and the depth of squaring circuits as Kn = (number, number). In the last column the
badges st, norm, opt means that a base in a field was chosen standard, normal, optimal
normal.
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Table 1: Table

2 : I2 = (0, 0), M2 = (7, 3) opt

3 : I3 = (6, 2), M3 = (18, 4) opt

4 : I4 = (24, 3), M4 = (31, 4) opt

4 : I4 = (21, 4), M4 = (31, 4), K4 = (2, 1) st

5 : I5 = (55, 4), M5 = (55, 5) opt

6 : I6 = (156, 6), M6 = (81, 5) opt

6 :
2(opt)−→ I6 = (60, 10), M6 = (66, 6) norm

6 :
3(opt)−→ I6 = (84, 8), M6 = (66, 6) norm

8 :
2(st)−→ I8 = (125, 11), M8 = (112, 6), K8 = (7, 2), Mr,4 = (3, 1)

10 :
2(opt)−→ I10 = (220, 14), M10 = (230, 15) norm

10 :
2(opt)−→ I10 = (213, 15), M10 = (229, 16)

10 :
5(opt)−→ I10 = (871, 16), M10 = (185, 7) norm

12 :
3(opt)−→ I12 = (335, 16), M12 = (234, 7) norm

12 : 4−→ I12 = (306, 16), M12 = (222, 8)

15 :
3(opt)−→ I15 = (590, 20), M15 = (390, 8) norm

15 :
3(opt)−→ I15 = (556, 21), M15 = (354, 8)

16 :
2(st)−→ I16 = (502, 24), M16 = (378, 9), K16 = (32, 5), Mr,8 = (10, 2)

16 : 2−→ I16 = (475, 25), M16 = (382, 12), Mr,8 = (14, 3)

20 :
4opt−→ I20 = (905, 21), M20 = (595, 9)

24 : 2−→ I24 = (1078, 30), M24 = (767, 11)

30 :
5(opt)−→ I30 = (8229, 18), M30 = (1455, 9) norm

30 :
6(norm)−→ I30 = (1925, 28), M30 = (1230, 10) norm

32 :
2(st)−→ I32 = (3275, 39), M32 = (1772, 13), Mr,16 = (26, 3)

48 :
3(opt)−→ I48 = (4128, 52), M48 = (2460, 12)

96 :
3(opt)−→ I96 = (19707, 79), M96 = (11016, 16)

120 :
3(opt)−→ I120 = (73930, 74), M120 = (12480, 14) norm
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Abstract

We have considered some mathematical models of traffic flow. There are for-
mulations of basic modern approaches to description of traffic jam characteristics
on a network. We also lead a few open problems.

Key words: traffic flow, traffic jam, shock waves, macroscopic and microscopic
models, leader’s following models, conservation laws.
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1 Introduction

Modelling of traffic flows on megacities network is as actual, extremely difficult prob-
lem. And the exact formalization of these questions gives the contensive mathematical
problems.

The question of modelling complexity has two aspects: how much wide is the flow
support and how much the flow components are synchronized. Really, as only the
support is reduced to “two rails”, and synchronization of flow component are as iron
connection, than the flow kinematics becomes trivial. It is more than freedom at a
military column, Which, nevertheless, should keep steady regular distribution. At last,
on multilane road with possibility of transition from one lane to another ( non channel
movement) and with the various qualifying Skills and purposes of drivers movement
becomes incomparable More difficult. So more difficult, that since thirtieth years the
twentieth century there is a search of adequate models, [1].
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Growth of quantity of cars on roads, capacity and high-speed properties lead to the
aggravated a problem of safety of the traffic inadequate behaviour of a part of drivers
on the road, the limited possibilities human body according to road conditions.

The car becomes more and more smart, it means that share of formalizable actions
in traffic increases. For example, unlike the driver, the technical device can more
precisely estimate the dynamic dimension, i.e. the safe distance to ahead following
car. Thus, transition to the formalized algorithms of car control reduces a share of
unpredictable actions of drivers and gives the chance to fashion designers of traffic
flow. At last after we hope to construct the general theory of traffic flows the lapse of
many tens years, also we can describe the behavior of a separate car, a flow of cars on
a road section and a set of cars on a complex city network.

2 Models for the leader following

For movement on one lane the position of points can be presented as of the sequence
of the functions

... < x1(t) < x2(t) < ... < xn(t)... (2.1)

We consider necessary the following conditions for functions xi(t), i = 0,±1, ...
a) the functions satisfy (2.1);
b) they strictly monotonously increase;
c) the functions are continuously differentiable and

||ẋi||L∞(R+) ≤ M1. (2.2)

d) ẋ are absolutely continuous and almost everywhere differentiable, and

||ẍi||L∞(R+) ≤ M2. (2.3)

Let d = d(x) be a positive and monotonously growth function of nonnegative argument,
which defines safe distance between the next points, i.e. dynamic dimension.

For example,

xn+1 − xn = ẋ2
i + xn + 1. (2.4)

The movement of the pair (xn, xn+1) by the law (2.4) we call connected. If the
relation (2.4) are executed for sequence n = 1...,N − 1 then we receive a connected
chain.

For a correctness of problem formulation it is necessary to add initial conditions,
i.e. the positions of points at the time moment t = 0, and boundary conditions, for
example, behaviour of the leader (or the outsider).

We note physical statements of model of following for the leader concern the sixtieth
years of the last century [8]. The further development is received in many researches,
for instant [9]. We consider following questions.

Question 1: Whether there is a connected chain of the set length N? What are
necessary conditions of existence? What are sufficient conditions?
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Question 2: How can be the description of qualitative behaviour of a chain de-
pending on behaviour of the leader (Or the outsider)?

Question 3: What is an asymptotics of system solutions for a circle.
The following cycle of questions concerns to descriptions of flow dynamics in case

of nonconnected a component. For a statement correctness we will enter function g(x),
strictly monotonously decreasing, g(0) = 0 and smooth.

Dynamics of nonconnected pair is described by the following law

ẍn = g(ẋn − f(xn+1 − xn)), (2.5)

where xn+1 − xn = d(xn) ⇔ ẋn = f(xn+1 − xn).
Questions 4. What are the necessary and sufficient conditions on function , g, for

which the system (2.5) would describe non-critical (without collisions) the movement
converging to connected state.

3 Intensity, a plane and continual traffic models

Real numerical characteristics of a flow of following for the leader are the quantity of
particles passing through fixed section (intensity) q and quantity of particles, on length
unit at fixed moment (density) ρ. Long-term theoretical and experimental researches
of experts in the traffic show, that there does not exist a simple dependence between
these values. Moreover, in some researches formal definitions of density and intensity
do not every often consider necessary to show. But every technology of these values
measurement have themselves nuances and details.

Nevertheless, at certain conditions, about which it is supposed to mention, de-
pendence v = F (ρ) ( speed on density) and, as consequence, q = ρF (ρ) (intensity on
density) adequately reflects real behaviour of a chain. Then the model of following for
the leader can to be reduced to the mathematical physics equation.

If we fulfill automodel reduction for the leader following model we obtained (in first
order) conservation law (Lighthill - Whitham - Richards model), [9] ,

∂ρ

∂t
+

∂q(ρ)

∂x
= 0,

where ρ is density; v(ρ) = f(1/ρ) is velocity and q(ρ) = ρv(ρ) is intensity, “fundamental
diagram”.

And in second order conservation law with diffusion D(ρ) = −v′(ρ)/2 (Whitham
model, 1974) , [9]

∂ρ

∂t
+

∂q(ρ)

∂x
=

∂

∂x

(

D(ρ)
∂ρ

∂x

)

.

This models (and also their future generalization) are rather convenient for in-
vestigation because of the hydrodynamic analogues. In this text we restrict ourselves
only these macroscopic models, for more detail see [1], [2]. First of all, it is rather
interesting to comprehend how these equations can describe traffic jam. Mathematical
theory of shock and training waves was developed in works of A.N. Kolmogorov, I.G.
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Petrovsky, N.S. Piskunov, Ya.B. Zel’dovich, I.M. Gel’fanfd, E.A. Hopf, P.D. Lax, A.M.
Ilijn, O.A. Oleijnik, S.N. Kruzhkov, N.S. Petrosyan, G.M. Henkin, A.A. Shananin and
other (see, for example, [10]). We plane to describe the contemporary state-of-the-art
of this branch.

The other interesting question is how to stay the initially-boundary problem, say,
for LWR model on the graph of the transport network. The main difficulties are
boundary conditions in the nodes of the graphs (see, for example, [15]).

4 Deterministic-stochastic model of movement

We consider multilane movement of a considerable quantity of cars (particles). In a case
when velocities of all particles are identical, it is possible to consider a flow configuration
invariable. In this case intensity is configuration function, and averagings on various
intervals of time lead to various estimations of intensity. It is natural to consider, that
particles are not crossed by the dynamic dimensions and all motion field (multilane
road) can be broken into corresponding cells in which or there is a particle, or there is
no it. We receive a set connected clusters with an invariable configuration.

As in the field there are free cells as soon as the mode of velocities becomes non
tense, there are particles which try to increase own velocity for the account changes
of a configuration of own position in the flow. This situation generates a stochastic
(individual) component of the flow.

Thus particle movement is summarized from collective and individual components.
Research of individual components of traffic flow is reduced to so-called models

of integer automatic automata in traffic or to an percolation problem in physics [7],
[13-14] or to problems of random walk in probability theory [2], [7].

As Blank notes [3] the first not trivial results, basically numerical, are received
by Nagel K, Schreckenbag, Herman, Simon, Krug, [7], [10]. In these researches it was
found, for example, that average particles velocity of movement on a cellular ring with
probability 1

v(ρ) = {1, ρ ∈ [0, 1/2]; ρ−1 − 1, ρ ∈ (1/2, 1)}.

Exact formulations and statements in the elementary model and generations is
received by the Blank, [3], [4].

Problems on numerical characteristics for moving on a multilane cellular field are
open. With the fixed probability p, 0 < p ≤ 1 and on the closed path with knots
(crossings), for example, a path with shape as “eight”.

It is offered to discuss some results in this topics.

5 Network dynamic system

Let G be a the plane oriental graph with vertices rate n and with the ends of rate 1,
“n-th ended star”, fig. 1.

The system state is characterized by a vector of density, flow mass on each edge.
Flow process is defined by a mixed matrix in a vertex (Markov’s matrix of the size n×n)

@CMMSE                                                               Page   310  of 1328                                               ISBN 13: 978-84-613-5510-5



A.P. Buslaev, A.V. Gasnikov and M.V. Yashina

Figure 1:

Figure 2:

and dependence of flow velocity on density (state function of an edge). The variant of
dynamic system with control assumes two operating modes in vertex on input(“ closed”
and “opened”) and also in case of open system there are an input and output of mass.

Already on an example “ n-th ended star” there are substantial the problems of
the stationary states description, of stability, critical modes when the flow mass on any
edge reaches a maximum, flow control.

The considered elementary scheme allows to create more difficult traffic graphs by
means of stars pasting, including regular lattices. For example, a triangulation (fig. 2)
and a quadrature (fig. 3).

Except above questions there are actual mathematical problems are recovery of
dynamic system states on a network under the information on its behaviour on a part
network, i.e. approximate information. In what points of the network and with what
accuracy it is necessary to measure information, that it will be possible to restore
a dynamic system state on whole network, to estimate time of approach of a critical
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Figure 3:

mode. It is offered to give mathematically exact formalizations, to give some qualitative
results and to show of computer simulations on above topics.
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Abstract

In this work we introduce de input-state-output representation of turbo codes and we
present conditions for that the obtained representation was observable and minimal. Key

words: convolutional code, turbo code, linear system

1 Introduction

A turbo encoder is formed by parallel concatenation of two recursive systematic convolutional
encoders separated by a random interleaver. Turbo codes were first introduced in 1993 by
Berrou, Glavieux, and Thitimajshima [1]. Actually are one of the most effective methods of
generating codes with high error correction capability. In this paper, using the input-state-
output representation of convolutional codes introduced by Rosenthal Schumacher and E.V.
York [5] and, in a similar way that Climent, Herranz and Perea [3, ?], we introduce the mod-
elization of turbo codes from linear system point of view. The structure of the paper is as
follows. In the next section we introduce the preliminary results and in Section 3 we present
the main results.

2 Preliminary results

In this paper, we denote by F = Fq the Galois field of q elements, F[z] the polynomial ring on
the variable z with coefficients in F and F(z), the field of rational functions over F and F, the
algebraic closure of F.

Following [4] and [5], we define a convolutional code as a submodule C ⊆ Fn[z]. Since
F[z] is a principal ideal domain and since C is a submodule of the free submodule Fn[z], the
code C is free and it has a well defined rank k. Let {g1(z), . . . , gk(z)} ⊆ Fn[z] be a basis of the
free module C and letG(z) be the n×k polynomial matrix whose ith column is the polynomial
vector gi(z), for i = 1, . . . , k. Then, C is defined as
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Figure 1: Turbo Code

C = {v(z) ∈ Fn[z] : v(z) = G(z)u(z), with u(z) ∈ Fk[z]}
where G(z) is a generator matrix of C. We say that C has rate k/n if k is the rank of the
module C. The free distance of a convolutional code is given by

dfree(C) = min{wt(v(z)) : v(z) ∈ C, with v(z) 6= 0},

where wt denotes the Hamming weight of a codeword. Another important parameter of a
convolutional code is the degree or complexity, which is defined as the largest degree δ of the
k × k full size minors of any generator matrix G(z).

xt+1 = Axt +But,
yt = Cxt +Dut,

vt =
(
yt
ut

)
, x0 = 0,

(1)

where for each instant t, xt ∈ Fδ is the state vector. The set of all codeword sequences vt ∈ Fn
is the convolutional code C and we say that C is generated by (A,B,C,D). By abuse of
notation we denote it by C(A,B,C,D). In systems literature, representation (1) is known as
the input-state-output representation. The integer δ describes the McMillan degree of the linear
system (1). That is, the McMillan degree is equal to the dimension of the state-space realization
of a rational and systematic convolutional encoder.

3 Turbo Code

Let C1 and C2 two convolutional codes of rate k/n1 and k/n2, respectively. In the turbo code
T C(1), the first encoder, C1, operates directly on the input information and the second one, C2,
encodes the interleaved input information, denoted by Put. Thus the codeword of the turbo
code consists of the parity vectors of both encoders following by the information vector.

Next theorem shows the input-state-output representation for the Turbo code T C(1) from
the input-state-output representation of the constituent encoders.
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Theorem 1 Let C1(A1, B1, C1, D1) be a (n1, k, δ1)-encoder. Let C2(A2, B2, C2, D2) be a(n2, k, δ2)-
encoder. Then the input-state-output representation for the (n1 + n2 − k, k, δ)-turbo code is
given by (1), where

A =
(
A1 O
0 A2

)
, B =

(
B1

B2P

)
,

C =
(
C1 O
O C2

)
, D =

(
D1

D2P

)
,

(2)

Proof. Let ut be the information vector of the turbo code. Let xlt and ylt be the state vector
and the parity vector of the encoders Cl, for l = 1, 2.

Now, from equation (1), we have, for C1,

x1
t+1 = A1x

1
t +B1ut

y1
t = C1x

1
t +D1ut

and for C2,
x2
t+1 = A2x

2
t +B2Put

y2
t = C2x

2
t +D2Put

Since the state space of the turbo code T C(1) is the union of the state spaces of the con-

stituent encoders, that is, xt =
(
x2
t

x1
t

)
, we obtain:

xt =
(
x2
t

x1
t

)
=
(
A1 O
O A2

)
xt +

(
B1

B2P

)
ut. (3)

Now, the parity vector of the turbo code is yt =
(
y1
t

y2
t

)
, so

yt =
(
y1
t

y2
t

)
=
(
C1 O
O C2

)
xt +

(
D1

D2P

)
ut, (4)

where xt =
(
x2
t

x1
t

)
.

Finally, from relations (3) and (4), we get the input-state-output representation of the Turbo
code.

2

Our gain now is to obtain an observable Turbo code with minimal input-state-output rep-
resentation. The following theorem gives the conditions for this.

Theorem 2 Let C1(A1, B1, C1, D1) be an (n1, k, δ1)-code and let C2(A2, B2, C2, D2) be an
(n2, k, δ2)-code. Let T C(1)(A,B,C,D) be the Turbo code described by (2). Assume that the
following conditions hold

1. rank(B) = δ1 + δ2.

2. The pair (Al, Cl) is observable for l = 1, 2.

@CMMSE                                                               Page   316  of 1328                                               ISBN 13: 978-84-613-5510-5



TURBO CODES FROM LINEAR SYSTEM POINT OF VIEW

Then (A,B,C,D) is a minimal representation with complexity δ = δ1 + δ2.
Furthermore, T C(1) is an observable convolutional code.

Proof. From condition 1, we have

rank
(
A− zI B

)
= δ1 + δ2 for all z ∈ F.

So, the pair (A,B) is controllable and consequently (A,B,C,D) is a minimal representation
of T C(1).

Now, for all z ∈ F,

rank
(
A− zI
C

)
= rank


A1− zIδ1 O

O A2 − zIδ2
C1 O
O C2

 = δ1 + δ2

since rank
(
Al − zIδl

Cl

)
= δl, for l = 1, 2, from condition 2. So the turbo code T C(1) is an

observable convolutional code. 2
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Abstract

We discuss correlation attacks in a setting that extends classical LFSR, showing
the relation with a coding theory problem and types of autonomous behavior that
shoud be avoided because of existing fast correlation attacks.

Key words: stream cipher, autonomous system, correlation attack

Additive stream ciphers are an important class of stream ciphers. Hereby a pseu-
dorandom bitstream is XORed to the message. The generation of the bitstream is often
based on linear feedback shift registers (LFSRs). An LFSR stream r = (ri)i≥0 satisfies
a linear recurrence relation of the form

c0rt + c1rt+1 + c2rt+2 + · · · + cl−1rt+l−1 + rt+l = 0, t ≥ 0.

The sequence r is completely determined by its l initial values (r0, . . . , rl−1)
T =: R0,

which in most cases equals the secret key of the corresponding stream cipher.
An LFSR can be described by the linear system:

Rt =










0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
c0 c1 c2 . . . cl−1










Rt−1

rt =
(

1 0 0 . . . 0
)
Rt

It is clear that the output of such a system cannot directly be used as keystream,
since the linearity of the system allows to recover the initial state (key). Hence, the
stream generated by this linear system is fed into a nonlinear function f to destroy
linearity. Hence recovery of the initial state in principle comes down to solving systems
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of nonlinear equations, which is known to be hard. However often f is not correlation
immune, i.e. there exists a linear sequence {si}i≥0 such that Pr(f(x1+i, . . . , xl+i) =
si) = 1

2 + ǫ, with |ǫ| > 0. Now it can be shown that the observation of

N ≈
1

ǫ2

streambits theoretically allows the recovery of the initial state.
We would like to generalize this result to general autonomous systems in Fq, of the

form:

xt+1 = Axt

yt = Cxt

Let σ : (Fn
q )Z → (Fn

q )Z, st → st+1 be the shift operator. Given an n×n polynomial
matrix P ∈ Fq[z]n×n, P defines an autonomous behavior in the sense of Willems [5]:

B := kerP (σ) ⊂ (Fn
q )Z

Assume P̃ := U(z)P (z), with U(z) an n × n unimodular matrix, has row degrees
δ1 ≥ . . . ≥ δn and high order coefficient matrix In. Let X(z) be the n× r basis matrix
with r :=

∑n
i=0 δi. Then kerP (σ) = kerP̃ (σ) and there exist an r × r matrix A and an

n × r matrix C such that:

ker(X(z)|P̃ (z)) = im

(
zIr − A

C

)

The autonomous behavior of P is equivalently described by a system as above. More-
over, the matrices A and C can be computed ’by Inspection’ [3].

Let (yi)i≥0 be a sequence in some behavior kerP (σ). This sequence can be also
computed as: 






y1

y2
...

yN








=








C
CA
...

CAN−1








x1

Given a highly noisy sequence ỹ1, . . . , ỹN−1, how can we obtain the initial state (key)?
We face a decoding problem.

In this paper we explain correlation attacks in this general setting and we show
types of autonomous behavior which should be avoided because of existing fast corre-
lation attacks.
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Abstract

In this paper we study the possibilities that the parallelism implemented by net-
work processors offers to accelerate the network interface, and thus, to improve the
performance of applications that need communication (nowadays almost all appli-
cations). To achieve adequate communication performance levels efficient parallel
processing of network tasks and interfaces should be considered. This way, we
considered the use of network processors as heterogeneous microarchitectures with
several cores, that implement multithreading and are suited for packet processing,
to investigate on the use of parallel processing to accelerate the network interface
and thus the network applications developed above it. More specifically, we have
implemented an intrusion prevention system (IPS) and an OpenFlow switch in an
heterogenous node that includes such a network processor. We describe the IPS
we have developed that after its offloaded implementation allows faster packet pro-
cessing of both normal and corrupted traffic. We also describe a complementary
design to previous OpenFlow reference designs that takes advantage of the parallel
processing allowed by network processors.

Key words: network processors, heterogeneous processors

1 Introduction

The availability of high bandwidth links and the scale up of network I/O bandwidths
to multiple gigabits per second have shifted the communication bottleneck towards the
network nodes. Therefore, the network interface (NI) performance is getting decisive
in the overall communication path performance and it is determinant to reduce the
communication protocol overhead due to context switching, multiple data copies, and
interrupt mechanisms.
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Network processors (NP) are programmable circuits that provide fast and flexible
resources for high-speed communication functions processing as they are composed of
multiple cores that makes it possible to take advantage of parallel processing in these
tasks and to leave free clock cycles for the CPU to process the applications. Network
processors (NP) usually have heterogeneous microarchitectures with cores optimized
for packet processing.

NP-based acceleration cards such as [12] have been designed to change the way
in which packets are handled in network systems by offloading packet processing from
host CPU level to Network Interface Card (NIC) level.

These network processor cores usually have multithreading capabilities that can be
used to improve the performance of network applications by offloading parts of them to
the NP in order to take advantage of the parallelism and the memory hierarchy imple-
mented at the NP microarchitecture. This way, not only the networking applications
can be accelerated thanks to their implementation in the proximity to the network but
also the CPU load is reduced and the free cycles can be allocated to other tasks thus
improving the server throughput.

In this same research line, the paper [22] describes how a content-aware switch
implemented in a NP can reduce the latency for HTTP processing, improve the packet
throughput, and optimize the cluster server architectures, by processing requests and
distributing them to the server according to the application-level information. The
authors have used the IXP2400 NP [1] and compare their NP-based switch with a
Linux-based one. The latency on the NP-based switch is reduced between 83% (for
small file sizes) and 89% (at 1024 Kbytes sizes) and the throughput is improved between
5.7 and 2.2 times.

In this work we discuss the protocol offloading approach as an optimization of the
communication subsystem. We also propose and analyze an offloaded implementation
of a network intrusion prevention system and a converged architecture to accelerate
OpenFlow switching using network processors.

The demand of firewalls and network intrusion detection and prevention systems
has grown with the increasing importance of network services and infrastructure along
with the difficulty of designing end-system security strategies [21]. Another application
that can be improved by using network processors is OpenFlow switching, which enables
flexible management of enterprise network switches and to accomplish experimental
work on regular network traffic. We also apply network processor based acceleration
cards to perform OpenFlow switching.

In Section 2 the protocol offloading optimization for the network interface is ex-
plained. Later, in Section 3 our network interface using network processors is detailed.
It is used as the base for the applications described in Section 4. After that in Section
5 the main conclusions of this research work are provided.
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2 Protocol Offloading

The protocol offloading moves part of the protocol processing to the NIC, leaving more
cycles to be used by the CPU for the application computational needs. With this
approach a processor located in the NIC (different from the CPU) is used for the
communication tasks.

Basically, in this work we analyze the effect of offloading in NP-based NICs. The
potential benefits of protocol offloading are an increase in the CPU cycles available for
the application, a latency reduction, an increase in DMA efficiency (as small messages
can be gathered into groups) and a reduction in the number of I/O collisions.

Nevertheless there are papers such as [10, 16, 4, 14] that defend that protocol
offloading, specially in the TCP case, does not give any benefit for the application
performance. The difficulties to achieve some benefits for the application performance
come from the implementation, maintenance and test of the offloaded protocols [10].
Moreover the protocol between the NIC and the host CPU can have the same level of
complexity as the protocol being offloaded [14]. Moreover, as a consequence of Amdahl’s
law, to offload the protocol processing to processors that are slower than the CPU will
not give a better performance [16].

Nevertheless, the reasons detailed in these papers have to be balanced with the
possible benefits from protocol offloading listed above. This way, in [20] the authors
emulate a NIC connected to the I/O bus and controlled by one the processors in a SMP.
The improvements are between a 600% and 900% with the TCP offloaded emulation.
Moreover, the models proposed in [5] [17] exposes the possible benefits from protocol
offload. It can be also taken into account that, although a processor runs at lower clock
frequencies, it is possible to take advantage from its microarchitecture. For example,
in the case of networking processors, although they have lower clock frequency than
the CPU, they provide resources that allows us to take advantage of multithreading
processing of packets, asynchronous memory accesses, multilevel memory hierarchy and
parallelism and multithreading.

It is important to take into account that the actual processors provide many cores of
processing (multicore) both for the host CPU and for the network processor at the NIC.
Every core might have multiple threads. This high parallelism motivates to change the
techniques used for offloading as well as the placement of the different communication
tasks.

The study provided in [18] shows that parallelizing the reception path can deliver
benefits for unidirectional as well as bidirectional traffic. In fact, this scheme allows
the authors to reach the theoretical throughput of the medium. Therefore, offloading
can be improved by using parallelism.

Another approach to take advantage of parallel processing in protocol offloading is
the use of network processors. In [8] communication tasks are distributed between the
central processor (CPU) and a network processor (NP) included in the network card.
This way, the NP executes part or all of the communication tasks, and even part or
the whole application. The NP and the CPU cooperates in the application execution
that runs in the node and communicates by means of the buses existing on the node.
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Through those buses the data among the main memory and the memory included in
the network card (i.e. local memory of the NP) is also transferred. Therefore, even if
it is called offloading due that part of the code that use to be run in the CPU is moved
to a processor that is in a NIC connected to a I/O bus, actually it tries to implement a
distribution of the tasks to be completed by the node according to the location of the
NP close to the network, and its micro-architecture oriented to the packet processing.

3 A network interface using network processors

Because of the importance of the network interface (NI) in the communication perfor-
mance we have decided to create a network interface using network processors. This
network interface uses a NP-based NIC and allows us to have the base to offload com-
munications tasks to this NP.

The network processors (NP) are programmable circuits optimized for the process-
ing of communication functions at high speed. It plays a very important role in the
design of current routers. Moreover, these processors also include hardware compo-
nents to accelerate common operations in communication functions (CRC processing,
hash calculation, etc.) [15, 19]. They are located midway between the ASICs (more
speed but less flexibility) and a general purpose processor. Usually, they are compound
of a central processor for control and several packet processors (usually multithreaded
processors).

Families of network processors have been marketed with diverse flexibility charac-
teristics, prices and performance [2]. Among the different alternatives, we have chosen
Intel IXP processors [7]. The IXP series implement micro-architectures with a high
level of parallelism, including several programmable processors: a general-purpose In-
tel XScale processor (RISC architecture compatible with the ARM architecture), and
up to 16 optimized co-processors (called MicroEngines or MEs) for packet processing.

This network interface is created as a platform to offload part or all of the protocol
processing from the host CPU to the MicroEngines. The network interface is a Linux
kernel device driver as explained in detail in our work [3].It is configured to use the
communication API host-MicroEngines, our card provides a complete network interface
as shown in Figure 1. This figure compares the software distribution of the interface
directly available with the card (Figure 1(a)) and the elements of the network interface
developed by us (Figure 1(b)). In these two figures the arrows with dotted lines indi-
cate the need for synchronization between the corresponding modules; the bold arrows
indicate the data transfers; and the thinnest arrows show the interactions between the
modules that control each transfer. In Figure 1(b) the bold rectangles indicate the
software modules developed by us.

As it has been said, this network interface is used as a platform to study the
offloading of communication tasks.

Figure 2 provides measures corresponding to the parallelism that can be obtained
by devoting more MicroEngines to a specific communication task. In our experimental
configuration we have considered that one MicroEngine is dedicated to packet trans-
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(a) Base software distribution [11]. (b) Network interface.

Figure 1: Complete offloaded network interface.

Figure 2: IP latency.

mission, other MicroEngine to packet reception, and other two MicroEngines to the
PCI Express bus transfers. Nevertheless, the best results have been obtained using
two MicroEngines (up to 16 threads) for transmission and other two MicroEngines for
reception.

4 Applications and experimental results

In the next subsections two applications developed in top of our network interface are
explained and evaluated.
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4.1 OpenFlow

OpenFlow tries to address the needs of researchers to control and experiment with
production networks and not only with simulators or special networks. OpenFlow was
started in Stanford by [9] and soon was followed by many other Universities. Also the
industry has developed some OpenFlow devices [13].

In a regular switch both the data and control plane are done in the same physical
device. The OpenFlow Switch initiative separates these two paths. In an NP usually
the data plane runs at the MicroEngines and the control plane at the XScale main core.
With the OpenFlow idea, the data plane stays at the switch while the control plane
is implemented in an external entity called the controller. Translating the OpenFlow
idea to the IXP architecture means that the MicroEngines run the data plane while
the control plane is in another computer, usually external to the switch.

An OpenFlow switch can easily help to share the network into several pieces, each
for every kind of flow. This was done previously by using Ethernet VLAN codes for
every different subnet. The main objective that can be achieved with OpenFlow is to
manage in an easy way a complete network. A flow is determined by ten fields that
can be found in packets. These fields range from Layers 1 to 4 in the OSI model, or
from the physical layer to transport layer.

Once a specific flow is detected an OpenFlow switch has to determine which action
to take on this flow. The switch needs a Flow table where a list of flows and actions
to take on the packets belonging to a flow is stored. The typical actions are to forward
packets to a specific output port, to drop the packet, or to forward to the controller.
The controller in an OpenFlow switch is the external entity that runs the control plane.
It decides the flows and associated actions of the switch. In case a new packet arrives
to the switch and it does not belong to any flow in the Flow table as created by the
controller, the switch will encapsulate the new packet into a message and send it to the
controller, the controller will decide what to do and inserts a flow-action row into the
Flow table.

The baseline OpenFlow design is briefly described here. As it uses a Linux based
PC equipped with several regular NICs (or at least one dual port NIC) running the
OpenFlow software we will call it the software reference design. In Figure 3 the archi-
tecture is illustrated. Even if this reference design consists of two different sub-designs,
(one for user-level and one kernel-level) the architecture is the same. The switch creates
a secure channel1 to the OpenFlow controller through an out-of-band connection, i.e.,
a dedicated NIC port is allocated for communication with the controller. The flow table
is maintained in the host memory, and the host CPU looks up flows entries, modifying
them upon receiving the OpenFlow control packets from the controller. The packets
received by the switch are forwarded to either the controller or the destination port,
depending on the result of the lookup.

In Figure 4 the details of our OpenFlow switch accelerated with a network processor
are shown. The Flow table resides at the host memory and at the NP memory and both
are synchronized. As in the case with the FPGA the first packet is send to the host,

1A communication channel using cryptography
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Figure 3: PC-based OpenFlow
switch

Figure 4: NP-based OpenFlow
switch

that in turn will query the controller about what to do, and the rest of the packets in
the flow will be processed at the NP directly.

The results for packet forwarding throughput are shown in Figure 5 with the dif-
ferences for the three different architectural options: user-level (x86), kernel-level (x86-
kernel) and NP accelerated (NFD).

Figure 5: Packet forwarding throughput. (Inter-packet delay = minimal)

First of all, the kernel-level switch and NFD-based switch perform consistently
better than the user-level switch when dealing small (64B) or medium (500B) packets.
This result can be explained by the data copying from kernel to user space in user-level
switch software. Such overheads (buffer allocation/deallocation, copying, interrupt)
are more significant for small packets since they occur on a per packet basis. Second,
the forwarding rates are more or less the same for all the explained three designs when
the packet is of maximal size. The data-copying overhead from kernel to user space
is amortized in the case of large packets. The question is why the NP does not out
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perform the other two setups since it does not transfer packets to host CPU via PCIe
bus. There are several reasons. The network links used in the experiments are only 1
Gbps, which might not be enough to show any difference between the processing power
of the CPU and the NP.

We also analyze the round trip time reported by ping on the measurement node.
This number reflects the delay incurring at the OpenFlow switch of a packet. In this set
of experiments we compare the packet delay in three scenarios: OpenFlow with regular
NIC, OpenFlow with NP-enabled virtual NICs where the flow tables still reside in the
host server, and OpenFlow with NP-accelerated flow table manipulation. The results
show that NP based OpenFlow switch can reduce the packet delay by up to 35% (from
0.157ms to 0.102ms).

4.2 Intrusion prevention system

An Intrusion Prevention System (IPS) is a system that prevents the network attacks.
An IPS needs to analyze the headers and the content of the packet at higher-level proto-
cols to detect undesired behavior. It is also required that the function implemented by
the intrusion prevention system to be updated with new detection procedures due to the
evolving characteristics of the attacks. As this application requires high-performance
processing capabilities and flexibility it is a good candidate to be implemented in a
network processor.

In our research work we focus on monitoring the network. The most common
setup for IPS is to monitor all the network traffic entering and exiting the network of
an organization by placing a computer running an IPS software at the main Internet
connection of the organization. Packets coming from the Internet enter the organization
through this computer that process them before eventually let the packets reach the
organization network and systems. Usually packets are received into this computer
through a regular NIC, processed at the CPU to decide whether to stop the packet or
let it reach the computer where is destined through another regular NIC. This approach
has the disadvantage that all packets have to reach and be processed at the CPU. The
processing can be very CPU resources consuming, ant therefore if there are too many
packets force the IPS software to discard some packets that will affect the computers
of the organization.

Our approach is to move the IPS, partial or completely, from the host CPU to the
network processor (NP) at the NIC by using our network interface (Section 3. Thanks
to this network interface we can control where to place the different parts of the IPS
and evaluate how it affects the overall performance of applications using the network.
It is possible to place the IPS at the MicroEngines or at the host. Using Figure 1(b) the
IPS could be either at “Parallel microcode” box or at the “Application” box. When
running in the microcode at MEs it will be placed to check every received packet that
it is to be sent to the host. The corrupted traffic will be stopped and the legitimate
traffic will follow the path to the host. In the case the IPS is executed by the host
CPU, it will receive all packets, including the normal and corrupted traffic. The closer
position to the network and the specialized hardware of the MicroEngines makes it the
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candidate alternative to give better results. This will be checked in the experimental
results section. Moreover, in this chapter, it will be studied how the location of our
IPS affects the processing of corrupted traffic with respect to the legitimate one.

The microcode for this IPS is based in the one used for the network interface. One
MicroEngine is devoted to reception of packets, another one to transmission (with the
help of two others), two MicroEngines to communicate with the host through the PCIe
bus, and one MicroEngine for processing. It is this MicroEngine that is modified to act
as an IPS and drop packets that matches some rules and not let them reach the CPU.
As it is explained for the network interface there are not shared data structures for
this IPS since the rules are written in the code (i.e. new rules require the modification
of the code) and not in a memory structure shared by all the threads (eight in our
prototype). With only one MicroEngine used for the processing task it can handle the
traffic injected.

The obtained results with the intrusion prevention system test have been very
successful. In our experiment both corrupted and legitimate traffic are sent through
the MicroEngines to the host. In the first case the corrupted traffic is dropped at the
MicroEngines while in the second one the activity of the IPS is done in the host. The
corrupted traffic matches a set of snort rules, implemented in both the host and the ME,
while the legitimate traffic is the one used in the communications benchmark Netgauge
[6]. We measure how the processing associated to the detection of the corrupted traffic
affects the performance of this benchmark. The legitimate traffic is raw Ethernet
because it can achieve a higher throughput than using TCP/UDP. The corrupted traffic
is an HTTP header.

In Figure 6 a latency comparison among two setups is shown. The corrupted
traffic rate goes from 100 Mbps to 1000 Mbps. When corrupted traffic is stopped at
the MicroEngines the legitimate traffic latency is lower. This is, it is almost not affected
by sharing the same communication path than the corrupted traffic. When the IPS is
run at the host (snort) and the corrupted traffic rate goes up to 600 Mbps the latency
behaves similarly to the case when the IPS runs at the network processor. But from
700 Mbps to the 1000 Mbps of corrupted traffic rate the IPS running at the host does
not perform well in terms of latency and even the benchmark can not be completed
due to timeouts. There is a significative higher latency when the IPS runs at the host
compared to when it runs at the network processor. If the corrupted traffic rate is
higher than 600 Mbps it makes the IPS to drop legitimate packets.

The same results are observed when comparing the performance, in terms of the
throughput of the network benchmark, depending on the IPS placement (Figure 7).
If the corrupted packets are stopped at the MicroEngines level, the CPU of the host
can give a better service to the legitimate traffic. The benefit for this kind of traffic,
whenever the IPS is located at the NIC, is that it is not affected after the 700 Mbps
corrupted traffic rate limit.

Another experiment we have completed has been to evaluate the performance of
the network benchmark when only legitimate traffic is sent to the host through the
MicroEngines, compared with the alternative of sending normal and corrupted traffic
to the host. As expected, when only legitimate traffic is sent, the performance is better,
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Figure 9: Latencia (IPS en el host)

in terms of both lower latency and higher throughput. Nevertheless, the difference is
bigger when the IPS is run at the host CPU, instead of run at the MicroEngines. It
can be concluded from Figure 8 where it is shown that the difference in throughput
is not important compared with Figure 9. The processing of corrupted packets affects
more significative to the processing of normal packets if it is done at the host than at
the MicroEngines.

Thus the conclusions are clear for the IPS processing: running it on a network
processor does not affect much the rest of the traffic. If it is implemented in the host,
it takes a lot of cycles that the CPU can be available to be used by other functions (as
processing of legitimate traffic or computation).

5 Conclusions

The IPS based on a multi-threaded network interface here proposed makes possible
to take advantage of the parallelism implemented in network processors to improve
not only the latency, but also the bandwidth of legitimate traffic that shares the same
communication path with the corrupted traffic. The benefits from placing the IPS close
to the network, by using specialized network processors, gives up to many times lower
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latency and higher bandwidth available to the legitimate traffic. The analysis of the
possible optimizations to the IPS processing, along with the evaluation of the effect
of the improvements in real communication applications are the main tasks for our
future work. With respect to OpenFlow switching, the NP implementation provides
up to 35% of delay reduction. Precisely our future work in OpenFlow switching is to
develop more actions for packets, and not only dropping or forwarding to reach more
performance improvements.
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Abstract

In this survey we pay attention to some formulas for Sobolev orthogonal poly-
nomials obtained in two recent papers. They are known as Mehler–Heine type
formulas and allow us to obtain interesting consequences about the asymptotic
behaviour of the corresponding zeros. We illustrate our results with numerical
examples.
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1 Introduction

The issue of Sobolev orthogonal polynomials has been considered in the literature from
many points of view. These polynomials are not orthogonal with respect to a standard
inner product like (p, q) =

∫
pqdµ where µ is a positive measure with support on the

real axis. As a consequence, the properties of the standard polynomials do not hold any
more. Apart from other considerations, the fact is that Sobolev orthogonal polynomials
are different from the standard ones and this motivates to study them deeply. Thus, it
is natural to make an exhaustive study of their properties such as it has been done for
the standard polynomials and is going on at present.

Here, we consider the following Sobolev inner product

(p, q)S =
∫ 1

−1
p(x)q(x)dµ(x) +

∫
supp(ν)

p′(x)q′(x)dν(x), (1)

where µ is a Gegenbauer or Jacobi measure and ν is a measure related to µ. Mehler–
Heine formulas for the orthogonal polynomials with respect to µ are well known (see, for
example, [5]). Our objective is to obtain the corresponding Mehler–Heine type formulas
for the polynomials orthogonal with respect to (1). This is an expository paper and
the results appearing here have been obtained recently in [1] and [3]. Therefore, we
recommend to consult these articles to the reader interested in the analytic tools used.
Here we introduce new numerical experiments to illustrate the results.
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2 Notation and background

We consider the nonstandard inner product

(p, q)S =
∫ 1

−1
p(x)q(x)dµ(x) +

∫
supp(ν)

p′(x)q′(x)dν(x), (2)

where µ is a Gegenbauer or Jacobi measure and ν is a measure related to µ. We
also denote by (G(α)

n ) the sequence of monic Gegenbauer polynomials when dµ(x) =
(1−x2)α−

1
2dx and by (P (α,β)

n ) the sequence of monic Jacobi polynomials when dµ(x) =
(1− x)α(1 + x)βdx. In fact, we consider two cases:

• Gegenbauer–Sobolev inner product:

(p, q)S =
∫ 1

−1
p(x)q(x)(1− x2)α−

1
2dx+

∫
supp(ν)

p′(x)q′(x)dν(x), (3)

where

dν(x) =
(κ1 + κ2 + q κ1x

2)(1− x2)α+ 1
2

1 + qx2
dx+ κ2M

(q)

(
δ

(
−1√
−q

)
+ δ

(
1√
−q

))
,

with α > −1/2, q ≥ −1, κ1 ≥ 0, κ2 > 0, and

M (q)

{
= 0, if q ≥ 0,
≥ 0, if − 1 ≤ q < 0.

• Jacobi–Sobolev inner product:

(p, q)S =
∫ 1

−1
p(x)q(x)(1− x)α(1 + x)βdx+

∫ 1

−1
p′(x)q′(x)dν(x), (4)

where

dν(x) =
κ(κ1 + κ2)− κ1x

κ− x
(1− x)α+1(1 + x)β+1dx+ κ2κ3δ(κ) ,

with |κ| ≥ 1, κ2 ≥ 0, κ3 ≥ 0 and κ1 ≥ −
|κ|

1 + |κ|
κ2.

We can observe that in both inner products the measure ν is a rational modification
of the type of measure µ with the addition of one or two mass points outside the support
of µ.

We know (see [5]) the Mehler–Heine formulas for Gegenbauer and Jacobi orthogonal
polynomials. We write them in the following Theorem.

Theorem 1 ([5]) Let (G(α)
n ) and (P (α,β)

n ) be the sequences of monic Gegenbauer and
Jacobi orthogonal polynomials, respectively. Then,

lim
n→∞

2nG(α)
n (cos(x/n))

nα
=
√
π(2x)

1
2
−αJα− 1

2
(x), (5)

lim
n→∞

2nP (α,β)
n (cos(x/n))

nα+ 1
2

= 2−β
√
πx−αJα(x), (6)
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where Jα is the Bessel function of the first kind. Both limits hold uniformly on compact
subsets of C.

From the above theorem and using Hurwitz’s Theorem in a straightforward way
we obtain the asymptotic behaviour of the zeros of the corresponding orthogonal poly-
nomials.

Let m be the number of positive zeros of Gegenbauer or Jacobi polynomials. We
denote by x

(α)
n,i and x

(α,β)
n,i the positive zeros of Gegenbauer and Jacobi polynomials,

respectively, ordered as
x(α)
n,m < x

(α)
n,m−1 < . . . < x

(α)
n,1,

x(α,β)
n,m < x

(α,β)
n,m−1 < . . . < x

(α,β)
n,1 .

We also denote by 0 < j
(α)
1 < j

(α)
2 < · · · < j

(α)
m the first m positive zeros of the Bessel

function of the first kind Jα.

Corollary 1 We have

lim
n→∞

n arccos(x(α)
n,i ) = j

(α− 1
2
)

i ,

lim
n→∞

n arccos(x(α,β)
n,i ) = j

(α)
i .

From now on, we will denote by (SGn ) and (SJn ) the sequence of orthogonal poly-
nomials with respect to the Sobolev inner products (3) and (4), respectively. For the
Gegenbauer–Sobolev case we consider the t zeros sGn,i of SGn inside (0, 1) ordered as
sGn,t < sGn,t−1 < · · · < sGn,2 < sGn,1. In the same way, for the Jacobi–Sobolev case we con-
sider the r zeros sJn,i of SJn inside (−1, 1) ordered as sJn,r < sJn,r−1 < · · · < sJn,2 < sJn,1.

More details about the zeros of these families of Sobolev orthogonal polynomials
can be found in [3], [1], and the references therein.

Finally, notice that both Gegenbauer and Gegenbauer–Sobolev orthogonal polyno-
mials are symmetric, that is, G(α)

n (−x) = (1−)nG(α)
n (x) and SGn (−x) = (−1)nSGn (x).

3 Mehler–Heine type formulas

In [1] and [3] we have found the following Mehler–Heine type formulas for the Sobolev
polynomials considered here.

Theorem 2 a) We have for α > −1/2,

lim
n→∞

2nSGn (cos(x/n))
nα

=
1 + 4b(q)

1 + 4a(q,κ1,κ2)

√
π(2x)

1
2
−αJα− 1

2
(x), (7)

where

b(q) =


1
4

Ψ(q), if q ≥ −1 and M (q) = 0,
1

4Ψ(q)
, if − 1 ≤ q < 0 and M (q) > 0,
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and
a(q,κ1,κ2) =

1
4

Ψ
(

q κ1

κ1 + κ2

)
,

where Ψ is a real function defined by Ψ(x) = x/(1 +
√

1 + x)2, for x ≥ −1. For
x > −1, |Ψ(x)| < 1.

b) We have for α, β > −1 and κ1 ≥ 0,

lim
n→∞

2nSJn (cos(x/n))

nα+ 1
2

=
1 + 2b(κ)
1 + 2a(κ̃)

√
π

2β
x−αJα(x), (8)

where

b(κ) =


− ϕ(κ)

2
, if κ3 > 0,

− 1
2ϕ(κ)

, if κ3 = 0,

κ̃ :=


κ(κ1 + κ2)

κ1
, if κ1 > 0,

+∞, if κ1 = 0, κ ≥ 1,
−∞, if κ1 = 0, κ ≤ −1,

and
a(κ̃) = − 1

2ϕ(κ̃)
,

being ϕ the complex function

ϕ(z) = z +
√
z2 − 1, for z ∈ C \ [−1, 1],

with
√
z2 − 1 > 0 when z > 1, and ϕ(+∞) = +∞.

Both limits hold uniformly on compact subsets of the complex plane.

The proofs of these results can be found in [1] and [3]. Here, we only pay attention
to the interpretation of these results. We summarize our conclusions in the following
items:

• Except for a constant in each case, formulas (7) and (8) are equal to (5) and

(6), respectively. These constants are
1 + 4b(q)

1 + 4a(q,κ1,κ2)
in the Gegenbauer case and

1 + 2b(κ)
1 + 2a(κ̃)

in the Jacobi case. If these constants are nonzero, we can say that this

type of asymptotic behaviour for the standard and nonstandard polynomials is
the same. But, what happens if the constants are zero? In this case the previous
theorem does not provide any asymptotic information since the value of the limits
in (7) and (8) is 0. It very easy to deduce that this situation occurs when

(a) b(q) = −1/4, in the Gegenbauer case. That implies that q = −1.
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(b) b(κ) = −1/2, in the Jacobi case. That implies that κ = 1.

Thus, for q = −1 and κ = 1, and taking into account the restrictions on the
parameters described in Section 2, the corresponding measures ν in the Sobolev
inner products are:

(a) Gegenbauer case.

dν(x) = (κ1 + κ2 − κ1x
2)(1− x2)α−

1
2dx+ κ2M

(−1) (δ (−1) + δ (1)) .

(b) Jacobi case.

dν(x) = (κ1 + κ2 − κ1x)(1− x)α(1 + x)β+1dx+ κ2κ3δ(1) .

Thus, additional efforts should be made to obtain the asymptotic behaviour of
the Sobolev orthogonal polynomials in these special cases. Notice that they occur
when we put the mass (masses in the Gengebauer case) at the point 1 (at the
points -1 and 1 in the Gengebauer case), i.e., the mass or masses are located in
the extremes of the support of the classical measure.

• The techniques used to prove this theorem are analytic. They need previous
results obtained in other papers (see the references in [1] and [3]) and addition-
ally we obtain other Mehler–Heine type formulas for other standard polynomials
related to Gegenbauer or Jacobi polynomials.

3.1 Mehler–Heine type formulas for the special cases

The tools used to obtain the asymptotic results for the special cases mentioned above
are more difficult technically than in the general case. The details can be found in [1]
and [3].

Theorem 3 Let us define gα(x) := (2x)−αJα(x) .

a) Then, for q = −1 and α > 1/2, it holds

lim
n→∞

2nSGn (cos(x/n))
nα−1

=

 −
√
π

1+4a(−1,κ1,κ2)

(
(2x)2gα+ 1

2
(x) + 4gα− 1

2
(x)
)
, M (−1) > 0,

√
π

1+4a(−1,κ1,κ2) gα− 3
2
(x), M (−1) = 0.

b) For α > 0, β > −1 and κ1 ≥ 0, it holds

lim
n→∞

2nSJn (cos(x/n))

nα−
1
2

=

{
− 1

1+2a(κ̃)

√
π

2β−α−1

(
x2gα+1(x) + gα(x)

)
, κ3 > 0,

1
1+2a(κ̃)

√
π

2β−α+1 gα−1(x), κ3 = 0.

Both limits hold uniformly on compact subsets of the complex plane. All the constants
are given in Theorem 2.
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Therefore, the presence of the masses in these special cases changes the Mehler–
Heine type formulas for the Sobolev polynomials in an essential way. We can observe
that this does not occur in the general case when q 6= −1 or κ 6= 1. Some natural
questions arise: Why does it occur?. In the Jacobi case, why are there not any essential
changes in the Mehler–Heine type formula when κ = −1? We leave these questions for
the reader to think about them. In our opinion, the answers for these questions are
nice. Thus, these cases and their consequences about the zeros are more interesting.
Moreover, in the process to obtain Theorem 3 we also get Mehler–Heine type formulas
for some cases of so–called Krall type polynomials.

4 Zeros

Mehler–Heine type formulas in the previous Section have immediate consequences on
the asymptotic behaviour of the zeros. We only use Hurwitz’s Theorem.

In [4] some results for the zeros of Gegenbauer–Sobolev polynomials, SGn , have been
obtained under the assumptions

α ≥ 0, κ2 ≥
(

2α+ 3
2α+ 2

+ 2(1 + q)
)
κ1 > 0. (9)

When −1 ≤ q < 0, SGn has n distinct real zeros and at least n− 2 of them lie inside the
interval (−1, 1). If q > 0, all the 2m+ 1 zeros of SG2m+1 are real, simple and within the
interval (−1, 1), and SG2m has at least 2m− 2 distinct real zeros in (−1, 1).

For the Jacobi case, in [2] the authors have proved that under the conditions

κ2 ≥ 2κ1 ≥ 0, κ3 ≥ 0, α+ β > 2 and
{
α ≤ β, if κ ≤ −1,
α ≥ β, if κ ≥ 1,

(10)

the polynomial SJn has n distinct real zeros and at least n− 1 of them lie inside (−1, 1)
With this information and using Theorem 2 we can deduce that in the general case

(i.e, q 6= −1 in the Gegenbauer case and κ 6= 1 in the Jacobi case) the asymptotic
behaviour of zeros of the Gegenbauer–Sobolev and Jacobi–Sobolev orthogonal poly-
nomials is the same as the one for Gegenbauer and Jacobi orthogonal polynomials,
respectively (see Corollary 1 in [3] and Corollary 4.1 in [1]).

As we have commented, this situation changes for the special cases considered in
Theorem 3. We show the results obtained in [1] and [3] about the asymptotic behaviour
of the zeros in the following result.

Corollary 2 a) Let α > 1/2 and q = −1 and let κ1 and κ2 which satisfy the
restrictions given in (9). We denote by

t =
{

[n/2]− 1, if SGn has 2 zeros outside (-1,1),
[n/2] , otherwise.

If M (−1) > 0, then

lim
n→∞

n arccos(sGn,i) = h
(α)
i , i = 1, 2, . . . , t,
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where 0 < h
(α)
1 < h

(α)
2 < · · · < h

(α)
t denote the first t positive real zeros of the

function

h(α)(x) = −
√
π

1 + 4a(−1,κ1,κ2)

(
(2x)2gα+ 1

2
(x) + 4gα− 1

2
(x)
)
.

If M (−1) = 0, then

lim
n→∞

n arccos(sGn,i) = j
(α− 3

2
)

i , i = 1, 2, . . . , t.

b) Let κ = 1 be and we assume (10). If κ3 > 0 then,

lim
n→∞

n arccos(sJn,i) = ĥ
(α)
i , i = 1, 2, . . . , r,

where 0 < ĥ
(α)
1 < ĥ

(α)
2 < · · · < ĥ

(α)
r denote the first r positive zeros of the function

ĥ(α) = − 1
1 + 2a(κ̃)

√
π

2β−α−1

(
x2gα+1(x) + gα(x)

)
.

If κ3 = 0 then,

lim
n→∞

n arccos(sJn,i) = j
(α−1)
i , i = 1, 2, . . . , r.

5 Numerical experiments

We illustrate some results about the asymptotic behaviour of the zeros of the Sobolev
orthogonal polynomials throughout numerical examples. In fact, we only provide the
numerical experiments for the special cases (i.e, q = −1 in the Gegenbauer case and
κ = 1 in the Jacobi case) which are the most interesting ones because the asymptotic
behaviour of the zeros is different from the one for the classical polynomials considered
here.

Table 1: n arccos(sGn,i), for i = 1, 2, 3, α = 2, q = −1, M (−1) = 2, κ1 = 5, κ2 = 10. h(α)
i

are the positive real zeros of the function h(α)(x) defined in Corollary 2.

n arccos(sGn,i) i = 1 i = 2 i = 3
n = 25 5.301243629 8.637758826 11.818000401
n = 50 5.370276013 8.755170554 11.986782042
n = 125 5.415977473 8.830425757 12.091104881
n = 200 5.427998421 8.850069288 12.118073521
h

(α)
i 5.448613315 8.883697867 12.164144564
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Table 2: n arccos(sGn,i), for i = 1, 2, 3, α = 4, q = −1, M (−1) = 0, κ1 = 6, κ2 = 10.

n arccos(sGn,i) i = 1 i = 2 i = 3
n = 25 5.276145490 8.305156684 11.223253003
n = 50 5.484008796 8.652527556 11.720687343
n = 125 5.643506553 8.905646547 12.066229304
n = 200 5.687215106 8.974677590 12.159867298
j
(α−3/2)
i 5.763459197 9.095011331 12.322940970

Table 3: n arccos(sJn,i), for i = 1, 2, 3, α = 2, β = 5, κ1 = 2, κ2 = 4, κ3 = 3, κ = 1. ĥ(α)
i

are the positive real zeros of the function ĥ(α)(x) defined in Corollary 2.

n arccos(sJn,i) i = 1 i = 2 i = 3
n = 25 5.410734932 8.489113162 11.417201399
n = 50 5.727335091 8.985463646 12.085719646
n = 125 5.941783580 9.321642061 12.537979871
n = 200 5.998754710 9.410975350 12.658127778
ĥi(α) 6.096997096 9.565066652 12.865374333
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Abstract

By applying the Banach contraction principle to the product quasi-metric of
two complexity spaces we show the existence and uniqueness of solution for the
recurrence equations associated to certain algorithms with two recurrence proce-
dures.

Key words: The Banach contraction principle, fixed point, complexity space,
quasi-metric space, recurrence, improver.
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1 Introduction and preliminaries

Schellekens introduced in [8] the complexity (quasi-metric) space to construct a suitable
mathematical model for the complexity analysis of algorithms. In fact, he proved in
Section 6 of [8] the existence and uniqueness of solution for the recurrence equations
associated to Divide and Conquer algorithms by applying a quasi-metric version of the
Banach fixed point theorem to the complexity space. Recently it was shown in [4]
and [7] that Schellekens’ technique can be systematized to deduce the existence and
uniqueness of solution for the recurrence equations associated to Probabilistic Divide
and Conquer algorithms, and for the recurrence inequations associated to ExpoDC
algorithms, respectively (see [3] and [2, Section 7.7] for a study of such algorithms).

Here we show that such a technique also allow us to prove the existence and unique-
ness of solution for the pair of recurrence equations associated to a class of algorithms
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with two recurrence procedures, as considered by Atkinson in [1]. With the help of the
notion of an improver (see Definition 1 in Section 2) we also deduce the well-known
fact that if (f0, g0) denotes the solution of such recurrences, then f0(n) ∈ O(e2n) and
g0(n) ∈ O(e2n). In order to prove these results, with our approach, we will need to
apply the Banach fixed point theorem to the “product complexity space” instead to
the original one.

In the rest of this section we recall some pertinent concepts and previous results.

The letters N and ω will denote the set of positive integer numbers and the set of
nonnegative integer numbers, respectively. The supremum of two real numbers x and
y will be denoted by x ∨ y.

By a quasi-metric on a set X we mean a function d : X ×X → [0,∞) such that for
all x, y, z ∈ X : (i) x = y ⇔ d(x, y) = d(y, x) = 0, and (ii) d(x, z) ≤ d(x, y) + d(y, z).

A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric
on X.

Each quasi-metric d on X induces a T0 topology τd on X which has as a base the
family of open balls {Bd(x, r) : x ∈ X, ε > 0}, where Bd(x, ε) = {y ∈ X : d(x, y) < ε}
for all x ∈ X and ε > 0.

Given a quasi-metric d on X, then the function d−1 defined by d−1(x, y) = d(y, x),
is also a quasi-metric on X, called the conjugate of d, and the function ds defined by
ds(x, y) = d(x, y) ∨ d−1(x, y) is a metric on X.

A quasi-metric space (X, d) is said to be bicomplete if (X, ds) is a complete metric
space.

By a contraction map on a quasi-metric space (X, d) we mean a self-map f of X
such that d(fx , fy) ≤ kd(x , y) for all x, y ∈ X, where k is a constant with 0 < k < 1.
The number k is called a contraction constant for f.

It is clear that if f is a contraction map on a quasi-metric space (X, d) with contrac-
tion constant k, then f is a contraction map on the metric space (X, ds) with contraction
constant k.

Therefore, the classical Banach contraction principle can be generalized to the
quasi-metric setting as follows (see for instance [5, Lemma 2.4])

Theorem 1. Let f be a contraction map on a bicomplete quasi-metric space (X,d).
Then, for each x ∈ X, the sequence of iterations (fnx)n∈ω is convergent in (X, ds) to
a point x0 ∈ X which is the unique fixed point of f.

Let us recall that the product quasi-metric space of two quasi-metric spaces (X, d)
and (Y, e) is the quasi-metric space (X × Y, d × e), where d × e is defined by

(d × e)((x1, y1), (x2, y2)) = d(x1, x2) ∨ e(y1, y2),

for all (x1, y1), (x2, y2) ∈ X × Y.

In this case, d × e is called the product (or box) quasi-metric of d and e.
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The so-called complexity space ([8]) is the quasi-metric space (C, dC), where

C =

{

f : ω → (0,∞] :
∞∑

n=0

2−n 1

f(n)
< ∞

}

,

and dC is the quasi-metric on C given by

dC(f, g) =

∞∑

n=0

2−n

(

(
1

f(n)
−

1

g(n)
) ∨ 0

)

for all f, g ∈ C. (We adopt the convention that 1/∞ = 0.)

The elements of C are called complexity functions.

The following useful result is a consequence of [6, Theorem 1, and Remark on p.
317 ].

Theorem 2. The complexity space (C, dC) is bicomplete.

2 The results

Following Atkinson [1, p. 16-17], consider the two recursive procedure algorithm de-
fined, for two procedures P and Q, and n ∈ ω, by:

function P(n)

if n > 0 then Q(n-1); C; P(n-1); C; Q(n-1)

function Q(n)

if n > 0 then P(n-1); C; Q(n-1); C; P(n-1); C; Q(n-1)

where C denotes any statements taking time independent of n.

Then, the execution times S(n) and T (n) of P (n) and Q(n), satisfy, at least ap-
proximately, the recurrences

S(n) = S(n − 1) + 2T (n − 1) + K1,

and

T (n) = 2S(n − 1) + 2T (n − 1) + K2,

for n ∈ N, and with K1,K2, nonnegative constants. (We assume that S(0) > 0 and
T (0) > 0).

The following extension to our context of Definition 6.2 of [8] will be need.

Definition 1. A functional Φ from (C × C, dC × dC) into itself is an improver with
respect to an element (f, g) ∈ C × C if for each n ∈ ω, Φn+1(f, g) ≤ Φn(f, g).
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Note that if Φ is monotone increasing (i.e., Φ(f1, g1) ≤ Φ(f2, g2) whenever f1 ≤ f2

and g1 ≤ g2), to show that Φ is an improver with respect to (f, g) it suffices to verify
that Φ(f, g) ≤ (f, g).

Intuitively (compare, for instance, [4, p. 348]), an improver is a functional that
corresponds to a transformation on algorithms and satisfies the following condition:
the iterative applications of the transformation to a given algorithm yield an improved
algorithm at each step of the iteration.

In Theorem 3 below (whose proof will be presented in a full version of this paper)
we construct a monotone increasing functional Φ, associated with the two recurrences
equations T and S given above, which is a contraction on (C × C, dC × dC). Then, its
unique fixed point (f0, g0) will be the solution of the recurrence equations. We can also
deduce, with the help of Theorem 1, that f0(n) ∈ O(e2n) and g0(n) ∈ O(e2n).

(As usual, for g : ω → [0,∞), we write f(n) ∈ O(g(n)) if f : ω → [0,∞) and there
exist n0 ∈ ω and c > 0 with f(n) ≤ cg(n) for all n ≥ n0.)

Theorem 3. Let Φ be the functional on C × C defined by

Φ(f, g)(0) = (S(0), T (0)),

and

Φ(f, g)(n) = (f(n − 1) + 2g(n − 1) + K1, 2f(n − 1) + 2g(n − 1) + K2) ,

for n ∈ N and f, g ∈ C. Then:

(1) Φ is a monotone increasing contraction on (C × C, dC × dC) with contraction
constant 3/4.

(2) Φ has a unique fixed point (f0, g0).

(3) f0(n) ∈ O(e2n) and g0(n) ∈ O(e2n).
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Abstract

We show an algorithmic method to compute the set of all abelian subalgebras
and ideals of any finite-dimensional Lie algebra, starting from the nonzero brackets
in its law. To implement this algorithm we use the symbolic computation package
MAPLE. It is also shown a brief computational study considering both the com-
puting time and the memory used in the two main routines of the implementation.

Key words: Abelian Lie Subalgebra, Abelian Ideal, α invariant, β invariant,
algorithm.
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1 Introduction

Nowadays, there exists a very extensive research on Lie Theory. However, some aspects
of Lie algebras remain unknown. In fact, the classification of solvable Lie algebras is
still an open problem, although the classification of other types of Lie algebras (like
semi-simple and simple ones) was already obtained in 1890. In order to solve these and
other problems, the need of studying other properties of Lie algebras arises. In this
way, considering abelian Lie subalgebras of a finite-dimensional Lie algebra constitutes
the main goal of this paper.

Indeed, the topic dealt in this paper is the maximal dimension of the abelian
subalgebras in a given finite-dimensional Lie algebra g. Although this concept has
been studied in previous papers, most of them (for example [15]) consider abelian
ideals instead of abelian subalgebras, which implies that more restrictive hypotheses
are needed. However, we do not assume such restrictions, but our work considers all
the subalgebras contained in the given Lie algebra g.
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Let g be a finite-dimensional Lie algebra. We denote by α(g) the maximal dimen-
sion of an abelian subalgebra of g, and by β(g) the maximal dimension of an abelian
ideal of g. Note that these concepts are proved to be invariant and they are important
for many subjects. First of all, they are useful in the study of Lie algebra contractions
and degenerations. There exists a large literature, in particular for low-dimensional Lie
algebras, see [3, 8, 10] and the references given therein, for example.

Secondly, there are several results concerning the question of how big or small this
maximal dimension can be, compared with the dimension of the Lie algebra. Some of
them show that a Lie algebra of large dimension contains abelian subalgebras of large
dimension. For example, the dimension of a nilpotent Lie algebra g satisfying α(g) = `

is bounded by dim(g) ≤ `(`+1)
2 , see [9, 11]. Another sets that if g is a complex solvable

Lie algebra with α(g) = `, then we have dim(g) ≤ `(`+3)
2 , see [7]. To prove these bounds

several conditions are also fixed for the value of β invariant.
For a semisimple Lie algebra s, the invariant α(s) has been completely determined

by Malcev [6]. Since there are no abelian ideals in a simple Lie algebra s, we have
β(s) = 0. Very recently the study of abelian ideals in a Borel subalgebra b of a simple
complex Lie algebra s has drawn considerable attention. We have indeed α(s) = β(b),
and this number can be computed purely in terms of certain root system invariants,
as can be seen in [13]. Let us note that the α invariant can be usefully applied, for
example, to characterize Lie algebras in several senses. So Tenorio [14] gave some
criteria about properties of Lie algebras starting from this notion. Moreover, this
topic has already been studied by different authors, being classical and fundamental
the following references: Krawtchouk [4]; Laffey [5], which computed the α invariant
of the algebra of n × n matrices over any field; or Suprunenko and Tyshkevich [12],
which dealt with the problem of determining abelian subalgebras of maximal dimension
of nilpotent type. However, in some cases like in [15] abelian ideals were considered
instead of abelian subalgebras.

Previously, we have already studied abelian subalgebras by considering both points
of view: Theoretical and practical. Moreover, the α invariant was computed for two
different families of complex Lie algebras: gn, of n×n strictly upper-triangular matrices
(see [1]); and hn, of n× n upper-triangular matrices (see [2]). To do it, an algorithmic
procedure was introduced in [1]. Now, this paper is devoted to show an algorithmic
procedure which works for any arbitrary finite-dimensional complex Lie algebra. The
algorithm is given by indicating and commenting each of its steps. Besides, a compu-
tational study of its implementation with MAPLE is also shown.

2 Theoretical background

This section is devoted to recall some concepts and results on Lie algebras to be applied
later. For a general overview on such subjects, the interested reader can consult [16].
Let us note that, from here on, only finite-dimensional Lie algebras over the field F are
considered, where F can be R or C.

Given a finite-dimensional Lie algebra g, a vector subspace h of g is an abelian
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subalgebra if the following conditions hold [h, h] ⊆ h; and [u, v] = 0, ∀ u, v ∈ h.

Moreover, if the subalgebra h satisfies the condition [h, g] ⊆ h, then we say that h

is an ideal of g.
To compute the basis of an abelian subalgebra of maximal dimension of g, we

consider a basis Bd = {Xi}d
i=1 of g and another basis B = {vh}r

h=1 of an arbitrary
r-dimensional (abelian) subalgebra h (with r ≤ d). As each vector vh ∈ B is a linear
combination of the vectors in Bd, the vectors in B can be expressed as vh =

∑d
i=1 ah,iXi.

Hence, the basis B can be translated to a matrix in which the hth row records these
coordinates of vh with respect to the basis Bd




a1,1 a1,2 · · · a1,d

...
...

. . .
...

ar,1 ar,2 · · · ar,d


 . (1)

The rank of the matrix (1) is obviously equal to r and, hence, its echelon form is
the following by using elementary row and column transformations




b1,1 0 · · · 0 b1,r+1 · · · b1,d

0 b2,2 · · · 0 b2,r+1 · · · b2,d

...
...

. . .
...

...
. . .

...
0 0 · · · br,r br,r+1 · · · br,d


 . (2)

So, without loss of generality, we can assume that any given basis B of h can be
expressed by (2). Hence, each vector in B is a linear combination of two different types
of vectors Xi: The ones coming from the pivot positions and the remaining ones. The
first are called main vectors of B with respect to Bd, being called non-main vectors the
rest.

3 Algorithm computing abelian subalgebras

Let us consider a n-dimensional Lie algebra g with the basis Bn = {Z1, . . . , Zn}. If
n is lower, the abelian subalgebras and ideals of g can be easily computed because
the number of nonzero brackets with respect to Bn is quite greater in proportion with
the dimension of g. To solve this computational problem, we have implemented an
algorithmic method which computes a basis of each non-trivial abelian subalgebra of
g. In this algorithm, we will use the main and non-main vectors to express any given
basis of the subalgebra in order to determine the existence of nonzero brackets. The
vectors in this basis will be expressed as a linear combination of the vectors in Bn.

To implement the algorithm, we have used the symbolic computation package
MAPLE. We start loading the libraries linalg and ListTools to activate commands
like Flatten and others related to Linear Algebra, since Lie algebras are vector spaces
endowed with a second inner structure: The Lie bracket. Besides, the library combinat
has to be also loaded to apply commands related to Combinatorial Algebra.
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Now, we show the different steps which constitute the algorithm and its respective
implementation. The structure of the algorithm is based on two main routines calling
several other subroutines with different functions.

1. Implementing a subroutine which computes the Lie bracket between two arbitrary
basis vectors in Bn. This subroutine depends on the law of g.

2. Programming a subroutine to compute the bracket between two vectors expressed
as a linear combination of vectors from the basis Bn of g.

3. For each k-dimensional subalgebra h of g, computing the bracket between two
arbitrary vectors in the basis of h. Those vectors are linear combinations of a
main vector (with coefficient equal to 1) and the n − k non-main ones. These
expressions depend on the dimension of h.

4. Solving a system whose equations are obtained by imposing the abelian law to
the brackects computed in the previous step for the subalgebra h.

5. Programming a subroutine which determines the existence of abelian subalgebras
in a fixed dimension.

6. Computing α(g) by ruling out dimensions for abelian subalgebras.

7. Computing the basis of an abelian subalgebra of maximal dimension, that is, a
subalgebra with dimension α(g).

8. Computing the basis of an abelian subalgebra for a fixed set of non-main vectors
and some restrictions given by the previous subroutines.

9. Programming a subroutine which computes a list with all the abelian subalgebras
of g with certain dimension k.

10. Implementing the routine to compute a list with the basis of all the non-trivial
abelian subalgebras of g by using the previous subroutines.

11. Programming a subroutine which determines if there is an abelian ideal associated
with a given abelian subalgebra.

12. Computing β(g) from α(g) and the previous subroutine.

13. Implementing a subroutine which determines the set of abelian ideals of maximal
dimension, that is, abelian ideals with dimension β(g).

14. Programming the routine to compute a list with the basis of all the non-trivial
abelian ideals of g by using the previous subroutines.

The first subroutine, named law, receives two natural numbers as inputs. These
numbers represent the subindexes of two basis vectors in Bn. The subroutine returns
the result of the bracket between these two vectors. Besides, conditional sentences are
included to determine nonzero brackets (which are introduced in the subroutine) and
the skew-symmetry property.
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M. Ceballos, J. Núñez, A. F.Tenorio

> law:=proc(i,j)

> if i=j then return 0; fi; if i>j then return -law(j,i); fi;

> if (i,j)=... then return ...; fi;

> ....

> else return 0; fi; end proc;

The first two suspension points are associated with the computation of [Zi, Zj ]:
First, the value of the subindexes (i, j) and second, the result of [Zi, Zj ] with respect to
Bn. The third ellipsis denotes the rest of nonzero brackets. For each nonzero bracket,
a new sentence if has to be included in the cluster.

Then, we implement a subroutine, bracket, which computes the bracket between
two arbitrary vectors of g. These vectors are expressed as linear combination of the
vectors in Bn. Due to this fact, the subroutine law is called in the implementation.

> bracket:=proc(u,v,n)

> local exp; exp:=0; for i from 1 to n do for j from 1 to n do

> exp:=exp + coeff(u,Z[i])*coeff(v,Z[j])*law(i,j); od; od; return exp; end proc:

After introducing the law of g, we have to compute the brackets in an arbitrary
subalgebra h. To do it, we implement the subroutine eq, which requires four inputs:
The dimension n of g; the subindexes i and l, indicating the main vectors in the bracket
to be computed; and a list M with the subindexes of the non-main vectors in h. To do
it, three local variables eqt, L and P are defined. For computing the brackets between
the vectors in Bn, the subroutine eq calls the subroutine bracket, which is necessary
to obtain each bracket in the law of h. Whereas the variable eqt saves the expression of
the bracket belonging to the law of h, the list P takes the elements of M two by two and
finally, L is a list containing all the coefficients in the expression of eqt with respect
to Bn. Precisely, the list L is the first term of the output of the subroutine eq. The
second is a list with the subindexes i and l corresponding to L. Let us note that the
subindexes of the main vectors has to be saved together with the coefficients in order
to use them in a later subroutine.

Each vector in the subalgebra h can be expressed as a linear combination of one
main vector and the n− k non-main ones according to expression (2), where each row
represents the coefficients of one vector in the basis of h. Obviously, we can assume that
the coefficient of each main vector is equal to 1, because the row of (2) corresponding
to that main vector can be divided by its coefficient. To implement the subroutine eq,
the coefficients of the non-main vectors are denoted by a[i,k].

> eq:=proc(n,i,l,M::list)

> local eqt,L,P; L:=[]; if nops(M)=1 then P:=[[M[1],M[1]]] else P:=choose (M,2);

> end if; eqt:=law(i,l); for k from 1 to nops(M) do

> eqt:=eqt + a[l,M[k]]*law(i,M[k]) + a[i,M[k]]*law(M[k],l);

> end do; for j from 1 to nops(P) do eqt:=eqt+(a[i,P[j][1]]*a[l,P[j][2]]-

> a[i,P[j][2]]*a[l,P[j][1]])*bracket(P[j][1],P[j][2]); od; for m from 1 to n do

> L:=[op(L),coeff(eqt,Z[m])]; end do; return L,[i,l]; end proc;

Let us note that it is also possible to program the subroutine eq by using the
subroutine bracket. However, we will consider the previous implementation for the
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computational study due to the fact that if we consider an implementation of eq which
calls the subroutine bracket, both the computing time and the used memory will
increase.

> eq:=proc(n,i,l,M::list)

> local eqt,L,u,v; L:=[]; eqt:=0;u:=Z[i];v:=Z[l]; for k from 1 to nops(M) do

> u:=u+a[i,M[k]]*Z[M[k]]; v:=v+a[l,M[k]]*Z[M[k]]; od; eqt:=bracket(u,v,n);

> for m from 1 to n do L:=[op(L),coeff(eqt,Z[m])]; od; return L,[i,l]; end proc:

Next, we implement the subroutine sys, which receives two inputs: The dimension
n of g and a list M with the subindexes of the non-main vectors in the basis of h. This
subroutine solves the system of equations generated by the subroutine eq. Four local
variables L, P, R and S have been defined for its implementation: L is a list with the
subindexes of the main vectors; the list R contains the expressions computed by the
subroutine eq; P is defined as in the previous subroutine; and, finally, S is a set where
the equations of the system are saved

> sys:=proc(n,M::list)

> local L,P,R,S; L:=[]; R:=[]; S:={}; for x from 1 to n do

> if member(x,convert(M,set))=false then L:=[op(L),x]; fi; od;

> if nops(L)=1 then P:=[[L[1],L[1]]] else P:=choose (L,2); fi;

> for j from 1 to nops(P) do r[j]:=[eq(n,P[j][1],P[j][2],M)]; od;

> R:=[seq(r[i][1],i=1..nops(P))]; for y from 1 to nops(R) do

> for k from 1 to n do S:={op(S),R[y][k]=0}; od; od; return {solve(S)}; end proc;

The following subroutine, called absub, is implemented by introducing two natural
numbers n and k, namely: n is the dimension of g and k is less than n. This subroutine
determines the existence of abelian subalgebras with dimension k. Two local variables
are used by the subroutine: L and S. The first variable, L, is a list whose elements are
lists with the subindexes of the n−k non-main vectors. The variable S is a set with the
solutions given by the subroutine sys. In this way, absub returns a message indicating
the non-existence of k-dimensional abelian subalgebras or, if there exist k-dimensional
abelian subalgebras, returns the set S. Since the coefficient of each main vector is 1,
the system given by the subroutine sys has not solutions when S vanishes. When the
system has some solution, the family of computed vectors is linearly independent and
forms a basis of the subalgebra. Let us note that, if all the solutions in S contain some
complex coefficient, there are no real solutions for the system solved by sys and there
do not exist any abelian subalgebras of dimension k for the case F = R. For this field,
it would be necessary to include a conditional sentence for determining if such complex
coefficients appear.

> absub:=proc(n,k)

> local L,S; L:=choose(n,n-k); S:={ }; for i from 1 to nops(L) do

> if sys(n,L[i])={{}} then S:=S else for j from 1 to nops(sys(n,L[i])) do

> S:={op(S),{convert(L[i],set),sys(n,L[i])[j]}}; od; fi; od;

> if S={} then return "There is no abelian subalgebra"; fi;

> if S={{}} then return "There is no abelian subalgebra"

> else return S; fi; end proc;
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Next, we implement the subroutine alpha, which receives the dimension n of g as
its unique input and returns the α invariant of g. The subroutine starts studying if
α(g) = n by using the subroutine absub. Then, a loop is programmed to stop when
absub does not find abelian subalgebras.

> alpha:=proc(n)

> if type(absub(n,n-1),set)=true then return n-1; fi;

> for i from 2 to n-1 do if absub(n,i)="There is no abelian subalgebra"

> then return i-1; fi; od; end proc;

The following subroutine, named asmd, receives as input the dimension n of g

and returns the basis of an abelian subalgebra of maximal dimension. To do so, this
subroutine calls the subroutines alpha and absub.

> asmd:=proc(n)

> local u,L,R,S,B,k; k:=alpha(n);S:={};L:={}; u:=absub(n,k);

> if k=1 then return {seq({Z[i]},i=1..n)}; fi;

> if type(u[1][1],set(integer))=true then R:=u[1][1]; S:=u[1][2] else

> R:=u[1][2]; S:=u[1][1]; fi; for x from 1 to n do

> if member(x,R)=false then L:={op(L),x}; fi; od; for i from 1 to nops(L) do

> b[i]:=Z[L[i]]; od; for i from 1 to nops(L) do

> for j from 1 to nops(R) do b[i]:=b[i]+a[L[i],R[j]]*Z[R[j]]; od; od;

> B:={seq(b[i],i=1..nops(L))}; return eval(B,S); end proc:

Now, we implement the subroutine basabsub, which receives three inputs: the
dimension n of g and two sets, S and T, with the subindexes of the non-main vectors in
the basis of h. We will use this subroutine with the solution given by sys. Four local
variables R, B, M and N have been defined for its implementation. First, a conditional
sentence if, for the sets M and N, is introduced in the cluster to find out wether S or T
is the set of non-main vectors. This is due to the fact that MAPLE sometimes returns
the solutions in different order. R is a set with the subindexes of the main vectors and,
in the set B, we compute the basis for the abelian subalgebra. In this way, B is the
output of this subroutine.

> basabsub:=proc(n,S::set,T::set)

> local R,B,M,N; R:={};B:={}; if type(S,set(integer))=true then

> M:=S; N:=T else M:=T; N:=S; end if;

> for x from 1 to n do if member(x,M)=false then R:={op(R),x};

> fi; od; for i from 1 to nops(R) do b[i]:=Z[R[i]]; od; for i from 1 to nops(R) do

> for j from 1 to nops(M) do b[i]:=b[i] + a[R[i],M[j]]*Z[M[j]];

> od; od; B:={seq(b[i],i=1..nops(R))}; return eval(B,N); end proc:

The following subroutine, named listabsub, requires two inputs: The dimension
n of g and a natural number k, less than n and which corresponds with the dimension
of the abelian subalgebra. To implement it, two local variables S and L are considered.
This subroutine calls the subroutine basabsub for computing the basis for each k-
dimensional abelian subalgebra. Whereas this value is saved in the local variable S, L
is a set with the basis of each abelian subalgebra of g with dimension k. Precisely, the
list L is the output of the subroutine listabsub.
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> listabsub:=proc(n,k)

> local S,L; S:=absub(n,k);L:={}; if k=1 then return {seq({Z[i]},i=1..n)}; fi;

> if S="There is no abelian subalgebra" then return {}; fi; for i from 1 to nops(S) do

> L:={op(L),basabsub(n,S[i][1],S[i][2])}; od; return L; end proc:

Let us note that it is also possible to give an equivalent implementation for the
subroutine asmd by using the subroutine listabsub:

> asmd:=proc(n)

> local k; k:=alpha(n); return listabsub(n,k); end proc:

Now, we implement the routine allabsub, which receives the dimension n of g as
its unique input. The routine allabsub returns a set with the basis of all the abelian
subalgebras of g with dimension less than or equal to α(g). In this way, the routine
starts computing α(g) and then, the output is defined by using the previous subroutine
listabsub.

> allabsub:=proc(n)

> local B,k; k:=alpha(n);B:={}; for i from 1 to k-1 do B:={op(B),listabsub(n,i)};

> od; return B; end proc:

Next, we explain the subroutine abideal, which requires two inputs: A set, S, with
the basis of an abelian subalgebra and the dimension n of g. The subroutine is devoted
to determine the existence of an abelian ideal from the basis of an abelian subalgebra,
S, obtained with the subroutine listabsub for a fixed dimension. To do so, we impose
that S has to be the basis of an abelian ideal. Then, we solve the system: if there is no
solution, the output of this subroutine is the message “There is no abelian ideal” and
if there is a solution, it returns the basis of an abelian ideal.

> abideal:=proc(S,n)

> local w, R, L, Q, M; w:=0; R:=[]; L:=[]; Q:={}; M:={}; N:={};

> for i from 1 to nops(S) do w:=w + a[i]*S[i]; od; for i from 1 to nops(S) do

> for j from 1 to n do if linbracket(S[i],Z[j],n)<>0 then

> L:=[op(L),linbracket(Z[j],S[i],n)]; else L:=L; fi; od; od;

> for i from 1 to nops(L) do r[i]:=0; for j from 1 to nops(S) do

> r[i]:=r[i]+b[i,j]*S[j]; od; od; R:=[seq(r[i],i=1..nops(L))];

> M:={seq(L[k]-R[k], k=1..nops(L))}; for i from 1 to nops(M) do

> Q:={op(Q),seq(coeff(M[i],Z[j])=0,j=1..n)}; od; if {solve(Q)}={} then return

>"There is no abelian ideal" else return eval(S,solve(Q)); fi; end proc:

The subroutine beta receives the dimension n of g as its unique input and returns
the β invariant of g. Let us note that this value can be zero (semisimple Lie algebras).
The subroutine starts computing the value of α. Then, a loop is programmed by using
the previous subroutine and listabsub

> beta:=proc(n) local r; r:=alpha(n); for k from 0 to r-1 do

> for i from 1 to nops(listabsub(n,r-k)) do

> if abideal(listabsub(n,r-k)[i],n)<>"There is no abelian ideal"

> then return r-k; fi; od; od; return 0; end proc:
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Next, in this subroutine, named aimd, we compute the basis of an abelian ideal
of maximal dimension; that is, an abelian ideal with dimension β(g). To do so, the
routine aimd calls the subroutines beta, listabsub and abideal. First, we compute
the set of all abelian subalgebras of dimension β(g) and then we apply the subroutine
abideal to obtain abelian ideals.

> aimd:=proc(n)

> local k,S,T; k:=beta(n);S:=listabsub(n,k);T:={};

> for i from 1 to nops(S) do T:={op(T),abideal(S[i],n)}; od; return T; end proc:

The routine allabideal receives the dimension n of g as its unique input. This
routine returns a set with the basis of all the abelian ideals of g with dimension less
than or equal to β(g). The output of this routine is defined by using the subroutines
listabsub and abideal.

> allabideal:=proc(n)

> local B, k; k:=beta(n); B:={};

> if k=0 then return {}; else for i from 1 to k do

> for j from 1 to nops(listabsub(n,i)) do

> if abideal(listabsub(n,i)[j],n)<>"There is no abelian ideal" then

> B:={op(B),abideal(listabsub(n,i)[j],n)};

> end if; end do; end do; end if; return B; end proc:

Now, we show an example with a 4-dimensional Lie algebra with brackets [Z1, Z2] =
Z3, [Z1, Z3] = Z4.

> alpha(4);

3

> listabsub(4,3);

{{Z[1], Z[2], Z[3]}}

> allabsub(4);

{{{Z[2], Z[3], Z[4]}}, {{Z[1]}, {Z[2]}, {Z[3]}, {Z[4]}},

{{Z[4], Z[1]+a[1, 2]Z[2]+a[1, 3]Z[3]}, {Z[4], Z[2]+a[2,1]Z[1]+a[2, 3]Z[3]},

{Z[4], Z[3]+a[3, 1]Z[1]+a[3, 2]Z[2]}, {Z[2]+a[2, 3]Z[3], Z[4]+a[4, 3]Z[3]},

{Z[2]+a[2, 4]Z[4], Z[3]+a[3, 4]Z[4]}, {Z[3]+a[3, 2]Z[2], Z[4]+a[4, 2]Z[2]}}}

> beta(4);

3

> allabideal(4);

{{Z[4]}, {Z[3], Z[4]}, {Z[2], Z[3], Z[4]}}

4 Statistical and computational data

In this section, we show a computational study of the previous algorithm, which has
been implemented with MAPLE 12, in an Intel Core 2 Duo T 5600 with a 1.83 GHz
processor and 2.00 GB of RAM. Table 2 shows some computational data about both
the computing time and the memory used to return the output of allabsub according
to the value of the dimension n of the algebra.
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This computational study was done considering a particular family of Lie algebras:
The Lie algebras sn generated by {e1, e2, . . . , en} with the following nonzero brackets:

[ei, en] = ei, for i < n.

This family has been chosen because they constitute a special subclass of non-nilpotent
solvable Lie algebras, which allow us to check empirically the computational data given
for both the computing time and the used memory.

In Table 1, the set of all non-trivial abelian subalgebras has been computed for
the algebras in this family up to dimension n = 13 inclusive. Starting from n = 8,
the computing time is about three times greater when the dimension n is increased in
one unit.

Table 1: Computing time and used memory for allabsub.

Input Computing time Used memory

n = 2 0 s 0 MB

n = 3 0 s 0 MB

n = 4 0.11 s 3.13 MB

n = 5 0.15 s 5.06 MB

n = 6 0.43 s 5.38 MB

n = 7 1.05 s 5.56 MB

n = 8 2.67 s 6.06 MB

n = 9 6.98 s 7.06 MB

n = 10 20.27 s 8.25 MB

n = 11 61.17 s 11.50 MB

n = 12 187.89 s 13.87 MB

n = 13 804.73 s 51.93 MB

Table 2: Computing time and used memory for allabideal.

Input Computing time Used memory

n = 2 0 s 0 MB

n = 3 0.08 s 3.31 MB

n = 4 0.50 s 5.75 MB

n = 5 1.98 s 5.88 MB

n = 6 8.03 s 6.50 MB

n = 7 35.97 s 6.94 MB

n = 8 169.54 s 7.56 MB

n = 9 779.37 s 8.19 MB

n = 10 4118.78 s 9.31 MB

In Table 2, the set of all non-trivial abelian ideals has been computed for the same
family of Lie algebras up to dimension n = 10 inclusive.

Next we show brief statistics about the relation between the computing time and the
memory used by the implementation of the main routines allabsub and allabideal
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for the Lie algebras sn. In each case, the figure on the left corresponds to the routine
allabsub and the other to the routine allabideal.

Figure 1 shows the behavior of the computing time (C.T.) for both routines ac-
cording to the dimension n of sn and Figure 2 shows the behavior of the used memory
(U.M.) for both routines according to the dimension n of sn.

We can observe that the computing time increases more quickly than the used
memory in both cases. Besides, whereas the increase of the computing time corresponds
to a positive exponential model, the used memory does not follows such a model.

We have also studied the quotients between used memory and computing time. The
resulting data can be observed in the frequency diagram shown in Figure 3. In this
case, the behavior can be also considered exponential, although this time is negative.

Figure 1: Graphs for the C.T. with respect to dimension.

Figure 2: Graphs for the U.M. with respect to dimension.

Figure 3: Graphs for the quotients U.M./C.T. with respect to dimension.
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Abstract

In this work, we deal with an optimal shape design approach for a problem
modelling a process of welding. Our interest is the numerical approximation of the
solution of this optimal shape design problem. We consider a discretization of this
problem based on linear finite elements. We present a numerical study of genetic
algorithms proposed to solve this problem. Then we give some numerical results
to demonstrate the accuracy and efficiency of the proposed method.

Key words: Welding problem, Inverse problem, Shape Optimization, Non coer-
cive opertor, Finite element, Bézier curves, Genetic algorithms.

1 Introduction

The Welding remains one of the most common joining processes in manufacturing.
The Joining of two workpieces occurs as a result of solidification of the metal molten
in the neighborhood of the contact area following application of a heat source, such
as a plasma arc, electric current, laser beam, liquid filler droplets, etc. . . . Thus, the
mechanical properties of the resulting joint, such as its strength, uniformity, resistance
to fatigue, etc. . . , are determined by the complex thermo-fluid phenomena occurring
in the weld pool. To solve this problem, many models are proposed in literature [1, 3].
We are interested by an approach which deals only with the solid part of the work-
piece. Particularly we focus to the numerical approximation of the shape optimization
formulation proposed to solve this problem with this approach in [2].
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Figure 1: 2-dimensional configuration of the welding process

2 State of the problem

We consider a problem of welding where the solid part of the body denoted by Ω, is
illustrated in Figure 1. This problem consist in finding (T,Γ) solution of:
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K
∂T

∂x
= ∇ · (λ∇T ) + f in Ω

λ
∂T

∂ν
= 0 on Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3

T = Td on Γ4

T = T0 on Γ0

T = Tf on Γ

(1)

where Γ is the free boundary, K is a constant dependent of the material characteristics
(density of the plate and heat capacity,. . . ), λ is the thermal conductivity and f,
a source term, is a given function. The quantities Td, T0 and Tf are given temperatures.
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3 Numerical approximation

We consider a discretization of this problem based on linear finite elements. We present
a numerical discussion of some new genetic algorithms developed to solve the obtained
discrete problem.

3.1 Numerical results

In practice the free boundary is parameterized by the Bézier curves. The corresponding
optimal shape discrete problem is solved by the genetic algorithms. The following
figures show that the cost decreases with respect to the number of iterations. The
obtained numerical results are found to confirm the actual effectiveness of the method
proposed.
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finis, volume 13 no 3-4, 2004.

[2] Chakib, A; Ellabib, A; Nachaoui, A; Nachaoui, M. A shape optimization formula-
tion of weld pool determination. Submitted.

[3] Feulvarch, E.; Boitout, F.; Bergheau, J. Simulation thermomécanique du soudage
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Abstract

The recent introduction by NVidia of Compute Unified Device Architecture
(CUDA) libraries for High Performance Computing on Graphic Processing Units
has started the trend of video cards for resolution of many computationally hard
problems in different areas like fluid dynamics, molecular dynamics, computer vi-
sion and astrophysics. In this paper we show how CUDA libraries and hardware
can be introduced in cryptography as a cryptoanalytic tool.We describe an im-
plementation of a parallelized Pollard’s rho attack on ECDLP, based upon recent
results about the optimization of Pollard’s rho method and enhanced by some
”ad-hoc” choices for CUDA.

Key words: Cryptanalysis, Elliptic curves, High Performce Computing.

1 Introduction

Cryptography is essentially aimed at protecting data from unauthorized access. This
is particularly important when data involve sensible informations and are transmitted
on insecure channels. Typical examples are business via internet and the payment
with a credit card. The data involved in such transactions are usually encrypted to
make it harder for an attacker to retrieve secret informations. In the past, the key for
encryption was the same for decryption raising a serious problem regarding key distri-
bution. In 1976 W.Diffie and M.Hellman[1] invented an agreement protocol that allows
two users to exchange a secret key over an insecure channel without any prior con-
tact. This event is commonly considered the birth of public-key cryptography. Then,
relying on some hard mathematical problem, many cryptosystems have been proposed.
However, since some attacks to such math problems succeded most of these cryptosys-
tems become insecure or simply impratical. Actually, three mathematical problems
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are still considered to be hard: the integer factorization problem (IFP), the discrete
logarithm problem in the multiplicative group of a finite field (DLP) and in the group
of points of an elliptic curve (ECDLP). There is no real proof that the aforementioned
problems are intractable. However, a lot of work has been done to try to solve them effi-
ciently (see [Odlyzko] for an overview). All these efforts amount to the development of
subexponential-time algorithms for IFP and DLP resolution (index-calculus methods),
but these methods are not applyable to ECDLP resolution. Elliptic curve cryptogra-
phy (ECC) became more and more attractive essentially for such a reason. Moreover,
parameters of the ECC are usually much smaller than parameters of cryptosystems
based on IFP and DLP. Consequently ECC has lower communication overhead.
In this paper we study how the Rho Pollard algorithm can be implemented on graph-
ics cards. Some experimental results by E.Teske[2][3] showed that the running time
of the Pollard’s algorithm tends to the expected value

√
πn/2 as the number of such

subsets increases. Mainly storage can be efficiently reduced to a negligible amount at
the cost of some extra computation. By using Floyd’s algorithm called ”tortoise and
hare”([4] exercises 6 and 7, page 7) it can be reduced to a constant. Van Oorschot
and Wiener[5] proposed to record only points satisfying a precise condition for a better
trade off between space and performances. Moreover, they showed that the algorithm
can be efficiently parallelized on an arbitrary number of processors. While each of them
generates a random walk from a different starting point, collision detection is completed
by another designated computer.
In [6] the authors show a first implementation of a CUDA based code in which a par-
allel algorithm is reported. In this work an optimized computational code is proposed
in order to avoid the so called ”divergent threads” as in the following. The paper is
organized as follows: in Section 2 we give preliminary notion on elluptic curves; then
Section 3 reports mainly argumtens on ECDLP; in Section 4 a Cuda based implemen-
tation algorithm and numerical results, and finally, conclusions are provided in Section
5.

2 Overview of elliptic curves

Let K be a field of characteristic 6= 2, 3. The set E of points (x, y) ∈ K × K satisfying the
equation y2 = x3 +ax+b with a, b ∈ K, is called elliptic curve whenever x3 +ax+b has
no multiple roots in K. The definition of an elliptic curve is slightly more complicated
in when the charateristic of K is 2 or 3. The set E, enriched with a so-called ”point
to infinity” O∞ and a well defined addition +, becomes an elliptic group, denoted by
E(K) where the point O∞ acts as the group identity. If K = R, the real field, then
the addition can be described geometrically through the method ”chord-tangent”(see
[7] p.55).The inverse of a point P = (x, y) is −P = (x,−y) by definition.Moreover, one
has the following explicit formulas for the sum and the doubling of points on E(R). If
P = (x1, y1), Q = (x2, y2) and P + Q = (x3, y3), then x1 6= x2 implies
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x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2 , y3 = −y1 +

(
y2 − y1

x2 − x1

)

(x1 − x3) , (1)

while P = Q implies

x3 =

(
3x2

1 + a

2y1

)2

− 2x1 , y3 = −y1 +

(
3x2

1 + a

2y1

)

(x1 − x3) . (2)

More remarkable is the fact that these formulas are still valid in E(K) for a generic
ground field K, where the so called elliptic curve discrete logarithm problem can be
formulated as it follows: given P,Q ∈ E(K), determine the integer k (if there’s one) so
that Q = kP = ktimesP + P + ... + P︸ ︷︷ ︸. This problem is significantly hard if the ground

field is finite.

Indeed, V. Miller[8] and N. Koblitz[9] proposed (independently each other) to use
the elliptic group E(Fp), defined on a finite field Fp, as an arithmetic base of a cryp-
tosystem.

3 ECDLP

Altough ECDLP is a particular case of DLP, there is no generic algorithm with subex-
ponential running time that solves it. One reason is that there’s a primary difference
between the underlying algebraic structures, i.e. the multiplicative group F∗

p of a finite
field Fp for DLP and the elliptic group E(Fp). Mainly, while F∗

p is completed in a struc-
ture with two operations, the elliptic group has only its own addition. For example, the
index-calculus methods, which solves DLP instances with subexponential running time,
fail when it comes to elliptic groups (except in very special and well-understood cases).
As usual, algorithms for ECDLP are classified as it follows: generic algorithms which
are appliable to all instances of ECDLP, special algorithms which take advantage of
the particular instance of the problem. Since all special attacks to the ECDLP can be
easily avoided by means of a suitable choice of the parameters, it is more interesting
to focus on generic algorithms. The most used generic methods are variations of the
Pollard’s rho method. Indeed, in 1997 CERTICOM introduced a list of ECDLP chal-
lenging problems offering a money prize for each solution[10]. The solved problems got
a solution through the use of a parallelized Pollard’s rho method.

3.1 Pollard’s rho algorithm for ECDLP

Let us consider P,Q ∈ E(Fp) and assume that we want to compute k such that Q = kP .
The main idea of Pollard’s rho algorithm is to determine distinct pairs (c′, d′) and
(c′′, d′′) of integers modulo n such that

c′P + d′Q = c′′P + d′′Q
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where n is the order of the subgroup 〈P 〉 generated by P. Then, one can compute

(c′ − c′′)P = (d′′ − d′)Q = (d′′ − d′)kP,

which implies
(c′ − c′′) ≡ (d′′ − d′)k (modn).

Thus,
k ≡ (c′ − c′′)(d′′ − d′)−1 (modn).

The naive method requires to generate at random c, d ∈ [0, n − 1] , compute cP + dQ
and store each triple (c, d, cP + dQ) in a table sorted by the third element until a
point cP + dQ is obtained twice (this occurrence is called ”collision”). The birthday
paradox1 helps to estimate the expected number of iterations (or equivalently the com-
plexity of the algorithm) before a collision is found. This number is approximately√

πn/2 ≈ 1.2533
√

n. Instead of randomly generated points Pollard[11] proposed an
iteration function acting on 〈P 〉 with a pseudo-random behaviour. If this function
is ”random enough”, then, the algorithm has the same expected running time of
the naive method. The original Pollard’s function partitions 〈P 〉 into three subsets
S1, S2, S3 of approximately equal size. Then, from the starting point P0 it iterates
P1 = f(P0), P2 = f(P1), ..., Pi+1 = f(Pi). More precisely, it is defined as:

Pi+1 = f(Pi) =






Pi + a1P + b1Q if Pi ∈ S1

2Pi if Pi ∈ S2

Pi + a2P + b2Q if Pi ∈ S3

Some experimental results by E.Teske[2][3] showed that the running time of the
Pollard’s algorithm tends to the expected value

√
πn/2 as the number of subsets Si

increases. Mainly storage can be efficiently reduced to a costant by using Floyd’s algo-
rithm ([4] exercises 6 and 7, page 7). Van Oorschot and Wiener[5] proposed to record
only points satisfying a precise condition (for example, the last 30bits of the x coordi-
nate have to be equal to zero) for a better trade off between space and performances.

4 CUDA based implementation

CUDA is a general purpose parallel computing architecture developed by NVidia. Pro-
gramming of CUDA devices is realized mainly through ”C for CUDA”, an extension of
the C language that gives user access to CUDA capabilities. Even if C is the main lan-
guage in CUDA hardware programming, third party wrappers are available for Python,
Fortran, Java and MatLab. Actually, as it is reported by NVidia, there are millions of
CUDA-capable gpus which are already installed with prices ranging from a few euros
for hardware with limited computing capabilities (20 euros-30 euros for an 8400GS-
256mb video card) to thousands of euros for high-end hardware with 4 teraflops (single

1The birthday paradox can be formulated as it follows: how large the number of people must be in

a room in order to expect at least two of them have the same birthday ? Surprisingly the number is

small:
p

π365/2 ≈ 24.
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precision) power (Tesla C1060 with 960 cores). Some advantages offered by CUDA ar-
chitecture are: scattered reads(code has access to all memory addresses), a fast shared
memory region (a region that grants really high performances and can be used by all
threads together), full support of integer and bitwise operations and fast downloads
and readbacks to and from gpu.

CUDA has also some limitation that must be considered while developing software:
no support for recursive functions on the device, division and inversion are computa-
tionally expensive and the device memory management is difficult(threads using device
memory should access it avoiding multiple requests on the same bank).

4.1 Parallelized Pollard’s rho algorithm

Considering high processing power of actual gpus, it makes sense to take advantage
from them for a parallelized Pollard’s rho algorithm. Here we give a brief description
of our implementation of this Pollard’s rho algorithm for gpu, discussing later some
implementation details:

Algorithm 1 RhoCuda

1. The host makes precomputations needed for the Pollard’s rho algorithm.

2. Precomputed data is sent to the device.

3. The host starts threads on gpu.

4. Such threads generate pseudorandom points through the iteration function.

5. Threads look for distinguished points (DPs)

6. Treads reports DPs to the host.

7. DPs are stored into a hash table.

8. The host looks for collisions.

9. Stop procedure if a collision is found.

Observe that distinguished points having last 30 bit of x coordinate all equalto
zero so an optimizated storage strategy can be acted. In the following figure we show
a simple scheme of the algorithm on GPU.

4.2 Modular arithmetic and numerical results

Since we are considering ECDLPs on finite fields Fp with p prime, first tools that we
need are efficient modular arithmetic functions that can be implemented with CUDA.
As already said, integer division and modulo operations are really expensive. Hence,
one has to find suitable solutions for an efficient modular arithmetic, especially when
we handle multiword integers. It is due to Single Instruction Multiple Threads (SIMT)
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Figure 1: Figure: Cuda based implementation scheme

structure of NVidia GPUs.
Modular addition and difference. If a, b are the operands, and n is modulus, the
modular addition is operated computing:

a + b and a + b − n

and then choosing the right result (the one between 0 and n). In this way, we don’t
use the ”if” statement avoiding the so called ”divergent threads” on GPUs. Divergent
threads determ an decreasing of the run-time algorithm preformance due to synchro-
nization of threads.
The modular difference is operated in an analogous way computing a− b and a− b+n.

Modular multiplication. It is realized through the so called Montgomery product([12]
p.395-397).

If n is the modulus, we call k the integer so that 2k−1 ≤ n < 2k and r is 2k. Given
an integer a < n, we define Montgomery representation (or n-residue) with respecto to
r as

a ≡ a · r(modn) .

Observe thata sum and difference of the Mongomery representations of two integers
is Montgomery representation of their sum or difference. Given two numbers a, b in their
Montgomery representations (a, b respectively) the Montgomery product is defined as

u ≡ a · b · r−1(modn) ,

where r−1 is the multiplicative inverse of r modulo n.

The result of Montgomery product u is the n-residue of the product u = a·b(modn)
since
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u ≡ a · b · r−1(modn)
= (a · r) · (b · r) · r−1(modn)
= (a · b) · r(modn) .

To describe Montgomery reduction algorithm, we need also the quantity n′, that
satisfies the property

r · r−1 − n · n′ = 1 .

Both integers r−1 and n′ can be easily computed through the extended Euclidean
algorithm[ inserire citazione].

Given the integers a, b the Montgomery product is computed by this algorithm:

Algorithm 2 MonPro(a, b)

1. t = a · b

2. m ≡ t · n′(modr)

3. u = (t + m · r)/r

4. if u ≥ n then return u − n else return u .

The main feature of this product is that the operations involved are multiplications
modulo r and division by r that can be efficiently implemented using bitwise operations.

If n is odd, Montgomery product algorithm can be used to compute (normal)
product u ≡ a · b(modn):

Algorithm 3 ModMul(a, b)

1. Compute n′ using extended Euclidean algorithm

2. a ≡ a · r(modn)

3. b ≡ b · r(modn)

4. u =MonPro(a, b)

5. u =MonPro(u, 1)

6. return u .

A better algorithm is obtained observing that
MonPro(a, b)=(a · r) · b · r−1(modn) = a · b(modn)
Thus we can modify the algorithm above:

Algorithm 4 ModMul(a, b)

1. Compute n′ using extended Euclidean algorithm, and r2(modn)
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2. a =MonPro(a, r2)

3. u =MonPro(a, b)

When a lot of modular multiplication must be performed, all having same modulus,
values n′ and r2 can be precomputed.

If we handle multi-word integers, better implementation of Montgomery product
is through the coarsely integrated operand scanning method(CIOS)[13]. This method
integrate multiplication steps and reduction steps(instead of first computing full prod-
uct and then making reduction) requiring an additional space for the operation of three
words regardless of lenght in words of the operands.

4.3 The iteration function.

The starting points are linear combinations of P and Q. Each point is generated with
a different multiple of P . If t threads are executed, each of them is associated to a
starting point:

Al = alP + Q

where 0 ≤ l < t and 0 ≤ al < n. Our iteration function is a so-called ”add only”
function which partitions 〈P 〉 into r subsets. Let Al,i = (xl,i, yl,i) be the point corre-
sponding to the walk of the l-th thread and the i-th iteration. The iteration function
is defined as:

f(Al,i) = Al,i+1 = Al,i + bjP + Q

if xl,i ≡ j(modr), ∀j = 0, ..., r − 1, ∀l = 0, ..., t − 1 .
The congruence xl,i ≡ j(modr) can be easily checked through bitwise operators if r

is a power of 2. In our application we choose r = 64.

4.4 Points representation and storage.

The array:

(b0P + Q, ..., bjP + Q, ..., br−1P + Q)

is stored by using affine coordinates. More precisely, since the size of these coordi-
nates turns out to be small and since the points do not vary within the program, the
array can be fitted into theconstant memory region of the graphic card. That allows
to avoid memory problems due to simultaneous accesses of more than one thread to
the same point. Moreover note that all data of the curve are recorded in the constant
memory.
Since formulas 1 and 2, all the other points (Al) are represented with the so-called
Jacobian coordinates([14], 3.2).
With this implementation strategy we can avoid division and inverse calculation while
adding points on the elliptic curve through mixed addition Jacobian-affine formulas.
In order to get coalesced memory access, a single word of each Jacobian coordinate is
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memorized in a locations multiple of 16 (number of threads that can do a coordinated
read from memory).
The following table reports the usage of two middle level N-Vidia gpu, on F109 listed
in CERTICOM site. In particular the first test (M1) is curried out on 8800GTS with
g92 chip of 80-90euros cost; the second one (M2) is curried out on 8400 GS 256mb of
cost 25-30euros cost. Here we analyse the performances on two cases: the code with
”if” statements that implies a lot of divergent threads (dt); the optimized code where
divergent threads are minimized (mdt)

GPU Model points/secs code points/secs opitmized code

M1 320.000 720.000

M2 220.000 425.000

5 Conclusions

CUDA-enabled gpus turn out to form a very interesting platform for high performance
computing for many remarkable reasons: the wide diffusion, a rapidly and continuously
increasing power, a good performance/price ratio and the possibility of installing more
than one gpu into a single workstation.

In this paper we have shown that graphic cards can be useful to improve on perfor-
mances for ECDLP resolution. We think that all we have done here is new because all
CERTICOM problems were attacked only by using cpus (in distributed environment).
Now a mixed approach cpu-gpu can also be considered (gpu being a co-processor). At
least, computations for our problem can be performed only on gpu while cpu remains
free and available for other jobs.
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1 Introduction

Boolean functions are used in several different types of cryptographic applications, in-
cluding block ciphers, stream ciphers, hash functions [3, 4, 7, 9], and coding theory [2, 6],
among others. There is already a well established theory of S-boxes which has sprung
from cryptography. This theory concentrates on the design and analysis of Boolean
functions which possess desirable cryptographic properties such as balancedness, strict
avalanche criterion, correlation immunity, high nonlinearity and high degree. For ex-
ample, the implementation of an S-box needs nonlinear Boolean functions to guarantee
the cryptographic effectiveness in order to resist powerful methods of attack such as
the linear and differential cryptanalysis [1, 5, 8, 10].

One of the basic requirements relative to the Boolean functions used in stream
ciphers is that they allow to increase the linear complexity [9, 15, 16], which is obtained
if these functions have a high algebraic degree.

Both the use of the algebraic normal form or the truth table, have their advantages
and disadvantages. For example, the algebraic normal form of a Boolean function
directly provide their degree, but not its weight, but if we know the truth table, we
know its weight, but do not know its degree.

The complete determination of the algebraic normal form of a Boolean function of
which we know its truth table or its support requires simultaneously to compute all the
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coefficients of the corresponding polynomial, but if we want to know only the degree of
the function, it is possible to reduce substantially the number of necessary operations
using the properties that we present beforehand here.

The rest of the paper is organized as follows. Firstly, in Section 2 we introduce some
basic definitions and notations that are used hereafter. In Section 3, we introduce the
main results of this paper; in particular, we present some properties which allow us to
determine the degree of a Boolean function of n variables from its support. Finally, in
Section 4, we introduce more properties that allow us to improve the process described
in Section 3.

2 Preliminaries

We denote by F2 the Galois field of two elements, 0 and 1, with the addition (denoted
by ⊕) and the multiplication (denoted by juxtaposition). For any positive integer n, it
is well-known that Fn2 is a linear space of dimension n over F2 with the usual addition
(denoted also by ⊕). We denote by Span {u1,u2, . . . ,uk} the linear subspace of Fn2
generated by the vectors u1,u2, . . . ,uk ∈ Fn2 . If F ⊆ Fn2 and a ∈ Fn2 , we denote by

a⊕ F = {a⊕ u | u ∈ F}.

When F is a k-dimensional linear subspace of Fn2 we say that a⊕F is the k-dimensional
affine subspace of Fn2 passing through a in the direction of F . Finally, if we denote
by i the binary expansion of n digits of the integer i, for i = 0, 1, 2, . . . , 2n − 1, then
Fn2 = {i | 0 ≤ i ≤ 2n − 1}.

A Boolean function of n variables is a map f : Fn2 −→ F2. The set of all Boolean
functions of n variables is denoted by Bn; it is well known that Bn, with the usual
addition of functions (that we also denote by ⊕), is a linear space of dimension 2n

over F2.
If f ∈ Bn, we call truth table of f (see, for example, [11, 12]) the binary sequence

of length 2n given by
ξf = (f(0), f(1), . . . , f(2n − 1)).

We call support of f , denoted by Supp (f), the set of vectors of Fn2 whose image by f
is 1, that is,

Supp (f) = {a ∈ Fn2 | f(a) = 1} .

If f ∈ Bn, we call weight of f , and we write w(f), the number of 1s of the truth table
of f , therefore, w(f) = |Supp (f)|.

Obviously, f is the null function if and only if Supp (f) = ∅ and then w(f) = 0.
Analogously, f is the constant function 1 if and only if Supp (f) = Fn2 and, in this case,
w(f) = 2n.

It is easy to check that if f, g ∈ Bn, then Supp (f ⊕ g) = Supp (f) ∆ Supp (g) ,
where ∆ denote the symmetric difference of sets and, as a consequence,

w(f ⊕ g) ≡ w(f) + w(g) (mod 2).
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In general, if fj ∈ Bn, for j = 1, 2, . . . ,m, then

Supp

 m⊕
j=1

fj

 =
m

∆
j=1

Supp (fj) (1)

and, therefore,

w

 m⊕
j=1

fj

 ≡ m∑
j=1

w(fj) (mod 2). (2)

Assume now that x = (x1, x2, . . . , xn) where each xj , for j = 1, 2, . . . , n, is a binary
variable. If f ∈ Bn, we can write f(x) uniquely as (see, for example, [6, 11, 12, 13, 14])

f(x) =
⊕
u∈Fn

2

µf (u)xu (3)

where µf (u) ∈ F2 and if u = (u1, u2, . . . , un), then

xu = xu1
1 x

u2
2 · · ·x

un
n with x

uj

j =

{
xj , if uj = 1,
1, if uj = 0.

Expression (3), in which each one of the terms xu is a monomial, is known as the
Algebraic Normal Form (ANF) of f(x). We call degree of f , denoted by deg (f),
the maximum of the degrees of the monomials of its ANF. So, if w(u) denotes the
number of components of u equal to 1, then

deg (f) = max{w(u) | µf (u) = 1}.

We said that f is an affine function if deg (f) = 1; in this case expression (3)
becomes

f(x) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn

with aj ∈ F2, for j = 0, 1, 2, . . . , n. In particular, if a0 = 0, we say that f is a linear
function.

On the other hand, if

µf = (µf (0), µf (1), . . . , µf (2n − 1)),

then (see for example [13])
µf = ξfAn

where

An =
[
An−1 An−1

O An−1

]
for n ≥ 1, with A0 = [1].

Now, if
u = (u1, u2, . . . , un) = u12n−1 ⊕ u22n−2 ⊕ · · · ⊕ un−12⊕ un1
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and S(u) = Span
{
u12n−1, u22n−2, . . . , un−12, un1

}
, then, it is easy to prove by in-

duction over n, that
µf (u) =

⊕
a∈S(u)

f(a). (4)

Finally, if f ∈ Bn and for all a ∈ Fn2 we consider ga ∈ Bn such that ga(x) = f(x⊕a),
then, it is difficult to establish the relation between µf and µga

, nevertheless, it is
evident that deg (ga) = deg (f), for all a ∈ Fn2 , and it is not difficult to see that

Supp (ga) = a⊕ Supp (f) , for all a ∈ Fn2 .

3 Main Results

Throughout this paper we denote by Sn the set of all the permutations of {1, 2, . . . , n}.
Moreover, if σ ∈ Sn, x = (x1, x2, . . . , xn) ∈ Fn2 , M ⊆ Fn2 , and f ∈ Bn, we write
xσ =

(
xσ(1), xσ(2), . . . , xσ(n)

)
, Mσ = {xσ | x ∈M} , and fσ(x) = f(xσ).

The following result, whose proof is immediate, establishes the relation between
Supp (fσ) and Supp (f) for all σ ∈ Sn.

Theorem 1: Assume that σ ∈ Sn. If f ∈ Bn, then Supp (fσ) = (Supp (f))σ
−1

and, as
a consequence, w(fσ) = w(f).

The following result, whose proof is also immediate, allows us to determine, expli-
citly, the support and, therefore, the weight of any monomial.

Theorem 2: Assume that 1 ≤ i1 < i2 < · · · < ik ≤ n and consider σ ∈ Sn such that
σ(j) = ij, for j = 1, 2, . . . , k. If f(x) = xi1xi2 · · ·xik and u = (1, 1, . . . , 1) ∈ Fk2, then

(Supp (f))σ = {u} × Fn−k2

and, in particular, w(f) = 2n−k.

An immediate consequence of the previous result is that the weight of the monomial
formed by all the variables (that is, when k = n) is 1, whereas the weight of any other
monomial is a power of 2 and, therefore, an even number.

Another immediate consequence that we can deduce of Theorem 2 is that the degree
of a Boolean function f ∈ Bn is n if and only if w(f) is an odd number, as we establish
in the following result.

Theorem 3: If f ∈ Bn, then deg (f) = n if and only if w(f) is an odd number.

Proof: Clearly f = g ⊕ h, with g, h ∈ Bn such that h(x) = ax1x2 · · ·xn with a ∈ F2

and deg (g) ≤ n− 1. Note that w(h) = a, and deg (f) = n if and only if a = 1.
Moreover, if g(x) =

⊕m
j=1 gj(x), with gj(x) a monomial such that deg (gj) ≤ n−1,

for j = 1, 2, . . . ,m, then, from expression (2) and Theorem 2 we have that

w(f) ≡
m∑
j=1

w(gj) + w(h) (mod 2) ≡ a (mod 2)

and so, deg (f) = n if and only if w(f) is odd. �
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Another immediate consequence of Theorem 2 is that if the degree of a Boolean
function of n variables is less than or equal to n − 2, then the sum of the elements of
its support is the null vector. Before, nevertheless, we introduce the following technical
lemma which allows us to simplify the proof of the above mentioned result.

Lemma 1: Assume that 1 ≤ i1 < i2 < · · · < ik ≤ n. If f(x) = xi1xi2 · · ·xik and
1 ≤ k ≤ n− 2, then

⊕
a∈Supp(f) a = 0.

Proof: Assume that u = (1, 1, . . . , 1) ∈ Fk2. Clearly

⊕
a∈{u}×Fn−k

2

a =
⊕

v∈Fn−k
2

(u,v) =

( ⊕
v∈Fn−k

2

u,
⊕

v∈Fn−k
2

v

)
= (0k,0n−k) = 0

because each one of the components of the vectors
⊕

v∈Fn−k
2

u and
⊕

v∈Fn−k
2

v is the
sum of an even number of 1s.

The result follows now from the fact that if we consider σ ∈ Sn such that σ(j) = ij ,
for j = 1, 2, . . . , k, then, by Theorem 2, the elements of Supp (f) are obtained from the
elements of {u}×Fn−k2 permuting their components according to the permutation σ−1.�

Note that the condition 1 ≤ k ≤ n− 2 of the previous lemma is necessary, because
if k = n, then Supp (f) = {u} ⊆ Fn2 , whereas if k = n − 1 and f(x) is the monomial
of degree n− 1, which does not contain the variable xj , then Supp (f) = {u,uj} with
uj = u⊕ 2n−j and, clearly, u⊕ uj 6= 0.

Theorem 4: Let f ∈ Bn. If deg (f) ≤ n− 2, then
⊕

a∈Supp(f) a = 0.

Proof: Assume that f(x) =
⊕m

j=1 fj(x) with fj(x), for j = 1, 2, . . . ,m, a monomial
of degree less than or equal to n− 2.

We proceed by induction over m. For m = 1 the result is true by Lemma 1.
Assume that the result is true for m − 1 and we will prove that it is true for m.

Firstly, note that from expression (1)

Supp (f) =
m

∆
j=1

Supp (fj) =

(
m−1

∆
j=1

Supp (fj)

)
∆ Supp (fm) .

To simplify the notation, we denote by

A = Supp (f) , B =
m−1

∆
j=1

Supp (fj) , and C = Supp (fm) .

From the properties of the union, intersection and symmetric difference of sets, and
from the induction hypothesis and by Lemma 1, we have,

0 =
⊕
b∈B

b =
⊕

b∈A∩B
b⊕

⊕
d∈B∩C

d and 0 =
⊕
c∈C

c =
⊕

c∈A∩C
c⊕

⊕
e∈B∩C

e.
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Now, adding the two previous expressions, we obtain

0 =
⊕

b∈A∩B
b⊕

⊕
c∈A∩C

c =
⊕
a∈A

a

because
⊕

d∈B∩C d⊕
⊕

e∈B∩C e = 0. �

The converse of the previous theorem is not true, as we can see in the following
example.

Example 1: If f ∈ B3 and Supp (f) = {3,5,6}. We have that 3 ⊕ 5 ⊕ 6 = 0, but,
from Theorem 3, deg (f) = 3. So, the converse of Theorem 4 is not true. �

The following result shows that the situation described in the previous example
only can appears when |Supp (f)| is odd, that is, when deg (f) = n.

Theorem 5: Let f ∈ Bn such that |Supp (f)| is an even number. If
⊕

a∈Supp(f) a = 0,
then deg (f) ≤ n− 2.

Proof: Since |Supp (f)| is even, from Theorem 3, we have that deg (f) ≤ n− 1.
If deg (f) = n− 1, then f has at least one monomial of degree n− 1. Assume that

f(x) =
m⊕
j=1

gj(x)⊕ h(x)

with gj(x), for j = 1, 2, . . . ,m, a monomial of degree n− 1 which does not contain the
variable xij and deg (h) ≤ n− 2.

Proceeding as in the proof of Theorem 4, taking into account that from Theorem 4,⊕
a∈Supp(h) a = 0, and according to the comment previous to Theorem 4, we have that

0 =
⊕

a∈Supp(f)

a =
m⊕
j=1

⊕
a∈Supp(gj)

a⊕
⊕

a∈Supp(h)

a =

{⊕m
j=1 2n−ij , if m is even,

u⊕
⊕m

j=1 2n−ij , if m is odd

which is a contradiction. Therefore, deg (f) ≤ n− 2. �

Let f ∈ Bn and assume that we know Supp (f). Since w(f) = |Supp (f)|, Theorem 3
allows us to ensure that the monomial x1x2 · · ·xn is part of the ANF of f(x) if and
only if |Supp (f)| is an odd number. The following theorem establishes a necessary and
sufficient condition in order that the ANF of f(x) contains any monomial of degree k
with 1 ≤ k < n. Before, nevertheless, we need the following result which will facilitate
the proof of the above mentioned theorem.

Lemma 2: Assume that 1 ≤ i1 < i2 < · · · < ik ≤ n and consider the map ϕ : Fk2 → Fn2
given by ϕ(y1, y2, . . . , yk) = (x1, x2, . . . , xn) with

xl =

{
0, if l /∈ {i1, i2, . . . , ik},
yj , if l = ij , for j = 1, 2, . . . , k.

If f ∈ Bn and consider h ∈ Bk such that h(y1, y2, . . . , yk) = f(ϕ(y1, y2, . . . , yk)), then

|Supp (h)| =
∣∣∣Supp (f) ∩ Span

{
2n−i1 ,2n−i2 , . . . ,2n−ik

}∣∣∣ .
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Theorem 6: Assume that we know Supp (f) for f ∈ Bn. The ANF of f(x) contains
the monomial xi1xi2 · · ·xik with 1 ≤ k < n if and only if∣∣∣Supp (f) ∩ Span

{
2n−i1 ,2n−i2 , . . . ,2n−ik

}∣∣∣
is an odd number.

Proof: With the notation of Lemma 2, we have that the ANF of f(x) contains the
monomial xi1xi2 · · ·xik if and only if the ANF of h(y) contains the monomial y1y2 · · · yk.
Also, from Theorem 3, the ANF of h(y) contains the monomial y1y2 · · · yk if and only
if |Supp (h)| is an odd number. Finally, from Lemma 2, the ANF of f(x) contains the
monomial xi1xi2 · · ·xik if and only if

∣∣Supp (f) ∩ Span
{
2n−i1 ,2n−i2 , . . . ,2n−ik

}∣∣ is an
odd number. �

Applying successively the previous result, we can determine the degree and the
ANF of a Boolean function of which we know its support.

Furthermore, if 1 ≤ k < n, by a similar argument to that followed to obtain
expression (4), we can separate the n variables in two sets with k and n− k variables,
respectively, as we describe in the following result. The proof is straightforward but
large and, therefore, we omit it.

Theorem 7: Assume that f ∈ Bn. If 1 ≤ k < n, then

f(y,x) =
⊕
b∈Fk

2

( ⊕
a∈S(b)

fa(x)

)
yb

where fa ∈ Bk, for a ∈ Fk2, satisfies fa(x) = f(a,x). Furthermore,

1. Supp (fa) = {v ∈ Fn−k2 | (a,v) ∈ Supp (f)},

2. Supp
(⊕

a∈S(b) fa

)
= ∆a∈S(b) Supp (fa), for all b ∈ Fk2,

3. deg (f) = maxb∈Fk
2

{
deg

(⊕
a∈S(b) fa

)
+ w(b)

}
.

Before to continue, we show an example that will help us to understand the process
to follow.

Example 2: Let f ∈ B5 such that

Supp (f) = {6,7,12,13,16,17,18,20,21,23,24,25,26,30}.

Since |Supp (f)| is even and

6⊕ 7⊕ 12⊕ 13⊕ 16⊕ 17⊕ 18⊕ 20⊕ 21⊕ 23⊕ 24⊕ 25⊕ 26⊕ 30 = 0

from Theorem 5, we have that deg (f) ≤ 5− 2 = 3.
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Now, according to Theorem 7.3, we have that

deg (f) = max{deg (f0) ,deg (f0 ⊕ f1) + 1}

with f0, f1 ∈ B4 such that

f0(x2, x3, x4, x5) = f(0, x2, x3, x4, x5), f1(x2, x3, x4, x5) = f(1, x2, x3, x4, x5),

and, from Theorem 7.1,

Supp (f0) = {6,7,12,13} and Supp (f1) = {0,1,2,4,5,7,8,9,10,14}.

Therefore,

Supp (f0 ⊕ f1) = Supp (f0) ∆ Supp (f1) = {0,1,2,4,5,6,8,9,10,12,13,14}.

In addition, since 6⊕ 7⊕ 12⊕ 13 = 0 and

0⊕ 1⊕ 2⊕ 4⊕ 5⊕ 6⊕ 8⊕ 9⊕ 10⊕ 12⊕ 13⊕ 14 = 0,

from Theorem 5, we have that

deg (f0) ≤ 4− 2 = 2 and deg (f0 ⊕ f1) ≤ 4− 2 = 2

and, therefore deg (f) ≤ max{2, 2 + 1} = 3.
Now, again from Theorem 7.3, we have that

deg (f) = max{deg (f0) ,deg (f0 ⊕ f1)+1,deg (f0 ⊕ f2)+1,deg (f0 ⊕ f1 ⊕ f2 ⊕ f3)+2}

with f0, f1, f2, f3 ∈ B3 such that

f0(x3, x4, x5) = f(0, 0, x3, x4, x5), f1(x3, x4, x5) = f(0, 1, x3, x4, x5),
f2(x3, x4, x5) = f(1, 0, x3, x4, x5), f3(x3, x4, x5) = f(1, 1, x3, x4, x5),

and, from Theorem 7.3

Supp (f0) = {6,7}, Supp (f1) = {4,5},
Supp (f2) = {0,1,2,4,5,7} and Supp (f3) = {0,1,2,6}

in which case

Supp (f0 ⊕ f1) = Supp (f0) ∆ Supp (f1) = {4,5,6,7},
Supp (f0 ⊕ f2) = Supp (f0) ∆ Supp (f2) = {0,1,2,4,5,6},

Supp (f0 ⊕ f1 ⊕ f2 ⊕ f3) = Supp (f0) ∆ Supp (f1) ∆ Supp (f2) ∆ Supp (f3) = ∅.

Moreover, since

6⊕ 7 = 1 6= 0, 4⊕ 5⊕ 6⊕ 7 = 0 and 0⊕ 1⊕ 2⊕ 4⊕ 5⊕ 6 = 4 6= 0

from Theorem 5, we have that

deg (f0) = 3− 1 = 2, deg (f0 ⊕ f1) ≤ 3− 2 = 1, deg (f0 ⊕ f2) = 3− 1 = 2

and f0 ⊕ f1 ⊕ f2 ⊕ f3 = 0, therefore, deg (f) = 3. �
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4 More results

In this section we introduce some results that allow us to simplify the process described
in the previous section.

The following result establishes that any k-dimensional linear subspace of Fn2 (or
the complement of any k-dimensional linear subspace of Fn2 ) is the support of a Boolean
function of n variables with degree n− k.

Theorem 8: Assume that 1 ≤ k ≤ n. If F or Fn2 \F is a k-dimensional linear subspace
of Fn2 , then there exists f ∈ Bn such that deg (f) = n− k and F = Supp (f).

Proof: Firstly, assume that F is a k-dimensional linear subspace of Fn2 . Clearly, the
map f : Fn2 → F2 given by

f(x) =

{
1, if x ∈ F,
0, if x /∈ F,

is a Boolean function of n variables whose support is F .
Assume that n− k + 1 ≤ l ≤ n and that the ANF of f(x) contains the monomial

xi1xi2 · · ·xil ; then, by Theorem 6 we have that∣∣∣F ∩ Span
{

2n−i1 ,2n−i2 , . . . ,2n−il

}∣∣∣
is an odd number. Nevertheless, since

dim
(
F ∩ Span

{
2n−i1 ,2n−i2 , . . . ,2n−il

})
= dimF + dim Span

{
2n−i1 ,2n−i2 , . . . ,2n−il

}
− dim

(
F + Span

{
2n−i1 ,2n−i2 , . . . ,2n−il

})
≥ k + l − n ≥ 1,

necessarily∣∣∣F ∩ Span
{

2n−i1 ,2n−i2 , . . . ,2n−il

}∣∣∣ = 2dim(F∩Span{2n−i1 ,2n−i2 ,...,2n−il})

is an even number. So, we have a contradiction. Therefore, the ANF of f(x) does not
contain any monomial of degree l and, consequently, deg (f) ≤ n− k.

Assume now that {b1, b2, . . . , bk} is a basis of F and complete such basis, with the
vectors of the canonical basis, to obtain a basis{

b1, b2, . . . , bk,2n−i1 ,2n−i2 , . . . ,2n−in−k

}
of Fn2 . Clearly F ∩ Span

{
2n−i1 ,2n−i2 , . . . ,2n−in−k

}
= {0} and, by Theorem 6, the

ANF of f(x) contains the monomial xi1xi2 · · ·xin−k
; so deg (f) ≥ n− k.

Now, from this inequality and the previous one, we have that deg (f) = n− k.
Assume now that G = Fn2 \F is a k-dimensional linear subspace of Fn2 . Then, from

the above part, there exists g ∈ Bn such that deg (g) = n − k and G = Supp (g). Let
f ∈ Bn such that f = 1 ⊕ g, clearly, deg (f) = deg (g) and Supp (f) = Fn2 \ Supp (g);
that is deg (f) = n− k and F = Supp (f). �
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The converse of the above theorem is not true in general as we can see in Example 3
below. Nevertheless, if k = n, then F = Fn2 is the support of the constant function
f(x) = 1 whose degree is 0. Furthermore, if k = n− 1, then the converse of Theorem 8
also holds as we can see in the following result.

Theorem 9: Assume that F ⊆ Fn2 . Then F or Fn2 \ F is an (n − 1)-dimensional
linear subspace of Fn2 if and only if there exists f ∈ Bn such that deg (f) = 1 and
F = Supp (f).

Proof: If F or Fn2 \F is an (n− 1)-dimensional linear subspace of Fn2 , by Theorem 8,
there exists f ∈ Bn such that deg (f) = 1 and F = Supp (f).

Conversely, let f ∈ Bn such that deg (f) = 1 and F = Supp (f). On the one hand

f(x) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn

for some a0, a1, a2, . . . , an ∈ F2, and clearly

S = {(u1, u2, . . . , un) ∈ Fn2 | a1u1 ⊕ a2u2 ⊕ · · · ⊕ anun = 0}

is an (n − 1)-dimensional linear subspace of Fn2 . On the other hand, it is easy to see
that S = F , if a0 = 1, and S = Fn2 \ F , if a0 = 0. �

Next result establishes that Theorem 8 also holds if we change “linear subspace”
by “affine subspace”. The proof is straightforward and therefore we omit it.

Corollary 1: Assume that 1 ≤ k ≤ n. If F or Fn2 \F is a k-dimensional affine subspace
of Fn2 , then there exists f ∈ Bn such that deg (f) = n− k and F = Supp (f).

Theorem 9 also holds if we change “linear subspace” by “affine subspace”. But
in this case, the proof follows by the fact that if F is an (n − 1)-dimensional linear
subspace of Fn2 , then

Fn2 \ F = a⊕ F for all a ∈ Fn2 \ F

is an (n−1)-dimensional affine subspace of Fn2 . This can not be true if dimF = k 6= n−1,
because 2n − 2k = 2k(2n−k − 1) is not a power of 2.

The following example shows how we can use the above results to improve the
process described in the above section.

Example 3: Let f ∈ B5 the Boolean function of Example 2. Note that |Supp (f)| = 14
and

∣∣F5
2 \ Supp (f)

∣∣ = 18, so neither Supp (f) nor F5
2 \Supp (f) can be a linear subspace

nor an affine subspace of F5
2.

After some computations, we obtained in Example 2 that

deg (f) = max{deg (f0) ,deg (f0 ⊕ f1) + 1}

with f0, f1 ∈ B4 such that

f0(x2, x3, x4, x5) = f(0, x2, x3, x4, x5), f1(x2, x3, x4, x5) = f(1, x2, x3, x4, x5),
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and that

Supp (f0) = {6,7,12,13}, Supp (f0 ⊕ f1) = {0,1,2,4,5,6,8,9,10,12,13,14}.

Note that none of the sets Supp (f0), F4
2 \ Supp (f0), Supp (f0 ⊕ f1) and F4

2 \
Supp (f0 ⊕ f1) can be linear subspaces of F4

2. Nevertheless

Supp (f0) = 6⊕ {0,1,10,11} = 6⊕ Span {1,10} ,
F4

2 \ Supp (f0 ⊕ f1) = {3,7,11,15} = 3⊕ {0,4,8,12} = 3⊕ Span {4,8}

are affine subspaces of dimension 2. So, by Corollary 1,

deg (f0) = 4− 2 = 2 and deg (f0 ⊕ f1) = 4− 2 = 2

and, therefore deg (f) = max{2, 2 + 1} = 3.
Remember that in Example 2 we obtained that

deg (f0) ≤ 4− 2 = 2 and deg (f0 ⊕ f1) ≤ 4− 2 = 2

and, therefore deg (f) ≤ max{2, 2 + 1} = 3. �
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Abstract

In this paper we deal with the problem of obtaining a random procedure for
generating points in an order polytope. For this, we use the fact that it is easy to
make a triangulation in order polytopes in a way such that all simplices have the
same hypervolume. As an application, this allows to build a procedure to generate
fuzzy measures in a random way.

Key words: Random generation, order polytopes, linear extension, triangula-
tion, fuzzy measures

1 Motivation

Consider X = {x1, ..., xn} a finite referential set. The set of non-additive mea-

sures [8], fuzzy measures [23] or capacities [5] over X, denoted by FM(X), is the
set of functions µ : P(X) → [0, 1] satisfying

• µ(∅) = 0, µ(X) = 1,

• µ(A) ≤ µ(B) for all A,B ∈ P(X) such that A ⊆ B.

Fuzzy measures have been applied to many different fields, as Multicriteria Decision
Making, Decision Under Uncertainty and Under Risk, Game Theory, Welfare Theory
or Combinatorics (see [11] for a review of theoretical and practical applications of fuzzy
measures). Moreover, they are included in the field of Aggregation Operators, that
constitutes a major research topic nowadays [10].

An interesting problem arising in the practical use of fuzzy measures is the identi-
fication of the fuzzy measure modeling the situation. The problem in this case is that
the number of coefficients needed to define a fuzzy measure is 2n − 2 for a referential of
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cardinality n, so that the complexity grows exponentially. The problem of identifica-
tion has attracted the attention of many researchers in the field; for example, different
procedures (in many cases restricted to a subfamily of fuzzy measures) can be found
in [1], [18], [6] among many others. The information background used by each method
also varies; in some of the previous methods, a sample data is supposed; others used a
questionnaire; the data can be numerical or just ordinal, and so on.

Once an algorithm is suggested, it is necessary to test its performance. In many of
the previous references a fuzzy measure is considered, some data are generated (possibly
with some random noise), and the corresponding procedure is applied. This also serves
as an example of applicability. If the procedure works properly, it should obtain a fuzzy
measure near the initial measure.

However, in order to evaluate the performance of a procedure, it should be tested
in many different cases, and the fuzzy measure considered in each case should be chosen
randomly. Surprisingly, to our knowledge there is not a method to generate randomly
a fuzzy measure. The aim of this paper is to fill this gap.

From the definition of fuzzy measure, it can be seen that the set of fuzzy measures
is a polytope. So, the problem reduces to derive a procedure for the uniform random
generation in a polytope. However, this is a complex problem and several methods have
been suggested to cope with it. Indeed, the uniform random generation in a polytope
is a hot problem in Computer Sciences (see for example [9] and [21]).

In our case, we will use the fact that the set of fuzzy measures is a special type of
polytope called order polytopes. Then, as explained in the paper, the problem simplifies
and it is possible to obtain an efficient procedure.

2 Order polytopes

Let us recall the basic notions about order polytopes. Consider a finite poset (P,�)
(or P for short) of p elements. We will denote the subsets of P by capital letters A,B, ...
and also A1, A2, ...; elements of P are denoted a, b, and so on. If A is a subset of P, it
inherits a structure of poset from the restriction of � to A. In this case, we say that A
is a subposet of P . If two elements a, b of P satisfy a � b or b � a, we say that they
are comparable. A poset (P,�) is a chain if for any a, b ∈ P, either a � b or b � a.
A poset can be represented by the so-called Hasse diagram, where a � b if and only
if there is a sequence of connected lines upwards from a to b. An example of Hasse
diagram is given in Figure 1.

A subset I of P is an ideal or downset if for any a ∈ I and any b ∈ P such that
b � a, it follows that b ∈ I. We will denote ideals by I1, I2, ... Notice that with this
definition the empty set is an ideal. The dual notion of an ideal is a filter or upset,
i.e., a set that contains all upper bounds of its elements. We will denote by I(P ) the
set of all ideals of poset P.

Given two ideals I1 and I2 of P , we can define I1 ∪ I2 and I1 ∩ I2 as the usual
union and intersection of subsets. It is trivial to check that I1 ∪ I2 and I1 ∩ I2 are also
ideals in P . In fact, the set of all ideals of P forms a lattice under set inclusion called
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Figure 1: Example of Hasse diagram of a poset.

the ideal lattice of P (see [2]). The ideal lattice of the poset presented in Figure 1 is
given in Figure 2.

∅

{a}

{a, b} {a, c}

{a, b, e} {a, b, c}

{a, b, c, e} {a, b, c, d}

{a, b, c, d, e}

×

×

× ×

× ×

× ×

×

Figure 2: Ideal lattice corresponding to poset of Figure 1.

Let us now turn to order polytopes. Given a poset (P,�), it is possible to associate
to P , in a natural way, a polytope O(P ) in Rp, called the order polytope of P (cf. [22]).
The polytope O(P ) is formed by the p-uples f of real numbers indexed by the elements
of P satisfying

• 0 ≤ f(a) ≤ 1 for every a in P,

• f(a) ≤ f(b) whenever a � b, a, b ∈ P .

Thus, the polytope O(P ) consists in (the p-uples of images of) the order-preserving
functions from P to [0, 1]. It is a well-known fact [22] that O(P ) is a 0/1-polytope, i.e.
its extreme points are all in {0, 1}p. Applied to distributive lattices, the notion of order
polytope has been also defined in [13] with the name of geometric realization.
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From the point of view of order polytopes, FM(X) is the order polytope of the
poset (P,�) where P = P(X)\{X, ∅} and � is the inclusion between subsets [7]. So,
the problem reduces to obtain a random procedure for generating points in an order
polytope. This is treated in next section.

3 Algorithm for random generation on order polytopes

There are several procedures to generate random points in a polytope: the grid method
[9], sweep-plane method [15], and triangulation methods [9]. In this paper we have
chosen the triangulation method for the properties that order polytopes share; more
details become apparent below.

Consider n + 1 affine independent points in R
m,m ≥ n, i.e. n + 1 points of R

m in
general position. The convex hull of these points is called a simplex. This notion is a
generalization of the notion of triangle for the n-dimensional space.

The triangulation method is based on decomposing the polytope into simplices,
choosing one of them with probabilities proportional to their volumes and, finally,
generating a random tuple on the simplex.

The random generation in simplices is very simple and fast [20]. Indeed, if x1, ..., xn+1

are the vertices of the simplex, it suffices to generate random values α1, ..., αn+1 ∈ [0, 1]
such that

∑
n+1

i=1
αi = 1; the point generated is

∑
n+1

i=1
αixi. However, it is not easy to

split a polytope in simplices. Moreover, even if we are able to decompose the poly-
tope in a suitable way, we have to deal with the problem of determining the volume of
each simplex in order to properly select one of them. This is the Achilles heel of the
triangulation method and the reason for which it is not very popular [21].

However, we will see below that for order polytopes the triangulation method can
be adapted in a way such that it works properly.

3.1 Step 1: Triangulation of an order polyotpe

Consider a poset (P,�). An extension (P,�′) of (P,�) is another poset on the same
referential such that if a � b, then a �′ b. A linear extension is an extension that is
a chain. The linear extensions of the poset of Figure 1 are given in Figure 3.

The triangulation of an order polytope that we are going to consider is based on
the following result (see [17], pag. 304):

Theorem 1 Let (P,�) be a poset.

• If ≤ is a linear ordering on P , then the corresponding order polytope O(P,≤) is
a simplex of volume 1

n!
.

• For any partial ordering � on P, the simplices of the order polytope of (P,≤),
where ≤ is a linear extension of �, cover the order polytope O(P,�) and have
disjoint interiors. Hence, vol(O(P,�)) = 1

n!
e(�), where e(�) is the number of

linear extensions that are compatible with � .
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Figure 3: Linear extensions of poset of Figure 1.

These results are also outlined in [22]. From this theorem, we can obtain the
following conclusions:

• It suffices to obtain the number of linear extensions of the poset in order to
determine the volume of the corresponding order polytope.

• Any linear extension provides a simplex included in the order polytope. Moreover,
these simplices have disjoint interiors. As the probability of generating a point
in the border of the simplex is zero, we can arbitrarily assign the borders to any
simplex, so that this determines a partition of the order polytope in simplices.

• All the simplices generated by linear extensions have exactly the same volume.

Consequently, it suffices to generate randomly a linear extension of � and then
generate a point in the corresponding simplex. Therefore, the problem of random
generation in an order polytope reduces to generate randomly a linear extension of the
poset. This is achieved in next subsection.

3.2 Step 2: Generating linear extensions of a poset

The problem of randomly generating a linear extension of a poset is a ♯P-problem [3] .
We will use the algorithm developed in [16]. This algorithm performs in general better
than the one developed in [19]; other algorithms that approximate randomness has
been suggested in [14] and [4], but we have preferred the previous approach because it
provides an exact method.

The idea of the algorithm is the following: first, we construct the ideal lattice of
the poset. Next, from the ideal lattice, a random linear extension is generated; for this,
it is used the fact that a linear extension consists exactly in a path from the source
(the empty ideal) to the sink (the whole poset).
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The use of the ideal lattice instead of directly enumerating all linear extensions is
justified by the fact that the number of linear extensions is in general much larger than
the number of ideals, as next table, obtained in [16], shows:

|P | Linear extensions Ideals

5 6 9
10 5.4 × 102 33
15 2.39 × 105 148
20 1.13 × 109 518
25 1.07 × 1012 953
30 7.83 × 1014 1406
35 5.57 × 1017 2637

The posets considered in the table have been obtained by choosing uniformly at
random n points out of a two-dimensional grid of size 20 by 20, equipped with the usual
ordering. Of course, for other polytopes these figures could vary, but it can be seen
that in general the number of linear extensions grows much faster than the number of
ideals.

An algorithm for generating the ideal lattice of a poset appears in [12]. The idea
is to use the so-called spanning tree of the lattice; in [12], an algorithm to build this
spanning tree is provided.

When the spanning tree is obtained, we can build the corresponding lattice in an
efficient way.

Once the ideal lattice is built, we proceed to generate a linear extension. A such
algorithm appears in [16].

4 Conclusions

In this paper we have obtained an algorithm for the random generation of points in order
polytopes. The algorithm is based on the fact that order polytopes can be studied in
terms of the subjacent poset, thus reducing the complexity of the procedure. The main
point is the fact that order polytopes are easy to triangulize using linear extensions. In
addition, it is easy to generate linear extensions in a random way from the lattice of
ideals.

As a straightforward application, this provides us with a method for generating
fuzzy measures in a random way. We think that this could be useful to compare the
different approaches of identifying a fuzzy measure from sample data. Moreover, this
also applies to any subfamily of fuzzy measures that is an order polytope, as for example
p-symmetric measures [7].

As a future work, we intend to compare the different methods of identification of
fuzzy measures. We also intend to improve our algorithm by comparing the different
procedures that exist in the literature for generating linear extensions.
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1 Departamento de Informática, University of Oviedo, Spain
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Abstract

Commutative semifields of dimension 4 over the center are considered. Prop-
erties of these objects are presented, and a computational based classification for
small orders is provided.

Key words: Finite semifield, Finite division ring, Projective planes

1 Introduction

The classification of finite nonassociative division rings (commonly known as finite
semifields [3]) is not only relevant from an algebraic point of view because of their
connections to projective semifield planes [11], coding theory [8, 9], combinatorics [7]
and graph theory [12].

A finite semifield (or finite division ring) D is a finite nonassociative ring with
identity such that the set D∗ = D \ {0} is closed under the product. In case it has no
identity it is known as a presemifield. The survey [10] provides a good introduction
to the topic together with a state of the art on the classification of these rings. In
particular, it is remarked the singular situation of odd characteristic: the number of
different semifields in such a characteristic is relatively small compared to the actual
number of different construction of this type of semifields. So, it seems that different
constructions yield the same semifields.

On the other hand, the classification of these objects is far from being an easy task.
Recent results on the classification of small semifields ([6, 13, 2]) show the existence
of a relatively big number of unknown semifields, that is, semifields which can not be
produced by any of the currently known constructions.

However, the situation in the case of commutative semifields of odd characteristic
is slightly better, since these semifields benefit from the connections to the theory of
planar functions [4].

We consider the concrete case of commutative semifields of dimension 4 over its
center. We study the properties of these objects in small orders, and we present a
computational based classification of them.
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2 Commutative semifields of odd order

In this section we collect some definitions and facts on finite semifields, presemifields
and planar functions (see, for instance [3, 11, 4, 5]).

We restrict ourselves to the particular case of a semifield D of dimension 4 over a
finite field Fq (q = pc, odd), which is contained in its associative-commutative center
Z(D). Other relevant subsets of a finite semifield are the left, right, and middle nuclei
(Nl, Nr, Nm), and the nucleus N which have to be field extensions Fqe (e ≤ 4).

Classification of presemifields is usually considered up to isotopy (since this cor-
responds to classification of the corresponding projective planes up to isomorphism):
If D1, D2 are two presemifields of order q4, an isotopy between D1 and D2 is a triple
(F, G, H) of bijective F3−linear maps D1 → D2 such that

H(ab) = F (a)G(b) , ∀a, b ∈ D1.

Any presemifield is isotopic to a finite semifield.
If B = [x1, . . . , x4] is a Fq-basis of a presemifield D, then there exists a unique set

of constants AD,B = {Ai1i2i3}4
i1,i2,i3=1 ⊆ Fq such that

xi1xi2 =
4∑

i3=1

Ai1i2i3xi3 ∀i1, i2 ∈ {1, . . . , 4}

This set of constants is known as cubical array or 3-cube corresponding to D with
respect to the basis B, and it completely determines the multiplication in D. If D is a
presemifield, and σ ∈ S3 (the symmetric group on the set {1, 2, 3}), then the set

Aσ
D,B = {Aiσ(1)iσ(2)iσ(3)

}4
i1,i2,i3=1 ⊆ Fq

is the 3-cube of a presemifield. Different choices of bases lead to isotopic presemifields.
Up to six projective planes can be constructed from a given finite semifield D using
the transformations of the group S3. So, the classification of finite semifields can be
reduced to the classification of the corresponding projective planes up to the action of
the group S3.

Commutative semifields of order q4 (q odd) can be easily constructed from certain
types of planar functions, induced by Dembowski-Ostrom (DO) polynomials.
A planar function is a map

f : Fq4 → Fq4

such that for all nonzero x ∈ Fq4 the difference mapping

∆f,x : Fq4 → Fq4 , y → f(x + y)− f(x)− f(y)

is bijective, i.e, induces a permutation of Fq4 . Also, it is called a DO polynomial in
case it has the form

f(x) =
3∑

i,j=0

ai,jx
qi+qj
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where ai,j ∈ Fq4 , i.e., if its q−weight is at most 2. The construction of a finite presemi-
field Df from one of such mappings f is as follows. Take (Df ,+) = (Fq4 ,+) and define
a multiplication by the following rule:

x ∗ y = ∆f,x(y)

Any finite presemifield of order q4 and center Fq ⊆ Z(D) is isotopic to one of these con-
structions and classification of presemifields up to isotopy is equivalent to classification
of the corresponding DO polynomials up to extended affine (EA) equivalence.

Two DO polynomials F, G : Fq4 → Fq4 are called EA-equivalent if G = A1 ◦
F ◦ A2 + A for some affine permutations A1, A2 : Fq4 → Fq4 and an affine mapping
A : Fq4 → Fq4 . In particular, the presemifield Df is isotopic to Fq4 if and only if f is
EA-equivalent to g(x) = x2, and it is isotopic to Albert’s twisted fields [1] if and only
if f is EA-equivalent to hr(x) = xqr+1 (r ∈ N).

3 4-dimensional commutative semifields of small order

With the help of computational tools and parallel processing we have achieved a com-
plete classification of commutative semifields of dimension 4 over its center Fp, for small
values of p.

Our results (which will be presented in full detail in the poster communication)
show that, for every order there exists two different isotopy classes of semifields, that
also correspond to different S3-classes. One of them is the class of the finite field Fp4 ,
where as the other corresponds to a non proper semifield of order p4.
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Abstract

In recent years, high-order methods have shown to be very useful in many
practical applications, in which nonlinear systems arise. In this case, a classical
method of positional astronomy have been modified in order to hold a nonlinear
system in its establishments (that in the classical method is reduced to a single
equation). At this point, high-order methods have been introduced in order to
estimate the solutions of this system and, then, determine the orbit of the celestial
body. We also have implemented a user friendly application, which will allow us to
make a numerical and graphical comparison of the different methods with reference
orbits, or user defined orbits.

Key words: orbit determination, Gauss method, nonlinear systems, Newton
method, iterative function, order of convergence, efficiency

1 Introduction

Orbit determination is an old problem with new applications: at the early XIX century,
Gauss designed a method to predict the future positions of asteroids, as Ceres, or other
celestial bodies of our solar system with elliptical orbits. Nowadays, orbit determination
methods are an essential tool in order to, by example, correct the position of artificial
satellites in their orbits. This kind of methods only determine preliminary orbits, as
the motion analyzed is under the premises of the two bodies problem, not taking into
account any other force than mutual gravitational attraction between both bodies.

The inertial system which the orbit is placed in is a geocentric system whose fun-
damental plane is the projection of the terrestrial equator to the celestial sphere, the
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perpendicular axis points to Celestial North and South Poles (NP and SP, respectively),
and the X axis points to the Vernal point γ, in Aries constellation. This is shown in
Figure 1.

Figure 1: Orientation elements in 3-dimensional coordinate system.

If we focus on the orbital plane, as we can see in Figure 2, it is possible to set a
two-dimensional coordinate system, where the X axis points to the perigee of the orbit,
the closest point of the elliptical orbit to the focus and center of the system, the Earth.
in order to place this orbit in the celestial sphere and determine completely the position
of a body in the orbit, some elements (called orbital or keplerian elements) must be
determined.

Then, the orbital elements are:

• Ω, (right ascension of the ascending node): defined as the equatorial angle between
the Vernal point γ and the ascending node N ; it orients the orbit in the equatorial
plane.

• ω, (argument of the perigee): defined as the angle of the orbital plane, centered
at the focus, between the ascending node N and the perigee of the orbit; it orients
the orbit in its plane.

• i, (inclination): Dihedral angle between the equatorial and the orbital planes.

• a, (semi-major axis): Which sets the size of the orbit.

• e, (eccentricity): Which gives the shape of the ellipse.

• T0, (perigee epoch): Time for the passing of the object over the perigee, to
determine a reference origin in time. It can be denoted by a exact date, in Julian
Days, or by the amount of time ago the object was over the perigee.
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Figure 2: Size, shape and anomalies in orbital plane 2-dimensional coordinate system.

Different methods have been developed for this purpose (see [1, 2, 3]), constitut-
ing a fundamental element in navigation control, tracking and supervision of artificial
satellites. By using these methods, from position and velocity coordinates for a given
time, it is possible to determine those orbital elements for the preliminary orbit, which
should be refined with later observations from ground stations, whose geographic coor-
dinates are already known. In order to get this aim, some angles (or anomalies) must
be determined on the planar orbit. Firstly, the object position in the ellipse can be
determined by an angle, the true anomaly (ν), with center on the focus of the ellipse,
which is the covered angle by a position vector, from its last perigee epoch (ν = 0), to
the observation instant. Another related angle with the previous one is the eccentric
anomaly (E), whose center is on the center of the ellipse. This is the covered angle by
a line from this center to the point where a circumference of radius a, the semi-major
axis, is cut by a perpendicular line to X axis passing by the coordinates of the position
vector, from its last Perigee epoch (E = 0) to the observation moment.

Using the Earth as the center of the coordinates system, it is useful to establish
related units: the distance unit is the Earth radius (e.r.), approximately 6370 Km, and
time unit is the minute, although some dates are described in Julian days (JD).

Now, some fundamental constants must be expressed in terms of these units, as
the Earth gravitational constant, k =

√
G ·mEarth = 0.07436574(e.r.)

3
2 /min, deduced

from the universal gravitational constant, G, and the Earth mass, mEarth, (see [2]). The
objects under study are very light compared with the Earth, like satellites orbiting our
planet, so it is possible to relate both body’s masses as the unit, µ = 1

mEarth
(mEarth +

mObject) ≈ 1. Then, modified time variable is introduced as

τ = k(t2 − t1), (1)

where t1 is an initial arbitrary time and t2 is the observation time. So, τ is considered
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here as a measure of time difference, which will simplify calculations.
To estimate the velocity we can make use of the closed forms of the f and g series

(see [2, 3]),
f = 1− a

|~r1| [1− cos (E2 − E1)] (2)

and

g = τ −
√

a3

µ
[(E2 − E1)− sin (E2 −E1)], (3)

so we can express the rate respect two positions vectors and time as

~̇r1 =
~r2 − f · ~r1

g
. (4)

So, it is clear that, known two position vectors and its corresponding observational
instants, the main objective of the different methods that determine preliminary orbits
is the calculation of the semi-major axis, a, and the eccentric anomalies difference,
E2 − E1. When they have been calculated, it is possible to obtain by (4) the velocity
vector corresponding to one of the known position vectors and, then, obtain the orbital
elements.

Most of these methods have something in common: the need for finding the solution
of a nonlinear equation or system, as in Gauss method. Usually, fixed point or secant
methods are employed.

From the available input data, two position vectors and times for the observations,
τ can be immediately deduced from equation (1), and other intermediate results as the
difference in true anomalies, (ν2 − ν1), deduced by:

cos (ν2 − ν1) =
~r1 · ~r2

|~r1| · |~r2| (5)

and
sin (ν2 − ν1) = ± x1y2 − x2y1

|x1y2 − x2y1|
√

1− cos2 (ν2 − ν1), (6)

with positive sign for direct orbits, and negative for retrograde orbits.
Once the difference of true anomalies is obtained from the position vectors and

times, the specific orbit determination method is used. In our particular case, we will
introduce in the following section the classical Gauss method and, thereafter, we will
modify it in order to estimate the value of the semi-major axis and eccentric anomalies
by means of high-order iterative methods.

Let us also note that the inverse problem, it is the calculation of ephemeris (position
an velocity in a given time) knowing the orbital elements, can be done easily, with direct
operations that can be found in related bibliography (see [1, 2, 3]).

2 Gauss method of orbit determination

This method calculate a preliminary orbit of a celestial body by means of only two
observations (position vectors). It is based on the relation between the areas of the
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Figure 3: Ratio sector to triangle, in Gauss method.

sector ABC and the triangle ABC, as Figure 3 illustrates, delimited by both position
vectors, ~r1 y ~r2, ratio sector- triangle

y =
√

µp · τ
r2r1 sin (ν2 − ν1)

=
√

µ · τ
2
√

a
√

r2r1 sin (E2−E1
2 ) cos (ν2−ν1

2 )
, (7)

(with (ν2 − ν1) 6= π), and on the first

y2 =
m

l + x
(8)

and second
y2(y − 1) = mX. (9)

Gauss equations, where the constants of the problem (based on the data and the pre-
viously made calculations by (4), (5) and (6)), are

l =
r2 + r1

4
√

r2r1 cos (ν2−ν1
2 )

− 1
2

(10)

and
m =

µτ2

[2
√

r2r1 cos (ν2−ν1
2 )]2

. (11)

Moreover, also must be determined in the process the value of:

x =
1
2

[
1− cos

(
E2 − E1

2

)]
= sin2

(
E2 − E1

4

)
(12)

and
X =

E2 − E1 − sin (E2 − E1)
sin3 (E2−E1

2 )
. (13)

With this equations we present two different schemes to solve the problem: the
classical method, which reduces first and second Gauss equations to a unique nonlinear
equation, solved by fixed point method, and the modified Gauss scheme, which solve
directly the nonlinear system formed by both Gauss equations.
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2.1 Classical Gauss method scheme

In the classical method, an only nonlinear equation is obtained by, substituting second
Gauss equation (8) into first equation (9):

y = 1 + X(l + x). (14)

Them a fixed-point scheme is used to estimate the solution of (14), making a first
estimation of the ratio , y0 = 1, and by using the first Gauss equation to get x0:

x0 =
m

y2
0

− l. (15)

From the definition of x in equation (12), it is possible to calculate cosine and
sine of the half difference of eccentric anomalies, which is known to be between 0 an π
radians, determining uniquely the difference of eccentric anomalies:

cos
(

E2 − E1

2

)
= 1− 2x0, (16)

then
sin

(
E2 −E1

2

)
= +

√
4x0(1− x0). (17)

Then, with equation (13), an estimation of X, X0, can be calculated and used in
the reduced nonlinear equation (14) in order to get a better estimation of the ratio:

y1 = 1 + X0(l + x0).

This iterative process gets new estimations of the ratio, until a given tolerance
condition is satisfied. If there is convergence, the semi-major axis a, can be calculated
by means of equation (7), from the last estimations of ratio and difference of eccentric
anomalies, and the last phase of the process is then initiated, to determine velocity and
orbital elements.

The Gauss method has some limitations, as the critical observation angles spread,
in ν2 − ν1 = π, where the denominator of equation (7) vanish. Moreover, it is known
that this method is only convergent to a coherent solution if the observation angles
spread is less than 70o, where this method has order of convergence 1. The ratio y
grows with spread, leading to an invalid solution, if it converge. So this method is
suitable for small spreads in observations, that is, observations which are close to each
other.

2.2 Modified Gauss schemes

It is possible to make a different approach to the problem, solving the nonlinear system
formed by both Gauss equations with different higher order iterative methods, instead
of solving a unique nonlinear equation, which have the ratio y as unknown.

Firstly, it is necessary to establish the nonlinear system to be solved. In this case
we can use the ratio u = y and the difference of eccentric anomalies, v = E2 − E1, as
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our unknowns, and substitute (12) and (13) in first an second Gauss equations, (8) and
(9), so the system F (u, v) = 0 becomes:

u2 +
u2

2

(
1− cos

v

2

)
−m = 0, (18)

u3 + u2 −m
v − sin v

sin3 v
2

= 0. (19)

Let us note that l and m are constants, with the input data, calculated with
equations (10) and (11). Moreover, it is easy to check that the jacobian matrix F ′(u, v)
associated to this system is ill-conditioned, so the iterative methods used to estimate
its solutions must be robust enough. General information about iterative methods to
solve nonlinear equations and systems can be found in [4].

Firstly, we will use Newton’s method. Then, new estimations of the solution can
be deduced with the following iterative scheme:

x(k+1) = x(k) − F ′(x(k))−1F (x(k)), (20)

with convergence order up to 2. Also the well-known Jarrat’s method (see [5]) will be
employed, with forth order of convergence and iterative expression:

x(k+1) = x(k) − 1
2
(3F ′(y(k))− F ′(x(k)))−1(3F ′(y(k)) + F ′(xk))F ′(x(k)))−1F (x(k) (21)

where y(k) = x(k) − 2
3F ′(x(k))−1F (x(k)).

Moreover, a new family of methods is introduced:

x(k+1) = y(k) −A−1BF ′(x(k))−1F (y(k)) (22)

where y(k) = x(k)−cF ′(x(k))−1F (x(k)), A = a1F
′(x(k))+a2F

′(y(k)) and B = b1F
′(x(k))+

b2F
′(y(k)) which will be denoted by N5 methods and whose convergence order will be

proved to be five for some values of the parameters.

Theorem 1 Let F : D ⊆ Rn −→ Rn be sufficiently differentiable at each point of an
open neighborhood D of x̄ ∈ Rn, that is a solution of the system F (x) = 0. Let us
suppose that F ′(x) is continuous and nonsingular in x̄. Then the sequence {x(k)}k≥0

obtained using the iterative expression (22) converges to x̄ with order 5 if c = 1, a2 6= 0,
a1 = −a2

5 , b1 = 3a2
5 and b2 = −a1.

In the last section, we will use a member of this family in order to compare the
precision of the calculated orbit with the other methods. In particular, we will take
a2 = 5 and its iterative expression is:

y(k) = x(k) − F ′(x(k))−1F (x(k)) (23)

x(k+1) = y(k) −
(
−F ′(x(k)) + 5F ′(y(k))

)−1 (
3F ′(x(k)) + F ′(y(k))

)
F ′(x(k))−1F (y(k)).
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Let us remark that this new uniparametric family of methods has better efficiency
index than the well-known Jarrat’s method and it is more efficient from the computa-
tional point of view, as it gets higher order of convergence with the same number of
operations and only one more functional evaluation. In order to measure the efficiency
of an iterative method, the efficiency index is defined as I = p1/d (see [6]), where p
is the order of convergence and d is the total number of new functional evaluations
(per iteration) required by the method. In the particular case of the modified Gauss
method, the size of the nonlinear system involved is two; then, the respective efficiency
indices are INewton = 1.1225, IJarrat = 1.1487 and IN5 = 1.1610. So, the new method
is specially appropriated to this problem.

All this Newton’s variants applied to the nonlinear system appearing in Gauss
method, (18), are expected to be at least so accurate as the classical scheme, but to
drastically reduce the number of iterations needed to find a solution to the problem, as
it will be seen later.

3 Comparing Gauss method schemes

Now, tests are needed to analyze the previously described schemes. For that purpose
a graphical application was developed with Matlab GUIDE (Graphical User Interface
Development Environment) to make graphical and numerical comparison. This pro-
gram, (see Figure 4) lets the user define or load reference positions vector and times
(in Julian Days) for two observations and, after setting the desired iterative method to
solve the nonlinear system, it determines the velocity vector in the first observation and
the orbital elements. Then, the orbit is plotted in both coordinate reference systems.
Some other information about iterates is also displayed in graphics and messages. It is
possible to choose other details, such as maximum number of iterations and the toler-
ance of the iterative scheme. It also lets the user to calculate ephemeris from reference
or user defined orbital elements and times. The schemes presented will work with 200
digits of mantissa as it uses variable precision arithmetics, so we can set more restrictive
tolerances.

The reference or test orbits we will use, found on [2], are:

• Test Orbit I:

~r1 = [2.46080928705339, 2.04052290636432, 0.14381905768815] e.r.
~r1 = [1.98804155574820, 2.50333354505224, 0.31455350605251] e.r.
t1 = 0JD t2 = 0.01044412000000 JD
Ω = 30o ω = 10o i = 15o a = 4e.r. e = 0.2 T0 = 0m

• Test Orbit II:

~r1 = [−1.75981065999937, 1.68112802634201, 1.16913429510899] e.r.
~r2 = [−2.23077219993536, 0.77453561301361, 1.34602197883025] e.r.
t1 = 0 JD t2 = 0.01527809000000 JD
Ω = 80o ω = 60o i = 30o a = 3 e.r. e = 0.1 T0 = 0m
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Figure 4: OrbitDet, software developed for testing.

• Test Orbit III:

~r1 = [0.41136206679761,−1.66250000000000, 0.82272413359522] e.r.
~r2 = [0.97756752977209,−1.64428006097667,−0.04236299091612] e.r.
t1 = 0 JD t2 = 0.01316924000000 JD
Ω = 120o ω = 150o i = 60o a = 2 e.r. e = 0.05 T0 = 0m,

• Test Orbit IV:

~r1 = [0.65241964490697, 3.80258035509303, 2.22750000000000] e.r.
~r2 = [−1.35626966531604, 2.95849708305651, 3.05100082701246] e.r.
t1 = 0 JD t2 = 0.04622903000563 JD
Ω = 45o ω = 45o i = 45o a = 4.5 e.r. e = 0.01 T0 = 0m

By using the first test positions vectors and times, we can first compare the number
of iterations and estimated accuracy of classical (C), Newton (N), Jarrat (J) and new
fifth-order (N5) schemes described in this paper with a2 = 5, described in (23). As we
can see in Table 1, with tolerance = 10−100, higher order methods reduce significantly
the number of iterations, getting even more accuracy than the classical scheme.
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Scheme Iterations ||x(k+1) − x(k)||
C 54 1.8364e-101
N 8 7.3258e-133
J 5 7.0e-200
N5 4 1.0658e-108

Table 1: Comparison of different Gauss method schemes for reference orbit I

Due to limitations in number of digits and format in observations data, and to the
last phase of calculations, some accuracy is lost, but it is hard to determine differences
in errors in the presented schemes. As far as results can be represented, errors in the
final results of the orbital elements, for classical Gauss method, are shown in Table 2,
where the exact orbit elements are compared with the calculated ones by means of the
classical method.

Errors C N J N5

|a′ − a| 3.3032e-070 e.r. 3.3032e-070 e.r.
|e′ − e| 6.6064e-071 6.6064e-071
|T′

0 −T0| 2.3162e-048 min 2.0726e-069 min
|i′ − i| 3.0000e-198o 4.0000e-198o

|ω′ − ω| 1.6900e-069o 1.6900e-069o

|Ω′ −Ω| 2.0000e-198o 1.0000e-198o

Table 2: Error in classical Gauss method for reference orbit I

Now we can compare the new schemes with the classical, seeing in Table 2 the
differences between the calculated orbital elements by the classical method and each
one of the modified methods. It can be observed that Jarrat’s and new fifth-order
methods obtain almost the same estimation of the solution than Newton’s method.
Nevertheless, the reduction in the number of iterations needed justifies the use of high-
order methods.

If we vary tolerance from 10−100 up to 10−498, we can compare in Table 3 how
number of iterations grows, making it clear that solving the nonlinear system, instead
of reducing it to a nonlinear equation, does not increase number of iterations so fast as
the classical scheme.

Finally, in Table 4, we can compare the number of iterations needed for different test
orbits with different spreads in observations SP = ν2−ν1, to realize that the limitation
of spread is still present, but overall process is made faster, not increasing iterations
to find a solution in worse cases, that is, with bigger difference of true anomalies in
observation.
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Scheme tol = 10−100 tol = 10−198 tol = 10−498

C 54 106 172
N 8 9 10
J 5 5 6
N5 4 5 5

Table 3: Iterations if varying tolerances, for reference orbit I

Test Orbit I Test Orbit II Test Orbit III Test Orbit IV
Scheme SP = 12.23o SP = 22.06o SP = 31.46o SP = 30.29o

C 54 76 101 99
N 8 8 8 8
J 5 5 5 5
N5 4 4 5 5

Table 4: Iterations needed for different spreads

4 Conclusion

A new approach to the problem of orbit determination is proposed, consisting in solving
directly a nonlinear system formed by both Gauss equations, by means of well known
iterative functions as Newton’s and Jarrat’s and a new method which have higher
convergence order.

In the test of these variants of the Gauss methods, it is seen that they can reduce
significantly the number of iterations, making the process faster, so it is possible to
use more limiting tolerances to improve accuracy, without increasing much more the
number of iterations. Some limitations of the classical scheme are still present in the
alternatives introduced in this paper, such as spread limitation in observations, that
is, the difference of true anomalies of observations. As the ratio y grows with spread,
bigger spreads mean more iterations to find a solution, but in the proposed modified
schemes this increment is very limited. If the difference is greater than 70o, the process
will probably lead to invalid solutions, which makes Gauss method suitable only for
observations that are close enough.
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Abstract

In the present paper, by approximating the derivatives in the well known order
Ostrowski’s method and in an sixth order improved Ostrowski’s method by central
difference quotients, we obtain new free from derivatives modifications of these
methods. We prove the important fact that the obtained methods preserve their
convergence orders four and six, respectively, without calculating any derivatives.
Finally numerical tests confirm the theoretical results and allow us to compare
these variants with the corresponding methods that make use of derivatives and
with classical Newton’s method.

Key words: Central approximation, Steffensen’s method, derivative free method,
convergence order

1 Introduction

In the last years, a lot of papers have developed the idea of removing derivatives from
the iteration function in order to avoid defining new functions as the first or second
derivative, and calculate iterates only by using the function that describes the problem,
obviously trying to preserve the convergence order. In this sense, in the literature of
nonlinear equations can be frequently found the expression “derivative free”, referring
in most cases to the second derivative (see [3, 4, 5]). The interest of these methods is
to be applied on nonlinear equations f(x) = 0, when there are many problems in order
to obtain and evaluate the derivatives involved.
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There are different methods for computing a zero of a nonlinear equation f(x) = 0,
the most known of these methods is the classical Newton’s method

xn+1 = xn − f(xn)
f ′(xn)

, n = 0, 1, . . . , (1)

that, under certain conditions, has quadratic convergence.
Newton’s method has been modified in a number of ways to avoid the use of

derivatives without affecting the order of convergence. For example, replacing in (1)
the first derivative by the forward approximation

f ′(xn) ≈ f(xn + f(xn))− f(xn)
f(xn)

,

Newton’s method becomes

xn+1 = xn − f(xn)2

f(xn + f(xn))− f(xn)
,

which is called Steffensen’s method [6]. This method has still quadratic convergence,
in spite of being derivative free.

When an iterative method is free from first derivative, authors refer to it as a
“Steffensen-like method”. Some of these methods use forward divided differences for
approximating the derivatives. For example, in [7] Pankaj Jain present a family of
Steffensen’s methods for solving nonlinear equations, with second and third order of
convergence. Other Steffensen-like method and its higher-order variants are presented
in [8] and a modified forward difference approximation is used in [9] in order to obtain
a third-order Steffensen’s method. Amat et al. in [10] considered a class of the general-
ized Steffensen iterations procedures for solving nonlinear equations on Banach spaces
without derivatives.

If we try to use the same strategy, forward-difference approximation, with the
fourth order Ostrowski’s method [11]

yn = xn − f(xn)
f ′(xn)

,

(2)

xn+1 = xn − f(xn)
f ′(xn)

f(yn)− f(xn)
2f(yn)− f(xn)

,

the order of convergence of the new method goes down to three. For this reason, we
have used central differences to replace the first derivative. Classical Newton method
has been modified in this sense in the paper of M. Dehghan and M. Hajarian [12].

Using central approximation in (2), we obtain a variant of Ostrowski’s method
that preserves the convergence order four and is derivative free. In the same way, using
central approximation to substitute the derivative in the sixth order method proposed
by M. Grau et al. in [13] as an improvement to Ostrowski root-finding method, which
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iteration is:

yn = xn − f(xn)
f ′(xn)

,

µn =
yn − xn

2f(yn)− f(xn)
, (3)

zn = yn − µnf(yn),
xn+1 = zn − µnf(zn),

we obtain a new method that preserves the sixth convergence order and is derivative
free.

The rest of this paper is organized as follows. In Section 2, we describe our free from
derivatives methods as a variants of Ostrowski’s method and the improved Ostrowski’s
method, respectively. In Section 3, we establish the convergence order of these methods.
Finally, in Section 4 different numerical tests confirm the theoretical results and allow us
to compare these variants with the corresponding methods that make use of derivatives
and with Newton’s method.

2 Description of the methods

In [12], Dehghan et al. approximate the derivative by a central differences quotient

f ′(xn) ' f(xn + f(xn))− f(xn − f(xn))
2f(xn)

,

obtaining a variant of Steffensen’s method that is of second order of convergence and
derivative free,

xn+1 = xn − 2f(xn)2

f(xn + f(xn))− f(xn − f(xn))
. (4)

By using this approximation in the fourth order Ostrowski’s method (2), we obtain
a new method free from derivatives, that we call modified Ostrowski’s method free from
derivatives (ODF):

yn = xn − 2f(xn)2

f(xn + f(xn))− f(xn − f(xn))
, (5)

xn+1 = xn − 2f(xn)2

f(xn + f(xn))− f(xn − f(xn))
f(yn)− f(xn)
2f(yn)− f(xn)

. (6)

In [13], Grau et al. propose an improvement of Ostrowski’s method (3) and prove
that it has sixth order of convergence. By approximating the derivative by central
difference quotients we obtain a new method free from derivatives, that we call improved
Ostrowski’s method free from derivatives (IODF):

yn = xn − 2f(xn)2

f(xn + f(xn))− f(xn − f(xn))
, (7)
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zn = yn − yn − xn

2f(yn)− f(xn)
f(yn), (8)

xn+1 = zn − yn − xn

2f(yn)− f(xn)
f(zn). (9)

3 Convergence of the methods

In this section we analyze the order of convergence of the methods described previously.

Theorem 1 Let α ∈ I be a simple zero of a sufficiently differentiable function f :
I ⊆ R −→ R in an open interval I. If x0 is sufficiently close to α, then the modified
Ostrowski’s method free from derivatives defined by (5) and (6) has order of convergence
four.

Proof: Let en = xn − α. The Taylor series of f(xn) about α is:

f(xn) = c1en + c2e
2
n + c3e

3
n + c4e

4
n + O(e5

n), (10)

where ck =
f (k)(α)

k!
, k = 1, 2, . . .

Computing the Taylor series of f(xn + f(xn)) and substituting f(xn) by (10) we have

f(xn + f(xn)) =
= c1(1 + c1)en + (c1c2 + (1 + c1)2c2)e2

n + (2(1 + c1)c2
2 + c1c3 + (1 + c1)3c3)e3

n +
+(3(1 + c1)2c2c3 + c2(c2

2 + 2(1 + c1)c3) + c1c4 + (1 + c1)4c4)e4
n + O(e5

n). (11)

Analogously, the Taylor series of f(xn − f(xn)) is:

f(xn − f(xn)) =
= (1− c1)c1en + ((1− c1)2c2 − c1c2)e2

n + (−2(1− c1)c2
2 + (1− c1)3c3 − c1c3)e3

n +
+(−3(1− c1)2c2c3 + c2(c2

2 − 2(1− c1)c3) + (1− c1)4c4 − c1c4)e4
n + O(e5

n). (12)

Then, the quotient in (5) is:

2f(xn)2

f(xn + f(xn))− f(xn − f(xn))
= en − c2e

2
n

c1
+

(2c2
2 − c1(2 + c2

1)c3)e3
n

c2
1

+

+
(
− 4c3

2

c3
1 + c2c3

+
7c2

c3
c2
1 −

3c4

c1 − 4c1c4

)
e4
n + O(e5

n). (13)

We obtain yn − α taking into account (13)

yn − α = en − 2f(xn)2

f(xn + f(xn))− f(xn − f(xn))
=

=
c2e

2
n

c1
− (2c2

2 − c1(2 + c2
1)c3)e3

n

c2
1

+

+
(

4c3
2

c3
1 − c2c3

− 7c2c3

c2
1

+
3c4

c1 + 4c1c4

)
e4
n + O(e5

n). (14)
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Now, substituting (14) in the Taylor series of f(yn), we have

f(yn) = c2e
2
n −

(2c2
2 − c1(2 + c2

1)c3)e3
n

c1
+

+
(

c3
2

c2
1

+ c1

(
4c3

2

c3
1 − c2c3

− 7c2c3

c2
1

+
3c4

c1 + 4c1c4

))
e4
n + O(e5

n). (15)

From (10) and (15) we obtain

f(yn)− f(xn) = −c1en +
(
−c3 − 2c2

2 − c1(2 + c2
1)c3

c1

)
e3
n +

+
(

c3
2

c2
1 − c4 + c1

(
4c3

2

c3
1 − c2c3

− 7c2c3

c2
1

+
3c4

c1 + 4c1c4

))
e4
n + O(e5

n). (16)

and
2f(yn)− f(xn) = −c1en + c2e

2
n +

(
−c3 − 2(2c2

2 − c1(2 + c2
1)c3)

c1

)
e3
n+

+
(
−c4 + 2

(
c3
2

c2
1

+ c1

(
4c3

2

c3
1

− c2c3 − 7c2c3

c2
1

+
3c4

c1
+ 4c1c4

)))
e4
n + O(e5

n). (17)

Taking into account (13), (16) and (17), we finally obtain

en+1 = −c2

(
−c2

2

c3
1

+ c3 +
c3

c2
1

)
e4
n + O(e5

n). (18)

This proves that the method is of fourth order. ¤

Theorem 2 Let α ∈ I be a simple zero of sufficiently differentiable function f : I ⊆
R −→ R in an open interval I. If x0 is sufficiently close to α, then the improved
Ostrowsky’s method free from derivatives defined by (7) -(9) has order of convergence
six.

Proof: Let en = xn − α. The Taylor series of f(xn) about α is:

f(xn) = c1en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + O(e7

n), (19)

where ck =
f (k)(α)

k!
, k = 1, 2, . . .

Computing the Taylor series of f(xn + f(xn)) and substituting f(xn) by (19) we have

f(xn + f(xn)) = c1(1 + c1)en +
(
c1 + (1 + c1)2

)
c2e

2
n +

+
(
2(1 + c1)c2

2 + c1c3 + (1 + c1)3c3

)
e3
n +

+
(
3(1 + c1)2c2c3 + c2

(
c2
2 + 2(1 + c1)c3

)
+

+ c1c4 + (1 + c1)4c4

)
e4
n +

+
(
3(1 + c1)c3

(
c2
2 + c3 + c1c3

)
+ 4(1 + c1)3c2c4+
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+ 2c2(c2c3 + c4 + c1c4) + c1c5 + (1 + c1)5c5

)
e5
n +

+
(
2(1 + c1)2

(
3c2

2 + 2(1 + c1)c3

)
c4+

+ c3

(
c3
2 + 6(1 + c1)c2c3 + 3(1 + c1)2c4

)
+

+ 5(1 + c1)4c2c5 + c2

(
c2
3 + 2(c2c4 + c5 + c1c5)

)
+

+ c1c6 + (1 + c1)6c6

)
e6
n + O(e7

n). (20)

The Taylor series of f(xn − f(xn)) is:

f(xn − f(xn)) = −(−1 + c1)c1en +
(
1− 3c1 + c2

1

)
c2e

2
n +

+
(
2(−1 + c1)c2

2 − (−1 + c1)3c3 − c1c3

)
e3
n +

+
(−3(−1 + c1)2c2c3 + c2

(
c2
2 + 2(−1 + c1)c3

)
+

+ (−1 + c1)4c4 − c1c4

)
e4
n +

+
(−3(−1 + c1)c3

(
c2
2 + (−1 + c1)c3

)
+ 4(−1 + c1)3c2c4+

+ 2c2(c2c3 + (−1 + c1)c4)− (−1 + c1)5c5 − c1c5

)
e5
n +

+
(−c3

2c3 + 2
(
4− 6c1 + 3c2

1

)
c2
2c4+

+(−1 + c1)2(−7 + 4c1)c3c4 + c2

(
(7− 6c1)c2

3+
+

(−7 + 22c1 − 30c2
1 + 20c3

1 − 5c4
1

)
c5

)
+

+
(
1− 7c1 + 15c2

1 − 20c3
1 + 15c4

1 − 6c5
1 + c6

1

)
c6

)
e6
n + O(e7

n).
(21)

Substituting (20) and (21) in (7), gives us

yn − α = xn − α− 2f(xn)2

f(xn + f(xn))− f(xn − f(xn))
=

= en − 2f(xn)2

f(xn + f(xn))− f(xn − f(xn))
=

=
c2e

2
n

c1
−

(
2c2

2 − c1

(
2 + c2

1

)
c3

)
e3
n

c2
1

+

+
(

4c3
2

c3
1

− c2c3 − 7c2c3

c2
1

+
3c4

c1
+ 4c1c4

)
e4
n −

− 1
c4
1

(
8c4

2 − c1

(
20 + 3c2

1

)
c2
2c3 + 2c2

1

(
5 + 2c2

1

)
c2c4+

+ c2
1

((
6 + 3c2

1 + c4
1

)
c2
3 − c1

(
4 + 10c2

1 + c4
1

)
c5

))
e5
n −

− 1
c5
1

(−16c5
2 + c1

(
52 + 7c2

1

)
c3
2c3 − 4c2

1

(
7 + 3c2

1

)
c2
2c4−

− c2
1c2

((
33 + 12c2

1 + c4
1

)
c2
3 + c1

(−13− 10c2
1 + c4

1

)
c5

)
+

+ c3
1

((
17 + 17c2

1 + 8c4
1

)
c3c4−

− c1

(
5 + 20c2

1 + 6c4
1

)
c6

))
e6
n + O(e7

n). (22)
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Now, substituting (22) in the Taylor series of f(yn) we have

f(yn) = c2e
2
n +

(
−2c2

2

c1
+ 2c3 + c2

1c3

)
e3
n +

+
(

5c3
2

c2
1

− 7c2c3

c1
− c1c2c3 + 3c4 + 4c2

1c4

)
e4
n +

+
1
c3
1

(−12c4
2 + c1

(
24 + 5c2

1

)
c2
2c3 − 2c2

1

(
5 + 2c2

1

)
c2c4+

+ c2
1

(− (
6 + 3c2

1 + c4
1

)
c2
3 + c1

(
4 + 10c2

1 + c4
1

)
c5

))
e5
n +

+
1
c4
1

(
28c5

2 − c1

(
73 + 13c2

1

)
c3
2c3 + 2c2

1

(
17 + 10c2

1

)
c2
2c4+

+ c2
1c2

((
37 + 16c2

1 + 2c4
1

)
c2
3 + c1

(−13− 10c2
1 + c4

1

)
c5

)
+

+ c3
1

(− (
17 + 17c2

1 + 8c4
1

)
c3c4+

+ c1

(
5 + 20c2

1 + 6c4
1

)
c6

))
e6
n + O(e7

n). (23)

Using (19), (22) and (23) into (8), gives

zn − α = yn − µnf(yn) =
c2

(
c2
2 − c1

(
1 + c2

1

)
c3

)
e4
n

c3
1

−

−
(
4c4

2 − 2c1

(
4 + c2

1

)
c2
2c3 + c2

1

(
2 + 3c2

1 + c4
1

)
c2
3 + 2c2

1

(
1 + 2c2

1

)
c2c4

)
e5
n

c4
1

−

− 1
c5
1

(−10c5
2 + 2c1

(
15 + 2c2

1

)
c3
2c3 − 4c2

1

(
3 + 2c2

1

)
c2
2c4 + c3

1

(
7 + 17c2

1 + 8c4
1

)
c3c4+

+ c2
1c2

((−18− 8c2
1 + c4

1

)
c2
3 + c1

(
3 + 10c2

1 + c4
1

)
c5

))
e6
n + O(e7

n) (24)

and substituting (24) in the Taylor series of f (zn) we have

f(zn) =
c2

(
c2
2 − c1

(
1 + c2

1

)
c3

)
e4
n

c2
1

−

−
(
4c4

2 − 2c1

(
4 + c2

1

)
c2
2c3 + c2

1

(
2 + 3c2

1 + c4
1

)
c2
3 + 2c2

1

(
1 + 2c2

1

)
c2c4

)
e5
n

c3
1

−

− 1
c4
1

(−10c5
2 + 2c1

(
15 + 2c2

1

)
c3
2c3 − 4c2

1

(
3 + 2c2

1

)
c2
2c4 + c3

1

(
7 + 17c2

1 + 8c4
1

)
c3c4+

+ c2
1c2

((−18− 8c2
1 + c4

1

)
c2
3 + c1

(
3 + 10c2

1 + c4
1

)
c5

))
e6
n + O(e7

n). (25)

Taking into account (24) and (25), we finally obtain

en+1 = zn − α− µnf(zn) =(−2c2
2 + c1

(
1 + c2

1

)
c3

) (−c3
2 + c1

(
1 + c2

1

)
c2c3

)

c5
1

e6
n + O(e7

n). (26)

This proves that the method is of sixth order. ¤
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4 Numerical results

In this section we check the effectiveness of the new methods ODF and IODF applied
to the solution of several nonlinear equations. We use equations (a) to (j) to compare
the obtained methods with their counterparts that make use of derivatives, that is,
Ostrowski’s method (OM) and improved Ostrowski’s method (IOM) and the classical
Newton’s method (NM).

(a) f(x) = sin2 x− x2 + 1, α = 1.404492,

(b) f(x) = x2 − ex − 3x + 2, α = 0.257530,

(c) f(x) = cos x− x, α = 0.739085,

(d) f(x) = (x− 1)3 − 1, α = 2,

(e) f(x) = x3 − 10, α = 2.154435,

(f) f(x) = cos(x)− xex + x2, α = 0.639154,

(g) f(x) = ex − 1.5− arctan(x), α = 0.767653,

(h) f(x) = x3 + 4x2 − 10, α = 1.365230,

(i) f(x) = 8x− cos(x)− 2x2, α = 0.128077,

(j) f(x) = arctan(x), α = 0,

Numerical computations have been carried out using variable precision arithmetics
with 256 digits in MATLAB 7.1. The stopping criterion used is |xk+1 − xk|+ |f(xk)| <
10−100, therefore, we check that the iterates succession converge to an approximation
to the solution of the nonlinear equation. For every method, we count the number of
iterations needed to reach the wished tolerance and estimate the computational order
of convergence p, according to (see [14])

ln(|xk+1 − xk| / |xk − xk−1|)
ln(|xk − xk−1| / |xk−1 − xk−2|) . (27)

The value of p that appears in Table 1 is the last coordinate of vector p when the
variation between its values is small. A comparison between methods using derivatives
and derivative free methods can be established. The behavior of the new methods is
similar to the classical ones of the same order of convergence, as theoretical results show.
It can be observed that new methods need more iterations than their partenaires, in
some cases, but when the initial estimation is not good and methods using derivatives
diverge, derivative free methods ODF and IODF converge quickly.
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f(x) x0 Iterations p
NM OM IOM ODF IODF NM OM IOM ODF IODF

a) 1 9 5 5 5 5 2.00 4.00 6.00 4.00 6.00
b) 0.7 7 5 4 5 6 2.00 4.00 6.00 4.00 5.99
c) 1 8 5 4 5 5 2.00 4.00 6.00 3.80 6.00
d) 1.5 11 6 5 6 6 2.00 4.00 6.00 4.00 6.00
e) 2 8 5 4 5 6 2.00 4.00 6.00 4.00 5.99
f) 1 9 5 4 6 NC 2.00 4.00 6.00 4.00 -
g) 1 9 5 4 5 5 2.00 4.00 6.00 4.00 6.00
h) 1.5 8 5 4 6 6 2.00 4.00 6.00 4.00 6.01
i) 1 9 5 4 5 6 2.00 4.00 6.00 4.00 5.99
j) 1 8 5 5 5 5 3.00 5.00 7.00 5.00 7.00
j) 2.5 NC NC 5 8 6 - - 7.00 5.00 7.00

Table 1: Numerical results for nonlinear equations from (a) to (j)

5 Conclusions

We have used central quotient difference approximations for the first derivative in
Ostrowski’s method, that has order of convergence four and in a improved version
of Ostrowski’s method with sixth order of convergence, obtaining two new iterative
methods for nonlinear equations free from derivatives and we have proven that they
preserve their convergence order. The theoretical results have been checked with some
numerical examples, comparing our algorithms with a modified Newton’s method free
from derivative and with the corresponding methods that make use of derivatives.
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Abstract

This work has mainly methodical purposes. Although the ideal presentations
of the codes that we consider here appeared in [1, 2, 3] long ago, we give different
presentation of these ideals. We also show that Reed–Muller codes are connected
in some sense with Reed–Solomon codes by means of the trace function.

Key words: Reed–Solomon codes, Reed–Muller codes, group rings, trace function

1 Reed-Solomon codes as group codes

Let p be a prime, Q = Fpl a field of q = pl > 2 elements and 1 its unit element. Let
(H, ·) be a p-elementary abelian group of order q. The identity element of H (that is
also identity element of the group ring QH) will be denoted by e.

The following representation of Reed-Solomon codes as group codes plays a key
role in our approach.

For a given isomorphism of abelian groups ϕ : (H, ·) → (Q,+) we consider the
following elements

us =
∑
h∈H

ϕ(h)sh ∈ QH, s = 0, . . . , q − 2. (1.1)

Theorem 1.1 For every i, 1 ≤ i ≤ q − 1 the subspace

Ri = Qu0 + . . .+Qui−1 ≤ QQH (1.2)

is a Reed-Solomon [q, i, q + 1− i]q-MDS code and an ideal in QH. In particular

Rq−1 = ∆(QH). (1.3)
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It is well known that the code dual to a Reed–Solomon [q, i, q + 1 − i]q-code is
itself a Reed–Solomon [q, q − i, i + 1]q-code. A similar relation remains valid in ring
theoretic terms.

Theorem 1.2 For every i ∈ 1, q − 1 the equality

AnnS (Ri) = Rq−i (1.4)

holds.

2 Basic Reed–Muller codes

Let now P be a subfield of order π in Q, q = πm. For any i ∈ 0, q − 1 let wπ(i) be the
π-weight of i, i.e.

wπ(i) = i0(π) + i1(π) + ...+ im−1(π), (2.1)

where

i = i0(π) + i1(π)π + ...+ im−1(π)πm−1, i0(π), ..., im−1(π) ∈ 0, π − 1 (2.2)

is a π-adic decomposition of i. Keeping the notation of (1.1) define the basic Reed–
Muller code of order k as

Mπ(m, k) =
∑

i∈0,q−1, wπ(i)≤k

Qui. (2.3)

Then Mπ(m, k) is a linear code of dimension Mπ(m, k) over Q, where

Mπ(m, k) =
k∑
r=0

{m
r

}
π
, (2.4)

{m
r

}
π

=
∑
j≤0

(−1)j
(
m

j

)(
m+ k − πj − 1

r − πj

)
. (2.5)

Theorem 2.1 For every k ∈ 0, (π − 1)m the code Mπ(m, k) is an ideal in QH.

Note that if k = (π− 1)m then Mπ(m, k) = πm = q and Mπ(m, k) = QH, so this case
is trivial.

3 Extended Reed–Muller codes

Let k < (π− 1)m and take a primitive element ϑ of the field Q. Consider a polynomial

Gk(x) =
∏

i∈0,q−1, wπ(i)≤k

(x− ϑi). (3.1)
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Then Gk(x) is a polynomial over P and its degree is Mπ(m, k). Let LP (Gk(x)) be the
set of all linear recurring sequences (LRS) over P with characteristic polynomial Gk(x).
It is well known [4], that the set L0,q−2

P (Gk(x)) of all initial segments

u[ 0, q − 2 ] = (u(0), ..., u(q − 2))

of sequences u ∈ LP (Gk(x)) is the cyclic Reed–Muller [q − 1,Mπ(m, k), dπ(m, k)]π-code.
The distance of this code is defined as follows:

dπ(m, k) = (ρ+ 1)πκ − 1,

where κ and ρ are respectively the integer ratio and remainder of m(π− 1)−k modulo
π − 1: m(π − 1)− k = κ(π − 1) + ρ, 0 ≤ ρ < π − 1. Adding parity check to this code
gives a [q,Mπ(m, k), dπ(m, k) + 1]π-code called the extended Reed–Muller code.

We show how this code is presented as an ideal in the group ring PH.
Let tr = trQP be the trace function from the field Q to the field P and Tr = TrQHPH

its natural extension to group rings.

Theorem 3.1 The image

RMπ(m, k) = Tr(Mπ(m, k)) C PH

of the idealM(m, k)CQH is the extended Reed–Muller [q,Mπ(m, k), dπ(m, k)+1]π-code
over the field P .

Note again that if k = (π − 1)m then RMπ(m, k) = PH is a trivial extended
Reed–Muller [q, q, 1]π-code.
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Abstract

The concept of multilevel network and some structural tools are presented in
order to analyze heterogeneous-type social networks and to show that this model
fits perfectly with several real-life heterogeneous-type complex systems, including
social systems and public transportation networks.

Key words: Complex networks, multi-scaled networks, hyper-networks, struc-
tural properties.

1 An overview of multi-scaled complex networks

The study of structural properties of complex networks is an attractive and fascinating
branch of research in applied mathematics, sociology (social networks, acquaintances
or collaborations between individuals), science (metabolic and protein networks, neural
networks, genetic regulatory networks, protein folding) and engineering (phone call
networks, computers in telecommunication networks, Internet, the World Wide Web)
(see, for example, [1], [2], [5] or [12] and the references therein).

The wide range of systems in the real world which can be modeled by complex
networks share behavioral and structural properties, and they can be studied by using
non-linear mathematical models and computer modeling approaches (see, for example,
[5], [10] and [13]).

Social networks analysis is used in the social and behavioral sciences, as well as
in economics, marketing, and industrial engineering ([13]), but some questions related
to the structure of social networks have been not understood properly. Starting from
the fact that a social network can be understood as a set of people or groups of people
with some pattern of contacts or interactions between them ([11],[13]), a first and naive
approach to social networks such as Facebook or Linkedin networks can give us the
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impression that all the connections or social relationships between the members of
those networks take place at the same level. But the real situation is far from this.
The real relationships amongst the members of a social network take place inside of
different groups.

In this note we will analyze in a non exhaustive way how to combine these different
levels into a multilevel mathematical model. For example, if we want to model how
a rumour is spread within a social network, it is necessary to have in mind that, on
one hand, different groups are linked only through some of their members and, on the
other hand, two people who know the same person don’t have necessarily to know each
other.

From a schematic point of view, a complex network is a mathematical object
G = (V, E) composed by a set of nodes or vertices V = {v1 . . . , vn} that are pairwise
joined by links or edges {`1, . . . , `m}. We consider the adjacency matrix A(G) = (aij)
determined by the conditions

aij =
{

1 if {vi, vj} ∈ E,
0 otherwise.

Hyper-graphs appeared as the natural extensions of graphs (see, for example [4] and
[7]). They are used in many applications to represent different concepts that graphs
cannot do. For example, ordinary graphs in Chemistry do not adequately describe
chemical compounds of nonclassical structure ([9]). A substantial drawback of the
structure theory is the lack of a convenient representation for molecules with delocalized
polycentric bonds. By using hyper-graphs, the defects of the structure representation
are eliminated.

Let X = {v1, v2, . . . , vn} be a finite set. A hyper-graph on X ([4], [7]) is a family
H = (E1, E2, . . . , Em) of subsets of X such that:

(i) Ei 6= ∅ (i = 1, 2, . . . , m).

(ii)
m⋃

i=1

Ei = X.

A simple hyper-graph is a hyper-graph H = (E1, E2, . . . , Em) such that

Ei ⊆ Ej ⇒ i = j.

The elements v1, v2, . . . , vn of X are called vertices, or nodes and the sets E1, E2, . . . , Em

are the hyper-edges or the hyperlinks of the hyper-graph. We say that a vertex vi is
incident to edge Ej if vi ∈ Ej .

Two vertices are adjacent if there is a hyper-edge Ei that contains both of these
vertices. The degree of vertex vi is the cardinality of the set of all hyperedges incident
to vertex vi and is denoted by dH(vi). The degree of edge Ej is the cardinality of the
set of all vertices incident to the edge Ej . A simple graph is a simple hyper-graph each
of whose edges has cardinality 2; a multigraph is a hyper-graph in which each edge has
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cardinality ≤ 2. A hyper-graph in which all vertices have the same degree is said to be
regular. The maximum degree of the hyper-graph H will be denoted by

∆(H) = max
v∈X

dH(v).

We can define a finite hyper-graph by its incidence matrix. The incidence matrix
B = (bij) is defined by

bij =
{

1 if vi ∈ Ej ,
0 otherwise.

with columns representing the edges E1, E2, . . . , Em and rows representing the vertices
v1, v2, . . . , vn. The adjacency matrix, A(H) = (aij), of the hyper-graph H is a square
symmetric matrix whose entries aij are the number of hyper-edges that contain both
vertices vi and vj , that is

aij =
{

0 if i = j
|{Ek ∈ E : {vi, vj} ⊂ Ek}| , if i 6= i.

If we denote by D the diagonal matrix whose entries are the degrees of the vertices,
then A(H) = B(H) · B(H)T −D(H). A(H) can be regarded as the adjacency matrix
of a multigraph. We have to notice that the adjacency matrix of a hyper-graph does
not inform about the hyper-edges, hence it is not as useful as the incidence matrix.

But, as we can see, the concept of hyper-graph does not fit for modeling different
levels in social networks, since this model is only sensitive in a global way to the different
social groups, i.e., for each node it only takes into a ccount which social groups it
belongs, and not the actual relationships between the nodes or members belonging to
the same group.

In order to avoid this drawback, the concept of hyper-structure was introduced in
[6] since it represents special properties that cannot be regarded only in terms of graphs
or hyper-graphs. If G = (X,E) is a graph with n vertices and m edges, a hyper-graph
H for this graph G is a family H = (E1, E2, . . . , Ek) of subsets of X. Then, a hyper-
structure S = (X,E, H) is a triple formed by the vertex set X, the edge set E and the
hyper-edge set H.

Note that not every pair of vertices in the same hyper-edge has to be joined by
and edge or a link. So, we can have two or more vertices belonging to the same hyper-
edge but with no links (in terms of graph structure) between them. This makes the
difference with the hyper-network approach of [8], where every vertex belonging to a
hyper-edge is linked to all the vertices of that hyper-edge. But this approach is not
adequated for modelling social networks either, because, in fact, not only the members
(or nodes) belongs to a specific social group but also the links between them are part of
a specific social group. If we give colours to our represention, we have to color not only
the nodes (the members of the group) but also the edges (the links between them).

2 Mathematical Model and structural analysis

As we pointed out in the previous section, a sort of naive approach to heterogeneous-
type complex systems could suggest that hyper-networks and hyper-structures fit per-
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fectly to these real-life systems. The key-point that makes these mathematical model
not to be the best solution for heterogeneous-type systems has to do with the fact
that either hyper-networks and hyper-structures are node-based models, while many
real systems combine a node-based point of view with a link-based perspective. For
example, if we have a look again at an heterogeneous-type social network, when we
consider a relationship between two members of one social group(or several), we have
to take into account not only the social groups that hold the members, but also the
social group that holds the relationship itself, i.e., if, for example, there is a relationship
between two people that share the same working group and the same sport group, we
have to highlight if the relationship is due to share the same group of work or it has
sport nature. This fact is not particular of heterogeneous-type social networks and a
similar situation occurs, for example, in public transportation systems, where a link
between two stations belonging to several transport lines can occur as a part of different
lines.

In order to avoid this node-based nature of hyper-networks and hyper-structures,
we propose to introduce the following concept that combines the node-based with the
link-based perspective:

Definition 2.1 Let G = (X, E) be a (simple, directed or un-directed) network. A
multilevel network is a triple M = (X,E,S), where S = {S1, . . . , Sk} is a family of
subgraphs of G.

The network G is the projection network of M and each subgraph Sj ∈ S is
called a slice of the multilevel network M .

This mathematical model perfectly suits heterogeneous-type social systems as well
as other heterogeneous-type complex systems, since each social group can be understood
as a slice graph in a multilevel network and therefore we simultaneously take into
account the nature of the links (i.e. relationships) and the nodes involved.

It is easy to check that this new mathematical object extends both, the classic
complex network model and also the hyper-network model [4]. Let us point it out very
briefly. On the one hand, if G = (X,E) is a network, then it can be understood as a
multilevel network by considering M = (X, E,S), where S = {G}.

On the other hand if H = (X, H) is an hyper-network (i.e. X is a finite set of
nodes and H = {H1, . . . , Hk} is a family of finite subsets of X, each of them called and
hyper-link of H), then it can be seen as the multilevel set M = (X,EH,SH), given by

SH = {KH1 , . . . , KHk
},

where KHj is the complete network obtained by linking every pair of nodes of Hj and

EH =
k⋃

j=1

KHj .

By using similar argument we can show that every hyper-structure [6] can be understood
as a particular multilevel network, by considering one slice network for each hyper-link
in the hyper-structure and each slice graph being a set of isolated nodes.
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Once we have introduced this new and novel mathematical object, we have to give
suitable structural parameters to analyze it. We can give natural extensions of many of
the usual tools of the complex networks’ analysis, such as the clustering coefficient, an
adjacency matrix/tensor, a natural network representation as a tripartite network or a
geodesic structure, among many others. For example, if we want to introduce metric
tools in a multilevel network M = (X,E,S), we first have to give the notion of path and
length. A path P in M = (X, E,S) is a set of the form P = {(`1, · · · , `q), (S1, · · · , Sq)}
such that

(i) (`1, · · · , `q) is a sequence of links `1, · · · , `q ∈ E,

(ii) (S1, · · · , Sq) is a sequence of slice graphs S1, · · · , Sq ∈ S,

(iii) For every 1 ≤ j ≤ q, we have that `j ∈ Sj , i.e. `j is an edge in the slice graph Sj .

By using this concept we can introduce a metric structure in a multilevel graph M =
(X,E,S) as follows.

Definition 2.2 Let M = (X, E,S) be a multilevel network, β ≥ 0 fixed and P =
{(`1, · · · , `q), (S1, · · · , Sq)} be a path in M . The length of P is the nonnegative value

L(P ) = q + β

q∑

j=2

∆(j),

where
∆(j) =

{
1 if Sj 6= Sj−1,
0 otherwhise.

The distance in M between two nodes v1, v2 ∈ X is the minimal length among all
possible paths in M from v1 to v2.

If we take β = 0, the previous definition gives the natural metric in the projection
graph (under some constraints), while if β 6= 0, we introduce new metrics that take into
account, not only the global structure of the projection network, but also the interplay
between the slice networks, that helps to model the multi-scale nature of real-life social
networks.

In this work we introduce this type of parameters and many other structural tools
for analyzing multilevel networks and we present some relationships between them and
the corresponding parameters of the projection and slice networks. The analytical
results obtained will support the validity of this model in real life heterogeneous-type
complex systems, including social systems and public transport networks.
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Abstract

The theory and tools of Complex Networks have been few applied to Image
Analysis and Computer Vision problems. This paper presents a new application
for detecting interest points in digital images. We associate a spatial and weighted
complex network to each image and propose two different methods for locating
these feature points based on both local and global (spectral) centrality measures
of the corresponding network.

Key words: Interest Points, Feature Detection, Image Analysis, Computer Vi-
sion, Geometrical Networks

1 Introduction

Feature detection is an essential stage in many Image Analysis and Computer Vision
systems [2]. Some of the most low-level features to be detected in an image are the
specific positions of some distinguishable points like corners. Interest points are a set of
pixels in an image which are characterized by a mathematically well-founded definition
[6]. These keypoints (usually, the corners which appear at the intersection of two or
more image edges) present some interesting properties [7]: in particular, they have
a clearly defined position in the image space, they are rich in terms of information
content, and they are also stable on local and global changes in the image domain.
These point variations are mainly due to image perspective transformations (i.e. scale
changes, image rotations or translations) or due to illumination changes. Interest points
are commonly used as local features in many image applications like content-based
image retrieval or object recognition. In particular, the corresponding feature points
in overlapping images can be matched among them using stereo vision techniques for
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3D image reconstruction. Moreover, these feature points can also be good indicators
of object boundaries and occlusion events in image sequences.

Some of the most known interest point detectors are: Moravec algorithm, Har-
ris and Stephens algorithm, multi-scale Harris operator, SUSAN detector, genetic-
programming algorithms, and affine-adapted interest point operators, among others.
[11] Moravec algorithm (1980) was one of the first proposed algorithms and it defines
the corner strength of a point as the smallest sum of squared differences (SSD) between
the point patch and its neighbors patches (horizontal, vertical and on the two diago-
nals). The Harris and Stephens detector computes the locally averaged moment matrix
using the image gradients, and then combines the eigenvalues of the moment matrix to
compute each corner “strength”. Multi-scale Harris detector works at different scales to
produce a more robust detector which responds to interest points of varying sizes in the
image domain. The SUSAN operator (acronym for Smallest Univalue Segment Assim-
ilating Nucleus) is highly robust to noise and it finds corners based on the fraction of
pixels that are similar to the center pixel within a small circular region. Some authors
[12] have introduced genetic programming (GP) methods to automatically synthesize
image operators aimed to find the interest points in an image. These GP operators use
fitness functions which measure the stability of the operators through the repeatability
rate, and also promote the uniform dispersion of detected points. Finally, detector
which add robustness to perspective transformations has also been proposed [7]. These
affine invariant interest points can be obtained through an affine shape adaptation pro-
cess where the shape of a smoothing kernel is iteratively warped to match the local
image structure around the interest point. Schmid et al [8] have proposed different
techniques to compare the interest point detectors.

The purpose of this work is to introduce a novel approach to computing the interest
points of an image by using complex network analysis. We associate a weighted geo-
metrical and fast-computable complex network to each image that gives some valuable
information about the location of the interest points and we can rank the regions of
an image according to its interest in the whole image. The use of complex networks
with a spatial structure are usual in several real-world applications [1], but this work
presents a new use in the realms of Computer Vision. Since the classical mathematical
definition of the interest points are mainly of local nature, we use local measures of the
associated network and we discuss the use of other tools and properties of the weighted
geometrical network.

2 Analyzing images through complex networks

The relevance and complexity of problems stated in Computer Vision area have mo-
tivated the use of different approaches coming from a wide range of scientific areas,
including partial differential equations [9], wavelets [10] or physic-based models [13]. In
this work, we propose a mathematical model based on complex networks that can help
to give alternative solutions to some problems that come from Computer Vision.

The use of tools and techniques of complex network’s analysis in problems dealing
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with Computer Vision is an appealing scientific topic that have been stated in the last
years [4] and that it is far from being well understood. The basic philosophy is to
associate a complex network G = (X,E) to each image I in such a way that we can
analyze some properties of I from the structural and dynamical properties of G (see, for
example [4]). One of the first mathematical models related to this idea was introduced
in [3]. If I is an gray-level image of N × N pixels, we can associate to it a weighted
network G = (X,E) of |X|=N2 nodes such that each node correspond to each pixel of
I and the weight of each link (i, j) ∈ E is:

w(i, j) = ∥
−→
fi −

−→
fj∥2,

where ∥ · ∥2 denotes the Euclidean norm and
−→
fi ∈ Rm is a feature vector that describes

some local visual properties about the respective image pixel [3]. Using the L-expansion
of such networkG, in [3] it was obtained an image characterization method and an image
segmentation algorithm that showed the link between visual properties of an image I
and local structural properties of G. Other examples of complex networks associated
to an image can be found in [5], where a visual saliency detector method related to a
Markov chain on other associated network G was proposed.

The main disadvantages of the associated networks introduced in [3, 5] deals with
the computational complexity on such networks when the number of pixels is big.
This inconvenience comes from two different facts. On the one hand the number of
nodes of the associated network G is the same that the original image I, which makes
computations on G to be quite slow and on the other hand, the weighted network is
always a complete weighted graph, which implies inefficient computations (in time and
memory). As a computationally efficient alternative, we propose considering a complex
spatial network G with less nodes and much less links (actually it is a sparse network)
associated to each image I.

We start with an image I of N × N pixels, such that for each of them p ∈ I we
have its intensity value f(p) ∈ [0,K]. We compute an watershed-based segmentation
R = R(I) = {r1, . . . , rk} of I and we choose a set of pixels X(R) = {p1, . . . pk} ⊆ I
such that for every 1 ≤ j ≤ k, pj ∈ rj . There are several methods for spoting these
pixels from the segmentation R (for example, by choosing the centroid of each region,
at random, and many others), but the results obtained are similar since all the pixels in
a given region have similar intensity. By using these pixels X(R) = {p1, . . . pk} as nodes
we construct a weighted, sparse and spatial network G(I) = (X(R), E) by defining each
link weight w(pi, pj) as follows

w(pi, pj) =

{
|f(pi)− f(pj)| if ri and rj are adjacent regions in R(I),

0 otherwise.
(1)

Note that in this case the weighted associated network is sparse and its number of
nodes k ≪ N , which makes that the computations on such networks be much more
efficient than those previously stated in the associated networks. It is easy to check that
the networks introduced in [3] or [5] can be also defined by using this model, simply
by considering the appropriate feature vector describing some visual properties of each
region rj .
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3 Interest points and centrality measures: local vs. global
approaches

The main goal of associating a (weighted) complex network to each image is to analyze
some visual properties of the image from the structural and dynamical properties of
the corresponding network. In this section we spot the interest points of an image
I by using some structural properties of its associated network G(I). The heuristics
behind the proposed methods deal with the fact that the interest points are related
to points with a high gradient values compared to their surrounding pixels. As we
pointed out in the introduction, many of the classic algorithms for the detection of
interest points (such as the Moravec, or the Harris and Stephens algorithms) are based
on this idea, and therefore we should try to translate them into structural properties
of the associated network. Under the perspective of discrete mathematics, having in
mind that the associated network G(I) is a weighted network related to the difference of
intensity between adjacent regions of the image, then points with high intensity gradient
are related to points of high centrality in the associated network. Hence, we can spot
the interest points of an image by computing the centrality of the corresponding nodes
in the associated network.

There are many different centrality measures of the nodes of a network (see, for
example [1]), each one of different nature and with different applications. The range
of centrality measures goes from the local level (i.e. only taking into account the
neighbors of each node) to the global scale (i.e. considering the whole structure of the
network). Therefore, we propose two different methods according to these two scales,
that are the classical level in the analysis of complex networks. In the local level, we
can give an interest point detector based on the strength of each node, and therefore
the interest points are related to nodes with high strength centrality. Let us remind
that the strength of a node i ∈ X in a network G = (X,E) is the value

s(i) =
∑

(i,j)∈E

w(i, j),

where w(i, j) is the weight of the link (i, j) ∈ E. After some normalization, this value
allow us to rank the nodes of the network by a local criterium that helps to locate the
interest points.

If we also consider the global scale of the associated network G(I), we can also
get an alternative method to detect the interest points, by computing the Bonacich
centrality of G(I) (which is one of the most relevant example of global-scale centrality).
This centrality measure is related to the dominant positive eigenvector of the adjacency
matrix of G(I) (see, for example [1]). After some normalization, the Bonacich centrality
of each node help us to give a global ranking of the nodes in order to spot the interest
points of a considered digital image.

Fig. 1 shows the results produced by our two proposed local and global centrality
approaches on the same Cameraman image at a 256 × 256 spatial resolution. The
global centrality method (i.e. highest-eigenvalue method) was applied by filtering the
best 30% of the points with highest interest producing 9 interest points located at the
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head region. The local centrality method (i.e. strenght-of-vertex method) was applied
by filtering the best 40% of the points with highest interest produced 49 interest points
uniformly distributed along the strongest edge regions in the image.

Figure 1: Visual comparison of our interest point detectors based on global centrality (on the
left) with the interest point detector obtained by using the local centrality (on the right).
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Abstract

Electron tomography combines the acquisition of projection images using the elec-
tronic microscope and techniques of tomographic reconstruction to allow the structure
determination of complex biological specimens. This kind of applications requires an
extensive use of computational resources and considerable processing time because 3D
reconstructions of high resolution are demanded. The new tendency of high performance
computing heads for hierarchical computational systems, where several shared memory
nodes with multi-core CPUs are connected. In this work, we propose a hybrid parallel im-
plementation for tomographic reconstruction of cellular specimens. Our results show that
the balanced and adaptative algorithm allows an ideal speedup factor when large datasets
are used.

Key words: hybrid parallel computing, heterogeneous clusters

1 Introduction

The study of 3D structure of cellular specimens is essential for understanding the cellular role
played by the specimen in the environment where it is located [9]. The electron microscope
allows us to tilt the specimen around one or more axes and to take views from different direc-
tions collecting the projection images in digital format. The technique which makes possible
to determine the 3D structure of biological samples from two-dimensional projection images
obtained by electron microscope, is known as electron tomography (ET) [6]. Weighted back-
projection (WBP) is the standard 3D reconstruction algorithm in ET. Furthermore, because of
the resolution needs, ET of complex biological specimens requires large projection images.
So, ET requires an extensive use of computational resources and considerable processing time
to allow the 3D structure of cellular specimens [11]. High performace computing (HPC) has
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Figure 1: Acquisition of a 2D projection image while the object is tilted around an axis.

been widely investigated for many years as a means to address large-scale and grand-challenge
applications. In the particular, in the field of ET, HPC allows determination of 3D structure of
large volumes in reasonable computation time [4, 5, 7, 8].

On the other hand, Moore’s law estimated that the number of transistors that can be placed
on an integrated circuit would double approximately every two years. Given the actual physi-
cal limitation of this prediction, new types of architectures begin to appear getting less com-
puting time. Nowadays, supercomputers are based on hierarchical computer systems which
consist on several shared memory multicore nodes interconnected. Therefore the parallelism
of this new generation of computer systems must be exploited at two levels: one level of pa-
rallelism distributed among the interconnected nodes and a second level of parallelism shared
within the node itself [10]. In this paper, we propose a hybrid parallel implementation that ex-
ploits the parallelism of the heterogeneous architectures for 3D reconstruction of cellular spe-
cimens. Message passing libraries (OpenMPI) for communications between distributed nodes
and POSIX-Thread for parallel processing within each node have been used. The results show
that the balanced distribution of workload and the optimal choice of processors determine the
goodness in the execution times obtained.

2 Electron Tomography

Tomography refers to the cross-sectional imaging of an object viewed from different angles.
The electron tomography (ET) consists on the three dimensional (3D) reconstruction of a ob-
ject from the projected two-dimensional slices which were obtained through the electron mi-
croscope. The biological specimen is placed inside the electron microscope, it is tilted over a
limited range and electron beams will cross the specimen resulting a projection image with the
same object area (see Fig. 1). The specimen is tilted typically from−70◦ to +70◦, at small tilt
increments (1◦–2◦). These projection images will be acquired using the so-called single-axis
tilt geometry and they will be recorded for each tilt angle via usually in CCD cameras. In the
field of ET these projection images are known as sinograms.

The most common reconstruction methods in ET are Weighted BackProjection (WBP)
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Figure 2: 3D reconstruction from projections using the WBP method.

and iterative reconstruction. Specifically, our work looks at first method, that is, WBP. Under
the assumption that projection images represent the amount of mass density encountered by
imaging rays, this method simply distributes the known specimen mass present in projection
images evenly over the reconstruction volume. When this process is repeated for a series
of projection images recorded at different tilt angles, backprojection rays from the different
images intersect and reinforce each other at the points where mass is found in the original
structure (see Fig. 2).

3 New tendencies of High Performance Computing and ET

Parallel computing has been widely investigated for many years as a means to provide high-
performance computational facilities for large-scale and grand-challenge applications [12].
HPC addresses the computational requirements of different applications by means of the use
of parallel computing on supercomputers or networks of workstations, sophisticated code opti-
mization techniques, intelligent use of the hierarchical systems in the computers and awareness
of communication latencies. In ET, the reconstruction files are usually large and, as a conse-
quence, the processing time needed is considerable [1]. Parallelization strategies with data
decomposition provide solutions to this kind of problem [4, 5, 7, 8].

The single-axis tilt geometry in ET involves the application of a computational model
widely used in parallel computing known as SPMD (single-program multiple-data). In this
model, all nodes of the parallel system run the same program for different data subdomains.
In ET, the SPMD model consists on the decomposition of the volume in subsets of 2D slices
which will be distributed among different nodes. This computational model led us to implement
different strategies based on MPI parallel master-slave paradigm to study the tradeoff between
distributed load and the number of nodes that perform the processing in distributed systems
[3].

On the other hand, Moore’s law estimated that the number of transistors that can be placed
on an integrated circuit would double approximately every two years. Given the actual physical
limitation of this prediction, new types of architectures begin to appear getting less computing
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Figure 3: Decomposition of the global 3D problem into multiple, independent reconstruction
problems of slabs (i.e. subsets) of slices that are assigned to different nodes in the parallel
computer. Each column represent a 2D slice orthogonal to the tilt axis of the volume to be
reconstructed.

time. In fact, the new architectures are based on a hierarchical computer system consisting of a
distributed memory system where each node is a shared memory system with several cores and
different architectural features. The SPMD parallel computation model and the new architec-
tures lead us now to study the data parallelism at two levels: one level of parallelism distributed
among the interconnected nodes and a second level of parallelism shared within the node itself.
Therefore in this case, the SPMD model assumes that the different data subdomains will be
distributed among the nodes and they will be again distributed within each node assigning the
same workload to each core (each thread) of the shared memory system. We can observe this
fact in Fig. 3.

3.1 Hybrid approaches for 3D reconstruction of cellular specimens

In this paper, we propose a parallel algorithm with centralized load balancing for the 3D re-
construction of cellular specimens, BAHPTomo (Balancing Adaptative algorithm for Hetero-
geneous Parallel systems in Tomography).

The proposed algorithm has two steps. During the first step, the program evaluates the per-
formance of each node in the distributed system. To this end, node 0 sends the same sinogram
to each node using MPI and each node creates a thread to perform the processing of the sino-
gram. Finally, node 0 gathers the time spent by each node in the processing of the sinogram. It
can be observed in Fig. 4, in the first diagrams of step 0.

In the second step, node 0 does a final distribution of workload among nodes. Node
0 decides what is the best choice of cores for each node and what is the optimal workload
distribution among nodes and cores. The data subsets are sent from node 0 to each node. Each
one receives the new workload and it creates as threads as cores; it can be seen in Fig. 4 in the
first diagram of step 1. Each thread runs the same reconstruction algorithm for different data
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Figure 4: Diagrams of the different steps that BAHPTomo follows.

subset(it was explained in Fig. 3). Thus, each node will have a different subset of reconstructed
images (see the last diagram of Fig. 4). These slices or reconstructed images will form the 3D
reconstruction of the biological specimen.

In order to evaluate the algorithm eficency described above, other reconstruction algorithm
was implemented. This algorithm has been called HPTomo (Hybrid Parallel algoritm for To-
mography). It does not perform the testing step and it takes an equal number of processors in
each node. The criterion for the workload distribution is according to the number of processors
on each node.

3.1.1 Static Load Balancing

The different characteristics of each node of the heterogeneous system should be considered to
do a balanced distribution of workload [2]. The approach explained above (BAHPTomo) takes
into account the one hand the time spent in processing a sinogram on each node and on the
other hand, the number of processors available on each node. This load balancing strategy will
be formalized mathematically below.

We consider a heterogeneous computing system composed ofN nodes, where each node
is a shared memory system consisting onp j processors withj = 0, . . ., N−1. TS is the total
number of sinograms to be distributed between the different nodes andWj is partial work
assigned to each node. The apportionment of workloadWj proposed in this article can be
mathematically expressed as follows:

k j =
p j ∗ tmin

t j
(1)

Wj =
k j ∗TS

∑N−1
j=0 k j

(2)

, wheretmin is the time spent by the fastest node for the processing of a sinogram, andt j is
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the time spent by each node for processing of the same sinogram.

3.1.2 Optimal choice of processors

The heterogeneous systems have several nodes with different computational performances as
we already have explained previously. These nodes can be composed of the same or different
number of processors. If we decide to do experiments, we will have to scale the number of
processors to study the performance of each one. Then, we will have to decide how many
processors choose in each node for obtaining the best performance.

Different processor combinations have been tested and we have concluded that to choose
the larger number of processors in the fastest node is the optimal choice. This conclussion has
been taken into account in our algorithm (BAHPTomo) so that not only the application adapts
to the architecture, also the architectures adapts to the application. The algorithm applied to
choose the best processors is next explained.

Algorithm 1 Choice of processors

While total > 0 do
i <- i + 1
posMin <- posMinTime(tParc)
if MAXTHRDSMAXTHRDS[posMin] >= total - (numprocs-i) do

MAXTHRDS[posMin] <- total - (numprocs-i)
end if
total <- total - MAXTHRDS[posMin]

end while

4 Results

Datasets based on a synthetic mitochondrion phantom [4] have been used for the evaluation
of the hybrid implementations. These datasets consisted of 180 projection images taken at a
tilt range[−90◦,+89◦] at interval of 1◦ and they had different sizes: 128, 256, 512 and 1024.
The dataset referred to as 128 had 128 sinograms of 180 1D projections of 128×128 pixels to
yield a reconstruction of 128×128×128 voxels, and so forth. The number of processors has
been increased following a geometric progression at the rate of 2, P∈ {2, . . . ,32}, and up to
reach eventually the total number of processors among the three nodes, that is, 56 processors.
Each experiment was evaluated three times and the average times for the reading, processing,
writing, comunications, testing, balancing and total time were computed.

4.1 Preliminary study of our heterogeneous cluster

The hybrid approaches were implemented in C, using MPI and POSIX-Thread libraries to
exploit the parallelism on node and core levels. Our models were evaluated in a heterogeneous
cluster, which has three nodes with different architectural features. The first node consists on
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Table 1: Processing time of 1 sinogram in each node.

Node Sin. 128x180 Sin. 256x180 Sin. 512x180 Sin. 1024x180
N0: Opteron 0,0745709 0,287073 1,12996 4,56124
N1: Xeon 0,0477531 0,179863 0,700783 2,80184
N2: Itanium 0,193778 0,738971 2,88673 11,5836

8 processors Opteron Quad Core, it has 64 GB of RAM and the memory access is NUMA.
The second node has 2 processors Intel Xeon Quad Core and it has 16 GB of RAM. Finally,
the third node consists on 8 processors Intel Itanium Dual Core, it has 64 GB of RAM and the
memory access is NUMA.

A preliminary study of our heterogeneous cluster has been performed. The processing
time of the same sinogram in each node has been measured. We can notice in Table 1 that N2
is 1,56 times faster than N1, N2 is 4 times faster than N3 and N1 is 2,6 faster than N3. Several
tests have been done concluding that the best distribution of processors is obtained when more
processors of the fastest node are chosen. The BAHPTomo algorithms take into account this
event.

4.2 Speed-up for heterogeneous clusters

New indicators for the measurement of the performance must be used in heterogeneous envi-
ronments. We will consider the heterogeneous speed-up suggested in [10], that is,HS= T1/TN,
whereT1 is the execution time in the fastest node,TN is the execution time usingN nodes. Fol-
lowing the same notation that Eq. 2, the ideal value of HS will be:

HSIdeal=
P−1

∑
j=0

tmin

t j
=

N−1

∑
j=0

tmin∗ p j

t j
(3)

, whereP is the total number of processors.

We can observe in Fig. 5 that BAHPTomo achieves the ideal speedup when the number of
processors and the size of datasets are increased. However, we can see too, if we works with a
dataset of 128 and the algorithm is runned in 32 or 56 processors, the speed-up of BAHPtomo
decreases. This inflection point occurs because each node has few sinograms to process and
then the load balancing does not mean a great advantage between the algorithms. In fact, we
can sense that the performance of BAHPtomo converges from 56 processors on.

On the other hand, we can see in Fig. 5 that penalties for testing and communication times
are not significant because the speedup of BAHPTomo is very well suited to ideal speedup.
This fact does not affect to the curvature change shown in Fig. 5 with 128 sinograms and 32 or
56 processors, because although there are more communications, they are lighter. Finally, we
can observe in Fig. 5 that BAHPtomo algorithm gets an ideal speedup when large datasets are
used, where we can obtain a speedup almost of 30 with 1024 sinograms and 56 processors.
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Figure 5: Speedup for datasets of 128, 256, 512 and 1024 sinograms.

5 CONCLUSIONS

In this work, the computational requirements to allow the 3D reconstruction of cellular spe-
cimens through ET have been shown. The new tendencies of high performance computing
lead us to implement hybrid algorithms in order to exploit the parallelism at node and core le-
vels. So, a hybrid C algorithm have been implemented using MPI and POSIXThread libraries.
Static centralized load balancing and optimal choice of processors are taken into account in
this algorithm (BAHPtomo) and a balancing method has been proposed. BAHPTomo has been
evaluated in a heterogeneous cluster and it was compared with another algorithm (HPTomo)
which does not take into account the different features. The results have shown that BAHPtomo
algorithm gets an ideal speedup when large datasets are used. In fact, the penalties for testing
time are offset by optimal load distribution. Our results demonstrate that to use our suggested
balancing method has been crucial to achieve a speedup nearly at 30. So, we can conclude that
it is very important to use a good load balancer to obtain the best performance in heterogeneous
environments.
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Abstract

Modern personal computers, including laptops, notebooks and perhaps smart-
phones, often have a low-resolution camera and a powerful graphic card. In this
paper we present a system that uses these resources (camera and GPU) to build
a low cost virtual 3D Human Interface Device. To do this, we apply an optical
flow algorithm which is characterized by its high degree of parallelization. The
experimental results confirm the performance of our system.

Key words: Virtual 3D-HID, GPU, Optical Flow Algorithms.

1 Introduction

Today, personal computers, laptops, notebooks and smartphones have an integrated
low-resolution camera (high-resolution in the case of smartphones). Besides, most of
them have a graphic processing unit (GPU), a specialized processor that offloads 3D/2D
graphics rendering from the microprocessor.

A new computing parading is to use a GPU as a stream processor. This concept
turns the massive floating-point computational power of a modern graphics accelerators
into general-purpose computing power. In certain applications, this allow us to increase
the performance in several orders of magnitude compared to a conventional CPU.

Recently, NVIDIA1 began releasing cards supporting an API extension to the C
programming language CUDA (Compute Unified Device Architecture), which allows
specified functions from a normal C program to run on the GPU’s stream processors.
This makes C programs capable of taking advantage of a GPU’s ability to operate on
large matrices in parallel while still making use of the CPU when appropriate.

Being aware of these capabilities (CUDA compatible GPUs and a low-resolution
camera), in this work we present a system that uses these resources to build a Low Cost
Virtual 3D Human Interface Device (3D-HID). Users can interact with the environment

1http://www.nvidia.com
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(real 3D world) by simply moving the camera (in the case of lightweight devices such as
smartphones) or moving objects (e.g. hand) in the vicinity of the camera (e.g. laptops).
In order to do this, we use an optical flow algorithm, which is characterized by its high
degree of parallelization.

In order to point out the aim of this paper, we briefly review some aspects that
will be considered. Thus, in section 2 we explain the optical flow algorithms. Section
3 is devoted to the built system. The experimental results are showed in section 4 and
finally, section 5 summarizes our conclusions.

2 Optical Flow

Optical flow is the 2D vector field projection of the 3D velocities of object points. In
Figure 1 a pair of frames of a classic test sequence is shown, with the true optical flow
overimposed. As can be seen, the motion of the objects in the scene is well represented
by the optical flow.

Figure 1: Optical Flow example, from two frames (left) the motion of the scene is
measured for each pixel. The resulting vector field (red arrows) is shown in the right
side of the figure. Both frames are overimposed.

In the literature, optical flow algorithms are classified in: correlation based tech-
niques, frequency based techniques and gradient based techniques.

Correlation based techniques or block matching algorithms [1] try to maximize a
measure of similarity between patches (taken from two consecutive frames) centered
in a given pixel. The displacement that maximizes the selected measure divided by
the time interval within the acquisition of the frames is the velocity of the pixel (see
Figure 2).

Frequency based techniques use a set of tuned spatiotemporal filters to search for
the velocity of a pixel [3].

Gradient based techniques use the well known Optical Flow Constraint (OFC)
shown in equation 1 in order to compute the optical flow [4].
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Figure 2: Optical Flow computation using a block matching algorithm. The neighbor-
hood in the first frame (blue dotted square) is found in the second frame in different
position. This displacement defines the Optical Flow vector for each pixel.

−∂f

∂t
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
=

∂f

∂x
u +

∂f

∂y
v = ∇(f) · −→c (1)

Equation 1 makes the assumption that intensity changes in a sequence of images are
only due to the movement of the objects in the scene: a single pixel will have constant
brightness in the different positions that it takes during the sequence. Unfortunately,
the Aperture Problem (see [5]) states that there is no way to recover the complete
optical flow vector using only local (one pixel) information.

In Figure 3 a synthetic example is shown. As can be seen, OFC holds for the
selected pixel (4, 1), (−1,−1) velocity verifies the obtained equation: replacing ∂f

∂x by
1, ∂f

∂y by 2 and ∂f
∂t by 3, u + 2v = −3 is obtained. Unfortunately, a suitable value that

verifies the OFC can be found for one of the components substituting the other by an
arbitrary value.

Some authors try to solve the aperture problem with the incorporation of some
kind of global information, involving a process of regularization [4]. Some researchers
perform a clustering of the OFCs themselves in order to find the most reliable one. Once
obtained, the corresponding normal flow to that OFC is obtained [6]. Another alter-
native is to analyze the measurements in the space of the velocities that is, performing
an estimation of the velocity with the results of many systems of OFC equations. Each
system of equations is obtained from one pair of pixels in order to estimate the velocity.
In this way, the analysis is performed directly in the domain of the data that we want
to recover, that is, the u, v space [7, 8, 9].

All the previously approaches are computationally expensive. For example, for a
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Figure 3: Optical Flow computation using OFC. As can be seen OFC holds for pixel
(4,1): ∂f

∂x = 1, ∂f
∂y = 2 and ∂f

∂t = 3, then OFC is u + 2v = −3, that holds for (−1,−1).

n×m pixels image, a search space of p× q pixels and a neighborhood of s× t pixels,
the number of floating point operations in the case of BMA is n × m × p × q × s ×
t. Similar numbers are obtained for gradient based approaches. Because of this, an
implementation using a GPU and CUDA speeds up the computation process.

3 The System

System architecture is divided in four main blocks: Video Input, Optical Flow Algo-
rithm, Motion Estimator and Control (see figure 4).

Each subsystem comprises several basic computing units (called basic-units). Thus,
the execution of several basic-units of different images is concurrent (like works pipelined
CPUs). This solution is adequate even for single core CPUs; simply the degree of
concurrence is smaller.

The communications between basic-units use circular buffers. This leads to an
increasing of memory consumption but allows more efficient asynchronous execution of
the basic-units.

Because of the low image resolution, only a smoothing with a small Gaussian
kernel is needed in order to decrease the acquisition noise. This benefits the parallel
implementation of the whole system because the separability of the filtering.

We will use optical flow field estimation in order to measure/detect the motion in
the image sequence acquired with the cameras. The goal is to use the translations in
X, Y and Z along with rotation in Z as input signals to the proposed virtual interface.

In order to discriminate the predominant motion in the scene, we use the following
operators:

• X and Y translations are measured as the average optical flow in the image:

(X, Y )T =
∑i=n

i=0

∑j=m
j=0 (Fx,Fy)i,j

nm , where (X,Y )T is the traslation vector, (Fx, Fy)i,j
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is the Optical Flow Vector for pixel (i, j), n, m are the number of rows and
columns in the image.

• Z translation is measured with the divergence of the optical flow averaged across

the image: ZT =
∑i=n

i=0

∑j=m
j=0 5·(Fx,Fy)i,j

nm The previous expression is evaluated and
averaged for each optical flow value across the whole image.

• Z rotation is measured with the rotational of the optical flow averaged across the

image: ZR =
∑i=n

i=0

∑j=m
j=0 5×(Fx,Fy)i,j

nm

We implemented two algorithms using CUDA, the proposal in [7] and an hierarchical
implementation of Lucas-Kanade algorithm available with OpenCV library [10]. Fi-
nally, a bottleneck in Otero et. al. algorithm [7] leads us to choose Lukas-Kanade
algorithm [10]. The output of this algorithm is evaluated with the previous operators.
The highest output defines the predominant motion in the scene.

Video Input
GPU Optical Flow

Algorithm
Motion Estimator

Control

Image Capture Image Filter Optical Flow Motion Estimator Movement Filter Output

Image Capture Image Filter Optical Flow Motion Estimator Movement Filter

Image Capture Image Filter Optical Flow Motion Estimator

Figure 4: System Architecture

4 Experiments

The hardware setup comprises a laptop and two cameras with different resolution, the
usual integrated in the screen frame and an off the shelf usb camera, with the following
technical specs:

• CPU AMD Athlon 64 3000+ (1.8 GHz) AM2.

• GPU nVidia GeForce 9500 GT.

• RAM 1024 MB Dual Channel 800 MHz.
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• Web cam 1 Logitech Quickcam E2500.

• Web cam 2 Logitech Webcam C200.

The system detects easily the motion in different axis, only when velocity module
falls below a threshold some errors may appear, mainly due to image acquisition and
illumination issues (flickering or low illumination).

Low illumination leads to noise in the image and to the false detection of small
movements due to the noisy pixels that appear and disappear. We decided to filter the
movements that are below a threshold in order to minimize that error.

During the experiments we found that X and Y translations are easily detected
but Z translation is easily detected as X or Y motion, because small displacements
in X or Y directions (by the user) lead to relatively high values compared with the
divergence of the optical flow field.

When the algorithm was running in the CPU we obtained 17 frames per second,
with the performance of other tasks being degraded.

Using CUDA implementations the frame rate increases to 30 frames per second,
the hardware limit of the cameras. Standard GPU tasks are not degraded and the CPU
can be fully dedicated to other tasks. Thus, the user experience is real-time alike.

Another kind of movement useful as input signal in the virtual interface is rotation
in Z axis. The amount of motion cannot be accurately measured but if we use a
threshold it can be used to simulate a click.

Summarizing, X and Y translations are correctly detected and measured. Z trans-
lations cannot be accurately measured and it is not useful as input signal. Z rotation
cannot be accurately measured but a suitable threshold can be used and then, it serves
as binary signal.

5 Conclusions

In this work we have showed how to build a Virtual 3D Human Interface Device by
using standard resources of the current computers: the integrated camera (or Web cam)
and the graphic processing unit (GPU). The system applies optical flow techniques and
uses CUDA (Compute Unified Device Architecture, nVidia) to exploit the capabilities
of the GPU as stream processor.

X and Y translations are correctly detected and measured by the system. Z trans-
lations are detected but not accurately measured and Z rotation cannot be accurately
measured but a suitable threshold can be used and then serves as binary signal.

Summarizing, the presented solution is simple, the frame rate is now limited by
the resolution of the camera (30 frames per second vs 17 in the case of CPU’s based
solutions), users experience is real-time alike, computer’s performance is not being
degraded and powerful/additional hardware it is not necessary. Therefore, we have
built an efficient and low cost 3D interface.
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[8] José Otero, Adolfo Otero and Luciano Sánchez, 3D motion estimation
of bubbles of gas in fluid glass, using an optical flow gradient technique extended
to a third dimension, Mach. Vis. Appl. 14(3) (2003) 185-191.

[9] Brian G. Schunck, Image Flow Segmentation and Estimation by Constraint Line
and Clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence
(1989) 1010-1027.

[10] Jean-Yves Bouguet, Pyramidal implementation of the lucas kanade feature
tracker, OpenCV Documentation, 2000.

@CMMSE                                                               Page   449  of 1328                                               ISBN 13: 978-84-613-5510-5



Proceedings of the 10th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2010
27–30 June 2010.

Assessing the disclosure risk by fuzzy sets and
cardinalities
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Introduction

As gaining access to statistical micro-data (i.e. those data are not summarized by some
statistics) is becoming a common tool for researchers, issues regarding disclosure of sen-
sitive information about individuals and organizations arise. While releasing provides
researchers with useful information, the risk is to involuntary disclose information that
should kept reserved.

Micro-data are generally organized in tables whose attributes can (i) lead to iden-
tities, such as address, name, social security number, and (ii) release sensitive informa-
tion, such as diseases and income, such those regarding census, medical issues, finance
and others. In particular those attributes that are directly linked to identity are know
as identifiers, whilst other attributes related at some extent to identity potentially able
to identify an individual are known as quasi-identifiers.

This is functional to make distinction between identity disclosure and attribute
disclosure in released table. The first occurs when an individual is linked to a particular
record, whilst the latter occurs when new information regarding some individuals is
revealed.

Objective of statistical disclosure control (SDC) is to limit the risk of releasing
sensitive information to an acceptable level. This goal is achieved by anonymization of
data, obtained by removing explicit references to identity and by replacing the other
attribute values related to identity with values less specific but semantically consistent.
This leads to group records with the same quasi-identifier values into equivalence classes.
In an equivalence class, individuals are made indistinguishable.
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Disclosure risk metrics

In literature, different metrics able to quantify the disclosure risk with respect to an
anonymized table have been proposed.

Samarati and Sweeney [7, 8] define k-anonymity as the property that each record
is indistinguishable with at least k−1 other records with respect to the quasi-identifier,
that is requiring that each equivalence class contains at least k records. Although k-
anonymity is able to quantify the risk of identity disclosure, it is not able to assess the
risk of attribute disclosure.

Machanavajjhala et al. [5] propose l-diversity as means to overcome k-anonymity
limitations. l-diversity requires that the distribution of a sensitive attribute in each
equivalence class has at least l values. In particular, authors consider three different
declinations of l-diversity, known as (i) distinct diversity, entailing that at least l distinct
values of sensitive data occur in each equivalence class, (ii) entropy diversity, requiting
that entropy of sensitive values distribution is greater or equal than log(n), (iii) recursive
diversity, ensuring that the most frequent value does not appear too frequently, and
the less frequent values do not appear too rarely. Although improving the definition
of k-anonymity (i.e. it is stronger definition of privacy), this metric does not asses the
risk of Skewness and Similarity attacks. Indeed l-diversity does not face the risk of
attribute disclosure when the distribution of sensitive data is skewed, as belonging to an
equivalence class would make individuals more vulnerable to be associated to sensitive
data than considering the overall distribution. In addition, l-diversity does not take
into account that data although different can be similar. This is especially the case of
numeric values.

Li, Li and Venkatasubramanian [4] attempt to solve leaks of k-anonymity and l-
diversity by proposing a definition of privacy based on distance between values and
known as t-closeness. In particular, this metric requires that the distribution of a
sensitive attribute in any equivalence class is close (i.e. below the threshold t) to the
distribution of the attribute in the overall table. The distance between distribution is
measured as Earth Mover distance (EMD), that is the minimal amount of work needed
to transform one distribution to another by moving distribution mass between each
other. Although this approach introduces the concept of similarity between values and
distribution, definition is based on distance instead of number of values, so that it is
not possible to link it to k-anonimity and l-diversity. In addition, EMD does not fit
well categorical data as based on total ordering of values.

Contribution

In this paper we assume a different perspective, related to the granularity of informa-
tion. Similarly to t-closeness, relations that are not visible when observed on punctual
data, become more evident when we generalize data. For instance, let us consider Table
1.

Table 2 and Table 3 respectively propose 3-diversity and 0.3-closeness anomyzation
schemes. In particular the second is EMD is 0.167 for Salary and 0.278 for Disease.
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Table 1: Original Salary/Disease Data
ZIP Code Age Salary Disease

1 47677 29 3K gastric ulcer
2 47602 22 4K gastritis
3 47678 27 5K stomach cancer
4 47905 43 6K gastritis
5 47909 52 11K flu
6 47906 47 8K bronchitis
7 47605 30 7K bronchitis
8 47673 36 9K pneumonia
9 47607 32 10K stomach cancer

Table 2: Anonymization induced by l-diversity
ZIP Code Age Salary Disease

1 476** 2* 3K gastric ulcer
2 476** 2* 4K gastritis
3 476** 2* 5K stomach cancer
4 4790* ≥ 40 6K gastritis
5 4790* ≥ 40 11K flu
6 4790* ≥ 40 8K bronchitis
7 476** 3* 7K bronchitis
8 476** 3* 9K pneumonia
9 476** 3* 10K stomach cancer

Table 3: Anonymization induced by t-closeness
ZIP Code Age Salary Disease

1 4767* ≤ 40 3K gastric ulcer
3 4767* ≤ 40 5K stomach cancer
8 4767* ≤ 40 9K pneumonia
4 4790* ≥ 40 6K gastritis
5 4790* ≥ 40 11K flu
6 4790* ≥ 40 8K bronchitis
2 4760* ≤ 40 7K gastritis
7 4760* ≤ 40 9K bronchitis
9 4760* ≤ 40 10K stomach cancer
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Although Table 2 provides an anonymized version of Table 1 which satisfies the
distinct and entropy 3-diversity, there are some threats to privacy. For example, let us
suppose to know that Bob is in the 20s and that he lives in the area 47678. Then we
deduce that his salary is relatively low, i.e. in between 3k and 5k. In addition we can
infer he suffers of some stomach related disease. Both information can be deduced due
to similarity of information.

At this end, fuzzy set theory provides a natural framework to analyze data gen-
eralization and to identify threats to privacy. Since generalization is about grouping
elements in classes, and membership cannot be sharply defined, a class of elements
can be regarded as fuzzy set. Privacy is preserved and disclosure protected, if the
anonymization scheme chosen is able to mix sensitive data in such a way to make them
indistinguishable at different level of generalization.

Therefore, a key point in defining privacy in our approach is about counting ele-
ments in a fuzzy set. In literature, several definitions of cardinality for finite fuzzy sets
have been proposed [9]. They can be roughly divided in two categories: the scalar car-
dinalities [2, 10], which associate to each fuzzy set a quantity (natural or real number)
and the fuzzy cardinalities [6, 3, 1], which associate to each fuzzy set a function over
the natural numbers with values in the unit interval [0, 1]. Both can be appropriately
employed in a definition of privacy by fuzzy sets. Fuzzy sets can be assumed in isolation
or as member of partitions. With respect to a fuzzy set, to a collection of them or to
a partition, the aim is to check if the number of elements for each equivalence class,
is similarly distributed along the whole dataset, and if elements are enough sparse so
that identification of individuals does not lead to associate sensitive data to them.

As an example let us consider for Salary a partition made of triangular fuzzy
sets Low ≡ (−∞; 2; 5), Average ≡ (2; 5; 8) and High ≡ (5; 8;+∞). With respect to
anonymization scheme outlined in Table 2, we get

Table 4: Cardinalities w.r.t. Table 2
ZIP Code Age Salary Low Average High

1 476** 2* 3K 0.67 0.33 0
2 476** 2* 4K 0.33 0.67 0
3 476** 2* 5K 0 1 0
4 4790* ≥ 40 6K 0 0.67 0.33
5 4790* ≥ 40 11K 0 0 1
6 4790* ≥ 40 8K 0 0 1
7 476** 3* 7K 0 0.33 0.67
8 476** 3* 9K 0 0 1
9 476** 3* 10K 0 0 1

If we assume σ-count as simple definition of cardinality, we get that |Low| = 1,
|Average| = 3, |High| = 5, whose entropy is 0.937 (log 3 = 1.099). If we restrict
attention to the first three records, we have |Low|1,2,3 = 1, |Average|1,2,3 = 2 and
|High|1,2,3 = 0, with entropy 0.637. Differently, if we assume anonymization outlined
in Table 3, we have
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Table 5: Cardinalities w.r.t. Table 3
ZIP Code Age Salary Low Average High

1 4767* ≤ 40 3K 0.67 0.33 0
3 4767* ≤ 40 5K 0 1 0
8 4767* ≤ 40 9K 0 0 1
4 4790* ≥ 40 6K 0 0.67 0.33
5 4790* ≥ 40 11K 0 0 1
6 4790* ≥ 40 8K 0 0 1
2 4760* ≤ 40 4K 0.33 0.67 0
7 4760* ≤ 40 7K 0 0 1
9 4760* ≤ 40 10K 0 0 1

Obviously the overall cardinalities do not change as still |Low| = 1, |Average| = 3,
|High| = 5. But |Low|1,3,8 = 0.67, |Average|1,3,8 = 1.33 and |High|1,3,8 = 1, whose
entropy is 1.062. Higher entropy entails better dissimulation of data, thus stronger
privacy preservation. Example above, shows how t-closeness is related to cardinalities.
This relationship stands in a more general way.

As this is required at any level of generalization, a further step consists in checking
if there exists at least one fuzzy set or partition able to violate the condition above.

This contribution aims at proposing a theoretical framework for privacy based
on fuzzy sets and cardinalities, and investigating properties and relationship to other
privacy definitions. Several examples and experiments prove this approach is feasible,
leading to a natural definition of privacy able to include k-anonymity and l-diversity as
special cases. Although similar to t-closeness in facing similarity and skewness attacks,
and in being oriented to information gain, this approach differs as it is directly based
on notion of classes instead of assuming distance as means of similarity.
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Abstract

The goal of steel heat treating is to create a hard enough part over certain
critical surfaces or volumes of the workpiece and at the same time keeping its
ductibility properties all over the rest of the workpiece.

We consider a mathematical model for the description of the heating-cooling
industrial process of a steel workpiece. This model consists of a nonlinear coupled
partial differential system of equations involving the electric potential, the magnetic
vector potential, the temperature, together with a system of ordinary differential
equations for the steel phase fractions. Due to the different time scales related to
the electric potential and the magnetic vector potential versus the temperature,
we introduce the harmonic regime, leading to a new system of nonlinear PDEs.
Finally, we have carried out some 2D numerical simulations of this heating-cooling
industrial process.

Key words: Steel hardening, phase fractions, nonlinear parabolic-elliptic equa-

tions, Sobolev spaces, finite elements method.

MSC 2000: 35A15, 35G30, 35J57, 35K05, 35K55, 35Q61, 35Q80, 46E35.

1 Introduction

This work deals with the mathematical analysis and numerical simulations of a model
governed in terms of a nonlinear system of partial differential equations/ordinary dif-
ferential equations describing the industrial process of steel hardening, including phase
transitions. This subject has been extensively studied during the last years ([3, 5, 6, 7,
9]). A complete model, including thermomechanical effects can be seen, for instance,
in [9]. Here our main concerned is the description of the temperature, dropping out
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D

Γ

Ωs

Ωc

S

Figure 1: Domains D, Ω = Ωs ∪ Ωc ∪ S and the interface Γ ⊂ Ωc. The inductor Ωc is
made of copper. The workpiece contains a toothed part to be hardened by means of
the heating-cooling process described below. It is made of a hypoeutectoid steel.

mechanical effects. The mathematical model is governed by a coupled nonlinear system
of PDEs/ODEs, namely

∇ · (σ(θ)∇φ) = 0 in ΩT = Ω× (0, T ),

σ0(θ)At +∇× ( 1µ∇×A)− δ∇(∇ ·A) = −σ0(θ)∇φ in DT = D × (0, T ),

A(0) = A0 in Ω,

zt = F (θ, z) in Ωs
T = Ωs × (0, T ),

z(0) = z0 in Ωs,

ρcǫθt −∇ · (κ(θ)∇θ) = σ0(θ)|At +∇φ|2 + ρLzt +G in ΩT ,

θ(0) = θ0 in Ω.



















































(1)

where Ω,D ⊂ R
N , N = 2 or 3, are bounded, connected and Lipschitz-continuous open

sets such that Ω̄ ⊂ D, Ω = Ωc∪Ωs∪S is the set of conductors, Ωc the inductor (usually
made of copper), Ωs the steel workpiece, Ωc and Ωs being open sets, and S = Ω̄c ∩ Ω̄s

is the surface contact between Ωc and Ωs, Ωc ∩Ωs = ∅ (see Figure 1); T stands for the
final time of observation; φ the electrical potential; A the magnetic vector potential;
G a given external source coming for the mechanical deformation (here assumed to be
known); θ the temperature; z = (z1, z2), z1 and z2 are the phase fractions ([1,2,6]) of
austenite and martensite, respectively; F = (F1, F2) gives the phase fractions model;
κ(θ) is the thermal conductivity; σ(θ) the electrical conductivity (by σ(θ) we mean
the function (x, t) 7→ σ(x, θ(x, t)), and also for κ(θ), etc.); σ0(x, s) = σ(x, s) if x ∈ Ω̄,
σ0(x, s) = 0 elsewhere; µ = µ(x) is the magnetic permeability; ρ the density; L =
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Figure 2: Car steering rack.

(L1, L2) is the latent heat; cǫ is the specific heat capacity at constant strain; δ > 0 is a
small constant. System (1) is supplied with suitable boundary conditions.

The induction-conduction model (1) describes the heating process of a steel work-
piece. Once the desired high level of temperature is reached at certain critical parts
along the workpiece, the supplied electric current is switched off and the workpiece is
then quenched in order to cool it down rapidly. The goal is to produce martensite
(hard and brittle steel phase transition) in these critical parts, keeping the rest ductile.
Usually, these parts correspond to particular structural components whose surface is
going to be highly stressed during its mechanical lifetime. This is the case of a car
steering rack (see Figure 2).

In [9], it is assumed the Coulomb gauge condition for the magnetic vector potential,
namely, ∇ ·A = 0. In our analysis, we do not impose this condition since this makes
appear an undesired pressure gradient in the equation for A. In its turn, we include a
penalty term in this equation of the form −δ∇(∇ ·A).

2 The mathematical description for the heating-cooling

process

We split the time interval [0, T ] into two intervals: [0, T ] = [0, Th)∪[Th, Tc], Tc > Th > 0.
The first one [0, Th) corresponds to the heating process. All along this time interval,
a high frequency electric current is supplied through the conductor which in its turn
induces a magnetic field. The combined effect of both conduction and induction gives
rise to a production term in the energy balance equation, namely b(θ)|At+∇φ|2. This
is Joule’s heating. At the instant t = Th, the current is switched off and during the
time interval [Th, Tc] the workpiece is cooled down by means of aqua-quenching.
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The heating model

The current passing through the set of conductors Ω = Ωc∪Ωs is modeled with the aid
of an auxiliary smooth surface Γ ⊂ Ωc cutting the inductor Ωc into two parts, each one
of them having a surface contact over the boundary of the workpiece Ωs (see Figure 1).
For the sake of simplicity, we will assume that ρcǫ = 1. The heating model reads as
follows

∇ · (σ(θ)∇φ) = 0 in ΩTh
= Ω× (0, Th), (2)

∂φ

∂n
= 0 on ∂Ω× (0, Th), (3)

[

σ(θ)
∂φ

∂n

]

Γ

= jS on Γ× (0, Th), (4)

σ0(θ)At +∇×

(

1

µ
∇×A

)

− δ∇(∇ ·A) = −σ0(θ)∇φ in D × (0, Th), (5)

A = 0 on ∂D × (0, Th), (6)

A(0) = A0 in Ω, (7)

zt = F (θ, z) in Ωs × (0, Th), (8)

z(0) = z0 in Ωs, (9)

θt −∇ · (κ(θ)∇θ) = σ0(θ)|At +∇φ|2 + ρLzt +G in ΩTh
, (10)

∂θ

∂n
= 0 on ∂Ω× (0, Th), (11)

θ(0) = θ0 in Ω. (12)

In (4) [ · ]Γ stands for the jump across the inner surface Γ. The function jS re-
presents the external source current density. The domain D containing the set of
conductors is taken big enough so that the magnetic vector potential A vanishes on
its boundary ∂D. Since z is only defined in Ωs, the term ρLzt appearing in (10), and
in (15) below, is assumed to be zero outside Ωs.

The cooling model

Once the heating process ends, aqua-quenching begins. This situation is modeled via
the Robin boundary condition given in (16).

We put zTh
= z(Th), that is, zTh

is the phase fraction distribution at the final hea-
ting instant Th obtained from (8). In the same way, we define θTh

= θ(Th). Obviously,
these functions will be taken as the initial phase fraction distribution and temperature,
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respectively, in the cooling model.

zt = F (θ, z) in Ωs × (Th, Tc), (13)

z(Th) = zTh
in Ωs, (14)

θt −∇ · (κ(θ)∇θ) = ρLzt +G in Ω× (Th, Tc), (15)

−κ(θ)
∂θ

∂n
= β(θ − θe) on ∂Ω× (Th, Tc), (16)

θ(Th) = θTh
in Ω. (17)

In (16), the constant value θe stands for the temperature of the spray water quenching
the workpiece during the cooling time interval [Th, Tc]. Also, the function β is a heat
transfer coefficient and is given by

β(x, t) =

{

0 on ∂Ω ∩ ∂Ωc,

β0(t) on ∂Ω ∩ ∂Ωs.

where β0(t) > 0 (usually taken to be constant).

3 The harmonic regime

We focus our attention on the heating induction-conduction process. For this reason
and from now on, we will just write T instead of Th.

Electromagnetic fields generated by high frequency currents are sinusoidal in time.
Consequently, both the electric potential, φ, and the magnetic potential field, A, take
the form ([1, 2, 12, 13]) M(x, t) = Re

[

eiωtM(x)
]

, where F is a complex-valued function
or vector field, and ω = 2πf is the angular frequency, f being the electric current
frequency. In general, M also depends on t, but at a time scale much greater than 1/ω.
In this way, we may introduce the complex-valued fields ϕ, A and j as

φ = Re[eiωtϕ(x, t)], A = Re[eiωtA(x, t)], jS = Re[eiωtj(x)]. (18)

As a far as the numerical simulation of a system like (2)-(12) is concerned, the intro-
duction of the new variables ϕ and A is quite convenient since the time scale describing
the evolution of both ϕ and A is much smaller than that of the temperature θ. In the
case of steel heat treating, f is about 80 KHz.

When we rewrite the original system (2)-(12) in terms of the new complex-valued
variables, ϕ and A, neglecting the term At, we obtain the so-called harmonic regime.
Furthermore, in the energy equation, the expression |At + ∇φ|2 is substituted by its
mean value measured over a time period [t, t+ ω]:

1

ω

∫ t+ω

t
|At +∇φ|2 ≃

1

2
|iωA+∇ϕ|2.
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In this way, the effective Joule’s heating takes the form 1
2
σ(θ)|iωA+∇ϕ|2. The equa-

tions in the harmonic regime are the following.

∇ · (σ(θ)∇ϕ) = 0 in ΩT , (19)

∂ϕ

∂n
= 0 on ∂Ω× (0, T ), (20)

[

σ(θ)
∂ϕ

∂ν

]

Γ

= j on Γ× (0, T ), (21)

iωσ0(θ)A+∇×

(

1

µ
∇×A

)

− δ∇(∇ ·A) = −σ0(θ)∇ϕ in DT , (22)

A = 0 on ∂D × (0, T ), (23)

zt = F (θ, z) in Ωs × (0, T ), (24)

z(0) = z0 in Ωs, (25)

θt −∇ · (κ(θ)∇θ) =
1

2
σ(θ)|iωA+∇ϕ|2 + ρLzt +G in ΩT , (26)

∂θ

∂n
= 0 on ∂Ω× (0, T ), (27)

θ(·, 0) = θ0 in Ω, (28)

Remark A similar simpler stationary model involving only the unknowns A and θ and
with non-homogeneous Dirichlet boundary conditions is studied in [4].

4 An existence result

We consider the system (19)-(28) describing the heating process by conduction-induction
in the harmonic regime. Besides the assumptions on data already mentioned along the
Introduction, we will considered the following hypotheses.

(H.1) σ, κ : Ω × R 7→ R are Carathéodory functions and there exist some constant
values σ1, σ2, κ1, κ2 ∈ R such that 0 < σ1 ≤ σ(x, s) ≤ σ2, 0 < κ1 ≤ κ(x, s) ≤ κ2,

almost everywhere x ∈ Ω and for all s ∈ R.

(H.2) j ∈ L2(0, T ;H−1/2(Γ)) and 〈j(t), 1〉Γ = 0, almost everywhere t ∈ (0, Th).

Here, 〈·, ·〉Γ stands for the duality pair between H−1/2(Γ) and H1/2(Γ).

(H.3) µ ∈ L∞(D) and there exists a constant value µ∗ such that 0 < µ∗ ≤ µ in D.

(H.4) F ∈ L∞(R× R
2) ∩C(R× R

2) and there exists a constant LF such that

|F (s, s1)− F (s, s2)| ≤ LF |s1 − s2|, for all s ∈ R and for all s1, s2 ∈ R
2.

(H.5) z0 = (z01, z02) ∈ L∞(Ωs).

(H.6) ρL,G ∈ L1(Ωs × (0, T )).
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(H.7) θ0 ∈ L1(Ω).

Remark In the situation described here, we are just considering the evolution of two
phase fractions which correspond to austenite and martensite. Of course, we may
consider a more general setting which includes other phase fractions like bainite, pearlite
and ferrite or a mixing of them all (see [7]).

Remark In practice, the magnetic permeability is of the form

µ(x) = µ1χΩs + µ2χΩc + µ3χD\Ω,

where µi > 0, 1 ≤ i ≤ 3, are constant values such that tales que µ2 < µ3 ≪ µ1.

Variational formulation

The variational formulation corresponding to the system (19)-(28) allows us to give the
concept of a solution (ϕ,A, z, θ) to this system.

We denote by H1(Ω) = {v ∈ L2(Ω) /∇v ∈ (L2(Ω))N}, N = 2 or 3, the complex-
valued usual Sobolev space, the derivatives of v taken in the sense of distributions.
We also use the complex-valued Sobolev space H1

0 (D) = {v ∈ H1(D) / v = 0 on ∂D}.
Then we put H1

0 (D) = (H1
0 (D))N . All these spaces are Hilbert spaces provided with

their respective inner products.

The quotient space H1(Ω)/C is a Hilbert space provided with the inner product

(u̇, v̇) =

∫

Ω

∇u∇v̄,

where u, respectively v, is any element in the class of u̇, respectively v̇, and v̄ stands
for the conjugate of v.

For 1 ≤ p ≤ ∞, we also consider the Banach (real) space W 1,p(Ω) provided with
their standard norm, and (W 1,p(Ω))′ its dual (topological and algebraic) space.

If X is a Banach space, we put Lp(X) = Lp(0, T ;X) andW 1,p(X) =W 1,p(0, T ;X),
that is

W 1,p(X) = {v ∈ Lp(X) / vt ∈ Lp(X)},

the derivative vt taken in the sense of distributions in (0, T ). Both, Lp(X) andW 1,p(X)
are Banach spaces. Remember that

W 1,p(X) ⊂ C([0, T ];X)

with continuous embedding.
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Definition 1 We say that (ϕ,A, z, θ) is a weak solution to the system (19)-(28) if the

following conditions hold

ϕ ∈ L2(H1(Ω)/C), (29)

A ∈ L2(H1
0 (D)), (30)

z ∈W 1,∞(L∞(Ωs)), (31)

θ ∈ Lp(W 1,p(Ω)) ∩ C([0, T ]; (W 1,p′(Ω))′) for all p ∈
[

1, N+2
N+1

)

, 1p + 1
p′ = 1, (32)

θ(·, 0) = θ0 in Ω, (33)
∫ T

0

∫

Ω

σ(θ)∇ϕ · ∇ψ̄ +

∫ T

0

〈j, ψ̄〉Γ = 0, for all ψ ∈ L2(H1(Ω)/C), (34)

iω

∫ T

0

∫

Ω

σ(θ)A · v̄ +

∫ T

0

∫

D

1

µ
∇×A · ∇ × v̄ + δ

∫ T

0

∫

D
∇ ·A∇ · v̄

+

∫ T

0

∫

Ω

σ(θ)∇ϕ · v̄ = 0, for all v ∈ L2(H1
0 (D)) (35)

z = z0 +

∫ t

0

F (θ, z), for all t ∈ [0, T ] (36)

−

∫ T

0

∫

Ω

θζt +

∫ T

0

∫

Ω

κ(θ)∇θ∇ζ

=

∫ T

0

∫

Ω

(

1

2
σ(θ)|iωA+∇ϕ|2 + ρLzt +G

)

ζ,

for all ζ ∈ C1(Ω̄ × [0, T ]) such that ζ(·, 0) = ζ(·, T ) = 0 in Ω. (37)

Remark As long as N ≤ 3, Sobolev embedding implies that L1(Ω) ⊂ (W 1,q(Ω))′ for
all q > 3. On the other hand, since p < 5/4 ≤ (N + 2)/(N + 1) we have p′ > 5; in
particular, L1(Ω) ⊂ (W 1,p′(Ω))′ for all p ∈ [1, 5/4). Consequently, according to (H.7)
and the regularity θ ∈ C([0, T ]; (W 1,p′(Ω))′) stated in (32), the initial condition (33)
makes sense at least in the space (W 1,p′(Ω))′. Under a more restrictive assumption on
the thermal conductivity κ (see (H.8) below), it can be shown that θ ∈ C([0, T ];L1(Ω)).
Thus, the initial condition (33) also makes sense in L1(Ω).

The main result

An existence result of a weak solution (ϕ,A, z, θ) to the system (19)-(28) is given below.
To this end, we also consider the following hypothesis on the thermal conductivity κ.

(H.8) There exist ε0 > 0 and L0 > 0 such that for all ε ∈ (0, ε0] one has

|κ(x, s1)− κ(x, s2)| ≤ L0|s1 − s2|,

almost everywhere x ∈ Ω and for all s1, s2 ∈ R such that |s1 − s2| < ε.
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Theorem 1 Assume the assumptions (H.1)-(H.7). Then there exists a weak solution

to the system (19)–(28) in the sense of Definition 1.

Moreover, if the thermal conductivity κ verifies (H.8), then θ ∈ C([0, T ];L1(Ω))
and it also satisfies the variational formulation

−

∫ T

0

∫

Ω

θζt +

∫

Ω

θ(x, T )ζ(x, T )−

∫

Ω

θ0(x)ζ(x, 0) +

∫ T

0

∫

Ω

κ(θ)∇θ∇ζ

=

∫ T

0

∫

Ω

(

1

2
σ(θ)|iωA+∇ϕ|2 + ρLzt +G

)

ζ, for all ζ ∈ C1(Ω̄× [0, T ]).

The proof of this result will be developed in a forthcoming paper ([8]).

5 Numerical simulation

We have carried out some numerical simulations for the approximation of the solution
to the system (19)-(28). We want to describe the hardening treatment of a car steering
rack during the heating-cooling process. The goal is to produce martensite along the
tooth line together with a thin layer in its neighborhood inside the steel workpiece.

Figure 1 shows the open sets D, Ω = Ωs ∪ Ωc ∪ S and the inferface Γ which
intervene in the setting of the problem. The inductor Ωc is made of copper. The
workpiece contains a toothed part to be hardened by means of the heating-cooling
process described above. It is made of a hypoeutectoid steel. The open set D \ Ω̄ is air.
The magnetic permeability µ in (22) is then given by

µ(x) =







µ0 if x ∈ D \ Ω̄,
0.99995µ0 if x ∈ Ωc,

2.24 × 103µ0 if x ∈ Ωs,

where µ0 = 4π × 10−7 (N/A2) is the magnetic constant (vacuum permeability).
The martensite phase can only derive from the austenite phase. Thus we need to

transform first the critical part to be hardened (the tooth line) into austenite. For our
hypoeutectoid steel, austenite only exists in a temperature range close to the interval
[1050, 1670] (in ◦K). During the first stage, the workpiece is heated up by conduction
and induction (Joule’s heating) which renders the tooth line to the desired temperature.
In order to transform the austenite into martensite, we must cool it down at a very
high rate. This second stage is accomplished by spraying water over the workpiece.
This latter process is called aquaquenching.

In this simulation, the final time of the heating process is Th = 5.5 seconds and the
cooling process extends also for 5.5 seconds, that is Tc = 11.

We have used the finite elements method for the space approximation and a Crank-
Nicolson scheme for the time discretization. Figures 3 and 4 show the triangulation of
D in our numerical simulations. We have used P2-Lagrange approximation for ϕ, A
and θ and P1 for z.

In Figure 5 we can see the temperature distribution of the rack along the tooth
line at the final stage of the heating process. The initial temperature is θ0 = 300◦K.
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Figure 3: Domain triangulation. The triangulation of D contains 61790 triangles and
30946 vertices.

At t = 5.5 the heating process ends and the computed temperature shows that the
temperature along the rack tooth line lies in the interval [1050, 1670] (◦K).

Figure 6 shows the austenization along the tooth line at the end of the heating
process T = 5.5 seconds.

Figure 7 shows the final distribution of martensite from austenite along the rack
tooth line through the cooling stage t = 11 seconds. We have good agreement versus
the experimental results obtained in the industrial process.
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Figure 4: Domain triangulation. Elements density near three teeth.

Figure 5: Temperature at the final stage of the heating process t = 5.5 seconds near
the tooth line.
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[9] D. Hömberg, A mathematical model for induction hardening including mechani-

cal effects, Nonlinear Analysis: Real World Applications, 5, 55–90, 2004.
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Abstract

Although classical logic was studied by logicians in depth, no efficient applica-
tions were presented until the Robinson resolution rule was introduced. Thus, the
resolution rule may be considered as the first step in logic programming. Besides
that, in artificial intelligence and relational databases, functional dependency (FD)
is a useful notion to describe data knowledge. In literature, there exists several
logics to specify and manipulate FDs. Nevertheless, their inference systems are
suitable to illustrate FD semantics but they may not be used as a formal base to
develop automated deduction methods. In this work, we use an axiomatic system,
denoted Se

FDS
, which is based on new FD inference rule, named Simplification

Rule, which plays the same role as the resolution rule. We introduce the Deduction
Theorem for Functional Dependencies that has theoretical relevance, and is the
key for solving the FD implication problem using Se

FDS
. Moreover, we present the

paradigm functional dependencies programming. This paradigm uses an inference
engine as an automated deduction method, based on three rules of simplification.
An extension of classical FD language with empty attributes (⊤ atom) is intro-
duced in order to specify facts and goals. The set of FDs plays the role of rules
in classical logic programming languages. Finally, we apply this paradigm to solve
the FD implication problem with a novel and efficient algorithm.

Key words: Logic, Implication, Functional dependencies

1 Introduction

Classical logic was conceived (and successfully used) as a formal framework suitable for
specification and metatheoretical development. Thus, Logic has gone down in history
as the formalism selected by mathematicians and philosophers to formally explain their
theories. When computer science was born, classical logic (with its different deduction
methods) was moved from a theoretical field to a practical one, where it reveals its
power.
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From then, logic was not considered to be only a formal tool and it became itself
a subject of research.

One of the most important milestones in the history of logic was the introduction
of the resolution method, due to Robinson [11]. He presents a new rule, called the
resolution rule, which allows the definition of a new automated deduction method.

Before the resolution rule was introduced, semantic tableaux [7] were considered to
be a good method to build logical inferences, but only at a theoretical level. In fact,
tableaux was considered to be a method to systematize countermodel searches, but
the method was not applied in practice until the 80s, when computers acquired better
perfomance.

Robinson’s work opens a new door, not only to the use of logic, but also to the use of
computers. Up until that moment, software was developed solely with the Von Newman
style in mind. Since Robinson introduced the Resolution Rule, the field of programming
was enlarged and the area of logic programming was born. Logic programming paradigm
got the support of a great number of researchers and, in a few years, it matured and
was considered as an important subject in computer science.

In the relational database community, researchers focus not only on the data itself,
they are also interested in the constraints that these data must fulfill. A very important
role in database constraint is played by dependencies. As J. Paredaens et al. say
in [10]: “they are constraints in the description of a database in order to ensure that
the instances we might obtain are meaningful”.

There exists a wide range of dependencies. Some of them were investigated in
the past (Functional Dependencies, Multivalued Dependencies, Join Dependencies, In-
clusion Dependencies, etc.) and others are being studied today (Nested Functional
Dependencies, Generalized Data Dependencies, XML Functional Dependencies, Fuzzy
Dependencies, etc.).

At the same time, logic has been used properly as a specification tool and for
metatheoretical development in the area of database dependencies. Moreover, each
dependency definition is usually followed by its corresponding logic. These different
dependency logics provide several formal languages to specify different kinds of database
constraints but none of them has been used successfully in automated deduction. The
reason is that their corresponding inference systems were created to explain dependency
semantics more than to design an automated deduction system.

In this work we concentrate on functional dependencies (FD), the most popular
database dependencies. They add semantics to a database schema and are useful
for studying various problems such as database design, query optimization and how
dependencies are carried out a view. They were introduced by E.F. Codd 1 in 1970.
FDs may be viewed as a relationship among some attributes of a table. Thus, if the
FD A1, . . . , An →B1, . . . , Bn holds in a database D, then two tuples of D that agree on
A1, . . . , An agree on B1, . . . , Bn.

There exist several equivalent FD Logics [3, 6, 8, 10, 13] but all their inference

1E.F. Codd died in April 2003. We are in debt to him for his revolutionary ideas about data storage
and management and we particularly appreciate his tireless fight at the beginning of the 70s’, when
academic and business organizations had no faith in his Relational Model.
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systems are strongly based on the transitivity paradigm. These characteristics avoid the
construction of efficient deduction methods directly based on these inference systems
and the most successful approaches come from indirect ways (graph theory, matrix
operators, etc).

As semantics tableaux in the case of classical logic, all these inference systems
allow us to guide the search for new FD inferred from a given set of FDs, but they do
not allow us to search for new dependencies automatically. In the same role that the
Robinson rule plays in the application of classical logic, we will use the Simplication
Rule presented in [4] to make FD logic become a useful tool for computer science.

The Simplification rule was presented in [4] and in [9] we use it to design a prepro-
cessing transformation which efficiently reduces database redundancy.

Unfortunately, this transformation of sets of FDs is not complete, and it cannot be
used to solve the implication problem: to answer the question if an FD can be deduced
from a given set of FDs.

In this work, we illustrate how the Simplification Rule can be considered to be
the triggering event at the beginning of Functional Dependencies Programming. Thus,
we extend the language of FD Logic to allow empty left hand side formulae and we
use this new well formed formulae as goals to be satisfied in a given FD theory. The
Simplification rule is used to build a novel Simplification algorithm directly based on
the inference system. This work opens the door to the management of FD constraints
in relational databases in an efficient and intelligent way.

This work is organized as follows: In section 2 we show how previous FD logics
reason about FDs and the limitations of these logics to manipulate automatically a
set of FDs. We introduce the problem that we solve in this paper, named ”the FD
implication problem”. Section 3 shows the novel Simplification rules and introduces
the FD logic with Simplifications. In section 4 we propose a new automated deduction
method to solve the FD implication problem and finally we establish several conclusions
and future works in section 5.

2 Reasoning about FDs

In literature, there exists a set of equivalent FD logics [3, 6, 8, 10, 13]. These classical
FD logics may be considered as formal tools to formally explain how to deduce a FD
from a given set of FDs. With no loss of generality, we select FD Paredaens Logic [10]
to illustrate how these inference systems work:

Definition 1 (The LFD language) Let Ω be an infinite numerable set of atoms and
let 7→ be a binary connective, we define the language LFD = {X 7→Y | X,Y ∈ 2Ω and X 6=
∅}.

Notation 1 Let X,Y be a set of atoms. In the following, XY denotes the union X∪Y ;
X ⊆ Y denotes the set inclusion relation; Y −X denotes the difference (elements in Y

that are not in X) and ⊤ denotes the empty set.
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Definition 2 (The L
Par

logic) L
Par

is the logic given by the pair (LFD, SPar) where
SPar is an axiomatic system with one axiom scheme and two inference rules:

⌊AxPar⌋ : ⊢SPar
X 7→Y if Y ⊆ X Axiom

⌊Trans⌋ X 7→Y Y 7→Z ⊢SPar
X 7→Z Transitivity Rule

⌊Augm⌋ X 7→Y ⊢SPar
X 7→XY Augmentation Rule

In SPar we have the following derived rules (these rules appear in [10] together
with other derived rules):

⌊Comp⌋ X 7→Y, W 7→Z ⊢SPar
XW 7→Y Z Composition Rule

⌊Frag⌋ X 7→Y Z ⊢SPar
X 7→Y Fragmentation Rule

⌊gAugm⌋ X 7→Y ⊢SPar
U 7→V , where X ⊆ U and V ⊆ XY

Generalized Augmentation Rule

⌊gTrans⌋ X 7→Y,Z 7→U ⊢SPar
V 7→W , where Z ⊆ XY ; X ⊆ V ;W ⊆ UV

Generalized Transitivity Rule

Unfortunately, SPar and all the other classical FD axiomatic systems are not suitable
tools to develop automated deduction techniques, because all of them are generated by
Armstrong Axioms [2], a set of propositions introduced in 1974 to explain FD semantics.
This is a well-known problem in other deduction methods, like tableaux-like methods,
whose rules are closed to connective semantics.

The main problem concerning FD deduction is the implication problem, which can
be enunciated as follows:

Let Γ to be a set of FDs and γ a FD. Is it possible to affirm that Γ ⊢ γ?

In the following example we apply SPar to solve an implication problem.

Exmaple 1 Let Γ be the following set of FDs

{ad7→c, b7→eh, be7→c, bc7→d, c7→a, cd7→b, ce7→af, cf 7→bdh}

We try to prove that Γ ⊢ bd7→ah. We apply SPar to obtain the following sequence of
equivalent sets of FDs.

Γ
⋃

{b7→e, b7→h}, using ⌊Frag⌋b7→eh ⊢SPar
b7→e, b7→h

Γ
⋃

{b7→e, b7→h, bd7→h}, using ⌊gAugm⌋ : b7→h ⊢SPar
bd7→h

Γ
⋃

{b7→e, b7→h, bd7→h, b7→c}, using ⌊gTrans⌋ : b7→e, be7→c ⊢SPar
b7→c

Γ
⋃

{b7→e, b7→h, bd7→h, b7→c, bd7→c}, using ⌊gAugm⌋ : b7→c ⊢SPar
bd7→c

Γ
⋃

{b7→e, b7→h, bd7→h, b7→c, bd7→c, bd7→a}, using ⌊Trans⌋ : bd7→c, c7→a ⊢SPar
bd7→a

Γ
⋃

{b7→e, b7→h, bd7→h, b7→c, bd7→c, bd7→a, bd7→ah}, using ⌊Comp⌋ : bd7→a, bd7→h ⊢SPar
bd7→ah

So, we have that bd7→ah is deduced from Γ.
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How can X 7→Y be deduced from Γ? The classical methods consist of adding derived
FDs to Γ in each step until X 7→Y is obtained. This method has two disadvantages:

• The rules are not applied in a systematic way, so it is very difficult to select the
rule that will be applied in each step. This is not an inference system suitable for
automation 2.

• An additional problem arises when the target FD is not obtained from Γ. In this
case, two undistinguishable causes exist: the FD can not be obtained from Γ or
the selection of the rules has not been done properly. The theoretical approaches
of testing every applicable rule in each step is not a real solution, since it is an
exponential method that consumes a huge amount of time.

The use of this method in computers is not viable even with a set of FDs whose
size is not very great [1].

We are looking for an efficient method to solve the implication problem. Instead
of that, in literature a closure operator for attributes is used. Thus, if we have to prove
if X 7→Y is a consequence of Γ, we compute X+ 3 and we test if Y is a subset of X+.
In literature there are several algorithms to compute the closure of a set of attributes
in linear time (see [3, 5] for further details). These works ensure that the implication
problem can be solved in polynomial time.

3 A novel rule in a new logic: The Simplification rule and

SL
FD

In [4] we formally introduce a new database redundancy notion and, for the first time,
lattice theory is used as a formal framework for functional dependencies. In the cited
work, we also present a new logic SL

F D
, that incorporates two novel Simplification

rules 4, which removes redundancy from a given set of FDs.

Definition 3 The SL
F D

logic is the pair (LFD, SFDS) where LFD is the language
shown in Definition 1 and the axiomatic system SFDS has one axiom scheme:

AxFDS : ⊢SF DS
X 7→Y , where Y ⊆ X 6= ∅.

And the inference rules are the following:

Fragmentation rule: ⌊Frag⌋: X 7→Y ⊢SF DS
X 7→Y ′ , where Y ′ ⊆ Y

Composition rule: ⌊Comp⌋: X 7→Y, U 7→V ⊢SF DS
XU 7→Y V

Simplification rule: ⌊Subst⌋: X 7→Y, U 7→V ⊢SF DS
(U -Y )7→(V -Y ), where X ⊆ U

and X ∩ Y = ∅

2A human must have a high level of expertise to find the sequence of rules in a reasonable period of
time. Moreover, if the reader tries to solve the above example, the derivation could be different from
the one presented here.

3The closure of X in Γ.
4The rules that we introduce may be considered as transformations of equivalence [9].
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In [9] we proved that SL
F D

axiomatic system is equivalent to other well known FD
axiomatic systems [3, 6, 8, 10] and thus, all Paredaens derived rules are derived rules
in SL

F D
.

Besides that, in [4] we introduce a new derived rule:
Right Simplification rule

⌊rSust⌋: X 7→Y,U 7→V ⊢ U 7→(V -Y ), if X ⊆ UV,X ∩ Y = ∅

The definition of SL
F D

has made it possible that, for the first time, interesting
problems in database area can be solved using logic-based automated deduction meth-
ods.

The first step in this direction was the use of Simplification rules included in
SL

F D
[4], as a new tool for reasoning about FDs. In [9] we used Prolog for imple-

menting a new pre-processing transformation that prunes a set of FDs and in [1] we
used Maude for comparing FD logic by Paredaens and SL

F D
. Mainly, in these previ-

ous works the rules of SL
F D

are applied in order to reduce the size of a set of FDS
progressively.

4 A new automated deduction method

In this section, we extend the language of FD Logic to allow empty left hand side
formulae and we use this new well formed formulae as goals to be satisfied in a given
FD theory. The Simplification rule is used to build a novel Simplification method to
solve the implication problem directly based on the inference system.

4.1 An extension of SL
F D

: The SLe

F D
logic

We remark that LFD includes the following formula schema: X 7→⊤. In [12] the author
considers this FD schema to solve some problems, concerning the management of FDs
in a given algorithm but X 7→⊤ does not appear in any FD logic in literature. In our
logic, the symbol ⊤ is a central element in SL

F D
and it guides the utilization of the

logic to solve several problems.
However, LFD does not allow the use of the FD ⊤7→X. We extend SL

F D
to

represent and manipulate this FD.

Definition 4 (The Le
FD language) Let Ω be an infinite numerable set of atoms and

let 7→ be a binary connective, we define the language Le
FD = {X 7→Y | X,Y ∈ 2Ω} That

is, Le
FD = LFD ∪ {⊤7→V | V ∈ 2Ω}.

Definition 5 (The SLe
F D

logic) The SLe
F D

logic is the pair (Le
FD, Se

FDS) where Le
FD

is the language shown in Definition 4 and the axiomatic system Se
FDS has one axiom

scheme: Axe
FDS : ⊢Se

F DS
X 7→Y , where Y ⊆ X. And the inference rules are ⌊Frag⌋,

⌊Comp⌋ and ⌊Subst⌋.

Obviously, from the above definition we directly obtain that: for all Γ ⊆ LFD and all
X 7→Y ∈ LFD, if Γ ⊢S

F DS
X 7→Y then Γ ⊢Se

F DS

X 7→Y .
Now we are interested in the benefits of the extension that we have just introduced.
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Lemma 1 Let Γ ⊆ Le
FD, there exists Γ′ ⊆ LFD and X ∈ 2Ω such that Γ ≡Se

F DS

Γ′ ∪ {⊤7→X} i.e, Γ ⊢Se

F DS
Γ′ ∪ {⊤7→X} and Γ′ ∪ {⊤7→X} ⊢Se

F DS
Γ

Proof 1 It is an immediate consequence of the composition and fragmentation rules.

The following theorem is the key to solving the FD implication problem using the SL
F D

logic.

Theorem 2 (Deduction Theorem for Functional Dependencies) Given Γ ⊆ LFD,
we have the following equivalence:

1. For all X,U, V ∈ 2Ω, Γ ∪ {⊤7→X} ⊢Se

F DS

U 7→V if and only if Γ ⊢S
F DS

UX 7→V. And, in particular:

2. For all X,Y ∈ 2Ω. the following equivalence is stated: Γ ∪ {⊤7→X} ⊢Se

F DS

⊤7→Y if and only if Γ ⊢S
F DS

X 7→Y

Proof 2 First, if Γ ⊢S
F DS

UX 7→V then we have that Γ ⊢Se

F DS

UX 7→V and the fol-

lowing sequence proves that Γ ∪ {⊤7→X} ⊢Se

F DS

U 7→V .

1. ⊤7→X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis

2. UX 7→V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis

3. U − X 7→V − X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by 1., 2. and ⌊Subst⌋

4. U − X 7→V X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by 1., 3. and ⌊Comp⌋

5. U − X 7→V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by 4. and ⌊Frag⌋

6. U 7→⊤ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by Axe
FDS

7. U 7→V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by 5., 6. and ⌊Comp⌋

Conversely, we prove that, if Γ ∪ {⊤7→X} ⊢Se

F DS

U 7→V , then Γ ⊢S
F DS

UX 7→V .
Let us consider the following sets:

• Σ is the inductive set freely generated by Γ and the axioms set in SFDS via the
constructors given the inference rules in SFDS. That is,

Σ = {Y 7→Z | Γ ⊢S
F DS

Y 7→Z}

• Σe
X is the inductive set freely generated by Γ ∪ {⊤7→X} and the axioms set in

Se
FDS via the constructors given the inference rules in Se

FDS. That is,

Σe
X = {Y 7→Z | Γ ∪ {⊤7→X} ⊢Se

F DS

Y 7→Z}
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We prove, by induction, that

U 7→V ∈ Σe
X implies that UX 7→V ∈ Σ

1. If U 7→V ∈ Γ, then U 7→V ∈ Σ and, since Σ is closed for the inference rules in S
F DS

and UX 7→V is obtained from U 7→V by ⌊gAugm⌋, we have that UX 7→V ∈ Σ.

2. From ⊤7→X we obtain X 7→X that belongs to Σ because it is an axiom in SFDS.

3. If U 7→V is an axiom in Se
F DS

, then UX 7→V ∈ Σ because it is an axiom in SFDS.

4. If U 7→V ∈ Σe
X because it is obtained applying ⌊Frag⌋, then there exist V ′ ⊇ V

such that U 7→V ′ ∈ Σe
X and, by ⌊Frag⌋, U 7→V ∈ Σe

X .

By induction hypothesis, we have that UX 7→V ′ ∈ Σ and applying ⌊Frag⌋ we have
that UX 7→V ∈ Σ.

5. If U 7→V ∈ Σe
X because it is obtained applying ⌊Comp⌋, then there exists U1 7→V1, U2 7→V2 ∈

Σe
X such that U1U2 = U and V1V2 = V and, by induction hypothesis, we have that

U1X 7→V1, U1X 7→V2 ∈ Σ. Finally, we obtain that UX 7→V ∈ Σ applying ⌊Comp⌋.

6. If U 7→V ∈ Σe
X because it is obtained applying ⌊Subst⌋ then there exists U1 7→V1, U2 7→V2 ∈

Σe
X such that U1 ⊆ U2, U2 − V1 = U and V2 − V1 = V . Moreover, by induction

hypothesis, we have that U1X 7→V1, U2X 7→V2 ∈ Σ. Finally, the following sequence
proves that UX 7→V ∈ Σ.

1. U1X 7→V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis

2. U2X 7→V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by hypothesis

3. U1X 7→V1 − X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by 1. and ⌊Frag⌋

4. U2X − (V1 − X)7→V2 − (V1 − X) . . . . . . . . . . . . . . . . . . . by 3., 2. and ⌊Subst⌋

5. U2X − (V1 − X)7→V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by 4. and ⌊Frag⌋5

6. UX 7→⊤ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by Axe
FDS

7. UX 7→V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by 5., 6. and ⌊Comp⌋6

In the next section the above theorem is used for designing a new methodology
able to manage FDs as a logic programming language.

4.2 Rules of simplification for solving the FD implication problem

In this section, a novel technique for applying in a systematic way the system SLe
F D

is
introduced. With this aim, three rewriting rules of simplification are defined using the
symbol  where Γ Γ′ means that all the elements in Γ must be replaced by all the
elements in Γ′.

5Note that V = V2 − V1 ⊆ V2 − (V1 − X)
6Note that U2X − (V1 − X) ⊆ U2X ⊆ UX
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Definition 6 Given X,U, V ∈ 2Ω.

SC Simplification: If U ⊆ X then {⊤7→X,U 7→V } {⊤7→XV }

SA Simplification: If V ⊆ X then {⊤7→X,U 7→V } {⊤7→X}

S Simplification: {⊤7→X,U 7→V } {⊤7→X,U − X 7→V − X}

Lemma 2 Let Γ and Γ′ be two sets of FDs. If Γ′ is obtained from Γ applying the
rewriting rules of simplification introduced in definition 6 then Γ ≡Se

F DS

Γ′

Proof 3

SC Simplification: {⊤7→X,U 7→V }
1
≡Se

F DS

{⊤7→X,U−X 7→V −X}
2
≡Se

F DS

{⊤7→XV }
Simplification rule is applied in 1 and, since U ⊆ X, Composition rule is applied
in 2.

SA Simplification: {⊤7→X,U 7→V }
3
≡Se

F DS

{⊤7→X,U − X 7→V − X}
4
≡Se

F DS

{⊤7→X}
Simplification rule is applied in 3 and, since V ⊆ X, the Axiom is applied in 4.

S Simplification: {⊤7→X,U 7→V }
5
≡Se

F DS

{⊤7→X,U − X 7→V − X} Simplification
rule is applied in 5.

Theorem 3 Given Γ ⊆ LFD and X 7→Y ∈ LFD. If Γ′ is obtained from Γ ∪ {⊤7→X}
applying the rewriting rules of simplification introduced in definition 6 while these rules
can be applied then there exists a unique ⊤7→Z ∈ Γ′ with X ⊆ Z and

Γ ⊢S
F DS

X 7→Y if and only if Y ⊆ Z

Proof 4 First, there exist ⊤7→Z ∈ Γ′ with X ⊆ Z because we apply the rewriting rules
to Γ ∪ {⊤7→X} and, when these rules modify X, X increases.

The uniqueness of ⊤7→Z is ensured by SC rule.

Y ⊆ Z implies Γ ⊢S
F DS

X 7→Y is obtained using Theorem 2, Lemma 2 and the
fragmentation rule.

Conversely, the following steps prove that Γ ⊢S
F DS

X 7→Y implies that Y ⊆ Z. Let
Γ′′ be Γ′ − {⊤7→Z}:

1. Since ⊤7→Z is unique, Γ′′ ⊆ LFD.

2. If Γ ⊢S
F DS

X 7→Y then Theorem 2 ensures that Γ′ ⊢Se

F DS

⊤7→Y and, from Γ′ =

{⊤7→Z} ∪ Γ′′, (1) and Theorem 2, Γ′′ ⊢S
F DS

Z 7→Y is obtained.

3. If U 7→V ∈ Γ′′ then U ∩ Z = ∅ and V ∩ Z = ∅, since otherwise S rule of
simplification could be applied.

4. If Γ′′ ⊢S
F DS

Z 7→Y then Y ⊆ Z because, due to (3), Z 7→Y must be an axiom.
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⊤7→X Simp.Rule ad7→c b7→e be7→cg bc7→g c7→a cd7→b cf 7→bh cg 7→af

⊤7→bd S ad7→c b7→e be7→cg bc7→g c7→a cd7→b cf 7→bh cg 7→af

⊤7→bd SC a7→c b7→e be7→cg bc7→g c7→a cd7→b cf 7→bh cg 7→af

⊤7→bde SC a7→c be7→cg bc7→g c7→a cd7→b cf 7→bh cg 7→af

⊤7→bcdeg SA a7→c bc7→g c7→a cd7→b cf 7→bh cg 7→af

⊤7→bcdeg SC a7→c c7→a cd7→b cf 7→bh cg 7→af

⊤7→abcdeg SA a7→c cd7→b cf 7→bh cg 7→af

⊤7→abcdeg S a7→c cf 7→bh cg 7→af

⊤7→abcdeg SC a7→c f 7→h cg 7→af

⊤7→abcdefg SA a7→c f 7→h

⊤7→abcdefg SC f 7→h

⊤7→abcdefgh

Figure 1: Table of the example 1

The above theorem states the method to determinate if Γ ⊢S
F DS

X 7→Y . The solution
arose from adding the goal ⊤7→X to Γ, rendering an initial Γ′. Then, rewriting rules
of simplification are applied to Γ′ obtaining {⊤7→Z} ∪ Γ′′. Finally, Γ ⊢S

F DS
X 7→Y if

and only if Y ⊆ Z.
Below, we solve the implication problem presented in Example 1 using our new

methodology:

Exmaple 2 Let Γ = {ad7→c, b7→eh, be7→c, bc7→d, c7→a, cd7→b, ce7→af, cf 7→bdh} be this
set of FDs.

In order to know whether Γ ⊢ bd7→ah, firstly we initialize Γ′ = Γ ∪ {⊤7→bd} ren-
dering: Γ′ = {⊤7→bd, ad7→c, b7→eh, be7→c, bc7→d, c7→a, cd7→b, ce7→af, cf 7→bdh}

The table in figure 1 shows step by step how the rewriting rules of simplification
are applied. Note that the underscore points the FD that is being reduced. The second
column shows the applied rule:

Since ah ⊆ abcdefgh and by Theorem 3, the following deduction is obtained:
Γ |= bd7→ah

A novel algorithm for solving the implication problem using rules of simplification
defined below is shown in figure 2. The algorithm simply adds ⊤7→X and, in an ex-
haustive way applies the rules of simplification based on the theoretical study (Theorem
2).

Since every step adds at least one attribute, in the worst case, the “Closure” loop
is repeated at most | A | times. The “Simplify” loop is repeated at most | Γ | times.
Consequently, the complexity of the algorithm is O(| A || Γ |). We emphasize the
following characteristics of the algorithm :

• The algorithm has the same complexity as the previous algorithms [5, 10] cited
in literature, namely linear with regard to the input.
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Implies?(Γ, X → Y )=



Y es, if Y ⊆ Closure(X, nil, Γ, 1);
No, otherwise.

Closure(X, Γ1, Γ2, b)=



X, if Γ2 = nil or b = 0;
Closure(Simplify(X, Γ1, Γ2, 0)), otherwise.

Simplify(X, Γ1, nil, b) = (X, nil, Γ1, b)

Simplify(X, Γ1, U → V :: Γ2, b) =

=

8

<

:

Simplify(X, Γ1, Γ2, b), if V ⊆ X;
Simplify(XV, Γ1, Γ2, 1), if U ⊆ X and V 6⊆ X;
Simplify(X, U -X → V -X :: Γ1, Γ2, b), otherwise.

Figure 2: Algorithm to solve the implication problem

• Contrary to these previous algorithms, our algorithm has a solid base, since it uses
the SL

F D
logic . Consequently proofs and explanations are given automatically

by the algorithm applying directly the logic SL
F D

. Namely, the trace shown in
column Simp.Rule reflects the rules of SL

F D
logic that must be applied to prove

the implication and the order in which the rules need to be applied.

5 Conclusions

As the Resolution Rule is considered to be the first step of Logic Programming, Sim-
plification Rules are the key to open the door to a new area: functional dependencies
programming . We have illustrated the difficulties of directly using other previous FD
logics to face up to the implication problem.

As in a logic programming language we present an engine inference for solving the
implication problem, and how rules, facts and goals are established. We propose a novel
paradigm: the functional dependencies programming. This paradigm uses three rules
of simplification based on theorem 2 and an inference engine. The set of FDs in the
LFD language plays the role of rules in a usual logic programming language as Prolog.
We have defined SLe

F D
logic as extension of SL

F D
logic in order to specify goals in

Le
FD language. The fact X (a set of attributes) is specified adding ⊤7→X to the set of

FDs. And the goal is another set of attributes Y . Finally, the inference engine, based
on the theoretical study, is applied automatically to the extended set of FDs and ⊤7→Z

is obtained. The goal Y is achieved if Y ⊆ Z.

None of the classical FD logics can solve the implication problem efficiently without
using indirect methods. The algorithm we have proposed in this paper has the same
complexity as typical indirect methods but using directly a novel logic. Thus, we
can reason and we are ready to offer explanations. So, this new algorithm is more
appropriate to be used in an artificial intelligence environment.
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Abstract

An optimal control problem for cooling strategies in polymer crystallization
processes described by a deterministic model is solved in the framework of a free
boundary problem. The strategy of cooling both sides of a one dimensional sample
is introduced for the first time in this model, and is shown to be well approximated
by the sum of the solutions of two one-phase Stefan problems, even for arbitrary
applied temperature profiles. This result is then used to show that cooling both
sides is always more effective in polymer production than injecting the same amount
of cold through only one side. The optimal cooling strategy, focused in avoiding low
temperatures and in shortening cooling times, is derived, and consists in applying
the same constant temperature at both sides. Explicit expressions of the optimal
controls in terms of the parameters of the material are also obtained.

Key words: optimal control, Stefan problem, polymer crystallization
MSC 2000: 49J20, 35R35, 35K55, 65M06, 80A22

1 Introduction

Optimization of cooling strategies is a fundamental part of modeling polymerization
processes. A recent model of polymer crystallization [2, 3] is being studied to derive the
optimal cooling strategy in terms of the industrial main interests, focused in reducing
the duration of the cooling process while avoiding excessively low temperatures.

The model consists of two non-linear partial differential equations for the degree
of crystallinity y(x, t), defined as the mean volume fraction of the space occupied by
crystals, and the temperature field T (x, t), coupled by means of the rate functions of
nucleation and growth bN (T ) and bG(T ), the function of starting of nucleation κ(y) =
(1 − y)2, and the function of aggregation and saturation of nuclei β(y) = y(1 − y):

yt(x, t) = β(y(x, t))bG(T (x, t)) + v0κ(y(x, t))bN (T (x, t)), (1)
Tt(x, t) = σTxx(x, t) + aGβ(y(x, t))bG(T (x, t)), (2)
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for (x, t) ∈ Qτ = (0, L) × (0, τ), where L is the length of the sample and τ is the time
at which the cooling process is stopped.

Equations (1)–(2) are solved with the following boundary and initial conditions:

T (0, t) = u0(t), T (L, t) = uL(t), t ∈ (0, τ), (3)
y(x, 0) = 0, T (x, 0) = T0, x ∈ (0, L). (4)

The nucleation and growth rate functions are such that bG(T )/G = bN (T )/N = θ(T ),
where

θ(T )
def
=

{
exp (−ηT ) if T < Tf ,
0 if T ≥ Tf .

(5)

The parameters G, v0, N, σ, aG, η and Tf are positive real constants denoting the growth
factor, the initial mass, the nucleation factor, the heat diffusion coefficient, the non-
isothermal factor, the nucleation and growth exponent and the critical phase transition
temperature (from liquid to solid), respectively. Typical values and more details of the
model can be found in Refs. [2], [3] and [4].

Condition (3) means that the injection of cold is applied at both sides of the sample,
x0 = 0 and xL = L; we call this case a double cooling strategy. Previous strategies used
in this model have only considered to cool one side of the sample (single cooling), using
a thermally insulated boundary at the other side (e.g. Tx(L, t) = 0); see Refs. [3, 4, 5].

In the single cooling case, a crystallization front is formed close to the cooling
side and moves towards the interior of the sample until the other side is reached. The
front separates the liquid (y = 0) and the solid (y = 1) phases, and is not a travelling
wave; instead, it is a band of crystallization which exhibits an oscillating advance with
variable shape and velocity strongly dependent on the parameters of the material [3].

Under some conditions, the crystallization band can be identified with a thin in-
terface where the nucleation and growth processes are confined and take place at the
freezing temperature Tf [5]. Then, a free boundary problem (FBP) framework can be
used to describe the polymerization process by means of a one-phase Stefan problem [1].
Before this framework was established, numerical simulations were recently used to de-
rive both the optimal applied temperature u0 and the cooling process duration τ giving
rise to the optimal single cooling strategy [4].

In the present paper this FBP framework is used to characterize the solution of the
double cooling problem (1)–(4) by means of two Stefan problems, allowing us to show
that double cooling is always more effective than single cooling (injecting the same
amount of cold), and to derive explicit expressions of the optimal controls u0(t), uL(t)
and τ giving rise to the optimal cooling strategy, expressions written in terms of the
parameters of the material.
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2 Stefan problems describing polymerization processes

The FBP framework for single cooling strategies consists in identifying a free boundary
h(t) with the instantaneous amount of crystallized polymer P (t) defined by

P (t)
def
=

∫ L

0
y(x, t) dx. (6)

The free boundary h(t) allows to consider the crystallinity as a step function in the
whole sample, y(x, t) = 1 in [0, h(t)] and y(x, t) = 0 in [h(t), L], so that P (t) = h(t).
At the interface, the temperature is assumed to be precisely Tf , i.e. T (h(t), t) = Tf .

These assumptions allow us to derive a Stefan condition and the corresponding
Stefan problem; details of the derivation and the solution of the Stefan problem for
different applied temperature profiles will be presented elsewhere [5]. Here it suffices
to say that the Stefan condition provides us with an explicit expression of the ratio of
the latent heat Lδ to the specific heat c in terms of the parameters of the material,
Lδ/c = aGKδ, where Kδ = [1+δ(ln δ−1)]/(1−δ)2, δ = v0N/G, and that the solution of
the Stefan problem for arbitrary applied temperature profiles is given by the so-called
pseudo-steady state (PSS) approximation, valid in the limit Ste≪ 1, where the Stefan
number Ste is the ratio of the sensible heat c∆T = cmaxt{Tf − u(t)} to the latent
heat [1]:

Ste
def
=

c∆T
Lδ

. (7)

2.1 Stefan problems for double cooling strategies

When both sides of the sample are cooled, two crystallization bands emerge and move
towards each other until they merge somewhere in the interior of the sample.

We claim that a double cooling process can be seen as the sum of two single cooling
processes, and therefore can be approximated by means of two Stefan problems for two
free boundaries h0(t) and hL(t): for i = 0, L,

∂Ti

∂t
(x, t) = σ

∂2Ti

∂x2
(x, t), x ∈ [0, hi(t)), t > 0, (8)

Ti(x, t) = Tf , x ∈ (hi(t),+∞), t > 0, (9)
Ti(0, t) = ui(t), t > 0, (10)
Ti(hi(t), t) = Tf , t > 0, (11)
Lδ

c
h′i(t) = σ

∂Ti

∂x
(hi(t), t), t > 0. (12)

The PSS solution of these Stefan problems are, for i = 0, L (see Refs. [1, 5]),

hPSS
i (t) =

√
2σc
Lδ

Qi(t), (13)

TPSS
i (x, t) =

 ui(t) +
Tf − ui(t)
hPSS

i (t)
x if x ≤ hPSS

i (t),

Tf if hPSS
i (t) ≤ x,

(14)
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where Qi(t) is the total amount of cold injected into the sample along the time interval
[0, t] through the boundary xi:

Qi(t)
def
=

∫ t

0

(
Tf − ui(s)

)
ds, for i = 0, L. (15)

Then, the temperature and crystallinity profiles of the double cooling process can be
approximated by the following functions: (see Fig. 1 and error estimates)

TPSS(x, t) = TPSS
0 (x, t) + TPSS

L (L− x, t) − Tf , (16)

yPSS(x, t) =
{

0 if x ∈ [hPSS
0 (t), L− hPSS

L (t)],
1 if not.

(17)
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Figure 1: Upper row: Crystallinity (left) and temperature field (right) obtained by
direct simulation of the polymerization problem (1)–(4). Lower row: same as above but
obtained by using (16)–(17) with the solution (13)–(14) of the Stefan problems (8)–(12).
Parameter values are u0 = uL = 40 oC, Tf = 70 oC, σ = 0.002 m2s−1, aG = 2500 oC,
G = 5 s−1, N = 20 s−1, v0 = 0.01, η = 0.1, L = 1 m and T0 = 100 oC. Resulting values
are δ = 0.04, Kδ = 0.902 and Ste = 0.013. Note the symmetry with respect to x = 0.5.

An excellent agreement is also obtained for different applied temperatures profiles,
as shown in Fig. 2, where we have depicted the time evolution of the free boundaries
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h0(t) and hL(t) together with their sum and the magnitude thus approximated, P (t),
for the case described in Fig. 1, a case where the applied temperature is variable in
time, and a case of an asymmetric double cooling. Error estimates are obtained later.
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Figure 2: Total amount of polymer P (t) (solid line) compared with the sum of the
two free boundaries h0(t) + hL(t) (solid line with circles); also depicted are h0(t) and
hL(t) (doted and dashed lines respectively). (A) u0 = uL = 40 oC, (B) u0 = uL =
Tf +Lδ(1− eγ

2σt)/c. (C) u0 = 40 oC, uL = Tf +Lδ(1− eγ
2σt)/c (asymmetric cooling).

We have used γ = 2.76 × 10−2 m−1.

2.2 Amount of crystallized polymer in double cooling strategies

According to the results obtained in the previous section, it turns out that the amount
of crystallized polymer P (t) can be accurately approximated by

P (t) = hPSS
0 (t) + hPSS

L (t). (18)

Therefore, a given amount of cold Q(t) = Q0(t) +QL(t) injected into the sample with
a double cooling strategy will produce an amount of polymer given by

P (t) =
√

2σc
Lδ

Q0(t) +
√

2σc
Lδ

QL(t) (19)

≥
√

2σc
Lδ

[
Q0(t) +QL(t)

]
(20)

≥
√

2σc
Lδ

Q(t)
def
= P (t), (21)

where P (t) is the amount of crystallized polymer produced by injecting an amount of
cold Q(t) by cooling only one side of the sample, showing that double cooling always
produces a greater or equal amount of crystallized polymer than single cooling.

Moreover, the maximal production of crystallized polymer achievable by injecting
a given amount of cold Q(t) is reached when a double cooling strategy with Q0(t) =
QL(t) = Q(t)/2 is used. In this case,

P (t) =
√

2 P̄ (t). (22)
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2.3 Crystallization time in double cooling strategies

The total crystallization is reached when P (tcryst) = L. Thus, the PSS approximation
provides us with the following equation to estimate the crystallization time:(√

Q0(tPSS
cryst) +

√
QL(tPSS

cryst)
)2

=
Lδ

2σc
L2. (23)

When the same constant temperature u is applied at both sides, expression (23) yields

tPSS
cryst =

L2

8σSte
, (24)

where Ste = c(Tf − u)/Lδ, showing that the time needed for complete crystallization
when cooling both sides at a given constant applied temperature is a quarter of the time
needed when cooling only one side with the same temperature, and that the double
cooling requires only one half of the amount of cold required by the simple cooling.

2.4 Errors estimates

To check how accurate our approximation is, the following error estimates, introduced
in Ref. [5] to test the FBP framework, are used:

ξ(t) = P (t) −
(
hPSS

0 (t) + hPSS
L (t)

)
, (25)

ε(x, t) = TNUM(x, t) − TPSS(x, t), (26)

where TNUM denotes the temperature obtained by solving the polymerization pro-
blem (1)–(4) numerically. They are measured with the normalized L1 and L2 norms,

ξL2 =
1

(t2 − t1)L

(∫ t2

t1

ξ2(t) dt
)1/2

, (27)

εT =
1

(t2 − t1)TfL

∫ t2

t1

(∫ L

0
ε2(x, t) dx

)1/2

dt, (28)

where t1 and t2 correspond to the short transient times at the beginning and the end
of the polymerization process, during which the crystallization band is not formed [5].

Moreover, tPSS
cryst, the solution of (23), can be also compared with the crystallization

time tNUM
cryst , obtained numerically by solving P (tNUM

cryst ) = L, by using the relative error

ϵ =

∣∣tNUM
cryst − tPSS

cryst

∣∣
tNUM
cryst

. (29)

Error estimates ξL2 , εT and ϵ are calculated for the three cooling strategies depicted
in Figs. 1 and 2, and are reported in Table 1.

The results show that error estimates are of the same order, but twice the value,
than those obtained when describing single cooling strategies under the FBP framework
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u0 uL ξL2 εT ϵ tNUM
cryst t1 t2 %

(oC) (oC) (10−5) (10−3) (10−2) (103 s) (103 s) (103 s) –
A 40 40 8.12 3.73 8.1 5.11 0.23 4.55 84.6
B exp. exp. 2.6 0.18 3.5 9.37 1.1 8.9 84.7
C 40 exp. 6.98 2.16 6.2 7.49 0.22 6.66 85.9

Table 1: Error estimates and crystallization times for the cases depicted in Fig. 2.

sketched above [5], thus confirming that the double cooling polymerization process is
accurately described by the sum of the two Stefan problems. A priori, this seems quite
surprising, due to the nonlinear character of the polymerization problem.

Note that we are intentionally not using the exact solution of the Stefan problems
(available when the applied temperature is constant or exponentially decreasing [1])
because our goal consists in proving that the PSS approximation is accurate enough to
describe the double cooling polymerization process.

3 The optimal control problem

The optimal control problem of the single cooling case was solved numerically in Ref. [4].
The FBP framework allows us to rewrite the solution in terms of the parameters of the
material, and to derive the corresponding optimal controls for the double cooling case.

3.1 Single cooling

Expression (8) from Ref. [4] shows the relation between the amount of crystallized
polymer P (t) and the amount of injected cold Q(t), obtained numerically:

P (t) ≈ α
√
Q(t), (30)

where α is a positive real constant. Expression (13) provides us with its analytical
expression, α =

√
2σc/Lδ, and consequently with the analytical expression of the

optimal controls ū and τ̄ , see [4]:

if σ2 > σ1T
2
f : u(t) ≡ 0, τ =

Lδ

2σcTf
L2, (31)

if σ2 ≤ σ1T
2
f : u(t) ≡ Tf −

√
σ2

σ1
, τ =

√
σ1

σ2

Lδ

2σc
L2, (32)

where the control problem and the set of admissible controls Uad were defined as follows, Min J(u, τ) = σ1

∫ τ

0

(
Tf − u(t)

)2
dt+ σ2τ ,

(u, τ) ∈ Uad =
{
(u, τ) ∈ L2(0, τ) × [0,+∞) : u(t) ∈ [0, Tf ], a.e., P (τ) = L

}
,

(33)

and σ1 and σ2 are non-negative weights fixed to balance the contribution of each term.
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3.2 Double cooling

For the optimal control of double cooling strategies, the control parameters are the
applied temperatures u⃗(t) = (u0(t), uL(t)) ∈ (L2(0, τ))2 and the duration of the cooling
process τ ∈ [0,+∞). Following the same argument used in [4], a cost functional J(u⃗, τ)
promoting a short duration of the cooling process and avoiding excessively low applied
temperatures can be written as

(CP )

 Min J(u⃗, τ) = σ1

[∫ τ

0

(
Tf − u0(t)

)2
+

(
Tf − uL(t)

)2
dt

]
+ σ2τ,

(u⃗, τ) ∈ Uad,
(34)

where Uad =
{

(u⃗, τ) ∈ (L2(0, τ))2 × [0,+∞) : u⃗(t) ∈ [0, Tf ]2, a.e., P (τ) = L
}
.

As in the single cooling case, the rate σ2/σ1 is a measure of the relative cost of the two
opposite contributions to the cost functional: to avoid low temperatures (σ2/σ1 small)
and to shorten the cooling time (σ2/σ1 large). The cost of double cooling is considered
symmetric, that is, cooling at x0 = 0 has the same cost than cooling at xL = L.

Optimal controls. Let (u⃗, τ) be an admissible control; then, complete crystallization
is reached at t = τ and expression (23) means(√

Q0(τ) +
√
QL(τ)

)2
=

Lδ

2σc
L2. (35)

Therefore, (CP ) can be reformulated as the following optimization problem:

(OP )

 Min J(u⃗, τ) = σ1

[∫ τ

0

(
Tf − u0(t)

)2
+

(
Tf − uL(t)

)2
dt

]
+ σ2τ,

(u⃗, τ) ∈ Vad,
(36)

where Vad =
{

(u⃗, τ) ∈ (L2(0, τ))2 × [0,+∞) : u⃗(t) ∈ [0, Tf ]2 a.e., and (35) holds
}
.

The admissibility condition (u⃗, τ) ∈ Vad implies that there exists a lower bound for τ ,
corresponding to u0 = uL = 0 oC:

τ ≥ τ̂
def
=

Lδ

8σcTf
L2. (37)

Theorem 1 Assume that σ1 ∈ [0,+∞) and σ2 ∈ (0,+∞). Then,

a) If σ2 > 2σ1T
2
f , the unique solution of the optimization problem (OP ) is given by

u0(t) = uL(t) ≡ 0, τ =
Lδ

8σcTf
L2. (38)

b) If σ2 ≤ 2σ1T
2
f , the unique solution of the optimization problem (OP ) is given by

u0(t) = uL(t) ≡ Tf − 1
2

√
2σ2

σ1
, τ =

√
σ1

2σ2

(
Lδ

4σc
L2

)
. (39)
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Proof: Using that 2(a+ b) ≥ (
√
a+

√
b )2 in expression (35) yields

Q0(τ) +QL(τ) ≥ Lδ

4σc
L2. (40)

Thanks to Hölder’s inequality (for i = 0, L)

√
τ

(∫ τ

0

(
Tf − ui(t)

)2
dt

)1/2

≥
∫ τ

0

(
Tf − ui(t)

)
dt, (41)

we get, ∀(u⃗, τ) ∈ Vad:(∫ τ

0

(
Tf − u0(t)

)2
dt

)1/2

+
(∫ τ

0

(
Tf − uL(t)

)2
dt

)1/2

≥ Lδ

4
√
τσc

L2. (42)

Using again 2(a+ b) ≥ (
√
a+

√
b )2, we have∫ τ

0

(
Tf − u0(t)

)2
dt+

∫ τ

0

(
Tf − uL(t)

)2
dt ≥ 1

2τ

(
Lδ

4σc
L2

)2

. (43)

Consequently,

J(u⃗, τ) ≥ ψ(τ), ∀(u⃗, τ) ∈ Vad, (44)

where we have used the auxiliary real function

ψ(τ) =
σ1

2τ

(
Lδ

4σc
L2

)2

+ σ2τ, τ ∈ [τ̂ ,+∞). (45)

Elementary calculus shows that ψ(τ) has a unique global minimum at τ in [τ̂ ,+∞),
where

τ =


τ̂ if σ2 > 2σ1T

2
f ,√

σ1

2σ2

(
Lδ

4σc
L2

)
if σ2 ≤ 2σ1T

2
f .

(46)

Then, it is quite easy to verify that if σ2 ≤ 2σ1T
2
f ,

J(u⃗, τ) ≥ ψ(τ) ≥ ψ(τ) = J

(
Tf − 1

2

√
2σ2

σ1
, Tf − 1

2

√
2σ2

σ1
, τ

)
, ∀(u⃗, τ) ∈ Vad, (47)

meanwhile, if σ2 > 2σ1T
2
f ,

J(u⃗, τ) ≥ ψ(τ) ≥ ψ(τ̂) = J(0, 0, τ̂), ∀(u⃗, τ) ∈ Vad. (48)

To prove the uniqueness, let us assume that (u⃗⋆, τ⋆) ∈ Vad is another solution of (OP ),
i.e. J(u⃗⋆, τ⋆) = J(u⃗, τ). In any case it is easy to deduce from previous estimations that
ψ(τ⋆) = ψ(τ). Since ψ is strictly convex, we get that τ⋆ = τ .
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We conclude that u⃗⋆(t) = u⃗(t), a.e. t ∈ (0, τ), by seeing that∫ τ

0

(
u⋆

0(t) − u0

)2
dt+

∫ τ

0

(
u⋆

L(t) − uL

)2
dt

=
∫ τ

0

(
(u⋆

0(t) − Tf ) + (Tf − u0)
)2
dt+

∫ τ

0

(
(u⋆

L(t) − Tf ) + (Tf − uL)
)2
dt

=
∫ τ

0

(
u⋆

0(t) − Tf

)2
dt+

∫ τ

0
(Tf − u0)2dt− 2(Tf − u0)

∫ τ

0

(
Tf − u⋆

0(t)
)
dt

+
∫ τ

0

(
u⋆

L(t) − Tf

)2
dt+

∫ τ

0
(Tf − uL)2dt− 2(Tf − uL)

∫ τ

0

(
Tf − u⋆

L(t)
)
dt

= 2
∫ τ

0
(Tf − u0)2dt− 2(Tf − u0)

∫ τ

0

(
Tf − u⋆

0(t)
)
dt+ 2

∫ τ

0
(Tf − uL)2dt

− 2(Tf − uL)
∫ τ

0

(
Tf − u⋆

L(t)
)
dt ≤ 0,

where we have used the inequality (40) for (u⃗⋆, τ) and the equality∫ τ

0

(
Tf − u⋆

0(t)
)2
dt+

∫ τ

0

(
Tf − u⋆

L(t)
)2
dt =

∫ τ

0
(Tf − u0)2dt+

∫ τ

0
(Tf − uL)2dt. (49)

Noticeably, the remarks written in Ref. [4] about the choice of the ratio σ2/σ1 for
the single cooling are also in order in the double cooling case.

4 Conclusion

We have analyzed a recent polymer crystallization model for a new kind of cooling
strategy, consisting in cooling the sample at both sides. By means of a free boundary
problem framework whose main features have been presented here, we have shown
that the double cooling crystallization process can be approximated by the sum of two
Stefan problems. Explicit expressions of the solution have been derived and errors
estimates have revealed a quite high accuracy, both in reproducing the behaviour of
the crystallization front and the distribution of the temperature field. Also, important
magnitudes such as the crystallization time and the amount of crystallized polymer
with respect to the single cooling case have been derived explicitly.

The characterization of the double cooling crystallization process by means of two
Stefan problems has then be used to find the optimal cooling strategy when both sides
can be cooled. The solution of the control problem is obtained explicitly in terms of the
parameters of the material, and shows that the optimal strategy consists in first, using
a symmetric strategy, that is, applying the same cooling temperature at both sides
of the sample, and second, using a constant temperature, thus recovering the result
obtained for the single cooling case.

The free boundary problem framework has therefore shown to be quite effective
in the analysis of cooling strategies in polymerization processes and could be used in
higher dimension problems in future works.
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Abstract

Rakhmanov’s theorem establishes a result about the asymptotic behavior of
the elements of the Jacobi matrix associated with a measure µ which is defined on
the interval I = [−1, 1] with µ′ > 0 almost everywhere on I. In this work we give
a weak version of this theorem, for a measure with support on a connected finite
union of Jordan arcs on the complex plane, in terms of the Hessenberg matrix, the
natural generalization of the tridiagonal Jacobi matrix to the complex plane.

Key words: Hessenberg matrix, regular measures, Riemann map.

1 Introduction

In this paper, we consider regular Borel measures µ defined on subsets of the complex
plane which are Jordan arcs, or connected finite union of Jordan arcs, and we show how
the support of µ is determined by the entries of the Hessenberg matrix D associated
with µ. The Hessenberg matrix is the natural generalization of the tridiagonal Jacobi
matrix to the complex plane and, in the particular case of measures with support the
unit circle T, the Hessenberg matrix is a Toeplitz matrix.

Our result represents a broader, although weaker, extension of Rakhmanov’s theo-
rem to C. In the real case, Rakhmanov’s theorem [15, 16] states that, if the support of

a Borel measure is [−1, 1] and µ′ > 0 almost everywhere in [−1, 1], then an → 1
2

and
bn → 0, where an are the sequences of elements in the subdiagonal and superdiagonal,
and bn are the sequences of elements in the diagonal, in the Jacobi matrix J associated
with µ. Moreover, if the support of µ is the interval [−2a + b, b + 2a], then the above
limits are, respectively, an → a y bn → b. Conversely, if we know that µ′ > 0 and that
the support of µ is a compact connected set of R, knowing the limits of the diagonals
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of J we could obtain the support of µ, i.e., if an → a y bn → b then the support is
[−2a + b, b + 2a].

Generalizations of Rakhmanov’s theorem to orthogonal polynomials and to orthog-
onal matrix polynomials on the unit circle has been given in [13] and [22]. The case of
orthogonal polynomials in an arc of circumference has been studied in [2]).

There exist some previous results relating the properties of D and the support of
µ. For example, if the Hessenberg matrix D defines a subnormal operator [12] in `2,
then the closure of the convex hull of its numerical range agrees with the convex hull of
its spectrum. On the other hand, the spectrum of the matrix D contains the spectrum
of its minimal normal extension N = men(D) which is precisely the support of the
measure [6].

In this work we show that, in the case of regular measures µ whose support is a
Jordan arc or a connected union of Jordan arcs in the complex plane C, the limits of the
values at the diagonals of the Hessenberg matrix D of µ, supposing those limits exist,
determine the terms of the coefficients of the series expansion of the Riemann map φ(z)
(see [20]) which applies conformally the exterior of the unit disk in the exterior of the
support of the measure. As a consequence, the support of µ can be determined just
knowing the limits of the values at the diagonals of its Hessenberg matrix D.

For general information on the theory of orthogonal polynomials, we recommend
the books [4, 20] by T. S. Chihara and G. Szegö, respectively, and the survey [11] by
Golinskii and Totik.

2 Main result

Let µ(z) be a regular positive Borel measure with compact support Ω in the complex
plane. Let P be the space of polynomials. The associated inner product is given by
the expression

〈Q(z), R(z)〉µ =
∫

supp(µ)
Q(z)R(z)dµ(z),

for R, S ∈ P. Then there exists a unique orthonormal polynomials sequence (ONPS)
{Pn(z)}∞n=0 associated to the measure µ (see [4], [8] or [20]).

In the space P2(µ), closure of the polynomials space P in L2
µ(Ω), we consider the

multiplication by z operator. Let D = (djk)∞j,k=0 be the infinite upper Hessenberg
matrix of this operator in the basis of ONPS {Pn(z)}∞n=0, hence

zPn(z) =
n+1∑

k=0

dk,nPk(z), n ≥ 0, (1)

with P0(z) = 1 when c00 = 1.
It is a well known fact that the monic polynomials are the characteristic polynomials

of the finite sections of D.
In order to state our main result, we will need that the measure µ is regular with

support a connected finite union of Jordan arcs, and we will also need to consider an
auxiliar Toeplitz matrix. We next recall the definitions of all these notions.
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A Jordan arc in C is any subset of C homeomorphic to the closed interval [0, 1] on
the real line.

A measure µ is regular if lim
n→∞

1
n
√

γn
= cap(supp(µ)), the capacity of the support

of µ, where the γn are the conductor coefficients of the orthonormal polynomials, i.e.,
Pn(z) = γnzn + . . ..

An infinite matrix T = (ai,j)∞i,j=0 is a Toeplitz matrix if each descending diagonal
from left to right is constant, i.e, there exists (ai)i∈Z such that ai,j = ai−j , for every
i, j ∈ N∪{0}. Given a Toeplitz matrix T , the Laurent series whose coefficients are the
entries ai defines a function known as the symbol of T .

We are now in a position to state and prove the main result of the paper.

Theorem 1. Let D = (dij)∞i,j=1 be a Hessenberg matrix associated with a measure µ
with compact support on the complex plane. Assume that:

1. The measure µ is regular with support supp(µ) a Jordan arc or a connected finite
union of Jordan arcs Γ such that C \ Γ is a simply connected set of the Riemann
sphere C∞.

2. There exists a Hessenberg-Toeplitz matrix T such that D − T defines a compact
operator in `2 with its rows in `1.

Then, the symbol of T is the Riemann function φ : C∞ \ D→ C∞ \ Γ

Proof. Since supp(µ) = Γ is a compact set and C∞ \Γ is connected, we can apply
Merguelyan’s theorem [9, p.97] which asserts that every continuous function in Γ can
be uniformly approximated by polynomials. Since the set of continuous functions with
compact support is dense in L2

µ(Γ), then L2
µ(Γ) = P 2

µ(Γ). Therefore, D defines a normal
operator in `2, hence σ(D) = Γ [5, 21]. Since

σ(D) \ σess(D) = {λ | λ isolated eigenvalue if finite multiplicity},

where σess(D) is the essential spectrum of D (see, for example, [6] for its definition),
and the support is connected, then it has not isolated points, and Γ = σ(D) = σess(D).

Consider now K = D − T which, by hypothesis is a compact operator. Then all
its diagonals converge to 0 [1] and hence the limits

lim
n

dn−k,n = d−k, k = −1, 0, 1, 2, . . .

exist, and the matrix T is

T =




d0 d−1 d−2 . . .
d1 d0 d−1 . . .
0 d1 d0 . . .
0 0 d1 . . .
...

...
...

. . .




.
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Since the essential spectrum is invariant via compact perturbations [5], we have that
σess(D) = σess(T ). Moreover, T is bounded in `2 and hence the rows and columns of
T are in `2. Therefore, (d1, d0, d−1, d−2, . . .) ∈ `2.

The elements dn,n−1 of the subdiagonal of the matrix D agree with the quotients
γn−1/γn. Since lim

n→∞ dn+1,n = d1, then

d1 = lim
n→∞

γn−1

γn
= lim

n→∞
1

n
√

γn
.

On the other hand, since µ is regular, then [19, p.100]

lim
n→∞

1
n
√

γn
= cap(supp(µ)).

Therefore, d1 = cap(supp(µ)).
Consider now the Laurent series

d(z) = d1z + d0 +
d−1

z
+

d−2

z2
+ · · ·

We see now that the fact that (d1, d0, d−1, . . .) ∈ `2 implies that d(z) is analytic for
every z such that 1 < |z| < ∞.

If |z| > 1, then
1
|z| < 1 and

∞∑

k=−1

|d−kz
−k| ≤

√√√√
∞∑

k=−1

|d−k|2
√√√√

∞∑

k=−1

|z−k|2 < +∞.

Therefore d(z) converges absolutely for every 1 < |z| < ∞. To see that d(z) is analytic
we have just to show that d′(z) exists for every |z| > 1. But

d ′(z) = d1 −
∞∑

k=1

k
d−k

zk+1

where
∞∑

k=1

k| d−k

zk+1
| ≤

√√√√
∞∑

k=1

|d−k|2
√√√√

∞∑

k=1

k2

|z|2k+2
< +∞

if |z| > 1. Hence d′(z) exists for every |z| > 1.
Since (d1, d0, d−1, . . .) ∈ `1, then (d|T)(z) is continuous (where T is the unit circle)

and [3, p.10]

Γ = σess(T ) = d(T) = {d1w + d0 +
d−1

w
+

d−2

w2
+ . . . | w ∈ T}.

We can now apply Theorem 1.1 in [14] to conclude that

d : C∞ \ cl(D) → C∞ \Γ,
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(where D the unit disk) is an univalent map and, being also analytic, is conformal in
C∞ \ cl(D).

Consider now the Riemann map

φ(z) = c1w + c0 +
c−1

w
+

c2

w2
+ . . .

in C∞ \Γ which is the unique conformal map which applies the exterior of the unit disk
in the exterior of Γ = supp(µ), which preserves the point at infinity and the direction
therein, and which also satisfies cap(Γ) = c1 [20]. The map d satisfies that d1 = cap(Γ).
Moreover, since d′(∞) = φ′(∞) = d1 = c1, then d(z) preserves the point at infinity and
the direction therein. Therefore d = φ.

3 Examples

As an illustration of the previous theorem we consider the following examples.

Example 1. Consider Γ the segment [−1, 1] in C. The Riemann map φ which applies
the exterior of the unit disk in the exterior of Γ is

φ(z) =
1
2

(
z +

1
z

)
.

By Rakhmanov’s theorem, if µ is a Borel measure is [−1, 1] and µ′ > 0 almost every-

where in [−1, 1], then an → 1
2

and bn → 0, where an are the sequences of elements
in the subdiagonal and superdiagonal, and bn are the sequences of elements in the di-
agonal, in the Jacobi matrix J associated with µ. Note that these are the coefficients
of the Riemann map φ. Although Theorem 1 does not guarantee the existence of the
limits of the diagonals of the Jacobi matrix in any case, in the case that those limits
exist, they must agree with the coefficients of µ, even if µ is not absolutely continuous.

Example 2. Let Γ be a cross-like set, and µ the uniform measure on γ. The Riemann
map is

φ(z) =

√
a2(z2 + 1)2 + b2(z2 − 1)2

2z
,

where a and b are the length of the horizontal and vertical semi-axis, respectively. In
the particular case of a = b,

φ(z) =
a
√

2
2z

√
z4 + 1.

The series expansion of φ is

φ(z) =
√

a2 + b2

2
z +

−2 b2 + 2 a2

4
√

a2 + b2

1
z

+

√
a2 + b2

(
1
2
− (−2 b2 + 2 a2)2

8 (a2 + b2)2

)

2 z3
+ O

(
1
z5

)
,
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where the first coefficient
√

a2 + b2

2
agrees with the capacity of the support. If a = b,

the series expansion is

φ(z) =
a
√

2
2

z +
a
√

2
4

1
z3

+ O
(

1
z5

)
.

The image under φ of the unit circle is shown in Figure 1, where we have included
on the right the same result with an interpolation with less steps to give a better insight
of the Riemann map.

Figure 1: φ(T) for a cross-like set

There are many instances, however, when the Hessenberg matrix can not computed
completely, but only finite sections of it, and it is not possible to compute the limits
of the diagonals of D. In this case, it is still possible to compute approximations of
the support of the measure µ obtained computing the image of the unit circle under
suitable approximations of the Riemann map. Specifically, since the coefficients of the
Riemann map are the limits of the elements in each of the diagonals of the Hessenberg
matrix, we may consider, as approximations of the Riemann map φ, the functions

φk(z) = dk,k−1z + dk,k +
k−1∑

i=1

dk−i,k

zi
,

where D = (di,j) is the Hessenberg matrix of µ [7].

The result of approximating supp(µ) using this method, for k = 30, k = 40 and
k = 50, respectively, is shown in Figure 1.
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Figure 2: φk(T) for k = 30, k = 40 and k = 50, respectively

Example 3. Consider now Γ an arc of circumference. In this case [10] (see also [17, 18]),
there exists a measure for which the diagonals of the Hessenberg matrix stabilize from
the second element on. The monic orthogonal polynomials associated to this measure
satisfy Φ0(0) = 1 and Φn(0) =

1
a

(a > 1), if n ≥ 1, and the corresponding Hessenberg
matrix it the following unitary matrix:

D =




−1
a

−(a2 − 1)1/2

a2
−(a2 − 1)2/2

a3
−(a2 − 1)3/2

a4
−(a2 − 1)4/2

a5
· · ·

(a2 − 1)1/2

a
− 1

a2
−(a2 − 1)1/2

a3
−(a2 − 1)2/2

a4
−(a2 − 1)3/2

a5
· · ·

0
(a2 − 1)1/2

a
− 1

a2
−(a2 − 1)1/2

a3
−(a2 − 1)2/2

a4
· · ·

0 0
(a2 − 1)1/2

a
− 1

a2

(a2 − 1)1/2

a3
· · ·

...
...

...
...

...
. . .




.

Hence we know the limits of the diagonals, and we can obtain the sum of these limits.
It is easy to check that D − T is compact and that the rows of T are in `1, and hence
the expression of the Riemann map is

φ(z) =
z

(
a−√a2 − 1 z

)
√

a2 − 1− az

=
√

a2 − 1
a

z − 1
a2
−
√

a2 − 1
a3z

−O

(
1
z2

)
,

and we can compute the image under φ of the unit circle. The result is shown in Figure
1, where we have included on the right the same result with an interpolation with less
steps to give a better insight of the Riemann map.
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Figure 3: φ(T) for an arc of circumference

In the following figure we compute several approximations of the support of µ, for
the particular case a = 2, using the above method, for k = 10, k = 20 and k = 30,
respectively.

Figure 4: φk(T) for k = 10, k = 20 and k = 30, respectively

Example 4. In the following example we take Γ as the half part of a drop-like set of
parametric equation

z(t) =
(eit)2

1 + 2eit
, t ∈ [0, π].

and µ the uniform measure on γ. In the following figure we show several approximations
of the support of µ using this method, for k = 5, k = 8 and k = 11, respectively.
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Figure 5: φk(T) for k = 5, k = 8 and k = 11, respectively

Example 5. For the last example we take Γ as the spiral with parametric equation

z(t) = t
eit

6
, t ∈ [0, 2π]

and we consider µ the uniform measure on γ. In the following figure we show sev-
eral approximations of the support of µ using this method, for k = 1 and k = 12,
respectively.

Figure 6: φk(T) for k = 1 and k = 12, respectively
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Abstract

We consider scattered data approximation problems on the rotation group
SO(3). More precisely, we provide sufficient conditions on the distribution of
the scattered sampling points to guarantee the existence of positive quadrature
formulas with respect to these points on the rotation group. These quadrature
weights, in turn, are then used to define hyperinterpolation schemes that are exact
for polynomials on SO(3) up to a given degree.

Key words: rotation group, scattered data, quadrature rules, Wigner D-functions
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1 Introduction

A typical problem in science is the development of a theoretical model for a hidden
process from observational data. More precisely, we are given a set of measurements

D = {(xj , yj) ∈ X × C : j = 0, . . . ,M − 1},

where we assume that the sampling points X = {xj ∈ X : j = 0, . . . ,M − 1} are a finite
subset of a metric space (X, d). We suppose that there exists an unknown function
f : X → C that generated the observed data. This unknown function f is considered
as a model for the underlying process and one is asked to construct an approximant
ψf to f from the given data D. In view of applications, we can hardly expect that the
sampling nodes xj are equally spaced or lie on a particular grid in X. Hence, we are
interested in interpolation respectively approximation procedures that are meshless,
i.e. the methods should be applicable to arbitrary data sets D without any specific
structure.
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The case where the underlying structures are Euclidean spaces R
d or Euclidean

spheres S
d has been studied in great detail over the last decade and there exists an

enormous amount of research papers dealing with scattered data approximation prob-
lems in these classical settings. We refer to [7, 23] and all the references therein.

However, in various applications we are confronted with the situation that the
underlying set is a compact or locally compact possibly non-Abelian group and one is
asked to propose suitable approximation procedures on these structures. Such problems
arise in biochemistry, crystallography and robotics to name only a few. The monograph
[2] provides a great collection of scattered data approximation problems where different
matrix groups are involved. In view of applications, the rotation group SO(3) is,
without doubt, one of the most important groups in this regard.

A typical approximation problem on SO(3) that has a number of applications, for
instance, in molecular biology [4] and 3-D shape-matching [14] is the correlation of
two functions defined on the Euclidean sphere S

2. More precisely, given two functions
f, g ∈ L2(S2) and the knowledge that g is the rotated version of f , one is asked to
determine x ∈ SO(3) such that f(ξ) = g(x−1ξ) for all ξ ∈ S

2. By the Cauchy-Schwarz
inequality this can be accomplied by considering the associated correlation function

F : SO(3) → C, F (x) :=

∫

S2

f(ξ)g(x−1ξ)dξ

and finding the x ∈ SO(3) that maximizes F .

Of course, the correlation of two functions defined on the Euclidean sphere S
2

is not the only approximation problem in science and engineering where the rotation
group plays an important role. There exist a wealth of scattered data approximation
problems on SO(3), cf. [1, 3, 19, 24]. Such problems have attracted significant recent
attention from the mathematical community, which has investigated approximation
via Wigner D-functions [9, 10, 15, 17, 20], and kernels [5, 11, 12]. In this article, we
focus on approximation procedures that use finite expansions into Wigner D-functions,
subsequently called polynomials on SO(3), which constitute an orthogonal basis of the
L2(SO(3)). More precisely, we provide sufficient conditions on the distribution of the
sampling points to guarantee the existence of positive quadrature formulas that are
exact for polynomials on SO(3) up to a given degree. Of course, such quadrature
formulas can be applied in various ways and fields. As one important application, we
utilize the quadrature weights in order to establish so-called hyperinterpolation schemes
that are a powerful tool for the approximation of scattered data on the rotation group
SO(3).

The article is organized as follows. In the next section we give the necessary
background on analysis and sampling on SO(3) to keep the paper self-contained. We
also present a preliminary result that is of central importance for our considerations -
Marcinkiewicz-Zygmund inequalities from scattered data on SO(3). Finally, in Section
3 we derive our main results.
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2 Background

2.1 Analysis on the Rotation Group

Let SO(3) := {x ∈ R
3×3 : xT x = I,det x = 1} denote the non-Abelian compact group

of proper rotations in the Euclidean space R
3 and let µ be the normalized Haar measure

on SO(3), i.e. we have
∫
SO(3) dµ(x) = 1. The Hilbert space L2(SO(3)) of all square

integrable functions is determined by the scalar product with induced norm

〈f, g〉 :=

∫

SO(3)
f(x)g(x)dµ(x), ‖f‖2

2 :=

∫

SO(3)
|f(x)|2dµ(x).

In order to get an orthogonal basis system for the L2(SO(3)) we make use of some
fundamental results from the representation theory of this non-Abelian compact group.
Let {Y l

k
: l ∈ N0, k = −l, . . . , l} denote the canonical orthonormal basis of spherical

harmonics on the space of all square integrable functions on the unit sphere S
2 ⊂ R

3

and let Hl := span{Y l
k

: k = −l, . . . , l}. For given l ∈ N0 we assign each element
x ∈ SO(3) the linear transformation Dl(x) : Hl → Hl defined by

Dl(x)Y (ξ) := Y (x−1ξ), Y ∈ Hl, ξ ∈ S
2.

Each Dl, l ∈ N0, can be written as a (2l+ 1)× (2l+ 1)- matrix with matrix coefficients
defined by the following system of linear equations

Y l
k(x−1ξ) =

l∑

k′=−l

Dl
k,k′(x)Y l

k′(ξ), k = −l, . . . , l, ξ ∈ S
2.

The functions Dl
k,k′ are usually called Wigner D-functions of degree l and orders k and

k′. It is well-known that the Dl, l ∈ N0, form a complete set of unitary irreducible
representations of the rotation group and due to the Peter-Weyl Theorem the matrix
coefficients Dl

k,k′ form an orthogonal basis of the L2(SO(3)), see [8]. Hence, every

f ∈ L2(SO(3)) can be expanded in a SO(3) Fourier series

f =
∑

l∈N0

l∑

k,k′=−l

√
2l + 1 f̂ l

k,k′Dl
k,k′

with SO(3) Fourier coefficients f̂ l
k,k′ =

√
2l + 1 · 〈f,Dl

k,k′〉. We call functions with finite
Fourier expansion polynomials on SO(3) and we define the space of polynomials on
SO(3) with degree at most n by

Πn := span
{
Dl

k,k′ : l = 0, . . . , n; k, k′ = −l, . . . , l
}
.

The spaces Πn, indeed, admit a polynomial behavior, i.e. for P1 ∈ Πn1
and P2 ∈ Πn2

we have, cf. [21, Eq. (3.54)],

P1 · P2 ∈ Πn1+n2
.
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2.2 Sampling data and Marcinkiewicz-Zygmund Inequalities

There are various ways to parameterize the rotation group. In this article the param-
eterization via the projective space is of significant importance to us. This parame-
terization yields a translation invariant metric on SO(3) which enables us to quantify
different sampling sets on the rotation group.

Let Kπ be the closed ball in R
3 of radius π centered at the origin and identify

antipodal points on its surface. This is the three dimensional projective space. An
element x ∈ SO(3) is identified with a point in the projective space Kπ by x → ω · r
where r, satisfying xr = r and ‖r‖ = 1, is the rotation axis and ω, which can be chosen
in [0, π], is the rotation angle of x.

Then it is easy to see that

d(x,y) := ω(y−1x)

defines a translation invariant metric on SO(3). As already mentioned earlier, in view
of applications, we are mainly interested in situations where the sampling points

X := {xj ∈ SO(3) : j = 0, . . . ,M − 1}

are scattered on SO(3), i.e. the sampling points are not located on a particular grid
on SO(3). In order to compensate for clusters in the sampling set X , it is reasonable
to weight the sampling nodes xj ∈ X . To this end, we introduce for a given sampling
set X = {xj ∈ SO(3) : j = 0, . . . ,M − 1} an associated partition

R := {Ωj ⊂ SO(3) : j = 0, . . . ,M − 1}

of SO(3), i.e. R is a collection of M closed regions Ωj ⊂ SO(3), having no common in-

terior points and covering the whole rotation group, i.e.
⋃M−1

j=0 Ωj = SO(3). Moreover,
we require that xj is an interior point of Ωj for all j = 0, . . . ,M − 1. With respect to
the partition R we now define the corresponding weights by

w := (w0, . . . , wM−1)
T ∈ R

M , wj :=

∫

Ωj

dµ(x) = µ(Ωj).

Finally, the partition norm ‖R‖ of the partition R is given by

‖R‖ := max
j=0,...,M−1

diam Ωj := max
j=0,...,M−1

max
x,y∈Ωj

d(x,y).

Remark 2.1 Given a sampling set X = {xj ∈ SO(3) : j = 0, . . . ,M − 1} of scattered
points on SO(3), there are many possibilities to construct an associated partition R.
In many situations, the so-called Voronoi partition RV , which is determined by

ΩV
j := {y ∈ SO(3) : d(xj,y) = min

k=0,...,M−1
d(xk,y)}, j = 0, . . . ,M − 1,

is a reasonable choice. Using the Voronoi partition corresponding to a given sampling
set X ⊂ SO(3), we easily obtain hX ≤ ‖RV ‖ ≤ 2hX , where hX := maxy minj d(y,xj)
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is the mesh norm of the sampling set X . This relation, in turn, makes it possible by
using the Voronoi partition to state all the following results that depend on the partition
norm of the underlying partition in terms of the mesh norm hX of the given sampling
set.

Next we define the discrete spaces ℓpw(SO(3)), 1 ≤ p ≤ ∞, corresponding to the
sampling set X with associated partition R in the usual manner with norm

‖f‖
w,p

:=









M−1∑

j=0

wj|f(xj)|
p





1/p

1 ≤ p <∞,

sup
j=0,...,M−1

|f(xj)| p = ∞.

In order to develop our results in the next section, it is of fundamental importance
to have norm equivalences between the continuous Lp-norm of a polynomial P on
SO(3) and the weighted discrete norm ‖ · ‖w,p of the vector of samples of P at the
scattered sampling points xj. In other words, we want to get bounds on the norm of the
corresponding sampling operator and its inverse on the space Πn. In the mathematical
community this kind of norm equivalences are usually called Marcinkiewicz-Zygmund
inequalities. Recently in [20, 21] such inequalities from scattered data were shown
for polynomials on the rotation group. We are particularly interested in the L1- and
L∞-Marcinkiewicz-Zygmund inequality, cf. [20, Theorem 4.4] and [21, Theorem 4.22].

Theorem 2.2 Let X = {xj ∈ SO(3) : j = 0, . . . ,M − 1} be a sampling set and
R = {Ωj ⊂ SO(3) : j = 0, . . . ,M − 1} be an associated partition. If n ∈ N0 with
n ≤ 1

‖R‖
, then we have for any polynomial P ∈ Πn

(
1 − n‖R‖

)
· ‖P‖∞ ≤ ‖P‖w,∞ ≤

(
1 + n‖R‖

)
· ‖P‖∞. (1)

Furthermore, if n ∈ N0 with n ≤ 1
462‖R‖

, then we have for any polynomial P ∈ Πn

(
1 − 462n‖R‖

)
· ‖P‖1 ≤ ‖P‖w,1 ≤

(
1 + 462n‖R‖

)
· ‖P‖1. (2)

3 Positive Quadrature Formulas and Hyperinterpolation

In this section we present the main results of the present paper. In order to show the
existence of positive quadrature formulas on the rotation group, we pick up a basic idea
from [16] where spherical Marcinkiewicz-Zygmund inequalities have been used in order
to prove a similar result on Euclidean spheres. These quadrature weights, in turn, can
then be used to define hyperinterpolation schemes that are exact for polynomials on
SO(3) up to a given degree.

For the sake of clarity we left out the technical proofs of the results of this section.
However, the interested reader can find all these details in [21, Chapter 4]. First, we
need to introduce the notion of a norm generating set, which was also central to the
arguments in [13] and [16].
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Definition 3.1 Let V be a finite-dimensional vector space with norm ‖ · ‖V , and let
Z ⊂ V ∗ be a finite set. We say that Z is a norm generating set for V if the mapping
TZ : V → R

|Z| defined by TZ(v) = (z(v))z∈Z is injective.

Let W := TZ(V ) be the range of TZ . We remark that if Z is a norm generating set
for V , we have by the injectivity of TZ that T−1

Z
: W → V exists. Now using the Hahn-

Banach Theorem and the Krein-Rutman Theorem we get the following important very
general result, see [16, Proposition 4.1].

Proposition 3.2 Let Z be a norm generating set for V , with TZ defined as in Defi-
nition 3.1. Let R

|Z| have a norm ‖ · ‖
R|Z| , with ‖ · ‖

R|Z|∗ being its dual norm on R
|Z|∗.

Furthermore, we equip W ⊂ R
|Z| with the induced norm and let ‖T−1

Z
‖ := ‖T−1

Z
‖W→V .

By C+ we denote the positive cone of R
|Z|, i.e. all (rz) ∈ R

|Z| for which rz ≥ 0 for all
z ∈ Z.
If y ∈ V ∗ with ‖y‖V ∗ ≤ C, then there exist real numbers {az}z∈Z depending only on y
such that for every v ∈ V ,

y(v) =
∑

z∈Z

azz(v). (3)

Moreover, if W contains an interior point w0 ∈ C+ and if y(T−1
Z
w) ≥ 0 whenever

w ∈W ∩ C+, then we may choose each az ≥ 0 in (3).

In order to prove the existence of positive quadrature formulas that are exact for
all polynomials on SO(3) up to a given degree n we want to apply Proposition 3.2 to
the linear functional y ∈ Π∗

n defined by

y(P ) =

∫

SO(3)
P (x)dµ(x).

That means have to guarantee, on the one hand, that the sampling operator

S(P ) :=
(
(P (x1), . . . , P (xM−1)

)

is injective on Πn and, on the other hand, that the cone conditions are satisfied. But
these statements are now easy consequences of the L∞- and the L1-Marcinkiewicz-
Zygmund inequality. Firstly, the L∞-Marcinkiewicz-Zygmund (1) ensures that the
sampling operator is injective on Πn whenever n < 1

‖R‖
. Secondly, we can utilize the

L1-Marcinkiewicz-Zygmund inequality (2) to show that the cone condition are satisfied
whenever n ≤ 1

924‖R‖
. Altogether, we get the following theorem which gives a sufficient

condition for the existence of positive quadrature formulas on the rotation group SO(3).

Theorem 3.3 Let X = {xj ∈ SO(3) : j = 0, . . . ,M − 1} be a sampling set and
R = {Ωj ⊂ SO(3) : j = 0, . . . ,M − 1} an associated partition of SO(3). If n ≤ 1

924‖R‖
,

then there exist nonnegative real numbers {αj}j=0,...,M−1 such that for every P ∈ Πn

we have ∫

SO(3)
P (x)dµ(x) =

M−1∑

j=0

αjP (xj). (4)
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If we have 1
924‖R‖

≤ n < 1
‖R‖

, we can still find real coefficients αj such that (4) holds.
However, in this case these coefficients are no longer guaranteed to be nonnegative.

Remark 3.4 We point out that essentially we need ‖R‖ ∼ n−1 for the quadrature
formula to hold. On the other hand, we can find sampling sets and associated partitions
of cardinality M such that M−1/3 ∼ ‖R‖. Hence, for such partitions we have M ∼ n3

which is the order of the dimension of the space that we are exactly integrating.

Next, let us use Theorem 3.3 to define so-called hyperinterpolation schemes on
SO(3). Hyperinterpolation of multivariate continuous functions on compact subsets
or manifolds in R

d was originally introduced by Sloan in the seminal paper [22] and
subsequently studied by several authors, see the monograph [18] and the references
therein. In [6], the authors utilized spherical quadrature formulas in order to define
hyperinterpolation schemes on Euclidean spheres. In what follows, we seek to establish
similar schemes on the rotation group SO(3). More precisely, we want to discretize a
“nice” linear convolution operator

Vnf(x) :=

∫

SO(3)
f(y)vn(y−1x)dµ(y), (5)

in order to get an approximation procedure that shares some approximation properties
with its continuous counterpart and can be computed extremely fast. To this end, let
us suppose that for n ∈ N0 we are given a convolution kernel vn : SO(3) → R with the
following properties

(i) vn ∈ Πm·n for some m ∈ N,

(ii) P (x) =

∫

SO(3)
P (y)vn(y−1x)dµ(y) for all P ∈ Πn,

(iii) sup
n∈N0

‖vn‖1 ≤ c for some c > 0.

A family of convolution kernels possessing properties (i)-(iii), indeed, are good for
approximation purposes on the rotation group. For example, let us consider the error
of best polynomial approximation on SO(3) given by

En(f)p := inf
P∈Πn

‖f − P‖p. (6)

Then the associated linear operator Vn (5) provides a “near best” polynomial approx-
imation in the following sense.

Proposition 3.5 For all n ∈ N0 and any 1 ≤ p ≤ ∞ we have

Em·n(f)p ≤ ‖f − Vnf‖p ≤ (1 + c)En(f)p

for all f ∈ Lp(SO(3)).

@CMMSE                                                               Page   508  of 1328                                               ISBN 13: 978-84-613-5510-5



Quadrature formulas and Hyperinterpolation on SO(3)

Remark 3.6 We would like to point out that in [20] a family of convolution kernels
{vn}n∈N0

on the rotation group SO(3) possessing properties (i)-(iii) with constants
m = 2 and c =

√
27 has been explicitly constructed.

In the next step we want to discretize the “nice” convolution operator Vn using the
positive quadrature weights from Theorem 3.3. To this end, let X = {xj ∈ SO(3) :

j = 0, . . . ,M − 1} be a sampling set on the rotation group with associated partition
R = {Ωj ⊂ SO(3) : j = 0, . . . ,M − 1}. Furthermore, let n ∈ N0 be such that

(1 +m)n ≤
1

924‖R‖
.

Then Theorem 3.3 guarantees the existence of nonnegative real numbers βj such that

∫

SO(3)
P (x)dµ(x) =

M−1∑

j=0

βjP (xj)

for all polynomials P ∈ Π(1+m)n. By means of the weights βj , we define the discrete

operator Ṽn : C(SO(3)) → C(SO(3)) given by

Ṽnf(x) :=

M−1∑

j=0

βjf(xj)vn(x−1
j x).

The discrete operator Ṽn shares some nice approximation properties with its continuous
counterpart Vn. Let us collect these results in the following theorem. Again, En(f)∞
denotes the error of best polynomial approximation as defined in (6).

Theorem 3.7 Let X = {xj ∈ SO(3) : j = 0, . . . ,M − 1} be a sampling set and
R = {Ωj ⊂ SO(3) : j = 0, . . . ,M − 1} be an associated partition. If n ∈ N0 with
(1 + m)n ≤ 1

924‖R‖
, then there exist nonnegative real numbers βj , j = 0, . . . ,M − 1,

such that the operator Ṽn : C(SO(3)) → C(SO(3)) defined by

Ṽnf(x) =

M−1∑

j=0

βjf(xj)vn(x−1
j x)

satisfies the following statements.

(i) ṼnP = P for all P ∈ Πn,

(ii) ‖Ṽnf‖∞ ≤ Λ‖f‖w,∞ ≤ Λ‖f‖∞ for all f ∈ C(SO(3)) and

(iii) Em·n(f)∞ ≤ ‖f −Ṽnf‖∞ ≤ (1+Λ)En(f)∞, where Λ = max
x∈SO(3)

M−1∑

j=0
βj |vn(x−1

j x)|.

Moreover, we obtain an upper bound on Λ as follows. It is

(iv) Λ ≤ 3
2

√
27σ, where σ = max

{
βj

wj

: j = 0, . . . ,M − 1
}
.
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By means of the developed theory in this section, we were able to define so-called
hyperinterpolation schemes on SO(3), which are exact for polynomials up to a given
degree n. Once we have computed the quadrature weights βj , which can be done, for
example, by convex optimization [10], we only have to evaluate the values vn(x−1

j x) in

order to get the approximant Ṽnf at the point x ∈ SO(3). If we consider the concrete
example of the convolution operator constructed in [20], we even have a closed form
expression for the kernel vn and therefore this can be done extremely fast.
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Abstract

Commonly used finite-difference numerical schemes show some deficiencies in
the integration of certain types of stochastic partial differential equations with
additive white noise. In this work efficient spectral schemes to integrate these
equations are discussed. They all are based on the discretization of the system in
Fourier space. The nonlinear terms are treated using a pseudospectral approach
so as to speed up the computations without a significant loss of accuracy. The
proposed schemes are applied to solve, both in one and two spatial dimensions,
two paradigmatic models arising in the context of nonequilibrium dynamics of
growing interfaces: the continuum Kardar-Parisi-Zhang and Lai-Das Sarma-Villain
equations.

Key words: pseudospectral methods, stochastic partial differential equations,
growth models, stochastic PDEs, Fourier transform

1 Introduction

Numerical integration is often a direct and convenient way to study the behavior of
partial differential equations (PDEs). In the particular case of stochastic partial dif-
ferential equations (SPDEs), finite-difference methods have been traditionally used.
Spectral methods, on the other hand, are frequently used to integrate PDEs arising in
Fluid Dynamics but only recently they have been considered for SPDEs [7, 9]. Spectral
schemes are in general more reliable and accurate that finite-difference based algorithms
since the latters may give rise to numerical artifacts due to discretization effects. These
artifacts may lead to a misleading interpretation of the results of numerical simulations.
Moreover, it has been proved that the results of numerical simulations can depend on
the particular discretization used to evaluate the partial derivatives [16]. This unwanted
feature is not likely to be present with spectral methods inasmuch as derivatives are
computed in Fourier space using the values of the field at all points. On the other
hand, spectral methods may be rather time-consuming if complex nonlinear terms are
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involved. To speed up the computation, a pseudospectral approach is commonly used
to deal with the nonlinear terms.

The problem of kinetic surface roughening has attracted much attention in the
last years owing to its many important applications as molecular beam epitaxy, fluid
flow in porous media, fracture cracks, etc. Theoretical approaches make use of both
discrete atomistic simulations and stochastic continuum equations for the evolution
of the coarse-grained surface height h(x, t). Growth models are often classified into
universality classes according to the values of certain critical exponents that characterize
the growth process and that do not depend on the microscopic details of the system
under study.

Universality classes are generically represented by SPDEs. The Kardar-Parisi-
Zhang (KPZ) [11] and the Lai-Das Sarma-Villain equations (LDV) [15, 23, 24] are
examples of continuum nonlinear growth models. Both equations can be derived based
on physical and symmetry principles. The KPZ equation is a Langevin type equation
that was first introduced to give a hydrodynamic description of ballistic deposition
growth far from equilibrium. If h is the local height on a d-dimensional substrate, the
KPZ equation reads:

∂th(x, t) = ∇2h+ g(∇h)2 + η(x, t), (1)

where g is the so-called nonlinear coupling parameter. The stochastic term η(x, t)
represents the influx of atoms on the surface. It is a Gaussian noise with mean zero
and uncorrelated in space and time, that is,

⟨η(x, t)⟩ = 0, ⟨η(x, t)η(x′, t′)⟩ = δd(x− x′)δ(t− t′).

The LDV equation describes the long-wavelength fluctuations of crystal growth
from atom beams in the absence of diffusion bias:

∂th(x, t) = −∇4h+ g∇2(∇h)2 + η(x, t). (2)

In this work four spectral schemes to integrate SPDEs with additive white noise
are presented. They all are based on the discretization of the system in Fourier space.
They are applied to the numerical integration of Eqs. (1) and (2) in both one (1D) and
two (2D) spatial dimensions. As far as I know no results of the numerical integration
of the 2D LDV equation have been appeared yet in the literature.

2 Numerical schemes

In this section four numerical schemes to integrate SPDEs with additive white noise
are presented. They all are spectral methods based on the discretization of the system
in momentum space.

The numerical schemes to be considered are valid to integrate SPDEs of the form:

∂th(x, t) = L[h](x, t) + Φ[h](x, t) + ξ(x, t), (3)
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where L[h] is a linear functional of the field h, Φ[h] is another functional comprising
the nonlinear terms and ξ(x, t) is a white noise in space and time:

⟨ξ(x, t)⟩ = 0, ⟨ξ(x, t)ξ(x′, t′)⟩ = 2Dδ(x− x′)δ(t− t′).

The explicit expressions of the functionals L[h] and Φ[h] for equations (1) and (2)
are:

KPZ

{
L[h](x, t) = ∇2h

Φ[h](x, t) = g(∇h)2
LDV

{
L[h](x, t) = −∇4h

Φ[h](x, t) = g∇2(∇h)2

Without loss of generality, a d-dimensional lattice of lateral size L with uniform
spacing ∆x in each direction is considered and the field h is assumed to satisfy periodic
boundary conditions in the multidimensional interval I = [0, L]d. The positions of the
nodes in the lattice are given by xj = ∆x(j1, j2, . . . , jd), 0 6 ji 6 N − 1, 1 6 i 6 d,
where N = (∆x)−1L is the lattice size in each direction.

In order to construct a spectral method, we represent the field h(x, t) as a truncated
Fourier series:

hN (x, t) =
∑
k∈ΓN

h̃k(t)e
iqx, q =

2π

L
k,

where ΓN = {(k1, k2, . . . , kd)� −N/2 6 ki 6 N/2 − 1, 1 6 i 6 d} and the h̃k(t)’s are
the Fourier coefficients of h.

The noise term is also replaced by its expansion ξN in Fourier modes. In the limit
N → ∞, the usual Fourier series is recovered. Finally, Eq. (3) is written in Fourier
space as follows:

dh̃k(t)

dt
= ωkh̃k(t) + Φ̃k(t) + ξ̃k(t), k ∈ ΓN . (4)

The quantity ωk is the so-called linear dispersion relation, and comes from the Fourier
transform of the linear part of the equation. It is ωk = −q2 for the KPZ model and
ωk = −q4 for the LDV model. On the other hand, the Φ̃k(t)’s are the Fourier modes
of the nonlinear terms.

As discussed in [7], Eq. (4) is difficult to treat numerically. The reason being
that the Fourier coefficients are difficult and expensive to compute, in special the Φ̃k’s
associated to the nonlinear terms. The process of going from real space to Fourier space
and vice versa becomes a stiffly and a time-consuming task. Due to these reasons, we
approach the coefficients of the Fourier series with those of the discrete Fourier series
that will be denoted by ĥk.

Then instead of integrating the set of equations given by (4), we consider the same
set of equations with the Fourier coefficients replaced by their discrete version, so that

dĥk(t)

dt
= ωkĥk(t) + Φ̂k(t) + ξ̂k(t). (5)
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The correlations of the variables ξ̂k(t) are given by:

⟨ξ̂k(t)ξ̂k′(t′)⟩ = 2DL−dδ(t− t′)δk,−k′ .

In order to integrate (5) it is useful to make the following change of variables based
on the solution of the linear equation:

ĥk(t) = eωktẑk(t) + R̂k(t), (6)

where

R̂k(t) = eωkt

∫ t

0
ds e−ωksξ̂k(s). (7)

Then, the variables ẑk satisfy the following set of ordinary differential equations:

dẑk(t)

dt
= Φ̂k(t)e

−ωkt. (8)

2.1 Numerical scheme E1

A simple spectral algorithm is obtained by applying to (5) a one step Euler’s method.
Special care must be put when dealing with the noise term. We first compute the mean
and variance of the stochastic variable ψ̂k(t) =

∫ t+∆t
t ds ξ̂k(s), where ∆t is the time

step used in the integration.

⟨ψ̂k(t)⟩ = 0, ⟨ξ̂k(s)ξ̂k(s′)⟩ =
2D

Ld
∆t.

Then, we obtain the following numerical integration scheme which will be referred to
as the E1 numerical scheme:

ĥk(t+∆t) = ∆t[ωkĥk(t) + Φ̂k(t)] +

√
2D∆t

(∆x)d
v̂k(t), v̂k(t) = F [vn(t)], (9)

where vn(t) is a vector or random Gaussian numbers of mean 0 and variance 1.
Algorithm (9) has been used in [9] to integrate the KPZ equation in 1D and 2D.

This quite simple (an easy to code) algorithm has shown much better performance than
finite-difference algorithms traditionally used to integrate the KPZ equation.

2.2 Numerical scheme E2

Another more stable scheme than the previous one can be obtained by applying the
one step Euler’s method to (8):

ẑk(t+∆t) = ẑk(t) + ∆t Φ̂k(t)e
−ωkt.

The original variable ĥk(t) is obtained by using the following relationship derived from
Equations (6) and (7):

ẑk(t) = e−ωkt[ĥk(t)− R̂k(t)]. (10)
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Then, we get

ĥk(t+∆t) = ĝk(t) + eωk∆t[ĥk(t) + ∆t Φ̂k(t)].

In the computer, the numbers ĝk’s are obtained as follows:

ĝk(t) =

√
e2ωk∆t − 1

ωk

D

(∆x)d
v̂k(t), (11)

where v̂k(t) are the discrete Fourier coefficients of a vector vn(t) of random Gaussian
numbers of mean 0 and variance 1.

To sum up, we have the following algorithm which will be referred to as the E2
method:

ĥk(t+∆t) = ĝk(t) + eωk∆t[ĥk(t) + ∆t Φ̂k(t)], (12)

ĝk(t) =

√
e2ωk∆t − 1

ωk

D

(∆x)d
v̂k(t), v̂k(t) = F [vn(t)]. (13)

The E2 scheme has been used in [7] to integrate the 1D KPZ and 1D LDV equations
with the aim of comparing its performance to those of finite-difference schemes.

2.3 Numerical scheme PC2

The algorithm presented in this section is a stochastic variant of the so-called two-step
method [20]. The starting point is the following formal solution of Eq. (5):

ĥk(t) = eωkt

(
ĥk(t0)e

−ωkt0 +

∫ t

t0

ds Φ̂k(s)e
−ωks +

∫ t

t0

ds ξ̂k(s)e
−ωks

)
. (14)

From (14), the following relationship is obtained:

ĥk(t+∆t)

eωk∆t
− ĥk(t−∆t)

e−ωk∆t
= eωkt

∫ t+∆t

t−∆t
ds Φ̂k(s)e

−ωks + eωkt

∫ t+∆t

t−∆t
ds ξ̂k(s)e

−ωks.

(15)

The Taylor expansion of Φ̂k(s) around s = t for ∆t small gives an expression for the
first term of the right hand side of (15):

eωkt

∫ t+∆t

t−∆t
ds Φ̂k(s)e

−ωks = Φ̂k(t)
eωk∆t − e−ωk∆t

ωk
+O

(
(∆t)3

)
. (16)

Now, taking (16) to (15), we get:

ĥk(t+∆t) = e2ωk∆tĥk(t−∆t) +
e2ωk∆t − 1

ωk
Φ̂k(t) + α̂k(t) +O

(
(∆t)3

)
, (17)

α̂k(t) := eωk(t+∆t)

∫ t+∆t

t−∆t
ds ξ̂k(s)e

−ωks.
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The numerical scheme (17) is often unstable so a corrector algorithm is commonly used.
The correction is obtained in a similar way to that of Eq. (17). Starting from (14), we
obtain

ĥk(t)−
ĥk(t−∆t)

e−ωk∆t
= eωkt

∫ t

t−∆t
ds Φ̂k(s)e

−ωks,

from where we obtain the auxiliary Equation:

ĥk(t) = eωk∆tĥk(t−∆t) +
eωk∆t − 1

ωk
Φ̂k(t−∆t) + β̂k(t) +O

(
(∆t)2

)
, (18)

β̂k := eωkt

∫ t

t−∆t
ds ξ̂k(s)e

−ωks.

The stochastic variables α̂k(t) and β̂k(t) can be cast in terms of the variables ĝk(t):

α̂k(t) = eωk∆tβ̂k(t) + ĝk(t), β̂k(t) = ĝk(t−∆t).

Summing up, the complete second-order predictor-corrector numerical scheme can
be written as follows:

Predictor: ĥk(t) = eωk∆tĥk(t−∆t) +
eωk∆t − 1

ωk
Φ̂k(t−∆t) + β̂k(t),

Corrector: ĥk(t+∆t) = e2ωk∆tĥk(t−∆t) +
e2ωk∆t − 1

ωk
Φ̂k(t) + α̂k(t),

where

α̂k(t) = eωk∆tβ̂k(t) + ĝk(t), β̂k(t) = ĝk(t−∆t),

ĝk(t) =

√
e2ωk∆t − 1

ωk

D

(∆x)d
v̂k(t), v̂k(t) = F [vn(t)].

Here vn(t) is an array of Gaussian random numbers of mean zero and variance one.
Note that time advances 2∆t in each step.

2.4 Numerical scheme PC4

The numerical scheme described in this section is a fourth-order predictor-corrector
method based on the following algorithm to integrate a first order differential equation
y′ = f(x, y):

Predictor: yi+1 = yi +
h

24
(55fi − 59fi−1 + 37fi−2 − 9fi−3),

Corrector: yi+1 = yi +
h

24
(9fi+1 + 19fi − 5fi−1 + fi−2).

(19)

The predictor is the four-step Adams-Bashforth method and the corrector is the three-
step Adams-Moulton method (see for example [8, 21]).
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Using the algorithm (19) applied to the resolution of (8), the following equations
for the evolution of the ẑk’s are obtained:

Predictor formula:

ẑk(t+∆t) = ẑk(t) +
∆t

24
e−ωkt[55Φ̂k(t)− 59Φ̂k(t−∆t)eωk∆t+

+ 37Φ̂k(t− 2∆t)e2ωk∆t − 9Φ̂k(t− 3∆t)e3ωk∆t].

Corrector formula:

ẑk(t+∆t) = ẑk(t) +
∆t

24
e−ωkt[9Φ̂k(t+∆t)e−ωk∆t+

+ 19Φ̂k(t)− 5Φ̂k(t−∆t)eωk∆t + Φ̂k(t− 2∆t)e2ωk∆t].

Now, coming back to the original variable ĥk with (10), the final algorithm is
obtained:

Predictor:

ĥk(t+∆t) = ĝk(t) + eωk∆t[ĥk(t) +
∆t

24
(55Φ̂k(t)− 59Φ̂k(t−∆t)eωk∆t+

+ 37e2ωk∆tΦ̂k(t− 2∆t)− 9e3ωk∆tΦ̂k(t− 3∆t))].

Corrector:

ĥk(t+∆t) = ĝk(t) + ĥk(t)e
ωk∆t +

∆t

24
[9Φ̂k(t+∆t)+

+ 19Φ̂k(t)e
ωk∆t − 5Φ̂k(t−∆t)e2ωk∆t + Φ̂k(t− 2∆t)e3ωk∆t].

As before, the stochastic variables ĝk(t) are computed in practice as:

ĝk(t) =

√
e2ωk∆t − 1

ωk

D

(∆x)d
v̂k(t), v̂k(t) = F [vn(t)],

where vn(t) is a vector or random Gaussian numbers of mean 0 and variance 1.
It is important to notice that the previous algorithm needs to be initialized in order

to find the values of the field at the first three time steps. Preferably, a stochastic algo-
rithm of the same order should be used, but for simplicity a deterministic fourth-order
Runge-Kutta algorithm (RK4) will be used. This can be seen as a slight modification
of the initial condition. However, taking into account that we deal with random ini-
tial conditions, the impact on the solutions of starting with a determinist algorithm is
negligible.

3 Numerical results

In this section we show some results obtained when applying the numerical schemes
described in Section 2 to the KPZ and LDV models (Eqs. (1) and (2) respectively) in
1D and 2D. A lattice spacing of ∆x = 1 will be used in all the cases as is customary
in this kind of simulations. As for the time step, the value ∆t = 0.01 has been taken
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in most simulations although a small value needed to be considered in some cases so
as to ensure convergence. The results of the simulations were averaged over a number
of noise realizations, typically 100. For the Fourier transform, a freeware fast Fourier
package has been used [6].

3.1 Critical exponents

The LDV and KPZ growth models exhibit scaling properties so that they can be divided
into universality classes characterized by critical exponents [1, 13]. First let us consider
the global width of the interface which, in a system of lateral size L, is given by

W (L, t) =
⟨
(h(x, t)− h)2

⟩1/2
,

where the angular brackets mean an average over noise measures and the overbars mean
an average over lattice sites. The global width scales according to the Family-Vicsek
ansatz [5]:

W (L, t) = tα/zf(L/t1/z), f(u) ∼

{
uα if u≪ 1,

constant if u≫ 1.

Parameter α is the so-called roughness exponent whereas z is the dynamic exponent.
Both of them characterize the universality class of the model. The ratio β = α/z is the
time exponent. For the LDV model the critical exponents can be calculated exactly
in any dimension d by means of renormalization group techniques [3]: α = (4 − d)/3
and z = (8− d)/3 (and so β = (4− d)/(8 + d)). For the 1D KPZ equation the critical
exponents α = 1/2 and z = 3/2 (so β = 1/3) can also be calculated exactly. Finally,
for the 2D KPZ equation, the exponents obtained with field-theoretical methods [18]
and a Flory-type approach [10, 12] are α = 0.4 and z = 1.6 (so β = 0.25). For small
times (t≪ Lz), a behaviour W (L, t) ∼ tβ is expected so exponent β can be computed
by measuring the slope of the curve logW (L, t) vs. log t. At long times (t ≫ Lz) the
system reaches a saturation regime where W (L, t) ∼ Lα. Since the value of α for the
LDV equation is larger than that of the KPZ equation, the time it takes the system to
get to saturation for a fixed L is larger for the LDV equation.

The global width for the KPZ and LDV equations in the linear regime are depicted
in Figure 1 for systems of lateral sizes L1D = 2048 and L2D = 512. The time exponents
derived from a linear fit of the curves of Figure 1 are given in Table 1. As can be
seen, all the numerical schemes provide approximately the same exponents which are
in very good agreement with their theoretical values. For the 2D KPZ equation, a time
exponent β ∼ 0.24 is found, a value previously reported in other works, using either
finite-difference schemes [2, 19] or a pseudospectral method [9].
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3.2 Global width at saturation for the 1D KPZ equation

For the 1D KPZ, the behaviour of the global width in the steady-state (i.e., the satu-
ration regime) is known exactly [14, 22], namely:

W (L, t→ ∞) =

√
1

24
L1/2 ≈ 0.204L1/2.

The previous expression can be used to test the performance of the several numerical
schemes. In the computation of W (L, t → ∞) system sizes Li = 2i, with 4 6 i 6 10
were used and the data was averaged over 100 noise realizations. In the computation of
each value of the width, several tens of points inside the steady-state region were taken.
Then a linear fitting of the data (logLi, logW (Li)) was performed, giving parameters
A and B such that logW = logA + B logL. The values of A and B obtained in this
way for the four numerical schemes are shown in Table 2. As can be seen, the values
of A and B are very close to the theoretical values A = 0.204 and B = 0.5 in all cases.
In [9] the authors show that a finite-difference based method with a one-step Euler
scheme and standard gradient square discretization does not give an accurate result as
compared with a pseudospectral method (i.e., the E1 method) for the global with in
the steady-state. The so-called Lam and Shin discretization [17] for the gradient square
(∇h)2 gives better results than the standard discretization, but they both involve much
more fluctuations than the pseudospectral method.

3.3 Multiscaling

In systems exhibiting anomalous scaling the height-difference correlation functions
Gm(r, t), are expected to follow the following power-law behavior:

Gm(r, t) ∼ rγm , 1 ≪ r ≪ t1/z.

If the quantities γm depend on m, the system is said to exhibit multiscaling behavior.
Numerically, we can infer the existence multiscaling by plotting Gm(r, t) for several
values of m at the stationary state. If there were multiscaling the behavior of the
correlation functions would depend on m. Both, the KPZ and LDV models are not
expected to show multiscaling. In [4] the existence of multiscaling was suggested for the
1D LDV equation based on the instability of the system against the growth of isolated
pillars with a height larger than a certain threshold. However, it was shown in [7] that
this conclusion was misleading and an artifact of the numerical simulations which were
based on a finite-difference scheme. With a direct computation using a pseudospectral
method (namely, the E2 method), the results of [7] show that there are no multiscaling
for the 1D LDV equation.

In Figure 2 we show the height difference correlation functions Gm(r) for 1 6 m 6 5
at saturation for the 1D KPZ equation integrated with the E1 numerical scheme. As
expected, all the correlation functions scale in a similar way indicating that there
is no trace of multiscaling. The same conclusion is reached for the other numerical
schemes and for the 2D KPZ, 1D LDV and 2D LDV equations. On the other hand,
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the behavior of the correlation functions Gm(r, t) with r fixed as a function of time was
also considered. In these cases no multiscaling was observed either.

3.4 Numerical stability

Finally the stability of the algorithms was tested by measuring the the maximum time
up to which the system can be integrated before a numerical overflows occurs. The
schemes PC2 and PC4 show as the most stable and the E1 scheme as the least stable.
However taking into account that all the schemes provide approximately the same
results, and that the PC2 and PC4 methods are much more time-consuming than the
E1 and E2 schemes, the E2 is the one that performs better to integrate the KPZ and
LDV equations.

4 Figures and tables

Figure 1. Global width for the KPZ and LDV equations in one and two spatial dimen-
sions. The lateral sizes are L1D = 2048 and L2D = 512. The averages are taken over
100 noise measures. The kind of numerical method and the value of the parameter g
for each curve are shown in the legends. Straight lines are shown as a guide for the eye.
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Figure 2. Height-difference correlation functions for the 1D KPZ equation in the sat-
uration regime for 1 6 m 6 5.

Equations

1D KPZ 1D LDV 2D KPZ 2D LDV

S
ch
em

es

E1 0.331± 0.007 0.338± 0.005 0.230± 0.005 0.220± 0.002
E2 0.333± 0.007 0.336± 0.006 0.235± 0.006 0.224± 0.002
PC2 0.333± 0.007 0.334± 0.006 0.230± 0.006 0.224± 0.002
PC4 0.326± 0.007 0.336± 0.006 0.230± 0.005 0.219± 0.002

Theor. 1/3 1/3 0.25 0.20

Table 1. Time exponents obtained from a linear fit of the global width for the KPZ
and LDV equations. The lateral sizes are L1D = 2048 and L2D = 512. The values
of the nonlinear coupling parameter are gKPZ = 2 and gLDV = 1. In the last row the
theoretical values of the exponents are given.

Parameter E1 E2 PC2 PC4

A 0.195 0.195 0.200 0.194
B 0.500 0.501 0.495 0.501

Table 2. Results of the linear fitting of the global width in the steady-state for the
1D KPZ model integrated with the four numerical schemes described in the text. Pa-
rameters A and B correspond to a fitting of the form logW = logA + B logL. The
data have been averaged over 100 noise realizations and the global width values have
been obtained by averaging several tens of data inside the steady-state regime.
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[18] M. Lässig, Quantized scaling of growing surfaces, Phys. Rev. Lett. 80 (1998) 2366.

[19] K. Moser, J. Kertsz, D. E. Wolf, Numerical solution of the kardar-parisi-zhang
equation in one, two and three dimensions, Physica A 178 (1991) 215.

[20] D. Potter, Computational Physics, John Wiley and Sons, 1973.

[21] Shampine, L. F., Gordon, M. K., Computer Solution of Ordinary Differential Equa-
tions : The Initial Value Problem, Freeman & Co., 1975.

[22] K. Sneppen, J. Krug, M. H. Jensen, C. Jayaprakash, T. Bohr, Dynamic scaling
and crossover analysis for the Kuramoto-Sivashinsky equation, Phys. Rev. A 46
(1992) R7351.

[23] J. Villain, Continuum models of crystal-growth from atomic-beams with and with-
out desorption, Journal de Physique I 1 (1991) 19.

[24] D. E. Wolf, J. Villain, Growth with surface diffusion, Europhys. Lett. 13 (1990)
389.

@CMMSE                                                               Page   524  of 1328                                               ISBN 13: 978-84-613-5510-5



Proceedings of the 10th International Conference

on Computational and Mathematical Methods

in Science and Engineering, CMMSE 2010

27–30 June 2010.

Droplet and bubble pinch-off computations

using Level Sets

Maria Garzon1, Len Gray2 and James Sethian3

1 Dept.of Applied Mathematics, University of Oviedo

2 Computer Science and Mathematics Division, Oak Ridge National Laboratory,

University of Tenessee

3 Dept.of Mathematics, University of Berkeley, CA

emails: maria@orion.ciencias.uniovi.es, ljg@ornl.org,
sethian@math.berkeley.edu

Abstract

A two fluid potential flow model is used to analyze the pinching characteristics
of an inviscid fluid immersed in another infinite inviscid fluid of different density.
The system behavior is controlled by the two fluid relative densities D = ρE/ρI ,
D = 0 corresponds to droplets in air, while D=100 will lead to bubbles in water.
The numerical method employed in this work combines the Level Set method for
advancing the free surface position and the boundary condition, together with a
3-D axisymmetric boundary integral formulation to obtain fluid velocities. This
approach provides a numerical methodology to analyze the pinch-off behavior up
to and beyond the initial break up of the inner fluid. The algorithm is validated
using the analytical solution for an oscillating sphere in a two fluid system and a
series of numerical experiments, up to and beyond the initial break up of the inner
fluid, have been carried out. The calculated scaling exponents match the known
values at the droplet and bubble extremes (D = 0, D = 100), and the computed
front profiles obtained are in good agreement with recent experimental findings.

Key words: Nonlinear potential flow, Level Set Method.

1 Introduction

In part due to many important technological applications [2], fluid break-up has been
extensively studied by means of experimental [3, 16] theoretical, and computational
analysis [4, 5].

Considering that the interior and exterior fluids are inviscid and incompressible and
the movement is due to an irrotational velocity field, the potential flow assumptions
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are valid up to the nanometers length scale. The mathematical model, written in non-
dimensional form, is controlled by only one parameter, D = ρE/ρI , the relative density
of the two fluids. D = 0 corresponds to the formation of droplets in air, while D=100
will lead to air bubbles in water.

The goal of the present work is to study numerically the evolution of this two
inviscid fluid system, through pinch-off into satellite break-off for the two extreme D
values (D = 0, D = 100). Previous numerical approximations of the same model
equations [12, 13] have employed marker particle methods, and thus cannot go past
pinch-off and are unable to predict post break up dynamics.

In a recent work [9], the collapse of a single inviscid fluid column (D = 0, Rayleigh-
Taylor instability) has been modeled. The algorithm combines a Level Set method [15]
for advancing the free surface and the free surface boundary condition, together with a
boundary integral approach for the evaluation of surface velocities. This approach was
successful in continuing the interface evolution beyond initial separation and through
the subsequent satellite drop evolution, while accurately predicting the known scaling
exponent, αD = 2/3, of the self similar power law r ∝ ταD . Here, r is the minimum
neck radius and τ the remaining time until pinch-off.

We have extended the corresponding model equations and developed the numerical
algorithm for the two fluid system case, which allow us to simulate the droplet and
bubble pinch-off behavior and their post separation dynamics. The computed scaling
exponents for D = 0 and D = 100 are in perfect agreement with known theoretical and
experimental values [6, 12], and the front profiles before and after separation match the
patterns seen in laboratory experiments [3, 16] both for water droplets and air bubbles.

2 The two fluid potential flow model

To briefly describe the equations consider a fluid of density ρI immersed in an (infinite)
exterior fluid of density ρE . The system is initially at rest and, in absence of gravity,
the fluid movement is induced by surface tension forces.

Let Ωk(t), k = I, E , be the 3D interior and exterior fluid domains respectively and
Γt(s) = (x(s, t), y(s, t), z(s, t)) a parametrization of the free surface boundary at time t.
Assuming potential flow, the fluid velocities uk for each fluid domain Ωk(t), k = I, E ,
are given in terms of a potential φk

uk = ∇φk (1)

∆φk = 0 (2)

DtR = uI on Γt(s) . (3)

The last equation is the kinematic boundary condition (for the interior fluid), which
states that the interface moves with the fluid velocity, with Dt denoting the total
derivative following the fluid (interior) particles

Dt =
∂

∂t
+ uI · ∇ . (4)
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On the free boundary between the two fluid domains, Γt(s), the continuity of the
normal velocity and normal stress tensor gives

n · ∇φI = n · ∇φE ,

ρI(
∂φI

∂t
+

1

2
|∇φI |

2) − ρE(
∂φE

∂t
+

1

2
|∇φE |

2) + γκ = 0,

where n is the unit normal vector pointing from the interior to the exterior domain and
κ = 1/R1 + 1/R2 is twice the mean curvature of the surface. Taking as characteristic
time scale t0 = (ρIR3

0/γ)1/2 we get

(
∂φI

∂t
+

1

2
|∇φI |

2) − D(
∂φE

∂t
+

1

2
|∇φE |

2) + κ = 0,

where now all the quantities are non dimensional. Next adding and subtracting the
needed terms we obtain

∂φI

∂t
− D

∂φE

∂t
+ uI · (∇φI − D∇φE) = uI · (

1

2
∇φI − D∇φE) +

D

2
uE · ∇φE − κ,

and setting φd = φI − DφE , we have

∂φd

∂t
+ uI · ∇φd = f on Γt(s),

being

f = uI · (
1

2
uI − DuE) +

D

2
uE · uE − κ

The model equations in 3D (k = I, E) are therefore,

uk = ∇φk in Ωk(t) (5)

∆φk = 0 in Ωk(t) (6)

DtR = uI on Γt(s) (7)

Dtφd = f on Γt(s) (8)

This Lagrangian-Eulerian formulation is frequently numerically approximated us-
ing the so-called “front tracking method”, which suffers difficulties when the free bound-
ary changes topology. These problems are avoided using the level set formulation for
both the kinematic and dynamic boundary conditions, (7) and (8).

The remaining boundary condition needed to simultaneously solve the two Laplace
equations (6) is that the normal velocities in the two fluids are equal and opposite in
sign.

3 The Level Set formulation

The Level Set method is a mathematical tool developed by Osher and Sethian [14] to
follow interfaces which move with a given velocity field. The key idea is to view the
moving front as the zero level set of one higher dimensional function called the level

@CMMSE                                                               Page   527  of 1328                                               ISBN 13: 978-84-613-5510-5



Droplet and bubble pinch-off

set function. One main advantage of this approach comes when the moving boundary
changes topology, and thus a simple connected domain splits into separated discon-
nected domains. Let ΩD be a fictitious fixed 3D rectangular domain that contains the
free boundary at any time t and Γt(s) the set of points lying in the surface boundary at
time t. This surface is defined through the zero level set of the scalar field Ψ(x, y, z, t).
An equation of motion for Ψ that ties the zero level set of Ψ to the evolving front comes
from observing that the level set value of a particle on the front with path R(s, t) must
always be zero:

Ψ(R(s, t), t) = 0. (9)

To embed the free surface boundary condition given by Eq. (8) into the level set frame-
work, we define G(x, y, z, t) on ΩD such that

G(R(s, t), t) = φd(x, y, z, t)|Γs
= φd(R(s, t), t). (10)

Deriving (9) and (10) with respect to time, following the interior fluid particles char-
acteristics, we have

Ψt + uI · ∇Ψ = 0, (11)

Gt + uI · ∇G = Dtφd = f, (12)

which holds on Γt(s). Note that G(x, y, z, t) is an auxiliary function that can be chosen
arbitrarily, with the only restriction that it is equal to φd(x, y, z, t) on the free surface.
The velocity uI and the right hand side of Eq. (12) are only defined on Γt(s), and
thus, in order to solve Eq. (11) and (12) over the domain ΩD, these variables must
be extended off the front. A detailed description of how to perform these extensions
is given in [1]. The system of equations, written in a complete Eulerian framework,
(k = I, E), is

uk = ∇φk in Ωk(t), (13)

∆φk = 0 in Ωk(t), (14)

Ψt + uIext
· ∇Ψ = 0 in ΩD, (15)

Gt + uIext
· ∇G = fext in ΩD. (16)

The subscript “ext” denotes the extension of f and uI onto ΩD.
The free surface equations 7 and 8 have now been embedded into the higher di-

mension equations 15 and 16 and it can be shown that system (13)-(16) is equivalent
to system (5)-(8) and in fact enriches the kinematics of the system, in the sense that
it can incorporate topological changes of the free surface, and as well the evolution of
the associated potential function within this boundary, see [7],[9].

Assuming symmetry around the z axis the previous system can be formulated in
2D by writing the equations in cylindrical coordinates. The equations in the (r, z) plane
remain the same except for the laplacian that should be changed accordingly. In what
follows Ωk(t), k = I, E , will denote the 2D fluid domains in the (r, z) plane, Γt(s) the
free boundary between these fluid domains and ΩD a 2D fixed domain that contains
the free boundary for all times.
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4 The Numerical Approximation

The numerical approximation of system (13)-(16) in the (r, z) plane can be described
in two basic steps.

First, using a standard first order backward Euler explicit scheme to approximate
time derivatives in the level set equations, the system to be solved for each time tn and
time step ∆t, k = I, E , is:

u
n
k = ∇φn

k in Ωk(tn) (17)

∆φn
k(r, z) = 0 in Ωk(tn) (18)

Ψn+1 − Ψn

∆t
= −u

n

Iext
· ∇Ψn in ΩD (19)

Gn+1 − Gn

∆t
= −u

n

Iext
· ∇Gn + fn

ext in ΩD. (20)

The second main task is to solve Eqs. (18) for the free surface velocity, subject
to the boundary condition φn

I
− Dφn

E
= Gn. This is accomplished by solving the

boundary integral equation corresponding to the Laplace equations in the corresponding
axisymmetric geometry. With the computed velocity, the new position of the boundary
is determined from the level set equation (19), and the potential φd on Γtn+1

(s) will be
obtained from Eq. (20). These procedures are described below.

4.1 Level Set numerical schemes

The fixed computational domain for equations (19) and (20), ΩD = [0, L1] × [0, L2], is
chosen such that it contains the free boundary for all t ∈ [0, T ].

A rectangular mesh over the domain ΩD defines a set of points D∆ = {(ri, zj) :
ri = i∆r, zj = j∆z, i = 1, N, j = 1,M}, with N , M the number of mesh points in the r
and z directions and ∆r, ∆z the corresponding mesh sizes. Let be n = (nr, nz) the unit
normal vector to Γtn(s) and u, v the radial and axial inner fluid velocity components.
The axisymmetric assumption implies u = 0 and nr = 0 at Γz, and thus

∂Ψn

∂r
= 0;

∂Gn

∂r
= 0 at Γz.

will be imposed for (19) and (20) Let be Gn
i,j the numerical approximation of the

fictitious potential G(ri, zj , tn). A first order upwind scheme approximation of Eq. (20)
yields, for i = 2, N − 1; j = 2,M − 1,

Gn+1
i,j = Gn

i,j − ∆t(max(un
i,j , 0)D

−r
i,j + min(un

i,j, 0)D
+r
i,j

+ max(vn
i,j, 0)D

−z
i,j + min(vn

i,j, 0)D
+z
i,j ) + ∆tfn

i,j,

where

D−r
i,j = D−r

i,j

{

Gn
i,j

}

=
Gn

i,j − Gn
i−1,j

∆r

D+r
i,j = D+r

i,j

{

Gn
i,j

}

=
Gn

i+1,j − Gn
i,j

∆r
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are the backward and forward finite difference approximations for the derivative in the
radial direction (the same expressions hold for the corresponding z derivatives D−z

i,j and

D+z
i,j ). The discrete boundary conditions are:

v1,j = 0 for j = 1,M

∂Gn
i,j

∂r
≈

4Gn
2,j − 3Gn

1,j − Gn
3,j

2∆r
for (ri, zj) ∈ Γz

Gn
i,1 = Gn

i,2; Gn
i,M−1 = Gn

i,M for i = 1, N.

Gn
N,j = Gn

N−1,j ; Gn
1,j = Gn

2,j for j = 1,M.

The same discrete equations, without source term, can be written for Ψ, Eq. (19).

Note that, for simplicity, we have written u, v, f instead of uext, vext, fext, and
we describe a first order explicit scheme with a centered source term. Initial values
of G0

i,j are obtained by extending φ(r, z, 0)|Γ0(s). However, at any time step n it is
always possible to perform a new extension of φn(r, z, n∆t) and a reinitialization of the
level set function. We remark here that if reinitialization is done too often, especially
using poor reinitialization techniques, spurious mass loss/gain will occur. Thus, it is
important to perform reinitialization both sparingly and accurately.

4.2 Boundary Integral Equations

Although the Laplace solver used in previous numerical work by other authors [12, 13]
was also a boundary integral method, there are some significant differences in the
numerical schemes. The earlier algorithms employed a vortex boundary integral for-
mulation, based upon high order quintic polynomial collocation approximation. In this
paper we use a direct 3D axisymmetric boundary integral formulation for the two fluid
system. The boundary integral solution algorithm employs a linear element Galerkin
approximation, incorporating non-standard Galerkin weight functions that simplify the
treatment near the symmetry axis [10]. The detailed boundary integral approximation
will be presented elsewhere.

5 Numerical Results

5.1 The analytical solution of an oscillating sphere

According to the linear theory and following [12] if a spherical drop is perturbed such
that at t = 0, we set

φI(r, z, 0) = φE (r, z, 0) = 0,

z(s) = − cos(s)(1 + εPm(cos(s))),

z(s) = − sin(s)(1 + εPm(cos(s))),
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for 0 ≤ s ≤ π, with ε � 1,and Pm the Legendre polynomial of order m, the drop will
oscillate with frequency ω, given by

ω2 =
m(m − 1)(m + 1)(m + 2)

Dm + (m + 1)

For these numerical experiments we choose ε = 0.05, ΩD = [−2, 2] × [−2, 2], ∆r = ∆z
is the fixed mesh size and Np the number of BEM nodes. Simulations were performed
for m = 2 and D = 0, 2, 10 for the following sets of discretization parameters:
a) ∆r = ∆z = 0.01, ∆t = 0.001, Np = 65.
b) ∆r = ∆z = 0.005, ∆t = 0.001, Np = 130.

In figure 1 we show the time evolution of the radial coordinate r0 at z = 0 for
D = 0, 2, 10 using the finer grid. The arrow in the figure mark the computed oscillation
period for each D value.

Table 1 shows the values of the exact and calculated oscillation period, Te, Tc

respectively, the relative error in the drop volume, eV , and the relative error in the
total energy of the two fluid system, eE at t = 2.5. It can be concluded that first order
convergence rate with respect to space is achieved.

case D Te Tc eV eE

a 0 2.2214 2.2250 1.0980e-03 7.6821e-04
a 2 3.3933 3.4000 7.3875e-04 4.5782e-04
a 10 6.1509 6.1600 4.1336e-04 2.5347e-04
b 0 2.2214 2.2250 5.5150e-04 3.8332e-04
b 2 3.3933 3.4000 3.8075e-04 2.0735e-04
b 10 6.1509 6.1600 2.2936e-04 6.3190e-05

Table 1: Comparison with analytical solution

5.2 Droplet and bubble break up simulations

A set of numerical experiments have been carried out for different D values, starting
always with the same initial conditions described in [12]. We present here the results
for D = 0 and D = 100, which correspond to droplet and bubble behavior. The fixed
domain for the level set computations is set to ΩD = [−2, 2]× [0, 8], the time step is set
variable following the same criteria as in [9] and the simulations have been performed
with two different mesh sizes:
a) ∆r = ∆z = 0.01, Np = 201
b) ∆r = ∆z = 0.005, Np = 301
In table 2 the non-dimensional pinch-off time, tp and the relative error in the volume of
the inner fluid, EV , are listed for both grids. Note that the non-dimensional pinch-off
time increases with D, but when converting it to real time, multiplying by t0 for each
case, it actually diminishes as D increases, in accordance with the physical evidence
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D tp (coarse) tp (fine) EV (coarse) EV (fine)

0 0.4551 0.4551 1.2036 E-03 1.4499 E-03
100 1.9300 1.8956 5.6643 E-04 1.83060 E-04

Table 2: Pinch-off time and relative error in volume

that bubbles breakup sooner than droplets. The relative error in drop volume is always
less than 0.1%.

The computed front profiles are almost the same for the coarse and fine grids, and
we show in figure 3 and 4 the time evolution up and beyond the pinch-off time for
D = 0 and D = 100 respectively. For D = 0 the front profile overturns before first
and second pinch-off event and a satellite drop is formed. At the opposite extreme,
D = 100, the air bubble separation occurs exhibiting the characteristic symmetric cone
shape and there in not satellite bubble formation.

Finally, the calculated scaling results for D = 0 and D = 100 are shown in Fig. 2,
which plots log rmin versus log τ . The linear fit yielded 0.67 and 0.56 for the computed
power law exponents, in excellent agreement with known results [6, 12].
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Abstract

This paper presents the second step in the line of applying the theory of discrete
dynamical systems to the analysis of Concurrent Computing Systems. In order
to do that, Petri Nets are properly modelled as discrete dynamical systems, so
defining the corresponding phase space, which is endowed with an original quasi-
pseudometric, and the evolution operator of the system. We conclude with a
summary of several conclusions about the dynamics of this kind of dynamical
systems and with an outlook of intended further research directions.

Key words: Formal Computing Science, Petri Net, Quasi-Pseudometric, Dis-
crete Dynamical System.

1 Introduction

Petri Nets, PNs, have been the first Formal Model proposed for the specification of
the behaviour of concurrent and distributed systems. The great success of PNs can
be measured not only for the amount of practical applications of them, but also for
the size and usability of the developments of the theoretical aspects, which range from
the analysis of simple models of nets to the definition of extensions of PNs capturing
almost all the features which deserve to be studied in these systems.

Software designers work happily with Process Algebras, PAs, as a consequence
of the short distance between them and the pseudo-code or even the programming
language they use, but PAs are not able, in general, to capture true concurrency, and
even formal verification is a bit harder than it is in other formalisms like PNs.

PNs can easily describe the evolution of systems whose states have a distributed
nature, in this line the state of a system is represented by a marking, which is a set
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of tokens distributed among a set of places, therefore an state is essentially distributed
and it makes easier the representation of reachability, concurrency, mutual exclusion,
non-determinism and so on.

The theory of dynamical systems is one of the major mathematical disciplines
closely intertwined with most of the areas of Science. Its core is the study of the global
orbit structure of maps and flows, and the invariant properties under small perturba-
tions. Its concepts and methods have stimulated research in many fields, having given
rise to a vast new area of applied dynamics, also named nonlinear science.

In our case, we are concerning with mathematical modelling of Petri nets as sym-
bolic (finite) dynamical systems. Symbolic dynamical systems is a class of particular
importance not only for its own mathematical interest, but also for the theory of smooth
dynamical systems, because in many respects symbolic dynamical systems serve as mod-
els for smooth ones. Moreover, in some cases, symbolic dynamical systems can be used
to code some smooth systems.

The characteristic feature of dynamical theories is the emphasis on the asymptotic
behaviour, that is, properties related with the changes of the states of the system as
time goes to infinity.

The most general and accepted notion of a dynamical system includes the set of
all possible states of the system and the evolution law in time

In this sense, we can state a formal definition of a dynamical system (see [1, 5, 11]),
as follows:

Definition 1. A dynamical system is a triple (X, τ,Φ), where X is a set, τ is a subset
of R which is a monoid, and Φ : τ ×X → X is a function verifying:

1. Φ(0, x) = x ∀x ∈ X, i.e., Φ0 = idX

2. Φ(t, Φ(s, x)) = Φ(t + s, x) ∀t, s ∈ τ , ∀x ∈ X

The set X is called the state space (or phase space) of the system. Very often, the
state space can be characterized by R

n or a submanifold in it. But, as we will show
later, it could also be a finite set as P({0, 1}n), which is the one we use. This set is
usually a topological space. Also, it is very common that the state space allows to
relate each pair of states by means of a distance, making this set a metric space. In
fact, it uses to be very interesting to have a complete or compact metric (state) space.

For our purposes, we consider a metric in [4] which provide a structure of complete
metric space for the set P({0, 1}n). But, in order to describe a more accurate model of
the reality in this paper we give a quasi-pseudometric that allow us to recognize when
an state is contained inside another previous state in the evolution of the orbit and
hence, when we have controlled the variation of the states. Quasi-metric spaces were
firstly studied by Wilson [12].

We recall some definitions which will be used later on this paper, see also [8]. Let
X be a set and let

d : X ×X → [0,∞)
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be a function such that for all x, y, z ∈ X,

i) d(x, x) = 0,

ii) d(x, y) ≤ d(x, z) + d(z, y).

Then d is called a quasi-pseudometric on X. If d is a quasi-pseudometric on X, then its
conjugate denoted by d′ on X is such that d′(x, y) = d(y, x) for all x, y ∈ X. Obviously
d′ is a quasi-pseudometric. Let d = max{d, d′}. Then d is also quasi-pseudometric on
X.

Now if d is a quasi-pseudometric such that d(x, y) + d(y, x) > 0 for all x 6= y, then
d is said to separate points in X. A quasi-pseudometric that separates points is said
a separating quasi-pseudometric. When d is a separating quasi-pseudometric, then the
topology τd on X induced by d is Hausdorff.

If a quasi-pseudometric d on X satisfies d(x, y) = d(y, x) for all x, y ∈ X in addition
to i) and ii), then d is called pseudometric. A pseudometric d that satisfies d(x, y) = 0
if and only if x = y is a metric.

On the other hand, if a quasi-pseudometric d on X satisfies d(x, y) = 0 if and
only if x = y in addition to (i) and (ii), then d is called quasi-metric. A symmetric
quasi-metric d is a metric.

Depending on the monoid τ , it is distinguished between continuous (time) dynami-
cal systems, when τ = R (R+∪{0} or R

−∪{0}); and discrete (time) dynamical systems,
provided that τ = Z (N∪ {0} or Z

− ∪ {0}). In this work, we consider a particular case
of discrete.

The function Φ : τ ×X → X is called the evolution operator and, generally, it is
a continuous function in the state variable and if τ = R (R+ ∪ {0} or R

− ∪ {0}), it is
also continuous in the time variable. This continuity is supposed to be with respect to
the metric in X.

This paper is organized as follows. The next section provides an overview on
Petri nets and introduces some important concepts in order to consider the evolution
by executing an arbitrary number of transitions simultaneously, what allows us to
model Petri nets as discrete dynamical systems. Afterwards, in section 3, we set out
the model, defining the corresponding phase space, which is endowed with an pioneer
quasi-pseudometric, and the evolution operator of the system. Finally, we conclude
with a summary of several conclusions about the dynamics of this kind of dynamical
systems and with an outlook of intended further research directions.

2 Petri Nets

The representation of a Petri Net is a graph which has two kinds of nodes: places
and transitions. Places are usually related to conditions or states, whereas transitions
are associated with events or actions, which cause the changes of state in a system.
The arcs in the net represent the conditions that must be fulfilled for executing an
action (firing a transition), and the new conditions or states obtained after firing that
transition.
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Definition 2. An Ordinary Petri Net (OPN) is a triple N = (P, T, F ) consisting of
two sets P and T , and a relation F defined over P ∪ T , such that:

1. P ∩ T = ∅

2. F ⊆ (P × T ) ∪ (T × P )

3. dom(F ) ∪ cod(F ) = P ∪ T

P is said to be the set of places, T is called the set of transitions and F is named
the flow relation. F relates places and transitions by arcs connecting them. In the
classical representation of PNs, places are circles and transitions are rectangles.

Let X be the set X = P ∪ T . Then, for all x ∈ X two sets are defined:

• •x = {y ∈ X | (y, x) ∈ F} (precondition set of x),

• x• = {y ∈ X | (x, y) ∈ F} (postcondition set of x).

Example 1. Let N = (P, T, F ) be an Ordinary Petri Net, where:

P = {p1, p2, p3}

T = {t1, t2}

F = {(p1, t1), (p2, t1), (t1, p3), (p3, t2)}

This Petri Net is graphically represented in Fig. 1.
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Figure 1: Example of Petri Net

The state of a system described by a PN is captured by means of the so called
Markings. They are defined as follows.
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Definition 3. Let N = (P, T, F ) be an Ordinary Petri Net. A function M : P −→ IN
is a Marking of N. Thus, (P, T, F, M) is a Marked Ordinary Petri Net, MOPN.

Markings of Petri Nets are graphically represented by including in the places as
many points as tokens.

We are dealing with those Petri Nets which can have 1 token at most in any place,
this fact imposes some requirements on the PN, but to begin with we think they are
the appropriate set of PNs. These PNs are called 1-safe or just safe

Given a MOPN (P, T, F, M) with P = {p1, . . . , pn}, a Marking, M of it which
has tokens (m) in places pi1 , . . . , pim with m ≤ n, will be codified by a binary n-tuple
containing 1′s in pi1 , . . . , pim positions and the remainder n−m positions contain 0′s.

The semantics of a MOPN is defined both by the following firing rule which estab-
lishes when a transition can be fired and by the marking obtained after firing.

Definition 4. Let N = (P, T, F, M) be a MOPN. A transition t ∈ T is enabled at
marking M, denoted by M [t〉, if for all place p ∈ P such that (p, t) ∈ F , we have
M(p) > 0 (M(p) = 1, in the particular case we are dealing with).

An enabled transition M can be fired, thus producing a new marking, M ′:

M ′(p) = M(p)−Wf (p, t) + Wf (t, p) ∀p ∈ P

where
{

Wf (x) = 1 if x ∈ F
Wf (x) = 0 if x /∈ F,

for all x ∈ (T × P ) ∪ (P × T ). It is denoted by M [t〉M ′.

We would like to note that since a place can belong to the precondition set of more
than one different transitions, a token in it could potentially enable more than one
transition and, after firing one of them (transitions), more than one different marking
can be reached. This fact has lead us to consider as Phase Space not the set of binary
n-tuples but the set of all its subsets, in order to properly capture these cases.

Example 2. In the MOPN of figure 2 is presented an scenario with a place p2 which
belongs to the precondition set of both t1 and t2

Both transitions t1 and t2 are enabled in the MOPN of fig.2 where the vector state
would be (1, 1, 1, 0, 0). Starting from this “state” and after firing transition t1 the net
will evolve to the one of figure 3, but this is not the only possible firing from such
“marking”, if t2 would be fired the marking of the net would be that of figure 4.
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Figure 2: MOPN whose vector state is (1, 1, 1, 0, 0)
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Figure 3: MOPN whose vector state is (0, 0, 1, 1, 0)

Therefore, in order to properly capture the whole dynamics of a PN, the DDS must
be able to evolve from (1, 1, 1, 0, 0) to both (0, 0, 1, 1, 0) and (1, 0, 0, 0, 1) and taking into
account that the DDS is deterministic our new phase space is (for a PN like the one
of figures 2 - 4) P({0, 1}5 and from the “point” {(1, 1, 1, 0, 0)} the DDS goes to the
“point” {(0, 0, 1, 1, 0), (1, 0, 0, 0, 1)}. We would like to note that this phase space only
has 2(25) elements, i.e., around 4.3 billion states.

The formal definition of the DDS will be provided later on.

Coming back to the formal description of the evolution of a PN, we would like
to note that the primary definition of firing a transition can be extended in order to
consider the evolution by executing an arbitrary number of transitions simultaneously.
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Figure 4: MOPN whose vector state is (1, 0, 0, 0, 1)

Definition 5. Let N = (P, T, F, M) be a MOPN. Let R ⊆ T be a subset of transitions.
It is said that all transitions in R are enabled at marking M, denoted by M [R〉, if and
only if (iff)

M(p) ≥
∑

t∈R

Wf (p, t), ∀p ∈ P,

where Wf (p, t) has been defined previously.

Moreover, we say that a multiset of transitions R is enabled at marking M iff

M(p) ≥
∑

t∈T

Wf (p, t) ·R(t),

for all p ∈ P .

The firing of a multiset of transitions R at the marking M generates a new marking
M ′, defined by:

M ′(p) = M(p)− Σ
t∈T

(Wf (p, t)−Wf (t, p)) ·R(t)

This evolution of the PN in a single step is denoted by M [R〉M ′.

This is the way in which a PN evolves and it is assumed the best in terms of
accuracy to the real behaviour of concurrent computing systems.

3 Petri Nets Modelled as Discrete Dynamical Systems

The discrete dynamical system which encodes the MOPN N = (P, T, F, M) is the triple
(X, τ,Φ), where:

• X = P({0, 1}n) is the set of all subsets of {0, 1}n, being n the number of places
of the MOPN. This is a finite set of 2(2n) elements.
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• τ is the monoid N ∪ {0}

• Φ : τ ×X → X is the evolution operator Φ verifying:

1. Φ(0, A) = A ∀A ∈ X, i.e., Φ0 = idX

2. Φ(1, A) = B A, B ∈ X where:

– A = {x1, . . . , xk} where xi ∈ {0, 1}
n encodes Markings of the MOPN N

– B = ∪k
i=1Bi

– Bi = ∪t
j=1{y

j
i }, i.e. the union of all (t) possible reachable markings from

xi, defined by xi[Ri〉y
j
i being Ri the set of transitions of the net enabled

at marking xi

3. Φ(t, Φ(s, A)) = Φ(t + s, A) ∀t, s ∈ τ , ∀A ∈ X

As we commented above, for our pretensions to formalize Petri nets as discrete
dynamical systems, we consider as phase space the set P({0, 1}n). Now, we have to
determine a topology on this set, such that the pair (P({0, 1}n), τ) be a complete or
compact topological (state) space. In order to do that, following some of the ideas of
reference [8], we begin defining on {0, 1}n an original metric induced from the Bayre
metric (see [2]) given by

d(x, y) =
1

2l(xuy)
−

1

2n
, x, y ∈ {0, 1}n (1)

where l(x u y) is the length of the longest common initial part of the vectors x and y.

Theorem 1. The function d defined in (1) is a metric.

Proof. Effectively, from the definition it is obvious that d is symmetric and

d(x, y) = 0 ⇔ x = y

On the other hand, for all x, y, z ∈ {0, 1}n it is true that

d(x, y) ≤ d(x, z) + d(z, y)

To check this, it is sufficient to observe that for all x, y ∈ {0, 1}n the function d(x, y)
“shows the coincidence grade of the initial part of x and y ”. So, if by reduction to the
absurd, we suppose that for some x, y, z ∈ {0, 1}n is true that

d(x, y) > d(x, z) + d(z, y)

and we call k, l, m the length of the longest common initial part of the pairs of vectors
(x, y), (x, z) and (z, y), then k < l, m. Note that if k ≥ l (or k ≥ m) then

1

2k
−

1

2n
≤

1

2l
−

1

2n
≤

1

2l
−

1

2n
+

1

2m
−

1

2n

what is inconsistent with the supposition made before.
But, if k < l, m the coincidence grade of the initial part of x and z and also z

and y is greater than k. Thus, x, y, z have a initial coincident part whose length is the
minimum of l and m, which is greater than k, what contradicts that k is the longest
common initial part of the pair of vectors x and y.
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At this point, taking into account this metric d, we can define the distance between
a vector x ∈ {0, 1}n and a subset B of vectors of {0, 1}n, i.e., an element in P({0, 1}n)
in this manner

d(x, B) = min{d(x, y) : y ∈ B}

and, consequently, we can establish the distance between two elements A, B in P({0, 1}n)
as

D(A, B) = max{d(x, B) : x ∈ A} (2)

Now, in view of the reasoning before, it is easy to check the following result

Corollary 1. The application D defined in (2) determines a quasi-pseudometric on
P({0, 1}n), which is not a quasi-metric.

Remark 1. Observe that we do not have the property of quasi-metrics, neither symme-
try. For instance, if we consider a Petri net with three nodes and consider the subsets
A, B ∈ P({0, 1}3), given by A = {(0, 0, 1)}, B = {(0, 0, 0), (0, 0, 1)}, then it is easy to
check that D(A, B) = 0, while D(B, A) = 1

22 −
1
23 6= 0

In fact, as in [8], we have a quasi-pseudometric verifying D(A, B) = 0 if an only
if A ⊆ B and therefore we will denote it d⊆.

Coming back to the PNs world, it is immediate that if A ⊆ B then the reachable
set of markings from every marking of A is included in the reachable set of markings
from every marking of B.

Let us consider A, B ∈ X with A ⊆ B and p ∈ τ such that Φ(p, B) = A, then
we can assure that, as system evolves, the reachability of B (the union of the sets of
reachability of each marking codified in B, is being reduced into the reachability of A
and this fact introduces a notion quite similar to the periodicity of points of X by Φ,
very interesting to research in.

Nevertheless, as d⊆(A, B)+d⊆(B, A) > 0 for every A, B ∈ P({0, 1}n), d⊆ separates
points, therefore, the topology τd⊆ on X induced by d⊆ is Hausdorff.

Theorem 2. (P({0, 1}n), D) is a compact (topological) space with the topology τd⊆

induced by the quasi-pseudometric d⊆.

Proof. Note that, if two subsets A, B are different, then the minimum distance between
them could be

1

2n−1
−

1

2n
=

2− 1

2n
=

1

2n

Thus every element A ∈ P({0, 1}n) is an open set n the topology τd⊆ induced by the

quasi-pseudometric d⊆, because it coincides with the open ball B(A, 1
2n+1 ), with centre

A and radius 1
2n+1 . Therefore, using the topological notion of compact space introduced

by Alessandrov and taking into account that P({0, 1}n) is a finite set, for every cover
of P({0, 1}n) constituted by a family of open sets, we can found a finite number of
open sets of this family which contain all the space P({0, 1}n). Hence, P({0, 1}n) is a
compact (topological) space.
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4 Conclusions and further research directions

Following [11], the main goals in the study of a dynamical system are both giving a
complete characterization of the geometry of its orbit structure and analyzing wether
or not this structure remain when the system is perturbed slightly.

Remember that the ordered subset Orb(x0) = {x ∈ X : x = Φ(t, x0), t ∈ τ} of the
state space X is named the orbit of the present (or initial) state x0. Note that orbits
of continuous dynamical systems are curves in the state space, while orbits of discrete
dynamical system are sequences of points in the state space.

Since in our particular case of discrete dynamical system, we have a finite state
space, it is easy to know that every orbit is either periodic or eventually periodic.
Therefore, every orbit is an invariant set of the system. However, it is not so easy to
determine a priori the different coexistent periods of its orbits, neither the existence of
fixed points and their basin of attraction (see [3], [9]).

Taking into account what we said above, we can conclude that the ω-limit set and
the α-limit set of the system coincide with the set of periodic orbits.

On the other hand, observe that the quasi-pseudometric d⊆ express the difference
between each ordered pair of elements belonging to P({0, 1}n). Besides, it is equals
0 when the first set is a subset of the second one. This infers a new possibility in
the study of the dynamics, because when the evolution of the initial set arrives to a
subset of it, we have “controlled” the future evolution. So, we could define a kind of
quasi-pseudoperiodic orbits or quasi-pseudofixed points, which are in fact periodic or
fixed orbits considering the quasi-pseudometric d⊆.

On the other hand, not every result relative to orbit structure for the well known
discrete dynamical systems given by continuous map of the interval, works here. For
instance, the famous Sharkovskii theorem (see [10]) is not true for a system with a
period three, because we can only have a finite number of different periodic orbits in
the system (one for each initial state).

Also, those questions which can be studied by means of the differentiability of the
evolution operator, as attraction of certain orbits, are now very difficult to state.

Obviously, one could count all the diverse orbits, but, for a state space big enough,
it could be very hard.

Another open problem is to analyze the perturbations, or even what a perturbation
could be here, of these kind of discrete dynamical systems. Often, this problem is
formalized mathematically by adding a parameter in the expression of the evolution
operator (see [5] or [6]). But in our case, the evolution operator is not given by a
formula and even to formalize a perturbation of a system is a problem.
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Abstract

This paper provides a codification of Non-bounded Ordinary Petri Nets as Dis-
crete Dynamical Systems. This work extends the considerations made by the au-
thors in this line over safe Petri Nets. The transition vector plays a key role to
provide an appropriate metric for the underlying phase space.

Key words: Formal Computing Science, Petri Net, Quasi-Pseudometric, Dis-
crete Dynamical System.

1 Non-bounded Petri Nets

Given the MOPN N = (P, T, F, M) where:

• P is the finite set of places

• T is the finite set of transitions

• P ∩ T = ∅. In the classical representation of PNs, places are circles and transitions
are rectangles

• F is the flow relation which relates places and transitions by arcs connecting
them.

• F ⊆ (P × T ) ∪ (T × P )

• dom(F ) ∪ cod(F ) = P ∪ T

• M : P −→ IN is a Marking of N. Markings of Petri Nets are graphically repre-
sented by including in the places as many points as tokens.
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Example 1. Figure 1 shows the MOPN which models the classical Producer/Consumer
problem with a buffer of capacity 5, where transition t1 represents “producing” an item,
t2 “putting” the item in the buffer, t3 “taking out” an item from the buffer and t4
“consuming” the item.

p1

p2

p3

p4

p5

p6

t1

t2

t3

t4

Figure 1: Initial Marking of the PN modelling Producer/Consumer with a 5-buffer

Given a MOPN (P, T, F, M) with P = {p1, . . . , pn}, a Marking M of it which has
tokens (m) in places pi1 , . . . , pit with t ≤ m, will be codified by a n-tuple containing in
every ij-position j ∈ {1 . . . t} the number of tokens of place pij and the remainder n− t
positions contain 0′s.

The codification of the MOPN modelling the initial state of the classical Pro-
ducer/Consumer problem with a buffer of capacity 5, as shown in fig. 1, will be
(1,0,5,0,1,0).

Given a MOPN N = (P, T, F, M), a transition t ∈ T is enabled at marking M,
denoted by M [t〉, if for all place p ∈ P such that (p, t) ∈ F , we have M(p) > 0.

An enabled transition M can be fired, thus producing a new marking, M ′:

M ′(p) = M(p)−Wf (p, t) + Wf (t, p) ∀p ∈ P

where
{

Wf (x) = 1 if x ∈ F
Wf (x) = 0 if x /∈ F,

for all x ∈ (T × P ) ∪ (P × T ). It is denoted by M [t〉M ′

We would like to note that since a place can belong to the precondition set of
more than one different transition, a token in it could potentially enable more than one
transition and, after firing one of them (transitions), more than one different marking
can be reached. This fact has lead us to consider as Phase Space not the set of n-tuples
of natural numbers but the set of all its subsets, in order to properly capture these
cases.
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Let N = (P, T, F, M) be a MOPN and R ⊆ T be a subset of transitions. It is said
that all transitions in R are enabled at marking M (M [R〉), if and only if (iff)

M(p) ≥
∑

t∈R

Wf (p, t), ∀p ∈ P,

Moreover, we say that a multiset of transitions R is enabled at marking M iff

M(p) ≥
∑

t∈T

Wf (p, t) ·R(t),

for all p ∈ P .

Transition Vector of a Marking: Given a MOPN N = (P, T, F, M) the transi-
tion vector of the marking M is the binary n−vector, being n the number of transitions
of N , containing 1 in position j iff transition tj is enabled at marking M and 0 otherwise
∀j ∈ {1 . . . n}

The firing of a multiset of transitions R at the marking M generates a new marking
M ′, defined by:

M ′(p) = M(p)− Σ
t∈T

(Wf (p, t)−Wf (t, p)) ·R(t)

This evolution of the PN in a single step is denoted by M [R〉M ′.

2 Non-bounded PNs as Discrete Dynamical Systems

The discrete dynamical system which encodes the MOPN N = (P, T, F, M) is the triple
(X, τ,Φ), where:

• X = P(INn) is the set of all subsets of INn, being n the number of places of the
MOPN.

• τ is the monoid N ∪ {0}

• Φ : τ ×X → X is the evolution operator Φ verifying:

1. Φ(0, A) = A ∀A ∈ X, i.e., Φ0 = idX

2. Φ(1, A) = B A, B ∈ X where:

– A = {x1, . . . , xk} where xi ∈ INn encodes Markings of the MOPN N

– B = ∪k
i=1Bi

– Bi = ∪t
j=1{y

j
i }, i.e. the union of all (t) possible reachable markings from

xi, defined by xi[Ri〉y
j
i being Ri the set of transitions of the net enabled

at marking xi

3. Φ(t, Φ(s, A)) = Φ(t + s, A) ∀t, s ∈ τ , ∀A ∈ X
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As we commented above, for our pretensions to formalize Petri nets as discrete
dynamical systems, we consider as phase space the set P(INn). Now, we have to
determine a topology on this set, such that the pair (P(INn), τ) be a complete or
compact topological (state) space. In order to do that, following some of the ideas of
reference [8], we have already defined on {0, 1}n, see [4], (for the case of 1-safe Petri
Nets) a metric induced from the Bayre metric (see [2]) given by

d(x, y) =
1

2l(xuy)
−

1

2n
, x, y ∈ {0, 1}n (1)

where l(x u y) is the length of the longest common initial part of the vectors x and y.
Now we have a quite different scenario since in the binary one a difference in a place

means that every transition which has this place as precondition could potentially be
enabled in one case and necessarily disabled in the other.

Nevertheless, in the case we are dealing with, figures 2, 3 and 4 show three markings
of the same OPN whose codifications are (0,1,0,5,1,0), (0,1,1,4,1,0) and (0,1,2,3,1,0)
respectively, if we compute the distance between the second (fig3) and the first (fig2)
and the distance between the second (fig3) and the third (fig4) the same value is
obtained, since the first difference in the codification of the markings appears in the
third place in both cases, but meanwhile both the MOPN of fig. 3 and the the MOPN
of fig. 4 are able to fire the transition t2, on the contrary, the MOPN of fig 2 is not
able to fire this transition.

p1

p2

p3

p4

p5

p6

t1

t2

t3

t4

Figure 2: Marking (0,1,0,5,1,0) of the PN. Transition vector (0,0,1,0)

This means that the metric proposed for the binary case is blind to this huge
differences on the behaviours of the MOPNs. Therefore, we have chosen as reference
for the new metric the transition vector previously defined.

As shown in the feet of the figures, it is more accurate to the real behaviour of the
PNs we are codifying.

At this point, we consider that the role of x and y (codification of the markings)
in the definition of the metric can be played by their corresponding transition vectors
of x and y, so we denote as tv(x) the transition vector of the marking x.

Now we redefine the distance between markings:

d(x, y) =
1

2l(tv(x)utv(y))
−

1

2m
, x, y ∈ INn (2)
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p1

p2

p3

p4

p5

p6

t1

t2

t3

t4

Figure 3: Marking (0,1,1,4,1,0) of the PN. Transition vector (0,1,1,0)

p1

p2

p3

p4

p5

p6

t1

t2

t3

t4

Figure 4: Marking (0,1,2,3,1,0) of the PN. Transition vector (0,1,1,0)

where l(tv(x)u tv(y)) is the length of the longest common initial part of the transition
vectors of x and y and m ∈ IN is the number of transitions of the PN. From this metric
d, we can define the distance between a vector x ∈ INn and a subset B of vectors of
INn, i.e., an element in P(INn) in this manner

d(x, B) = min{d(x, y) : y ∈ B}

and, consequently, we can establish the distance between A, B in P(INn) as

D(A, B) = max{d(x, B) : x ∈ A} (3)

The application D defined in (3) determines a quasi-pseudometric on P(INn).

3 Conclusions and future work

We have presented a metric for the set of markings of every Non-bounded Ordinary
Petri Net. This metric is different to the one of the case of safe Petri Nets [4]. It is
based on the (enabled) transition vector associated to each Marking, which gives very
valuable information over the behaviour of the corresponding PN.

It has been defined the quasi-pseudometric D over the Phase Space P(INn). This
quasi-pseudometric can give a partial order over the Phase Space. This induced partial
order reflects behaviours more and less controlled on the original PNs we are codifying.
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Abstract

Numerical methods for solving Ordinary Differential Equations (ODEs) have
received considerable attention in recent years. In this paper a piecewise-linearized
algorithm based on Krylov subspaces for solving Initial Value Problems (IVPs) is
proposed. MATLAB versions for autonomous and non-autonomous ODEs of this
algorithm have been implemented. These implementations have been compared
with other piecewise-linearized algorithms based on Padé approximants, recently
developed by the authors of this paper, comparing both precision and computa-
tional costs in equality of conditions. Five case studies have been used in the tests
that come from biology and chemical kinetics stiff problems. Experimental results
show the advantages of the proposed algorithms, especially when the dimension is
increased in stiff problems.

Key words: Initial Value Problem (IVP), Ordinary Differential Equation (ODE),
Linear Differential Equation (LDE), Piecewise-linearized methods, Padé approxi-
mants, Krylov subspace

1 Introduction

Many scientific and engineering problems are described by ODEs where the analytic
solution is unknown. In recent years many review articles and books have appeared

∗This work has been supported by the Spanish CICYT project CGL2007-66440-C04-03.
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on numerical methods for integrating ODEs, in stiff cases in particular [1]. Stiff prob-
lems appear in many fields of the applied sciences such as biology, chemical kinetics,
electronic circuit theory, fluids, etc.

Numerical methods for solving ODEs can be classified into two groups: One
step methods (Euler, Runge-Kutta, etc.) and multistep methods (Adams-Bashforth,
Adams-Moulton, BDF, etc) [3]. A family of one step methods for solving ODEs are
piecewise-linearized [4]. These methods solve an IVP by approximating the right hand
side of the corresponding ODE by a Taylor polynomial of degree one. The resulting
approximation can be integrated analytically to obtain the solution in each subinterval
and yields the exact solution for linear problems. In [4, 5] an exhaustive study of this
method is introduced. The proposed method requires a non-singular Jacobian matrix
on each subinterval.

In [6] the authors presented a piecewise-linearized method for solving ODEs. This
method uses a theorem proved in that article, which enables the approximate solution
to be computed at each time step by a block-oriented approach based on diagonal
Padé approximations. In this work another approach based on the piecewise-linearized
method is introduced. In this case, the matrix-vector product eAv, which appears in
these methods, is computed by a Krylov subspace approach. Computational cost and
precision of algorithms are compared in equal conditions.

The paper is structured as follows. In Section ?? a piecewise-linearized approach
for solving IVPs for ODEs based on Padé approximants is introduced [6]. The new
approach for solving ODEs based on the Krylov subspace approach is presented in
Section 2. The experimental results are shown in Section 3. Finally, conclusions and
future expectations are given in Section 4.

2 A piecewise-linearized algorithm for solving ODEs based

on the Krylov subspace approach

In [6] the authors presented a piecewise-linearized method for solving ODEs, based on
the following theorem which enables the approximate solution to be computed at each
time step by a block-oriented approach based on diagonal Padé approximations.

Theorem 1 ([6]) Let

ẋ(t) = f(t, x(t)), t ∈ [t0, tf ], (1)

be an ODE with initial value

x(t0) = x0 ∈ Rn,

so that the first order partial derivatives of f(t, x) are continuous on [t0, tf ]×Rn. Given
a mesh t0 < t1 < · · · < tl−1 < tl = tf , ODE (1) can be approximated by a set of LDEs
obtained as a result of a linear approximation of f(t, x(t)) at each subinterval ([5, 7]),

ẏ(t) = fi + Ji(y(t) − yi) + gi(t − ti), t ∈ [ti, ti+1], (2)

y(ti) = yi, i = 0, 1, . . . , l − 1,

@CMMSE                                                               Page   555  of 1328                                               ISBN 13: 978-84-613-5510-5
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The solution of (2) is

y(t) = yi + E
(i)

12
(t − ti)fi + E

(i)

13
(t − ti)gi, (3)

where E
(i)

12
(t − ti) and E

(i)

13
(t − ti) are blocks (1, 2) and (1, 3) of E = eCi(t−ti), where

Ci =




Ji In 0n

0n 0n In

0n 0n 0n



 . �

If t is replaced by ti+1 in (3), the approximate solution of ODE (1) at ti+1, i =
0, 1, . . . . , l − 1, is given by

yi+1 = yi + ∆tiE
(i)

12
fi + ∆tiE

(i)

13
gi, ∆ti = ti+1 − ti.

In this work, another approach based on the piecewise-linearized method is in-
troduced as follows. The approximate solution yi+1 given in (3) can be expressed as
follows

yi+1 = yi + eCi∆tivi, (4)

where

Ci =




Ji In 0n

0n 0n In

0n 0n 0n



 , vi =




0n×1

fi

gi



 .

The matrix-vector product eCi∆tivi can be obtained by a Krylov subspace method [8, 9].
Given A ∈ Rn×n and v ∈ Rn, it is possible to compute an approximation to vector eAv
by using the Arnoldi method. This approximation is given by

eAv ∼= vopt = βVpe
Hpe1, (5)

where matrix Hp = (hij) ∈ Rp×p is the Hessenberg matrix obtained from the Arnoldi
method and Vp = [v1, v2, . . . , vp] ∈ Rn×p, with {vi}i=1,2,...,p

an orthonormal basis of the

Krylov subspace Kp = span{v, Av, . . . , Ap−1v}.

In order to reduce computational and storage costs when we want to compute
vector yi+1 from (4), it is necessary to modify the classical Arnoldi algorithm without
explicitly forming matrix Ci∆ti. Algorithm 1 solves IVPs for non-autonomous ODEs
by the above piecewise-linearized method based on a Krylov subspace approach. This
algorithm uses Algorithm 2 , which computes the approximate solution at ti+1 of IVP
(1) for non-autonomous ODEs, obtained after the piecewise-linearized process, by a
block-oriented implementation of the Krylov subspace approach. Its computational cost
is 2n2p+6np(p+1)+2(q+jHp

+1/3)p3 flops, where jHp
= max(0, 1+int(log2(||Hp||))).

It is possible to reduce the computational and storage costs of Algorithm 1 when IVP
(1) is autonomous.
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Algorithm 1 solves IVP (1) by a piecewise-linearized method based on a Krylov
subspace approach

Function y = inolkr(t, data, x0, p, tol, q)
Inputs: Time vector t ∈ Rl+1; function data computes f(τ, y) ∈ Rn, J(τ, y) ∈
Rn×n and g(τ, y) ∈ Rn (τ ∈ R, y ∈ Rn); vector x0 ∈ Rn; dimension p ∈ N
of the Krylov subspace; tolerance tol ∈ R+; order q ∈ N of the diagonal Padé
approximation of the exponential function
Output: Matrix Y = [y1, . . . , yl] ∈ Rn×l, yi ∈ Rn, i = 1, 2, . . . , l

1: Compute the vectors c1 and c2 that contain the coefficients of terms of degree
greater than 0 in the diagonal Padé approximation of the exponential function

2: y0 = x0

3: for i = 0 : l − 1 do

4: [Ji, fi, gi] = data(ti, yi)
5: ∆ti = ti+1 − ti
6: yi+1 = inlbkr(Ji, fi, gi, yi, ∆ti, p, tol, c1, c2) (Algorithm 2)
7: end for

3 Experimental results

The main objective of this section is to compare the MATLAB implementations of
algorithm developed in Section 2 with the implementations developed by the authors
of this paper in [6]. What follows is a short description of the implemented algorithms
and its characteristic parameters:

• iaolwp and inolwp solve IVPs for ODEs by a piecewise-linearized approach and
a block-oriented version without scaling-squaring implementation of the diagonal
Padé approximation method:

– order q = 2 of the diagonal Padé approximation of the exponential function.

• iaolkr and inolkr solve IVPs for ODEs by a piecewise-linearized method based
on Krylov subspaces:

– dimension p = 4 of the Krylov subspace.

– tolerance tol = 10−6 ∈ R+.

– order q = 2 of the diagonal Padé approximation of the exponential function.

As test battery four case studies of stiff ODEs were considered, which come from
biology and chemical kinetics stiff problems. For each test, the following results are
shown:

• Tables which contain the relative error

Er =
‖x − x∗‖∞

‖x‖∞
,
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Algorithm 2 computes the approximate solution at ti+1 of IVP (1) for non-
autonomous ODEs, obtained after the piecewise-linearized process, by a block-oriented
implementation of the Krylov subspace approach

Function yi+1 = inlbkr(Ji, fi, gi, yi, ∆ti, p, tol, c1, c2)
Inputs: Matrix Ji ∈ Rn×n; vector fi ∈ Rn; vector gi ∈ Rn; vector yi ∈ Rn; step
size ∆ti ∈ R; dimension p ∈ N of the Krylov subspace; tolerance tol ∈ R+; vectors
c1, c2 ∈ Rq with the coefficients of terms of degree greater than 0 in the diagonal
Padé approximation of the exponential function
Output: Vector yi+1 ∈ Rn given by expression (4)

1: V (1 : n, 1) = 0n

2: V (n + 1 : 2n, 1) = fi

3: V (2n + 1 : 3n, 1) = gi

4: β = ||V (n + 1 : 3n, 1)||2
5: if β = = 0 then

6: yi+1 = yi

7: Return
8: end if

9: V (n + 1 : 3n, 1) = V (n + 1 : 3n, 1)/β
10: for j = 1 : p do

11: w(1 : n) = JiV (1 : n, j) + V (n + 1 : 2n, j)
12: w(n + 1 : 2n) = V (2n + 1 : 3n, j)
13: w(1 : 2n) = ∆tiw(1 : 2n)
14: w(2n + 1 : 3n) = 0n

15: for i = 1 : j do

16: H(i, j) = wT V (1 : 3n, i)
17: w = w − H(i, j)V (1 : 3n, i)
18: end for

19: s = ‖w‖
2

20: if s < tol then

21: p = j
22: Leave for loop
23: end if

24: H(j + 1, j) = s
25: V (1 : 3n, j + 1) = w/s
26: end for

27: computes E = eHp

28: yi+1 = yi + βV (1 : n, 1 : p)E
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Er ∆t=0.1 ∆t=0.05 ∆t=0.01 ∆t=0.005 ∆t=0.001

iaolwp 2.809e-04 7.523e-05 2.390e-06 5.840e-07 2.366e-08

iaolkr 2.348e-04 6.928e-05 2.759e-06 6.423e-07 2.399e-08

Table 1: Relative error (Er) with t = 10 and ∆t variable (case study 2).

Te ∆t=0.1 ∆t=0.05 ∆t=0.01 ∆t=0.005 ∆t=0.001

iaolwp 0.014 0.021 0.114 0.257 6.231

iaolkr 0.025 0.048 0.201 0.428 6.802

Table 2: Execution time (Te) in seconds with t = 10 and ∆t variable (case study 2).

where x∗ is the computed solution and x is the analytic solution (case study
3) or the solution computed by the MATLAB function ode15s with a vector of
relative error tolerances rtol = 10−13 and a vector of absolute error tolerances
atol = 10−13 [12].

• Tables/Figures with the execution time.

The algorithms were implemented in Matlab 7.9 and tested on an Intel Core 2 Duo
processor at 2.66 GHz with 2 GB main memory. Several tests have been developed
in order to determine the accuracy and efficiency of the algorithms. The implemented
algorithms are available online at http://www.grycap.upv.es/odelin.

3.1 Case of study 1 (Pollution problem [13])

This case study corresponds to a stiff IVP of dimension twenty. The problem describes
a chemical process consisting of 25 reactions and 20 species. The following tests were
done:

• First test (Tables 1 and 2): t=10 and ∆t variable.

• Second test (Table 3 and Figure 1): ∆t=0.01 and t variable.

3.2 Case of study 2 (Emep problem [13])

In this case study a stiff IVP for ODEs of dimension sixty-six is solved. The problem
describes a problem which consists of 66 chemical species and about 140 reactions. The
following tests were done:

Er t=20 t=30 t=40 t=50 t=60

iaolwp 2.015e-06 1.744e-06 1.537e-06 1.374e-06 1.240e-06

iaolkr 2.327e-06 2.013e-06 1.775e-06 1.585e-06 1.431e-06

Table 3: Relative error (Er) ∆t = 0.01 and t variable (case study 2).
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Figure 1: Execution time in seconds of the MATLAB implementations considering
∆t = 0.01 and varying t (case study 2).

Er t = 15400 t = 16400 t = 17400 t = 18400 t = 19400

inolwp 4.410e-14 8.833e-14 1.431e-13 1.980e-13 2.528e-13

inolkr 4.410e-14 8.833e-14 1.431e-13 1.980e-13 2.528e-13

Table 4: Relative error (Er) with ∆t = 0.1 and t variable (case study 3).

• In the first test t=14450 was considered. With ∆t = 0.1 the relative errors of the
three implementation were equal to 2.219 · 10−15, with executions times equal to
1.290 (inolwp) and 0.266 (inolkr) seconds.

• Second test (Tables 4 and 5, and Figure 2): ∆t=0.1 and t variable.

3.3 Case study 3 (Medical Akzo Nobel problem [13])

This case study corresponds to a stiff non-autonomous ODE [13] of variable dimension
2N . This problem studies the penetration of radio-labeled antibodies into a tissue
infected by a tumor.

Te t = 15400 t = 16400 t = 17400 t = 18400 t = 19400

inolwp 52.830 157.465 316.257 529.469 790.217

inolkr 26.547 102.401 227.630 400.672 623.248

Table 5: Execution time (Te) in seconds with ∆t = 0.1 and t variable (case study 3).
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Figure 2: Execution time in seconds of the MATLAB implementations considering
∆t = 0.1 and varying t between 15400 and 19400 (case study 3).

Er ∆t=0.01 ∆t=0.001 ∆t=0.0001 ∆t=0.00001

inolwp 1.572e-02 1.726e-03 1.741e-04 1.742e-05

inolkr 1.663e-02 1.728e-03 1.741e-04 1.742e-05

Table 6: Relative error (Er) considering n = 100, t = 1 and ∆t variable (case study 4).

The following tests were made:

• First test (Tables 6 and 7): n = 100 (N = 50), t=1 and ∆t variable.

• Second test (Tables 8 and 9): ∆t=0.001, t = 1 and varying n from 50 to 250
(N = 25 to 125).

3.4 Case of study 4 (Brusselator problem) [1, pp. 6]

This case study corresponds to a stiff non-autonomous ODE of variable dimension N .
This problem comes from chemical kinetics where the model of Lefever and Nicolis [15]

Te ∆t=0.01 ∆t=0.001 ∆t=0.0001 ∆t=0.00001

inolwp 0.301 4.926 144.484 6362.490

inolkr 0.036 0.538 50.044 5263.304

Table 7: Execution time (Te) in seconds considering n = 100, t = 1 and ∆t variable
(case study 4).
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Er n=50 n=100 n=150 n=200 n=250

inolwp 1.636e-03 1.726e-03 1.746e-03 1.743e-03 1.736e-03

inolkr 1.637e-03 1.728e-03 1.752e-03 1.763e-03 1.781e-03

Table 8: Relative error (Er) considering ∆t = 0.001, t = 1 and n variable (case study
4).

Te n=50 n=100 n=150 n=200 n=250

inolwp 0.720 3.531 20.863 63.944 143.920

inolkr 0.288 0.482 0.740 1.159 1.367

Table 9: Execution time (Te) in seconds considering ∆t = 0.001, t = 1 and n variable
(case study 4).

is used and the method of lines is applied on a grid of N points:

• First test (Tables 10 and 11): n = 100 (N = 50), t=1 and ∆t variable.

• Second test (Tables 12 and 13): t = 1, ∆t=0.001 and n variable.

4 Conclusions and future work

In this work a new piecewise-linearized approach for solving ODEs based on Krylov
subspaces has been presented. Two algorithms based on this approach (inolkr and
iaolbk) have been also proposed and compared to the piecewise-linearized algorithms
iaolwp and inolwp based on Padé approximants developed by the authors of this
paper in[6].

Numerous test have been made on four case studies that come from biology and
chemical kinetics stiff problems. Experimental results show the advantages of the pro-
posed algorithms, especially when they are integrating stiff problems. According to the
experimental results, the new algorithms offer in general similar precision and smaller
computational cost when the problem size is increased. For example, Algorithm 1
(inolkr) was up to 111 times faster than inolwp for n = 250 and t = 1 in case study
3. This is because in the new approach the vector eAv, A ∈ Rn×n, v ∈ Rn , is approx-
imated by the expression βVpe

Hpe1, where p << n. Nevertheless, when the problems
are of small dimension, computational costs of piecewise-linearized algorithms based
on diagonal Padé approximants are smaller than the computational costs of piecewise-
linearized algorithms based on Padé approximants. In general, all algorithms offer
accuracy and good behaviour with stiff problems.

Er ∆t=0.01 ∆t=0.001 ∆t=0.0001 ∆t=0.00001

inolwp 2.162e-02 3.673e-04 3.715e-05 3.719e-06

inolkr 2.263e-02 3.672e-04 3.715e-05 3.719e-06

Table 10: Relative error (Er) considering n = 100, t = 1 and ∆t variable (case study
5).
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Te ∆t=0.01 ∆t=0.001 ∆t=0.0001 ∆t=0.00001

inolwp 0.140 1.688 55.297 4106.738

inolkr 0.031 0.465 38.122 3710.951

Table 11: Execution time (Te) in seconds considering n = 100, t = 1 and ∆t variable
(case study 5).

Er n=50 n=100 n=150 n=200 n=250

inolwp 5.033e-04 3.673e-04 3.308e-04 3.170e-04 3.108e-04

inolkr 5.033e-04 3.672e-04 3.307e-04 3.169e-04 3.107e-04

Table 12: Relative error (Er) considering ∆t = 0.001, t = 1 and n variable (case study
5).

Te n=50 n=100 n=150 n=200 n=250

inolwp 0.521 1.894 2.988 7.616 16.391

inolkr 0.279 0.506 0.701 0.963 1.256

Table 13: Execution time (Te) in seconds considering ∆t = 0.001, t = 1 and n variable
(case study 5).
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Figure 3: Execution time in seconds of the MATLAB implementations considering
∆t = 0.001 and varying t between 50 and 250 (case study 5).
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As future work new improvements will be developed such as:

1. To implement algorithms based on the piecewise-linearized approach with error
control in order to vary step size dynamically. The tests reported here considered
constant step size. It is possible to improve the developed algorithms, using a
variable step size which can be used to estimate the error committed in each
iteration [5].

2. To do parallel implementation of the algorithms presented in this work in a dis-
tributed memory platform, using the message passing paradigm MPI [16] and
BLACS [17] for communications, and PBLAS [18] and ScaLAPACK [19] for com-
putations.
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Abstract

An abstract model of pairwise comparisons based non-numerical ranking is
presented and discussed. An algorithm for enforcing consistency rules is given and
analysed.

Key words: consistency driven, non-numerical ranking, pairwise comparisons

1 Introduction

A ranking or preference is usually defined as a weakly ordered relationship between a
set of items such that, for any two items, the first is either “less preferred”, “more
preferred”, or “indifferent” to the second one [8]. The ranking is numerical if numbers
are used to measure importance and to create the ranking relation. Numerical rankings
are usually totally ordered. Various kinds of global indexes are popular examples of
numerical rankings.

The Pairwise Comparisons method is based on the observation that while ranking
the importance of several objects is often problematic, it is much easier to do when
restricted to two objects [3]. The problem is then reduced to constructing a global
ranking from the set of partially ordered pairs. The method could be traced to the
1785 Marquis de Condorcet paper [15]), it was explicitly mentioned and analyzed by
Fechner in 1860 [5], made popular by Thurstone in 1927 [20], and was transformed into
a kind of semi-formal methodology by Saaty in 1977 (called AHP, Analytic Hierarchy
Process, see [4, 8, 18]).

At present Pairwise Comparisons are practically identified with the controversial
Saaty’s AHP. On one hand AHP has respected practical applications, on the other
hand it is still considered by many (see [4, 9, 14]) as a flawed procedure that produces
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arbitrary rankings. For more details the reader is referred to [4, 9, 13, 14] (specially
[4]).

Pairwise Comparisons based non-numerical solutions were proposed and discussed
in [9, 11, 12, 13]. The model presented in this paper stems from [9], and is orthogonal
to that of [11].

The model presented below uses no numbers and is entirely based on the concept
of partial orders.

Non-numerical rankings should be stratified or total orders, but the initial empirical
data may not even be partial orders, in general they are just arbitrary relations. This
leads to the problem, what is the “best” partial order approximation of and arbitrary
relation, and what is the “best” stratified order approximation of an arbitrary partial
order? The latter problem is discussed in details in [6, 7], some solutions to the former
one were proposed in [10, 11], where four different solutions were proposed and analyzed.
In this paper we will use the approximation denoted as (R+)• (calculate the transition
closure first and then remove all cycles), that was first proposed by Schröder in 1895
[19].

The paper is structured into four parts, from Sections 2 to 6. In Section 2 the
basic notions of partially ordered relations are recalled. The formal definitions of the
proposed model are given in Section 3. In Section 4 some algorithmic solutions are
presented, while Section 5 is devoted to the problem of testing models like the one
presented in this paper. Section 6 contains some final comments.

2 Relations and Partial Orders

In this section we recall some fairly known concepts and results that will be used in
the following sections [6, 17].

Let X be a finite set, fixed for the rest of this paper. For every relation R ⊆ X×X,
let R+ =

⋃∞
i=1 Ri, denote the transitive closure of R, id = {(x, x) | x ∈ X} denote the

identity relation, and let R◦ = R ∪ id denote the reflexive closure of R (see [17] for
details).

A relation < ∈ X × X is a (sharp) partial order if it is irreflexive and transitive,
i.e. if ¬(a < a) and a < b < c =⇒ a < c, for all a, b, c ∈ X.

We write a ∼< b if ¬(a < b) ∧ ¬(b < a), that is if a and b are either distinctly
incomparable (w.r.t. <) or identical elements.

A partial order is

• total or linear, if ∼< is empty, i.e., for all a, b ∈ X. a 6= b =⇒ (a < b ∨ b < a).

• weak or stratified, if a ∼< b ∼< c =⇒ a ∼< c, i.e. if ∼< is an equivalence relation
(i.e. it is reflexive, symmetric and transitive).

If a partial order < is weak than a ≡< b ⇐⇒ a ∼< b (see [6]).
A relation R is acyclic if and only if ¬xR+x for all x ∈ X.
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For every relation R, define the relations Rcyc, R
cyc
id and R• as

• aRcycb ⇐⇒ aR+b ∧ bR+a,

• aR•b ⇐⇒ aRb ∧ ¬(aRcycb),

We will call R• an acyclic refinement of R.

Corollary 1 If R is a partial order then R = R+ = R•. �

In this paper expressions like (R+)• are interpreted as (R+)• = Q• where Q = R+.
The relation (R+)• could be treated as a partial order approximation of R (see

[10, 11] for detailed definitions and proofs).

Lemma 1 1. (R+)• is a partial order (Schröder 1895, [19]).

2. (R+)• is a partial order approximation of R (see [10, 11]). �

Approximations of partial orders by weak orders are just proper extensions. Various
methods were proposed and discussed in [6] and specially in [7]. For our purposes, the
best seems to be the method based on the concept of a global score function [6], which
is defined as (for every finite set X, ‖X ‖ denotes its number of elements):

g<(x) =‖ {z | z < x} ‖ − ‖ {z | x < z} ‖ .

Given the global score function g<(x), we define the relation <w⊆ X × X as

a <w b ⇐⇒ g<(a) < g<(b).

We will use this technique is our model.

3 Consistency-Driven Non-Numerical Ranking : The Model

A pairwise comparisons ranking data [11] is a tuple PCRD = (X,R′
0, R

′
1, ..., R

′
k),

where X is the set of objects to be ranked, k ≥ 1, and R′
i’s are relations satisfying

R′
0 ∪R′

1 ∪ ...∪R′
k = X ×X and R′

j ∩R′
j = ∅ unless i = j. The relation R′

0, interpreted
as indifference, is symmetric and reflexive, the relations R′

1, ..., R
′
k, interpreted as pref-

erences, are asymmetric and irreflexive.

The relations (R′
0, R

′
1, ..., R

′
k) are based on empirical data or judgments, so no other

specific properties are expected.

A tuple PCCRS = (X,R0, R1, ..., Rk), is called a pairwise comparisons consistent
ranking system when some additional consistency properties are satisfied, and is called
derived from PCRD, if each Ri is some approximation of Ri.
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We will devote the rest of this chapter to this problem. Quite often we will use the
same symbol to denote both Ri and R′

i, our algorithm presented later will take R′
i’s,

and produced Ri’s.
In [9], the case PCCRS = (X,≈,⊏,⊂, <,≺), with the following interpretation

a ≈ b : a and b are indifferent, a ⊏ b : slightly in favor of b, a ⊂ b : in favor of b, a < b:
b is strongly better, a ≺ b : b is extremely better, was proposed and some (incomplete)
axioms were proposed. For all practical applications, the list ⊏, ⊂, <, ≺ may be shorter
or longer, but not empty and not much longer (due to limitations of the human mind
[2, 16]).

In this paper we will consider only the case PCCRS = (X,≈,⊏,⊂, <,≺), leaving
the generalizations and special cases to the reader.

Definition 1 Let X be a finite set of objects to be “ranked”, and let ≈, ⊏, ⊂, < and
≺ be a family of disjoint relations on X such that X = ≈ ∪ ⊏ ∪ ⊂ ∪ < ∪ ≺.

We define the relations ⊏̂, ⊂̂, <̂, and ≺̂ as follows:

≺̂ = ≺ <̂ = ≺ ∪ <

⊂̂ = ≺ ∪ < ∪ ⊂ ⊏̂ = ≺ ∪ < ∪ ⊂ ∪ ⊏

The relations ⊏̂, ⊂̂, <̂, and ≺̂ are interpreted as combined preferences, i.e. a⊏̂b

: at least slightly in favor of b, a⊂̂b : at least in favor of b, a<̂b: at least strongly in
favor of b, and a≺̂b : at least b is far superior than a.

The tuple PCRS = (X,≈,⊏,⊂, <,≺) is a Pairwise Comparison Ranking System
if the following two simple rules are satisfied:

1. ⊏̂, ⊂̂, <̂, ≺̂ are partial orders

2. ≈ = ∼b⊏, i.e. ≈ ∪ ⊏̂ ∪ ⊏̂
−1

= X × X.

The tuple PCCRS = (X,≈,⊏,⊂, <,≺) is a Pairwise Comparison Consistent Rank-
ing System if the additional consistency rules are satisfied:

3. (a ≈ b ∧ b ≈ c) ⇒ (a ≈ c ∨ a ⊏ c ∨ c ⊏ a)

4.1. (a ≈ b ∧ b ⊏ c) ∨ (a ⊏ b ∧ b ≈ c) ⇒ (a ⊏ c ∨ a ⊂ c)

4.2. (a ≈ b ∧ b ⊂ c) ∨ (a ⊂ b ∧ b ≈ c) ⇒ (a ⊂ c ∨ a < c)

4.3. (a ≈ b ∧ b < c) ∨ (a < b ∧ b ≈ c) ⇒ (a < c ∨ a ≺ c)

5. (a ≈ b ∧ b ≺ c) ∨ (a ≺ b ∧ b ≈ c) ⇒ (a ≺ c)

6.1. (a ⊏ b ∧ b ⊏ c) ⇒ (a ⊏ c ∨ a ⊂ c)

6.2. (a ⊂ b ∧ b ⊏ c) ∨ (a ⊏ b ∧ b ⊂ c) ⇒ (a ⊂ c ∨ a < c)

6.3. (a < b ∧ b ⊏ c) ∨ (a ⊏ b ∧ b < c) ⇒ (a < c ∨ a ≺ c)
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6.3. (a < b ∧ b ⊏ c) ∨ (a ⊏ b ∧ b < c) ⇒ (a < c ∨ a ≺ c)

7.1. (a ⊏ b ∧ b ≺ c) ∨ (a ≺ b ∧ b ⊏ c) ⇒ (a ≺ c)

7.2. (a ⊂ b ∧ b ≺ c) ∨ (a ≺ b ∧ b ⊂ c) ⇒ (a ≺ c)

7.3. (a < b ∧ b ≺ c) ∨ (a ≺ b ∧ b < c) ⇒ (a ≺ c)

7.4. (a ≺ b ∧ b ≺ c) ∨ (a ≺ b ∧ b ≺ c) ⇒ (a ≺ c)

8.1. (a ⊂ b ∧ b < c) ∨ (a < b ∧ b ⊂ c) ⇒ (a ≺ c)

8.2. (a < b ∧ b < c) ⇒ (a ≺ c)

9.1. (a ⊂ b ∧ b ⊂ c) ⇒ (a < c) ∨ (a ≺ c)

10.1. (a ≈ b ∧ b ⊐ c) ∨ (a ⊐ b ∧ b ≈ c) ⇒ (a ⊐ c) ∨ (a ⊃ c)

10.2. (a ≈ b ∧ b ⊃ c) ∨ (a ⊃ b ∧ b ≈ c) ⇒ (a ⊃ c) ∨ (a > c)

10.3. (a ≈ b ∧ b > c) ∨ (a > b ∧ b ≈ c) ⇒ (a > c) ∨ (a ≻ c)

10.4. (a ≈ b ∧ b ≻ c) ∨ (a ≻ b ∧ b ≈ c) ⇒ (a ≻ c)

11.1. (a ⊐ b ∧ b ⊐ c) ⇒ (a ⊐ c) ∨ (a ⊃ c) ∨ (a > c)

11.2. (a ⊐ b ∧ b ⊃ c) ∨ (a ⊃ b ∧ b ⊐ c) ⇒ (a ⊃ c) ∨ (a > c)

11.3. (a ⊐ b ∧ b > c) ∨ (a > b ∧ b ⊐ c) ⇒ (a > c) ∨ (a ≻ c)

11.4. (a ⊐ b ∧ b ≻ c) ∨ (a ≻ b ∧ b ⊐ c) ⇒ (a ≻ c)

12.1. (a ⊃ b ∧ b ⊃ c) ⇒ (a > c) ∨ (a ≻ c)

12.2. (a ⊃ b ∧ b > c) ⇒ (a ≻ c)

12.3. (a ⊃ b ∧ b ≻ c) ⇒ (a ≻ c)

13.1. (a > b ∧ b > c) ⇒ (a ≻ c)

13.2. (a > b ∧ b ≻ c) ∨ (a ≻ b ∧ b > c) ⇒ (a ≻ c)

14.1. (a ≻ b ∧ b ≻ c) ⇒ (a ≻ c)

15.1. (a ⊐ b ∧ b ⊏ c) ∨ (a ⊏ b ∧ b ⊐ c) ⇒ (a ≈ c ∨ a ⊏ c ∨ a ⊐ c)

15.2. (a ⊐ b ∧ b ⊂ c) ∨ (a ⊂ b ∧ b ⊐ c) ⇒ (a ⊏ c ∨ a ⊂ c)

15.3. (a ⊐ b ∧ b < c) ∨ (a < b ∧ b ⊐ c) ⇒ (a ⊂ c ∨ a < c)

15.4. (a ⊐ b ∧ b ≺ c) ∨ (a ≺ b ∧ b ⊐ c) ⇒ (a < c ∨ a ≺ c)

16.1. (a ⊃ b ∧ b ⊏ c) ∨ (a ⊏ b ∧ b ⊃ c) ⇒ (a ⊐ c ∨ a ⊃ c)
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16.2. (a ⊃ b ∧ b ⊂ c) ∨ (a ⊂ b ∧ b ⊃ c) ⇒ (a ≈ c ∨ a ⊏ c ∨ a ⊐ c)

16.3. (a ⊃ b ∧ b < c) ∨ (a < b ∧ b ⊃ c) ⇒ (a ⊏ c ∨ a ⊂ c)

16.4. (a ⊃ b ∧ b ≺ c) ∨ (a ≺ b ∧ b ⊃ c) ⇒ (a ⊂ c ∨ a < c ∨ a ≺ c)

17.1. (a > b ∧ b ⊏ c) ∨ (a ⊏ b ∧ b > c) ⇒ (a ⊃ c ∨ a > c)

17.2. (a > b ∧ b ⊂ c) ∨ (a ⊂ b ∧ b > c) ⇒ (a ⊐ c ∨ a ⊃ c)

17.3. (a > b ∧ b < c) ∨ (a < b ∧ b > c) ⇒ (a ≈ c ∨ a ⊏ c ∨ a ⊐ c ∨ a ⊂ c ∨ a ⊃ c)

17.4. (a > b ∧ b ≺ c) ∨ (a ≺ b ∧ b > c) ⇒ (a ⊏ c ∨ a ⊂ c ∨ a < c ∨ a ≺ c)

18.1. (a ≻ b ∧ b ⊏ c) ∨ (a ⊏ b ∧ b ≻ c) ⇒ (a > c ∨ a ≻ c)

18.2. (a ≻ b ∧ b ⊂ c) ∨ (a ⊂ b ∧ b ≻ c) ⇒ (a ⊃ c ∨ a > c ∨ a ≻ c)

18.3. (a ≻ b ∧ b > c) ∨ (a > b ∧ b ≻ c) ⇒ (a ⊐ c ∨ a ⊃ c ∨ a > c ∨ a ≻ c)

18.4. (a ≻ b∧b ≺ c)∨(a ≺ b∧b ≻ c) ⇒ (a ≈ c∨a ⊐ c∨a ⊏ c∨a ⊃ c∨a ⊂ c∨a > c∨a < c)

The rules above implement the idea that composition may change precedences only
by ‘one step’, or not at all. Consider for example the rule:

4.1. (a ≈ b ∧ b ⊏ c) ∨ (a ⊏ b ∧ b ≈ c) ⇒ (a ⊏ c ∨ a ⊂ c).
In principle it says that a and b are indifferent and c is slightly better than b, then at
most c is in favor of s, and similarly for a symmetric case. The rules (1) and (2) say
that rankings are just partial orders.

Usually we need that the finest ranking, ⊏ is also a weak or total order (it is usually
unreasonable to require the other orders to have any specific properties).

A ranking PCCRS = (X,≈,⊏,⊂, <,≺) is weakly ordered if the relation ⊏̂ is a
weak order.

As we mentioned above, the starting data ≈,⊏,⊂, <,≺ may not even be partial
orders. The following algorithm has been proposed in [10, 11] to obtain a Pairwise
Comparisons Ranking System (not necessarily consistent) PCRS = (X,≈,⊏,⊂, <,≺)
from a Pairwise Comparisons Ranking Data PCRD = (X,R0, R1, R2, R3, R4):

Algorithm 1

1. Calculate R̂4 = R4, R̂3 = R3 ∪ R̂4, R̂2 = R2 ∪ R̂3, R̂1 = R1 ∪ R̂3.

2. Calculate ≺̂ = ((R̂4)
+)•.

3. Calculate <̂ = ((R̂3 ∪ ≺̂)+)•.

4. Calculate ⊂̂ = ((R̂2 ∪ <̂)+)•.

5. Calculate ⊏̂ = ((R̂1 ∪ ⊂̂)+)•.
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6. Calculate ≈= X × X \ ⊏̂.

7. Calculate ≺= ≺̂, < = <̂ \ ≺̂, ⊂= ⊂̂ \ <̂, ⊏= ⊏̂ \ ⊂̂. �

One may easily find that the complexity of the above algorithm is O(n3), where
n is the size of X. It was also shown in [10, 11]that the technique used satisfies the
requirements for computing ‘partial order approximation’.

4 Enforcing Consistency

Algorithm 1 from the previous section gives a ranking system that may not be con-
sistent. The following algorithm starts with a Pairwise Comparisons Ranking System
and produces a Pairwise Comparisons Consistent Ranking System.

First we order consistency rules in a consecutive manner starting from the rules for
≈, than those for ⊏, etc., ending with the rules for ≺. The ordering given in Definition
1 is a possible choice.

Algorithm 2

1. Find all pairs that violate consistency rules, if none, go the end.

2. Pick a pair which violates the rule with the highest number (arbitrary choice if
more than one).

3. Revise the relation between the pairs violating a rule, by appropriate lowering
preferences, for example from < to ⊂, etc.

4. go to 1.

5. the end �

Proposition 1

1. Algorithm 2 always converges.

2. The time complexity of Algorithm 2 is O(n4).

3. In the worst case the outcome is ≈ = X × X.

Proof (sketch) (1) and (3) From step 3 of the algorithm. We always ’increase the dis-
order’. Ultimately, we may get that ≈ = X × X, but the procedure always stops.
(2) This is is principle analysis of triples (step 1 in the algorithm), so we need at least
O(n3), but relatively easily it is sufficient to do it only n times. �
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5 Testing

How can we test the results of the algorithms presented in this section? How do we
know if they produce the results that make any sense? How can we compare them with
the algorithms constructed using numerical ranking paradigms?

Testing means that there are some data and results that are known to be correct,
and then the technique is applied to the same data. The differences between the cor-
rect results and those obtained by a given technique are used to judge the value of
the technique. Hence testing models such as the one presented above is problematic
since it is not obvious what should be tested against. What are the correct results for
a given data? If the object has measurable attributes and there is a precise algorithm
to calculate the value, the whole problem disappears. Nevertheless we think we have
designed a proper test for these kinds of ranking techniques.

A blindfolded person compared the weights of stones. The person put one stone
in his left hand and another in his right hand, and then decided which of the relations
≈, ⊏, ⊂, <, or ≺ (interpreted as described in previous section) held. The experiment
was repeated for the same set of stones by various people; and then again for different
stones and different number of stones; and again for various subsets of {≈,⊏,⊂, <,≺}
. Those experiments have most likely been carried out by the prehistoric man. Our
ancestors probably used this technique to decide which stone is better to kill an enemy
or an animal.

In this experiment the stones can be weighted using precise scale, so we have the
precise results to test against.

The complete analysis of those experiments has not been finished yet, especially
the comparison with numerical ranking technique (the main goal of those experiments),
but even though inconsistencies occur often in the ranking data, after correction we
always obtain ranking that do not contradict the real weights of stones.

6 Final Comment

The concepts of consistent ranking and pairwise comparisons ranking data have been
defined and analyzed in the setting of partial orders. Some algorithms have been pre-
sented. No numbers were used whatsoever, which we believe is more fair and objective
approach. A method of testing has been proposed. The approach presented in this
paper is an extension of models proposed in [9, 11].
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Abstract

The theory of time scales is the unification and generalization of various math-
ematical concepts from theories of discrete and continuous dynamical systems.
In this paper, we extend our previous study [6]and develop some important con-
cepts;tangent planes and partial derivatives for multivariable functions on time
scales with mathematica.
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1 Introduction

Let T be a time scale which is nonempty closed subset of real numbers. We define the
forward and backward jump operators σ, ρ : T → T respectively as follows:

σ(t) = inf{s ∈ T : s > t}, and

ρ(t) = sup{s ∈ T : s < t}.

A point t ∈ T is called right-scattered, right-dense, left-scattered, left-dense if σ(t) >
t, σ(t) = t, ρ(t) < t, ρ(t) = t holds, respectively. The graininess µ : T → [0,∞) is
defined by

µ(t) = σ(t)− t.

If T has left-scattered maximum then we define T
κ = T − {maxT}, otherwise

T
κ = T. If f is delta differentiable at t ∈ T

κ then delta derivative of f is

f∆(t) =

{

lims→t
f(t)−f(s)

t−s , µ(t) = 0;
f(σ(t))−f(t)

σ(t)−t , µ(t) > 0.

We refer to the original work by Hilger [5] and the recently appeared works can be
found in [2], [3].
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2 The Tangent Line with Mathematica

To describe a time scale in our Mathematica package, we use a collection of three lists:
a list of right-dense left-scattered points, a list of left-dense right-scattered points and
a list of isolated points. For example, we represent time scale T1 = [−1, 0]∪ [1, 2]∪{1

2
}

consisting of two closed intervals and one isolated point by
In[1]:= T1={{-1,1},{0,2},{1/2}};

We refer to [6], [7] for more details about the symbolic and numerical computations
of jump operators, delta derivative and delta integral as well as their visual represen-
tations.

In the rest of this section, we give the definition of tangent line and visualize it by
using our time scale package.

We consider the geometric sense of delta differentiability in simple variable func-
tions on time scales. Consider u = f(t) for t ∈ T. Let Γ be the curve represented by
the function f . Let t0 be a fixed point in T

κ. In this case P0 = (t0, f(t0)) is a point on
the curve.

Definition 1 A line ℓ passing through the point P0 is called the delta tangent line to

the curve Γ at the point P0 if

a. ℓ passes also through the point P σ
0 = (σ(t0), f(σ(t0)).

b. if P0 is not an isolated point of the curve Γ, then

lim
P→P0, P 6=P0

d(P, ℓ)

d(P,P0)
= 0,

where P is the moving point of the curve Γ, d(P, ℓ) is the distance from the point

P to the line ℓ, and d(P,P σ
0 ) is the distance from the point P to the point P σ

0 .[3].

Now, we plot the tangent line to the function f : T1 → R, f(x) = x2 at the point
x = 0 where T1 is the time scale above:

In[2]:= TSTangentLine[T1,x^2,x,0]

Out[2]= (See Figure 1)

3 Functions with Two Variables on Two Time Scales

Let T1 and T2 be time scales. We define the product T1 × T2 by

T1 × T2 = {(t, s) : t ∈ T1 and s ∈ T2}.
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Figure 1: Tangent line to the curve f(x) = x2 at the point x = 0

Let σ1 and σ2 be two forward jump operators for T1 and T2, respectively. Let ρ1 and ρ2
be two backward jump operators for T1 and T2, respectively. We consider the surface
S which is defined by u = f(t, s) continuous function on T1 × T2: the set of points

{(t, s, f(t, s)) : (t, s) ∈ T1 × T2}

in three space.

To get the visual representation of the product T1 × T2 by Mathematica, we first
input T1 = [−1, 0] ∪ [1, 2] ∪ {1

2
} and T2 = [0, 1] ∪ [2, 3] ∪ [5, 6] ∪ {4, 8} as follows:

In[3]:= T1={{-1,1},{0,2},{1/2}};

In[4]:= T2={{0,2,5},{1,3,6},{4,8}};

We plot the set of points T1 × T2 by using the command

In[5]:= DrawTimeScale3D[T1,T2]

Out[5]=

Let f : T1 × T2 → R such that f(t, s) = t2
√
s. We plot this surface on T1 × T2

by using the command TSPlot3D[T1,T2,f(t,s),t,s]where t ∈ T1, s ∈ T2, as follows:

In[6]:= TSPlot3D[T1,T2,t^2 s^(1/2),t,s]

Out[6]=
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Figure 2: T1 × T2
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Figure 3: {t2
√
s : t ∈ T1, s ∈ T2}
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4 Partial Differentiation on Time Scales

Let f : T1 × T2 → R be a function. The first order delta derivatives of f at a point
(t0, s0) ∈ T

κ
1 × T

κ
2 are defined by

∂f(t0, s0)

∆1t
= lim

t→t0, t6=σ1(t0)

f(σ1(t0), s0)− f(t, s0)

σ1(t0)− t

and
∂f(t0, s0)

∆2s
= lim

s→s0, s6=σ2(s0)

f(t0, σ2(s0))− f(t0, s)

σ2(s0)− s
.

To compute the partial delta derivative of a given function at a given point,
we use the command PartialDeltaDerivative[{TS1,TS2},{t,s},f(t,s),var,p].
Here, the partial delta derivative of f, a function of t ∈ TS1 and s ∈ TS2, is taken
with respect to var at the point p. Let us get some results for the time scales T1 and
T2 we have given before, for a function f(t, s) = t2

√
s:

In[7]:= PartialDeltaDerivative[{T1,T2},{t,s},t^2 s^(1/2),t,{1,2}]

Out[7]= 2
√
2

In[8]:= PartialDeltaDerivative[{T1,T2},{t,s},t^2 s^(1/2),t,{1/2,3}]

Out[8]= 3
√

3

2

Now, let us give the definition of the tangent plane to a surface defined on a product
of two time scales.

Definition 2 A plane Ω0 passing through the point P0 = (t0, s0, f(t0, s0)) is called the

delta tangent plane to the surface S at the point P0 if

a. Ω0 passes also through the points P σ1

0
= (σ1(t0), s0, f(σ1(t0), s0)) and P σ2

0
= (t0, σ2(s0)f(t0, σ2(s0)));

b. if P0 is not an isolated point of the surface S, then

limP→P0, P 6=P0

d(P,Ω0)

d(P,P0)
= 0,

where P is the moving point of the surface S, d(P,Ω0) is the distance from the point P

to the plane Ω0, and d(P,P0) is the distance of the point P from the point P0.

The command DeltaTangentPlane[T1,T2,f(t,s),{t,s},p] plots the function
f(t, s) with t ∈ T1, s ∈ T2 at the point p. For the previous function, let us plot the
tangent plane at the point {1

2
, 3}:

In[9]:= DeltaTangentPlane[T1,T2,t^2 s^(1/2),{t,s},{1/2,3}]

Out[9]=
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Figure 4: Delta tangent plane to the surface f(t, s) = t2
√
s at the point (1

2
, 3)
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[2] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales,
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Abstract

An L-fuzzy generalization of the so-called Chu correspondences between for-
mal contexts forms a category called L-ChuCors. In this work we show that this
category naturally embeds ChuCors.

Key words: Formal Concept Analysis, Category theory, L-fuzzy logic

1 Preliminaries

Formal concept analysis (FCA) introduced by Ganter and Wille [6] has become an
extremely useful theoretical and practical tool for formally describing structural and
hierarchical properties of data with “object-attribute” character. Bělohlávek in [1,
2] provided an L-fuzzy extension of the main notions of FCA, such as context and
concept, by extending its underlying interpretation on classical logic to the more general
framework of L-fuzzy logic [7].

In this work, we aim at formally describing some structural properties of inter-
contextual relationships [5,11] of L-fuzzy formal contexts by using category theory [3],
following the results in [12, 13]. The category L-ChuCors is formed by considering the
class of L-fuzzy formal contexts as objects and the L-fuzzy Chu correspondences as
arrows between objects.

The main result here is that L-ChuCors embeds the category ChuCors. This result
is illustrated by showing different categories L-ChuCors built on different underlying
truth-values sets L.

In order to make this contribution as self-contained as possible, we proceed now
with the preliminary definitions of complete residuated lattice, L-fuzzy context, L-fuzzy
concept and L-Chu correspondence.

Definition 1 An algebra 〈L,∧,∨,⊗,→, 0, 1〉 is said to be a complete residuated
lattice if
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1. 〈L,∧,∨, 0, 1〉 is a complete bounded lattice with least element, 0, and greatest
element, 1,

2. 〈L,⊗, 1〉 is a commutative monoid,

3. ⊗ and → are adjoint, i.e. a ⊗ b ≤ c if and only if a ≤ b → c, for all a, b, c ∈ L,
where ≤ is the ordering in the lattice generated from ∧ and ∨.

Definition 2 Let L be a complete residuated lattice, an L-fuzzy context is a triple
〈B,A, r〉 consisting of a set of objects B, a set of attributes A and an L-fuzzy binary
relation r, i.e. a mapping r : B × A → L, which can be alternatively understood as an
L-fuzzy subset of B ×A

We now introduce the L-fuzzy extension provided by Bělohlávek [1], where we will
use the notation Y X to refer to the set of mappings from X to Y .

Definition 3 Consider an L-fuzzy context 〈B,A, r〉. A pair of mappings ↑ : LB → LA

and ↓ : LA → LB can be defined for every f ∈ LB and g ∈ LA as follows:

↑ f(a) =
∧
o∈B

(f(o)→ r(o, a)) ↓ g(o) =
∧
a∈A

(
g(a)→ r(o, a)

)
(1)

Lemma 1 Let L be a complete residuated lattice, let r ∈ LB×A be an L-fuzzy relation
between B and A. Then the pair of operators ↑ and ↓ form a Galois connection between
〈LB;⊆〉 and 〈LA;⊆〉, that is, ↑ : LB → LA and ↓ : LA → LB are anti tonic and,
furthermore, for all f ∈ LB and g ∈ LA we have f ⊆ ↓↑f and g ⊆ ↑↓g.

Definition 4 Consider an L-fuzzy context C = 〈B,A, r〉. An L-fuzzy set of objects
f ∈ LB (resp. an L-fuzzy set of attributes g ∈ LA) is said to be closed in C iff
f =↓↑ f (resp. g =↑↓ g).

Lemma 2 Under the conditions of Lemma 1, the following equalities hold for arbitrary
f ∈ LB and g ∈ LA, ↑ f =↑↓↑ f and ↓ g =↓↑↓ g, that is, both ↓↑ f and ↑↓ g are closed
in C.

Definition 5 An L-fuzzy concept is a pair 〈f, g〉 such that ↑f = g, ↓g = f . The first
component f is said to be the extent of the concept, whereas the second component g
is the intent of the concept.

The set of all L-fuzzy concepts associated to a fuzzy context (B,A, r) will be denoted
as L-FCL(B,A, r).

An ordering between L-fuzzy concepts is defined as follows: 〈f1, g1〉 ≤ 〈f2, g2〉 if
and only if f1 ⊆ f2 if and only if g1 ⊇ g2.

Proposition 1 The poset (L-FCL(B,A, r),≤) is a complete lattice where∧
j∈J
〈fj , gj〉 =

〈 ∧
j∈J

fj , ↑
( ∧
j∈J

fj)
〉

∨
j∈J
〈fj , gj〉 =

〈
↓
( ∧
j∈J

gj),
∧
j∈J

gj

〉
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Finally, we proceed with the definition of L-Chu correspondences, for which we
need the notion of L-multifunction.

Definition 6 An L-multifunction from X to Y is a mapping ϕ : X → LY . The set
L-Mfn(X,Y ) of all the L-multifunctions from X to Y can be endowed with a poset struc-
ture by defining the ordering ϕ1 ≤ ϕ2 as ϕ1(x)(y) ≤ ϕ2(x)(y) for all x ∈ X and y ∈ Y .

Definition 7 Consider two L-fuzzy contexts Ci = 〈Bi, Ai, ri〉, (i = 1, 2), then the
pair ϕ = (ϕl, ϕr) is called a correspondence from C1 to C2 if ϕl and ϕr are L-
multifunctions, respectively, from B1 to B2 and from A2 to A1 (that is, ϕl : B1 → LB2

and ϕr : A2 → LA1).

The L-correspondence ϕ is said to be a weak L-Chu correspondence if the equal-
ity r̂1(χo1 , ϕr(a2)) = r̂2(ϕl(o1), χa2) holds for all o1 ∈ B1 and a2 ∈ A2. By unfolding
the definition of r̂i this means that∧

a1∈A1

(ϕr(a2)(a1)→ r1(o1, a1)) =
∧

o2∈B2

(ϕl(o1)(o2)→ r2(o2, a2)) (2)

A weak Chu correspondence ϕ is an L-Chu correspondence if ϕl(o1) is closed in C2

and ϕr(a2) is closed in C1 for all o1 ∈ B1 and a2 ∈ A2. We will denote the set of all
Chu correspondences from C1 to C2 by L-ChuCors(C1, C2).

In the following definition and lemma, we introduce some connections between the
right and the left sides of L-Chu correspondences.

Definition 8 Given a mapping $ : X → LY we consider the following associated
mappings $∗ : LX → LY and $∗ : LY → LX , defined for all f ∈ LX and g ∈ LY by

1. $∗(f)(y) =
∨

x∈X(f(x)⊗$(x)(y))

2. $∗(g)(x) =
∧

y∈Y $(x)(y)→ g(y)

Lemma 3 Let Ci = 〈Bi, Ai, ri〉 for i = 1, 2 be L-fuzzy contexts. Let ϕ = (ϕl, ϕr) ∈ L-
ChuCors(C1, C2). Then

• for all f ∈ LB1 and g ∈ LA2, the following equalities hold

↑2 (ϕl∗(f)) = ϕ∗r(↑1 (f)) and ↓1 (ϕr∗(g)) = ϕ∗l (↓2 (g))

• for all o1 ∈ B1 and a2 ∈ A2, the following equalities hold

ϕl(o1) =↓2 (ϕ∗r(↑1 (χo1))) and ϕr(a2) =↑1 (ϕ∗l (↓2 (χa2)))
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2 The category L-ChuCors

We introduce now the category of L-Chu correspondences between L-fuzzy formal con-
texts as follows:

• objects L-fuzzy formal contexts

• arrows L-Chu correspondences

• composition ϕ2 ◦ ϕ1 : C1 → C3 of arrows ϕ1 : C1 → C2, ϕ2 : C2 → C3

(Ci = 〈Bi, Ai, ri〉, i ∈ {1, 2})

– (ϕ2 ◦ ϕ1)l : B1 → LB3 and (ϕ2 ◦ ϕ1)r : A3 → LA1

– (ϕ2 ◦ ϕ1)l(o1) =↓3↑3 (ϕ2l∗(ϕ1l(o1))), where

ϕ2l∗(ϕ1l(o1))(o3) =
∨

o2∈B2

ϕ1l(o1)(o2)⊗ ϕ2l(o2)(o3)

– (ϕ2 ◦ ϕ1)r(a3) =↑1↓1 (ϕ1r∗(ϕ2r(a3))), where

ϕ1r∗(ϕ2r(a3))(a1) =
∨

a2∈A2

ϕ2r(a3)(a2)⊗ ϕ1r(a2)(a1)

Theorem 1 L-fuzzy Chu correspondences between L-fuzzy formal contexts form a cat-
egory with the composition defined above.

Proof: We just have to check the existence of identity arrows and the associativity
of composition. The latter is just a matter of straightforward calculation, the identity
arrows ι : C → C are defined as follows for any given L-fuzzy context C = 〈B,A, r〉:
• ιl(o) =↓↑ (χo), for all o ∈ B

• ιr(a) =↑↓ (χa), for all a ∈ A. �

3 L-ChuCors embeds ChuCors

In the following paragraph, we sketchily argue that ChuCors can be embedded in any
of the extensions L-ChuCors where L is a complete residuated lattice.

Assume that 〈L1,∧,∨,⊗,→, 0, 1〉 and 〈L2,∧,∨,⊗,→, 0, 1〉 are two complete resid-
uated lattices, such that L2 is a sublattice of L1. Any L2-fuzzy formal context 〈B,A, r〉
satisfies that r ∈ LB×A

2 ⊆ LB×A
1 . This inclusion implies that the class of all objects

of L2-ChuCors is a subclass of L1-ChuCors. Moreover, every concept constructed in
〈B,A, r〉 by using the underlying logic provided by L2 can be seen as well as a concept
under the logic of L1. As a result, the concept lattice L2-FCL(B,A, r) is a sublattice
of the concept lattice L1-FCL(B,A, r).

The following example illustrates the previous results on the light of two particular
cases for Li.

Example 1 Consider L1 and L2 the lattices shown to the left of the picture below,
together with the two L2-formal contexts shown in the right.
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1

a b

c

0

1

a

c

0

a11 a12

o11 1 1

o12 a c

o13 1 c

a21 a22 a23

o21 a 1 1

o22 1 c 1

Consider two complete residuated lattice(s) to be consisting of the infimum on Li,
together with its residual implication defined as k → l =

∨
{m ∈ L | m ∧ k ≤ l}, for

all k, l,m ∈ Li where i ∈ {1, 2}. The concept lattices on the underlying logic of L1

are shown in the pictures below, where the concepts in bold line are those in the frame
associated to L2.

1,1,1
a,c

1,a,1
1,c

1,b,b
a,a

1,a,a
1,b

1,c,b
1,a

1,c,c
1,1

1,1
a,c,1

1,a
a,b,1

a,1
1,c,1

1,b
a,a,1

a,b
1,a,1

a,a
1,b,1

1,c
a,1,1

a,c
1,1,1

The common L2 and L1-Chu correspondences are shown below:

ϕl

1,c,c

1,c,c

ϕr

a,c,1

a,c,1

,

ϕl

1,c,c

1,a,1

ϕr

a,c,1

a,1,1

The following result formally states the general relation between Li-ChuCors.

Lemma 4 Let C1, C2 be the L2-contexts. L2-ChuCors(C1, C2) ⊆ L1-ChuCors(C1, C2).

It is easy to see that the connection of two L2-Chu correspondences make a new L2-
Chu correspondence. In addition, the set of L2-Chu correspondences between two L2-
contexts is a subset of all L1-Chu correspondences between the same contexts. L2-Chu
correspondences form a category, so the set of arrows is closed under the connections
of arrows, as a result the set of L1-Chu correspondences is closed under connections of
L2-Chu correspondences. Thus, we have just proved the following

Lemma 5 Let Ci for i ∈ {1, 2, 3} be two L2-contexts. For every L2-Chu correspon-
dence ϕ ∈ L2-ChuCors(C1, C2) and ψ ∈ L2-ChuCors(C2, C3) holds ψ ◦ ϕ ∈ L1-
ChuCors(C1, C3).

In consequence, we can state
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Theorem 2 Under the environment hypotheses of this section, the category L2-ChuCors
naturally embeds in L1-ChuCors.

As the category ChuCors of classical Chu correspondences are defined on classical, two-
valued logic, which is a special case of any logic defined on complete residuated lattice,
we obtain

Corollary 1 The category ChuCors naturally embeds in L-ChuCors
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Abstract

As was recently shown by Walter and Shen, for band-limited functions mainly
concentrated on some time interval, the truncation error of sampling expansions
with Finite Fourier Transform Eigenfunctions may be essentially less than that of
the conventional Shannon series.

Similar expansions can be written for Hankel–band–limited functions in terms
of Finite Hankel Transform Eigenfunctions. Yet, practical implementation requires
efficient and accurate numerical methods both for FHTE evaluation and for com-
putation of sampling coefficients.

Key words: Kramer Sampling theorem, finite Hankel transform, Bessel func-
tions
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1 Introduction

The classical Whittaker-Kotelnikov-Shannon (WSK) sampling theorem claims that any
Ω–band–limited function f(x) ∈ L2, i.e. representable as

f(t) =
1

2�

∫ Ω

−Ω
ei ! tF [f ](!) d!

(here F [f ](!) stands for the Fourier transform of f(t)), can be reconstructed from its
equally spaced samples

f(t) =
∞∑

k=−∞
f

(
�k

Ω

)
sin Ω (x− �k/Ω)

Ω (x− �k/Ω)
(1)
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Another sampling formula for f(t) invented and studied in [1, 2], is based on the
eigenfunctions of the Finite Fourier Transform (FFT), first defined inside the interval
IΩ = [−Ω,Ω]

Ω∫
−Ω

exp(ix y) l(Ω, y) dy = �l(Ω) l(Ω, x) , (2)

and then continued analytically according to (2) to the whole real axis; the associated
FFT eigenvalues �l = �l(Ω) are ordered by magnitude,

√
2� > ∣�0∣ > ∣�1∣ > . . . > 0 .

In terms of these functions the reconstruction formula looks more complicated because
of double summation:

f(t) =
�

Ω

∞∑
n=0

∣�n∣2

2�

{ ∞∑
k=−∞

 n

(
�k

Ω

)
f

(
�k

Ω

)}
 n(x) . (3)

However in practice the latter series may converge much faster then the classical one,
in case that the function f(t) vanishes rapidly outside the interval IΩ.

Thus in [1, 2] for Ω–band–limited functions f(x) ∈ L2, which Fourier transform
F [f ](!) is sufficiently smooth, truncation error estimates are given showing that double

series (3 ) to a very good accuracy can be truncated at k = ±
[

Ω

�

]
, n = 2

[
Ω

�

]
, provided

f itself is mostly concentrated in the interval [−Ω,Ω]. Another example illustrating
the advantages of formula (3 ) is given in recent papers [3, 4]. A convolution of two
Ω√
2

–FFT eigenfunctions is an Ω–band–limited and may practically be reconstructed

from its samples computed at 2

[
Ω

�

]
points, although the Fourier transform of the

convolution is even not continuous.

2 Kramer’s sampling theorem and Finite Hankel Trans-
form

Kramer’s generalization of the WSK sampling theorem extends the variety of functions
which can be reconstructed from their sampled values by mean of orthogonal sampling
formulae and establishes general conditions that allow the reconstruction (see e.g. [5,
6, 7, 8]). Of special importance for image processing, in particular for computerized
tomography, is the Hilbert space comprising Hankel–band–limited functions, each been
expressed through a finite Fourier–Bessel integral:

f(r) =

∫ 1

0

√
r � J�(r�)H[f ](�) d�,

above H[f ](�) =

∫ ∞
0

√
� � J�(� �)H[f ](�) d�, is the Hankel transform of f(r), and

J�(⋅) is the �th–order Bessel function of the first kind, � = 0, 1, 2, . . . .
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Let us denote positive zeroes of J�(r) as r�n, n = 0, 1, 2, . . .. Kramer’s sampling
formula for function f(r) yields then [9, 10]

f(r) =
∞∑
n=0

f(r�n)
2
√
r r�n J�(r)

(r2 − r2
�n) J ′�(r�n)

. (4)

If r →∞, Bessel function J�(r) vanishes as
1√
r

, which defines the rate of convergence

of series (4). As in the case of the finite Fourier transform, sampling formula rewritten
in terms of Finite Hankel Transform (FHT) eigenfunctions can converge much faster.

3 Sampling with the FHT eigenfunctions

Let T�k(r) be an eigenfunction of FHT associated with the eigenvalue ��k, i.e.:∫ 1

0

√
r � J�(r�) T� k(�) d� = ��k T� k(r), (5)

the eigenvalues are ordered by magnitude, ∣�� 0∣ > ∣�� 1∣ > . . . > 0 .
In terms of T�k(r)

f(r) =
∞∑
n=0

f(r� n)
∞∑
k=0

2�� k
T� k(r) T� k(r� n)

(r2 − r2
� n) J ′�(r� n)

.

Special properties of functions T�k(r), known also as generalized prolate functions, were
studied earlier in [11, 12]; one can also apply here the general results discussed in [13].

Thus, e.g. T�k(r) are simulteneously eigenfunctions of a singular self–adjoint
Sturm–Liouville problem, which allows one to apply for thier evaluation a general
approach developed in [14, 15, 16] for numerical solution of similar problems. The
approach is efficient, robust and accurate and has previousely been applied e.g. for
evaluation of prolate spheroidal and ellipsoidal wave functions.

4 Bessel functions and FHT eigenvalues

Numerical method for evaluation of FHT eigenfunctions T�k(r) was earlier described
in [17]. Sampling coefficients of (4), however, require also eigenvalues ��k, that may
only be defined via integration of T�k(r) versus Bessel function J� .

Although Bessel functions are widely used, their evaluation remains problematic,
especially if integrals involving Bessel functions are needed, rather than the functions
themselves. In our case, in addition to the integral (5) determining the eigenvalue ��k,
we also need all zeros r�n of the Bessel function J�(r) inside the interval (0, 1) (in
general, inside I = (0, a)), as well as the values J ′�(r�n) (see (4)).

Conventional Bessel function Jn(r) is defined as the solution of the Bessel equation

1

r

(
r y′(r)

)′
+ 1− n2

r2
y(r) = 0 (6)
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bounded at r = 0 and normalized in accordance with the assymptotical behaviour at
infinity

Jn(r) =

√
2

� r
cos
(
r − �

2
n− �

4

)
+O

(
1

r3/2

)
.

Yet, in (4) the latter normalization plays no role, the ratio
�� k
J ′�(r)

remains the same

for all bounded solutions of (6), provided �� k is in a correspondence with this solution.
This yields us a possibility to avoid explicit evaluation of conventional Bessel functions.

In the present talk we shall give a detailed description of all the relevant cal-
culations. Prelimenary test calculations will illustrate the facilites of the numerical
technique.
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Abstract

The main aim of this paper is to build up a set of semi-analytical integrators
based in the use of several kind of anomalies as temporal variables. The integrators
are based on the development of the selected anomaly according to the mean and
anomaly.

To manipulate these developments a new Poisson procesor series will be used.
This processor has been written as a C++ class and it contains a set of methods to
manage the most common arithmetic and funtional operations with these objects.

Key words: Celestial Mechanics. Planetary Theories. Algorithms. Orbital
Mechanics. Perturbation Theory. Computational Algebra.
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1 Introduction

One of main problems in celestial mechanics is the study of the solutions of the per-
turbed motion of the celestial bodies in the solar system, that is, the so-called planetary
theories. These theories can be classified into analytical theories, semi-analytical theo-
ries, and numerical theories

The motion of a body in the solar system is completly defined by the value of its
elements [2],[7],[15]. These values are given by the planetary Lagrange equations [9]

d−→σ i

dt
=

−→
f i(

−→σ 1, . . . ,
−→σ n), i = 1, . . . , n (1)

The analytical and semi-analytical theories involve the management of the Fourier and
Poisson series, the appropriate techniques to develop the inverse of the distance between
two planets according to the chosen anomaly [8],[1],[14],[10],[11].
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A Poisson series of the type (s, l) is a mathematical object defined as

S =

∞∑

i1=0

· ·

∞∑

is=0

· ·

∞∑

j1=−∞

· ·

∞∑

jl=−∞

C
j1,..,jl

i1,..,is
x

i1
1 · ·xis

s cos(j1y1 + · · +jlyl + Φj1,··· ,jl
) (2)

where C
j1,..,jl

i1,..,is
are real or complex numbers and Φj1,..,jl

i1,..,is
are real numbers. The variables

(x1, ··, xs) are called power variables, and the variables (y1, ··, yl) are called angular
variables.

The second member of the Lagrange planetary equations can be developed as

d−→σ i

dt
=

∞∑

k=0

∞∑

j1=0

· ·
∞∑

jl=−∞

C
j1,..,jl

i tk cos(j1Ψ1 + · · +jlΨl + Φj1,··· ,jl
) (3)

where t is the time and Ψi the anomaly of the body i.

2 semi-analitical integrators

To integrate the Lagrange planetary equations it is necessary the evaluation of the
quantities ∫ t

t0

cos(j1Ψ1 + · · +jlΨl + Φj1,··· ,jl
)dt (4)

This process is immediate if the mean anomalies M1, . . . ,Mk are used in the develop-
mets. In this case j1M1 + . . . + jlMl = (j1n1 + . . . + jlnl) t where n1, . . . , nl are the
mean motions
∫ t

t0

cos(j1Ψ1 + · · +jlΨl + Φj1,··· ,jl
)dt =

cos(j1Ψ1 + · · +jlΨl + Φj1,··· ,jl
+ π

2 )

j1n1 + . . . + jlnl

∣
∣
∣
∣

t

t0

(5)

Let Ψ be an anomaly connected whit M through of the Kepler equation.

M = Ψ +
∞∑

k=0

Kk(e) cos kΨ (6)

and from this equation we have

nidt =

(

1 +
∞∑

k=1

kKk(ei) sin kΨi

)

dΨi (7)

and by inversion

dΨi = ni

(

1 +
∞∑

k=0

Tk(ei) sin kΨi

)

dt (8)

Let us now ξ = j1Ψ1 + . . . + jlΨl, then

dt =
1

j1n1 + . . . + jlnl

dξ+

+

l∑

s=1

js

[
∞∑

k=1

kKk(es) sin kΨs

][

ns(1 +

∞∑

k=0

Tk(es) sin kΨs)

]

dt (9)
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If Ψ is an anomaly connected with M through a Sundman transformation [13], [6],
Kepler equation can be obtained through the eccentric anomaly

Ψ = E +
∞∑

k=0

Bk(e) cos kE (10)

repalcing E and cos kE by their developments with respect to M [9] we obtain

Ψ = M +

∞∑

k=0

Ck(e) cos M (11)

The Kepler equation can be obtained from this equation using the Deprit algorithm
[4].

The operations described above involve a hard management of Poisson Series. For
this purpose we use a new C++ class developed by the authors called poison.h [12].

The main public methods of poisson.h are the arithmetic operations +, −, ∗, pow;
the extension of the most common functions sin cos, exp, . . ., to be evaluated over
Poisson series [3]; and functional operations as Taylor developments and series inversion
procedures based on Lagrange and Deprit methods [4]. The operators and common
functions have been overloaded in order to be more user friendly.

3 Concluding Remarks

The process described above is a suitable algorithm to construct a set of semi-analytical
integrators using an extended class of anomalies as temporal variables. The use of the
the C++ class poisson.h allows the managment of the equations.
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Abstract

We introduce a sufficient condition which guarantees the existence of stable
models for a normal residuated logic program interpreted on the truth-space [0, 1]n.
Specifically, the continuity of the connectives involved in the program ensures the
existence of stable models.

1 Introduction

Similarly to classical logic programming, the existence of fuzzy stable models cannot be
guaranteed for an arbitrary normal residuated logic program [11]. Necessary conditions
to ensure the existence of stable models has been widely studied in classical logic
programming. In fact, the syntactic characterization of normal programs with stable
models can be found in [1].

However the characterization in the fuzzy framework is much more complicated
since it involves two different dimensions: “the syntactic structure of the normal pro-
gram” and “the choice of suitable connectives in the residuated lattice”. For short, we
will call them the syntactic and the semantic dimension, respectively.

In classical logic programming only syntactic conditions are available since the
connectives are fixed. However, for normal residuated logic program the semantic
dimension plays also a crucial role; for example the program with only one rule

P = {〈p← ¬p; 1〉}

has a stable model if and only if the operator associated with ¬ has a fixpoint. As
far as we know, establishing semantic conditions for guaranteeing the existence of sta-
ble models has not been directly attempted, although sufficient conditions underlie in
some approaches; for example [12] proves that every normal logic program has stable
models in the 3-valued Kleene logic and, more generally, [3, 8] show that every normal
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residuated logic program has stable models if the underlying residuated lattice has an
appropriate bilattice structure [5].

In this paper we provide another condition on the residuated lattice to enssure the
existence of stable models, more specifically: if the lattice selected is an euclidean space
and the connectives ∗ and ¬ in the residuated lattice are continuous, then the existence
of at least a fuzzy stable model is guaranteed.

2 Preliminaries

Let us start this section by recalling the definition of residuated lattice, which fixes the
set of truth values and the relationship between the conjunction and the implication
(the adjoint condition) occurring in our logic programs.

Definition 1 A residuated lattice is a tuple (L,≤, ∗,←) such that:

1. (L,≤) is a complete bounded lattice, with top and bottom elements 1 and 0.

2. (L, ∗, 1) is a commutative monoid with unit element 1.

3. (∗,←) forms an adjoint pair, i.e. z ≤ (x← y) iff y ∗ z ≤ x ∀x, y, z ∈ L.

In the rest of the paper we will consider a residuated lattice enriched with a negation
operator, (L, ∗,←,¬). The negation ¬ will model the notion of default negation often
used in logic programming. As usual, a negation operator, over L, is any decreasing
mapping n : L→ L satisfying n(0) = 1 and n(1) = 0.

Definition 2 Given a residuated lattice with negation (L,≤, ∗,←,¬), a normal resid-
uated logic program P is a set of weighted rules of the form

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

where ϑ is an element of L and p, p1, . . . , pn are propositional symbols.

It is usual to denote the rules as 〈p ← B; ϑ〉. The formula B is usually called the
body of the rule, p is called its head and ϑ is called its weight.

A fact is a rule with empty body, i.e facts are rules with this form 〈p← ; ϑ〉. The
set of propositional symbols appearing in P is denoted by ΠP.

Definition 3 A fuzzy L-interpretation is a mapping I : ΠP → L; note that the domain
of the interpretation can be lifted to any rule by homomorphic extension.

We say that I satisfies a rule 〈ℓ ← B; ϑ〉 if and only if I(B) ∗ ϑ ≤ I(ℓ) or,
equivalently, ϑ ≤ I(ℓ ← B). Finally, I is a model of P if it satisfies all rules (and
facts) in P.

Note that the ordering relation in the residuated lattice (L,≤) can be extended
over the set of all L-interpretations as follows: Let I and J be two L-interpretations,
then I ≤ J if and only if I(p) ≤ J(p) for all propositional symbol p ∈ ΠP.
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2.1 Stable Models

Our aim in this section is to recall the adaptation given in [10] of the original approach
by Gelfond and Lifschitz [4] to the framework of normal residuated logic programs just
defined in the section above.

Let us consider a normal residuated logic program P together with a fuzzy L-
interpretation I. To begin with, we will construct a new normal program PI by substi-
tuting each rule in P such as

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

by the rule1

〈p← p1 ∗ · · · ∗ pm; ¬I(pm+1) ∗ · · · ∗ ¬I(pn) ∗ ϑ〉

Notice that the new program PI is positive, that is, does not contain any negation; in
fact, the construction closely resembles that of a reduct in the classical case, this is why
we introduce the following:

Definition 4 The program PI is called the reduct of P wrt the interpretation I.

As a result of the definition, note that given two fuzzy L-interpretations I and J ,
then the reducts PI and PJ have the same rules, and might only differ in the values of
the weights. By the monotonicity properties of ∗ and ¬, we have that if I ≤ J then
the weight of a rule in PI is greater or equal than its weight in PJ .

It is not difficult to prove that every model M of the program P is a model of the
reduct PM .

Recall that a fuzzy interpretation can be interpreted as a L-fuzzy subset. Now, as
usual, the notion of reduct allows for defining a stable set for a program.

Definition 5 Let P be a normal residuated logic program and let I be a fuzzy L-
interpretation; I is said to be a stable set of P iff I is a minimal model of PI .

Theorem 1 Any stable set of P is a minimal model of P.

Thanks to Theorem 1 we know that every stable set is a model, therefore we will
be able to use the term stable model to refer to a stable set. Obviously, this approach
is a conservative extension of the classical approach.

In the following example we use a simple normal logic program with just one rule
in order to clarify the definition of stable set (stable model).

Example 1 Consider the program 〈p ← ¬q ; ϑ〉. Given a fuzzy L-interpretation
I : Π → L, the reduct PI is the rule (actually, the fact) 〈p ; ϑ ∗ ¬I(q)〉 for which the
least model is M(p) = ϑ ∗ ¬I(q), and M(q) = 0. As a result, I is a stable model of P

if and only if I(p) = ϑ ∗ ¬I(0) = ϑ ∗ 1 = ϑ and I(q) = 0. �

1Note the overloaded use of the negation symbol, as a syntactic function in the formulas and as the
algebraic negation in the truth-values.
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3 The Main Result

The existence of stable models can be guaranteed by simply imposing conditions on
the underlying residuated lattice:

Theorem 2 Let L ≡ ([0, 1],≤, ∗,←,¬) be a residuated lattice with negation. If ∗ and ¬
are continuous operators, then every finite normal program P defined over L has at least
a stable model.

Proof: The idea is to apply Brouwer’s fix-point theorem. Specifically, we show that the
operator assigning each interpretation I the interpretation R(I) = lfp(TPI

) is continu-
ous. Note that this operator can be seen as a composition of two operators F1(I) = PI

and F2(P) = lfp(TP). Actually, we will show that F1 and F2 are continuous.

To begin with, note that F1 can be seen as an operator from the set of [0, 1]-
interpretations to the Euclidean space [0, 1]k where k is the number of rules in P. This
is due to the fact that F1 just changes the weights of P, and nothing else. Now, the
continuity of F1 is trivial since the weight of each rule in P is changed only by using
the continuous operator ¬.

Concerning F2, the syntactic part of P can be considered fixed and positive. This
is due to the fact that its only inputs are of the form PI , therefore, the number of
rules is fixed, negation does not occur in P, and the only elements which can change
are the weights. As a result, F2 can be seen as a function from [0, 1]k to the set of
interpretations. Note that this restriction over F2 does not disallow the composition
between F1 and F2. To prove that F2 is continuous note, firstly, that the immediate
consequence operator is continuous with respect to the weights in P, since every operator
in the definition of TP (namely sup and ∗) is continuous. Secondly, a direct consequence
of the termination result introduced in [2, see Cor. 29] ensures that if P is a finite positive
program, then lfp(TP) can be obtained by iterating finitely many times the immediate
consequence operator; in other words, lfp(TP) = T k

P
(I⊥) where k is the number of rules

in P. Therefore, as the operator F2 is a finite composition of continuous operators, F2

is also continuous.

Finally, as R(I) = lfp(TPI
) is a composition of two continuous operators, R(I)

is continuous as well. Hence we can apply Brouwer’s fix-point theorem to R(I) and
ensure that it has at least a fix-point. To conclude, we only have to note that every
fix-point of R(I) is actually a stable model of P. �

Example 2 The existence of stable model for the normal residuated logic program
below

〈p← ¬q ; 0.8〉

〈q ← ¬r ; 0.7〉

〈r ← ¬p ; 0.9〉
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is not always guaranteed. For example, if we consider the residuated lattice L =
([0, 1], ∗,←,¬) determined by x ∗ y = x · y and

¬(x) =

{
0 if x > 0.5
1 if x ≤ 0.5

then the program has not stable models. However, if we consider the residuated lattice
L = ([0, 1], ∗,←,¬) determined by x ∗ y = x · y and ¬(x) = 1−x the normal residuated
logic program has the following stable model

M = {(p, 0.4946808); (q, 0.3816489); (r, 0.4547872)}

Obviously, the sufficient condition provided in Theorem 2 is not a necessary condition.
Considering the residuated lattice L = ([0, 1], ∗,←,¬) determined by

x ∗ y =






x if y = 1
y if x = 1
0 otherwise

¬(x) =

{
0 if x > 0.5
1 if x ≤ 0.5

the program above has one stable model, M = {(p, 0); (q, 0); (r, 0)}; although the con-
nectives ∗ and ¬ are not continuous.

Remark 1 It is important to recall that most connectives in fuzzy logic are defined
on the unit interval [0, 1]. Thus the condition about continuity on a Euclidean space
as sets of truth-values is not much restrictive. Moreover, most t-norms used currently
in fuzzy logic are continuous (Gödel,  Lukasiewicz, product, . . . ), therefore the theorem
establishes that in the most used fuzzy frameworks, the existence of fuzzy stable models
is always guaranteed.

4 Related Work

As stated in the introduction, one can find several conditions in the literature which
guarantee the existence of stable models. Whereas in logic programming the syntactic
characterization of consistent normal program was done in [1], the existence of stable
models in fuzzy logic programming is an open problem; and apparently more compli-
cated.

To the best of our knowledge, there are only other two sufficient conditions in fuzzy
logic programming to guarantee the existence of stable model. The first one is given in
the fuzzy description logic paradigm, and can be found in [9]. It is done at the syntactic
dimension and extends a result already known in logic programming [6].

Definition 6 A normal residuated logic program P is called locally stratified if there
is a level function || · || such that for every rule 〈p← p1 ∗ · · · ∗ pk ∗ ¬pk+1 ∗ · · · ∗ ¬pn; ϑ〉
of P:

• ||p|| ≥ ||pi|| for all i ∈ {1, . . . , k}
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• ||p|| > ||pi|| for all i ∈ {k + 1, . . . , n}

Proposition 1 A stratified normal residuated logic program has one, and only one,
stable model.

The other result appears in [8], and is due to the use of bilattices as the set of
truth-values. Briefly, a bilattice is a tuple (L,≤t,≤k) where (L,≤t) and (L,≤k) form
two complete lattices. Such a structure is used in [7] in order to define the well-founded
semantics in fuzzy logic programming through the least stable model under the ordering
≤k; i.e by generalizing a result provided in [3] for the classical case which relates the
well-founded semantics and stable model semantics.

Proposition 2 Let P be a normal logic program defined over the residuated lattice
(L,≤, ∗,←,¬). If there is an ordering ≤k such that:

• (L,≤,≤k) is a bilattice

• ∗ and ¬ are monotonic w.r.t. ≤k

then, there exists at least one stable model of P.

The key-point of proposition 2 is to find an ordering over L such that ∗ and ¬ are
monotonic with respect it, thus we can to asure the existence of stable model.

5 Future Work

The result of Theorem 2 has interesting potential applications. To begin with, we
can avoid the inconsistency in fuzzy logic programs by using continuous connectives.
Moreover, the result is useful to resolve inconsistencies of normal programs defined on
a linear lattice by extending them over [0, 1] with continuous connectives. For example,
consider the following normal program in classical logic programming:

r1 : p← ¬q, s r2 : r ← ¬t,¬p

r3 : q ← ¬r r5 : s←

r5 : u← ¬t, s r6 : v ← ¬v,¬r

where “,” denotes the classical conjunction. Clearly the program is inconsistent but we
can assign a fuzzy stable model semantics by embedding the program into a residuated
lattice ([0, 1], ∗,←,¬). For example, consider the connectives x ∗ y = x · y and ¬(x) =
1 − x, then the program above (substituting “,” by “∗” and including the weight 1 in
each rule) has the following stable model:

M = {(p, 0.5); (q, 0.5); (r, 0.5); (s, 1); (t, 0); (u, 1); (v, 1/3)}

Notice that if we collapse each x ∈ (0, 1) to one undefined value (that is, M assigns
to p, q, r and v the same truth-value “undefined”) the semantics is equivalent to the
well-founded semantics. Notice, however, that the residuated semantics is slightly more
expressive, due to its ability to assign any value in the unit interval.
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Abstract

We propose a finite element method for the numerical solution of the stochastic
Stokes equations driven by a multiplicative white noise. We give existence and
uniqueness results for the continuous problem and its approximation. Optimal er-
ror estimates are derived and algorithmic aspects of the method are discussed. Our
method will reduce the problem of solving stochastic Stokes equations to solving
a set of deterministic ones. Moreover, one can reconstruct particular realizations
of the solution directly from Wiener chaos expansions once the coefficients are
available.

1 Introduction

In the recent years, there has been an increased interest in applications of stochastic
partial differential equations. Stochastic partial differential equation (SPDEs) can es-
sentially be viewed as PDEs perturbed by some stochastic noise. For a given physical
system, many different stochastic perturbations may be considered, which may include
inexact knowledge of systems forcing, initial and boundary conditions, parametric un-
certainties in the physical model and in physical properties of the medium. Moreover,
internal randomness often reflects itself in additive noise terms, while external fluctu-
ations give rise to multiplicative noise terms.

The mathematical treatment of SPDEs is more involved than deterministic PDEs.
An early systematic introduction to SPDEs was given by Walsh. He considered a linear
SPDE with additive white noise. He showed that for spatial-dimension greater than
one, it is in general not possible to represent the solution as an ordinary stochastic field,
but only as a distribution. Similar behavior can be observed in many other examples.
This fact has motivated the introduction of weaker solution concepts. In the literature,
various stochastic Galerkin methods have been applied to various linear and nonlinear
problems.
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Of particular interest to us is the approach of Walsh which treats the solution
u(x, ω) of an SPDE as a distribution, i.e., the map x −→ u(x, ω) is a distribution for
a.a. ω. Walsh considered the solution as a stochastic variable with values in a Sobolev-
type distribution space. This approach is well suited for problems where the noise is
additive; it has been explored extensively in the literature.

Walsh’s approach does not handle problems where the noise appears multiplicative.
Although the construction of Walsh supplies a useful tool for the study of linear SPDEs,
its applicability to nonlinear equations is limited. This is due to the difficulty of defining
nonlinear operations on distributions. To analyze SPDEs with a multiplicative noise or
nonlinear SPDEs we consider SPDEs involving Wick products. This approach comes
from white noise analysis where generalized solutions say u(x, ω) are treated in the sense
that ω −→ u(x, ω) is a stochastic distribution for a.a. x. An advantage of this approach
is that one can establish a theory of nonlinear operations on distributions in order to
handle a wide class of nonlinear SPDEs by using the Wick product ⋄. This product
can be viewed as a regularization of the ordinary point-wise product, and it furnishes
an interpretation of nonlinearities and multiplicative noises. In this framework, and by
interpreting all products as Wick products, we obtain a well-defined solution concept
for a range of different problems, both linear and nonlinear. Furthermore, it provides
a nice structure making the equations tractable by Wick-calculus techniques.

In this paper we consider the case of the Stochastic Stokes equations driven by a
multiplicative white noise. In particular we shall study the boundary value problem

−∇ · (κ(x, ω) ⋄ ∇u) +∇p+ λu ⋄W (x, ω) = f(x, ω), in D × Ω, (1)

∇.u(x, ω) = 0, in D × Ω, (2)

u = 0, on D × Ω, (3)

where D is a bounded open subset of Rd with Lipschitz continuous boundary ∂D
and Ω = S ′(R) is the white noise probability space. The variables u, p, f denote
respectively the velocity, the pressure and the external forces, W (x, ω) is a space white
noise , where κ is the stochastic viscosity.

For technical reasons, since the noise appears multiplicatively, it is necessary to
regularize the product between the viscosity κ and the gradient deformation ∇u. This
regularization is achieved by replacing the ordinary product with the Wick product,
and leads to (1).

We shall reformulate this stochastic variational problem as an infinite set of deter-
ministic variational problems, using the properties of the Wick product. Each of these
variational problems will give one of the coefficients in the Wiener-Itô chaos expansion
of the solution of (1). The method we shall use is based on the ideas of Fourier analysis
on Wiener space. In fact, Wiener Chaos expansion represents a stochastic function
u(x, ω) as a Fourier series with respect to an orthonormal basis Hα, i.e.,

u(x, ω) =
∑
α∈I

uα(x)Hα(ω)
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where I denotes the set of multi-indices α = (α1, α2, · · ·) where all αi ∈ N and only
finitely many αi ̸= 0, uα’s are deterministic coefficients and Hα’s are the stochastic
variables

Hα(ω) = Π∞
j=1hαj (< ω, ηj >) , ω ∈ S ′(R)

where hn denotes the Hermite polynomial and the family {η}∞j=1 forms an orthonormal

basis for L2(Rd). This decomposition separates the deterministic effects (described by
the coefficients uα) from the randomness ( that is covered by the base Hα). The orthog-
onality of Hα and the properties of the Wick product enable us to reduce SPDEs like
(1) to a system of coupled deterministic equations for the chaos coefficients uα(x). The
propagator is a deterministic mechanism responsible for the evolution of randomness
inherent to the original SPDE. Once the propagator is obtained, standard determinis-
tic numerical methods can be applied to solve it sufficiently. The main statistics, such
as mean, covariance and higher order statistical moments can be calculated by simple
formulas involving only these deterministic coefficients. Moreover, in the procedure
described above, there is no randomness directly involved in the simulations. One does
not have to deal with the selection of random number generators, and there is no need
to solve the SPDE equations realization by realization. Instead, coupled coefficient
equations are solved once and for all. Moreover, one can reconstruct particular real-
izations of the solution directly from Wiener chaos expansions once the coefficients are
available.

The idea to transform a SPDE into a hierarchy of deterministic PDEs for the
Wiener-Itô chaos decomposition seems promising. It is thus important to devote some
effort to propose concrete schemes based on that idea and to analyze them.

An outline of the paper will be as follows. In Section 1 we review notation and
introduce some functional spaces. In Section 2 we first formulate the problem in a weak
sense over stochastic Hilbert spaces, and prove existence of a unique solution to this
formulation under suitable assumptions on the data. In Section 3, using a mixed finite
element approach, we construct approximations of the solution and discuss convergence
properties for these approximations. We establish estimates for the rate of convergence
in both the spatial and stochastic dimension. Finally in Section 4 we discuss algorithmic
aspects of this numerical method. In particular, we show how approximations of the
solution can be constructed through the solution of a sequence of deterministic mixed
variational problems, each giving an approximation to a chaos coefficient of the solution.
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Abstract

Predictions based on analytical performance models can be used on efficient
scheduling policies in order to select the adequate resources for an optimal execu-
tion in terms of throughput and response time. However, it is a hard issue develop-
ing accurate analytical models of parallel applications. In this paper, an accurate
performance model of the HPL benchmark is obtained in a easy way by means of
AIC-based model selection methods provided by the TIA framework. The perfor-
mance of backfilling policy algorithms on schedulers using this AIC-based model is
analyzed in the GridSim simulator and compared with the results obtained using
the theoretical analytical model provided by the authors of the benchmark.

Key words: Performance analytical models, model selection, scheduling

1 Introduction

Despite hardware developers efforts, the efficient exploitation of parallel systems im-
plies the understanding of the behavior of parallel applications. Therefore, performance
modeling of parallel applications becomes a crucial issue in High Performance Comput-
ing, and different modeling approaches have been proposed in the literature. Although
they are less accurate than other modeling methods, analytical models have the ad-
vantage of being able to evaluate the model in less time. This feature is essential in
certain time-limited problems such as scheduling or dynamic load balancing. In most
cases, the development of analytical models requires a hard effort as well as a deep
knowledge of the parallel algorithm. Anyway, an exact analytical model is so complex
that affordable analytical models has to trade-off accuracy for simplicity.

The TIA modeling framework [4] provides an environment to obtain an accurate
analytical model of parallel applications in an easy way by means of model selection
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methods. This environment is particularly useful when a deep knowledge about the
parallel application is not available. In addition, it is also useful for expert analysts
because the model produced by the framework actually reflects the experimental be-
havior of the application and, therefore, it allows a deep analysis of the theoretical
analytical models. This paper shows how these accurate analytical models can improve
the behavior of scheduling strategies using accurate runtime predictions.

2 The Modeling Framework

The TIA (Tools for Instrumentation and Analysis) modeling framework [4] provides the
user with a simple but powerful environment to analyze the performance of parallel ap-
plications. It consists of two main connected stages. The first stage (instrumentation)
implements the user-driven instrumentation of the source code, being the information
about the performance in each execution of the application stored in XML files. In
the second stage (analysis), an analytical model is calculated by analyzing the perfor-
mance data obtained from multiple executions of the instrumented code. This stage is
based on R, a language and environment for statistical analysis that provides specific
functions to deal with model selection and AIC.

Model selection seeks for models that are good approximations to the truth and
from which valid inferences about the system or process under study can be made. This
search is based on analyzing data to aid in the selection of a parsimonious model. Par-
simony is usually visualized as a suitable trade-off between squared bias and variance
of parameter estimators. In [2], Burnham and Anderson propose a general strategy for
modeling and data analysis using information theory and, in particular, the Akaike’s
information criterion (An Information Criterion, AIC). AIC provides a simple, effec-
tive, and objective means for the selection of an estimated best approximating model
for data analysis and inference. A model selection method based on the AIC has been
implemented in the analysis stage of the TIA framework [4]. This method performs
an AIC selection using a finite set of candidate models which are generated from infor-
mation provided by the user. The procedure automatically proposes the model with
the lowest AIC score, but also provides some statistical information to help the user to
decide the suitability of the model.

3 Scheduling of Parallel Applications

Production clusters usually use batch queuing systems to maximize their resources, so
having accurate information about the runtime of the applications can improve the
performance of scheduling strategies. In particular, backfilling algorithms are common
on sites with parallel jobs because those algorithms improve starvation cases without
significant changes in the priorities of the jobs [5]. In the backfilling policy, the arrival
order is used to schedule the jobs. Nevertheless, if some local nodes are empty because
the next work in the queue is not suitable, the queue is examined to find another job
to be executed. The selection of this job should not delay the execution of the rest of
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the queued jobs. EASYBackfilling is an aggressive backfilling in which only the first
element of the queue is considered. This means that a job is promoted if it does not
delay the execution start of the next one in the queue without taking into account the
rest of entries in the queue. Anyway, precise runtime estimations must be provided to
these policies for an efficient exploitation of the cluster resources.

In this work the behavior of backfilling schedulers were simulated using GridSim [1],
a Java-based discrete event Grid simulation toolkit. This toolkit supports modeling and
simulation of heterogeneous Grid resources (both time- and space-shared), users and
application models. It provides primitives to create of application tasks, mapping of
tasks to resources, and their management.

4 Case of Study

High Performance Linpack (HPL) [3] uses a LU factorization with row partial pivoting
to solve a dense linear system while mapping a two-dimensional block-cyclic data distri-
bution for load balance and scalability. Using the TIA framework, an analytical model
of the performance of HPL is calculated from multiple executions of HPL in an cluster
of seven Intel Xeon Quadcore biprocessors. In particular, this model characterizes the
behavior of HPL, with the modified increasing two-ring broadcast option, for different
matrix sizes, block sizes and process grid configurations. The fit of this model to the
experimental data have been compared with the fit of the theoretical model provided
by the developers of the HPL benchmark [3], and we have found that the standard de-
viation of the AIC model fit is roughly half of the standard deviation of the theoretical
model fit.

The simulation results show that the models automatically obtained by our ap-
proach provide an accurate input for the schedulers. In fact, these models improve
the behavior of the schedulers when they are compared with the theoretical models.
Figure 1 shows an example of these results, using a queue of 1000 HPL executions with
different parameter configurations, and for predictions based on the estimated time of
both the AIC model (TAIC) and the theoretical model (TTheo). These predictions are
overestimated with a multiple of the standard deviation (σ) of each model. For each
case, the simulated CPU time needed to finish all the jobs (Tfinished), the CPU time
consumed by jobs that were canceled by the scheduler (Tcanceled), and the idle time
throughout the simulation (Tidle) are shown. The AIC-based predictions are more ef-
ficient than the theoretical-based ones because of their more precise estimations that
reduce the number of canceled jobs. Note that, even without detailed information about
the codes, our automatic models outperform the models provided by the developers of
the benchmark, and, as a consecuence, they can be efficiently used by the schedulers.
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Figure 1: Simulation results of 1000 HPL executions
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Abstract

In this paper we describe a parallel algorithm for LDPC (Low Density Parity
Check codes) decoding on a GPU (Graphics Processing Unit) using CUDA (Com-
pute Unified Device Architecture). The strategy of the kernel grid and block design
is shown and the multiword decoding solution is described using tridimiensional
blocks.

Key words: LDPC, GPU, CUDA, Sum-Product Algorithm, Parallel Algorithm

1 Introduction

Low-Density Parity-Check codes (LDPC codes) are linear block channel codes for error
control coding with a sparse parity-check matrix (a matrix that contains few 1’s in
comparison to the amount of 0’s). They have recently been adopted by several data
communication standards such as DVB-S2 [1], 10GBase-T [2], WiMax (or IEEE802.16e
[3]), etc.

The concept of LDPC coding was firsrt developed by Robert G. Gallager in his
doctoral dissertation at MIT in the begining of sixties [4] but forgotten due to its
impractical implementation at that moment and the introduction of the Reed-Solomon
codes. They were rediscovered by MacKay and Neal in 1996 [5]. These codes provide a
performance very close to the Shannon capacity limit of the channel [11], low error floor,
and linear time complexity for decoding (lower than turbocodes [12]). LDPC codes are
inherently suited for parallel hardware and software implementations, but with some
implementation difficulties when an optimum algorithmic behavior is desired on a GPU,
as we can read in [6, 7, 8, 9] using CUDA and other GPU programming tools.
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Figure 1: Tanner graph of the linear block code parity-check matrix in (1).

2 A LDPC decoding algorithm

LDPC codes can be represented graphically by a Tanner graph [10] (a bipartite graph
with variable or bit nodes, bi, and check nodes, cj) . An example is shown in Figure 1,
that corresponds with the next parity-check matrix H ∈ B

m×n, where B denotes the
field of the binary digits:

H =







0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0





 (1)

The length of a codeword and the number of the parity bits match the number of
columns and rows of the parity-check matrix respectively.

Let Φj denote the set of indices of the bit nodes connected to the check node cj ,
and Φ∼i

j , the same set of indices excluding i. Let Ωi denote the set of indices of the

check nodes connected to the bit node bi, and Ω∼j
i , the same set, excluding j.

LDPC decoders are based on variations of belief propagation, sum-product or mes-
sage passing algorithms. In any of these algorithmic denominations, information flows
to/from bit nodes and from/to check nodes until the algorithm converges to a stable
state, finding the most likelihood transmitted codeword. There are many variations
but we will focus our attention in a simple sum-product algorithmic version:

• Let x ∈ B
n denote the transmitted n-dimensional codeword and y ∈ B

n the
received n-dimensional word.

• Let us suppose that the channel can be modeled as a BSC (Binary Symmetric
Channel) with a bit error probability p and that the input bits are equiprobable
(for other channels the formulation is analogous). The likelihoods are:

P(yi = y|xi = x) =

{
1 − p x, y ∈ B, x = y

p x, y ∈ B, x 6= y
,∀i = 0, . . . , n − 1
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Figure 2: Computation in the check nodes

and

P(xi = 0) = P(xi = 1) = 1/2, ∀i = 0, . . . , n − 1

• Let Pi be the likelihood that the ith bit of the transmitted codeword is 1:

Pi = P(yi = y|xi = 1), ∀i = 0, . . . , n − 1.

Hence, if the received bit is 1 (yi = 1) then Pi = 1 − p; otherwise Pi = p.

• Let qij ≡ (qij(0), qij(1)) be the message sent by the bit node bi to the check node
cj , denoting the belief that the bit node has about the transmitted bit (the belief
of being 0 and 1, respectively).

• Let rji ≡ (rji(0), rji(1)) be the message sent by the check node cj to the bit node
bi, denoting the belief that the check node has about the transmitted bit.

The steps of the algorithm are:

1. Each check node cj ,∀j = 0, . . . m − 1, computes rji,∀i ∈ Φj as:

rji(0) =
1

2
+

1

2

∏

i′∈Φ∼i

j

(
1 − 2qi′j(1)

)
(2)

rji(1) = 1 − rji(0) (3)

and sends it to each bit node bi connected to the check node cj (see Figure 2).

For the first iteration, qij(0) = 1 − Pi, and qij(1) = Pi.

2. Each bit node bi,∀i = 0, . . . n − 1, computes qij,∀j ∈ Ωi as:

qij(0) = Kij(1 − Pi)
∏

j′∈Ω∼j

i

rj′i(0) (4)

qij(1) = KijPi

∏

j′∈Ω∼j

i

rj′i(1) (5)
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Figure 3: Computation in the bit nodes

and sends it to each check node cj connected to the bit node bi (see Figure 3).
Kij is chosen to ensure that qij(0) + qij(1) = 1. Now, bit nodes update their
estimation of the transmitted codeword bits x̂i computing:

Qi(0) = Ki(1 − Pi)
∏

j∈Ωi

rji(0) (6)

Qi(1) = KiPi

∏

j∈Ωi

rji(1) (7)

similarly Ki is chosen to ensure that Qi(0) + Qi(1) = 1. If Qi(0) > Qi(1) the
estimated transmitted bit x̂i is 0, otherwise it is 1.

Clearly, (6) and (7) can be computed easily from (4) and (5), and it is not
necessary to store (4) and (3) for the next iteration.

If the current estimated transmitted word is a codeword (this can be verified check-
ing that Hx̂ = 0) or the maximum number of iterations is reached, the algorithm ends,
otherwise another iteration starts going to step 1.

It can be observed that the computations within the check nodes and the bit
nodes are alternated and interdependent in time, so they must be executed one after
another because of their inherent dependence. The computations in each check node are
mutually independent, so they are perfectly parallelizable; the same happens with the
variable nodes computations. Within a check node, a different result must be computed
and sent to each bit node that is connected to it. Something similar is observed in the
bit node computations. Figure 4 shows the dependency graph of the parallel algorithm.

3 CUDA algorithm

The parity check matrix is sparse in LDPC codes. The LDPC code is regular if the
number of ones in every column wc and the number of ones in every row wr are constant
and wc/m = wr/n; otherwise the code is irregular. Anyway, wc and wr are usually
small integers with wc ≪ m and wr ≪ n. In general, irregular LDPC codes have better
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Figure 4: Computation and message passing in the parallel algorithm.

performance than regular ones. With the proposed data structure, the code can be
regular or irregular, but if it is irregular the storage performance is worse.

The matrix H will be implicitly represented in the GPU memory with the matrices
Hindr0

∈ Z
m×wr and Hindq1

∈ Z
wc×n that store the indices where we must store the

results of the computations. Additionally, matrices Hq1
∈ R

m×wr and Hr0
∈ R

wc×n

store the q1 and r0 computed values respectively. In the case of irregular codes, wr and
wc denote the maximum number of ones in any row and any column respectively of H.

3.1 CUDA kernels, grids, blocks and threads

Due to the different computing pattern of the steps 1 and 2 of the LDPC decoding
algorithm, it is convenient to separate the iteration into two different kernels, A and
B, with different thread distributions. Every rji(0) or qij(1) value will be computed by
one thread.

In the A kernel, the grid is an unidimensional grid with only one column of blocks.
The dimension (rows × columns) of every block is (MAX_THREADS/wr × wr), and there
will be m/(MAX_THREADS/wr) blocks. The gray subarea of the grid denotes the active
threads in the block and matches the nonzero element pattern of Hq1

. If the code would
be regular the whole grid would be gray. Here, MAX_THREADS is the maximum number
of threads that can be executed per block with enough resources. Figure 5 shows these
blocks.

In the B kernel, the grid has only one row of blocks. The dimension of every
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Figure 5: Blocks in the grid of kernel A.

Figure 6: Blocks in the grid of kernel B.

block is (wc×MAX_THREADS/wc). Figure 6 shows this grid. The gray subarea of the grid
denotes the active threads in the block and matches the nonzero element pattern of
Hr0

. If the code would be regular the whole grid would be gray.

Any block of the A kernel needs to read certain submatrix of Hq1
with the same

dimension as the block. Every row of this submatrix is read wr times by the algorithm,
so it is convenient to read only once and store it in the shared memory in order to
minimize the memory latency time [13]. The required size to store this submatrix
is MAX_THREADS elements (simple precision floating point numbers in our case). The
access to Hq1

in global memory can be coalesced [13]. The pattern of the resulting rji(0)
values to write in global memory (in Hr0

) is not regular so it cannot be coalesced.

Similarly, any block of the B kernel need to read certain submatrix of Hr0
with

the same dimension as the block. Every column of this submatrix is read wc times, so
again it is convenient to read once and store it in the shared memory (MAX_THREADS
elements). Again, the access to Hr0

can be coalesced. The pattern of the resulting
qij(1) values to write in Hq1

is not regular so it cannot be coalesced, as in kernel A.

With this framework it is relatively easy to solve a multiword decoding scheme,
i.e., to decode several received words simultaneously. We need just to make up tridi-
mensional blocks instead of bidimiensional blocks. The third dimension is the num-
ber of received words, nw that are being decoded. Now, the dimension of the blocks
for the A kernel would be (MAX_THREADS/wr/nw × wr × nw) and for the B kernel,
(wc×MAX_THREADS/wc/nw × nw). This can be observed in Figures 7 and 8.

@CMMSE                                                               Page   617  of 1328                                               ISBN 13: 978-84-613-5510-5



Mart́ınez-Zald́ıvar, Vidal, González and Almenar

Figure 7: Tridimensional blocks in the grid of kernel A with multiword decoding.

Figure 8: Tridimensional blocks in the grid of kernel B with multiword decoding.

4 Experimental results and conclusions

We have tested the proposed parallel algorithm in the next computing platform:

• CPU: two quad-core Intel Xeon E5530 @ 2.4 GHz and 48 GB of RAM

• GPU: NVidia Tesla C1060 with 4 GB of DDR3 RAM and 240 streaming processor
cores @ 1.3 GHz with PCIe 2.0 x16 interface.

The CPU/GPU software was compiled with CUDA 3.0 nvcc with -O3 compiler
switch.

Table 1 summarizes the speedup of the parallel algorithm for several LDPC code
dimensions m and n, using a column weight of wc = 3 and decoding nw = 1 received
words simultaneously.

We can observe how the speedup increases with the dimensions of the LDPC code
because the workload becomes more and more intensive. This is advantageous for both
systems but the performance is higher for the GPU. It is expected that the effciency
increases with an increase of the column weight and the number of simultaneously
decoded words upto a limit related to the maximum amount of resources that can be
available for a block.
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m 500 1000 2000 4000

n 1000 2000 4000 8000

wc 3 3 3 3

nw 1 1 1 1

Speedup 0.56 1.1 1.96 2.2

Table 1: Speedup of the GPU execution respect to the CPU execution
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Abstract

Attribute-based cryptography adresses scenarios where the intended partner(s)
of a communication are identified through the possession of certain attributes. We
discuss two recent constructions for realizing group key establishment in such a
setting and describe the underlying cryptographic primitives at a non-technical
level. So far only a small number of constructions for attribute-based group key
establishment have been identified, and we hope that this short introduction helps
to stimulate further work in this young area of research in key establishment.

Key words: attribute-based cryptography, group key establishment
MSC 2000: 94A60

1 Introduction

In the standard public key scenario, public keys are used to verify signatures from or to
encrypt messages for a particular user. Avoiding the need of a public key infrastructure
with a certification authority is one motivation for identity-based cryptography. In the
latter setting, certified public keys can be replaced with unique (public) identities,
e. g., an e-mail address or a screen name: an arbitrary bitstring can be used as public
identifier for a user. To send a message to a particular user or verify his signature, only
his identity and the public system parameters are needed, no directory with certified
public keys is necessary.

The idea of identity-based cryptogaphy has been introduced by Shamir more than
25 years ago [10] already. The first identity-based encryption scheme considered as
efficient was not proposed until much later, however: in 2001 Boneh and Franklin
[3, 4] proposed a pairing-based construction in the random oracle model whose security
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is relying on a Bilinear Diffie-Hellman assumption. Since then various constructions
have been identified and identity-based cryptography seems a rather convenient tool
for communicating with a specific user or a set of users with known identities. For some
situations, this way of specifying communication partners does not seem ideal though.
Specifically, if the intended communication partner is not given as a particular identity,
but rather by the requirement that the recipient is equipped with certain attributes—
not being important who he is in particular. This is the case, for example if an enterprise
wants to send a message to its employees or to the members of a particular department.

To deal with this kind of situations, Sahai and Waters [8] introduced in 2005
fuzzy-identity based encryption, a new type of identity-based encryption, where sets
of descriptive attributes are used to specify a, not necessarily unique, communication
partner. For example, sticking to the examples mentioned, the attributes of a user
could consist of a description of his enterprise, department, position, etc. A message
encrypted with a set of attributes W could only be decrypted by users possessing the
private key for an attribute set W ′, such that W and W ′ have at least d elements in
common, i. e., such that the threshold condition |W ∩ W ′| ≥ d is fulfilled. This allows
some error tolerance, rendering the construction an interesting tool for applications
involving biometric data as well. Since 2005, the idea of attribute-based cryptography
has been extended in several directions, including efficiency improvements of the scheme
by Sahai and Waters, the use of access structures that are more flexible than threshold
based ones, or the use of attributes in schemes other than encryption.

In this note we will focus on attribute-based group key establishment, where some
of these generalizations have been brought to use. Specifically, we take a look at the
use of a policy attribute-based key encapsulation mechanism in a proposal of Gorantla
et al. [7] and at the use of attribute-based signcryption in a proposal from [11]. One
possible example where attribute-based group key establishment seems a natural tool
is an Internet discussion forum, where users could only write or read messages if they
possess the credentials necessary to derive the common symmetric key (for authenti-
cation and/or encryption). Going beyond attribute-based scenarios, one can consider
predicate-based cryptographic primitives—[2] discusses such a setting for the two-party
case, using a security model similar to what we discuss below. As an example of work in
this context that uses an alternate approach to model security, Camenisch et al.’s work
on credential-authenticated key exchange [5] can be mentioned; here Canetti’s Universal
Composability (UC) framework [6] is used. For the purpose of this introductory expo-
sition, we restrict to attribute-based group key establishment, using an “oracle-based
security model”.

2 Cryptographic primitives used in attribute-based group
key establishment

Similarly as in ordinary public key cryptography or in an identity-based setting, one
can define attribute-based variants of asymmetric encryption, digital signatures and
signcryption. These form the basis for the approach to attribute-based group key
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establishment taken in [11]:

Encryption. A basic security requirement for an attribute-based encryption scheme
is one-wayness under chosen plaintext attacks (OW-CPA) in the selective access struc-
ture model. Here a (probabilistic polynomial time) adversary A commits to a universe
of attributes she wants to work with and selects an access structure A she wants to be
challenged on. The adversary A is allowed to obtain secret decryption keys for arbitrary
attribute sets that are not part of A. The goal of A is to find the plaintext underlying
an encryption of a random value under A (see [11] for more details) with non-negligible
probability. If no successful adversary A exists, the corresponding encryption scheme
is referred to as OW-CPA secure. For a threshold setting, a specific example of an
encryption scheme meeting this security requirement is a pairing-based construction of
Sahai and Waters in the above-mentioned paper from EUROCRYPT 2005 [8].

Digital signatures. Existential unforgeability for an attribute-based signature scheme
can be defined analogously as for ordinary signature schemes. More specifically, to de-
fine existential unforgeability under chosen message and attribute attacks (UF-CMAA),
a (probabilistic polynomial time) adversary A can extract private signing keys for ar-
bitrary attribute sets and also obtain signatures for messages/attribute set pairs of her
choice. The goal of A is to output a message µ, an access structure A and a signature
σ, such that σ is a valid signature for µ under A. Moreover, the signature must not
have been obtained “trivially”, i. e., after a signature query for µ under an attribute
set in A or after a query for a private signing key for an attribute set in A. To prove
an attribute-signature scheme UF-CMAA secure, it has to be shown that the success
probability for any adversary A as just discussed is negligible. For a threshold setting,
a construction by Shahandashti and Safavi-Naini from AFRICACRYPT 2009 offers a
specific example of a scheme that is secure in the aforementioned sense [9].

Signcryption. As detailed in [11], a OW-CPA secure attribute-based encryption
scheme E and a UF-CMAA secure attribute-based signature scheme S can be com-
bined, following the encrypt-then-sign paradigm, yielding an attribute-based analog
EtS of an ordinary signcryption scheme. The unforgeability requirement UFS-CMAA
for an attribute-based signcryption scheme formalizes the idea that any probabilistic
polynomial time adversary has only a negligible success probability in creating a valid
signcryption, unless a query to a signcryption oracle or for a private key has been is-
sued that makes the forgery trivial. Similarly, OWS-CPA security in the selective access
structure model ensures that unsigncrypting the signcryption of a random plaintext
succeeds with negligible probability only, unless a secret key query has been issued that
makes the challenge trivial. As in the definition of OW-CPA discussed above, in the
selective access structure model, the adversary has to commit in advance to the access
structure on which she will be challenged.
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Key encapsulation. In [7] the notion of an encapsulation policy attribute-based key
encapsulation mechanism is introduced. In analogy to an ordinary key encapsulation
mechanism, it allows the creation of an encapsulation of a symmetric key such that
only users who are part of a specified access structure can recover the encapsulated
key. Gorantla et al. consider monotone access structures and include a possibility for
users to delegate the decapsulation capability. This idea is captured by an algorithm
that on input the public parameters and a secret user key allows the derivation of a
secret key for a subset of the credentials a user possesses. The definition of security in
the sense of indistinguishability under chosen ciphertext attacks (IND-CCA) builds on
earlier work by Bethencourt et al. [1]. The idea is to give a (probabilistic polynomial
time) adversary A access to a secret key extraction oracle and a decapsulation oracle.
With access to these oracles A selects an access structure and then has (with suitable
restrictions on her oracle access) to decide if a challenge pair (K, C) consists of a
symmetric key K along with an encapsulation C of K, or rather of a random key K
and an encapsulation C of a key that has been computed independently of K.

In the next section we take a look at how the above primitives have been brought
to use to construct attribute-based group key establishment protocols.

3 Attribute-based group key establishment

To formalize the security of a key establishment protocol, a number of approaches have
been considered. Both Gorantla et al. in [7] and the authors of [11] decided for a model
where adversarial capabilities are captured through certain oracles. This is different
from the UC framework which has been used by Camenisch et al. [5], for instance.

3.1 Modelling security

Essentially, an adversary A (which is modeled as a probabilistic polynomial time algo-
rithm) has access to Send, RevealKey and Corrupt oracles:

• Send materializes A’s capability to initiate, insert, delete or modify protocol
messages; the intuition is that the communication network is controlled by the
adversary, and hence messages may be deleted, altered, or made up by A.

• Corrupt captures A’s capacity to control some users and the compromise of long-
term secret keys of users.

• RevealKey (or Reveal) models a situation in which an (old) session key has
been compromised. The adversary can query this oracle to learn successfully
established session keys without corrupting a user.

One could think of adding a separate Execute oracle to model a passive eavesdropping,
but A can simulate the latter by simply forwarding messages faithfully, using her Send
oracle: neither [7] nor [11] use low-entropy secrets for authentication, and there seems
no need for distinguishing “offline” and “online” attacks of A. An option that could be
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considered is to use a stronger form of Corrupt, revealing not only long-term secrets,
but also state information of a user.

To express the basic security goal of a group key establishment—secrecy of the
session key—another oracle is introduced, which does not really reflect an adversarial
capability but is more a technical tool:

• Test: When being queried with a protocol instance that has accepted a session
key, Test chooses uniformly at random a value b ∈ {0, 1}. If b = 0 the session key
accepted by the respective instance is returned. If b = 1, a uniformly at random
chosen element from the space of possible session keys is returned.

By means of Test, security of a group key establishment can be characterized as follows:
the protocol is secure (in the sense of key secrecy) if no probabilistic polynomial time
adversary with access to the above tools can distinguish if the output of the Test oracle
is the established key or a random one with more than negligible probability. Obviously,
some restrictions have to be imposed to exclude trivial attacks like revealing a session
key from a protocol instance and then querying Test with the very same instance.
Technically this is captured by introducing a notion of freshness for protocol instances
and only fresh instances may be used in a Test query. While being technical, the
definition of freshness is crucial, as it influences which attacks are considered successful.
For instance, the attribute-based key establishment protocols put forward in [7] and
[11] handle Corrupt queries differently, and this has consequences for another desirable
security goal: forward security

Forward security of a key establishment protocol ensures that (old) session keys
remain secure, even if later long-term secrets of users are compromised. In [11] a
freshness definition is used which takes forward security into account—an adversary
is allowed to corrupt users after querying Test, as long as her use of Send satisfies
appropriate restrictions. Consequently, the security proof for the proposed two-round
solution implies forward security. The authors of [7] treat forward security as a separate
issue, starting out with a one-round solution with a freshness definition not implying
forward security. In a second step, they explore possibilities to augment the one-
round solution in such a way that forward security is achieved—possibly at the cost of
increasing the round complexity.

In addition to key secrecy and forward security, further protocol properties can be
explored, which in some applications might be of interest. For instance, [11] addresses
topics like attribute privacy and deniability.

3.2 Two proposed protocols for attribute-based group key establish-
ment

The protocol proposed in [7] is based on an attribute-based key encapsulation mechanism
as outlined in Section 2. Before starting the actual protocol, each user is issued a
private key for his attributes and they are given (or agree on) an access structure
which their attributes have to be part of. The protocol has only one round, where
each party Ui broadcasts an encapsulation Ci on input a session key contribution ki
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and the access structure agreed upon. Once a user Ui has received all encapsulations,
Ui can decapsulate them by means of his private key (if the attributes are part of the
respective access structure). Therewith U can derive the common session key

sk = fk1(sid)⊕ fk2(sid)⊕ · · · ⊕ fkn(sid),

where f is a pseudorandom function and the session identifier sid = (C1‖ · · · ‖Cn) is
the concatenation of all encapsulations. Gorantla et al. show that if the underlying
attribute-based key encapsulation mechanism is secure in the sense of indistinguisha-
bility under chosen ciphertext attacks (IND-CCA), the resulting attribute-based group
key establishment offers key secrecy. To achieve forward secrecy, [7] discusses different
options: when restricting to groups with n ≤ 3 users, dedicated constructions are sug-
gested (e. g., using pairings) which avoid the addition of an additional round, whereas
for more general values of n no one-round construction with forward security is offered.

The approach to attribute-based group key establishment taken in [11] is different
from the one just described, resulting in a two-round solution with forward security,
independent of the number of participants. The main technical tool is attribute-based
signcryption as outlined in Section 2. Before starting the protocol, each user obtains
the private key corresponding to his attributes (users with the same attributes are
considered the same user). Every user chooses a random string kU and an element
xU ∈ {1, . . . , ord(g)}, and computes yU = gxU , where g is the generator of a suitable
cyclic group. There is a special user Uinit, called initiator, who in addition selects a
random value r and signcrypts his kUinit with the private key of his attributes and
with access structure his pidUinit

(which describes the set of acceptable communication
partners). In the first protocol round, all users broadcast their kU - and yU -values,
except the initiator, who broadcasts a signcryption c of kUinit , the yUinit , H(r) and his
pidUinit

. After having received these messages, every user U—except the initiator—
unsigncrypts c with the private key for his attributes and his pidU as the verification
access structure, therewith recovering the initiator’s key contribution kUinit . Ordering
the users U lexicographically according to their kU -value, user no. i computes the
values tLi := H(yxi

i−1‖k0), tRi := H(yxi
i+1‖k0) and Xi := tLi ⊕ tRi (here U0 is assumed to

be the initiator). The initiator U0 computes additionally e := k0 ⊕ r ⊕ tR0 .
In Round 2 the values (Xi, i) are broadcast, and the initiator also broadcasts e.

Once a user has received these messages, he checks if the sum of the Xi values is 0
and computes r by first computing tR0 = tLi ⊕ X0 ⊕

⊕n−1
j=i Xj . Then U checks if the

commitment H(r) is correct. If any check fails, U aborts the protocol. Otherwise the
session key is

sk = H(r‖k0‖k1‖ · · · ‖kn−1‖pidU0
‖0)

and the session identifier is sid = H(r‖k0‖k1‖ · · · ‖kn−1‖pidU0
‖1).

If the group generated by g chosen is such that the computational Diffie- Hellman
assumption holds, H(·) is a random oracle and the attribute-based signcryption scheme
used is secure in the sense of OWS-CPA and UFS-CMAA as outlined in Section 2, then
this protocol can be shown to provide key secrecy (see [11] for details).
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4 Conclusion

We hope that the above discussion gives an idea of what kind of techniques are currently
used in attribute-based group key establishment. Only few proposals are available so
far, and we hope that this informal introduction helps to stimulate further work in
this line of research. The work presented in [7, 11] suggests several natural directions
for follow-up work: “direct” constructions of attribute-based group key establishments
achieving forward security and one-round constructions which, through appropriate
protocol compilers, are lifted to forward secure schemes. Finally, going beyond purely
attribute-based settings to predicate-based versions seems an area in group key estab-
lishment which is not very well-explored yet and has potential for interesting follow-up
work. Moreover, for “non-standard” guarantees like deniability, already the question
of finding adequate formalizations seems to be an interesting one.
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1 Introduction

In a previous work [4] we studied the relations between block matrices and differential
equations in the stability theory. We gave sufficient conditions in terms of blocks for the
Lyapunov matrix equation in order to obtain stability criteria. The classical Hermite,
Routh, Hurwitz and Schwarz matrices were generalized to block contexts and used to
verify under certain conditions the stability of matrix differential equations [3, 5, 6].
The two main limitations of that work are that the differential matrix equation has
to be in a companion form and that the criteria based in the minors, of the classical
matrices mentioned before, can not be generalized to block contexts considering that
we do not have block minor for a general block matrix.

Here, we will restrict our matrices to commuting blocks so we can work with
block determinants and obtain a generalized characteristic polynomial, thus permit-
ting, firstly, the work of differential equations in the form:

y′(t) = Aby(t) (1)

where Ab is a general block matrix and, secondly, to develop the stability theory in
terms of the block minors.
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2 Results

Let Ab be a real matrix partitioned into m × m commuting blocks of order n, which
we represent by Ab ∈ Mm(Bn(R)). The block determinant of Ab is a block, detb (Ab)
computed the usual determinant as the block were scalars [7]. The characteristic matrix
polynomial of Ab is P (X) = detb (Im ⊗X −Ab) [8].

In a similar way we say detb (Ab)(j) is the (j) block minor of Ab, that is: the block
determinant computed for the principal block sub-matrix of j × j blocks.

A matrix E ∈ R
n×n is said to be symmetrizable if there exists a matrix F = F T ∈

R
n×n positive definite such that ETF = FE [2, p. 67]. Furthermore, two matrices

E1, E2 ∈ R
n×n are said to be simultaneously symmetrizable if there exists a matrix

F = F T ∈ R
n×n positive definite such that ET

1 F = FE1 and ET
2 F = FE2 [1].

It follows directly from this definition that E1 + E2 and E1 − E2 are simultaneously
symmetrizable.

Now, given a matrix polynomial

P (X) = Xm +A1X
m−1 + · · · +Am−1X +Am, (2)

where A1, . . . , Am ∈ Bn(R) and X is also a matrix of order n. Then, using the block
versions of Hermite, Routh, Hurwitz and Schwarz associated with P (X) ([4] and refer-
ences there in) we present:

Proposition 2.1 Let He
b ∈ Mm(Bn(R)) be the block Hermite matrix associated with

P (X). Then the block minors He
b(j) of H

e
b are:

for j = 1,
He

b(1) = He
b(11); (3)

for even j ≥ 2,

He
b(j) = detb

[
N (1)

uv

]
detb

[
N (2)

uv

]
, (4)

which

N
(1)
uv = He

b(2u2v), u, v = 1, . . . ,
j

2
and

N
(2)
uv = He

b((2u−1)(2v−1))
, u, v = 1, . . . ,

j

2
;

(5)

for odd j ≥ 3 ,

He
b(j) = detb

[
N (1)

uv

]
detb

[
N (2)

uv

]
, (6)

which

N
(1)
uv = He

b(2u2v), u, v = 1, . . . ,
j − 1

2
and

N
(2)
uv = He

b((2u−1)(2v−1))
, u, v = 1, . . . ,

j + 1

2
.

(7)

Proposition 2.2 Let Hb ∈ Mm(Bn(R)) be the block Hurwitz matrix associated with

P (X). Then the block minors Hb(j) of Hb are:

for odd j ≥ 1,

Hb(j) = A−1

0
detb

[
N (2)

uv

]
, (8)

@CMMSE                                                               Page   630  of 1328                                               ISBN 13: 978-84-613-5510-5



Fernando Martins, Edgar Pereira, José Vitória

which

N (2)
uv = He

b((2u−1)(2v−1))
u, v = 1, . . . ,

j + 1

2
and j = 2k− 1, k = 1, . . . ,

[
m+ 1

2

]

;

for even j ≥ 2,

Hb[j] = detb

[
N (1)

uv

]
, (9)

which

N
(1)
uv = He

b(2u2v), u, v = 1, . . . ,
j

2
and j = 2k, k = 1, . . . ,

[m

2

]
. (10)

Corollary 2.1 If Hb and He
b are associated with P (X). Then, the respective block

minors satisfy:

He
b(j) = A0Hb(j−1)Hb(j), (j = 1, . . . ,m; H0 = In). (11)

Proposition 2.3 Let Sb ∈ Mm(Bn(R)) be the block Schwarz matrix associated with

P (X). Then, its characteristic matrix polynomial is

Pm(X) = Pm−1(X)Λ + Pm−2(X)Sm, (12)

with P−1(X) = P0(X) = In and m ≥ 1, where Pm−1(Λ) and Pm−2(Λ) are the charac-

teristic matrix polynomials of Sb(m−1) and Sb(m−2), respectively.

Proposition 2.4 Let Sb ∈ Mm(Bn(R)) and Hb ∈ Mm(Bn(R)) be the block Schwarz

and the block Hurwitz matrices associated with P (X). If the blocks Sj (j = 1, . . . ,m)
of Sb are constructed by:

S1 = Hb(1), S2 = H−1

b(1)Hb[2], S3 = H−1

b(1)H
−1

b(2)Hb(3), Sr = H−1

b(r−1)
H−1

b(r−2)
Hb(r−3)Hb(r),

with r = 4, . . . ,m, in which the block minors Hb(j), are nonsingular. Then, the charac-

teristic matrix polynomial of Sb is P (X).

Proposition 2.5 Let Sb ∈ Mm(Bn(R)) and He
b ∈ Mm(Bn(R)) be the block Schwarz

and the block Hermite matrices associated with P (X). If the blocks Sj (j = 1, . . . ,m)
of Sb are constructed by:

S1 = He
b(1), S2 =

(
He

b(1)

)
−2

He
b(2), Sr =

(
He

b(r−1)

)
−2

He
b(r−2)

He
b(r),

with r = 3, . . . ,m, in which the block minors He
b(j), are nonsingular. Then, the charac-

teristic matrix polynomial of Sb is P (X).

Proposition 2.6 Let y′(t) = Aby(t) be a matrix differential equation, let P (X) be the

characteristic matrix polynomial of Ab and let He
b ∈ Mm(Bn(R)), Hb ∈ Mm(Bn(R))

and Rb ∈ Mm(Bn(R)) be the block Hermite, the block Hurwitz and the block Routh

matrices, respectively, associated with P (X). If one of the following conditions holds:
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(i)

He
b(1),

(
He

b(1)

)
−1

He
b(2), . . . ,

(
He

b(m−1)

)
−1

He
b(m)

,

are simultaneously symmetrizable and positive definite, where He
b(j) are the block

minors of He
b ;

(ii)

Hb(1), Hb(2), H−1

b(1)Hb(3), . . . , H−1

b(m−2)
Hb(m),

are simultaneously symmetrizable and positive definite, where Hb(j) are the block

minors of Hb;

(iii)

C21, C21C31, C31C41, . . . , Cm1C(m+1)1,

are simultaneously symmetrizable and positive definite, where Cij are block ele-

ments of Rb;

Then, the equilibrium of the matrix differential equation is asymptotically stable.
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Abstract

In formal concept analysis, the sets of attributes and objects are usually differ-
ent, with different meaning and, hence, it might not make sense to evaluate them
on the same carrier. In this context, the operators used to obtain the concept
lattice could be defined by considering different lattices associated to attributes
and objects. Anyway there exist several reasons for which we need to evaluate the
set of attributes and objects in the same carrier. In this direction, we present in
this paper a new concept lattice, where the objects and attributes are evaluated
on the same lattice L, although operators which evaluate objects and attributes
in different carriers are used. Moreover, we have studied the relationship between
the new concept lattice and the other one obtained directly considered different
carriers to both set of attributes and objects.

Key words: Concept lattices, multi-adjoint lattices, Galois connection, implica-
tion triples

1 Introduction

Formal concept analysis was introduced by Wille in the eighties and it has become an
important and appealing research topic both from the theoretical perspective [13,23,26]
and from the applicative one [7, 9, 10,12,22].

Soon after the introduction of “classical” formal concept analysis, a number of
different approaches for its generalization were introduced and, nowadays, there are
works which extend the theory with ideas from fuzzy set theory [3,17,18] or fuzzy logic
reasoning [2, 4, 8] or from rough set theory [16, 24, 27] or some integrated approaches
such as fuzzy and rough [25], or rough and domain theory [14].

Recently, a new fuzzy framework has been introduced which is more general and
flexible than other fuzzy extensions, see [20]. In this framework, we can evaluate the
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set of objects and attributes on different lattices L1, L2, because it might not make
sense to evaluate objects and attributes on the same carrier.

It is convenient to recall that, sometimes, it could be interesting to weaken this
framework. For instance, given a group of experts that need to evaluate a knowledge
system, they could believe that the carriers associated to the set of objects and at-
tributes should not be different, or some of them believe that the attributes should be
evaluated on L1 and some others believe that they should be evaluated on L2 and, once
the evaluation is finished, the results should be homogenized. An interesting possibility
is to embed both L1 and L2 into a set L, and to obtain a new concept lattice ML, in
which the set of objects and attributes are evaluated in the same lattice, albeit using
the operators which evaluate objects and attributes in different carriers.

Firstly, we will introduce the notion of P -connected poset, which will be used to
define the concept lattice ML, when the set of attributes and objects are evaluated in
L1 and L2, respectively, and L1, L2 are L-connected. Later, the new concept lattice
is related with the concept lattice introduced in [20]. Finally, some conclusions and
future work are presented.

2 P -connected posets

The main notion in this contribution refers to the notion of P -connection between two
complete lattices. As we will see later, this condition will allow to somehow conciliate
the different values generated by the consideration of a non-commutative conjunctor in
the construction of a concept lattice.

Definition 1 Given the posets (P1,≤1), (P2,≤2) and (P,≤), we say that P1 and P2 are
P -connected if there exist increasing mappings i1 : P1 → P , φ1 : P → P1, i2 : P2 → P

and φ2 : P → P2 verifying that φ1(i1(x)) = x, and φ2(i2(y)) = y, for all x ∈ P1, y ∈ P2.

Example 1 Any pair of posets (P1,≤1), (P2,≤2) with top elements ⊤1 and ⊤2, re-
spectively, are P1 × P2-connected, with the pairwise ordering, where P1 × P2 is the
Cartesian product, and by considering the mappings φi as the projections πi, and i1, i2
as the inclusions defined as i1(x) = (x,⊤2), i2(y) = (⊤1, y), for all x ∈ P1, y ∈ P2.

A more complex example is presented below:

Example 2 Assume that, in order to perform an evaluation of a product, for which
we have to assign one value out of four possible ones. We ask two experts to collaborate
in this task and, only when collecting the feedback from each expert, we notice that
one expert has considered the ordering of values as in Fig. 1, whereas the other has
considered that in Fig. 2. In both cases, the expert has used a suitable poset in order to
obtain the final result of the evaluation.

In order to unify both evaluations, we want to embed the posets in Figs. 1 and 2
into another one, for example, we might consider that given in Fig. 3.
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Figure 1: Poset (P1,≤1)
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Figure 3: Poset (P,≤)

a b c d

i1 x y u v

α β γ δ

i2 x y t v

Figure 4: Definition of i1 and i2

We can define two mappings i1 : P1 → P , i2 : P2 → P as in Fig. 4; moreover, there
exist several possibilities for the mappings φ1 : P → P1, φ2 : P → P2 in order to satisfy
the properties in Definition 1, one of them is shown below:

x y z t u v

φ1 a b c d c d

x y z t u v

φ2 α β γ γ δ δ

As a result, P1 and P2 are P -connected.

Example 3 A different example arises when we consider the posets ([0, 1]2,≤) and
([0, 1]4,≤), where [0, 1]n is a regular partition of [0, 1] into n pieces, for instance [0, 1]2 =
{0, 0.5, 1}, [0, 1]4 = {0, 0.25, 0.5, 0.75, 1}.

We have that [0, 1]2, [0, 1]4 are [0, 1]-connected, under the usual ordering, consid-
ering the mappings i1, i2 as the inclusions i1(x) = x, i2(y) = y, for all x ∈ L1, y ∈ L2;
and φ1, φ2 defined as φ1(t) = ⌈2 · t⌉/2, φ2(t) = ⌈4 · t⌉/4, where ⌈ ⌉ is the ceiling
function. For example, if t = 0.55, φ1(0.55) = 1, φ2(0.55) = 0.75,

3 Concept lattices on L-connected lattices

Firstly, we will recall the definition of adjoint triple, multi-adjoint frame and context, in
order to define a new concept lattice where the objects and attributes are evaluated on
the same lattice L. This new standpoint has several applications: for instance, although
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operators which evaluate objects and attributes in different carriers are used, we will
show later that it is possible to evaluate both objects and attributes in a common lattice
obtained from the original ones and, using the methods introduced in [19], to obtain
a certain class of t-concepts. Originally, the condition L1 = L2 was assumed; but the
construction can be extended to the cases in which L1 6= L2, as the only requirement
is that both lattices should be L-connected.

Assuming a conjunctor defined on, say P1×P2, directly provides two different ways
of generalising the well-known adjoint property between a t-norm and its residuated
implication [1,21], depending on which argument is fixed.

Definition 2 Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1×P2 → P3, ւ : P3×
P2 → P1, տ : P3 × P1 → P2 be mappings, then (&,ւ,տ) is an adjoint triple with
respect to P1, P2, P3 if:

1. & is order-preserving in both arguments.

2. ւ and տ are order-preserving in the consequent and order-reversing in the an-
tecedent.

3. x ≤1 z ւ y iff x& y ≤3 z iff y ≤2 z տ x, where x ∈ P1, y ∈ P2 and z ∈ P3.

The general theory formal concept analysis needs that the underlying posets have
the structure of a lattice. Therefore, we will assume hereafter that we are working on
lattices instead of on posets.

The multi-adjoint framework allows the existence of several adjoint triples for a
given triplet of lattices.

Definition 3 A multi-adjoint frame L is a tuple

(L1, L2, P,�1,�2,≤,&1,ւ
1,տ1, . . . ,&n,ւn,տn)

where (L1,�1) and (L2,�2) are complete lattices, (P,≤) is a poset and, for all i =
1, . . . , n, (&i,ւ

i,տi) is an adjoint triple with respect to L1, L2, P .
Multi-adjoint frames are denoted (L1, L2, L,&1, . . . ,&n).

Given a frame, a multi-adjoint context is a tuple consisting of sets of objects and
attributes and a fuzzy relation among them; in addition, the multi-adjoint approach
also includes a function which assigns an adjoint triple to each object (or attribute).

Definition 4 Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, a multi-adjoint con-
text is a tuple (A,B,R, σ) such that A and B are non-empty sets (usually interpreted
as attributes and objects, respectively), R is a P -fuzzy relation R : A × B → P and
σ : B → {1, . . . , n} is a mapping which associates any element in B with some partic-
ular adjoint triple in the frame.1

1A similar theory could be developed by considering a mapping τ : A → {1, . . . , n} which associates
any element in A with some particular adjoint triple in the frame.
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In order to make this contribution self-contained and since we will provide a specific
construction of a Galois connection, we recall its formal definition below:

Definition 5 Let (P1,≤1) and (P2,≤2) be posets, and ↓ : P1 → P2,
↑ : P2 → P1 map-

pings, the pair (↑, ↓) forms a Galois connection between P1 and P2 if and only if:

1. ↑ and ↓ are order-reversing.

2. x ≤1 x↓↑ for all x ∈ P1.

3. y ≤2 y↑↓ for all y ∈ P2.

In the following paragraphs, we define a suitable Galois connection on which the
new concept lattice structure will be built.

Given a complete lattice (L,�) such that L1 and L2 are L-connected, a multi-
adjoint frame (L1, L2, P,&1, . . . ,&n), and a context (A,B,R, σ), we can define the
mappings2 ↑cσ : LB → LA and ↓

cσ

: LA → LB defined for all g ∈ LB and f ∈ LA as
follows:

g↑cσ(a) = i1(inf{R(a, b) ւσ(b) φ2(g(b)) | b ∈ B}) (1)

f↓

cσ

(b) = i2(inf{R(a, b) տσ(b) φ1(f(a)) | a ∈ A}) (2)

Note that these definitions can be related to those given in [20] in that, for each adjoint
triple (&,ւ,տ) of the multi-adjoint frame, we can define the mappings &∗ : L×L → P ,
ւ∗ : P × L → L and տ

∗
: P × L → L for all x, y ∈ L and z ∈ P as follows:

x&∗ y = φ1(x)& φ2(y) z ւ∗ y = i1(z ւ φ2(y))
z տ

∗
x = i2(z տ φ1(x))

which, under the requirements t ≤ i1(φ1(t)) and t ≤ i2(φ2(t)), for all t ∈ L, forms
another adjoint triple (&∗,ւ∗,տ∗). Under the additional assumption that the map-
pings ij are inf-preserving, the mappings ↑cσ : LB → LA and ↓

cσ

: LA → LB can be
written as

g↑cσ(a) = inf{R(a, b) ւ∗b g(b) | b ∈ B} (3)

f↓

cσ

(b) = inf{R(a, b) տ
∗b f(a) | a ∈ A} (4)

and coincide with the Galois connection associated to the frame (L1, L2, P,&∗

1, . . . ,&
∗

n)
introduced in [20]. As our construction of the new concept lattice will not need either
of the requirements above, the proposed framework is strictly more general than the
previous one.

Expressions (1), (2) do not coincide with those given in [20], because they are not
defined directly from a residuated implication, although the mappings i1, i2, φ1 and
φ2 are involved as well. Hence, we need to prove that these mappings form a Galois
connection.

2The subscript c refers to the L-connection, since we are using the mappings φj and ij ; on the other
hand, σ is needed to refer the particular choice of adjoint triple for a given b.
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Proposition 1 Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, where L1 and L2

are L-connected, and a context (A,B,R, σ), the pair (↑cσ , ↓
cσ

) is a Galois connection
between LA and LB.

The Galois connection just obtained is defined on a frame where (L1,�1) and
(L2,�2) are L-connected. This Galois connection allows for defining a new concept
lattice following the usual construction: a concept is a pair 〈g∗, f∗〉 satisfying g∗ ∈ LB ,
f∗ ∈ LA and that (g∗)↑c = f∗ and (f∗)↓

c

= g∗; with (↑c , ↓
c

) being the Galois connection
defined above.3

Definition 6 The multi-adjoint abelianized concept lattice associated to a multi-adjoint
frame (L1, L2, P,&1, . . . ,&n) and context (A,B,R, σ), where L1 and L2 are L-connected,
is the set

ML = {〈g∗, f∗〉 | 〈g∗, f∗〉 is a concept}

in which the ordering is defined by 〈g∗1 , f∗

1 〉 � 〈g∗2 , f
∗

2 〉 if and only if g∗1 � g∗2 (equiva-
lently f∗

2 � f∗

1 ).

Note that as (↑c , ↓
c

) is a Galois connection, the pair (ML,�) is, indeed, a complete
lattice [6].

In the rest of the section, we establish a comparison between the concept lattices
ML (defined above) and M (defined in [20]). Hence, we will fix a context (A,B,R, σ), a
frame (L1, L2, P,&1, . . . ,&n), where L1 and L2 are L-connected, and the corresponding
multi-adjoint concept lattices M and ML.

Firstly we will prove, in the following result, that each concept 〈g, f〉 in M deter-
mines a concept in ML.

Proposition 2 If 〈g, f〉 ∈ M, then the mappings g∗ : B → L, f∗ : A → L, defined as
g∗ = i2 ◦ g, f∗ = i1 ◦ f , form a concept of the multi-adjoint concept lattice ML.

Now, given a mapping g : B → L2, we have to possible ways to construct the
smallest concept in ML containing g:

• Considering the mapping i2 ◦ g ∈ LB and obtaining the corresponding concept in
ML, that is, 〈(i2 ◦ g)↑c↓

c

, (i2 ◦ g)↑c〉.

• Obtaining the corresponding concept in M and, by Proposition 2, considering
the concept 〈i2 ◦ (g)↑↓, i2 ◦ (g)↑〉 in ML.

The following proposition states that the two constructions given above coincide.

Proposition 3 Given a mapping g : B → L2, the concepts 〈(i2 ◦ g)↑c↓
c

, (i2 ◦ g)↑c〉 and
〈i2 ◦ (g)↑↓, i2 ◦ (g)↑〉 coincide.

3We include ∗ as a superscript in this new construction so that we can distinguish this new approach
from that in [20]. Note that, in order to simplify the notation, references to σ have been omitted.
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Similarly, we obtain a concept of M from each concept of ML, and the two possible
construction of the smallest concept containing g∗ : B → L coincide.

Proposition 4 If 〈g∗, f∗〉 ∈ ML, then the mappings g : B → L2, f : A → L1, defined
as: g = φ2 ◦ g∗, f = φ1 ◦ f∗, form a concept of the multi-adjoint concept lattice M.
Moreover, given a mapping g∗ : B → L, the concepts 〈(φ2 ◦ g∗)↑↓, (φ2 ◦ g∗)↑〉 and 〈φ2 ◦
(g∗)↑c↓

c

, φ2 ◦ (g∗)↑c〉 coincide.

It is worth to take into account that the result above can be given analogously for
any f : A → L1 as well.

Finally, as a consequence of the definition of L-connection and the above result, we
have that the following theorem.

Theorem 1 The mappings Φ: ML → M and I : M → ML defined, for each 〈g, f〉 ∈
M and 〈g∗, f∗〉 ∈ ML, as follows

Φ(〈g∗, f∗〉) = 〈φ2 ◦ g∗, φ1 ◦ f∗〉

I(〈g, f〉) = 〈i2 ◦ g, i1 ◦ f〉

are well-defined and Φ ◦ I : M → M is the identity mapping. However, in general,
I ◦ Φ: ML → ML is not the identity mapping, but a closure operator.

Let Fp(ML) be the subset of ML consisting of all the fix-points of the I ◦ Φ, i.e.

Fp(ML) = {〈g∗, f∗〉 ∈ ML | I ◦ Φ(〈g∗, f∗〉) = 〈g∗, f∗〉}

With this notation, the theorem above guarantees the following result:

Corollary 1 The concept lattices M and Fp(ML) are isomorphic.

As a consequence of the previous isomorphism, several existing algorithms devel-
oped to obtain concept lattices where the conjunctors have the same carrier for both
arguments can be applied; for instance, Lindig’s algorithm [15], or its extension for
graded attributes [5]. In order to obtain the concept lattice M, we firstly use a fast
algorithm to build the concept lattice ML and then, compute the set Fp(ML) of all
fix-points of I ◦ Φ, perhaps applying the algorithm once more. Finally, we apply Φ to
obtain M.

As the complexity of the algorithm used depends on the size of L, we should find,
whenever possible, the least lattice L such that L1 and L2 are L-connected.

4 Conclusion

Usually, in formal concept analysis, the sets of attributes and objects are different,
with different meaning and, hence, it might not make sense to evaluate them on the
same carrier. In this context, the operators used to obtain the concept lattice could be
defined considering different lattices associated to attributes and objects, see [20].
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Anyway there exist several reasons for which we need to evaluate the set of at-
tributes and objects in the same carrier. In this direction, a new concept lattice, where
the objects and attributes are evaluated on the same lattice L, has been introduced,
although operators which evaluate objects and attributes in different carriers are used.

Moreover, we have studied the relationship between the new concept lattice and
the other one obtained directly considered different carriers to both set of attributes
and objects, introduced in [20].

As future work, we want to study how the theory presented here can be applied to
obtain t-concepts [11,19] when, originally, the set of attributes and objects are evaluated
in different lattices. Another aim is to obtain mechanisms to find the least lattice L

such that L1 and L2 are L-connected.
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Abstract

In this work, we suggest some techniques to compute the near interactions of
the Fast Multipole Method (FMM) applied to acoustic scattering problems using
Graphical Processing Units (GPUs). In our implementation of the FMM, the
calculation of the near interactions is the most computationally demanding process.
In addition, our design of the near interactions step matches properly with the
Single Instruction Multiple Threads paradigm. As a consequence, the mentioned
process seems to be prone to run in GPUs.

Key words: FMM, GPU, Many-core

1 Introduction

There are a number of applications in which is fundamental to control the noise scat-
tering. In fact, increasingly stringent requirements for environmental noise is a major
design driver for new aircraft configurations [2]. In such cases, it is mandatory to find
a proper model of the acoustical behaviour of the system under analysis.

Low-frequency methods, such as the Boundary Elements Method (BEM) [10], offer
the potential of precise numerical formulations of acoustic scattering problems. How-
ever, these methods yield a linear system with N equations and a dense coupling matrix,
whose direct solution has a time cost O (

N3
)

and a memory cost O (
N2

)
. By means

of iterative solvers, the time cost is reduced to O (
N2

)
per iteration.

The complexity, O (
N2

)
per iteration, of iterative solvers is due to the computation

of a Matrix-Vector Product (MVP). The Fast Multipole Method (FMM) [7] and its
multilevel version, known as Multilevel Fast Multipole Algorithm (MLFMA) [9], avoid

@CMMSE                                                               Page   642  of 1328                                               ISBN 13: 978-84-613-5510-5



Near interactions of the FMM using GPUs

matrix explicit calculation yielding a dramatic reduction in the MVP time without
significantly affecting to BEM’s iterative solution accuracy. The FMM and the MLFMA
reduce the cost per iteration to O (

N1.5
)

and to O (N log (N)), respectively.

For the last years, the interest on many-core architectures, such as Graphical Pro-
cessing Units (GPUs) [6], has been growing. These systems are specially suited in ap-
plications where there are at least as many running processes or independent threads
as cores. Hence, Shared Memory programming paradigm can be considered the natural
way of programming these systems. The GPUs offer a huge raw processing power while
keeping a reduced energy usage yielding a higher performance per Watt than that of
CPUs.

In this work, a heterogeneous parallel scattering solver is suggested. The GPU deals
with the step of the FMM algorithm (near interactions) that best matches the Single
Instruction Multiple Threads (SIMT) paradigm. We use the Generalized Minimum
Residual (GMRES) method [8] due to its robustness for iteratively solving acoustic
scattering problems [5].

2 FMM applied to acoustic scattering

The physical problem studied here consists in predicting the acoustic pressure on the
space that surrounds a 3-D obstacle on which an incident acoustic wave is impinging.
This problem may be possed in terms of the integral form of the Helmholtz equation
[10] which is also known as Conventional Boundary Integral Equation (CBIE). In order
to overcome the non-uniqueness difficulty [3] that appears in the CBIE at resonant fre-
quencies, the CBIE is linearly combined with its normal derivative yielding the Burton
and Miller equation [3]. By means of the BEM, the Burton and Miller equation may
be discretised over S and formulated in terms of a linear system of equations.

In the sequel, the surface of the obstacle is considered to be discretised into N ele-
ments which means that the above-mentioned system of equations has N unknowns. In
order to produce accurate results, S must be discretised into 6 to 10 elements per linear
wavelength (λ). Since the wavelength and the frequency f are in inverse proportion,
N increases, for a given obstacle, with the frequency squared

(
f2

)
.

The FMM computes a Matrix Vector Product (MVP) without explicit calculation
of the system matrix. The algorithm requires grouping the N elements of the problem
into Ng groups. Then, it efficiently calculates far interactions, between non-neighboring
groups, by means of the Addition Theorems and plane wave decomposition [1]. Near
interactions, between elements that pertain to the same group or to neighboring groups,
do not satisfy the conditions associated with the transformations described by the Ad-
dition Theorems [7]. As a consequence, near (or local) interactions must be computed
directly evaluating its corresponding part of the system matrix.
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3 Computing Near Interactions using GPUs

As it is shown in the previous section, groups size is critical to minimize the time to
solution. On the one hand, if the group size is small then many groups are produced.
This yields many far interactions and a high time cost. On the other hand, if the
group size is big then there are many of groups should increase proportionally to

√
N

to achieve a O (
N1.5

)
time cost.

In order to achieve this aim, an accurate model is used to calculate the time cost
of the iterations, taking into account both theoretical and empirical data. We use the
following equation to compute the time cost for the near interactions:

Tnear(N) ≈ Knear

Ng∑

i=1

ni · nnear
i , (1)

where N is the size of the problem (number of unknowns), Ng is the number of groups,
ni is the number ith group, nnear

i is the number of elements in the neighbourhood of the
ith group, and Knear is a hardware dependent constant factor which can be estimated
using empirical data. It is worth mentioning that ni and nnear

i are efficiently obtained
at runtime by means of oct-tree theory [4].

In addition, at runtime the algorithm can exhaustively test different group sizes
and chooses the optimum group size -in the sense of minimizing the time cost- for an
arbitrary problem solved in any CPU-GPU combination.

Since the number of groups and the number of elements per group are close to√
N , near interactions require to calculate

√
N matrices of size

√
N × √

N . That
is, the calculation of the near interactions is the most demanding step, in terms of
computational time, of the FMM. Hence, this step is prone to run in GPUs.

The computation of the near interactions involve complex computing with a low
memory footprint. As a consequence, the size of the shared memory is not a limiting
factor. In our implementation, all data needed to compute each matrix element are
previously packed together. Therefore, threads have a regular access pattern that
avoids possible conflicts between threads accessing to the banks of the shared memory.
Since the calculation of each matrix element (

√
N matrices of size

√
N ×√N) can be

accomplished independently, threads may run asynchronously.

In this work Compute Unified Device Architecture (CUDA) is used to take advan-
tage of NVIDIA1 GPUs. It should be noted that FMM needs to use double precision
to avoid the numerical instability of the method, thus, the new Fermi architecture is
specially suitable. Our preliminary results, using two GeForce GTX 480 in SLI, are
promising and now we are tuning some aspects related to the configuration of the new
GTX 480.

1www.nvidia.com
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Abstract

In this paper we present a parallel library, PyPANCG, treated as a high-level
interface for solving nonlinear systems. This library consists of two modules, PyS-
ParNLCG and PySParNLPCG. The PySparNLCG module parallelizes the conju-
gate gradient method for solving mildly nonlinear system, and the PySParNLPCG
module implements the preconditioning technique based on block two-stage meth-
ods. In order to create the high-level interfaces, we have chosen the Python lan-
guage. On the other hand, the developed Fortran routines offer all the performance
of the low-level language. Experimental results report the numerical accuracy and
the parallel performance of our approach on different parallel computers.

Key words: parallel libraries, nonlinear algorithms, Python high-level interfaces

1 Introduction

The goal of this paper is to present PyPANCG (http://atc.umh.es/PyPANCG), a
Python based high-level parallel interface-library for solving mildly nonlinear systems
of the form

Ax = Φ(x), (1)

where A ∈ �n×n and Φ : �n → �n is a nonlinear diagonal mapping, i.e., the ith
component φi of φ is a function only of the ith component xi of x.

This library, distributed as a standard Python package, provides parallel implemen-
tations of both the nonlinear conjugate gradient method (NLCG) and the nonlinear pre-
conditioned conjugate gradient method (NLPCG). PyPANCG can work with different
tools to manage the parallel environment through MPI (www-unix.mcs.anl.gov/mpi),
by using PyMPI or mpipython included in Scientific Python [4].
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This paper is structured as follows. Section 2 introduces the nonlinear conju-
gate gradient method (NLCG) and the parallelization we have performed in the PyS-
ParNLCG module of PyPANCG. The nonlinear preconditioned conjugate gradient
method and the parallelization performed in the PySParNLPCG module of PyPANCG
are introduced in Section 3. In Sections 4, 5 and 6 we explain the main tools used to
build PyPANCG, the involved parameters and different ways to implement the non-
linearity, respectively. In Section 7 some examples of using PyPANCG are reported
while in Section 8 the behavior of this library is illustrated by means of numerical
experiments. Finally, concluding remarks are presented in Section 9.

2 Nonlinear Conjugate Gradient Method

Consider the problem of solving the nonlinear system (1), where A ∈ �n×n is a sym-
metric positive definite matrix. An effective approach to solve this nonlinear system is
the Fletcher-Reeves version [3] of the nonlinear conjugate gradient method (NLCG).
In order to describe the parallelization performed of this method, we consider that A
is partitioned into p× p blocks, with square diagonal blocks of order nj,

∑p
j=1

nj = n,
such that system (1) can be written as

⎡

⎢
⎢
⎢
⎣

A11 A12 · · · A1p

A21 A22 · · · A2p
...

...
...

Ap1 Ap2 · · · App

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x1

x2

...
xp

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

Φ1(x)
Φ2(x)

...
Φp(x)

⎤

⎥
⎥
⎥
⎦

, (2)

where x and Φ(x) are partitioned according to the size of the blocks of A. Analogously,
we consider x(i), r(i), p(i) and Φ(x(i)) partitioned according to the block structure of
A in (2). With this notation we construct the following parallel algorithm.

Algorithm 1 (Parallel Nonlinear Conjugate Gradient)
Given an initial vector x(0)

In processor j, j = 1, 2, . . . , p
r
(0)

j = Φj(x(0)) − [Aj1 Aj2 · · ·Ajp]x(0)

p
(0)

j = r
(0)

j

For i = 0, 1, . . . , until convergence
In processor j, j = 1, 2, . . . , p

αi =→ see Algorithm 2
x

(i+1)

j = x
(i)
j + αip

(i)
j

r
(i+1)

j = r
(i)
j − Φj(x(i)) + Φj(x(i+1)) − αi[Aj1 Aj2 · · ·Ajp]p(i)

Convergence test
In processor j, j = 1, 2, . . . , p

ϑj = 〈r(i+1)

j , r
(i+1)

j 〉
σj = 〈r(i)

j , r
(i)
j 〉

Processor 1 computes and broadcasts βi+1 = −∑p
j=1

ϑj/
∑p

j=1
σj
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In processor j, j = 1, 2, . . . , p
Compute and perform an allgather p

(i+1)

j = r
(i+1)

j − βi+1p
(i)
j

Note that, in Algorithm 1, αi is obtained as follows:

Algorithm 2 (Computing α)
α

(0)

i = 0
For k = 0, 1, 2, . . . , until convergence

δ(k) =
α

(k)
i 〈Ap(i),p(i)〉−〈r(i),p(i)〉+

�
Φ(x(i))−Φ(x(i)+α

(k)
i p(i)),p(i)

�

〈Ap(i),p(i)〉−
�
Φ′(x(i)+α

(k)
i p(i))p(i),p(i)

�

α
(k+1)

i = α
(k)

i − δ(k)

Stopping criterion (
∣
∣δ(k)

∣
∣ < ζ)

3 Nonlinear Preconditioned Conjugate Gradient Method

Preconditioning is a technique for improving the condition number (cond) of a matrix.
Suppose that M is a symmetric positive definite matrix that approximates A, but is
easier to invert. We can solve Ax = Φ(x) indirectly by solving M−1Ax = M−1Φ(x). If
cond(M−1A) << cond(A) we can iteratively solve M−1Ax = M−1Φ(x) more quickly
than the original problem. In this case we obtain the following nonlinear preconditioned
conjugate gradient algorithm.

Algorithm 3 (Nonlinear Preconditioned Conjugate Gradient)
Given an initial vector x(0)

r(0) = Φ(x(0)) − Ax(0)

Solve Ms(0) = r(0)

p(0) = s(0)

For i = 0, 1, . . . , until convergence
αi =→ see Algorithm 2
x(i+1) = x(i) + αip

(i)

r(i+1) = r(i) − Φ(x(i)) + Φ(x(i+1)) − αiAp(i)

Solve Ms(i+1) = r(i+1)

Convergence test
βi+1 = −〈s(i+1),r(i+1)〉

〈s(i),r(i)〉
p(i+1) = r(i+1) − βi+1p

(i)

Since the auxiliary system Ms = r must be solved at each conjugate gradient itera-
tion, this system needs to be easily solved. Moreover, in order to obtain an effective
preconditioner, a good approximation M to the matrix A is needed. One of the gen-
eral preconditioning techniques for solving linear systems [1] consists of considering a
splitting of the matrix A as

A = P − Q (3)

and performing m steps of the iterative procedure defined by this splitting toward the
solution of As = r, choosing s(0) = 0. In order to obtain the preconditioners suppose
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that system (1) is partitioned as in (2). Let us consider the splitting (3) consists of
the diagonal blocks of A in (2), that is P = diag(A11, . . . , App). Note that in this case,
performing m steps of the iterative procedure defined by the splitting (3) to approximate
the solution of As = r, corresponds to perform m steps of the Block Jacobi method.
Thus, at each step l, l = 1, 2, . . . , of a Block Jacobi method, p independent linear
systems of the form

Ajjs
(l)
j = (Qs(l−1) + r)j, 1 ≤ j ≤ p, (4)

need to be solved; therefore each linear system (4) can be solved by a different processor.
However, when the order of the diagonal blocks Ajj, 1 ≤ j ≤ p, is large, it is natural
to approximate their solutions by using an iterative method, and thus we are in the
presence of a two-stage iterative method; see e.g., [6]. In a formal way, let us consider
the splittings

Ajj = Bj − Cj, 1 ≤ j ≤ p, (5)

and at each lth step perform, for each j, 1 ≤ j ≤ p, q(j) iterations of the iterative
procedure defined by the splittings (5) to approximate the solution of (4). That is, to
solve the auxiliary system Ms = r of Algorithm 3, we use m steps of the following
algorithm, choosing s(0) = 0.

Algorithm 4 (Parallel Block Two-Stage)

Given an initial vector s(0) =
(
(s(0)

1
)T , (s(0)

2
)T , . . . , (s(0)

p )T
)T

, and a sequence of numbers
of inner iterations q(j), 1 ≤ j ≤ p

For l = 1, 2, . . ., until convergence
In processor j, j = 1, 2, . . . , p

y
(0)

j = s
(l)
j

For k = 1 to q(j)
Bjy

(k)

j = Cjy
(k−1)

j + (Qs(l−1) + r)j

s(l) =
(
(y(q(1))

1
)T , (y(q(2))

2
)T , . . . , (y(q(p))

p )T
)T

Therefore, using similar notation as in Section 2, we construct the following parallel
nonlinear algorithm.

Algorithm 5 (Parallel Nonlinear Preconditioned Conjugate Gradient)
Given an initial vector x(0)

In processor j, j = 1, 2, . . . , p
r
(0)

j = Φj(x(0)) − [Aj1 Aj2 · · ·Ajp]x(0)

Use m steps of Alg. 4 to approximate As(0) = r(0)

p(0) = s(0)

For i = 0, 1, . . . , until convergence
In processor j, j = 1, 2, . . . , p

αi =→ see Algorithm 2
x

(i+1)

j = x
(i)
j + αip

(i)
j

r
(i+1)

j = r
(i)
j − Φj(x(i)) + Φj(x(i+1)) − αi[Aj1 Aj2 · · ·Ajp]p(i)
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Use m steps of Alg. 4 to approximate As(i+1) = r(i+1)

Convergence test
In processor j, j = 1, 2, . . . , p

ϑj = 〈s(i+1)

j , r
(i+1)

j 〉
σj = 〈s(i)

j , r
(i)
j 〉

Processor 1 computes and broadcasts βi+1 = −∑p
j=1

ϑj/
∑p

j=1
σj

In processor j, j = 1, 2, . . . , p
Compute and perform an allgather p

(i+1)

j = r
(i+1)

j − βi+1p
(i)
j

4 PyPANCG basic tools

This section analyzes the basic tools used in the developed library. The language
used for the development of the basic routines and on which the final library will be
based was Fortran. The desired objective is to unite the development features offered
by Python in a single platform and to approach the execution features offered by, in
this case, Fortran. To do this, equivalent routines were developed in both languages.
In addition, mixed routines which work with both languages at different levels were
developed.

In order to access the routines developed in Fortran from Python, the F2PY tool
(cens.ioc.ee/projects/f2py2e) was used. To increase the possible parallel environments,
the library has been developed to enable work with two of the most common tools,
mpipython, which forms part of Scientific Python [4], and pyMPI.

Another very important aspect, both for communication between Python and For-
tran and for performance, is the use and handling of arrays or vectors; here too, two
equivalent options can be used. This is important with regard to the performance of
the Python codes and is indispensable when it comes to communication between lan-
guages. For the manipulation of vectors, we can use Numeric or the numarray module
included in NumPy. The use of one tool or the other is directly related to the tool used
to manage the parallel environment. If mpipython is used, Numeric must be used; if
pyMPI is chosen, numarray must be used instead.

We have developed four specific routines for each functionality. These routines
were developed in pure Fortran, or in pure Python, or using two different mixed mod-
els. The basic routines have been grouped into operations for sparse matrices (based on
SPARSKIT, www-users.cs.umn.edu/∼saad/software/SPARSKIT/sparskit.html), basic
operations between vectors (based on BLAS, www.netlib.org/blas), and specific func-
tions for the methods at hand, which are associated with different steps of the NLCG
and NLPCG algorithms.

5 PyPANCG parameters

This section deals with the parameters which have to be passed to the Python functions
which solve a sparse nonlinear system using the NLCG or NLPCG method. The only
indispensable parameters are the parameters of the system to be solved (Ax = φ(x)),
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which are the size of the system, the matrix A stored in CSR (Compressed Sparse
Row) format, and the nonlinear mapping φ(x). In addition the derivative of φ(x)
(φ′(x)) is required for computing δ according to Algorithm 2. However, there is a
series of parameters that permits the modification of these algorithms. If values are
not specified, default values are used. The optional parameters used in both algorithms
and their default values are as follows:

• initial vector : Initial iterate equal to zero.

• global stopping error ξ = 10−7: Global stopping criterion evaluated using the
euclidean norm of the residual vector (‖r‖

2
).

• alfa stopping error ζ = 10−7: Stopping criterion for computing α evaluated using
the absolute value of δ.

• iter alfa = 0: By setting this parameter to a value higher than 1, we can limit
the number of iterations performed to calculate α.

• For or Py = “Python full”: It selects one of the four different sets of routines to
be used during the algorithm execution. As it has been mentioned above, these
routines differ in the coding language.

• trash int : Integer vector (see Section 6).

• trash double: Double precision vector (see Section 6).

The NLPCG specific parameters and their default values are:

• level = 1: Level of fill-in of the incomplete LU factorization used in Algorithm 4
in order to obtain the inner splittings (5) (see Section 8).

• niter 2e = 3: Number of steps m performed by Algorithm 4 to approximate the
corresponding linear system in Algorithm 5.

• val q = 3: Number of inner iterations q(j), 1 ≤ j ≤ p performed in Algorithm 4.

Another important parameter that the system can calculate -if the matrix is available in
the root processor- is the size of the problem assigned to each processor; this is given by
the parameter block dimensions. This parameter is an integer vector whose dimension
corresponds to the number of processors and which stores the block size assigned to
each processor. In the examples provided by PyPANCG, the parameter is internally
calculated, such that a load balancing is achieved. If the matrix is distributed among
processors, this parameter must specify the portion available at each processor.

The parameter For or Py selects the set of routines to be used. The following
options can be chosen with regard to this parameter:

1. Python full : All of the routines used are codified in Python.
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2. Python: The routines used are codified in Python but the functions that come
from SPARSKIT and BLAS are in Fortran.

3. Fortran: All of the routines used are codified in Fortran. Moreover φ and φ′ are
codified independently.

4. Fortran full : All of the routines used are codified in Fortran but φ and φ′ are not
codified independently.

The options are listed in performance order from poorest to best and in usability and
development speed order from best to poorest. It is worth pointing out that the Python
option is a mixed option whereas the rest of the options use either Python or Fortran
for the basic routines. The difference between Fortran and Fortran full is that in the
first option the user must only codify the functions φ and φ′ in Fortran, whereas in the
latter option all routines implementing these functions must be codified in Fortran, and
thus the user must understand the internal development of the method in great depth.

6 Nonlinearity implementation

One of the major obstacles to develop libraries for solving nonlinear systems is the
implementation of the nonlinearity of the problem to be solved. One important aspect
is that the ith component φi of φ only depends on the ith component of x. Thus, φ
and φ′ can be developed at vector level or at vector component level. For performance
reasons, development will take place at vector level if the development is realized in
Python and, for usability reasons, it will take place at component level when Fortran
language is used. The example below shows the Python code for the function φ(x) used
in the examples of PyPANCG.

def Fi_x(vector,trash_int,trash_double):

sc = trash_double[0]

x = -sc*numpy.exp(vector)

return x

The same function developed in Fortran is:

double precision function phi(input,trash_int,trash_double)

implicit none

real*8 input,trash_double(*),sc

integer trash_int(*)

sc = trash_double(1)

phi = -sc*exp(input)

return

In addition to observing that the Python code works using vectors whilst Fortran
works using a single component, it is important to note that both functions require a
parameter transfer (sc) for the computation of φ. To realize this transfer -both real
values and integer values if needed- we use two vectors, one integer vector trash int and
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one double precision real vector trash double. These vectors are dynamic and thus all
parameters required for the computation can be passed to functions φ and φ′. Naturally,
these functions must always be implemented in order to adapt to the problem to be
solved. If they are implemented in Python, the option Python or Python full must be
used. If they are implemented in Fortran, the option Fortran or Fortran full must be
used. Moreover, in the latter case, the module must be installed and compiled again
following the development of the functions.

The options Python and Fortran are very similar; both use basic functions in
Fortran but differ in their implementation of the functions φ and φ′. The option
Fortran full does not use these functions except for integrating them in the routines that
use these functions. Thus, its adaptation is more complicated and laborious. However,
it is the option that provides the best performance. On the other hand, Python full
option does not use any Fortran code, which enables much faster development but an
excessively poor performance.

7 Using PySParNLCG and PySParNLPCG

As already mentioned, in order to use the library the size of the system (nrow), the
matrix A in CSR format (tcol, trow, tval), the block size assigned to each processor
(block dimensions), and the nonlinear functions (φ and φ′) must be passed at the very
least. However, if we wish to pass additional parameters we will use the variables
trash int and trash double. The following code shows the most simple NLCG function
call, in which we assume that the functions φ and φ′ were implemented in Python
beforehand.

1 from math import exp

2 import numpy

3 import PyPANCG

4 import PyPANCG.PySParNLCG as PySparNLCG

5 iam = PySParNLCG.iam

6 trash_double = numpy.zeros(((1),),float)

7 trash_double[0] = 6/(float(49)**3)

8 nrow = 125000

9 nrow,block_dimensions,bls = _

PyPANCG.MakeBlockStructure(nrow=nrow)

10 nnz,tcol,trow,tval = PyPANCG.PartialMatrixA _

(Mx=Mx,s=bls[iam],d=block_dimensions[iam])

11 x,error,time,iter = PySParNLCG.nlcg(nrow=nrow, _

tcol=tcol,trow=trow,tval=tval, _

block_dimensions = block_dimensions, _

Fi_x=Fi_x,Fi_prime_x=Fi_prime_x, _

trash_double = trash_double)

The matrix A is obtained in lines 9 and 10; this code is enclosed with the library
but can only be used as an example or test. It is important to point out that each
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Figure 1: PySParNLCG using 2 processors, pyMPI, SULLI.

processor only contains the portion of the matrix that it requires. In line 11, the actual
call to the NLCG method takes place, whereby we assume that Fi x (φ) and Fi prime x
(φ′) were declared in Python and the vector trash double is passed, in this case of a
single component.

The most simple NLPCG function call is similar to the NLCG example above
showed. In this case it must import PySParNLPCG module instead of PySParNLCG
module in line 4,

4 import PyPANCG.PySParNLPCG as PySparNLPCG

and it must call NLPCG method in line 11,

11 x,error,time,iter = PySParNLPCG.nlpcg(nrow=nrow, _

tcol=tcol,trow=trow,tval=tval, _

block_dimensions = block_dimensions, _

Fi_x=Fi_x,Fi_prime_x=Fi_prime_x, _

trash_double = trash_double)

8 Numerical experiments

In order to illustrate the behavior of PyPANCG, we have tested the algorithms provided
by this library on two multicore computers. The first platform, Bi-Quad, is a DELL
PowerEdge 2900 with two Quad-Core Intel Xeon 5320 sequence processors at up to
1.86 GHz, with 8 GB of RAM. The second platform, SULLI, is an Intel Core 2 Quad
Q6600, 2.4 GHz, with 4 GB of RAM.

As our illustrative example we have considered a nonlinear elliptic partial differen-
tial equation, known as the Bratu problem [2]. To solve this problem using the finite
difference method, we consider a grid in Ω of d3 nodes, where Ω is a 3D cube domain
of unit length. The discretization of this problem yields a nonlinear system of the form
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Figure 2: Efficiency of PySParNLCG, n = 373248, pyMPI.

Ax = Φ(x), where Φ : �n → �n is a nonlinear diagonal mapping. We present here
results obtained with d = 50, d = 72 and d = 84, that lead to nonlinear systems of size
125000, 373248 and 592704, respectively. The convergence test used was ‖r‖2 < 10−7

and the stopping criterion for α was |δ| < 10−7. Concretely, these are the default values
for global stopping error and alfa stopping error in PyPANCG.

First, we analyze the behavior of PyPANCG.PySParNLCG depending on differ-
ent values of the parameter For or Py. Figure 1 shows that the best results are ob-
tained using routines fully developed in Fortran such that the computation of φ and
φ′ is performed inside these routines. The worst results are obtained with the option
For or Py=’Python full’. Note that this option uses pure Python routines and it should
only be used in the development process. On the other hand, the options that combine
Fortran and Python code get similar performance.

Figure 2 analyzes the influence of the number of processors, on the two multicore
platforms above mentioned. As it can be seen, the best efficiencies are obtained using
2 or 3 processors in SULLI, or a maximum of 5 processors in Bi-Quad.

Figure 3 compares the use of mpipython and Numeric with the use of pyMPI and
numpy in the behavior of PyPANCG.PySParNLCG. As it can be seen, Numeric offers
better performance than numpy, specially when the option For or Py=’Python full’ is
used. Therefore, a calling to a module with a single processor always uses Numeric.

In order to analyze the PyPANCG.PySParNLPCG module we consider, in our ex-
periments, the outer splitting A = P − Q determined by P = diag(A11, . . . , App). Let
us further consider an incomplete LU factorization of each matrix Ajj, j = 1, 2, . . . , p,
that is Ajj = LjUj −Rj, and at each lth step perform, for each j, q(j) inner iterations
of the iterative procedure defined by this splitting. Let us denote by ILU(S) the in-
complete LU factorization associated with the zero pattern subset S of Sn = {(i, j) :
i �= j, 1 ≤ i, j ≤ n}. In particular, when S = {(i, j) : aij = 0}, the incomplete
factorization with zero fill-in, known as ILU(0), is obtained. To improve the quality
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Figure 3: PySParNLCG: mpipython versus pyMPI, n = 125000, SULLI.

of the factorization, many strategies for altering the pattern have been proposed. In
the experiments reported here, we have used the “level of fill-in” factorizations [5],
ILU(κ), κ ≥ 0. Figure 4 illustrates the behavior of PySParNLPCG depending on the
different options of For or Py. Similar performances to those for PySParNLCG module
are obtained. That is, the best results are obtained setting For or Py=’Fortran full’
and the worst results using For or Py=’Python full’. The other two options present
similar performance.

9 Conclusion

In this paper we have presented PyPANCG, a Python library-interface that imple-
ments both the conjugate gradient method and the preconditioned conjugate gradient
method for solving nonlinear systems. We have described the use of the library and
its advantages in order to get fast development. The aim of this library is to develop
high performance scientific codes for high-end computers hiding many of the underly-
ing low-level programming complexities from users with the use of a high-level Python
interface. The library has been designed for adapting to different stages of the de-
sign process, depending on whether the purpose is computational performance or fast
development.
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Abstract

We present a front-end for theorem provers developed in Prolog. The frame-
work is checked on three modal logics: the standard modal logic K and two logics
for order-or-magnitude qualitative reasoning. A general weakness of automated
theorem provers, specially for modal logics, is the difficulty to communicate and
interact with the user. We try to give a first step in this line, by providing a user-
friendly environment which could be very useful both for research and educational
applications, that is, as a tool for researchers and for teaching and learning proof
theory.

Key words: theorem proving, implementation algorithms, modal logic, qualita-
tive reasoning

1 Introduction

Automated reasoning is concerned with providing an algorithmic description to a formal
calculus so that it can be implemented on a computer to prove theorems in an efficient
manner. The problem of determining satisfiability and validity of logic formulas has
received much attention by the automated reasoning community due to its important
applicability in industry [18]. In particular, modal logics have many applications in
Computer Science, for example in artificial intelligence, database theory, distributed
systems, program verification, cryptography theory. We focus in this work on the
description of a user-friendly front-end for theorem provers in modal logics. To begin
with, we consider the standard modal logic K, together with two modal logics for order-
of-magnitude qualitative reasoning. This kind of reasoning tries to deal with situations
where the quantitative information is not available or, as humans do in many situations,
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it is better to reason in a qualitative way. A form of qualitative reasoning is order-
of-magnitude-reasoning, where the quantitative information is substituted by a finite
number of qualitative classes and some relations between the qualitative classes, such
as negligibility, closeness,. . . among others, are defined [19, 21]. Recent applications
of order of magnitude reasoning can be seen, for example, in [4, 16], and multimodal
logics for order-of-magnitude-reasoning have been presented in [6, 7].

The system presented in this paper is based on relational dual tableaux which are
validity checkers [10, 11]. They are extensions of Rasiowa-Sikorski diagrams for first-
order logic [20]. Relational dual tableaux are powerful tools for performing the major
reasoning tasks and have many advantages as their modularity and their easy way to
be implemented.

The details of the implementation of the theorem provers tested with the front-end
can be seen in [5, 9, 15]. A natural improvement to these previous works is to enhance
the interaction with the user during the proof process and specifically, the improvement
of the graphical aspect of the interface. The aim is to develop a user-friendly interface
with enough flexibility to be able to deal with this type of logics.

Many provers have been designed which can deal with modal logics. Very optimised
ones like MSPASS [14] and FaCT [13]; generic logical frameworks like Isabelle [17];
and other approaches offer users the possibility to create a new prover, like LWB [12],
LoTReC [8] LeanTAP [3] and TWB [1]. As far as we know, the provers presented in the
literature are powerful but the mechanism of interaction with the user is poor. As stated
in [2], although efficiency is an important aspect, depending on the intended application,
other qualities can be important, such as portability, construction of counter-models,
user-friendliness, or small size. In this line, our provers have been developed in Prolog
and try to take advantage of the powerful capabilities of this language: fast prototyped,
modular, and extensible to other modal logics.

In this paper, we present a front-end proving environment for three theorem provers
we have developed in Prolog. These three logics are the modal logic K and two multi-
modal logics for order-of-magnitude reasoning. This front-end can be easily extended
with other theorem provers designed in Prolog. We believe this system could be useful
for both research and educational applications, that is, as a tool for researchers and for
teaching and learning proof theory. For example, by using its trace mode, it explains
step by step the full process of the proof, indeed, it is very intuitive to see in every
step which rule has been applied and how it works. We emphasize that the user can
introduce friendly a formula for the logic considered using the virtual keyboard. Then,
the prover tries to prove the formula and renders the result to the front-end. The
environment collects the information and the user can analyze the proof process.

2 The front-end for modal logics

We now present a front-end for the provers cited above. All these provers are much
easier to be understood and adapted, because they have been developed in Prolog and
they take advantage of the powerful capabilities of this language.
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Figure 1: The front-end for modal logic K

Firstly, we select the prover and configure the path in the Configuration menu.
Figure 1 shows the interface for proving formulas using the prover developed for the
modal logic K.

The front-end has the capability of open-edit-save formulas using this intuitive
user interface and can be extended easily to other languages. This keyboard can be
modified by the user: adding-removing buttons and connecting the new button with
the corresponding Prolog predicate used in the prover.

Formulas are represented by trees and the translation to other formats is possible
by reading the tree in different ways. For instance, a translation to or from Latex is
possible due to the easy representation used for the front-end.

The front-end connects with Prolog and the prover tries to satisfy the formula
edited using the keyboard or opened from a file. Finally, it collects and summarizes
the results obtained by the prover.

In Figure 2, the prover renders the results of the automatic application of the rules
described on the specific prover.

In the left area, the front-end presents the time used in the proof. Below the
time, the variables used for the proof are shown. This information is important for the
researcher. We can see that this formula is valid (the prover has closed all the leaves of
the tree). Finally, on this area, the user can see the order of the rules applied in order
to prove the formula.

The front-end summarizes the work of the prover and presents in the used rules

predicate of Prolog a trace of the proof process. This mechanism of explanation may
provide an important educational function. In Figure 2, the user can see the order of
application of the rules: union rule on leaf [1] applied to a formula that appears later,
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Figure 2: The front-end presents the results

then union rule on leaf [1] applied to other formula, then not2 rule on leaf [1] applied
to other formula, etc.

To improve the explanation, we can see in the central area the axiomatic sets found
in order to close the leaves. For instance, in Figure 2 we can see that the prover has
applied the k2 rule that divides a node in two sub-leaves. In the leaves [1,1] and
[1,2] (successors from [1]) the prover detects two axiomatic sets and then these leaves
are closed.

Moreover, in the right area, the front-end summarizes the information about the
number of leaves of the tree, the number of closed leaves, the tree height and the rules
applied. Below this information, the prover shows step by step how the rules have been
applied, and presents the formulas involved in each application. This is the part of the
front-end that we consider more useful for educational applications.

Finally, the result of the proof process can be saved in a log file from the front-end.
The tool can be used for other similar provers developed in Prolog. We have tested the
front-end those provers presented in [5, 9, 15]. We have extended the virtual keyboard
in order to be used for the three provers in an easy way.
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The front-end is extensible and we can add a new prover to the front-end indicating,
in the configuration menu, the path of the prover. Moreover, the virtual keyboard can
be adapted to manage the new logic and new symbols could be added.

3 Conclusions and future work

We have presented a front-end for some implementations of modal logic provers devel-
oped in Prolog. A general weakness of automated theorem provers, specially for modal
logics, is the difficulty to communicate and interact with the user. We show a flexible
front-end with capabilities of adaption to other similar provers developed in Prolog.
The front-end allows us to introduce the formulas either from a virtual keyboard or
from a file. In the interface we have the typical functions to manage the edited formu-
las: open, save, etc. Finally, the results of the proof process are shown and the user is
informed about the applied rules, the axiomatic sets found in order to close the leaves
of the tree, the number of leaves of the tree, the height of the tree, etc.

As extension of this work, we are improving the front-end with graphic capabilities
for a better interaction with the user. The proof process will be showed in a tree and
the user could analyze the application of the rules in a friendly way. Moreover, an
automatic generator of formulas and a translation mechanism of our formulas to the
typical format used for other provers is being implemented.
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Abstract

Expressions for unipolar charge transport in single layer organic diode with
field and carrier density dependent mobility are obtained. These relations, when
combined, give the exact J −V characteristic curve, parametrically in the value of
the electric field at the ejecting electrode.

Key words: organic semiconductor devices, mobility

1 Introduction

The charge transport in doped polymers has been attracting physicists attention for
many years now. For instance H. Bassler has intensely addressed the charge transport
in "inert" polymer matrices doped with active molecules. Of particular relevance was
the report in 1990 [J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K.
Mackay, R.H. Friend, P.L. Burn and A.B. Holmes, Nature 347 (1990), p. 539.] of
electroluminescence observation in conjugated luminescent polymers. Besides bipolar
charge transport, required to create the luminescent excited states, charge injection is
the other phenomenon determining the current flow across such polymeric light-emitting
devices. In view of the many parameters affecting charge injection and transport in such
devices a strong effort has been put in developing models taking into account as many
of such parameters as possible. In view of the huge task, and the complexity of these
systems, the modelling of unipolar charge injection and transport is a very helpful
approach. In this communication, we address the problem of unipolar charge transport
in an organic diode, which, in the simplest single-layer type of structure, consists on an
organic semiconductor, either a low molecular weight material or a polymer, in between
a transparent anode, usually indium-tin oxide, ITO, and a metallic cathode.
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2 Model

The starting point for this study is the drift equation for the constant hole density
current (which means that under applied voltage, the electron current is negligible)[1]

J = qp (x)µ (x)E (x) , (1)

and the Poisson equation
dE (x)

dx
=
q

ε
p (x) , (2)

where p (x) is the carrier density at x distance from the injecting contact, E (x) is the
electric field, e = ereo the permittivity of the organic semiconductor, and q the positive
elementary charge. Here the mobility, µ (x) , is position dependent through its electric
field dependence [1] and also, as suggested by Monte Carlo simulations [2], through
its local charge carrier density dependence: µ (x) = µ (p (x) , E (x)). Considering si-
multaneous dependence of the mobility on the electric field of Poole-Frenkel type and
dependence on the charge density as in [3] we take

µ (x) = a p (x)b exp
(
γ
√
E (x)

)
, (3)

where a and b are positive constants. With this expression for the mobility, and dropping
the spatial dependence, equation (1) takes the form

J = qa pb+1E exp
(
γ
√
E
)
, (4)

and from (2) we arrive at

dx =
ε

q

(
J

qa

)− 1
b+1

E
1

b+1 exp

(
γ

b+ 1

√
E

)
dE. (5)

Integrating (5) across the organic material we obtain

L =
ε

q

(
J

qa

)− 1
b+1

E(L)ˆ

E(0)

E
1

b+1 exp

(
γ

b+ 1

√
E

)
dE, (6)

where L is the film thickness, x = 0 and x = L are the positions of the injecting (anode)
and collecting (catode) electrodes, respectively. The electric potential, given by

V =

L̂

0

Edx, (7)

can be calculated, using (5), by

V =
ε

q

(
J

qa

)− 1
b+1

E(L)ˆ

E(0)

E1+ 1
b+1 exp

(
γ

b+ 1

√
E

)
dE. (8)
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The integrals in equations (6) and (8) can be expressed in terms of incomplete gamma
functions Γ [4], since

ˆ
Eα exp

(
β
√
E
)
dE = 2(−β)−2(1+α)Γ

[
2 + 2α,−

√
Eβ
]
,

making possible to obtain the exact solution for the J−V characteristic, parametrically
in E(L). For some particular values of b, γ and for some limit values of the electric field
it is possible to obtain other models in use [5] and explicit expressions for J(V ).
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Abstract

In this paper a class of singular free boundary value problems arising in plasma
physics is considered. Taking into account the behavior of the solution in the
neighborhood of the singular points, a smothing variable substitution is proposed
in order to avoid the decreasing of the convergence order of the finite difference
scheme caused by the presence of singularities. Numerical results are presented
and discussed.
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1 Introduction

Here we consider the following nonlinear second order differential equation

(
∣∣y′∣∣m−2

y′)′ +
N − 1
x

∣∣y′∣∣m−2
y′ + f(y) = 0, 0 < x < +∞, (1)

where we assume N ≥ 2, m > 1 and

f(y) = ayq − byp, (2)

p < q and a, b > 0.
We look for a real M > 0 and a positive solution of this equation satisfying the

following boundary conditions

y′(0) = 0, y(M) = y′(M) = 0, M > 0, (3)

This kind of problems arise when we are looking for radial solutions of

4my = f(y), (4)
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in a ball B(0,M) ⊂ RN , where 4my = div(|Dy|m−2Dy) is the degenerate m-Laplace
operator.

When m = 2, equation (4) reduces to 4y = f(y), where 4 is the classical Laplace
operator. In this case, the existence of solutions, under different kinds of boundary
conditions, was investigated by several authors. The authors of [9], [10], [13], [19],
among others, have considered the regular case, when f is smooth in some sense; for
results in the case of singular f , see [1], [3], [4], [5], [7], [18] and the references there. In
[8], the authors have studied the case of the degenerate Laplacian (m > 1), discussing
both the cases of boundary value problems on the half-line and free boundary problems.

According to Corollary 1 of [8], problem (1), (3) has a positive solution for some
M > 0 provided either N ≤ m,−1 < p < m− 1 or N > m,−1 < p < m− 1, q < σ, σ =
(m−1)N+m

N−m .

When m = 2, p = 1 − α, q = 1, a = 1 and b = 1
α , 1 < α < 2, the solution of

problem (1), (3) is related to the blow-up of self-similar solutions of a singular nonlinear
parabolic problem arising in the study of force-free magnetic fields in a passive medium
(see, for example [14], [15] and the references therein). The case m = 2, q = 1

2 and
p = 0, problem (1), (3) has been recently proposed as a simple model for the Tokamac
equilibria with magnetic islands, [16]. This particular problem and problems of the
type (1), (3) with m = 2 and f(y) = ayq − byp, 0 ≤ p < q, a, b > 0 which are singular
only at x = 0, have been treated in [11], where the authors determined one-parameter
family of solutions describing the behavior of the solution in the neighborhood of the
singular point. Based on these families they constructed a shooting algorithm that
allowed them to compute the solution accurately. In [17] the authors extended these
results to the case where m > 1 and −1 < p < q and implemented not only a shooting
algorithm but also a finite difference method that took into account the behavior of
the solution near the singular points. Even so, in some cases the convergence order of
that finite difference scheme became very low.

Here, based on the asymptotic expansion of the solution in the neighborhood of
the singularities, we propose a variable substitution and implement a finite difference
method whose numerical results suggest quadratic convergence.

A similar approach was used in [12] where a singular boundary value problem,
defined on an specified and limited domain, was analysed.

Since equation (1) may be written in the form

y′′ = − 1
m− 1

(
N − 1
x

y′ − f(y)
|y′|m−2

)
(5)

we can predict two singular points: the problem will be singular at the origin due to
the division by x, and singular at both endpoints, when m > 2, due to the division
by |y′|m−2. On the other hand, the problem will be singular at x = M , whenever p
or q are negative, taking (2) into account. This will be explained in detail in the next
section.
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2 Behavior of the solution near the singular points

In [17] the following theorems were proved:

Theorem 2.1 Let N ≥ 2, m > 1 and −1 < p < q. For each y0 > 0, problem

(
∣∣y′∣∣m−2

y′)′ +
N − 1
x

∣∣y′∣∣m−2
y′ + ayq − byp = 0, 0 < x < +∞, (6)

y(0) = y0, y′(0) = 0, (7)

has, in the neighborhood of x = 0, a unique holomorphic solution that can be represented
by

y (x, y0) = y0 −
m− 1
m

(
ayq0 − by

p
0

N

) 1
m−1

x
m

m−1

1 +
+∞∑

l=0,k=0,l+k≥1

gl,kx
l+k m

m−1

 ,
0 ≤ x ≤ δ (y0) , δ (y0) ≥ 0,

where the coefficients gl,k depend on m, p, q, a, b, N and y0.

Theorem 2.2 Let N ≥ 2, m > 1, −1 < p < q and m − 1 − p > 0. For each M > 0,
the problem

(
∣∣y′∣∣m−2

y′)′ +
N − 1
x

∣∣y′∣∣m−2
y′ + ayq − byp = 0, 0 < x < +∞,

y(M) = y′(M) = 0,

has, in the neighborhood of the possible singular point x = M , a unique holomorphic
solution that can be represented by

y (x,M) = CM (M − x)
m

m−1−p

1 +
+∞∑

l=0,j=0,l+j≥1

Gl,j(M − x)l+j
m(q−p)
m−1−p

 ,
0 ≤ x ≤ δ (M) , δ (M) ≥ 0,

where CM =
(

b(m−1−p)m

mm−1(m−1)(p+1)

) 1
m−1−p and the coefficients Gl,j depend on m, p, q, a, b,

N and M .

According to Theorem 2.1, in the neighborhood of x = 0, the solution behaves as
the function

y0 + C0x
k1 ,

where k1 = m
m−1 and C0 is a constant depending on y0, m, N , p, q, a and b, and

therefore it is easy to see, that near the origin the second derivative of the solution is
bounded whenever k1 ≥ 2 which is equivalent to say that m ≤ 2.

On the other hand, according to Theorem 2.2, in the neighborhood of x = M , the
solution behaves as

CM (M − x)k2 ,
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where k2 = m
m−1−p and CM is a constant depending on m, p and b. Consequently,

near the unknown boundary, the second derivative of the solution is bounded whenever
k2 ≥ 2, or equivalently, whenever m ≤ 2(1 + p).

In summary, problem (1), (3) has a singularity at x = 0 if m > 2 and a singular
point at x = M if m > 2(p+ 1).

3 A finite difference scheme

In this section we focus on the case m = 2, that is the case where the m-Laplacian
operator reduces to the classical one, and problem (1), (3) has known applicatons in
physics. From the mathematical point of view, the case m 6= 2 is more interesting
but much more complicated since the classical Laplacian, which is a linear operator is
replaced by a nonlinear one. Theregore, we just leave here some ideas for the numerical
treatment of problem (1), (3) for any m > 1.

First, let us recall that since we have a free boundary problem we have to approx-
imate not only the solution y but also the endpoint M where certain conditions are
imposed. Second, if we intend to implement a finite difference scheme, the natural first
step is to perform the variable substitution z = x

M , for instance, in order to obtain
a boundary value problem in the interval [0, 1]. Problem (1), (3) rewrites in the new
variable z, considering m = 2, in the form

ÿ +
N − 1
z

ẏ + λ(ayq − byp) = 0, 0 < z < 1 (8)

ẏ(0) = 0 (9)
y(1) = ẏ(1) = 0 (10)

where λ = M2 and ẏ denotes the derivative of y with respect to z.
Taking into account the conclusions of the last section, since m = 2, we have at

most one singular endpoint, which is now transfered to z = 1 and this happens if p < 0.
In adition, as z → 1−, the solution behaves as C(1−z)k2 where C is a positive constant
and k2 = 2

1−p . Note that if p < 0, the second derivative of the solution becomes
unbounded near z = 1, but if we perform the variable substitution

t = 1− (1− z)
k2
2 , (11)

near t = 1 the solution behaves as C(1− t)2, and therefore the second derivative of the
solution remains bounded in the neighborhood of that point.

Let us remark that we could instead perform the variable substitution t̃ = (1−z)
k2
2

to achieve analogous conclusions, the difference is that the possible singular point z = 1
would be transfered to the origin.

In this new variable t, problem (8)-(10) rewrites

k2

2
(1− t)1−

2
k2

[
y′′
k2

2
(1− t)1−

2
k2 + y′

((
1− k2

2

)
(1− t)−

2
k2 +

N − 1

1− (1− t)
2

k2

)]
(12)
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+λ (ayq − byp) = 0, 0 < t < 1
y′(0) = 0 (13)
y(1) = 0 (14)
y′(1) = 0 (15)

where, for simplicity, we use once again the notation y′, but now to denote the derivative
of y with respect to t.

In the interval [0, 1], we introduce an uniform grid of constant stepsize h = 1
n ,

defined by the (n + 1) gridpoints ti = ih, i = 0, . . . , n. At each i = 0, . . . , n, let
yi denote an approximation of y(ti). In order to approximate the first and second
derivative of the solution at each gridpoint ti, i = 1, . . . , n− 1, we use the second order
formulas

y′(ti) '
y(ti+1)− y(ti−1)

2h
,

y′′(ti) '
y(ti+1)− 2y(ti) + y(ti−1)

h2
,

and

y′(0) =
1

2h
(−3y(0) + 4y(h)− y(2h)) +O(h2)

y′(1) =
1

2h
(3y(1)− 4y(1− h) + y(1− 2h)) +O(h2).

to provide approximations for the first and second derivatives of the solution at t = 0
and t = 1, respectively.

Hence, we obtain the following discretization of problem (12)-(15):

−3y0 + 4y1 − y2 = 0
k2

2
(1− ti)

1− 2
k2

[
(yi+1 − 2yi + yi−1)

k2

2
(1− ti)

1− 2
k2 +

h

2
(yi+1 − yi−1)×

×

((
1− k2

2

)
(1− ti)

− 2
k2 +

N − 1

1− (1− ti)
2

k2

)]
+ λh2 (ayqi − by

p
i ) = 0

yn = 0
3yn − 4yn−1 + yn−2 = 0

We used the Newton’s method to solve these n + 2 equations on the n + 2 unknowns
y0, y1, . . . , yn, λ, using the parameters estimates for y0 and M =

√
λ, determined in

[11], to provide an initial approximation. Let us explain this with more detail. In [11]
the authors proved that if

y0 = y(0) > β0 =
(
b(q + 1)
a(p+ 1)

) 1
q−p

,

a result that was easily deduced from Lemma 1.2.1 of [6]. Moreover they have shown
that the quantity

Mmin =

{ √
2N b(p−1)

a(q−1) , if 0 ≤ p < q < 1;√
2N/a, if q = 1, p = 0.
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is a lower bound for M .

Taking this into account we use as initial guesses for y0, yi, i = 1, 2, . . . , n−1, and λ,
the values β0, r(ih), i = 1, 2, . . . , n− 1, and M2

min, respectively, where r(t) = y0(1− t).
Several numerical experiments were carried out considering different values of the

parameters in the case where we know that the unknown boundary is a singular point
and, for each case, we have determined estimates for the convergence order of the
method (EOC). In what follows we give special attention to the application problem
on force-free magnetic fields, mentioned in the introduction.

h y0 M
1
50 5.346587922 4.224300407
1

100 5.346011684 4.225902674
1

200 5.345865329 4.226293630
1

400 5.345828568 4.226388647
EOC 1.99 2.03

Table 1: Approximate values of y0 and M for m = 2, N = 3, a = 1, α = 1.1, b = 1
α ,

p = 1− α and q = 1

h y0 M
1
50 5.256595222 3.824463141
1

100 5.254723192 3.825765281
1

200 5.254252840 3.826077134
1

400 5.254134855 3.826152600
EOC 2.00 2.05

Table 2: Approximate values of y0 and M for m = 2, N = 3, a = 1, α = 1.3, b = 1
α ,

p = 1− α and q = 1

h y0 M
1
50 5.630343553 3.544298837
1

100 5.626305751 3.545518728
1

200 5.625303291 3.545813151
1

400 5.625055855 3.545885122
EOC 2.01 2.04

Table 3: Approximate values of y0 and M for m = 2, N = 3, a = 1, α = 1.5, b = 1
α ,

p = 1− α and q = 1

We also present some numerical results when both exponents p and q are negative.
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h y0 M
1
50 6.710094248 3.342951097
1

100 6.700152866 3.344179828
1

200 6.697724591 3.344478527
1

400 6.697131784 3.344551663
EOC 2.03 2.04

Table 4: Approximate values of y0 and M for m = 2, N = 3, a = 1, α = 1.7, b = 1
α ,

p = 1− α and q = 1

h y0 M
1
50 12.41897365 13.09140957
1

100 12.37618599 13.07500708
1

200 12.41897365 13.09140957
1

400 12.43277829 13.09661188
EOC 1.60 1.63

Table 5: Approximate values of y0 and M for m = 2, N = 3, a = 1, b = 1, p = −0.5
and q = −0.1

4 Conclusions and future work

In this work a smothing variable substitution was proposed for problem (1), (3), in
the particular case m = 2. The purpose of doing that was to avoid the decreasing
of the convergence order of finite difference methods, in the presence of singularities.
Comparing the results obtained here with those obtained in [17], in the cases were both
algorithms, are applicable, we can observe an improvement of the convergence order.
For example, in the case p = −0.5, q = 1, N = 3,m = 2, a = b = 1, the estimated
convergence order is 2.01 when evaluating y0 using the present algorithm, and only 0.7,
without variable substitution. When evaluating M , the estimated convergence orders
are 2.03 and 0.47, repectively. Moreover, the algorithm without variable substitution
fails in many of the cases presented in the present paper, due to numerical instabil-
ity. Concerning the case m 6= 2, and proceeding accordingly to what we have done
in previous works, the natural way to proceed is to find suitable smoothing variable

h y0 M
1
50 13.34044610 16.47456975
1

100 13.58236913 16.59598170
1

200 13.67567476 16.64203302
1

400 13.70992868 16.65874200
EOC 1.41 1.43

Table 6: Approximate values of y0 and M for m = 2, N = 3, a = 1, b = 1, p = −0.5
and q = −0.2
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h y0 M
1
50 14.65705132 22.29501386
1

100 15.10417565 22.59892593
1

200 15.30338410 22.73246382
1

400 15.38766255 22.78849085
EOC 1.20 1.22

Table 7: Approximate values of y0 and M for m = 2, N = 3, a = 1, b = 1, p = −0.5
and q = −0.3

substitutions depending on the number of singular points. Let us be more precise:
if m < 2, since we have no singularity at the origin, and if m > 2(1 + p), we can
use the same smoothing variable substitution (11). On the other hand, if m > 2 and
m ≤ 2(1 + p), then the only singular point of problem (1), (3) is the origin, the result
of Theorem 2.1 suggests the variable substitution t = z

k1
2 , where k1 = m

m−1 . Finaly, if

both endpoints are singular, then we could use t =
(

1− (1− z)
k2
2

) k1
2 .

We have experimented all these but we must say that the numerical results were not
satisfactory. Althought we have obtained reasonable results in case m < 2, whenever we
considered the case m > 2 the method became higly unstable and extremely sensitive
to initial approximations. We must recall that in [17] we were not able to prove that
the estimate Mmin that we there have determined, is in fact a lower bound for M , as
we have done in case m = 2. Hence, the case m 6= 2 deserves further investigation and
will be the subject of future work.

Acknowledgements

L. Morgado acknowledges financial support from FCT, Fundação para a Ciência e
Tecnologia, through grant SFRH/BPD/46530/2008.

References

[1] H. Chen, On a singular nonlinear elliptic equation, Nonlin. Anal., TMA 29 (1997),
337–345.

[2] H. Chen, Analysis of blow-up for a nonlinear degenerate parabolic equation, J.
Math. Anal. Appl. 192 (1995), 180–193.

[3] M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem
with a singular nonlinearity, Comm. PDE 2 (1977), 193–222.

[4] J. I. Diaz, J. M. Morel and L. Oswald, An elliptic equation with singular
nonlinearity, Comm. PDE 12 (1987), 1333–1344.

@CMMSE                                                               Page   674  of 1328                                               ISBN 13: 978-84-613-5510-5
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Abstract

Complex networks have gathered enormous interest in the last two decades as
researchers realise the major role they take in a multitude of areas [1, 2, 3, 4, 5, 6].
Complex technological networks represent a growing challenge to support and man-
tain [7, 8, 9, 10], as their number of elements become higher and their interdepen-
dencies more involved. On the other hand, for networks that grow in a descen-
tralized manner, it is possible to observe certain patterns in their overall structure
that may be taken into account for a more tractable analysis [11, 12, 13, 14]. An
example of such a pattern is the spontaneous formation of communities or modules
[15]. An important question regarding the detection of communities is if these are
really representative of any internal network feature. In this work, we explore the
community structure of a real telecommunication software complex network, and
correlate the modularity information with the internal dynamical processes that
the network is designed to support. Our results show that the correlation between
community structure and internal dynamical processes is remarkable, supporting
the fact that a community division of this complex network is helpful in the assess-
ment of the underlying dynamical structure, and thus is a useful tool to achieve a
simpler representation of the complexity of the network.

Key words: template, instructions
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Abstract

The problem of the estimation of a population proportion using auxiliary infor-
mation has been recently studied by Rueda et al. (2010), which proposed several
ratio estimators of the population proportion and studied some theoretical proper-
ties. In this paper, we define a new ratio estimator based on a linear combination
of two ratio estimators defined by Rueda et al. (2010). The variance of the new
estimator is calculated and it is used to obtain the optimum value into the linear
combination in the sense of minimal variance. Theoretical and empirical studies
show that the suggested ratio estimator performs better than alternative estima-
tors.

Key words: Auxiliary information, ratio type estimator
MSC 2000: 62D05

1 Introduction

In the presence of auxiliary information, there exist many design-based approaches (see
[3], [5], [1]) to improve the precision of estimators in comparison to customary methods,
which do not involve auxiliary information. However, techniques involving auxiliary
information have been discussed for quantitative variables, and the extension to the
estimation of a population proportion requires further investigation. For example, one
should be aware of the risks when confidence intervals are constructed for a population
proportion, since limits outside [0, 1] could be achieved.

We consider the scenario of a finite population U = {1, . . . ,N} containing N units.
Let A1, . . . , AN denote the values of a attribute of interest A, where Ai = 1 if ith unit
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possesses the attribute A and Ai = 0 otherwise. Let B denote an auxiliary attribute
associated with A and values given by B1, . . . , BN . We also assume that a sample s, of
size n, is selected from U according to the well known simple random sampling without
replacement (SRSWOR).

The aim is to estimate the population proportion of individuals that posses the
attribute A, i.e. PA = N−1

∑N
i=1 Ai. Assuming a finite population, the naive estimator

of PA, which makes no use of the auxiliary information, is given by p̂A = n−1
∑

i∈s Ai.

We assume that the population proportion of individuals that posses the attribute
B, PB = N−1

∑N
i=1 Bi, is known from a census or estimated without error.

Rueda et al (2010) defined the following ratio estimator for PA:

p̂r = R̂PB , (1)

where R̂ = p̂A/p̂B is an estimator of the population ratio R = PA/PB and p̂B =
n−1

∑
i∈s Bi is the sample proportion of individuals that posses the auxiliary attribute

B.

Let Ac and Bc denote the complementary attributes of A and B, and consider the
population two-way table given by

B Bc

A N11 N12 N1·

Ac N21 N22 N2·

N
·1 N

·2 N

(2)

where N1. =
∑N

i=1 Ai is the number of units in the population that posses the attribute
A, N2. is the number of units in the population that not to posses the attribute A,
etc. Analogously, N11 is the number of units in the population that simultaneously
posses the attributes A and B, N12 is the number of units in the population that
simultaneously posses the attributes A and Bc, etc. Classification (2) can be also
defined at the sample level as

B Bc

A n11 n12 n1·

Ac n21 n22 n2·

n
·1 n

·2 n

(3)

The estimator p̂r is a biased estimator of PA and the asymptotic variance of p̂r is
given by

AV (p̂r) =
N − n

(N − 1)n

(
PAQA + R2PBQB − 2Rφ

√
PAQAPBQB

)
, (4)

where

φ =
N11N22 − N12N21√

N1·N2·N·1N·2

is the Cramer’s V coefficient based on the two-way classification (2).
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We observe that the customary estimator p̂A can be also obtained as p̂A = 1− q̂A,
where q̂A = n−1

∑
i∈s Ac

i , hence p̂A has the same performance in the estimation of
PA than the performance of q̂A in the estimation of QA. However, this property is
not satisfied by p̂r, i.e. it can be easily seen that p̂r 6= 1 − q̂r, where q̂r = R̂cQB

and R̂c = (q̂A/q̂B). For this reason, Rueda et al. (2010) defined the ratio estimator
p̂r.q = 1 − q̂r for PA and showed that AV (p̂r) < AV (p̂r.q) when PA < PB .

2 The optimum ratio estimator

In this section, we define a new ratio type estimator using a linear combination of
the ratio estimators p̂r and p̂r.q previously defined. The choice of the optimum weight
value into the linear combination is achieved by minimizing the variance. Finally, some
interesting theoretical properties are also obtained.

The new ratio type estimator is

p̂r.w = wp̂r + (1 − w)p̂r.q (5)

where 0 ≤ w ≤ 1.

Theorem 1

The optimum value for w in the sense of minimum variance into the class of
estimators p̂r.w is

wopt =
AV (p̂r.q) − cov(p̂r, p̂r.q)

AV (p̂r) + AV (p̂r.q) − 2cov(p̂r , p̂r.q)
. (6)

Proof

Next, we determine the optimum value of w by minimizing the variance of p̂r.w.
The asymptotic variance of p̂r.w is given by

AV (p̂r.w) = AV (wp̂r + (1 − w)p̂r.q) =

= w2AV (p̂r) + (1 − w)2AV (p̂r.q) + 2w(1 − w)cov(p̂r, p̂rq).

By denoting V1 = AV (p̂r), V2 = V (p̂r.q) and C = cov(p̂r, p̂r.q), the variance of p̂r.w

can be expressed as

AV (p̂r.w) = w2V1 + (1 − w)2V2 + 2w(1 − w)C.

The first derivative of AV (p̂r.w) with respect to w is

∂AV (p̂r.w)

∂w
= 2wV1 − 2(1 − w)V2 + 2(1 − 2w)C = 0;
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wV1 − (1 − w)V2 + (1 − 2w)C = 0;

wV1 − V2 + wV2 + C − 2wC = 0;

w(V1 + V2 − 2C) = V2 − C;

wopt =
V2 − C

V1 + V2 − 2C
.

The second derivative is

∂AV (p̂r.w)

∂2w
= 2V1 + 2V2 − 4C = 2(V1 + V2 − 2C) = 2AV (p̂r + p̂r.q) > 0,

and we conclude that wopt really minimizes AV (p̂r.w).
�

Therefore, the optimum ratio estimator in the sense of minimum variance into the
class (5) is

p̂r.OPT = woptp̂r + (1 − wopt)p̂r.q.

In practice, p̂r.OPT could be unknown, since wopt depends on population variances,
which are generally unknown. In this situation, we can use the estimator

p̂r.opt = ŵoptp̂r + (1 − ŵopt)p̂r.q, (7)

where

ŵopt =
V̂ (p̂r.q) − ĉov(p̂r, p̂r.q)

V̂ (p̂r) + V̂ (p̂r.q) − 2ĉov(p̂r, p̂r.q)
. (8)

Following Särndal et al. (1992) pg 372, the variance of p̂r.w can be expressed as

AV (p̂r.w) = (V1 + V2 − 2C)

(

w −
V2 − C

V1 + V2 − 2C

)2

+
V1V2 − C2

V1 + V2 − 2C
,

and we can deduce that the variance of the optimum estimator is

AV (p̂r.OPT ) =
V1V2 − C2

V1 + V2 − 2C
.

An estimator of the variance of the optimum estimator can be obtained as

V̂ (p̂r.opt) =
V̂ (p̂r)V̂ (p̂r.q) − ĉov

2(p̂r, p̂r.q)

V̂ (p̂r) + V̂ (p̂r.q) − 2ĉov(p̂r, p̂r.q)
.

We observe that AV (p̂r.OPT ) depends on the covariance C = cov(p̂r, p̂r.q). Theorem
2 gives an expression for C.

Theorem 2
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The covariance between the ratio estimators p̂r and p̂r.q is

cov(p̂r, p̂r.q) =
N − n

N − 1

1

n

(
PAQA + RRcPBQB − (R + Rc)φ

√
PAQAPBQB

)
,

where Rc = QA/QB is the population ratio of the complementary proportions of the
attributes A and B.
Proof

Using Taylor series (see Särndal et al. 1992, pg 178), R̂ can be expressed as

R̂ ∼= R +
1

nPB

∑

i∈s

(Ai − RBi) = R +
1

PB

(p̂A − Rp̂B),

and similarly

R̂c
∼= Rc +

1

QB

(q̂A − Rcq̂B).

Using the previous expressions we obtain

C = cov(p̂r, 1 − q̂r) = −cov(p̂r, q̂r) = −cov(R̂PB , R̂cQB) =

= −PBQBcov(R̂, R̂c) = −PBQBcov

(

R +
1

PB

(p̂A − RP̂B), Rc +
1

QB

(q̂A − Rcq̂B)

)

=

= −cov(p̂A − Rp̂B, q̂A − Rcq̂B) =

= −[cov(p̂A, q̂A) − Rccov(p̂A, q̂B) − Rcov(p̂B , q̂A) + RRccov(p̂B , q̂B)] =

= −cov(p̂A, 1 − p̂A) + Rccov(p̂A, 1 − p̂B) + Rcov(p̂B , 1 − p̂A) − RRccov(p̂B , 1 − p̂B) =

= V (p̂A) − Rccov(p̂A, p̂B) − Rcov(p̂A, p̂B) + RRcV (p̂B) =

= V (p̂A) + RRcV (p̂B) − (R + Rc)cov(p̂A, p̂B) =

=
N − n

N − 1

1

n

(
PAQA + RRcPBQB − (R + Rc)φ

√
PAQAPBQB

)
.

�

An estimator of the covariance cov(p̂r, p̂r.q) is

ĉov(p̂r, p̂r.q) =
1 − f

n − 1

(
p̂Aq̂A + R̂R̂cp̂B q̂B − (R̂ + R̂c)φ̂

√
p̂Aq̂Ap̂B q̂B

)
,
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where

φ̂ =
n11n22 − n12n21
√

n1·n2·n·1n·2
.

Theorem 3

The optimum weight wopt in expression (6) can be expressed as

wopt =
Rc − β

Rc − R
,

where

β =
cov(p̂A, p̂B)

V (p̂B)
.

Proof

Knowing that

V1 = V (p̂A) + R2V (p̂B) − 2Rcov(p̂A, p̂B),

V2 = V (q̂A) + R2
cV (q̂B) − 2Rccov(q̂A, q̂B) =

= V (p̂A) + R2
cV (p̂B) − 2Rccov(p̂A, p̂B)

and

C = V (p̂A) + RRcV (p̂B) − (R + Rc)cov(p̂A, p̂B),

the numerator and the denominator of wopt in (6) are given by

V2 − C = V (p̂B)(R2
c − RRc) − cov(p̂A, p̂B)[2Rc − (R − Rc)] =

= V (p̂B)Rc(Rc − R) − cov(p̂A, p̂B)(Rc − R) =

= (Rc − R)[V (p̂B)Rc − cov(p̂A, p̂B)]

and

V1 + V2 − 2C = V (p̂B)(R2 + R2
c − 2RRc) − cov(p̂A, p̂B)[2R + 2Rc − 2(R + Rc)] =

= V (p̂B)(Rc − R)2

By replacing these expressions in (6) we obtain

wopt =
V2 − C

V1 + V2 − 2C
=

(Rc − R)[V (p̂B)Rc − cov(p̂A, p̂B)]

V (p̂B)(Rc − R)2
=
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=
V (p̂B)Rc − cov(p̂A, p̂B)

(Rc − R)V (p̂B)
=

Rc − β

Rc − R
.

�

Following Theorem 2, the estimated optimum weight ŵopt given by (8) can be
calculated as

ŵopt =
R̂c − β̂

R̂c − R̂
, (9)

where

β̂ =
ĉov(p̂A, p̂B)

V̂ (p̂B)
.

From expression (9) we conclude that ŵopt = 1, that is p̂r.opt = p̂r, if β̂ = R̂,

whereas ŵopt = 0, that is p̂r.opt = p̂r.q, if β̂ = R̂c. In other words, the ratio estimator p̂r

has a larger weight into the optimum estimator p̂r.opt as β̂ is closer to R̂. On the other
hand, the ratio estimator p̂r.q has a larger weight into the optimum estimator p̂r.opt as

β̂ is closer to R̂c.

Theorem 4

The asymptotic variance of the optimum ratio estimator p̂r.OPT can be calculated
as

AV (p̂r.OPT ) = V (p̂A)(1 − φ2).

Proof

The asymptotic variance of p̂r.OPT is

AV (p̂r.OPT ) =
V1V2 − C

V1 + V2 − 2C
,

where the denominator, as seen in proof of Theorem 2, can be obtained as

V1 + V2 − 2C = V (p̂B)(R − Rc)
2.

Next, we obtain the numerator of AV (p̂r.OPT ). For the sake of simplicity, we denote
VA = V (p̂A), VB = V (p̂B) and CAB = cov(p̂A, p̂B). We had that

V1 = VA + R2VB − 2RCAB,

V2 = VA + R2
cVB − 2RcCAB

and
C = VA + RRcVB − (R + Rc)CAB .
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First,

V1V2 = V 2
A + R2

cVAVB − 2RcVACAB + R2VAVB + R2R2
cV

2
B

−2R2RcVBCAB − 2RVACAB − 2RR2
cVBCAB + 4RRcC

2
AB.

The square of the covariance can be expressed as

C2 = V 2
A + R2R2

cV
2
B + (R + Rc)

2C2
AB + 2VARRcVB

−2(R + Rc)VACAB − 2RRc(R + Rc)VBCAB =

= V 2
A + R2R2

cV
2
B + R2C2

AB + R2
cC

2
AB + 2RRcC

2
AB + 2VARRcVB

−2RVACAB − 2RcVACAB − 2R2RcVBCAB − 2RR2
cVBCAB.

Then, the numerator of AV (p̂r.OPT ) is

V1V2 − C2 = VAVB(R2
c − 2RRc + R2) − C2

AB(R2 + R2
c − 2RRc) =

= (VAVB − C2
AB)(R − Rc)

2.

The variance of p̂r.OPT can be also obtained as

AV (p̂r.OPT ) =
VAVB − C2

AB

VB

=
V (p̂A)V (p̂B) − cov(p̂A, p̂B)2

V (p̂B)
. (10)

Replacing V (p̂A), V (p̂B) and cov(p̂A, p̂B) in (10) by their respective expressions
under SRSWOR we obtain

AV (p̂r.OPT ) =
N − n

N − 1

1

n

[
PAQAPBQB − φ2PAQAPBQB

PBQB

]

=

=
N − n

N − 1

1

n
PAQA(1 − φ2) = V (p̂A)(1 − φ2).

�

Theoretical comparison between the ratio estimator p̂r.OPT and the simple expan-
sion estimator p̂A is fairly simple using Theorem 2. In fact, p̂r.OPT is more efficient
than p̂A, since 1−φ2 ≤ 1, and both estimators has the same performance when φ2 = 0.

Using Theorem 2, an estimator of the optimum ratio type estimator variance is

V̂ (p̂r.opt) = V̂ (p̂A)(1 − φ̂2).
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3 Simulation study

In this section, the proposed optimum ratio estimator p̂r.opt is compared numerically
with alternative proportion estimators. Simulation studies are based on several sim-
ulated populations which cover a wide number of possible scenarios, including small
and large proportions, small and large Cramer’s V coefficients between the attribute of
interest and the auxiliary attributes, etc. Simulated populations are briefly described
as follows.

A total of 30 populations of N = 1000 units were generated to study the effect of
different aspects on the estimators of a population proportion. Populations were gen-
erated as a random sample of 1000 units from a Bernoulli distribution with parameter
p = {0.1, 0.25, 0.5, 0.75.0.9}, and the attributes of interest were thus achieved with the
aforementioned population proportions. Auxiliary attributes were also generated by
using the same distribution, but we randomly change a given proportion of values in
order to the Cramer’s V coefficient between the attribute of interest and the auxiliary
attribute goes from 0.5 to 0.9. Since PA < PB when PA = 0.25, we also generated
populations with PA = 0.25 and PA > PB , which allow us to study the effect of the
relation between PA and PB on the various estimators, specially on the estimator p̂r.

For each of the 30 populations, D = 10000 samples were selected to compare the
various estimators in terms of relative bias (RB) and relative efficiency (RE), where

RB =
E[p̂] − PA

PA

; RE =
MSE[p̂]

MSE[p̂A]
,

p̂ is a given estimator and the empirical expectation (E[·]) and the empirical mean
square error (MSE[·]) are given by

E[p̂] =
1

D

D∑

d=1

p̂(d) ; MSE[p̂] =
1

D

D∑

d=1

(p̂(d) − PA)2,

p̂(d) denotes the estimator p̂ calculated at the dth simulation run. Values of RE less
than 1 indicate that the estimator p̂ is more efficient than the customary estimator p̂A,
which is considered as the reference estimator in the efficiency studies.

We considered the proposed optimum ratio estimator p̂r.opt, the ratio estimators p̂r

and p̂r.e proposed by Rueda et al. (2010) and the difference estimator given by

p̂d = p̂A + (PB − p̂B).

Values of RB in this simulation study are within a reasonable range, i.e, they
are all less than 1% and are thus omitted. Figure 1 reports the values of RE for
the various estimators and samples selected under SRSWOR. We observe that the
proposed optimum estimator is more efficient than alternative estimators, whereas other
estimators such as p̂r and p̂d can be less efficient than the customary estimator p̂A.
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4 Figures

Figure 1: Values of Relative Efficiency (RE) for the various estimators of PA. φ goes
from 0.5 to 0.9 and PA goes from 0.1 to 0.9.
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Abstract

We describe a parallel algorithm designed for efficiently performing image sequence
analysis on advanced multicore processors. The idea is to partition the sequence
into ordered subsets of frames and to perform the operations on these subsets by
overlapping the execution of the tasks via pipelining. As is usual, the effectiveness
of any pipelined computation depends on the load balance between the involved
tasks. In order to improve the performance gain of the pipelined algorithm tasks are
distributed among multicore processors. Finally, by using the scale-space frame-
work, each task is described in terms of non linear time dependent PDEs sharing
common computational kernels. A case study is described: the segmentation of
ultrasound sequences. Experiments on real data are carried out using a multicore-
based parallel computer system.
Key words: Image Sequence, Pipelined computations, Multicore processors.

MSC 2000: 65J22 Inverse problems, 65Y05 Parallel computation, 68U10 Image
processing, 68W10 Parallel algorithms.

1 Introduction

This paper is motivated by ongoing research activities where the authors are being
involved during last years [2, 3, 4]. We describe a quite general computing methodol-
ogy for an efficient image sequence analysis. Main idea is to combine the functional
parallelism underlying pipelined computations and data parallelism underlying parallel
computing algorithms [1, 5].
Given an image sequence, assume that we need to apply on each frame a certain num-
ber of transformations. For instance, we need to reduce the noise, then to compute
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the motion field and, finally, to track the movement of some contours present on each
frame. In the following we refer to these operations as tasks. We assume that there is
a strong dependence between these tasks. More precisely, each task acts on the output
produced by the previous one. As a consequence, the tasks do not act independently of
each other, instead, they operate on each frame of the sequence following a prescribed
order. This assumption is quite natural in sequence analysis because of the high tempo-
ral correlations that exist between frames. This occurs, for instance, in the space-time
segmentation as well as in digital film restoration .
Dependence among tasks synchronizes tasks execution in such a way that the overall
computation seems to be intrinsically sequential.
We introduce concurrency during the tasks execution by suitably overlapping tasks exe-
cution via pipelining. Problems with no dependencies run concurrently on the frames of
the sequence. Moreover, in order to reduce synchronization overheads among tasks due
to their load imbalance, each task is further parallelized and executed on multicore pro-
cessors. The approach that we choose for introducing concurrency inside the pipelined
algorithm takes into account both the computational cost of each task and the system
architecture ( a multicore multiprocessor). We consider three parallelization strategies:
first strategy distributed the execution of each task among multiple cores employing a
fine-grained parallelism, second strategy introduces concurrency inside task operations
at a coarser level, and the last one combines the previous two.
Next section describes the way this is obtained and reports the theoretic performance
analysis. Section 3 describes the case study that we consider in order to verify the
feasibility of this approach. Numerical implementation is described in section 4, while
section 5 concludes the paper.

2 The pipelined algorithm PA

Let us give the following:

Definition 1 [image sequence]: Let D ⊂ < be a bounded interval. Given t ∈ D, let
z(t) ≡ (x(t), y(t)) ∈ Ω, where Ω = Ωx × Ωy ⊂ <2 is the image plane1. We define the
image sequence on D as the piecewise smooth function:

I0 : t ∈ D −→ z (t) ∈ Ω −→ I0 (z (t) , t) ≡ I0(t) ∈ <

Let us assume that the interval D consists of FN distinct values, that is:

D = {t1 < t2 < . . . < tFN}

Given ti ∈ D and r ∈ N − {∞}, we assume that on I0(t) we have to perform r tasks,
let us say P1, P2, . . ., Pr, to get Ir(t), more precisely we have:
P ≡ {P1, P2, . . . , Pr}, and:

1The image plane Ω should change with the acquisition time t. In practice, it is the same at each t
because it refers to the rectangular plane of the image acquisition.
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P : I0(t) → Ir(t)

Moreover, we assume that there is a strong dependence between these tasks: each task
Pi, i = 2, . . . , r acts on the output provided by the previous one, i.e. Pi−1. This means
that if we set:

P ≡ Pr ◦ Pr−1 ◦ . . . ◦ P1

then, it is:

P1 : I0(t) −→ P1(I0(t)) ≡ I1(t),
P2 : P1(I0(t)) −→ P2(P1(I0(t))) ≡ I2(t)
............ ........ .......
Pi : Pi−1(Is(t)) −→ Pi(Pi−1(Is(t)) ≡ Ii(t) i = 2, . . . , r , s = 0 . . . , i− 2

In general, we have that:

Is(t) = Ps(Ps−1(. . . (P1(I0(t))) . . .), i = 2, . . . , r , s = 0 . . . , i− 2

A straightforward approach to perform P is based on the execution of the r tasks
P1, . . . Pr on each frame of the sequence I0(t). Schematically, this is described by the
following algorithm:

1. for k = 1, . . . , FN
2. to perform tasks P1, P2, . . . , Pr, onto I0(tk), that is:

2.1 for j = 2, . . . , r
2.2 to compute Ij(tk) = Pj(Pj−1(. . . (P1(I0(tk))) . . .)
2.3 endfor j

3. endfor k

Image Sequence Algorithm A

Of course, in this case the computing time increases as the number of frames to process
and the overall computation may be too expensive for FN →∞.
Consider the ordered subsets Ir

i made of r < FN subsequent frames of the sequence:

Ir
i = {Ii−(r−1)(tk−(r−1)), . . . , Ii−1(tk−1), Ii(tk)}, k = r, . . . , FN, i = 1, . . . , r.

We describe a new approach to perform P which is based on a pipelined computation.
At step k of the pipelined algorithm, the r tasks act concurrently onto the subset Ir

i

made of r consecutive frames, as described in the following way:

1.for k = r, . . . , FN
2. to perform the pipelined computation on the subset Ir

k :
2.1. for i = 1, . . . , r,
2.2. Pi acts onto Ii−1(tk−(i−1))
2.3. endfor i

3. endfor k.

Pipelined Image Sequence Algorithm PA (middle part)
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The main difference between algorithm A and the pipelined algorithm PA relies on the
step 2, i.e. on the execution of the r tasks on a single frame and on the subset Ir

k ,
respectively. While in algorithm A the tasks are necessarily performed in a sequential
way, one after the previous, because they act on the same frame, in the pipelined algo-
rithm PA) the tasks Pi act concurrently on the ordered subset Ir

k , because they act on
different frames. As we will describe later, this approach reduces the overall execution
time by a factor depending on the size of Ir

k .
Let us now describe the first r − 1 steps of the pipelined algorithm PA. As expected,
due to the fact that for k = 1, . . . , r − 1 the number of available frames is less than
the number of tasks to perform on these frames (k < r), only a part of the r tasks Pi

i = 1, . . . , r, may be performed. Indeed, first r − 1 steps represent the start-up time
of the pipelined algorithm. More precisely, it holds:

1. for k = 1, . . . , r − 1
1.1 for i = 1, . . . , k
1.2 Pi acts onto Ii−1(tk−i)

2. endfor k.

Start up of Algorithm PA

At step k = FN of the pipelined algorithm PA, Pr operates onto the frame correspond-
ing to the acquisition time tFN−(r−1). This means that it remains to still process r− 1
frames. This is done within further r − 1 steps, as described in the following:

1.for k = 1, . . . , r − 1,
Pr acts onto Ir−1(tFN−(r−(k+1))).

2. endfor k.

Final stage of Algorithm PA

Hence, the pipelined computation consists of three main stages: the start-up, made of
r − 1 steps, the central computation, made of FN − r + 1 steps, and the final stage,
made of r − 1 steps.

2.1 The Parallel Pipelined Algorithm PPA

We consider three parallelization strategies:

1. first strategy distributes the execution of each task of PA among multiple cores
employing a fine-grained parallelism of PA operations. We refer to this strategy
as: data parallel pipelined algorithm (data PPA),

2. second strategy decomposes the execution of PA among multiple processors in-
troducing concurrency inside PA at a coarser level. We refer to this algorithm as:
functional parallel pipelined algorithm (functional PPA),
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3. the last one combines the previous two. The pipelined algorithm PA is first
decomposed among multi processors (as for the second strategy). Then each
task of PA is decomposed among multi cores (as for the second strategy). This
approach balances the computational load of each task as for the data parallelism
improving performance gain of the functional PPA. We refer to this strategy as:
hybrid parallel pipelined algorithm (hybrid PPA).

2.1.1 Performance analysis

We introduce the following quantities:

• TPi , i = 1, . . . , r: computing execution time needed to perform Pi on one frame,

• T = maxi=1,...,r{TPi}, i = 1, . . . , r: the maximum of TPi , i = 1, . . . , r on one frame

• TPA: execution time of the middle part of PA,

• T fin
PA : execution time of the final stage of PA algorithm,

• T in
PA: execution time of start up of PA algorithm.

• T fun
PPA = T in

PA + T fin
PA +

∑FN
k=r Tmax: computing time of PPA algorithm (without

I/O),

• T data
PPA(nproc): computing time of PPA algorithm (without I/O) on nproc core,

• TFN
seq = FN · ∑r

i=1 TPi : computing time required by a serial image sequence
computation.

• Sdata
nproc = T FN

seq

T data
PPA(nproc)

: speed up of data PPA algorithm on nproc core.

• Sfun
nproc = T FN

seq

T fun
PPA(nproc)

: speed up of functional PPA algorithm on nproc core.

• TPi(nproci): computing time of task Pi on nproci core.

• SPi
nproci

: speed up of task Pi on nproci core.

The following results can be proved:

Proposition 1 (data PPA) It holds that:

Sdata
nproc ≤ Smax

nproc = max{SPi
nproc , i = 1, . . . , r}

Proof:

Sdata
nproc =

TFN
seq

T data
PPA

=
FN ·∑r

i=1 TPi

FN ·∑r
i=1 TPi(nprocs)

=
FN ·∑r

i=1 TPi

FN ·∑r
i=1

TPi

S
Pi
nproc

≤
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≤ FN ·∑r
i=1 TPi

FN ·∑r
i=1

TPi
Smax

nproc

= Smax
nproc ¤

Proposition 1 states that the performance of data PPA is at most equals to the high-
est performance of the r tasks Pi. Then, the highest performance gain we expect from
data PPA equals the maximum number of computing nodes employed for the parallel
execution of each task. Moreover, as it is usual for parallel algorithms implementing
data parallelism, as the processor number grows, overheads predominate causing speed-
up degradation. This means that, in case of a fixed-size application, due to the limited
amount of available parallelism, there exists an optimal number of processing nodes
and each additional processor contributes slightly less or do not.

Concerning the second strategy, it can be proved that:

Proposition 2 (functional PPA): It is:

lim
FN→∞

Sfun
nproc = lim

FN→∞
TFN

seq

T fun
PPA

=
∑r

i=1 TPi

Tmax

Proof:

TFN
seq = FN

r∑

i=1

TPi

and

T fun
PPA = T in

PA + T fin
PA +

FN∑

k=r

Tmax = T in
PA + T fin

PA + (FN + r − 1) · Tmax

It holds:

lim
FN→∞

TFN
seq

T fun
PPA

= lim
FN→∞

FN ·∑r
i=1 TPi

T in
PA + T fin

PA + (FN + r − 1) · Tmax

=
∑r

i=1 TFi

Tmax
¤

Proposition 2 states that performance of functional PPA depends on the computa-
tional cost of tasks Pi. In particular, it depends on a suitable load balance among tasks.
Indeed, it holds:

Corollary 1(functional PPA): Assume that ∀ i = 1, . . . , r, TPi = Tmax, that is
execution time of tasks Pi is the same, then:

lim
FN→∞

Sfun
nproc = r

Proof:
TFN

seq = r · FN · Tmax

then

lim
FN→∞

Sfun = lim
FN→∞

TFN
seq

T fun
PPA

= lim
FN→∞

r · FN · Tmax

T in
PA + T fin

PA + (FN + r − 1) · Tmax

=
r · Tmax

Tmax
= r ¤
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This means that the highest performance gain that we may expect for functional PPA
is equal to r, the number of tasks, and this occurs if all tasks require about the same
computing time. On the contrary, it is:

Corollary 2 (functional PPA): Assume that there exist only one among the r tasks,
let us denote Pĩ, whose time execution is

TP ĩ ≥
∑

i 6=ĩ

TPi

then
lim

FN→∞
Sfun

nproc ≤ 2

Proof:

r∑

i=1

TPi = TP ĩ +
∑

i6=ĩ

TPi ≤ TP ĩ + TP ĩ = 2 · TP ĩ

It follows that:

lim
FN→∞

TFN
seq

T fun
PPA

= lim
FN→∞

FN ·∑r
i=1 TPi

T in
PA + T fin

PA + (FN + r − 1) · TP ĩ

≤ 2TP ĩ

TPĩ

≤ 2 ¤

This means that the lowest performance we may expect for functional PPA occurs when
one task is more time consuming than the others.

Such results suggest us to combine data PPA and functional PPA in order to take
advantages of both the first approach and the second one. Indeed, using functional
parallelism we overlap the execution of tasks Pi, while introducing data parallelism
inside their computations, we balance their computing time.
Indeed, it can be proved that:

Proposition 3 (hybrid PPA): Let 1 ≤ î ≤ r be such that TP î(nproĉi) is the
maximum execution time of the r parallel tasks Pi, i.e.

TP î(nproĉi) = max
i=1,...,r

TPi(nproci) =
TP î

SP î
nproĉi

then it is:

Shyb
nproc =

∑r
i=1 TPi

TP î(nproĉi)
≤ nproĉi · Sfun

nproc

Proof:

Shyb
nproc =

∑r
i=1 TPi

TP î(nproĉi)
≤

∑r
i=1 TPi

TP î
nproĉi

= nproĉi

∑r
i=1 TPi

TP î

= nproĉi · Sfun
nproc ¤
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The following result is a straightforward consequence of Corollary 2 and Propo-
sition 3:

Corollary 3 (hybrid PPA): Assume that ∀ i = 1, . . . , r, the execution time of parallel
tasks Pi on nproc cores is the same, that is

TPi(nproci) ≡ Tmax(nproc) , i = 1, . . . , r

then:
lim

FN→∞
Shyb

nproc = nproc · r
Corollary 3 states that, using the hybrid PPA, the highest performance gain we expect
with respect to Algorithm A is nproc times the highest performance gain we expect
when using the functional PPA. In other words, the hybrid PPA actually may provide
a significant improvement with respect to the other two strategies. Such results are
confirmed by the experiments we carried out and described in Section 4.

3 A case study

As case study we consider the segmentation of medical structures from degraded ultra-
sound images. We focus on detection and delineation of the expansion of the ventricle
chamber at each frame of ultrasound image sequences. Besides the presence of the
speckle noise that affects ultrasound images, the problem is to detect and delineate the
expansion of the left ventricle (LV) chamber at each frame of the sequence. A major
limitation of most segmentation models in ultrasound imaging is to detect the ventricle
contour in the vicinity of the cardiac valve, mainly in those frames where it is open and
its position is almost confused. Indeed, in these frames we are faced with contours with
missing parts. This application consists of r = 3 tasks Pi, i = 1, 2, 3. These are: P1 the
despeckle plus contrast enhancement, P2 is the recovery of missing edges via the optic
flow computation, and P3 which is the LV segmentation. Finally, I3 ≡ I3(C(t)), that
is the image brightness of the LV contour C(t).
Starting from multiscale analysis provided by scale-space theory and variational meth-
ods, despeckling, segmentation, and optic flow computation can be described by the
following non linear time dependent PDE (see [2, 3, 4] and their references):

The scale space image analysis: We consider the following PDE :

∂I

∂τ
= |∇I|∇.

(
g(|∇I|) ∇I

|∇I|
)
− αK∗ (

KI − I0
)

τ ≥ 0 (1)

where initial and boundary conditions change according to the task (usually they are
Dirichlet or Neumann conditions).
The term g(v) is a non increasing real function such that g(v) → 0 while v → ∞ and
it is used for the enhancement of the edges. In general the Perona-Malik function is
considered: g(v) = 1/(1+v2/β), β > 0. The function g(|∇I|) is replaced by its smoothed
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version g(|∇Gσ ∗ I|), where G is a smoothing kernel, e.g. the Gauss function, and ∗ is
the convolution operator. Parameter α is the so-called regularization parameter. K is
the blurring operator and K∗ is the transpose.

We perform, for each t ∈ D, the following tasks:

P1 : I0(t) → I1 → P2(I1) = I2(t) → P3(I2(t)) = I3(t)

The PDE was discretized using the semi implicit scheme respect to the scale deriva-
tives. This choice leads to inconditionally stable numerical schemes. For the spatial
discretization, we use finite differences for despeckling and optic flow models and the
(complementary) finite volumes for the segmentation problem. At each scale step we
have to solve a linear system. We use the Additive Operator Scheme (AOS) for de-
peckling. Regarding optic flow and segmentation models, we use the GMRES iterative
method equipped with the algebraic recursive multilevel preconditioner (ARMS).

4 Experimental results

Experiments were performed using 16 blade Dell PowerEdge M6000 each made of 2
processor quad core Intel Xeon E5410@2.33GHz (64 bit) connected by the high per-
formance network InfiniBand. Data movement between tasks is implemented trough
read/write operations. We carried out many experiments aimed at monitoring both the
performance of each task and of the pipelined algorithm. We report here main results.
The sequence is made of FN = 26 frames of size 300 × 300 (1 cardiac cycle). Tasks
are not load balanced. In particular despeckle task is the cheapest (it needs about 40
secs on 1 core and the highest performance is reached using 8 cores with 24.6 secs)
and the segmentation is the most time consuming (it requires more than 400 secs on 1
core and 78 secs with 28 cores). Regarding the optic flow, it needs about 100 secs on
1 core and 4 secs on 42 cores) (see Figures 1-2). We get the following results:

1. Algorithm A: TFN
seq = 773.92 sec., frame rate/sec FN

Tsec
= 0.0336.

2. Functional PPA: in agreement with Corollary 2 we expect a low speed up, in-
deed T fun

PPA = 705.724 sec and the frame rate is 0.037. Sfun = 1.096. Performance
gain with respect to Algorithm A is of 8, 80%.

3. Data PPA: because each task has a fixed size, the optimal configuration for data
PPA is reached using 16 cores for segmentation, 6 for the optic flow computation
and 2 for despeckle task. We have: T data

PPA = 122.4472 sec and Sdata
24 = 6.3. The

frame rate is 0.212, while the performance gain with respect to Algorithm A is of
84, 17%.

4. Hybrid PPA (see Figure 3), gets the greatest performance using nproc = 30
cores distributed as follows: 2 for despeckle and contrast stretching, 6 for the optic
flow computation and 24 for the segmentation tasks. We get T hyb

PPA = 82.654 sec

@CMMSE                                                               Page   698  of 1328                                               ISBN 13: 978-84-613-5510-5



A multicore pipelined algorithm for Image Sequence Analysis

Figure 1: Execution Time (in seconds) of tasks Pi versus the core number. Circle
denotes task P1 (despeckle), Box denotes task P1.2 (contrast enhancement), Triangle
denotes task P3 (optic flow computation) and Star denotes the task P4 (Segmentation).

with a frame rate of 0.314 frame/sec. In this case the speed up Shyb = 9.3 and
performance gain with respect to Algorithm A is of 89.29.%. Observe that, in
agreement with Corollary 3, we have TP î(nproĉi) = maxi=1,...,r TPi(nproci) =
TP3(24), and Shyb ≤ 3 · 24.

Performance analysis needs to also take into account data movements between tasks
(data I/O). We do not go into details of this issue, because it can be accomplished
in different ways accordingly to the computing architecture. As a consequence, the
sustained performance of PPA algorithms depends on the computing environment and
on the overheads introduced by the communication network.

5 Conclusions

We describe an algorithm for image sequence analysis. Main idea underlying this
approach is to perform the operations on each frame of the sequence in the same way
the Arithmetic Logic Unit (ALU) concurrently performs floating point operations on
large data sets. By overlapping the execution of the tasks via pipelining, along the frame
sequence and, by concurrently performing operations of each task, the overall execution
time significantly reduces. As is known, the performance of any pipelined computations
depends on a suitable synchronization among the execution of each task and improves
as the length of the array sequence increases. By introducing data parallelism inside
the execution of each task we get a suitable load balance among tasks and a significant
time reduction with respect to any sequential computation. Finally, we validate the
performance also using the number of frame per second (throughput) that measures
the rate at which the frames are processed by the algorithm. Using this approach, the
throughput scales of about 90% with respect to that of any sequential computation.

@CMMSE                                                               Page   699  of 1328                                               ISBN 13: 978-84-613-5510-5



A. Murli et al.

Figure 2: Speed Up tasks Pi versus the core number. Circle denotes task P1 (despeckle),
Box denotes task P1.2 (contrast enhancement), Triangle denotes task P3 (optic flow
computation) and Star denotes the task P4 (Segmentation).

Figure 3: Speed up of Hybrid PPA versus the number of nodes(8 core). Box refers to
teh speed up line and Circle denotes the Ideal Speed up. At each box of the speed up line
between parenthesis is reported the number of cores employed for Despeckle+Contrast
Enhancement-Optic Flow Computation-Segmentation, respectively.
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Abstract

The Extended Euclidean algorithm provides a fast solution to the problem of
finding the greatest common divisor of two numbers. In this paper, we present
three applications of the algorithm to the security and privacy field. The first one
is a method for controlling the disclosure of discrete logarithm-based public keys.
It can be used to privately deliver a public key to a set of recipients with only one
multicast communication. The second one is an authentication mechanism to be
used in scenarios in which a public-key infrastructure is not available. Finally, the
third application of the Extended Euclidean algorithm is a zero-knowledge proof
that reduces the number of messages between the two parts involved, with the aid
of a central server.

Key words: secure group communication, authentication, zero-knowledge proofs
MSC 2000: 11-04, 11Z05

1 Introduction

Multicast communications allow a host to simultaneously send information to a set of
other hosts, avoiding the establishment of point-to-point connections with all of them.
IP multicast technologies (which use routing techniques at a low level over a network,
such as the IGMP protocol) have not achieved the expected success due to several
reasons (need for compatible routers, implantation costs, lack of support from Internet
providers, etc.). As a recent alternative, application level multicast has taken over,
since it offers the same functionality at a lower cost and easier deployment. Instead
of requiring physical deployment a logical network is built, and hosts resend messages
themselves.

Multicast communications can be either one-to-many if the source of the transmit-
ted data is one entity only over time (such as IPTV or P2PTV services) or many-to-
many, if several clients, or all, act as a source of data. Multiconferences are an example
of this (strictly, each data source establishes a one-to-many multicast communication).
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There are services that take advantage of multicast but need to keep communica-
tions private. Those technologies that make it possible are known as secure multicast.
Applications of secure multicast are, among others, pay-per-view IPTV or P2PTV,
private multiconferences (oriented to business, politics or even military affairs), or any
private service that involves several participants or clients.

The typical approach to establish secure multicast communications is to agree on
one or several symmetric encryption keys to encrypt messages (depending on the topol-
ogy and size of the network). However, the key, or keys, must be renewed periodically
to prevent attacks from outsiders, or even insiders.

Depending on how key distribution and management are carried out, secure multi-
cast schemes are divided into centralized and distributed. Centralized schemes depend
directly on a single entity to distribute every cryptographic key. In a distributed ap-
proach, key distribution is more complex, usually involving entities that act as local
sub-servers and manage subgroups of users. Full or partial message re-encryption is
needed in some cases. The following paragraphs introduce some well known solutions.

The Secure Lock centralized solution is proposed in [1]. It is based on the Chinese
Remainder Theorem. A drawback are the inefficient computations required at the Key
Server side on each key refreshment: the computation time needed quickly becomes
excessive when the number of members grows [2].

RFC 2627 [3] presents some approaches to the problem. Among all, the Hierarchical
Tree Approach (HTA) is the recommended option. It uses a logical tree arrangement
of the members in order to facilitate key distribution. The benefit of this idea is that
the storage requirement for each client and the number of transmissions required for
key renewal are both logarithmic in the number of members.

In [4], a divide-and-conquer extension to Secure Lock is proposed. It combines the
Hierarchical Tree Approach and the Secure Lock: members are arranged in a HTA
fashion, but Secure Lock is used to refresh keys on each tree level. Therefore, the
number of computations required by Secure Lock is reduced.

IOLUS [5] is a well known framework designed for the secure multicast problem.
Nodes are physically distributed in subgroups, which are organized on a tree fashion.
Some special trusted nodes handle the subgroups and serve as gateways among them.
It supports huge sets of members, due to its distributed nature. Since IOLUS is a
framework, not a protocol, the key refreshment scheme used within subgroups is not
stated. Any scheme can be used.

An IETF Working Group, MSEC [6], is currently working in a set of protocols
to standardize secure multicast. They are focusing, in an initial stage, in IP-layer
centralized multicast, assuming the presence of groups and a single trusted entity in
each one.

These technologies make a good job assuring privacy and (in most cases) efficient
key refreshment. However, they do not cover other aspects such as authentication
or trust among peers. This paper presents a secure multicast solution for centralized
scenarios that provides:

1. private communications and efficient key refreshment,
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2. key server messages authentication, and
3. validation among peers.

Three different and complementary schemes are proposed in order to achieve the
proposed goals. Depending on the scenario and its necessities the schemes can be
implemented along with the others or on their own.

The paper is organized as follows. Section 2 describes the scenario conditions
that are assumed for our solution. Section 3 presents the key refreshment scheme.
Section 4 introduces the scheme for authentication of the key server. The authentication
among hosts scheme is proposed in Section 5. Finally, the conclusions of the paper are
presented in Section 6.

2 Scenario

The target scenario is the following: private communications must be established within
a restricted group. There is a central server that manages the key management issues.
From now on, we will refer to the server as Key Server, and to the clients as members.
Depending on the nature of the service, communications can be either one-to-many or
many-to-many.

In any case, forward secrecy must be maintained. This requirement implies that a
member which leaves the network (i.e. her membership expires) should not be able to
decrypt any ciphered information transmitted after her exit, and forces to refresh the
encryption keys whenever a member leaves the network. Some services may require
backward secrecy: an arriving member should not be able to decrypt any ciphered
information transmitted before her arrival. This imposes, again, a refreshment of the
keys when a member enters the system. These two restrictions may become an efficiency
problem if the churn rate (joins and leaves) is too high. The scheme proposed here is
efficient enough to cope with high churn rates, as will be shown next.

Obviously, the security and privacy features of an application level secure multicast
solution should not only be restricted to private communications. Authentication is a
key issue, too. Members should have a way to check that the source of a message is a
trusted entity, either if the source is the Key Server or other member.

3 Controlled disclosure of public keys within closed groups

The first scheme we present allows to establish private group communications. The
proposed approach: the Key Server owns an asymmetric key pair (of an encryption
algorithm based on the discrete logarithm problem) and discloses the public key only
to the members of the restricted group. Communications from the Key Server are
encrypted with its private key. It is clear that only the members of the group will be
able to decrypt the messages. We have named this solution controlled disclosure of a
public key.

The usual method to publish public keys is the use of public key certificates. This
is extremely useful when the disclosure process involves two participants: the owner of
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the public key and the recipient. For more participants the process can be repeated,
obviously. What the present scheme tries to solve is how to simultaneously disclose a
public key to a selected audience only, while preserving security and efficiency. What’s
more, the process should be lightweight enough to be repeated as many times in time
as required for key refreshment purposes. This problem appears in services such as
pay-per-view IPTV or P2PTV and multiconferences.

The most relevant features of the scheme are:

• Only one message is generated per key refreshment.
• Suitable for all topologies. No need for node hierarchies, though they can be

supported.
• No need for message re-encryption.
• Only one secret piece of info is held by each client. We call this pieces member

tickets.
• Cost-effective and easy to deploy.

The scheme is described next. Let us assume there are n members at a given time in
the group, and that the Key Server generates an asymmetric key pair of the form:

Kpub : g,m, gk mod m

Kpriv : k

which is an Elgamal key [7]. Kpub is the key to be disclosed.

When a member i joins, the Key Server assigns it a member ticket, xi. Every ticket
is a large prime1 and is communicated to the corresponding member under a secure
channel: SSL/TLS, for example. This communication is made once per member only,
so it does not affect global efficiency. All tickets must be different from each other, at
least during a relatively wide period of time. Note that xi is known only by its owner
and the Key Server, and Kpub is shared by all members and the Key Server.

Generation of (Kpub,Kpriv) and distribution of Kpub are done as follows.

1. The Key Server selects:

• m and p, large prime numbers, such that m − 1 = p · q.

• k and δ, such that δ = k + p and δ < xi, for every i = 1 . . . n.

• g that verifies gp = 1 mod m (such a value is easy to calculate2).

2. The Key Server calculates L =
∏n

i=1 xi. L is kept private in the Key Server.
3. The Key Server finds u, v, by means of the Extended Euclidean Algorithm [8],

such that

u · δ + v · L = 1 (1)

1Strictly, it is sufficient that all xi are coprime and greater than δ. In that case, however, it would
be necessary that every xi has a large prime factor in order to make the factorization of L harder (L
will be introduced shortly).

2Once the Key Server has chosen m = p · q + 1, a value a is chosen satisfying that m− 1 is the least
integer such that am−1 mod m = 1 (that is, a is a primitive value from Zm). Then g = aq mod m.
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4. The Key Server multicasts (makes public) g, m and u on plain text.
5. Each member i calculates u−1 mod xi = δ and gδ mod m = gk mod m = Kpub.

The length of Kpub, by definition, can not exceed that of m.

New values for m, g, p and/or k must be chosen for each refreshment of (Kpub,Kpriv).
Note that δ, u and v depend on them and will change as they do.

Fortunately it is not necessary, for successive refreshments, to recompute L from
scratch if there were joins or leaves: L should be multiplied by the incoming members’
tickets, and divided by those of the leaving members. That speeds the process up.
Finally, for security reasons, the Key Server might decide to refresh (Kpub,Kpriv) after
a long period of time with no members joining or leaving.

Since the use of asymmetric key encryption along with large pieces of data may
be inefficient the key hierarchy solution can be adopted. A symmetric key is encrypted
by the Key Server with its private key, and delivered to the set of members. Data
messages are encrypted using the symmetric key. Members can decrypt data messages
after receiving the Key Server’s public key and the symmetric key. For security and
efficiency reasons, the symmetric key may be refreshed at a higher frequency than the
asymmetric key pair. Examples of this technique are shown in [9]. An additional benefit
of using a key hierarchy is the possibility to establish both one-to-many and many-to-
many communications: both the Key Server and every member know the symmetric
key and may use it to encrypt its own messages.

3.1 Proof of correctness for the disclosure scheme

Given that δ < xi, i = 1 . . . n and with every xi prime (or coprime at least), it is clear
that:

gcd(δ, xi) = 1, for every i = 1, . . . , n (2)

and hence,

gcd(δ, L) = 1 (3)

Equation (3) ensures, by the Extended Euclidean Algorithm, the existence of u, v ∈ Z

such that δ · u + v · L = 1, from where it is deduced that δ · u ≡xi
1 and so u−1 ≡xi

δ,
for every i = 1, . . . , n. The Chinese Remainder Theorem guarantees that the solution
for u−1 mod xi = δ and δ < xi, for every i = 1, . . . , n is unique.

The value Kpub = gk mod m is obtained as shown next:

gδ ≡m gk+p (4)

≡m gk · 1

≡m gk

g is public, but the use of δ assures that an outsider will not be able to guess k and,
therefore, Kpub.
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3.2 Security and scalability considerations

Security in the distribution of Kpub relies on the unfeasibility of calculating the right δ

in a reasonable time if a valid xi is not known by the attacker (recall that values for
Eq.(1) are unique). The privacy of k and p is guaranteed if:

• a sufficiently large value is chosen for m,
• p and q have a similar bitlength (recall that m − 1 = p · q).

In that case factorizing m − 1 will be more difficult. Additionally, a strong prime can
be chosen for m.

Note that the product L is not public in order to make attackers’ work more
difficult. In case L was discovered and factorized by an attacker, she would gain access
to every member ticket. But such a factorization is impractical by means of a brute
force attack. A legal member, say i, might be tempted to factorize u·δ−1

xi
. If she was

successful, she would obtain, again, every other ticket included in L. The problem of
factorizing such a value, however, is equivalent to that of factorizing L.

Nevertheless, there is a security measure that must be taken when a new member
joins: she should not be assigned a previously used ticket (at least recently). This is
done to prevent the old owner to keep intercepting refreshment messages and using her
old ticket to discover the secret.

Regarding scalability, we can observe that L will be large, given that L =
∏n

i=1 xi.
So will be u (recall Eq. (1)). For n members and b-bits tickets the maximum length of
L is then n · b bits. That is also the maximum length of u. As an example, for b = 64
and n = 1000, u will be 64000 bits long at most, i.e. ≈ 8 KBs. Though that is an
affordable message length for many devices (requirement 4), a shorter message would
be desirable.

The solution that allows to overcome these problems consists of dividing the set
of members into subgroups and delivering the same Kpub to all of them. Assume
there are s disjoint subgroups, each one with a similar number of members. Still,
the join and leave operations require the whole set of members to obtain a new key,
therefore s refreshment messages (g, m and the corresponding u) must be computed and
multicasted now; each one for a different subgroup. The final bandwidth requirement
does not change, but adopting this approach brings many benefits which are discussed
next.

First, for a fixed number of members the length of u values decreases linearly as the
number of subgroups increases. In the previous example, arranging the same audience
in 20 groups of 50 members would yield 20 messages of 3200 bits = 400 Bs maximum,
each one shorter than a typical X.509 certificate. Shorter messages will be handled
more easily and quickly by the recipients. This means less hardware requirements.

Second, the message generation process that takes place at the Key Server can be
sped up. Every different u can now be computed by a separate process, which may
run concurrently with the others. This is specially appropriate for nowadays multi-core
computers. The whole process can be sped up by nearly s times if the software is
properly tuned.
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This subgroup approach provides a better scalability, allowing to increase the max-
imum number of clients that can be handled. As a remark, users should be assigned
to subgroups in a balanced way, in order to keep refreshment messages as short as
possible. This raises other issues, such as the problem of rebalancing subgroups after
a leave avalanche, for example.

3.3 Communication with different groups

There are scenarios that require separate communications with different groups of mem-
bers. Examples are different pay-per-view channels in the same TV platform and differ-
ent private multiconferences managed by the same Key Server. Handling this situation
is easy: the Key Server only needs to maintain a different key pair for each group. Ev-
ery join or leave event will imply the refreshment of the affected group’s key pair only.
Figure 1 depicts this situation. It can happen that a member is enlisted in two or more

Figure 1: Managing different groups. Capital letters denote members.

groups at the same time (that is usually the case of pay-per-view channel packages, for
example). It is clear that a join or leave of that member would require a refreshment
in every group she belongs to.

3.4 Simulation

We have developed a Java implementation of the scheme in order to perform simulations
and obtain execution times. The BigInteger Java class was used for handling large
numbers, and the Miller-Rabin test was employed for primality tests. Figures 2 and
3 show execution times for the algorithm in Section 3, both in the Key Server and in
a member, for different group sizes and ticket lengths. They were obtained in a Intel
Core 2 Duo processor at 2,26 GHz with 3 MB of L2 cache and 2 GB of RAM.

Two main conclusions can be extracted from the Key Server times. First, key pair
refreshment messages are computed very fast, excepting in the case of 2048 bits. This
means that the scheme can be applied to a wide variety of scenarios. Second, execution
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Figure 2: Key Server execution times for different ticket lengths and network sizes.

Figure 3: Member execution times for different ticket lengths and network sizes.

times are mainly affected by ticket length and not by the number of members considered.
That is good news when large audiences are addressed. However, remember that the
length of the refreshment message might force the audience to be split into several
subgroups (see Section 3.2).

Member times show that retrieving the secret is a very fast process. The main
problem at the server side is, again, handling a long message.

4 Key refreshment message authentication

At this point we have achieved privacy in multicast communications. This section
presents a mechanism that authenticates the refreshment messages from the Key Server:
that is required in order to protect the system against forged refreshment messages.
The usual technology for message authentication is digital signature: a hash of the
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J.A.M. Naranjo, J.A. López-Ramos, L.G. Casado

message is encrypted with the sender’s private key. The receiver can then decrypt the
hash and compare it with its own result of a hash operation on the received information.

That solution is not applicable in our case, because refreshment messages disclose
a public key: members would need to use the public key they are receiving to verify
the message that contains it. A digital signature of that nature would not assure
authentication at all, since the message might be forged and the signature still be
valid. An alternative is to use the key pair used before the refreshment, but just-
arrived members would not be able to verify the signature, since they would not know
the previous key pair. Obviously, the simplest solution involves having a different,
invariable key pair for authentication purposes.

We propose, instead, an approach which is not based in the use of public key
cryptography. Our solution proves that the sender knows the recipient’s ticket. The
two only entities in the system that know any given ticket are its owner member and
the Key Sever. Assuming the ticket has not been stolen, any message received by a
member that passes the verification scheme can only come from the Key Server.

The scheme is described next. We assume the Key Server is performing a refresh-
ment of its key pair, and therefore the authentication process is complementary to that
described in Section 3. We assume, too, that members receive the refreshment message.

1. The Key server:

(a) computes s = (gk)−1 mod L by means of the Extended Euclidean Algorithm,
(b) chooses a random number a, such that a < xi, for every xi, and
(c) multicasts {a · s, h(a)}. h(a) is the output of a hash operation on a. The

hash algorithm is not specified here.

2. Every member i receives the authentication message and computes h(a·s·Kpub mod xi),
which should be equal to the value h(a) received if xi is a factor of L.

It is convenient that the authentication message is attached to the refreshment
message so authenticity can be verified upon reception.

4.1 Security and efficiency considerations

Regarding security, the key point is that a · s · r mod α is only equal to a if α = L

or α = xi ∀ xi. An attacker willing to forge an authenticated key refreshment message
must know either L or at least one xi. In the first case the forged message will pass the
verification test in every client, while in the second case only the owner of xi will be
fooled. However, both L and every xi are kept secret, and stealing them is equivalent
to stealing a private key. We can therefore state that in terms of security, and for
the scenario described in Section 2, the authentication scheme proposed here is a valid
substitute for digital signature.

Regarding efficiency, the arbitrary-precision arithmetic additional operations re-
quired in the Key Server side are a modular inverse and a multiplication. Every client
must compute a modular multiplication. Those operations have very little impact on
the final runtime since they can be run very efficiently by any hardware with arbitrary-
precision arithmetic capabilities.
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The scheme poses a disadvantage, however: the authentication message can be as
long as the key refreshment message. This should be taken into account in low bit rate
scenarios.

5 Peer validation: a zero-knowledge proof

Once secure multicast and Key Server messages validation have been achieved, the last
proposal in this paper deals with authentication among peers. The aim is to verify that
a given peer j holds a valid ticket xj: this means that j is a legal peer, assuming no
information leakage. Verification is carried out with no disclosure of any private nor
sensible information. The scheme is presented next. Assume that peer i wants to verify
whether peer j is a legal peer, prior to establishing communications with it. Assume
too that the public key disclosure algorithm from Section 3 has been run previously.
Recall the form of (Kpub, Kpriv):

Kpub : g,m, gk mod m

Kpriv : k

Authentication is performed as follows:

1. Peer i chooses a random integer r such that 1 < r < m and sends it to the Key
Server.

2. The Key Server computes inv = r−1 mod L and sends it to i.
3. Peer i sends {inv, gxi mod m} to j.
4. Peer j calculates rj = inv−1 mod xj, βj = rj · (g

xi)xj and sends {βj , gxj} to i.
5. Peer i computes βi = r · (gxj )xi , which should be equal to βj .

If βi = βj then it is clear that j owns a valid ticket xj. Otherwise peer i should
warn the Key Server so preventive measures can be taken against j. Modular inverses
can be computed by means of the Extended Euclidean Algorithm.

In case this protocol is implemented in a standalone way and no public key disclo-
sure algorithm is being run then the Key Server must choose the values values g and
m as shown in Section 3 and communicate them to peers before any authentication is
done.

5.1 Security and efficiency considerations

Security is assured by two facts:

1. peer j needs to know a valid ticket xj in order to obtain a rj equal to r, by means
of a modular inverse calculation (step 4), and

2. the complexity of the discrete logarithm problem in a finite field [10].

We warn now against the possibility of performing Denial of Service (DoS) attacks
against the Key Server and peer j, if a malicious entity sends verification requests at
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an intentional very high rate. That same entity might arbitrarily warn the Key Server
against legal peers, too.

Regarding efficiency and scalability, the protocol involves one communication with
the Key Server and modular exponentiations. This makes the protocol applicable only
to small centralized networks or distributed networks in which subgroups are managed
by local entities, such as IOLUS [5]. However, the Key Server plays only a small role
(modular inverses can be found very efficiently) and the main part of the work is carried
out by peers. Having said this, member authentication by means of digital certificates is
a more realistic approach for large groups. However, our scheme may be an alternative
for small sets of members.

6 Conclusions

We have presented three different uses for the Extended Euclidean Algorithm, all of
them focusing on privacy and security in multicast scenarios. The first one, a controlled
disclosure mechanism, is suitable for scenarios in which a single entity (a Key Server)
communicates its public key to a set of client hosts, so private communications can be
held. The communication can be done in a single multicast message, and there is no
need for encryption. The mechanism is secure, and simulation results were shown to
prove its efficiency, both on the Key Server and on the client side.

The second application is an authentication mechanism which is not based on
public-key cryptography. It can be used in situations in which public-key cryptography
is not available (due to low capacity devices on the client side, for example). It can
also be used along with the first scheme, though.

Finally, a zero-knowledge protocol was presented which can be used for for peer
validation. By using this protocol peers can decide whether to trust a peer or not before
establishing communications with it. It works by challenging peers to demonstrate that
they own a valid ticket. No sensible information is disclosed.

The three mechanisms can be applied to the same scenario, say, a peer-to-peer
television platform. Future lines of research include the implementation and test of
a combination of them in a simulator (e.g. PeerSim [11]) or a real testbed, such as
PlanetLab [12].
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Andalućıa (P08-TIC-3518). J. A. López-Ramos is supported by the Spanish Ministry
of Science and Innovation (TEC2009-13763-C02-02) and Junta de Andalućıa (FQM
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Abstract

In this paper we discuss conservative finite difference schemes by means of
discrete variational method and show the numerical solvability of a two dimensional
nonlinear wave equation which is known as the Zakharov–Kuznetsov equation. We
propose a finite difference scheme that inherit mass, energy conservation properties
from the Zakharov–Kuznetsov equation. Our treatments refers to the procedure
that Furihata has presented for real–valued nonlinear partial differential equations
(PDEs). Numerical results are shown to illustrate the accuracy and validity of the
numerical solutions obtained.

Key words: Zakharov-Kuznetsov equation, discrete variational method, conser-
vative finite difference scheme

1 Introduction

We deal with the Zakharov–Kuznetsov(ZK) equation of the form

∂u

∂t
+ u

∂u

∂x
+

∂3u

∂x3
+

∂3u

∂x∂y2
= 0, (1)

which is a two-dimensional generalization of the Korteweg–de Vries equation. This
was first derived by V. E. Zakharov and E. A. Kuznetsov [1] in three–dimensional form
to describe the motion of nonlinear ion-acoustic waves in a magnetized plasma [2, 3].
A variety of physical phenomena, in the purely dispersive limit, are governed by this
type of equations; for exsample, the long waves on a thin liquid film [4], the Rossby
waves in rotating atmosphere [5], and the isolated vortex of the drift waves in three-
dimensional plasma [6]. In spite of such generality, detailed properties of solutions to eq
(1) have not yet been fully explored. A cylindrically symmetric solitary wave solution
(hereafter we call this solution the bell–shaped pulse) was obtained numerically and
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its stability has been shown by means of a variational estimate [1]. In this paper, we
perform numerical simulations by use of the finite difference scheme which is obtained
through a discrete variatioal method and exhibit what roles the bell–shaped pulses play
in the evolution processes governed by the ZK equation. In section 2, we are concerned
with fundamental properties of the ZK equation. We formulate the finite difference
scheme through a discrete variational method for the Zakharov–Kuznetsov equation in
Section3. Some of the numerical results for the initial boundary value problems are
presented in Section4.

2 Features of the ZK equation

As a preliminary to the numerical investigation, we employ typical solutions and con-
servation laws assosciated with eq (1). One of the exact solutions is a steady progressive
wave solutions of the form

U = 3c sech2

[
1
2
√

c((x̃− x0) cos θ + (y − y0) sin θ)
]

, x̃ = x− ct, (2)

where c is the wave velocity. This solution represents an oblique one–dimensional soli-
tary wave with an inclined angle θ with respect to the x–axis; which is a straightforward
extension of the one dimensional K-dV soliton. For the cylindrically symmetric case,
the solution U in (2) satisfies

r−1 d(rdU/dr)
dr

= cU − 1
2
U2 (3)

where r ≡ (x2 + y2)1/2. Existence of bounded solutions to eq (3) and their stability
have been discussed through a variational estimate[1]. However, a Painlev’e test asserts
that eq. (3) is not integrable, and that no general analytical solutions exist. The ZK
equation admits the following integrals of motion as shown in [2]:

M ≡
∫ ∫

u(x, y, t)dxdy, P ≡
∫ ∫

1
2
u2(x, y, t)dxdy,

H ≡
∫ ∫ [

1
2
(∇ · u)2 − 1

6
u3(x, y, t)

]
dxdy.

Quantities M , P and H represent the mass, momentum and energy, which are all
conservative quantities.

3 Design of scheme

In this section we formulate finite difference schemes for the target equation (1) with
discrete variational derivatives.
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3.1 Difference operators

Throughout this paper the following differece operators are employed. First, we write
Un

i,j ∼ u(n∆t, i∆x, j∆y), (n ∈ Z, i, j = 0, 1, 2, · · ·), where ∆t, ∆x,∆y > 0 denote the
mesh sizes in t, x, y. We then use the following difference operators;

δ+
i Ui,j =

Ui+1,j − Ui,j

∆x
, δ+

j Ui,j =
Ui,j+1 − Ui,j

∆y
, (4)

δ−i Ui,j =
Ui,j − Ui−1,j

∆x
, δ−j Ui,j =

Ui,j − Ui,j−1

∆y
, (5)

δ
(1)
i Ui,j =

Ui+1,j − Ui−1,j

2∆x
, δ

(1)
j Ui,j =

Ui,j+1 − Ui,j−1

2∆y
, (6)

δ
(2)
i Ui,j =

Ui+1,j − 2Ui,j + Ui−1,j

(∆x)2
, δ

(2)
j Ui,j =

Ui,j+1 − 2Ui,j + Ui,j−1

(∆y)2
. (7)

3.2 Formulation of finite difference scheme

We define the discrete energy by

Gd(U)i,j ≡ 1
6
U3

i,j −
1
2

{
(δ+

i Ui,j)2 + (δ−i Ui,j)2

2
+

(δ+
j Ui,j)2 + (δ−j Ui,j)2

2

}
(8)

Then the discrete global energy is given by

Hd(U) ≡
Nx∑

i=0

”
Ny∑

j=0

”Gd(U)i,j∆x∆y (9)

where Nx and Ny are numbers of grid points in x and y, respectively. To define a
discrete variational derivative, we consider the difference Hd(U)−Hd(V) defined by,

Hd(U)−Hd(V) =
Nx∑

i=0

”
Ny∑

j=0

(
δGd

δ(U,V)

)

i,j

(Ui,j − Vi,j)∆x∆y, (10)

(
δGd

δ(U,V)

)

i,j

=
1
6
(U2

i,j + Ui,jVi,j + V 2
i,j) +

1
2

(
δ
(2)
i (Ui,j + Vi,j) + δ

(2)
j (Ui,j + Vi,j)

)
.

In the above identities we use the summation-by-parts formula in i and j directions
separately. Then we have a finite difference scheme:

Un+1
i,j − Un

i,j

∆t
= −δ

(1)
i

(
δGd

δ(U,V)

)

i,j

, (11)

(
δGd

δ(Un+1, Un)

)

i,j

=
1
6
((Un+1

i,j )2 + Un+1
i,j Un

i,j + (Un
i,j)

2)

+
1
2

(
δ
(2)
i (Un+1

i,j + Un
i,j) + δ

(2)
j (Un+1

i,j + Un
i,j)

)
.
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4 Results of numerical simulations

4.1 Double collision of solitons Here we treat show the double collision of solitons
to the ZK equation

ut + uux + ε(uxxx + uyyx) = 0. (12)

In the case of double collision of solitons, the following initial condition

u(x, y, 0) =
2∑

j=1

3cjsech2

(
0.5

√
c

ε
((x− xj) cos θ + (y − yj) sin θ)

)
(13)

is employed, where c1 = 0.45, c2 = 0.25, ε = 0.01, θ = 0.0, x1 = 2.5, y1 =
0.0, x2 = 3.3, y2 = 0. The results under periodic boundary conditions in both x−
and y−directions in [0, 8]× [0, 8] with 100×100 uniform cells are depicted in the figures
below :

Figure. Behavior of numerical solution in the time interval t = 0.0 ∼ 3.0
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Abstract

Achieving an efficient realistic illumination is an important aim of research
in computer graphics. In this paper a new parallel global illumination method
for hybrid systems based on the hierarchical radiosity method is presented. Our
solution allows the exploitation of systems that combine independent nodes with
multiple cores per node. Thus, multiple nodes work in parallel in the computation
of the global illumination for the same scene. Within each node, all the available
computational cores are used through a shared-memory multithreading approach.
The good results obtained in terms of speedup on several distributed-memory and
shared-memory different configurations show the versatility of our hybrid proposal.

Key words: Hybrid Platforms, Global Illumination, Hierarchical Radiosity

1 Introduction

Radiosity [1] is one of the best solutions to get a physically-based illumination, essential
key for realistic rendering. One of the key features of the radiosity approach is that
it obtains view-independent global illumination results. Unfortunately, the radiosity
method, like other global illumination alternatives, has high computational and memory
requirements which justifies the use of parallel computing techniques to implement it.

In the last years, the progressive popularization of multicomputers and multicore-
based systems makes the design and implementation of efficient parallel algorithms an
appealing alternative for high demanding computer graphics techniques. The main
challenge nowadays is to take advantage of all the different computational resources in
a system, putting together shared-memory and distributed-memory concepts by means
of versatile and efficient hybrid approaches [2].

There are multiple parallel approaches in the literature that have been proposed to
speed up the radiosity calculation. However, most of the existing proposals for parallel
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global illumination fall in one of these two categories: either purely shared-memory
oriented or purely distributed-memory oriented. Shared-memory approaches [3, 4, 5]
are simpler and achieve really good speedups, but they present the inherent scalability
problems of this kind of systems. Furthermore, they are mostly fine-grain approaches,
so a considerable overhead is introduced due to synchronization issues. On the other
hand, distributed-memory approaches to parallel global illumination are notably more
complex [6, 7, 8] and have typically obtained worse performance, mainly due to the im-
portant communication overhead, above all if the geometric data is distributed among
the memories of the system nodes.

In [9] we find a hybrid distributed-shared proposal, based on what authors call task
pool teams, basically an extension of the task pool approach commonly used in SMP
(Symmetric Multiprocessing) computing. It is a generic non-specific alternative for
irregular algorithms, using global illumination and HR as an example of application.
Unfortunately, only results for quite small and unrealistic scenes are shown, so the
method can not be considered as a valid solution for real global illumination.

Last trends in global illumination are mostly focussing on the exploitation of GPUs
(Graphics Processing Unit) [10, 11, 12], taking the most data-parallel parts out of the
CPUs to run on the GPU. However, important parts of global illumination methods
are not suitable for this GPGPU (General-purpose computing on graphics processing
units) kind of processing, so a parallel processing to take advantage of multi-processor
systems must not be neglected.

In this paper we propose a novel parallel global illumination method, based on
the hierarchical radiosity algorithm [13] (HR), the radiosity algorithm with a bet-
ter quality/performance trade-off. The irregular and mostly unpredictable workload
that is needed for the computation of the different parts of a scene with the hier-
archical approach, based on an adaptive refinement, makes traditionally difficult to
achieve a good parallel solution, especially in distributed-memory contexts. Our par-
allel design is focused on obtaining a versatile hybrid approach, exploiting systems
with both distributed-memory and shared-memory resources by combining a message-
passing paradigm with a multithreading approach.

The message-passing scheme we have implemented allows the parallel execution of
HR in independent nodes of a distributed-memory cluster, minimizing the communi-
cation among nodes. As far as each node is concerned, a simple scheduling for the
efficient processing of the input scene in a multithreaded environment has been imple-
mented. This scheduling follows a coarse-grain approach, balancing the computational
load within a node at a patch level and introducing a minimal overhead. A novel mu-
tual exclusion protocol allows the concurrent subdivision of patches during each HR
iteration effectively. This solution introduces minimal waiting times and needs few
additional storage requirements.

The paper is organized as follows: Section 2 presents the HR method and Sec-
tion 3 outlines the generic structure of our parallel proposal, with Subsections 3.1 and
3.2 describing the distributed-memory and the multithreading solutions, respectively.
Experimental results and concluding remarks are presented in Section 4 and Section 5.
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Figure 1: Sequential HR algorithm

2 Hierarchical Radiosity Algorithm

Radiosity [1] tackles the global illumination problem by applying a finite element ap-
proach to compute the transport of energy in an environment. Thus, the scene to be
illuminated is discretized into a set of surface elements, usually called patches in the
context of radiosity, and the light energy leaving each surface is computed, obtaining
the classical discrete radiosity equation:

Bi = Ei + ρi

n∑

j=1

BjFij , 1 ≤ i ≤ n; (1)

where Bi is the radiosity value (light energy per unit time per unit area leaving the
surface) of a patch Pi, computed as the emittance of that patch (Ei, light energy
produced by the surface itself, i.e. in case of light sources) plus the energy coming from
the rest of the scene and reflected by it. Thus, the term ρi is the diffuse reflectance
index of Pi, and the summation represents the energy reaching the patch from the other
patches of the scene. The interaction or link between two patches in the scene is based
on a geometric term called form factor, Fij , that represents the proportion of radiosity
leaving Pi that is received by the patch Pj .

The hierarchical approach to radiosity [13] is based on the application of a basic
idea taken from the classic N-body problem: the importance of small details decreases
with increasing distance. Thus, the input patches are subdivided into a hierarchy of
surface elements with links with different level of refinement between them that simulate
the light transport in the scene.

In general terms, the sequential HR method consists of three main stages (see
Figure 1): Initial Stage, Linking Stage and Iterative Stage, this last one being the core of
the HR process. The Initial Stage includes preprocessing work such as loading the input
scene and building auxiliary data structures to accelerate the visibility determination
between patches during the radiosity computation.

In the Linking Stage the starting interactions between pairs of patches in the scene
are computed, building a list of initial links for each patch in the scene. Basically,
two patches are interacting when they are (at least partially) visible to each other,
and the corresponding form factor (a geometric term that represents the proportion of
radiosity transported between two surface elements) is computed and stored for each
link. Therefore, visibility determination and form factor computation are the main
tasks performed in this stage.
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The main phase in HR computation is the Iterative Stage, when the global illu-
mination of the scene is calculated. This is an iterative process, usually some sort of
Gauss-Seidel strategy, which computes the energy being transported through all the
links in the scene, refining those links when necessary. One common approach is to
apply a three-step process to every patch of the scene in each iteration:

1. Refinement. In this step each link of the target patch is analyzed and adaptively
refined when the energy transported through this link exceeds a threshold value.
The element with the largest area is subdivided into four new elements, building
a quadtree hierarchy.

2. Gathering. Once the refinement step for a patch is completed, the energy received
from the rest of elements in the scene is computed.

3. Sweeping. After gathering the light energy coming from the rest of the scene,
the radiosity values of the patch are coherently updated along the hierarchical
structure resulting from the two previous steps. Each element adds its energy to
its children and weights the radiosity received from its parent.

Each iteration is completed once all the patches of the scene have been processed.
Then, the convergence is checked (see Figure 1), comparing with a certain threshold
the difference in the total energy transported between two consecutive iterations. If
the convergence criterion is not fulfilled a new iteration begins.

3 Parallel Hierarchical Radiosity

Our parallel approach to HR targets systems that combine several independent nodes
with multiple cores per node. The scene is partitioned into non-overlapping sub-scenes,
and the computation of each sub-scene is carried out independently in a different node.
Our method lies in a SPMD paradigm, with a unique process per node and message
passing for communicating updated illumination values among nodes. Within a node,
the HR algorithm is applied to a sub-scene concurrently by multiple tasks that exploit
the patch-level parallelism in the Linking and Iterative Stages. Our implementation
for this shared-memory scenario is based on POSIX threads, lightweight processes that
allows us to take advantage of the different computational resources in the system, such
as multiple cores per node and SMT capabilities per core.

3.1 Distributed-Memory Solution for HR

The irregular behavior of the hierarchical approach to radiosity, based on an adaptive
refinement, makes difficult to achieve a good parallel solution, above all in a distributed-
memory context. One of the first decisions to be taken is whether the geometric data
of the input scene should be completely distributed among the different nodes or not.
By distributing also data in addition to only computation, larger scenes could be theo-
retically processed, as the total capacity of the system memory is exploited. However,
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this kind of solution dramatically increases the communication —in number and size—
among the nodes in the system, especially for solving visibility queries. Furthermore,
this would mean a more coupled execution in all the system, since a greater number of
synchronization points would be needed, hindering performance.

Our approach is based on the minimization of communications and on avoiding to
establish an excessive number of synchronization points among the different processes,
yet without renouncing to process high complex scenes. With that aim in mind, only
the input patches (coarse geometric data) has been replicated in the memory of every
node. This allows the resolution of visibility queries with no communication at all, and
the pay-back is not too high anyway, given the large amounts of memory per node and
the low storage requirements of the coarse patches.

In Figure 2, an outline of the parallel algorithm executed in each node is depicted.
The three stages seen in the sequential method are carried out in parallel by all the
processes in the distributed-memory system, with a unique process running on each
node. Communication among nodes is implemented by message passing, using the
MPI standard. Specifically, asynchronous non-blocking functions are used. The steps
that involve communication with other nodes are shadowed in the diagram. Within
a node, the Linking and the Iterative Stages can be executed concurrently, spawning
multiple threads within the process, as will be described in Subsection 3.2.

The preliminary work regarding the loading of the input scene and the construction
of auxiliary structures for accelerating visibility determination is performed concur-
rently in every node, but is not parallelized (first step of the Initial Stage in Figure 2).
As a result of this stage, all the nodes keep the initial patches (coarse geometric data)
in its local memory. That will permit to avoid a lot of communication in the next two
stages, as commented above.

The other main task carried out during the Initial Stage is to distribute the com-
putation among the nodes by making a partition of the scene. Each node assigns itself
one of the disjoint sub-scenes resulting from this partition. That sub-scene will be the
local scene in which the global illumination will be computed by the process running
in the node. Although a uniform geometric partition has been employed, specifically
a regular 3D grid with a final volume optimization to obtain a tight-fitting bounding
box of each sub-scene, this parallel proposal is independent of the kind of partition to
be applied. Nevertheless, convex geometric partitions allow the exploitation of spatial
locality of the objects in a scene.

With regards to the Linking Stage, all the patches in the local sub-scene are pro-
cessed and two lists of initial links are computed, one with interactions with other
patches in the local sub-scene (local links), and the other one with links to patches in
the rest of the scene (remote links). Since all the initial geometry is accessible in the
local memory, no communication among nodes is needed in this stage.

In the Iterative Stage, the three steps involved in the sequential HR iteration are
computed for the local sub-scene using the local and remote links of each patch as a
starting point. This stage entails communication among nodes, since data from remote
nodes should be refreshed for each new iteration. Specifically, two different kinds of
remote data need to be updated between iterations: radiosity values of patches, for the

@CMMSE                                                               Page   734  of 1328                                               ISBN 13: 978-84-613-5510-5



Hierarchical Radiosity on Hybrid Platforms

Figure 2: Outline of the distributed-memory scheduling

refinement and gathering of remote links, and the total radiosity transported in each
sub-scene, for the convergence checking.

As it was commented above, one of the objectives behind this parallel approach
for distributed-memory platforms is to keep as low as possible the number of messages
to exchange between nodes, so as to favor an asynchronous and independent execution
with few synchronization points among nodes. Keeping this in mind a scheduling with
6 steps for the Iterative Stage, as depicted in Figure 2, has been proposed.

The first thing a node would do in our scheme should be the processing of the
remote links associated with all the patches in the local sub-scene (Remote HR iteration
in Figure 2). Thus, the three steps —refinement, gathering and sweeping– of a HR
iteration are applied to these links. A decision on splitting up the processing of local
and remote links has been taken based on two reasons: firstly, processing the remote
energy earlier assures the presence of energy to be transported in every sub-scene, even
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though some of them have no light sources; on the other hand, the radiosity values
from remote patches that interact with the local patches must be updated after each
iteration. This update is done by means of message passing, and it means a first message
requesting the remote radiosity values needed to the rest of nodes. Our scheduling tries
to overlap this communication phase with the processing of the local links.

Therefore, the second step after finishing with the remote links is to send a message
to each of the rest of nodes (R-mesg in Send request to other nodes in Figure 2),
asking for the updated radiosity values that will be needed in the next iteration. The
information that need to be sent for this request is only the id of the elements whose
radiosity value is needed.

In the step three, Local HR iteration in Figure 2, the local links are processed. Once
all the energy has been transported in the local sub-scene for an iteration, the total
radiosity value obtained is sent to the rest of nodes in step four, Send total radiosity
transported (T-mesg).

The fifth step, Respond requests & Receive updates in Figure 2, deals with the
exchange of messages among nodes. Each node receives request messages, R-mesg,
that must be properly responded by sending messages with the updated radiosity values
requested by each node (U-mesg). The U-messages sent by the rest of nodes are also
received in this step, together with the T-messages with the total radiosity transported
in each sub-scene.

The last step, Convergence check, does not involve communication and is carried
out in every node like the sequential version: the total energy transported within the
whole scene between two consecutive iterations is compared with a threshold. If the
convergence criterion is not fulfilled a new iteration begins.

3.2 HR on SMT Multi-core Processors

At this point, HR computation on shared-memory parallel environments is addressed
by applying a multithreading approach to exploit all potential computational resources
available in each node: multiple computational cores, all of them with local access to
a common memory, as well as potential SMT capabilities.

Initially, only one thread (Main thread) is being executed in the node. The prelim-
inary work regarding the loading of the input scene and the construction of visibility
acceleration structures is performed by this thread and is not parallelized within a node
(Initial Stage in Figure 2).

After this stage, multiple threads are spawned to carry out the radiosity compu-
tation. Thus, there is only one process running on the physical node, but it consists
of multiple threads sharing the same virtual address space and exploiting the multiple
cores and SMT capabilities available in the node. These threads will work concur-
rently until convergence is achieved in the Iterative Stage. The number of threads to
be spawned, t, can be different on each node and can be either the total number of
processing cores in the node or not.

This shared-memory approach applies a coarse grain parallelism, both during the
Linking and Iterative Stages. Thus, once a patch is assigned on demand to a thread,
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all the computation associated with that patch during the stage is carried out by this
thread. Other approximations to HR on SMP systems are based on task pools, using
a finer and more specific task division. Our solution simplifies thread synchronization
and minimizes the overhead needed in finer grain implementations, leading to good
results, as will be shown in Section 4.

Of course, every piece of the code performed by the threads must be thread-safe,
since they are running simultaneously in a shared address space. Therefore, multiple
access to shared data must be satisfied and protected, avoiding race conditions and
deadlocks among the threads. All these issues are managed by setting critical sections in
the code by means of mutual exclusion (mutex ) algorithms and operations. Essentially,
the scheduling can be summarized in the following stages:

1. At the beginning of the Linking/Iterative Stage the first patch to be processed
by each thread is pre-assigned. Simply, Thr1 will be in charge of P1, Thr2 of P2

and so on.

2. The rest of patches are assigned on demand. An index variable, nextFree points
to the next unprocessed patch. Thus, every time a thread finishes with a patch
it checks whether the nextFree variable is indexing a valid patch (its value is not
higher than N , the total number of patches in the local scene). If so, it takes the
patch and updates the variable, just increasing its value.

Since nextFree is a variable shared by all the threads in a node and, its access
must be protected with a mutex variable. On one side, the update of this variable is a
critical section, and on the other, we must guarantee that each patch is only assigned
to a thread.

During the Iterative Stage, specific actions must be taken due to the refinement
process performed during the HR computation. Thus, multiple threads could try to
subdivide the same element while refining different links. A link refinement means
that either the source or the interacting destination element is subdivided, so different
threads may try to subdivide the same element at the same time. Therefore, element
subdivision is an important critical section in this scenario.

To obtain an efficient multithreaded HR computation, a simple yet effective mutual
exclusion protocol to deal with the refinement process has been implemented. This
protocol, together with a little modification in the sequential version of the refinement
code, allows the management of the patch subdivision tasks during the refinement
process, providing mutual exclusion without any deadlock efficiently and with a minimal
storage cost. The proposed protocol needs a maximum of t+1 mutex variables, being t
the total number of threads spawned in the node, and it permits a thread-safe adaptive
refinement of the scene. Specific details about this mutual exclusion protocol can be
read in [14].

Additionally, the convergence test at the end of each iteration must be considered
in the scheduling of the Iterative Stage:

1. Each thread uses a local variable, localRad, to accumulate all the radiosity being
gathered by the patches processed during an iteration.
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(a) (b)

Figure 3: Test scenes: (a) Building (b) Livingroom

2. A new shared variable, totalRad, is needed to add up the contribution of the
energy gathered by all the threads at the end of each iteration. Again, the access
to this variable is protected with a mutex variable.

3. A barrier before starting each new iteration of the Iterative Stage acts as a syn-
chronization point avoiding race conditions. It also allows each thread to check
the convergence of the algorithm with the updated totalRad variable.

4 Experimental Results

The HR parallel solution presented in this paper has been tested on a system with eight
nodes with 8 GB RAM and two Intel Xeon E5520 2.26 GHz quad core processors per
node, with a 2-context SMT configuration enabled on each core (Intel HyperThreading),
resulting in a total of 16 virtual processing units per node (though with only 8 physical
cores per node). All nodes are equipped with IB 4X DDR cards (Qlogic IBA7220), so
they communicate each other through a low latency InfiniBand network with 16 Gb/s
of effective bandwidth.

Our parallel implementation was coded using the C programming language. The
compiler used for these experiments was GNU gcc version 4.1.2. The POSIX threads
library (Pthreads)is used to implement all the thread-related issues. POSIX threads are
the best alternative when writing portable multithreaded code, as it offers a system-
level standard library, much more flexible and versatile than higher-level libraries like
OpenMP. Message-passing is managed through the MVAPICH2 library, a free imple-
mentation of the MPI API especially designed for InfiniBand and other low latency
networks.

Two input scenes have been used for our tests (see Figure 3): Building and Livin-
groom, with respectively 2880 and 6960 input triangles, and 135480 and 34314 output
triangles after the HR refinement. The scene Building has multiple identical rooms
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Table 1: Performance results: Time (s) and Speedup

Building Livingroom
Node Threads/node Time Speedup Time Speedup

1 1 42.91 1 95.93 1
2 21.76 1.97 48.72 1.97
4 11.95 3.59 25.69 3.73
8 6.52 6.58 13.45 7.13
16 5.25 8.17 10.87 8.83

2 1 24.16 1.78 61.11 1.57
2 12.88 3.33 32.16 2.98
4 6.90 6.22 17.98 5.34
8 3.86 11.12 9.77 9.82
16 3.05 14.07 8.43 11.37

4 1 12.86 3.34 49.07 1.95
2 6.84 6.27 27.26 3.52
4 3.70 11.60 16.04 5.98
8 2.11 20.34 9.02 10.64
16 1.78 24.11 7.92 12.11

8 1 6.60 6.50 36.78 2.61
2 3.45 12.44 20.44 4.69
4 1.89 22.70 11.99 8.00
8 1.25 34.33 6.88 13.94
16 1.15 37.31 6.03 15.91

communicated by doors, so radiosity is transported between contiguous spaces. In
contrast, Livingroom has a irregular distribution of objects with different complexity
within a unique room.

In Table 1 the execution time and the corresponding speedup achieved for the HR
computation of the two test scenes are shown. Different configurations of distributed
and shared-memory resources have been checked: the first column shows the number
of distributed-memory nodes used for the computation, whereas the second column
indicates the number of threads spawned per node. Since each node of the target
platform has really 8 physical cores, running 16 threads per node allow us to effectively
exploit the SMT support available in Xeon processors.

In order to analyze the table, it should be noticed that the different configurations
with only one node show a pure shared-memory scenario, allowing us to confirm the
good performance of our multithreading approach. Thus, speedups of 8.17 and 8.83
have been obtained for the two scenes, significant values considering that there are only
8 physical cores within a node.

On the other hand, the shadowed rows in the table correspond to a pure distributed-
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memory configuration, with a unique thread running on each node. Looking at the
execution times, we can appreciate the drastic reduction achieved by our parallel ap-
proach for the Building scene in all cases (up to 6.5 for 8 nodes with only one thread per
node, and a maximum of 37.31 for 8 nodes with 16 threads per node). The Livingroom
scene achieves good results with regards to the multithreaded shared-memory part, but
gets a poorer distributed-memory performance, probably due to the work imbalance
across the different nodes produced by a more irregular geometric data distribution.
Since our parallel HR approach is independent of the scene partitioning method, we ex-
pect to improve the results for irregular scenes through spatially adaptive, non-uniform
partitions.

5 Conclusions and Future Work

This work approaches the parallelization of the HR method, a reference model in global
illumination, in a hybrid context, exploiting distributed and shared memory architec-
tures. The proliferation of multi-core processors with SMT capabilities is causing sce-
narios with clusters of SMP machines to become increasingly frequent. Our approach
is based on: a workload distribution among nodes through a convex partition of the
scene; a minimum number of message-passing communications among nodes thanks to
the replication of the coarse geometric data in the different nodes; an efficient mul-
tithreaded scheduling within a node based on kernel-level threads, taking advantage
of the multiple computing resources with access to a shared memory; and a low-cost
mutual exclusion algorithm for the concurrent refinement of the scene.

In this paper we describe the first steps towards a complete hybrid parallel solution
for HR. First results have been obtained using a uniform space partition, but we expect
to improve the performance by means of a non-uniform partition that prevent load
imbalance among nodes. Besides, the full hybrid system will be enhanced in a future
version with an extension to heterogeneous multi-core systems, using GPGPU.
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Abstract

Remotely sensed hyperspectral sensors provide image data containing rich in-
formation in both the spatial and the spectral domain, and this information can
be used to address detection tasks in many applications. In many surveillance
applications, the size of the objects (targets) searched for constitutes a very small
fraction of the total search area and the spectral signatures associated to the tar-
gets are generally different from those of the background, hence the targets can
be seen as anomalies. One of the most widely used and successful algorithms for
anomaly detection in hyperspectral images is the one proposed by Reed and Xiaoli,
commonly known as RX algorithm. Despite its wide acceptance and high compu-
tational complexity when applied to real hyperspectral scenes, few approaches have
been developed for parallel implementation of this algorithm due to the complex
calculation of the inverse of the sample covariance matrix in parallel. In this paper,
we evaluate the suitability o using a local approach for the calculation of the in-
verse of the sample covariance matrix of a high-dimensional hyperspectral scene in
parallel. The considered approach is quantitatively evaluated using hyperspectral
data collected by the NASA’s Airborne Visible Infra-Red Imaging Spectrometer
(AVIRIS) system over the World Trade Center (WTC) in New York, five days af-
ter the terrorist attacks that collapsed the two main towers in the WTC complex.
The precision of the algorithms is evaluated by quantitatively substantiating their
capacity to automatically detect the thermal hot spot of fires (anomalies) in the
WTC area.

Key words: Hyperspectral imaging, anomaly detection, Reed-Xiaoli algorithm
(RX).
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Figure 1: Concept of hyperspectral imaging.

1 Introduction

Hyperspectral imaging [1] is concerned with the measurement, analysis, and interpre-
tation of spectra acquired from a given scene (or specific object) at a short, medium or
long distance by an airborne or satellite sensor [2]. Hyperspectral imaging instruments
such as the NASA Jet Propulsion Laboratory’s Airborne Visible Infra-Red Imaging
Spectrometer (AVIRIS) [3] are now able to record the visible and near-infrared spec-
trum (wavelength region from 0.4 to 2.5 micrometers) of the reflected light of an area 2
to 12 kilometers wide and several kilometers long using 224 spectral bands. The result-
ing “image cube” (see Fig. 1) is a stack of images in which each pixel (vector) has an
associated spectral signature or fingerprint that uniquely characterizes the underlying
objects [4]. The resulting data volume typically comprises several GBs per flight [5].

Anomaly detection is an important task for hyperspectral data exploitation. An
anomaly detector enables one to detect spectral signatures which are spectrally distinct
from their surroundings with no a priori knowledge. In general, such anomalous sig-
natures are relatively small compared to the image background, and only occur in the
image with low probabilities. A well-known approach for anomaly detection was devel-
oped by Reed and Yu, and is referred to as the RX algorithm, which has shown success
in anomaly detection for multispectral and hyperspectral images [4]. The RX uses the
pixel currently being processed as the matched signal. Since the RX uses the sample
covariance matrix to take into account the sample spectral correlation, it performs the
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same task as the Mahalanobis distance, which has been widely used in hyperspectral
imaging applications [6]. A variation of the algorithm consists in applying the same
concept in local neighborhoods centered around each image pixel, this is known as the
kernel version of the RX algorithm [7].

Despite its wide acceptance and high computational complexity when applied to
real hyperspectral scenes, few approaches have been developed for parallel implemen-
tation of this algorithm due to complexity of calculating the sample covariance matrix
(and its inverse) in parallel. The success of the kernel version of the algorithm in [7]
led us to believe that a standard data partitioning framework for parallel implemen-
tation may provide different (or even better) results if the sample covariance matrices
are calculated independently for small data portions rather than computing the sample
covariance matrix for the entire hyperspectral image, which requires additional inter-
processor communications that may reduce parallel performance. This aspect is crucial
for the RX implementation since the consideration of a local or global strategy for the
computation of the sample covariance matrix is expected to show an important impact
in the scalability of the parallel solution but there is a trade-off between the increase
in parallel efficiency and the quality of the final solution in terms of anomaly detection
accuracy.

In this paper, we investigate the use of a local approach for the calculation of the
inverse of the sample covariance matrix, in which each processing node calculates the
covariance matrix of its local partition in parallel and inter-processor communications
are significantly reduced. The remainder of the paper is structured as follows. Section
2 briefly describes the classic RX algorithm. Section 3 describes the parallel implemen-
tation adopted in this work. Section 4 describes the hyperspectral data set considered
in experiments, which comprises a data set collected by the NASA’s Airborne Visible
Infra-Red Imaging Spectrometer (AVIRIS) system over the World Trade Center (WTC)
in New York, five days after the terrorist attacks that collapsed the two main towers
in the WTC complex. Section 5 conducts a detailed experimental assessment of the
precision and scalability of the proposed parallel implementations using the aforemen-
tioned scene as a relevant case study. Finally, section 6 concludes with some remarks
and hints at plausible future research.

2 RX algorithm

The RX algorithm has been widely used in signal and image processing [8]. The filter
implemented by this algorithm is referred to as RX filter and defined by the following
expression:

±RX(x) = (x− ¹)TK−1(x− ¹), (1)

where x =
[
x(0), x(1), ⋅ ⋅ ⋅ , x(n)] is a sample, n-dimensional hyperspectral pixel (vector),

¹ is the sample mean of the hyperspectral image and K is the sample data covariance
matrix. As we can see, the form of ±RX is actually the well-known Mahalanobis distance
[6]. It is important to note that the images generated by the RX algorithm are generally
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Figure 2: Spatial-domain decomposition of a hyperspectral data set.

gray scale images. In this case, the anomalies can be categorized in terms of the value
returned by RX, so that the pixel with higher value of ±RX(x) can be considered the
first anomaly, and so on.

3 Parallel implementation

3.1 Data partitioning strategies

In the considered parallel algorithms, a data-driven partitioning strategy has been
adopted as a baseline for algorithm parallelization. Specifically, two approaches for
data partitioning have been tested [9]:

∙ Spectral-domain partitioning . This approach subdivides the multi-channel re-
motely sensed image into small cells or sub-volumes made up of contiguous spec-
tral wavelengths for parallel processing.

∙ Spatial-domain partitioning . This approach breaks the multi-channel image into
slices made up of one or several contiguous spectral bands for parallel processing.
In this case, the same pixel vector is always entirely assigned to a single processor,
and slabs of spatially adjacent pixel vectors are distributed among the processing
nodes (CPUs) of the parallel system. Fig. 2 shows two examples of spatial-domain
partitioning over 4 processors and over 5 processors, respectively.

Previous experimentation with the above-mentioned strategies indicated that spatial-
domain partitioning can significantly reduce inter-processor communication, resulting
from the fact that a single pixel vector is never partitioned and communications are
not needed at the pixel level [9]. In the following, we assume that spatial-domain
decomposition is always used when partitioning the hyperspectral data cube.

3.2 Parallel algorithm

Our parallel version of the RX algorithm for anomaly detection adopts the spatial-
domain decomposition strategy depicted in Fig. 2 for dividing the hyperspectral data

@CMMSE                                                               Page   745  of 1328                                               ISBN 13: 978-84-613-5510-5



A. Paz , J. M. Molero, E. M. Garzón, J. A. Mart́ınez, A. Plaza

cube in master-slave fashion. The approach considered in this work represents a vari-
ation of the one presented in [10, 11], in which a global approach is adopted for the
covariance matrix calculation. In this work, we use a local approach for the calculation
of the covariance matrix instead, i.e. each node calculates the covariance matrix of its
local partition. The parallel algorithm is given by the following steps:

1. The master processor divides the original image cube into P spatial-domain par-
titions and distributes them among the workers.

2. The master calculates the n-dimensional mean vector m concurrently, where each
component is the average of the pixel values of each spectral band of the unique
set. This vector is formed once all the processors finish their parts.

3. Each worker calculates the covariance matrix of its local partition, and applies
(locally) the RX filter given by the Mahalanobis distance to all the pixel vectors
in the local partition as follows: ±(RX)(x) = (x −m)TK−1(x −m), and returns
the local result to the master.

4. The master now selects the t pixel vectors with higher associated value of ±(RX),
and uses them to form a final set of targets {x1,x2, ⋅ ⋅ ⋅ ,xt}.

4 Hyperspectral data set

The image scene used for experiments in this work was collected by the AVIRIS instru-
ment, which was flown by NASA’s Jet Propulsion Laboratory over the World Trade
Center (WTC) area in New York City on September 16, 2001, just five days after the
terrorist attacks that collapsed the two main towers and other buildings in the WTC
complex. The full data set selected for experiments consists of 614 × 512 pixels, 224
spectral bands and a total size of (approximately) 140 MB. The spatial resolution is
1.7 meters per pixel. The leftmost part of Fig. 3 shows a false color composite of the
data set selected for experiments using the 1682, 1107 and 655 nm channels, displayed
as red, green and blue, respectively. Vegetated areas appear green in the leftmost part
of Fig. 3, while burned areas appear dark gray. Smoke coming from the WTC area
(in the red rectangle) and going down to south Manhattan appears bright blue due to
high spectral reflectance in the 655 nm channel.

Extensive reference information, collected by U.S. Geological Survey (USGS), is
available for the WTC scene1. In this work, we use a U.S. Geological Survey ther-
mal map2 which shows the locations of the thermal hot spots (which can be seen as
anomalies) at the WTC area, displayed as bright red, orange and yellow spots at the
rightmost part of Fig. 3. The map is centered at the region where the towers collapsed,
and the temperatures of the targets range from 700F to 1300F. Further information
available from USGS about the thermal hot spots (including location and temperature)

1http://speclab.cr.usgs.gov/wtc
2http://pubs.usgs.gov/of/2001/ofr-01-0429/hotspot.key.tgif.gif
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Figure 3: False color composition of an AVIRIS hyperspectral image collected by
NASA’s Jet Propulsion Laboratory over lower Manhattan on Sept. 16, 2001 (left).
Location of thermal hot spots in the fires observed in World Trade Center area, avail-
able online: http://pubs.usgs.gov/of/2001/ofr-01-0429/hotspot.key.tgif.gif (right).

is reported on Table 1. The thermal map displayed in the rightmost part of Fig. 3 will
be used in this work as ground-truth to validate the target detection accuracy of the
proposed parallel algorithms and their respective serial versions.

5 Evaluation

The parallel computing platform used in this experiments is the Sun Fire x4600, it
is composed of 8 quad 2.3 GHz AMD Opteron 8356 (32 cores), with 64 Gb of main
memory. The operating system used at the time of experiments was Debian, and
Open MPI was used as parallel interface programming. Although the selected parallel

Table 1: Properties of the thermal hot spots reported in the rightmost part of Fig. 3.

Hot Latitude Longitude Temperature
spot (North) (West) (Kelvin)

‘A’ 40o42‘47.18“ 74o00‘41.43“ 1000
‘B’ 40o42‘47.14“ 74o00‘43.53“ 830
‘C’ 40o42‘42.89“ 74o00‘48.88“ 900
‘D’ 40o42‘41.99“ 74o00‘46.94“ 790
‘E’ 40o42‘40.58“ 74o00‘50.15“ 710
‘F’ 40o42‘38.74“ 74o00‘46.70“ 700
‘G’ 40o42‘39.94“ 74o00‘45.37“ 1020
‘H’ 40o42‘38.60“ 74o00‘43.51“ 820
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platform is based on a shared memory architecture, according to our experience MPI
has shown how is able to exploit this architecture and adapts to the characteristic of
our problem [13].

Figure 4: Detection results for the different implementations of RX, where black pix-
els represent the ground-truth, red pixels represent the targets detected by the serial
version, and blue pixels represent the targets detected by the parallel version.

The evaluation of RX capability to automatically detect the anomalies is based
on the results showed in Fig. 4. For illustrative purposes, Fig. 4 shows the detection
results obtained by the serial and the parallel implementation of RX using different
number of processors ( P = 16 and P = 32). In all cases, the number of target pixels
to be detected was set to t = 30 after calculating the virtual dimensionality of the data
[4]. The pixels labeled in black color in Fig. 4 represent the original targets. The pixels
labeled in red color in Fig. 4 represent the pixels detected by the serial version. Finally,
the pixels labeled in blue color in Fig. 4 represent the pixels detected by the parallel
version (the results obtained using P = 16 and P = 32 processors were overlapped).
As shown by Fig. 4, the same targets were detected by the parallel version regardless
of the number of partitions. In this case, a local approach is used for calculating the
covariance matrix, while the serial version uses a global approach. The global strategy
introduces additional inter-processor communications which negatively affect parallel
performance as indicated in [10, 11], while the local strategy exhibits results which are
almost identical to those obtained by the global strategy. In all cases, only three out of
eight targets (i.e. those labeled as ‘A‘, ‘C’ and ‘D’) were detected. However, increasing
the number of targets to be detected t increases the detection results. In this work,
however, we have decided to adopt the value t = 30 based on the calculation of the
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virtual dimensionality of the data, which provides an objective criterion for setting the
number of targets.

Figure 5: Run-Time of parallel RX.

Fig. 5 shows the performance of parallel RX for different number of processors
P . It shows a super-linear speed-up because T (1)/T (P ) > P for all values of P .
Experiences with super-linear speed-up in parallel computing have been described in the
literature [12, 14]. The super-linear speed-up is achieved when the computational power
increases as the load of every processor decreases. Frequently, this behavior is related to
applications which need large memory requirements, since the memory management is
improved as P increases. The memory requirements to store the hyperspectral images
are large. Consequently, the parallel RX, based on the partition of hyperspectral image,
shows superlinear speed-up due to the improvements of the memory management when
P increases.

Hence, the speed-up is not an appropriate parameter to evaluate the scalability of
parallel RX, since the sequential RX is penalized by a hard memory management. With
this aim, the parameter called Incremental Speed-up (IncSpUp) has been proposed
as an alternative to the speed-up [12]. It provides information about how much the
computing time diminishes when the number of PEs increases. IncSpUp is defined as
follows:

IncSpUp(2k) =
T (P = 2k−1)

T (P = 2k)
, (2)

where T(P) is the run time of the execution with P PEs. Values of the Incremental
Speed-up equal to 2 are equivalent to lineal speed-ups.

Figure 6 shows IncSpUp obtained by the parallel RX algorithm using different
number of processors on the considered parallel system. As shown by Figure 6, the
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proposed parallel implementation provides good scalability results when compared to
the implementation in [10, 11]. These results are a consequence of a key of parallel
RX, that is, there are not communications among the processors which penalize the
performance when P increases. However, the proposed parallel implementation of the
RX algorithm can still be enhanced by further exploring different strategies for the
parallel calculation of the covariance matrix.

Figure 6: Incremental Speedup for the RX algorithm.

6 Conclusions and future research lines

In this paper, we have analyzed the accuracy and scalability of a new parallel imple-
mentation of the RX algorithm which uses a local approach for the calculation of the
covariance matrix in parallel. The proposed approach has some competitive advantages
(in terms of scalability) with regards to the commonly used (global) strategies adopted
for calculating the covariance matrix in parallel when implementing this algorithm.
The parallel version has been validated in the context of a real hyperspectral imaging
application, focused on detecting the thermal hot spots (anomalies) of the fires in the
World Trade Center area in New York City, just few days after the terrorist attacks
of September 11th, 2001. Our experimental results indicate that the proposed (local)
strategy provides similar accuracy results to those reported for the (global) one adopted
in previous work, and presents potential for improving the scalability of the algorithm
due to the fact that the proposed strategy reduces significantly the amount of inter-
processor communications. Although the results reported in this work are encouraging,
further experiments should be conducted in order to increase the scalability of the pro-
posed parallel algorithms to a higher number of processors by resolving memory issues
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and optimizing the parallel design of such algorithms. Experiments with additional
scenes under different target/anomaly detection scenarios are also highly desirable.
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Abstract

A typical, and unfortunately very spread, endogenous cancer is represented by the
mammary carcinoma. Lollini et al.[1] prevented mammary carcinogenesis in HER-
2/neu transgenic mice using the Triplex cellular vaccine under a Chronic schedule
(vaccine cycles started at 6 weeks of age and continued up to the end of the experiment).
When the vaccine is administered, immune system (IS) cells are stimulated to duplicate
in order to eliminate tumor cells, going back to normal levels after cancer eradication.
However, in endogeneous tumors, newborn cancer cells will be formed and then vaccine
administrations are necessary to stabilize the cancer – immune system competition.
Thus the system is unstable and will be stabilized by the external action of the vaccine.

The question whether the Chronic protocol is the minimal vaccination protocol
yielding complete protection from tumor onset, or whether a lower number of vacci-
nation cycles would provide a similar degree of protection, is still an open question.
In order to answer to this question we presented in [2] an agent-based model of IS re-
sponses to vaccination. However computational models do not allow a qualitative and
asymptotic analysis, neither an easy investigation of parameters’ space. For this reason
we are actually working on a ODE model that is realized upon the same conceptual
scheme used for the computational model. The model equations are shown as follows:

d V C

dt
= kin(t) − (µ4 + α1TC + α2Ab + α3NK) · V C (1)

d TAAv

dt
= α10(µ4 + α1TC + α2Ab + α3NK) · V C +

−(µ10 + µ11B + α14Ab + µ15MP + µ16DC) · TAAv (2)

d MP

dt
= α15TAAv + α16TAAc − µ17MP (3)
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dDC

dt
= α17TAAv + α18TAAc − µ18DC (4)

dB

dt
= α20TH + (α21IL2 − µ20) · B (5)

dTH

dt
= α22TAAv + α23TAAc + α24V C + (−µ21 + α25IL2 + α26IL12) · TH (6)

d IL12

dt
= α75 · kin(t) − (µ5 + α27TH + α28TC + α29NK) · IL12 (7)

d IL2

dt
= α30TH − (µ30 + α31B + α32TC) · IL2 (8)

d CC

dt
=

»„

1 −

CC

cmax

«–

· [k1 CC] + p1 − (k2NK + k3TC + k4Ab) · CC (9)

dTC

dt
= α40 · V C + (α41 − µ40) · TC (10)

d TAAc

dt
= α50(k2NK + k3TC + k4Ab) · CC − (µ50 +

+µ61B + α62Ab + µ63MP + µ64DC) · TAAc (11)

d AB

dt
= α70B − (µ70 + α71CC + α72V C + α73TAAc + α74TAAv) · AB (12)

Vaccine cells (V C) are administered through intraperitoneal injections following a pre-
defined dosage. Inoculation is modeled by a function kin(t) which returns the number
of vaccine cells inoculated into the host at time t if a that time an injection is sched-
uled. As the vaccine cells come from the external, this is the only source element in
equation (1). Vaccine cells die for natural death (µ4), killed by Cytotoxic T cells (TC),
Natural killer cells (NK) or by specific antibodies (AB). Antigens released by vaccine
cells (TAAv) are proportional to the number of vaccine cells that die. This is the
source element of the first part of equation (2). TAAv are subjected to degradation
and phagocytosis by antigen presenting cells, i.e. by B cells, macrophages (MP), den-
dritic cells (DC). Moreover AB can bind to free antigens producing immune complexes.
MP and DC activation (eqns. 3 and 4) depends mainly by tumor associated antigens
released by V C and cancer cells (CC). MP and DC can die and can undergo to resting
status (−µ17MP and −µ18DC terms). Antigen activated B (eqn. 5) can be stimulated
to duplicate by helper T cells (TH) positive feedback. Interleukin 2 (IL2) plays an
adjuvant role in this stimulation process. Death is modeled by µ20B term.

Equation (6) models the priming of TH which can be primed through interactions
with specialized antigen presenting cells, by major histocompatibility class II / peptide
complex presentation. Presentation is not directly modeled, so the number of activated
TH is estimated from the number of TAAv, TAAc and V C present in the system. IL2
and IL12 also contribute to this priming. The death factor is modeled by −µ21TH
term. IL12 (eqn. 7) is introduced through vaccine administration, so it depends on the
dosage. It is subjected to normal degradation (−µ5IL12) and it is partially absorbed
for mitotic and stimulation signals by TC and TH priming and NK activation. IL2
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stimulates TH priming and primed TH produce further IL2. It is subjected to normal
degradation (−µ30IL2) and it is partially absorbed for mitotic and stimulation signals
in TC priming and B duplication. Equation (9) describes CC dynamics. The term[(

1 − CC
cmax

)]
· [k1 CC] models CC growth. p1 models the continuous production of

newborn cancer cells due to transgenic nature of the host. The other terms describe
CC death mainly due by NK, AB, TC actions. TC priming (eqn. 10) depends
mainly by V C allogeneic major histocompatibility class I complex. Duplication factor
is modeled by α41TC term whereas the normal death factor is modeled by −µ40TC
term. TAAc (eqn. 11) are proportional to the number of CC that die. This is the
source element of the first part of the equation. TAAc are subjected to degradation
and phagocytosis by B, MP and DC. AB can also bind to free antigens producing
immune complexes. Equation (12) describes AB dynamics. AB are released by B cells
that differentiate into plasma B cells and are subjected to normal degradation (modeled
by −µ70AB term). Moreover they disappear in absolving their functions: binding to
specific targets, i.e. CC, V C, TAAv and TAAc. NK are constant an do not vary
during the experiment (e.g. d/dt NK = 0). Initial Cauchy conditions are set to 0
for all the equations except for NK whose initial value is set according the leukocyte
formula observed “in vivo”.

Using known data from literature and data coming directly from the “in vivo”
experiment we were able to find a tentative tuning for the model, capable to show a
reasonable IS response that reflects the one observed in “in vivo” experiments and in
the computational model. With this tuning we can try to describe the state of the
“immune system – cancer competition” using three fundamental variables: the number
of CC (representing the foreign pathogen), the number of TC representing the cellular
response and the number of AB, principal outcome of the humoral response. Thus
it is possible to represent the evolution of the system in a 3-D states space using the
variables’ curves, with the time representing the curves parameter, as shown in [3]. We
firstly analyze the untreated scenario. In this scenario the number of cancer cells grows
with no control up to the saturation threshold (Figure 1(a)). Figure 1(b) shows that the
immune system is unable to engage in fight against cancer cells. The second scenario is
represented by the administration of the Early vaccination schedule, composed by three
vaccine cycles starting at the beginning of the experiment. A vaccine cycle consists of
two vaccine administrations over two weeks followed by two weeks of rest [1]. The
effect of the schedule is to contrast the initial growth of tumor cells (Figure 1(b)). This
effect is presented in Figure 1(d) as a large loop in which the cancer cells growth is
reduced by TC and AB action. After this initial phase, cancer cells start to grow again
with no constraints and the straight line is similar to the plot of the untreated case.
Finally we consider the Chronic schedule. This schedule consists on repeated Early
cycle administrations for the entire life of the host. Looking at Figure 1(e) one can
see that after an initial burst, cancer cells are eradicated and their level is kept near
to 0. Figure 1(f) shows that the system (immune system - cancer) is stabilized and an
equilibrium region is reached.

This preliminary analysis shows that the vaccine, when administered with a Chronic
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schedule, is able to stabilize the immune system – cancer competition around values
that are safe for the host. Asymptotic and sensitivity analyses, as well as analytical
study of a simplified model is in progress and results will be presented in due course.
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Figure 1: 3-D States’ space for the untreated, Early and Chronic scenario
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Abstract

This study presents a novel version of the Growing Neural Gas algorithm that
is based on the use of ensemble techniques. Its aim is to improve the stability
and classification capabilities of these types of topology preserving networks. This
is accomplished through with the use of a semi-supervised algorithm that is able
to incorporate unlabeled samples into the regular training of these networks thet
use labeled samples; and through the use of ensemble training and a final fusion
algorithm to generate a single final network. A comparative study was made of all
these model combinations to provide a complete study of their capabilities. They
are applied here to an interesting case of study: the classification of cured ham
samples. Data sets were collected using an “electronic nose” to analyze the ham
samples and the models proposed were used for the quality determination, based
on that chemical measurements.

Key words: Artificial Neural Networks, Topology Preserving Networks, Auto-

matic Learning, Ensemble Learning, Data Classification

1 Introduction

Artificial Neural Networks (ANNs) are very useful mathematical models owing to their
ability to perform tasks such as data classification, data clustering and pattern matching
without any need for a very complex model of the problem to be classified. Belonging
to the Automated Learning family of algorithms, these networks are able to adapt to
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the data set under study by “learning” from the examples extracted from a similar data
set.

A combination of an electronic device for the analysis of volatile compounds (the
electronic nose or “e-nose”) with different combinations of an algorithm for incorporating
unclassified samples into a machine learning algorithm and an ensemble summarization
algorithm for topology preserving networks are tested in the classification of a wide
variety of “Serrano” Hams samples. The pourpose is to establish whether this procedure
is able to discriminate, in an easy and reliable way, between ham quality on the basis
of different olfactory characteristics.

Consumer trust is a very important factor, when a product is being introduced
into a new market or consolidated in an existing one. Dry-cured “Serrano” ham is a
widely consumed traditional product in Spain that has also found a foreign market
and is increasingly exported abroad. It is important to find quick and easy, low-cost
techniques that apply simple parameters to evaluate the quality of these products prior
to their purchase and consumption by the consumer. In this case, automated learning
techniques are considered as a possible solution this problem.

Several devices have recently appeared that perform analytical techniques in the
food industry to support the subjective decisions of professional human testers. One
disadvantage of these alternative tests is that whatever humans interpret as tastes and
smells, machines will inevitably interpret as complex, numeric measurements. Thus,
the aim of this multidisciplinary research is to devise an artificial intelligence system
capable of interpreting the analysis made by an e-nose and to present the results in an
easily understandable way to human experts.

The rest of this paper is organized as follows: Section 2 describes the Growing
Neural Gas base algorithm; while Section 3 and Section 4 describe the proposed modifi-
cations to the algorithm that is discussed on the present work. Section 5 briefly presents
the way in which the test data was gathered. Section 6 includes descriptions of the tests
and their results. Finally, Section 7 summarizes the final conclusions and future lines
of work.

2 The Growing Neural Gas Algorithm

The Growing Neural Gas (GNG) algorithm is a clustering and classification algorithm
proposed by Fritzke [5]. It is based on the Neural Gas (NG) algorithm previously
proposed by Martinetz et al. [10] for finding optimal data representations based on
feature vectors, which is in turn a modification of the widely known Self-Organizing
Map by Kohonen [8]. The main characteristic of the NG algorithm is that instead of
expanding through the data input space as a fixed grid of units, like the SOM algorithm;
it allows the neighboring relationships of its units to change, expanding more like a gas
over the data space.

The GNG method is different from the previous algorithms in that it is an incremen-
tal algorithm, so there is no need to determine a priori the number of nodes. Network
shape and size are determined during the training, while the SOM and NG are often
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trained on a fixed network size throughout.

The GNG is a combination of Fritzke’s Growing Cell Structures (GCS) [6] and
Martinetz’s Competitive Hebbian learning (CHL) [9]. The network topology of the GNG
is generated incrementally by the CHL algorithm, which successively inserts topological
connections or edges. The main principle of the CHL is: for each input x connect the
two closest centers (measured by Euclidean distance) by an edge.

Algorithm 1 Growing Neural Gas Algorithm

1: procedure GNG(set of samples ∈ R
n)

2: Start with two units i and j at random positions in the input space.
3: Present an input vector x ∈ R

n from the input set or according to input distri-
bution.

4: Find the nearest unit s1 and the second nearest unit s2.
5: Increment the age of all edges emanating from s1.
6: Update the local error variable by calculating:

△error(s1) = ‖ws1
−x‖2

7: Move s1 and all its topological neighbors (i.e. all the nodes connected to s1 by
an edge) towards x by fractions of eb and en of the distance:

ws1
= eb(x−ws1

)

wn = en(x−wn) for all direct neighbours of s1

8: If s1 and s2 are connected by an edge, set the age of the edge to 0 (refresh). If
there is no such edge, create one.

9: Remove edges with their age larger than amax. If this results in nodes having
no emanating edges, remove them as well.

10: If the number of input vectors presented or generated so far is an integer or
multiple of a parameter λ, insert a new node r as follows:

• Determine unit q with the largest error.

• Among the neighbors of q, find node f with the largest error.

• Insert a new node r halfway between q and f as follows: wr =
wq+wf

2

• Create edges between r and q, and r and f . Remove the edge between q and
f .

• Decrease the error variable of q and f by multiplying them with a constant α.
Set the error r with the new error variable of q.

11: Decrease all error variables of all nodes i by a factor β.
12: If the stopping criterion is not met, go back to step(2).
13: end procedure
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3 The Semi-Supervised Learning Meta-Algorithm

As several recent studies point out [4, 3], the use of unlabeled data has proven to
be a useful way of improving the classification of previously labeled data sets. This
is an specially useful procedure when new information added to previous data sets is
expensive or difficult to classify. In this case, due to the use to which the data will be
put, which is the human consumption of the ham, the categorization always requires a
human expert with a specific knowledge that is very difficult to formulate for classical
approaches such as classification rules. This idea of the inclusion of unlabeled samples in
the training is perfect for our purpose, as the final system will in all likelihood have been
trained in a representative database of ham samples, but the addition of new samples
obtained along its future use would be a desirable feature. Thus, characteristics of new
unclassified samples to be tested may easily be incorporated into the network in this
way.

This study will therefore make use of the semi-supervised algorithm proposed in
[13]. Its implementation pseudo-code is detailed in Algorithm 2.

Algorithm 2 Semi-Supervised Training Algorithm

Input : L and U , let L′ 6= {φ} represent an initial empty set of newly labeled data.
Output : Classifier Algorithm (K)

1: procedure Semi-Supervised Learning (L = (x, y) U = x′: x, x′ ∈ R
n,y ∈ C)

2: Present L to the classification algorithm K and train the classifier only with L.
3: for all input xj from U do

4: Label xj according to the class label of the winning node using classifier K.
5: Remove xj from the current unlabeled data set, U .
6: Add xj into the newly labeled data set L′.
7: end for

8: Present L and L′ together to the classifier (K) and retrain with L + L′. Evaluate
new classification performance.

9: Check the labels of U ; if they become stable during successive iterations, stop.
That is, if classification performance varies less than a threshold in two different
iterations.

Otherwise go back to Step (2).
10: end procedure

This is a two-stage method where labeled data are firstly used to train a classifier
and then unlabeled data are labeled according to the classifier trained with the original
labeled data. The second stage involves classifying unlabeled data and re-training the
classifier from the classified unlabeled data as well as the original labeled data. The
two stages are iterated until the training process converges, in other words, until the
training errors stabilize.

This procedure can be applied to many different classifiers. In this study will be
applied to the GNG and its ensemble variation to improve its classification results.
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4 Voronoi Polygons Similarity Ensemble Fusion

The ultimate goal of constructing an ensemble is to improve the performance obtained
by a single working unit. With regard to classification, it is generally accepted that the
sets of patterns misclassified by the different classifiers would not necessarily overlap.
This suggests that different classifier designs have the potential offer complementary in-
formation about the patterns to be classified and could be harnessed to improve the per-
formance of the selected classifier [12]. In the present study, the central idea is to verify
the improvements that an ensemble technique can provide in the multi-dimensional data
classification field over an unsupervised learning process such as Competitive Learning.

As the initial aim of the ensemble architecture was to improve supervised classifica-
tion, few models attempt to deal with ensembles in the field of unsupervised learning,
and very few try to deal with the topology preserving map family of algorithms [7, 2].
In this study, an algorithm for topology preserving networks summarization proposed
by Saavedra et al. [11] is used as a potential means of improving the single model’s
performance.

This algorithm uses the Voronoi polygons related to the units of different networks
as a means of comparing them and deciding on the structure for the final network.
Each unit in a topology preserving map can be associated with a portion of the input
data space called the Voronoi polygon [1]. That portion of the multi-dimensional input
space, contains data for which that precise unit is the Best Matching Unit (BMU) of
the whole network. Thus, a logical conclusion is to consider that the units related to
similar Voronoi polygons can be considered similar between themselves, as they should
be situated relatively close in the input data space. A record may be kept of which
data entries activated each unit as the BMU, to calculate the dissimilarity between the
Voronoi polygons of two units. This can easily be done by associating a binary vector
with the unit, the length of which is the size of the data set and contains zeros in the
positions where the unit was the BMU for that sample and zeros in all other positions.
The dissimilarity (i.e. the distance) between units can therefore be calculated, as shown
in Eq. 1:

ds(br, bq) =

∑
XOR(br, bq)∑
OR(br, bq)

(1)

where, r and q are the units whose dissimilarity will be determined and br and bq

the binary vector relating each unit with the data sample that it recognizes.

The main issue with this proximity criterion is that it depends on data recognition
of by the network. To avoid problems with “dead” units, all units with a reacting rate
lower than a set threshold are removed before calculating the similarities between them.

Units that are sufficiently similar are grouped together, in order to form a single
unit in the final map. Eq. 2 is used to determine the units that will be part of the same
group -or cluster- .

{
ds(br, bq) < θf ∀r, q ∈Wsn

ds(br, bq) > θf ∀r, q /∈Wsn

(2)
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where ds(br, bq) is the dissimilarity between units br and bq, (see Eq. 1) and θf is
the fusion threshold.

Having determined the units that will be fused together, the final unit will be
obtained by calculating the centroid of the fused units (Eq. 3):

wc =
1

|Wk|

∑

wi∈Wk

wi (3)

Finally, the similarity criteria must be used again to keep a notion of neighboring
relations between the units of the fused network. Units with dissimilarity below a certain
threshold will be considered as neighbors in the fused network. Units with dissimilarity
below a certain threshold among their initial composing units will be considered as
neighbors in the fused network (Eq. 4):

min

br ∈Wsk, bq ∈Wsl

ds(br, bq) < θc (4)

where θc is the connection threshold of the algorithm.

A detailed description is shown in Algorithm 3.

This whole procedure implies that the final network will approximate very well to
the data set, enhancing the vector quantization feature of the SOM. Its drawbacks are
that the number of units in the final network is an unknown factor before its fusion
(and will almost certainly differ from the size of the composing networks) and that the
neighborhood relationships of the composing networks will be ignored in the final one,
as the latter will create a new neighborhood for each unit based on its dissimilarity with
the others.

5 A Food Industry Case of Study

Several Spanish hams of differing quality and various origins were used in this research.
The data sets consisted of measurements taken from seven types of Spanish dry-cured
ham from among the various brands available on the Spanish market. The samples also
included some that were tainted and/or that had a rancid/acidic taste. The tainted
samples were randomly selected from among all the different quality types and origins
of hams. The commercial brands of the hams in the samples were not taken into account
in this study. In this case the e-nose was used to measure the odor of the ham samples.
The data was collected and treated by the different models, in order to find the simplest
and most reliable method for testing and analyzing their olfactory properties.

5.1 E-Nose Odor Recognition

The odor recognition process may be summarized as follows:

1. The sample is heated for a given time to generate volatile compounds in the
head-space of the vial containing the sample.
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Algorithm 3 Network Fusion by Voronoi Polygon Similarity

Input: Set of trained topology-preserving maps: M1...Mn,
usage threshold: θu , fusion threshold: θf , connection threshold: θc

Output: A final fused map: Mfus

1: Select a training set S = 〈(x1, y1) . . . (xm, ym)〉
2: train several networks by using the bagging (re-sampling with replacement) meta-

algorithm : Mn

3: let θu, θf and θc be the usage, fusion and connection thresholds respectively
4: procedure Fusion(M1...Mn)
5: for all Mi ∈Mn do ⊲ for all networks in the ensemble
6: for all wj ∈Wi do ⊲ for all units in each network

⊲ accept units with a recognition rate higher than a given threshold
7: Wfus ← wi if

∑
i br(i) > θu

8: end for

9: end for

10: for all wi ∈Wfus do

11: calculate dissimilarity between wi and ALL units in Wfus (Eq. 1)
12: Di ← ds(wi, wk)∀wk ∈Wfus

13: end for

14: group into different sub-sets (Wsn) the units that satisfy Eq. 2
15: for all Wsn do

16: calculate the centroid (wc) of the set.
17: add the centroid to the set of nodes of the final network (W ∗

fus)
18: end for

19: for all wr ∈W ∗
fus do ⊲ for all units in the fused network

20: Connect wr with any other unit in W ∗
fus , if they satisfy Eq. 4

21: end for

22: end procedure
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2. The gas phase is transferred to a detection device which reacts to the presence of
molecules.

3. The differences in sensor reactions are recorded using statistical calculation tech-
niques to classify the odors.

The readings taken by each sensor are separated and stored in a simple database for
further study. In this study, the analyses are performed using an E-Nose α-FOX 4000
(Alpha M.O.S., Toulouse, France) with a sensor array of 18 metal oxide sensors. The
e-nose takes readings every 0.5 seconds, and has an acquisition time of 120 seconds and
an acquisition delay of 600 seconds. Only the highest reading from each sensor is stored
in the database for further analysis.

6 Experiments and Results

Experiments to test the different combinations of the techniques described in this work
were performed. The combinations under comparison were: a simple GNG network
trained in a single run, a simple GNG network trained using the semi-supervised tech-
nique in section 3, an ensemble of GNG networks trained as a single run and summarized
as explained in section 4; and an ensemble of GNG networks that were trained using
the semi-supervised algorithm. The procedure for this latter model was to train all
networks individually with the single run procedure and then summarize them using
the Voronoi Similarity algorithm and employ the semi-supervised algorithm over this
last network.

Regarding the use of the data set, two experiments were designed. The first one uses
all the content of the data set and studies how the variations in the number of networks
in the ensemble models affected the final performance of the model. The second one
consisted of reducing the size of the data set from its original size to 1/5 of that size,
in order to analyze how the reduction of data affected the performance of the different
models.

All the results presented here were performed over a 5-fold cross-validation, which
means that 1/5 of the data set was always reserved to obtain the performance measures,
while the remaining 4/5 were used in the experiments. The size associated with each
test in the second experiment is the total of training + validation data set. At all times,
3/4 of the training data set was used as the labeled part, while the remaining 1/4 of
the training set was used as the unlabeled part in the semi-supervised models; while
the single models were only trained with the labeled part.

Fig. 1 and Fig. 2 respectively, show the results of the first and second experiment.

From the results of the first experiment, it is easy to conclude that Fusion by
Similarity trained in the unsupervised way shows the best performance for classification
tasks (Fig. 1a), repeatedly yielding the lowest error. It is only outperformed once
by the Fusion by Similarity trained in a Semi-Supervised manner. As expected, the
simple GNG is the most unstable of all, alternating low error values with much higher
values even though the values represented are the mean of the cross-validation. This
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(a) Classification Error Measure (in %) (b) Mean Quantization Error Measure

Figure 1: Experiment over complete data set, varying the number of networks.

(a) Classification Error Measure (in %) (b) Mean Quantization Error Measures

Figure 2: Experiment using 5 networks in the ensembles, varying the number of data
samples.

instability is somehow reduced by the use of the ensembles; the ensemble-based models
showing less variability in their results in the different tests, with a more graduated
behavior. Moreover as expected, classification error is reduced for the ensemble-based
models when the number of networks increases. The more networks are included, the
more the diversity of the ensemble increases, leading to better results.

The mean quantization error results for the four models under comparison (Fig.
1b) are very similar for all models. In general, they are all very low, but still the
minimizing effect of the inclusion of more maps in the ensembles can be appreciated for
the ensemble-based models.

In the second experiment (in Fig. 2), the added instability that arises from de-
creasing the number of samples is more than evident, as it leads to more inconsistent
behaviour than in the first experiment. Nevertheless, the most consistent continues
to be Unsupervised Fusion by Voronoi polygon Similarity. Even the Semi-Supervised
fusion model, which appears comparable -or even better- in the range from 124 samples
to 62 samples, becomes the worst model in the final step, with only 30 samples.
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Also in this case, mean quantization error is a much less distinguishing character-
istics with which to compare the models. All models tend to increase their errors when
proportionally decreasing the number of samples.

It is interesting to note that the more complex models among those tested, Semi-
supervised Fusion by Voronoi polygons Similarly, does not clearly outperform Unsuper-
vised Fusion by Voronoi polygons Similarity. This situation probably points to some
kind of over-fitting or interaction between the Semi-Supervised and Ensemble algo-
rithms, one of which cancels out the improvement effect of the other.

7 Conclusions and Future Work

This research has presented a study of several solutions to the problem of ham sample
quality and its automatic classification. The aim was to generate an algorithm capable
of classifying new ham samples, so as to assess ham quality in an objective and simple
way. Due to the specific characteristics of the problem, the algorithms are all based
on competitive learning, a subset of the unsupervised learning. Two different potential
ways of improving the classification have been tested in combination with the well-known
Growing Neural Gas Algorithm: an ensemble fusion algorithm specifically designed for
topology preserving networks and a semi-supervised algorithm that uses still unlabeled
samples in the training. The most useful technique seems to be the ensemble algorithm.
Although both are able to improve the performance of the original model, the ensemble
is able to induce greater stability and the model therefore yields more reliable results.

A number of tests remain that are of interest as future work. For instance, observ-
ing the differences in performance between semi-supervised training before adding the
networks to the ensemble; or training the formed ensemble in a semi-supervised way;
or even experimenting with a wider range of base classifiers with those techniques to
search for a more effective model. Moreover, the measures used in this work are two
of the most immediate in terms of their calculation, although many others appearing
in literature could provide additional information on how these models interact with
the ensemble and semi-supervised algorithms. This should lead to more comprehensive
studies of the different options with which to solve the presented problem.
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Abstract

This article considers the problem of saving energy in the disk drive taking
advantage of SSD drives. SSD and disk devices offer different power characteristics,
being SSD drives much less power consuming than conventional disk drives. We
propose the design and implementation of a sequential prefetching algorithm that
uses a SSD device as a cache for a single disk device. We implemented a simulator
composed of disk and SSD devices. We evaluated the proposed approach with the
help of realistic workloads.

Key words: Power saving, Solid State Disk, Write-Buffering, Prefetching

1 Introduction

Saving energy in the computing system context has become lately an important and
worrying need. Energy has turned into an augmenting demand in many systems,
specially in data centers and supercomputers. As stated by the Green500 [1] list,
which provides a ranking of the most energy-efficient supercomputers in the world,
even in the supercomputers scope, energy is as relevant as performance. Moreover, the
performance-per-watt is established as a new metric to compare supercomputers.

In current computers, disk drives are one of the most power consuming elements,
and it is important to notice that they contribute about 86% of the energy consumption
in some systems [2]. In order to reduce disk consumption, numerous disks provide
energy efficient transition modes. However, disk idle periods have to be large enough
to excuse both performance and power overhead, due to the spinning up/down disk
scheme. The desirable goal is to increase disk inter-access times by means of gathering
accesses to disks in fragments with expanded idle times in the middle.

SSDs (Solid State Disks) show contrasting features with disk drives. On the one
hand, random-access writes in SSD devices can take longer than magnetic disk drives
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while reads perform faster. On the other hand, SSDs have lower power consumption
ratios. This characteristic makes them optimal to behave as big caches for saving energy
in disk drives. For example, if SSD devices are treated as write-back logs, every disk
write request will be absorbed by the SSD device, and only when that SSD is full, the
write requests will be flushed to the disk in background. This mechanism clearly will
increase disk idleness.

Prefetching has been identified as a useful method for augmenting burstiness in
disk drive accesses [3]. When a SSD miss occurs due to a disk read access, and those
data are not stored in the SSDs, data can be pre-loaded in advance in the SSD devices.
Thus, future disk accesses can be concentrated in the same sequence of I/O fragments,
making idle times bigger.

In this paper we explore the usage of prefetching between SSD and disk drives to
save energy. We propose a novel power saving solution based on SSD devices, namely,
SBPS (SSD-Based Power Saving). SBPS includes two power saving mechanisms, write-
buffering and prefetching. We make the following contributions: we present a prefetch-
ing method to provide burstiness in read accesses;

an evaluation of saving gains, that may be strongly dependent on the workload
behavior perceived at the storage system; the conviction that significant energy sav-
ing in a hybrid system is possible, as stated through a validation of results from a
simulation-based prototype.

2 Preliminaries

In this section we present four realistic workloads which are common in data-intensive
I/O systems. Financial1 is the I/O core of an OLTP application gathered at a huge
financial organization. It performs about 5 million requests over 24 disks. WebSearch2
is a famous search engine server [4], which executes about 4 million read requests over
6 disks. Openmail6 is an OpenMail e-mail server at the HP Labs [5], and runs about
1 million requests over 21 disks. Cello99 [5] is a shared compute/mail server from HP
Labs. It performs about 6 million requests over 25 disks.

Figure 1 illustrates the read access patterns for Financial1 and Cello99 at disk 1,
and for WebSearch2 and Openmail6 at disk 0. We initially measured the sequentiality
ratio as the percentage of read requests that are sequential in a certain period. The
Financial1 is highly sequential at disk1, i.e, in a 79% of the total read requests, the last
block requested corresponds with the first block of the following request. In WebSearch2
and Openmail6, sequentiality is 38% and 15%, respectively. For Cello99 sequentiality
turns out to 5%.

It is remarkable that in WebSearch2 and Openmail6 the range of accesed LBAs
is highly concentrated in certain bands, and this access pattern remains stable during
the execution. If we could detect those specific bands, and from that point only read
blocks in that range, we would save space in SSD device to host the prefetched blocks
that actually will be accessed.
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Figure 1: Read access patterns

3 SSD-Based Power Saving Approach

The SSD-based power saving approach lies on an hybrid system, consisting of SSD and
conventional disk devices. Our general procedure aims to use the SSD device as a block
cache for the disk drive. Both devices appear like an unique one to file systems, i.e.,
we handle the diverse devices under the file system transparently. SSD drives perform
faster random-access reads and sequential-access writes than disk drives [6]. Moreover,
the number of erases is dramatically reduced because applications do not write many
times in the same page of a SSD device. This results in less invalid pages in blocks and
less overhead.

For write operations, the following steps are performed. Write requests are first
committed to the SSD device. The SSD drive is treated in a log-manner, writing re-
quests sequentially. This mechanism takes advantage of the asymmetric performance
of SSD devices. When the SSD device is full, dirty blocks are committed to the disk.
Meanwhile, subsequent writes can be sent to the disk device. This approach can post-
pone many write requests in order to write all of them in a clustered manner (write-
buffering). This increases idle intervals in the disk drive, allowing it more opportunities
to spin-down, and consequently, save energy.

Read request are sent to the current SSD device if the indirection map indicates
it. This reading process presents a new problem to handle. Whenever the requested
block is in the SSD drive, it can be served by it. When a read miss SSD occurs, that
request is sent to the disk drive. That read miss implies breaking a possible long idle
interval, and consequently, waking up the disk drive. In order to avoid that situation as
possible, whenever a read miss occurs, we would need to bring from disk to the SSD the
following read blocks to be requested in the next future, namely, we need to prefetch
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the following read blocks to be accessed.

Our solution lies in an indirection map, which permits blocks to be allocated in
different devices, mapping SSD and disk logical bock addresses (LBAs). Every read
and write request is sent to the corresponding device after mapping the indirection
using the actual physical location. Data consistency is enforced in the system by not
allowing more than one copy of a file block at SSD. Our approach is based on a one
copy consistency model. Either the data is in one device or in both, there is a need to
have the most accurate information in the remapping of the block addresses.

4 Power-saving prefetching method

The main goal of conventional prefetching methods is to reduce request service times,
improving I/O accesses in terms of performance. However, power-saving aware prefetch-
ing focus on reading in advance an enough number of blocks in order to avoid break
long idle intervals. If a workload is sequential enough, reading successive blocks into the
SSD device using a single I/O operation, can considerably satisfy almost the totality of
read requests during a long idle period of time, and take advantage of shorter service
demands that comes from the not extreme head displacements at disk drives.

We propose a sequential prefetching method as an energy-efficient strategy for
SSD-based hybrid system. This method consists in read in advance consecutive blocks
when a read miss occurs. We employ this approach by using adaptive window sizes.
Depending on the workload access pattern, the algorithm chooses a compromise window
size in order to get the highest possible hit ratio.

Our prefetching algorithm calculates dynamically the maximum sequential data
flow with the arrived requests, and uses it as the window size in logical blocks. So we
constantly derive spatially adjacent requests from the data flow, targeting each disk.
Multiple simultaneous data flows or strided data flow make difficult the derivation and
modeling of sequentiality. We identify merged strided data flows by comparing each
request block not only against the nearly previous request block and length, but also
to the n previous requests. We introduce a history-based log of the last n I/O accesses.
This can be considered of as augmenting the read-ahead window for this calculation
from 1 to n. For every I/O access, if necessary, we linearly look through this record
and find out if we have a higher sequentiality.

The calculation of the degree of sequential read-ahead is described in Algorithm 1.
Every time a reqBlock is requested, the distance (size) with respect to the previous
block accessed (prevBlock) is determined (line 4). If blocks are not sequential, the
system provides a second chance to find sequentiality. Lines 6-13 deal with the case of
comparing reqBlock with the previous windowSize requests hosted in the separation

history list. If size results 1 in this case, last accessed block in the current request
(currBlock) is saved into the separation history list, and the least recently added
block is removed, if the list is full (lines 14-20). Lines 21-25 record currBlock as the
last block accessed in its data flow and the length of the data flow is compared with the
length of the longest data flow (maxSeq) and updated if applicable. Line 27 records the
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Algorithm 1 Calculation of the degree of sequential read-ahead
Block reqBlock is requested:

1: if time = timeThreshold then

2: bandDetection()

3: end if

4: size ⇐ reqBlock - prevBlock
5: currBlock ⇐ reqBlock + (rwSize)/blockSize − 1

6: if size 6= 1 then

7: for i ⇐ separation.begin() to separation.end() do

8: if reqBlock - i = 1 then

9: prevBlock ⇐ i
10: size ⇐ 1
11: end if

12: end for

13: end if

14: if size = 1 then

15: separation.add(currBlock)

16: if separation.size() > windowSize then

17: separation.remove(min(separation))

18: end if

19: dataflows[currBlock] ⇐ dataflows[prevBlock]

20: dataflows.erase(prevBlock)

21: separ ⇐ currBlock - dataflows[currBlock]

22: if maxSeq < separ then

23: maxSeq ⇐ separ
24: end if

25: end if

26: prevBlock ⇐ currBlock

last accessed block in the current request (currBlock) as the previous accessed block
(prevBlock) for the next request.

When a certain timeThreshold has elapsed, the bandDetection method is activated
(lines 1-3). This mechanism, described in Algorithm 2, scans every LBA that belongs
to a disk block which is inside the SSD device (lines 3-16). A detection of a new band
takes place when the difference with respect to the minimum LBA that belongs to the
current band (min) is greater than a maximun established band size (bandSize), or
a large gap (bigger than maxGap) exists between the current LBA and the previous
one (prevLBA), and the number of blocks inside the band exceed a certain threshold
(LBAsThreshold).

Algorithm 2 Band detection method
bandDetection()

1: min ⇐ CACHE.begin() , max ⇐ CACHE.end()

2: prevLBA ⇐ min
3: for i ⇐ CACHE.begin() to CACHE.end() do

4: difference ⇐ i − min
5: if (difference < bandSize)&(i − prevLBA < maxGap) then

6: max ⇐ i , LBAs + +
7: else

8: if LBAs ≥ LBAsThreshold then

9: band[j].min ⇐ min, band[j].max ⇐ max

10: j + +
11: end if

12: min ⇐ i , max ⇐ i
13: LBAs ⇐ 0
14: end if

15: prevLBA ⇐ i
16: end for

Only when a read miss occurs and the distance with respect to the previous accessed
request (size) turns out to be 1, the system prefetches a total of seqMax blocks (shown
in Algorithm 3). If any band detection has been taken place, only blocks inside the
detected bands are fetched into the SSD (lines 9-10 and 15-16).
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Algorithm 3 Algorithm for sequential prefetching
Block reqBlock is requested:

1: miss ⇐ 0
2: for i ⇐ reqBlock to (reqBlock + rwSize/blockSize − 1) do

3: if i /∈ CACHE then

4: miss ⇐ 1

5: end if

6: end for

7: if miss = 1 AND size = 1 then

8: for i ⇐ reqBlock to (reqBlock + rwSize/blockSize − 1 + maxSeq) do

9: if bandInside(i) then

10: putInCache(i)

11: end if

12: end for

13: else

14: for i ⇐ reqBlock to (reqBlock + rwSize/blockSize − 1) do

15: if bandInside(i) then

16: putInCache(i)

17: end if

18: end for

19: end if

5 Evaluation

In order to evaluate our solution, we have implemented an hybrid architecture simulator
in a widely used general purpose simulation platform, namely OMNeT++ [7]. We
compare two scenarios, a baseline variant which does not employ any power saving
scheme, and SSD-Based Power Saving (SBPS), our proposed energy saving solution. We
use the well-know workloads presented in Section 3, which represent different scenarios.

5.1 Hybrid Architecture Simulator

The implemented simulator has three main modules. The first module represents
the disk device. This module is directly connected to an instance of the Disksim
simulator[8]. The second module represents a SSD device. This module is also con-
nected to DiskSim Simulation Environment [9] through an instance of the SSD exten-
sion. We have employed a third module which symbolizes an indirection map, con-
taining mappings between disk and SSD physical addresses. This last module maps a
specific block in the disk, which has been cached in the SSD previously.

Table 5.1 resumes the main features of both simulated disk and SSD devices. We
have included a power model in both disk and SSD modules. The disk power model
employs an extension of the 2-Parameter Model described in [10]. This model applies
the next formula to calculate an energy consumption estimation of each disk:

Edisk = EactiveDisk + EidleDisk + EstandbyDisk (1)

Where EactiveDisk is calculated as PactiveDiskxTactiveDisk, PactiveDisk is the power
consumption when the disk is active, and TactiveDisk is the time spent by the disk
while satisfying disk requests. EidleDisk is calculated as PidleDiskxTidleDisk, PidleDisk

is the power consumption in the idle mode, and TidleDisk is the length of the idle
period. EstandbyDisk is calculated as PstandbyDiskxTstandbyDisk, PstandbyDisk is the power
consumption in the standby mode and TstandbyDisk is the length of the standby period.
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Specification Value

Model Seagate Cheetah 15K.4 Generic

Block Erase Latency - 1.5 ms

Power consumption (idle) 12 W 0.1 W

Power consumption (active) 17 W 0.5 W

Power consumption (standby) 2.6 W -

Table 1: Simulated disk and SSD specifications. The minus character means that
specification is not applicable.

For the SSD power model we used the following formula to calculate an energy
consumption estimation for a SSD:

ESSD = EactiveSSD + EidleSDD (2)

Where Eactive is calculated as PactiveSSDxTactoveSSD, PactiveSSD is the power con-
sumption when the SSD is active, and TactiveSSD is the time spend by the SSD while
satisfying SSD requests. EidleSSD is calculated as PidleSDDxTidleSSD, PidleSSD is the
power consumption in the idle mode, and TidleSDD is the length of the idle period.

We employed a third module which provides an indirection map, containing map-
pings between disk physical addresses and SSD physical addresses. Note that this last
module knows how to map into the disk a block which is cached in the SSD, and
vice-versa.

5.2 Financial1

Figure 2 shows misses at disk 0 for the accessed LBAs in the course of the Financial1
workload. The left side of the figure depicts the resultant misses without applying any
prefetching scheme. In right side our prefetching algorithm has been applied and that
is why density of misses is smaller. Figure 3 shows the reads and writes distribution in
disk 0 for LBA accesses. In the left side we plot the clustered-in-time distribution of
reads, and in right side we plot the writes distribution along the workload. Financial1
achieves nearly 51% energy savings. They are mainly because of the high percentage of
writes which were redirected to some of the disks, as shown in Figure 3. Having a lot
of writes makes easy to save energy because they all are redirected to the SSDs, and
the disks only wake up when a few clustered-in-time read requests are not found in the
SSDs. On the other hand, benefits were also obtained because of the highly sequential
read access patterns at some of the disks and the effective work of our prefetching
algorithm to detect them, as shown in Figure 2.

5.3 WebSearch2

Figure 4 depicts misses at disk 0 for the accessed LBAs in the course of the WebSearch2
workload. The left side of the figure shows the resultant misses without applying any
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Figure 2: Misses at disk 0 for the accessed LBAs in the course of the Financial1
workload.
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Figure 3: Distribution of read and write requests in the course of the Financial1 workload.

prefetching scheme. In right side our prefetching algorithm has been applied and that
is why density of misses is smaller. In comparison, WebSearch, which is only performs
read requests, achieves nearly 2% energy savings, and they are due to the effective work
of our prefetching algorithm and its band detection method. Figure 4 demonstrates
that along time, hits in SSD cache are further increased in disk 0. The reason is that
the majority of the requests are concentrated in three clearly defined bands, and our
prefetching algorithm is able to detect them.

5.4 Openmail6

Figure 5 depicts the time period distribution at disk 0 along the Openmail workload
duration. The left side of the figure shows that the majority of the time the disk is idle,
but idle periods are not long enough to put the disk in a standby mode. In right side
it can be seen that the use of the SSD and our prefetching algorithm help increasing
idle times, but again, they keep being short to put the disk in a lower power mode.

Openmail does not save energy for the majority of the disks. We observed that
inter-arrival times between requests were not very long and the brief duration of the
trace hardly let us appreciate the effectiveness of our prefetching algorithm. So in this
specific case the shorter inter-arrival times stopped many disks from spinning down
and consequently, from saving enough energy to overcome the energy wasted by using
SSD devices, as shown in Figure 5. One of the advantages of avoiding saving energy in
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Figure 4: Misses at disk 0 for the accessed LBAs in the course of the WebSearch2
workload.
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Figure 5: Distribution of the time periods in disk 0 along the Openmail6 workload
duration.

this case was that the average response times were improved and this denotes another
benefit of using our prefetching algorithm.

5.5 Cello99

Cello99 offers a limit save energy improvement for similar reasons to Openmail, but in
this case, the execution time of the application is longer. Cello99 has long periods of
inactivity combined with very bursty periods of activity. During the periods of activity
the gain obtained by our prefetching algorithm is outshone by the effect of the short
inter-arrival times. Moreover, during the long periods of inactivity the use of the SSD
devices are counterproductive.

Figure 6 resumes the energy consumption of our approach and the baseline ap-
proach under the different workloads. Our approach saves energy in Financial and
WebSearch workloads. Financial workload brings about 51% energy savings. They are
mainly because of the highly sequential access patterns from the read requests of disks.
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Figure 7: CDF (cumulative distribution function) curves for response times in all work-
loads at disk 0.

5.6 Performance

Figure 7 plots the cumulative distribution function curves (CDF) for response times in
all workloads at disk 0. A particular (x, y) point on a function specifies that y ∗ 100%
of the response times are lower or equal to x (seconds). For a certain value of x in
every workload, SBPS approach presents greater percentages in which response times
are lower or equal to x than in the baseline approach. That is because we write on
the SSD in a log-manner and this results in more performance gains. That is also
because of the read hits on the SSD, which provides better performance gains. For a
small fraction of the requests, we saw that in some cases we got service times of over
15 seconds. Those requests are the ones which have to wait for a disk to spin-up.
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6 Related Work

Some approaches use multi-speed disks [11, 12], which are able to change their speed
while spinning. However those disks are still inaccessible in the typical market. Other
approaches [13, 14] commit data across drives, i.e., move blocks from most idle disks
to less idle disks, such that the inactive disks can be put in low power mode longer.
Moreover, big caches [15] at data centers are proposed to create greater inactive periods
in some disks. Saving power at file system level is also exploited in [16, 17].

Power saving-aware prefeching and caching techniques aims to maximize disks idle
times by using caching techniques [3]. The idea is to keep the disk in a low power
mode as long as possible, taking advantage of in-memory cache. Our proposal differs
from use main memory to cache data in two ways. First, memory is smaller than SSD
devices, and second, RAM memory is volatile and SSD is persistent.

Other research deal with data migration across drives [13, 14]. Some techniques
create enough inactivity in a number of disks by migrating their data to another disks.
Some of these approaches just only manage write requests to save power. On the
contrary, our method manages both write and read accesses. Second, their basic idea
of data migration is to commit blocks from most idle disks to less idle disks, such that
the inactive disks can be put in low power mode longer. Our method contrasts with
these solutions in that these solutions do not consider individual disks to save power.

7 Conclusions

In this paper we have studied a power saving aware solution useful for hybrid storage
systems based on SSD and disk drives. We have proposed a caching strategy for saving
energy in this systems by exploiting the write/read performance asymmetry of these
devices. Our approach writes/reads as much as possible from the SSD devices, letting
the disks go to sleep for longer periods. We showed that the proposed approach is
effective, based on realistic experiments on a simulation environment. Our study also
provided a number of insights into a prefetching approach to increase the read hit ratios
in the SSD devices in such a hybrid system. Our results showed that the write/read
characteristics of the workload have a critical impact in the energy savings of such a
hybrid storage system. In our approach, write requests from a single disk drive are
written, as it is possible, in the SSD device in a log-based manner. Similarly, read
requests are prefetched in the SSD drive.
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Abstract

Recently we have made an analysis of the implementation of explicit Falkner
methods for solving special second-order initial-value problems [1], showing that the
so-called unusual implementation increases the order of the method. In this paper
we made an analysis of the accumulated errors considering different implemen-
tations of the implicit Falkner methods in predictor-corrector mode. A numerical
example is included to show the performance of the different implementations. The
numerical results agree with the theoretical ones, concluding that the best perfor-
mance occurs when the predicted value is directly used in the implicit formulas to
obtain respectively the approximations for the solution and the derivative.

Key words: error analysis, implicit Falkner methods, special second-order initial-
value problems

MSC 2000: 65L70, 65L06

1 Introduction

Second-order differential equations appear frequently in applied sciences. Examples of
that are the mass movement under the action of a force, problems of orbital dynamics,
or in general, any problem involving Newton’s law.

Among the general procedures for direct integration of the so-called special second-
order initial value problem (I.V.P.)

y ′′(x) = f(x, y(x)), y(x0) = y0, y ′(x0) = y ′0 , (1)

the Falkner methods [5] is a well-known class of schemes of this type.
Although it is possible to integrate a second-order I.V.P. by reducing it to a first-

order system and applying one of the methods available for such systems, it seems
more natural to provide numerical methods in order to integrate the problem directly.
The advantage of this procedure lies in the fact that they are able to exploit special
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information about ODES, and this results in an increase in efficiency. For instance, it
is well-known that Runge-Kutta-Nyström methods for (1) involve a real improvement
as compared to standard Runge-Kutta methods for a given number of stages ([7], p.
285), although the computational cost remains high because of the number of function
evaluations. On the other hand, a linear k-step method for first-order ODEs becomes
a 2k-step method for (1), ([7], p. 461), increasing the computational work.

Falkner methods can be written in the form [4]

yn+1 = yn + h y′n + h2
k−1∑

j=0

βj 5j fn , (2)

y′n+1 = y′n + h

k−1∑

j=0

γj 5j fn , (3)

where h is the stepsize, yn and y′n are approximations to the values of the solution and
its derivative at xn = x0+n h , fn = f(xn, yn) and5jfn is the standard notation for the
backward differences. The coefficients βj and γj can be obtained using the generating
functions

Gβ(t) =
∞∑

j=0

βj tj =
t + (1− t) Log(1− t)
(1− t)Log2(1− t)

,

Gγ(t) =
∞∑

j=0

γj tj =
−t

(1− t)Log(1− t)
.

The implicit Falkner formulas read [4]

yn+1 = yn + h y′n + h2
k∑

j=0

β∗j 5j fn+1 , (4)

y′n+1 = y′n + h
k∑

j=0

γ∗j 5j fn+1 , (5)

with generating functions for the coefficients given by

Gβ∗(t) =
∞∑

j=0

β∗j tj =
t + (1− t) Log(1− t)

Log2(1− t)
,

Gγ∗(t) =
∞∑

j=0

γ∗j tj =
−t

Log(1− t)
.

Note that the formulas in (3) and (5) are respectively the Adams-Bashforth and Adams-
Moulton schemes for the problem (y′)′ = f(x, y), which are used to follow the values of
the derivative. All the above formulas are of multistep type, specifically k-step formulas,
and so k initial values must be provided in order to proceed with the methods. In this
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paper, a rigorous analysis of the errors involved on the implementation of the implicit
procedures in predictor-corrector (P-C) mode is made.

In the following section different implementations of the explicit and implicit Falkner
methods are presented. Section 3 is devoted to the analysis of the local truncation er-
rors and accumulated truncation errors. In Section 4 an example is presented to show
the performance of the different implementations. In the final section some conclusions
put an end to the article.

2 Implementations of Falkner methods

In the application of P-C modes, P indicates the application of the explicit method,
in our case the predictor given by the first of the formulas in (2), and C indicates
the application of the implicit method, that is, the corrector given by the first of the
formulas in (4). For the derivative, we will use P’ to indicate the application of the
explicit second formula in (2), and C’ to indicate the application of the implicit second
formula in (4). And finally, E refers to the evaluation of the function f . Two different
implementations for the explicit method were considered in [1], and for the implicit
method three implementations will be considered here. They are summarized in what
follows.

2.1 Explicit methods

2.1.1 PP’E mode

The usual implementation of the explicit Falkner method on each step for solving the
problem in (1) is

1. Evaluate yn+1 using the formula in (2)

2. Evaluate y′n+1 using the formula in (3)

3. Evaluate fn+1 = f(xn+1, yn+1)

2.1.2 PEC ’ mode

The unusual implementation of Falkner method on each step for solving the problem
in (1) reads

1. Evaluate yn+1 using the formula in (2)

2. Evaluate fn+1 = f(xn+1, yn+1)

3. Evaluate y′n+1 using the formula in (5)

which can be accomplished due to the absence of the derivative on the function f .
Thus, having obtained the value yn+1 it is straightforward to obtain fn+1 to be used
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in the formula in (5). Note that in this way the ”implicit formula” in (5) is no longer
implicit, resulting in an explicit formulation of the method.

For the PP’E mode the accumulated truncation error is of order O(hk) while for the
PEC’ mode is of order O(hk+1) [1]. Thus, the unusual implementation of the explicit
Falkner method provides a better performance.

2.2 Implicit methods

2.2.1 P’PECE mode

The first choice for the implementation of the implicit Falkner method is given by

1. Evaluate y′n+1 using the formula in (3)

2. Evaluate yn+1 using the formula in (2)

3. Evaluate fn+1 = f(xn+1, yn+1)

4. Evaluate yn+1 using the formula in (4)

5. Evaluate fn+1 = f(xn+1, yn+1)

2.2.2 PECC ’E mode

The second possibility is given by

1. Evaluate yn+1 using the formula in (2)

2. Evaluate fn+1 = f(xn+1, yn+1)

3. Evaluate y′n+1 using the formula in (5)

4. Evaluate yn+1 using the formula in (4)

5. Evaluate fn+1 = f(xn+1, yn+1)

2.2.3 PECEC ’ mode

The last implementation consist in

1. Evaluate yn+1 using the formula in (2)

2. Evaluate fn+1 = f(xn+1, yn+1)

3. Evaluate yn+1 using the formula in (4)

4. Evaluate fn+1 = f(xn+1, yn+1)

5. Evaluate y′n+1 using the formula in (5)

Note that in the above formulations after the last value obtained for yn+1 we have
to evaluate fn+1 = f(xn+1, yn+1), which will be used at the next step.
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3 Error analysis

3.1 Local truncation errors

Consider the formula resulting after approximating the function f on the exact formula

y(xn+1) = y(xn) + hy′(xn) +
∫ xn+1

xn

f(x, y(x), y′(x))(xn+1 − x) dx (6)

by the interpolating polynomial on the grid points xn−(k−1), . . . , xn, and also consider
the formula in (2). Using the localization hypothesis that y(xj) = yj , j = n − (k −
1), . . . , n, and following a similar procedure as for the Adams formulas [9] we obtain
that the local truncation error for the method in (2) is given by

LP [y(xn);h] = hk+2y(k+2)(ξ)βk, (7)

where ξ is an internal point of the smallest interval containing xn−(k−1), . . . , xn.
Similarly, for the formula in (3) the local truncation error reads

LP ′ [y′(xn);h] = hk+1y(k+2)(ψ)γk, (8)

where ψ as before refers to an internal point.
And for the formula in (4) the local truncation error is given by

LC [y(xn);h] = hk+3y(k+3)(ξ)β∗k+1, (9)

and similarly for the formula in (5) the local truncation error is

LC′ [y′(xn);h] = hk+2y(k+3)(ψ)γ∗k+1 (10)

where we denote by ξ or ψ the internal points, or if they have to be different, by ξj or
ψj , as in the following section.

3.2 Accumulated truncation errors for the implicit Falkner method
in P-C modes

3.2.1 P’PECE mode

Assuming that we have to integrate the problem (1) on the interval [x0, xN ] and that we
know in advance the starting values needed to apply the numerical scheme, we proceed
by analyzing the accumulated errors on each successive application of the method along
the grid points on the integration interval. We use a superscript P to denote the
application of the explicit method and a superscript C to denote the application of the
implicit one.

Assuming the localization hypothesis and using the formulas for the local truncation
errors in (7) and (8), for the first step (n = 1) we have that the differences between the
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true values, y(x1) , y′(x1), and the approximated ones, yP
1 , y′P1 , are given respectively

by the local truncation errors, that is,

y′(x1)− y′P1 = hk+1y(k+2)(ψ1)γk , (11)

y(x1)− yP
1 = hk+2y(k+2)(ξ1)βk . (12)

where, for convenience, in the sequel the ξj and ψj will denote appropriate internal
points.

After evaluating f(x1, y
P
1 ), using the Mean Value Theorem we can put that

f(x1, y(x1))− fP
1 =

∂f

∂y
(x1, ξ1)

(
y(x1)− yP

1

)

where fP
1 = f(x1, y

P
1 ). Assuming the localization hypothesis, we have

y(x1)− yC
1 = y(x0) + h y′(x0) + h2

k∑

j=0

β∗j 5j f(x1, y(x1))

+hk+3y(k+3)(ξ1)β∗k+1 −

y0 + h y′0 + h2

k∑

j=0

β∗j 5j fP
1




= hk+3y(k+3)(ξ1)β∗k+1 + O(hk+4) . (13)

For the next step (n = 2) we have that

y′(x2)− y′P2 = y′(x1) + h

k−1∑

j=0

γj5jf(x1, y(x1)) (14)

+hk+1y(k+2)(ψ2)γk −

y′P1 + h

k−1∑

j=0

γj5jfC
1


 (15)

where we have used the values of the step before, y′P1 and yC
1 , and have used the

notation fC
1 = f(x1, y

C
1 ). After some calculations, using the formulas in (11) and (13),

it results that

y′(x2)− y′P2 = hk+1γk

(
y(k+2)(ψ1) + y(k+2)(ψ2)

)
+ O(hk+2) . (16)

Similarly, for the predictor we have

y(x2)− yP
2 = hk+2βky

(k+2)(ξ2) + hk+2y(k+2)(ξ1)γk + O(hk+3) . (17)

And finally, for the corrector we get that

y(x2)− yC
2 = y(x1) + h y′(x1) + h2

k∑

j=0

β∗j 5j f(x1, y(x1))
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+hk+3y(k+3)(ξ2)β∗k+1 −

yC

1 + h y′P1 + h2
k∑

j=0

β∗j 5j fP
2




= hk+3β∗k+1

(
y(k+3)(ξ1) + y(k+3)(ξ2)

)
+ hk+2y(k+2)(ψ1)γk

+O(hk+4) . (18)

Repeating the procedure along the nodes on the integration interval we determine
that the accumulated error at the final point xN is given by

y(xN )− yC
N = hk+2γk

N−1∑

j=1

(N − j)y(k+2)(ψj) + hk+3β∗k+1

N∑

j=1

y(k+3)(ξj)

+O(hk+4) , (19)

and for the derivative we have

y′(xN )− y′PN = hk+1γk

N−1∑

j=0

y(k+2)(ψj) +O(hk+2) . (20)

Assuming that the derivatives y(k+2)(x) and y(k+3)(x) are continuous, after using the
Mean Value Theorem the above formulas may be rewritten as follows:

y(xN )− yC
N =

1
2

hkγky
(k+2)(ψ)(xN − x0)(xN − x1)

+hk+1β∗k+1y
(k+3)(ξ)(xN − x0) +O(hk+4) (21)

and

y′(xN )− y′PN = hkγk(xN − x0)y(k+2)(ψ) +O(hk+2) . (22)

3.2.2 PECC ’E mode

In this mode, for the first step (n = 1), after the application of the predictor P and the
corrector C we have the same results as before, that is,

y(x1)− yP
1 = hk+2y(k+2)(ξ1)βk ,

and

y(x1)− yC
1 = hk+3y(k+3)(ξ1)β∗k+1 + O(hk+4) .

Now the difference with the mode before results in the application of the corrector C ’
to obtain the approximation for the derivative. We have

y′(x1)− y′C
′

1 = y′(x0) + h
k∑

j=0

γ∗j5jf(x1, y(x1))
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+hk+2y(k+3)(ψ1)γ∗k+1 −

y′C

′
0 + h

k∑

j=0

γ∗j5jfP
1




= hk+2y(k+3)(ψ1)γ∗k+1 + O(hk+3) . (23)

After the application of the predictor P to obtain an estimate yP
2 for y(x2), the appli-

cation of the corrector C results in

y(x2)− yC
2 = hk+3β∗k+1

(
y(k+3)(ξ1) + y(k+3)(ξ2)

)
+ hk+3y(k+3)(ψ1)γ∗k+1

+O(hk+4) , (24)

and the application of the corrector C ’ produces

y′(x2)− y′C
′

2 = hk+2γ∗k+1

(
y(k+3)(ψ1) + y(k+3)(ψ2)

)
+ O(hk+3) . (25)

Repeating the procedure along the nodes on the integration interval, and assuming
that y(k+3)(x) is continuous, we obtain that the accumulated errors at the final point
xN are given respectively by

y(xN )− yC
N =

1
2

hk+1γ∗k+1y
(k+3)(ψ)(xN − x0)(xN − x1)

+hk+2β∗k+1y
(k+3)(ξ)(xN − x0) +O(hk+3) (26)

for the solution, and

y′(xN )− y′C
′

N = hk+1γ∗k+1(xN − x0)y(k+3)(ψ) +O(hk+3) (27)

for the derivative.

3.2.3 PECEC ’ mode

Now the difference with the mode before results in the application of the corrector C ’
to obtain the values y′C′n , after evaluating f(x1, y

C
n ). The first difference to the previous

mode is observed in the first step (n = 1) and results to be

y′(x1)− y′C
′

1 = y′(x0) + h
k∑

j=0

γ∗j5jf(x1, y(x1))

+hk+2y(k+3)(ψ1)γ∗k+1 −

y′C

′
0 + h

k∑

j=0

γ∗j5jfC
1




= hk+2y(k+3)(ψ1)γ∗k+1 + O(hk+3) . (28)

Note that the only difference between the formulas in (23) and in (28) is that fP
1 has

been substituted by fC
1 , but this does not change the principal term of the errors. This

means that the principal terms in the errors for the final formulas are the same as in
the previous mode, and so the formulas in (26) and (27) remain valid in this mode.
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4 Numerical example

In this section, we have considered the same example as in [1] to illustrate the perfor-
mance of the implementations of the implicit Falkner method taking k = 6. Table 1
shows the numerical results for different number of steps, where we have included the
maximum of the absolute errors at the nodal points in the integration interval for the
solution

MaxErr(y) = max
j∈0,...,N

|y(xj)− yj | ,

and the maximum of the absolute errors at the nodal points for the derivative

MaxErr(y′) = max
j∈0,...,N

|y′(xj)− y′j | .

Further, we have also included the CPU time needed for each implementation. The
implementations appear in the column Method, where 1 refers to the P’PECE mode,
2 refers to the PECC ’E mode, and 3 refers to the PECEC ’ mode.

The I.V.P. considered is given by

y′′(x) = −y(x) + sin(x) , y(0) = 1 , y′(0) = 0 (29)

whose exact solution is

y(x) =
1
2
(sin(x) + (2− x) cos(x)) .

The problem has been integrated on the interval [0, 20π] using the MATHEMATICA
program. We observe that the implementations 1 and 2 have a similar behaviour in what
concerns the CPU time, while the implementation 3 is more time consuming. On the
other hand, implementations 2 and 3 have a similar accuracy, which is better than that
on implementation 1. These considerations lead to choose as the best implementation
the PECC ’E mode.

Figure 1 depicts the propagation of the absolute global errors for the solution using
the implementations 1,2 and 3 (from top to bottom). We can see that the best results
correspond to the PECC ’E implementation of the implicit Falkner method. For the
absolute global errors on the derivatives similar results were obtained, as shown in
Figure 2.

5 Conclusions

Falkner methods are commonly used for solving the special second-order differential
initial-value problem (particularizations of these methods are the well-known Velocity-
Verlet, Beeman method or Wilson method). On these approaches two formulas are
needed for advancing the solution y(x) and the derivative y′(x). When the formulas
are implicit, they may be implemented in predictor-corrector mode.

We have consider three different modes to implement the implicit Falkner formulas
and have made an analysis of the accumulated truncation errors. Considering the
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N steps Method Time (s.) MaxErr(y) MaxErr(y′)

500 1 0.172 5.6090× 10−4 5.3804× 10−4

2 0.156 3.2023× 10−6 3.3933× 10−6

3 0.203 2.5646× 10−6 2.7175× 10−6

1000 1 0.297 8.8186× 10−6 8.4363× 10−6

2 0.312 2.1011× 10−8 2.2248× 10−8

3 0.422 1.9343× 10−8 2.0483× 10−8

1500 1 0.453 7.7476× 10−7 7.5348× 10−7

2 0.453 1.1535× 10−9 1.2197× 10−9

3 0.657 1.1577× 10−9 1.1755× 10−9

2000 1 0.625 1.3790× 10−7 1.3406× 10−7

2 0.625 1.7914× 10−10 1.9040× 10−10

3 0.890 1.6783× 10−10 1.7861× 10−10

2500 1 0.781 3.6212× 10−8 3.5576× 10−8

2 0.781 4.7879× 10−11 4.4064× 10−11

3 1.125 5.3216× 10−11 4.9219× 10−11

3000 1 0.922 1.2161× 10−8 1.2120× 10−8

2 0.953 4.7984× 10−11 4.9226× 10−11

3 1.359 4.9348× 10−11 5.0579× 10−11

Table 1: Errors using different implementations for the implicit Falkner method in P-C
mode with k = 6 for solving the problem in (29)

expressions of these errors for the solution and the derivative we observe that the mode
PECC ’E shows the best performance. The resulting errors in this case are both of order
O(hk+1). A numerical example is provided to make a comparison of the numerical
performance of the different implementations. The numerical results agree with the
theoretical analysis.
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Figure 1: Absolute global errors in logarithmic scale for the solution y(x) of problem
(29) using modes 1,2 and 3 (from top to bottom)
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Abstract

Several parallel strategies for solving a centroid problem are presented. In the compet-
itive location problem considered in this paper, the aim is to maximize the profit obtained
by a chain (the leader) knowing that a competitor (the follower) will react by locating an-
other single facility after the leader locates its own facility. A global optimization memetic
algorithm called UEGO cent.SASS was proposed to cope with this hard-to-solve opti-
mization problem. Now, five parallel implementations of the optimization algorithm have
been developed. The use of several processors, and hence more computational resources,
allows us to solve bigger problems and to implement new methods which increase the
robustness of the algorithm at finding the global optimum. A computational study com-
paring the new parallel methods in terms of efficiency and effectiveness has been carried
out.

Key words: Nonlinear bi-level programming problem, Centroid (or Stackelberg) prob-
lem, Continuous location, Competition, Evolutionary algorithm, Parallelism, Master-Slave,
Coarse-grain.

1 Introduction

When a retail chain considers entering or extending its presence in a market by opening a new
facility a key question to be investigated is ‘where’ to locate the new facility. If in the area there
already exist other facilities offering the same goods, then the new facility will have to compete
for the market. Many competitive location models are available in literature, see for instance
the survey papers [6, 7, 10] and the references therein. Competitive location is nowadays a very
active area of research within the field of ‘Location Science’ (for an introduction to this more
general topic see [4, 5, 8]).

∗† Corresponding author: J. L. Redondo. Email: jlredondo@ual.es. Tel: +34 950 014023; Fax: +34 950 015486
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The scenario considered in this paper is that of a duopoly. A chain (the leader) wants to
set up a single new facility in a region of the plane where similar facilities of a competitor (the
follower), and possibly of its own chain, are already present. After the location of the leader’s
facility, the competitor will react by locating another new facility at the place that maximizes
its own profit. The objective of the leader is to find the location and the quality of its facility
that maximizes its profit, following the location of the facility of the follower. These type of
problems are known as Stackelberg problems in economic literature and as Simpson’s problems
in voting theory. In Location literature they were introduced by Hakimi [9]. He introduced the
terms medianoid for the follower problem, and centroid for the leader problem. Literature on
centroid problems is scarce (see [6] for a review on the topic until 1996), and to our knowledge,
among the existing papers only five of them [1, 2, 3, 12] deal with continuous problems (the set
of feasible locations for the new facility is a region of the plane). In [11] four heuristics were
proposed to cope with the problem considered in this paper, and among them an evolutionary
algorithm called UEGO cent.SASS was the one giving the best results: in the set of problems
solved in [11], it always obtained the best objective value.

UEGO cent.SASS belongs to the class of evolutionary optimization methods based on
subpopulations (species). One of its main features is that the evaluation of a species requires in-
tensive computational effort, since it involves the execution of another optimization algorithm.
To reduce the computational burden and to be able to solve problems with reasonable sizes in
a standard uniprocessor, UEGO cent.SASS was designed to maintain few species, which may
affect its ability to find the optimal solution. In spite of all, UEGO cent.SASS can only solve
instances with a moderate size. This clearly calls for a parallelization of the algorithm. In
this work, a master-slave implementation and four coarse-grain algorithms, which differ in the
migration policy, are proposed.

The objective of this paper is twofold. First, to parallelize UEGO cent.SASS in such a way
that, thanks to the use of more processing elements it can solve larger size problems. Also to
study the efficiency of the parallelizations, to find out which of the parallel implementations has
a better efficiency. As will be seen, the master-slave strategy reaches an almost ideal efficiency,
and it allows to solve problems with up to 200 demand points when using 8 processing ele-
ments. Second, to increase the robustness of UEGO cent.SASS at finding the global optimum.
To this aim a new procedure was designed and executed with the parallel algorithm.

The rest of the paper is organized as follows: The problem is presented in the next section.
In Section 3 a master-slave and four coarse-grain parallelizations of UEGO cent.SASS are
introduced. It is in Section 4 where the new proposal which allow us to solve the problem with
more reliability is described. Computational studies to check the effectiveness of the proposal
as well as the efficiency of the parallelizations are reported in Section 5. The paper ends with
some conclusions.

2 The problem

Next the problem considered in this paper is briefly described. For a mathematical formulation
and more details the interested reader is referred to [11].

A chain, the leader, wants to locate a single new facility n f1 = (x1,y1,α1) in a given area
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of the plane, where there already exist m facilities offering the same goods or product. The
first k of those m facilities belong to the chain, and the other m− k to a competitor chain, the
follower. The leader knows that the follower, as a reaction, will subsequently position a new
facility n f2 = (x2,y2,α2), too. The demand, supposed to be inelastic, is concentrated at n de-
mand points, whose locations and buying power are known. The location and quality of the
existing facilities are also known. We consider that the patronizing behavior of customers is
probabilistic, that is, demand points split their buying power among all the facilities propor-
tionally to the attraction they feel for them, determined by the different perceived qualities of
the facilities and the distances to them, through a gravitational or Huff-type model.

Given n f1, the problem of the follower is the medianoid problem (FP(n f1)), which aims
at finding the best location (x2,y2) and quality α2 for its facility so that it maximizes its profit
Π2(n f1,n f2) (once the leader has set up its new facility at n f1). The profit is to be understood
as the difference between the revenues obtained from the captured market share minus the
operating costs of the new facility (see [11]).

Let us denote by n f ∗2 (n f1) an optimal solution of (FP(n f1)). The problem for the leader
is the centroid problem (LP), which aims at finding the best location (x1,y1) and quality α1
for its facility so that it maximizes its profit Π1(n f1,n f ∗2 (n f1)), knowing that the follower will
locate another single facility n f ∗2 (n f1) at the place and with the quality that maximizes its own
profit.

As can be seen, the leader problem (LP) is much more difficult to solve than the follower
problem (FP(n f1)). Notice, for instance, that to evaluate its objective function Π1 at a given
point n f1 we have to first solve the corresponding medianoid problem (FP(n f1)) to obtain
n f ∗2 (n f1). Furthermore, in order to compute the objective value of Π1 at n f1 accurately, the
follower problem (FP(n f1)) has to be solved exactly, otherwise, the error of the approximate
value can be considerable.

3 High performance computing approaches for the leader prob-
lem

The leader problem was solved in [11] using the population-based method UEGO cent.SASS.
This algorithm works with a population of candidate solutions (species). It is important to
mention that there is no relationship among species. This means that a single species can create
a new offspring and evolve to the local or global optima without participation of the remaining
ones. Therefore, there exists an intrinsic parallelism, which can be exploited by dividing the
species among the available processing elements. This work explores and evaluates a master-
slave and several coarse-grain strategies applied to UEGO cent.SASS.

3.1 A master-slave strategy (MS)

A master-slave technique is a “global parallel model”, since the management of the population
is global, i.e. all the individuals in the population are considered when selection or creation pro-
cedures are carried out. Two kinds of processing elements can be distinguished, the master and
the slaves. The master processor sees into making global decisions and delivering information
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among the slaves, which execute different tasks in a concurrent way.
In our particular master-slave (MS) model, the master processor executes UEGO cent.SASS

sequentially. The parallelism comes from the simultaneous resolution of the medianoid prob-
lems to evaluate correctly the new leader’s candidate solutions in the Create species function,
and from the concurrent execution of the Optimize species procedure (see [11]). Therefore,
new creation and optimization procedures have been designed to cope with the parallel model.
These new procedures, called Create species paral and Optimize species paral, are described
now:

• Create species paral: At each level i, the master obtains a new offspring of candidate
solutions for the leader. The computation of the corresponding follower’s facility and
the evaluation of the correct objective value for the leader’s facility, are carried out in a
parallel way. To this aim, the master processor divides the list of candidate solutions by
the number of processors P and delivers the resulting sublists among all the processing
elements (including itself). Each processing element receives a species sublist from
the master processor and solve the medianoid problem to obtain the follower’s location
associated to every leader’s facility. To do so, a processing element only needs to know
the two features of the leader’s facility n f1, i.e. its location (x1,y1) and its quality α1.
Therefore, the amount of information involved in these communication procedures is
quite small.

The master processor does not receive information from the slaves until it has finished
its work (first synchronization point). When it does, it passes to a reception state, where
it picks up the follower sublists sent by the slaves. Once the master has received all the
information from the slaves, it updates the candidate solutions list and includes it in the
species list.

Following with the general structure of UEGO cent.SASS, the species list is now fused
(see [11]). Notice that the fusion only implies the computation of distances between the
centers of all pairs of species, then this process is not time consuming. If the list length is
larger than the maximum allowed, the Shorten species list procedure is then performed
(see [11]). These two procedures are carried out by the master, while the slaves stay idle
(second synchronization point).

• Optimize species paral: To perform the optimization process, the master divides the
species list among all the processors (again including itself). In this case, each slave
executes the Optimize species procedure to every species in its sublist, i.e. a local opti-
mization process is applied to the leader’s facility and the medianoid problem is solved
to obtain the corresponding follower’s center (see [11]). When the master finishes its
work, it begins to receive the new species sublists from the slaves (third synchronization
point), which will be fused (see [11]).

Note that the synchronization points are imposed by the need to know the correct objective
function value at all the points of the leader before proceeding to execute the next stage of the
optimization procedure, or because the master is managing the whole species list.
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3.2 Coarse-grain strategies

In this section, UEGO cent.SASS has been parallelized following a coarse-grain strategy. In a
coarse-grain model, each processing element executes an algorithm (in our case UEGO cent.
SASS) independently of the remaining ones during most of the time. The idea is that different
processing elements work with smaller and different subpopulations in such a way that, when
merging all the subpopulations, a population similar to that of the sequential version can be
obtained. Nevertheless, some information can migrate from a processing element to another
one according to a migratory policy, which is controlled by the parameters: (i) Interval of
migration, it establishes how often the migration of a certain amount of individuals will be
conducted. (ii) Rate of migration, it indicates the number of individuals that have to communi-
cate with other processing elements. (iii) Selection criterion, it determines the policy that will
be applied for the selection of migratory individuals.

In this work, several migratory policies have been implemented. To evaluate all the coarse-
grain strategies, an exhaustive computational study was carried out. Next, the four best parallel
coarse-grain implementations, in terms of effectiveness and efficiency, are described. They are
named Collector, Ring-Fusion1, Ring-Fusion2 and Collector+Ring-Fusion.

3.2.1 Collector strategy (CO)

In this strategy, the exchange of information is carried out through a single processor. However,
a hierarchy of processors does not exist, i.e. they all work in the same way. It is only during
the migration process that we distinguish between two different types of processing elements:
if P is the total number of processors, there will be P− 1 workers and a single collector.
The collector will be the communication channel among processors when the exchange of
information is accomplished.

The rate of migration in this strategy is equal to the length of the species sublists. There-
fore, in a migration, every worker sends its whole sublist to the collector.The collector pro-
cessor fuses them (including its own species sublist) to decrease the possible redundant work.
Once the fused list is obtained, the collector distributes it among all of the processors, includ-
ing itself. After a previous analysis, the interval of migration has been carried out at every 3
iterations.

3.2.2 Ring-Fusion strategy (RF)

In this parallel technique, processors are connected following a ring topology in such a way that
processor i can only communicate with processors i− 1 and i + 1. Moreover, a classification
into workers and collectors exists, although now, half of the processors act as collectors and
the other half as workers. It is important to highlight that the role of collector or worker is not
fixed, i.e., processors interchange their role at every communication stage.

The rate of migration in this strategy is also equal to the length of the species sublists.
Communications are established by pairs of processors as follows: In a migration, processor
i is a worker and sends its species sublist to the next processor i+1 (collector). Processor i+1
fuses this sublist with its own sublist and distributes the resulting list between both processors.
In the next communication stage, processor i will be a collector that will receive a sublist from
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processor i-1 and the processor i+1 will be a worker that will send the sublist to the processor
i+2.

Two different intervals of migration have been considered, giving place to the following
Ring-Fusion versions: (i) RF1, the migration process is carried out at the first half of the levels
of the algorithm. (ii) RF2, the migration process is carried out at every level of the algorithm.

3.2.3 Collector+Ring-Fusion strategy (CO+RF)

This parallel technique is a hybrid model from the previous ones. On the one hand, during the
first half of the levels, P− 1 processing elements will be considered as workers and a single
one as collector. At each level (with level < L/2), the workers send their whole sublists to
the collector. This processor fuses them, including its own species sublist and distributes the
resulting list among all the processors, including itself. On the other hand, throughout the last
half of the levels (level ≥ L/2), the migratory policy RF is employed and therefore, global
fusions are conducted by pairs of processing elements at each level.

4 Improving the quality of the solution. Obtaining a new creation
procedure.

For the sequential version of UEGO cent.SASS, and so as to solve as many problems as possi-
ble, some procedures were modified to reduce the computational load (see [11]). Nevertheless,
if the search is not exhaustive enough, the algorithm may become trapped in local optima. Op-
erating on the principle that large problems can almost always be divided into smaller ones,
which can be solved concurrently (“in parallel”), this section is aimed at designing new alter-
native procedures that explore the search space deeper, although this additional effort requires
the use of parallel architectures with more computing resources. In particular, the creation has
been studied.

For every level i, UEGO cent.SASS, has a radius value Ri, and two maxima on the number
of function evaluations (f.e.), namely newi (f.e. allowed when creating new species) and ni

(maximum f.e. allowed when optimizing individual species). The budget per species for the
creation (bci) of a new offspring is given as newi/length(species listi), while the budget per
species for the optimization (boi) is ni/max spec num (see [11]). This means that there is a
remainder of ni−boi · length(species listi) f.e. in the optimization process, when the length of
the species listi is not equal to the maximum allowed. The idea in this case is to use this number
of evaluations for creating more candidate solutions and therefore, to explore the region more
exhaustively. The new procedure forces the creation of more candidate solutions at each level
of the algorithm. The budget per species in the level i+1 is then

bci+1 =
newi+1 +ni−boi · length(species listi)

length(species listi+1)
.
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Table 1: Effectiveness evaluation of the Create species1 procedure versus Create species2
method.

Setting Create species11 Create species21
(n,m,k) Av(Π) Av(T ) Av(Spc) Av(Π) Av(T ) Av(Spc) Di f Ob j
(21,5,2) 228.381 540.0 52.8 230.675 783.2 63.8 -1.004
(21,5,3) 379.572 569.0 56.3 380.355 788.8 66.8 -0.206
(50,5,0)a 9.155 1015.0 45.8 9.156 1293.2 147.2 -0.009
(50,5,0)b 93.894 1089.0 42.0 94.123 1382.6 133.4 -0.244
(50,5,1) 143.487 1301.0 41.5 144.987 1624.6 128.2 -1.045
(50,5,2)a 189.583 1132.1 35.0 189.981 1266.2 110.6 -0.210
(50,5,2)b 111.171 1149.0 42.2 111.801 1398.6 143.4 -0.566
(50,6,3)a 292.530 1060.0 30.6 292.943 1355.0 83.0 -0.141
(50,6,3)b 212.170 1781.0 44.6 213.965 2260.8 140.4 -0.845
(50,6,3)c 230.256 1765.0 19.8 232.851 3153.4 45.60 -1.114
(50,8,4) 222.775 1860.0 37.4 223.993 2421.6 118.8 -0.546
(100,2,0) 169.696 1389.0 30.6 171.667 2080.0 117.0 -1.161
(100,2,1) 272.021 1705.0 35.2 273.342 2365.0 134.0 -0.485
(100,10,0) 40.943 3065.0 39.0 40.947 3993.0 150.0 -0.008

5 Computational studies

All the computational results in this paper have been carried out on a cluster of 32 nodes, each
of them with 2 processors Xeon IV to 2.4GHz and 1 GByte RAM. The algorithms have been
implemented in C++ and MPI (Message Passing Interface) and using only one processor in
each node.

5.1 Effectiveness of the new creation procedures

First, this subsection studies whether the creation procedure described in Subsection 4 is able
to improve the solutions provided by the original (i.e. Create species1) procedure (see [11]).
To this aim, the 14 problems solved by UEGO cent.SASS in [11], have been solved again,
but with this new mechanism. The problems were generated varying the number n of demand
points, the number m of existing facilities and the number k of those facilities belonging to the
chain. The settings (n,m,k) of such problems are detailed in the first column of Table 1 (for
three of the settings more than one problem was generated, and we have added the letters a, b,
and c at the end of the setting to highlight it). For every setting, the problems were generated
by randomly choosing the parameters of the problems uniformly within given intervals [11].

The high computational requirements of the new creation procedure make the sequen-
tial UEGO cent.SASS run out of memory most of the times. Thus, so as to check the new
techniques, the master-slave parallel model has been selected. For the studies, the use of 2
processing elements has been enough.

As measurement of effectiveness we have computed the relative difference in objective
value between the optimal value obtained by the sequential UEGO cent.SASS in [11],OptVal(
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UEGO cent.SASS), and the solution obtained by the master-slave algorithm with the new
Creation species2 procedure when using 2 processing elements, OptVal MS(2),

Di f Ob j =
OptVal(UEGO cent.SASS)−OptVal MS(2)

OptVal(UEGO cent.SASS)
.

Negative values imply that the new creation mechanism improves the solution provided by
UEGO cent.SASS in [11], where the Create species1 procedure is implemented. It is impor-
tant to highlight that, due to the stochastic nature of the algorithms, all the experiments have
been executed 5 times and average values have been considered when computing Di f Ob j.
However, the confidence intervals obtained for these average values were relatively narrow,
which reveals the robustness of the algorithm’s solutions.

Computational experiments were carried out and proved that Create species2 provides bet-
ter results. Table 1 compares the results obtained by the sequential UEGO cent.SASS in [11]
(see the three columns under Create species1) to those obtained by MS(2) with Create species2.
The corresponding average value of the objective function over the 5 runs (Av(Π)), the average
running time (Av(T )), the average number of species in the final species list (Av(Spc)), as well
as Di f Ob j, are given for each problem.

The new creation method Creation species2 improves the profit more than 1% for some
instances (see column Di f Ob j). Nevertheless, the execution time is increased, even though
double computing resources are employed (it is executed by the master-slave algorithm with 2
processing elements). The rise of CPU time is due to the additional effort the creation method
makes to carry out a more exhaustive search (see columns Av(Spc), the number of species in
the final list, i.e., the number of local optimal points, is bigger with Creation species2).

5.2 Efficiency results for small problems

One of the main goals in parallelism consists of increasing the performance of an applica-
tion with respect to its execution on a uniprocessor. A commonly used metric to measure
the performance of a parallel implementation on homogeneous processors is the efficiency,
which estimates how well-utilized the processors are in solving the problem. The efficiency
of a parallel version (run over P processors) with respect to the sequential one is computed as:
E f f (P) = T (1)

P·T (P) , where T (P) is the CPU time employed by the algorithm when P process-
ing elements are used. Nevertheless, since the sequential algorithm UEGO cent.SASS cannot
manage some difficult-to-solve problems, it is not possible to obtain the reference T (1). An
alternative measure is then the relative efficiency, defined by E f f (Q,P) = Q·T (Q)

P·T (P) , where Q is
the minimum number of processors needed to solve the problem.

Table 2 shows the set of problems that each parallel strategy has been able to execute
with Q processing elements. As can be seen, MS is the only method that was able to solve
all the problems using only 2 processors. The reason for this fact is that, unlike coarse-grain
strategies, MS does not do redundant work and balances the load in a good way. Concerning
to the coarse-grain strategies, CO+RF is the one with the best behaviour. Its migration policy
reduces the load unbalance and the redundant work more than the remaining ones.

It is important to highlight that an effectiveness analysis showed that all the parallel algo-
rithms are able to provide the same optimal solution for the complete set of problems and for
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Table 2: Problems solved by the parallel strategies with a minimum number of processors Q.

Q MS CO RF1 RF2 CO+RF
2 (21,5,2) (21,5,2) (21,5,2) (21,5,2) (21,5,2)

(21,5,3) (21,5,3) (21,5,3) (50,5,0)a (21,5,3)
(50,5,0)a,b (50,5,0)a,b (50,5,0)a (50,5,2)a (50,5,0)a,b
(50,5,1) (50,5,2)a (50,5,2)a (50,6,3)a,c (50,5,1)
(50,5,2)a,b (50,6,3)a,c (50,6,3)a,c (50,5,2)a
(50,6,3)a,b,c (50,6,3)a,c
(50,8,4) (50,8,4)
(100,2,0)
(100,2,1)
(100,10,0)

4 (50,5,1) (50,5,0)b (21,5,3) (50,5,2)b
(50,5,2)b (50,5,1) (50,5,0)b (50,6,3)b
(50,6,3)b (50,5,2)b (50,5,1) (100,10,0)
(50,8,4) (50,6,3)b (50,5,2)b
(100,10,0) (50,8,4) (50,6,3)b

(50,8,4)
8 (100,2,0) (100,2,0) (100,2,0) (100,2,0)

(100,2,1) (100,2,1) (100,2,1) (100,2,1)
(100,10,0) (100,10,0)

all the values of P≥ Q.

Table 3 shows average values of efficiency E f f (Q,P) for all the parallel strategies. Notice
that averages have been computed considering the sets of problems in Table 2. For example,
the values for Q = 2 and MS strategy correspond to the 14 problems solved by MS with two
processing elements, one master and one slave processor (see Table 2).

Notice that the efficiency values obtained by MS are very close to the ideal case, and they
decrease when the number of processors P increases. The decrease in the efficiency may be
due to the increase in the communications and to the small number of species in the list, which
may mean that the computational load is not enough for distributing it among many processing
elements. Coarse-grain strategies are farther from the ideal efficiency than the master-slave
algorithm (see Table 3). This may be due to the presence of redundant work and to the load
unbalance which increase the waiting time of the processors when a migration stage has to be
accomplished (synchronization point).

Table 4 shows the average computing time for the 14 problems when they are solved by
the parallel strategies using P = 8,16,32. It can be seen that MS strategy is twice faster than
the coarse-grain strategies.

Therefore, from the results presented in this subsection, we can conclude that the MS
strategy is the parallel model with the best performance.
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Table 3: Average efficiency results for MS and CGs strategies.

Q P MS CO RF1 RF2 CO+RF
2 4 1.02 0.72 0.74 0.71 0.77

8 0.98 0.55 0.61 0.51 0.61
16 0.85 0.41 0.56 0.39 0.44
32 0.81 0.34 0.46 0.32 0.40

4 8 0.71 0.82 0.83 0.77
16 0.51 0.63 0.62 0.52
32 0.42 0.57 0.53 0.45

8 16 0.71 0.74 0.78 0.72
32 0.65 0.65 0.68 0.65

Table 4: Average execution time for problems solved using P = 8,16,32.

P MS CO RF1 RF2 CO+RF
8 475.53 904.60 846.11 860.07 819.44

16 262.64 626.56 565.39 575.21 571.70
32 137.73 376.27 323.55 338.52 324.20

5.3 Efficiency results of MS for large problems

In this subsection the behavior of MS when the size of the problem increases is analyzed. To
this aim, a representative set of location problems has been generated, varying the number
n of demand points, the number m of existing facilities and the number k of those facilities
belonging to the chain. The settings (n,m,k) employed in this experiment can be seen in Table
5.

Table 5: Settings of the larger test problems

n 100 150 200
m 1 2 5 1 3 7 2 5 10
k 0 0, 1 0, 2 0 0, 1 0, 3 0, 1 0, 2 0, 5

For every setting in Table 5, five problems were generated by randomly choosing the
parameters of the problems uniformly within the intervals presented in [11]. Furthermore,
remember that all the instances are solved 5 times and the average values are considered.

Table 6 shows average results (for all the values of m and k) for each value of n and P.
In the column labeled Av(Ob j), the average objective function value is given, in Av(T ) the
average computational time and in the last column E f f (P,Q), efficiency values are given.

As can be seen, the computational requirements increase with the complexity of the prob-
lems at hand. In fact, to solve problems with 200 demands points, the master-slave strategy
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requires, at least, 8 processing elements. Nevertheless, the behavior of the parallel algorithm is
excellent, since its efficiency is very close to the ideal case for all the instances.

Table 6: Efficiency results for big problems

n P Av(Ob j) Av(T ) E f f (P,Q)
100 2 472.66 2512.24 -

4 472.66 1218.48 1.03
8 472.67 580.96 1.08
16 472.66 271.28 1.06
32 472.66 152.44 1.03

150 4 646.90 2271.08 -
8 646.90 1161.28 0.99
16 646.90 582.28 0.98
32 646.90 295.71 0.96

200 8 850.70 964.53 -
16 850.70 474.53 1.02
32 850.70 238.74 1.01

6 Conclusions and future research

In this study, a centroid (Stackelberg or Simpson) problem introduced in [11] is considered.
In that paper, the evolutionary algorithm UEGO cent.SASS proved to be the best technique,
among four heuristics, for handling the problem. UEGO cent.SASS was designed to reduce
the computational burden and to be able to solve problems with reasonable sizes in a standard
uniprocessors. Even so, the algorithm was only able to solve small instances.

In this paper, a master-slave and four coarse-grain methods are analysed as parallel ver-
sions of UEGO cent.SASS. Since the parallel algorithms can use more computational re-
sources, they can incorporate new techniques able to improve the search, and hence, the so-
lutions obtained. An exhaustive analysis has proved that the Creation species2 method can
improve the objective value more than 1% in some instances. This method generates new can-
didate solutions at every level of the algorithm, using the remaining evaluations of the previous
level.

Concerning the efficiency of the parallel algorithms, the master-slave method has a good
behaviour. It is able to solve more instances than the coarse-grain proposals using fewer pro-
cessing elements and to obtain efficiencies close to or even greater than the ideal one.

It has also been shown that the MS strategy outperforms the coarse-grain strategies in
terms of efficiency and capability of solving large problems. This is because, for the current
problem, it is not admissible neither the presence of redundant work, since the evaluation of a
subpopulation requires intensive computational effort, nor the load unbalance, because of the
processors are idle longer.
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Abstract

llc is a language based on C where parallelism is expressed using compiler
directives. In this work we present the new backend of the llc compiler that
produces code for GPUs. Additionally we have implemented a software archi-
tecture that eases the development of new backends. This design represents an
intermediate layer between a high level parallel language and different hardware
architectures.

We evaluate our development by comparing the OpenMP and llc parallel-
izations of three different algorithms. In all cases, it is clear that the probable
performance loss with respect to a direct CUDA implementation is clearly com-
pensated by a significantly smaller development effort.

Key words: GPGPU, CUDA, llc, OpenMP, compiler, automatic parallelization

1 Introduction

The use of graphic processors (GPUs) [8] in High Performance Computing (HPC) has
bursted recently in the market as a new alternative to exploit parallelism in many ap-
plications [15]. For some problems, general-purpose computing on graphics processing
units (GPGPU) [1] is a low cost alternative that in many cases delivers results similar
or even better to those achieved with traditional hardware. The GPGPU technology
has a wider market than HPC, and therefore it has arrived to the HPC market to
perdure.

From our point of view, the greatest inconvenience for the adoption of the GPGPU
technology by the end users of HPC is the lack of programmability of the GPUs.
Although languages like CUDA [13] or OpenCL [17] contribute to diminish the impact
of this inconvenience, we believe that hard work has to be done in this direction.

In this work we tackle the problem of automatic code generation for GPUs from
high level languages. llc is a parallel language [5, 6] where parallelism is expressed
through the use of compiler directives that follow the OpenMP syntax. llc mixes the
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OpenMP simplicity of use with the MPI portability and performance. llCoMP, the
llc compiler, is a source to source compiler that translates C code annotated with
llc directives into high-level parallel code. At this moment, llCoMP has two different
backends: one producing hybrid MPI+OpenMP code and the new backend generating
CUDA code.

The performance of the MPI and hybrid MPI+OpenMP code generated by llCoMP

has been studied in previous works [5, 6, 16], while in this paper we focus our attention in
the study of the new llCoMP backend. With our approach, the performance loss with
respect to a direct CUDA implementation is clearly compensated by a significantly
smaller development effort.

The remainder of the paper is organized as follows. In Section 2 we expose the
motivation of our work. The main ideas behind the translation performed by llCoMP

are discussed in section 3. In section 4 we discuss some of the optimizations currently
implemented in the new backend of the compiler. The experimental evaluation of the
translation produced by the compiler is presented in Section 5. Finally, we summarize
a few concluding remarks and future work in Section 6.

2 Motivation

At this moment, HPC technology is living a time of fast changes. The end of the
Gigahertz race has broadened the computer architectures capable to achieve high per-
formance. This deep changes in the hardware world are immediately followed by the
corresponding movements in the software layer. New tools and languages are clearly
needed if we want to take advantage of the new hardware capabilities.

In the last decade we have seen a proliferation of HPC specific languages and tools,
promoted from the governments [12] and also from the academical and business environ-
ments [7]. They all try to offer the maximum performance with the less programming
effort. New languages hide architectural constrains, and provide a highly expressive
syntax, that allows to express parallelism accurately.

It is well known that the introduction of a new language has two main inconveni-
ences: HPC users needs to learn a new programming language, and they cannot reuse
their previous codes without some effort. An alternative approach consists in the ex-
tension of a widely known language (usually C or Fortran) adding a minimum amount
of constructs to exploit parallelism. One of the most successful cases of this approach
is OpenMP. It was designed as a shared memory programming standard and has shown
great performance for these systems.

Another effect of the changes in the hardware layer has been the increase in het-
erogeneity in the HPC architectures [3]. This new situation has partially left behind
OpenMP and most other languages. Almost none of the current OpenMP implementations
have in consideration heterogeneous systems, or even support for specific computational
devices.

Each one of this additional computational devices has its own programming inter-
face and model. If we consider FPGA as example we observe that despite its increasing
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popularity, there is no common programming API for them, and the programmer need
to develop specific code for each device and for each function that she wants to imple-
ment.

The OpenCL [9] standard represents an effort to create a common programming
interface for heterogeneous devices, which many manufacturers have joined. However,
it is still immature, and its programming model is not simple.

1 void compute ( int np , int nd , double ∗box , vnd_t ∗pos , vnd_t ∗vel ,
2 double mass , vnd_t ∗f , double ∗pot_p , double ∗kin_p ) {
3 double x , d , pot , kin ;
4 int i , j , k ;
5 vnd_t rij ;

7 pot = kin = 0 . 0 ;
8 #pragma omp parallel for default ( shared )
9 private (i , j , k , rij , d ) reduction(+ : pot , kin )

10 #pragma l l c result (f [ i ] , nd )
11 for (i = 0 ; i < np ; i++) { /∗ Pot . energy and f o r c e s ∗/
12 for (j = 0 ; j < nd ; j++)
13 f [ i ] [ j ] = 0 . 0 ;
14 for (j = 0 ; j < np ; j++) {
15 i f (i != j ) {
16 d = dist (nd , box , pos [ i ] , pos [ j ] , rij ) ;
17 pot = pot + 0 .5 ∗ v (d ) ;
18 for (k = 0 ; k < nd ; k++) {
19 f [ i ] [ k ] = f [ i ] [ k ] − rij [ k ] ∗ dv (d ) /d ;
20 }
21 }
22 }
23 kin = kin + dotr8 (nd , vel [ i ] , vel [ i ] ) ; /∗ k in . energy ∗/
24 }
25 kin = kin ∗ 0 .5 ∗ mass ;
26 ∗pot_p = pot ;
27 ∗kin_p = kin ;
28 }

Listing 1: Molecular Dynamic code simulation in llc

CUDA [13] is a more mature and extended approach (although currently only
supports NVIDIA devices). CUDA offers a programming interface (mostly C with
a small set of extensions). This framework allows HPC users to re-implement their
codes using GPU devices. Despite of being partially simple to build a code using this
framework, it is hard to achieve a good performance rate, requiring a huge coding and
optimization effort to obtain the maximum performance of the architecture.

and the experts that design and develop the languages as, in general, the users
do not have the skills necessary to exploit the tools involved in the development of
the parallel applications. Any effort to narrow the gap between users and tools by
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providing higher level programming languages and increasing their simplicity of use is
thus welcome.

In the last years, we have been working on a project that tries to combine simplicity
in the user side with reasonable performance and portability. We expose to the HPC
programmer a simple and well known language that hides the hardware complexity.
On the other side, we present templates, representing most common parallel patterns,
where we can introduce optimized versions without too much effort. The bridge is a
software architecture, conformed by a powerful transformation tool. We believe that
simplicity in the user side is a key aspect in the success of any parallel language. Our
language has a syntax compatible with OpenMP where it is possible. The llc compiler
uses the information present in the directives to produce the parallel code.

Given positions, masses and velocities of np particles, the routine shown in listing
1 computes the energy of the system and the forces on each particle. The code is
an implementation in llc of a Molecular Dynamics (MD) simulation. The parallel

for at line 8 is an example of parallel construct. It indicates that the iterations of
the for loop at line 11 represents independent tasks, and consequently can be split
among the available computing units. Different directives have been designed in llc

to support common parallel constructs: forall, sections, and pipelines [6, 4]. The llc

code is compiled by llCoMP, the llc compiler-translator, which produces an efficient
high level parallel code.

As all OpenMP directives and clauses are recognized by llCoMP, we have three ver-
sions with the same code: sequential, OpenMP and llc/MPI, and we only need to
choose the proper compiler to obtain the appropriate binary. Figure 1 illustrates this
process.

In the next sections we present preliminary results and discuss the implementation
of the new llCoMP backend (the rightest path in Figure 1.

3 The translation process

Although we had a working compiler based on bison and yacc that translates Open-
MP/llc code to MPI, we decided to go back to the drawing board. In order to increase
the flexibility when dealing with different target languages, at the time to develop the
new CUDA backend for llCoMP, we decided to adopt an object oriented approach.
After considering different alternatives, we have chosen to use Python as development
language. Some of the strengths of this language that motivate our choice are:

• Its friendly and readable syntax allow us to write high level code faster than our
previous approach

• The strong introspection capabilities of Python enhances our debugging processes

• Modularity is a key concept to reach a flexible and robust design

Reusing the code from the pycparser project [2], we have been able to build a C frontend
supporting OpenMP in a short time, and our software architecture design allowed us to
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Figure 1: llc translation options.

write a translation system compound by a set of classes and methods, which encapsulate
most of the work.

llCoMP starts translating the abstract syntax tree (AST) corresponding to the
input source code to an internal representation (IR) based on a class hierarchy. Those
parts of the IR corresponding to sequential code in the source are written in the target
code with no previous transformation. The compiler searches in the AST for specific
patterns using what we call a Filter. These patterns corresponds to different high-level
parallel constructs. From the different parallel constructs available in the language, the
CUDA back-end for now only supports parallel loops. The compiler has a filter class
hierarchy that deals with this search task. Once a pattern is located in the AST, we
can apply different mutators to achieve the desired translation. Mutators produce local
modifications in the AST where they insert the high-level (CUDA) code corresponding
to the desired translation. After all Mutators have been applied, the new AST is
processed by the CudaWriter module to produce the target code. Figure 2 illustrate
this process.

The code generation in llCoMP (like in the former version of the compiler) uses the
code pattern concept. A code pattern is an abstraction that represents a specific task
in the context of the translation. llCoMP uses two kind of code patterns: static and
dynamic. The simplest code patterns are implemented using code templates, while the
most complex cases require the implementation of a Mutator
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Figure 2: The translation process

A code template is a code fragment in the target language that will be modified
accordingly to some input parameters. This code is interpreted and translated to the
IR and afterwards it is grafted in the AST. The design of the backend using code
templates will ease the implementation of new future backends.

Every time we need to use a device, we can identify several common tasks: initializ-
ation, local data allocation, device invocation, data retrieve and memory deallocation,
among others. Each of these tasks identifies a pattern and each pattern is implemen-
ted through a code template. To manipulate these code templates and insert them in
the IR llCoMP defines a set of operations that are collected in a library and exhibit a
common facade.

4 Code optimizations

In our first approach to automatic code generation for CUDA, we have prevailed on
simplicity, rather than focusing on code optimization. However, we have detected some
situations where improvements in the target code will enhance the performance. We
are currently working on the implementation of these improvements and some other
complex optimizations that will be included in future releases of llCoMP.

One optimization already included in the current version of the translator is the
use of a specialized kernel to perform reduction operations. With a small effort we have
improved the performance of codes that make use of reductions.

Our first approach to make reductions in CUDA was based in the use of reduction
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arrays that were communicated to the host to perform the operation. The specialized
kernel implemented in the compiler [10] uses interleaved addressing and makes the first
add during data fetching from global memory. This improvement benefits from using
the device to perform the reduction and minimizes the size of the transfer between host
and device. For the Mandelbrot set computation whose results are shown in section 5
we have increased the speedup in an average amount of 2%, and this figure will raise
when combined with other planned optimizations.

Another key issue to enhance the performance in the CUDA architecture is the
reduction of data transfer between host and device. In our PCI express × 16 bus this
data transfer rate is 1.7 GB/s between CPU and GPU, and this constitutes a critical
bottleneck.

In our strategy, at the end of each parallel loop we synchronize the memory of host
and device (according to the OTOSP model underlying the llc implementation [5]).
Lets consider the code in Listing 2 that is part of the implementation of the Jacobi
iterative method both in llc and OpenMP taken from the OpenMP official website [14].
Without applying any optimization, the translation of the parallel loops in lines 6 and
10 to CUDA leads to communications between CPU and GPU at the beginning and at
the end of each loop. However, this behavior introduces unnecessary communications
since memory positions have not been modified between the end of the first loop and
the beginning of the second.

1 while ( ( k < maxit ) && ( error > tol ) ) {
2 error = 0 . 0 ;
3 #pragma omp parallel shared (uold , u , . . . ) private (i , j , resid )
4 {
5 #pragma omp for

6 for (i = 0 ; i < m ; i++)
7 for (j = 0 ; j < n ; j++)
8 uold [ i ] [ j ] = u [ i ] [ j ] ;
9 #pragma omp for reduction(+:error )

10 for (i = 0 ; i < (m − 2) ; i++) {
11 for (j = 0 ; j < (n − 2) ; j++) {
12 resid = . . .
13 . . .
14 error += resid ∗ resid ;
15 }
16 }
17 }
18 k++;
19 error = sqrt ( error ) / (double ) (n ∗ m ) ;
20 }

Listing 2: Iterative loop in the Jacobi method implementation in llc/OpenMP

To avoid this overhead, our compiler injects the communications at the beginning
and end of parallel regions. Inside the parallel region we assume that memory locations
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allocated in the host remain unchanged. The programmer has to use the OpenMP flush

construct in order to synchronize host and device in the case that access to variables
computed in the device in a previous parallel loop is needed inside the parallel region.
The insertion of the flush construct is not required in the case of function calls because
they are automatically translated into device code.

Some of the optimizations that are currently under study or development are the
following:

• To improve locality through a better use of the memory hierarchy

• To use the texture memory to store read-only data

• Enhance the translation of nested loops taking advantage of the architecture
design

• An intelligent balance of load between host and device

• To implement interprocedural data flow analysis

5 Computational results

This work represents a preliminary evaluation of the results obtained with the new
backend of the llc compiler. In order to establish the performance of the llCoMP

translation we have used three algorithms: the Mandelbrot set computation, a Mo-
lecular Dynamic (MD) simulation and the solution of a finite difference equation using
the Jacobi iterative method. All three source codes share the same implementation in
OpenMP and llc (no specific llc annotations have been used). In all cases the Fig-
ures compare the speedup of the pure OpenMP implementation with 8 cores against the
CUDA code generated by llCoMP using 64 threads. In all Figures, dark bars corres-
pond to the CUDA code generated by llCoMP and light color correspond to the OpenMP
implementation. The speedups are computed using exactly the same source code, for
the llCoMP and OpenMP versions. The sequential code was obtained deactivating the
OpenMP flags. The source code for all the examples is available at the llc project home
page [11].

The computational experience has been carried out in a system build from two
AMD Opteron QuadCore processors (8 cores) with 4 GB of RAM. This system has
attached through a PCI-express 16x bus a Tesla C1060 card with 4 GB and 1 GPU
with 240 cores.

Figure 3 shows the speedup obtained for three increasing problem sizes (number
of points computed) in the Mandelbrot set area computation. While the OpenMP code
do not increase the speedup when the problem size grows, the CUDA version benefits
from it.

For the MD simulation code, the results are presented in Figure 4. In this case
the size of the problem represents the number of particles involved in the simulation.
For this test, the speedup of the CUDA code also grows with the problem size, while
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Figure 3: Speedup of the Mandelbrot set computation code

Figure 4: Speedup of the Molecular Dynamic simulation code
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the OpenMP version do not show a regular behavior. This is probably due to memory
constrains. The MD code has a predefined number of iterations (10 in our experiments)
and each iteration involves calls to two different functions that have been parallelized
independently. One of these two functions has a parallel loop similar to that seen
in Listing 2, while the other function is a simple matrix update. This scenario is
not the most beneficial for our approach since it produces an unnecessary amount of
communications. Despite of this hindrance the CUDA results in Figure 4 are promising.
An interprocedural data flow analysis of the source would enhance the performance of
our strategy.

Figure 5: Speedup of the Jacobi iterative method

The iterative loop of the Jacobi method code was shown in Figure 2 and the cor-
responding results are presented in Figure 5. The size of the problem correspond to the
dimension of the square matrices used in the computation. This code benefits from the
optimization explained in Section 4 that minimizes the communications between host
and device in the case of several parallel for loops inside the same parallel region. Again,
while the OpenMP speedup remains almost constant when doubling the problem size,
the CUDA implementation takes advantage of the largest amount of data involved.

6 Conclusions and future work

We have presented preliminary results obtained with the new implementation of the
CUDA backend for the llc compiler. Taking into account the smaller effort to develop
codes using llc compared with direct CUDA implementations, we conclude that llc

is appropriate to implement some classes of parallel applications.

We have got the first version of a source to source compiler, written in a modern,
flexible and portable language that represents a starting point for future works. We
consider that the development of the new frontend of the compiler is a first milestone
in our path to the future version of the llc language.
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With the experience achieved in the elaboration of the CUDA backend, we believe
that the incorporation of new target languages (OpenCL, for example) should not
require an unaffordable effort. From now on, our goal is to continue the development
of the language to increase its capabilities.

Work in progress concerning this topic includes the following:

• To increase the number of algorithms parallelized using our compiler, with par-
ticular attention to commercial applications

• To study and implement additional compiler optimizations that will enhance the
performance of the target code

• To extend the llc syntax to capture additional information from the programmer
for better adaption of the translation to the target architecture

• To study the generation of hybrid CUDA+OpenMP code
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Aaron E. Lefohn, and Tim Purcell. A survey of general-purpose computation on
graphics hardware. Computer Graphics Forum, 26(1):80–113, March 2007.

[16] R. Reyes, A. J. Dorta, F. Almeida, and F. Sande. Automatic hybrid
MPI+OpenMP code generation with llc. In M. Ropo et al., editor, Proc. of the
16th European PVM/MPI Users’ Group Meeting, volume 5759 of Lecture Notes in
Computer Science, pages 185–195, Espoo, Finland, 2009. Springer-Verlag.

[17] Khronos Group Std. The OpenCL specification, version 1.0, online, 2009.
http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf.

@CMMSE                                                               Page   815  of 1328                                               ISBN 13: 978-84-613-5510-5



Proceedings of the 10th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2010
27–30 June 2010.

Control of dengue disease:

a case study in Cape Verde

Helena Sofia Rodrigues1, M. Teresa T. Monteiro2, Delfim F. M.

Torres3 and Alan Zinober4

1 School of Business Studies, Viana do Castelo Polytechnic Institute, Portugal

2 Department of Production and Systems, University of Minho, Portugal

3 Department of Mathematics, University of Aveiro, Portugal

4 Department of Applied Mathematics, University of Sheffield, UK

emails: sofiarodrigues@esce.ipvc.pt, tm@dps.uminho.pt, delfim@ua.pt,
a.zinober@sheffield.ac.uk

Abstract

A model for the transmission of dengue disease is presented. It consists of eight
mutually-exclusive compartments representing the human and vector dynamics.
It also includes a control parameter (adulticide spray) in order to combat the
mosquito. The model presents three possible equilibria: two disease-free equilibria
(DFE) — where humans, with or without mosquitoes, live without the disease
— and another endemic equilibrium (EE). In the literature it has been proved
that a DFE is locally asymptotically stable, whenever a certain epidemiological
threshold, known as the basic reproduction number, is less than one. We show that
if a minimum level of insecticide is applied, then it is possible to maintain the basic
reproduction number below unity. A case study, using data of the outbreak that
occured in 2009 in Cape Verde, is presented.

Key words: dengue, basic reproduction number, stability, Cape Verde, control.
MSC 2000: 92B05, 93C95, 93D20.

1 Introduction

Dengue is a mosquito-borne infection that has become a major international public
health concern. According to the World Health Organization, 50 to 100 million dengue
infections occur yearly, including 500000 Dengue Haemorrhagic Fever cases and 22000
deaths, mostly among children [10]. Dengue is found in tropical and sub-tropical regions
around the world, predominantly in urban and semi-urban areas.
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There are two forms of dengue: Dengue Fever and Dengue Haemorrhagic Fever.
The first one is characterized by a sudden fever without respiratory symptoms, ac-
companied by intense headaches and lasts between three and seven days. The second
one has the previous symptoms but also nausea, vomiting, fainting due to low blood
pressure and can lead to death in two or three days [3].

The spread of dengue is attributed to expanding geographic distribution of the
four dengue viruses and their mosquito vectors, the most important of which is the
predominantly urban species Aedes aegypti. The life cycle of a mosquito presents four
distinct stages: egg, larva, pupa and adult. In the case of Aedes aegypti the first three
stages take place in or near water while air is the medium for the adult stage [6]. The
adult stage of the mosquito is considered to last an average of eleven days in the urban
environment. Dengue is spread only by adult females, that require a blood meal for
the development of eggs; male mosquitoes feed on nectar and other sources of sugar.
In this process the female acquire the virus while feeding on the blood of an infected
person. After virus incubation for eight to ten days, an infected mosquito is capable,
during probing and blood feeding, of transmitting the virus for the rest of its life.

The organization of this paper is as follows. A mathematical model of the interac-
tion between human and mosquito populations is presented in Section 2. Section 3 is
concerned with the equilibria of the epidemiological model and their stability. In Sec-
tion 4 the results obtained in the previous section are applied to a study case. Finally,
some concluding notes are given in Section 5.

2 The mathematical model

Considering the work of [7], the relationship between humans and mosquitoes are now
rather complex, taking into account the model presented in [4]. The novelty in this
paper is the presence of the control parameter related to adult mosquito spray.

The notation used in our mathematical model includes four epidemiological states
for humans:

Sh(t) susceptible (individuals who can contract the disease)
Eh(t) exposed (individuals who have been infected by the parasite

but are not yet able to transmit to others)
Ih(t) infected (individuals capable of transmitting the disease to others)
Rh(t) resistant (individuals who have acquired immunity)

It is assumed that the total human population (Nh) is constant, so, Nh = Sh +
Eh +Ih +Rh. There are also other four state variables related to the female mosquitoes
(the male mosquitoes are not considered in this study because they do not bite humans
and consequently they do not influence the dynamics of the disease):

Am(t) aquatic phase (that includes the egg, larva and pupa stages)
Sm(t) susceptible (mosquitoes that are able to contract the disease)
Em(t) exposed (mosquitoes that are infected but are not yet able

to transmit to humans)
Im(t) infected (mosquitoes capable of transmitting the disease to humans)
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In order to analyze the effects of campaigns to combat the mosquito, there is also
a control variable:

c(t) level of insecticide campaigns

Some assumptions are made in this model:

• the total human population (Nh) is constant, which means that we do not consider
births and deaths;

• there is no immigration of infected individuals to the human population;

• the population is homogeneous, which means that every individual of a compart-
ment is homogenously mixed with the other individuals;

• the coefficient of transmission of the disease is fixed and do not vary seasonally;

• both human and mosquitoes are assumed to be born susceptible; there is no
natural protection;

• for the mosquito there is no resistant phase, due to its short lifetime.

The parameters used in our model are:

Nh total population
B average daily biting (per day)
βmh transmission probability from Im (per bite)
βhm transmission probability from Ih (per bite)
1/µh average lifespan of humans (in days)
1/ηh mean viremic period (in days)
1/µm average lifespan of adult mosquitoes (in days)
µb number of eggs at each deposit per capita (per day)
µA natural mortality of larvae (per day)
ηA maturation rate from larvae to adult (per day)
1/ηm extrinsic incubation period (in days)
1/νh intrinsic incubation period (in days)
m female mosquitoes per human
k number of larvae per human
K maximal capacity of larvae

The Dengue epidemic can be modelled by the following nonlinear time-varying
state equations:

Human Population





dSh

dt
(t) = µhNh − (Bβmh

Im

Nh

+ µh)Sh

dEh

dt
(t) = Bβmh

Im

Nh

Sh − (νh + µh)Eh

dIh

dt
(t) = νhEh − (ηh + µh)Ih

dRh

dt
(t) = ηhIh − µhRh

(1)
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and vector population





dAm

dt
(t) = µb(1 − Am

K
)(Sm + Em + Im) − (ηA + µA)Am

dSm

dt
(t) = −(Bβhm

Ih

Nh

+ µm)Sm + ηAAm − cSm

dEm

dt
(t) = Bβhm

Ih

Nh

Sm − (µm + ηm)Em − cEm

dIm

dt
(t) = ηmEm − µmIm − cIm

(2)

with the initial conditions

Sh(0) = Sh0, Eh(0) = Eh0, Ih(0) = Ih0, Rh(0) = Rh0,

Am(0) = Am0, Sm(0) = Sm0, Em(0) = Em0, Im(0) = Im0.
(3)

Notice that the equation related to the aquatic phase does not have the control
variable c, because the adulticide does not produce effects in this stage of the life of
the mosquito.

3 Equilibrium points and Stability

Let the set

Ω = {(Sh, Eh, Ih, Am, Sm, Em, Im) ∈ R7
+ : Sh + Eh + Ih ≤ Nh, Am ≤ kNh, Sm + Em + Im ≤ mNh}

be the region of biological interest, that is positively invariant under the flow induced
by the differential system (1)–(2).

Proposition 1. Let Ω be defined as above. Consider also

M = − (c(ηA + µA) + µAµm + ηA(−µb + µm)).

The system (1)–(2) admits, at most, three equilibrium points:

• if M ≤ 0, there is a Disease-Free Equilibrium (DFE), called Trivial Equilibrium,
E∗

1 = (Nh, 0, 0, 0, 0, 0, 0);

• if M > 0, there is a Biologically Realistic Disease-Free Equilibrium (BRDFE),

E∗

2 =
(
Nh, 0, 0, kNhM

ηAµb

, kNhM

µbµm
, 0, 0

)

or an Endemic Equilibrium (EE), E∗

3 = (S∗

h
, E∗

h
, I∗

h
, A∗

m, S∗

m, E∗

m, I∗m).

It is necessary to determine the basic reproduction number of the disease, R0. This
number is very important from the epidemiologistic point of view. It represents the
expected number of secondary cases produced in a completed susceptible population,
by a typical infected individual during its entire period of infectiousness [5]. Following
[9], we prove:

Proposition 2. If M > 0, then the basic reproduction number associated to (1)–(2)

is R2
0 = B2kβhmβmhηmνhM

µb(ηh+ µh)(c+µm)2(c+ηm+µm)(µh+νh)
.

BRDFE is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

@CMMSE                                                               Page   819  of 1328                                               ISBN 13: 978-84-613-5510-5



Rodrigues, Monteiro, Torres & Zinober

From a biological point of view, it is desirable that humans and mosquitoes coexist
without the disease reaching a level of endemicity. We claim that proper use of the
control c can result in the basic reproduction number remaining below unity and,
therefore, making BRDFE stable.

In order to make effective use of achievable insecticide control, and simultaneously
to explain more easily to the competent authorities its effectiveness, we assume that c

is constant.
We want to find c such that R0 < 1.

4 Dengue in Cape Verde

The simulations were carried out using the following values: Nh = 480000, B = 1,
βmh = 0.375, βhm = 0.375, µh = 1/(71 ∗ 365), ηh = 1/3, µm = 1/11, µb = 6, µA = 1/4,
ηA = 0.08, ηm = 1/11, νh = 1/4, , m = 6, k = 3, K = k ∗ Nh. The initial conditions
for the problem were: Sh0 = m ∗ Nh, Eh0 = 216, Ih0 = 434, Rh0 = 0, Am0 = k ∗ Nh,
Sm0 = m ∗Nh, Em0 = 0, Im0 = 0. The final time was tf = 84 days. The values related
to humans describes the reality of an infected period in Cape Verde [1]. However, since
it was the first outbreak that happened in the archipelago it was not possible to collect
any data for the mosquito. Thus, for the aedes Aegypti we have selected information
from Brazil where dengue is already a reality long known [8, 11].

Proposition 3. Let us consider the parameters listed above and consider c as a con-
stant. Then R0 < 1 if and only if c > 0.0837.

For our computations let us consider c = 0.084. The results indicate that use of
the control c is crucial to prevent that an outbreak could transform an epidemiological
episode to an endemic disease. The computational experiences were carried out using
Scilab [2].

Figures 1 and 2 show the curves related to human population, with and without
control, respectively. The number of infected persons, even with small control, is much
less than without any spray campaign.

The Figures 3 and 4 show the difference between a region with control and without
control.

The number of infected mosquitoes is close to zero in a situation where control
is present. Note that we do not intend to eradicate the mosquitoes but instead the
number of infected mosquitoes.

5 Conclusions

It is very difficult to control or eliminate the Aedes aegypti mosquito because it makes
adaptations to the environment and becomes resistant to natural phenomena (e.g.
droughts) or human interventions (e.g. control measures).

During outbreaks emergency vector control measures can also include broad appli-
cation of insecticides. It has been shown here that with a steady spray campaign it is
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Figure 1: Human compartments using
control

Figure 2: Human compartments with no con-
trol

Figure 3: Mosquito compartments using
control

Figure 4: Mosquito compartments with no
control
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possible to reduce the number of infected humans and mosquitoes. Active monitoring
and surveillance of the natural mosquito population should accompany control efforts
to determine programme effectiveness.
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Abstract

We deduce the existence of solution for the recurrence inequation associated
to an expoDC algorithm by means of techniques of Denotational Semantics. This
is done by means of a quasi-metric version of the Banach contraction principle
on a space of partial functions endowed with a suitable adaptation of the Baire
quasi-metric.
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1 Introduction and preliminaries

We start with some pertinent concepts and facts on quasi-metric spaces.
The set of positive integer numbers will be denoted by N and the set of nonnegative

integer numbers by ω.

Following the modern terminology, a quasi-metric on a set X is a function d :
X ×X → [0,∞) such that for all x, y, z ∈ X :(i) d(x, y) = d(y, x) = 0 ⇐⇒ x = y; (ii)
d(x, z) ≤ d(x, y) + d(y, z).

If d is a quasi-metric on X, then the function ds : X × X → [0,∞) given by
ds(x, y) = max{d(x, y), d(y, x)}, is a metric on X. If ds is a complete metric on X, we
say that the quasi-metric d is bicomplete. In this case, (X, d) is said to be a bicomplete
quasi-metric space.
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By a contraction map on a quasi-metric space (X, d) we mean a self-map f of X
such that d(fx , fy) ≤ kd(x , y) for all x, y ∈ X, where k is a constant with 0 < k < 1.
The number k is called a contraction constant for f.

It is clear that if f is a contraction map on a quasi-metric space (X, d) with contrac-
tion constant k, then f is a contraction map on the metric space (X, ds) with contraction
constant k.

Therefore, the classical Banach contraction principle can be generalized to the
quasi-metric setting as follows (see for instance [3, Lemma 2.4])

Theorem 1. Let f be a contraction map on a bicomplete quasi-metric space (X,d).
Then, for each x ∈ X, the sequence of iterations (fnx)n∈ω is convergent in (X, ds) to
a point x0 ∈ X which is the unique fixed point of f.

2 The results

The complexity quasi-metric space (introduced by M. Schellekens in [7]) provides an
efficient tool to show, in a systematized way, the existence (and uniqueness) of solution
for the recurrence equations or inequations typically associated to several distinguished
kinds of algorithms [7, 4, 5, 2]. In particular, this approach was considered in [5] to the
case of expoDC algorithm, which is carefully discussed in [1, Section 7.7], where the
following recurrence inequation for this algorithm is obtained:

(1) T (m, n) ≤


0, if n = 1,
T (m, n/2) + M(mn/2, mn/2), if n is even,
T (m, n− 1) + M(m, (n− 1)m), otherwise,

for all (m, n) ∈ N× N.
According to [1, Section 7.7], M(m, n) denotes the time needed to multiply two

integers of sizes m and n, and T (m, n) denotes the time spent multiplying when com-
puting an, where m is the size of a.

Let M(1, 1) = c > 0. Then, it is constructed in the “complexity” quasi-metric space
(C0,c, d0,c), where

C0,c = {f : N× N→ [0,∞) : f(m, 1) = 0, and f(m, n) ≥ c for n > 1},

and d0,c is the bicomplete quasi-metric on C0,c given by

d0,c(f, g) =
∞∑

m=1

2−m

[ ∞∑
n=2

2−n max{( 1
g(m, n)

− 1
f(m, n)

), 0}

]
The recurrence (1) induces, in a natural way, the functional Φ defined on C0,c by

(2) Φf(m, n) =


0, if n = 1,
f(m, n/2) + M(mn/2, mn/2), if n is even,
f(m, n− 1) + M(m, (n− 1)m), otherwise.
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Then, it is proved in [5] that Φ is a contraction map on (C0,c, d0,c) with contraction
constant 3/4, and thus Φ has a unique solution f0 which is obviously a solution for T.

In Computer Science, programmers define procedures using recursion usually. In
these cases, one must consider whether the mathematical specification for the proce-
dure provides a semantically meaningless recursive definition. To discern it, the original
problem is reduced to show that a fixed point equation has a solution, where such a
solution is identified with the meaning of the denotational especification of the proce-
dure. In many cases the aforementioned solution to the fixed equation is obtained as the
limit of a sequence of successive approximations in such a way that each element of the
sequence captures more (partial) information about the denotational meaning than the
other computed before. In the described denotational analysis for high-level program-
ming procedures the so-called partial functions have proven to be very useful. In fact,
in many situations the mathematical specification of the procedure mathes up with a
total function, defined recursively, which is at the same time a solution of the fixed
point equation and the limit of a sequence of partial functions, also defined recursively,
that capture partial information of the recursive specification meaning but they have
the advantage that can be computed in a finite number of steps form their recursive
specification contrary to the case of the total function (the meaning of the denota-
tional specification). Motivated by the usefulness of partial functions in Denotational
Semantics we here deduce the existence of solutions for the recurrence inequation (1)
by means of techniques of Denotational Semantics based in proving that the functional
Φ above is a contraction map, with contraction constant 1/2, on a certain space of par-
tial functions endowed by an appropriate bicomplete quasi-metric. Thus, our approach
provides an improvement of the contraction constant with respect to one obtained from
the complexity space (C0,c, d0,c) and in addition the fact of working with partial func-
tions yields a more visual application of our version of the Banach contraction principle
because in practice one takes a partial function and its successive iterations to apply
then Theorem 1.

In the sequel, given a nonempty alphabet Σ, we shall denote by Σ∞ the domain of
(finite and infinite) words over Σ, and by `(x) we denote the length of the word x. The
common prefix of x and y is denoted by x u y, and if x is a prefix of y we write x v y.

The so-called Baire quasi-metric (see, for instance, [6]) is the quasi-metric dv on
Σ∞ given by dv(x, y) = 0 if x v y, and dv(x, y) = 2−`(xux) otherwise.

Note that (dv)s is the Baire metric on Σ∞.

Now, put N⇁ = {{1, ..., n} : n ∈ N} ∪ N, and P = {f : N×B → [0,∞), B ∈ N⇁}.
For each f ∈ P and each m ∈ N, we define f(m) : B → [0,∞) as f(m)(n) = f(m, n)

for all n ∈ B.

If B is finite then f(m) is a partial function.
Note also that f(m) can be considered as an element of Σ∞ when Σ = [0,∞).
Moreover `(f(l)) = `(f(m)) for all l,m ∈ N, and `(f(m)) =∞ if and only if B = N.

Next we define a function dP : P × P → [0,∞) by

dP(f, g) = sup
m∈N

dv(f(m), g(m)),
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It is straightforward to check that dP is a quasi-metric on P.
Furthermore, with the help of the well-known fact that (dv)s is a complete metric,

we can prove the following.

Theorem 2. dP is a bicomplete quasi-metric on P.

Proof. Let (fk)k be a Cauchy sequence in (P, (dP)s). Then, for each ε > 0 there
exists kε ∈ N such that dP(fj , fk) < ε for all j, k ≥ kε. Consequently, for each m ∈ N,
(fk(m))k is a Cauchy sequence in the complete metric space ([0,∞)∞, (dv)s) (recall that
(dv)s is the Baire metric on Σ∞, where Σ = [0,∞)), and thus there exists f(m) ∈ Σ∞

such that
lim
k

(dv)s(f(m), fk(m)) = 0.

Observe that for each l,m ∈ N, `(f(l)) = `(f(m)), because `(fk(l)) = `(fk(m)) for
all k, l,m ∈ N.

Let B = N if `(f(m)) =∞, and B = {1, ..., p} if `(f(m)) = p for all m ∈ N.
Then, we define F : N × B → [0,∞) by F (m, n) = f(m)(n) for all m ∈ N and

n ∈ B. Clearly F ∈ P and F (m) = f(m) for all m ∈ N.
We shall show that

lim
k

(dP)s(F, fk) = 0.

Indeed, choose ε > 0 and m ∈ N. For each k ≥ kε there exists j ≥ k such that

(dv)s(f(m), fj(m)) < ε,

so

(dv)s(f(m), fk(m)) ≤ (dv)s(f(m), fj(m)) + (dv)s(fj(m), fk(m))
< ε + (dP)s(fj , fk) < 2ε.

Consequently, for each k ≥ kε we obtain

dP(F, fk) = sup
m∈N

dv(F (m), fk(m)) = sup
m∈N

dv(f(m), fk(m)) ≤ 2ε,

and, similarly,
dP(fk, F ) ≤ 2ε.

We conclude that dP is a bicomplete quasi-metric on P.

The extension to P of the functional Φ defined above will be also denoted by Φ.
Then we can show the following fact whose proof will be given in a full version of this
paper:

For each f, g ∈ P,

dP(Φf, Φg) ≤ 1
2
dP(f, g),

and hence Φ has a unique fixed point f0 which is solution of (1) (actually we have the
equality in (1) for f0).
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Abstract

This work investigates how to adapt the number of threads of a parallel Interval
Branch and Bound algorithm based on its current performance. Basically, a thread
can create a new thread that will process part of the ancestor workload. In this
way, load balancing is inherent to creation of threads. The number of threads
should depends on the level of parallelism, workload of the application, and on
the computational resources of the architecture at a given time. The applications
we are interested on use branch-and-bound algorithm which is highly irregular
and therefore difficult to predict. In this way, the proposed methods can be used
for more predictable algorithms as well. This research complement and does not
substitute other devices that improve the exploitation of the system, like dynamic
scheduling policy as work-stealing. Several approaches are presented. They differ
in the used metrics and in the need or not to modify the Operating System (O.S.).
The scenario for this research is just one multi-threaded application running with
the O.S. in a multi-core architecture. Experimental results have been obtained
for an Interval Global Optimization algorithm using POSIX-Threads running in
multi-core systems with four and sixteen cores, and Linux kernel 2.6. Results show
that a good number of running threads can be determined at run time, avoiding
to statically establish the maximum number of threads of an application, as input
parameter. The frequency with which thread creation decisions are made is very
important because high frequency methods obtains better results but are time
consuming. One of the presented methods does not need to establish the frequency
of the decisions, obtaining the desired results.

Key words: Irregularity, Multi-threaded, Shared memory parallel processors,
performance analysis, branch-and-bound, global optimization
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1 Introduction

Branch and bound algorithms do an irregular and unpredictable search. These algo-
rithms are among the most challenging to obtain a good speed up in parallel computers.
A parallel version of interval branch and bound algorithm named LOCAL-PAMIGO,
which has shown a good speed up in multicore systems, was presented in [1]. Local-
PAMIGO uses dynamic thread creation at run time without explicit dynamic load
balancing.

Some nowadays application programming interfaces (API), as OpenMP [9], TBB
[11] or Cilk [4], can obtain a good performance for parallel loops and nested parallelism.
For instance, OpenMP lets to use a dynamic number of threads with variable chunk
size for loops. Recently, the optimal number of threads for each parallel loop in the
parallel application is determined at run time based on dynamic feedbacks [7].

Previous APIs offer task parallelism, and schedule individual tasks to achieve good
parallel performance for many applications. Currently, task scheduling is not exposed
to the users. To reduce the run time system overhead and achieve good performance,
the excessive creation of tasks has to be avoided. Cut-off for task parallelism works
for many applications but does not perform well for parallel branch and bound codes
[3, 8].

Local-PAMIGO approach adapts the number of threads at run time and performs
well in multicore systems. Local-PAMIGO uses POSIX Thread NPTL library, instead
of previous APIs, to have more control of the application execution. In Local-PAMIGO
the user establishes statically the maximum number of running threads, as input pa-
rameter. In this work, we study how to adapt the number of threads to application
performance and computational resources at run time, without user interaction. Recent
studies show a possible direction: O.S. must change its interactions with the program
run-time and parallel run-time systems must be developed that can automatically adapt
programs to the architecture and usage environment [10].

Here, we present four methods that differ in the used metrics and in the modifi-
cations needed to be done in the kernel of the Operating System. Section 2 describes
Local-PAMIGO schema we will compare with. Section 3 shows different strategies to
decide the creation of a new thread. Section 4 shows results of the presented strategies
and some conclusions are given in Section 5.

2 Parallel B&B model

B&B algorithms are well known exhaustive search methods where the initial problem
is partitioned in subproblems until a solution is found. The method lets to avoid the
search in some branches of the search tree. The idea of using the power of parallel
computers in B&B algorithms is not new. Many researchers have devoted effort to
obtain efficient parallel implementations of this general framework. Some references in
the field can be found in [1]. Here we use a multithreading interval B&B algorithm
running in multicore system (Local-PAMIGO), as testbed for our experimentation [1].
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Following the classification presented in [5], Local-PAMIGO has a parallelism that can
be classified as AMP (Asynchronous Multiple Pool).

The programming model used in Local-PAMIGO is based on threads processing
their own data structures. Threads cooperate by updating information stored in shared
variables. The user establish the number of process units (PUs) p to solve the problem.
To avoid idle PU, a thread can generate a new thread assigning to it part of its own
pending work. In this way, the application tries to maintain the p PUs busy and load
balancing is inherent to the model. This model of programming multihtreaded algo-
rithms can be extended to other type of algorithms. The use of skeletons can simplify
programmer work [2]. More detailed characteristics of Local-PAMIGO programming
model are the following:

• Each thread handles its own local data structures L (working storage) and Q
(solution storage).

• NTh is a shared variable showing the number of running threads. The algorithm
tries to keep NTh = p.

• V PU (Virtual PUs) is a shared vector with elements V PU [i], i = 1, . . . , p, storing
the identity of the thread assigned to slot i (V PU [i].idthread) and the solution
storage (V PU [i].Q). Each thread i gets its local working storage Li when the
thread is created.

• Local-PAMIGO starts with one thread associated to V PU [1], L1 = {Initial Problem},
V PU [1].Q = {} and NTh = 1.

• A thread assigned to V PU [i] with Li={} sets NTh = NTh − 1, its slot as free
(V PU [i].idthread=-1) and terminates its execution. Notice that V PU [i].Q may
be nonempty.

• The condition NTh < p is checked by all threads at every iteration of the al-
gorithm. When a thread, for instance V PU [i].idthread, notices that NTh < p
and it has enough pending work in Li, it searches a free V PU slot (for instance
V PU [j]) and moves some pending work from Li to Lj. Then, it generates a new
thread and assigns it to V PU [j] and finally sets NTh = NTh + 1.

• Some improvement could be achieved if the most loaded thread creates a new
thread instead of the first thread detecting NTh < p.

• Local-PAMIGO terminates when NTh = 0. The solution set {V PU [i].Q, i =
1, . . . , p} contains the solution of the problem.

In this way, as soon as a virtual process unit is idle and there is enough work, a
new thread is created. The time an idle PU is waiting for a new thread, is given by the
time: (i) to check that NTh < p, (ii) to divide the work structure, (iii) to create a new
thread and (iv) to migrate the new thread to the idle PU. The migration of threads is
done by O.S.

Notice that Local-PAMIGO adapts the number of running threads based on the
pending work in the application and on the number of idle virtual process units. Most
of the time NTh = p for large size problems, but NTh < p can also happens due to
the irregularity of B&B algorithm or small size problems. Actually, p determines the
maximum number of threads that can be created. It is usually established statically
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to the number of PUs in the system as input parameter. The optimum value of p,
in terms of execution time of the application, will depends on the architecture, the
level of parallelism of the algorithm, in the size of the problem, the ability of the
programmer, etc. Table 1 shows the maximum number of running threads (MNRT) for
SHCB problem with ǫ = 10−8 and Kowalik problem with ǫ = 10−3 (see [1]). Different
values of p are used as input parameter. Notice that MNRT is smaller than p for low
cost SHCB problem and large p values. Bold face numbers represents the values of
MNRT that obtain the best execution times.

p 1 2 4 8 16 32 64 128

SHCB MNRT 1 2 4 8 10 10 10 9

4 Cores Time 0.10 0.05 0.03 0.03 0.05 0.04 0.04 0.03

Kowalik MNRT 1 2 4 8 16 32 64 128
4 Cores Time 683.73 364.64 170.98 170.92 173.16 196.2 210.79 215.22

SHCB MNRT 1 2 4 8 11 14 12 13

16 Cores Time 0.08 0.05 0.02 0.02 0.02 0.02 0.02 0.02

Kowalik MNRT 1 2 4 8 16 32 64 128
16 Cores Time 509.11 267.18 128 64.35 31.89 37.89 60.46 68.85

Table 1: Maximum number of running threads (MNRT) and execution time in seconds
of Local-PAMIGO using different values of p in two, four and sixteen cores, systems.

Local-PAMIGO generates a new thread if there is an idle VPU. If p is too small,
it can happen that the available parallelism of the algorithm and architecture is not
exploited. On the other hand, if p is too large, even greater than the number of PUs
in the system, we can found overhead due to parallelism and overhead in the scheduler
of the O.S. to manage that number of threads.

Therefore, to guess a correct p value before algorithm execution is difficult and it is
usually set to the number of PU. Next sections present different running time decisions
to establish dynamically the number of running threads.

One can think that p can be equal to the number of idle PUs in the system at a given
time. Well known Amdah’s law shows that the speed-up of the parallel application is
determined by the fraction of code that can be parallelized (more optimistic view can be
found in [6]). For instance, if 50% of the running time can be parallelized and the other
50% is a critical section that can be executed just by one thread, then the maximum
speedup is two. In such case, if the number of idle processor is greater than two and
p is established to that number, the generation of new threads will not improve the
execution time of the application. Therefore, other points of view have to be analyzed.
Another important factor is the frequency with which decisions are made. It will be
taken into account in the proposed decision methods presented below.

3 Decision methods

Every thread of the application request the possibility of generate a new thread in every
iteration of the algorithm. The counters needed to evaluate a decision are reset a given
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times. Some general definitions are needed.

Definition 1 We define λ as the period of time, starting in previous reset time where
decision calculations will not be done.

Therefore, all requests in λ time will obtain a negative answer.

Definition 2 We define τ as the time from the previous reset when calculations can
be done, i.e, τ ≥ λ.

Based on considerations presented in Section 2, four approaches to decide the
creation of a new thread are described. Two of them are executed directly by the
application and the other two are done by the kernel. Taken into account all previous
considerations, a thread will generate a new one if:

• It has enough pending work.
• It is in τ time.
• The decision method return an positive answer.

To obtain a valuable decision, all methods presented here do the decision checking
only if all threads do some work from previous checking. Following, we describe these
methods.

3.1 ACW: Application decides based on completed work

This approach will increase the number of threads if the application performance, in
terms of completed work per time and thread, does not decrease. More precisely we
can define

P (n) =

∑n
i=1 NIteri

τ · n
, (1)

as the performance of the application with n threads, where NIteri is the completed
work per thread i in the last τ time.

Definition 3 Decision based on completed work. A new thread is created when

P (n)

P (n − 1)
> Threshold (2)

It is important to measure P (n) when all threads do some work (iterations) to
obtain valuable information.

Notice that a Threshold = 1 means that the performance is maintained when a thread
is created. Threshold > 1 when the performance is increased and Threshold < 1 when
the generation of a new thread decreases the application performance. Each thread
checks the thread creation decision after λ time by accessing to shared information
with completed work in non-blocking schema. A positive decision reset all threads
counters for next decision. The value of n decreases when a thread finishes its given
work as was shown in Section 2. Therefore, a vector of size n with last P (i), i = 1, . . . , n
values have to be stored as well.
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3.2 AST-SF: Application decides based on sleeping threads by access-

ing to statistic files of the system

In high performance computing threads do mostly computational work. In shared mem-
ory multiprocessors with a SPMD (Single Program Multiple Data) programming model,
as Local-PAMIGO algorithm, threads can be in sleeping state mainly due to simulta-
neous access to critical sections. The spent time in critical sections will determine the
number of threads that does not increases the execution time of the application, given
an infinite number of computational resources [12]. Therefore, it is important to know
if a thread of the application has been in sleeping state. Nowadays operating systems,
as Linux, store information of the current state of the kernel and running applications.
In Linux Operating System, among other information, we can find the run-time and the
state of a given thread in file stat of directory /proc/[pid]/tasks/[pidthread]/. The stat
file shows the current values for a given thread but does not store tracking information
of previous values. Again, the time with which threads are not allow to access to all
necessary system files with information about the application (λ value, Definition 1) is
important. Smaller λ values reduce the chance to loose changes of state of the threads,
at the price of increase the application and system computational time. Every time the
stat file is read, the O.S. has to update all the information associated with the file.

Definition 4 Decision based on sleeping thread. A new thread is created if all threads
of the application have not been in sleeping state.

Similarly to Definition 3, in Definition 4 all threads have to perform some work before
checking.

To check the condition in Definition 4, current running time stored in stat file have
to be compared with previous reading of that value. If there is a positive difference for
each thread of the application and none thread sleeping state has been detected, a new
thread can be created. Counters are reset after each decision checking. Depending on
λ value, some sleeping states can be missed.

3.3 KST-SC: Kernel decides based on sleeping threads on demand by

system calls

KST-SC uses Definition 4 decision model, but only the needed information is now
processed by the O.S. A thread of the application uses a system call to request if a
new thread creation is possible or not. In this way, two advantages are obtained. First,
instead of thread sleeping state we can obtain now the thread sleeping time, because
the system call runs at kernel level and can access to that information. Therefore, we
can know if a thread was sleeping in the last τ time. Second, the amount of information
evaluated from the kernel in each system call is only the needed one, i.e. running and
sleeping time of threads. If all threads have a positive running time and zero sleeping
time in last τ time, a positive answer is given. System calls done in less than λ time
will generate automatically a negative answer (see Definition 1). Counters are reset by
the Kernel after each decision checking, being this positive or negative. One drawback
of this method and the following one is that the kernel has to be modified.
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3.4 KITST-SC: Kernel idle threads decide based on sleeping threads

on demand by system calls

In previous KST-SC method, all the necessary information has to be evaluated when
the kernel receives a system call and decision has to be processed. All system calls
return the possibility of thread creation or not.

In KITST-SC method, a system call performs an access to a kernel variable (Create)
which determines the possibility of generate a new thread, instead of perform the check-
ing of Definition 4. O.S. runs the so called idle thread in each processor when a processor
gets idle. In this method, we modify the idle thread to perform Definition 4 checking
and to update the previous kernel variable Create. A system call that found a true
value in Create set Create to false and reset all counters associated to threads of the
application. Therefore, Idle thread checks Definition 4 only if Create = false. If
performed check is negative, idle thread reset all counters associated to threads of the
application. Notice that time where checks are performed does not depends now on λ
but on the existence or not of an idle processor. In this way, the following advantages
are obtained:

• Computation to check the decision is done by an idle processor, i.e, when there
exists computational resources. So, there are not time restrictions as λ.

• The existence of an idle processor motivates the thread creation because there
exist available resources. On the other hand, when the system overload is high
the thread creation usually does not increases the application performance and
KITST-SC avoids checking computational costs and threads creation.

• The number of system calls done by the threads is usually large. In KITST-SC,
system calls do not check Definition 4 and have low computational cost.

4 Results

Decision models presented in Section 3 have been evaluated using a modified version
of Local-PAMIGO algorithm, which was described in Section 2. Thread with more
workload generates a new one. In this way the number of created threads is smaller
and they run more time. Only results for two problems are presented: SHCB with
ǫ = 10−8 and Kowalik with ǫ = 10−3. These problems are small and medium size,
respectively. The use of this small set of problems lets to avoid the presentation of
large set of data. From our experience, other type of problems conclude in analogous
results. Two computer architectures are used to run the algorithms:

QCore: One Quad-Core Intel Q6600, 2.40GHz and 4GB RAM.
Frida: Four Quad-Core AMD Opteron 8356, 2.30 GHz and 64GB RAM.

Both run Linux with 2.6 kernel. Numerical results of Local-PAMIGO, with different
values of maximum number of threads (p), was shown in Table 1. These results are
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Figure 1: ACW with thresholds 0.8, 0.9, 1.0 and 1.1 for Kowalik function. λ = 0.

labelled in Figures 1 to 3 as QCore and Frida. These figures show the average number
of running threads, which is smaller than p in Table 1.

Figure 1 also shows the execution time of the algorithm using ACW decision
method, with λ = 0 and different Threshold values for Kowalik function. The exe-
cution times and the average number of running threads obtained with Threshold = 1
are near to the best ones obtained in Table 1 for Qcore and Frida. Threshold values
around 1.0 are good. Higher values will generate few threads and lower values will
generate a lot.

Figure 2 shows same experimentation of Figure 1 but fixing Threshold = 1 and
using different values of λ. As expected, large λ values will generate few number of
threads because the number of decisions is less. On the other hand, λ = 0 produces
the maximum number of decisions and possible threads, and execution times are near
the best ones for both architectures. From now, ACW experimentation will be done
with Threshold = 1. Methods using λ are run with λ = 0.

Figure 3 compares all proposed methods for Kowalik function using both architec-
tures. Following we describe all methods in ascending performance order:

AST-SF. AST-SF is the worst method in terms of average running threads and exe-
cution time. The main drawback of this method is the need to read a number of
files equal to the number of running threads. In each read, the O.S. update the
files with more information than needed. For λ = 0 the number of checks is the
largest, but even in this case the number of threads is large. This means that this
method misses some threads sleeping states.

ACW. In ACW method, the average number of active threads is slightly greater than
the best one obtained in Table 1 with the corresponding increasing running time.
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Figure 2: ACW with Threshold 1.0 for Kowalik function. λ values: 0.0, 0.5, 1.0 and
2.0 seconds.

The main advantage of ACW is that it is independent of the operating system
and the architecture.

KST-SC. Comparing ACW with AST-SF we can think that completed work decision
(see Definition 3) is better than sleeping thread one (see Definition 4). KST-SC
obtain similar results to best ones in Table 1 using sleeping thread decision. This
is achieved because the kernel only computes the necessary data in each decision.
Additionally the information about sleeping threads is precise, which does not
happened in AST-SF.

KITST-SC. This is the best of the four presented methods. The execution time is
similar to best results obtained in Table 1, using less number of average run-
ning threads. This is because system calls of KITST-SC consume less time and
decisions are taken by idle processors, independently of λ.

Figure 4 shows the changes in the number of running threads for each method in
Frida and Kowalik function. Right hand side graph is a zoom of the initial stages of
left hand side graph. It can be seen how Local-PAMIGO with p = 16 quickly increases
the number of threads to 16. As soon a thread finishes other thread is created. Results
for Local-PAMIGO (Frida) are those obtained with the best p value. Local-PAMIGO
obtains the best execution time, because decision are based only in the number of
running threads and pending work (see Section 2). Therefore, thread creation does not
take into account the application performance on the system. Proposed methods have
additional overhead in their decision checks and their execution time also depends on
the taken decisions. We can observe this in right hand graph of Figure 4 where the
different startup times of the methods are shown. These results verify the performance
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Figure 3: Comparative of proposed methods for Kowalik function.

order presented above.

The same information of Figure 4 is shown in Figure 5 for low cost SHCB problem.
Left hand side graph shows application level methods and right hand side graph shows
kernel level methods. File access time in AST-SF is now more representative. ACW
decisions obtains the best results but near to execution times of methods at kernel level.

5 Conclusions and future work

Two methods to decide the number of active threads at run time are presented. One
is based on completed work and the other in the existence of a sleeping thread in the
application. Four models are evaluated. Two of them evaluate the decisions at ap-
plication level and the others two do only a sleeping thread decision at kernel level.
Decisions at kernel level outperform application level ones because they have better in-
formation of the system. On the other hand they need O.S. modifications. Application
level decision based on completed work is easier to develop and outperform application
level decision based on sleeping thread due to the cost to get the needed information
from the system information files.

These methods have been used on an interval branch and bound algorithm. This
type of algorithms are difficult to parallelize due to their irregularity. The proposed
methods get a linear speedup and adapts the parallelism level to the achieved perfor-
mance and the system resources at run time

As future work we investigate the use of combined decision methods for several
application running at the same time in the system.
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0 5 10 15 20 25 30 35 40 45
Time (s.)

0

5

10

15

20

25

30

35

N
um

be
r 

of
 a

ct
iv

e 
th

re
ad

s

Frida
ACW 
AST-SF
KST-SC
KITST-SC

0 0,1 0,2 0,3 0,4 0,5
Time (s.)

0

2

4

6

8

10

12

14

16

18

20

N
um

be
r 

of
 a

ct
iv

e 
th

re
ad

s

Frida
ACW 
AST-SF
KST-SC
KITST-SC

Figure 4: Number of active threads in time for Kowalik function in Frida.
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Figure 5: Number active threads in time for SHCB function in Frida.
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Abstract

In population biology, namely epidemiology and ecology, models and its pa-
rameters are much more uncertain than we are used to in physics or chemistry,
for example. We give some situations from where these uncertainties orignate, and
investigate case studies, mainly in epidemiology, but easily transferable to ecology
and also populations of neurons, hence the wast field of brain sciences.

Key words: parameter estimation, confidence intervals, epidemic models, de-
terministic chaos, coexisting attractors and noise, influenza, measles, dengue fever

1 Introduction

Based on recent research experience, we demonstrate various sources of uncertainty in
modelling and parameter estimation in population biological systems. Simplest mod-
els of epidemiological processes already show complex behaviour due to their inherent
nonlinear structure. Crititical fluctuations are observed in the simples possible epidemi-
ological system, the susceptible-infected-susceptible system (SIS). A simpe susceptible-
infected-recovered (SIR or SIRS) system with seasanal forcing, as common in epidemi-
ological and ecological systems, can exhibit deterministic chaos, even in simplest mean
field approximation of real world stochastic systems. Multi-strain epidemiological mod-
els of SIR-type even without seasonal forcing already can give rise to deterministically
chaotic attractors in wide parameter regions.

This catalogue should give a strong signal that complex behaviour should be ex-
pected in such population biological systems. But the story goes further: Not including
critical fluctuations nor chaos, in parameter estimation correlations between seemingly
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simple obvious parameters can give rise to large uncertainties of parameters, as we will
see in the next section. Also the debate of deterministic chaos versus noisy fluctuations
becomes more intriguing in situations in which only the noisy transitions of structures
observed in deterministic models are a relevant descritpion of the system’s behaviour,
namely the hopping between co-existing attractors, including deterministically chaotic
ones. A case study from measles epidemiology will illustrate the case. The two lessons
to be learned from the previous argumentations might not be enough to understand
slightly more complicated population biological systems of e.g. multi-strain models
(in ecology, or multi-species systems in ecology). This will be demonstrated in the
case study of dengue fever epidemiology. In all cases we are dealing with still very
simple and basic models, no external varabilities like population growth, or age struc-
ture or other more involved complications are considered. Such models already show
very complex features, either in our knowledge available from real world systems or
due to intrinsic dynamical behaviour. The present considerations should facilitate the
understanding of such complex features in still very simple descriptions of real world
population dyanamic systems.

2 Influenza models and parameter estimation

One of the basic epidemic process is the susceptible, infected, recovered (SIR) epidemic,
in which susceptible individuals S become infected on contact with already infected I
with infection rate β and recover with rate γ into the R class. Eventually, the recovered
and immune R can become susceptible again with rate α. For outbreaks in seasonal
influenza this model can serve a first description The SIR epidemic is given by the
reaction scheme

S + I
β

−→ I + I

I
γ

−→ R (1)

R
α

−→ S

giving the following master equation (stochastic Markov process in continuous time)
for fixed population size N , hence N = S + I + R.

The master equation for the SIR system with R = N − S − I, hence we only need
to consider the probability of S and I, and R follows from this, is given by

d

dt
p(S, I, t) =

β

N
(S + 1)(I − 1)) p(S + 1, I − 1, t) + γ(I + 1) p(S, I + 1, t)

+α(R + 1) p(S − 1, I, t) (2)

−

(
β

N
SI + γI + αR

)

p(S, I, t)

with (R+1) = N − (S−1)− I. In order to solve the master equation we can use gener-
ating functions or charateristic functions, obtaining an eventually easier solvable partial
differential equation (PDE) [1, 2] which explicitly can be solved in some simplifications.
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Figure 1: a) Cumulative data for influenza for the 2007 season reported in the InfluenzaNet

project for the Netherlands. b) Simulations of a simple SIR system in a parameter region close

to the data. The comparison between a) and b) gives the η-ball estimated likelihood of the

parameters varied in the simulations in a neighbourhood of the data.

In order to apply the full SIR model to parameter estimation in data obtained
from an internet based surveillance system, called InfluenzaNet [3], see Fig. 1 a), we
better compare with stochastic simulations of the above given master equation (3), see
Fig. 1 b). Changing parameters we can obtain an estimation for the likelihood of the
model parameters involved, the η-ball method [4]. To these model parameters to be
estimated, also the initial conditions, e.g. S0, have to be considered.

The η-ball method has been tested successfully in situations where also the analytic
likelihood is know [4], hence reflects reliably the likelihood for the respective parameters.
In the present application we investigate the joint likelihood of the infection rate β and
the recovery rate γ, see Fig. 2 a), which shows strong correlations along the diagonal
of the β-γ plane. These might still be captured to some extend by linear stochastic
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Figure 2: a) Estimated likelihood for parameters β and γ of a simple SIR model, using the

η-ball method. b) Estimated likelihood for parameters β and S0. In both cases the maximum

of the joint likelihood for the two parameters involved each are ill defined, i.e. wide spread over

the possible parameter ranges.
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methods, but surely not the correlations in the joint likelihood of the infection rate β
and the initial susceptibles S0, a quantity which is important in influenza modelling
reflecting the novelty of the present seasonal strain to the host population. The joint
likelihood for β and S0 is shown in Fig. 2 b). From this Fig. 2 b) it becomes clear
that the data do not reflect well if the underlying dynamics has low infection rate and
high numbers of initially susceptibles or vice versa, a common situation in parameter
estimation. In seasonal influenza one has to consider seasonal forcing of the contact rate
and in biologically reasonable parameter regions quickly observes bifurcations and wide
parameter ranges of deterministically chaotic attractors, making parameter estimation
additionally difficult. Also the replacement of influenza strains can be captured by
considering reinfection as an additional process [5] giving new qualitative features to
be explored further in data analysis. Here lessons from another disease modelling can
help to understand the complexity to be expected, childhood diseases, and here mainly
measles, see next section.

3 Coexistence of attractors and noise in measles

In childhood disease modelling classical data sets from pre-vaccination times have been
extendedly investigated, especially the famous New York measles monthly reporting
time series between 1928 and 1963. From this a simple two dimensional map, hereafter
called measles map, can be derived from a radial basis function approximation to the
data maxima return map in logarithmic scale, capturing the essential dynamics of the
epidemiological system [6]. The measles map can have the following explicit form (but
other analytic forms with similar shape also give qualitatively the same result)

xn+1 = axne−h·xn · (yn + c)−g + b

yn+1 = xn

with parameters obtained from the radial basis function fit a = 410, b = 135, c =
600, g = 0.327, h = 0.000684. Here the parameter a controls the strength of the
nonlinearity. An analysis of the bifurcation diagram shows for a wide range of parameter
a the coexistence of a chaotic attractor and a stable period three attractor. Around
the empirically obtained parameter value of a = 410, however, the chaotic attractor
becomes unstable and the period three attractor is the only remaining stable attractor.
For the state space plot of a = 400 see Fig. 3.

Also shown in Fig. 3 is another period three solution, which however is unstable.
The unstable manifold of this unstable period three leads to the chaotic attractor in
one direction or to the stable period three in the other direction. The stable manifold
of this unstable period three gives the basin boundary between these two co-existing
attractors. Computationally, this stable manifold can easily obtained by iterating the
inverse map of the measles map

xn+1 = yn

yn+1 =

(
xn − b

a · yn

)
−

1

g

e−
h
g
·yn − c
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Figure 3: The state space plot of the measles maxima return map shows for a = 400 the co-

existence of a chaotic attractor with a stable period three (full dots). the key to understanding

the dynamics is the unstable period three (empty circles), which at this parameter set just

touch the chaotic attractor but also mark the basin of attraction boundary between the chaotic

attractor and the stable period three.

with initial conditions close to one point of the unstable period three. For a = 410,
the empirical value, however, the basin boundary has cut into the chaotic attractor,
making it unstable, a chaotic saddle or semi-attractor, see Fig. 4 a).

Now dynamic noise can drive the system from around the stable period three back
to the basin of attraction of the semi-attractor, staying on the skeleton of this semi-
attractor for a while before captured back around the stable period three, see Fig. 4
b). This attractor hopping is a subtil interplay between deterministic chaotic dynamics
and dynamic noise. This scenario was also later found in the original Dietz ODE-model
for measles.

Hence, depending on the strength of the dynamic noise the signal of a system
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Figure 4: a) State space plot for a = 410. The stable period three is now the only attractor of

the system, since the basin boundary of attraction has cut into the previously visible chaotic

attractor. b) But noisy trajectories still reflect the skeleton of the previously existing chaotic

attractor in addition to the noisy period three signal.

@CMMSE                                                               Page   844  of 1328                                               ISBN 13: 978-84-613-5510-5



Uncertainties in population biology

b

a)

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 0  0.5  1  1.5  2  2.5  3

ln
(I

) 

φ b)

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-24 -22 -20 -18 -16 -14 -12 -10 -8 -6

ln
(I

2+
I 1

2)
 (

t)

ln(I1+I21) (t)

Figure 5: a) Bifurcation diagram for the multi-strain dengue model with antibody dependence

parameter φ in the range between zero and three. Including temporary cross immunity, for

values smaller than φ = 1 we already find a rich dynamic behaviour including chaotic attractors,

wheras for φ > 1 initially a stable period two orbit is the only attractor. b) Poincaré section of

the chaotic attractor for φ = 0.95.

before and after an attractor crisis, as here observed around a = 400 to a = 410 can
be more similar than the deterministic bifurcation diagram would suggest. Parameter
estimation would have difficulties to clearly observe at which side of the attractor crisis
the system is. This theme will be investigated further in the next section for a recently
studied multi-strain model for dengue fever epidemiology.

4 Antibody dependent enhancement versus hospitaliza-

tion in dengue

Essential features of dengue fever epidemiology with its peculiar antibody dependent
enhancement (ADE) and difference in contribution to force of infection of the secondary
infection, labeled φ, as opposed to the first are captured by a simple extension of the
SIR model to a two strain model. Including temporary cross-immunity, this model
shows in wide parameter ranges bifurcations and deterministically chaotic attractors
[7, 8, 9]. For the explicit model description see the references above.

The bifurcation diagram Fig. 5 a) shows deterministic chaos not only for φ much
larger than one, as previous models without temporary cross-immunity suggested, but
also for φ smaller than one. A Poincaré section of the deterministically chaotic attractor
with positive Lyapunov exponent is shown in Fig. 5 b). This is a two dimensional
graphic projection of the nine dimensional attractor. An attractor crisis happens just
before φ = 1, the parameter point which would show no difference of the contribution
to the force of infection between primary and secondary infection. After φ = 1 for some
parameter range only a periodic solution is observed.
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Figure 6: Noisy attractors are presented, characterized by their Poincaré sections for φ = 0.95

in a) and c) and for φ = 1.05 in b) and d). In the first row a) and b) we use very small dynamic

noise, whereas in c) and d) slightly larger dynamic noise is applied. With this noise level the

dynamic structures appear very similar for φ < 1 and for φ > 1, whereas for smaller noise

clearly the chaotic attractor respectively the very different periodic attractors are observed.

However, including dynamic noise (in the simplest state dependent form, see [10])
in the ODE model shows that for small but not too small noise the attractors in the
region φ < 1 and φ > 1 are qualitatively not very different, see Fig. 6 c) and d),
whereas for very small noise the original noiseless attractors, for φ < 1 the chaotic
attractor and for φ > 1 the periodic one, shine through the noise cloud.

Hence, unless data analysis would clearly show a φ-value far away from one, for
the qualitative dynamical behaviour the chaotic attractor skeleton appearing for φ < 1
would hold into the region of φ > 1. First data inspection of time series especially from
Thailand indicate the fingerprint of a chaotic behaviour rather than periodic behaviour
under small noise. Further formal data analysis is needed in future research.

The debate on the biological implications for a long time suggested that antibody
dependent enhancement would increase the contribution to force of infection of sec-
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ondary dengue fever cases due to higher viral load. Without temporary cross-immunity
an about three times higher viral load transmitted would be needed to explain the fluc-
tuations seen in empirical data. However, hospitalization of dengue haemorhagic fever
cases in secondary infection and other complications would rather suggest that such
secondary infected do not contribute too much to the force of infection, eventually even
less than secondary cases. Anyhow, due to the just described effects it might be quite
difficult to obtain from epidemiological data a clear answer unless the effects are dra-
matic, i.e. far away from the neutral case of same contribution to force of infection of
primary and secondary cases.

5 Conclusions and future research

In conclusion, we have seen that already quite simple epidemiological processes due
to their non-linear structure present a rich dynamic behaviour, including subtil inter-
play between deterministic chaos and dynamic noise, adding to the difficulties of non-
linear parameter dependence, not to speak of additional features in spatially extended
stochastic systems as for example spatially restriced networks under superdiffusion as
appropriate for epidemiological spreading [11]. Due to the structural similarity, e.g.
the SIS epidemics has its correpondence in the Pearl–Verhulst model in ecology [10],
similar effects will be expected in other population biological systems.
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Abstract

The rapid large inflation of thin hyperelastic polymer sheets modelled as mem-

branes is first considered. For these engineering quantities of interest (QoI) are

approximated using finite element methods. Estimates for both discretization and

modelling errors with finite element methods are derived using goal oriented tech-

niques. The task of computational modelling of thermoforming processes, whereby

thin polymer sheets are inflated into moulds, is then described and finite element

solutions are given to an axi-symmetric thermoforming problem again using hypere-

lastic constitutive models. Thermoforming processes have in the past generally been

applied to sheets of polymers based on oil, and products such as food packaging

structures have been produced. These products are not biodegradable and contribute

significantly to the solid waste produced worldwide. A thermoforming process based

on a polymer derived thermoplastic starch is then modelled, using both the above

hyperelastic constitutive model and an elasto-plastic constitutive model. The differ-

ences between these two computational schemes is given and it is demonstrated that

the elasto-plastic model is the more accurate model to use in this application.

1 Introduction

Many packaging containers are produced by thermoforming processes in which thin poly-

mer sheets based on oil are inflated under pressure into moulds. In such processes the
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sheet is heated, clamped at its boundary, inflated under pressure into or onto a mould,

cooled, and then separated from the mould. Generally most of the deformation in the

process occurs in the inflation phase, which is constrained by contact with the mould. If

computational modelling is to predict accurately what happens in a thermoforming pro-

cess, it is paramount that this inflation phase be described well. As a result this phase

has received the most attention from polymer processors and computational modellers;

see e.g. DeLorenzi and co-workers in [3] and papers describing our own work (see [2, 1]).

In all this work the challenge has always been to identify the characteristics of the finite

deformation specific to the thermoforming conditions being modelled; such as tempera-

ture, the rate at which the pressure is applied, the contact conditions, in addition to the

properties of the polymer when deformed under these conditions. Different situations

lead to different models of thermoforming and as yet no one computational model can be

used in all cases. This motivates continuing interest in this aspect of the modelling. The

key differences between models often relate to the most appropriate constitutive model,

e.g. hyperelastic, elasto-plastic, or viscoelastic, or some combination of all three, and

whether the model should be dynamic or quasistatic.

In order to model thermoforming processes we here first consider the rapid free inflation

of thin sheets of conventional oil based polymers where the material is temperature

dependent. In this the sheet is modelled as a membrane and a hyperelastic constitutive

equation is employed. In this context there is still some uncertainty in the modelling as

to whether the rapid inflation requires that we solve a dynamic problem (i.e. we solve

the full equations of motion) or whether it is adequate to solve a sequence of quasi-static

problems. Thus if we use the simpler quasi-static model (as a coarse model) then we are

likely to have modelling error as well as discretization error in attempting to compute a

QoI using finite elements. Estimates of the discretization error and the modelling error

can be obtained by using appropriate duality arguments, which involves solving related

dual problems, and this is described in [5] for various QoIs; for example wall thickness.

In practical situations an accurate computational simulation usually requires that we cope

well with several different modelling issues and we outline here what we have found that

this requires for the thermoforming of polymer sheets made from thermoplastic starch

which are not oil based. Such materials, which are relatively new, have the advantage that

they are compostable and do not need to end up in land fill waste sites as do their oil based

counterparts. Such materials are however not as well understood as more traditional oil

based polymers and their properties depend additionally on moisture content. This last

dependence has demanded that programmes of experimental work and of associated

computational modelling be undertaken; see [4].
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2 Models and results for thermoplastic starch

A computational model of the inflation phase of thermoforming requires a number of

standard terms from continuum mechanics, e.g. the deformation gradient F, stress ten-

sors such as the Cauchy stress σ and the nominal stress Π = (detF)F−1
σ, equations

of motion and constitutive equations. When we need to describe flow (as in plasticity)

we also have the rate of deformation tensor D and the Jaumann stress rate
∇

σ; these

are tensors which satisfy the principal of material objectivity. A complete description

of the model also needs the geometry, assumptions about contact and any appropriate

simplifying assumptions such as that of quasi-static motion and of a membrane model for

the thin structure. Depending on what is done, there can thus be significant differences

between two different descriptions of thermoforming. For example, if the geometry is

axi-symmetric, we have a membrane model and an isotropic incompressible hyperelastic

material, then we have a one-space dimension problem and we can use a standard total

Lagrangian description with the displacement of the mid-surface from the reference con-

figuration as the primary unknown. On the other hand, if the model of the deformation

of the sheet needs to be fully three-dimensional and an elasto-plastic model is needed,

then this leads to a computational model which is more demanding. The description

of the model is also quite different involving an incremental constitutive model and an

Updated Lagrangian description of the equations of motion which, in each increment,

involves the current deformed configuration. In this compact paper, we give only key

features of these two different models (hyperelastic and elasto-plastic) in the case of a

commercial thermoplastic starch material.

For an axi-symmetric hyperelastic case with an incompressible and isotropic material we

can use cylindrical polars and only need to determine the mid-surface deformation. In

this case the stress–stretch relations can be neatly written in the form

σ1 = λ1

∂W

∂λ1

and σ2 = λ2

∂W

∂λ2

,

where λ1 and λ2 are principal stretches, and σ1 and σ2 are principal stresses and W is a

strain energy function. Typically an Ogden form for the strain energy function W with

a small number of terms is used with the parameters fitted to results of material tests.

A quasi-static model using this is described in [4]. Unfortunately this computationally

efficient model does not lead to accurate predictions of the wall thickness.

To get a more accurate prediction we need to use an elasto-plastic model. This is more

complicated in that at each point we need to determine if it is in the elastic or plastic

region and, in the latter case, we need to attribute how much of the deformation is plastic.

Fortunately, commercial finite element packages such as LS-DYNA are available to deal

with these issues. In this work this package was employed using explicit time integration

to solve the equations of motion to advance the solution from time t to time t + ∆t.
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The contact was dealt with using general surface-to-surface contact elements with a high

friction coefficient as we nearly have total sticking. Part of the computational expense

of this approach is that the time step selected by LS-DYNA can be quite small. In the

implementation a bilinear elasto-plastic model with isotropic hardening was chosen for

the material of the sheet with the parameters obtained by curve fitting to experimentally

obtained stress–strain curves. The algorithm itself involves getting the stress at time

t + ∆t from σ(t + ∆t) = σ(t) + σ̇∆t, σ̇ is obtained from
∇

σ and this is of the form

∇

σ = 2µD
e + λtr(De)I,

where λ and µ are Lamé constants. Here D
e is the rate of deformation tensor associated

with the deformation gradient F
e where F

e is the elastic part of F in a decomposition of

the form F = F
e
F

p. In Figure 2.1 the thickness prediction with the hyperelastic model

(dotted line) and elasto-plastic model (dashed line) are compared with experimental

measurements (solid line). The particle paths are also compared in Figure 2.2. The

results clearly show that an elasto-plastic model is the more appropriate constitutive

model to use in this context for these new materials.
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Fig. 2.1: Thickness predictions. The solid line is the experimental measurements, the
dashed line is the prediction with the elasto-plastic model and the dotted line is the
prediction with the hyperelastic model.
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Fig. 2.2: Particle paths. Solid lines are elasto-plastic, dashed lines are hyperelastic.
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Abstract

In this paper we consider a mathematical model for the interaction of wild and
domestic herbivores with a natural or man-maintained landscape. We focus on
our attention on parks in Piedmont (NW Italy), which are characterized by the
presence of meadows, woods and herbivores populations, such as deer and sheep.
Even if herbivores consume mainly grass, they can occasionally debark trees, this
occuring especially in the winter season, when grass availability is reduced. This
may cause the death of trees. Our model evaluates some possible policies for dealing
with this problem.

The results of this study show that it is wise to keep in check the number of
herbivores in environments in which young trees are present. Grazing of domestic
herbivores should be prohibited in newly planted tree areas.

Key words: mathematical models, herbivores, predator-prey systems, tree de-
barking

MSC 2000: AMS codes (92D25, 92D40, 92D50)

1 Introduction

In this paper we consider a mathematical model for the interaction of wild and domestic
herbivores with a natural or man-maintained landscape. The paper is organized as
follows. In the next Section we describe the situations that prompted this research. In
Section 3 we present the mathematical model for the description of the populations’
interactions. Its thorough mathematical analysis is carried out in the subsequently
Section. One park in the wilderness is considered in Section 5, with simulations carried
out using parameters relevant to this environment. Section 6 contains instead the
simulations run for a urban park. Some concluding remarks are finally presented.
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2 The regional parks

Natural parks in Piedmont (NW Italy) are characterized by the presence of meadows,
woods and herbivores populations, such as deer and hares. In addition, these natural
areas are often contiguous to agricultural ones, with breeding. In some cases cattle
graze on meadows and woods of the nearby park areas, even if that is not allowed:
this has sometimes occurred for instance in the “Gran Bosco di Salbertrand” park. In
many parks therefore the largest herbivores, not having natural predators, exert a large
pressure on the environment. Only recently, after an absence of many years, wolves
have reappeared in some areas, [5].

The system represented by a herbivore population and its resource can be regarded
as a predator-prey system, in which however two resource populations can be identified,
namely grass and trees. In fact, even if herbivores consume mainly grass, they can
occasionally debark trees. This occurs especially in the winter season, when grass
availability is reduced, [13]. This fact has been observed also in the “Gran Bosco di
Salbertrand” park, where the debarking by deer caused several damages. Herbivores
peel off only a small piece of the bark from a tree, which is rich in cellulose and lignin
and subsequently not easily assimilated. Thus the presence of this second resource
for herbivores is not expected to significantly increase their population. On the other
hand, peeling off even a small piece of bark may lead to the death of the whole tree,
thus removing from the system a much larger amount of tree biomass. In view of the
generally slow tree reproduction rate, trees cannot be replaced in a short time when
dead. Therefore herbivore behavior can cause large damages to the environment. From
this the need of studying deeply the system composed by herbivores, grass and trees
arises, in order to predict the potential effects of these damages and eventually to
prevent them. The purpose of this paper is to address this question.

In the region there are several areas that are kept at a natural state. In some cases
the park is composed of several such woods and natural areas. There are a few which
extend around rivers or lakes, some around towns, one of them being the Meisino park
nearby Turin, many others incorporate terrains that lie in the high mountains. Among
the latter, we mention the following ones: Parco naturale Orsiera Rocciavrè, Parco
naturale di Salbertrand, Parco naturale Alta Valle Pesio e Tanaro, Parco naturale delle
Alpi Marittime, Parco naturale Alta Valsesia. In these wild and domestic herbivores
live, grazing the available pastures. However, when the grass becomes scarce, herbivores
tend to debark the trees, to feed themselves. In so doing, though, they exhibit different
attitudes. While some some of them, like for instance deer [10], peel off vertical stripes,
without totally interrupting the communication between the roots and the leaves, sheep
instead peel the tree all around the trunk [4], causing its death after a few weeks; Figure
1 shows the result of such an action.

3 The general model

To represent the situation of interacting herbivores with natural resources, we develop
a three-population system: with a top predator population, i.e. the herbivores H, and
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Figure 1: Damaged trees by debarking. Left: note the action of the sheep, peeling off
all around the trunk; Right: the action of deer, peeling off only vertical stripes.

two prey populations, grass G and trees T . This resource splitting follows from the
following two basic arguments. At first, we must consider that these resources are
ecologically different, their main relevant difference lying in the fact that grass is an
r-strategist population with a low carrying capacity per surface unit combined with a
fast growth-rate, while trees are k-strategist, they grow in a slow way but can reach a
high size. In addition, herbivores show a different level of preference for the two types
of resources. Grass is their preferred prey, so that they switch their attention to trees
only occasionally, with a higher frequency when grass availability decreases.

The functions H(t), G(t), T (t) represent the biomass of the corresponding popu-
lations in our model at a given time t.

The model we propose is given by:

Ḣ = −µH + e
HG

c + H + αG
+ f

HT

g + H + βT + αG
(1)

Ġ = r1G

(

1 −
G

K1

)

−
HG

c + H + αG

Ṫ = r2T

(

1 −
T

K2

)

−
HT

g + H + βT + αG

The meaning of some parameters is as follows: µ represents the metabolic rate of herbi-
vores, e and f are assimilation coefficients, r1 and r2 are the growth rates respectively
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of grass and trees and K1 and K2 represent instead their respective carrying capacities.

Note that the function modeling grass consumption is chosen to follow the Michaelis-
Menten model [9], namely

GH

c + αG + H

where α and c denote positive constants. This, because as the populations become
large, we have

lim
H→∞

GH

c + αG + H
= G and lim

G→∞

GH

c + αG + H
=

H

α

meaning that when H grows, the consumption can be at most the whole amount of
grass in the system and when grass availability is unlimited, the consumption of grass
by herbivores has an upper bound proportional to the number of herbivores: α−1H.
These are reasonable results, making this function biologically suitable. From the
second property, we deduce that α−1 represents the herbivores per-capita consumption
rate in presence of an unlimited availability of grass. Instead, the parameter c, called
the Michaelis constant, or sometimes the half saturation constant, affects only the speed
at which consumption approaches its asymptotes.

The function representing the consumption of trees is taken in a similar form, but
borrowing ideas of feeding switching, proposed in the classical paper [15] and several
other more recent ones, [7, 8, 14, 11, 3], we modify it to model the fact that tree
consumption by herbivores grows when the availability of grass decreases, as observed
above. This amounts to introducing G in the denominator as well. Specifically, the
function is given by:

TH

g + αG + βT + H

Grass and tree grow in a condition of intra-specific competition. We have however
excluded the inter-specific competition follows from the consideration that even in so-
called “natural” parks there are actually only small completely protected areas. The
majority of forests are exploited for timber and fuelwood. Meadows are instead used
for grazing so that woods cannot freely expand and replace grass. Moreover, several
Piedmontese natural parks cover mountain areas, where most of meadows are located
above the tree limit line, so that they are not in competition with woods.

4 Mathematical analysis of the model

4.1 Boundedness of the system

Under certain parameter conditions we now show that the system is bounded. Let us
introduce the total system biomass P ≡ H + G + T . Then a t̄ > 0 and B > 0 exist
such that for all t > t̄ we have P (t) < B. For an arbitrary η > 0 we have the following
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estimate

Ṗ + ηP ≤ (η − µ)H + (e − 1)
HG

c + H + αG
+ (f − 1)

HT

g + H + βT + αG

+(r1 + η)G − r1
G2

K1
+ (r2 + η)T − r2

T 2

K2

Using e, f < 1 and replacing the parabolas in G and in H with their maxima, we find

Ṗ + ηP ≤ (η − µ)H +

[
(r1 + η)2

4r1
K1 +

(r2 + η)2

4r2
K2

]

≤
(r1 + η)2

4r1
K1 +

(r2 + η)2

4r2
K2 ≡ M∗

having taken η < µ. We thus find

Ṗ + ηP ≤ M∗

from which using the theory of differential inequalities the boundedness of P and ulti-
mately of each population in the model is obtained. All system solutions are therefore
confined in a compact region of R

3
+.

4.2 Equilibria and their stability

The boundary equilibria in the H − G − T phase space are the origin E0, the points
E1 ≡ (0, K1, 0) and E2 ≡ (0, 0, K2) Furthermore the points E3 ≡ (0, K1, K2) and
E4 ≡ (H, G, 0). There could be also the coexistence equilibrium, E5 ≡ (H, G, T ).

To investigate the stability of these points, we construct the Jacobian J = (Jkj) of
the system (1),

J11 = −µ + eG
c + aG

(c + H + aG)2
+ fT

g + aG + bT

(g + H + aG + bT )2
,

J12 =
eH(c + H)

(c + H + aG)2
−

faHT

(g + H + aG + bT )2
, J13 =

fH(g + H + aG)

(g + H + aG + bT )2
,

J21 = −
G(c + aG)

(c + H + aG)2
,

J22 = r1 −
2r1G

K1
−

H(c + H)

(c + H + aG)2
,

J23 = 0, J31 = −T
g + aG + bT

(g + H + aG + bT )2
,

J33 = r2 −
2r2T

K2
−

H(g + H + aG)

(g + H + aG + bT )2
, J32 =

aHT

(g + H + aG + bT )2
.

It follows then that the origin is unstable since it has the eigenvalues −µ < 0,
r1 > 0 and r2 > 0. Also E1 and E2 are both unstable, their eigenvalues respectively
being

−µ +
eK1

c + αK1
, −r1
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and

r2, −µ +
fK2

g + βK2
, r1, −r2.

The equilibrium E3 has eigenvalues

−r1, −r2, −µ + e
K1

c + αK1
+ f

K2

g + αK1 + βK2
.

It is therefore conditionally stable, namely if

e
K1

c + αK1
+ f

K2

g + αK1 + βK2
< µ (2)

To determine the points E4 from (1), we need to solve the following nonlinear
system

c + H + αG =
e

µ
G,

r1K1(c + H + αG) = HK1 + r1G(c + H + αG).

Solving from the first one for H we have,

H1 =
e

µ
G1 − c − αG1,

and by replacing the value of H1 into the second equation, we obtain the following
parabola in G whose roots give the sought value G1,

a2G
2 + a1G + a0 = 0 (3)

where a0 = K1c and

a1 =
K1r1e

µ
−

K1e

µ
+ K1α

a2 = −
r1e

µ
.

Clearly, a0 > 0 and a2 < 0, so that there are two real solutions, one positive and the
other one negative. But this is not sufficient to ensure the existence of a biologically
feasible equilibrium, since H1 must also be positive. The feasibility condition in this
case then becomes

G1 >
c

e/µ − α
. (4)

The numerical integration of the model (1) show that this equilibrium can in fact be
reached, for suitable parameter values. Moveover, for the interior equilibrium, other
simulations reported in the next Sections, indicate that it exists and is stable in ade-
quate parameter ranges.
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5 Case study: the “Gran Bosco di Salbertrand” park

The natural park “Gran Bosco di Salbertrand” covers an area encompassing parts of
the municipality of Chiomonte, Exilles, Oulx, Pragelato, Salbertrand, Sauze d’Oulx
and Usseaux (all in the Turin district). Its altitude ranges from 1000-1200 meters to
about 2600 meters, with the maximum at 2692 meters (Gran Pelà). In the park a
deer population (Cervus elaphus) is living, which has caused severe damages to its
woods, especially during the eighties of the last century. The most affected trees were
firs, whose natural renovation has been compromised. Then, these damages drastically
decreased with the reduction of the deer population. In fact, according to the census
periodically carried out by rangers, the deer population slightly increased until 1995,
when a peak of 240 individuals was reached. Afterwards, deers suddenly dropped to
111 individuals and in the following years they remained around 100 individuals, with
a maximum of 150 and a minimum of 78. According to the park rangers, this decrease
is likely due to predation, because the presence of a stable pack of wolves in the park
is well established since at least 1997.

To apply the model to this park, as first step we choose the units: for time we
use the day and for the biomass the average weight of a deer, in order to facilitate the
reading of the plots. According to [5], the mean weight of a male is 200 kilos, of a
female 90, of a young one 40 and of a fawn born in the current year 20 kilos. Using on
these data and the census reports, we calculate the weighted mean of the mean weights
of deers, subdivided on the basis of gender and age class. The result represents our
biomass unit: 115 kilos.

In the second step we assign values to the parameters. In [6] tables are reported
providing estimations of the phytomass and of the annual NPP (Net Primary Produc-
tion) of several natural environments. These allow to estimate the growth rate of grass
and trees at the various interested latitudes and altitudes. These informations enable
us to set r1 = 0.003 and r2 = 0.0002. But if we restrict the rate only to the growth
period, which can be estimated to be about 120 days, we then obtain r1 = 0.01 and
r2 = 0.0006. From [1] the extension of the park (3774 ha) is obtained, together with
other relevant data such as the percentage of the different kinds of soil, like rocks,
anthropic areas and, what is important for our work, meadows (1256.6 ha) and woods
(2277.2 ha). Using these informations and the tables of [6], we could estimate also the
values of the carrying capacities in kilos or tons. Once converted in the chosen unit,
we have K1 = 220, 000 and K2 = 4, 950, 000. However a part of the meadows cannot
be included in the deer-grass-tree system, because they are used for cattle grazing and
hence they cannot be used by deers. According to [1], there are only 139.6 ha of not-
used meadows besides 299 ha of rock meadows, having a reduced NPP. That leads to
a different value for K1, namely K1 = 36500.

In [12] information about the diet of ruminants can be found, and an empirical
method — in fact widely used — to estimate the food daily consumption of a ruminant
is suggested. According to this rule, the food ingested can be approximated as a
percentage of the weight of the ruminant itself. The percentages however depend on
the particular species. Even if precise data are not given for deer, useful indications can
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be obtained from data referring to similar species. This allows us to assign a value to α.
The latter represents the reciprocal of the grass amount consumed by a single herbivore
when the grass is unlimited (see Section 3). We set µ = 0.03, meaning that a herbivore
with no food available dies in about 30 days. This is consistent with the starvation time
of similar mammals, namely mammals not accustomed to lethargic periods and with a
weight comparable with the one of deers. Recalling that e < 1 and assuming that an
available adequate amount of grass can satisfy the metabolic needs of herbivores, i.e.
e > αµ, we then set e = 0.62 as reference value, varying it within the previous bounds.

An estimation of the tree consumption due to herbivores is more difficult. When
a herbivore switches its attention to a tree rather than to grass, even if it takes just a
small piece of bark, it may cause the death of the whole tree. The weight of a young tree
is comparable with the mean weight of a deer. Therefore, recalling that β represents
the reciprocal of the per-capita tree consumption by herbivores (similarly as for α), this
would imply a value for β close to 1. However, in case of deer, the tree death does not
occur with a high probability, because, as remarked in Section 2, deer in general peel off
vertical stripes of bark without totally interrupting the communication between leaves
and roots. On these considerations we assign a smaller value to β−1, i.e. a larger one
to β. We set as a reference value β = 8. Of a whole tree, a deer can assimilate at most
the piece of bark it really takes, but as already remarked even that is only partially
assimilated, in view of the high lignin and cellulose content of barks. Therefore, the
assimilation coefficient from trees f must be very small: we set it to be f = 0.001.

To sum up, for the numerical simulations, we used the following reference set of
parameter values:

K1 = 36500 r1 = 0.003, K2 = 4, 950, 000 r2 = 0.0005, α = 20, (5)

µ = 0.03, e = 0.62, β = 8, f = 0.001.

We have then varied each parameter within a certain reasonable, biologically feasible
range.

5.1 Simulations

Our simulations show that the system can reach a stable coexistence equilibrium. Fig-
ures 2 and 3 show the results on the system obtained with the same data. The main
difference among the two plots consists in the fact that the second one (Figure 3) ac-
counts for the seasons. More specifically, in this simulation we alternate periods of
vegetative growth, lasting about 120 days per year, i.e. about four months, with peri-
ods of vegetative pause, the remaining 245 days of the year, in which r1 = r2 = 0. This
does not modify the behavior of the system, but leads the populations G, T to stabilize
on lower values. In particular the values at which H settles are consistent with the real
values of the deer population living in the park, in absence of wolves.

Comparing the two curves in Figure 3, it is possible to assess the impact of the deer
population on trees. In fact the latter grow more slowly than in absence of the deer and
furthermore they do not reach the carrying capacity. The damages are very limited,
but they depend on the number of deers. With slight differences in the parameter
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Figure 2: Evolution of the system with parameters set like in (5)

values, simulations show that the deer population could grow to higher levels: in this
case the entity of damages would be much larger. Even limited damages can however
have relevant consequences if they are not uniformly distributed, but concentrated in
some particular area. This can be seen in Figure 4, showing the case in which only the
fir woods interact with the rest of the system. According to [1], fir woods cover an area
of 612.3 ha. This allows us to estimate the tree carrying capacity for the plot of Figure
4, to the value K1 = 106000. This scenario is not far from the real case, because deers
debark especially the youngest and smallest trees with a thin bark. Hence damages
interest at most the growing woods with a big percentage of young trees as well as copse
woods. In addition, there are some species of trees that are never debarked by deers,
like Larix decidua, Pinus cembra and Fagus sylavatica. More generally, even if the
overall damage is small with respect to the total tree biomass, since it is concentrated
on the youngest trees, it can compromise the natural renewal processes of the woods.
This suggests the necessity of avoiding an excessive growth of the deer population and
of adopting some measures to protect trees, including for instance conversion of copse
into high forests.

6 Case study: the Meisino park

The Meisino is a urban park, on the immediate outskirts of the town of Turin. It
provides a study case for our model because here the Turin municipality has partially
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Figure 3: Evolution of the system over a century with alternating seasons. Parameters
are set like in (5), with the exception of r1 and r2, which have set respectively to the
values 0.01 and 0.0006 during the summer and both to 0 during the winter. The upper
curve shows the evolution of the same system without herbivores: damages to trees are
very limited with this set of parameter values.

replaced the traditional tools for lawn maintenance by sheep grazing. Since 2007 in
fact, 500 “Biellese” meat-sheep have been introduced in the park for a 2 months period
every year.

In order to assign meaningful values to the parameters, as for the case of the “Gran
Bosco di Salbertrand” park, we based our considerations on [6] and [12]. In addition,
we used information about the Meisino park contained in the project, on top of the
information about the average weight of the Biellese sheep (75 kg), available in [2]. For
the parameter β, i.e. the inverse of the per-capita consumption of trees by sheep, as
already outlined, we considered that sheep have a peculiar way of debarking: unlike
deer, they peel trees all around the trunk [4], causing its death after a few weeks almost
certainly, or at least with a probability close to 1. This implies a larger consumption
of trees by sheep than by deer. Hence in this case, we assign a larger value to β−1 and
therefore a smaller one to β: we set β = 3. To sum up, for the numerical simulations,
we used the following reference set of parameter values:

K1 = 12500, r1 = 0.004, K2 = 25000, r2 = 0.0005, (6)

µ = 0.03, α = 20, e = 0.62, β = 3, f = 0.001.
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Figure 4: Evolution of the system over a century with alternating seasons and K2 =
106, 000, i.e. considering only the fir woods. In this case damages are much more
relevant.

As for the previous case, we have then varied each parameter within a certain reason-
able, biologically feasible range. Of course, these ranges are more restrictive for some
parameters and larger for the others, for which the estimations are more uncertain, like
for instance K2.

In the case of the Meisino park, it has been possible to obtain a validation of our
model, since there exist precise data about the trees damaged by sheep: there are more
than 100 trees damaged every year, most of them in a non-reversible way. Simulations
show that our model is able to reproduce the real case: with 500 sheep over a 60 days
period the grass decreases, the sheep grow; further, the trees decrease by amounts
consistent with the reported damages.

6.1 Simulations

With the set of values (6), simulations show that the system reaches an equilibrium.
But the latter is very sensitive to some parameters, in particular to e, i.e. the grass
assimilation coefficient by sheep. We explored also different parameter combinations.
Interesting results emerge by setting all parameters as given in (6), but for f , i.e. the
tree assimilation coefficient by sheep, which is set to a slightly higher value, namely
f = 0.05.

Figures 5 and 6 show the same Hopf bifurcation diagram, obtained varying e, but
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Figure 5: Hopf bifurcation diagram obtained varying e, i.e. the grass assimilation
coefficient by sheep, with f = 0.05 and the other parameters set as in (6)

in the latter we set T = 0. It is worth noting that in the latter the threshold above
which the system starts to oscillate shifts to the right. That implies the existence of a
range of values for e, for which the system reaches an equilibrium only without trees.
Figures 7 and 8 show two plots obtained with a value of e in such a range: e = 0.62.
Both plots are carried out with the same parameter values. In the former there are
no trees, and herbivores and grass reach a stable equilibrium level. In the latter trees
are present; here all populations after reaching a higher peak, start to oscillate. In the
low peaks of oscillations, herbivores reach values very close to zero and hence run the
risk of extinction. To sum up, for such values of e, the presence of the second resource
results in a disadvantage for H. Moreover, there is only a very small range of values
for e (around 0.61) in which the system can attain an equilibrium in both cases; below
this threshold there exists an equilibrium with sheep only if trees are simultaneously
present: without trees the system does not oscillate but sheep cannot survive, Figure
6.

6.2 Discussion

In order to evaluate the management choice of the Turin municipality of introducing
sheep in the park, we carried out simulations in which sheep where introduced and
then removed from the system for two months every year, like in the real case. We
have accounted for 150 days per year, i.e. 5 months, i.e. the average vegetative growth
period in the Turin area. Recalling that the goal of the Turin municipality policy is that
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Figure 6: Hopf bifurcation diagram obtained varying e, i.e. the grass assimilation
coefficient by sheep, with the same parameter values as in Figure 5: f = 0.05 and the
other parameters set as in (6). Here we set T = 0.

the grass should be controlled via grazing, we could understand better the situation
by setting a quantitative value for this containment. So let us assume that by this
intervention we want to keep the grass at say 80% of the natural carrying capacity of
the Meisino park. Simulations show that we can obtain this goal with a number of
sheep between 400 and 450. However in this case the damage suffered by trees is quite
large: over a timespan of 25 years the tree biomass is 35% lower than in absence of
sheep (see Figure 9). Therefore the tree canopy expected from the original project for
the park will never be reached, causing a net loss in the money invested to plant the
trees. An additional cost is incurred by the loss of the environmental services provided
by trees, which are lost when they die.

In spite of this, the municipality is planning to reintroduce sheep. To prevent
bark grazing, this year (2010), fences have been put around trunks, but their setting
is certainly insufficient. For instance, in the same area we can now find trees with
and without fences. But if a certain area is going to be grazed by sheep, then all
trees in it need to be protected. Otherwise, if an area is not used, no tree in it needs
protection. In addition, there are cases in which fences have been placed even around
trees that are already damaged and dead (see Figure 10), and around trees which have
been logged only a few days later, (see Figure 11). Due to this inappropriate use, the
fences represent an additional increase in the management costs.
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Figure 7: This plot has been obtained with e = 0.62, f = 0.05 and other parameter
like in (6): in absence of trees, the system settles to a stable equilibrium.

7 Conclusions

In this paper we have proposed a mathematical model for the assessment of the in-
teractions between wild and domestic herbivores with the natural or man-maintained
system of meadows and woods. Damages to the trees caused by debarking, occurring
all the time, but in particular when grass is scarcer, are accounted for. The results of
this study show that it is wise to keep in check the number of herbivores in environ-
ments in which young trees are present, to prevent their peeling off of the barks of the
latter, causing damages to the natural renewal process of woods. In the natural parks
this can be achieved by reducing their numbers, either by culling the herbivores or by
the action of their natural predators, ensured for instance by the presence of wolves.
The copse woods are more prone to this debarking risk than high forests. This occurs
in view of the reduced tree dimensions and thus also of their bark thickness. Whenever
possible, it would then be preferable to convert the copse woods into high forests. The
latter is a wood type more apt to natural parks and therefore ecologically richer and
more resilient. The domestic herbivores instead should be prevented to enter in areas
in which young trees without an enough thick bark are present. In particular then,
grazing should be prohibited in newly planted tree areas.

Acknowledgments. The authors thank Fabio Schiari for the photograph of deer
debarking, Figure 1 right, and Elisa Ramassa, a ranger of the “Gran Bosco di Salber-
trand” park, for the useful informations provided.

@CMMSE                                                               Page   867  of 1328                                               ISBN 13: 978-84-613-5510-5



Lucia Tamburino, Ezio Venturino

Figure 8: This plot has been obtained with the same values of the plot in figure 7: with
H and both resources T and G, the system does not reach a stable equilibrium, rather
it starts to oscillate, but at every minima in the oscillations, H risks extinction.
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Figure 9: The figure represents the result of the simulation introducing 450 sheep, to
reach the goal of keeping the grass at 80% of its carrying capacity. The damage suffered
from the trees amounts in this case to 35% over the timespan of 25 years.
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Figure 10: Already debarked, but still fenced, tree.
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Figure 11: A logged young tree.
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Abstract

Mixed type (forward-backward) functional differential equations (MTFDEs)
are, in general, ill-posed. This issue of MTFDEs poses problems for both classical
and numerical analysts. It is done a brief review of our preliminary work with
autonomous and non-autonomous linear MTFDEs using collocation, least squares
and finite element methods. In particular, this paper is concerned with the approx-
imate solution of a nonlinear mixed type functional differential equation (MTFDE)
with deviating arguments arising from nerve conduction theory. The considered
equation describes conduction in a myelinated nerve axon in which the myelin to-
taly insulates the membrane. As a consequence, the potential change jumps from
node to node. As described in [1], this process is modeled by a first order non-
linear functional-differential equation with deviated arguments. A solution of this
equation is searched. Following the approach introduced previously in [5], [6], [2],
using collocation and least squares methods and in [4], [7], using a finite element
method, some new computational methods for the solution of this problem are
proposed and analysed. Numerical results are obtained and compared with the
ones presented in [1].

Key words: Mixed-type functional differential equation, method of steps, collo-
cation, Newton method, nonlinear

MSC 2000: 34K06; 34K10; 34K28; 65Q05
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1 Introduction

In this paper we consider equations of the type

δv′(t) = F (v(t)) + β(t)v(t − τ) + γ(t)v(t + τ), (1)

where v is the unknown function, δ is a known constant, β(t), γ(t) and F (v(t)) are
known functions. These methods were extended to the non-autonomous case (when
δ = 1 and α, β and γ are smooth functions of t). In particular, we are concerned
about a nonlinear mixed type functional differential equation (MTFDE) with deviat-
ing arguments arising from nerve conduction theory. The considered equation describes
conduction in a myelinated nerve axon in which the myelin totaly insulates the mem-
brane. As an immediate consequence, the potential jumps from node to node (figure
1). The modelling equation corresponds to a boundary value problem (BVP) of first
order. We search for a solution of a boundary value problem defined in IR, which takes
given values at ±∞.

Figure 1: Nerve axon

In this work is considered the following nonlinear MTFDE

RCv′(t) = F (v(t)) + v(t − τ) + v(t + τ), (2)

where −∞ < t < +∞, v(−∞) = 0 and v(+∞) = 1. The equation (2) is also considered
in [1] where we find a detailed derivation of the model. The unknown v(t) represents
the transmembrane potential at a node in a myelinated axon, in the nerve conduc-
tion model. F reflects the current-voltage model. R and C are respectively axomatic
nodal resistivity and nodal capacity. This model is described with detail in [1]. It is
considered a mathematical model formulated from an equivalent electric circuit model
which assumes the so called pure saltatory conduction (PSC). It means that the myelin
has higher resistance and lower capacitance when compared with the membrane; if the
membrane is depolarized at a node, myelin tends to jump the next node and excite the
membrane there. In this model the myelin insulates the membrane.
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2 Numerical Method

As stated before, the problem arose from nerve conduction theory and is modeled by
equation (2). It is not an easy problem to solve numerically: it is advanced-retarded and
is a BVP defined on IR with τ unknown. It is assumed pure saltatory conduction. In
addition, the circuit model supposes that the nodes are uniformly spaced and electrically
identical, the axon is infinite in extent and in the axon cross-sectional variations in
potential are negligible. Several models can be obtained using different current-voltage
expressions. Using FitzHugh-Nagumo dynamics for the nodal membrane, without a
recovery term, we assume that a supra-threshold stimulus begins a propagated axon
potential and consequently travels down the axon from node to node. With adequate
variable substitutions, one can get the following non-dimensional model:

v′(t) = f(v(t)) + v(t − τ) + v(t + τ) − 2v(t), (3)

where −∞ < t < +∞, v(−∞) = 0 and v(+∞) = 1. The function f is given by
f(v) = bv(v − a)(1− v) with a the threshold potential in the non dimensional problem
(0 < a < 1), τ the non dimensional time delay and b related with the strength of the
ionic current density (b > 0). The solution at any node should be monotone increasing.
This arises from the current-voltage relation f(v), once a node is turned on, it cannot
return to rest potential v = 0.

2.1 Scheme

Instead of model (3) we propose

v′(t) = f(v(t)) + v(t − τ) + v(t + τ) − 2v(t), (4)

where −L < t < +L, with the boundary conditions at [−L − τ,−L] and [L, L + τ ] for
some positive integer L. L is considered large enough. We want to solve (4) using an
adapted method of steps, similar to the work found in [5, 6, 2, 7, 4], which we call an
enhanced method of steps. The algorithm is described below and it is based on the
idea of predictor-corrector methods.

Enhanced Method of Steps

1. Compute τ

(a) In order to compute the boundary conditions [−L − τ,−L] and [L, L + τ ],
we must find the characteristic roots for the linearized equation, at L and
L, as done in [1];

(b) Knowing the solution v and its k first derivatives at −L − τ and −L (k it
is the number of steps), we can determine by recurrence formulae, using an
initial guess for τ ; the value of v(0) (limit from left);
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(c) Knowing the solution v and its k first derivatives at L and L + τ , we can
determine by recurrence formulae, using an initial guess for τ , the value of
v(0) (limit from right);

(d) Then, in order to get v continuous at t = 0, we adjust the parameter τ , till
the limits from left and from right will coincide at t = 0.

2. For the computed value of τ , construct the first iterate of the solution

at [−L, L]

(a) Use values of the initial guess for the solution on the interval [−L,−L + τ ].

(b) Construct the auxiliary solution at sucessive intervals with amplitude τ using
the ordinary method of steps;

(c) Correct the solution at sucessive intervals with amplitude τ by solving equa-
tion (4) in each interval and using the auxiliary solution at the neighbour
intervals;

(d) Continue until we reach the interval [L, L + τ ]. We get a vector W =
(w(L), w(L+h), w(L+2h), ..., w(L+τ)), where w represents the approximate
solution.

3. Compute the Jacobian matrix

(a) For each grid point ti, at the interval replace the value w(ti) of the initial
guess by w(ti) + ǫ and repeat step 2 with the new initial approximation.
This will give the vector

Wi = (wi(L), wi(L + h), wi(L + 2h), ..., wi(L + τ)), i = 1, . . . N ;

(b) For each vector Wi, compute the i − th row of the jacobian matrix.

4. Apply the Newton method

(a) Obtain the components of the right-hand side of the jacobian and solve the
linear system;

(b) Update the initial guess of the solution.

5. Iterate this process until the norm of the difference between iterates

is less than a certain tolerance value
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So, in summary

• Based on the approximation of the solution and on the method of steps, compute
the value of τ , for which the solution of the problem exists;

• The nonlinear equation (4) with the respective boundary conditions is reduced
by the Newton method to a sequence of linear BVP;

• The numerical solution of each linear BVP is obtained by the collocation method.

A question arised was how to choose the initial approximation to guarantee con-
vergence?

The solution of test problem can then be used as initial approximation for the
numerical solution of the target problem. The idea, proposed by Chi et al in [1], is to
use a continuation method.

The continuation method consists on the approach of the target problem using a
test problem, by formulae (5)

fa(v) = αftest(v) + (1 − α)ftarget(v), 0 ≤ α ≤ 1. (5)

Figure 2: Continuation method. a = 0.05, b = 15, N = 81.

In figure 2 is computed the approximate solution for target problem considering
a = 0.05, b = 15 and N = 81.

3 Final Remarks

To analyse the convergence of the numerical scheme we take into account some test
problems with known solutions. Numerical results are compared with the results ob-
tained by other methods presented in [1]. A question in study is how the solution
of equation (4) will be affected by changing the parameters of the problem and the
deviating argument τ .

@CMMSE                                                               Page   876  of 1328                                               ISBN 13: 978-84-613-5510-5



Solving a Nonlinear Forward-Backward Differential Equation

4 Acknowledgements

M. F. Teodoro would like to acknowledge the finantial support from Fundação para a
Ciência e Tecnologia, FCT, through grant SFRH/BD/37528/2007.

References

[1] H. Chi, J. Bell and B. Hassard, Numerical solution of a nonlinear advance-
delay-differential equation from nerve conduction theory, J. Math. Biol., 24, 583-
601 (1986).

[2] P.M. Lima, M.F. Teodoro, N.J. Ford and P.M. Lumb, Analytical and
Numerical Investigation of Mixed Type Functional Differential Equations, Jour-
nal of Computational and Applied Mathematics (2010), avaialable electronically
doi:10.1016/j.cam.2010.01.039

[3] P.M. Lima, M.F. Teodoro, N.J. Ford and P.M. Lumb, Analytical and Nu-
merical Investigation of Mixed Type Functional Differential Equations (Extended
version)(to appear as a tech. report at the University of Chester).

[4] P.M. Lima, M.F. Teodoro, N.J. Ford and P.M. Lumb, Finite Element So-
lution of a Linear Mixed-Type Functional Differential Equation, submitted to Nu-
merical Algorithms, Springer.

[5] M.F. Teodoro, P.M. Lima, N.J. Ford, P. M. Lumb, New approach to the
numerical solution of forward-backward equations, Front. Math. China,V.4, N.1,
155-168 (2009).

[6] M.F. Teodoro, N. Ford, P.M. Lima, P. Lumb, Numerical modelling of a func-
tional differential equation with deviating arguments using a collocation method,
AIP Proc., Inter. Conference on Numerical Analysis and Applied Mathematics,
Kos 2008, vol 1048, pp. 553-557 (2008).

[7] M. F. Teodoro, P. M. Lima, N.J. Ford and P.M. Lumb, Numerical Approx-
imation of Forward-Backward Differential Equations by a Finite Element Method,
Proceedings of CMMSE 2009, 9th International Computational and Mathematical
Methods in Science and Engineering, Gijon, Spain, V.3, 1010-1019, ISBN:978-84-
612-9727-6 (2009)

@CMMSE                                                               Page   877  of 1328                                               ISBN 13: 978-84-613-5510-5



Proceedings of the 10th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2010
27–30 June 2010.

A model for the human papilloma virus infection

Giulia Toniolo1, Silvia Martorano Raimundo2 and Ezio Venturino1

1 Dipartimento di Matematica “Giuseppe Peano”, Università di Torino,
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Abstract

We present a dynamical system modeling a disease that has a weak and a
strong form, for which a vaccine is available. The latter however does not confer
permanent immunity, but allows disease relapses. The mathematical model is
investigated, providing a framework for the understanding of the epidemilogy of
the human papilloma virus infection.

Key words: epidemics, vaccination, basic reproduction number
MSC 2000: AMS codes (92C60, 92D25, 92D30)

1 Introduction

The human papilloma virus (HPV) is a virus belonging to the group of papillomaviruses
couniting more than 100 types of viruses. Infections due to HPV are largely diffused,
causing skin diseases among other disorders. The virus spreads by contact. If the
infection is caused by papilloma of type 6, 11 or other milder ones, there are therapies.
The infection caused by types 16, 18 or other high risk ones leads instead to tumors. All
tumors of the cervix are caused by HPV. In the course of their life, an estimated 70% of
women becomes infected by HPV, in most cases the infection being of short duration,
although the latency period for the cervical cancer may last decades. The infection is
usually asymptomatic, although detected by routine screening examinations, like the
PAP test.

External treatments are available, like interferon and imiquimod, or podofillotoxine
and podofilline. There are also available vaccines, like Gardasil, against genotypes 16-
18 of HPV, which are responsible of about 70% of tumors, as well as genotypes 6 e
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11, and Cervarix, active against genotypes 16 e 18. These are injected three times; for
the vaccine to be fully effective, it is important that all the injections be performed.
At first the vaccine was thought to provide immunity for life, more recent studies have
confirmed an effetive immunity lasting only about five years, [1].

Simulation models for this situation have been considered in the literature, [3],
[4]. Here, we would like to introduce a mathematical model to describe the situation,
having in mind particularly that the vaccine can lose its effects. Using the power of the
dynamical systems tools, we investigate its long term behavior.

2 The mathematical model

Figure 1: The compartments in the model with their possible transitions and transition
rates.

To model the situation, we partition the total population into four classes: the
susceptibles S, the weakly diseased W , the ones that have the disease in the strong
form D, and those that have been exposed to the virus, either by vaccination or by
recovery from the weak form of the disease, C. We assume that only individuals in
classes W and D can spread the virus by contact. The form of the disease incidence
assumed here is the mass action one, or Holling-type I. The disease is unrecoverable,
i.e. it constitutes what is classically called an SI epidemic. The relationships between
the various classes are depicted in Figure 1 outlining the possible transitions among
them. Note in particular the contacts with weakly (strongly) infected lead to new weak
(strong) cases of the disease, and the weak form of the disease may degenerate into
a strong form. Also, as mentioned earlier, the “contaminated” individuals, those that
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have come in contact with the virus, either recovering from the weak form of the disease
or by the vaccine inoculation, may get a disease relapse. With these assumptions, the
model reads then as follows.

dS

dt
= π − βSW − λSD − (µ + σ)S (1)

dC

dt
= δW + σS − (ϑ + µ) C

dW

dt
= βSW + ϑC − (δ + µ + α) W

dD

dt
= αW + λSD − (µ + ν)D

The first equation describes the dynamics of the susceptibles. The are recruited at a
constant rate π, are subject like all other classes to natural mortality µ, may leave the
class via vaccination at rate σ or by contacts with diseased individuals, at rates β and
λ respectively for the weak form and the strong form of the infection.

The evolution of the contaminated individuals appears in the second equation.
They can enter this class by vaccination, from the susceptible set, or by overcoming the
weak form of the disease, at rate δ. From this class, as mentioned, only relapses into
the weak form of the infection are allowed, at rate ϑ, apart from natural mortality.

The third equation models the evolution of weakly infected individuals. New cases
can arise only from a susceptible after a contact with a weak infected at rate β. The
class can be left by natural mortality, recovery at rate δ giving a new “exposed” or
contaminated individual, or by regression to the strong form of the disease at rate α.

The strongly infected individuals, modeled by the last equation, enter only if the
weak form of the disease degenerates, or if a susceptible gets the strong form of the dis-
ease by contact with a strongly infected one at rate λ. In addition to natural mortality
µ, also disease-related mortality is here allowed, at rate ν.

The total population is N = S + W + D + C. It is constant if π − µN − νD = 0.
In case in which the strongly affected ones are missing, this condition simplifies to
π−µN = 0, giving a stable equilibrium N † = π

µ
. The dynamics of the total population

when D 6= 0 is therefore bounded above by the one of the model with D = 0, so that
it will have an equilibrium N∗ ≤ N †.

For the later stability analysis, we need the generic Jacobian of (1):

J =







−βW − λD − µ − σ 0 −βS −λS

σ −ϑ − µ δ 0
βW ϑ βS − (δ + µ + α) 0
λD 0 α λS − (µ + ν)







3 Boundedness

From the total population N = S + C + W + D, calculating the derivative we find

dN

dt
=

dS

dt
+

dC

dt
+

dW

dt
+

dD

dt
= π − µS − µW − (µ + ν)D − µC = π − µN − νD.
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For an arbitrary 0 < ϕ < µ we find

dN

dt
+ ϕN = π − µ(S + C + W + D) − νD + ϕ(S + C + W + D) =

= π + S(ϕ − µ) + C(ϕ − µ) + W (ϕ − µ) + D(ϕ − µ − ν) =

= π + (ϕ − µ)(S + C + W ) + D(ϕ − µ − ν),

so that dN
dt

+ ϕN ≤ π and the differential inequality has a solution bounded above,
implying that all subpopulations are bounded as well.

4 The system with no vaccination

Let us take the model without vaccination rate, σ = 0 and let us assume that the system
is at the equilibrium N∗ ≡ µ−1[π−νD]. Using the definition of total population, setting

a∗ =
β π

µ
+ ϑ δ

ϑ+µ
− (δ + µ + α)

β

(
1 + ν

µ

) , b∗ =

δ
ϑ+µ

+ 1

1 + ν
µ

,

we find the endemic equilibrium Ê in absence of vaccine administration as

Ŵ =
a∗

[
λ
β

(
βπ
µ

+ ϑδ
ϑ+µ

− (δ + µ + α)
)
−

(
λπ

µ
− µ − ν

)]

α − b∗
(
λπ

µ
− µ − ν

)
+ a∗λ

(
δ

ϑ+µ
+ 1

) ≡
h

k
,

D̂ = a∗ − b∗
h

k
, Ĉ =

δ

ϑ + µ

h

k
, Ŝ = N − Ŵ − Ĉ − D̂. (2)

In addition we find also the equilibria Ê0 ≡
(

π
µ
, 0, 0, 0

)
and

E1 = (S1, 0, 0, D1) , S1 =
λ + µ

λ
, D1 =

λπ − µ2 − µν

λ(µ + ν)
.

In this case the characteristic equation factors into the product of two quadratics,

Λ2+Λ(λD1+µ)+λ2D1S1 = 0, Λ2+Λ[ϑ+2µ+λ+δ+α−βS1]+[δ+µ+α−βS1](ϑ+µ+λ)−ϑδ = 0.

The former is easily seen to have always negative roots, while for the latter this happens
if only if

ϑ + 2µ + α + λ + δ >
β

λ
(µ + ν) >

ϑ(µ + α) + (µ + λ)(δ + µ + α)

ϑ + µ + λ
.

4.1 Determination of R0

At Ê0, we find two explicit eigenvalues, λπµ−1 − µ − ν and −µ, while the other ones
are the roots of the quadratic

Λ2 + Λ

(

ϑ + 2µ + δ + α − β
π

µ

)

− ϑβ
π

µ
+ ϑµ + ϑα − βπ + µδ + µ2 + µα = 0.
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This equilibrium is therefore stable if the Routh Hurwitz criterion for the quadratic is
satisfied, leading to

β < β1 =
µ

π
(ϑ + 2µ + δ + α) , (3)

β < β2 =
µ

π

(
ϑµ + ϑα + µδ + µ2 + µα

µ + ϑ

)

. (4)

and if and only if the first eigenvalue is negative,

λ < λ1 =
µ

π
(µ + ν) (5)

i.e., from the latter we can define a first basic reproduction number,

Rλ
0 =

λ

λ1
< 1.

The basic reproduction number R0 represents the number of all secondary infections
arising from a single infected individual in an entirely susceptible population, [5]. Fur-
thermore, it is easy to verify that β2 < β1 and the equations (3) and (4) are satisfied if
the condition (3) holds, i.e., if

Rβ
0 =

β

β2
< 1.

Therefore, if Rλ
0 < 1 and Rβ

0 < 1 then the eigenvalues have negative real parts. If

instead either one of Rλ
0 or Rβ

0 exceeds one, then the disease becomes endemic in the
population.

From (3) and (4) note that purely imaginary eigenvalues are impossible since the
condition for them would lead to the inequality µ(θ+µ)+θ(θ+µ+α) < 0, and therefore
Hopf bifurcations do not arise around this equilibrium.

5 The interior equilibrium

For the case with vaccination, i.e. σ 6= 0, seeking the coexistence equilibrium in which
all populations survive at nonzero level, a process of elimination of the nonlinear terms
leads to the following solution

W ∗ =
ϑσS∗

A − (ϑ + µ) βS∗
, C∗ =

δ

ϑ + µ
W ∗ −

σS∗

ϑ + µ
, D∗ =

αW ∗

((µ + ν) − λS∗)

where A = ϑµ+ϑα+µδ +µ2 +µα and S∗ now is a root of the following cubic equation

ãS3 + b̃S2 + c̃S + d̃ = 0, (6)

in which we set

ã = λβµ (ϑ + µ) (ϑ + µ + σ) , d̃ = −Aπ (ϑ + µ) (µ + ν) ,

b̃ = −πβλ (ϑ + µ)2 − µ (ϑ + µ + σ)
(
Aλ + ϑµβ + ϑνβ + µ2β + µνβ

)
− ϑσλµ (δ + ϑ + µ) ,

c̃ = πAλ (ϑ + µ) + π (ϑ + µ)2 (µ + ν) β + Aµ (µ + ν) (µ + ν + σ) +

+ϑσµ (µ + ν) (δ + ϑ + µ) + (ϑ + µ) (µ + ν)αϑσ.

@CMMSE                                                               Page   882  of 1328                                               ISBN 13: 978-84-613-5510-5



A model for the human papilloma virus infection

An alternative solution of the system leads to the following algebraic system

Γ1 : aWC + bW 2 + cC + dW = 0, Γ2 : fC + gC2 + hWC + kW 2 + pW = q (7)

with

S =
1

σ
[(ϑ + µ) C − δW ] , D =

1

σ (µ + ν)

[
σπ −

(
σµ + µϑ + µ2

)
C + (µδ − µσ) W

]

a = β (ϑ + µ) , b = −βδ, c = σϑ, d = −σ (µ + δ + α) ,

f = σ
(
λπϑ + λπµ + µ2σ + µ2ϑ + µ3 + σνµ + νµϑ + νµ2

)
, q = σ2 (µ + ν) π,

g = −λ (ϑ + µ)
(
σµ + µϑ + µ2

)
, h = λ

(
2ϑµδ − ϑµσ + 2µ2δ − µ2σ + σδµ

)
,

k = −λδµ (δ − σ) , p = −σ
(
λδπ + µ2δ − µ2σ + νµδ − νµσ − σαµ − σαν

)
.

Since all parameters are positive, the sign of some coefficients in (7) can be determined,

a > 0, b < 0, c > 0, d < 0, f > 0, g < 0, q > 0, (8)

while for k we find

k > 0 for σ > δ, k < 0 for σ < δ. (9)

The signs of h and p are unknown. But we will see that p < 0 is allowed, as the case
p > 0 does not lead to new findings with respect to what already found above.

System (7) represents the intersection of two conic sections. Let the general conic
be

Ax2 + 2Hxy + By2 + 2Gx + 2Fy + C = 0. (10)

Its invariants are then

D =

∣
∣
∣
∣
∣
∣

A H G

H B F

G F C

∣
∣
∣
∣
∣
∣
, C = AB − H2, and I = A + B. (11)

To better understand this problem, we observe that one of the invariants of Γ1 is

C = −
a2

4
< 0,

showing that it is a hyperbola, with

D =
acd

8
+

acd

8
−

bc2

4
=

c

4
(ad − bc) (12)

so that it is not degenerate if D 6= 0 i.e. if ad 6= bc. Similarly, for Γ2 we find

C = kg −
h2

4
, (13)

so that in view of the signs of the coefficients, (8) and (9) we have: if σ > δ then C < 0
giving a hyperbola; if σ < δ then if C > 0 it gives an ellipse, otherwise a hyperbola.

@CMMSE                                                               Page   883  of 1328                                               ISBN 13: 978-84-613-5510-5



Giulia Toniolo, Silvia Martorano Raimundo, Ezio Venturino

To investigate their intersections, note that Γ1 can be written as a function W =
W (C), which crosses the C axis at W = 0 and W = −d

b
. For later purposes, we also

calculate the derivative of the conic at these points,

∂Γ1

∂C

∣
∣
∣
∣
(0,0)

= −
c

d
> 0,

∂Γ1

∂C

∣
∣
∣
∣
(0,− d

b
)

= W ′

(

−
d

b

)

=
c

d
−

a

b
. (14)

For Γ2 instead we find two intersections with C = 0, namely

W1 =
−p +

√
p2 + 4kq

2k
, W2 =

−p −
√

p2 + 4kq

2k
.

These roots have opposite signs in the following two cases: p < 0, q > 0 and k > 0 with
σ > δ; p > 0, q > 0 and k > 0 with σ > δ. We also find

∂Γ2

∂C

∣
∣
∣
∣
(0,W1)

= −
hW1 + f

2kW1 + p
,

∂Γ2

∂C

∣
∣
∣
∣
(0,W2)

= −
hW2 + f

2kW2 + p
.

The intersection with the vertical axis does not produce points other that the origin
for Γ1, while for Γ2 we find

C1 =
−f +

√
f2 + 4gq

2g
, C2 =

−f −
√

f2 + 4gq

2g
,

with the same signs in view of g < 0, f > 0, q > 0. Moreover,

∂Γ2

∂W

∣
∣
∣
∣
(C1,0)

=
−p − hC1

2gC1 + f
,

∂Γ2

∂W

∣
∣
∣
∣
(C2,0)

=
−p − hC2

2gC2 + f
.

The oblique asymptotes can also be determined. For Γ1 we find

W = −
d

2b
W = −

a

b
C −

d

2b
.

from which the second derivative (14) is seen to be positive. Figure 2 shows a possible
graph of the conic Γ1.

For Γ2 the oblique asymptotes are

W± =
−h ±

√
h2 − 4kg

2k
C −

p

2k
.

There arise the following two cases.

If h < 0, k > 0 for σ > δ, g < 0 and p < 0 the asymptote W+ has positive slope,

while W− has negative slope, since
∣
∣
∣
√

h2 − 4kg

∣
∣
∣ > h. Their intercepts with the W

axis have a positive height. If instead p > 0, the asymptotes cross the W axis at the
negative height − p

2k
.

If h > 0, k > 0 for σ > δ, g < 0 and p < 0 the asymptote W+ has positive slope,
while W= has a negative one and − p

2k
> 0, while for p > 0 we have instead − p

2k
< 0.
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Figure 2: Graph of the conic Γ1 : aWC + bW 2 + cC + dW = 0.

Figure 3: Γ2: the two situations with ∆ < 0 (left) and ∆ > 0 (right).

Γ2 intercepts C = 0 and W = 0 respectively at

W3,4 =
−p ±

√
p2 + 4kq

2k
, C3,4 =

−f ±
√

∆

2g
, ∆ = f2 + 4gq.

The sign of the discriminant ∆ depends on g < 0 and q > 0. For ∆ > 0 the lower
branch of Γ2 intersects the W axis, otherwise it lies entirely in the lower half plane
C < 0, see Figure 3. The possible intersections of the two conics are depicted in Figure
4. Combining all these considerations, sufficient conditions for an intersection in the
first quadrant can be derived.

Since − p
2k

> 0, a sufficient condition is provided by p < 0 and −a
b

>
−h+

√
h2−4kg

2k
.
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Figure 4: Conics intersections (left). On the right a blow up of a neighborhood of the
origin.

Also, for p > 0 and − d
2b

< − p
2k

it follows −a
b

>
−h+

√
h2−4kg

2k
. For p > 0 and − d

2b
> − p

2k

we instead have −a
b

<
−h+

√
h2−4kg

2k
. The last two inequalities represent necessary but

not sufficient conditions for an intersection to occur in the first quadrant.

6 Simulations

We have carried out a few numerical simulations to substantiate our theoretical findings.
We show some results in the Figures 5-6, where counterclockwise from the upper left
corner, we have plotted the populations S, C, W and D. The simulations have been
run over very long time spans, in order to pinpoint the stable nature of the equilibria.

The interior equilibrium, Fig. 5, is obtained for the following set of parameter
values

π = 1000, α = 0.8, ϑ = 0.02, β = 0.01, δ = 0.01,

λ = 0.02, µ = 0.0118, ν = 0.07, σ = 0.06.

The interior equilibrium for the particular case σ = 0, Fig. 6, is obtained for the same
parameters as above but the last one.

The equilibrium E1, for σ = 0, Fig. 7, is instead obtained for the following choice
of the parameters

π = 1000, α = 0.01, ϑ = 0.02, β = 0.01, δ = 0.01,

λ = 0.02, µ = 0.0118, ν = 0.2, σ = 0.0.

7 Conclusions

In the model proposed we have discovered that a disease-free equilibrium exists, as well
as an endemic one. Conditions for the existence of the latter have been identified, basic
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Figure 5: Internal equilibrium of system (1).

Figure 6: Internal equilibrium of system (1) for the particular case σ = 0.

reproduction numbers for the disease to become endemic have been identified.
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Abstract

Trasgo is a source-to-source compiler system that translates simple high-level
specifications of parallel algorithms to lower-level native programs, with data par-
tition and communication details generated automatically. Hitmap is the run-time
library used by the back-ends of Trasgo for hierarchical tiling and mapping of ar-
rays, currently built on top of the MPI message-passing interface. Hitmap includes
a plug-in system for automatic data-layouts. In this paper we extend Hitmap with
a new type of data-layout techniques suitable for the CUDA parallel programming
model. The combination with the previous type of data-layout techniques allow
to generate data distributions, at multiple levels of parallelism, for GPU clusters.
The new Hitmap version hides to the programmer the details about the machine
structure and thread management, allowing to easily generate programs with mul-
tiple levels of parallelism in heterogeneous systems. This work opens the road to
develop a new back-end for the Trasgo compiler system to automatically generate
CUDA programs.

Key words: Data layout, CUDA, GPUs, heterogeneous systems

1 Introduction

1.1 The Hitmap run-time library

Trasgo [GL09] is a parallel programming system based on high-level and nested-parallel
specifications. It provides a C-like front-end language with nested-parallel coordination
extensions. The front-end language allows to easily represent abstract specifications of
parallel algorithms, with no detail about threads management or inter-process commu-
nications. It uses a common scheme to express hierarchical combinations of data- and
task-parallelism. The high-level coordination language provided by Trasgo is translated
internally to an XML intermediate representation, to allow easier data-flow analysis and
code rewriting. Different back-ends may translate the result to native code using differ-
ent parallel tools or models. Currently, Trasgo have a complete back-end that efficiently
exploits the MPI message-passing interface.
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The Trasgo back-ends are supported by a runtime library for hierarchical tiling
and mapping of arrays, named Hitmap. This library also includes a plug-in system
of modules for automatic creation of virtual topologies, and data-partition and layout.
The modules are invocated in the code, but applied at run-time with architecture
and topology information supplied by the underlying system. Moreover, the resulting
layout objects contain all the information needed to map data to the local processor,
and to find neighbors on the virtual topology which have data affinities. Thus, the
programmer never reasons in terms of system resources, and does not need to know the
implementation details of the partition, scheduling, or communication.

Virtual topology functions identify the hosts or cores that are available for the par-
allel code execution, and use the available topology information to generate a mapping
function. Layout functions use the virtual topology information and the index domain
of a data structure to generate tiles of the proper grain size for the virtual processors.
Hitmap includes several virtual topology functions (such a parallelepiped multidimen-
sional topologies with different restrictions), and several data-layout functions (such as
blocks, cyclic, exponential distributions, or dynamic workload balancing of weighted
tasks). These techniques work for any special circumstances. For example, they do not
need the data elements to be a multiple of the number of virtual processors, and they
automatically may assign groups of processors to single data elements if necessary.

2 CUDA programming model

CUDA [NBGS08, NVI10] was introduced by NVIDIA to exploit the parallel compute
engine in NVIDIA GPUs. Although, CUDA design approach is appropriate for effi-
cient GPU programming, it is conceived as a general purpose parallel computing model.
However, there are important differences with other popular parallel computing mod-
els, such as message-passing, OpenMP, or PGAS. CUDA works with a shared-memory
architecture model. In other shared-memory programming models, such as OpenMP,
each task is expected to be launched in an independent CPU core. The memory hier-
archy is hidden, and the programmer typically takes into account the number of cores
to produce coarse-grain computations to process data in big memory chunks. On the
other hand, in CUDA each task will be launched in a SM (streaming multiprocessor)
composed by a fixed number (eight) of cores. Inside the SM, the computation model
is SIMD (Single Instruction, Multiple Data). Each SM has its own small shared mem-
ory, and synchronization system. All SMs in the same device (GPU card) share a
bigger global memory. Several devices may work in parallel, receiving, processing and
returning data pieces to the main host memory. CUDA places on the programmer
the burden of managing the memory hierarchy, and taking decisions about the how to
organize the fine grain synchronized tasks which are grouped and pipelined through
the streaming multiprocessors. Practical experience shows that this approach is often
tedious and error-prone, needing abstractions to hide details and help the program-
mer [HA09]. Moreover, working with several GPU devices in parallel adds another
level of complexity.
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3 Data-Layout combinations at multiple levels

In previous versions of Hitmap, the run-time system was oriented to create coarse-grain
data partitions. It was designed for efficient SPMD implementations in programming
models based on interprocess communication, such as message-passing. In this work
we extent the functionalities of Hitmap, to support combinations of multiple levels of
coarse-grain, and fine-grain layouts.

Consider a system with several GPU cards. Although, the synchronization and
communication system across them is limited, we may describe the topology of GPU
devices. In CUDA, it is possible to automatically obtain information about the current
GPU devices at run-time. Thus, the current Hitmap topology functions and coarse-
grain data-partition modules are perfectly suitable to automatically distribute compu-
tations, across several GPU devices, with coarse-grain techniques.

However, inside the GPU device we have a different level of parallelism. The com-
putation pieces should be distributed with a different, fine-grain, approach. In CUDA,
the number of SPs and SMs in a device is not as important as the number of threads
supported by a single SM. Threads are grouped in packs which are executed in the
same SM. Groups are pipelined through the processing elements. Thus, threads are
grouped and executed in a two-level nested-parallel model. The threads on each group
share a local memory, and all groups share the device global memory. Communication
or synchronization across groups is possible with atomic operations on the global mem-
ory. Thus, the identification of the group and thread are relevant for the computation,
not the identification of the processing element.

We define a µlayout (or ulayout) as a function to make a domain partition in terms
of the number of data elements to be processed together, instead of the number of
processing elements (number of SPs and SMs). The output of a µlayout function is a
structure of groups of domain elements. Each group will have an appropriate number
of domain elements to be processed as a block, and CUDA will be responsible of the
assignment of each block to the corresponding SMs. Restrictions to the group size,
or shape, may be also imposed by the application, by other µlayout results, by the
SM local memory limits, or by the programming model itself (in CUDA the maximum
number of threads in a block is limited to 512). We define the first µlayout functions
for multidimensional blockings, or cyclic assignment of elements. The Hitmap plug-in
system for classical layouts has been replicated for µlayouts. Programmers may add
new µlayout functions as modules.

The output of a µlayout may be used by the Hitmap coarse-grain layout func-
tions to distribute the groups across several processing elements or devices. A parallel
computation may be deployed on a GPU system using: (1) the new Hitmap µlayout
functions to adapt the computation grain and the distribution of the data to the inter-
nals of the GPU device, and (2) the topology and layout functions to distribute sets of
medium-grain computations across several devices. Thus, a good data-locality may be
achieved at the lower level, and a good load balance at the higher level.
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4 Conclusions

Hitmap is a run-time library for hierarchical tiling, and automatic mapping of tiled
arrays. It is designed to support code generation by the back-ends of Trasgo, a source-
to-source compiler system.

This work introduces a new type of data-layout techniques into Hitmap. Previous
techniques in Hitmap focused on the automatic creation of coarse-grain data distribu-
tions in terms of the underlaying machine topology information. The new type focuses
on the creation of groups of fine-grain computations to map into a GPU device. The
combination of both types allow to develop multiple levels of automatic data-layout
techniques for heterogeneous systems in CUDA. This work opens the possibility to
develop a Trasgo back-end to generate efficient CUDA programs.
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Abstract

In this paper we address the problem of controlling the disclosure of sensible
information by inferring them by the other attributes made public. This threat to
privacy is commonly known as prediction or attribute disclosure. Our approach
is based on identifying those rules able to link sensitive information to the other
attributes being released. In particular, the method presented in this paper is
based on mining fuzzy rules. The fuzzy approach is compared to (crisp) decision
trees in order to highlight pros and cons of it.

Key words: disclosure control, fuzzy rules, privacy

1 Introduction

In order to provide a richer set of data to analyze, statistical agencies and offices release
information regarding individuals, companies and other organizations. If availability of
microdata makes possible to investigate trends and relationships more accurately, on
the other side it poses relevant concerns regarding the risk of revealing sensitive infor-
mation about the respondents. Indeed, publishing aggregate or individual data carries
always the risk that individuals or organizations could be identified and confidential
information about them could be released. Therefore, on one side there is a need of
providing information in order to perform statistical analysis, whereas on the other it
is necessary that some relevant information is not revealed.

Statistical Disclosure Control (SDC) aims at releasing statistical records while pro-
tecting confidentiality of information at the same time. Among the different threats,
there is the possibility that some sensitive information can be obtained by other known
data regarding some entity. In this case, the risk is that hidden information is inferred
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using public information as premise. Discovering a link between hidden and public
information is possible can help SDC to prevent such a risk.

In this work we explore the rules mined from data as means to identify possible
paths that if own by an intruder would be able to disclose sensitive information. In
addition, we want to check if the fuzzyfication of the public part of a database can
help to protect the confidential information. The reminder of this extended abstract is
organized as follows: First some preliminaries regarding information disclosure are pre-
sented; Secondly, Data Mining is presented as means to prevent disclosure of sensitive
information; finally experimental set-up is designed.

2 Information Disclosure

Information disclosure has place when an entity (i.e. a person or an organization) is
able to learn something regarding another entity by released microdata sets. For exam-
ple, illness regarding patients could be released via medical databases, or competitors’
financial figures by business databases.

Microdata attributes of interest for statistical disclosure control can refer to re-
spondent identity (key attributes), or to relevant information (sensitive attributes). In
order to preserve the respondent’s privacy, the direct linkage between key and sensitive
attributes is hidden by SDC. This process is known as data anonymization. However,
an intruder can still attack data anonymization by reconstructing the original link with
respect to some records.

In particular, there are two types of disclosure associated to microdata [13]: (i) iden-
tity disclosure when the entity is (re-)associated to some sensitive data in an anonymized
database; (2) prediction disclosure when some sensitive data is inferred by the other
attributes for some known entity. The first is also known as re-identification, the second
as attribute disclosure.

Different metrics for measuring the level of privacy guaranteed by SDC have been
proposed over the time. Among them, k-anonymity [11], l-diversity [4], p-sensitive [12]
and t-closeness [3] each of these metrics is able to drive data anonymization with respect
to same aspect, but all of them share the common idea that having more records within
a group associable to an entity enforce privacy protection.

However privacy should be related to the extent some information can be consid-
ered sensitive. For instance, disclosing that incomes are within a given range, can be
considered as much as sensitive than more precise information. This case is known in
literature as similarity attack.

Therefore diversification, obtaining by altering the initial information, does not
necessarily lead to a stronger privacy protection. Even masking or removing a sensitive
attribute could be not enough to avoid attribute disclosure.

The aim of this paper is to show evidence that, even if there is no correlation
between data, it is still possible to find a link, although approximated, between public
and sensitive variables. The simpler this link is, the most likely it can be discovered or
known by intruder, representing thus a threat to no-disclosure of sensitive information.
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3 Data Mining

Domingo [1] establishes the connections between data mining and statistical disclosure.
The problem in attribute disclosure is basically finding an inferential path from released
attributes to sensitive information. Such a path can be due to background knowledge.
Mining rules, able to reconstruct the hidden linkage from given patterns of the other
attributes, can put into evidence that if some knowledge is discovered by intruders, this
can be used to break privacy protections. In addition, similarity is inherently a fuzzy
concept.

Data mining approaches can be seen as a way of knowledge discovery which is
essential for solving problems. Data mining techniques build a model to predict or
classify a problem like an expert. In this sense, data mining techniques may infer
relationships allowing us to study the problem of Information Disclosure.

There exists a huge number of machine learning approaches to cope with the prob-
lem of classifying an example. Some of them, as Neural Networks or Support Vector
Machines (SVM) are very effective and efficient but the model they build is little infor-
mative for the Statistical Disclosure problem (for example, SVM provides the weights
of the support vectors) [2].

On the other hand, Literature reports a considerable number of ID3-based systems
[5] and several fuzzy versions of decision trees [6].

4 Our Contribution

In this paper we use a data mining strategy based on building a decision tree to try to
infer a path from released attributes to sensitive information. In addition we will study
the pros and cons of crisp and fuzzy decision trees to protect sensitive information.

We think that the latter approach has two main advantages: first, the induction
rules provide us with some information about the most sensible attributes, and, second,
as the input information is fuzzified the disclosure risk is supposed to be decreased.
This is due in many cases of practical interest it is not important that precise values
of sensible attributes are disclosed but rather the ranges they belong to, discovering
treats of disclosing sensitive information can be regarded as a classification problem,
where an intruder could be able to associate non-sensitive data to a class of sensitive
information.

To check these hypothesis, first of all it is necessary to identify the variables to
protect. Once selected, we want to measure how strong is this protection if we attack
the data with a data mining rule. Since the data mining system predicts only one class
at once, we must construct one classifier for each variable to protect.

To provide the fuzzy rules, it is used a system based on C4.5 [7], the so-called ARNI,
and its fuzzy extension, the so-called FArni. But despite of using Information gain as
in C4.5, both systems ARNI and FArni use a measure called Imputity Level (IL) for
determining the quality of the rules induced from examples [10]. IL [8] explicitly takes
into account not only the probability of success p, but also the difficulty of attaining
that amount of examples of class C. Later, once the fuzzy decision tree is induced,
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FArni returns compact fuzzy rule sets after applying a pruning process inherited from
ARNI and Fan [9]. FArni is presented in detail in [10].

The experiments will show which system mines simpler rules. The threat of dis-
closing attributes is related to the possibility of being aware or building such links as
background knowledge. Simplicity of rules derives from the number of predicates in-
volved in the antecedents and by interpretability of them. The system which results in
less structured and easier to understand rules will be able to find a higher number of
threats from released data to sensitive information.
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Abstract

The concept of analyticity for complex functions on time scale complex plane
was introduced by Bohner and Guseinov in 2005. They developed completely
delta differentiability, delta analytic functions on products of two time scales, and
Cauchy-Riemann equations for delta case.

In this the paper we study on continuous, discrete and semi-discrete analytic
functions and developed completely nabla differentiability, nabla analytic functions
on products of two time scales, and Cauchy-Riemann equations for nabla case.

1 Introduction

Gusein Sh. Guseinov and Martin Bohner gave the differential calculus, integral calculus
and developed line integration along time scale curves [2, 3, 7] . They also developed
the concept of analytic functions on Time Scales in [3].
The study of analytic functions on Z2 has a history of more than sixty years. The
pioneer in that field is Rufus Isaacs [10], who introduced two difference equations, both
of which are discrete counterparts of the Cauchy-Riemann equation in one complex
variable.

The discrete analogues of analytic functions have been called by several names.
Duffin calls them discrete analytic functions [5], Ferrand calls them preholomorphic
functions [6], and Isaacs calls them monodiffric functions [10]. We use the definition
given by Isaacs.

2 Discrete Analytic Functions

Definition 2.1 A complex-valued function f defined on a subset A of Z + iZ is said
to be holomorphic in the sense of Isaacs or monodiffric (discrete analytic) of the first
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kind if the equation
f(z + 1)− f(z)

1
=

f(z + i)− f(z)

i
(1)

holds for all z ∈ A such that also z + 1 and z + i belong to A.

It should be noted that this definition is not the one used by Duffin or Ferrand in their
works on discrete analytic functions.

In [10] Isaacs defined also monodiffric functions of the second kind, in which the
condition

f(z0 + 1 + i)− f(z0)

1 + i
=

f(z0 + i)− f(z0 + 1)

i− 1
(2)

is required instead of (1).

Here, we propose a new kind of monodiffric function which we call backward monod-
iffric function. To avoid confusion we call the monodiffric function of first kind as
forward monodiffric function.

Definition 2.2 A complex-valued function f defined on a subset A of Z + iZ is said
to be backward monodiffric if the equation

f(z)− f(z − 1)

1
=

f(z)− f(z − i)

i
(3)

holds for all z ∈ A such that also z − 1 and z − i belong to A.

There are many articals which concern discrete analogues for analytic functions by
Duffin and Isaacs. In each of these, either a discrete analogue to the Cauchy-Riemann
equations or in the case of Ferrand, a discrete version of Morera’s theorem is used to
define discrete analytic functions (as (1) and (2)).

3 Semi-Discrete Analytic Functions

Semi-discrete analytic functions are single-valued functions of one continuous and one
discrete variable defined on a semi-lattice, a uniformly spaced sequence of lines parallel
to the real axis.
The appropriate semi-discrete analogues of analytic functions are defined in [12] from
the classic Cauchy-Riemann equations on replacing the y-derivative by either a non-
symmetric difference

∂f(z)

∂x
= [f(z + ih)− f(z)]/ih, z = x+ ikh, (4)

or a symmetric difference

∂f(z)

∂x
= [f(z + ih/2)− f(z − ih/2)]/ih, z = x+ ikh/2. (5)
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Definition 3.1 Semi-discrete functions which satisfy (4) or (5) are called, respectively,
semi-discrete analytic functions of the first, second kind.

We study the semi-discrete analytic functions of the first kind since we propose
the backward version of semi-discrete analytic functions, to avoid confusion we call the
first kind, forward semi-discrete analytic functions.

Definition 3.2 The function defined on R+ ihZ that satisfies the condition

∂f(z)

∂x
= [f(z)− f(z − ih)]/ih, z = x+ ikh, (6)

is called backward semi-discrete analytic function.

Let f(z) = u(x, y) + iv(x, y) be semi-discrete analytic function on D ⊂ R + ihZ,
where u and v are real valued semi-discrete functions, equating real and imaginary
parts of (4) and (5) respectively yields the semi-discrete Cauchy-Riemann equations.
For Type I

∂u(x, y)

∂x
=

1

h
[v(x, y + h)− v(x, y)],

∂v(x, y)

∂x
=

1

h
[u(x, y)− u(x, y + h)],

and for Type II
∂u(x, y)

∂x
=

1

h
[v(x, y +

h

2
)− v(x, y − 1

2
)],

∂v(x, y)

∂x
=

1

h
[u(x, y − h

2
)− u(x, y +

h

2
)].

Helmbold [8] considers functions on a semi-lattice which satisfies the following
semi-discrete analogue of Laplace’s equation:

d2u(x, k)

dx2
+ [u(x, k + 1)− 2u(x, k) + u(x, k − 1)] = 0. (7)

He calls this function semi-discrete harmonic.

Let us introduce following operators on D which are defined by Kurowski in [12].

(a) ∆1f(z) = f(z + ih)− f(z),

(b) ∆2f(z) = f(z + ih/2)− f(z − ih/2),

(c) ∆n+1
j = ∆j [∆

n
j f(z)], n ≥ 1,

(d) ∇jf(z) =
∂2f(z)
∂x2 +∆2

jf(z),

(e) 2Sjf(z) =
∂f(z)
∂x − i

h∆jf(z),

(f) 2S̄jf(z) =
∂f(z)
∂x + i

h∆jf(z),
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(g) 2S̄Bf(z) =
∂f(z)
∂x + i

h∆1f(z − ih).

Since
4Sj [S̄j(f)] = 4S̄j [Sj(f)] = ∇j(f),

if f(z) is semi-discrete analytic on D, then ∇j(f) = 0 for all z ∈ D0 and consequently

∇j(u) = ∇j(v) = 0.

Semi-discrete functions g such that ∇j(g) = 0 are called semi-discrete harmonic func-
tions of the first or second kind. The semi-discrete functions of the second kind are
the semi-discrete harmonic functions considered by Helmbold [8], see equation (7), who
called such functions 1/2-harmonic.

4 Functions of Two Real Time Scale Variables

Let T1 and T2 be time scales. Let us set T1 × T2 = {(x, y) : x ∈ T1, y ∈ T2}. The set
T1 × T2 is a complete metric space with the metric (distance) d defined by

d((x, y), (x′, y′)) =
√
(x− x′)2 + (y − y′)2 for (x, y), (x′, y′) ∈ T1 × T2.

For a given δ > 0, the δ-neighborhood Uδ(x0, y0) of a given point (x0, y0) ∈ T1 × T2 is
the set of all points (x, y) ∈ T1 × T2 such that d((x0, y0), (x, y)) < δ.

Let σ1 and σ2 be the forward jump operators for T1 and T2, respectively. Further,
let ρ1 and ρ2 be the backward jump operators for T1 and T2, respectively. Let u : T1 ×
T2 → R be a function. The first order delta derivatives of u at a point (x0, y0) ∈ Tκ

1×Tκ
2

are defined to be

∂u(x0, y0)

∆1x
= lim

x→x0,x6=σ1(x0)

u(σ1(x0), y0)− u(x, y0)

σ1(x0)− x

and
∂u(x0, y0)

∆2y
= lim

y→y0,y 6=σ2(y0)

u(x0, σ2(y0))− u(x0, y)

σ2(y0)− y
.

Similarly, we define nabla derivatives of u at a point (x0, y0) ∈ T1κ × T2κ as

∂u(x0, y0)

∇1x
= lim

x→x0,x6=ρ1(x0)

u(x, y0)− u(ρ1(x0), y0)

x− ρ1(x0)

and
∂u(x0, y0)

∇2y
= lim

y→y0,y 6=ρ2(y0)

u(x0, y)− u(x0, ρ2(y0))

y − ρ2(y0)
.

5 Completely Delta Differentiable Functions

Definition 5.1 A function u : T→ R is called completely delta differentiable at a point
x0 ∈ Tκ if there exists a number A such that

u(x0)− u(x) = A(x0 − x) + α(x0 − x) for all x ∈ Uδ(x0) (8)
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and
u(σ(x0))− u(x) = A[σ(x0)− x] + β[σ(x0)− x] for all x ∈ Uδ(x0) (9)

where α = α(x0, x) and β = β(x0, x) are equal zero at x = x0 and

lim
x→x0

α(x0, x) = 0 and lim
x→x0

β(x0, x) = 0.

Now we can give the definition for two variable case:

Definition 5.2 We say that a function u : T1 × T2 → R is completely delta differ-
entiable at a point (x0, y0) ∈ T κ

1 × T κ
2 if there exist numbers A1 and A2 independent

of (x, y) ∈ T1 × T2 (but, in general, dependent on (x0, y0)) such that

u(x0, y0)− u(x, y) = A1(x0 − x) +A2(y0 − y) + α1(x0 − x) + α2(y0 − y), (10)

u(σ1(x0), y0)−u(x, y) = A1[σ1(x0)−x]+A2(y0−y)+β11[σ1(x0)−x]+β12(y0−y), (11)

u(x0, σ2(y0))−u(x, y) = A1(x0−x)+A2[σ2(y0)−y]+β21[x0−x]+β22[σ2(y0)−y] (12)

for all (x, y) ∈ Uδ(x0, y0), where δ > 0 is sufficiently small, αj = αj(x0, y0;x, y) and
βjk = βjk(x0, y0;x, y) are defined on Uδ(x0, y0) such that they are equal to zero at
(x, y) = (x0, y0) and

lim
(x,y)→(x0,y0)

αj(x0, y0;x, y) = lim
(x,y)→(x0,y0)

βjk(x0, y0;x, y) = 0 for j, k ∈ {1, 2}

Note that in case T1 = T2 = Z, the neighborhood Uδ(x0, y0) contains the single point
(x0, y0) for δ < 1. Therefore, in the case, the condition (10) disappears, while the
conditions (11) and (12) hold with βjk = 0 and with

A1 = u(x0 + 1, y0)− u(x0, y0) =
∂u(x0, y0)

∆1x
(13)

and

A2 = u(x0, y0 + 1)− u(x0, y0) =
∂u(x0, y0)

∆2y
. (14)

Lemma 5.3 Let the function u : T1 × T2 → R be completely delta differentiable at the
point (x0, y0) ∈ T κ

1 ×T κ
2 , then it is continuous at that point and has at (x0, y0) the first

order partial delta derivatives equal to A1 and A2, namely

∂u(x0, y0)

∆1x
= A1 and

∂u(x0, y0)

∆2y
= A2.

Proof. The continuity of u follows, in fact, from any one of (10), (11) and (12). Indeed
(10) obviously yields the continuity of u at (x0, y0). Let now (11) holds. In the case
σ1(x0) = x0, (11) immediately gives the continuity of u at (x0, y0). If σ1(x0) > x0,
except of u(x, y), each term in (11) has a limit as (x, y) → (x0, y0). Therefore u(x, y)
also has a limit as (x, y) → (x0, y0), and we have

u(σ1(x0), y0)− lim
(x,y)→(x0,y0)

u(x, y) = A1[σ1(x0)− x0].
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Further, letting (x, y) = (x0, y0) in (11), we get

u(σ1(x0), y0)− u(x0, y0) = A1[σ1(x0)− x0].

Comparing the last two relations gives

lim
(x,y)→(x0,y0)

u(x, y) = u(x0, y0)

which shows the continuity of u at (x0, y0). Next, setting y = y0 in (11) and dividing

both sides by σ1(x0) − x and passing to limit as x → x0 we get ∂u(x0,y0)
∆1x

= A1. By

similar approach ∂u(x0,y0)
∆2y

= A2 can be obtained.

6 Completely Nabla Differentiable Functions

Before the definition of completely nabla differentiability on products of two time scales,
we first give the definition for one-variable case.

Definition 6.1 A function u : T → R is called completely nabla differentiable at a
point x0 ∈ Tκ if there exists a number B such that

u(x)− u(x0) = B(x− x0) + α(x− x0) for all x ∈ Uδ(x0) (15)

and

u(x)− u(ρ(x0)) = B[x− ρ(x0)] + β[x− ρ(x0)] for all x ∈ Uδ(x0) (16)

where α = α(x0, x) and β = β(x0, x) are equal zero at x = x0 and

lim
x→x0

α(x0, x) = 0 and lim
x→x0

β(x0, x) = 0.

Now we can give the definition for two variable case:

Definition 6.2 We say that a function u : T1 ×T2 → R is completely nabla differ-
entiable at a point (x0, y0) ∈ T1κ ×T2κ if there exist numbers B1 and B2 independent
of (x, y) ∈ T1 × T2 (but, in general, dependent on (x0, y0)) such that

u(x, y)− u(x0, y0) = B1(x− x0) +B2(y − y0) + α1(x− x0) + α2(y − y0), (17)

u(x, y)−u(ρ1(x0), y0) = B1[x−ρ1(x0)]+B2(y−y0)+β11[x−ρ1(x0)]+β12(y−y0), (18)

u(x, y)−u(x0, ρ2(y0)) = B1(x−x0)+B2[y−ρ2(y0)]+β21[x−x0]+β22[y−ρ2(y0)] (19)

for all (x, y) ∈ Uδ(x0, y0), where δ > 0 is sufficiently small, αj = αj(x0, y0;x, y) and
βjk = βjk(x0, y0;x, y) are defined on Uδ(x0, y0) such that they are equal to zero at
(x, y) = (x0, y0) and

lim
(x,y)→(x0,y0)

αj(x0, y0;x, y) = lim
(x,y)→(x0,y0)

βjk(x0, y0;x, y) = 0 for j, k ∈ {1, 2}
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With T1 = T2 = Z, similarly we have

B1 = u(x0, y0)− u(x0 − 1, y0) =
∂u(x0, y0)

∇1x

and

B2 = u(x0, y0)− u(x0, y0 − 1) =
∂u(x0, y0)

∇2y
.

This results and (13) and (14) show that each function u : Z × Z → R is completely
delta and nabla differentiable at every point.

Lemma 6.3 Let the function u : T1 × T2 → R be completely nabla differentiable at the
point (x0, y0) ∈ T1κ × T2κ, then it is continuous at that point and has at (x0, y0) the
first order partial nabla derivatives equal to B1 and B2, namely

∂u(x0, y0)

∇1x
= B1 and

∂u(x0, y0)

∇2y
= B2.

Proof. The proof is similar with the Lemma 5.3.

Theorem 6.4 If the function u : T1 × T2 → R is continuous and have the first or-
der partial nabla derivatives ∂u(x,y)

∇1x
, ∂u(x,y)

∇2y
in some δ-neighborhood Uδ(x0, y0) of the

point (x0, y0) ∈ T1κ × T2κ and if these derivatives are continuous at (x0, y0), then u is
completely ∇-differentiable at (x0, y0).

To prove this theorem we first give the mean value theorem for one-variable case.

Theorem 6.5 Let a and b be two arbitrary points in T and let us set α = min{a, b}
and β = max{a, b}. Let, further, f be a continuous function on [α, β] that has a nabla
derivative at each point of (α, β]. Then there exist ξ, ξ′ ∈ (α, β] such that

f∇(ξ)(a− b) ≤ f(a)− f(b) ≤ f∇(ξ′)(a− b).

Proof. (for Theorem 6.4) For better clearness of the proof we first consider the
single variable case. So, let u : T→ R be a function that has a nabla derivative u∇(x)
in some δ-neighbourhood Uδ(x0) of the point x0 ∈ Tκ (note that, in contrast to the
multivariable case, in the single variable case existence of the derivative at a point
implies continuity of the function at that point). The relation (16) with B = u∇(x0)
follows immediately from the definition of the nabla derivative

u(x)− u(ρ(x0)) = u∇(x0)[x− ρ(x0)] + β[x− ρ(x0)], (20)

where β = β(x0, x) and β → 0 as x → x0. In order to prove (15), we consider all
possible cases separately;

(i) If the point x0 is isolated in T, then (15) is satisfied independent of B and α, since
in this case Uδ(x0) consists of the single point x0 for sufficiently small δ > 0.
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(ii) Let x0 be left-dense. Regardless whether x0 is right-scattered or right-dense, we
have in this case ρ(x0) = x0 and (20) coincides with (15).

(iii) Finally, let x0 be right-dense and left-scattered. Then for sufficiently small δ > 0,
any point x ∈ Uδ(x0) − {x0} must satisfy x > x0. Applying Theorem 6.5, we
obtain

u∇(ξ)(x− x0) ≤ u(x)− u(x0) ≤ u∇(ξ′)(x− x0),

where ξ, ξ′ ∈ (x, x0]. Since ξ → x0 and ξ′ → x0 as x → x0, by the continuity of
the nabla derivative, we get

u∇(x0) = lim
x→x0

u(x)− u(x0)

x− x0
.

Therefore
u(x)− u(x0)

x− x0
= u∇(x0) + α,

where α = α(x0, x)and α → 0 as x → x0. Consequently, in the considered case
we obtain (15) with B = u∇(x0) as well.

Now we consider the two-variable case as it is stated in the theorem. To prove (17),
we take the difference

u(x, y)− u(x0, y0) = [u(x, y)− u(x, y0)] + [u(x, y0)− u(x0, y0)]. (21)

By the one-variable case considered above,for (x, y0) ∈ Uδ(x0, y0) we have

u(x, y0)− u(x0, y0) =
∂u(x0, y0)

∇1x
(x− x0) + α1(x− x0) (22)

where α1 = α1(x0, y0;x) and α1 → 0 as x → x0. Further, applying the one-variable
mean value result, Theorem 6.5, for fixed x and variable y, we have

∂u(x, ξ)

∇2y
(y − y0) ≤ u(x, y)− u(x, y0) ≤ ∂u(x, ξ′)

∇2y
(y − y0), (23)

where ξ, ξ′ ∈ (α, β] and α = min{y0, y}, β = max{y0, y}. Since ξ → y0 and ξ′ → y0 as
y → y0, by the continuity of the partial derivatives at (x0, y0) we have

lim
(x,y)→(x0,y0)

∂u(x, ξ′)
∇2y

= lim
(x,y)→(x0,y0)

∂u(x, ξ)

∇2y
=

∂u(x0, y0)

∇2y
.

Therefore from (23) we obtain

u(x, y)− u(x, y0) =
∂u(x0, y0)

∇2y
(y − y0) + α2(y − y0), (24)

where α2 = α2(x0, y0;x, y) and α2 → 0 as (x, y) → (x0, y0). Substituting (22) and (24)

in (21), we get a relation of the form (17) with B1 = ∂u(x0,y0)
∇1x

and B2 = ∂u(x0,y0)
∇2y

. To
prove (18) we take the difference

u(x, y)− u(ρ1(x0), y0) = [u(x, y)− u(x, y0)] + [u(x, y0)− u(ρ1(x0), y0)]. (25)
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By the definition of the partial nabla derivative we have

u(x, y0)− u(ρ1(x0), y0) =
∂u(x0, y0)

∇1x
[x− ρ1(x0)] + β11[x− ρ1(x0)], (26)

where β11 = β11(x0, y0;x) and β11 → 0 as x → x0. Now substituting (26) and (24) into

(25), we obtain a relation of the form (18) with B1 =
∂u(x0,y0)

∇1x
and B2 =

∂u(x0,y0)
∇2y

. The
equality (19) can be proved similarly by considering the difference

u(x, y)− u(x0, ρ2(y0)) = [u(x, y)− u(x0, y)] + [u(x0, y)− u(x0, ρ2(y0))].

7 Cauchy-Riemann Equations on Time Scale Complex Plane

For given time scales T1 and T2, let us set

T1 + iT2 = {z = x+ iy : x ∈ T1, y ∈ T2}, (27)

where i =
√−1 is the imaginary unit. The set T1 + iT2 is called the time scale

complex plane and is a complete metric space with the metric d defined by

d(z, z′) = |z − z′| =
√
(x− x′)2 + (y − y′)2 (28)

where z = x+ iy, z′ = x′ + iy′ ∈ T1 + iT2.
Any function f : T1 + iT2 → C can be represented in the form

f(z) = u(x, y) + iv(x, y) for z = x+ iy ∈ T1 + iT2,

where u : T1 × T2 → R is the real part of f and v : T1 × T2 → R is the imaginary part
of f .
Let σ1 and σ2 be the forward jump operators for T1 and T2, respectively. For z =
x+ iy ∈ T1 + iT2, let us set

zσ1 = σ1(x) + iy and zσ2 = x+ iσ2(y).

Let ρ1 and ρ2 be the backward jump operators for T1 and T2, respectively. For z =
x+ iy ∈ T1 + iT2, we set

zρ1 = ρ1(x) + iy and zρ2 = x+ iρ2(y).

8 Delta Analytic Functions

Definition 8.1 A complex-valued function f : T1 + iT2 → C is delta differentiable
(or delta analytic) at a point z0 = x0 + iy0 ∈ T κ

1 + iT κ
2 if there exists a complex

number A (depending in general on z0) such that

f(z0)− f(z) = A(z0 − z) + α(z0 − z) (29)
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f(zσ1
0 )− f(z) = A(zσ1

0 − z) + β(zσ1
0 − z) (30)

f(zσ2
0 )− f(z) = A(zσ2

0 − z) + γ(zσ2
0 − z) (31)

for all z ∈ Uδ(z0), where Uδ(z0) is a δ-neighborhood of z0 in T1 + iT2, α = α(z0, z),
β = β(z0, z) and γ = γ(z0, z) are defined for z ∈ Uδ(z0), they are equal to zero at
z = z0, and

lim
z→z0

α(z0, z) = lim
z→z0

β(z0, z) = lim
z→z0

γ(z0, z) = 0.

Then the number A is called the delta derivative (or ∆-derivative) of f at z0 and
is denoted by f∆(z0).

Theorem 8.2 Let the function f : T1 + iT2 → C have the form

f(z) = u(x, y) + iv(x, y) for z = x+ iy ∈ T1 + iT2.

Then a necessary and sufficient condition for f to be ∆-differentiable (as a function of
the complex variable z) at the point z0 = x0 + iy0 ∈ T κ

1 + iT κ
2 is that the functions u

and v be completely ∆-differentiable (as a function of the two real variables x ∈ T1 and
y ∈ T2) at the point (x0, y0) and satisfied the Cauchy-Riemann equations

∂u

∆1x
=

∂v

∆2y
and

∂u

∆2y
= − ∂v

∆1x
(32)

at (x0, y0). If these equations are satisfied, then f∆(z0) can be represented in any of
the forms

f∆(z0) =
∂u

∆1x
+ i

∂v

∆1x
=

∂v

∆2y
− i

∂u

∆2y
=

∂u

∆1x
− i

∂u

∆2y
=

∂v

∆2y
+ i

∂v

∆1x
, (33)

where the partial derivatives are evaluated at (x0, y0).

Proof. First we show necessity. Assume that f is ∆-differentiable at z0 = x0+ iy0 with
f∆(z0) = A. Then (29)-(31) are satisfied. Letting

f = u+ iv, A = A1 + iA2, α = α1 + iα2, β = β1 + iβ2, γ = γ1 + iγ2,

we get from (29)-(31), equating the real and imaginary parts of both sides in each of
these equations,





u(x0, y0)− u(x, y) = A1(x0 − x)−A2(y0 − y) + α1(x0 − x)− α2(y0 − y)
u(σ1(x0), y0)− u(x, y) = A1[σ1(x0)− x]−A2(y0 − y) + β1[σ1(x0)− x]− β2(y0 − y)
u(x0, σ2(y0))− u(x, y) = A1(x0 − x)−A2[σ2(y0)− y] + γ1(x0 − x)− γ2[σ2(y0)− y]

and




v(x0, y0)− v(x, y) = A2(x0 − x)−A1(y0 − y) + α2(x0 − x)− α1(y0 − y)
v(σ1(x0), y0)− v(x, y) = A2[σ1(x0)− x]−A1(y0 − y) + β2[σ1(x0)− x]− β1(y0 − y)
v(x0, σ2(y0))− v(x, y) = A2(x0 − x)−A1[σ2(y0)− y] + γ2(x0 − x)− γ1[σ2(y0)− y]
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Hence, taking into account that αj → 0, βj → 0, and γj → 0 as (x, y) → (x0, y0), we
get that the functions u and v are completely ∆-differentiable (as functions of the two
real variables x ∈ T1 and y ∈ T2) and that

A1 =
∂u(x0, y0)

∆1x
, −A2 =

∂u(x0, y0)

∆2y
, A2 =

∂v(x0, y0)

∆1x
, A1 =

∂v(x0, y0)

∆2y
.

Therefore the Cauchy-Riemann equations (32) hold and we have the formulas (33).
Now we show sufficiency. Assume that the functions u and v, where f = u + iv,

are completely ∆-differentiable at the point (x0, y0) and that the Cauchy-Riemann
equations (32) hold. Then we have




u(x0, y0)− u(x, y) = A′
1(x0 − x)−A′

2(y0 − y) + α′
1(x0 − x)− α′

2(y0 − y)
u(σ1(x0), y0)− u(x, y) = A′

1[σ1(x0)− x]−A′
2(y0 − y) + β′

11[σ1(x0)− x]− β′
12(y0 − y)

u(x0, σ2(y0))− u(x, y) = A′
1(x0 − x)−A′

2[σ2(y0)− y] + β′
21(x0 − x)− β′

22[σ2(y0)− y]

and



v(x0, y0)− v(x, y) = A′′
1(x0 − x)−A′′

2(y0 − y) + α′′
1(x0 − x)− α′′

2(y0 − y)
v(σ1(x0), y0)− v(x, y) = A′′

1[σ1(x0)− x]−A′′
2(y0 − y) + β′′

11[σ1(x0)− x]− β′′
12(y0 − y)

v(x0, σ2(y0))− v(x, y) = A′′
1(x0 − x)−A′′

2[σ2(y0)− y] + β′′
21(x0 − x)− β′′

22[σ2(y0)− y]

where α′
j , β

′
ij and α′′

j , β
′′
ij tend to zero as (x, y) → (x0, y0) and

A′
1 =

∂u(x0, y0)

∆1x
=

∂v(x0, y0)

∆2y
= A′′

2 =: A1

and

−A′
2 = −∂u(x0, y0)

∆2y
=

∂v(x0, y0)

∆1x
= A′′

1 =: A2.

Therefore
f(z0)− f(z) = (A1 + iA2)(z0 − z) + α(z0 − z),

f(zσ1
0 )− f(z) = (A1 + iA2)(z

σ1
0 − z) + β(zσ1

0 − z),

f(zσ2
0 )− f(z) = (A1 + iA2)(z

σ2
0 − z) + γ(zσ2

0 − z),

where

α = (α′
1 + iα′′

1)
x0 − x

z0 − z
+ (α′

2 + iα′′
2)
y0 − y

z0 − z
,

β = (β′
11 + iβ′′

11)
σ1(x0)− x

zσ1
0 − z

+ (β′
12 + iβ′′

12)
y0 − y

zσ1
0 − z

,

γ = (β′
21 + iβ′′

21)
x0 − x

zσ2
0 − z

+ (β′
22 + iβ′′

22)
σ2(y0)− y

zσ2
0 − z

.

Since

|α| ≤ |α′
1 + iα′′

1|
∣∣∣∣
x0 − x

z0 − z

∣∣∣∣+ |α′
2 + iα′′

2|
∣∣∣∣
y0 − y

z0 − z

∣∣∣∣
≤ |α′

1 + iα′′
1|+ |α′

2 + iα′′
2| ≤ |α′

1|+ |α′′
1|+ |α′

2|+ |α′′
2|,

we have α → 0 as z → z0. Similarly, β → 0 and γ → 0 as z → z0. Consequently, f is
∆-differentiable at z0 and f∆(z0) = A1 + iA2.
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Remark 8.3 (See [2]) If the functions u, v : T1×T2 → R are continuous and have the

first order partial delta derivatives ∂u(x,y)
∆1x

, ∂u(x,y)
∆2y

, ∂v(x,y)
∆1x

, ∂v(x,y)
∆2y

in some δ-neighborhood
Uδ(x0, y0) of the point (x0, y0) ∈ T κ

1 × T κ
2 and if these derivatives are continuous at

(x0, y0), then u and v are completely ∆-differentiable at (x0, y0).
Therefore in this case, if in addition the Cauchy-Riemann equations (32) are satisfied,
then f(z) = u(x, y) + iv(x, y) is ∆-differentiable at z0 = x0 + iy0.

Example 8.4 (i) The function f(z) =constant on T1 + iT2 is ∆-analytic everywhere
and f∆(z) = 0.
(ii) The function f(z) = z on T1 + iT2 is ∆-analytic everywhere and f∆(z) = 1.
(iii) Consider the function

f(z) = z2 = (x+ iy)2 = x2 − y2 + i2xy on T1 + iT2.

Hence u(x, y) = x2 − y2, v(x, y) = 2xy, and

∂u(x, y)

∆1x
= x+ σ1(x),

∂u(x, y)

∆2y
= −y − σ2(y),

∂v(x, y)

∆1x
= 2y,

∂v(x, y)

∆2y
= 2x.

Therefore the Cauchy-Riemann equations become

x+ σ1(x) = 2x and − y − σ2(y) = −2y,

which hold simultaneously if and only if σ1(x) = x and σ2(y) = y simultaneously. It
follows that the function f(z) = z2 is not ∆-analytic at each point of Z + iZ. So, the
product of two ∆-analytic functions need not be ∆-analytic.
(iv) The function f(z) = x2 − y2 + i(2xy + x+ y) is ∆-analytic everywhere on Z+ iZ.
Since, Cauchy-Riemann equations are satisfied:

∂u(x, y)

∆1x
= x+ σ1(x) = 2x+ 1,

∂u(x, y)

∆2y
= −y − σ2(y) = −2y − 1,

∂v(x, y)

∆1x
= 2y + 1,

∂v(x, y)

∆2y
= 2x+ 1.

This function is not analytic anywhere on R+ iR = C.
(v) The function f(z) = x2 − y2 + i3xy is ∆-analytic everywhere on T + iT where
T = {2n : n ∈ Z} ∪ {0}.
Since, Cauchy-Riemann equations are satisfied:

∂u(x, y)

∆1x
= x+ σ1(x) = 3x =

∂v(x, y)

∆2y
,

∂u(x, y)

∆2y
= −y − σ2(y) = −3y = −∂v(x, y)

∆1x
.

Remark 8.5 (i) If T1 = T2 = R, then T1 + iT2 = R + iR = C is the usual complex
plane and the three condition (29)-(31) of Definition 8.1 coincide and reduce to the
classical definition of analyticity (differentiability) of functions of a complex variable.
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(ii) Let T1 = T2 = Z. Then T1 + iT2 = Z + iZ = Z[i] is the set of Gaussian integers.
The neighborhood Uδ(z0) of z0 contains the single point z0 for δ < 1. Therefore, in this
case, the condition (29) disappears, while the conditions (30) and (31) reduce to the
single condition

f(z0 + 1)− f(z0)

1
=

f(z0 + i)− f(z0)

i
(34)

with f∆(z0) equal to the left (and hence also to the right) hand side of (34). The
condition (34) coincides with the condition of forward monodiffric functions in (1).
(iii) If T1 = R and T2 = hZ = {hk : k ∈ Z} where h > 0, then (29) and (30) coincide
and in any of them, dividing both sides by (z0−z) where z = x+ikh and z0 = x0+ik0h,
and taking limit as z → z0 (which just means x → x0), with k = k0 we have

lim
x→x0

f(x0 + ik0h)− f(x+ ik0h)

x0 − x
= A.

Similarly by (31) we get
f(z0 + ih)− f(z)

ih
= A.

Equating this two results gives the condition of forward semi-discrete analytic functions:

∂f(z)

∂x
= [f(z + ih)− f(z)]/ih, z = x+ ikh.

Remark 8.6 We can combine Cauchy-Riemann equations for delta analytic functions
in one complex equation as follows:

∂f

∆1x
=

1

i

∂f

∆2y
(35)

(i) If T1 = T2 = R, then we have

∂f

∂x
=

1

i

∂f

∂y
∂u

∂x
+ i

∂v

∂x
=

1

i

(
∂u

∂y
+ i

∂v

∂y

)

Equating real and imaginary parts, we get the usual Cauchy-Riemann equations:

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

(ii) If we take T1 = T2 = Z then the equation (35) becomes

∆xf =
1

i
∆yf

which is exactly the condition for forward monodiffric functions

f(z + 1)− f(z)

1
=

f(z + i)− f(z)

i
.

(iii) With T1 = R and T2 = hZ, the equation (35) becomes

∂f

∂x
=

1

i

f(z + ih)− f(z)

h
.

which is the equation for forward semi-discrete analytic functions.
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Abstract

This paper shows the application of generalized finite difference method (GFDM)
to the problem of seismic wave propagation. We investigated stability and star dis-
persion in 2-D.
We obtained indepedent stability conditions and star dispersion for the P and S
waves. Also, we are obtained P and S-wave group velocity..

Key words: meshless methods, generalized finite difference method, moving least
squares, seismic waves, instructions

MSC 2000: 65M06, 65M12, 74S20, 80M20

1 Introduction

The Generalized finite difference method (GFDM) is evolved from classical finite differ-
ence method (FDM). GFDM can be applied over general or irregular clouds of points.
The basic idea is to use moving least squares (MLS) approximation to obtain explicit
difference formulae which can be included in partial differential equation to establish,
together with an explicit method, a recursive relationship. The authors have made
many contributions to the development of this method [1], [2], [3], [4] and [5].
In this paper, this meshless method is applied to seismic wave propagation . Stability
conditions and grid dispersion relations in 2-D we derived.
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2 Explicit Generalized Differences Schemes for the seis-

mic waves propagation problem for a perfectly elastic,

homogeneous and isotropic medium

2.1 Equation of motion

The equation of motion and Hooke’s law for a perfectly elastic, homogeneous, isotropic
medium in 2-D are






∂2U(x, y, t)

∂t2
= α2 ∂2U(x, y, t)

∂x2
+ β2 ∂2U(x, y, t)

∂y2
+ (α2 − β2)

∂2V (x, y, t)

∂x∂y
∂2V (x, y, t)

∂t2
= β2 ∂2V (x, y, t)

∂x2
+ α2 ∂2V (x, y, t)

∂y2
+ (α2 − β2)

∂2U(x, y, t)

∂x∂y

(1)

with the initial conditions

U(x, y, 0) = f1(x, y);V (x, y, 0) = f2(x, y)

∂U(x, y, 0)

∂t
= f3(x, y);

∂V (x, y, 0)

∂t
= f4(x, y) (2)

and the boundary condition

{
a1U(x0, y0, t) + b1

∂U(x0,y0,t)
∂n

= g1(t)

a2V (x0, y0, t) + b2
∂V (x0,y0,t)

∂n
= g2(t)

en Γ (3)

where f1(x, y), f2(x, y), f3(x, y), f4(x, y), g1(t) y g2(t) are showed functions,

α =

√
λ + 2µ

ρ
, β =

√
µ

ρ

ρ is the density, λ and µ are Lamé elastic coefficients and Γ is the boundary of Ω.

2.2 Explicit Generalized Differences Schemes

The aim is to obtain explicit linear expressions for the approximation of partial deriva-
tives in the points of the domain. First of all, an irregular grid or cloud of points
is generated in the domain Ω ∪ Γ. On defining the central node with a set of nodes
surrounding that node, the star then refers to a group of established nodes in relation
to a central node. Every node in the domain has an associated star assigned to it.
Following ([5]), the explicit difference formulae are obtained,






∂2U(x0,y0,n△t)
∂t2

=
un+1

0
−2un

0
+un−1

0

(△t)2

∂2V (x0,y0,n△t)
∂t2

=
v

n+1

0
−2vn

0
+v

n−1

0

(△t)2

(4)
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Figure 1: Irregular star (9 nodes) Figure 2: the wavenumber ~
k

∂2U(x0, y0, n△t)

∂x2
= −m0u

n
0 +

N∑

j=1

mju
n
j ;

∂2V (x0, y0, n△t)

∂x2
= −m0v

n
0 +

N∑

j=1

mjv
n
j

∂2U(x0, y0, n△t)

∂y2
= −η0u

n
0 +

N∑

j=1

ηju
n
j ;

∂2V (x0, y0, n△t)

∂y2
= −η0v

n
0 +

N∑

j=1

ηjv
n
j

∂2U(x0, y0, n△t)

∂x∂y
= −ζ0u

n
0 +

N∑

j=1

ζju
n
j ;

∂2V (x0, y0, n△t)

∂x∂y
= −ζ0v

n
0 +

N∑

j=1

ζjv
n
j (5)

where uj(j = 0, · · · ,N) are the second order approximations of the variables in the star
nodes. Throughout subindex 0 refers to the central node. The replacement in equation
1 of the explicit expressions obtained for the partial derivatives leads to






un+1
0 = 2un

0 − un−1
0 + (△t)2[α2(−m0u

n
0 +

N∑

1

mju
n
j ) + β2(−η0u

n
0 +

N∑

1

ηju
n
j )

+(α2 − β2)(−ζ0v
n
0 +

N∑

1

ζjv
n
j )]

vn+1
0 = 2vn

0 − vn−1
0 + (△t)2[β2(−m0v

n
0 +

N∑

1

mjv
n
j ) + α2(−η0v

n
0 +

N∑

1

ηjv
n
j )

+(α2 − β2)(−ζ0u
n
0 +

N∑

1

ζju
n
j )]

(6)

3 Stability Criterion

For the stability analysis the first idea is to make a harmonic decomposition of the
approximated solution at grid points and at a given time level (n). Then we can write
the finite difference approximation in the nodes of the star at time n, as

un
0 = AξneikT x0 ; un

j = AξneikuT xj ; vn
0 = BξneikT x0 ; vn

j = BξneikT xj (7)
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where: ξ is the amplification factor,

xj = x0 + hj; ξ = e−iw△t

k (fig. 2) is the column vector of the wave numbers

k =

{
kx

ky

}

= k

{
cos ϕ
sin ϕ

}

Then we can write the stability condition as: ‖ξ‖ ≤ 1.

Including 7 into 6, cancelation of ξneiνT x0 , leads to

Aξ = 2A −
A

ξ
+ (△t)2[α2(−Am0 + A

N∑

1

mje
ikT hj ) + β2(−Aη0 + A

N∑

1

ηje
ikT hj )+

(α2 − β2)(−Bζ0 + B
N∑

1

ζje
ikT hj )]

Bξ = 2B −
B

ξ
+ (△t)2[β2(−Bm0 + B

N∑

1

mje
ikT hj ) + α2(−Bη0 + B

N∑

1

ηje
ikT hj )+

(α2 − β2)(−Aζ0 + A

N∑

1

ζje
ikT hj )] (8)

where

m0 =

N∑

1

mj; η0 =

N∑

1

ηj ; ζ0 =

N∑

1

ζj (9)

Including 9 into 8, the system of equations is obtained

A[ξ − 2 +
1

ξ
+ (△t)2α2

N∑

1

mj(1 − eikT hj ) + (△t)2β2
N∑

1

ηj(1 − eikT hj )]

+ B(△t)2(α2 − β2)

N∑

1

ζj(1 − eikT hj ) = 0

A(△t)2(α2 − β2)

N∑

1

ζj(1 − eikT hj ) + B[ξ − 2 +
1

ξ
+ (△t)2β2

N∑

1

mj(1 − eikT hj )

+ (△t)2α2
N∑

1

ηj(1 − eikT hj )] = 0 (10)
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If B is obtained from the second equation and is included into the first equation, then

[2 cos w△t − 2 + (△t)2(α2
N∑

1

mj(1 − eikT hj ) + β2
N∑

1

ηj(1 − eikT hj ))]×

[2 cos w△t − 2 + (△t)2(β2
N∑

1

mj(1 − eikT hj ) + α2
N∑

1

ηj(1 − eikT hj ))] =

= (△t)4(α2 − β2)2[

N∑

1

ζj(1 − eikT hj )]2 (11)

Operating, the following conditions are obtained:
Real part

(1 − cos w△t)2 − 2(1 − cos w△t)
(△t)2

4
(α2 + β2)

N∑

1

(mj + ηj)(1 − cos k
T
hj)+

(△t)4

4
[(α2

N∑

1

mj(1 − cos k
T
hj) + β2

N∑

1

ηj(1 − cos k
T
hj))(β

2
N∑

1

mj(1 − cos k
T
hj)

+α2
N∑

1

ηj(1−cos k
T
hj))−(α2

N∑

1

mj sin k
T
hj+β2

N∑

1

ηj sin k
T
hj)(β

2
N∑

1

mj sin k
T
hj

+ α2
N∑

1

ηj sin k
T
hj) − (α2 − β2)2[(

N∑

1

ζj(1 − cos k
T
hj))

2 − (

N∑

1

ζj sin k
T
hj)

2]] = 0

(12)

Imaginary part

2(1 − cos w△t)(α2 + β2)

N∑

1

(mj + ηj) sin k
T
hj − (△t)2[(α2

N∑

1

mj(1 − cos k
T
hj

+ β2
N∑

1

ηj(1 − cos k
T
hj)(β

2
N∑

1

mj sink
T
hj + α2

N∑

1

ηj sin k
T
hj)+

(α2
N∑

1

mj sin k
T
hj + β2

N∑

1

ηj sin k
T
hj)(β

2
N∑

1

mj(1 − cos k
T
hj)+

α2
N∑

1

ηj(1 − cos k
T
hj)) + 2(α2 − β2)2(

N∑

1

ζj(1 − cos k
T
hj)

N∑

1

ζj sink
T
hj] = 0 (13)

Operating with the equations 12 and 13, canceling with conservative criteria, the con-
dition for stability of star is obtained.

△t <

√
4

(α2 + β2)[(|m0| + |η0|) +
√

(m0 + η0)2 + ζ2
0 ]

(14)
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4 Star dispersion

4.1 Star-dispersion relations for the P and S waves

The equation 12 leads to

ω =
1

△t
arccos Φ (15)

where

Φ = 1 −
(△t)2

4
((α2 + β2)(a1 + a3) + ((α2 + β2)2(a1 + a3)

2+

4[(α2 −β2)2(a2
5 − a2

6)+ (α2a2 + β2a4)(β
2a2 + α2a4)− (α2a1 + β2a3)(β

2a1 + α2a3)])

1

2 )
(16)

with

a1 =

N∑

1

mj(1 − cos k
T
hj) ⇒

∂a1

∂k
= a1,k =

N∑

1

mjd sin kd

a2 =

N∑

1

mj sin k
T
hj ⇒

∂a2

∂k
= a2,k =

N∑

1

mjd cos kd

a3 =
N∑

1

ηj(1 − cos k
T
hj) ⇒

∂a3

∂k
= a3,k =

N∑

1

ηjd sin kd

a4 =

N∑

1

ηj sin k
T
hj ⇒

∂a4

∂k
= a4,k =

N∑

1

ηjd cos kd

a5 =
N∑

1

ζj(1 − cos k
T
hj) ⇒

∂a5

∂k
= a5,k =

N∑

1

ζjd sin kd

a6 =

N∑

1

ζj sin k
T
hj ⇒

∂a6

∂k
= a6,k =

N∑

1

ζjd cos kd (17)

and

k
T
hj = k(hjx cos ϕ + hjy sinϕ) = kd

Is known

ω = 2π
cgrid

λgrid
(18)

where cgrid and λgrid are the phase velocity (αgrid or βgrid) and the wavelength (λgrid
P

or λgrid
S ) in the star respectively.

Defining the relations:

s =
2

λgrid
S

√
(r2 + 1)[(|m0| + |η0|) +

√
(m0 + η0)2 + ζ2

0 ]
(19)
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sP =
2

λgrid
P

√
(r2 + 1)[(|m0| + |η0|) +

√
(m0 + η0)2 + ζ2

0 ]
(20)

p =
β△t

√
(r2 + 1)[(|m0| + |η0|) +

√
(m0 + η0)2 + ζ2

0 ]

2
(21)

r =
α

β
(22)

sP =
s

r
(23)

Including the relations 15, 20, 21 and 23 into equation 18, the star-dispersion relations
are obtained:

αgrid

α
=

arccos Φ

2πsp
(24)

βgrid

β
=

arccos Φ

2πsp
(25)

4.2 Star-dispersion for group velocity

By definition the group velocity is the derivative of w, 15, in respect k, thus

αgrid
group =

∂w

∂k
=

△t

4

β2Υ
√

1 − Φ2
(26)

where

Υ = (r2 + 1)(a1,k + a3,k) +
1

2
[2(r2 + 1)2(a1 + a3)(a1,k + a3,k)+

4[2(r2 − 1)2(a5a5,k − a6a6,k) + (r2a2,k + a4,k)(a2 + r2a4)+

(r2a2 + a4)(a2,k + r2a4,k) − (r2a1,k + a3,k)(a1 + r2a3)−

(r2a1 + a3)(a1,k + r2a3,k)]] × [(r2 + 1)2(a1 + a3)
2+

4[(r2 − 1)2(a2
5 − a2

6) + (r2a2 + a4)(a2 + r2a4) − (r2a1 + a3)(a1 + r2a3)]]
−

1

2 (27)

defining

F = (r2 + 1)(a1 + a3) + [(r2 + 1)2(a1 + a3)
2+

4[(r2 − 1)2(a2
5 − a2

6) + (r2a2 + a4)(a2 + r2a4) − (r2a1 + a3)(a1 + r2a3)]]

1

2 ] (28)

and including the expressions 21 and 28 into 26, the star-dispersion for waves P and S
are

αgrid
group

α
=

1

2
√

2r

Υ
√
√
√
√F − (

pF
√

(r2 + 1)[(|m0| + |η0|) +
√

(m0 + η0)2 + ζ2
0 ]
√

2
)2

(29)
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βgrid
group

β
=

1

2
√

2

Υ
√
√
√
√F − (

pF
√

(r2 + 1)[(|m0| + |η0|) +
√

(m0 + η0)2 + ζ2
0 ]
√

2
)2

(30)

4.3 Irregularity of the star and dispersion

The coefficients, m0, η0, ζ0, included in the stability criterion and star-dispersion are
functions of:

• The number of nodes in the star

• The coordinates of each star node refered to the central node of the star

• The weighting function ([1])

If the number of nodes by star is fixed, in this case 9 (N = 8), and the weighting
function

w(hjx, hjy) =
1

(
√

h2
jx + k2

jy)
3

(31)

the expression
1

√
(r2 + 1)[(|m0| + |η0|) +

√
(m0 + η0)2 + ζ2

0 ]
(32)

is function of the coordinates of each node of star refered to its central node.

The coefficients, m0, η0, ζ0, are functions of
1

h2
jx + h2

jy

.

Denoting τl the average of the distances between of the nodes of the star l and its
central node. Denoting τ the average of the τl values in the stars of the mesh, then

hj = τ

{
hjx

hjy

}

(33)

m0 = m0
1

τ2
; η0 = η0

1

τ2
; ζ0 = ζ0

1

τ2
(34)

The stability criterion can be rewritten

△t <
2τ

β
√

(r2 + 1)

√

(|m0| + |η0|) +

√

(m0 + η0)2 + ζ0
2

(35)

For the regular mesh case of 8 nodes, the expression 35 is

△t <
τ

β
√

r2 + 1

2(
√

2 − 1)
√

3
√

5
(36)

Multiplying the member second of the expression 36 by the factor
√

5(
√

2 + 1)
√

3(|m0| + |η0| +

√

(m0 + η0)2 + ζ0
2
)

(37)
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figure 3 figure 4 figure 5

the expression 35 is obtained.
The inverse of the value defined by 37, which for a regular star (scheme of 8 nodes plus
the central node) is the unity, is an irregularity indicator of the star. The irregularity
indicator of the mesh is the minimum value of the irregularity indicator of each star of
the mesh. If the number of nodes in the star is increased, the irregularity indicator of
the mesh may decrease, thus, the △t value.

5 Numerical Results

The solution of equation 1, with Ω = [0, 1]× [0, 1] ⊂ R2, Dirichlet boundary conditions
and initial conditions

U(x, y, 0) = sin x sin y;V (x, y, 0) = cos x cos y;
∂U(x, y, 0)

∂t
= 0;

∂V (x, y, 0)

∂t
= 0 (38)

using the regular meshes (see figure 3 with 121 nodes) and irregular meshes (see figures
4 and 5) with 121 nodes. The analytical solution is

U(x, y, t) = cos(
√

2βt) sin x sin y; V (x, y, t) = cos(
√

2βt) cos x cos y (39)

The weighting function is function 31 and the criterion for the selection of star nodes
is the quadrant criterion [1]. The global error is evaluated for each time increment, in
the last time step considered, using the following formula

Global error =

√
P

NT

j=1
(sol(j)−exac(j))2

NT

|exacmax|
× 100 (40)

where sol(j) is the GFDM solution at the node j exac(j) is the exact value of the
solution at the node j, exacmax is the maximum value of the exact solution in the
cloud of nodes considered and NT is the total number of nodes of the domain.
Tables 1 and 2 show the global errors, with △t = 0.01, for several values of α and β,
in regular meshes.
Table 3 shows the values of the global error for several values of △t, using the irregular
mesh with 121 nodes (see figure 4), with IIM = 0.6524. Table 4 shows the values of
the global error for several values of △t, using the irregular mesh with 121 nodes (see
figure 5), with IIM = 0.8944.
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Table 1: Influence of the number of nodes in the global error with α = 1;β = 0.6

N of Nodes Global Error U Global ErrorV

121 0.002816 0.003851

289 0.001166 0.001618

441 0.000652 0.000896

676 0.000328 0.000443

Table 2: Influence of the number of nodes in the global error with α = 1;β = 0.5

N of Nodes Global Error U Global ErrorV

121 0.001569 0.001754

289 0.000604 0.000679

441 0.000386 0.000431

676 0.000245 0.000275

6 Conclusions

This paper shows a scheme in generalized finite differences, for seismic wave propagation
in 2-D. The von Neumann stability criterion has been expressed as a function of the
coefficients of the star equation and velocity ratio.
The investigated star dispersion has been related with the irregularity of the star using
the irregularity indicator of the mesh. The use of irregular meshes, adjusted to the
geometry of the problem, may create high dispersion in certain stars which is related
to high values of the irregularity index of the mesh (IIM). In this case the mesh is
redefined by an adaptive process until a mesh whit suitable dispersion and irregularity
index values is obtained.
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Abstract

This paper describes the generalized finite difference method to solve second-
order partial differential equation systems and fourth-order partial differential
equations. This method is applied to solve problem of thin and thick elastic plates.

Key words: meshless methods, generalized finite difference method, moving least
squares, plates, instructions
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1 Introduction

The Generalized finite difference method (GFDM) is evolved from classical finite differ-
ence method (FDM). GFDM can be applied over general or irregular clouds of points.
The basic idea is to use moving least squares (MLS) approximation to obtain explicit
difference formulae which can be included in the partial differential equations. Be-
nito, Ureña and Gavete have made interesting contributions to the development of this
method ([1, 3, 4, 6, 7]).
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2 The generalized finite difference method

Let us to consider a problem governed by

α1
∂U

∂x
+ α2

∂U

∂y
+ α3

∂2U

∂x2
+ α4

∂2U

∂y2
+ α5

∂2U

∂x∂y
+ α6

∂3U

∂x3
+ α7

∂3U

∂x2∂y
+

α8
∂3U

∂x∂y2
+ α9

∂3U

∂y3
+ α10

∂4U

∂x4
+ α11

∂4U

∂x3∂y
+ α12

∂4U

∂x2∂y2
+

α13
∂4U

∂x∂y3
+ α14

∂4U

∂y4
= f(x, y) in Ω (1)

with boundary condition

β
∂U

∂n
+ γU = g(x, y) in Γ (2)

where Ω ⊂ R2 with boundary Γ; αi, i = 1, · · · , 14, β and γ are constant coefficients;
and f, g are two known smoothed functions.
On defining the composition central node with a set of N ≥ 14 points surrounding it
(henceforth referred as nodes), the star then refers to the group of established nodes in
relation to a central node. Each node in the domain have an associated star assigned.
If u0 is an approximation of fourth-order for the value of the function at the central node
(U0) of the star, with coordinates (x0, y0) and ui is an approximation of fourth-order for
the value of the function at the rest of nodes, of coordinates (xi, yi) with i = 1, · · · ,N ,
on including the explicit expressions for the values of the partial derivatives in 1 the
star equation is obtained as

−m0u0 +
N∑

i=1

miui = f(x0, y0) (3)

with

m0 =

N∑

i=1

mi (4)

If this process is carried out for each node of the domain a linear equations system is
obtained, where the unknowns are the values ui. On solving this system, the approxi-
mated values of the function in the nodes of the domain are obtained and the partial
derivatives may easily be calculated from the aforementioned.

3 Application of GFDM to Plates

3.1 Thin Elastic Plates

The partial differential equation, frequently called Lagrange’s equation, which relates
the rectangular coordinates, the load, the deflections, and the physical and elastic
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constants of a laterally loaded plate, is well known. Its application to the solution of
problems of bending of plates is justified if the following conditions are met: a) the
plate is composed of material which may be assumed to be homogeneous, isotropic,
and elastic, b) the plate is of a uniform thichness which is small as compared with
its lateral dimensions, c) the deflections of the loaded plate are small as compared
with its thickness. The additional differential expressions relating the deflections to the
boundary conditions, moments, and shears are perhaps equally well known.

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
= −

q(x, y)

D
; D =

Et3

12(1 − µ2)
(5)

where: w(x, y) is deflection in each point of the plate ; q(x, y) is intensity of pressure in
each point, normal to the plane of the plate; µ is Poisson’s ratio for the material of the
plate; E is Young’s modulus for the material of the plate; t is the thichness of plate.
On including the explicit expressions for the values of the partial derivatives in 5 and
in the boundary conditions for each nodes of the domain a linear equations system is
obtained, where the unknowns are the values wi. On solving this system, the approxi-
mated values of the function in the nodes of the domain are obtained.

3.2 Thick Elastic Plates

The partial differential equations are:





t3

12
H

T
CfHθ + tCc(∇w − θ) = 0

−∇
T (tCc)θ + ∇

T (tCc)∇w = −q

(6)

where

H =










∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x










; Cf =
E

1 − ν2






1 ν 0
ν 1 0

0 0
1 − ν

2






Cc =
αE

2(1 + ν)

(
1 0
0 1

)

; θ =

(
θx

θy

)

On including the explicit expressions for the values of the partial derivatives in 6 and
in the boundary conditions for each nodes of the domain a linear equations system is
obtained, where the unknowns are the values wi, θx, θy. On solving this system, the
approximated values in the nodes of the domain are obtained.

4 Numerical Results

4.1 Academics Example

This section provides some of the numerical results when solving partial differential
equations in a square domain of unit side, with Dirichlet boundary conditions, using
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the weighting function

Ω(hj , kj) =
1

(
√

h2
j + k2

j )
3

(7)

The global exact error can be calculated as

Global exact error =

√
P

N

i=1
e2
i

N

exacmax

(8)

where N is the number of nodes in the domain, exacmax is the maximum exact value
of function in the domain, ei is the exact error in the node i.

4.1.1 Example 1

Application of the GFDM to solve the partial differential equation

△2(U) = 0 (9)

The cloud of points employed was irregular and is indicated as cloud 1 in fig. 1. The
analytical solution is

U(x, y) = x4 + y4 − 6x2y2 (10)

The global error is: 0.00001471%

4.1.2 Example 2

Application of the GFDM to solve the partial differential equation

−
∂3U

∂x3
+

∂3U

∂y3
+

∂2U

∂x2
+

∂2U

∂y2
= 0 (11)

The cloud of points employed was irregular of 121 nodes and is indicated as cloud 1 in
fig. 1. The analytical solution is

U(x, y) = x3 + y3 − 3x2y − 3xy2 (12)

The global error is: 0.0001769%

4.1.3 Example 3

Application of the GFDM to solve the systems





∂2U

∂x2
+

∂2V

∂x∂y
= 0

∂2v

∂y2
+

∂2u

∂x∂y
= 0

(13)

The cloud of points employed was irregular and is indicated as cloud 1 in fig. 1. The
analytical solution is

U(x, y) = ex sin y; V (x, y) = ex cos y (14)

The global errors are: errorU = 0.0000425%; errorV = 0.0000464%
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4.2 Plates

4.2.1 Thin Elastic Plates

Tables 1 and 2 show the results of the maximum displacement at the node located
at (0.5; 0.5), using regular meshes of 49, 81, 289 and 441 nodes, of a 1 × 1 thin plate,
(t=0.05), with the borders completely fixed (movements and rotations restrained), with
uniform load and with punctual load at (0.5; 0.5). The error is evaluated using the
following formula

error =
|displacement − exact.max.displacement|

exact.max.displacement
× 100 (15)

Table 1: Fixed plate with uniform load.

Exact. max. displacement= 0.001260[2]

nodes displacement % error

49 0.001719 36.42

81 0.001526 21.11

289 0.001332 5.71

441 0.001282 1.75

Table 2: Fixed plate with punctual load.

Exact. max. displacement= 0.005600[2]

nodes displacement % error

49 0.005436 2.93

81 0.005488 2.00

289 0.005568 0.57

441 0.005600 0.00

Tables 3 and 4 show the results of the maximum displacement at the node located at
(0.5; 0.5), using regular meshes of 49, 81, 289 and 441 nodes, of a 1 × 1 thin plate,
(t=0.05), simply supported (movements restrained at the borders), with uniform load
and with punctual load at (0.5; 0.5).
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Table 3: Simply supported plate with uniform load.

Exact. max. displacement= 0.004062[2]

nodes displacement % error

49 0.004420 8.81

81 0.004234 4.23

289 0.004112 1.23

441 0.004094 0.78

Table 4: Simply supported plate with punctual load.

Exact. max. displacement= 0.01160[2]

nodes displacement % error

49 0.01095 5.60

81 0.011136 4.00

289 0.011456 1.24

441 0.0115 0.86

4.2.2 Thick Elastic Plates

Table 5 shows the results of the maximum displacement at the node located at (0.5; 0.5)
of a thick plate with its borders completely fixed and uniform load, using the GDFM
with a regular mesh of 961 nodes. The results are provided for different values of the
thickness of the plate.

Table 5: Fixed plate with uniform load.

Maximum displacement

thickness displacement

0.05 0.001177

0.1 0.00144

0.2 0.00216

0.3 0.003236

0.4 0.004724

4.2.3 Comparison of results with other methods

The following figure 1 shows the displacement of the node located at (0.5; 0.5) for the
fixed 1 × 1 plate, as the thickness is increased. The results obtained from the GFDM
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Figure 1: Comparison with other methods

have been compared with the ones obtained using a finite elements commercial software.
In order to better understand the differences, two models have been created.
The first finite elements model uses 2500 shell elements with six degrees of freedom per
node. The element used is a 4-node element suitable for analyzing thin to moderately-
thick shell structures.
The second finite elements model uses 25000 brick 8-node elements with three degrees
of freedom per node.
The following figures 2 and 3 show the deformation of a fixed irregular shaped plate
with a punctual load on the node located at (0.5; 0.5) using the GFDM and the finite
element method.

5 Conclusions

The GFDM has been used to obtain the solution of up to fourth order differential
equations.
A series of academic examples have been tested to compare the GFDM results with
the analytical results. It has been observed that with a reduced number of nodes the
error is low.
The method has been applied to solve thin and thick plates.
A 1.0×1.0 square plate with a punctual load and uniform loads and with fixed or simply
supported borders has been analyzed, varying the number of nodes. The obtained
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Figure 2: Deformed plate using ANSYS

Figure 3: Deformed plate using GFDM
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solution has been compared with the analytical solution. Even though the numerical
solution approaches the theoretical solution as the number of nodes increases, with a
low number of nodes an accurate result is provided.
An analysis has been carried out varying the thickness of the plate and comparing the
results with a finite element commercial software. For a range between 0.05 and 0.10 of
the thickness/length ratio of the plate, the results are similar (7% and 13% difference
respectively). For a ratio greater than 0.10 the thick plate formulation should be used,
while for a ration under 0.05 the thin plate formulation provides far more accurate
results. This confirms the validity of the applied procedure.
Finally, an irregular plate with a punctual load has been tested, comparing the results
obtained with the GFDM with the ones obtained with the commercial finite elements
software. Both the maximum displacement and the deformed shape match between the
two methods.
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Abstract

The analysis of medical image, in particular Magnetic Resonance Imaging
(MRI), is a very useful tool to help the neurologists on the diagnosis. One of
the stages on the analysis of MRI is given by a classification based on the Markov
Random Fields (MRF) method. It is possible to find in the literature several pack-
ages to carry out this analysis, and of course the classification tasks. One of them
is the Insight Segmentation and Registration Toolkit (ITK). However, the analy-
sis of MRI is an expensive computational task. In order to reduce the execution
time spent on the analysis of MRI, parallelism techniques can be used. Currently,
Graphics Processing Units (GPUs) are becoming a good choice to reduce the exe-
cution time of several applications at a low cost. In this paper, the authors present
a GPU-based classification using MRF from the sequential implementation that
appears in the ITK package. The experimental results show a spectacular execu-
tion time reduction being the GPU-based implementation up to 118 times faster
than the sequential implementation included in the ITK. The solution provided in
this work will be integrated on future versions of ITK package.

Key words: Magnetic Resonance Imaging, Markov Random Fields, Insight
Toolkit, Graphics Processing Units
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1 Introduction

The main goal of the Spanish project Alztools (TSI-020110-2009-362) is to develop a
High Performance Computing tool for the analysis of Magnetic Resonance Imaging
(MRI) from the brain in order to prevent Alzheimer diseases.

One of the most useful algorithms used on medical image analysis is the so called
Markov Random Fields (MRF). In the literature, MRF algorithm has been applied in
different areas as, for instance, speech recognition [1], analysis of satellite images [2],
etc.

Focusing on the analysis of MRI according to the objectives of Alztools project,
there is a set of widely used tools by the neurologists: SPM [3], Freesurfer [4], FSL
[5], 3DSlicer [6] and ITK [7], among others. In Alztools project, ITK library has been
chosen due to the fact that is opensource under GNU licence, it is mantained and
updated with more efficient algorithms, it can be integrated with others libraries, as
for example 3DSlicer, etc.

Evidently, in ITK the MRF classification algorithm, which is the subject of this
paper, is present.

However, as far as the authors know, there is not any implementation of the MRF
algorithm of ITK based on a GPU platform. There are some initiatives to introduce
GPU computation on ITK as CUDAITK [8] or CITK [9]. But, till this moment CUD-
AITK initiative has carried out only GPU implementations of basic filters in ITK. On
the other hand, CITK iniciative provides some guides or best practices to link efficiently
CUDA in ITK.

The paper is structured as follows: Section 2 briefly introduces the classification
process in the image analysis. Section 3 describes the sequential implementation of
the classification using Markov Random Fields included in the ITK package. Section 4
shows the great computational capacity of the current GPUs. Using the sequential code
as the starting point, in Section 5 the GPU-based implementation of the MRF-based
classification algorithm is introduced. Section 6 shows the experimental results and the
analysis of performance. Finally, Section 7 outlines the conclusions and future work.

2 Image classification

Given a image, multivariate data (feature vectors) are observed at respective pixels.
Feature vector (v1, v2, . . . , vn) describe the image in terms of several, n, attributes.
Image classification is a problem of classifying pixels into several homogeneous regions
by learning the feature vectors and the adjacency relationships of the pixels in the
image. The classification of a pixel into one category is an important and fundamental
problem in image pattern analysis [10].

Image classification analyzes the properties of various image features and organizes
data into categories [11]. Such categories are defined by decision rules that are known or
can be trained. In the second case, classification algorithms typically employ two phases
of processing: training and testing. In the training phase, characteristic properties of
image features are isolated and a unique description of each classification category
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(training class), is created. In the testing phase, those categories are used to classify
image features.

In image classification, normal distributions are frequently used for analyzing mul-
tivariate data in a feature space, and Markov Random Fields (MRFs) are used for
modeling the distribution of categories in the image [12]. It is usually assumed that the
category labels follow the MRF. The estimation of parameters specifying the MRF is
not an easy task because the probability distribution cannot be expressed in a closed
form. Hence, the pseudo-likelihood is frequently used for this purpose. The key is-
sue is the estimation of pixel labels of test data. Computer-intensive methods [13, 14]
can be used for the estimation, but the implementation is often difficult because of
computational complexity.

Markov Random Fields (MRFs) are ubiquitous in low-level computer vision, finding
applications in image restoration, stereo matching, texture analysis, segmentation and
elsewhere. MRFs are probabilistic models that use the correlation between pixels in a
neighborhood to decide the object region or category.

In order to consider the neighborhood information, a simple approach consists in
estimating the joint posterior probability for the whole image’s labeling configuration.
The size of the images can become a problem even not considering high resolution. For
example, for a 620 x 540 image, there will be 334800 pixels need to be considered. After
determining features, each pixel will have a corresponding feature, which generally will
be larger than 1. If color is considered, the dimension is 3; if texture is managed and
8 Gabor filters are used, the dimension of each feature will be 8. The huge amount of
information to manage will make the joint of the whole image hard to compute.

An alternative approach is to consider this problem in the Bayesian framework.
From the Bayesian statistics’ point of view, the contextual information is actually some
prior knowledge, while the data will contribute to the computation of the likelihood.
This indicates that the prior modeling can be designed to capture the contextual infor-
mation, while the likelihood can still be computed locally. If an efficient approach can
be found to compute the joint prior information, the computation issue can be solved
at the same time that the spatial information is considered. This is the main reason
for applying MRF models.

Different alternatives have been used to model MRF. In this paper, we focus on
that included in the ITK package, contributing at image classification process.

3 MRF-based classification in the ITK package

The Classification using Markov Random Field (CMRF) algorithm implemented in
ITK is used, mainly, to make a first-stage filter of a medical imaging.

As it was introduced previously, Markov Random Fields are probabilistic models
that use the correlation between pixels in a neighborhood, given by the windows size, to
decide the object region. This model is implemented in ITK at itk::Statistics::MRFImageFilter
which uses the maximum a posteriori (MAP) [20] estimates for modeling the MRF. The
object traverses the data set and uses the model generated by the Mahalanobis dis-
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tance classifier [21] to get the distance between each pixel in the data set to a set of
known classes, updates the distances by evaluating the influence of its neighboring pix-
els (based on a MRF model) and finally, classifies each pixel to the class which has the
minimum distance to that pixel (taking the neighborhood influence under considera-
tion). The energy function minimization is done using the iterated conditional modes
(ICM) algorithm [14].

For instance, if the algorithm is run using three classes then there are three medias
mu0, mu1 and mu2. If a value of the MRI is closed to the value of the media mui, then
the label i is assigned to this value of the MRI.

The main use of the itk::Statistics::MRFImageFilter method is for refining an initial
classification by introducing the spatial coherence of the labels. The user should provide
two images as input. The first image is the one to be classified while the second image
is an image of labels representing an initial classification.

The algorithm 1 sums up the sequential implementation of the CMRF algorithm
implemented in ITK.

Algorithm 1 Pseudocode of CMRF implemented in ITK

Function I Class = MRFImageFilter(I MRI, I Label, Classes, ConV ar, Window)
Inputs:

I MRI : MRI image
I Label : Labeled image
Classes : Classes considered to classify
ConV ar : Number of pixels changed at the previous iteration
Window : Size of the window

Output:

I Class : Classified image
1: while ( do(iter actual < MAX ITER) and (Error > MAX ERROR))
2: while ( doNo Final Image)
3: Compute the influence of each Class on the central pixel of the Window

over I MRI.
4: Compute the influence of each Class of all the pixels of the Window around

the central pixel of the I MRI.
5: Compute the Mahalanobis Distance of the central pixel of the Window of

the I MRI
6: Compute the new label of the image, according to I Label and the Maha-

lanobis Distance previously computed.
7: end while

8: Compute Error
9: end while
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4 Graphics Processing Units

Current Graphics Processing Units (GPUs) consist of a high number (e.g. 128-240)
of fragment processors with high memory bandwidth. They can offer 10x higher main
memory bandwidth and use data parallelism to achieve up to 10x more floating point
throughput than the CPUs [15].

GPUs are traditionally used for interactive applications, and are designed to achieve
high rasterization performance. However, their characteristics have led to the oppor-
tunity to other more general applications to be accelerated in GPU-based platforms.
This trend is now called General Purpose Computing on GPU (GPGPU) [16], or what
is the same, the usage of GPUs for applications for which they were not originally
designed. These general applications must have parallel characteristics and an intense
computational load to obtain a good performance.

Perhaps the biggest problem lies in the programmability of this kind of devices.
In previous years, there were attempts to use graphics-oriented languages [17, 18] in
order to accelerate specific parts of code using GPUs. More recently, the GPU man-
ufacturers, like NVIDIA or ATI, have proposed new languages or even extensions for
the most common used high level programming languages. As example, NVIDIA pro-
poses CUDA [19], which is a software platform for massively parallel high-performance
computing on the company powerful GPUs.

In CUDA, the calculations are distributed in a mesh or grid of thread blocks, all
thread blocks are the same size (number of threads). These threads run the GPU
code, known as kernel. The dimensions of the mesh and thread blocks should be care-
fully chosen for maximum performance based on the specific problem being treated.
CUDA includes C/C++ software development tools, function libraries, and a hard-
ware abstraction mechanism that hides the GPU hardware from developers such as an
Application Programming Interface (API).

Current GPUs are being used for solving image processing problems (robotics,
visual inspection, video conferencing, video-on-demand, image databases, data visual-
ization, medical imaging). In the particular case of medical images, it is increasingly
the number of applications that are being parallelized for GPUs. As mentioned in Sec-
tion 2, image processing based on MRF has high computational complexity. Therefore,
it is reasonable that GPUs are used for running this kind of applications.

5 A GPU based implementation of the Classification us-

ing MRF method in the ITK package

In this paper, a coarse-grain implementation of the sequential CMRF algorithm is
considered. Thus, the parallel implementation using a GPU consists in carrying out all
the operations over the image at the same time.

According to step 5 of the sequential implementation, a set of operations are carried
out in order to compute the Mahalanobis distance, and then to decide if the value of
the central pixel has to change or not. These operations are considered for any window
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that have to be done in a determined order.

The sequential version imposes an order in the operations. Thus, the parallel
implementation needs to launch different kernels from steps 2 to 5 on the algorithm 2,
launching as many threads as the number of windows in the image. The number of
threads is given by the image size and the windows size.

The algorithm 2 is similar to the one presented in algorithm 1, but with a While
iterative sentence less.

Algorithm 2 Pseudocode of GPU-CMRF algorithm

Function I Class = MRFImageFilter(I MRI, I Label, Classes, ConV ar, Window)
Inputs:

I MRI : MRI image
I Label : Labeled image
Classes : Classes considered to classify
ConV ar : Number of pixels changed at the previous iteration
Window : Size of the window

Output:

I Class : Classified image
1: while ( do(iter actual < MAX ITER) and (Error > MAX ERROR))
2: Compute the influence of each Class on the central pixel of the Window over

I MRI.
3: Compute the influence of each Class of all the pixels of the Window around

the central pixel of the I MRI.
4: Compute the Mahalanobis Distance of the central pixel of the Window of the

I MRI
5: Compute the new label of the image, according to I Label and the Mahalanobis

Distance previously computed.
6: Compute Error
7: end while

6 Experimental results

In this section a performance analysis will be carried out considering the sequential
implementation of the CMRF algorithm and the GPU-based CMPRF implementation
presented in this work.

The algorithm has been run in two different platforms with the following features:

Platform 1

– CPU: Intel Core 2 at 2.66GHz and 4GB of main memory.

– GPU: GTX 285 with 240 cores and a main memory of 1 GB.

Platform 2
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– CPU: Intel Core 2 at 2.26GHz and 4GB of main memory.

– GPU: 9600M GT with 32 cores and a main memory of 512 MB.

In this work two platforms have been considered due to the fact that they can
be used in different environments. The GPU 9600M GT is yet integrated in current
laptops, being this platform widely used. On the other hand, GPU GTX285 is a more
powerful and last generation product that has to be integrated, almost, in a desktop.

In this, work different case studies have been considered according to the following
parameters:

• Resolution of MRI: 0.488 mm, 0.5 mm, 1 mm and 2 mm.

• Image size: 628× 544 pixels if the resolution is 0.488 mm, 364× 436 pixels if the
resolution is 0.5 mm, 182 × 218 pixels if the resolution is 1 mm, and 91 × 109
pixels if the resolution is 2 mm.

• Window size: 3 × 3, 5 × 5, and 7 × 7.

• Number of classes: 3 and 4.

Tables 1 and 2 sum up the results in terms of execution time, by considering the
different resolutions (0.488 mm. first row, 0.5 mm. second row, 1 mm. thrid row and
2 mm. fourth row) of MRI, for GPU 9600M GT and GTX 285, respectively.

Sequential time (sec.) Parallel time (sec.)
3 Classes 4 Classes 3 Classes 4 Classes

3 × 3 5 × 5 7 × 7 3 × 3 5 × 5 7 × 7 3 × 3 5 × 5 7 × 7 3 × 3 5 × 5 7 × 7

4.13 14.89 48.40 4.53 18.49 30.46 0.89 2.71 4.82 0.64 2.78 4.77
1.13 3.39 22.14 8.35 14.49 19.56 0.25 1.13 2.25 0.45 1.32 2.24
0.33 0.69 1.50 0.44 2.00 1.76 0.15 0.41 0.67 0.16 0.43 0.63
0.13 0.33 0.47 0.18 0.22 0.30 0.11 0.16 0.27 0.12 0.17 0.29

Table 1: Execution time of the sequential and GPU parallel implementation on a GPU
9600M GT

In order to know the gain of velocity by employing a GPU platform, Figures 1-4
show the speed-up considering the different resolutions of MRI, for 3 and 4 classes and
for GPU 9600M GT and GTX 285.

According to the experimental results, the execution time has been dramatically
reduced by using the GPUs. These results have been obtained after several optmiza-
tions: usage of shared memory, loop unrolling, and reduction of the number of records
needed for the kernel.

From this general conclusion, the following conclusions can be outlined:

• As the resolution of the MRI increases, that is, the size of the image increases in
terms of number of pixels, the execution time evidently also increases. Thus, the
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Sequential time (sec.) Parallel time (sec.)
3 Classes 4 Classes 3 Classes 4 Classes

3 × 3 5 × 5 7 × 7 3 × 3 5 × 5 7 × 7 3 × 3 5 × 5 7 × 7 3 × 3 5 × 5 7 × 7

3.61 12.84 41.60 3.90 16.27 26.78 0.18 0.25 0.35 0.20 0.31 0.42
0.90 2.90 19.00 7.24 12.51 17.09 0.10 0.15 0.19 0.12 0.18 0.23
0.24 0.6 1.31 0.27 1.71 1.46 0.05 0.06 0.08 0.06 0.08 0.09
0.08 0.28 0.40 0.11 0.16 0.27 0.05 0.06 0.07 0.05 0.06 0.08

Table 2: Execution time of the sequential and GPU parallel implementation on a GPU
GTX 285
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Figure 1: Speedup of the GPU parallel implementation on a GPU 9600M GT consid-
ering 3 classes

@CMMSE                                                               Page   940  of 1328                                               ISBN 13: 978-84-613-5510-5



P. Valero, J. L. Sánchez, D. Cazorla and E. Arias

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

3x3 5x5 7x7

S
pe

ed
up

Windows Size

0.488
0.5

1
2

Figure 2: Speedup of the GPU parallel implementation on a GPU 9600M GT consid-
ering 4 classes

 0

 20

 40

 60

 80

 100

3x3 5x5 7x7

S
pe

ed
up

Windows Size

0.488
0.5

1
2

Figure 3: Speedup of the GPU parallel implementation on a GPU GTX285 considering
3 classes
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Figure 4: Speedup of the GPU parallel implementation on a GPU GTX285 considering
4 classes

use of GPUs provides better performance in terms of speedup considering a high
resolution MRI. From the medical point of view, a high resolution MRI is most
interesting due to the fact that it provides better accuracy.

• On the other hand, as the size of window considered on CMRF method increases,
the exeution time also increases, but again the accuracy increases. Newly, the
use of the GPUs is benefited with respect to the sequential implementation as
the problem size increases.

• The behaviour of both platforms considered in this work is quite similar, high-
lighting that the GPU GTX285 is more powerful than GPU 9600M GT, and as
a consequence the execution time is the lowest.

To sum up, from the medical point of view it is interesting to deal with high
resolution MRI and a high size of window due to the fact that more accuracy is obtained.
Under these conditions, but no constraints, the GPU-based implementation is up to
118 times faster than the sequential implementation.

7 Conclusions and future work

Image analysis is becoming an important discipline applied to different areas in science
and engineering. In the framework of Alztools project, where this work has been devel-
oped, the authors are focused on the analysis of Magnetic Resonance Imaging (MRI).
In this context several MRI analysis packages have appeared. Among them, one of the
most widely used is the Insight Segmentation and Registration Toolkit (ITK).
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An important task on image analysis is the classification of images. In ITK the
Classification using Markov Random Fields (CMRF) is used.

In this work, a GPU-based implementation of CMRF algorithm in ITK has been
developed. As far as the authors know, there are not any GPU implementation of this
algorithm.

According to the experimental results, it is remarkable the spectacular execution
time reduction by the use of the GPUs reaching a speedup close to 118.

At this stage of Alztools project, only 2D images have been used. Even so, the
performance obtained encourage to continue not only considering 3D images, but also
considering new algorithms useful by the neurologist as Hiden Markov Model, Nonlinear
Registration, etc.
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Abstract

The construction of symmetric and symplectic exponentially-fitted Runge-Kutta
methods of Gauss type for the numerical integration of Hamiltonian systems with
oscillatory solutions is revisited. In this paper new such two-, three- and four-step
integrators are constructed and discussed by making use of the six-step procedure
of Ixaru and Vanden Berghe (Exponential fitting, Kluwer Academic Publishers,
2004). Numerical experiments for some oscillatory problems are presented and
compared to the results obtained by previous methods for three-stage methods.
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1 Introduction

The construction of Runge-Kutta (RK) methods for the numerical solution of ODEs
with periodic or oscillating solutions has been considered extensively in the literature
[1]-[13]. In an exponential fitting approach the available information on the solutions
is used in order to derive more accurate and/or efficient algorithms than the general
purpose algorithms for such type of problems. In [14] a particular six-step flow chart is
proposed by which specific exponentially-fitted (RK) algorithms can be constructed. In
this review paper we shall introduce this procedure in all its aspects for the construction
of symplectic RK methods of Gauss type.
In recent years, the construction of numerical integration schemes for ordinary differ-
ential equations of the form

y′(t) = f(t, y(t)), y(t0) = y0 ∈ R
m , (1)

that preserve qualitative properties of the solutions has been studied by many re-
searchers. In this paper we are interested in the class of differential equations that are
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derived from Hamilton’s equations. In case of Hamiltonian systems m = 2d and there
exits a scalar Hamiltonian function H = H(t, y), so that f(t, y) = −J∇yH(t, y), where
J is the 2d-dimensional skew symmetric matrix

J =

(

0d Id
−Id 0d

)

, J−1 = −J,

and where ∇yH(t, y) is the column vector of the derivatives of H(t, y) with respect to
the components of y = (y1, y2, . . . , y2d)

T . The Hamiltonian system can then be written
as

y′(t) = −J∇yH(t, y(t)), y(t0) = y0 ∈ R
2d . (2)

Volume-preservation in the phase space (or energy conservation) is an important char-
acteristics for a Hamiltonian system given in (1). Several classical integration methods
exist where artificial damping or excitation may lead to misleading results. Several
researchers have developed volume-preserving integrators (VPIs) that overcome these
difficulties in solving Hamiltonian systems [15]-[19]. For each fixed t0 the flow map of
(2) will be denoted by φh : Rm → R

m so that φh(y0) = y(t0 + h; t0, y0). In particular,
in the case of Hamiltonian systems, φh is a symplectic map for all h in its domain of
definition, i.e. the Jacobian matrix of φh(y0) satisfies

φ′h(y0)Jφ
′

h(y0)
T = J .

A desirable property of a numerical method ψh for the numerical integration of a
Hamiltonian system is to preserve qualitative properties of the original flow φh such as
the symplecticness, in addition to provide an accurate approximation of the exact φh.
It has been widely recognized by several authors [15, 20, 21] that symplectic integrators
have some advantages for the preservation of qualitative properties of the flow over the
standard integrators when they are applied to Hamiltonian systems. In this sense it
may be appropriate to consider symplectic EFRK methods that preserve the structure
of the original flow. In [13] the well-known theory of symplectic RK methods is extended
to modified EFRK methods of the following form:

y1 = ψh(y0) = y0 + h

s
∑

i=1

bif(t0 + cih, Yi) , (3)

Yi = γiy0 + h

s
∑

i=1

aijf(t0 + cjh, Yj), i = 1, . . . , s , (4)

where the real parameters ci and bi are respectively the nodes and the weights of the
method. The parameters γi make the method modified with repect to the classical RK
method, where γi = 1, i = 1, . . . , s. The s-stage modified RK-method (3)-(4) can also
be represented by means of its Butcher’s tableau

c1 γ1 a11 . . . a1s
c2 γ2 a21 . . . a2s
... . . .

...
. . .

...
cs γs as1 . . . ass

b1 . . . bs

(5)
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or equivalently by the quartet (c, γ, A, b). Van de Vyver has shown that a modified
RK-method (3)-(4) for solving the Hamiltonian system (2) is symplectic if the following
conditions are satisfied

mij ≡ bibj −
bi

γi
aij −

bj

γj
aji = 0, 1 ≤ i, j ≤ s . (6)

Van de Vyver [13] was able to derive a two-stage fourth-order symplectic modified
EFRK method of Gauss type. Calvo et al. [2]-[4] have studied two-stage as well as
three-stage symplectic methods. In their applications they consider pure EFRK meth-
ods as well as modified EFRK methods. Their set of functions is the trigonometric poly-
nomial one consisting essentially of the functions exp(±λt) combined with exp(±2λt)
and sometimes exp(±3λt) or a kind of mixed set type where exp(±λt) is combined
with 1, t and t2. In all cases they constructed fourth-order (two-stage case) and sixth-
order (three-stage case) methods of Gauss type with fixed or frequency dependent knot
points. A theoretical study of high order symmetric and symplectic trigonometrically
fitted RK methods with an even number of stages has been performed by Calvo et al.

[5].
In addition it has been pointed out in [25] that symmetric methods show a better
long time behaviour than non-symmetric ones when applied to reversible differential
systems.
In [22]-[24] the full exponentially-fitted approach based on a set

{1, t, . . . , tK , exp(±λt), t exp(±λt), . . . , tP exp(±λt)} , (7)

has been applied for the construction of respective fourth-order, sixth-order and eighth-
order methods. In this paper we shall give a review of these results and discuss the con-
struction of two-stage (fourth-order), three-stage (sixth-order) and four-stage (eighth-
order) symmetric and symplectic (modified) EFRK methods which integrate exactly
first-order differential systems whose solutions can be expressed as linear combinations
of functions present in the set (7). Our purpose consists in deriving accurate and effi-
cient modified EF geometric integrators based on the combination of the EF approach,
followed from the sixth step flow chart [14], and symmetry and symplecticness condi-
tions. The paper is organized as follows. In Section 2 we present the notations and
definitions used in the rest of the paper as well as some properties of symplectic and
symmetric methods and we introduce the six-step procedure. In Section 3 we present
the classes of new two-, three- and four-stage symplectic modified EFRK integrators
with frequency dependent nodes. In Section 4 we present some numerical experiments
for sixth-order methods with oscillatory Hamiltonian systems and we compare them
with the results obtained by other symplectic (EF)RK Gauss integrators given in [4, 15].

2 Notations and definitions, the six-step procedure

It has been remarked by Hairer et al. [25] that symmetric numerical methods show
a better long time behaviour than nonsymmetric ones when applied to reversible dif-
ferential equations, as it is the case of conservative mechanical systems. In [3] it is
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observed that for modified RK methods whose coefficients are even functions of h the
symmetry conditions are given by

c(h)+Sc(h) = e, b(h) = Sb(h), γ(h) = Sγ(h), SA(h)+A(h)S = γ(h)bT (h) , (8)

where

e = (1, ..., 1)T ∈ R
s and S = (sij) ∈ R

s×s with sij =

{

1, if i+ j = s+ 1,
0, if i+ j 6= s+ 1.

Since for symmetric EFRK methods the coefficients are even functions of h, the sym-
metry conditions can be written in a more convenient form by putting [3]

c(h) =
1

2
e+ θ(h), A(h) =

1

2
γ(h)bT (h) + Λ(h) , (9)

where
θ(h) = (θ1, . . . , θs)

T ∈ R
s and Λ = (λij) ∈ R

s×s .

Therefore, for a symmetric EFRK method whose coefficients aij are defined by

aij =
1

2
γibj + λij , 1 ≤ i, j ≤ s,

the symplecticness conditions (6) reduce to

µij ≡
bi

γi
λij +

bj

γj
λji = 0, 1 ≤ i, j ≤ s . (10)

Taking into account the symmetry relations (8) or (9) and the symplecticness conditions
(10) the Butcher tableau for the two-, three- and four-stage methods can be expressed
as follows:

• Two-stage method:
four unknowns remain, θ, γ1, λ12 and b1 and the Butcher tableau reads:

1
2 − θ γ1

γ1b1

2

γ1b1

2
+ λ12

1
2 + θ γ1

γ1b1

2
− λ12

γ1b1

2

b1 b1

(11)

• Three-stage method:
eight unknowns remain, θ, γ1, γ2, λ12 = −α2, λ13 = −α3, λ21 = −α4, b1 and b2 and
the Butcher tableau reads:

1
2 − θ γ1

γ1b1

2

γ1b2

2
− α2

γ1b1

2
− α3

1
2 γ2

γ2b1

2
− α4

γ2b2

2

γ2b1

2
+ α4

1
2 + θ γ1

γ1b1

2
+ α3

γ1b2

2
+ α2

γ1b1

2

b1 b2 b1

(12)
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• Four-stage method:
eight unknowns remain when we choose γi = 1, i = 1 . . . 4, i.e. θ1, θ2, λ12 =
α1, λ13 = α2, λ14 = α3, λ23 = α4, b1 and b2 and the Butcher array reads:

1
2 − θ1 1

b1

2

b2

2
+ α1

b2

2
+ α2

b1

2
+ α3

1
2 − θ2 1

b1

2
− βα1

b2

2

b2

2
+ α4

b1

2
+ βα2

1
2 + θ2 1

b1

2
− βα2

b2

2
− α4

b2

2

b1

2
+ βα1

1
2 + θ1 1

b1

2
− α3

b2

2
− α2

b2

2
− α1

b1

2

b1 b2 b2 b1

(13)

with β =
b1

b2
.

The idea of constructing symplectic EFRK taking into account the six-step procedure
[14] has been introduced for the first time in [22]–[24]. We briefly shall survey this
procedure and suggest some adaptation in order to make the comparison with previous
work more easy.

In step (i) we define the appropriate form of an operator related to the discussed
problem. Each of the s internal stages (4) and the final stage (3) can be regarded as
being a generalized linear multistep method on a nonequidistant grid; we can associate
with each of them a linear functional , i.e.

Li[h,a]y(t) = y(t+ cih)− γiy(t)− h

s
∑

j=1

aijy
′(t+ cjh), i = 1, 2, . . . s . (14)

and

L[h,b]y(t) = y(t+ h)− y(t)− h

s
∑

i=1

biy
′(t+ cih) . (15)

We further construct the so-called moments which are for Gauss methods the expres-
sions for Li,j(h,a) = Li[h,a]t

j , j = 0, . . . , s−1 and Li(h,b) = L[h,b]tj , j = 0, . . . , 2s−1
at t = 0, respectively.

In step (ii) the linear systems

Lij(h,a) = 0, i = 1, . . . , s, j = 0, 1, . . . , s− 1 ,

Li(h,b) = 0, i = 0, 1, . . . , 2s− 1 .

are solved to reproduce the classical Gauss RK collocation methods, showing the max-
imum number of functions which can be annihilated by each of the operators.

The steps (iii) and (iv) can be combined in the present context. First of all we have
to define all reference sets of s and 2s functions which are appropriate for the internal
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and final stages respectively. These sets are in general hybrid sets of the following form

{1, t, t2, . . . , tK or tK
′

} ∪

{exp(±λt), t exp(±λt), . . . , tP exp(±λt) or tP
′

exp(±λt)}, (16)

where for the internal stages K +2P = s− 3 and for the final stage K ′ +2P ′ = 2s− 3.
The set in which there is no classical component is identified by K = −1 and K ′ = −1,
while the set in which there is no exponential fitting component is identified by P = −1
or P ′ = −1. It is important to note that such reference sets should contain all successive
functions in between. Lacunary sets are in principle not allowed.

Once the sets chosen the operators (14)-(15) are applied to the members of the sets,
in this particular case by taking into account the symmetry and the symplecticness
conditions described above. The obtained independent expressions are put to zero and
in step (v) the available linear systems are solved. The numerical values for λij(h),
bi(h), γi(h) and θi(h) are expressed for real values of λ (the pure exponential case) or
for pure imaginary λ = i ω (oscillatory case). In order to make the comparison with
previous work transparable we have opted in the rest of the paper to denote the results
for real λ-values.

After the coefficients in the Butcher tableau have been filled in, the principal term of
the local truncation error can be written down (step (vi)). Essentially, we know [12]
that the algebraic order of the EFRK methods remains the same as the one of the
classical Gauss method when this six-step procedure is followed, in other words the
algebraic order is O(h2s), while the stage order is O(hs). Explicit expressions for this
local truncation error will not be discussed here.

3 Two-, three- and four-stage methods

Since K +2P = s− 3 and K ′ +2P ′ = 2s− 3 we summarize in table 1 for each s values
the occurring (K,P ) and (K ′, P ′) pairs.

Table 1: The (K,P ) and (K ′, P ′) values for s = 2, 3 and 4.

s 2 3 4

(K,P ) (1,−1), (−1, 0) (2,−1), (0, 0) (3,−1), (1, 0), (−1, 1)

(K ′, P ′) (3,−1), (1, 0), (5,−1), (3, 0), (1, 1), (7,−1), (5, 0), (3, 1),
(−1, 1) (−1, 2) (1, 2), (−1, 3)

The corresponding hybrid sets follow for each (K,P ) or (K ′, P ′) from the general
definition (16). The application of the operators (14) and (15) to sets related to the
specific combinations (K = s − 1, P = −1) and (K ′ = 2s − 1, P = −1), i.e. the
polynomial set, gives rise to the well-known order conditions for the corresponding s-
stage Gauss method of order 2s (for more details see [22]–[24]). Solving these derived
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equations results in Butcher’s tableaus for Gauss methods of order 4, 6 and 8 with
γi = 1, i = 1, 2, . . . , s, i.e.

1
2 −

√

3
6 1 1

4
1
4 −

√

3
6

1
2 +

√

3
6 1 1

4 +
√

3
6

1
4

1
2

1
2

1
2 −

√

15
10 1 5

36
2
9 −

√

15
15

5
36 −

√

15
30

1
2 1 5

36 +
√

15
24

2
9

5
36 −

√

15
24

1
2 +

√

15
10 1 5

36 +
√

15
30

2
9 +

√

15
15

5
36

5
18

4
9

5
18

and the tableau (13) with

θ1 =
1

2

√

15 + 2
√
30

35
=

c

70
, θ2 =

1

2

√

15− 2
√
30

35
=

a

70
,

b1 =
1

4
−

√
30

72
, b2 =

1

4
+

√
30

72
,

with a =
√

525− 70
√
30 and c =

√

525 + 70
√
30 and

α1 =
a

1470
−

5b

2352
−

c

420
−

d

336
, α2 = −

a

1470
+

5b

2352
−

c

420
−

d

336
,

α3 = −
c

105
+

d

168
, α4 = −

a

105
−

b

168
,

with b =
√

630− 84
√
30 and d =

√

630 + 84
√
30.

Equivalent results have been reported by Hairer et al. in [25].

3.1 Two-stage methods

Let us remark that considering the (K = 1, P = −1) set for the internal stages gives
rise to γ1 = 1, a value which is not compatible with the additional symmetry, sym-
plecticity and order conditions imposed. Therefore in what follows we combine the
(K = −1, P = 0) case with either (K ′ = 1, P ′ = 0) or (K ′ = −1, P ′ = 1).

Case (K ′ = 1, P ′ = 0):

The operators (14) and (15) are applied to the functions present in the occurring hybrid
sets, taking into account the structure of the Butcher tableau (11). Following equations
arise with z = λh:

2b1 = 1, (17)

2b1 cosh(z/2) cosh(θz) =
sinh(z)

z
, (18)

λ12 cosh(θz) = −
sinh(θz)

z
, (19)

λ12 sinh(θz)−
cosh(θz)

z
= −

γ1

z
cosh(z/2), (20)
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resulting in the results

b1 = 1/2, θ =

arccosh

(

2 sinh(z/2)

z

)

z
, λ12 = −

sinh(θz)

z cosh(θz)
,

γ1 =

(

sinh(θz)2

z cosh(θz)
+

cosh(θz)

z

)

z

cosh(z/2)
.

The series expansions for these coefficients for small values of z are given by

θ =
√
3

(

1

6
+

1

2160
z2 −

1

403200
z4 +

1

145152000
z6 +

533

9656672256000
z8 + . . .

)

,

λ12 =
√
3

(

−
1

6
+

1

240
z2 −

137

1209600
z4 +

143

48384000
z6 −

81029

1072963584000
z8 + . . .

)

,

γ1 = 1−
1

360
z4 +

11

30240
z6 −

71

1814400
z8 +

241

59875200
z10 + . . . ,

showing that for z → 0 the classical values are retrieved.

Case (K ′ = −1, P ′ = 1):

In this approach equations (18)-(20) remain unchanged and they deliver expressions
for b1, γ1 and λ12 in terms of θ. Only (17) is replaced by

b1(cosh(θz) (2 cosh(z/2) + z sinh(z/2)) + 2θz cosh(z/2) sinh(θz)) = cosh(z). (21)

By combining (18) and (21) one obtains an equation in θ and z, i.e.:

θ sinh(z) sinh(θz) = cosh(θz)

(

cosh(z)−
sinh(z)

z
− sinh2(z/2)

)

.

It is not anymore possible to write down an analytical solution for θ, but iteratively a
series expansion can be derived. We give here those series expansions as obtained for
the four unknowns

θ =
√
3

(

1

6
+

1

1080
z2 +

13

2721600
z4 −

1

7776000
z6 −

1481

1810626048000
z8 + . . .

)

,

b1 =
1

2
−

1

8640
z4 +

1

1088640
z6 +

1

44789760
z8 + . . . ,

λ12 =
√
3

(

−
1

6
+

1

270
z2 −

223

2721600
z4 +

17

9072000
z6 −

259513

5431878144000
z8 + . . .

)

,

γ1 = 1−
1

480
z4 +

17

60480
z6 −

2629

87091200
z8 +

133603

43110144000
z10 + . . . .
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3.2 Three-stage methods

Following the ideas developed in this paper it should be obvious that we combine the
(K = 0, P = 0) case with the three non-polynomial cases for the final stage. However
keeping the 1 in the hybrid set for (K = 0, P = 0) delivers γ1 = γ2 = 1, a result which
is not compatible with the only remaining symplecticity condition.

b1

γ1
α2 +

b2

γ2
α4 = 0. (22)

Therefore we choose for the internal stages the hybrid set {exp(±λt)}, omitting the
constant 1; in other words we accept exceptionally a lacunary set, what is principally
not allowed by the six-step procedure [14]. Under these conditions, and taking into
account the symmetry conditions the αi, (i = 2, 3, 4) parameters are the solutions in
terms of θ, γ1 and γ2 of the following three equations [4]:

1− γ2 cosh(z/2)− 2zα4 sinh(θz) = 0,

cosh(θz)− γ1 cosh(z/2) + zα3 sinh(θz) = 0, (23)

sinh(θz)− zα3 cosh(θz)− zα2 = 0.

with the following solution:

α2 =
cosh(2θz)− γ1 cosh(z/2) cosh(θz)

z sinh(θz)
,

α3 =
γ1 cosh(z/2)− cosh(θz)

z sinh(θz)
, α4 =

1− γ2 cosh(z/2)

2z sinh(θz)
. (24)

The solution for the other parameters depends essentially on the chosen values of K ′

and P ′.

Case (K ′ = 3, P ′ = 0):

The operators (14) and (15) are applied to the functions present in the ocurrring hy-
brid set, taking into account the symmetry conditions; we derive three independent
equations in b1, b2 and θ, i.e.

2b1 + b2 = 1, (25)

b1θ
2 =

1

24
, (26)

b2 + 2b1 cosh(θz) =
2 sinh(z/2)

z
. (27)

Taking into account (25) and (27) b1 and b2 can be expressed in terms of θ:

b1 =
z − 2 sinh(z/2)

2z(1− cosh(θz))
, b2 =

2 sinh(z/2)− z cosh(θz)

z(1− cosh(θz))
.

These expressions combined with (26) results in the following equation for θ:

θ2 −
z(1− cosh(θz))

12(z − 2 sinh(z/2))
= 0 .
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If now the symplecticness condition (22) is imposed, the parameter γ1 is determined by

γ1 =
γ2(2 sinh(z/2)− z) cosh(2θz)

2 sinh(z/2)− γ2 sinh(z) + (γ2 sinh(z)− z) cosh(θz)
.

The obtained parameters define a familiy of EFRK methods which are symmetric and
symplectic for all γ2 ∈ R. Following [4] we choose from now on γ2 = 1.

Now it is easy to give the series expansions for all the coefficients for small values of z:

θ =
√
15

(

1

10
+

1

21000
z2 −

131

1058400000
z4 +

13487

48898080000000
z6

−
1175117

3203802201600000000
z8 −

505147

915372057600000000000
z10 + . . .

)

,

γ1 = 1−
3

70000
z6 +

13651

1176000000
z8 −

2452531

862400000000
z10 + . . . ,

b1 =
5

18
−

1

3780
z2 +

167

190512000
z4 −

23189

8801654400000
z6 +

7508803

1153368792576000000
z8

−
87474851

8073581548032000000000
z10 + . . . ,

b2 =
4

9
+

1

1890
z2 −

167

95256000
z4 +

23189

4400827200000
z6 −

7508803

576684396288000000
z8

+
87474851

4036790774016000000000
z10 + . . . ,

α2 =
√
15

(

1

15
−

1

6000
z2 +

11623

3175200000
z4 −

213648613

73347120000000
z6

+
1669816359863

2135868134400000000
z8 −

409429160306437

2135868134400000000000
z10 + . . .

)

,

α3 =
√
15

(

1

30
+

3

14000
z2 −

24739

793800000
z4 +

14753813

2993760000000
z6−

7187933379103

6407604403200000000
z8 +

48242846122937

177989011200000000000
z10 + . . .

)

,

α4 =
√
15

(

−
1

24
+

13

67200
z2 −

37

12700800
z4 +

19922401

469421568000000
z6

−
733072729

1220496076800000000
z8 +

1539941201

183074411520000000000
z10 + . . .

)

.

Case (K ′ = 1, P ′ = 1):

The equations (25) and (27) remain unchanged. Equation (26) is replaced by the
equation obtained by applying the operator (15) with s = 3 on t exp(±λt) resulting in:

2b1z
2θ sinh(θz) = z cosh(z/2)− 2 sinh(z/2) . (28)
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Taking into account (27) and (28) b1 and b2 can be expressed in terms of θ:

b1 =
z cosh(z/2)− 2 sinh(z/2)

2z2θ sinh(θz)
, (29)

b2 =
− cosh(θz)z cosh(z/2) + 2 cosh(θz) sinh(z/2) + 2 sinh(z/2)zθ sinh(θz)

z2θ sinh(θz)
.(30)

Introducing these results for b1 and b2 into (25) reproduces an equation for θ:

(1− cosh(θz)) (z cosh(z/2)− 2 sinh(z/2)) + zθ sinh(θz) (2 sinh(z/2)− z)

z2θ sinh(θz)
= 0 .

From the symplecticness condition (22) an expression for γ1 follows:

γ1 =
γ2 cosh(2θz)(z cosh(z/2)− 2 sinh(z/2))

cosh(θz)(z cosh(z/2)− 2 sinh(z/2))− 2 sinh(z/2)zθ sinh(θz)(1− γ2 cosh(z/2))
.

(31)
Again by chosing γ2 = 1 series expansions for the different parameters can be obtained
(see [23]).

Case (K ′ = −1, P ′ = 2):

The equations (27) and (28) remain unchanged. A third equation is added which follows
from the application of the operator (15) with s = 3 on t2 exp(±λt), i.e.:

b1 cosh(zθ)

(

2 cosh(z/2) +
1

2
z sinh(z/2) + 2zθ2 sinh(z/2)

)

− cosh(z) (32)

+2b1 sinh(zθ) (2θ sinh(z/2) + zθ cosh(z/2)) + b2

(

cosh(z/2) +
1

4
z sinh(z/2)

)

= 0 .

The formal expression for b1 and b2 remain respectively (29) and (30). Introducing these
expression for b1 and b2 into (32) gives us an equation for θ. From the symplecticness
condition (22) again the expression (31) for γ1 follows. Again by chosing γ2 = 1, the
series expansion of the different parameters follow (see [23]).

3.3 Four-stage methods

In theory we can combine the (K = 1, P = 0) or the (K = −1, P = 1) (see table 1)
with the four non-polynomial cases for the final stage to construct EFRK methods.
This gives rise to eight different EFRK methods of the Gauss type. However in most
of the cases the values of the occurring parameters can only be determined numerically
by solving quite complicated nonlinear equations. Therefore we have opted to analyse
the simplest method which follows from the combination of the sets (K = 1, P = 0)
and (K ′ = 5, P ′ = 0). A detailed description of these results can be found in [24].
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4 Numerical experiments

In this section we report on some numerical experiments where we test the effectiveness
of the new and the previous [4] modified Runge-Kutta sixth-order methods when they
are applied to the numerical solution of several differential systems. All the considered
codes have the same qualitative properties for the Hamiltonian systems. In the figures
we show the decimal logarithm of the maximum global error versus the number of
steps required by each code in logarithmic scale. All computations were carried out in
double precision and series expansions are used for the coefficients when |z| < 0.1. In
all further displayed figures following results are shown: the method of Calvo et al. [4]
with constant nodes (const) and with variable nodes (var), the classical Gauss results
(class) [25] and the results obtained with the new methods with P ′ = 0 (P0), P ′ = 1
(P1) and P ′ = 2 (P2). Let us remark that for the fourth- and eighth-order methods
quite similar results are obtained (see [22, 24]).

Problem 1: Kepler’s plane problem defined by the Hamiltonian function

H(p, q) =
1

2
(p21 + p22)− (q21 + q22)

−1/2 ,

with the initial conditions q1(0) = 1−e, q2(0) = 0, p1(0) = 0, p2(0) = ((1+e)/(1−e))
1
2 ,

where e, (0 ≤ e < 1) represents the eccentricity of the elliptic orbit. The exact solution
of this IVP is a 2π-periodic elliptic orbit in the (q1, q2)-plane with semimajor axis
1, corresponding the starting point to the pericenter of this orbit. In the numerical
experiments presented here we have chosen the same values as in [4], i.e. e = 0.001, λ =

iω with ω = (q21 + q
2
2)

−
3
2 and the integration is carried out on the interval [0, 1000] with

the steps h = 1/2m,m = 1, . . . , 4. The numerical behaviour of the global error in the
solution is presented in figure 1. The results obtained by the three new constructed
methods are falling together. One cannot distinguish the results. They are comparable
to the ones obtained by Calvo and more accurate than the results of the classical Gauss
method of the same order.

Problem 2: A perturbed Kepler’s problem defined by the Hamiltonian function

H(p, q) =
1

2
(p21 + p22)−

1

(q21 + q22)
1/2

−
2ǫ+ ǫ2

3(q21 + q22)
3/2

,

with the initial conditions q1(0) = 1, q2(0) = 0, p1(0) = 0, p2(0) = 1 + ǫ , where ǫ is a
small positive parameter. The exact solution of this IVP is given by

q1(t) = cos(t+ ǫt), q2(t) = sin(t+ ǫt), pi(t) = q′i(t), i = 1, 2 .

As in [4] the numerical results are computed with the integration steps h = 1/2m,m =
1, . . . , 4. We take the parameter ǫ = 10−3, λ = iω with ω = 1 and the problem is
integrated up to tend = 1000. The global error in the solution is presented in figure 2.
For our methods we have the same conclusions as for the Problem 1. On the contrary
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Figure 1: Maximum global error in the solution of Problem 1. In the left figure the
results obtained by the methods of Calvo et al. [4] are displayed. In the right figure
the results obtained with the methods of order six derived in this paper are shown.
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Figure 2: Maximum global error in the solution of Problem 2. In the left figure the
results obtained by the methods of Calvo et al. [4] are displayed. In the right figure
the results obtained with the methods of order six derived in this paper are shown.
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for the results of Calvo et al the results obtained with fixed θ-values are more accurate
than the ones obtained by variable θ-values.

Problem 3: Euler’s equations that describe the motion of a rigid body under no forces

q̇ = f(q) = ((α− β)q2q3, (1− α)q3q1, (β − 1)q1q2)
T ,

with the initial values q(0) = (0, 1, 1)T , and the parameter values α = 1 +
1

√
1.51

and

β = 1−
0.51
√
1.51

. The exact solution of this IVP is given by

q(t) =
(√

1.51 sn(t, 0.51), cn(t, 0.51), dn(t, 0.51)
)T

,

it is periodic with period T = 7.45056320933095, and sn, cn, dn stand for the elliptic
Jacobi functions. Figure 3 shows the numerical results obtained for the global error
computed with the interation steps h = 1/2m,m = 1, . . . , 4, on the interval [0, 1000],
and λ = i2π/T . The results of Calvo et al are all of the same accuracy while in our
approach the EF methods are still more accurate than the classical one. In this problem
the choice of the frequency is not so obvious and therefore the differentiation between
the classical and the EF methods is not so pronounced.
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Figure 3: Maximum global error in the solution of Problem 3. In the left figure the
results obtained by the methods of Calvo et al. [4] are displayed. In the right figure
the results obtained with the methods of order six derived in this paper are shown.

References

[1] D. G. Bettis, Runge-Kutta algorithms for oscillatory problems, J. Appl. Math.
Phys. (ZAMP) 30 (1979) 699–704.

@CMMSE                                                               Page   958  of 1328                                               ISBN 13: 978-84-613-5510-5



Guido Vanden Berghe

[2] M. Calvo, J. M. Franco, J. I. Montijano, L. Rández, Structure preservation
of exponentially fitted Runge-Kutta methods, Journ. Comp. Appl. Math. 218

(2008) 421-434.

[3] M. Calvo, J. M. Franco, J. I. Montijano, L. Rández, Sixth-order symmet-
ric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type,
Comp. Phys. Commun. 178 (2008) 732–744.

[4] M. Calvo, J. M. Franco, J. I. Montijano, L. Rández, Sixth-order sym-
metric and symplectic exponentially fitted modified Runge-Kutta methods of the
Gauss type, Journ. Comp. Appl. Math. 223 (2009) 387–398 .

[5] M. Calvo, J. M. Franco, J. I. Montijano, L. Rández, On high order sym-
metric and symplectic trigonometrically fitted Runge-Kutta methods with an even
number of stages, BIT Numer. Math. 50 (2010) 3–21.

[6] J. M. Franco, Runge-Kutta methods adapted to the numerical integration of
oscillatory problems, Appl. Numer. Math. 50 (2004) 427-443.

[7] K. Ozawa, A functional fitting Runge-Kutta method with variable coefficients,
Japan J. Indust. Appl. Math. 18 (2001) 107–130.

[8] T. E. Simos, An exponentially-fitted Runge-Kutta method for the numerical in-
tegration of initial-value problems with periodic or oscillating solutions, Comp.
Phys. Commun. 115 (1998) 1–8.

[9] T. E. Simos, J. Vigo-Aguiar, Exponentially-fitted symplectic integrator, Phys.
Rev. E67 (2003) 1–7.

[10] G. Vanden Berghe, H. De Meyer, M. Van Daele, T. Van Hecke,
Exponentially-fitted explicit Runge-Kutta methods, Comp. Phys. Commun. 123
(1999) 7–15.

[11] G. Vanden Berghe, H. De Meyer, M. Van Daele, T. Van Hecke,
Exponentially-fitted Runge-Kutta methods, Journ. Comp. Appl. Math. 125

(2000)107–115.

[12] G. Vanden Berghe, M. Van Daele, H. Van de Vyver, Exponentially-fitted
Runge-Kutta methods of collocation type: Fixed or variable knot points?, Journ.
Comp. Appl. Math. 159 (2003) 217–239.

[13] H. Van de Vyver, A fourth order symplectic exponentially fitted integrator,
Comp. Phys. Commun. 174 (2006) 255–262.

[14] L. Gr. Ixaru, G. Vanden Berghe, Exponential Fitting, Mathematics and its
applications vol. 568, Kluwer Academic Publishers, 2004.

@CMMSE                                                               Page   959  of 1328                                               ISBN 13: 978-84-613-5510-5



Symplectic Runge-Kutta methods

[15] E. Hairer, C. Lubich and G. Wanner,Geometric Numerical Integration,

Structure-Preserving Algorithms for Ordinary Differential Equations, Springer,
Berlin 2002.

[16] E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration illus-
trated by the Störmer /Verlet method, Acta Numerica 12 (2003) 399–450.

[17] M. Hochbruck and Ch. Lubich, A Gautschi-type method for oscillatory
second-order differential equations, Numer. Math. 83 (1999) 403–426.

[18] M. Van Daele and G. Vanden Berghe, Geometric numerical integration by
means of exponentially fitted methods, Applied Numerical Mathematics 57 (2007)
415–435.

[19] G. Vanden Berghe and M. Van Daele, Exponentially-fitted Störmer/Verlet
methods, Journal of Numerical Analysis, Industrial and Applied Mathematics
(JNAIAM) 1 (2006) 237-251.

[20] J. M. Sanz-Serna, Symplectic integrators for Hamiltonian problems: An
overview, Acta Numerica 1 (1992) 243–286.

[21] J. M. Sanz-Serna, M. P. Calvo, Numerical Hamiltonian Problems, Chapman
and Hall, London 1994.

[22] G. Vanden Berghe, M. Van Daele, Fourth-order symplectic exponentially-
fitted modified Runge-Kutta methods of the Gauss type: a review, Journal of the
Academia de Ciencias de Zaragoza (submitted).

[23] G. Vanden Berghe, M. Van Daele, Symplectic exponentially-fitted modi-
fied Runge-Kutta methods of the Gauss type: revisited, Annals of the European
Academy of Sciences (on computational mathematics) (in press).

[24] G. Vanden Berghe, M. Van Daele, Symplectic exponentially-fitted four-stage
Runge-Kutta methods of the Gauss type, Numerical Algorithms (submitted).

[25] E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I,

Nonstiff Problems, Springer-Verlag Berlin, Heidelberg 1993.

@CMMSE                                                               Page   960  of 1328                                               ISBN 13: 978-84-613-5510-5



Proceedings of the 10th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2010
27–30 June 2010.

Evaluating the sparse matrix vector product on
multi-GPUs

F. Vázquez1, G. Ortega1, J.J. Fernández1 and E.M. Garzón1

1 Dpt Computer Architecture.Cra Sacramento s/n Almeria 04120 Spain, Almeria
University

emails: f.vazquez@ual.es, gloriaortega@ual.es, jjfdez@ual.es,
gmartin@ual.es

Abstract

The sparse matrix vector product (SpMV) is considered as a key operation
in engineering and scientific computing. Graphics Processing Units (GPUs) have
recently emerged as platforms that yield outstanding acceleration factors. SpMV
implementations for GPUs have already appeared on the scene. This work proposes
and evaluates the parallel ELLR-T algorithm to compute SpMV on multi-GPUs
architecture. A comparative analysis of ELLR-T against a variety of previous
proposals on one GPU has been carried out based on a representative set of test
matrices. The results show that ELLR-T reaches the best performance on one GPU
device, above all if two parameters related to ELLR-T are optimized. A model to
help to tune ELLR-T is described. Finally, the parallel ELLR-T is evaluated on a
multi-GPU architecture based on Tesla C1060.

1 Introduction

The Matrix-Vector product (MV) is a key operation for a wide variety of scientific
applications, such as image processing, simulation, control engineering and so on. For
many applications based on MV, the matrix is large and sparse. Sparse matrices
are involved in linear systems, eigensystems and partial differential equations from a
wide spectrum of scientific and engineering disciplines [14]. For these problems the
optimization of the sparse matrix vector product (SpMV) is a challenge because of the
irregular computation of large sparse operations. Therefore, additional effort must be
spent to accelerate the computation of SpMV. This effort is focused on the design of
appropriate data formats to store the sparse matrices, since the performance of SpMV
is directly related to the used format as shown [11,12,15].

Currently, Graphics Processing Units (GPUs) offer massive parallelism for scientific
computations. The use of GPUs for general purpose applications has exceptionally
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increased in the last few years thanks to the availability of Application Programming
Interfaces (APIs), such as Compute Unified Device Architecture (CUDA) and OpenCL
[10], that greatly facilitate the development of applications targeted at GPUs.

From the programmer’s point of view, the GPU is considered as a set of SIMT
(Single Instruction, Multiple Threads) multiprocessors. Each kernel (parallel code) is
executed as a batch of threads organized as a grid of thread blocks (hereinafter BS
denotes the size of every thread block). For the execution, each block is assigned to a
Streaming Multiprocessor (SM) composed by eight cores called Scalar Processors (SP).
The blocks in turn are divided into sets of 32 threads called warps. In order to optimize
the exploitation of the NVIDIA GPU architecture the programmer has to attend to
maximize: (1) the multiprocessor occupancy, that is the ratio between the number of
active warps per multiprocessor and the maximum number of possible active warps.
This goal can be achieved by choosing optimum value of BS, balancing the threads
workload and avoiding the flow control instructions which can cause the divergence of
threads, i.e. mantaining the multiprocessors on the device as busy as possible; and
(2) the bandwidth memory, the memory management can be optimized if the access
pattern of the different threads belonging to every half-warp (16 threads) verifies the
coalescence and alignment conditions, then, it can be performed in parallel by all of
them and the memory latency would be the same as that of a single access. Moreover,
the use of texture memory improves the performance when the searched word is located
within it [10].

Recently, several implementations of SpMV have been developed with CUDA and
evaluated on GPUs [1,3–5,9]. Devising GPU-friendly matrix storage formats has been
a key in these implementations. This work aims at presenting and evaluating a new
approach to increase the performance of SpMV on multi-GPUs which relies on the
storage format for the sparse matrix, ELLPACK-R [13]. This format is a GPU-friendly
variant of one previously designed for vector architectures, ELLPACK [7]. An extensive
performance evaluation of this new approach has been carried out based on a repre-
sentative set of test matrices. The comparative study has drawn the conclusion that
the implementations ELLR-T based on ELLPACK-R proves to outperform the most
common and efficient formats for SpMV on GPUs used so far.

Next Section 2 reviews the different formats to compress sparse matrices, given that
the selection of an appropriate format is the key to optimize SpMV on GPUs. Section
3 introduces the parallel ELLR-T algorithm to compute SpMV on multi-GPUs. In
Section 4 the performance of ELLR-T measured on a NVIDIA Geforce GTX 285
and on a multi-GPU architecture based on Tesla C1060 with a set of representative
sparse matrices is presented. The results clearly show that the ELLR-T gets the best
performance for all the test matrices and its performance can be optimized on one GPU
device. The speed-up got on the multi-GPU architecture before mentioned is analyzed.
Finally, Section 5 summarizes the main conclusions.
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2 An overview of SpMV and its challenges

Let u = Av be sparse matrix vector product where A is the sparse matrix, v and u are
the input and output vectors respectively, every specific algorithm to compute u = Av
exploiting a particular architecture is related to a specific format to store A. Next,
the main formats to compress sparse matrices and their corresponding algorithms are
described, focusing on the formats specifically designed for SIMD architectures such as
vector architectures and GPUs:

The coordinate storage scheme (COO) to compress a sparse matrix is a direct
transformation from the dense format. Let Nz be the total number of non-zero entries
of the matrix. A typical implementation of COO uses three one-dimensional arrays of
size Nz. One array, A[ ] of floating-point numbers, contains the non-zero entries. The
other two arrays of integer numbers, I[ ] and J [ ], contain the corresponding row and
column indices for each non-zero entry. The performance of SpMV based on COO is
penalized because it does not implicitly include the information about the ordering of
the coordinates, and, additionally, for multi-threaded implementations of SpMV atomic
data access must be included when the elements of the output vector are written.

Compressed Row Storage (CRS) is the most extended format to store sparse ma-
trices on superscalar processors. Let N and Nz be the number of rows of the matrix
and the total number of non-zero entries of the matrix, respectively; the data structure
consists of the following arrays: (1) A[ ] array of floats of dimension Nz, which stores
the entries; (2) J [ ] array of integers of dimension Nz, which stores their column in-
dex; and (3) start[ ] array of integers of dimension N + 1, which stores the pointers
to the beginning of every row in A[ ] and J [ ], both sorted by row index. The code to
compute SpMV based on CRS has several drawbacks that hamper the optimization of
the performance of this code on superscalar architectures. First, the access locality of
vector v[ ] is not maintained due to the indirect addressing. Second, the fine grained
parallelism is not exploited because the number of iterations of the inner loop is small
and variable [6]. Despite these drawbacks, several optimizations have made possible to
improve the performance of sparse computation on current processors [8,15]. In partic-
ular, the Intel Math Kernel Library (MKL) improves the performance of sparse BLAS
operations, based on CRS, by optimizing the memory management and exploiting the
ILP on Intel processors.

ELLPACK or ITPACK [7] was introduced as a format to compress a sparse matrix
with the purpose of solving large sparse linear systems with ITPACKV subroutines on
vector computers. This format stores the sparse matrix on two arrays, one float A[ ],
to save the entries, and one integer J [ ], to save the column index of every entry. Both
arrays are of dimension N × Max nzr at least, where N is the number of rows and
Max nzr is the maximum number of non-zeros per row in the matrix, with the maxi-
mum being taken over all rows. Note that the size of all rows in these compressed arrays
A[ ] and J [ ] is the same, because every row is padded with zeros. Therefore, ELLPACK
can be considered as an approach to fit a sparse matrix in a regular data structure sim-
ilar to a dense matrix. Consequently, this format is appropriate to compute operations
with sparse matrices on vector architectures.
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Focusing our interest on the GPU architecture and if every element i of vector u is
computed by a thread identified by index x = i and the arrays store their elements in
column-major order, then the SpMV based on ELLPACK can improve the performance
due to: (1) the coalesced global memory access, thanks to the column-major ordering
used to store the matrix elements into the data structures. Then, the thread identified
by index x accesses to the elements in the x row: A[x+k∗N ] with {0 ≤ k < Max nzr}
where k is the column index into the new data structures A[ ] and J [ ]. Consequently,
two threads x and x + 1 access to consecutive memory address, thereby fulfilling the
conditions of coalesced global memory access; (2) non-synchronized execution between
different thread blocks. Every thread block can complete its computation without
synchronization with other blocks. However, if the percentage of zeros is high in the
ELLPACK data structure and there is a relevant amount of padding zeros, then the per-
formance decreases. This penalty even remains when conditional branches are included
to avoid the memory access and arithmetic operations with padding zeros.

Recently, different proposals of kernels to compute SpMV on GPUs have been
described and analyzed [1, 3–5, 9]. They can be classified in two groups according to
their relationship with CRS or ELLPACK formats.

On the one hand, the kernel called CRS(vector) evaluated in [3] is based on CRS
format. This kernel computes every output vector element with the collaboration of
the 32 threads of every warp. So, one warp computes the float products related to the
entries of one row in a cyclic fashion, followed by a parallel reduction in shared memory
in order to obtain the final result of output vector element. Similarly, another kernel to
compute SpMV on GPUs based on CRS format has been recently proposed in [1]. Here
the collaboration of 16 threads (half warp) computes every output vector element, and
zero-padding are added to every row to complete a length multiple of 16, in order to
fulfill the memory alignment requirements and improve the coalesced memory access.
It has been included on the SpMV4GPU library [2], and hereinafter it will be referred
to the same name.

On the other hand, the kernels related to the format called HYB (which stands
for hybrid) proposed by [3] seem to yield the best performance on GPUs so far. This
format combines the ELLPACK and COO formats with the goal of improving the
performance of ELLPACK. Let A be a sparse matrix stored with CRS format, then a
preprocessing step is required to store it with HYB format in order to compute: (1)
parameter Max nzr, (2) distribution function of rows according to their number of
entries, (3) subset of a specific percentage of rows with less entries, for example 2/3 [3],
and its corresponding parameterMax nzr′, and, finally, (4) two data structures to store
A. Max nzr′ entries of every row are stored in ELLPACK format, and if any entries
remain, they are stored with COO format. In other words, HYB stores the sparse
matrix with ELLPACK avoiding the elements which overfill some rows and storing
them with COO format. So, the corresponding computation of SpMV based on GPU
is split in several kernels related to the different formats, hopefully with an appropriate
value of Max nzr′ the main kernel related to ELLPACK can reach high performance
on GPU, but the kernels related to COO format adds relevant penalties due mainly
to un-coalesced memory access and the need to use atomic functions for the memory
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write operations. This drawback could be relevant especially for any kind of patterns
of sparse matrices where the computation of Max nzr′ does not reach optimum value.

Lately, the format called Sliced ELLPACK has been proposed and evaluated in [9].
In order to compress the matrix, the N rows of A are partitioned in sets of S rows
and every set is stored with ELLPACK format. Moreover, the ¿ threads into every
block collaborate in the computation related to every set of rows. It achieves high
performance when a preprocess with reordering of rows is considered and the optimum
values of the parameters S and ¿ are selected. Other format, called BELLPACK, has
been proposed in [5], this proposal compresses the sparse matrix by small dense entries
blocks. Then, this approach reaches better performance for those sparse matrices with
their pattern including small blocks of entries. Both approaches, Sliced ELLPACK and
BELLPACK, include complex pre-processing of the sparse matrix.

3 Computing SpMV with ELLR-T algorithm on multi-
GPUs

ELLPACK-R consists of two arrays, A[ ] (float) and J [ ] (integer) of dimension N ×
Max nzr; and, moreover, an additional integer array called rl[ ] of dimension N (i.e.
the number of rows) is included with the purpose of storing the actual length of every
row, regardless of the number of the zero elements padded.

According to the mapping of threads in the computation of every row, several
implementations of SpMV based on ELLPACK-R can be developed. Thus, when T
threads compute the element u[i] accessing to the i-th row, the implementation is
referred as ELLR-T. So, the i-th row is split in sets of T elements. Then, in order to
compute the element u[i], T threads compute ⌈rl[i]/T ⌉ iterations of the inner loop of
SpMV, every thread stores its partial computation in the shared memory. Finally, to
generate the value of u[i], one reduction of the T values computed and stored in shared
memory has to be included. The value of parameter T can be explored in order to obtain
the best performance with every kind of sparse matrices. Figure 1 illustrates the code
of ELLR-T algorithm. The algorithms ELLR-T to compute SpMV with GPUs take
advantage of: (1) Coalesced and aligned global memory access. The access to read the
elements of A, J and rl are coalesced and aligned thanks to the column-major ordering
used to store the matrix elements and the zeros-padding to complete the length of every
row as multiple of 16. Consequently, the highest possible memory bandwidth of GPU is
exploited. (2) Homogeneous computing within the warps. The threads belonging to one
warp do not diverge when executing the kernel to compute SpMV. The code does not
include flow instructions that cause serialization in warps since every thread executes
the same loop, but with different number of iterations. Every thread stops as soon as its
loop finishes, and the remaining threads continue the execution.(3) Reduction of useless
computation and unbalance of the threads of one warp. Let Si be the set of T threads
which are collaborating on the computation of u[i], the k-loop reaches the maximum
value of k = ⌈rl[i]/T ⌉ ≤ ⌈Max nzr/T ⌉ for specific sets, Si, into the warp. Then, the
run-time of every warp is proportional to maximum element of the sub-vector ⌈rl[i]/T ⌉
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Figure 1: (a) ELLPACK-R Format and (b)ELLR-T code to compute SpMV on GPUs

related with every warp, and it is not necessary that the k-loop for all threads reaches
k = ⌈Max nzr/T ⌉, then, there are not useless iterations and the control of loops of
this implementation is reduced comparing with SpMV based on ELLPACK. (4) High
occupancy. High occupancy levels are reached as it will be shown in next section, if
optimal value of thread block size (BS) is used.

If several GPU devices are available, other parallelism level can be exploited to
compute SpMV. Every device has its local memory space. In order to compute u = Av
on a multi-GPU architecture, the matrix A is distributed by row blocks between D
devices. Then, the ELLR-T algorithm is computed with every sub-matrix Ad where 1 ≤
d ≤ D. Therefore the output vector, u, is distributed between the D devices without
any additional communication process because every local memory stores the whole
vector v. Figure 2 illustrates the distributed computing of SpMV based on ELLR-T
algorithm with several GPUs devices. This approach can help to accelerate the SpMV,

Figure 2: Distributed computing of SpMV based on ELLR-T algorithm with four GPUs
devices
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specially when the dimension of sparse matrix is large. However, the performance
can be penalized by the load unbalance due to the irregular distribution of matrix
entries between the GPU devices. Next section includes an analysis of the performance
achieved by ELLR-T on multi-GPU architectures.

4 Evaluation

In order to evaluate ELLR-T on multi-GPU architectures two analysis have been carried
out. First, ELLR-T has been evaluated on a GeForce GTX 285 with a set of test sparse
matrices from different disciplines of science and engineering which are described in
Table 1. The results comparative analysis shows that the best performance on one
GPU is achieved with ELLR-T, specially, if the optimum values of two parameters are
selected by means the proposed selection model. And, second, parallel ELLR-T★ has
been evaluated on a multi-GPU architecture based on Tesla C1060, where ★ denotes
ELLR-T with optimum value parameters. The results show that parallel ELLR-T★ on
multi-GPU relevantly accelerates the SpMV.

4.1 Comparative evaluation of ELLR-T on GPU

The SpMV computations with GPU based on the following formats to store the matrix
have been evaluated: CRS, CRS(vector), SpMV4GPU, ELLPACK, HYB and ELLR-
T★. Table 1 summarizes the characteristic parameters related to specific patterns of the
set of test matrices: number of rows (N), total number of non-zeros elements (Entries),
average number of entries per row (Av), the difference between the maximum number
of entries in a row and Av (IAv), percentage of relative standard deviation of entries
by row( ¾

Av ). Moreover Table 1 shows the bandwidth (BW ) and speed-up (sp) reached
with ELLR-T★ on the GPU GeForce GTX 285. The values of these parameters are key
to justify the differences between the performance achieved by SpMV with the different
formats, which are primarily related to the variability or dispersion of the number of
entries by row of the matrices. All matrices are real of dimensions N ×N .

The programming interface, CUDA, allows the programmer to specify which vari-
ables are to be stored in the texture cache within the memory hierarchy [10]. Here,
the vector v has been stored binding to the texture memory for all kernels evaluated,
since only the vector v is reused throughout the products with the different rows of the
matrix, in the computation of u = Av.

The evaluation results show that the best average performance is got by ELLR-
1 followed by HYB and ELLPACK, and the worst average performance is obtained
by CRS, CRS(vector) and SpMV4GPU. However, the performance of ELLR-T can be
highly increased if the values of two parameters are appropriately selected: the thread
block size, BS, before mentioned in Section 1, and T recently mentioned. The possible
values of BS are the powers of two from 16 to 512. The experimental results have
shown that only for BS = 128, 256, 512 the kernels ELLR-T reach 100% occupancy of
GPU, and for BS = 16, 32, 64 the occupancy is equal to or less than 50%. Then, it
is predictable that the performance decreases with the smaller values of BS. On the
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Table 1: Set of test matrices, characteristic parameters related to entries distribution
on the rows; Effective Bandwidth of memory access (BW ) and net speed-up (sp) of
SpMV with ELLR-T★ on the GPU GeForce GTX 285

Matrix N Entries Av IAv ¾
Av BW sp

qh1484 1.484 6.110 4,1 8,9 38,9 6,5 1,4
dw2048 2.048 10.114 4,9 3,1 10,2 10,8 1,9
rbs480a 480 17.087 35,6 0,4 1,4 14,0 1,2
gemat12 4.929 33.111 6,7 37,3 44,8 19,9 3,5
dw8192 8.192 41.746 5,1 2,9 12,0 34,6 5,3
mhd3200a 3.200 68.026 21,3 11,7 27,4 41,2 4,2
e20r4000 4.241 131.556 31,0 31,0 49,6 53,5 5,2
bcsstk24 3.562 159.910 45,0 12,0 25,6 69,9 13,9
mac econ 206.500 1.273.389 6,2 37,8 71,9 38,1 7,9
qcd5 4 49.152 1.916.928 39,0 1,0 0,0 120,2 15,9
mc2depi 525.825 2.100.225 4,0 0,0 1,9 118,0 23,5
rma10 46.835 2.374.001 50,7 94,3 56,1 99,5 13,7
cop20k A 121.192 2.624.331 21,6 59,3 63,7 70,1 21,0
wbp128 16.384 3.933.095 240,1 15,9 14,5 110,5 14,0
dense2 2.000 4.000.000 2.000 0,0 0,0 121,1 14,8
cant 62.451 4.007.383 64,2 13,8 21,9 121,4 31,7
pdb1HYS 36.417 4.344.765 119,3 84,7 26,7 119,5 30,5
consph 83.334 6.010.480 72,1 8,9 26,4 120,0 33,2
shipsec1 140.874 7.813.404 55,5 46,5 20,0 121,8 31,9
pwtk 217.918 11.634.424 53,4 127,6 8,9 128,3 32,8
wbp256 65.536 31.413.932 479,3 32,7 14,7 94,8 12,6

other hand, focussing our interest on the other parameter T , the values of T are divisors
of BS, then T = 2l < BS; our experimental results have shown that ELLR-T does
not reach the highest performance for T ≥ 16. Then, the kernel ELLR-T can achieve
better performance if BS = 128, 256, 512 and T = 1, 2, 4, 8.

The performance obtained by SpMV on GPUs is strongly related to the A pattern,
since the irregularities of the entries distribution result in a workload unbalance among
the threads. Taking account the described details of ELLR-T algorithm in Section 3
and the execution model with streams of threads at warp levels on GPU [5, 10], the
unbalance between threads due to the irregular filling of the A rows, U(rl, T ), can be
estimated as:

U(rl, T ) =

∑w=⌈N/32⌉−1
w=0 (

∑x=(32/T )−1
x=0 T ∗ ⌈Mw

T

⌉− rl(32/T ∗ w + x))∑k=N−1
k=0 rl(k)

(1)

where x is the thread identifier belonging to the warp with index w and Mw =
MAX{rl(32/T ∗ w + x)/0 ≤ x < 32/T} represents the maximum row length into
the set of rows related to the warp w. Notice that, this unbalance model is only related
to rl (the rows filling of A) and T (the number of threads collaborating to compute
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one element of output vector u). On the other hand, the number of memory accesses
(NMA) to read the data structure defined by ELLPACK-R increases when T increases,
since T threads have to read the element rl[i] to compute u[i]. The experimental results
have shown that the values of T , which minimize U(rl, T ) + NMA for the optimum
value of BS, get a performance which differs 15,85% of the optimum and it exactly
matches to the experimental optimum values for 50% of the set of test matrices.

Figure 3: Performance of SpMV based on different formats on GPU GeForce GTX 285
with the set of test matrices, using the texture cache memory.

Figure 3 shows the performance (GFLOPs) of the SpMV kernels based on the for-
mats that have been evaluated: CRS, CRS(vector), SpMV4GPU, ELLPACK, HYB
and, moreover, the kernel ELLR-T★ with optimal values of BS and T . The results
shown in that figure allow us to highlight the following major points: (1) As any paral-
lel implementation of SpMV, the performance obtained by most formats increases with
the number of non-zero entries in the matrix, since small matrices do not generate a
relevant computational load to reach high parallel performance. Thus, in general, as
the dimension of matrices increases, the performance improves. (2) In general, the CRS
format yields the poorest performance because the pattern of memory access is not co-
alescent; (3) The CRS(vector) and SpMV4GPU formats achieve better performance
than CRS with most matrices, specially when Av is higher and the distribution of en-
tries is more regular, i.e. ¾

Av is lower. SpMV4GPU reaches higher performance than
CRS(vector) because it better exploits the power of threads, as sixteen threads collab-
orate to compute every u element, and perform a total coalesced memory access. (4) In
general, ELLPACK outperforms both CRS-based formats, however its computation is
penalized for some particular matrices, mainly due to the relevance of useless compu-
tation of the warps when the matrix histogram includes rows with very uneven length.
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(5) The performance obtained by HYB is, in general, higher than the four previous
formats, but it is remarkable its poorer results for smaller matrices due to the penalty
introduced by the call to three different kernels necessary to compute SpMV. More-
over, with specific matrices of higher dimension (qcd5 4, mc2depi, cop20k A, wbp128,
consph, wbp256) it reaches lower or similar performance than ELLPACK, because the
percentage of entries stored with ELLPACK format is near to 100 %.(6) Finally, the
kernel ELLR-T★ based on the format ELLPACK-R clearly achieves the best perfor-
mance for all matrices considered in this work. In particular, it achieves the highest
performance with matrices of high dimensions and higher values of parameters IAv,
and ¾

Av .

Memory optimizations are very relevant to maximize the performance of the GPU.
The goal is to maximize the use of the hardware by maximizing bandwidth. Table 1
shows the effective bandwidth achieved when SpMV is computed with ELLR-T★ on the
GPU GeForce GTX 285 for the set of test matrices in Table 1. It is high specially for
matrices with large dimension. So, for these matrices the effective bandwidth ranges
from 90 to 128 GBps, that is 57-80% of the peak bandwidth (159 GBps) for this card.

In order to estimate the net gain provided by GPUs in the SpMV computation,
we have taken the best optimized SpMV implementations for modern processors and
for GPUs. For the former, we have considered the MKL implementation of SpMV for
a computer based on a state-of-the-art superscalar core, Intel Core 2 Duo E8400, and
evaluated the computing times for the set of test matrices. For the GPU GeForce GTX
285, we used the ELLR-T★, which is the best for the GPU according to the results
presented above. Table 1 shows the speedup factors obtained by the SpMV operation
on the GPU against one superscalar core, for all the test matrices. The results show that
the speedup depends on the matrix pattern, though, in general, it increases with the
number of non-zero entries. The speedup achieves values higher than 30× for matrices
of large dimensions and higher number of entries. In view of the results related to
the effective bandwidth and the speed-up achieved by ELLR-T★, we can conclude that
the GPU turns out to be an excellent accelerator of SpMV by means the ELLR-T★

algorithm.

4.2 Evaluation of ELLR-T on multi-GPU

Figure 4 shows the speed-up obtained by parallel ELLR-T★ using two and three devices
against one device of a multi-GPU architecture based on Tesla C1060 with the set of
test matrices. It is remarkable that the parallel scalability is strongly related to the total
number of entries and the dimension of A matrix. So, for matrices of large dimension
and large number of entries the speed-up obtained is nearly the ideal value or even
over-linear speed-up is achieved (mc2depi and wbp256). However, the differences of
speed-up obtained with different matrices show that the irregularities of the matrix
pattern can unbalance the work load of the devices penalizing the performance. For
matrices with smaller dimensions the parallel ELLR-T★ is not scalable because the work
load is low and, consequently, the occupancy levels of the devices are low. Then, if the
work-load of u = Av is enough, that is, the dimension and/or the number of A entries
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Figure 4: Speed-up of parallel ELLR-T★ obtained using two and three devices against
one device on the multi-GPU architecture based on Tesla C1060 with the set of test
matrices.

are larger, then, the ELLR-T★ kernel relevantly accelerate the SpMV on multi-GPU.

5 Conclusions

In this paper a new approach to compute the sparse matrix vector product on multi-
GPUs has been proposed and evaluated. Parallel ELLR-T is based on the ELLR-T
algorithm to compute SpMV on one GPU device. The comparative evaluation with
other proposals has shown that the performance achieved by ELLR-T is the best,
after an extensive study on a set of representative test matrices; and a model has been
described in order to help to tune the performance of ELLR-T on the GPU architecture
with every particular sparse matrix. The evaluation results have shown that the SpMV
can be accelerated with multi-GPU architecture and ELLR-T★ algorithm if the SpMV
has enough work load to warranty that the maximum device occupancy levels are
achieved.
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Abstract

Image classification is an essential step in three-dimensional (3D) electron microscopy
prior to the calculation of the 3D structure of biological specimens. KerDenSOM is a
very well known algorithm in this field and has thus been successfully used in a number
of experimental structural studies in molecular biology. One of the main drawbacks of
KenDerSOM is the fact that it is an iterative, very time consuming algorithm. Despite
its inherently parallel nature, its fine grain of parallelism does not adapt well to standard
parallelization techniques such as message-passing and multi-threading computing. In the
last few years, graphics processor units (GPUs) have emerged as new computing platforms
that offer massive parallelism and that can be exploited for general purpose applications.
In this work, we propose and evaluate a GPU-enabled implementation of the KerDenSOM
algorithm of image classification. We show that the use of GPU computing for the efficient
KerDenSOM execution is indeed feasible. Furthermore, the results we have obtained show
that this GPU implementation turns out to be a good parallel alternative to this problem,
providing good speed-up figures at a reduced cost.

Key words: parallel computing, 3D reconstruction, GPU computing, three-dimensional
electron microscop, single particle electron microscopy, self-organizing map, neural net-
work, SOM

MSC 2000: AMS codes (optional)

1 Introduction

Image classification in single-particle three-dimensional electron microscopy (3D EM) is an es-
sential preprocessing step to reach high resolution 3D reconstructions [1, 2]. In this discipline,
a biological sample is imaged with an electron microscope and micrographs of large EM fields
are taken where individual particles of the specimen under study are widely dispersed and ran-
domly oriented. These particles are then selected and boxed out from the micrograph. These
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individual images are affected by a number of factors: low contrast, low signal-to-noise ratio
(SNR), the effect of the transfer function of the microscope, and inhomogeneities or distortions
due to the preparation techniques used for the biological sample. Image classification aims at
obtaining better-quality, representative image projections of the specimen at different views.
Individual images are grouped together into classes based on their similarities, considering that
similar images can be seen as belonging to the same view. Thus, a unique, representative image
of each class can be obtained by two-dimensional (2D) averaging of such images. Averaging of
the images in a group yields a single image featuring a better SNR than the original, individual
images. These average views are subsequently used to derive the 3D structure of the specimen
[1, 2].

There exist different approaches that deal with image classification in 3D EM and that are
based on different methodological approaches, such as correspondence analysis, multivariate
statistical analysis, fuzzy logic, neural networks, etc. ([3, 4, 5, 6, 7, 8, 9, 10, 11, 12]). Certain
image classification algorithms are also able to deal with relatively heterogeneous specimens
where different conformations of the specimen are mixed in the biological sample and, in turn,
in the image population [13, 14].

This work centers on the ”Kernel Density Self-Organizing Maps” (KerDenSOM) algo-
rithm. The KerDenSOM algorithm [12] is based on a previous work by Marabini [11] who
proposed the use of neural networks and Kohonen SOMs [15] for 3D EM image classifica-
tion. KerDenSOM has been adopted by many groups and can be considered as a broadly used
method for image classification in the 3D EM field. Despite its wide adoption, one of the main
drawbacks of the KerDenSOM algorithm comes from its computational complexity. When
dealing with big experiments (large size and/or number of projections), the algorithm becomes
too costly in terms of execution time, thereby negatively impacting biologists’ productivity. Its
iterative nature and data characteristics are responsible for this major drawback.

Modern computing techniques allow the parallelization of complex applications so their
workload can be distributed across multiple computers and/or processing units (CPUs), result-
ing in an overall lower execution time. High performance computing has turned out to be
key to afford some of the computational stages involved in 3D EM [21, 22, 23, 24]. There-
fore, these techniques are expected to play an important role to address the computational
intensity of KerDenSOM. Nevertheless, the effectiveness of applying a parallelization strat-
egy depends on different factors. One of these factors is known as the ”grain of parallelism”,
and reflects the level at which the algorithm is parallelizable [25]. Coarse-grain applications
can be parallelized at a high level, with a good rate of computation vs. synchronisations. On
the other hand, some applications present a fine-grain parallelism which translates into a low
computation vs. synchronizations ratio. In the former case, paralellization through ”classic”
paradigms, like message-passing computing, through MPI [26] or shared memory computing
through OpenMP [27] or POSIX Threads [28], is straightforward and good speed-ups can be
expected. The latter case, however, does not adapt so well to such paradigms and poor speed-up
figures should be expected. Despite the apparently parallel nature of self-organizing maps, the
underlying algorithm exhibits fine-grain parallelism and the overhead due to synchronization
prevents full exploitation of the computational power of parallel systems. Poor speed-up fig-
ures are thus obtained when parallelizing the KerDenSOM algorithm through ”classical” MPI
and POSIX Threads programming models. So far, most successful parallel implementations
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of self-organizing maps have been based on specific and/or expensive hardware that requires
the algorithm be adapted (e.g transputers, FPGAs), adaptations of the algorithm to make it
better suited to parallelization for clusters or parallel systems (e.g [29]), or the adoption of the
master-worker paradigm with the master being a bottleneck in the parallelism [30].

Recently, Graphics Processing Units (GPUs) have emerged as new computing platforms
that offer massive parallelism and provide incomparable performance-to-cost ratio for scien-
tific computations [31]. The use of GPUs for general purpose applications has exceptionally
increased in the last few years thanks to the availability of Application Programming Interfaces
(APIs), such as Compute Unified Device Architecture (CUDATM)[32, 33], that greatly facili-
tate the development of applications targeted at GPUs [34]. In this work we propose and eval-
uate a high performance implementation of the KerDenSOM algorithm based on CUDATM that
makes use of relatively cheap, broadly available GPUs as the main source of computing power.

2 SOMs and KerDenSOM

KerDenSOM is a variant of the more general SOMs proposed by Kohonen in the 90’s [15].
Those were developed for unsupervised data classification purposes. Through SOMs, a corre-
spondence is obtained between the M-Dimensional input data members and a N-Dimensional
output map, with N being smaller than M and usually equal to 2. Thus, one of the main appli-
cations of SOMs is to get a 2D representation of some multidimensional input data so it can be
more easily explored and analysed.

A SOM consists of a matrix of points (neurons), known as ”map” or ”neural network”.
Neurons establish relationships with other neighbour neurons following different grid topolo-
gies (usually rectangular, hexagonal, toroidal, etc.. (see Fig. 1)).

Figure 1: Two different arrangements for the grid of neurons; left, a rectangular grid and right,
a hexagonal one.

Each neuroncontains a coefficients vector known as ”dictionary vector” (DV) which is
M-Dimensional as the input data. When an input data member accesses the SOM, a single
neuron is activated. That neuron, called the ”winning neuron” (WN) will be that whose DV is
more similar to the input member. Similarity is usually computed by means of the euclidean
distance (L2). Given an input member (a vector of values)x ∈ ℜn, it is compared against all
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the DVs,mi, in the SOM. The WN, calledc, will be that satisfying:

‖x − mc‖ = min
i
{‖x − mi‖}

Thus, thex vector is said to be mapped to the neuronc. Prior to this mapping or classification,
the SOM must follow a training process that computes the values formi. The training process
is as follows:

1. DVs (mi) are initialized, generally with random values.

2. Each input member is mapped to the corresponding WN. The WN is updated and so are
the neighbour neurons depending on the selected grid topology. At each training stept,
themi values are updated according to:

mi(t + 1) = mi(t) + hci(t)[x(t) − mi(t)]

wheret is an integer, discrete value representing time andhci(t) is the so-called neigh-
bourhood kernel:hci(t) = h(‖rc − ri‖, t) , with rc ∈ ℜ2 andri ∈ ℜ2 being the radius
vectors of thec andi nodes respectively. The neighbourhood kernel tells whether and
how much a neuron’s DV will be updated.hci(t) can adopt different expressions. The
simplest kernel expression, known as ”bubble”, is that using the group of nodes around
the c node, named asNc. This kernel defineshci(t) = α(t) if i ∈ Nc andhci = 0 if
i /∈ Nc, beingα(t) a function0 < α(t) < 1 known as learning rate. Another important
kernel type can be expressed by means of a gaussian function:

hci(t) = α(t) · exp

(

−
‖rc − ri‖

2

2σ2(t)

)

whereσ(t) represents the kernel width orstandard deviation,rc andri are the radius
vectors forNc as commented above. Bothα(t) andσ(t) are monotonic decreasing time
functions.

3. The process is repeated for a number of iterations or when a certain stop condition is
reached (e.g. the variability of DVs fall below a certain threshold).

The SOM methods are robust against incoherent input elements which are usually present
at all measurement processes. Thus, an atypical input element will affect a single neuron and
only slightly to its neighbours, limiting its impact in the classification process. SOMs also allow
to detect and discard atypical elements. Nevertheless, SOMs pose also certain limitations:

1. They do not define a density model in the data space but it is based on theL2 to determine
the WN.

2. The training algorithm does not optimize an objective function.

3. Theoretical convergence is not guaranteed.

4. There is not a robust theoretical explanation on how the algorithm works.
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KerDenSOM is a variant of the SOM algorithm based on the estimation of the kernel
density probability [12]. It does not use theL2 to determine the WN but the probability density
function (pdf). KerDenSOM was designed to find class representatives whosepdf was as
similar as possible to that present on the input data elements. This is, in fact, its main advantage
compared to other SOM implementations.

The mathematical formulation of the KerDenSOM is based on:
Given an input data setXi ∈ ℜp·1, with i = 1..n, treat to find a group ofc dataVj ∈ ℜp·1,

with j = 1..c, so thepdf :

D(X) =
1

c

c∑

j=1

K(X − Vj ; α)

beingK a function of gaussian kernel:

K(X − Xi; α) =
1

(2Πα)
p

2

exp

(

−
‖X − Xi‖

2

2α

)

as similar as possible to the input datapdf . Theα parameter is known as the kernel width and
controls the smoothness of thepdf ; α > 0.

To achieve this, and as developed on [12, 18], the resulting expression representing a cost
functionls must be maximized:

ls = −
np

2
ln 2cπα +

n∑

i=1

( c∑

j=1

exp

(

−
‖Xi − Vi‖

2

2α

))

−
ϑ

2α
tr(V CV T ) (1)

whereX are the input vectors,V arethe DVs andC is the neighbourhood matrix repre-
senting relationships between neurons.ϑ is a regularization or smoothness factor that affects
the convergence rate. Maximizing Eq. 1 is equivalent to makepdf ’s for input data and DVs
coincide.

The KerDenSOM algorithm is very sensible to the initial data. Therefore, a good ap-
proach for the training process consists of applying a deterministic annealing process to the
regularization factorϑ by decrementing its value between a maximum (initial value) ofϑ0 and
a minimum, final value ofϑ1. The training algorithm will start running with a highϑ until a
point of convergence. Then a new, smaller value is assigned toϑ and the training is run again.
As a result of the training process, we will obtain not only the DVs for the neurons (Vmatrix)
but also theU matrix denoting the membership probability for each input vector/neuron pair.

Those are the steps of the KerDenSOM training process:

1. Initializeϑ1 > 0, ϑ0 > 0, Iter = 0 andMaxIter > 1 (maximum number of training
steps)

2. Initialize matrixU satisfying:

{
0 ≤ Uji ≤ 1∑c
j=1 Uji = 1, ∀i

}

(2)
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3. Initialize matrixV following:

Vj =

∑n
i=1 XiUji∑n

i=1 Uji

(3)

4. Deriving and equalling Eq. 1to zero, calculateα by:

α =
1

np

( n∑

i=1

c∑

j=1

‖Xi − Vj‖
2Uji + ϑ

c∑

j=1

c∑

k=1

CjkV
T
j Vk

)

(4)

5. Repeat points 6 to10MaxIter times.

6. Calculateϑ for the current iteration following:

ϑ = exp

(

ln(ϑ1) − (ln(ϑ1) − ln(ϑ0))
Iter

MaxIter

)

(5)

7. CalculateVj for j = 1..c, as:

Vj =

∑n
i=1 UjiXi + ϑV j∑n

i=1 Uji + ϑ
(6)

until DVs converge:

‖Vjcurrent − Vjprevious‖
2 < ε (7)

8. Calculateα following Eq. 4.

9. CalculateUji for i = 1..n, j = 1..c following equation:

Uji =
K(Xi − Vj ; α)

∑c
k=1 K(Xi − Vk; α)

(8)

10. Go back to point 7 whilenext expression is not satisfied:

‖Ujicurrent − Ujiprevious‖
2 < ε (9)

Once the map has been trained, similar input members will be mapped to the same neuron
in the map.
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Begin 

Fix       > 0,        > 0, 

 MaxIter  > 1, Iter = 0 

Initialize U randomly,   

satisfying Eq. (2) 

Initialize V following  

Eq. (3) 

Initialize ! using 

Eq. (4) 

Compute Iter=Iter+1 

For j=1..c 

Calculate new V   using Eq. (6) 

Calculate ! using 

Eq. (4) 

For i=1..n, j=1..c 

Calculate U using Eq. (8) 

Iter < MaxIter 

End 
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No 

No 

Vcurrent "Vprevious
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Ucurrent "U previous
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< #

" = exp(ln("1) # (ln("1) # ln(" 0))$ Iter /MaxIter)

Figure 2: Workflow of the KerDenSOM algorithm. Note its iterative structure with two nested
loops. This is one of themain reasons to its high computational costs and a difficulty for
parallelization as sequentiality must be preserved.
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3 GPU computing and CUDATM architecture

Graphics Processing Units or GPUs have evolved over the years from expensive pieces of
hardware devoted to unload CPUs from graphics manipulation to cheap, sophisticated and
massively parallel general-purpose computing architectures (GPGPUs). GPGPUs are GPUs
whose design has been adapted to general purpose computation needs (i.e. 64-bit process-
ing, not needed for precise graphics representation is now present for other numeric prob-
lems). Certain scientific applications that have been ported to GPGPUs have shown impressive
speed-up figures which previously needed of powerful supercomputers to be achieved. This
has been in part possible thanks to the new APIs given by manufacturers to software devel-
opers as the nVIDIATM ’s CUDATM . Next is explained the CUDATMarchitecture present on
nVIDIA TMGPUs used for this work (see Fig. 3).
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Figure 3: Schematic architecture for a CUDA device. Note memory hierarchy and the high
number of processing units (SPs).

A CUDATM-enabled card is basically an array of processing units known as streaming
multiprocessors (SM). Each SM contains 8 scalar processors (SP) or cores. SMs are grouped
to form the GPU which is known as device. Specially important is the memory hierarchy
present on the device as it has a great impact in performance and demands a great effort from
the programmer’s point of view. A good memory management by the programmer is essential
to obtain good performance figures. Therefore, a profound knowledge of the GPU architecture
is strongly advisable. Each SM memory hierarchy is composed of three different levels:

1. Registers: A set of 32 bits registers per SP.

2. Shared Memory: A memory space for reading/writing shared between all the SPs.

3. Read-only Memories: Two different areas (constant memory and texture memory) shared
between all SPs from all SMs.
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Also, a new level of memory hierarchy exists that is shared across all SMs, the device
memory.

Apart from the memory hierarchy, the execution model is also central to ensure optimal
performance. Each card has a ”Thread Processor” that co-ordinates where (which SPs and
SMs) and when instructions are executed. The CUDA execution model is based on the simul-
taneous execution of a set of threads following a Single Instruction Multiple Threads (SIMT)
eschema. SIMT means that different threads are doing the same job (set of instructions) over
different pieces of data. Threads can be grouped into the so-called blocks. Also, blocks can
be grouped into grids. This grouping strategy is used by the card to assign specific operands
to each thread. Each block is assigned to a single SM that will process it until it is completely
finished and new blocks can be assigned to the SM.

Model execution and memory hierarchy are interrelated. Each thread owns a private local
memory arranged into 32 bits registers. There are a total of 8K (or more depending on the
architecture) registers that must be distributed across the threads in a block. All the threads in
a block share a portion of read/write, low latency and high bandwidth memory named Shared
Memory. All threads in a grid can also share a read-only memory (constant memory and texture
memory). Finally, the device memory is available for all threads of the grid.

4 Experiments and Results

To asses the quality and scalability of the parallel algorithm, a workstation was used. This
computer had the following characteristics:

• The main host computer characteristics are as follows. Intel Xeon W3520 (45nm) quad-
core processor, running at 2.66 Ghz. L1 cache of 256 Kb, L2 cache of 1 MB and L3
cache of 8 MB for each core. The total amount of RAM memory is of 6 GB DDR3 at
1066 Mhz and the Operating system is a Linux Debian distribution.

• The GPU is an nVIDIA Geforce GTX 285 with a compute capability 1.3. There are
30 multiprocessors accounting for a total of 240 scalar processors (or cores). The GPU
memory was of 2 GB and the clock frequency was 1,48 Ghz.

Experiments were run both on the original sequential algorithm which just makes use of
the CPU and on the CUDA-adapted algorithm that makes use of both the CPU and the GPU
processors. For the sequential executions, run on the host machine, the GNU g++ (for C++
code) compiler was used. Optimization flags (-O2, -fomit-frame-pointer, -finline-functions,
-funroll-loops) were enabled in order to obtain optimal execution times. The KerDenSOM
algorithm present on the Xmipp software package [35] was used for the sequential experiments.
Also, the parallel implementation was based on such Xmipp application. The resulting parallel
application can be obtained from http://dali.ace.ual.es/∼vazquez/contact.php.

A Ribosome model [36] was used to generate an initial set of 30000 projection images
randomly distributed around the specimen. The Ribosome images were classified, using the
KerDenSOM algorithm, into different arrangements (groups of classes): 4x4, 8x4 and 16x4
classes. Each arrangement was tested for both rectangular and hexagonal topologies. Data was
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Table 1: Average Speed-Up figures for the different experiments performed for problems of
size 30K (projections) and different mask sizes. DAS stands for Deterministic Annealing Steps.
”Rectangular” and ”Hexagonal” denote the arrangement of the grid of neurons.

Mask M0 Mask M1 Mask M2

Arrang. DAS Rect. Hexag. Rect. Hexag. Rect. Hexag.
4x4 5 6.27 5.13 5.82 5.21 5.48 5.53

10 5.90 4.96 5.56 5.62 5.56 5.58
15 5.53 5.01 5.62 5.75 5.52 5.49

8x4 5 8.23 5.53 5.23 5.85 5.79 6.03
10 6.57 8.08 5.10 6.58 5.92 7.70
15 6.19 5.68 4.95 6.18 5.59 5.55

16x4 5 4.77 5.95 5.36 5.87 5.44 5.95
10 5.21 5.61 4.64 5.52 5.09 5.03
15 5.43 6.46 5.12 5.27 5.10 5.37

masked using three different masks in order to simulate different problem sizes (projections
size). Let us name such masks asM0, M1 and M2. M0 means no mask at all, the whole image
is converted into an input vector (19600 elements). M1 represents a circular mask centered on
the image with a radius equal to half the size of the projection (13205 elements) Finally, M2
represents another circular mask of radius equal to 64 pixels (input vector 12643 elements).
Three different number of Deterministic Annealing Steps (DAS) were tested (5,10 and 15) for
each mask size, topology and arrangement. For statistical purposes, three repetitions for each
experiment where performed and average results were obtained.

Classification runtime varies depending not only on the problem size but also on the initial
random values assigned to DVs. In order to stablish comparable metrics between different ex-
ecutions, both the sequential and the parallel algorithms used non-random initialization seeds.
This allowed also to compare results between executions and ensure that the parallel imple-
mentation could reproduce those results obtained by the sequential version.

A total of 128 experiments were run (54 sequential and 54 parallel). Sequential executions
took a total of 608.1 hours while the parallel experiments took a total of 106.2 hours. This
means a raw 5,7x speed improvement.

As read from Table 1, the algorithm scales well for different problem sizes. No great
speed-up differences can be observed for the different experiments. In general, the speedup
factors that have been obtained fluctuate around 5.7x-6.0x. Different input data sizes (masks
M0, M1 and M2) do not seem to be affecting the parallel algorithm scalability. It could be
expected to obtain better results for bigger masks (resulting in bigger input vectors) as more
computation would exist versus synchronisations in the code. Nevertheless this did not happen,
which means that a good load balancing has been achieved. No appreciable differences exist
for the Rectangular and Hexagonal topologies either. Once more, the number of classes for
each topology do not seem to affect scalability of the algorithm. The same applies for the
number of Deterministic Annealing Steps used.
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Figure 4: Resulting SOM for a 4x4 classification (16 classes). For each class, the number of
input images mapped to itis shown.

5 Conclusions

In this work a parallel implementation of the KerDenSOM algorithm has been implemented and
tested on a GPU system. Results show an average 5.7x speed gain for the GPU implementation
in comparison with the sequential, original KerDenSOM implementation present in the Xmipp
software package. Such speed-up, although discrete in principle, must be examined in relation
to the system cost. The GPU used for the experiment had a cost of roughly 300$ which is by
no means comparable to an equivalent, theoretical multiprocessor system that could reach such
speed-ups (usually more than 6 processors).

The original Xmipp algorithm has shown to adapt well to the SIMD parallelization model
imposed by the GPU programming model and has shown a good scalability behaviour under a
variety of circumstances.
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Abstract

In this article we provide a predictor-corrector one-step method for numerically
solving first-order differential initial-value problems with two fixed-points. The
method preserves the stability behaviour of the fixed points which results in an
efficient integrator for this kind of problems. Some numerical examples are provided
to show the good performance of the method.

1 Introduction

For the general scalar initial-value problem (IVP)

y′ = f(x, y) , y(x0) = y0 (1)

with y, f(x, y) ∈ R, and x ∈ [x0, xN ], an interval on the real line, a large number of
algorithms have been developed to handle with it, since the Runge-Kutta or multistep
methods to specific procedures for dealing with particular characteristics.

Recently, particularly from the work of Mickens [1], [2], the application of non-
standard finite-difference methods has being increasing for numerically solving the
problem in (1). Their use is mainly based on the fact that they are effective in conserv-
ing certain qualitative properties of the differential equation such as the preservation
of fixed points, the positivity, or the monotonicity of the solutions. Examples of such
schemes can be found in Refs. [1], [3], [4]. These discretizations with zero local trun-
cation errors reflect exactly the dynamics of the differential equations. A well-known
of such procedures concerns to the logistic equation

y′ = y(1− y) (2)

for which an exact scheme is given by [1]

yn+1 − yn

1− e−h
= yn+1(1− yn) , (3)
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which may also be rewritten as [4]

yn+1 − yn

eh − 1
= yn(1− yn+1) . (4)

Although this example, in general it is not clear how to find an exact scheme for a
given IVP. This is not the case if the analytic exact solution is known, from which it
can be found easily an exact numerical scheme. Consider the equation in (2) together
with an initial value, that is,

y′ = y(1− y) , y(xn) = yn . (5)

The exact solution for this problem is

y(x) =
exyn

(ex − exn) yn + exn

from which it is readily deduced the numerical method

yn+1 =
ehyn

1 + (eh − 1) yn
(6)

which is exact for the logistic initial-value problem. This scheme is the same as those
in (3) or in (4), but we have it expressed in three different ways. This procedure could
be applied to any other IVP for which an explicit exact solution is known.

In this paper we propose a numerical scheme for solving first-order IVPs having
two real fixed points. This scheme in particular results to be exact (in the absence of
rounding errors) for the problem in (5) or for any IVP whose differential equation is of
the form y′ = (y − v1)(y − v2).

2 Description of the problem

We consider a particular kind of the scalar IVP in (1) with two fixed or equilibrium
points, given by

y′ = (y − v1)(y − v2)g(y) , y(xn) = yn (7)

where v1 < v2 ∈ R and g(y) 6= 0 is a bounded real-valued function with continuous
derivatives.

Without loss of generality we may consider that the equilibrium points in the above
problem are located at y = 0 and y = 1. To see that, consider the linear transformation
given by y = v1 +w (v2− v1). After applying this transformation to the problem in (7)
we get

w′ = w(w − 1)ḡ(w) , w(xn) = wn (8)

where ḡ(w) 6= 0 is given by ḡ(w) = (v2 − v1) g (v1 + w (v2 − v1)) and wn = (yn −
v1)/(v2 − v1). Henceforth we can take in (7) that v1 = 0 and v2 = 1, which results in
the problem

y′ = y(y − 1)g(y) , y(xn) = yn . (9)
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3 The finite difference scheme

The numerical scheme for solving the problem in (9) is based on the following propo-
sition.

Proposition 3.1. Assuming that yn 6= 0, the solution of the problem in (9) may be
expressed in the form

y(x)− 1
y(x)

=
yn − 1

yn
exp (In) (10)

with
In =

∫ x

xn

g(y(t)) dt .

Proof. Taking derivatives on both sides in the above expression, it follows easily the
differential equation in (9).

Note that the solution in (10) may be expressed explicitly as

y(x) =
yn

yn + (1− yn) exp
(∫ x

xn
g(y(t)) dt

) ,

from which we readily obtain that y(xn) = yn .

Taking x = xn +h = xn+1, where h is a fixed step-size, different numerical schemes
may be obtained after approximating the integral In in (10). We have consider two
one-step formulas:

• an explicit one, obtained using the approximation for the integral In ' h g(yn)
which results in the formula

yn+1 − 1
yn+1

=
yn − 1

yn
exp (h g(yn)) (11)

• an implicit one, obtained using the trapezoidal rule for approximating the integral,
In ' h (g(yn) + g(yn+1)) /2, which results in the formula

yn+1 − 1
yn+1

=
yn − 1

yn
exp

(
h

2
(g(yn) + g(yn+1))

)
. (12)

The above methods will be used in a predictor-corrector implementation using the
explicit one as a predictor and the implicit one as the corrector. In that case the
approximation for y(xn+1) obtained with the predictor will be denoted by yp

n+1, and
the approximation obtained with the corrector by yc

n+1. The proposed method reads

yp
n+1 =

yc
n

yc
n + (1− yc

n) exp (h g(yc
n))

(13)

ξn+1 = ξn exp
(

h

2
(
g(yc

n) + g(yp
n+1)

))
(14)

yc
n+1 =

1
1− ξn+1

(15)

@CMMSE                                                               Page   989  of 1328                                               ISBN 13: 978-84-613-5510-5



An ODE solver preserving fixed points

where the first of the formulas has been obtained from (11) and the other two from

(12) setting ξn =
yc

n − 1
yc

n

.

Note that the equation in (2) is of the form in (9), with g(y) = −1. In this case
the integral in (10) is solved exactly, In = −h and thus the methods in (11) or in (12)
are the same. In fact, the method is exact for this problem and is given by

yn+1 =
ehyn

1 + (eh − 1) yn
,

that is, the above method in (6).

Remark 3.1. In (11) for the approximation of the integral In we have substituted
the function g(y) by the interpolating polynomial passing through (xn, g(yn)), while
in (12) we have substituted g(y) by the interpolating polynomial passing through the
points (xn, g(yn)), (xn+1, g(yn+1)), as in the Adams methods. Obviously, we could have
consider better approximations to the integral taking interpolating polynomials of higher
degrees. But these formulas would have positive and negative coefficients, and could
result in a bad performance of the formulas. If g > 0 (¡0) then the integral In should
be In > 0 (In < 0), which is not guaranteed if the formulas have positive and negative
coefficients.

Remark 3.2. We observe that the above scheme may also be used for non-autonomous
differential problems of the form y′ = y(y − 1)g(x, y).

3.1 Local truncation error

The method in (11) may be written as

(yn+1 − 1) yn − (yn − 1) yn+1 exp (h g(yn)) = 0 . (16)

Substituting the approximate values yn, yn+1 for the true values y(xn), y(xn+h), having
in mind the value of g(y(x)) obtained from (9), after expanding by means of the usual
Taylor formula we obtain that the local truncation error for the formula in (16) is given
by

LTEp(y(xn);h) =
1
2

y(xn)(y(xn)− 1)g′(y(xn))h2 +O(h3) , (17)

where g′(y(xn)) =
dg(y(x))

dx
(xn).

Similarly, the implicit method in (12) may be written as

(yn+1 − 1) yn − (yn − 1) yn+1 exp
(

h

2
(g(yn) + g(yn+1))

)
= 0 . (18)

Proceeding as before, the local truncation error for the formula in (18) results in

LTEc(y(xn);h) =
−1
12

y(xn)(y(xn)− 1)g′′(y(xn))h3 +O(h4) ,
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where g′′(y(xn)) =
d2g(y(x))

dx2
(xn).

The analysis of the local error for the method in (13-15) applied in P (EC)E mode
is a bit cumbersome since the local truncation error of the corrector will be polluted
by that of the predictor. From the predictor method in (13), after expanding in Taylor
series we have

y(xn + h) − y(xn)
y(xn) + (1− y(xn)) exp (h g(y(xn)))

(19)

=
1
2

y(xn)(y(xn)− 1)g′(y(xn))h2 +O(h3) .

Having in mind the localizing assumption, on subtracting the formulas in (13) and (19)
we obtain that

y(xn + h)− yp
n+1 =

1
2

y(xn)(y(xn)− 1)g′(y(xn)) h2 +O(h3) . (20)

where the principal term coincides with that of the local truncation error in (17), as
expected.

From the corrector method in (14), setting ξ(x) =
y(x)− 1

y(x)
, after expanding in

Taylor series we have

ξ(xn + h) = ξ(xn) exp
(

h

2
(g(y(xn)) + g(y(xn + h)))

)

(21)

+
−1
12

y(xn)(y(xn)− 1)g′′(y(xn))h3 +O(h4) .

Using the localizing assumption and the formula in (14) we obtain that

ξ(xn + h)− ξn+1 = ξ(xn) e
h
2

g(y(xn))
[
e

h
2

g(y(xn+h)) − e
h
2

g(yp
n+1))

]

+
−1
12

y(xn)(y(xn)− 1)g′′(y(xn))h3 +O(h4) .

Defining the function F (y) = exp (h
2 g(y)), through the application of the Mean Value

Theorem to the bracket in the above formula it results that

ξ(xn + h)− ξn+1 = ξ(xn) e
h
2

g(y(xn)) ∂F

∂y
(η)

(
y(xn + h)− yp

n+1

)

+
−1
12

y(xn)(y(xn)− 1)g′′(y(xn))h3 +O(h4)

= ξ(xn) e
h
2

g(y(xn)) e
h
2

g(η) h

2
dg

dy
(η)

(
y(xn + h)− yp

n+1

)

+
−1
12

y(xn)(y(xn)− 1)g′′(y(xn))h3 +O(h4)
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where η is an intermediate point between y(xn + h) and yp
n+1. Introducing (20) in the

previous formula, and expanding in Taylor series the exponentials we get

ξ(xn + h)− ξn+1 =
1
16

(y(xn)− 1)2 g′(y(xn))
dg

dy
(η) h3

− 1
12

y(xn)(y(xn)− 1)g′′(y(xn))h3 +O(h4)

=
(

1
16

(y(xn)− 1) g′(y(xn))
dg

dy
(η)− 1

12
y(xn)g′′(y(xn))

)

×(y(xn)− 1)h3 +O(h4) .

So, in the first correction the order of the P (EC)E mode is that of the corrector.
However, the expression of the principal terms of the local truncation errors are differ-
ent. If we do a second or more corrections, the P (EC)mE mode (with m ≥ 2) has the
same order and its local truncation error has the same principal part as those of the
corrector.

4 Particularization in case of a double fixed point

If the differential equation has a double fixed point the IVP in (7) becomes

y′ = (y − v)2 g(y) , y(xn) = yn (22)

where v ∈ R and g(y) 6= 0. A procedure for numerically solving the above IVP may be
obtained similarly as in previous sections.

As for the case before, without loss of generality we may consider that the equilib-
rium point in the above problem is located at y = 0. To see that it is enough to consider
the linear transformation given by y = z +v. After applying this transformation to the
problem in (22) we get

z′ = z2g̃(z) , z(xn) = zn (23)

where g̃(z) = g (v + z) 6= 0 and zn = yn − v.
Henceforth we can take in (22) that v = 0, and thus we might consider the problem

y′ = y2 g(y) , y(xn) = yn . (24)

The numerical scheme for solving the problem in (24) is based on the following
proposition.

Proposition 4.1. The solution of the problem in (24) may be expressed in the form

y(x) =
yn

1− yn In
(25)

with
In =

∫ x

xn

g(y(t)) dt .
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Proof. Taking derivatives on both sides in the above expression, it follows easily the
differential equation in (24).

From the solution in (25) it is straightforward to get that y(xn) = yn .

Taking x = xn +h = xn+1, where h is a fixed step-size, different numerical schemes
may be obtained after approximating the integral In in (25). We have consider two
one-step formulas:

• an explicit one, obtained using the approximation for the integral In ' h g(yn)
which results in the formula

yn+1 =
yn

1− h yn g(yn)
(26)

• an implicit one, obtained using the trapezoidal rule for approximating the integral,
In ' h (g(yn) + g(yn+1)) /2, which results in the formula

yn+1 =
yn

1− h
2 yn (g(yn) + g(yn+1))

. (27)

We note that the method in (26) may be written as

yn+1 =
yn

1− yn h g(yn)
=

y2
n

yn − h y′n
= yn +

h yn y′n
yn − h y′n

where we have used that In ' h g(yn) and in view of (24) g(yn) = y′n/y2
n . This method

has appeared in [?] or [6] as indicated for solving singular IVPs. The local truncation
error for this scheme is given by

LTE(y(x);h) =
(

y′′(x)
2

− y′(x)2

y(x)

)
h2 +O (

h3
)

.

The solution of the differential equation resulting from equating to zero the prin-
cipal term of this LTE is y(x) = c2/(x + c1), and eliminating the parameters between
this equation and that of the derivative results that the method is exact for differential
equations of the form y′(x) = c1 y(x)2.

5 Elementary stability

The analysis of linear stability properties is done considering the autonomous differen-
tial equation

y′ = y(y − 1)g(y) , (28)

under the assumption that g(y) 6= 0. For this equation numerical instabilities will occur
if the linear stability properties of any of the two fixed points for the difference scheme
differs from that of the differential equation. Linear stability analysis applied to the
fixed points gives the following results [1]:
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If g(y) < 0 =⇒




y(x) = 0 is linearly unstable

y(x) = 1 is linearly stable .

If g(y) > 0 =⇒




y(x) = 0 is linearly stable

y(x) = 1 is linearly unstable .

From (18) it follows immediately that the only two fixed points of the numerical scheme
are yn = 0 and yn = 1, which are the same as for the differential equation in (28).
According to the method in (13-15) the fixed point yn = yc

n = 1 corresponds to ξn = 0,
which is the only fixed point of the following difference equation resulting from (14)

ξn+1 = ξn exp
(

h

2

[
g

(
1

1− ξn

)
+ g

(
1

1− ξn exp (h g(1/(1− ξn)))

)])
.

After linearizing we get the difference equation

ξn+1 = eh g(1) ξn

which has the solution
ξn = ξ0

[
eh g(1)

]n

Thus, it follows that for h > 0, if g(1) < 0 it is eh g(1) < 0. Therefore, the fixed point
yn = 1 is linearly stable for h > 0. On the contrary, if g(1) > 0 the fixed point yn = 1
is linearly unstable for h > 0.

To see the behavior of the fixed point yn = yc
n = 0 it is better to express the method

in (13-15) in the equivalent form

yp
n+1 =

yc
n

yc
n + (1− yc

n) exp (h g(yc
n))

ξ̄n+1 = ξ̄n exp
(
−h

2
(
g(yc

n) + g(yp
n+1)

))

yc
n+1 =

ξ̄n+1

ξ̄n+1 − 1

where ξ̄ =
yc

n

yc
n − 1

. Proceeding as before we get the linearized difference equation

ξ̄n+1 = e−h g(0) ξ̄n

which has the solution
ξ̄n = ξ̄0

[
e−h g(0)

]n
.

Therefore, for h > 0, if g(0) < 0 the fixed point yn = 0 is linearly unstable, and if
g(0) > 0 it is linearly stable. We summarize the above results in the following
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Theorem 5.1. The finite-difference scheme in (13-15) has for h > 0 the same fixed-
points as the differential equation in (28), with the same linear stability properties .

It is worth to mention here that although the fixed points of the differential equation
in (28) are conserved by the numerical scheme in (13-15), but this is not true for any
numerical method. As an example, let us consider the Runge-Kutta method given by
the Butcher tableau

0 0 0
1 1 0

0 1

Setting k1 = f(xn, yn) , k2 = f(xn + h, yn + h k1), this method may be rewritten as

yn+1 = yn + h f (xn + h, yn + h f(xn, yn)) .

When it is applied for solving the problem in (28) with g(y) = 1, it results that the
fixed points are the solutions of the equation f(y + h f(y)) = 0, where f(y) = y(y− 1).
The fixed points are 0, 1,−1/h, 1 − 1/h, so there are two spurious fixed points of the
finite-difference scheme, which could cause the bad behavior of the method.

6 Numerical example

We consider the initial-value problem given by

y′(x) =
y(x)2 − 1

y(x)2
, y(0) = y0 =

99
100

(29)

for which an exact solution in implicit form is given by G(x, y) = 0 with

G(x, y) = y − x− y0 +
1
2

log
(∣∣∣∣

(1− y)(y0 + 1)
(y + 1)(1− y0)

∣∣∣∣
)

.

For x → ∞ the solution converges to the fixed point y = 0, and so it has to cross the
horizontal axis, resulting on a singularity for the derivative located at

xs =
1
2

(
log

(∣∣∣∣
1 + y0

1− y0

∣∣∣∣
)
− 2y0

)
' 1.6566524123622457 .

We have solved the problem on the interval [0, 3.3] using a variable stepsize implemen-
tation. The strategy considered for changing the step size was that used on multistep
codes, [7, 8, 9]: given a tolerance, TOL, the classical stepsize prediction derived from
equating this tolerance to the norm of the local truncation error yields a new stepsize
hnew given by

hnew ≈ νhold

(
TOL

δn

)1/(p+1)

(30)
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where p is the order of the method, δn is an estimate of the error at each step, and
0 < ν < 1 is a safety factor whose purpose is to avoid failed steps.

In predictor-corrector mode the difference between the predicted and corrected
values can give an estimate of the error on the current step. The desired solution,
y(xn+1), can be written in terms of the computed solution with the corrector, and an
estimate of the error, δn , that is,

y(xn+1) = yc
n+1 +O(h3

n) ' yc
n+1 + δ ,

where hn is the estimate of the stepsize. Using the predictor the solution can be written
as

y(xn+1) = yp
n+1 +O(h2

n) ' yp
n+1 +

δ

hn

.

Subtracting the above two equations gives

0 = yc
n+1 − yp

n+1 + δ(1− 1
hn

) ,

from which we take as an estimate of the local error on each step

δ ' hn

∣∣∣∣
yc

n+1 − yp
n+1

1− hn

∣∣∣∣ .

Moreover, some restrictions must be considered in order to avoid large fluctuations
in stepsize. If δ > TOL than hn is decreased by a factor of 2 and the calculations at the
current step must be redone. On the other hand, if δ < 0.02TOL than hn is increased
by a factor of 2.

Table 1 shows the data with the method in this article using the above strategy.
We have considered the number of steps, the maximum absolute error at the nodal
points, the number of rejected steps consisting on doubling or halving it, and the CPU
time.

Steps MaxErr Rejected steps Time
203 5.1869× 10−4 83 0.016
380 3.2633× 10−5 57 0.031
773 9.9865× 10−6 35 0.062

1643 2.4212× 10−6 36 0.140
3514 5.3977× 10−7 34 0.328

Table 1: Numerical results for the problem in (29).

We have used the NDSolve command of the Mathematica program to solve the
problem in (29). After 1984 steps and 0.485 seconds of CPU time a warning appeared

NDSolve::ndsz: At x == 1.65665241194145631676693221244475207246‘24.,
step size is effectively zero; singularity or stiff system suspected.
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indicating that it has not been able to go beyond the singularity at xs.
Figure 1 shows the numerical solution after joining the points (xj , yj) for TOL =

10−8. Figure 2 shows the stepsizes needed. We observe that as we approximate to the
point xs the stepsize is smaller and then successively grows. The initial step was taken
to be h0 = 10−2.

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

Figure 1: Numerical solution for the problem in (29).

7 Conclusions

A numerical method that preserves the stability of the fixed points is presented for
solving initial-value problems with two fixed points. For this kind of problems the
method performs adequately even in case of difficult problems whose solution exhibits
a singularity or a highly oscillatory behaviour. For certain problems the method results
to be an exact scheme where the inaccuracies are due only to round-off errors. Two
are the objectives for future research: the formulation in a variable-step mode, and to
extend the applicability of the method for solving systems of differential equations.
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Figure 2: Stepsizes used for solving the problem in (29).
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Abstract

The visualization system of large-scale crowd simulations should scale up with
both the number of visuals (views of the virtual world) and the number of agents
displayed in each visual. Otherwise, we could have large scale crowd simulations
where only a small percentage of the population is displayed. Several approaches
have been proposed in order to efficiently render crowds of animated characters.
However, these approaches either render crowds animated with simple behaviors
or they can only support a few hundreds of user-driven entities. In this paper, we
propose a distributed visualization system for large crowds of autonomous agents
that allows the visualization of the crowd without adding significant overhead to
the simulation servers. The proposed implementation can be hosted on dedicated
computers different from the servers, and it takes advantage of the Graphics Pro-
cessor Unit (GPU) capabilities. As a result, the performance evaluation shows
that thousands of agents can be rendered without affecting the performance of the
simulation servers. These results suggest that the design of the visual client allows
to add multiple visuals for displaying large crowds.

Key words: distributed simulation, parallel rendering, performance evaluation

1 Introduction

Large scale crowd simulations are becoming essential tools for many virtual environment
applications in education, training, and entertainment [16, 4]. In order to deal with
the computational complexity of large scale simulations, different proposals have been
made for achieving both very populated scenes [19] and scalable autonomous behaviors
[9, 18]. However, the scalability of autonomous complex agents (crowd simulations) is
still an open issue in spite of these efforts.
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In previous works, we proposed a distributed system architecture that can simulate
large crowds of autonomous agents at interactive rates [10, 20, 21], and it can take
advantage of the inherent scalability of manycore computer architectures [22]. However,
in order to make a truly scalable system for crowd simulations, the visualization system
(the module responsible of rendering the images of the virtual world) should also be
addressed. The visualization system should scale up with both the number of visuals
(cameras focusing on the virtual world) and the number of agents displayed in each
camera. Otherwise, we could have large scale crowd simulations where only a small
percentage of the population could be rendered (displayed).

In this paper, we propose a distributed visualization system that allows the vi-
sualization of the virtual world without adding significant overhead to the simulation
servers, regardless of both the number of visuals and the number of agents rendered
by each visual. In order to achieve this goal, the visualization system consists of a
visual client process (VCP) for each camera, and each VCP is hosted on a computer
different from the ones hosting the simulation servers. In this way, the connection of
the visual client does not significantly affects the performance of the simulation system.
The proposed implementation migrates different rendering tasks of the VCP from the
CPU to the Graphics Processor Unit (GPU) of the hosting computer, reducing the
CPU workload of the visual client and increasing throughput. Also, we use skinned in-
stancing for reducing the rendering workload. As a result, the performance evaluation
shows that thousands of agents can be rendered without affecting the performance of
the simulation servers. These results suggest that the design of the visual client allows
to add multiple visuals for displaying large crowds.

The rest of the paper is organized as follows: section 2 shows some related work
about visual clients for crowd simulations. Section 3 briefly describes the distributed
architecture for crowd simulation that was previously proposed, and it shows the scala-
bility problems arising when connecting a VCP to this kind of systems. Next, section 4
describes the proposed implementation for the distributed visual client, and section 5
shows the performance evaluation of the proposed implementation. Finally, section 6
shows some conclusions.

2 Related Work

From the graphics community, several approaches have been proposed in order to effi-
ciently render crowds of animated characters. Image-based [5, 17] and Point-based [23]
techniques obtain interactive frame rates when rendering crowded animated scenes by
reducing the geometrical complexity of the 3D characters meshes. Other approaches
use efficient parallel graphic techniques to provide interactive graphics performance for
crowded scenes [14, 2]. Although these graphic-based approaches obtain good frame
rates, they are not focused on providing scalable architectures. Other proposals [15]
combine parallel architectures with efficient graphic techniques to simulate and to dis-
play thousands of individuals. In this case, authors use the Cell processor architecture
without considering scalability issues.
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From the distributed simulation arena, there have been several approaches oriented
to handle multiplayer games [3, 11]. Other works use the HLA architecture [24] com-
bining classical scene graphs with simulated federations to provide interactive graphic
applications for military and entertainment purposes.

Although these approaches can provide interactive latencies and frame rates, re-
quired by multiplayer games, they usually can only support a few hundreds of user-
driven entities within a simulation.

3 A Distributed System for Large-Scale Crowd Simula-

tion

In previous works, we proposed an architecture that can simulate large crowds of au-
tonomous agents at interactive rates [10, 20]. In that architecture, the crowd system
is composed of many Client Computers, that host agents implemented as threads of
a Client Process, and one Action Server (AS), executed in one computer, that is re-
sponsible for checking the actions (eg. collision detection) sent by agents [10]. In order
to avoid server bottleneck, the simulation world was partitioned into subregions and
each one assigned to one parallel AS [20]. A scheme of this architecture is shown in
figure 1. This figure shows how the 2D virtual world occupied by agents (black dots)
is partitioned into three subregions, and each one managed by one parallel AS (la-
beled in the figure as ASx). Each AS is hosted by a different computer. Agents are
execution threads of a Client Process (labeled in the figure as CPx) that is hosted on
one Client Computer. The computers hosting client and server processes are intercon-
nected. Each AS process hosts a copy of the Semantic Database. However, each AS
exclusively manages the part of the database representing its region. In order to guar-
antee the consistency of the actions near the border of the different regions (see agentk

in figure 1), the ASs can collect information about the surrounding regions by querying
the servers managing the adjacent regions. Additionally, the associated Clients are
notified about the changes produced by the agents located near the adjacent regions
by the ASs managing those regions.

The architecture shown in Figure 1 allows to simulate large crowds of autonomous
agents providing a good scalability. However, it also needs a scalable visualization
method in order to render the simulated crowd. The visualization system will be in
charge of rendering the simulated world, starting from the information generated by
the distributed servers. In order to provide scalability, the visualization system should
be designed in a distributed fashion.

A feasible way of implementing a distributed visualization system could be the
integration of a rendering module within each Action Server. In this way, each AS could
visualize its own region of the virtual world. However, the computational workload
resulting from adding a rendering module to each AS could result in a performance
degradation of the whole simulation system [12]. Additionally, with this approach the
number of cameras would be limited by the number of servers in the system. Instead,
we have followed a different approach, where the visualization of the simulation is
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Figure 1: General scheme of the distributed simulation system with a Visual Client
Process.

distributed among different processes, each one denoted as Visual Client Process (VCP).
Each VCP manages one camera, and it is hosted in a dedicated computer different from
the ones hosting either CPs or ASs. A VCP can be connected to several different ASs,
depending on the area of the virtual world covered by the camera of the VCP. For
example, in Figure 1 the VCP is connected to both AS1 and AS2, since the projection
of the camera plane (denoted as MBR Frustum) intersects the regions managed by
these ASs.

In order to efficiently designing the rendering module of the VCP, the first step
consists of measuring the workload that the information received from the ASs repre-
sents for a single VCP. The amount of information sent by the ASs depends on two
factors: the number of simulated agents and the acting period of those agents (the
period of time between two successive actions requested by an agent). Table 1 shows
the percentage of CPU utilization in the computer hosting the VCP when increasing
both the number of agents in the MBR Frustum and the acting period. The results
were obtained using up to four servers, each one managing 3000 agents (12000 agents
in total for four servers). In these tests, the VCP were connected to the servers and all
the agent requests received by the servers were sent to the VCP, i.e. the VCP received
updates from 12000 agents when using four servers. Table 1 shows that the VCP work-
load exceeds the computational bandwidth of the hosting computer when 6000 agents
(2 servers) are connected to the VCP, since the percentage of CPU utilization reaches
100%. Also, this table shows that the workload generated by the VCP is inversely
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related to the acting period, as it could be expected.

Agents Acting Period (ms.)
100 400 700 1000

3000 69 67 65 55

6000 100 100 100 100

9000 100 100 100 100

12000 100 100 100 100

Table 1: CPU utilization (%) of
the computer hosting the VCP.

Agents Acting Period (ms.)
100 400 700 1000

3000 0 0 0 0

6000 76207 44729 0 0

9000 205545 238244 61972 0

12000 433716 391644 157606 19137

Table 2: Visualization requests not processed by
the VCP.

In order to find how the saturation of the CPU affects the performance of the VCP,
we have measured the difference between the number of operations sent by the ASs and
the number of operations actually processed by the VCP. Table 2 shows these data, and
it shows that for 3000 agents there are no lost operations (the CPU hosting the VCP is
not saturated, reaching a maximum CPU utilization of 69% for the lowest acting period
(100 ms). However, from 6000 agents up, the VCP does not process all the requests,
depending on the agent period. It is worth mention that for the case of 6000 agents
the VCP is capable of process all the operations received when using an acting period
of 700 and 1000 ms. However, when simulating 12000 agents the VCP cannot process
all the operations, regardless of the agent period considered. These results show that
the implementation of the VCP should reduce the CPU utilization associated to the
graphic tasks as much as possible, in order to increase the VCP throughput.

4 Distributed Rendering of Crowd Simulations

In this section we describe the proposed implementation of the Visual Client Process.
The proposed approach for rendering crowd simulation is based on having each VCP
connected with one or more Action Servers. Therefore, the first step is to modify the
AS scheme proposed in [20] in such a way that the information about the agent actions
is also sent to the VCPs. Then, an implementation of the VCP according to that
scheme should be developed.

4.1 Modifications to the Action Server

Each AS process [20] contains three basic elements: the Interface module, the Crowd
AS Control (CASC) module and the Semantic Data Base (SDB). The Interface module
is in charge of communicating the AS with other ASs and CPs. The main module is
the Crowd AS Control module, which is responsible for executing the crowd actions.
This module contains a configurable number of threads for executing actions (action
execution threads). For an action execution thread (AE thread), all messages sent to
or received from other ASs and CPs are exchanged asynchronously. This means that
the AE threads only may have to wait when accessing the semantic database.
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The changes required in the Action Server for connecting the VCP exclusively af-
fects the Interface Module. Figure 2 shows the general scheme of an Action Server mod-
ified for accepting VCP connections. Two I/O threads are created for each VCP con-
nected to an AS. One of the I/O threads receives, through a socket, the MBR frustum
updates sent by the VCP. It must be noticed that the updates received from the VCP
are not passed to the Crowd AS Control Module. In this way, the workload added by
each VCP connected to the AS is reduced. The other I/O thread is in charge of forward-
ing to the VCP the AS replies to agents requests. This thread uses the MBR frustum
updates received from the VCP to filter forwarded replies. It simply checks whether
an agent falls within the MBR frustum or not (see Figure 1). In this way, a VCP
can visualize less agents than those that form the crowd simulated by the distributed
system.

Figure 2: Scheme of an Action Server with VCP connections.

4.2 Implementation of the Visual Client Process

The VCP is mainly composed by two modules: the Interface Module and the Graphic
Application Module. Figure 3 shows an schematic view of this process. The Interface
Module is in charge of sending updates of the MBR frustum to the ASs. Also , this
module should receive agents updates and pass them to the Graphic Application Mod-
ule. The Graphic Application Module is in charge of performing the graphic tasks.
Some of these tasks are executed on the CPU and other ones are executed on the GPU.

As shown in section 3, it is crucial to reduce as much as possible the percentage
of CPU utilization in the computer hosting the VCP in order to minimize the number
of visualization updates not processed by the VCP. In order to achieve this goal, the
frustum culling and the determination of the Level Of Detail (LOD) are performed by
the GPU, like other approaches do [13].

Additionally, we use Instancing to efficiently render crowded scenes [1]. When
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Figure 3: Scheme of the design of the Visual Client Process.

rendering a 3D mesh, typical graphic APIs issue a Draw call to the graphic pipeline.
Each API call has associated a fixed-cost overhead for processing a primitive, regardless
of the size. Due to this API call overhead, the performance of a graphic application
(in terms of Frames Per Second or FPS) is CPU-bounded instead of GPU-bounded.
Instancing consists in grouping characters that share a 3D mesh into a batch, generating
only one Draw call. However, when using Instancing characters have to share both the
mesh and the pose at a given time. Since a crowd is composed of autonomous agents,
each one has a different pose at a given time. As a result, the use of Instancing provides
non-realistic movements. In order to solve this problem, we have implemented the VCP
using the Skinned Instancing technique [7]. This technique takes advantage of the new
DirectX graphic API, that allows to perform Instancing but generating an identifier for
each instance of the 3D mesh. In this way, each instance can keep its own properties (i.e.
translation, rotation and scale) and the GPU skinning method [2] can be independently
applied to animate the character meshes.

Figure 3 shows a scheme of the VCP and the different tasks of each part of the
Graphic Module. The CPU part of this Module acts as an interface with the user,
updating the camera position according to the MBR frustum. All the MBR frustum
updates are passed to the Interface Module in order to send them to the ASs. Addi-
tionally, the CPU processes the agents updates received by the Interface Module and
formates this data in order to properly perform the skinned instancing on the GPU.
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Once the GPU part of the Graphic Module receives agents updates through a vertex
buffer, it firstly perform the view frustum culling and the LOD determination. As a
result, agents that have passed the culling test are grouped by LOD and one GPU
buffer is used to store agents sharing the same LOD. Since we are using three LODs,
three buffers are the input of the Skinned Instanced step. Once the instanced meshes
are properly animated, they are rendered.

5 Performance Evaluation

In this section, we show the performance evaluation of the proposed distributed visual
client. Like other distributed systems, the most important performance measurements
in these systems are latency and throughput [6]. Since we are focusing on the visual
client performance and how the integration of a VCP affects to the overall system
(crowd simulation) performance, we have performed simulations with different servers
and we have measured both the response time of the servers and frames rate obtained in
the VCP. In order to define an acceptable behavior for the system, we have considered
250 ms. as the maximum acceptable value for the response time, since it is considered
as the limit for providing realistic effects to users in DVEs [8]. For the VCP, we have
considered about 30 frames per second as an acceptable frame rate.

As a simulation platform, we have used a cluster of computers based on AMD
Opteron (2 processors @ 1.56 GHz) with 3.84GB of RAM, executing Linux 2.6.9-1
operating system. The interconnection network in the cluster was a Gigabit Ethernet
network. The machine used for the visual client was based on Intel Core 2 Duo @ 2.4
GHz with 4GB of RAM, executing Windows Vista operating system. The graphic card
within the VCP was a NVIDIA GForce 9600M GT. We have performed the distributed
simulations using up to four computers of the cluster for hosting an AS each. For that
case, we used eight cluster nodes (four of them for hosting the servers and four of them
for hosting four clients). Using this platform, we have simulated up to twelve thousand
agents. The VCP was connected to the servers through the cluster network and the
number of agent updates received by the VCP was increased in order to study the VCP
performance.

For comparison purposes, we have implemented three different VCPs. The first
one (denoted as SDC, for ”separate draw calls”) does not use Instancing to render the
crowd and performs the LOD computation on the CPU. The second version (denoted
as iCPU) uses Skinned Instancing and it computes the LODs on the CPU. Finally, and
the third kind of VCP (denoted as iGPU) uses Skinned Instancing and performs the
LOD calculations on the GPU. Figure 4 shows the CPU load of the different versions
of the visual client when the number of rendered agents is increased. In this figure, the
X-axis shows the number of rendered characters and the Y-axis shows the percentage
of CPU utilization when executing the VCP. This figure shows very much higher CPU
utilization load for the SDC version than the one required for the iCPU and iGPU
versions. This version of the VCP leads the CPU close to saturation levels for 5000
agents due to the absence of Instancing, while the other two versions only require
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less than a 50% of CPU utilization. This figure also shows that the iGPU version 3
reduces the percentage of CPU utilization around a 10% respect to the iCPU version.
Therefore, the version that provides the best results in terms of visual throughput (the
maximum number of characters that can be rendered) is the iGPU implementation of
the VCP.

Figure 5 shows the performance of the different versions of the VCP in terms of
FPS. In this figure, the X-axis shows the number of rendered agents and the Y-axis
shows the frame rate achieved by the VCP. It can be seen that both the iCPU and the
iGPU versions clearly outperform the SDC version. The reason for that behavior is
that the SDC version saturates the CPU. However, there is no a significant difference
between the frame rates obtained by the iCPU and the iGPU versions of the VCP
because both of them use Instancing. Therefore, they generate the same number of
draw calls. Since the iGPU provides the best throughput and a similar frame rate than
the iCPU version, we have used this version as the VCP implementation for the rest of
the evaluation.

Figure 4: CPU utilization for different im-
plementations of the VCP.

Figure 5: Frame rates for different imple-
mentations of the VCP.

Once the version of the VCP that provides the best performance has been selected,
the next step has been to study the performance of that VCP when it is connected to the
crowd simulation system. Table 3 shows the performance measurements for the VCP
when the number of agents updates received from the ASs is increased. It can be seen
that when rendering 2000 agents at a good frame rate the CPU utilization is around
87% and no agents updates are lost (all the requests are processed by the VCP). As the
number of agent rendering requests increases, so does the CPU utilization, causing a
frame rate decrease on the VCP but still above acceptable values (higher than 30 FPS).
However, from 5000 agents up to 6000 agents the CPU reaches saturation, resulting in
agents updates that are not processed and causing the frame rate to fall below 30 FPS.

Finally, we have studied the performance of the simulation servers when the VCP is
connected, in order to show that the latter one does not have a significant effect on the
servers performance. Figures 6 and 7 show the performance of the simulation system
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Characters rendered
2000 3000 4000 5000 6000

% CPU 86,7 89,3 94 95,7 98,8
FPS 55,4 41,6 34,8 28,4 25,4

Lost ops. 0 0 0 34134 57348

Table 3: Performance measurements for the VCP when increasing the number of agents
updates received.

when the VCP is connected to a simulation system consisting of four servers and the
number of agents updates sent to the VCP is increased. In these figures, the X-axis
shows the number of agents updates that the VCP receives. The Y-axis in figure 6
shows the CPU utilization in the system servers, while the Y-axis in figure 7 shows the
response time (in ms.) provided to agents (that are executed as threads of the client
processes).

Figure 6: CPU utilization of simulation
servers with a connected VCP.

Figure 7: Response time provided by simu-
lation servers with a connected VCP.

Figure 6 shows that the CPU utilization in the system servers remains almost
constant as the number of agents rendered by the VCP increases. It starts from a CPU
utilization of 80% for 2000 agents and for 6000 agents it does not reach 90%. Since the
VCP does not lead the system servers to saturation, figure 7 shows that they provide
an acceptable response time (shorter than 250 ms.) up to 6000 agents. These results
show that the VCP does no have significant effects on the performance of the system
servers.
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6 Conclusions and Future Work

In this paper, we have proposed a distributed visualization system that allows the
visualization of the virtual world without adding significant overhead to the simulation
servers. The proposed implementation can be hosted on dedicated computers different
from the servers, and it migrates different rendering tasks of the VCP from the CPU
to the GPU of the hosting computer. Also, we use skinned instancing for reducing the
rendering workload. As a result, the performance evaluation shows that thousands of
agents can be rendered without affecting the performance of the simulation servers.
These results suggest that the design of the visual client allows to add multiple visuals
for displaying large crowds.

As a future work to be done, we plan to study the scalability of the proposed
visualization system when a lot of visuals of the same simulation are needed.
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Abstract

This work is devoted to the establishment of the 1-covering property of the
omega-limit sets of a family of monotone non-autonomous neutral functional dif-
ferential equations with infinite delay and autonomous D-operator.
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1 Introduction

The aim of this work is to study the long term behavior of the solutions of a family of
monotone non-autonomous neutral functional differential equations with infinite delay
and autonomous D-operator. Following the ideas presented in Muñoz-Villarragut, Novo
and Obaya [3] and taking advantage of the results in Novo, Obaya and Villarragut [4],
we are able to give some new conditions under which the 1-covering property of the
omega-limit sets of this family.

In order to do this, we define a convolution operator associated to D as was done
in [3]. This operator defines a change of variables which transforms our equation into
one with no neutral part.

Then, we consider a new order relation which is given by means of a linear operator
D, in the line of what was done in [3], and use the exponential order introduced by
Smith and Thieme [6, 7]. This order relation together with the 1-covering property
obtained for functional differential equations in [4] yield the desired result.
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2 Linear autonomous D-operators

We consider the Fréchet space X = C((−∞, 0],R) endowed with the compact-open
topology, that is, the topology of uniform convergence over compact subsets, which is
a metric space for the distance

d(x, y) =
∞∑
n=1

1
2n

‖x− y‖n
1 + ‖x− y‖n

, x, y ∈ X ,

where ‖x‖n = sups∈[−n,0] |x(s)|.
Let BU ⊂ X be the Banach space

BU = {x ∈ X : x is bounded and uniformly continuous}

with the supremum norm ‖x‖∞ = sups∈(−∞,0] |x(s)|. Given r > 0, we will denote

Br = {x ∈ BU : ‖x‖∞ ≤ r} .

As usual, given I = (−∞, a] ⊂ R, t ∈ I and a continuous function x : I → R, xt will
denote the element of X defined by xt(s) = x(t+ s) for s ∈ (−∞, 0].

Let D : BU → R be a linear operator satisfying the hypotheses:

(D1) D is linear and continuous for the norm.

(D2) For each r > 0, D : Br → R is continuous when we take the restriction of the
compact-open topology to Br.

(D3) D is atomic at 0 (see definition in Hale [1] or Hale and Verduyn Lunel [2]).

(D4) D is stable, i.e. there is a continuous function c ∈ C([0,∞),R+) with lim t→∞ c(t) =
0 such that, for each ϕ ∈ BU with Dϕ = 0, the solution of{

Dxt = 0 , t ≥ 0
x0 = ϕ ,

satisfies |x(t)| ≤ c(t) ‖ϕ‖∞ for each t ≥ 0.

Following [3], we define the linear operator

D̂ : BU −→ BU

x 7→ D̂x : (−∞, 0] → R
s 7→ Dxs .

(1)

As seen in [3] and [4], from (D4), we get the following result.

Theorem 2.1. D̂ is invertible, D̂−1 is bounded for the norm and uniformly continuous
when we take the restriction of the compact-open topology to Br, i.e. given ε > 0 there
is a δ(r) > 0 such that d(D̂−1h1, D̂

−1h2) < ε for all h1, h2 ∈ Br with d(h1, h2) < δ(r).

As a consequence, the linear operator T : BU → R, x 7→ (D̂−1x)(0), also satisfies
(D1)-(D4).
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3 Transformed exponential order and structure of omega-
limit sets

Let R+ = [0,∞). We recall two basic definitions of topological dynamics.

Definition 3.1. Let (Ω, d) be a compact metric space. A real continuous flow (Ω, σ,R)
is defined by a continuous map σ : R× Ω→ Ω, satisfying

(i) σ(0, ·) = Id,

(ii) σ(t+ s, ·) = σ(t, ·) ◦ σ(s, ·) for each s, t ∈ R.

Definition 3.2. Let E be a complete metric space. A semiflow (E,Φ,R+) is deter-
mined by a continuous map Φ : R+ × E → E, (t, x) 7→ Φ(t, x) which satisfies

(i) Φ(0, ·) = Id,

(ii) Φ(t+ s, ·) = Φ(t, ·) ◦ Φ(s, ·) for all t, s ∈ R+.

Given x ∈ E, the set {Φt(x) : t ≥ 0} is the trajectory of the point x.

Let F : Ω×BU → R, let (Ω, d) be a compact metric space and let σ : R× Ω→ Ω
be a minimal real flow on Ω. Denote ω·t = σ(t, ω) for all ω ∈ Ω and t ∈ R. Let
D : BU → R be an operator satisfying hypotheses (D1)-(D4).

Let us consider the family of equations

d

dt
D zt = F (ω·t, zt), t ≥ 0, ω ∈ Ω. (3.2)ω

Let ρ, µ > 0; let us recall the definitions of exponential ordering on BU given in [4]. If
x, y ∈ BU , then

x ≤µ y ⇐⇒ x ≤ y and y(t)− x(t) ≥ e−µ(t−s)(y(s)− x(s)) ,−ρ ≤ s ≤ t ≤ 0 ,
x <µ y ⇐⇒ x ≤µ y and x 6= y .

The aforementioned relation defines a positive cone in BU , BU+
µ = {x ∈ BU : x ≥µ 0},

in the sense that it is a closed subset of BU and satisfies BU+
µ + BU+

µ ⊂ BU+
µ ,

R+BU+
µ ⊂ BU+

µ and BU+
µ ∩ (−BU+

µ ) = {0}.
Now, we define the following transformed exponential order relation: if x, y ∈ BU ,

then
x ≤D,µ y ⇐⇒ D̂x ≤µ D̂y.

Let us assume the following hypotheses:

(F1) F : Ω×BU → R is continuous on Ω×BU and its restriction to Ω×Br is Lipschitz
continuous in its second variable when the norm is considered on Br for all r > 0.

(F2) F (Ω×Br) is a bounded subset of R for all r > 0.

(F3) The restriction of F to Ω×Br is continuous when the compact-open topology is
considered on Br, for r > 0.
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(F4) If (ω, x), (ω, y) ∈ Ω×BU and x ≤D,µ y, then F (ω, y)− F (ω, x) ≥ −µD(y − x).

From (F1), for each ω ∈ Ω, it follows that we have local existence and uniqueness of
the solutions of equation (3.2)ω (see e.g. Wang and Wu [8] and Wu [9]). Moreover,
given (ω, x) ∈ Ω×BU , if z(·, ω, x) is the solution of equation (3.2)ω with initial datum
x, then the map u(t, ω, x) : (−∞, 0] → R, s 7→ z(t + s, ω, x) belongs to BU for all
t ≥ 0 where the solution is defined.Consequently, we can define a local skew-product
semiflow on Ω×BU as follows:

τ : U ⊂ R+ × Ω×BU −→ Ω×BU
(t, ω, x) 7→ (ω·t, u(t, ω, x)).

Now, the omega-limit set of (ω0, x0) can be defined as

O(ω0, x0) = {(ω, x) ∈ Ω×BU : ∃tn ↑ ∞ with ω0·tn → ω, u(tn, ω0, x0) d→ x}.

Definition 3.3. Given r > 0, a forward orbit {τ̂(t, ω0, x0) : t ≥ 0} of the transformed
skew-product semiflow τ̂ is said to be uniformly stable for the order ≤µ in Br if, for
every ε > 0, there is a δ > 0 such that, if s ≥ 0 and d(u(s, ω0, x0), x) ≤ δ for certain
x ∈ Br with x ≤µ u(s, ω0, x0) or u(s, ω0, x0) ≤µ x, then for each t ≥ 0,

d(u(t+ s, ω0, x0), u(t, ω0·s, x)) = d(u(t, ω0·s, u(s, ω0, x0)), u(t, ω0·s, x)) ≤ ε.

We will assume two more hypotheses.

(F5) There exists r0 > 0 such that all the trajectories for with a Lipschitz continuous
initial datum within Bbr0 are relatively compact for the product metric topology
and uniformly stable for the order ≤D,µ in bounded sets, where

r̂0 =
1
µ
‖D̂−1‖ sup{|F (ω, x)| : (ω, x) ∈ Ω×Br0}+ r0.

(F6) If (ω, x), (ω, y) ∈ Ω×BU admit a backward orbit extension (see Shen and Yi [5]),
x ≤D,µ y and D̂x(s) < D̂y(s) for all s ≤ 0, then F (ω, y)−F (ω, x)+µD(y−x) > 0.

Theorem 3.4. Assume that conditions (D1)-(D4) are satisfied; furthermore, assume
conditions (F1)-(F6). Fix (ω0, x0) ∈ Ω×Br0 such that {τ̂(t, D̂(ω0, x0)) : t ≥ 0} is rela-
tively compact for the product metric topology and uniformly stable for ≤µ in bounded
sets, and such that K = O(ω0, x0) ⊂ Ω×Br0. Then K = {(ω, c(ω)) : ω ∈ Ω} and

lim
t→∞

d(u(t, ω0, x0), c(ω0·t)) = 0,

where c : Ω→ BU is a continuous map, considering the compact-open topology on BU .
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Abstract

This work devotes to developing the ESRKN methods for systems of oscillatory
second-order differential equations q′′ + Mq = f with M ∈ Rm×m, a symmetric
positive semi-definite matrix, and the perturbing function f depending only on
q, based on ERKN methods proposed by Yang et al. The symplectic conditions
for the systems of oscillatory second-order differential equations with Hamiltonian
H(p, q) = 1

2pT p + 1
2qT Mq + V (q) are presented.

Key words: SERKN methods; Symplectic conditions; Oscillatory systems; Hamil-
tonian systems.
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1 Introduction

The basic idea of structure-preserving algorithms is that numerical algorithms should
conserve as much as possible the qualitative behavior of the original systems. A good
theoretical foundation of structure-preserving algorithms for ordinary differential equa-
tions can be found in Hairer et al. [1], Sanz-Serna et al. [2] and for the review articles
we refer to references Petzold [3] and Lubich et al. [4].

It is well-known that Hamiltonian systems are differential equations of the form:
{

q′ = −∇Hq(p, q),
p′ = ∇Hp(p, q), (1)

where H : Rd × Rd → R, and the dimension d is the number of degrees of freedom.
Lubich et al. [4] claimed to develop numerical methods for problems with Hamiltonian

H(p, q) =
1
2
P T R−1P +

1
2
qT Mq + V (q),
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where M is a positive semi-definite constant stiffness matrix, R is a positive definite
constant mass matrix (in the sequel of this paper taken as the identity matrix for
convenience) and V is a smooth potential having moderately bounded derivatives. Here
we are concerned with the Hamiltonian systems in the following form





q′ = p,
p′ = −Mq −∇V (q),
q(t0) = q0, p(t0) = p0,

(2)

where q : R→ Rd and p : R→ Rd are generalized positions and generalized momenta,
respectively, M is a d × d symmetric and positive semi–definite matrix containing
implicitly the frequencies of the problem and ∇V (q) is the gradient of a real-valued
function V (q) whose second derivatives are continuous. The Hamiltonian of systems
(2) is given by

H(p, q) =
1
2
pT p +

1
2
qT Mq + V (q).

It is easy to see that the Hamiltonian system (2) is equivalent to the following system
of second order differential equations

{
q′′(t) + Mq(t) = f(q(t)), t ∈ [t0, T ],
q(t0) = q0, q′(t0) = q′0.

(3)

with f(q) = −∇V (q), which can be thought of as the perturbing force.
Early work in the scientific literature on the numerical integration of the system

(3) were mostly concerned with the case where the frequency matrix M = w2I is a
diagonal matrix. Recently, new approaches to constructing RKN-type methods for (3)
have been proposed (see [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] for examples).

2 Multidimensional ERKN methods

Yang et al. proposed the ERKN methods [17]. However, the ERKN methods in that
paper only consider for the special case where M is a diagonal matrix with nonnegative
entries. This section extends the ERKN methods to the general case with M ∈ Rd×d,
and the perturbing function f depends only on q.

Define

φ0(V ) :=
∞∑

k=0

(−1)kV k

(2k)!
, φ1(V ) :=

∞∑

k=0

(−1)kV k

(2k + 1)!
. (4)

From the variation-of-constant formula, the solutions of the systems (3) at ξ = tn +hz
satisfy the following integral equations:
{

q(tn + µh) = φ0(µ2V )q(tn) + µhφ1(µ2V )q′(tn) + h2
∫ µ

0
(µ− z)φ1

(
(µ− z)2V

)
f̂(tn + hz)dz,

q′(tn + µh) = −µhMφ1(µ2V )q(tn) + φ0(µ2V )q′(tn) + h
∫ µ

0
φ0

(
(µ− z)2V

)
f̂(tn + hz)dz.

(5)
where V = h2M, f̂(ξ) = f(q(ξ)).

In order to obtain a numerical method for the system (3) one has to approximate the
integrals in (5) with some higher order quadrature formulas. This leads to the following
scheme for (3).
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Definition 2.1. An s-stage ERKN method for the numerical integration of the oscil-
latory system (3) is defined as





Yi = φ0(c2
i V )qn + hciφ1(c2

i V )q′n + h2
s∑

j=1

aij(V )f(Yj), i = 1, · · · , s,

qn+1 = φ0(V )qn + hφ1(V )q′n + h2
s∑

i=1

b̄i(V )f(Yi),

q′n+1 = −hMφ1(V )qn + φ0(V )q′n + h
s∑

i=1

bi(V )f(Yi),

(6)

where, bi, b̄i, i = 1, · · · , s and aij , i, j = 1, · · · , s are matrix-valued functions of V =
h2M .

It is very important to notice that when M = 0, the scheme (6) reduces to the
classical RKN methods.

3 Order conditions for multidimensional ERKN methods

An ERKN method (6) for the system of second order differential equations (3) has
order r, if for sufficiently smooth (3) the conditions

en+1 := qn+1 − q(tn + h) = O(hr+1) and e′n+1 := q′n+1 − q′(tn + h) = O(hr+1) (7)

are satisfied simultaneously, where q(tn + h) and q′(tn + h) are the exact solution
of (3) and its derivative at tn + h, respectively, and qn+1 and q′n+1 are the one step
numerical results obtained by the method from the exact starting values qn = q(tn)
and q′n = q′(tn) (the local assumptions).

After introducing two functions φ0 and φ1 in(4), we now define

φj(M) :=
∞∑

k=0

(−1)kMk

(2k + j)!
, j = 2, 3, · · · . (8)

Then the asymptotic expansions of the true solution to the problem (3) and its deriv-
ative in powers of h are given, respectively, by

q(tn + h) = φ0(V )qn + hφ1(V )q′n +
∞∑

j=0

hj+2φj+2(V )f̂ (j)
n ,

q′(tn + h) = φ0(V )q′n − hMφ1(V )qn +
∞∑

j=0

hj+1φj+1(V )f̂ (j)
n ,

where f̂
(j)
n = dj

dtj
f̂(t)

∣∣∣
t=tn

is the jth derivative of f̂(z) at z = tn.

Theorem 3.1. The necessary and sufficient conditions for an s-stage ERKN method
to be of order r are given by

{
b̄T (V )Φ(τ) = ρ(τ)!

γ(τ) φρ(τ)+1(V ) +O(hr−ρ(τ)), ρ(τ) = 1, · · · , r − 1,

bT (V )Φ(τ) = ρ(τ)!
γ(τ) φρ(τ)(V ) +O(hr+1−ρ(τ)), ρ(τ) = 1, · · · , r,

(9)

where τ is the EN-tree associated with an elementary differential F(τ)(qn, q′n) of the
function f(q, q′) at (qn, q′n). ρ(τ), α(τ) and γ(τ) are exactly the same as those in [17].
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4 Symplectic conditions for ERKN methods

This section only considers the situation when M is a symmetric positive semi-definite
matrix. The symplectic conditions for Runge-Kutta methods are obtained by Sanz-
Serna [19] and for RKN methods are derived by Suris [20]. We now state the symplectic
conditions for the ERKN methods.

Theorem 4.1. If the coefficients of an s-stage ERKN method satisfy the following
conditions

bi(V )φ0(V ) + b̄i(V )V φ1(V ) = diφ0(c2
i V ), di ∈ R, i = 1, 2, · · · , s,

b̄i(V )(φ0(V ) + ciV φ1(V )φ−1
0 (c2

i V )φ1(c2
i V ))

= bi(V )(φ1(V )− ciφ0(V )φ−1
0 (c2

i V )φ1(c2
i V )), i = 1, 2, · · · , s,

bi(V )(b̄j(V )− φ0(V )φ−1
0 (c2

i V )aij(V ))− b̄i(V )V φ1(V )φ−1
0 (c2

i V )aij(V )

= bj(V )(b̄i(V )− φ0(V )φ−1
0 (c2

jV )aji(V ))− b̄j(V )V φ1(V )φ−1
0 (c2

jV )aji(V ), i, j = 1, 2, · · · , s,
(10)

then the ERKN method is symplectic.
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Abstract

The class of bandlimited functions on the real line can be characterized in a
number of different ways. Some of these characterizations can be extended to higher
dimensions. In this talk we give a new characterization of bandlimited functions
on the real line and then extend it to higher dimensions. This new characterization
is based on the notion of chromatic derivatives and chromatic series expansions.
Although chromatic derivative are linear combinations of the ordinary derivatives,
chromatic series have better approximation properties than Taylor series.
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1 Introduction

The space of bandlimited functions plays an important role in communication engi-
neering. In fact, the term ‘bandlimited’ signals came from electrical engineering where
it means that the frequency content of a signal is limited by certain bounds from below
and above. The classical space of bandlimited functions, which is also called the Paley-
Wiener space, PWπ, of functions bandlimited to [−π, π], consists of square integrable
functions whose Fourier transforms, f̂ have supports in [−π, π].

One of the fundamental characterizations of the space PWπ, is given by the fol-
lowing theorem of Paley and Wiener

Theorem 1.1 (Paley-Wiener) A function f is bandlimited to [−σ, σ], i.e., f ∈ PWσ

if and only if

f(t) =
∫ σ

−σ
e−iωtg(ω) dω (t ∈ IR) ,

for some function g ∈ L2(−σ, σ) and if and only if f is an entire function of exponential
type that is square integrable on the real line, i.e., f is an entire function such that

|f(z)| ≤ sup
x∈IR

|f(x)| exp(σ |y|), z = x + iy,
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and ∫

IR
|f(x)|2 dx < ∞.

Another important property of the space PWσ is given by the Whittaker-Shannon-
Koteln’nikov (WSK) sampling theorem, which can be stated as follows [10]:

Theorem 1.2 If f ∈ PWσ, then f can be reconstructed from its samples, f(tk), where
tk = kπ/σ via the formula

f(t) =
∞∑

k=−∞
f (tk)

sinσ(t− tk)
σ(t− tk)

(t ∈ IR), (1)

with the series being absolutely and uniformly convergent on IR.

One of the earliest generalizations of the Paley-Wiener space is the Bernstein space.
Let σ > 0 and 1 ≤ p ≤ ∞. The Bernstein space Bp

σ is a Banach space consisting of all
entire functions f of exponential type with type at most σ that belong to Lp(IR) when
restricted to the real line. It is known [1, p. 98] that f ∈ Bp

σ if and only if f is an entire
function satisfying

‖f(x + iy)‖p ≤ ‖f‖p exp (σ|y|) , z = x + iy,

where the norm on the left is taken with respect to x for any fixed y and

‖f‖p =
(∫ ∞

−∞
|f(x)|p dx

)1/p

< ∞, if 1 ≤ p < ∞

and
‖f‖∞ = ess.supx∈IR |f(x)| < ∞, if p = ∞.

Unlike the spaces Lp(IR), the spaces Bp
σ are closed under differentiation and the

differentiation operator plays a vital role in their characterization. The Bernstein spaces
have been characterized in a number of different ways and one can prove that the
following are equivalent:

A) A function f ∈ Lp(IR) belongs to Bp
σ if and only if its Fourier transform has

support [−σ, σ]. For 2 < p, f̂ is understood to be in the sense of distributions.

B) Let f ∈ C∞(IR) be such that f (n) ∈ Lp(IR) for all n = 0, 1, · · · , and some
1 ≤ p ≤ ∞, then f ∈ Bp

σ if and only if f satisfies the Bernstein’s inequality [?, p.
116] ∥∥∥f (n)

∥∥∥
p
≤ σn ‖f‖p , n = 0, 1, 2, · · · ; 1 ≤ p ≤ ∞. (2)

C) Let f ∈ C∞(IR) be such that f (n) ∈ Lp(IR) for all n = 0, 1, · · · , and some
1 ≤ p ≤ ∞. Then

lim
n→∞

∥∥∥f (n)
∥∥∥

1/n

p
≤ ∞, exists

and f ∈ Bp
σ if and only if limn→∞

∥∥f (n)
∥∥1/n

p
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D) Let f ∈ C∞(IR) be such that f ∈ Lp(IR) for some 1 ≤ p ≤ ∞. Then f ∈ Bp
σ if

and only if it satisfies the Riesz interpolation formula

f (1)(x) =
σ

π2

∑

k∈ZZ

(−1)k−1

(k − 1/2)2
f

(
x +

π

σ
(k − 1/2)

)
(3)

where the series converges in Lp(IR).

In higher dimensions, the situation becomes slightly more complicated. Let Ω be
a fixed compact set in IRd, and define Bp (Ω) , 1 ≤ p ≤ ∞ as the space of functions
bandlimited to Ω, i.e.,

Bp (Ω) =
{

f ∈ Lp(IRd) : suppf̂ ⊂ Ω
}

,

where suppf̂ is the support of the Fourier transform of f. For 2 < p, f̂ is understood
to be in the sense of distributions. Some of the aforementioned characterizations (A)
-(D) of bandlimited functions in one variable are still valid in higher dimensions.

In this article we will give a new characterization of the space B2 (Ω) that employs
the notion of chromatic derivatives.

2 Chromatic Derivatives and Series Expansions

The Whittaker-Shannon-Kotel’nikov (WSK) [10] sampling series (1) may be viewed as a
global expansion because it uses the function values at infinitely many points uniformly
distributed on the real line. On the other hand, as an entire function, f has a Taylor
series expansion of the form f(t) =

∑∞
n=0

(
f (n)(0)/n!

)
tn, which may be viewed as a

local expansion since it uses the values of f and all its derivatives at a single point.
Unlike the sampling series, which plays an important role is signal processing, the
Taylor series has very limited applications because, among other reasons, a truncated
Taylor series is a polynomial and not bandlimited.

Chromatic derivatives and series expansions have recently been introduced by A.
Ignjatovic in [2] as an alternative representation to Taylor series and they have been
shown to be more useful in practical applications than Taylor series; see [3, 4, 5, 6, 7, 8].

The n-th chromatic derivative Kn[f ](t0) of an analytic function f(t), at t0 is a linear
combination of the ordinary derivatives f (k)(t0), 0 ≤ k ≤ n, where the coefficients of
the combination are based on a system of orthogonal polynomials.

For the reader’s convenience, we will briefly describe how chromatic series are con-
structed. Fix a real-valued weight function ρ(ω) ≥ 0, ω ∈ IR, with

∫∞
−∞ ρ(ω)dω = 2π.

Assume that ρ has finite moments. Then there exists a complete family of orthogonal
polynomials {pk}∞k=0 with respect to ρ

Definition 2.1 The n-th chromatic derivative of f at t = t0 is defined as

Kn[f ](t0) = pn (jD) [f ](t0) = F−1(f̂pn)(t0),@CMMSE                                                               Page   1023  of 1328                                               ISBN 13: 978-84-613-5510-5
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in particular,

Kn[f ](0) = pn (jD) [f ](0) =
1
2π

< f̂, pn >, (4)

where D = d/dt, j =
√−1, pn (jD) is a polynomial in the operator jD and F−1

denotes the inverse Fourier transformation.
The chromatic series expansion of f is given by

f(t) ∼
∞∑

n=0

Kn[f ](0)ψn(t) =
∞∑

n=0

Kn[f ](0)Kn[ψ̃](t), (5)

where ψn(t) = Kn[ψ̃](t) = F−1(pnρ)(t), and ψ̃ = F−1(ρ)(t).

It has been shown [5] that when ρ(ω) = χ(−1,1), the characteristic function of
(−1, 1), the chromatic series associated with the Legendre polynomials converge in the
whole complex plane, C, to entire functions and the set of entire functions for which∑∞

n=0 |Kn(f)(0)|2 converges is precisely the set of L2 functions whose Fourier trans-
forms are finitely supported, i.e., the set of bandlimited functions. For such functions
the chromatic expansions converge uniformly on IR, and their truncations are them-
selves bandlimited.

In this talk we extend some of these results to higher dimensions.
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Abstract 

The parallel implementation of a three-dimensional (3-D) lake 
hydrodynamic model in a small commodity cluster of three multi-core nodes 
is presented. The parallel program uses the three nodes in the cluster (by 
using the message passing standard MPI) and the four cores in a node (by 
using the shared memory standard OpenMP). This work analyzes the 
influence in performance of using different platform configurations, several 
workload distributions, several parallel implementations, and block-driven 
processing. 

 
 
Key words: Parallel processing, Shared memory systems, 
Distributed memory systems, Hydrodynamics. 

1. Introduction 

High performance computations are being increasingly demanded in water 
sciences to get detailed descriptions of the flow fields that develop in natural 
ecosystems within reasonable lengths of time. It has been through these detailed 
descriptions of the flow fields, obtained either by means of simulations conducted 
with three-dimensional (3D) numerical algorithms solving the governing 
equations of fluid motion (Navier-Stokes equations), or through field observations 
collected with high-resolution experimental techniques that water scientists have 
gained, in the last few years, some understanding of transport processes in natural 
lakes and reservoirs [1], [2]. This understanding, however, is still far from 
complete.  
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PARALLEL IMPLEMENTATION OF A LAKE HYDRODYNAMIC MODEL 

Many of the 3D hydrodynamic models currently used in lake research are 
based on the solution of a simplified form of the Navier-Stokes equations, 
referred to as the shallow water equations (SWE), in which the vertical pressure 
gradients are assumed hydrostatic. The main state variables in the SWE are the 
spatially-varying horizontal velocities (u, v) and the water surface elevation (η). 
Being based on a simplified set of equations, SWE models have a moderate 
computational cost. SWE models, however, are still time and memory consuming 
when high density spatial grids are used or when they are used to simulate the 
long-term behavior of natural water systems. High-resolution grids, for example, 
are needed in order to resolve flow features of small spatial scales, such as near-
shore currents, which are important to understand the physical and 
biogeochemical behavior of large-scale natural water bodies. Long simulation 
times are unacceptable when the SWE models are part of decision support 
systems. Model results in these cases are needed much faster than real time so that 
they can be used to develop and test management strategies aimed at minimizing 
the effects of natural disasters, such as floods or the introduction of invasive 
species.  

The models in decision support systems are typically run repeatedly, each time 
with a different set of parameters and/or perturbed boundary conditions, in order 
to provide predictions of the future state of the flow field with an appropriate 
degree of uncertainty (see, for example, [3]). Most efforts in the field of 
environmental fluid modeling, hence, are being directed towards improving the 
execution time of existing numerical models, especially in inexpensive 
commodity platforms, so that (1) environmental scientists can build a rigorous 
and detailed understanding of the physical processes of transport and mixing 
occurring in inland water bodies and (2) water managers can get accurate 
predictions of the response of flow systems to external perturbations (e.g. 
pollution) and management strategies in a timely manner. The goal of this work is 
to present a parallel implementation of 3D SWE model in a small commodity 
cluster of three multi-core nodes.  

The paper is organized as follows: Section 2 briefly describes the 3-D 
hydrodynamic model here implemented in parallel; Section 3 deals with related 
works; Section 4 compares several parallel implementations and data domain 
decompositions; Section 5 presents the computational platform and discusses 
some experimental results. Finally, Section 6 summarizes conclusions.  

2. Hydrodynamic Model  

This work evaluates a parallel implementation of a 3-D SWE model (SI3D, [4]), 
which has been extensively validated, both against analytical solutions and field 
data sets collected in a wide range of lake environments [5]. SI3D is based on the 
numerical solution of the continuity equation for incompressible fluids, the 
Reynolds-averaged and shallow water form of the Navier-Stokes equations for 
momentum, the transport equation for temperature, and an equation of state 
relating temperature to fluid density. The governing equations are first posed in 
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layer-averaged form by integrating over the height of a series of horizontal layers 
separated by level planes. The layer-averaged form of the equations is discretized 
using a semi-implicit, three-level, iterative leapfrog-trapezoidal finite difference 
algorithm on a staggered Cartesian grid, which introduces little numerical 
diffusion [4]. The semi-implicit approach is based on treating the gravity wave 
and vertical diffusion terms implicitly to avoid time-step limitations due to gravity 
wave Courant–Friedrich–Levy conditions, and to guarantee stability of the 
method [6]. All other terms (including advection) are treated explicitly. Laplacian 
operators are used to represent mixing. Constant mixing coefficients are used to 
parameterize the effect of horizontal eddies. A two-equation turbulence model 
calculates the vertical eddy coefficients of mixing [7]. Computations in each 
iteration proceed on a water column-by-water column basis, to assemble a five-
diagonal system of equations for water surface elevation η, which is solved using 
a preconditioned-conjugate gradient solver [4]. Horizontal velocities are 
recovered from the updated values of η. 

3. Related Works 

Several SWE models have been implemented in parallel that take advantage of 
their data parallelism. Implementations that use the message passing paradigm 
with MPI for both 2-D ([8], with one and also two layers in [9], [10], [11]) and 3-
D models ([11]) can be found. The implementation of [10] parallelizes a 3-D 
lattice Boltzmann model using the shared memory paradigm with OpenMP. These 
MPI and OpenMP implementations use domain decomposition to divide the 
workload among processes or threads. Performance can also be increased using 
SSE instructions either explicitly (manually) or through libraries, or, alternatively, 
using GPUs. [12], for example, presents results of a SSE optimized 
implementation of a 2-D SWE-model. [13], in turn, solves a 2-D SWE-model 
using the Intel Integrated Performance Primitives library. An implementation of a 
2-D SWE-model in several GPUs supporting CUDA programming toolkit is 
presented in [14]. 

Three-dimensional models, like SI3D, manage larger amounts of data and 
require higher computer performance. Moreover, distributing workload evenly is 
more difficult because, to the irregular horizontal dimensions or layer dimensions 
(first and second dimension), the irregular vertical dimension or depth (third 
dimension) is added.  

Some parallel implementations of a semi-implicit 3-D hydrodynamic model, 
SI3D, are presented and evaluated here. The parallel implementations of the 3-D 
model combine both message passing (with MPI) and shared memory paradigms 
(with OpenMP). Implementations with redundant operations (workload 
overlapping) are compared to non-redundant implementations. Workload 
overlapping increases the number of operations and decreases communications. 
This work also analyzes the influence of different platform configurations (such 
as simultaneous multithreading, Intel SpeedStep and Turbo Mode technologies, 
and prefetching hardware), and different domain decompositions have on code 
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performance. Different compiler optimization options and a block-driven 
processing implementation were also tested. 

4. Implementation 

Several parallel SI3D versions have been implemented. The speedup achieved in 
a parallel implementation of SI3D in which OpenMP construct !$OMP 
PARALLEL DO- END PARALLEL DO is used to locate parallelism was 1.22 
with the four cores of a processor. The performance has been increased when the 
programmer has also done explicitly these tasks: assign jobs to threads; create and 
destroy threads; communicate and synchronize threads. Moreover, several parallel 
versions have been implemented in order to compare implementations with 
redundant operations, which avoid communications and synchronizations (C/S), 
with non-redundant operation implementations. The results show that redundant 
operations improve the MPI version performance of SI3D but the OpenMP 
version increases performance when the redundant operations are reduced by 
adding some extra synchronization.  

Figure 1 shows a flow diagram of the best SI3D parallel implementation. The 
stage 2 was not parallelized because it is a 2% of the stages 1 and 3 together in the 
SI3D sequential version. C/S occur several times per iteration. Process 0 
assembles and solves the penta-diagonal matrix for free surface elevation η (stage 
2), and scatters the values of η among processes. It also occurs at the end of each 
iteration, where the processes interchange some data of u, v, and η. In the non-
redundant MPI version there are additional data interchanges between processes: 
four in stage 1 and five in stage 3. 

The parallel implementations of SI3D use domain decomposition to divide the 
workload among processes and threads, as is usually done in Computational Fluid 
Dynamics applications. Domain decomposition is done previous to the start of the 
simulations (Figure 1). The criteria followed in determining the best domain 
decomposition is that all the sub-domains should have the same o similar number 
of wet cells and that the sub-domain data must be stored in contiguous memory 
positions. 

The overhead of the parallel implementations of SI3D, like in other related 
applications, is mainly affected by: 

 Load unbalance. The irregular grid dimensions make difficult to obtain an even 
distribution. 

 Communication time. It depends both on the number of communications and 
on the amount of data being transferred in each communication. In the data 
interchanges between processes, both of them depend on the domain 
decomposition approach used (most of the C/S are border interchanges 
between processes).  

 Extra operations due to sub-domain overlapping. The number of 
communications can be reduced by overlapping sub-domains. In these 
overlapping regions, computations are redundant. The overhead that results 
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from redundant calculations depends on the extent of overlapping regions, and 
this, in turn, depends on the particular domain decomposition approach used. 
Therefore, domain decomposition affect performance, several approaches are 

possible in 3-D models. Either horizontal-cut or vertical-cut (depth) 
decomposition can be applied in these cases. Horizontal-cut decomposition 
distributes layers among sub-domains, i.e. among processors/cores. The degree of 
parallelism in this case equals the number of layers and communication depends 
on the horizontal resolution and the horizontal extent of the lake. Given that large 
differences exist between the horizontal and vertical dimensions of large-scale 
geophysical systems, the degree of parallelism in the horizontal-cut 

decomposition tend to be lower than in a vertical-cut decomposition.  

 
 
Figure 1.  Flow diagram of the best parallel algorithm. The 

diagram includes the MPI transmission points. 
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 Three types of vertical-cut decomposition (of a river, lake, etc.) are possible 
(Figure 2). The data interchange between the sub-domains is indicated by the 
arrows in the Figure 2. The length of the boundaries between any two given sub-
domains reflects the amount of data exchanged between them. It is also indicative 
of the amount of redundant calculations if the number of communications is 
reduced by overlapping sub-domains. The total length of the sub-domain 
boundaries will depend on the particular geometry of the water body being 
simulated, and on how the domain is partitioned among processes. The number of 
interchange communications is larger if one uses the two-direction cut 
distribution, as shown in Figure 2(c). The total amount of data exchanged among 
processes and the number of redundant calculations, though, could be less than in 
the other two distributions, depending on the particular geometry and number of 
sub-domains. With this distribution a process can both send to and receive from 
more than two processes. Both narrow (Figure 2(b)) and wide (Figure 2(a)) cut 
distributions have the same number of interchange communication operations. A 
process will send to and receive from just one or two processes. Larger amounts 
of data are exchanged and more redundant operations are done in the distribution 
shown in Figure 2(a) (wide-cut distribution). [15] compares the alternatives in 
Figure 2(b) and Figure 2(c) using MPI in a cluster of four AMD Opteron 2.2 GHz 
nodes (2 cores each) connected  through Gigabit Ethernet. The results for 
different grid sizes show that better performances are achieved if the 
decomposition is done using narrow cut distribution compared to the two-
direction distribution. [8] compares the alternatives in Figure 2(a) and Figure 2(b) 
using MPI in a CC-NUMA HP/Convex Exemplar X-Class (SPP2200) with 64 
processors distributed in four hyper-nodes. The eight nodes of a hyper-node are 
connected through a network (switch) of 960 MB/s bandwidth in each link 
direction [16] (the network of the Exemplar is an implementation of the standard 
SCI). The results show that narrow-cut distribution reduces execution time 
compared to wide-cut distribution. Here some tests (Section 5) compare wide and 
narrow-cut distributions with both message passing and shared memory 
paradigms in SI3D. Note that the alternative in the Figure 2(c) has less data 
locality compared to the alternatives in (Figure 2(b)) and (Figure 2(a)). The data 
of a sub-domain in the wide and narrow distribution were stored in disk and 
memory in contiguous positions in order to improve locality. The lack of locality 
decreases performance, especially in shared memory implementations. 
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Figure 2.  Three domain decomposition alternatives with vertical cut: (a) wide cut 
distribution, (b) narrow cut distribution, (c) two-direction cut distribution. Arrows 
show the communication needed among sub-domains in this kind of applications 
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A block-driven processing approach was also tested as in the shared memory 
implementation in [10]. Extra communication and block-driven implementation 
are also suitable in a process-level parallel implementation when the memory of 
the processing node is not enough for the application ([17],[9]). 

5. Test Results 

Platform 
The results have been obtained in a small commodity cluster of three nodes 
connected through a Gigabits Ethernet switch. Each node has 6 GB of memory 
and a Core i7 CPU 920 (launch date: fourth quarter of 2008). The Core i7 920 has 
four cores of 2.667 GHz (two threads per core if Hyper-Threading is active), L3 
cache of 8MB shared by all the cores, and QuickPath of 4.8 GT/s. The cluster 
price was of 3,000 € (first quarter of 2009) approximately with all the 
components, including the cabinet. It runs Linux Fedora 10 (kernel 2.6.27.41). 
Cluster communication system has a bandwidth of 113 MB/s, near to the theoretic 
125 MB/s. 

The program is compiled using Intel Fortran 11.1 compiler. The OpenMP of 
this compiler is used for the shared memory implementation and MPICH-1.3 for 
the MPI message passing implementation. The source-code versions implemented 
were compiled using options that drive classic optimizations and vectorizations. 
Table 1 summarizes the optimization options checked. Similar execution times 
are obtained with O2 and O3. When the options ipo and/or SSE4.2 are added to 
O2 or O3 performance does not improve. PGO does not improve the execution 
time compared to a version with the same optimization options but without PGO. 
The executables used in this section have been obtained with O2 and openmp 
compiler options.  

Practical Application 
The test application is a simulation of the currents in Lake Tahoe. The ultimate 
goal of these simulations is to characterize the pathways of transport of young life 
stages of an invasive species (the bivalve Corbicula fluminea, or Asian clam) 

O2: inline expansion and cloning of functions, classical optimization (loop unrolling, constant and 
copy propagation, strength reduction, variable renaming, dead store elimination, global instruction 
scheduling and control speculation …) and vectorization (this tries to generate MMX, SSE, SSE2 
instructions).  O2 is the generally recommended optimization level for reducing execution time. 
O3: O2 optimizations plus more aggressive optimizations, such as prefetching, scalar replacement 
to reduce memory references, and loop and memory access transformations.  
ipo: multifile interprocedural optimization (this, for instance, allows inline expansion and cloning 
for calls to functions defined in separate files). 
openmp: this option enables the parallelizer to generate multi-threaded code based on the 
OpenMP directives included by the programmer.  
xSSE4.2 (architecture-specific optimization):  this tries to generate MMX, SSE, SSE2, SSE3, 
SSSE3, SSE4.1 and SSE4.2 instructions (vectorization) and can optimize for the Intel Core i7 
processor family. 
prof_gen and prof_use (Profile Guided Optimization or PGO): PGO allows optimization by 
taking into account real benchmark data instead of heuristic data. 

Table 1. Optimization options (Intel C compiler 11.1) 
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from the existing near-shore beds to other sites in the lake and the environmental 
conditions they would be exposed to en route. Given that O(10

2
) m  (hundreds) 

features of the velocity fields, characteristics of nearshore regions, should be 
resolved in Lake Tahoe, the computational grid cells should have horizontal 
dimensions of at least O(10) m (tens). Simulating a lake of the size of Lake Tahoe 
(roughly 20 km x 30 km) with O(10)m horizontal size cell columns, poses a 
serious computational problem which can only be addressed through the use of 
parallel computers. For example, the ratio of real to computational time in 
simulations conducted with 50 m wide grid cells in a single core of the cluster is 
approximately 1/1. The simulations presented here are conducted in grids with 95 
layers of variable thickness and squared columns of 50 m x 50 m in the 
horizontal. The grid includes 14,654,639 computational cells in 197,781 columns. 

Performance of different platform configurations 
This work analyzes the influence in performance of the multiple cores in a node, 
the prefetching hardware, the Intel Hyper-Threading technology, and the Intel 
SpeedStep and Turbo Mode technology. 

Hardware prefetcher monitors data access patterns and prefetches data 
automatically into processor caches.  Core i7 cores can track 16 forward streams 
and 4 backward streams each. Simultaneous multithreading allows the execution 
of multiple threads in a core; in particular, two threads with Intel Hyper-
Threading. Intel SpeedStepTechnology allows the operating system to control the 
core speed. Intel Turbo Mode Technology allows processor cores to run faster 
than the assigned frequency under specific conditions.  

Table 2 shows the seconds per iteration obtained for different platform 
configurations and different number of processes and threads. The narrow-
direction distribution and the MPI redundant operation version have been used. 
The communication time due to data distribution or collection is not included 
because it does not depend on the number of iterations.  Up to four threads are 
used to each node; a higher number of threads makes performance worst despite 
of Hyper-Threading being enabled. The column HSTP shows the results for the 
default configuration. In the default configuration the BIOS and the operating 
system have enabled Hyper-Threading (H), SpeedSteep (S) and Turbo Mode (T), 
and prefetching hardware (P). In particular, ondemand is the default CPUfreq 
governor of the cluster operating system, which means the governor sets the 
frequency depending on the current usage, between a minimum of 1.6 GHz and a 
maximum of 2.667 GHz, last one can increase due to Turbo Mode. The time in 
the default configuration is less reproducible due to the thread distribution of the 
operating system among the eight logical cores of a node. If Hyper-Threading is 
disabled (column -STP) performance improves, but if either SpeedStep/Turbo 
Mode (column ---P) or Prefetching (column -ST-) are also disabled, time 
increases slightly. The results in the columns -STP and ---P show an increment in 
the clock frequency due to the Turbo Mode. The results in the columns -STP and -
ST- suggest that the prefetching hardware is being weakly used.  
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Block-driven processing was added to try to reduce cache miss by facilitating 
data locality. It reduces the execution time by 4% with horizontal cell size of 100 
m x 100 m and one process with four threads. Block processing improves only 
marginally this implementation's performance, although it never makes 
performance worst as it was observed in the block processing implementation of 
[10]. The results in [10] are obtained in a platform of IBM with Power5+ 1.9 
GHz. For a grid of 1024x1024x10 (=10,485,760 cells), from 1 to 8 processors 
block-driven processing makes performance worst but from 12 to 16, the 
maximum number of processors tested, the block-driven implementation 
improves performance [10]. 

The results presented in the next subsections are obtained with the 
configuration –STP and ondemand as the CPUfreq governor. 

Comparison of wide-direction and narrow-direction distributions in both MPI 
versions, with and without redundant operations  
Both, wide-direction and narrow-direction distributions, have the same number of 
communication in both MPI versions, but they are of different sizes. Also, in the 
MPI version with redundant operations, the wide-direction distribution has more 
redundant operations than the narrow-direction approach (because it has larger 
border length).  

Table 3 shows the execution time per iteration and speedup for both wide and 
narrow-direction distribution and both the MPI implementation with redundant 
operations (R) and the MPI approach with non-redundant operations (NR). As can 
be observed narrow-cut distribution also improves sequential execution time. The 
best approach is to use the MPI implementation with redundant operations and the 
narrow-cut distribution. Speedup improves more with the narrow-cut approach 
because this approach has lesser border length than the wide-cut approach; the 
border size is decreased a 25% approximately.  

 

Tahoe 50mx50m Platform configurations 

No. Processes No. Threads HSTP -STP ---P -ST- 

1 1 21.1 21.15 21.92 22.54 

1 2 11.07 11.1 11.56 11.79 

1 3 7.77 7.73 8.07 8.22 

1 4 9.75 6.12 6.12 6.51 

2 1 10.96 10.96 11.45 11.65 

2 2 5.96 6.05 6.21 6.38 

2 3 6.75 4.27 4.48 4.56 

2 4 5.15 3.42 3.57 3.68 

3 1 7.62 7.65 7.9 8.04 

3 2 4.23 4.26 4.4 4.48 

3 3 4.81 3.1 3.21 3.29 

3 4 3.65 2.51 2.68 2.71 

Table 2. Performance of different platform configurations (seconds per iteration). 
In HSTP, H means Hyper-Threading enable, S means SpeedStep enable, T means 

Turbo enable, and P mean Prefeching enable. “ -“ means Disable 
 

@CMMSE                                                               Page   1034  of 1328                                               ISBN 13: 978-84-613-5510-5



PARALLEL IMPLEMENTATION OF A LAKE HYDRODYNAMIC MODEL 

6. Conclusion 

This work discusses the performance of several thread- and process- level 

implementations of a semi-implicit 3-D lake hydrodynamic model (SI3D) and the 
influence of different platform configurations and domain decompositions. It has 
been found that: 

 The program makes a weak use of the prefetching hardware (prefetching 
decreases execution time by between %5 to %8) and obtains little 
improvements by using block-driven processing (%4 improvement 
approximately).  

 Intel® Turbo Mode Technology decreases slightly the execution time (by 
between %3 to 7%). 

 Performance is worse if the default BIOS and operating system configuration 
is used (time increases by between %40 to 60%, depending on the number of 
processes and threads). This is due to the thread distribution of the operating 
system among the eight logical cores of a node when Hyper-Threading is 
enabled. Thread affinity could be used to avoid this problem instead of disable 
Hyper-Threading. 

 Block-driven processing reduces execution time too slightly. 

 Process level implementation reduces execution time using overlapping sub-
domains (redundant operations).  

 With the best parallel implementation and performance configuration, and 
with narrow-cut domain decomposition the simulation of 24 hours with 
50mx50m cell columns in a core of the cluster requires proximately 6 hours 

 
Tahoe 50m Sec./iteration Speedup 

No. 
Pr. 

No. 
Th 

Narrow Wide Narrow Wide 

R NR R NR R NR R NR 

1 1 21.1 21.1 21.32 21.32 1 1 1 1 

1 2 11.1 11.1 11.34 11.34 1.9 1.9 1.88 1.88 

1 3 7.73 7.73 7.97 7.97 2.73 2.73 2.68 2.68 

1 4 6.12 6.12 6.29 6.29 3.45 3.45 3.39 3.39 

2 1 10.96 11.18 11.21 11.51 1.93 1.89 1.9 1.85 

2 2 6.05 6.21 6.19 6.43 3.49 3.41 3.44 3.32 

2 3 4.27 4.41 4.51 4.76 4.94 4.8 4.73 4.48 

2 4 3.42 3.58 3.61 3.79 6.17 5.91 5.91 5.63 

3 1 7.65 7.85 7.88 8 2.76 2.69 2.71 2.67 

3 2 4.26 4.48 4.43 4.66 4.95 4.72 4.81 4.58 

3 3 3.1 3.31 3.34 3.52 6.81 6.39 6.38 6.06 

3 4 2.51 2.69 2.77 3.02 8.41 7.86 7.7 7.06 

Table 3. Wide and narrow distributions in both MPI versions: with (R) and 
without (NR) redundant operations 
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with one processor (4 threads) instead of 20 hours and 30 minutes (with 1 
threads) and approximately 2 hours and 30 minutes with the three processors 
(12 threads). 
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Abstract 

A crucial aspect in network monitoring for security purposes is 
the visual inspection of traffic patterns, which chiefly provides 
the network manager with a synthetic and intuitive 
representation of the current situation. In keeping with this idea, 
neural projection techniques can adaptively map high-
dimensional data into a low-dimensional space, for the user-
friendly visualization of data collected by different security 
tools. Different projection methods for the visual inspection of 
honeypot data are applied in this study, which may be seen as a 
complementary network security tool that sheds light on internal 
data structures through visual inspection. Empirical verification 
of the proposed projection methods was performed in an 
experimental domain where 1-month data sets were captured 
and stored for analysis. Experiments showed that whereas an 
Intrusion Detection System may only identify a low percentage 
of the malicious traffic, a deeper understanding of attack 
patterns could easily be gained by means of visual inspections. 
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Keywords: Projection Models, Artificial Neural Networks, 
Unsupervised Learning, Network & Computer Security, 
Intrusion Detection, Honeypots. 

1. Introduction 
A network attack or intrusion will inevitably violate one of the three computer 
security principles -availability, integrity and confidentiality- by exploiting certain 
vulnerabilities such as Denial of Service, Modification and Destruction [1]. One 
of the most harmful issues of attacks and intrusions, which increases the difficulty 
of protecting computer systems, is precisely the ever-changing nature of attack 
technologies and strategies. 
For that reason alone, among others, Intrusion Detection Systems (IDSs) have 
become a very necessary asset in addition to the computer security infrastructure 
of most organizations. In the context of computer networks, an IDS can roughly 
be defined as a tool designed to detect suspicious patterns that may be related to a 
network or system attack. Intrusion Detection (ID) is therefore a field that focuses 
on the identification of attempted or ongoing attacks on a computer system (Host 
IDS - HIDS) or network (Network IDS - NIDS). 
Visual inspection of traffic patterns is an alternative and crucial aspect in network 
monitoring [2]. Visualization is a critical issue in the computer network defence 
environment, which chiefly serves to generate a synthetic and intuitive 
representation of the current situation for the network manager; as a result, several 
research initiatives have recently applied information visualization to this 
challenging task [3] [4] [5] [6]. Visualization techniques typically aim to make the 
available statistics supplied by traffic-monitoring systems more understandable in 
an interactive way. They therefore focus on traffic data as well as on network 
topology. Regardless of their specific characteristics, these methods all map high-
dimensional feature data into a low-dimensional space for presentation purposes. 
The baseline of the research presented in this study is that Artificial Neural 
Networks (ANNs), in general, and unsupervised connectionist models [7, 8], in 
particular, can prove quite adequate for the purpose of network data visualization 
through dimensionality reduction. As a result, unsupervised projection models are 
applied in the present research for the visualization and subsequent analysis of 
Honeypot data. 
The remaining five sections of this study are structured as follows: section 2 
contains a brief description of Intrusion Detection (mainly visualization-based). 
Section 3 presents the approach proposed for ID and the neural projection 
techniques applied in this work. Some experimental results are presented and 
described in section 4; the conclusions of this study are discussed in section 5, as 
well as future work. 
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2. Intrusion Detection and Honeynets 
The accurate detection in real-time of computer and network system intrusions 
has always been an interesting and intriguing problem for system administrators 
and information security researchers. It may be attributed on the whole to the 
dynamic nature of systems and networks, the creativity of attackers, the wide 
range of computer hardware and operating systems and so on. Such complexity 
arises when dealing with distributed network-based systems and insecure 
networks such as the Internet. 
A honeypot has no authorised function or productive value within the corporate 
network other than to be explored, attacked or compromised [9]. Thus, a honeypot 
should not receive any traffic at all. Any connection attempt with a honeypot is 
then an attack or attempt to compromise the device or services that it is offering- 
is by default illegitimate traffic. From the security point of view, there is a great 
deal that may be learnt from a honeypot about a hacker’s tools and methods in 
order to improve the protection of information systems.  
One of the most extended classifications of honeypots takes into account their 
level of interaction. Low interaction honeypots offer limited interaction with 
attackers and the most common ones only simulate services and operating 
systems. High interaction honeypots follow a different strategy: instead of using 
simulated services and operating systems, real systems and applications are used, 
usually running in virtual machines. 
Somewhere between the two are medium interaction honeypots, which also 
emulate vulnerable services, but leave the operating system to manage the 
connections with their network protocol stack. Recently, a new type of honeypot 
has been proposed as a response to the behavioural change observed in the 
attackers. Instead of waiting for the attackers to reach traditional honeypots, client 
side honeypots, also known as honeyclients, scan communication channels 
looking for malware. 
In a honeynet, all the traffic received by the sensors is suspicious by default. Thus 
every packet should be considered as an attack or at least as a piece of a multi-
step attack. Numerous studies propose the use of honeypots to detect automatic 
large scale attacks; honeyd [10] and nepenthes [11] among others. The first 
Internet traffic monitors known as Network Telescopes, Black Holes or Internet 
Sinks were presented by Moore et al. [12]. 

3. A Visualization-based Approach 
This work proposes the application of projection models for the visualization of 
Honeypot data. Visualisation techniques have been applied to massive datasets, 
such as those generated by honeynets, for many years. These techniques are 
considered a viable approach to information seeking, as humans are able to 
recognize different features and to detect anomalies by inspecting graphs [13]. 
The underlying operational assumption of the proposed approach is mainly 
grounded in the ability to render the high-dimensional traffic data in a consistent 
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yet low-dimensional representation. So, security visualisation tools have to map 
high-dimensional feature data into a low-dimensional space for presentation. One 
of the main assumptions of the research presented in this paper is that neural 
projection models will prove themselves to be satisfactory for the purpose of 
security data visualisation through dimensionality reduction. 
This problem of identifying patterns that exist across dimensional boundaries in 
high dimensional datasets is a challenging task. Such patterns may become visible 
if changes are made to the spatial coordinates. However, an a priori decision as to 
which parameters will reveal most patterns requires prior knowledge of unknown 
patterns. 
Projection methods project high-dimensional data points onto a lower 
dimensional space in order to identify "interesting" directions in terms of any 
specific index or projection. Having identified the most interesting projections, 
the data are then projected onto a lower dimensional subspace plotted in two or 
three dimensions, which makes it possible to examine the structure with the naked 
eye. Projection methods can be smart compression tools that map raw, high-
dimensional data onto two or three dimensional spaces for subsequent graphical 
display. By doing so, the structure that is identified through a multivariable 
dataset may be visually analysed with greater ease. 
Visualisation tools can therefore support security tasks in the following way: 

• Visualisation tools may be understood intuitively (even by inexperienced 
staff) and require less configuration time than more conventional tools. 

• Providing an intuitive visualisation of data allows inexperienced security 
staff to learn more about standard network behaviour, which is a key issue 
in ID [14]. The monitoring task can be then assigned to less experienced 
security staff. 

• As stated in [3], "visualizations that depict patterns in massive amounts of 
data, and methods for interacting with those visualizations can help 
analysts prepare for unforeseen events". Hence, such tools can also be 
used in security training. 

• They can work in unison with some other security tools in a 
complementary way. 

As with other machine learning paradigms, an interesting facet of ANN learning 
is not just that the input patterns may be precisely learned/classified/identified, but 
that this learning can be generalised. Whereas learning takes place within a set of 
training patterns, an important property of the learning process is that the network 
can generalise its results on a set of test patterns that were not previously learnt. 
The identification of unknown patterns fits the 0-day attack [15] detection. 
Due to the aforementioned reasons, the present study approaches the analysis of 
honeynet data from a visualization standpoint. That is, some neural projection 
techniques are applied for the visualization of such data. The different projection 
models applied in this study are described in the following sections. 
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3.1 Principal Component Analysis 
Principal Component Analysis (PCA) is a statistical model, introduced in [16] and 
independently in [17], that describes the variation in a set of multivariate data in 
terms of a set of uncorrelated variables each, of which is a linear combination of 
the original variables. 
Its goal is to derive new variables, in decreasing order of importance, that are 
linear combinations of the original variables and are uncorrelated with each other. 
From a geometrical point of view, this goal mainly consists of a rotation of the 
axes of the original coordinate system to a new set of orthogonal axes that are 
ordered in terms of the amount of variance of the original data they account for. 
The optimal projection given by PCA from an -dimensional to an N M -
dimensional space is the subspace spanned by the M  eigenvectors with the 
largest eigenvalues. 
According to [18], it is possible to describe PCA as a mapping of vectors  in an 

-dimensional input space 

dx
N ( )Nxx ,...,1  onto vectors  in an dy M -dimensional 
output space ( , where )M,...,yy1 NM ≤ .  may be represented as a linear 
combination of a set of  orthonormal vectors : 
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where ijδ  is the Kronecker delta. 
Making use of equation (1), the coefficients  may be given by iy

xT
ii Wy =  (3) 

which can be regarded as a simple rotation of the co-ordinate system from the 
original  values to a new set of co-ordinates given by the  values. If only one 
subset  of the basis vectors, , is retained so that only 

x y
NM < iW M  coefficients  

are used, and having replaced the remaining coefficients by constants , then 
each x  vector may be approximated by the following expression: 
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~x  (4) 

Consider the whole dataset of D  vectors,  where dx Dd ,...,1= . 
PCA can be performed by means of ANNs or connectionist models such as [19, 
20, 21, 22, 23]. It should be noted that even if we are able to characterize the data 
with a few variables, it does not follow that an interpretation will ensue. 
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3.2 Cooperative Maximum Likelihood Hebbian Learning 
The Cooperative Maximum Likelihood Hebbian Learning (CMLHL) model [24] 
extends the Maximum Likelihood Hebbian Learning (MLHL) [25] model, which 
is based on Exploratory Projection Pursuit (EPP) [26]. The statistical method of 
EPP was designed for solving the complex problem of identifying structure in 
high dimensional data by projecting it onto a lower dimensional subspace in 
which its structure is searched for by eye. To that end, an “index” must be defined 
to measure the varying degrees of interest associated with each projection. 
Subsequently, the data is transformed by maximizing the index and the associated 
interest. From a statistical point of view the most interesting directions are those 
that are as non-Gaussian as possible. 

The MLHL model is based on the Negative Feedback Network and, as the 
AABP model; it associates an input vector, x∈ℜD, with an output vector, y∈ℜQ. 
In this case, the output of the network (y) is computed as:  

ixWy
1j

jiji ∀=∑
=

N

,  (5) 

where, 
ijW is the weight linking input j  to output i . 

Once the output of the network has been calculated, the activation ( ) is fed 
back through the same weights and subtracted from the input: 

je

∑
=

∀−=
M

i
iijjj jyWxe

1
,  (6) 

Finally, the learning rule determines the way in which the weights are 
updated: 

( ) 1||.. −=Δ p
jjiij eesignyW η  (7) 

where, η  is the learning rate and p  is a parameter related to the energy function. 
The main difference between the basic MLHL model and its Cooperative 

version is the introduction of lateral connections. After the Feed forward step (Eq. 
5) and before the Feed back step (Eq. 6), lateral connections between the output 
neurons are applied as follows: 

( ) ( )[ ]+−+=+ Aybτ(t)yty ii 1  (8) 

where, τ  is the “strength” of the lateral connections, b is the bias parameter and  
A  is a symmetric matrix used to modify the response to the data. Its effect is 
based on the relation between the distances among the output neurons. 

4. Experiments and Results 
The Euskalert project [26] has deployed a network of honeypots in the Basque 
Country (northern Spain) where eight companies and institutions have installed 
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one of the project’s sensors behind the firewalls of their corporate networks. The 
honeypot sensor transmits all the traffic received to a database via a secure 
communication channel. These partners can consult information relative to their 
sensor (after a login process) as well as general statistics in the project’s website. 
Once the system is fully established, the information available can be used to 
analyse attacks suffered by the honeynet at network and application level. 
Euskalert is a distributed honeypot network based on a Honeynet GenIII 
architecture [26]. 
This honeypot system receives 4000 packets a day on average. All the traffic is 
analyzed by the Snort IDS, and an alert is launched whenever the packet matches 
a known attack signature. For this experiment, we have analysed the logs coming 
from Euskalert and Snort gathered during February 2010. Fig. 1 shows the traffic 
volume in terms of number of packets received for that period of time.  
 

 
 
Fig. 1. Temporal distribution of the traffic volume in terms of number of packets 
captured by Euskalert in February, 2010. 
 
The February 2010 dataset contains a total of 3798 packets, including TCP, UDP 
and ICMP traffic received by the distributed honeypot sensors. The 
characterization of the traffic in the dataset is shown in Table 1. The table shows 
which alerts have been triggered in that period of time and their percentage. Those 
signatures starting with “Wormledge” are automatically generated and not present 
in the default signature database. 
From this dataset, it may be said that a misuse detection-based IDS such as Snort 
is only capable of identifying about 10.38% of bad-intentioned traffic. 
Furthermore, it was demonstrated that only 2% of the unsolicited traffic was 
identified by the IDS when automatically generated signatures were included 
from a previous work [27]. Thus, a deeper analysis of the data is needed in order 
to discover the internal structure of the remaining 90% of the traffic. Explaining 
the behaviour of the unknown traffic is a difficult task that must be performed to 
better protect computer networks and systems. 
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Signature # Packets % 

Unknown Traffic 3404 89,62 

BLEEDING-EDGE POLICY Reserved IP Space Traffic - Bogon Nets 
2 127 3,34 

BLEEDING-EDGE WORM Allaple ICMP Sweep Ping Inbound 58 1,52 

ICMP PING 75 1,97 

Wormledge, microsoft-ds, smb directory packet (port 445). SMBr...PC 
NETWORK PROGRAM 1.0...LANMAN1.0...Windows for 
Workgroups 3.1a...LM1.2X002...LANMAN2.1...NT LM 0.12 . Created 
on 2007-08-07 

34 0,89 

Wormledge, KRPC Protocol (Kademlia RPC), BitTorrent information 
exchange:ping query. Created on 2007-08-07 11 0,28 

Wormledge, NetBios Session Service (port 139). Payload 
CKFDENECFDEFFCFGAAAAAAAAAAAAAAAA. Created on 
2007-08-07 

7 0,18 

Wormledge, NetBios Name Query (udp port 137). Payload 
CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA. Created on 
2007-08-07 

7 0,18 

Wormledge, Microsoft RPC Service, dce endpoint resoluction (port 
135). Created on 2007-08-07 7 0,18 

WEB-IIS view source via translate header 6 0,15 

BLEEDING-EDGE SCAN LibSSH Based SSH Connection - Often 
used as a BruteForce Tool 5 0,13 

 
Table 1. Characterization of data traffic captured by Euskalert, in February, 2010. 
 
The following features were extracted from each one of the records in the dataset: 

• Time: the time when the attack was detected. Difference in relation to the 
first attack in the dataset (in minutes). 

• Protocol: whether TCP, UDP or ICMP (codified as three binary features). 
• Ip_len: number of bytes in the packet. 
• Source Port: number of the port from which the source host sent the 

packet. In ICMP protocol, this represents the ICMP type field. 
• Destination Port: destination host port number to which the packet is 

sent. In the ICMP protocol, this represents the ICMP type field. 
• Flags: Control bits of a TCP packet, which contains 8 1 bit values. 

The previously introduced projection techniques were applied to this dataset, 
generating the projections shown in Fig. 2. In these projections, the data are 
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depicted with different colors and shapes, taking into account the destination port; 
from 3 to 10371: red circles, from 10371 to 20739: black crosses, from 20739 to 
31107: green pluses, from 31107 to 41475: magenta stars, from 41475 to 51843: 
yellow squares, and from 51843 to 62205: cyan diamonds. 
 

  
a) PCA projection b) MLHL projection 

 
c) CMLHL projection 

Fig. 2. Projections of data traffic captured by Euskalert, in February, 2010. 
 

5. Conclusions and Future Work 
From the projections in Fig. 2 we can conclude that CMLHL provides a more 
sparse representation that the other two methods. This enables the intuitive 
visualization of the honeynet, where the general structure of these data can be 
seen. After getting a general idea of the dataset structure, an in-deep analysis was 
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carried out to comprehensively analysed each one of the points in the groups 
identified by CMLHL. As a result, the following conclusions can be stated for 
each one of the destination ports in the analysed dataset: 

- 8: ICMP ping, used for probing the Internet, looking for victim hosts. 
- 22: SSH. It seems to be a traffic flow with many packets coming from one 

source to one of the honeypot. They correspond to connection attempts by 
attackers or infected machines. 

- 80: HTTP. Attackers try different vulnerabilities against web applications.  
- 135: DCE endpoint resolution, used by Microsoft for Remote Procedure 

Call protocol. It has always been and still is one of the most exploited 
services by virus and worms. 

- 139: NETBIOS Session Service. Plenty of attacks to this Microsoft 
Windows service can be found.  

- 443: HTTP protocol over TLS SSL connection attempts. 
- 445: SMB directly over IP. As most of the traffic in the biggest group 

identified by CMLHL is aimed at this destination port, we can conclude 
that this is a widely exploited service. 

- 1433: Microsoft-SQL-Server, used by the old SQL Slammer worm. 
- 1521: Oracle TNS Listener. It seems that attackers try to connect to the 

honeypot via Oracle service. 
- 2967: Symantec System Center. Vulnerabilities have been found on 

Symantec service, and it is being expiated in the wild. 
- 3128: Proxy Server // Reverse WWW Tunnel Backdoor, where the 

MyDoom worm operates. 
- 3389: MS Terminal Services, used for Remote Desktop. 
- 4444: This port is a common return port for the rpc dcom.c buffer 

overflow vulnerability and for the msblast rpc worm. 
- 4899: Remote Administrator default port. There is a known remote 

exploitable vulnerability in radmin server versions 2.0 and 2.1 that allows 
code execution. 

- 5061: SIP-TLS. Used for VoIP communications. 
- 5900: Virtual Network Computer or VNC, used also as a remote desktop 

solution.  
- Port 8080: HTTP Alternate, used as an HTTP proxy. 
- Port 19765: Used in Kademlia (Bittorrent protocol). 

Future work will combine the honeypot data with the output of a signature-based 
IDS, such as Snort, in the same visualization. This will validate the proposed 
approach as a complementary tool that can be combined with some other security 
tools or IDSs. 
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Abstract 

In this interdisciplinary study, soft computing models are used 
to identify typical days in terms of their meteorological 
conditions. Meteorological and pollution data were taken from a 
pollution measurement station in the Spanish Autonomous 
Region of Castile-Leon. In this case, six meteorological 
variables are considered for the second half of 2006. The 
relation between the variables and the evolution of its values 
throughout the day is shown through the application of statistical 
and soft computing models. Two case studies are analyzed, in an 
attempt to identify a „Typical‟ day in Summer and Autumn, 
2006. Differences between the various methods are discussed 
and comparisons drawn with the results of similar studies in 
other periods. 
 
Keywords: artificial neural networks; soft computing; 
meteorology; atmospheric pollution 
 

1. Introduction 

In recent years, our knowledge of atmospheric pollution and our understanding of 
its effects have advanced greatly. It has now been accepted for some years that air 
pollution not only represents a health risk, but that it also reduces, for example, 
food production and vegetative growth due to its effects on photosynthesis. Other 
serious consequences may be mentioned such as acid rain, corrosion, climate 
change and global warming. Thus, all efforts that are directed towards studying 
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these phenomena may improve our understanding and help to prevent the serious 
problematic nature of atmospheric pollution. 

Finding solutions to current environmental problems constitutes a fundamental 
step towards life with a sense of sustainability. Fulfilling such a wish is to a great 
extent determined by the preservation of a clean atmosphere given its impact on 
the dynamics of the biosphere. 

Systematic measurements in Spain, which are usually taken within large cities, 
are fundamental due to the health risks caused by high levels of atmospheric 
pollution. Recent trends point to the benefits of continuing to extend the network 
of atmospheric pollution measurement stations.  

The basis of this study is the application of a series of statistical and soft 
computing models to identify what may be called „Typical Days‟ in terms of 
previously selected meteorological variables.  

The rest of this study is organized as follows. Section 2 presents the statistical and 
soft computing methods applied throughout this research. Section 3 details the 
various case studies and Section 4 describes the experiments and results. Finally, 
Section 5 sets out the conclusions and future lines of work  

2. Statistical and Soft Computing Models  

Several statistical and soft computing models are used in this study, although the 
results are only shown of those that offer the best performance. 

1. Principal Components Analysis (PCA) 

PCA [1] gives the best linear compression of the data in terms of least mean 
square error and can be implemented by several artificial neural networks [2, 3]. 
The basic PCA network [4] applied in this study is described by the next three 
equations (Eq.(1) to Eq.(3)): an N-dimensional input vector at time t, x(t), and an 
M-dimensional output vector, y, with Wij being the weight linking input j to output 
i, and η being the learning rate. Its activation and learning may be described as 
follows: 

Feedforward step, “Eq. (1)”: 

ixWy
N

j

jiji 


,
1

 (1) 

Feedback step, “Eq. (2)”: 

i

M

i

ijjj yWxe 



1

 (2) 

Change weights, “Eq. (3)”: 
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ijij yeW 
 

(3) 

2. An Exploratory Projection Pursuit Neural Model (EPP) 

EPP [2, 3] projects the data onto a low dimensional subspace which allows its 
structure to be examined by eye. This is done by means of an index that measures 
the “interestingness” of a given projection, the data for which is then represented 
by projections that maximize the most “interesting” vectors. “Interesting” 
structure is usually defined with respect to the fact that most projections of high-
dimensional data onto arbitrary lines through most multi-dimensional data give 
almost Gaussian distributions [2, 5]. Therefore to identify “interesting” features in 
data, it is important to look for those directions onto which the data-projections 
are as far from the Gaussian as possible.  

3. Cooperative Maximum Likelihood Hebbian Learning (CMLHL) 

CMLHL [6, 7] is an extended version of MLHL [6, 8] adding lateral connections 
which have been derived from the Rectified Gaussian Distribution [9]. The 
resultant net can find the independent factors of a data set but does so in a way 
that captures some type of global ordering in the data set. 

Consider an N-dimensional input vector x, an M-dimensional output vector y and 
a weight matrix W, where the element Wij represents the relationship between 
input xj and output yi,  then as is shown in [6, 10], the CMLHL can be carried out 
as a four-step procedure: 

Feed-forward step, outputs are calculated “Eq. (4)”: 

ixWy
1j

jiji 


N

,

 
(4) 

Lateral activation passing step, “Eq. (5)”: 

     Ayb(t)yty ii 1  (5) 

Feedback step, “Eq. (6)”: 

 


M

i
iijjj jyWxe

1

,
 

(6) 

Weights update step, learn the neural network, “Eq. (7)”: 

  1||..  p
jjiij eesignyW 

 
(7) 

Where t represents an instant, [  ]
+
 is necessary to ensure that the y-values remain 

in the positive quadrant,  is the learning rate,  is the "strength" of the lateral 
connections, b the bias parameter, p a parameter related to the energy function, 
and A is a symmetric matrix used to modify the response to the data. The effect of 
this matrix is based on the relation between the distances separating the output 
neurons. 
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3. Case of Study. Identifying the Typical Day in Summer and 
Autumn 

This study presents interesting results related to the evolution of different 
meteorological parameters using the records of an air quality control station 
(made available by the Department of the Environment-Directorate of 
Environmental Quality of the Government of the Spanish Autonomous Region of 
Castile-Leon) [11, 12]. The aforementioned station is situated in the urban area of 
the Spanish city of Burgos. The study was conducted over approximately half a 
year in 2006. 

In this study, the following variables were analyzed: wind direction (degrees), 
wind speed (m/s), dry temperature (Cº), relative humidity (%), atmospheric 
pressure (mbar) and solar radiation (W/m

2
). 

The general characteristics of the site where the measurement station used in the 
study is situated are as follows: Burgos, a city in the north-centre of Spain with a 
population of around 170,000 inhabitants and a total municipal area of 
approximately 107 km

2
. The city of Burgos is 854 masl (meters above sea level) 

at latitude (N) 42º20' and longitude (W) 3º42'. The measurement station is located 
within the city and may be classified as an urban station. 

The aim of the present study is to identify the existence of „Typical‟ 
meteorological days or at least to find some kind of associated patterns, for which 
purpose several statistical and soft computing methods were used. Only the results 
of applying PCA and CMLHL are shown. This is because PCA (Section 2.1) is 
the statistical method which offers a vision of the internal structure of the 
information and CMLHL (Section 2.3) is a Soft Computing Model which 
provides the best results in terms of identifying internal structure.  

4. Experiments and Results 

As stated, the aim of this study is to identify the „Typical Day‟ in Summer and the 
„Typical Day‟ in Autumn for 2006.  

The study, which forms part of a more ambitious project [13, 14], is based on a 
file containing meteorological and pollution data sets recorded at fifteen-minute 
intervals: a daily total of 96 records for the second part of 2006, referring to six 
variables, as explained in Section 3. 

The information represented at each point is visually labelled from Fig. 1 to Fig. 
2, which shows the record number, (from record numbered as 1.-0:00 AM, to 
record numbered as 96.-23:45 PM). All data was normalized for the study. 

1. Typical Day in Summer 

The graphical results obtained in this study for a Typical Day in Summer are 
presented (Figure 1) and analyzed as follows. 
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(a) (b) 

Figure 1. Typical Day in Summer. (a) PCA Projections. (b) CMLHL Projections  

A Typical Day in Burgos, Summer 2006, according to the results of applying 
PCA to the meteorological variables, is shown in Figure 1(a). Two data clusters 
are identified. C2 is related to samples with the highest values of solar radiation 
and temperature which correspond to the records taken around midday and the 
early afternoon, from 12:00PM to 16:00PM approximately. Cluster C1 is related 
to samples with the lowest values which correspond to the rest of the day. Cluster 
C2 contains fewer samples than C1. These are the general characteristics of a 
Typical Day in Summer: variations between the different Typical Days are 
explained by the lowest values of the most representative variables -temperature 
and solar radiation- for the day being found among the earliest or the latest 
records of the day. But this is not enough, it is necessary to study the samples 
contained into the cluster C1, for this reason it is important to apply soft 
computing models in order to obtain finer a response. 

Figure 1(b) is obtained by applying CMLHL to the data set. Cluster C2 contains 
the same samples as in Figure 1(a). In this case CMLHL is able to identify three 
clusters instead of two, achieving a sparser representation. Cluster C1 in Figure 
1(a) contains the same samples as clusters (C1a and C1b). Cluster C1a contains 
samples from late evening, just before sunset, and cluster C1b contains the samples 
belonging to the night-time, at which time solar radiation is almost null. 

2. Typical Day in Autumn 

The graphical results obtained in this study for a Typical Day in Autumn are 
presented (Figure 2) and analyzed below. 
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(a) (b) 

Figure 2. Typical Day in Autumn. (a) PCA Projections (b) CMLHL Projections  

Figure 2(a) shows the results of applying a PCA model to identify a Typical Day 
in Autumn, which once again highlights two clusters (C1, and C2) in a similar way 
to Figure 1. Cluster C2 is again related to samples with the highest values of solar 
radiation and temperature, which correspond to the records taken around midday 
and the early afternoon. In this case, C2 in Figure 2 contains fewer samples than it 
does in Figure 1. This is because sunset is earlier in the day. A further difference 
is that the C2 cluster is closer to cluster C1 in Figure 2 than it is in Figure 1, which 
is because there is not so much variability in autumn data values throughout the 
day as they are in the Summer period. 

Figure 2(b) shows the graphical results of applying CMLHL. Cluster C2 contains 
the same samples as in Figure 1(a), but in a more grouped form. Again, in this 
case, CMLHL is able to identify three clusters instead of two. Cluster C1 in Figure 
1(a) contains the same samples as in Figure 2 (C1a and C1b). Cluster C1a contains 
most of the samples, and cluster C1b contains few samples belonging to the night, 
where a significant variability of the wind direction is observed. The detection of 
this effect is an interesting example of how a model like CMLHL can help us to 
analyze complex data sets. 

5. Conclusions and Future Works 

In this study it has been possible to demonstrate the validity of soft computing 
models for the identification of the so called “Typical Day” of Summer and 
Autumn in 2006, as it was possible in 2007 [15]. 

PCA provides a first approximation to the internal structure of the data, but other 
soft computing models provide a top response, discovering new clusters of 
information which represent extra information. Several soft computing models 
were applied, and in this case only the results of PCA and CMLHL are shown. 
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The Typical Day in Summer in the city of Burgos is characterized by sudden 
changes in temperature and in solar radiation. Due to these factors, it is easy to 
identify a cluster corresponding to the central hours of the day, as temperature 
decreases very quickly at sunset. 

In contrast, the variability of solar radiation and temperature is smoother in the 
Typical Day in Autumn in the city of Burgos. The clusters are not so clearly 
identified due to the evolution of the data values throughout the day. 

In [15], a similar study was undertaken in 2007. The results of both studies are 
consistent. In subsequent studies, other seasons and annual periods will be 
analyzed, and a meticulous comparison will be made between those studies and 
public information on atmospheric pollution and meteorological conditions.  
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Abstract 

This paper deals with the notion of “Orthogonal Zero 
Interpolants” (OZI) which have several properties similar to the 
classical orthogonal polynomials. OZI are constructed in such a 
way that they interpolate the “Zero Function” at a finite number 
of pre-assigned nodes, even of multiple orders, in the sense of 
Hermite. These polynomials are also determined by the 3-term 
recurrence relation. We shall discuss structure and some 
properties of OZI alongwith their applications to certain 
approximation and boundary value problems. 
 
Key words: L2-approximation, Hermite interpolation, 
Orthogonal Zero Interpolants, Erdos-Turan theorem, 3-term 
recurrence relation, Two-point boundary value problem. 
 

1. Introduction 
Solution of several approximation problems and quite a few numerical solutions 
of boundary value problems (BVP) are based on orthogonal polynomials with 
respect to Jacobi weight functions , ( ) : (1 ) (1 ) ,x x x= − +α β

α βω  , 1> −α β  over 
[ 1,1]− . These polynomials, in general, are not suitable for determining solution of 
the problems subject to constraints. Here, we present some problems and discuss 
their solutions by a specific class of polynomials which we shall refer to as 
orthogonal zero interpolants.  In order to avoid repitition, we list below some 
notations which will be frequently used in this paper: 
 

[ ]( ) :    Positive weight function defined on ,t c dω =  

22
,[ , ]

[ , ] : Class of functions  with : ( ) ( )
d

c d
c

c d f f f t t dtω ω
ω= = < ∞∫L  
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:  Class of all polynomils of degreen nπ = ≤  

,[ , ]

1

1

0 1 0 1

, : ( ) ( ) ( )

[ , ] : ( ) ( )

(., , ) : Lagrange polynomial of degree  which interpolates 
at the 1points of 

, ,..., : Vector space generated by , ,...,

d

c d
c
d

c

n n

n

n n

g h g t h t t dt

I g g t t dt

L Z f n f
n Z

f f f f f f

ω
ω

ω ω

+

++

∫

∫
  

 
With the notations given above, we look into the following problems: 
 
A. Least squares approximation problem [1] 
Given 2 [ , ]f c dω∈L  and a finite data { } 1

, 1, 0
( , ) ik n

i i j i j
x y

−

= =
with distinct xi’s, can we 

find mp π∗∈ that minimizes the error 
,[ , ]c d

p f
ω

−  over all mp π∈ subject to the 

constraints: ( )
,( ) , 1,..., ; 0,1,..., 1j

i i j ip x y i k j n= = = − ? 
 
B. Lagrange interpolants in Erdos-Turan theorem 
A result due to Erdos-Turan [4] states that 1 ,[ , ]0

lim (., , ) 0n n c dn
L Z f f

ω+→
− =  where 

the set Zn+1 consists of the n + 1 zeros of an (n + 1) degree orthogonal polynomial 
with respect to ( )xω over [c,d]. An extension of this problem may be posed as 

follows: Given a finite data { } 1( )

1, 0
( , ( )) ik nj

i i i j
x f x

−

= =
 with distinct xi’s lying outside 

the interval (c,d ), can we modify the interpolating polynomial 1(., , )n nL Z f+  to 
one which interpolates the additional data and preserves the convergence 
property over the interval [c,d]? 
 
C. Numerical Solution of BVP by collocation method 
When determining a numerical solution of boundary value problems by 
collocation method, the Gaussian nodes are usually regarded as a best choice [6]. 
Can we determine their appropriate replacement by certain orthogonal points 
with partial freedom of choice without compromising the quality of numerical 
solution? 
To answer these questions, we slightly change the structure of classical 
orthogonal polynomials by appending a finite number of pre-assigned zeros. The 
modified polynomials will be referred to as OZI. The suggested polynomials 
convert certain constrained approximating problems to unconstrained ones by 
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modifying their approximating set. In addition, the zeros of OZI in some cases 
have some advantage over the Gaussian nodes in collocation methods.  

2.   Orthogonal Zero Interpolants (OZI) 

The structure of OZI, in general, is based on a given data { } 1
( , ) k

i i i
x n

=
 where xi’s 

are distinct real numbers and ni’s are positive integers. These interpolants arise 
from a sequence of polynomials ( ), 0,1, 2,......j x jψ = , which is constructed by 
the 3-term recurrence relation [5] as follows:  

1( ) ( ) ( ) ( ), 1, 2,j j j j jx x x x jψ α ψ β ψ+ = − − = … ,  (1) 

with 0 1
( ) ( ) i

k n
ii

x x xψ
=

= −∏  and 1 0 0( ) ( ) ( )x x xψ α ψ= − . The recursion 
coefficients in (1) are given by 

2 2

2 2
1

[ , ] [ , ]
, 0,1, ; , 1, 2,

[ , ] [ , ]
j j

j j
j j

I x I
j j

I I
ψ ω ψ ω

α β
ψ ω ψ ω−

= = = =… … . (2) 

where the notation [ , ]I h ω  stands for ( ) ( )
d

c

h x x dxω∫ . 

Definition 1. The polynomials ( ), 0,1, 2,......j x jψ = , generated from relation (1) 

will be refered to as orthogonal zero interpolants relevant to the data { } 1
( , ) k

i i i
x n

=
. 

 

Some properties of OZI. It is obvious that the OZI ( )n xψ  is a polynomial of 

degree ( )n N+  with 
1

k

i
i

N n
=

=∑  and that 0 1
( ) ( ) i

k n
ii

x x xψ
=

= −∏  is a factor of 

this polynomial. Also, ( ) ( ) 0
j

l
ixψ =  for 1,....., ; 0,1, 2,...., 1ii k l n= = − . The 

polynomials ( )n xψ , i = 0,1,,2,….. are monic and mutually orthogonal w.r.t. the 
weight function ( )xω  over the interval [ ],c d , i.e., [ , ] 0j lI ψ ψ ω =  for j l≠ . 
Besides the fixed zeros each ( )n xψ has exactly n real and distinct zeros in the 
open interval ( , )c d . We shall denote these zeros by , , 1, 2,...,i nz i n= , in the 
sequel. Thus, 0( ) ( ) ( )n nx x Q xψ ψ=  where 

,
1

( ) : ( )
n

n i n
i

Q x x z
=

= −∏ .      (3) 

Also, the coefficients kβ  in (1) are positive. As a custom, we set 2
0 0 [ , ]Iβ ψ ω= . 
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Remark 1. The vector space 0 : 0,1,...,ix i nψ =  which will be denoted by 

0( )nπ ψ  is an ( 1)n + -dimensional subspace of 
1

 where 
k

n N i
i

N nπ +
=

=∑ . Also, 

{ 0 1 2, , ,..., nψ ψ ψ ψ } is an orthogonal bases 0( )nπ ψ . Thus, nψ 0( )r⊥π ψ  for 
0 1r n≤ ≤ − . 
 

3.  Problem A: Formulation, solution and convergence  

We reformulate Problem (A) as follows [1]: Find a polynomial m mp ∗ ∈π  which 
minimizes 

,[ , ]c d
p f

ω
− over all  mp π∈  satisfying ( )

,( )j
i i jp x y= , 1,2, , ,i k= …  

0,1, , 1ij n= −… .  
 
Because of the number of interpolatory conditions, m can not be less than 1N − . 
We solve the reformulated problem by converting it to an unconstrained 
minimization problem. To do so, first we set 

1( ) : ( ) ( , )H Nf x f x H x Y−= − ,     (4) 
where 1( , )NH x Y−  is the polynomial of degree 1N −  satisfying N interpolation 
conditions: ( )

1 ,( , ) , 1,..., ; 0,1,...,j
N i i j iH x Y y i k j n− = = = . In terms of ( )Hf x  and 

0( )mπ ψ , we state an equivalent form of Problem (A):  
 

Problem (A*): Find a polynomial 0( )m m∈φ π ψ  which solves the problem: 

0
,[ , ]( )

min
m

H c d
f

ωφ π ψ
φ

∈
− .      (5) 

 
Solution of Problem (A): By Riesz-Fischer Theorem, we note that the solution of 

(4) is given by 
0

,
( ) ( )

,

m
H i

m i
i i i

f
x x

ψ
φ ψ

ψ ψ=

=∑ . Thus,  1( ) : ( , ) ( )m N mp x H x Y x∗
−= +φ  is 

the solution of Problem (A). 
 

Convergence. If f is at least *N -times continuously differentiable where 

0
max( 1)ii k

N n∗

≤ ≤
= − , we can prove: 

Theorem 1 [1]. If ,i jy ( ) ( )j
if x= , 1,..., ; 0,1,..., ii k j n= =  in the set-up of 

Problem (A), then *

,[ , ]0
lim 0m c dm

p f
→

− =
ω

. 
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Remark 2. The OZI’s considered in the solution of Problem (A) satisfy the 

Parseval equality for all *[ , ]Nf C a b∈ , i.e., 
0

,, ,
H i

H H
i ii

ff f ψ
ψ ψ

∞

=

=∑ . 

 

4.   Problem B: Formulation, solution and convergence  
Problem (B) can be elaborated as follows [3]: Let :[ , ]f a b →ℜ  with 
[ , ] [ , ]c d a b⊆ . Assuming that { }1 2, ,..., [ , ] \ ( , )k kx x x a b c d∆ = ⊆ , find a polynomial 

, 1n k n kP π + −∈ satisfying the following properties: 
(i) The polynomial ,n kP  emerges from an interpolation scheme based on 

distinct (n +1) zeros of certain orthogonal polynomial with respect to 
ω  over [c,d], 

(ii) ( ) ( )
, ( ) ( ), , 0,1, 1j j

n k i i i k iP x f x x j n= ∈∆ = −… , 

(iii) , ,[ , ]0
lim 0n k c dn

P f
ω→

− = . 
 

Like Problem (A), this problem is also based on the data { } 1, 1

1, 0
( , ( )

k nj
i i i j

x f x
−

= =
. In 

order to construct ,n kP , we find an orthogonal polynomial which has 1n +  free 
nodes in the open interval (c,d) and k pre-assigned nodes xi of multiplicity ni, 

1, 2, , ,i k= …  lying outside (c,d). 
 
Choice of orthogonal polynomials. The requirements (i) and (ii) are met by the 
OZI 1nψ +  which can be determined by the 3-term recurrence relation (1) with 

0
1

( ) ( ) i

k
n

i
i

x x xψ
=

= −∏ . Thus,  (cf (3)): 

1 0 1( ) ( ) ( )n nx x Q xψ ψ+ += .     (6) 
As before, we set 1( ) ( ) ( , )H Nf x f x H x f−= −  where 1( , )NH x f−  is the polynomial 
of degree 1N −  which interpolates f in the sense of Hermit at k pre-assigned 

nodes xi of multiplicity ni, 1, 2, ,i k= … . With 
1

:
k

i
i

N n
=

=∑ , Problem (B) is 

reformulate in terms of ( )Hf x  and 1 0( )nπ ψ+ :  
 
Problem B*. Find a polynomials *

0( )n nP π ψ∈  which interpolate Hf  at the 

1N n+ +  zeros of 1nψ + . Moreover, *

,[ , ]0
lim 0n H c dn

P f
ω→

− = .  
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Existence of *
nP .  Set { }1 2: , , ,k kx x x∆ = …  and define , :[ , ]

kHf a b∆ →ℜ  as 
follows: 

0
,

0

( ) , if 
( )

( )
( )lim , if .
( )

k

H
k

H
H

kt x

f x x
x

f x
f t x

x

ψ

ψ

∆

→

⎧ ∉∆⎪⎪= ⎨
⎪ ∈∆
⎪⎩

 

With { }1 1, 1 1, 1,....n n n nZ z z+ + + +=  (cf (3)) define *
0 1 ,( ) ( ) ( , , )

kn n n HP x x L x Z fψ + ∆= . It 

may be noted that *
,( ) ( )

kn HP x f x∆=  if 1 nx Z +∈ , and *( ) ( )( ) 0 ( )j j
n i H iP x f x= =  

for 1,...i k= , 0,1,..., 1ij n= − . 
 
Convergence. Set *

, 1( ) : ( ) ( , )n N n Np x P x H x f−= − . Then with suitable 
differentiability conditions on f we have 
 
Theorem 2 [3]:  , ,[ , ]

lim 0n N c dn
p f

→∞
− =

ω
. 

 
Remark 3. Theorem 2 is an extension of a result due to Erdos and Turan [4]. 
 

5.   Problem C: Formulation, solution and computational aspect [2] 
Problem C addresses the nature of collocation points required in the collocation 
solution of boundary value problems (BVP). Here, we shall notice certain 
advantage of the zeros of OZI’s over the Gaussian points when used as 
collocation points. This phenonenon is explained by a two-point linear BVP  

( ) ( ) ( )y t y t y f t′′ ′+ + =α β : ( ) 0, ( ) 0y a y b= = ,   (7)  
with ( ) 0, ( ) 1, ( ) cost t f t t= = − =α β  and 0, 1a b= = . The exact solution of (7) is 
given by 

1

1 1

cos(1) cos(1) 1( ) cos
2( ) 2( ) 2

t te ey t e e t
e e e e

−
−

− −

− −
= + −

− −
.     

We shall compute collocation solutions of this problem by using a three 
dimensional solution space 3 1 2 3, ,S = φ φ φ  where each polynomial iφ  vanishes at 
0 and 1. The collocation solution  in this se up will be of the form [6] 

1 1 3 2 3 3c c c= + +ς φ φ φ  where the unknowns are retrieved by solving the linear 
system 
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1 1 2 1 3 1 1 1

1 2 2 2 3 2 2 2

1 3 2 3 3 3 3 3

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

L t L t L t c f t
L t L t L t c f t
L t L t L t c f t

φ φ φ
φ φ φ
φ φ φ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

,      (8) 

Here, 2: ( ) ( )L D a x D b x= + + . If 1 2 3, ,φ φ φ  are linearly independent and the points 

1 2 3, ,t t t  are distinct, then the coefficient matrix 
3

, 1
( )i j i j

L t
=

⎡ ⎤⎣ ⎦φ  is always non-

singular. Therefore, a unique solution of (8) does exist.  
 
Our aim is discuss the collocation solutions based on different sets { }1 2 3, ,t t t  
which consist of either the Gaussian nodes or the zeros of OZI’s, and then 
compare the resulting errors. 
   
We have selected two different basis polynomials for S3: 
B-1: 2 2 2

1 2 3( ) (1 ), ( ) (1 ), ( ) (1 )t t t t t t t t tφ φ φ= − = − = − , 
B-2: 2 3

1 2 3( ) (1 ), ( ) (1 ), ( ) (1 )t t t t t t t t tφ φ φ= − = − = − . 
 
For collocation points, we have considered different sets consisting of zeros of 
OZI’s of the form “ 2 0 2( ) ( ) ( )t t Q t=ψ ψ ”  where 2 2Q ∈π and 0 1( )t t t= −ψ . Having 
fixed different values of 1 [0,1]t ∈ , the remaining two zeros, 2t  and 3t , are 
determined from 2 ( )Q t (cf (3)). We have constructed eight sets of collocation 
points (Cpt) with different choice of 1 [0,1]t ∈ . These are 
Cpt-1: t1= 0   t2= 4.5585×10-1 t3= 8.7749×10-1 

Cpt-2: t1= 1.5000×10-1 t2= 4.8928×10-1 t3= 8.8543×10-1 

Cpt-3: t1= 3.0000×10-1 t2= 2.3246×10-1 t3= 8.7315×10-1 
Cpt-4: t1= 4.5000×10-1 t2= 1.1607×10-1 t3= 8.8529×10-1 
Cpt-5: t1= 6.0000×10-1 t2= 1.1897×10-1 t3= 8.6954×10-1 
Cpt-6: t1= 7.5000×10-1 t2= 1.2662×10-1 t3= 6.6825×10-1 
Cpt-7: t1= 9.0000×10-1 t2= 1.1290×10-1 t3= 5.0097×10-1 
Cpt-8: t1= 1.0000e+000 t2= 1.2251×10-1 t3= 5.4415×10-1 
 
Two collocation solutions based on B-1 and B-2 each with three Gaussian points  

Gpt: t1= 5.0000×10-1 t2= ( )3
51

2
−   t3=  ( )3

51
2

+  
are also computed for the sake of comparison. 
  
Accuracy. The level of accuracy of the resulting collocation solutions is 
determined by considering maximum error ‘ ( , )1

M-Err max ( ) ( )i K L ii n
y t tς

≤ ≤
= − ’, and 
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the root mean squared error: ‘
2

( , )
1

( ) ( )

RMS 

n

i K L i
i

y t t

n

ς
=

−∑
= . These errors are 

computed over n = 101 uniform mesh points of [ 1,1]− . Here, ( , )K Lς  denotes the 
collocation solution corresponding to basis B-K, K =1, 2 and collocation points 
Cpt-L, L=1,2,…8. The errors corresponding to each solution are tabulated below. 
 

Table 1: Comparison of errors based on B-1 polynomials 
 (1,1)ς  

t1= 0 
(1,2)ς  

t1= .15 
(1,3)ς  

t1= .3 
(1,4)ς  

t1= .45 
(1,5)ς  

t1= .6 
(1,6)ς  

t1= .75 
(1,7)ς  

t1= .9 
(1,8)ς  

t1= 1 
(1, )Gptς  

M-
Err 

1.6248 
×10-5 

7.8463 
×10-6 

4.8222 
×10-6 

8.8012 
×10-6 

1.5613 
×10-6 

5.7026 
×10-6 

9.8077 
×10-6 

1.8457 
×10-5 

8.5202 
×10-6 

RMS-
Err 

1.0982 
×10-5 

4.9540 
×10-6 

2.6670 
×10-6 

6.1676 
×10-6 

7.0045 
×10-7 

3.7685 
×10-6 

6.7537 
×10-6 

1.1005 
×10-5 

5.9790 
×10-6 

 
Table 2: Comparison of errors based on B-2 polynomials 

 (2,1)ς  
t1= 0 

(2,2)ς  
t1= .15 

(2,3)ς  
t1= .3 

(2,4)ς  
t1= .45 

(2,5)ς  
t1= .6 

(2,6)ς  
t1= .75 

(2,7)ς  
t1= .9 

(2,8)ς  
t1= 1 

(2, )Gptς  

M-
Err 

2.5382 
×10-3 

2.5583 
×10-3 

2.6814 
×10-3 

2.5888 
×10-3 

2.4589 
×10-3 

2.5547 
×10-3 

2.5248 
×10-3 

2.2997 
×10-3 

2.5449 
×10-3 

RMS-
Err 

1.7835 
×10-3 

1.7960 
×10-3 

1.8829 
×10-3 

1.8177 
×10-3 

1.7253 
×10-3 

1.7933 
×10-3 

1.7722 
×10-3 

1.6125 
×10-3 

1.7865 
×10-3 

 
The graphs of error functions for each basis polynomials are given in Figures 1 
and 2. Each figure involves three error functions corresponding to Gaussian points 
and the sets of the zeros of two different OZI’s. In case of OZI’s, we have selected 
one set resulting to a superior solution and the other one resulting to inferior when 
compared with the solution based on Gaussian nodes.  
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Conclusions. The performance of collocation methods, as already known, 
depends on the choice of collocation points and the nature of basis functions of 
the solution space. From the tables, we note that the zeros of several OZI’s 
provide a better solution to the one based on the Gaussian points. However, we 
could not figure out any criterion that determines a better choice of OZI for a 
specific basis of a collocation solution space.  
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Abstract 

In this contribution we present different proposals of straight 
lines and develop an R Script to fit these lines to a Normal 
Quantile-Quantile Plot (Q-Q Plot), which can be chosen among 
six possibilities.  
  
Key words: Normal Q-Q Plot, R Script, straight line. 
 

1. Introduction 

In Statistics, there are many studies in which it is necessary to verify if the data 
set comes from a Normal distribution.  
 
The Normal Quantile-Quantile Plot (Q-Q Plot) is a popular and useful tool for 
assessing the normality of a data set. This plot compares the ordered distribution 
of a sample with the quantiles of the Standard Normal distribution indicated by 
the straight line. If the sample is normally distributed, the points will lie along this 
line.  
 
Given a set of ordered observations ,,,,

)()()( nxxx K21  a Normal Q-Q Plot is 

constructed by plotting the pairs ( )
)(

),( ii xp1−Φ , where Φ  represents the standard 

normal cumulative distribution function (with zero mean and unit variance) [1] 
and nppp ,,, 21 K  are appropriate plotting positions [2]. In this paper, we will use 
the definition of plotting position proposed by Hazen [3] in 1930, which is 
defined as: 

ni
n

i
pi ,...,,

.
21

50 =−=  
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2. Fitting a straight line to a Normal Q-Q Plot  

The Normal Q-Q Plot graphically compares the distribution of a given variable 
with the Normal distribution, represented by a straight line, though not necessarily 
the straight line y=x.  
 
The value of the straight line on the point of abscissas zero, will provide 
estimation of the population average, and the value of the straight line on the 
point of abscissas one, will show the value of the sum of the average and the 
standard deviation. We may use this to provide estimation of the population mean 
and the standard deviation. 
 
Moreover, what adjusts of the straight line to the Normal Q-Q Plot is an important 
aspect to consider. In this paper we develop an R script [4] through which we can 
choose a desired straight line (among six possible alternatives).  

3. Possible straight lines in a Normal Q-Q Plot  

In a Normal Q-Q Plot there exists the possibility of representing diverse straight 
lines for these pairs of points, since for each of the straight lines we will obtain 
different population parameters for the average and the standard deviation.  
 
We will study the following straight lines: 
 
1. Straight line that passes through the first and third quartiles. 
2. Straight line that passes through the 10 and 90 percentiles. 
3. Straight line fitted by the method of least squares. 
4. Tukey’s resistant line [5]. 
5. Theil’s line [6]. 
6. Straight line with slope ‘s’ and constant the average of the data set. 

4. R Script 

The basic content of the R script that we propose to select the different straight 
lines in a Normal Q-Q Plot, is the following:   
 
lines <- function(x) 
{ x <- sort(x) 
 n <- length(x) 
 phazen <- c(((1:n)-0.5)/n) 
 ejex <- qnorm(phazen) 
 print("To key in definition’s number of straight line, where:") 
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print("1:'First and Third quartiles' ; 2:'10 and 90 percentiles' ; 3:'Method of 
least squares' ; 4:'Tukey’s resistant line' ; 5:'Theil’s line' ; 6:'Slope ‘s’ and 
constant average'") 

 line <- scan(file="", what=integer(0), n=1, quiet=TRUE) 
if (line<1 || line>6) print("You must key a number between 1 and 6") else 

 qqnorm(x, xlab="Quantiles N(0,1)", ylab="Observations") 
 
 if (line==1) qqline(x)  
 
 if (line==2)  
 { p10x <- quantile(ejex,0.1)   

p90x <- quantile(ejex,0.9) 
  p10y <- quantile(x,0.1)   

p90y <- quantile(x,0.9) 
  pte <- (p90y-p10y)/(p90x-p10x)  

cte <- p10y-(pte*p10x) 
  abline(a=cte,b=pte) 

} 
 

 if (line==3) abline(lm(x~ejex))  
 
 if (line==4)  
 { library("LearnEDA")    

Tukey <- rline(ejex,x) 
  abline(a=Tukey$a, b=Tukey$b) 

} 
  

if (line==5)  
 { library("mblm")    

Theil <- mblm(x~ejex) 
  abline(a=Theil$coefficients[1], b=Theil$coefficients[2]) 

} 
 

 if (line==6) abline(a=mean(x), b=sd(x)) 
 } 

5. Example 

An appli cation of the previous R script is represented in the following example, 
where we use simulated observations of a Chi-Square distribution. 
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Figure 1: Normal Q-Q Plot with six different straight lines. 

 
In Figure 1 we can observe how the choice of the adjustment method of a straight 
line is fundamental in a Normal Q-Q Plot, since there are differences in the 
straight lines represented in the plot.  
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Abstract 

By evolutionary game theory, we can study the pressure of biotic 
factors on strategies adopted by predators and prey. Here, we 
show an analysis of a thermal game between predators and prey, 
where the habitat is composed of hotter and colder areas. In these 
areas, predators choose patches based on prey density and preys 
choose based on operative temperature and on the parasite load.  
 
Key words: game theory, thermoregulation, temperature, 
parasite load 
 

1. Introduction 
Mathematical models about the behavioural regulation of temperature were 
pioneered by Huey and Slatkin [6]. In these models we formulate how phenotipes 
are dependent on thermal environments. This means that we evaluate the cost and 
benefit to be in a specific thermal environment, finding the optimal solutions. 
Importantly, these models generate hypotheses that can be investigated 
experimentally, leading to a possible cycle of improvements. Models of interacting 
predators and preys, with pressure from abiotic factors, are still lacking, but, more 
recently, effort has been done to further expand the field [3,9]. 
  
There are evidences of interaction between biotic factors and thermoregulation. 
For example: different preference for microclimates in the presence of competitors 
[5, 4]; reduced time of basking, in ectotherms, in situations of higher risk of 
predation [7, 8], avoidance of thermal favourable waters [1]. 
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2. Thermal game  
In this model we use a thermal game, where the prey has the ability to choose the 
patch that confers a specific energetic gain and a specific risk of predation. Besides 
that, we simulate a natural situation, where the patch with higher temperature will 
boost the immune system, being more advantageous for preys with some parasite 
load. If the prey chooses the patch with higher energetic gain, most of the time, it 
will lead to a distribution of predators around that some patch, and vice-versa. So, 
some trade-off must occur, where the need for a high energetic gain is 
counterbalanced by an evolutionary strategy that minimizes the risk of predation. 
However, in our model, a broader distribution of the prey will lead to more time 
spent in less favourable patches for the immune system functions. 
 

3. Model 
Our model has a habitat that is divided in two patches, a hotter and a colder, where 
the hotter one gives a higher energetic gain (e) for the prey. This higher energetic 
gain will lead to a faster growth rate, and a faster rate of reproduction and, 
consequently, to a higher fitness (G) of the prey. The fraction of time spent by the 
prey, in the colder patch will be t1 and in the hotter one t2. Similarly, for the 
predator, the fraction of time spent in the colder patch will be u1 and u2 for the 
hotter patch. 
The fitness of the prey is defined as the product of fecundity (F) and probability to 
survive to maturity (S) [3, 2]: 
 

FSG =          (1) 
 
where we assume that fecundity increases monotonically with the energetic state 
of the prey (X). 
The energetic state of the prey will be defined as the energetic gain of each patch 
multiplied by the fraction of time spent on it and taking into account the parasite 
load (I). We assume that the parasite load (that it also is the fraction of the 
population infected) only affects the energetic gain on the colder patch, while on 
the hotter patch the boosted immune system lowers the parasite load to minimal 
levels. So, it follows that: 
 

]te+I)-(1t[e=I),t,X(t 221121       (2) 
 
where I is the parasite load. 
For the survival of the prey, we assume that it declines exponentially over time 
[brown], as a function of rate of predation. This rate depends on the encounters of 
the prey with predators and on the lethality of that encounter (l). So, the fitness of 
the prey can be described as: 
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)tI(ul-)tut(u-l
22112121

22i2211p].ete+I)-(1tF[e=)u,u,t,G(t +
  (3) 

 
where lp is the lethality due to normal predation and li is the increased lethality that 
an infected prey has due to different behavior when infected. For example, 
infected ectotherms tend to increase their basking time to maintain a higher body 
temperature, which leads to an increased probability of being spotted by predators. 
The predator’s fitness depends on the number of preys that it consumes the 
efficiency of conversion of the preys and on the time it allocates to each patch. In 
this model we assume that there is no significant difference for the energetic gain 
of the predator. 
 

[ ])tI(ul-)tut(u-l
2121

22i2211pe1),u,u,t,t( +−= NNH π     (4) 
 
In equation 4, N is the number of preys in the range of the predator, at the 
beginning of the season and pi is the efficiency to which the predator converts prey 
to offspring. 
 
 
4. Equilibrium 
 
For a strategy of allocation of time to a patch by the prey, there will be an 
optimum allocation of time for the predator, in order to optimize its fitness.  
Likewise, for a given allocation of time by the predator, there will be a best 
strategy of allocation for the prey. The intersection of these set of responses gives 
us the combination of strategies that the predator and prey can not change 
unilaterally so that they can achieve greater fitness. 
To find the set of strategies above, we study the limit cases for t1, t2 and u1,u2, 
when their values are 0 or 1, and evaluate the rate of fitness gain (∑H/∑ui or ∑G/∑ti, 
where i is 1 or 2). Besides the limit cases, we also evaluate on the range between 
these limits. If the higher rate of fitness gain is not found in one of the limits 
above, there will be an equilibrium, where the fitness gain, by changing t1 (u1), 
will be the same as the fitness gain by changing t2 (u2), on the opposite direction, 
as follows: 
 

uu
H

uu
H

*
2

*
1

21 ∂
∂

=
∂
∂

        (5) 

 
where u1

* and u2
* are the values at equilibrium. 

For the predator, the patches confer equal rates of fitness gain if the prey spends 
time in the patches, following the equation: 
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21 )1( tI
l
l

t
p

i+=         (6) 

 
As t2 can be evaluated knowing that t2=1-t1, by equation 6, we see that the 
allocation of time giving equal fitness gain, to the predator, in the two patches, is 
only dependent on the parasite load, the risk of predation and the increased risk of 
predation by the parasite load, on the hotter patch. It does not depend on the 
decrease on the energetic state, by the prey, due to the parasite load on the colder 
patch. 
For the prey fitness gain equilibrium, we have a more complex formulation: 
 

Ill
Ill

XIll
eIeu

ip

ip

ip +

+
+

+
−−

=
2)2(

)1( 21
1       (7) 

 
From equation 7, the fitness gain equilibrium of the prey is shown to depend on 
t1,t2,e1,e2,lp.li and I.  
If we use equation 6 and equation 7 to draw the curves (lines) that define the 
equilibrium for the predator and for the prey, we can find the behavioural Nash 
equilibrium, where these two curves intercept. In figure 1 we can evaluate the 
impact of raising the parasite load, from left to right, from 0 to 0.5. As the parasite 
load rises, predators spend more time on the warm patch. The preys start to spend 
more time on the colder patch (figure 1b), but as I increases, they allocate more of 
their time to the warm patch. 
 

 
Figure 1. The allocation of time of the prey in the colder patch (t1) and of the predator (t2). In a) 
I=0, I=0.25 in b) and I=0.5 in c). For all graphs, e1=0.75, e2=1.0, li=0.25 and lp=0.75. NE is the 
behavioural Nash equilibrium, where the two curves intercept. 
 
Increasing the lethality of predation, for preys with or without parasite load, leads 
to more time allocated to the colder patch, for the prey and for the predator, as can 
be seen in figure 2. 
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Figure 2. The allocation of time of the prey in the colder patch (t1) and of the predator (t2). From 
the bottom, for the curves: li=0, lp=0.5; li=0.25, lp=0.5; li=0.5, lp=0.5; li=0, lp=1; li=1.0, lp=1.0. The 
vertical lines correspond to the allocation of time for the prey, for the corresponding curves of the 
same color. From left to right, t1=0.5, t1=0.52 and t1=0.55. For all, I=0.2, e1=0.75, e2=1.0. 
 
These results reinforce that it is necessary to take into account biotic factors to 
understand the thermoregulation. Particularly, parasite load, in this model, was 
responsible for a shift in the behaviour of preys. For higher values of parasite load, 
the prey allocates more time to the warm patch, opposing the strategy of allocating 
more time to the colder patch when the parasite load is not so severe. The increase 
in the lethality of predation, due to an increased parasite load, leads to an increase 
in the time allocated to the colder patch. 
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Abstract 
A micro Planar high-Field Asymmetric waveform Ion Mobility 
Spectrometer (P-FAIMS) has been simulated in air at ambient 
pressure using COMSOL Multiphysics software. Targeted 
analytes used in simulations are vapor phase compounds for 
security applications. In P-FAIMS target ions are discriminated 
by the application of the proper separation voltages to the 
electrodes of the system. By modeling, optimum voltages for 
achieving the proper sensitivity have been obtained and dual 
detection is achieved for ions with opposite charges. 
 
Key words: FAIMS; FEM Gas Simulation; COMSOL 
 

1. Introduction 
Ion Mobility Spectrometry (IMS) is an analytical technique based on ion 
separation in gaseous phase due to an electric field. The IMS technology has 
fundamental advantages: high resolution (~ppb) and fast measurements (~ms). 
Also, ionization and characterization of the sample in IMS instruments occurs at 
ambient pressure[1], allowing a smaller analytical unit, lower power requirements, 
lighter weight and easier use for field applications. IMS instruments have a typical 
minimum volume of 40cm3, but due to the trend toward miniaturization of ion 
mobility spectrometer, smaller volumes (~mm3) are being explored [2-4]. These 
advantages make IMS a rapidly advancing technique with a wide spectrum of 
applications, including detection of chemical warfare agents’ and explosives [5]. 
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2. P-FAIMS working principle  
In presence of an electric field, ions with different collision cross-sections 
temporally separate based on the frequency of ion-neutral interactions. The 
continual micro-scale acceleration and scattering collisions deceleration of ions 
results in a constant average velocity, the drift velocity vd (m/s); that is directly 
proportional to the magnitude of the applied electric field strength E (V/cm) [1]: 
 
vd = K·E (1) 
 
where K(cm2/Vs) is the ion mobility coefficient. This parameter is characteristic of 
each ion and each medium, and is the basis for its identification. The mobility of a 
given ion at constant temperature and pressure with gas density N (m-3) through a 
drift gas under the influence of a high electric field can be expressed by [6]:  
 
K(E/N) = K(0) · [1 + α(E/N)] = K(0) · [1 + α2·(E/N)2 + α4·(E/N)4 + ...] (2) 
 
where K(0)=K(E/N)|E=0 is the ion mobility at low electric field at N; and α(E/N) 
describes ion mobility dependence on the electric field at a constant density of 
drift gas at atmospheric pressure and constant temperature. E/N is the electric field 
in Townsend (1 Td = 10−17 Vcm2) units. Equation 2 is a convenient mathematical 
expression for the alpha function [7]. K(0), α2, and α4, are characteristic of each 
ion and are obtained experimentally. When electric field exceeds 10000 V/cm 
(E/N ~ 40 Td) the mobility of some ions increase, decrease or remains unchanged. 

A high radio frequency (RF) asymmetric electric field is applied to a narrow 
gap between two parallel plates, while ions are carried between them by a gas flow 
and undergo oscillations, i.e. perpendicular to gas flow as shown in Fig. 1. One of 
the plates is grounded and the other is biased at high voltage with an asymmetric 
waveform, VRF (t), satisfying that its integration over a period has to be zero. While 
all ions interact with the applied RF field and are drawn towards the drift channel 
walls, selected ions can be kept in the flowing gas by applying particular low DC 
voltage or compensation voltage (VC), prevents the ion migration towards either 
electrode. Thus, a selected ion passes through the filter electrodes and reaches the 
detector being this VC voltage a characteristic of each ion species. 

3. Two Dimensional Modeling Planar-FAIMS 
COMSOL Multiphysics software is used to simulate the behavior of three different 
vapor ions in a P-FAIMS. The software takes into account nonlinear combined 
effects of different forces and concentrations fields. Created model combines fluid 
dynamics and electric field which have been found to be the most significant 
effects. Other effects such as electric repulsion in ion cloud due to space charge 
have been found to be considerably less significant (for the low concentration level 
simulated, 1ppm) and thus were not included in the simulations presented [8]. A 
2D schema of the drift channel model used in the simulations is shown in Fig. 1.  
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Fig. 1. Schematic of a drift channel defined by P-FAIMS and detector electrodes. 
Ion paths are schematized under the influence of RF and DC fields for the filtering 
region and the detector fields for detection region.  

 
The P-FAIMS electrodes of 13×5 mm2 separated by 0.5 mm gap, are used to 

produce the alternating electric field in the gap. A two-harmonics asymmetric 
waveform is applied to the top electrode while the bottom electrode is grounded. 
The VC is applied to the top electrode too. Detector electrodes (charge collectors) 
of 5×5 mm2 are placed after P-FAIMS electrodes to collect ions and generate the 
VC spectrum. Drift gas and ions enter the P-FAIMS from the left, passes through 
the P-FAIMS electrodes and only ‘selected’ ions reach the detector electrodes. 
Ions are introduced from the centre of the channel high at the beginning of the P-
FAIMS electrodes with a spatial distribution specified as Δy = 0.02 mm, while air 
gas flows over all the channel height.  

Model assumptions are resumed in Fig. 2. Drift gas velocity in the P-FAIMS 
gap has been calculated using the Navier-Stokes module for air. Electric potentials 
applied to the P-FAIMS and detector electrodes are calculated using the 
conductive media DC module and, the movement of ions is calculated with electro 
kinetic flow module, which takes into account of ions behavior. 

The modeled ions correspond to a vapor phase compounds: 1) positive and 
negative reactant ions in purified air identified as protonated water clusters 
H+(H2O)n and O2

-(H2O)n, 2) a chemical warfare agent simulant positive ion 
monomer: DMMPH+ that emulates gas sarin. Ions modeled are listed in Table 1 
and have been selected because their main properties: K0, α2 and α4 are available in 
the literature [7].  

 

 
Fig. 2. Block diagram of key computational steps involved in modeling P-FAIMS 
with COMSOL Multiphysics software. Straight squares indicate main modules and 
dashed squares indicate variables needed for the modules. 
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Table 1: Parameters used in simulations for the studied compounds [7]. 
Chemical Ion 

Acronym 
K0 (10-4 
m2/V·s) α2 (Td-2) α4 (Td-4) 

Positive Reactant Ion H+(H2O)n 2.34 1.78·10-5 -4.91·10-10 
Negative Reactant Ion O2

-(H2O)n 2.13 1.93·10-5 -4.30·10-10 
Dimethyl methylphosphonate (DMMP) DMMPH+ 1.94 5.09·10-6 -1.58·10-10 

 
To simplify numerical simulations, following assumptions are made: 1) All 

ions are singly charged 2) Ions are assumed to be free from clusters -from water 
vapor and nitrogen in the ionization process- 3) Ions do not interact with one 
another, so that interactions resulting from space charging do not occur 4) Ions are 
created immediately upon entering the analyzer 5) The type of ionization is not 
considered 6) Reactant ions and product ions are not present in the system 7) Ions 
do not have dipolar moment.  

4. Results and Discussion  
For low RF electric fields (E/N < 40 Td) there is no dependence of mobility with 
electric field, therefore VC = 0 V for all ions. Increasing electric field they can be 
separated due to their differences on mobility coefficients.  

In Fig. 3, concentrations of the H+(H2O)n and DMMPH+ ions are presented for 
an E/N of 60Td, showing that with the proper selection of the applied 
compensation voltage VC it is possible to obtain a good separation. As could be 
seen in this case of DMMPH+, ion reach the detector for a VC=-1.35V. For the 
same compensation voltage, the positive reactant ion peak H+(H2O)n ion dose not 
reach the detector. Differentiation is achieved. 

 

 
Fig. 3. Concentrations for a separation field of E/N = 60 Td, of LEFT) DMMPH+ ions 
and RIGHT) H+(H2O)n ions; showing that for the same VC=-1,35V only the DMMPH+ 
ion reaches the detector electrode. Differentiation is achieved. 
 

For an E/N=60Td showed, the positive reactant ion H+(H2O)n is detected for 
VC=-4.6V, and the negative reactant ion O2

-(H2O)n is detected for VC=-5.5V. 
Therefore, differentiation is also obtained for the three compounds studied.  
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Results obtained from simulations showed that ion detection could be achieved 
with COMSOL software. Obtained intensities for initial concentrations of 1ppm, 
are in all cases of the order of nA.  

5. Conclusions and Prospect 
Simulations of a P-FAIMS have been done with COMSOL Multiphysics software 
for three compounds in vapor phase that could be considered representative for 
security applications.  

Reactant ion peaks has been shown that can be separated from ions of dimethyl 
methylphosphonate positive monomer ion DMMPH+ applying a determinate VC 
that makes ions pass through the drift channel and reach the detector.  

From the good simulation results, the fabrication of the P-FAIMS instrument 
device will be addressed using micro-electro-mechanical systems fabrication 
techniques. 
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Abstract 

Security is a major concern when web applications are 
implemented. This has led to the proposal of a variety of 
specifications and approaches to provide the necessary security 
for these environments. SQL Injection attacks on web 
applications have become one of the most important information 
security concerns over the past few years. The purpose of this 
article is to present an adaptive and intelligent mechanism that 
can handle SQL injection attacks and real time. Our approach is 
based on a real time classifier agent that incorporates a mixture 
of experts to choose a specific classification technique 
depending on the feature of the attack and the time available to 
solve the classification. This research presents a case study to 
evaluate the effectiveness of the approach and also presents the 
preliminary results obtained with an initial prototype. 
 
Key words: Case-Based Reasoning, Support Vector Machine, 
Artificial Neural Network, SQL Injection, Intrusion Detection 
 

1. Introduction 
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In recent years, Internet attacks have increased due to the large number of 
information systems connected to the Internet. One of the most serious security 
threats around Web application and databases has been the SQL Injection attack 
[1]. This attack takes place at the database layer when a user request that has been 
sent through an HTTP request is executed without prior validation. 
Confidentiality, integrity and availability are the main objectives of any 
information security model [2]. Various approaches have attempted to deal with 
the problem of SQL injections [3] [4] [5] [6] [7]. However, the biggest 
inconvenience of these solutions is their inability to adapt to the rapid changes in 
attack patterns, which renders them a bit inefficient in the long term. More 
complex SQL attacks are characterized by the various techniques used for 
remaining undetected by existing security solutions. Finally, none of these 
approaches consider the limitations or restrictions in response time. 
Response time is a critical aspect in the majority of Internet security systems. 
With systems requiring a response to be given before a specific deadline, as 
determined by the system needs, it is essential that the execution time for each of 
the tasks carried out by the system is predictable and capable of guaranteeing 
correct execution within the time needed for the given response. Furthermore, the 
system providing the service and the security analysis must both have the 
necessary mechanisms for executing tasks in a predictable framework, that is, the 
agent must be prepared for its execution in a real time environment. A Real-Time 
Agent may have its interactions bounded; a modification that will affect all the 
communication processes in the Multi-Agent system where the Real-Time Agent 
is located. Some examples of real time agents are: The ARTIS agent specifically 
designed to develop Real-Time Systems [8] [9] [10], The ObjectAgent 
Architecture developed by Pinceton Satellites in 2001[9] and  time-aware agents 
proposed by Prouskas et al. in 2002 [10]. 
This study presents a new agent model with a novel perspective for analyzing and 
classifying SQL injections in real time. The agent’s internal structure, an 
integrated mixture of an Artificial Neural Network (ANN) and a Support Vector 
Machine (SVM) is used as a classification mechanism. By using this mixture, it is 
possible to exploit the advantages of both strategies in order to classify the SQL 
queries in a more reliable way.  The internal structure of the agent is based on the 
Case-Base Reasoning (CBR) model, with the main difference being that the 
different CBR phases are time-bounded, thus enabling its use in real time. CBR 
can be very suitable for application in agent reasoning, where similar problems 
should have similar solutions. However, few of the existing approaches cope with 
the problem of applying CBR as deliberative engine for agents in MAS with real-
time constraints.  Additionally, the adaptation phase in the CBR system integrated 
in the agent proposes a new analysis classification model that is carried out by a 
mixture of experts. The concept of a mixture of experts was first proposed by[11]. 
It involves a system that contains a series of input data that is distributed over a 
set of expert classifiers. Depending on the time available for performing 
classification, a set of experts is selected to perform the different analyses. The 
experts are selected with a multiple method model [12]. Finally the different 
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selected experts generate the predictions and the outputs are fused to generate a 
new unique result [13] [25].  
 
The paper is structured as follows: Section 2 presents the problem that has 
prompted most of this research work. Section 3 describes the SQL attack problem. 
Section 4 shows a general view of the temporal bounded CBR used as 
deliberative mechanism in the classifier agent. Section 5 describes a set of tests to 
evaluate our proposal. 

2. Real Time Agent and Case-Based Reasoning (CBR) 

A real time agent is one that is able to support tasks that should be performed 
within a restricted period of time [14]. This characteristic justifies its use in real 
time systems. In this type of environment, the validity of the solution is 
determined not only by its correct execution, but by its ability to be carried out 
within the allotted time frame [15]. 
The main problem in the architecture of a Real Time Agent (RTA) is with the 
deliberation process. This process may use Artificial Intelligence (AI) techniques 
as problem-solving methods to compute more intelligent actions. If this is the 
case, it is difficult to know the time required, because it can either be unbounded 
or have a high variability. If the agent has to operate in a real-time environment, 
the agent complexity required to achieve any or all of these features is greatly 
increased. Thus a RTA requires an efficient integration of high-level, deliberative 
processes within reactive processes. When using AI methods, it is necessary to 
provide techniques that allow their response times to be bounded. These 
techniques are mainly based on well-known Real-Time Artificial Intelligence 
System (RTAIS) techniques[16][17]. 
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Figure 1. TB-CBR cycle  
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Figure 1 shows the reasoning cycle for a TB-CBR system. The TB-CBR cycle 
starts at the learning stage, where it checks to see if there are previous cases 
waiting to be revised and possibly stored in the case-base. In our model, the plans 
provided at the end of the deliberative stage will be stored in a solution list while 
feedback about their utility is received. When each new TB-CBR cycle begins, 
this list is accessed. If there is enough time, the learning stage is implemented for 
those cases whose solution feedback has been recently received. If the list is 
empty, this process is omitted. 
The next stage to be implemented is the deliberative stage. The retrieval algorithm 
is used to search the case-base and retrieve a case that is similar to the current 
case (i.e. one that characterizes the problem to be solved). Each time a similar 
case is found, it is sent to the reuse phase where it is transformed into a suitable 
plan for the current problem by using a reuse algorithm. Therefore, at the end of 
each iteration of the deliberative stage, the TB-CBR method is able to provide a 
plan for the problem at hand, although this plan can be improved in subsequent 
iterations if the deliberative stage has enough time to perform them. 
Hence, the temporal cost of executing the cognitive task is greater than or equal to 
the sum of the execution times of the learning and deliberative stages (as shown in 
equation 1): 

mttt

nttt

ttt

reuseretrievevedeliberati

retainreviselearning

vedeliberatilearningaskcognitiveT

*))

*)(




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(1)   

where askcognitiveTt
  is the maximum time available for the agent to provide a 

response , 



tlearning and 



tdeliberative are the total execution time of the learning and 

deliberative stages; 



tx  is the execution time of the phase x and n and m are the 
number of iterations of the learning and deliberative stages respectively. 
 
This algorithm can be launched when the real-time agent considers it appropriate 
and there is enough time for it to be executed. The real-time agent indicates to the 

TB-CBR the maximum time (tmax, where
tmax  tcognitiveTask ) that is available to 

complete its execution cycle. The time tmax must be divided between the learning 
and the deliberative stages to guarantee the execution of each stage. The designer 
can assign more time to the learning stage if it desires a real-time agent with a 
greater capacity to learn.  
The anytime behaviour of the TB-CBR is achieved through the use of two loop 

control sequences. The loop condition is built using the 



enoughTime  function, 
which determines if a new iteration is possible according to the total time that the 
TB-CBR has to complete each stage. 
The first phase of the algorithm executes the learning stage. This stage is executed 
only if the agent has the solutions from previous executions stored in the 
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solutionQueue. The solutions are stored just after the end of the deliberative stage. 
The deliberative stage is only launched if the agent has a problem to solve in the 
problemQueue. This configuration allows the agent to launch the TB-CBR in 
order to only learn (no solution is needed and the agent has enough time to reason 
previous decisions), only deliberate (there are no previous solutions to consider 
and there is a new problem to solve) or both. 

2. SQL attack 

A SQL injection attack takes place when a hacker changes the semantic or 
syntactic logic of a SQL text string by inserting SQL keywords or special symbols 
within the original SQL command that will be executed at the database layer of an 
application [18]. A SQL injection attack can cause serious damage to an 
organization, including financial loss, breach of trust with clients, among others.  
There have been many proposed solutions for SQL injection attacks, including 
some Artificial intelligence techniques. One of the approaches is WAVES (Web 
Application Vulnerability and Error Scaner)[22]. This solution is based on a 
black-box technique. WAVES is a web crawler that identifies vulnerable points, 
and then builds attacks that target those points based on a list of patterns and 
attack techniques. WAVES monitors the response from the application and uses a 
machine learning technique to improve the attack methodology. WAVES cannot 
check all the vulnerable points like the traditional penetration testing. The strategy 
used by the intrusion detection systems has also even been implemented to deal 
with some SQL injection attacks. Valeur [21] presents an IDS approach that uses 
a machine learning technique based on a dataset of legal transactions. These are 
used during the training phase prior to monitoring and classifying malicious 
accesses. Generally, IDS systems depend on the quality of the training set; a poor 
training set would result in a large number of false positives and negatives. Skaruz 
[19] proposes the use of a recurrent neural network (RNN). The detection 
problem becomes a time serial prediction problem. The main problem with this 
approach is the large number of false positives 
and false negatives. 
Other strategies based on string analysis techniques and the generation of 
dynamic models have been proposed as solutions to SQL injection attacks. 
Halfond and Orso [18] propose AMNESIA (Analysis and Monitoring for 
Neutralizing SQL Injection Attacks). Kosuga et al. proposes SANIA (Syntactic 
and Semantic Analysis for Automated Testing against SQL Injection) [20]. With 
only slight variations of accuracy in the models, these strategies have as drawback 
their meaningful rate of false positives and negatives. 

2. SQL-TB-CBR agent classifier 

In this section the new SQL-TB-CBR agent is presented, with special attention 
paid to its internal structure and the classification mechanism of SQL attacks. 
This mechanism combines the advantages of CBR systems, such as learning and 
adaptation, real time, with the predictive capabilities of ANNs and SVMs.  
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In terms of CBR, the case is composed of elements of the analysed SQL Query 
described as follows:  

 Problem: describes the initial information available for generating a plan. 
The problem description consists of: case identification, user session and 
SQL query elements.  

 Solution: states the action carried out in order to solve the problem. In this 
case, the applied prediction models.  

 Final State: describes the state achieved after that the solution has been 
applied. 

The fields defining a case are as follows:  IdCase, Session, User, IP_Address, 
Query_SQL, Affected_table, Affected_field, Command_type, Word_GroupBy, 
Word_Having, Word_OrderBy, Numer_And, Numer_Or, Number_literals, 
Number_LOL, Length_SQL_String, Start_Time_Execution, End_Time_Execution, 
and Query_Category. Additionally, the information related to the prediction 
models used is stored as well.  

In Fig. 1, the different stages applied in the reasoning cycle can be seen. 
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Figure 2. TB-CBR cycle and classification mechanism of the SQL-TB-CBR agent  

In the retrieval stage, there is a selection of queries sorted by type and by the 
memory’s classification models. In the reuse phase, as seen in Fig. 1, a Multilayer 
Perceptron (MLP) and/or an SVM are applied to carry out the prediction of the 
new query. Subsequently, a new inspection is performed which can be done 
automatically or by a human expert. In the case of the query resulting as 
suspicious, further inspection will be carried out manually by a human expert. 
During learning, memory information regarding the cases and models will be 
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updated. Below, the different stages of the CBR reasoning cycle associated with 
the system are described in more detail. 

Retrieve 
In the Retrieve phase, the real time agent recovers the cases that it will use to 
perform classification. The time needed to recover the different cases to be used is 
clearly defined and temporally bounded. The retrieval time for the cases depends 
on the number of cases in the case base. If the number is known, it is easy to 
predict how much execution time will be used to recover the cases. The asyntotic 
cost is linear (O(n)).  

The retrieve phase is broken down into two phases; case retrieval and model 
retrieval. Case retrieval is performed by using the Query_Category attribute 
which retrieves queries from the case memory (Cr) which were used for a similar 
query in accordance with attributes of the new case cn. Subsequently, the models 
for the multilayer perceptron and/or SVM associated with the recovered cases are 
retrieved. The recovery of these memory models allows the improvement of the 
system’s performance so that the time necessary for the creation of models will be 
considerably reduced, mainly in the case of the ANN training. 

Reuse 
The SQL injection in our proposal can be analyzed by two different techniques. 
Execution time in both cases is known, since previous stored models as used. The 
first is known as the Light technique Support Vector Machine (SVM) and is 
usually a detection algorithm with a low temporal cost, but of low quality as well. 
Using the Heavy technique, Multiplayer Perceptron, the result of the analysis is 
much more exact, but it requires a much higher amount of execution time. The 
inputs of the MLP are: Query_SQL, Affected_table, Affected_field, 
Command_type, Word_GroupBy, Word_Having, Word_OrderBy, Numer_And, 
Numer_Or, Number_literals, Number_LOL, and Length_SQL_String. The 
number of neurons in the hidden layer is 2n+1, where n is the number of neurons 
in the input layer. Finally, there is one neuron in the output layer. The activation 
function selected for the different layers has been the sigmoid. Taking into 
account the activation function fj, the calculation of output values are given by the 
following expression  

))(
1

j

N

i

p

ijij

p

j (t) x(twfy  
   

(2)   

The outputs correspond to xr. As the neurons exiting from the hidden layer of the 
neural network contain sigmoidal neurons with values between [0, 1], the 
incoming variables are redefined so that their range falls between [0.2, 0.8]. This 
transformation is necessary because the network does not deal with values that 
fall outside of this range. The outgoing values are similarly limited to the range of 
[0.2, 0.8] with the value of 0.2 corresponding to a non-attack and the value of 0.8 
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corresponding to an attack. The network training is carried out through the error 
Backpropagation Algorithm [23]. 

The light algorithm SVM represents an extension of nonlinear models [24]. SVM 
also allows the separation of element classes which are not linearly separable. To 
do so, the space of initial coordinates is mapped in a high dimensionality space 
through the use of functions. Due to the fact that the dimensionality of the new 
space can be very high, it is not feasible to calculate hyperplanes that allow the 
production of linear separability. For this reason, a series of non-linear functions 
called kernels is used. 

Let us consider a set of patterns )},(),...,,(),,{( 2211 mm yxyxyxT   where xi is a 

vector of the dimension n. The idea is to convert the elements xi in a space of high 
dimensionality through the application of a function, in such a way that the set of 
original patterns is converted into the following set 

)}),((),...,),((),),({()( 2211 mm yxyxyxT 
 that, depending on the selected  

function )(x , could be linearly separable. To carry out the classification, this 
equation sign is studied [16]: 









 



bxxysignxclass
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i

kiiik

1
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The selected kernel function in this problem was polynomial. The values used for 
the estimation are dominated by decision values and are related to the distance 
from the points to the hyperplane. 

If there is enough time for carried out both techniques, the mixture is performed  
in such a way that the higher value is selected for both methods. This is done in 
order to avoid false negatives. 

Revise and Retain 
The revise phase can be manual or automatic depending on the output values. The 
automatic review is given for non-suspicious cases during the estimation obtained 
for the reuse phase. For cases detected as suspicious, with output values 
determined experimentally in the interval [0.35, 0.6]), a review by a human expert 
is performed. 

The learning phase updates the information of the new classified case and 
reconstructs the classifiers offline to leave the system available for new 
classifications. The ANN classifier is reconstructed only when an erroneous 
classification is produced. In the case of a reference to inspection of suspicious 
queries, information and classifiers are updated when the expert updates the 
information. 
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2. Results and Conclusions 

This article has presented a novel proposal for detecting SQL injections in real 
time. The article proposes a new vision in which each attack mechanism is 
individually analyzed. It also makes it possible to obtain better classification 
results with regard to both the effectiveness of the classification process and the 
response time, since all classification mechanism tasks are temporally bounded. 

In order to validate the initial prototype, we proposed a benchmark case study that 
contains 705 SQL queries (437 legal queries and 268 attacks). The tests were conducted 
with a simple web application with database access, MySQL 5.0. The entries were 
automated by using the SQLMap 0.6.3 tool, with which an initial case base was 
established for training the SQL-TB-CBRClassifier. 

Prior to initiating the tests, the attack classification mechanisms were analyzed for each 

use of a Light or Heavy technique and other classifiers. To analyze the successful 
rates, a test of the classification of queries was conducted, taking into account the 
following classifiers: Bayesian Network, Naive Bayes, AdaBoost M1, Bagging, 
DecisionStump, J48, JRIP, LMT, Logistic,  LogitBoost, MultiBoosting AdaBoost, 
OneR, SMO, light planner, heavy planner. The different classifiers were applied 
to 705 previously classified queries. 

Table 1. Total number of hits for the different classifiers. 

Method  Method  Method  

BayesNet 638 Naive Bayes 666 AdaBoostM1 665 
Bagging 684 DecisionStump 598 J48 689 

JRIP 692 LMT 693 Logistic 688 
LogitBoost 680 MultiBoostAB 666 OneR 622 

SMO 685 light 696 heavi 702 

 

The analysis demonstrated that the use of Heavy techniques provided a better 
classification, but with a greater temporal cost. The average execution time for the 
queries, and the worst time used for the ligth and heavy techniques were respectively 
0.013/0.051 and 0.28/1.07 ms.  

For the second test a set of 50 queries were selected and then classified according to 
different pre-determined deadlines. The number of executions and errors obtained for 
each of the classifiers are shown in Figure 3. The x axis represents the average time 
between queries and the deadline, while the y axis represents the number of queries 
executed. As can be seen, the number of executions for the mixture increased as the 
execution time between queries increased. 
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 Figure 3. Queries made for each combination according to time. 

The proposed SQL-TB-CBR agent is capable of detecting SQL injections with low error 
rates compared with other existing techniques, as shown in table 1. Moreover, it is 
possible to provide a real-time classifier mechanism, with a high level of confidence to 

identify legal queries and attacks. The combination of different Artificial Intelligence 
paradigms allows the development of a hybrid intelligent system with 
characteristics such as the capacity for learning and reasoning, flexibility and 
robustness which make the detection of SQL injection attacks possible 
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Abstract 

Extensive research has been performed to solve the advection 
equation and different numerical methods have been proposed. 
Most part of these methods including semi-lagrangian methods 
are not conservative. In this paper we present the 
implementation in the European scale Eulerian chemistry 
transport model CHIMERE of an exactly conservative method 
for the advection equation. The results of the method are 
compared with a set of observation sites in the area of 
Madrid(Spain).  
 
 
Key words: advection equation, conservative scheme, rational 
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1.       Introduction 

Accurate numerical simulation of tropospheric air pollution phenomena has 
become a major challenge in atmospheric science. The advection equation is 
important for the study of the dynamics of  flows, as well for the development of 
new numerical schemes that are applied to more complex models. Semi-
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Lagrangian schemes have gathered a wide acceptance for solving advection 
dominated problems, especially in the atmospheric sciences [1]. Most part of 
these methods are not conservative. Apart from the corrective methods different 
approaches have been developed to generate an inherently conservative solution 
of advection equation. The conservative methods are used in meteorological 
simulations as very accurate methods for explicitly computing the transport of 
rain water.  
Our main goal of this research is to improve the transport module in the European 
scale Eulerian chemistry transport model CHIMERE by implementing a 
conservative rational scheme. The results of the method are compared with a set 
of observation sites in the area of Madrid (Spain). 
Section 2 introduces the conservative methods. Section 3 gives a description of 
the rational interpolation and Section 4 introduces the conservative formulation. 
In section 5 we introduce the European-scale chemistry-transport model 
(CHIMERE). The comparison of observed and modeled data is given in Section 
6, and finally some conclusions are given in Section 7.   

2.       Conservative methods  

One of the main drawbacks of the semi-Lagrangian method is the lack of 
conservation properties in its original formulation. Therefore, several authors 
presented stable semi-Lagrangian schemes that were modified such that 
conservations properties hold [2, 3] 
Some authors have recently succeeded in developing new conservative semi-
Lagrangian schemes. The schemes conserve the mass using an additional 
constraint of the value integrated over neighbouring two grid points, this value is 
introduced as a new model variable that is updated for the advection equation by a 
flux-form formulation. Then the mass can be exactly conserved. One of these 
conservative methods, developed by Xiao and Pen [4], is based in rational 
interpolation. In this scheme a constraint of the conservation relation for cell-
integrated average is imposed at the stage to determine the piecewise rational 
interpolation function. The method conserves exactly the cell-integrated average 
of the transported field. In this paper we have implemented this conservative 
method in the European-scale chemistry transport model (CHIMERE). We have 
adopted the dimensional splitting to extend the scheme to multi-dimensions.  
We describe the numerical formulation for the scalar conservative advection 
transport equation as follows: 
 

0
f f

u
t x

                                                             (1) 

 
where f(x,t)  is the advected quantity, and u is the advecting current. This is a 
linear, first-order, partial differential equation with a constant coefficient namely 

@CMMSE                                                               Page   1095  of 1328                                               ISBN 13: 978-84-613-5510-5



IMPLEMENTATION IN CHIMERE OF A CONSERVATIVE … 
 

u (velocity). When the velocity is constant, the solution of equation (1) gives a 
simple translational motion of field f with velocity u. 

The value of  f  in (n+1) step is readily obtained by shifting the profile by tui , so 

that: 

 1 1 1( , ) ( , ) ( )n

i i i if x t t f x u x t F x u x               (2) 

 
where F is an interpolation function which depends on the conservative algorithm 
we are using.  

3.       Rational conservative interpolation  

 
Normally the interpolation function is based on polynomials. The main 
disadvantage of the polynomial interpolation is that can be unstable on the most 
common grid – equidistant grid. The rational interpolation consists of the 
representation of a given function as the quotient of two polynomials. The rational 
interpolation is an alternative for the polynomial interpolation. Its advantages are 
the high accuracy and absence of the problems which are typical for polynomial 
interpolation, such as the typical oscillations. However new difficulties can appear 
in the rational interpolation due to the existence of the poles.  
The conservative interpolation is based on the concept of the conservation of the 
integral of the function, using an additional constraint of the value integrated over 
neighbouring two grid points. Both properties can be used at the same time in the 
piecewise rational conservative interpolation. 
The rational interpolation function F, is expressed in a generic mesh element with 

boundaries 
1

2
i

x and  
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x  and considering the velocity u<0  as  
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where a, b, and β are the coefficients of the interpolation function  which are 
obtained by using the constraint conditions, where the constraint conditions are 

given in 
1 1

2 2

[ , ]
i i

x x  by 
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Then by solving the three equations we obtain the coefficients of the rational 
interpolation. 
 
 
 
 

(5) 
 
 
 
 
 
 
This last expression is corrected according with Xiao and Peng[4], to avoid 
division by zero as follows 
 
 

(6) 
 
 
 

4.       Conservative Formulation. 

 
For the pollution problem, it is appropiate to use finite volume method. We divide 

the spatial domain in cells called finite or control volumes 
iC , this corresponds in 

one dimension to a partition of a bounded domain by intervals, see Fig. 1.  

 

 
Fig. 1 Control volumes 

 
On the other hand one built discrete equations from the integral form of the 
advection equation. The integral form of the conservation law is given by 
 
 

(7) 
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being                                           ,                                      the fluxes in the cell. 
 
By integrating in the time  

(1/ 2) (1/ 2)( , ) ( , ) ( ( , ) ( ( , )

i i

t t t t

i i
t t

C C

f x t t dx f x t dx g f x t dt g f x t dt  

 
(8) 

(1/ 2) (1/ 2)

1 1 1
( , ) ( , ) ( ( ( , ) ( ( , ) )

i i

t t t t

i i
t t

C C

f x t t dx f x t dx g f x t dt g f x t dt
x x x

 
we can put this expression as 

 
  (9) 

 
where 

2
11 1

1 1

12 2

 = Flux across boundary  during 
1

n ni i

i i
i

a b
g x x t t  

 
Finally we shall need to interpolate in the next time step to determine interface 
values as a function of the cell averages.  
 

   (10) 
 

For the rational function we calculate the average slope in a cell if  as 

 
 (11) 

 
 

being 
1 1( ) / 2i i if  

 
By using time-splitting the method can be easily extended to solve advection 
equation in two and three dimensions. For example in two dimensions the time 
splitting is equivalent to do the transport of particles to the direction (Ox) and then 
according to the other direction (Oy). 
 

5.       Model description  
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Chimère is based on the mass continuity equation for the concentrations of 
chemical species in every box of a given grid: 

f
uf k f P L

t
                                                                        (12) 

In this equation, characteristic for the Eulerian approach, f is a vector containing 
the concentrations of all model species for every grid box, u is the three 
dimensional wind vector, k the tensor of eddy diffusivity and P and L represent 
production and loss terms due to chemical reactions, emissions and deposition.  
The numerical method for the temporal solution of the stiff system of partial 
differential equations (12) is adapted from the second-order TWO-STEP 
algorithm originally proposed by [5] for gas phase chemistry only. It is based on 
the application of a Gauss-Seidel iteration scheme to the 2-step implicit backward 
differentiation (BDF2) formula:  

1 1 14 1 2

3 3 3

n n n nf f f tR f                                                                     (13) 

With f 
n
 being the vector of chemical concentrations at time t

n 
, At the time step 

leading from time t
n
 to t

n+1
 and R(f) = P(f) - L(f)  the temporal evolution of the 

concentrations due to chemical production and emissions (P) and chemical loss 
and deposition (L). Note that L is a diagonal matrix here. After rearranging and 
introducing the production and loss terms this equation reads 

1

1 1 1 12 4 1 2

3 3 3 3

n n n n nf I tL f f f tP f                                  (14) 

The implicit nonlinear system obtained in this scheme can be solved pertinently 
with a Gauss-Seidel method [5]. 
We can find a more complete description and evaluation of the Chimère model 
designed for seasonal simulations and real time forecasts without the use of super-
computers in [6], where details about the implementation and evaluations of the 
modeling are given. 

6.       Numerical results  

 
Simulations of photochemical compounds were carried out using the regional 
V200603par-rc1 version of the CHIMERE model for August 2003. This version 
calculates the concentration of 44 gaseous species and both inorganic and organic 
aerosols of primary and secondary origin, including primary particulate matter, 
mineral dust, sulfate, nitrate, ammonium, secondary organic species and water. 
Numerical resolution scheme was analyzed for a domain centred on Madrid 
(MAD in Figure 2), with a similar set up to that used in [7]. This area is one of the 
most populated areas in Spain, with more than 6 millions of inhabitants. High 
ozone level episodes are quite frequent over this area. This domain at a horizontal 
resolution of 0.07 degrees and 14 vertical sigma-pressure levels extending up to 
500 hPa, was nested to a coarser one, covering the Iberian Peninsula (SP in Figure 
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1) at a 0.2 degree resolution. This second domain was also nested to a European 
scale domain (EUR1 in Figure 2), ranging from 10.5W to 22.5E and from 35N to 
57.5 N and a 0.5 degree horizontal resolution. A one-way nesting procedure was 
used; coarse-grid simulations forced the fine-grid ones at the boundaries without 
feedback.  

                                    Fig. 2. Simulation domains 
 
Boundary conditions for the coarsest domain were provided from monthly 

2003 climatology from LMDz-INCA model [8] for gases concentrations and from 
monthly 2004 GOCART model [9] for particulate species, as described in [10]. 

Emissions for all the simulations were derived from the annual totals of 
the EMEP database for 2004 [11]. Original EMEP emissions were disaggregated 
taking into account land use information (Global Land Cover Facility, GLCF, 
http://change.gsfc.nasa.gov/create.html) in order to get higher resolution emission 
data. For each SNAP activity sector, the total NMVOC emission was split into 
emissions of 227 real individual NMVOC according to the AEAT speciation [12]. 
These species were then aggregated into the CHIMERE model ones.  

The MM5 model was used to obtain the meteorological input fields. The 
simulations were carried out also for three domains, with respective resolutions of 
36 Km, 19 Km and 7 km. The two coarsest MM5 simulations were forced by the 
National Centres for Environmental Prediction model (GFS) analyses. The finest 
domain was nested to a 21 km resolution MM5 simulation. 
The quality of model predictions obtained with the implementation of the rational 
conservative formulation (RCF) was analyzed by comparing it to observations at 
the monitoring sites.  Figure 3 shows the location of the NO2, SO2 and O3 
monitoring stations located inside the Madrid domain. Figure 4 gives the location 
of a common monitoring station 280974 and figures 5, 6 and 7 present the 
numerical results of ozone, NO2, and SO2 in this monitoring station. Also the 
corresponding observed concentrations with RCF numerical model between 1

st 

august 2003 and 5
th

 august 2003 for this common monitoring station are presented 
in Figure 5, 6 and 7. 
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                                            Fig.3. Distribution map of  NO2,  SO2  and  O3 
                                            monitoring stations in the area of  Madrid  (Spain). 
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Fig.4: Location of the monitoring station   
280974  

Fig.5:  Observed and simulated concentration of NO2  
at station  2807924 

              

Fig.6:  Observed and simulated concentration                                                                  
of SO2 at station 2807924 

Fig.7:  Observed and simulated concentration                                                                  
of O3 at station 2807924 
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In order to evaluate the performance of the CHIMERE model with RCF some 
statistics were calculated. Table 1 presents the metrics used and their definition. 
Parameters such as mean bias (BMB), mean normalized bias (BMNB), mean 
normalized absolute error (EMNAE), root mean square error (ERMSE) and root mean 
normalized square error (ERMNSE) were estimated for O3, NO2 and SO2. Regarding 
ozone, only statistics for moderate-to-high ozone concentration cases (more 
important for human health protection) were considered by selecting predicted-
observed value pairs when hourly observations were equal to or greater than the 
cutoff of 80 µgm

-3
. For NO2 and SO2 a cutoff value of 5µgm

-3 
was used. 39 air 

quality sites were taken into account to estimate ozone statistics. For NO2 and SO2 
evaluation information from 10 stations was considered. 

       

Table 1.  Definition of the metrics used in the evaluation of the CHIMERE model 
performance 

Mean bias OMiOiM
N

MB
B

)(1
 

Mean normalized bias 111

iO
iM

NiO
iOiM

NMNBB  

Mean normalized absolute error 
iO

iOiM

NMNAEE 1  

Root mean square error 
2
1

21 )( iiNRMSE OME  

Root mean normalized square 
error 

2
1

21 )(
iO

iOiM

NRMNSEE  

 
N: pairs of modeled and observed concentrations Mi and Oi. The index i is over time series and 

over all the locations in the domain.   
 

 

Statistical results for ozone, nitrogen dioxide and sulfur dioxide are presented in 
Table 2.  
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Table 2.  Statistics for ozone, nitrogene dioxide and sulfur dioxide evaluation for august 2003.  
Based on hourly values higher than 80 µgm

-3
, 5 µgm

-3
 and 5 µgm

-3
 respectively. 

Statistical measure     O3   NO2   SO2 

Mean bias (µg m
-3

) -11.2043 -2.6061 -6.7785 

Mean normalized bias  -0.0839 -0.3402 -0.6879 

Mean normalized absolute error  0.1844 0.6285 0.7054 

Root mean square error (µg m
-3

) 25.486 5.8845 8.3290 

Root mean normalized square error  0.2277 0.7728 0.7322 

The plots showing the mean normalized absolute error for the individual stations 
and for the three contaminants are presented in Figures 8, 9 and 10. 

 

 

  
   Fig. 8. NO2 Mean normalized absolute error    Fig. 9.  SO2 Mean normalized absolute error 

 
                                                Fig. 10. O3 Mean normalized absolute error 
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7.       Conclusions  

 
In this paper we have presented the implementation in the European scale 
Eulerian chemistry transport model CHIMERE of an exactly conservative method 
for the advection equation. The advantage of these methods is that the cell-
integrated average is predicted via a flux formulation, thus the mass is exactly 
conserved. The results of the method for ozone, nitrogen dioxide and sulfur 
dioxide statistics have been compared with a set of observation sites in the area of 
Madrid (Spain). The mean normalized bias and the mean normalized absolute 
error present values, that are inside the range to consider an accurate model 
performance.  
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Abstract 

A comprehensive study is presented regarding the stability of 
the forward explicit integration technique with generalized finite 
difference spatial discretizations, free of numerical diffusion, 
applied to the advection-diffusion equation. The modified 
equivalent partial differential equation approach is used to 
demonstrate that the approximation is free of numerical 
diffusion. Two-dimensional results are obtained using the von 
Neumann method of stability analysis. Numerical results are 
presented showing the accuracy obtained. 
 
Key words: advection-diffusion, generalized finite difference 
MSC2000: AMS Codes (optional) 
 

1. Introduction 

 
With the development of modern industry, various pollulants discharge in the air 
rivers, lakes and oceans.  The changes of pollulants in the air or in the water 
consist of the physical, chemical and biochemical process  and so on. The 
physical changes of pollution involve two main important processes, that is, 
advection and diffusion. The mathematical model describing these two processes 
is the well known advection-diffusion equation. In two dimensions this equation 
is as follows 
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(1) 
 
 
 
 
 
being             and         two known functions, a, b are constants ,  is the 

boundary of ,  ( , , )U x y t is a transported (advected and diffused) scalar variable,     

0 ,  0x y  are constant speeds of advection and >0 , 0x y  are constant 

diffusivities in the x-, and y- direction respectively.  
Various numerical techniques can be used to solve this partial differential 
equation with the associated initial and boundary conditions [1]. An active field of 
research is the use of meshless methods. An evolution of the method of finite 
differences has been the development of generalized finite difference method 
(GFDM) that can be applied as a meshless or meshfreee method to irregular grids 
or clouds of points. Benito, Ureña and Gavete have made interesting contributions 
to the development of this method [2-7]. This paper shows the application of the 
generalized finite difference method to solve the advection-diffusion equation by 
an explicit method. 
The paper is structured in six sections. In section 2, we describe briefly the 
GFDM. In section 3 we describe the explicit scheme used to approximate the 
advection-diffusion equation. In section 4 we study the truncation error and the 
stability. In Section 5 an error analysis is done comparing with a test case. Section 
6 contains concluding remarks. 
 
 

2. The Generalized finite difference method 

 
In the GFDM the intention is to obtain explicit linear expressions for the 
approximation of partial derivatives in the points of a domain. First of all, an 

irregular grid or cloud of points is generated in the domain . On defining 
the central node with a set of nodes surrounding that node, the star of nodes then 
refers to a group of established nodes in relation to a central node. Each node in 
the domain has an associated star assigned to it. 
We define the following function based in the approximation of second order in 
Taylor series 
 

2 2
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(2) 

where 
0u  is the approximated value of the function at the central node of the star, 

0 0( , )x y , ju  are the function values of the rest of the nodes, 0j jh x x , 

0j jk y y  and   ( , )j jw h k  is the  denominated weight function. 

If the function (2) is minimized with respect to the partial derivatives, the 
following linear equation system is obtained  
  
 

(3) 
 
 
 
 
 
on solving the system (3) the explicit finite difference formulae are obtained. 
 
 

(4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3. The advection-diffusion GFDM explicit scheme 

 
On including the explicit expressions for the values of partial derivatives (5) in 
the differential equation of problem, we obtain the star equation (explicit 
difference scheme)(6): 
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1

0 0 0

0 0
0 0 0 0

1 1
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0 0
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                                   (5) 
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                        (6)                 

 
This scheme uses the forward-difference form for the time derivative and 
generalized finite difference forms for all spatial derivatives.    
By using the modified equivalent partial differential equation approach of 
Warming and Hyett [8], we obtain the following expansion equation 
 
 
 
 
 
 

(7) 
 
 
 
 
 
and the modified equation 
 
 

(8) 
 
 
This method incorporates numerical diffusion. 
A new GFD scheme free of numerical diffusion can be created as follows 
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(9) 
 
 
 
 
 
Then by using the modified equivalent partial differential equation approach of 
Warming and Hyett [8] we obtain the following expansion equation 
 
 
 
 

(10) 
 
 
 
 
 
and the modified equation 
 
 
 (11) 
 
 
The modified equivalent partial differential equation of this method shows that 
this GFD formula (9) is free of numerical diffusion. 
 

4. Convergence 

 
According to Lax’s equivalence theorem, if the consistency condition is satisfied, 
stability is the necessary and sufficient condition for convergence. In this section 
we study firstly the truncation error of the advection-diffusion equation, and 
secondly consistency and stability. 
We split the truncation error (TTE) in time derivative error (TEt) and space 

derivatives error (TEx). As the first order time derivative is given by 
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then the truncation time error is given by 
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In order to obtain the truncation error for space GFD derivatives, Taylor’s series 
expansion including higher order derivatives is used and then higher order 

function *( )B u  is obtained 
2

2)

0 0 0 0
0

3) 4)
1

0 0 0 0

1

2
*( ) ( , )

1 1
...

6 24

i j j j j
N

j j

j

j j j j

U U U U
u u h k h k

x y x y
B u w h k

U U U U
h k h k

x y x y

 

 

If *( )B u is minimized with respect to the partial derivatives up to second order, 

the following linear equation system is defined 
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Then by solving (14), we obtain 
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where , ( , )i j j jh k

 

 are second-order rational functions and  ,j jh k  is a series 

of third- and higher-order functions.

 The total truncation error for advection-diffusion equation is 
 

                                       TTE=TEt+TE(x,y)                                                        (16)        

 
By considering bounded derivatives in TTE, we have consistency 
 
                                                                                                                           (17) 
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“Boundary conditions are neglected by the von Neumann method which applies 
in theory only to pure initial value problems with periodic initial data. It does 
however provide necessary conditions for stability of constant coefficient 
problems regardless of the type of boundary condition” [9]. 
From the previously obtained formula (9) 
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Fort the stability analysis a harmonic decomposition is made of the approximate 
solution at grid points at a given time level n 
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where 
0 0( , )x y  are the coordinates in the central node of the star, and ( , )j jh k  are 

the coordinates of the other nodes of the star with respect to the central node. 
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Taking into account that the stability condition is 1, then 
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b)  1 
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Both formulae (19) and (20) give us the conditions for the stability. 
 

5. Numerical results 

 
In order to illustrate the application of the numerical explicit GFD scheme 
developed previously, a problem for which an exact solution is available is 
required so that approximate results obtained can be compared with an exact 
solution. The problem to be solved is 
 
 

(21) 
 
 
 
The exact solution is 
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(22) 
 
 
The global error is evaluated in the last step considered, using the following 
formula 
 
 

(23) 
 
 
where sol(i) is the GFDM solution at the node i, exac(i) is the exact value of 

solution at the node (i), 
maxexac  is the maximum value of the exact solution in 

the cloud of nodes considered and M is the total number of nodes of the domain. 
In this problem we consider different irregular clouds of points as given in Fig. 1.  
   

 
 
Fig. 1. Different irregular clouds of points. 
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The influence on global error of using different number of nodes is given in Fig. 
2. 
 

 
 
Fig. 2 Global error versus the number of nodes.   
 
Also we consider for the irregular cloud of 1248 nodes the influence on global 
error versus different values of time increment in Fig.3.  
 
 

 
Fig. 3  Global error versus the time increment.  
 
As it is shown in Fig.2  and 3, the global error decreases by increasing the number 
of nodes or decreasing the time increment. 

6. Conclusions 

 
An explicit solution of advection-diffusion equation has been presented for the 
case of using the GFDM over irregular grids. We have defined the truncation 
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error of the scheme in the case of irregular grids of nodes. Then, we have 
established the consistency and stability (following the von Neumann stability 
analysis) criteria for this scheme. An academic test has been presented to 
illustrate the application of this method. 
The fully explicit generalized finite difference schemes are simple to 
implement and economical to use. They are very efficient and very quick. 
They are conditionally stable. 
The modified equivalent partial differential equation approach of Warming 
and Hyett[8] has been employed which permits to demonstrate that the GFD 
scheme is free of numerical diffusion.  

Acknowledgements 

The authors acknowledge the support fron Ministerio de Ciencia e Innovación 
of Spain, research project CGL2008-01757/CLI. 

References 

[1] M. DEHGHAN, Numerical solution of the three-dimensional advection-
diffusion equation, Appl. Math. Comput. 150 (2004) 5-19. 

[2] J.J. BENITO, F. UREÑA, L. GAVETE, Influence of several factors in the 
generalized finite difference method,  Applied Mathematical Modelling 25 
(2001) 1039-1053. 

[3] J.J. BENITO, F. UREÑA,  L. GAVETE,  R. ALVAREZ, An h-adaptive method 
in the generalized finite difference method. Computer methods in Applied 
Mechanics and Engineering 192,  (2003) 735-759. 

[4] J.J. BENITO, F. UREÑA, L. GAVETE, Solving parabolic and hyperbolic 
equations by Generalized Finite Difference Method. Journal of 
Computational and Applied Mathematics 209, Issue 2, (2007) 208-233. 

[5] J.J. BENITO, F. UREÑA, L. GAVETE, A posteriori error estimator and 
indicator in Generalized Finite Differences. Application to improve the 
approximated solution of elliptic pdes. International Journal of Computer 
Mathematics 85 (2008) 359-370. 

[6] J.J. BENITO, F. UREÑA , L. GAVETE, Application of the Generalized Finite 
Difference Method to improve the approximated solution of elliptic pdes.  
Computer Modelling in Engineering & Sciences 38 (2009) 39-58. 

[7] J.J. BENITO, F. UREÑA, L. GAVETE, Leading-edge Applied Mathematical 
Modelling Research (chapter 7). Nova Science Publishers, New York, 
2008. 

[8] R.F.WARMING AND B.J.HYETT, The Modified Equation Approach to the 
Stability and Accuracy Analysis of Finite-Difference Methods, Journal on 
Computational Physics 14 (1974) 159-179. 

[9] A.R. MITCHELL, D.F. GRIFFITHS, The Finite Difference Method in Partial 
Differential Equations, John Wiley & Sons, New York, 1980. 

 

@CMMSE                                                               Page   1117  of 1328                                               ISBN 13: 978-84-613-5510-5



Proceedings of the 10th International Conference 
on Computational and Mathematical Methods 
in Science and Engineering, CMMSE2010 
Almeria, Spain, 27-30 June 2010  
 

Wireless teleoperation system for vehicles based on 
automaton and secure communications 

 

J.A. Gázquez1, N. Novas1 and J.A. López-Ramos2 

1 Department of Architecture of Computers and Electronics, 
University of Almeria, 04120 Almería, Spain 

2 Department of Algebra and Analysis, University of Almería, 04120 
Almería, Spain 

 
emails: jgazquez@ual.es, nnovas@ual.es, jlopez@ual.es 

 
Abstract 

We present a teleoperation system via radio for vehicles of combustio n engine or 
electric, designed for usings in which human presence is not adequate, such as 
access to dangerous sites after catastrophes, spraying tasks in farming 
environments, road rollers, etc. The system has been developed by means of a 
radio modem of specific purpose that interchanges digital information of 
commands from the console to the vehicle and states from the vehicle to the 
console.  A security system prevents against non-desired functioning in case of 
loss of communication or outsider intromissions. This system has been 
implemented and successfully  tested in a prototype of vehicle used for spraying 
tasks. 

 
Key words: Telecontrol, finite automaton, secure 
communications 
 

1.  Introduction 
 
There exist several control systems of vehicles for several usings. On one hand we 
have autonomous functioning vehicles such as those described in [1] and [2]. This 
type of vehicles does not need an operator and have autonomy for the followed 
route. They are based on a navigation schedule. Therefore  autonomous systems 
present as main problems the necessity of information a priori about the work 
environment and possible changes in such environment, taking decisions in non-
expected situations and a big complexity of the sensorial system that allows the 
autonomous functioning, including a local computer with high capability of 
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calculus and information storing, usually by means of a hard disk. By the 
precedent, autonomous systems need a complex and delicate control system.    
 
On the other hand, well-known classical telecontrolled systems require a 
permanent attention and direct observation of the behaviour of the vehicle by the 
operator. The solution of events such as loss of communication may cause serious 
consequences in these systems or in the environment. The system that we 
introduce and have implemented is based on that the operation console interprets 
what is the desired action to be developed and , by means of a dialogue of 
operative commands and state responses, the vehicle carries out the desired tasks, 
solving, automatically, possible problems of the classical case such as loss of 
communication and decreases the bandwidth of the communication channel. 
Moreover, our system allows taking pre-programmed decisions in case of non-
expected events, such as automatic detention in case of loss of communication or 
proximity to an obstacle in its trajectory. This system is adequate for controlling 
vehicles that can be directly watched by the operator or monitored by video 
cameras in the vehicle. Security of communications is also important depending 
on the purposes of the vehicle. We have used a novel key selection method for 
real time communications based on a Linear Feedback Shift Register which 
allows selecting keys from a list in a pseudorandom manner.    
 
1.1 Technology 
 
The digital communication system has been implemented by means of 
bidirectional narrow band radio -modems, in the band of 400-470 MHz. The 
modulation is 4L-DFSK with a speed of 9600 bits/s, which is enough since the 
control system in the vehicle is continuously attended by a local control and the 
communication system only transfers operative commands from the operation 
console to the local control. The vehicle has incorporated as local control a system 
based on a microcontroller of the family MCS-51 with the embedded program in 
flash memory. The system has digital outputs by means of drivers of solid state, 
relay outputs and analogical power outputs with PWM technology to act on the 
elements of control of the vehicle. 
The operation console has a joystick in order to input the information about 
motion, stop or motion directions by the operator. It also has lightning indicators 
that inform the operator about the state of the vehicle in what concerns to actions 
developed by the vehicle in real time. The console system has been implemented 
by means of an embedded microcontroller, taking into account a low consume in 
order to be supplied with batteries   
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2. System Design  
 
Our system, Figure 1, is formed by two interconnected subsystems via the 
wireless communication device (radiomodem). The first one is constituted by the 
operation console and the other one is located in the vehicle and corresponds to 
the control system of drivers of the engines, direction control and additional 
functionalities, such as a spraying system control, cameras, etc. 
 
 

 

Fig. 1 Block diagram of the system 
 

 
2.1 Console   
 
The console is formed by a couple of joysticks, a speed selector, interrupters for 
activation of mechanisms in the vehicle such as spraying functions in the case of a 
vehicle with farming purposes,  and lightning indicators of  the state of the 
vehicle, that inform about the state of communications and actions that are being 
carried out by the vehicle. The system in charge of the reading of the console 
controls is based on a microcontroller of the family MS51 whose functioning is as 
follows. A finite automaton, Figure 2 implemented in the microcontroller makes 
the functions of reading and encodes as input all possible combinations of the 
console controls, that jointly with the information of the previous state, allow 
interpreting the action that the operator wants to carry out. This action is encoded 
as the output of the following state. The outputs of the states are transmitted to the 
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control system of the vehicle by means of the communication system 
(narrowband radiomodem) as packets with a ratio of two packets per second. 
After emitting each packet, the console receives a packet coming from the vehicle 
with information about its state. This state is shown on the lighting indicators. 
This ratio is adequate for tracked vehicles since they manoeuvre slowly. For other 
kind of vehicles with more speed and that require a faster response time this 
system allows to increase what needed the packets ratio for a right functioning. 
 
The codification system that is described corresponds to a model implemented on 
a tracked vehicle with spraying purposes. This vehicle moves at slow or 
moderated speeds and it was checked that 4 speeds (vslow, slow, middle, high) 
and the stop state are enough for its manoeuvre. However, from this model we can 
extrapolate applications to other types of vehicles considering minor 
modifications.  
The codification of the states constitutes a finite automaton, whose entries 
correspond with the steering levers, the speed selector and the interrupter of the 
trigger sprayer pump. 
 
The entry alphabet S possesses three subsets: the first one, with respect to the 
direction  Sd={d11, d10, d01, d00, d0-1, d-10, d-1-1, d1-1, d-11} in function of 
the state of action of the drive state of steering levers. In this way the entry d11 
indicates the two levers forward, d00 stop,  d0-1 left lever stop y right lever 
backward, etc; the second one with respect to speed Ss={s00, s01, s10, s11}   
s00 -> vslow,  s01->slow, s->10 medium and s11->high and finally with respect 
to the actuator Sa={a0, a1} ao -> no action, a1 -> action. 
 
The subset of direction entries produces a subset of states which are dependent on 
the direction according with the following table: 
 

dL dR state Effect 
 1    1 S1 Straight 
 1    0 S2 front-right 
 0    1 S3 front-left 
 0    0 S0 Stop 
 0   -1 S6 reverse- left 
-1    0 S5 reverse-right 
-1   -1   S4 reverse-straight 
 1   -1 S7 turn on clockwise 

direction  
-1    1 S8 turn on anti-clockwise 

direction 
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Not all possible transitions between states are possible for a right functioning. The 
next diagram defines an automaton with the set of states reduced direction of the 
movement.   
 

 
Fig. 2 Automaton representing states and transitions 

 
 
We have taken into account that we cannot pass from entries 1 to -1 and viceversa 
without passing through entry 0. 
 
For each of the states of this subset we have as a new subset the speed and the 
actuator system, which produces a total number of 72 possible states, although not 
all of them will be considered in practice because of the following exceptions:  
- rotational states on its axis  S8 and S7 only admit the lowest speed, ignoring 
other speed entries. 
- in the states which imply a turn  S2, S3, S5 and  S6, the band corresponding to 
stop, what it is carried out in practice is to decrease one degree in the speed and it 
will only be stop when the speed selector is in vslow.  
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2.2 Vehicle control 
 
The controller of the actuators of the engine of the vehicle has been implemented 
in a microcontroller of the same type of the console by means of another 
automaton.  This automaton receives as inputs the packets that are sent by the 
console and jointly the sensorial information about direction, speed and proximity 
to obstacles of the vehicle, determine its next state that contains the outputs 
towards the actuators and the state information to be sent back to the console.  
Proximity detectors in the vehicle generate the entries Sp = {p0, p1}, where p0 
indicates free way and  p1 that an obstacle has been detected and detention is 
needed. 
Communications state generates the entries Sf = {f0, f1}, where f0 indicates that 
the last two packets have been recieved with a right checksum and f1 indicates 
that two consecutive errors of checksum in the packets o that they have not been 
received (see Figure 5). In case that the vehicle does not receive two packets of 
orders consecutively (fail transmission), the automaton goes to an inactivity state. 
Figure 3 represents transitions between states of speed that are mapped on the 
states of direction Sj, depending on the codified selector on the console Ss, the 
proximity detectors Sp and the state of communications Sf.  
 
 

 
Fig. 3 Transition of states in the vehicle corresponding to speed 

 
Each state Smn is duplicated in function of the estate of the actuator a0 to a1. The 
diagram of states of the vehicle does not shows differences of speed in each 
rolling band that is inherent to changes of direction indicated in the console 
automaton. We are assuming that such information is codified in each state Sj 
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3.   Communication System 
 
We have used a method that allows encoding the actions that at any time the 
vehicle can carry out using four ASCII characters. Figure 4 shows an example of 
the encoding used for some states in the case of tracking vehicles with a spraying 
system. Other vehicles with a more complex functionality can also use this system 
by adding some characters to the states encoding. This system of states encoding 
allows notorious saving in band width with respect to classical telecontrol systems 
and so a bit-rate of 4800 b/s is enough to the bidirectional communication (orders 
sending/receiving of states). Narrow band communication systems by radio are 
the most adequate for this type of telecontrol operations by the high ratio 
distance/power with low consumption, their stability and reliability and a lot of 
operation channels to be used.   We have used a radiomodem with bit-rate 9600 
b/s and F.E.C. ¾  in the UHF common used band 433 MHz.. The power of 250 
mW are enough to a long distance control of the vehicle. Other communication 
systems such as Bluetooth or Zigbee can be used to implement this system for 
telecontrol in short distance, substituting the narrowband radiomodem, but with 
possible collisions with other users given the more extended use of these types of 
communications. Moreover this system increases the reliability of the control of 
vehicle. In case of a packet is mismatched in the communication process and 
F.E.C. does not detect and correct the error, this does not produces any action 
unless it coincides with some of the expected packets related with the state of the 
automaton at that time.   
 

 
Fig.4 Example of state encoding 

 
One example of chronogram of the interchange of information between the 
vehicle and the console of control is given in Figure 5. It can be observed the 
messages transmitted by the console and the corresponding answers by the 
vehicle. In this case after a series of commands that order the running of the 
vehicle, all of them answered by the vehicle with its state, two consecutive fails 
occur due to interference or any other cause, recall that all the radio 
communication systems are susceptible of loss of information. In this case the 
vehicle goes to a stop state, restarting the running after receiving another valid 
command from the console.  
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Fig. 5 sequence of communications packets 

 

3.1  Security of communications 
 
The fact that communication between the vehicle and the console takes place in 
real time is of a great importance. There exists a class of algorithms, known as 
stream cipher algorithms such that all of them treat the information bit-to-bit, 
usually binary digits and in real time and are very appropriate when buffering is 
limited some telecommunications applications as could be a radio modem. They 
are based in Linear Feedback Shift Registers (LFSR), which give an encryption 
sequence and are very suitable for hardware implementation (cf. [4] for details). 
We use good properties of LFSRs to give an efficient selection key method which 
allows generating sequences of key identifiers. Source an destination share a list 
of keys and an easy algorithm to generate sequences of identifiers and therefore, 
these are not sent, which solves questions relative to possible compromised pairs 
of key-identifier and only some additional information bits about the initial state 
of the system that generates the sequence of identifiers is required to 
encrypt/decrypt a big number of blocks of information.  
 
3.1.1  The key selection method 
 
In this case, the source A (console or vehicle) and the destination B (console or 
vehicle) use a b lock cipher and  share a list of l keys and an algorithm to generate 
a sequence of positions (identifiers) of the list of keys. The algorithm that we use 
consist in a binary LFSR (stages store one bit) with k stages, such that 2k ≥ l and 
a Boolean function whose input is the state vector of the LFSR at some moment 
and its output is a number in the range 1- l. 
Now if A wants to send a message to B then A proceeds as follows: 
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1. A divides the plain text into packets Pj, j=1,…,n of blocks Bj,i, i=1,…,r 
of appropriate length . 

2. For j=1,…,n, A generates, by means of a Real Time Clock, a random 
number of k digits, Sj, which is taken as initial state of the LFSR. 

3. Using the LFSR and the Boolean function, A generates a sequence of 
numbers j,i for i=1,…,r in the range 1- l and consider the key whose position in the 
list is j,i ,kj,i. 

4. A encrypts every block Bj,i of the packet Pj, j=1,…,n, using the key kj,i, 
obtaining packets of blocks Cj, for j=1,…,n. 

5. A sends Sj and Cj for j=1,…,n to B. 
When B receives Sj and Cj, he uses Sj to generate the sequence of keys necessary 
to decipher the message. 
In case we do not want to send Sj as plain text, we can use some of the characters 
of the first encrypted block of the packet Cj  to get a new seed for the LFSR and 
so, generate a pseudorandom number which gives an identifier of a new key k to 
encrypt Sj. In that case, when B receives the message proceeds as follows: 

1. B takes selected characters of Bj,1 to get a seed for the LFSR and gets 
the identifier of the key k. 

2. B uses k to get Sj. 
3. B uses Sj to get the sequence of keys kj,i and decrypts packet 

Cjj=1,…,n 

 
Fig 6. Key selection method 

 
Figure 6 shows a diagram composed by an LFSR whose state vector is taken as 
input of a logic circuit given by a Boolean function, which produces keys kj,i. 
This method has been also used in [2] and [3] for telecontrol and telemetry 
applications. 
 
 
4.  Conclusions  
 
We have introduced a novel teleoperation system for vehicles based on a finite 
automaton and with a secure communication system which allows to handling 
vehicles for different purposes in an easy and safe way. This system was 
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implemented on a platform for greenhouses spraying [5]. The functioning given 
by the designed automaton shows an easily operable vehicle and with an 
acceptable level of security, in what concerns to possible loss of control and with 
a high security level of communication in what concerns to possible interferences 
or outsiders as evidenced after a long testing period [6]. 
 

 
Fig 7.  Vehicle and console 
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Background and Objectives: Multicellularity, and biological complexity in 
general, are ultimately the result of natural selection’s paradoxical tendency to 
foster cooperation through competition. Cooperating communities ranging from 
complex societies to somatic tissue are constantly under attack, however, by non-
cooperating mutants or transformants, called “cheaters”. 
 
Methods: We employ simulations and analytical game-theoretic models of 
interactions on networks with an array of different network topologies. 
 
Results: Structure in these communities promotes the formation of cooperating 
clusters whose competitive superiority can alone be sufficient to thwart 
outgrowths of cheaters and thereby maintain cooperation. But we find that when 
cheaters appear too frequently – exceeding a threshold mutation or transformation 
rate – their scattered outgrowths infiltrate and break up cooperating clusters, 
resulting in a cascading loss of community integrity, a switch to net positive 
selection for cheaters, and ultimately in the loss of cooperation. 
 
Discussion and Conclusions: We discuss the possibility that our model may 
provide a parsimonious framework for understanding the somatic evolutionary 
processes leading up to transitions from normal to cancerous tissue. 
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Model assumptions 

Cooperation and multicellularity evolved and are maintained by very complex processes, but a first 
approximation to these processes may be formulated as a simple evolutionary game: 

On average, cooperators “help” others (increasing others’ fitness) at their own expense (decreasing their 
own fitness). 

On average, cheaters don’t “help” others (don’t increase others’ fitness or decrease their own fitness). 

Interactions are structured on a network (regular, random, or scale free).  

Cooperation and cheating are heritable traits, and mutation can toggle between the two. 

 

Main result: critical mutation rate above which cooperation is lost as 2nd order phase transition. 
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α = sampling coefficient
ε = average “help” conferred by cooperators
β = average advantage of being a cheater
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Figure 1. Equilibrium cooperator frequencies as a function of mutation rate. (a) As determined from 
simulated populations that were spatially structured on a three-dimensional grid. The population initially 
consists of all cooperators, and cheaters arise by spontaneous mutation. The intrinsic advantage of being 
a cheater (or cost of being a cooperator) was 0.01, the advantage conferred by a cooperating neighbor 
was 0.05, and total population size was 27,000. (b) As predicted by the analytical equilibrium solution of 
the “pair approximation” model, using the same parameter values but implicitly assuming an infinite 
population. The analytical curve reveals a sharp transition between the maintenance of cooperation and 
the complete loss of cooperation; the sharpness of the inflection resembles that of a second-order phase 
transition. 
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Abstract 

We present a calculation for the transmission coefficient in the 
monolayer graphene in function of the angle through a barrier 
and a double barrier.   
 
Key words: transmission, graphene, Klein paradox. 
 

1. Introduction 

Graphene is a planar and monoatomic layer of carbon atoms - then is two-
dimensional (2D) - arranged on a densily packed honeycomb crystal lattice.  
 

 
Fig 1.- Structure of graphene 

  
P.R. Wallace wrote the first paper [5] in 1947 to the band structure of graphene 
and showed the inusual semimetallic behaviour in this material. More time after, 
in 2004 A. Geim and K. Novoselov has obtained experimentally graphene. They 
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started with graphite three-dimensional and extracted a single sheet ( a 
monolayer of atoms). 
 
The graphene is a zero-gap semiconductor [2],[3], and for low energies the 
carriers with proximity to the Dirac points can be described by the Dirac-like 
Hamiltonian 
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Where k
r

 is the momentum, σr  the 2D Pauli matrix and Fv  the Fermi velocity 

that is independent of k , and your value is ≈Fv 106 m/s. This play the role of 

speed of light, but is ≈Fv c/300. Givig rise to the conical sections for E <1 eV. 

We have a linear spectrum kvE Fh= , leading to the zero effective mass for 
electrons and holes, and then they are called Dirac fermions. They are like 
particles relativistic described by the Dirac equation for spin ½ particles. The 
electronic states are composed of states belonging to the different sublattices, 
and then we use two-component wave-functions (spinors).  
 

 
Fig2 .- Energy spectrum in the proximity of the Dirac points. 

 
The graphene is very interesant because it has a exceptional electronic quality. 
Experimental results from transport measurements show high electron mobility µ 
that can exceed 15,000 cm2/Vs in the concentrations n as high as 1013 cm-2 even 
under ambient conditions [3]. 
 

@CMMSE                                                               Page   1133  of 1328                                               ISBN 13: 978-84-613-5510-5



T C IN GRAPHENE 
 

2. Theory  

The differences in the calculus of the transmission coefficient between 
traditional semiconductors (AlGaAs, …) and the graphene are : 

1. The carriers are governed in the first case by a equation differential of 
second order and in the second by a equation differential of first order. 
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2. In the graphene we will have only carbon atoms, not it´s possible 
different combinations of elements. 

 
The two components of )r(ψ  close to the Dirac point, obeys the 2 D Dirac 
equation [4]. 
 

)r(E)r(ivF

rrrr ψψσ =∇⋅−  
 

And we can to write 
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2.1  Square barrier 

We begin with a barrier of width D. Then the potential is 
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The wavefunctions in the three regions can be write in terms of incident and 
reflected waves, in principle, but we can consider for the total the condition that 
the incident amplitude is the unity, the reflected amplitude is r and the 
transmitided amplitude is t, and is not reflected amplitude in the final. 
 
In the region I, II and III : 
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When s = sgn(E), s´ = sgn(E-V0), φ  = arctan(ky/kx), kx = kF cosφ , ky = kF sinφ , 
kF the Fermi momentum is kF = 2 π/λ,θ  = arctan(ky/qx) and 

( ) 2
y

2
F0x kv/)EV(q −−= h . 

 
The coefficients are determined only by the continuity of the wavefunction, 
because is a equation differential of first order 
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IIIII
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===
===
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Then we obtain t, after we multiply to the conjugate t*, and we will have the 
transmission coefficient T(φ ) 
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We achieve a approximation EV0 >>  then 0→θ , and 

 

φ
φφ

2
x

2

2

aprx sin)Dq(cos1

cos
)(T

−
≅  

 

2.2  Double barrier 

We construct a double barrier because then we will have a well. Then the 
potential is 

@CMMSE                                                               Page   1135  of 1328                                               ISBN 13: 978-84-613-5510-5



T C IN GRAPHENE 
 














<+
+≤≤

<<
≤≤

<

=

xDL,0

DLxL,V

LxD,0

Dx0,V

0x,0

)x(V

2

20

1

10

Vregion

IVregion

IIIregion

IIregion

Iregion

 

 
  And the equations are : 
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We will have only two angles, φ  when the potential is zero and θ  when is V0. 
We impose another the continuity of the wavefunctios in the limits. 
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3. Results  

3.1  Square barrier 

)(Texac φ  depends on the width of barrier D, the energy E, the high of potential V0 

and the angle of incidence φ . The graphic of the transmission coefficient is 

simetric because )(T)(T exacexac φφ −= . 

Texac(φ ) is the unity : 
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a/ for the values of Dqx satisfaying Dqx = nπ 
b/ for normal incidence φ  = 0 

 

 
Fig 3.- Texac for E = 80 meV, D = 110 nm, V0 = 200meV 

 (solid line) and  300 meV (dashed line) 
 

The transmission coefficient unity has the significance the barrier is total 
transparent, and this is relationated with the Klein paradox [1]. 
 

)(Taprx φ  depends on D, E, V0 and φ . The difference between Texac and Taprox 

is more important in the minimum of the function.  
 

 

 
Fig 4.- Texac (solid line) and Taprox (dashed line) for E = 80 meV, V0 = 200 meV and D = 110 nm 
 

3.1  Double barrier 

The function T(φ ) is symmetric in φ . 
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When D1 = D2 we will have a symmetric system, and only the variables are E, 
V0, D and L. We will appear three zones with high transmission coefficient even 
there is some points which arise the unity. 
 

 
Fig 5.- T for E = 80 meV, V0 = 200 meV, D1 = D2 = 110 nm, L = 55 nm 

 
When D1 ≠  D2 it´s different the result of to place the barriers in the position first 
or second. The behaviour of a system with two barriers when L = D1, is the 
same that a only barrier with width D1+D2. 
  

 
Fig 6.- T for E = 80 meV, V0 = 200 meV, D1 = 110nm, D2 = 220 nm, L = 110 nm 
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Fig 7.- T for E = 80 meV, V0 = 200 meV, D1 = 220nm, D2 = 110 nm, L = 110 nm 
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Abstract 

Preconcentrators are really important to detect gases that are 
dangerous at very low concentrations. We use Comsol 
Multiphisics to study their behaviour and improve their design. 
We are working with a planar device. In such a device most part 
of the analyte to be detected does not affect the absorbing 
material. We discover this problem by means of simulation and 
propose a solution which improves the chamber design forcing a 
bigger amount of the sample flow to interact with the absorbent 
material, thus increasing the concentration factor almost twice. 
 
Key words: simulation, fluid flow, preconcentrator 
 

1. Introduction 
Several toxic gases such as benzene are dangerous at low concentrations. At 
present gas sensors are not able to detect so low concentrations. That is why the 
design and implementation of preconcentrators is an important task. Our aim is to 
design a microsystem which contains a sensor and a preconcentrator constructed 
in the same silicon substrate. In this way we obtain a planar device which is 
technologically and economically more efficient than 3D devices[1]. In such a 
device most part of the analyte to be detected does not affect the absorbing 
material. Our proposal improves the chamber design forcing a bigger amount of 
the sample flow to interact with the absorbent material increasing the 
concentration factor almost twice. 
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We have simulated the chamber we are using to emulate the microsystem in order 
to be able to compare our results with experimental ones. It is a cylindrical 6-mm 
diameter 3.8-mm height chamber. It has input and output 1.27-mm diameter tubes 
situated at 2 mm above the base (See Fig. 1a). Preconcentrator is located at the 
base of the chamber (See Fig. 1b).  
 
During the adsorption phase preconcentrator is at ambient temperature and the 
adsorbent is taking volatiles. During the desorption phase the preconcentrator is 
heated in order to desorb all the volatiles in a really short time. Adsorption and 
desorption processes are modelled in the preconcentrator as a simple linear 
function. 
 
 
 

b) 

a) 

 
Fig. 1: Preconcentrator Chamber: a) Chamber morphology b) Preconcentrator location 
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2. Fluid flow simulation 
We are coupling different models of Comsol Multiphisics in transient mode: 
Weakly Compressible Navier-Stokes model for fluid flow and Convection and 
Diffusion model for concentration. Temperature model has not been used 
because, at working conditions, temperature changes has no effect in flow 
dynamics as there are no significant density variation, neither convection effects. 
Thus simulation time is greatly reduced. We use the Weakly Compressible 
Navier-Stokes model for fluidic.  We introduce laminar velocity as input and 
constant pressure as output boundaries constrains. With the Convection and 
Diffusion model we simulate the concentration variations. In the preconcentrator 
there is a two-way reaction which converts analyte free (Af) to analyte in the 
wall (AW). This is governed by the velocity of reaction.  

   
f

onk

offk

W AA
⎯⎯ ⎯←
⎯⎯ →⎯

_

_

    (1) 
 

So, next function must be fulfilled in our preconcentrator[2-4]: 
 

( )
WAA

A
fW

W CConkCoffk
t

C
−⋅+⋅−=

∂

∂
max__

   (2) 
In our model, we use this function in the preconcentrator boundary.  
 
 
First, we simulated the flow in the conventional chamber. We realized that most 
part of the gas sample crosses the chamber without affecting the preconcentrator 
because it is at high distance above of it and passes as laminar flow (See Fig. 2). 
So, we proposed a new design using an “obstacle” which forces the gas sample to 
go down almost perpendicular to the preconcentrator surface (See Fig. 3). We 
constructed a “wall” and repeated the measurements in order to see the difference. 
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Fig. 2: Streamline of velocity field simulation in a conventional chamber 

 

 
Fig. 3: Streamline of velocity field simulation in a chamber with wall 
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3. Simulation results 
In Fig. 4, we compare the amount of benzene adsorbed without wall and with the 
wall placed in the middle. In Table 1 we can see the concentration of benzene 
during the adsorption phase. The analyte column represents the amount of analyte 
going out of the chamber. ∆Analyte input-output column shows the difference 
between input and output analyte, with this value we extract the percentage 
adsorbed and the improvement factor related to this percentage. We observe that 
the wall enhances the retention capability in a 1.78 factor.  So, using this wall, the 
preconcentrator system adsorbs more analyte in the same period of time.  
 

 
Fig. 4: Comparison results of input and output analyte without and with wall 

 
Table 1: Comparison of simulation results without and with wall 

 
 

Analyte 
(u.a.) 

∆Analyte input-
output (u.a.) 

Amount of analyte 
adsorbed (%) 

Retention factor 
improvement 

Input 0.1273    
Output 

without wall 0.1088 0.0185 14.53 % 1 

Output whit 
wall 0.0944 0.0329 25.84 % 1.78 
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4. Experimental results 
Preliminary studies were made on a 4 mm x 4 mm side porous alumina substrate 
with activated carbon deposited on top as a preconcentrator. However, future 
implementation will be made on 3 mm x 3 mm preconcentration membranes in 
silicon technology, already fabricated. We used gas chromatograph mass 
spectrometry (GCMS) to measure the desorption peak.  
 
A flow of 150 ppb of benzene diluted in CO2 is injected during 10 minutes at 
ambient temperature, so the preconcentrator is adsorbing the analyte. Then, we 
introduce helium and heat the preconcentrator to desorb all the benzene. 
 
Experimentally, we have obtained an improvement factor of 1.85, which fits quite 
well the simulation result.  

5. Conclusions 
By means of simulations, we detected a ineffienciency which was completely 
unknown and proposed a solution which was substantiated by the experimental 
measurements. 
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Abstract 

A mathematical model is presented to predict the vibration of a rail excited by a moving 
load. The track is modeled as an infinitely long beam supported over a finite section by 
discrete support. The supports represent pad/sleeper/ballast system of railway track, they 
are spaced regularly. The rail idealizes these periodic structures. A periodic system 
consists on a number of identical elements; coupled together in identical ways to form a 
whole system. This paper describes the computation of the wave field induced by a 
moving load on a periodically supported beam. The work starts by calculate the Green 
function of the free Euler beam without support by using the direct integration. After 
woods, it introduces the supports into the model established by using the superposition 
principle which states that the response from all sleepers points and from the external 
point force add up linearly to give a total response. The periodicity of supports is 
described by Bloch’s theorem. The model developed gives the choice of different support 
types: mass support, spring support, mass/spring systems…The homogeneous system 
thus obtained represents a linear differential equation which governs rail response. It is 
initially solved in the homogeneous case, it admits a no null solution if its determinant is 
null, this permit the establishment the dispersion equation to Bloch waves and wave 
bands. The Bloch waves and dispersion curves contain all the physics of the dynamic 
problem and the wave field induced by a dynamic load applied to the system is finally 
obtained by decomposition into Bloch waves, similarly to the usual decomposition into 
dynamic modes on a finite structure. The method is applied to obtain the field induced by 
a load moving at constant velocity on a thin beam supported by periodic elastic supports. 

 
Key words:  Bloch wave, Euler beam, Green function, 
Computation, Moving load  
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1. Introduction 

 
Vibration of infinite periodic structures has been studied extensively in the past 30 
years with the focus mainly on free vibration propagation and forced vibration 
induced by stationary harmonic loads [1]. A mathematical model is presented by 
Heckl [2] to predict the vibration of a rail excited by a rolling wheel. The track is 
modeled as an infinitely long beam supported over a finite section by discrete 
support systems for non moving load. Vibration of an infinite periodic beam 
subject to a moving harmonic load has been investigated by Belotserkovskiy [3]. 
In this study, the author considered a single segment only by using boundary 
conditions derived according to the Euler beam theory. The rail is modeled as an 
Euler beam with flexible supports in the work of Nordborg [4]. The supports of 
the beam represent pad/sleeper/ballast system of the railway track; they are 
spaced regularly. The exact solution, in the frequency domain, of the linear 
differential equation is presented. 
 
The method used to obtain the response to dynamic load include the computation 
of transfer matrices ([5][6][7][8], the use of Bloch waves [9] [10] and finite 
element solutions[11][12].For a Timoshenko beam, Heckl ([13]) produced the 
dispersion curves and showed that different modes appear, related to the coupling 
between different degrees of freedom of the beam (flexion, torsion, shear...). The 
response of a Timoshenko beam to a static (non moving) dynamic load was 
produced by Hamet [14].  
 
The aim of the paper is to produce the response of a periodically supported thin 
beam submitted to a moving load, by using the Bloch transform (Allaire [15], 
Sanchez [16]). Parts of the solution are similar to the one used by (Langley [8]) 
for 2D structures or Hamet [14] for a Timoshenko beam submitted to a dynamic 
(non moving) load. 
 

2. Green function for Euler beam 

 

Let us consider a thin beam with an inertia section   moment  which is subjected 
to a moving vertical moving load . The vertical beam displacement is the 
solution of the dynamic beam equation (eq. 1). Euler model is considered: 
 

                                               (1)   

                                                                                   
Where  is the mass of the beam by unit of length and  the Young’s modulus.  
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If the harmonic concentrated load is applied at the point, in the Fourier space, 
the movement equation becomes:  
 
 

                     (2) 

Where  is the Fourier transform of. 
 
The Green function associated to this equation is the response to an unit load 
applied at the point t .  It is the solution of the equation:   
 

                                     (3) 

With  
 

                                                                             (4) 

 
The Green function   can be now determined by direct integration; it is 
thus the solution of the equation (3) and represents the vertical vibration at the 
point , of the beam rail subjected to an harmonic force.  
 

� In any point  (in any point other than the excitation point) the 

system is free and :   

 
 

                                                       (5)  

 
At the point  , the discontinuity is assumed by the third derivative 

of . The function and its two first derived are continuous 

at . The integration of the equation (2) on both sides of   and if 

we take into account the continuity of the function   at , we 

obtain : 
 

                                                      (6) 

 

� At        the function is limited:   
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The Green function is then expressed by a combination of elementary 
solutions of the equation (3).  Taking into account the condition at infinity, 
it can be written:   
 

                              (7) 
 

 
   

                          (8)            
 

 
The coefficients are evaluated from the Green function and its first 
derived must satisfy: 
 

                                 (9) 

 
The solution of this problem is exposed by Heckl (Maria A. Heckl, 2001) in the 
more general case of the Timoshenko beam. The result in this case of the Euler 
beam is a Green function. 
 

                               (10) 

3. The free motion of the periodically supported beam: Bloch waves 

We consider a beam periodically supported with N supports placed between 
and . The period is given by the regular spacing. The rigidity of the  

  discrete elastic support, corresponding to the deformation of the system 
(elastic support, mass support...), is  , the force transmitted by the discrete 
support is:  
 

                                                            (11) 
 
It is considered that all the discrete supports are characterized by the same 
rigidity . The global response of the structure can be described by applying 
the superposition principle, which consists of the linear summation of all the 
answers due to the various supports. Then, the displacement with the position  is 
given by:   
 
 

                                                    (12)                  
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Where   is given by the equation (10) for the Euler beam. 
 
The relation (9) is thus valid for any point . 
 

                                  (13) 
 
The application of the Floquet theorem gives the relation between two adjacent 
supports:  
 
 

                          (14)                                                              
 
With: 

                                                         (15)     
 is the Bloch constant propagation. It is generally complex.  is the wave 

attenuation and k is the Bloch wave number .  
By substituting the expression of the Green function   given by the equation (9) in 
the equation (12) and by multiplying this equation by  , changing the index of 
summation  by  gives the following equation which defines the relation 
between  and the displacement  .                       
 

 
 
 
In the following, only the waves not attenuated will be considered, which means 
that the sum  can be evaluated by usual formulas of the geometrical series.   
For the Euler model, we can have:   
 

             (16) 
 

 
 
This is a second degree polynomial for  . The solution  produces the 
values of the wave number   which is between 0 and. It is a function of  which 
depends on the radial frequency (eq.4). It leads therefore to the dispersion 
equation. 
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Similar relations were obtained previously by other authors (for example Heckl 
for a Timoshenko beam). 
 The shape of the Bloch wave can be obtained by using a similar process. Let us 
consider the free motion related to a couple  ,  complying to equation (16). 
The displacement at position  between two supports is related to the 
displacements of all supports by using the Green’s function  , leading to: 
 
 

                                 (17) 
 
Introducing the Green’s function and the propagating constant  leads to: 
 

                (18) 
 
Computing the sum of the series leads to: 
 

                                           (19) 
 

Where:  and where the following notations are introduced: 

 

                                (20) 

                            (21) 

                                 (22) 

                               (23) 
 
Due to the Floquet’s theorem, the Bloch wave may be written: 

                                             (24) 
Where  is a periodic function of . 
 
The value of  and therefore the value of C must be chosen to build from the 
Bloch waves an orthonormal basis of  where  is the periodic cell obtained 
after transforming the space variable  into the non dimensional variable 

 . Through this process, the period  is transformed into  
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 The constant C is chosen to insure that the  norm of   on 
 is equal to 1, leading to: 

 

                                          (25) 

4. The response of the structure to moving load 

 
As for the space coordinate, it is convenient, to define the Bloch transform, to use 
a no-dimensional wave-number  define by: 
 

                                                               (26) 
 
The Bloch transform of a function  is then defined by: 
 

                                     (27) 
Where  is the complex conjugate of the Bloch wave contained in the 

 band obtained by equation (12). 
The Bloch decomposition theorem whose proof and conditions of validity can be 
found in (Sanchez, Allaire) states that. 
 

                              (28) 
The Bloch transform of equation (1) , considering that the Bloch wave  is 
the solution of the homogeneous equation for an harmonic equation at radial 
frequency , lead to: 

                     (29) 
This equation shows that each Bloch component is solution of the dynamic 
equation for a ‘1 DOF’ system. 
Let us use this result to obtain the response of the beam to a load having a 
constant intensity  which is moving at the velocity. It means that  is given 
by: 
 

                                                   (30) 
Where  is the Dirac distribution. 
The Bloch transform of  is: 
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                            (31) 
The Bloch components of the displacement induced by the moving load are 
therefore solution of: 
 

     (32) 
 
Its solution is given by: 
 

 
                                                                                                           (33) 

Where  and  are given by: 
 

                                               (34) 
  

                                               (35) 
The displacement induced by the moving force is finally obtained by composition 
of all the Bloch components, leading to: 
 

                     (36) 
 
Coming back to  ,  and taking into account that   is involved in  only by 

 , lead to: 
 

                                 (37) 
The function  is given by : 

 

 
                                                                                                                  (38) 

This solution can be transformed by using new dimensionless variables T, X, B, K 
defined by  ,  ,  , . 
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Using these variables  is given by: 

                           (39) 
 
Where: 

                                                       (40) 
 

                                                       (41)   

                                                                (42) 

                                                                        (43) 

                         (44) 

                  (45) 
 
All integrals in  are obtained explicitly: 

      (46) 

 
                                                                                                                       (47) 

                        

 
                                                                                                                       (48) 

The terms appearing in  are given by: 

 
                                                                                                                             (49) 

 
                                                                                                                             (50) 

 
                                                                                                                             (51) 
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                                                                                                                             (52)  
It is convenient to use the dispersion equation with non-dimensional variables 
 

                                       (53) 

 
Where the non dimensional parameter  is given by: 

                                                                         (54)                             
  
From the previous results, it can be seen that the displacement depends of the non 
dimensional position and time and also of the three following parameters: 
 
The parameter  which is the ratio between the stiffness of the beam and the 
stiffness of the support and which is involved in the dispersion curve. 
 
The parameter  which is the ratio between the elastic energy and a kinetic 
energy computed from the moving load velocity. 
 
The parameter  related to the flexure stiffness of the beam. 

 
5. Example of application 

Let us consider a rail whose properties are given in table 1. 
 

Young’s 
modulus 

Section’s inertia Mass per un. length Support stiffness Spacing 

200 8.10-5 158 30 and 0.02 0.6 
GPa  Kg/m GN/m m 

  
Table 1. Physical properties of the beam and support 

 
The dispersion curves are show on figure 1 for the first three passing bands for the 
stiffer support (Z=30 GN/m). Similar results are obtained for the softer support at 
lower frequencies. 
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Figure 1 Dispersion curve for the first band tree bands: case for stiffer support 
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Figure 2 Displacement vs non-dimensional time for the stiffer case (high speed 
and low speed) 

 
The displacement induced by a unit moving load at the center of a given period is 
next computed when the load is moving over that period with two speeds: a low 
speed 10m/s and a high speed 140m/s. Results are given in the case of stiff 
support in figure 2 and in the case of soft support in figure 3. It appears that the 
displacement is the same for low speed and high speed, in the case of the stiffer 
support, while the displacement depends significantly of the speed for the softer 
support. 

@CMMSE                                                               Page   1156  of 1328                                               ISBN 13: 978-84-613-5510-5



COMPUTATIONAL OF THE RESPONSE TO THE MOVING LOAD 
 

This result is due to the fact that the passing bands are at higher frequencies for 
the stiffer supports. The velocity-dependent term φ in (35) is negligible when 
compared to   for any velocity. 
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Figure 3. Displacement vs non-dimensional time for the softer case 
 

5. Conclusion 

The method of Bloch transform was used to study the dynamics of a beam resting 
on a periodic support. It allows to compute the response of the beam to any 
dynamic loading by computing the Bloch transform of the displacement induced 
by the loading. It involves only to solve a (continous) set of decoupled”1 DOF” 
dynamic equations. The method is applied to the dynamic response of a thin 
beam. The authors intend to extent the method to the dynamics of a Timoshenko 
beam for any loading, implying the coupling between different components of the 
motion of the beam (torsion, flexion,...). 
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Abstract 

The electromagnetic wave effects on the behavior of 
semiconductor devices are investigated by coupling a TM wave 
(transverse magnetic wave), solution of Maxwell’s equations to 
an active device model. In this paper, 2D (Two-dimensional) 
simulations verify the expect device-wave interaction. The active 
semiconductor model is based on the drift –diffusion equations. 
The coupling between the two models is established by using 
fields obtained from the solution of Maxwell’s equations in a 
semiconductor device model. Its permit to calculate the current 
densities witch used to update both the electric and magnetic 
fields.  
The study of an electromagnetic field influence on a 
semiconductor structure is carried out by MATLAB software. 
We have developed an efficient and accurate tool to solve the 
Maxwell’s equations by using FDTD method, and finite 
differences and Euler’s method to solve the drift-diffusion 
equations.  
Numerical results relative to the study of two-dimensional device 
are included to valid the effectiveness of the method. 
We observe that the semiconductor device significantly attenuate 
the input wave as it propagates along the structure. 
This is, essentially due to the electromagnetic energy loss by the 
conducting electrons.   
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Key words: FDTD method, PDE, electromagnetic wave, drift-
diffusion model, Gummel’s method, Newton Raphson.. 
 

1. Introduction 

The evolution of electronic market fosters a continuous quest for small-size and 
low-cost systems. 
Propagation and radiative effects become more and more important, most notably, 
signal reflections due to interconnecting line discontinuities, dispersion, and 
crosstalk phenomena [1]. So the assessment of potential hazards caused by 
electromagnetic influence to electronic systems as well as transmission is an 
essential engineering task. This is essentially due to nearby transmitters and 
electrically active device.   
 
At high frequencies and reduced circuit sizes, however, such an approach can 
hardly be pursued, due to the difficulty of properly characterizing (both 
qualitatively and quantitatively) the coupling phenomena typical of a densely 
packed circuit. 
In these cases, the full-wave solution of Maxwell's equations may provide a more 
comprehensive investigation tool. To this purpose, different solution techniques 
can be followed. 
In this work, we describe the modeling and the simulation of semiconductor 
devices were previously achieved by solving various combinations of Poisson and 
continuity equations conventionally. 
The Gummel’s method is most commonly used to solve the nonlinear steady-state 
problem arising from the semiconductor device equations [2], which can be 
written as sparse nonlinear system of equations. In this approach, the two unknown 
variables in drift-diffusion model are coupled together through the whole process 
of computation [3], each equation is solved using Newton’s method. It’s more 
robust, and converges in relatively little iteration. 
However, interesting physical phenomena arise from the manner in which charge 
fluctuations and current responses are coupled to the electromagnetic field, a 2D 
FDTD model has been developed in order to solve the coupled Maxwell’s and 
drift-diffusion equations. This model permits to establish a rigorous simulation of 
the active device. 

2. Semiconductor model     

The semiconductor model consists of the Poisson equation and continuity one. 
These equations represent a coupled nonlinear system of partial differential-
integral equations (PDE equations). 
In our case, we treat the steady-state condition and further neglect the contribution 
from holes because the we have an N type substrate where the electrons are 
predominant versus holes[4]. 
Then the basic equations become the following 
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1) Poisson’s equation 

)(2
D

SI

Nn
q

V −=∇
ε

                                                                                                (1) 

2) Continuity equation of electron current : 
Current equations for electrons and holes must be solved simultaneously. 
In the present case, however, a simplified approach is adopted because the type of 
the substrate is N ( n>> p), so we consider only the electrons equation continuity. 

( ) 0
1 =−

∂
∂

njDiv
qt

n r
                                                                                                 (2) 

3) Electron current equation 

nqDVqnµj nnn ∇+∇−=
rrr

                                                                                           (3)  

The drift-diffusion approach is known to possibly lack of accuracy if large field 
changes, either in time and space are encountered. 

3. Electromagnetic model     

 The electromagnetic wave propagation can be completely characterized by 
solving Maxwell’s equations are first-order linear coupled differential equations. 
These equations coupled differential equations relating the field vectors and 
current densities at any point in our structure at any time [5]. 
Maxwell’s equations are given by: 

t

E
εJH SI ∂

∂+=∧∇
r

rrr
                                                                                                (4) 

t

H
E SI ∂

∂−=∧∇
r

rr
µ                                                                                                    (5) 

4. Electromagnetic wave propagation 

The excitation is applied as a TM mode (Transverse Magnetic mode). For the 
electromagnetic-wave analysis, a sinusoidal excitation is applied in the electrode A 
of the silicon structure. The electric wave excitation becomes: 

( )ωtEE sin0=  

0E  represent the maximum amplitude and f2πω =  the wave pulsation, where 

ZGH1000f = .  
The length wave corresponding is µm75λ =  
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5. Simulated Structure 

The TM wave model is then solved for a few picoseconds, to avoid the effects of 
the electromagnetic wave interference. 
The 2D structure used in the simulation is shown in Fig.1. It’s constituted by a 
silicon semiconductor doped 318

D At/cm10N = . The distance between the two 
electrodes A and B is µm50 . The width of the plate is µm40 . A constant space 
step of discretization m1µh∆y∆x ===  is considered. 
 
 

 
Fig. 1.   A view of the simulated device 

 

6. Simulation technique 

1) Drift Diffusion model 

 The discretization uses a first and second order of equation (1) in 2D-finite 
difference mesh, and the discretization of equation (2) uses Euler’s implicit 
method leads to have equations : 
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Where 
2

1

h
GDBH ====  

dcba ,,, and e are coefficients depending on the electrostatic potential: 

),1(),1((
4

1
jiVjiVUa T −−+−=  
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4
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In the case of Ohmic contacts, the electron and hole densities are determined by 
assuming charge neutrality and thermal equilibrium 
At free surfaces, the normal derivatives of current density and electrostatic 
potential are set to zero. 









+=

i
TContact n

n
UVV ln. , where ni is an intrinsic concentration. 

Solution of equations (6) and (7) provide the space and time distribution of the 
unknown functions n and V at each point and each time step in the considered 
structure which leads to have a two matrix systems which depend in time. 

t
n

t
V VVA =.                                                                                                                 (8) 

t
n

t
n VVB =+1.                                                                                                             (9)                                         

A and B represent respectively the corresponding matrix coefficient of equations 
(6) and (7)  

VV and nV are  respectively the electrostatic potential and electron density vectors.  

At each time step Gummel’s method is most commonly used to solve the coupled 
system arising from equations (8) and (9). Where these equations can be solved in 
a decoupled manner using Newton’s method [6]. 
The whole numerical procedure to solve the two system equations can be 
summarized as: 
1. For t from 0 to final time 
2. Select time-step which ensures stability convergence.  
3. Solve (8) and (9) using Gummel’s iterations 
4. Set 1+← tt nn  
5. End time iterations 

1) Electromagnetic model 

The electromagnetic model simulates the evolution of both electric and magnetic 
fields due to moving free charges [7] 

( )totdcac

SI

JJH
εt

E rrrr
r

−+∧∇=
∂
∂ 1                                                                             (10) 
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E
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H

SI
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∂ 1                                                                                                 (11) 

Where dcJ
r

is obtained by solving the drift-diffusion model in conjunction with 
Poisson’s equation [8]. 
 

 
Fig. 2. Positions of the field components in a unit cell of Yee’s lattice 

 
Equations (10) and (11) can be replaced with an explicit finite difference 
approximation in its known values at the previous nth time step. Using the first-
order upwind scheme for time and spatial derivatives yields the following 
equation:  
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Notice from equations (10), (11) and figure (2) that the components E and H are 
interlaced within the unit cell and evaluated at alternate half-time steps. 
Electric and magnetic field components are extracted from two separate sets of 
equations [9]. At each time step, electromagnetic model and semiconductor 
equations should be solved sequentially [10], where the equations (12), (13) and 
(14) gives the electric and magnetic field distributions at each time step, these 
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latter are used by semiconductor model to update the current density at the same 
time step, which fed back to electromagnetic model again for the following time 
step [11]. Figure 3 shows flowchart of the sequence FDTD scheme 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Flowchart describing the calculate of the total current as a function of electromagnetic wave 

 
In practice, at each time step the iterative process is stopped at the minimum value 

of iterations such that ε
n

nδ
max 〈







 , whereε is a fixed tolerance, in our case, we 

have fixedε at 10-5. However, since the exact solution is obviously not available, 
it is necessary to introduce suitable stopping criteria to monitor the convergence of 
the iteration [12]. 

7. Results and discussions 

For a polarization 1vVD = the results given by the drift-diffusion model using a 
finite differences method are in agreement with theoretical concepts.  
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Fig. 4. Contour plot for the equipotential lines 

 
Figure (4) represent the equipotential lines in steps 0.5.   
The electrons density is almost constant along the semiconductor. Its value takes 
approximately the doping value. 

 

 

 
 

Fig.5. Time variation of the electric field at several points in the x-direction 
 

 
 

Fig.6. Time variation of the magnetic field at several points in the x-direction 
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Figures (5) and (6) depicts the impute wave evolution at different points along the 
x-direction. 
The input wave decreases in magnitude as it propagates along the x-direction 
(along the device). This is mainly due to the electromagnetic energy loss to the 
conducting electrons. 
The active device role in attenuating the input wave can be confirmed by the 
comparison of two waves, one of them propagates on the active device and the 
other in a semi-insulating one. 
 

8. Conclusion 

The effect of electromagnetic wave on electrical characteristics in semiconductor 
devices is studied, for that we have combined the electromagnetic model with 
drift-diffusion equations. To this purpose, a FDTD method has been used.  
An explicit scheme assumption is formulated, which allows for the fully decoupled 
of the two models, electromagnetic equations and drift-diffusion ones. 
A “leapfrog” scheme is adopted for the FDTD solution of the Maxwell’s equations 
and “Gummel” scheme for the finite difference solution of the semiconductor 
equations [8]. 
It has been shown that a model consisting of a TM wave time domain solution of 
Maxwell’s equations coupled to the semiconductor model capable of evaluating 
the effect of the propagating wave on semiconductor behaviour. 
The Gummel iterative process is stopped at the exact solution for each time step, 
where the convergence criterion is fixed for the minimum of

n

nδ . 

We also concluded that the numerical method used help us to explain some 
physical phenomena like:  
- The increasing in the number of electrons in semiconductor cause the increasing 
of the conductivity, which leads to an attenuation of the electromagnetic wave in 
the space.   
- The electromagnetic wave leads to the change of the electrons velocity in the 
space, which cause a discontinuity in the current density.  
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9. Nomenclature 

 
Symbol QUANTITY Units 

V Electrostatic potential v 
n Electron density At/Cm-3 

ND Donor doping density At.Cm-3 

q Electron charge C 
UT Thermal voltage 26 mv 
µn Electron mobility m2/v.s 
Dn Electron diffusion coefficient m2/s 
t Time s 
∆t Time increment s 
h Space increment m 
Jn Electrons current density A/m2 

Jdc Direct current density A/m2 
Jtot total current density A/m2 
E Electric field V/m 
H Magnetic field A/m 
εSI Silicon permittivity F/m 
µSI Silicon permeability H/m 
HDC Direct component of magnetic field A/m 
HAC Alternative component of magnetic field A/m 

ω frequency Rd.s-1 

 
TABLE 1: UNITS FOR DIFFERENT PARAMETERS 
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Abstract 
Gold nanoclusters have attracted a surge of interest over the past 
decade due to their potentially significant applications in 
heterogeneous catalysis.  In particular, when supported on an 
oxide surface, it has been shown that gold nanoclusters can 
catalyze the oxidation of carbon monoxide.  Free gold 
nanoclusters often exhibit a variety of stable structural isomers 
ranging from compact to hollow to helical.  The surface gold 
atoms of these structural isomers have very distinct electronic 
properties which could result in very different catalytic 
properties.  In this presentation we examine complexes of free 
helical gold nanoclusters and carbon monoxide. 
 
Key words: Gold nanoclusters, carbon monoxide 
 

1. Introduction 
Metal nanoclusters represent a novel organization of matter which is yet to be 
fully understood.  In particular, gold nanoclusters have been shown to exhibit 
size-related properties that differ significantly from those observed for small 
clusters or the bulk material [1,2].  It has been established that there exists a close 
relationship between the properties of nanoclusters and their geometries but it is 
difficult to elucidate this connection by experimental techniques alone and, in this 
regard, quantum calculations can be very helpful.  Density functional theory 
(DFT) has become an increasingly important tool in quantum calculations since 
the effects of electron correlation, which are large for metal nanoclusters, can be 
included at a moderate computational cost [3].  Relativistic effects, which are 
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large for gold nanoclusters, can be efficiently included via an effective core (or 
pseudo) potential [4].  
 
Gold nanoclusters have potentially significant applications in heterogeneous 
catalysis.  This area was initiated by Haruta in 1997 when he showed that gold 
nanoclusters (when supported on an oxide surface) could catalyze the oxidation of 
carbon monoxide (CO) [5].  The oxide surface was employed to prevent 
coalescence of the gold nanoclusters and it was initially believed to be inert.  
However, it subsequently became clear that the oxide surface plays an important 
role in the catalysis process.  Nonetheless, it is of considerable interest to study 
the complex of a free gold nanocluster and CO and, in particular, to examine the 
effect of the free gold nanocluster on CO.  In this presentation, we focus on 
helical gold nanoclusters since the surface gold atoms of these structural isomers 
exhibit very different electronic properties depending on their location.  We have 
shown that Au24, Au32 and Au40 all have structural isomers which are helical [6].  
Although the lowest energy structural isomer is the compact structure, the helical 
structure is both stable and robust.  In this presentation we focus on Au40 and 
examine the strength of the bonding between the surface gold atom and CO, 
charge transfer to CO, and changes to the CO bond distance and frequency as a 
result of complex formation. 
 

2. Method 
In our DFT calculations, four generalized gradient approximation (GGA) 
exchange-correlation functionals are employed:  the Becke exchange functional 

with the Perdew correlation functional (BP86), the Becke hybrid three-parameter 
exchange functional with the Perdew correlation functional (B3P86), the Becke 
exchange functional with the Perdew-Wang correlation functional (BPW91), and 
the Becke hybrid three parameter exchange functional with the Perdew-Wang 
correlation functional (B3PW91).  We used the LANL2DZ effective core 
potential, although other effective core potentials have been successfully used for 
gold nanoclusters.  We believe that these functionals, and BP86 in particular, are 
appropriately accurate for the neutral gold nanoclusters considered in this 
presentation.  The harmonic-frequency calculations were performed based on the 
optimized geometries of the nanoclusters.  For simplicity, we employ the 
commonly used Mulliken charge analysis to examine the electronic properties of 
the nanoclusters.  All calculations were performed with the Gaussian 09 program 
package [7] and, unless otherwise noted, all results are for the BP86 functional.  
 

3. Results 
For helical Au40 there are 5 gold core atoms, each of which is surrounded by 7 
gold surface atoms which spiral in a helical fashion (see Fig. 1, top row).  The 
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diameter is 0.553 nm and the length is 1.138 nm.  The average Au-Au distance in 
each surface atom row is 2.84 Å.  For bare CO, the C-O bond distance is 1.139 Å 
while the C-O vibrational frequency is 2120 cm-1.  These results compare 
favorably with the experimental values of 1.128 Å and 2143 cm-1 respectively.   
 
For helical Au40 a Mulliken charge analysis (using the calculated wave function of 
the optimized geometry) shows that, although the total charge is zero,  the 
terminal and central surface gold atoms are negatively charged while the 
intermediate surface gold atoms are positively charged.  This indicates that Au40 
has strong selective reactivity and that nucleophiles will prefer to attack at the 
terminal and central gold atoms, while electrophiles will prefer to attack at the 
intermediate gold atoms.  In contrast, the surface gold atoms of compact Au40 are 
all negatively charged.  For bare CO, the charge on the C atom is -0.041 and the 
charge on the O atom is 0.041. 
 
We now consider the complex that is formed when CO bonds to a terminal gold 
atom of helical Au40 (which carries a negative charge).  As shown in Fig. 1, 
bottom row, a bond is formed between a single surface gold atom and the carbon 
atom of CO.  Note that the helical structure is largely preserved and Au40 does not 
collapse to the more stable compact structure.  In the complex formation there is 
charge transfer from Au40 to CO.  The charge on the C atom is now 0.125 and the 
charge on the O atom is now -0.329 and the total charge of CO is -0.204.  Upon 
complex formation, the C-O bond distance increases to 1.146 Å while the C-O 
vibrational frequency decreases to 2065 cm-1.  This is indicative of a weakening 
of the C-O bond which means that CO will be more reactive and, in particular, 
more susceptible to oxidation. 
 
 We are currently considering the complex that is formed when CO bonds to an 
intermediate gold atom of helical Au40 (which carries a positive charge).  We are 
also considering the complex that is formed when CO bonds to compact Au40. 
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Figure 1. Top row: Two views of helical Au40.  Bottom row: Complex between 
helical Au40 and terminally bonded carbon monoxide. 
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Abstract 

This interdisciplinary study presents a novel Case-Based 
Reasoning (CBR) system that applies an isotropic buffer 
operator for case-based creation. Commonly used as an image 
analysis tool by commercial Geographic Information Systems 
(GIS), the operator in this particular system calculates the areas 
of different environmental phenomenon for simulation and 
visualization tasks. The systems presented in this paper use CBR 
methodology to generate predictions from data sets that were 
generated after having applied the isotropic buffer operator to 
the environmental images. 
 
 
Keywords: Isotropic image analysis, Case-Based Reasoning, 
Forecasting. 

1. Introduction 
All customised Geographical Information Systems (GIS) include a buffer 
operator, also known as the buffering or influence zone. It is defined as the 
geometric space of the points that are at a shorter or similar distance to a given 
object (point, polyline or polygon) [5]. This definition is isotropic or directionally 
uniform, since the distance of the object to the edge of the buffer is constant in 
any direction on the plane. Among other fields, this operator is used in the 
simulated visualization of environmental processes, such as surveys of pesticide 
and chemical fertilizer contamination in the shallow waters of hydrographic 
basins; the influence of nitrates and silt levels on the growth of local flora, the 

@CMMSE                                                               Page   1174  of 1328                                               ISBN 13: 978-84-613-5510-5



ISOTROPIC IMAGE ANALYSIS FOR CBR FORECASTING 
 

environmental impact of installing new industries in close proximity to urban 
centers, the determination of areas of high seismic risk. 
 
Case-Based Reasoning (CBR) systems make use of past information in order to 
generate new solutions to new problems. The quality of the information stored 
within the case base will determine the quality of the solutions offered by these 
systems. Thus, the isotropic buffer operator is an important element in image 
analysis, as it provides the CBR system with accurate information that may be 
used in future situations. 
 
The following section gives a brief explanation of CBR methodology. The third 
section develops the concept of isotropic image analysis, after which the fourth 
section describes the CBR system presented in this study, prior to the conclusions, 
which are advanced at the end of the paper. 

2. Case-Based Reasoning  
Case-Based Reasoning is a technique that has its origin in knowledge-based 
systems. CBR systems learn from previous situations [1]. The main element of a 
CBR system is the case base; a structure that stores problems, elements (cases), 
and its solutions. So, a case base can be visualized as a database that stores a 
collection of problems with some sort of relationship to the solutions to every new 
problem, which gives the system the ability to generalize in order to solve new 
problems.  
 
The learning capabilities of CBR systems rely on their own structures, which 
consist of four main phases [2]: retrieval, reuse, revision and retention. The 
retrieval phase consists of finding the cases in the case base that most closely 
resemble the proposed problem. Once a series of cases have been extracted from 
the case base, they must then be reused by the system. In this second phase, the 
selected cases are adapted to fit the current problem. After offering a solution to 
the problem, it is then revised to check whether the proposed alternative is  in fact 
a reliable solution to the problem. If the proposal is confirmed, it is retained by 
the system and could eventually serve as a solution to future problems. 
 
CBR is a methodology [16] that has been applied to solve different kind of 
problems. It is a model that can easily be applied to solve soft-computing 
problems [15], since the methodology used by CBR is quite easy to assimilate 
using soft-computing approaches. Further applications are predictive models for 
the stock market [7], where inputs of different daily values allow a CBR model to 
assist with stock market investment decisions; construction models, for the 
generation of functional databases [18] to improve the somewhat chaotic 
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organization of construction projects, and also [6] to select different methods and 
materials, using expert system-oriented applications. 
 
In most cases, CBR has not been used by itself, but is combined with various 
artificial intelligence techniques. Growing Cell Structures (GCS) has been used 
with CBR to automatically create the intern structure of the case base from 
existing data. It has been combined with multi-agent applications [4] to improve 
its results. ART-Kohonen neural networks [17], artificial neural networks and 
fuzzy logic [8] have also been used to complement the capabilities of the CBR 
methodology. 

3. Isotropic image analysis 
There are two methods for the generation of influence areas: Voronoi 
triangulation and the Minkowski Sum [12]. In the latter method, a secondary 
polygon or generating polygon is defined as being located on a point or moving 
on a polyline or polygon and generating a surface formed by the points that the 
generating polygon finds on its way. In the isotropic buffer, the generating 
polygon is a circle, which implies a constant distance between the border of the 
buffer and the object. 
 
3.1. Von Misses Distribution 
 
We can define the circular variables [3] as those that represent directions on the 
plane, which are quantified by angles that range from 0 to 2π. One of the most 
important differences with regard to the lineal variables is that, while these can 
take values of the whole real straight line ),( −∞+∞ , the circular variables take 
cyclical values and consequently, the sum or difference of observations can 
surpass 360º and can even result in a negative value, it being possible in such 
cases to find an equivalent value within the interval 0-360º. This characteristic 
allows the circular variables to be treated differently from the lineal ones, by 
means of statistical creation, correlation analysis and specific distributions for 
these types of variables.  
 
Conceptually, a circular distribution can be considered in the same way as a 
bivariated lineal distribution where the total probability (or total mass) is 
dispersed within the circle unit. Therefore, in the same way as in the bivariated 
lineal statistic, a mean vector m of module r and mean angle Φ  exists in the 
circular statistic, at the tip of which the mass centre C of the distribution may be 
found (Fig. 1). 
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Let )(ΦZ  be the random variable If we take a monomodal sample of frequencies  
 j21  , ... , , nnn in the directions  j21  , ... , , ΦΦΦ , the mean vector  ),( Φrm  may be 

defined as 
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Figure 1. 
 
If the data are contained in intervals of width λ , r  should be corrected, the 
correct module being crrc ⋅= , where  
 

( )2 Sin
2
λ

λ
=c     (3) 

  
Among the existing circular distributions [14], one of the most widely used for the 
modelling of circular variables is the Von Misses distribution, whose density 
function for v-modal and symmetric samples is   
 

( )
( )

( )[ ]θ
π

−Φ=Φ vk
kI

f  Cos Exp
 2
1
0

 (4) 

  
Where 0I is the Bessel function of an imaginary pure argument of order 0, v is the 
number or modes and k it is the concentration parameter [14], that indicates to 
what measure the distribution around the dominant direction θ  is concentrated. 
The v-modal samples should be considered as being extracted from a distribution 
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generated by the overlapping v monomodal distributions. When the distances 
between modes are arbitrary, standard methods do not exist to decompose a v-
modal sample into v monomodal samples; in practice, the multimodal samples are 
usually shown as bimodal and are diametrically opposed. In this case, it is 
possible to reduce the bimodal sample to a monomodal sample, duplicating the 
angles. With the new angles, the average vector is calculated ),( 222 Φrm  using 
Eq.(1)(2)(3). To obtain the symmetrical modal angle 1Φ  from the original sample, 
the angle duplication effect must be cancelled, which gives us 221 Φ=Φ  ó 

180º  221 +Φ=Φ .  
 
For 0=k , ( )Φf  degenerates in an uniform distribution. Mardia demonstrated [11] 
that the maximum likelihood estimation θ̂  and ρ̂  for parameters θ and ρ  of a  
Von Misses distribution are respectively Φ and r. Likewise,  
 

r
kI
kI

=
)ˆ(
)ˆ(

0

1  (5) 

is fulfilled. Hence, the maximum likelihood k̂  is the solution of the Eq.(5).  
 
3.2. Minkowski Sum 
 
Given two images, A and B in 2R , the Minkowski sum is defined as  
 

U
Bb

bABA
∈

+=⊕ : (6) 
  

Where A is the generating polygon, and B the skeleton or primary element (point, 
polyline, or polygon. BA⊕ is generated by moving A though each element Bb∈ ,  
and then by adding the result of all the translations later on. The translation of the 
generating polygon A through the element Bb∈  is defined as 
 

{ }AababA ∈+=+  ,: (7) 
  

If we take a circle as generating polygon A, and the group of points 
( ) ( ) ( ) ( ){ }5,1,5,2,4,3,3,2=B  as the primary element:  

 
( )( ) ( )( ) ( )( ) ( )( )[ ]5,15,24,33,2 ++++=⊕ AAAABA UUU (8) 

  
Fig. 2 shows the result, as well as LA⊕  and PA⊕ , additions which have 
respectively taken polyline  L and polygon  P  as primary elements.  
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Figure 2.                                                 
 
Conceptually, the Minkowski sum is a dilation or expansion of the primary image 
B, whose form is determined by the generating polygon A. In the previous 
example we have chosen a circle as the generating image. The expansion of the 
primary image is directionally uniform or isotropic, since the generating image is 
a symmetrical figure with regard to both axes.  

4. Forecasting CBR system 
In the CBR system presented here, the images to be analyzed are divided into 
smaller squares. A squared zone determines the area that will be independently 
analyzed. The values of the different variables in a square area at a certain 
moment, which define the problem or the situation that has to be solved, is known 
as a case.  
 
4.1. Case base creation 
 
In this study, we have applied isotropic image analysis based on the buffer 
operator using Von Misses distribution and the Minkowski Sum, both previously 
introduced in Section 3. Owing to its good adaptation capabilities, this system has 
been applied to calculate the areas of different environmental phenomenon, which 
enable them to be modelled. 
 
Once the data is structured, it is stored in the case base. Every case has its 
temporal situation stored, which relates every case with the next situation in the 
same position. That temporal relationship is what creates the union between 
problem and solution. The problem is the past case, and the solution is the future 
case, the future state of the square under analysis.  
 
Growing Cell Structures (GCS) [9] are used when introducing the data into the 
case base,. GCS can create a model from a situation organizing the different cases 
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by their similarity. If a 2D representation is chosen to explain this technique, the 
most similar cells (cases in OSCBR) are near one or the other. If there is a 
relationship between the cells, they are grouped together, and this grouping 
characteristic helps the CBR system to retrieve the similar cases in the next phase. 
When a new cell is introduced in the structure, the closest cells move towards the 
new one, changing the overall structure of the system as shown in (9) and (10). 
The weights of the winning cell, , and its neighbours, , are changed. The new 
value is represented by , and  respectively. The terms  and   
represent the learning rates for the winner and its neighbours, while  represents 
the value of the input vector. 
 

              (9) 
               (10) 

 
4.2. Generating predictions  
 
Once the case base has stored the historical data, and the GCS has been structured 
according to the original distribution of the variables, the system is ready to 
receive a new problem. When a new problem is introduced into the system, GCS 
are used once again. The stored GCS behaves as if the new problem were stored 
in the structure, and finds the most similar cells (cases in the CBR system) to the 
problem introduced into the system. In this case, the GCS does not change its 
structure, because it is being used to retrieve the most similar cases to the 
introduced problem. Only in the retain phase does the GCS change, introducing 
the proposed solution once again if it is correct. 
 
The similarity of the new problem to the stored cases is determined by the GCS 
calculating the distance between them. Every element in the GCS has a series of 
values (every value corresponds to one of the principal components created after 
de FIK-PCA analysis) and the distance between the elements is therefore a multi-
dimensional distance, where all the elements are considered to establish the 
distance between cells. Then, after obtaining the most similar cases from the case 
base, they are used in the next phase. The selected case bases will be used to 
generate an accurate prediction according to the previous solutions that relate to 
the problem that was introduced.  
 
Having retrieved the most similar cases to the problem that has to be solved from 
the case base, they are used to generate the solution. The prediction of the future 
probability of finding oil slicks in an area was generated by using an artificial 
neural network, with a hybrid learning system. It was obtained with an adaptation 
of Radial Basis Functions Networks [10]. The chosen cases are used to train the 
artificial neural network. Radial Basis Function networks have been chosen 
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because of the reduction of the training time comparing with other artificial neural 
network systems, such as Multilayer Perceptrons. In this case, in every analysis 
the network is trained, using only the cases selected from the case base which are 
the most similar to the proposed problem. 
 
Growing RBF networks  [13] are used to obtain the predicted future values that 
correspond to the proposed problem. This adaptation of the RBF networks allows 
the system to grow during training gradually increasing the number of elements 
(prototypes) which play the role of the centres of the radial basis functions. In this 
case, the creation of the Growing RBF must be made automatically, which 
implies an adaptation of the original GRBF system. The pseudocode of the 
growing process and the definition of the error for every pattern is shown below: 
 

                         (11) 
 
Where tik is the desired value of the kth output unit of the ith training pattern, and 
yik the actual values of the kth output unit of the ith training pattern. 

5. Conclusions 
We have presented a novel CBR system, by using for the first time a GIS 
technique based on the use of an isotropic buffer operator. 
 
The areas in our CBR system were calculated by dividing the global images into 
smaller ones, so that we can apply a different buffer to each one. Changing the 
size of the buffer will help the system to generate a more accurate analysis, 
improving the quality of the data in the final case-based solution, resulting in 
better prediction results. 
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Abstract 
We studied the predictability of intraday stock market returns 
using both linear and non-linear time series models. For S&P-
500 index, we compared simple autoregressive and random walk 
linear models with a range of nonlinear models that included 
smooth transition, Markov switching, artificial neural network, 
nonparametric kernel regression and support vector machine 
models for horizons of 5, 10, 20, 30 and 60 minutes. The 
empirical results indicate that nonlinear models outperformed 
linear models on the basis of both statistical and economic 
criteria. Specifically, although return serial correlation receded 
by around ten minutes, return predictability still persisted for up 
to sixty minutes according to nonlinear models, even though 
profitability decreases as time elapses. More flexible nonlinear 
models such as support vector machines and artificial neural 
network did not clearly outperform other nonlinear models. 
 
Key words Forecasting; Intraday stock returns; Stock price 
forecasting; High frequency data; smooth transition regression, 
Markov switching regression, Neural networks, nonparametric 
kernel regression; support vector machine regressions 
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1. Introduction 
The predictability of stock market returns has long attracted much interest of 
financial researches and practitioners alike as it has profound theoretical and 
practical implications. The cornerstone of predictability is the idea of financial 
market efficiency that states that stock returns fully adjust to all relevant 
information, so they cannot be forecastable. 
This paper focuses on return predictability at intraday level. Intraday trading data 
prediction is particularly important as it offers practitioners the opportunity to 
gain high annual returns from a trading strategy. We should expect such 
predictability to weaken as traders’ actions to exploit profit opportunities expunge 
serial return correlation and adjust prices to their new equilibrium levels quickly 
since the stock market in nowadays is assumed to be highly efficient, so 
predictability recedes over long horizons. In addition, intraday horizons are 
important in the management of the risk of a trading desk (see Chew (1994)). 
Despite its economic and financial importance, the analysis of stock return 
predictability at very short forecast horizons is scarce in the academic literature. 
An exception is Clements and Taylor (2003) who analyze interval forecasts of 
high-frequency data. 
We explore intraday nonlinear return predictability for the S&P500 index during 
the June of 2003 to September of 2003 for different within the day temporal 
horizons of 5, 10, 20, 30 and 60 minutes. We use a wide set of nonlinear 
modelling techniques that includes smooth transition autoregressive model, 
Smooth transition autoregressive model with GARCH errors, Markov switching 
models, artificial neural networks, non parametric time series regression (NP); 
and finally, a support vector machines, a technique that comes from the statistical 
learning theory and whose predictive ability for intraday stock return data was not 
evaluated as yet to the best of our knowledge. Finally, we compare the forecasting 
performance of different models in terms of (a) some statistical criteria such as 
the root mean squared error, proportion of times the signs of returns are correctly 
forecasted, directional accuracy test of Pesaran and Timmermann (1992), and the 
popular Dielbold and Mariano (1995) test for the equality of accuracy of 
competing forecasts; and (b) an economic criteria, using a simple trading strategy 
guide by forecasts in order to test the relative pay-offs generated by different 
forecasting models. 

2. Methodology 
To forecast stock returns we used various models for E[rt/It-1], where rt represents 
the first difference of the logarithmic stock price, and It-1={rt-1, rt-2,…} is the 
information set available at time t-1. The information set only included lagged 
returns, given that we only analyzed the dynamic characteristics of returns and 
nonsynchronous trading effects may result in autocorrelation in returns. Below we 
briefly describe the different models considered for the conditional mean. 
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We considered nine forecasting models, the simplest of which were the random 
walk model (RW) and an autoregressive (AR) specification: 

 1 0 1 1
1

k

t j t j t
j

r r+ + − +
=

= β + β + ε∑ , (1) 

where k was selected to minimize the Bayes Information Criterion. To account for 
the possibility that the conditional mean E[rt/It-1] could be time-varying in a 
nonlinear form we employed several nonlinear models in addition to the linear 
models used as a benchmark. We briefly discuss the set of nonlinear 
specifications below. 
Smooth transition autoregressive models (STAR) models account for the 
existence of different regimes with different dynamic properties and with smooth 
transition between regimes (Granger and Teräsvirta, 1993, Teräsvirta et al, 1994). 
A first-order STAR model with two regimes takes the following form: 

 [ ]1 10 11 20 21 1 1t t t t tr r r F(z ; ,c)+ + += φ + φ + φ + φ γ + ε , (2) 
where 1tF(z ; ,c)+ γ  is the smooth transition function that depends on the transition 
variable zt+1 and the parameters γ , which is the transition rate or smoothness 
parameter; and where c is the threshold value which represents the change from 
one regime to another. The transition variable can be defined as a linear 
combination of the lagged values of rt, 1 11

H
t h t hhz r+ + −=

= α∑ . The most widely used 
smooth transition functions are the logistic function and the exponential function: 

1 1 1t tF(z ; ,c) exp( (z c))+ γ = + −γ −  and 21 1t tF(z ; ,c) exp( (z c) )+ γ = − −γ − , with 0γ > . This 
model is estimated by quasi-maximum likelihood using the logistic function. 

To account for the possible effect of nonlinearities in variance on the mean, 
we also considered the model in Equation (2) with a GARCH(1,1) errors (STAR-
GARCH). Thus, 1 1 1t t th+ + +ε = η , where 

 
2

t+ 1 0 1 t 2 th h= + +α α ε α , (3) 
0 0>α , 1 2, 0≥α α , 1t+η  is a i.i.d. process with zero mean and unit variance. 

The main feature of an autoregressive Markov switching (MS) model is the 
possibility for some of the parameters to switch across different regimes or states 
according to a Markov process governed by a state variable denoted by st (see 
Hamilton, 1989). A first-order autoregressive MS model has the following 
specification: 

 1 11 1t tt s s t tr r
+ ++ += α + β + ε , (4) 

where 1t+ε  is i.i.d. 20
tsN( , )σ  and st is an unknown state variable that follows a first-

order Markov chain, with a transition probability Pr(st =j|st-1=i)=pij that indicates 
the probability of switching from state i at time t-1 to state j at time t. For 
simplicity sake, we assume that there are only two states of the economy, denoted 
as state one and state two, as in Maheu and McCurdy (2000) and in Perez-Quiros 
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and Timmerman (2000) (e.g., bull and bear markets (Chen and Shen (2007)) or 
low and high uncertainty in stock markets (Li (2007)).  
We can use nonparametric kernel regression (KR) when nonlinearity in the 
conditional mean cannot be characterized explicitly. In such cases the return 
conditional mean is specified in a general form as: 

 t+ 1 t t t -1 t -p+ 1E(r |I )= g(r ,r ,...,r ) , (5) 
where p is the number of lagged stock returns and where the function g(·) can be 
approximated locally at each point by a linear function. 
As an alternative to nonparametric nonlinear conditional mean, we considered 
artificial neural networks, which have proven to be useful in capturing 
nonlinearity-in-mean for forecasting financial time series. Artificial neural 
networks are a universal approximator in a wide variety of nonlinear patterns (see 
Hornik et al, 1990) and generate good predictions (Swanson and White, 1995, 
1997). The basic structure of neural networks combines many basic nonlinear 
functions via a multilayer structure, where there is at least one hidden layer 
between inputs and outputs. The idea is that explanatory variables simultaneously 
activate the units in the hidden layer through some function, and output is 
produced subsequently from the units in the hidden layer through another 
function. The specific type of ANN employed in this study is the multilayer 
perceptron (MLP) model, the most basic but perhaps most widely used neural 
network in economic and financial applications. Hence, MLP(p,q): 

0 0
1

( ; ) ( )
q

t j j t j
j

f c w cψ
=

′= + +∑x w xθ  

where ψ  is a sigmoid function (typically, a logistic or hyperbolic tangent 
function). 
The universal approximation properties of MLP (see Leshno, 1993) neural 
networks permit us to approximate any continuous or integrable function (the 
universal approximation property). In order to ensure consistency in a stochastic 
environment, in addition to considering the error associated with the 
approximation of the regression function via a finite number of parameters, it was 
necessary to consider the estimation error arising from the use of a limited 
quantity of data. The consistency of the MLP neural networks for different 
hypotheses was thus obtained (see Krzyzak, 1996; Fine, 1999), and specifically 
for dependent observations (Chen, 1999). When the series responds to an 
autoregressive model, then: 

( ; )t t ty f ε= +x θ  
where ( ; )tf x θ  is a neural network and tε  is, for example, white noise. Trapletti 
(2000) demonstrated the stationarity and strongly mixing nature of the series { },ty  
as also the consistency and asymptotic normality of the least squares estimator for 
a hypothesis that ensures the identifiability of the network parameters (Hwang 
and Ding, 1997). 
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MLP training, which usually uses the squared loss, is performed through 
nonlinear optimization algorithms. In this research we used the Bayesian 
algorithm proposed by Foresee and Hagan (1997) as it is less dependent on expert 
criteria. 
Another alternative to the previous regression models is the support vector 
machine (SVM) (Vapnik, 1998, Schölkopf and Smola, 2002). The SVMs for 
regression are linear models obtained in a new feature space X  as a result of a 
transformation : p →ϕ R X  of the input space, in which an inner product is defined 
through a positive definite function (kernel), ( ), ( ) ( , )i t i tk=x x x xϕ ϕ . SVMs for 
regression have the following general formulation: 

( ) , ( )t t ty f b= = +x w xϕ . 
Given a sample, the parameters , bw  in the SVM are estimated as the solution 

to the following regularization problem: 

 

2

,
1

1min ( , ( ))
2

T p

i ib
i

C y f
−

=

⎧ ⎫
+⎨ ⎬

⎩ ⎭
∑w

w xl

 (6) 
where C is a regularizing constant and l is the ε-insensitive loss: 

( , ( )) ( ) max{0,( ( ) )}y f y f y f
ε

ε= − = − −x x xl . 
The only solution to the problem in Equation (12) is a linear combination of 

key points of the sample (the support vectors), s.v. ( )i iα= ∑w xϕ , in such a way that 
the SVM results as: 

s.v. s.v.

( ) ( ), ( ) ( , )t i i t i i t
i i

f b k bα α
∈ ∈

= + = +∑ ∑x x x x xϕ ϕ . 

SVMs share the general form of radial basis function neural networks, which 
are universal approximators to continuous or integrable functions (e.g., Park, 
1993). Consistency results also exist (see Bousquet and Elisseeff, 2002; 
Steinwart, 2002). 
We obtained in-sample and out-of-sample one-step-ahead forecasts that were 
composed of the estimated parameters of the model and lagged returns. The 
market timing ability of forecasting models was also compared with a simple buy 
and hold (B&H) intraday investment strategy for out-of-sample forecasting. This 
strategy implements a naïve allocation that consist of maintaining a 100% stock 
index or cash if the quantity predicted exceeds a threshold given by the 
transaction costs. Hence, the forecast by each predictor determines the position to 
be taken for the following time period. Thus, if the share price is expected to fall 
below a threshold on the basis of a particular predictor, then shares are sold if the 
agent holds assets or they are not bought if the agent holds cash. In contrast, if the 
share price is expected to rise above a threshold on the basis of a particular 
predictor, then shares are bought if the agent holds cash or they are not sold if the 
agent holds assets. The threshold is determined by transaction costs, which are 
assumed to be low for intraday transactions, as otherwise commissions would 
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erode profits. The value of these cost were determined in our training set as the 
mean value of rises and falls divided by 1000 (around 3 bps.). 

3. Results  
Our main empirical findings verify the predictability of stock returns beyond the 
time serial correlation recedes; i.e., although market is weak form efficiency 
according to linear models and therefore prices are not linearly predictable, 
predictable nonlinearity-in-mean is possible up to a 60 minutes time interval. 
Surprisingly, the forecast performance of nonlinear models decreases very slowly, 
mainly directionally predictability, which has an important implication for market 
timing and the resulting active intraday asset allocation management. 
we show that simple autoregressive and random walk linear models are surpassed 
by a wide range of nonlinear models, including smooth transition autoregressive, 
smooth transition autoregressive with GARCH errors, Markov switching, 
multilayer perceptron, nonparametric kernel regression and support vector 
machine models, which potentially capture nonlinearity-in-mean in intraday stock 
returns. Traditional statistical criteria suggest that nonlinearities-in-mean are 
relevant to forecasting intraday stock returns both in-sample and out-of-sample 
and for any intraday time return period. Of the nonlinear models, for short time 
periods of five minutes, the Markov switching model performed best for in-
sample forecasting, whereas kernel regression was the best performer for out-of-
sample forecasting. Despite return serial correlation receding and returns 
behaving as a random walk for more than ten minutes, return predictability still 
persisted for up to sixty minutes according to nonlinear models. For the longer 
intraday time periods studied, smooth transition and neural network models 
appeared to be better performers, even though the Diebold-Mariano test was not 
conclusive on equal predictability among the models. We also evaluated linear 
and nonlinear models in terms of economic criteria, using a simple trading rule 
driven by model predictions and transaction cost. On economic grounds, trading 
rules based on Markov switching and support vector machine models were the 
most profitable for short time horizon returns, whereas smooth transition and 
neural networks behaved better for longer periods, even though profitability 
decreased as time elapsed. 
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Abstract 
In this study convective heat transfer coefficients were determined during 
vacuum frying of potato cylinders (5, 10 mm radius) in sunflower oil at 
100, 120 and 140 ºC. These parameters were evaluated with indirect 
method based on the adjustment of experimental temperatures, obtained 
with a teflon probe, and a thermal model implemented with the finite 
elements software COMSOL. 
 
The results obtained shown higher values for the vacuum frying than for 
atmospheric frying. Geometry and use of vacuum conditions played an 
important role in the convective heat transfer, being more importants than 
the oil temperature. A screening effect, originated for bubble collapsing 
due to high evaporation rate, was also observed in the case of vacuum fried 
thinner cylinders and was incorporated into the model, with the use of an 
effective temperature, Tef.  

 
Key words: Vacuum frying, convective heat transfer, 
bubble screening, finite element method, COMSOL. 

1.   Introduction 
Frying is an extensively process used both in the food industry and 
domestically. It basically consists of cooking foodstuffs in oil or fat at 
temperatures well above the boiling point of water. This fast and easy 
preparation results in products with organoleptic qualities (colour, texture, 
flavour) much appreciated by consumers. However, these products end up 
with a high fat content that in some cases reaches a third of their total 
weight. In recent decades, therefore, numerous complementary processes 
have been proposed to reduce fat content while retaining sensorial qualities 
[1]. 
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One of these alternative processes is frying at reduced pressure, used for 
many years in the snacks industry especially in South-East Asia. Working 
in vacuum conditions reduces the boiling point of water in the foodstuffs 
which can therefore be eliminated at lower temperatures, allowing frying 
with oil at a lower temperature. Numerous studies have evaluated the 
adaptation of this technique with different vegetables, comparing it with 
frying at atmospheric pressure. It has been found that as well as reducing 
the final fat content [2,3], vacuum fried products have several other 
advantages such as a lower acrylamide content [4] and improved 
organoleptic and nutritional qualities [5,6,7,8] 
 
Coupled heat and mass transfer with bubbling make those processes 
difficult for modeling and further optimization purposes. This is especially 
important in the case of vacuum frying as lower pressure increases the 
evaporation rate and the size of the bubbles. Across the solid surface, there 
becomes a vigorous movement of evaporation causing a considerable 
mixing in the oil affecting convective heat transfer coefficient. The 
knowledge of this coefficient is expected to allow accurate determination 
of temperature distribution and hence the calculations to lead to 
development of an optimum frying process. 
 
It was therefore decided to evaluate the convective heat transfer during 
moderate vacuum frying of potato cylinders. 
 
2.  Material and methods 
  
The experimental material was potato (Solanum Tuberosum, cv. Agria) 
obtained from from local distributors. Each sample consisted of cylinders 
of different radii (1 and 0.5 cm respectively) and 5 cm in length extracted 
from the middle of the potato, using a metal punch. Sunflower oil with a 
high oleic acid content specially prepared for frying was used (Titan, 
Koipe, Spain). 
 
A pressure cooker (Gastrovac ICC, Spain) with a nominal pressure of up to 
20 kPa was used for the reduced pressure frying, sufficient for the pressure 
levels required. The changes in pressure and temperature were recorded 
with a piezoresistive pressure transducer (Picovacq PT, Digiterm, France) 
placed inside the system. In order to obtain suitable working conditions and 
keep them constant throughout the process, a ratio of 3.5 L of oil for every 
100 g of potato was used. Each frying operation consisted of an initial 
depressurization step with the potatoes and the probe outside the oil, an 
immersion step with the oil already hot and subsequent removal and 
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draining during 1 min and vacuum breaking during 1 min. Under these 
conditions the absolute pressures recorded were between 20 and 35 kPa 
depending on the working temperature and the exact moment of frying, 
given that the vigorous initial vaporization causes a certain degree of 
oscillation in the pressure of the system. Before each experiment, the oil 
was kept at the working temperature and the maximum vacuum level for 
one hour, and discarded after a maximum of five hours of use.  Frying was 
carried out at temperatures of 100, 120 and 140 ºC. 
 
Similar experiments were carried out at atmospheric pressure and 140 ºC 
using the same equipment but without applying the vacuum conditions. 
Three replications were made for each of the conditions. 
 
To determine the heat transfer coefficient during atmospheric and pressure 
frying conditions an indirect method was used [9, 10]. A cylindrical teflon 
probe was placed inside the frying oil whit  potato cylinders, three big or 
four small, at different conditions to simulate the bubbling of a normal 
frying process as can be observer in Fig 1. K-type thermocouples were 
used to determine the time history of sample temperatures during frying. 
One thermocouple was placed in the oil to determine the process 
temperature while the other thermocouple was put across the cylinder 
radius and fixed near the geometric center of the sample. To determine the 
convective coefficients the obtained thermal values were adjusted to a 
mathematical two-dimensional axialsymmetric model. 
 

 
Fig.1. Image of the device used to obtain the experimental data. 

 
Heat transfer from the oil to the teflon probe was simulated using a 
comercial simulation package COMSOL Multiphysics 3.4 with the heat 
transfer module (Comsol, Swedish), that makes use of finite element 
method. General solution form and Direct (UMFPACK) linear system 
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solver were used in simulations. For the probe a heat transfer scheme was 
adopted as convective at the exterior and conductive in the interior of the 
cylinder according the following expressions: 

    ( ) 0p
TC k T
t

ρ ∂
+ ∇ − ∇ =

∂
 For the teflon probe 

     
The boundary conditions are: 

    ( )sk T h A T T∞∇ = −    For the external boundaries  
  

  0=∇Tk       For the axes of symmetry 
 

where ρ is the density, Cp is the specific heat, k is thermal conductivity, A 
is the area, h is the convective heat transfer coefficient, T∞ is the oil 
temperature and Ts is the surface temperature. 

 
These equations were implemented using a mesh of 362 nodes with 
triangular elements. The input data were the thermal and physical 
properties of the teflon: k, 0.35 W m-1 K-1; Cp,1,050 J kg-1 K-1; and ρ, 2,200 
kg m-3 [11]. The convective heat coefficient was adjusted appropriately 
until the best fit (minimum mean squared error, MMSE) was obtained 
between the experimental data of temperature at the central point and those 
predicted from simulation. The parametric optimization was achieved 
using the Nelder-Mead method through MATLAB 7.0 (Mathworks, USA), 
specifically the “FMINSEARCH” utility. 

 
3.  Results and discussion 

  
Fig. 2 presents changes in the values of the experimental data for the 
central temperature in the teflon probe for the studied conditions. There are 
big differences between the different geometries and studied conditions. In 
the case of the thick cylinders the temperature rises up faster ending close 
to the set point. For the small ones the temperature remains between 18 and 
20 ºC under the oil values and increases slowly. This could be explained 
attending to the different evaporation rates, just after the vapour escapes 
from the potatoes the bubbles start collapsing isolating the surface of the 
probe. This screening effect is more important in the case of vacuum 
frying, because the bigger bubbles, and for the thinner cylinder, because its 
ratio surface/volume is higher and their water lose is faster. 
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Figure 2. Central probe temperature during frying at different conditions: 100 ºC (a), 120 
ºC (b), 140 ºC (c) with vacuum conditions and 140 ºC and atmospheric pressure (d). Oil 
temperature (dot line), thick potato samples (continuous line), thin potato samples (dash 
line). 
 
As the convective conditions in the oil depends of the moisture transport 
the base convective coefficient was supposed to follow an exponential 
form in parallel to water loss in vacuum frying [2].  This form is also used 
for other authors in atmospheric frying [12] and is expressed as: 
 

    
( )C th A B e − ⋅= + ⋅   

 
To include the screening effect the effective temperature parameter, Tef, 
was introduced into the boundary convective condition instead of set 
temperature, T∞. With this additional value it is considered that the oil 
surrounding the surface of the probe is at a lower temperature that the rest 
due to the bubble screening. The adjusted values for the A,B,C and Tef 
parameters and the corresponding MMSE are shown in Table 1. This also 
presents the corrected MMSE, calculated as the results of multiply the 
MMSE by the numbers of adjust parameters, used in each case to represent 
the global efficiency of each method. 
To include the screening effect, the effective temperature parameter, Tef, 
was introduced into the boundary convective condition instead of the 
external temperature, T∞. This additional value takes into account that the 
oil surrounding the surface of the probe is at a lower temperature that the 
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rest due to the bubble screening. The adjusted values for the A,B,C and Tef 
parameters and the corresponding MMSE are shown in Table 1, which 
presents as well the corrected MMSE, calculated by multiplying the 
MMSE by the fitted parameters, used in each case to represent the global 
efficiency of each method. 
 
Table 1. Convective heat transfer coefficient h values determined with the indirect 
method. 

Heat Atm.
coefficient 100 ºC 120 ºC 140 ºC 140 ºC

A (W m-2 K-1) 155.34 165.00 177.80 130.92

B (W m-2 K-1) 1903.64 3684.50 13627.00 1278.57

C (s-1) 0.204 0.160 0.332 0.124
Exponential MMSE 0.91 1.76 1.58 1.18

MMSE*n 2.73 5.28 4.74 3.54

h=A+B⋅e(-C⋅t) A (W m-2 K-1) 56.75 57.34 60.78 65.73

B (W m-2 K-1) 429.12 406.91 407.54 321.71

C (s-1) 0.066 0.059 0.066 0.075
MMSE 1.07 0.81 1.29 1.36

MMSE*n 3.21 2.43 3.87 4.08

A (W m-2 K-1) 128.71 125.00 177.10 120.18

B (W m-2 K-1) 2194.46 2684.99 13311.00 1467.97

C (s-1) 0.214 0.131 0.340 0.135
Tef (ºC) 102.4 123.5 140.1 141.7
MMSE 0.71 1.63 1.55 1.15

MMSE*n 2.84 6.52 6.20 4.60

h=A+B⋅e(-C⋅t) A (W m-2 K-1) 75.80 83.18 87.58 82.14

B (W m-2 K-1) 492.11 528.34 500.31 273.64

C (s-1) 0.067 0.078 0.089 0.065
Tef (ºC) 94.5 112.3 131.5 132.9
MMSE 0.77 0.56 0.86 1.07

MMSE*n 3.08 2.24 3.44 4.28

Vacuum

Exponential with 
screen effect

Thick

Thin

Thin

Thick

Potato 
cylinder size Parameter

  
 
For the first model the MMSE are below 2 so could be considered a good 
adjust. The parameter ‘A’, that represents the heat transfer at high times, 
increases with temperature in both geometries. The use of vacuum 
conditions increases this value in the case of thick cylinders while slightly 
decreases the coefficients for the small ones. There are frying studies that 
found convective coefficients being proportional [12] or inverse 
proportional [13] to temperature, depending of the operating conditions. In 
our case the differences are small comparing with the geometry or the use 
of vacuum conditions, so we can ignore the effect of temperature for the 
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conditions used. The sum ‘A+B’, that represents heat transfer at initial 
times, show high values for the vacuum frying comparing with 
atmospheric frying due to the lower agitation observed in this case. The 
high values that can be registered with this model are similar to the values 
registered for other authors using similar experimental conditions [9].  
 
The second model shows lower MMSE in all cases. The Tef calculated for 
the thick cylinders is higher than set temperature, T∞, being indicative of 
this modification only affects the adjustment due to the use of an extra 
parameter. As the corrected MMSE is also high for the thin cylinders fried 
at atmospheric pressure the same conclusion can be added for these 
working conditions. In the case of thin cylinders and vacuum conditions Tef 
is lower than T∞ in all cases; the difference from the set temperature is 
between 5.5 and 8.5 ºC showing that the screening is an important effect 
that has to be considered during frying, specially while using vacuum 
conditions in products with high evaporation rates. In addition, the 
introduction of the Tef parameter is mathematically justified by the 
MMSE*n values, which are lower than the obtained with the first model.  
 
The second model shows lower MMSE in all cases. The Tef calculated for 
the thick cylinders is higher than the set temperature, T∞, indicating that 
this modification only affects the fit due to the use of an extra parameter. 
As the corrected MMSE is also high for the thin cylinders fried at 
atmospheric pressure the same conclusion can be added for these working 
conditions.  In the case of thin cylinders and vacuum conditions Tef is lower 
than T∞ in all cases; the difference from the set temperature is between 5.5 
and 8.5 ºC showing that screening during frying is an important effect that 
has to be considered, especially while using vacuum conditions in products 
with high evaporation rates. In addition, the introduction of the Tef 
parameter is mathematically justified by the MMSE*n values, which are 
lower than those obtained with the first model. 
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Abstract 

GPS receiver observations made in forestry settings are affected 
by data distortion and signal losses and this negatively affects 
precision and accuracy measurements.  Using a technique for 
identifying functional outliers, we determine whether there are 
differences between errors for coordinates obtained at 10 
different points of a forest characterized by a set of dasometric 
data. Our results indicate that the 2 points with highest error 
correspond to areas with dasometric values that would indicate 
these areas to have a more dense forest canopy than the 
remaining areas.  
 
 
Key words: GPS, forest canopy, functional data, outlier, depth 
 
 

 1.Introduction 

Geographic positioning system (GPS) receivers are frequently used in forestry 
settings for, among other applications [7], the monitoring of harvesting machinery 
[9] and cadastral forest surveys [19]. In forestry settings, however, measurement 
precision and accuracy are affected by forest canopy interference in the satellite 
signals.  Tree trunks, branches and leaves distort or break up satellite signals and 
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negatively affect the accuracy and precision of receiver-measured coordinates in 
these conditions [6], [16]. For a forest of lodgepole pines (Pinus contorta 
Douglas, Gerlach (1989) found that radio signal losses from a satellite could be 
attributed to tree trunks, branches and foliage 23%, 28% and 36% of the time, 
respectively. 
 
The typical approach to studying the effect of the forest canopy on GPS positional 
accuracy is to seek associations between accuracy and dasometric variables 
characterizing the forest canopy, such as basal area, stand density and the Hart-
Becking index [11], [12], [16], [18]. In these cases, tests for comparing statistical 
distributions (parametric or non-parametric) are generally used to determine 
whether or not precision values obtained in zones with different forestry variable 
values can be considered to come from the same population. Analysis of variance 
(ANOVA) is also frequently used to identify the variables that significantly affect 
GPS positional accuracy [1].  However, this kind of test is not appropriate when 
working with a dense set of data collected over time (such as GPS data), as such 
data is more suitably handled as observations made at discrete points of a smooth 
stochastic process. 
 
Data mining techniques have advanced to the point where the exploitation of 
vectorial data has proven to be inadequate; this has led to the emergence of 
functional data analysis (FDA) [17]. FDA applications are very varied and include 
environmental research [10], [15], sensors [21], industrial methods [8], [13] and 
medical research [2], [20]. 
 
In the functional approach, comparisons are made overall and take into account 
the time correlation structure of the data. This is the focus we give to our forest 
canopy problem. The method used to compare curves is based on the concept of 
functional depth, which is a measure of the centrality of a given curve within a 
group of curves [5]. 
 
The article is structured on the basis of a description of our methodology, a 
description of our results and the most relevant conclusions to be drawn from the 
results. 
  

 2.Methodology 

 
We identified outliers using a functional approach, in such a way that the sample 
of observations was considered to be composed of a series of curves rather than a 
discrete set of point observations. First the curves were fitted to the discrete data 
by means of a process called smoothing and then outliers were identified using 
the concept of functional depth. In this section we explain the basic concepts 
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underlying the methodology for detecting outliers in the initial sample, namely, 
smoothing, functional depth and outlier identification. 

2.1. Smoothing 

 
One of the first studies in the FDA fields [17] considered functional data to be 
observations at discrete points of continuous random processes. Assume a set of 

observations ( )jf t in a set of pn  points jt ∈ℝ , where jt represents each instant of 

time. These observations can be considered as discrete observations of the 
function, where is a functional space.  

In order to estimate the function ( )f t , it is considered that { }1,..., bnF span φ φ= , 

where  { } 1,...,k k nφ =  is a set of basis functions.  In other words, for each function 

( )f t Fχ∈ ⊂ , we have:  

 ( )
1

( )
bn

k k

k

f t c tφ
=

=∑  (0.1) 

 
The smoothing problem now consists of determining the solution to the following 
regularization problem [17]: 

 ( ){ } ( )
2

1

min
pn

j j
f F

j

z f t fλ
∈

=

− + Γ∑  (0.2) 

where ( )j j jz f t ε= +  (
jε  is random noise with zero mean) represents each of the 

observations of the function f  in the instant  jt , Γ  is a differential operator that 

controls the complexity of the function and λ  is a regularization parameter.  
 
Bearing in mind (1.1), the problem (1.2) may be written as: 
 

{ }min ( ) ( )T Tλ− − +
c

z c z c c RcΦ ΦΦ ΦΦ ΦΦ Φ  

 
where 1( ,..., )

p

T

nz z=z  is the vector of observations, 1( ,..., )
b

T

nc c=c is the vector 

of coefficients expressed in (0.1), ΦΦΦΦ  is the p bn n×  matrix with elements 

( )jk k jtφ=ΦΦΦΦ  and R is the 
b bn n× matrix with elements: 

 

2

2 2 2 2

( )
, ( ) ( )kl k l k lL

R D D D t D t dtφ φ φ φ= = ∫T T
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2.2. Functional depth 

 
Depth measurement was originally introduced in the context of multivariate 
analysis to measure the centrality of a point with respect to a sample.  Depth 
provides a way of ordering a sample from its centre in such a way that the points 
closest to the centre have greater depth.  Like most vectorial concepts, the concept 
of depth has been generalized to the functional case [5]. Functional depth 
measures the centrality of a curve within a set of curves. 
In this study we focus on 2 of the most widely used depth measurements: 
 

• Fraiman-Muniz depth (FMD): Let the empirical distribution function 

, ( ( ))n t iF f t  be [5] for the  functional sample { }
1

( )
n

i i
f t

=
 , [ ],t a b∈  be: 

,
1

1
( ( )) ( ( ) ( ))

n

n t i k i

k

F f t I f t f t
n =

= ≤∑  

where ( )I ⋅  is the indicator function. The FMD for a curve if  is given by: 

( ( )) ( ( ))
b

n i n i
a

FMD f t D f t dt= ∫  

where ( ( ))n iD f t  is the point depth of [ ]( ), ,if t t a b∀ ∈  given by: 

,

1
( ( )) 1 ( ( ))

2n i n t iD f t F f t= − −  

• H-modal depth (HMD): The functional mode (based on the mode concept) 

is defined as the curve most densely surrounded by the other curves in a 

sample. HMD is expressed as: 

1

( , )
n

i k

n i

k

f f
MD f h K

h=

 − 
=  

 
∑  

where : R RK + +→  is a kernel function, ⋅  is a norm in a functional 

space and h  is the bandwidth parameter. One of the most widely used 
norms for a functional space is 2L , expressed as: 

( )
1/2

2

2
( ) ( ) ( ( ) ( ))

b

i j i j
a

f t f t f t f t dt− = −∫  

The infinite norm L∞  is sometimes used: 

( , )

( ) ( ) sup ( ) ( )i j i j
t a b

f t f t f t f t
∞ ∈

− = −  
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Different kernel functions ( )K ⋅  can also be defined, among them the 
truncated Gaussian kernel: 

22
( ) exp , 0

22

t
K t t

π

 
= − > 

 
 

2.3. The functional outlier concept 

 
A functional sample may include elements that, although they do not constitute 

error in themselves, may feature patterns different from the rest of the sample.  
Depth measurement, as described above, is used to identify outliers in functional 
samples.  

Depth and outlier are inverse concepts: outliers in functional samples have 
considerably less depth than non-outliers.   

For this study we used the HMD to measure depth. The cutoff C  was obtained 
so that type 1 error—the percentage of correct observations wrongly identified as 
outliers—was approximately 1%: 

 
 Pr( ( ( )) ) 0,01, 1,...,n iMD x t C i n≤ = =  
 

In practice, the distribution of the functional depths for which the value for C  
needs to be estimated is unknown. Of the different estimation methods available 
[4], we selected the bootstrapping approach [14]. 
 
 

3. Application. Forest canopy impact on GPS accuracy 

 

3.1. GPS measurements  

The sample used in this research { }101 2 3600 1
( , ,..., )

j j
t t t

=
consists of a set of GPS 

observations measured, for a set of 10 points, second by second over 1 hour, 
where 

ijt represents measurement in instant i (in seconds) over the period of 1 

hour at point j. 
The data were collected using a double-frequency GPS receiver (HiperPlus, 
Topcon Positioning Systems, Inc., Livermore, CA, USA) while observing GPS 
pseudorange and carrier phase. 
The GPS experimental data were collected during 2 days over periods of 5-6 
hours between 18 and 21 July 2008. Antenna heights ranged from 1.35 to 1.70 m 
and the logging rate was 1 second. The collection of observations lasted for at 
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least 1.5 hours and the process was repeated 3 times a day. GPS data were revised 
to ensure continuity and were cut to obtain 10 datasets representing 1 hour.  
 
The observation point was located at latitude 42°41'08.79872''N and longitude 
6°38'03.210587'' W (WGS84) and at an ellipsoidal height of 933.829 metres 
(considered the Ztrue coordinate). These coordinates were calculated by 
differential correction in static surveying. Post-processing correction was carried 
out using the PONF base station as the nearest reference station in the regional 
GNSS network (http://gnss.itacyl.es/). This point was projected and the position 
set up as the ‘true’ position for calculating horizontal and vertical accuracy. The 
UTM coordinates were Xtrue=693814.623 and Ytrue=4728635.531 (Datum 
ETRS89; zone 29N).  
 
The planimetric error in each instant of time i was calculated using the 
expression: 
 

( ) ( )2 2

XY i true i trueE X X Y Y= − + −  

 
The altimetric error in each instant was calculated using the formula: 

 

Z i trueE Z Z= −   

3.2. Forest environment characterization  

 
With a view to characterizing the forest lots studied, we calculated the parameters 
associated with the forestry characteristics of each. The parameters were 
determined by measuring the trees in a radius of 10 metres around the point where 
the GPS observations were made. 
The parameters studied were the following: 
 

• Dm: Normal diameter (measured at a height of 1.3 metres). 
• Hm: Mean height. 
• H0: Dominant height (mean height of the 4 thickest trees). 
• Htt: Treetop height (total height less the height to the first branch). 
• N: Number of feet/hectares. 
• G: Basal area (cross-section at normal tree height). 

• Dg: Mean squared diameter ( 4
; number of treesg

G
D n

nπ
= = ). 

• HBI: Hart-Becking index (relationship between mean spacing between 

trees a and dominant height H0 (
0

100
a

IH
H

= ) 
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• V: Wood volume. 
• W: Biomass. 
• SC: slenderness coefficient (relationship between mean height and mean 

diameter of the biomass) 
 
Table 1 shows the parameter values for the 10 studied plots and also minimum, 
maximum and mean values and standard deviation for the entire set. 
 
 

Table 1. Forestry paramaters for 10 forest lots 
 

Lot Dm (cm) Hm (m) H0  
(m) 

Htt  
(m) 

N ( 
ft/ha) 

G  
(m2/ha) 

Dg (cm) HBI (%) V  
(m3/ha) 

W  
(kg/ha) 

SC 

1 20.11 17.02 17.85 11.72 732.48 24.47 20.41 20.69 182.89 83696.33 82.42 
2 20.28 15.34 16.40 10.36 764.13 25.61 20.31 22.06 191.20 87207.64 74.29 
3 28.38 25.32 26.73 17.46 605.82 38.53 29.13 15.20 385.41 179483.25 88.50 
4 29.68 27.69 28.01 19.21 668.30 46.84 29.79 13.81 474.05 220912.96 94.46 
5 28.66 25.73 26.07 17.30 2509.59 54.38 28.17 7.66 415.45 146441.65 192.57 
6 14.92 16.01 15.02 9.85 2037.15 37.20 15.92 14.75 237.06 114335.66 111.71 
7 16.41 19.19 19.11 10.56 1751.19 40.50 17.22 12.51 279.05 131151.88 115.13 
8 14.42 22.63 22.61 12.43 3056.36 60.18 16.08 8.00 442.99 216048.37 156.75 
9 13.46 21.41 22.23 12.48 2960.08 53.96 16.01 8.27 380.39 188170.60 153.83 
10 12.73 23.26 22.85 13.06 2992.34 46.35 14.23 8.00 312.88 157547.27 182.95 
Min 12.73 15.34 15.02 9.85 605.82 24.47 14.23 7.66 182.89 83696.33 74.29 
Max 29.68 27.69 28.01 19.21 3056.36 60.18 29.79 22.06 474.05 220912.96 192.57 
Mean 20.12 21.38 21.66 13.62 1811.63 42.72 20.94 13.39 329.86 152467.07 126.62 
STD 6.70 4.33 4.48 3.33 1044.93 11.91 6.05 5.28 104.81 49092.53 43.06 

 

4. Results 

 
The first step in identifying possible outliers in the data was to fit curves to the set 
of values for the planimetric and altimetric errors. The smoothing method 
described in Section 2.1 was used for this purpose, resulting in a set of 10 curves 
for each error type. Figure 1 shows the 10 planimetric error curves.  The great 
functional complexity of the sample is evident in the irregularity of the functions. 
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Figure 1. Functional sample for planimetric errors, with 2 outliers depicted in 

black. 
 
Given the complexity of the sample, it was necessary to select a set of 1000 basis 
functions in order to obtain the most information possible. The outcome was a fit 
defined by an R-squared value (RSQ) of 0.99.  
 
In order to study the functional outliers the HMD function was selected 
considering the norm 2L  of a functional space. The analysis identified 2 
functional outliers (depicted in black in Figure 1) in the sample for the specific 
case of the planimetric errors; these outliers corresponded to Lots 5 and 8 in Table 
1. No functional outliers for the error in Z were detected. 
 
This result differs from that obtained using the Kruskal-Wallis test for all the 
positions except numbers 5 and 8 (the fact that the errors do not follow a normal 
distribution was first checked and was the reason a non-parametric test was used). 
This test rejected the null hypothesis, for a 99% significance level, that the 8 error 
observations (all except numbers 5 and 8) came from the same population. Recall 
that, since the Kruskal-Wallis test compares the medians of the groups, it is 
possible to have a tiny p value—clear evidence that the population medians are 
different— even if the distributions overlap considerably. 
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The 2 points corresponding to the outliers are characterized by high values for 
tree density (N), volume (V) and biomass (W), low values for the Hart-Becking 
index and the largest basal areas. Our result corroborates the results obtained by 
other authors, such as Naesset (1999, 2001)—who found that the basal area is a 
parameter that has a significant bearing on GPS measurement accuracy—and 
Rodríguez-Pérez et al. (2007)—who detected an association between the Hart-
Becking index and precision. 
 

5. Conclusions 

 
We have analysed the application potential of functional data analysis to the 
evaluation of the impact of the forest canopy on the accuracy of GPS receiver 
measurements.    Adopting a functional approach means that error measurements 
over the period of an hour can be considered as a continuous function. In other 
words, we can work with all the information rather than just with mean values, 
which is the basis for the traditional statistical approach. 
 
Outliers were detected using functional depth measurement (a generalization of 
the vectorial case), which provides information on the distance of a function from 
the centre of a sample. In contrast with conventional vectorial techniques, this 
methodology does not require a normality hypothesis for the sample (whether this 
hypothesis would be valid was, nonetheless, checked) and also takes into account 
the time correlation structure of the data. 
 
The 2 outliers detected in our study can be explained by the fact that they 
correspond to points located in lots with the highest basal areas and also high tree 
density, volume and biomass values and a low Hart-Becking index.  
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Abstract 

In this paper the assignment and theoretical investigations of the 
problems of crown forest fire spread in windy condition were 
carried out. Mathematical model of forest fire was based on an 
analysis of known experimental data and using concept and 
methods from reactive media mechanics. In this context, a study 
- mathematical modeling - of the conditions of forest fire 
spreading that would make it possible to obtain a detailed 
picture of the change in the velocity, temperature and 
component concentration fields with time, and determine as well 
as the limiting conditions of forest fire propagation is of interest. 
 
Key words: mathematical, forest fire, ignition, discrete 
analogue, control volume. 
 

1. Introduction 

A great deal of work has been done on the theoretical problem of crown forest fire 
initiation. Crown fires are initiated by convective and radiative heat transfer from 
surface fires. However, convection is the main heat transfer mechanism (Van 
Wagner [1]). The proposed in [1] theory depends on three simple crown 
properties: crown base height, bulk density of forest combustible materials and 
moisture content of forest fuel. Also, crown fire initiation and hazard have been 
studied and modeled in details later (Alexander [2]; Van Wagner [3]; 
Xanthopoulos [4]; Rothermel [5]; Cruz and others [6]; Albini and others [7]; Scott 
and Reinhardt [8]).The more complete discussion of the problem of crown forest 
fires is provided by coworkers at Tomsk University (Grishin [9]; Grishin and 
Perminov [10]; Perminov [11,12]). In particular, a mathematical model of forest 
fires was obtained by Grishin [9] based on an analysis of known and original 
experimental data (Grishin [9]; Konev [13], and using concepts and methods from 
reactive media mechanics. The physical two-phase models used by Morvan and 
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Dupuy [14,15] may be considered as a continuation and extension of the 
formulation proposed in [9]. This study gives a two dimensional averaged 
mathematical setting and method of numerical solution of a problem of a forest 
fire spread. The boundary-value problem is solved numerically using the method 
of splitting according to physical processes. It was based on numerical solution of 
two dimensional Reynolds equations for the description of turbulent flow taking 
into account for diffusion equations chemical components and equations of 
energy conservation for gaseous and condensed phases, volume of fraction of 
condensed phase (dry organic substance, moisture, condensed pyrolysis products, 
mineral part of forest fuel). 

2. Physical and mathematical model 

It is assumed that the forest during a forest fire can be modeled as 1) a multi-
phase, multistoried, spatially heterogeneous medium; 2) in the fire zone the forest 
is a porous-dispersed, two-temperature, single-velocity, reactive medium; 3) the 
forest canopy is supposed to be non - deformed medium (trunks, large branches, 
small twigs and needles), which affects only the magnitude of the force of 
resistance in the equation of conservation of momentum in the gas phase, i.e., the 
medium is assumed to be quasi-solid (almost non-deformable during wind gusts); 
4) let there be a so-called “ventilated” forest massif, in which the volume of 
fractions of condensed forest fuel phases, consisting of dry organic matter, water 
in liquid state, solid pyrolysis products, and ash, can be neglected compared to the 
volume fraction of gas phase (components of air and gaseous pyrolysis products); 
5) the flow has a developed turbulent nature and molecular transfer is neglected; 
6) gaseous phase density doesn’t depend on the pressure because of the low 
velocities of the flow in comparison with the velocity of the sound. Let the point 
x1, x2 , x3= 0 is situated at the centre of the surface forest fire source at the height 
of the roughness level, axis 0x1 directed parallel to the Earth’s surface to the right 
in the direction of the unperturbed wind speed, axis 0x2 directed perpendicular to 
0x1 and axis 0x3 directed upward (Fig. 1). 
 

 
Figure 1. 
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Because of the horizontal sizes of forest massif more than height of forest – h, 
system of equations of general mathematical model of forest fire [9] was 
integrated between the limits from height of the roughness level - 0 to h. Besides, 
suppose that  
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  - average value of . The problem formulated above is reduced to a solution of 

the following system of equations:  
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The system of equations (1)–(7) must be solved taking into account the initial and 
boundary conditions 
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Here and above 
td

d
 is the symbol of the total (substantial) derivative; v is the 

coefficient of phase exchange;  - density of gas – dispersed phase, t is time; vi - 
the velocity components; T, TS, - temperatures of gas and solid phases, UR - 
density of radiation energy, k - coefficient of radiation attenuation, P - pressure; cp 

– constant pressure specific heat of the gas phase, cpi, i, i – specific heat, density 
and volume of fraction of condensed phase (1 – dry organic substance, 2 – 
moisture, 3 – condensed pyrolysis products, 4 – mineral part of forest fuel), Ri – 
the mass rates of chemical reactions, qi – thermal effects of chemical reactions; kg, 
kS  - radiation absorption coefficients for gas and condensed phases; eT  - the 

ambient temperature; c - mass concentrations of  - component of gas - dispersed 

medium, index =1,2,3, where 1 corresponds to the density of oxygen, 2 - to 
carbon monoxide CO, 3 - to carbon dioxide and inert components of air; R – 

universal gas constant; M , MC, and M molecular mass of  -components of the 
gas phase, carbon and air mixture; g is the gravity acceleration; cd is an empirical 
coefficient of the resistance of the vegetation, s is the specific surface of the forest 
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fuel in the given forest stratum. In system of equations (1)-(7) are introduced the 
next designations:  
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Upper indexes “+” and “-” designate values of functions at x3=h and x3=0 

correspondingly. It is assumed that heat and mass exchange of fire front and 

boundary layer of atmosphere are governed by Newton law and written using the 

formulas: 
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To define source terms which characterize inflow (outflow of mass) in a volume unit of 
the gas-dispersed phase, the following formulae were used for the rate of formulation of 

the gas-dispersed mixture m , outflow of oxygen 51R , changing carbon monoxide 52R . 
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Here g – mass fraction of gas combustible products of pyrolysis, 4 and 5 – empirical 
constants. Reaction rates of these various contributions (pyrolysis, evaporation, 
combustion of coke and volatile combustible products of pyrolysis) are approximated by 
Arrhenius laws whose parameters (pre-exponential constant ki and activation energy Ei) 
are evaluated using data for mathematical models [9,11]. 
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The initial values for volume of fractions of condensed phases are determined 
using the expressions: 
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where  d -bulk density for surface layer, z – coefficient of ashes of forest fuel, W – forest 
fuel moisture content.  
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It is supposed that the optical properties of a medium are independent of radiation 
wavelength (the assumption that the medium is “grey”), and the so-called diffusion 
approximation for radiation flux density were used for a mathematical description of 
radiation transport during forest fires. 

To close the system (1)–(7), the components of the tensor of turbulent stresses, 
and the turbulent heat and mass fluxes are determined using the local-equilibrium 
model of turbulence (Grishin, [9]). The system of equations (1)–(7) contains terms 
associated with turbulent diffusion, thermal conduction, and convection, and 

needs to be closed. The components of the tensor of turbulent stresses jivv  , as 

well as the turbulent fluxes of heat and mass
j pv c T   , 

jv c    are written in terms 

of the gradients of the average flow properties using the formulas 
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where t, t, Dt are the coefficients of turbulent viscosity, thermal conductivity, 

and diffusion, respectively; Prt, Sct are the turbulent Prandtl and Schmidt 

numbers, which were assumed to be equal to 1. In dimensional form, the 
coefficient of dynamic turbulent viscosity is determined using local equilibrium 
model of turbulence [9]. The thermodynamic, thermophysical and structural 
characteristics correspond to the forest fuels in the canopy of a different (for 
example pine [9,11,13]) type of forest. The system of equations (1)–(7) must be 
solved taking into account the initial and boundary conditions. The 
thermodynamic, thermophysical and structural characteristics correspond to the 
forest fuels in the canopy of a different type of forest; for example, pine forest 
(Grishin, Perminov [11]). 

3. Numerical methods and results 

The boundary-value problem (1)–(13) is solved numerically using the method 
of splitting according to physical processes (Perminov [11]). In the first stage, the 
hydrodynamic pattern of flow and distribution of scalar functions was calculated. 
The system of ordinary differential equations of chemical kinetics obtained as a 
result of splitting was then integrated. A discrete analog was obtained by means of 
the control volume method using the SIMPLE like algorithm (Patankar [16] ) The 
accuracy of the program was checked by the method of inserted analytical 
solutions. Analytical expressions for the unknown functions were substituted in 
(1)–(7) and the closure of the equations were calculated. This was then treated as 
the source in each equation. Next, with the aid of the algorithm described above, 
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the values of the functions used were inferred with an accuracy of not less than 
1%. The effect of the dimensions of the control volumes on the solution was 
studied by diminishing them. The time step was selected automatically. Fields of 
temperature, velocity, component mass fractions, and volume fractions of phases 
were obtained numerically.  The distribution of basic functions shows that the 
process of crown forest fire initiation goes through the next stages. The first stage 
is related to increasing maximum temperature in the ground cover with the result 
that a surface fire source appears. At this process stage over the fire source a 
thermal wind is formed a zone of heated forest fire pyrolysis products which are 
mixed with air, float up and penetrate into the crowns of trees. As a result, forest 
fuels in the tree crowns are heated, moisture evaporates and gaseous and dispersed 
pyrolysis products are generated. Ignition of gaseous pyrolysis products of the 
ground cover occurs at the next stage, and that of gaseous pyrolysis products in 
the forest canopy occurs at the last stage. As a result of heating of forest fuel 
elements of crown, moisture evaporates, and pyrolysis occurs accompanied by the 
release of gaseous products, which then ignite and burn away in the forest canopy. 
At the moment of ignition the gas combustible products of pyrolysis burns away, 
and the concentration of oxygen is rapidly reduced. The temperatures of both 
phases reach a maximum value at the point of ignition. The ignition processes is 
of a gas - phase nature. Note also that the transfer of energy from the fire source 
takes place due to radiation; the value of radiation heat flux density is small 
compared to that of the convective heat flux. In the vicinity of the source of heat 
and mass release, heated air masses and products of pyrolysis and combustion 

float up. At Ve  0, the wind field in the forest canopy interacts with the gas-jet 
obstacle that forms from the surface forest fire source and from the ignited forest 
canopy base and burn away in the forest canopy. In the vicinity of the source of 
heat and mass release, heated air masses and products of pyrolysis and 

combustion float up. At Ve  0, the wind field in the forest canopy interacts with 
the gas-jet obstacle that forms from the surface forest fire source and from the 
ignited forest canopy base. On the windward side the movement of the air flowing 
past the ignition region accelerates. Figures 2,3 present the distribution of 

temperature )300,/( KTTTTT ee  (1- 5., 2 – 4.5, 3 – 4, 4 – 3.5) for gas phase. 

Figures 4-5 present mass concentrations of oxygen 1c (1 – 0.5, 2 – 0.7, 3 – 0.8) 

and volatile combustible products of pyrolysis 2c  concentrations (1 – 0.05, 2- 0.1, 

3 – 0.5) ( 23.0,/ 11  ee сcсc  ) for wind velocity Ve= 10 m/s: and a) t=3 sec., b) 

t=5 sec. We can note that the isotherms is moved in the forest canopy and 
deformed by the action of wind. Similarly, the fields of component concentrations 
are deformed. It is concluded that the forest fire begins to spread. 
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Figure. 2 

 

 
Figure 3 
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Figure 4 

 
 

 
Figure 5 
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Figure 6. 

 
 

 
Figure 7 
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4. Conclusion 

 

The results of calculation give an opportunity to evaluate critical condition of the forest 
fire spread, which allows applying the given model for preventing fires. It overestimates 
the velocity of crown forest fire spread that depends on crown properties: bulk density, 
moisture content of forest fuel and etc. The model proposed there give a detailed picture 
of the change in the velocity, temperature and component concentration fields with time, 
and determine as well as the influence of different conditions on the crown forest fire 
initiation. The results obtained agree with the laws of physics and experimental data 
(Grishin [9]; Konev [13]). From an analysis of calculations and experimental data it was 
found that for the cases in question the minimum total incendiary heat pulse is 2600 kJ/m

2
 

(Grishin [9]).. Calculations demonstrated that the value of the radiant heat flux for 
both problems is considerably less than the convective one , therefore radiation 
has a weak effect on local and integral characteristics of the problem discoursed 
above. The results obtained agree with the laws of physics and experimental data.  
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Extended Abstract 
 
 

1. Introduction 
During the past decades, much effort has been devoted to achieving an 
improved understanding of the contractions of the heart. Numerous 
methods have been developed and applied to capture specific data from 
medical images which are then used to describe the motion of the heart. 
However, the accuracy of these methods is somewhat restricted. Thus, we 
aimed at an improved method of motion tracking. The pivotal point of our 
development efforts is the full exploitation of the synergy of the two 
imaging modalities, viz. cardiac CT and biplane cineangiography, for an 
accurate quantitative assessment of the regional variations of ventricular 
motility and to monitor the improvements during therapy. The 
extraordinarily high spatial and temporal resolution of biplane 
cineangiography facilitates accurate investigations of the ventricular 
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motility, which, however, are restricted to the regions of the left ventricular 
surface that are covered by the coronary arteries. Several methods to extend 
the tracking of the ventricular motion to the entire epicardial surface have 
been described in the literature. However, the shape of the epicardial 
surface was only an assumed one and thus not patient-specific. Our 
multimodal imaging approach to motion analysis is based on a 
retrospectively ECG-gated cardiac CT data set at the end of the diastole and 
a biplane cineangiogram of a particular patient. The utilization of an 
efficient combination of both imaging modalities enables us to exploit their 
specific favorable characteristics of both of them and to overcome their 
respective limitations. In particular, we fully take advantage of 
• the capacity of cardiac CT to retrospectively reconstruct a highly-

accurate 3D image of the epicardial surface at the end of the diastole 
and 

• the excellent motion tracking capability of biplane angiography, in 
which there is no significant motion blur. 

Our techniques comprise several image processing steps, such as 
segmentation, registration. In these techniques, the realization of specific 
transformations. moreover, mesh generatiom procedures are carried out. 
This paper is confined to the generation of a deformable mesh to represent 
the geometry of the outer surface of the myocardium of the left ventricle 
and its deformations during the cardiac cycle which are highly complex and 
difficult to describe quantitatively. Our long-term goal, however, is to 
exploit our mesh generation approach to develop methods to elucidate the 
spatial and temporal changes of strain and stress within the myocardium of 
the rapidly moving heart. 
 
  

2. Image Processing  and Mesh Generation Tasks 
In the CT imagery for the end-diastolic position, we carry out a 
segmentation of the surface of the myocardium (cf. Figure 1). In each 
transaxial 
slice, we define manually an appropriate number of vertices and a 
spline (NURBS) curve which approximates these vertices. 
These splines are subdivided into equal increments. The subdivision 
points of all transaxial slices are regarded as nodes of a surface mesh. 
The nodes belonging to each transaxial slice are connected to each other 
with an interpolating spline (NURBS curve) which is called transversal 
contour curve. We thus obtain  an array of NURBS curves as transversal 
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contour curves of the outer surface of the myocardium. We also 
compute an array of longitudinal interpolating NURBS curves, each of 
which passes through corresponding points in all slices. These two 
arrays of NURBS curves constitute a surface mesh which enables us 
to achieve a preliminary visual representation of the heart wall 
(myocardium, left ventricle) for the end-diastolic position in the form of a 
wireframe model. 

3.  
Fig. 1. Medical imagery relating to end-diastolic phase: (a)transaxial slice 

of CT with manually segmented ventricular wall; (b)+(c)biplane 
angiograms relating to end-diastolic frame of cineangiography 

 
The points corresponding to the entire surface together with well chosen 
landmarks, constitute the domains of landmark-based thin-plate spline 
registration. Thin plate spline transformations are not only instrumental 
for the accomplishment of our image-registration but also for our motion 
tracking tasks . In the subsequent description of our mathematical concepts 
and  techniques for the analysis of the heart wall motion, 
we assume the availability of the following for each patient: 
• the above-described surface mesh calculated from three- 
dimensional CT describing the morphology at the end of 
the diastole, and  
• A series of SEATs (skeletonised epicardial artery trees) which have 
been derived from biplane cineangiograms with the methods which will 
be described in the full paper. We have developed a method to achieve a 
largely automatic 
segmentation of the epicardial arteries in angiograms. In the first stage 
of our approach:we use a multi-scale Hessian filter to separate the 
tubular structure of the arteries from the other structures in the image, 
then we carry out a conversion of these tubular structures into a binary 
mask, and finally we apply a thinning filter to obtain an initial 
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representation of a skeletonised arterial tree The second stage of our 
efforts comprises a scan-line-based border detection procedure for an 
accurate segmentation of the arteries, te calculation of the centre lines in 
the angiograms, and the three-dimensional reconstruction of these centre 
lines resulting in space curves which show a tree-like structure. This 
tree-like arrangement of space curves is regarded as the final version of 
the skeletonised epicardial artery tree. It will serve as the basis for our 
registration and motion-tracking tasks. For further details of our 
segmentation method, please refer to [1]. 
 
Registration Tasks. As mentioned above, we carry out a landmark-based 
image registration with the help of our two imaging modalities, 
cardiac CT and biplane cineangiography.In particular, our end-diastolic 
three-dimensional CT data set is correlated with the end-diastolic 
representation of the heart in biplane cineangiography, our reference 
image modality. The cineangiographic imagery comprises a relatively 
large number of frames. One frame refers to the end-diastolic position of 
the heart. In handling the registration task, we refer to this frame and carry 
out a lanmark-based thin-plate spline transformation.  
 
Motion Tracking Tasks. Our motion-tracking analyses are also based 
on a number of thin-plate spline transformations (ca. 60). In the 
following, we  assume that the SEATs are three-dimensionally 
reconstructed for all frames which are linearly ordered in time). The 
individual transformations thereby relate to two consecutive frames. 
The tracking procedure starts with the end-diastolic frame and thus 
comprises about 60 individual TPS transformations. 
Some results of our registration and motion-tracking procedures can be seen in 
Figures 2 and 3. 
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Fig. 2. Image Registration: (a)ventricular surface after segmentation in 
CT, point landmarks are indicated in magenta; (b)ventricular surface 

after registration to the SEAT belonging to the end-diastolic phase, point 
landmarks are indicated in cyan 

 
 
 
 

 
 

Fig. 3. Comparison between ventricular surface during 
end-diastolic phase and at the end of the systole: (a)end-diastolic 

phase, point landmarks are indicated in cyan; (b)end-systolic 
phase, point landmarks are indicated in cyan 
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3. Analysis and Visualization Aspects 
At present, we are elaborating new visualisation and analysis 
techniques for an accurate quantitative assessment of the regional 
variations of heart wall motility. From each an every pint of the 
heart surface, we will be able to draw trajectories which  refers to the 
entire contraction phase of the myocardium. The aforementioned 
corresponding nodes subdivide the trajectory into equal time intervals 
. For each and every subdivision point which follows the selected node 
 (material point) in the end-diastolic frame, we plan to compute and to 
visualize _ the velocity and acceleration vectors and their variations 
 what is even more important, several characteristic quantities of 
surface deformation kinematics, such as displacement tensors 
describing surface deformations, surface strain tensors, surface strain 
rate tensors, surface curvature tensors, and, moreover, tensors 
of changes of curvature. The underlying concepts of the above tensor 
quantities are based on differential geometry and thus permit a local 
analysis of the deformation behaviour. For this reason, these tensor 
quantities are well suited to reveal the regional variations of the 
deformation behavior of the heart wall. We plan to derive parameters of 
diagnosis from these tensors. Moreover, we aim at a visualization of the 
tensor quantities by using standard methods which we will adapt 
to our problem area. 
 
 
 
4. References 
[1]  M. MAYR, B. QUATMBER, Development of a special method and a 
     software system for the semi-automatic segmentation of biplane 
     angiograms, in:J. Volkert, T. Fahringer, D. Kranzlmueller, 
     W. Schreiner (eds.), Proceedings of the 2. Austrian Grid Symposium,  
     Innsbruck, Austria, September 21 - 23, 2006, vol. 221 Oesterreichische 
     Computer Gesellschaft, 2007, pp. 220-237. 
 
Acknowledgements 
The work described in this paper is partially supported by the 
”Austrian GRID” project, funded by the Austrian BMBWK 
(Federal Ministry for Education, Science and Culture) under 
contract GZ 4003/2-VI/4c/2004./ 
 
 
 

@CMMSE                                                               Page   1227  of 1328                                               ISBN 13: 978-84-613-5510-5



Proceedings of the 10th International Conference 
on Computational and Mathematical Methods 
in Science and Engineering, CMMSE2010 
Almeria, Spain, 27-30 June 2010  

 

Mathematical Modelling of the Biological Pest Control  

of the Sugarcane Borer 
 

Marat Rafikov
1
 and Elizabeth de Holanda Limeira

1
 
 

1
 Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, 

Universidade Federal do ABC, Santo André, SP, Brazil 
 

emails: marat9119@yahoo.com.br, bethmatcampinas@yahoo.com.br  
 

Abstract 

In this paper, we propose a simple mathematical model of 
interaction between the sugarcane borer (Diatraea saccharalis) 
and its egg parasitoid Trichogramma galloi. In this model the 
sugarcane borer is represented by the egg e larval stages, and the 
parasitoid is considered in term of the parasitized eggs. Linear 
feedback control strategy is proposed to indicate how the natural 
enemies should be introduced in the environment. 
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1. Introduction 

The increase in world demand for ethanol brings an increase of the sugarcane 
planted in Brazil. The sugarcane borer Diatraea sacharalis is reported to be the 
most important sugarcane pest in south-east region of Brazil [1]. The sugarcane 
borer builds internal galleries in the sugarcane plants causing direct damages that 
result in apical bud death, weight loss and atrophy. Indirect damages occur when 
there is contamination by yeasts that cause red rot in the stalks, either causing 
contamination or inverting the sugar, increasing yield loss in both sugar and 
alcohol [2]. It is known that for each 1% of plant infestation by pests the 
industries lose 0.2% of the ethanol production, that is, in average 25 liters per ha.  
 

One of challenges of the improvements in the farming and harvesting of cane 
is the biological pest control. A good strategy of biological pest control can 
increase the ethanol production. Biological control is the use of living organisms 
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to suppress pest populations, making them less abundant and thus less damaging 
than they would otherwise be [3]. Pests are species that interfere with human 
activity or cause injury, loss, or irritation to a crop, stored product, animal, or 
people. One of the main goals of the pest control is to maintain the density of the 
pest population in an equilibrium level below economic damages. Natural 
enemies play an important role in limiting potential pest populations. Flooding 
agroecosystems with parasitoid insects is very effective in lowering the 
abundance of crop pest insects. Thus, parasitoids are commonly reared in 
laboratories and periodically liberated in high-density populations as biological 
control agents of crop pests [4]. Cotesia flavipes is important wasp parasitoid of 
the sugarcane borer larvae in Brazil [1]. In spite of the biological control of 
Diatraea saccharalis by Cotesia flavipes is considered successful in Brazil, there 
are some areas where Cotesia flavipes has not the good control. The using of the 
egg parasitoid Trichogramma galloi is considered an interesting option in this 
case [5].  

 
Thomas and Willis [6] state that introduction of biological agents against weeds 
and insects is a substantially effective control is less than 40% of the cases. In 
order for biological control to succeed, the dynamics of the pest and its enemy 
populations have to be understood. Mathematical modeling is an important tool 
used in studying agricultural problems. Mathematical modeling applied to the 
problems of biological pest control allows a qualitative and quantitative 
evaluation of the impact between the pest and its natural enemy populations. The 
application of host-parasitoid models for biological control were reviewed in [7]. 
 
In this paper, we propose a simple mathematical model of interaction between the 
sugarcane borer (Diatraea saccharalis) and its egg parasitoid Trichogramma 
galloi. In this model the sugarcane borer is represented by the egg e larval stages, 
and the parasitoid is considered in term of the parasitized eggs. Linear feedback 
control strategy is proposed to indicate how the natural enemies should be 
introduced in the environment. 
  

2. Mathematical model of interactions between the sugarcane 
borer and its parasitoid  

Consider two of main stages of development of the sugarcane borer Diatraea 
sacharalis – the egg e larval stages. We assume that there exists only an egg 
parasitoid (Trichogramma galloi) in a common environment. Assuming 
furthermore logistic growth for the egg population we can propose the following 
mathematical model that describes interactions between the sugarcane borer and 
its parasitoid: 
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were 
1

x  is the egg density of the sugarcane borer, 
2

x  is the density of eggs 

parasitized by Trichogramma galloi and 
3

x  is the larvae density of the sugarcane 

borer;   is the net reproduction rate; K is the carrying capacity the environment; 

1
m , 

2
m  and 

3
m are mortality rates of the egg, parasitized egg and larvae 

populations; 
1

n  is the fraction of the eggs from which the larvae emerge at time t; 

2
n  is the fraction of the parasitized eggs from which the adult parasitoids emerge 

at time t; 
3

n  is the fraction of the larvae population which moults into pupal stage 

at time t;   is the rate of parasitism.  
 

3.  Equilibrium points and stability 

The equilibrium points can be obtained by setting to zero the right hand sides of 
(1): 
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For 
2

P  the condition  
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@CMMSE                                                               Page   1230  of 1328                                               ISBN 13: 978-84-613-5510-5



MATHEMATICAL MODELLING OF THE BIOLOGICAL PEST CONTROL 
 

ensures the nonnegativity of the larvae population.  

For 
3

P  the condition of the nonnegativity of the parasitized egg population is 
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Let us consider the Jacobian matrix of the system (1) 
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Stability analysis of the equilibrium point 
1

P  

In this case the Jacobian matrix assumes the form 
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from which the eigenvalues are easily found to be  
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Stability analysis of the equilibrium point 
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and the eigenvalues are  
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with the characteristic equation 
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4.  Numerical simulations of the host-parasitoid interactions 
without control 

For numerical simulations of interactions between the sugarcane borer and its 

parasitoid were used the following values of model coefficients: 1.0
1
n , 

1.0
2
n , 02439.0

3
n , 03566.0

1
m , 03566.0

2
m , 00256.0

3
m , 

25000K . These values were obtained based on data published about the use of 
the egg parasitoid Trichogramma galloi against the sugarcane borer Diatraea 
saccharalisthese [1], [5], [8].  
 

The value of the parameter   is important for determination the stability of the 

equilibrium points. When   satisfies the condition 
11

nm  , the equilibrium 

1
P  is stable and other points are unstable. Fig.1 shows that for 13.0  and 

0001723.0  all populations go to extinction in this case. 
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Fig. 1. Evolution of the egg, parasitized egg and larvae populations  

for 13.0  and 0001723.0  

 
 

When   satisfies the condition (9):  
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the equilibrium 
2

P  is stable and other points are unstable. In this case, the 

parasitized egg population goes to extinction, and the egg e larvae populations go 

to positive equilibrium levels. This case is shown in Fig.2 for 139.0  and 

0001723.0  
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Fig. 2. Evolution of the egg, parasitized egg and larvae populations  

for 139.0  and 0001723.0  

 

When   satisfies the condition (12):  

)(
2211

nm
K

nm 



  

the positive equilibrium point 
3

P  is stable and the populations coexist in a 

common environment. Fig. 3 shows the population oscillations for 1908.0  

and 0001723.0 .  
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One can see from Fig. 3 that the sugarcane borer larvae density 
3

x  takes on 

values more than the pest density threshold level 5002
d

x  numbers/ha [1]. 

Densities above this level cause economic damages the sugarcane crops. In this 
case, it is necessary to apply the biological control. 
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Fig.3. Evolution of the egg, parasitized egg and larvae populations  

for 1908.0  and 0001723.0  

 

5.  Numerical simulations of the inundative biological control 

The main objective of the biological pest control is to maintain the pest 
population in an equilibrium level below the economic injury level. Thus, 
parasitoids and predators are commonly reared in laboratories and periodically 
liberated in high-density populations (inundative biological control) when the pest 
population reaches a control level [4]. Mathematically, the inundative control can 
be interpreted by impulsive control function U that produces the discontinuous 
augmentation of the natural enemy population (parasitized egg). The Fig. 4 shows 
the inundative control applied in initial moment by introduction 20000 
parasitoids/ha. From Fig. 4 one can see that the inundative biological control, 
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applied in initial moment by introduction 2000 parasitized egg /ha, maintain the 
pest population below the value 5002

c
x pests/ha only 88 days. After this 

period, it is necessary to apply the control again. Another negative factor of the 
inundative biological control is the high amplitudes of oscillation. 
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Fig.4. Inundative control application by introduction 2000 parasitoids/ha 

 

6.  Optimization of the biological control 

We hope to formulate the pest control strategy of the sugarcane borer through the 
parasitized egg introduction in a common environment. This control must move 
the controlled system to the steady state in that the larvae density is stabilized 
without causing economic damages, and that the parasitized egg population is 
stabilized at the level enough to control the pests. 
 
The dynamic system (1) with control has the following form: 
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    (13) 

 
The goal of the pest control strategy maintains the larvae population at level 

cd
xxx *

3
 by control *u , where 

d
x  is a designed pest population density below 

economic injury level. The desired positive steady state with control satisfies the 
following equations 
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

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     (14) 

 
From the third equation of the system (14) we obtain the egg density value which 

is necessary to maintain the larvae population at level 
d

xx *

3
: 

 

1

*

333*

1

)(

n

xnm
x


        (15) 

 
From the first equation of the system (14) we obtain the parasitized egg density 

value which is necessary to maintain the larvae population at level 
d

xx *

3
: 

 




11

*

1*

2

)/1( nmKx
x


       (16) 

 
From the second equation of the system (14) we obtain the value of the control 

*u : 

)(
22

*

1

*

2

* nmxxu         (17) 

 

In the general case, the desired steady-state ),,( *

2

*

1 d
xxx  of the system (13) 

controlled by *u  can be unstable. In this case the feedback control u can be made 

so that the desired state becomes asymptotically stable. 
Defining the following new variables 
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and substituting (18) into (13) and admitting (14), we get the following error 
system: 
 

BuyhyAy  )(       (19) 

 
where the matrices A and B are 
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and the vector h(y) has a form: 
 



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


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
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      (21) 

 
The feedback control u can be determinate applying the following theorem. 
 
Theorem [9]. If there exist constant matrices Q, and R, positive definite, being Q 
symmetric, such as that the function  

)()()( yPhyyPyhyQyyl TTT  ,    (22) 

is positive definite then the linear feedback control   
 

ytPBRu T )(1        (23) 

 
is optimal, in order to transfer the nonlinear system (19) from an initial to final 
state   

0)( y         (24) 

minimizing the  functional  

@CMMSE                                                               Page   1238  of 1328                                               ISBN 13: 978-84-613-5510-5



MATHEMATICAL MODELLING OF THE BIOLOGICAL PEST CONTROL 
 

dtuRuylJ T ])([
0

 


      (25) 

where P  the symmetric, positive definite matrix, is the solution of the matrix 
algebraic Riccati equation 
 

01   QPBPBRPAPA TT      (26) 

 

In addition, with the feedback control (23), there exists a neighborhood 
0

, 
n , of the origin such that if 

00
y , the solution ,0,0)(  tty  of the 

controlled system (19) is locally asymptotically stable, and .)0(
00min

yPyJ T  

Finally, if n  then the solution ,0,0)(  tty  of the controlled system (19) 

is globally asymptotically stable. 
 
From theorem  one can conclude that if the function (22) is positive definite then 
the error dynamical system (19) controlled by linear feedback control u is 
asymptotically stable, and hence, the system (13), controlled by  

 

uuU  * ,       (27) 

 

tends to the desired steady state ),,( *

2

*

1 d
xxx . 

 
We illustrate the application of the optimal pest control strategy (27) on the 
agroecosystem which consisting of sugarcane borer and its parasitoid. We will 

stabilize the ecosystem (13) at the desired steady state 549.2*

1
x egg/ha, 

293.67*

2
x parasitized egg/ha, 2000*

3


d
xx larvae/ha. The values of *

1
x  and *

2
x  

were calculated from (15) and (16), respectively. In this case, 12.15 * u  
parasitized egg/day, and the matrices A and B have the following form 
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we obtain  
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























1334.00517.01202.0

0517.01511.0134.0

1202.0134.03045.0

P   

 
from the solution of the Riccati equation (26).  
 
Finally, we can conclude that the optimal strategy has the following form: 
 

321
0517.01511.0134.015.12 yyyU     (28) 

 
The optimal control (28) is designed to drive the trajectory of the system (13) to 

desired steady state ),,( *

2

*

1 d
xxx , as shown in Fig. 5. Dynamics of the optimal 

control function (28) is presented in Fig. 6. 
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Fig. 5. Evolution of the dynamic system (13) with optimal control 

 

@CMMSE                                                               Page   1240  of 1328                                               ISBN 13: 978-84-613-5510-5



MATHEMATICAL MODELLING OF THE BIOLOGICAL PEST CONTROL 
 

Numerical simulations showed that the function l(y), defined by (22), was positive 
for all considered initial condition values, but it is necessary more investigations 
to prove if this function is positive definite at a positive space. 
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Fig.6. Dynamics of  the optimal control strategy 

 

7.  Conclusion 

Fig. 6 shows that the great amount of parasitoid have to be introduced in initial 
days. This fact suggests that the proposed feedback control strategy can be 
integrated into existing biological control technologies, combining the feedback 
control with the traditional inundative pest control. This control strategy directs 
the ecosystem to the stable equilibrium point which is reached at 40 days. After 
this period, according above proposed control strategy, it is necessary to apply the 

constant control 12.15 * u  parasitized egg/day. It is not economically 
advantageous to use this constant control. In agricultural practice this control can 
be substituted by periodic releases of a small population of natural enemies. It is 
necessary more studies to justify this substitution. 
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Abstract 

 
This paper shows the mathematical models which represent the phenomena that occur in a 

neutron activation process. These phenomena are, on the one hand, the neutron flux 

decreases with the distance between the neutron source and the sample, and on the other 

hand, the attenuation of the gamma rays originating from the sample activated on its way 

to the detector position. The development of the mathematical model has been divided 

into two parts. Firstly, the phenomena are shown separately. Secondly, the phenomena are 

shown together. Finally, this model is fitted to the neutron activation of a fluorspar 

sample, and the influence of the two phenomena as defined above can be seen.  

 
Keywords: nuclear activation, deferred gamma rays, mathematical model, fluorspar. 

 

1 Introduction 
 

Neutron activation is a process in which an atom emits a characteristic radiation 

when it is excited by a neutron. This system can be used to determine the presence 

of certain elements in a sample. 
 

Neutron activation analysis (NAA) was discovered in 1936 by Hevesy and Levi, 

who found that samples containing certain rare earth elements became highly 

radioactive after exposure to a source of neutrons. This observation led to the use 

of induced radioactivity for the identification of elements.  

 

In the last several decades, this technique has been applied to determine a great 

variety of elements in many disciplines. These include environmental science as 

well as, biological, geological, and material science. 

 

The basic elements used in neutron activation are: 
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NEUTRON ACTIVATION MODELS 

 

 

 an radioactive source that allows the irradiation of a sample by neutrons 

and, 

 

 a radiation detector that reads gamma radiation emitted by a sample during 

the decaying of the radioactive products. This radiation is produced in a   

given time and is characterized by the energy and time during which it 

occurs, and is characteristic of each element.  

 

A neutron activation process is characterized by two phenomena that occur: 

 

  the one during radiation which supposes that the neutron flux decreases 

with the distance between the neutron source and the sample [1]. 

 

 with the radiation reading, that implies the attenuation of the gamma rays 

originated in the decay of 
16

N traversing the sample to the detector 

position. This attenuation is exponentially dependent on a characteristic 

attenuation coefficient of the sample [2]. 

 

2 Definition mathematical models 
 

In the procedure used, the base of the container sample is located at a distance “a” 

of the irradiation position (source), and a distance “b” of the reading position 

(detector), Figure 1. 

 

On the one hand, neutrons emerging from the source after they traverse the space 

“a” (air) arrive at the sample where they do or do not interact with the sample, 

resulting in the activation of the fluorine atom. Neutron flux is reduced with the 

distance from the source.  

 

On the other hand, the produced gamma rays traverse the sample to the detector 

position, and are attenuated as they travel. 
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Figure 1. A.1) Geometry considered in the activation position. A.2) Geometry considered in the reading 

position. 

 

2.1 First model 
 

In the first model, we refer specifically to the phenomenon of the reduction of the 

neutron flux with distance from the source. It is supposed that the activation of a 

differential element dx of the sample only depends on the distance (x+a) in the 

direction x to the source, and that the dependency ratio is inversely proportional to 

the square of the distance of the differential element at the center of the source. 

Consequently, it is assumed that gamma rays are not attenuated by distance.  

 

In this process, we have observed the following proportionalities (Figure 2): 

 

 Counts from the sample and reading at the detector Cm are proportional to 

the counts Cp produced by the sample. The proportionality constant 

depends on the efficiency of the detector. 

 

 Counts produced in the sample Cp are the integral from x=0 to x=l of the 

differential counts dCpx in an element of base S and height dx. 

 

 The differential of counts produced dCpx at the differential element of 

height dx is proportional to the number of excited atoms in the differential 

element (dNax). 

 

 The number of excited atoms dNax depends on neutron flux and the number 

of fluorine atoms dNfx at that point. 

 

 The neutron flux Φnx is inversely proportional to the square of the distance 

between the point and the source (x+a). 
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 The number of fluorine atoms in a sample point dNfx is directly 

proportional to the product of the grade y and the mass dm of differential 

element. 

 

 The mass dm depends on the volume of differential element dV and the 

density ρm. 

 

 The volume dV is defined by the section of the sample S and by the height 

of differential element dx. 

 

 The density of the sample ρm is in relation to the density of the fluorspar ρ1, 

the sterile ρ2, and the sample grade in per unit.  

 

 
Figure 2. Expressions used in the proportionalities 
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Substituting these terms: 

 

Where, 

 
And, 

 
The parameters Q and P are constants, greater than 0 and have dimensions of mass 

per unit length. 

 

Making, 

 
 

and integrating leads to the equation, 

 

 

 

We can express the value of the height of the sample l ( in cm) in function of the 

mass m (in grams), of the cross section of a container sample S (in cm
2
), of the 

grade, of the fluorspar density ρ1 and of the sterile density ρ2, 

 

 

 

Then, in this model the relationship between counts, mass and grade is the 

following: 

 

 

Where, 

 

Cm is the integral of the counts from the sample in a certain range of 

channels for this first model,  

 P y Q  are constants and their values are greater than 0, 

 a is the distance between the source and the base of the sample, 

 y  is fluorspar grade constant in the sample expressed per unit, 
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 l is the height of the sample . 

 F counts from detector background without sample. 

This equation is a surface in three dimensions whose X and Y axes are mass and 

grade and the Z axis is the counts (Figure 3). 

 

 
Figure 3. Representation of the equation in the study carried out with MATLAB 

2.2 Second model 
 

In the first model, we refer specifically to the phenomenon suffered by gamma 

rays produced from an irradiated sample before being detected. In the radiation 

reading position, the detector is at a distance b from the sample, as shown in 

Figure 1. The value b is very small, negligible compared with the height l of the 

sample. This fact together with the attenuation of gamma rays in the air being 

lower than in the sample, leads to the observation that attenuation takes place only 

in the mass of the sample.  

 

In this process, we have observed the following proportionality, some of them 

identical to previous case: 

 

 The counts from the sample and reading in the detector Cm have an 

exponential relation to the counts  produced by the sample. The 

proportionality constant depends on the efficiency and the coefficient of 

radiation attenuation: 
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 As in the previous case, the count differential dCpx produced in the 

differential element of height dx is proportional to the number of excited 

atoms in the differential element dNax.  The number of excited atoms dNax 

depends on neutron flux Φn (constant in this hypothesis) and of the number 

of fluorine atoms dNfx at that point. The number of fluorine atoms at a 

sample point dNfx is directly proportional to the product of the grade y and 

of the mass dm of the differential element, and as in the previous case, the 

mass dm depends on the volume of the differential element dV and on the 

density ρm. 

 

Proceeding as previously, we obtain the equation for this second model, which 

includes the background, as follows: 

 

 

 

The parameters Q and P are the same as in the previous case, while the factor that 

includes all proportionality constants K’ is different. 

 

2.3 Third model 
 

In this third model, it is supposed that the activation of a differential element 

sample depends on the distance (x+a) in the direction x to the source, and that 

gamma rays are attenuated on their way to the detector following an 

exponential . 

 

In this case, the number of counts C in the energy range considered that come to 

the detector by the neutron activation effect can be expressed as: 

 
 

 

 α y β being the weight coefficients of each phenomenon individually in the final 

model, which fulfill the condition of being positive and their sum is equal to 1. 
 

3 Checking the models 
 

In order to determine which phenomena have greater impact on neutron activation, 

and therefore, the best model that fits to reality, each model is applied to neutron 

activation of a fluorspar sample from a concentration plant. Equipment used 
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consists of an Americium Beryllium source of 1 Ci of activity and a gamma ray 

detector of the type NaI. A prototype has been designed [3]. 

 

The reason for using fluorspar samples for testing the models is that the radiation 

of fluorspar with neutrons from Americium Beryllium source emits a characteristic 

high energy (6.13 MeV) which comes, according to previous studies [4], from the 

fluorine present in CaF2. This radiation comes from 
16

N originated, only and 

exclusively, from the nuclear reaction 
19

F(n,α)
16

N. Due to the characteristics of the 

detector, the energy spectrum of the sample, does not give a single peak at 6.13 

MeV, but has a certain width, and has some „echoes‟ called „escape peaks‟ at 5.11 

and 5.62 [5]. For this reason, the counts used in the study are in a range and are not 

in this exact value (6.13MeV). The authors know the reactions produced in this 

mineral using the activation for analyzing fluorine in a fluorspar samples. An 

activation procedure and a mathematical method that increases the sensitivity were 

designed [6]. 

 

The fluorspar samples with variable fluorite grades [y] from 4 to 97% and variable 

masses [m] from 50 to 450 g (taken at intervals of 50 to 50) have been used. 

Samples are found in the same state of humidity and particle size. 

 

3.1 Adjusting the first approach to the experimental data 
 

 Equipment was designed specifically to irradiate with neutrons and read the 

gamma rays emitted from fluorspar samples with the grades and masses specified 

above. Irradiation and reading times were adjusted according to the reaction 

sought and the coefficients K, a, Q, P, and F were determined. Nonlinear 

regression was used to determine the coefficients. The statistical program SPSS [7] 

was used. In this work only the coefficients obtained from taking the average 

values of the counts detected in the different tests, with an energy range between 

4.5 and 6 are shown. 

 

Algorithms used by statistical programs for nonlinear regressions are iterative 

processes which require the assignment of initial values for the coefficients. Table 

1 shows the initial values for the parameters of the above equation. 

 
Table 1. Initial parameters used for nonlinear regression 
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Under these initial conditions the program was put into action and the parameters 

obtained are shown in Table 2. 

 
Table 2. Summary of the model parameters (Model 1) 

 
 

3.2 Adjustment of the second approach to the experimental data 
 

Regression was carried out using the experimental results with a sample group. 

The procedure was repeated with the energy and value types. The parameters of 

the resulting equation are reflected in Table 3. 

 
Table 3. Summary of the model parameters (Model 2) 

 
 

3.3 Adjustment of the third approach to the experimental data 
 

Establishing restrictions of attenuation coefficient µ in the processing of the third 

model with the program SPSS, we are found that the correlation coefficient in this 

third model is lower than in previous models, so it follows that the phenomenon of 

gamma rays attenuation (expressed by β) is negligible. 
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4 Comparison between models 
 

In the first model a very high attenuation coefficient μ is obtained and the 

parameters a, K, P, Q y F are consistent with the real values. However, the 

attenuation coefficient μ obtained in the second model is about 0.5, which is 10 

times higher than expected given the composition of the sample. It therefore 

follows that the first model is the closest to reality. 

 

5 Validity of the first model  
 

 Fluorite grades are compared with grades obtained from the first model for 

activated fluorspar samples with the parameters identified above. These 

parameters are K=9.798; a=1.832; Q=7.515; P=38.978; F=13.598. 

 

The sample grade of mass known m after activation with a count number C 

emitted   is obtained by: 

 

 

 

This equation is illustrated in Figure 3, and the comparison is shown in Figure 4. 

Note the linearity of the response and the validity of the model for all range of 

grades.  

 

 
Figure 4. Comparison between chemical analysis and neutron activation with samples used in the 

deduction of the model 

@CMMSE                                                               Page   1252  of 1328                                               ISBN 13: 978-84-613-5510-5



NEUTRON ACTIVATION MODELS 

 

6 Conclusions 
 

A neutron activation process from two basic and simultaneous phenomena has 

been modeled. The phenomena are the reduction of the neutron flux that activates 

the sample and the attenuation of gamma rays produced during the activation that   

reach the detector. 

 

The phenomenon of the reduction of the neutron flux is controlled by the inverse 

of the square of the distance between the sample and the source. 

The phenomenon of the attenuation of gamma rays is controlled by an exponential 

law that depends on the attenuation coefficient µ, characteristic of sample.  

 

The model was assayed by way of irradiation from a fluorspar sample whose   

fluorine content is reflected by the emission of high- energy gamma radiation 

(6.13 MeV). 

 

From the correlation of the results with the models and the experiments, it follows 

that only the effect of reduction of the neutron flux with the distance can be 

considered as the effect of the other effect is low. 

 

A high correlation coefficient (~1) has been obtained from the model. In addition 

the parameter values a, K, P, Q and F are consistent with the real values. 

 

After comparison between the values obtained from chemical analysis and those 

from neutron activation, the model was considered suitable. 
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Abstract 

This paper presents the results obtained in a study of the 
behaviour of mechanical elements coupled to an ultrasonic 
sensor using finite element techniques, which can modify the 
radiation pattern of the original sensor. These results have been 
obtained using Comsol multiphysics modelling. The effect 
caused by the sensor size on the radiation acoustic pressure has 
also been evaluated. In this paper we also present the 
experimental validation of these simulations. 
 
Key words: ultrasonic, sensors, horns, pattern 

1. Introduction 

The use of ultrasonic sensors has varied applications including basic ones such as 
object detection or measurement of distances. For some production process tasks 
we find that, although the applications are not very difficulty, they involve a great 
time cost in processes, such as the detection of defects. Some of the more 
complex applications include recognition and identification of objects. 
 
A common factor in all these applications is that the operating frequency of 
ultrasounds limit the operating distance of the ultrasonic sensor, due to the already 
known fact that increasing the operating frequency also increases the attenuation 
of ultrasonic waves. In contrast, an increase in the frequency of the ultrasound 
provokes a narrowing in the radiation lobe. Given these facts, it follows that by 
increasing the operating frequency the directional behaviour of the sensor can be 
improved, but at the expense of reducing the working distance. In applications 
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needing a broader or a narrower lobe than that obtained by the sensor itself, there 
are several options, ranging from the use of sensors of different frequency, 
appropriate for the application, or increasing the sensor diameter to obtain more 
power, using arrays of sensors to obtain the radiation pattern. This last option 
intrinsically leads to an increase in hardware and software complexity.  An 
alternative solution is to couple a mechanical element, commonly called horn. As 
would be expected, physical and geometrical characteristics of the coupled 
element influence the new ultrasonic radiation pattern. This is where the need 
arises to find a simulation model, to find the relation between the coupler 
parameters and the desired characteristics of the radiation lobe.  
 
To characterize this technique, it is necessary to use software tools to be able to 
analyse the simulated models. Among the different techniques for simulation, 
such as boundary element, finite difference, finite element, we choose the latter 
because of its availability and versatility. The use of finite elements and Comsol 
software has already provided goods results in previous works.  
 
In this paper, we present the results obtained in the radiation pattern using an 
ultrasonic sensor in two different cases. The first one is the ultrasonic sensor in 
free radiation and the second one is when a straight horn is linked to the sensor. 
We also present the variation in sound pressure on the radiation axes when the 
size of the sensor changes.  

2. Simulations descriptions  

Taking into account the results already obtained in previous work [1] [2] in the 
Comsol simulations to study the modifications produced in the ultrasonic 
radiation patterns using couplers, we have tried to obtain a simulation that 
describes the real problem more faithfully. This was the reason for simulating the 
system using the multiphysics modelling that Comsol makes possible.  
 
Simulations have been divided into different parts. The first one is to obtain the 
ultrasonic radiation lobe in free radiation. The second explores the effect 
produced when the sensor is provided with a horn with zero opening angle, that is, 
a tube of a certain length but it with no opening (straight horn). Finally, the effects 
produced on the sound pressure at on the axis of radiation has been simulated as 
function of the sensor size. 
 
For a description of the model using Comsol multiphysics, the division of the 
problem into three distinct domains as shown in Figure 1 has to be taken into 
account. The first one refers to the sensor itself, while the second refers to 
acoustic wave propagation in air. In the last of the domains we have defined a far-
field zone, which provides the attenuation of the wave for longer distances. In this 
work, the y axis (radiation axis) has been fixed as the axis of symmetry, in order 
to reduce the large computational cost involved in simulation using the finite 
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element technique. In this way, the decrease in the numbers of equations is used 
to increase the extent of the simulations, optimizing the computational resources.  

 
y-axis 

x-axis Domain 1 
 

Domain 2 
 

Domain 3 

 
Figure 1: Representation of the domains used in the simulation 

 
For the first of the domains, which refers to the sensor itself, and taking into 
account the Comsol enhancement, which enables the different kinds of physics to 
be combined, the piezoelectric crystal part has been used. In our case, it was 
established that the sensor was a piezoelectric crystal of PZT5-H (Lead Zirconite 
Titanate), which is a material commonly used in transducers. Then a voltage 
difference was applied between its upper and lower surfaces. 
 
The second and third domains refer to ultrasonic propagation in air and therefore 
must fulfill the Helmholtz equation, which is shown in equation (1). 

02 =+ )rp(k)r∆p(
rr

  (1) 

where ∆ is the Laplace operator, p is the acoustic pressure, r is the position, k is 
the wave number, which is valid in the working domain established. 
Having established the domain, you must define its boundary conditions. For the 
piezoelectric crystal the condition of symmetry in the y-axis is established, and a 
voltage difference between the upper and lower surfaces of the sensor is applied. 
For the second and third domains, the axis of symmetry is defined as the y-axis 
and in the other contours, except the interface between domains 1 and 2, as the 
condition of wave propagation in the air, equation (2). 

ikp
n

p
=

∂

∂
 (2) 

where i is the imaginary unit. 
 
For the interface between domains 1 and 2, that is, between the upper surface of 
the sensor and air, the boundary condition is given by equation (3). 

( ) napn =∇     (3) 
where n is the outward normal and an is the normal acceleration. Thereby getting 
the sound pressure produced by the voltage difference applied to two surfaces of 
the piezoelectric crystal to pass the domain in which the acoustic wave 
propagates. Note that between the second and third domains, this condition is not 
produced because the domain characteristics are the same.   
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Under these conditions, the radiation pattern obtained for the case of an ultrasonic 
sensor operating at a frequency of 25KHz. and a 7mm. sensor radius is shown in 
Figure 2. 

 
Figure 2: Radiation pattern for multi-physical modelling using a sensor in free 

radiation 
It is important to note that the workspace of the simulation is small, only reaching 
up to 0.6m. This is because the computational cost required by the software is 
very high, this being one of the main drawbacks and problems encountered in the 
work. 
 
The second objective of this study was to obtain an ultrasonic radiation lobe when 
the sensor is attached to a mechanical horn-type element. In addition, this paper 
presents the case when the horn used was a straight tube, that is, without opening 
angle and a given length, such as occurs in case in pieces of  couplers types. In the 
case of multi-physical modelling, the introduction of this new element does not 
increase the complexity excessively, it is only to add a fourth domain, with the 
same characteristics as domains 2 and 3 defined above, that is, a domain in which 
the acoustic wave propagates. Figure 3 shows the new situation 

 
y-axis 

 

x-axis 

 
Domain 1 
 

Domain 2 
 

Domain 4 

Domain 3 

 
Figure 3: Representation of the domains in the case of couplers 

 
It should be noted that right now the boundary condition between the upper 
surface of the sensor and the air is between domains 1 and 4, while for the surface 
binding domains 4 and 2 we do not have to establish any special status as both 
possess the same characteristics. In addition, the boundary condition established 
at the wall of the horn is total reflection as shown in equation (4). 
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0=
∂

∂

n

p
  (4) 

Figure 4 shows the radiation pattern obtained for a sensor operating at a frequency 
of 25Khz. and with a straight coupled horn of length 3cm. and a sensor radius of a 
7mm.  

 
Figure 4: Radiation pattern of a 25KHz. sensor with a 3cm straight horn attached  
 
In the final part of the work, the influence of the size of the ultrasonic sensor on 
the acoustic pressure on the radiation axis is studied for the case of free radiation. 
Figure 5 shows that increasing the size of the sensor, the acoustic pressure on the 
shaft also increases. 
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Figure 5: Acoustic pressure on the radiation axis when the sensor size is changed 

3. Measurement system description  

To perform the experimental evaluation of the simulations we used a robotic 
positioning system inside an environmental chamber. 
 
For the ultrasonic system, two Hexamite long-range sensors (up to 30m.) were 
chosen. They work with an excitation frequency of 25 KHz. One of the sensors 
will be used as a transmitter, it being necessary to use a conditioner for sensor 
excitation, provided by the same manufacturer. For the reception stage, the 
corresponding conditioner of the ultrasonic sensor has not been used because for 
the working distances of the measurements, i.e. up to 3m, it is not necessary.  
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For the sound pressure at all points in an XY plane, we chose to use a Yamaha 
robot, model BX SBX RCX40 with a RCX40 controller that allows us to vary 
both the distance and the angle between the transmitter and receiver. The distance 
between transmitter and receiver varies from 0 to 3m. with a 1cm. step,  while the 
scan angle will be between 0º and 90º with a step of 1º, due to the symmetry. 
However, it is important to project the large number of points obtained for each 
register, more than 27,000 echoes. 
 
Both systems are situated inside an environmental chamber, which can vary both 
the temperature and humidity. In Figure 6, a view from inside the climatic 
chamber of the measuring system is shown 

 
Figure 6: Transmitter positioned on the robot inside the climatic chamber 

 
A closed-circuit television/video camera was also placed inside the climatic 
chamber in order to continue to capture and process of ultrasonic echoes from the 
outside the chamber. All this is handled by a data acquisition card, supplied by 
National Instruments and both data acquisition and the further processing is done 
with Matlab. It has been taken into account that the simulation process which is 
performed with Comsol can also work in Matlab, which is a very important point 
for a later comparison of simulations and measurements. 
 
Figure 7 shows the ultrasonic radiation lobe in free radiation obtained in the 
measurements and represented in Cartesian coordinates. 

 
Figure 7: Ultrasonic radiation lobe in free radiation  

 
In the case of coupling to the sensor of a straight horn of 3cm. length, we used the 
piece shown in Figure 8. Notice that the inside of the coupler is a straight pipe 
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with the same diameter as the sensor, while on the outside the coupler is threaded 
to be able to connect horns with different geometry.  

 
Figure 8: Straight horn in the measurements used 

 
Figure 9 shows the radiation lobe of the ultrasonic sensor with the coupler in the 
previous figure, also in Cartesian coordinates. 

 
Figure 9: Ultrasonic radiation lobe of the ultrasonic sensor with the coupler 

  
Figure 10 shows the couplers used to obtain the sound pressures in the radiation 
axis for the same ultrasonic sensor but with a different internal diameter. 

 
Figure 10: Couplers used 

4. Experimental validation 

Figure 11 shows the simulated sound pressure on the radiation axis in the case of 
the free radiation sensor and in the case of the horn attached to the sensor. 
 
If in Figure11 the graph corresponding to the acoustic pressure of the sensor in 
free radiation is displaced an identical distance from the straight horn, that is, 
3cm. then Figure 12 is obtained, in which the two acoustic pressures in the 
radiation axis match.   
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Figure 11: Simulated acoustic pressure on the radiation axis for sensor in free 

radiation and with coupler 
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Figure 12: Simulated acoustic pressure on the radiation axis for the sensor both 

with and without being displaced the length of the horn. 
 
If a cut is made in the y-axis to observe how the sound pressure on the x-axis 
varies, taking into account the shift that occurs when you the horn coupling is 
done, Figure 13 can be obtained. 
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Figure 13: Acoustic pressure simulated on the x-axis for free sensor and with the 

horn coupled, taking into account the shift of the length of the horn. 
 

From the above, and the radiation patterns obtained in Figures 2 and 4, we can 
conclude that the radiation pattern has not been modified by the coupling of the 
straight horn, that is, the effect of the straight coupler is the same as situating the 
ultrasonic sensor at the top of the horn. 
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Viewing the simulations made varying the size of the sensor at the acoustic 
pressure on the axis of radiation; it appears that the sound pressure increases with 
the diameter. The known relation expressed in equation (5) is verified, which 
provides the sound pressure at a distance d from the oscillator. 
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where D is the diameter of the oscillator and λ the wavelength. 
 
For large distances, λ42Dd >> , the above equation can be approximated by 
equation (6), that is, the pressure is proportional to the square of the diameter of 
the sensor. Table 1 shows the proportional constants obtained in each case. 

λ

π

4

2D
PP o

⋅
⋅=  (6) 

 
Sensor Size (mm.) 

Proportionality constant 

14 4.2 
10 4.5 
6 3.6 

Table 1: Simulated proportionality constant depending on the size of the sensor 
 
If we analyze the acoustic pressure along the axis of radiation to the measures, 
both for the case of free radiation is coupled as when you get Figure 14, which 
shows that there is little difference between the case of free radiation horn 
coupled radiation increases with distance. 
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Figure 14: Acoustic pressure measured on the axis of radiation, radiation free and 

coupled horn 
 

Based on this result, the main conclusion is that by using a coupler in the form of 
a straight horn with different diameter, change the size of the sensor while 
maintaining the same intrinsic features of the sensor. 
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Figure 15 shows the sound pressure measured on the radiation axis when the 
couplers shown in Figure 10 are used. In this figure, the inner diameter of the 
coupler is varied from 3mm. to 7mm. in radius with a step of 2mm. These results 
agree with those predicted in the simulations and expressed in the equation (5), 
that is, increasing the sensor size increases the pressure on the axis of radiation. 
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Figure 15: Acoustic pressure on the radiation axis for different sizes of sensors. 

 
Table 2 shows the proportionality constants of the measurements obtained in each 
case. 

Sensor Size (mm.) Proportionality constant 
14 0.9 
10 1.3 
6 2.6 

Table 2: Constant of proportionality of measures according to the size of the 
sensor 

 
If a comparison is made between the acoustic pressure on the radiation axis for 
simulations and measurements, both with coupler, Figure 16 is obtained, in which 
you can see that the sound pressures correspond quite faithfully, after a scale 
adjustment. 
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Figure 16: Acoustic pressure on the axis of radiation, measured and simulated, 

with a straight horn 
In addition comparisons can be made between the simulations and measurements, 
for different sensor sizes, producing the graph shown in Figure 17, in which the 
scales have been adjusted. 
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Figure 17: Acoustic pressure on the radiation axis, simulated and measured, for 

different sensor sizes 

5. Conclusions 

Analyzing the simulations, it can be concluded that the use of a coupling element 
with the shape of a straight horn does not affect the radiation pattern of the sensor. 
This has been corroborated by the laboratory measurement of the radiation pattern 
in the case of a free radiation sensor and for a sensor coupled to a horn. This 
implies that when using a single sensor, different sizes can be used and different 
horns with different lengths and apertures can be attached to find the most 
suitable radiation lobe for a given application. 
 
Furthermore, it has also been shown that sensor size affects acoustic pressure, and 
the mathematical dependence on sensor diameter has been demonstrated. 
 
As noted before, the main problem is the large computational cost entailed when 
performing the simulations. This is so high that it is not possible to simulate long 
distances, comparable to the measurement distances. 
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Abstract 

This paper presents a novel application of Ground Penetrating 

Radar (GPR) to the evaluation of ashlar masonry walls. Several 

experiments were made on a scale replica of a historic ashlar 

masonry wall. These models were loaded with different weights, 

and the corresponding B-Scans (radargrams) were obtained. 

Several kinds of flaws and inhomogeneities were detected from 

the analysis of the radargrams. 

 

Key words: GPR, NDT, flaw detection, historic walls 

 

1. Introduction 

We here present the results obtained applying auscultation of scaled ashlar 

masonry walls using Ground Penetrating Radar [1]-[4]. We analyzed two 

masonry walls, one being homogeneous in structure and the other with many 

imperfections drilled in it. We intend to detect inhomogeneities inside the wall 

and characterize the propagation of electromagnetic waves inside the masonry 

when under different loads. 

 

Equipment employed consisted of a GPR, a SIR 3000 from Geophysical Survey 

Systems, Inc. We used a 1.6 GHz (Figure 1.b) mounted on an encoder. The 

receiving antenna has a size of 3.8 x 10 x 16.5 cm and was adequate for both 
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vertical and horizontal measures. 

 

The configuration parameters used for data capture were: distance mode, 156 

scans per meter, range of 10 ns (20 ns in round-trip-time) and 1024 samples per 

scan. 

 

Measures were taken along the surface of the wall, following 7 columns (2.2 m 

high each) and four rows (2.87 m long each). The resulting sampling grid is 

shown in Figure 2. It must be noted that measures were taken from side A, while 

on the opposite side of the wall there were different sensors and devices (from 

other NDT) that served as reflectors.  

 

  
Figure 1. Photograph of a GPR system: a) conditioning, recording and 

processing system SIR 3000; b) 1.6 GHz antenna (model 5100) with 

encoder. 

 

We will try to obtain the dielectric constant to use in our work. We know each A-

scan has 1024 time samples and so the time sampling is: 

 

 
10 ns

9.76 ps/sample
1024 samples

dt    

 

Using the first trace of horizontal line 2, we find there is a distance of 426 

samples between the start and the end of the wall, see Figure 4. Given the distance 

the signal travelled during that time (20.4 cm, as measured on site) we get a 

relative dielectric constant:  

  

 

2
#samples

r

c dt

z


  
  

 
 

 

From here on we will use this value in our calculations. 
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Figure 2. Geometry of the wall under test. Ashlars are lined in red while 

auscultation trajectories are colored in blue.  

 

 
Figure 3. Application used for processing. 

2. GPR System Application Interface 

A GUI (Graphic User Interface) was made for simple and visual processing of 

GPR-captured data. It has two parts: a main program (see Figure 3) and a 

secondary window used for the selection of the excitation signal. 

 

The main window links to three common processing steps of B-scan data: 

background signal removal, depth resolution enhancing and Kirchoff migration. 

We used different ICA algorithms for background signal removal [5]-[8]. The 

results of each of these steps are shown on screen, with the most recent result 

being shown of the central, biggest figure. There are also three buttons not related 

to this processing: an export data button (including parameters used and the most 
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recent result), an AGC (Automatic Gain Control) button to enhance contrast and 

an envelope button, which shows the time envelope of the most recent result 

(sometimes used for data interpretation). The last two apply to the most recent 

result (the one shown on the central figure) and are discarded if any further 

processing is attempted. Exported data values, on the other hand, do include AGC 

and envelope calculation if they have been applied. In addition we used methods 

of depth resolution enhancement and cepstral deconvolution [9]. 

2. General Analysis of the Wall 

Figure 4 shows a detail of the background corresponding to the opposite side of 

the background signal for the wall. The left part of the figure corresponds to row 

6, while the right part belongs to column 6. 

 

  

  

 
 

 

Figure 4. Background at the opposite side of the wall for different values of 

the load. a) row 6, no load; b) column 6, no load; c) row 6, 50 mt load; d) 

column 6, 50 mt load; e) row 6, 80 mt load; f) column 6, 80 mt load. 
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Row number 6 has a greater variation of its propagation conditions. This is 

noticeable from the way the opposite side of the wall seems to move away (see 

Figure 4), indicating a loss in velocity of propagation inside the material. This is 

due to a worsening of transmission properties due to the load. We noticed that the 

difference between 0 and 50 mt (metric tons) is greater than the one between 50 

and 80 mt. 

 

The column shown (number 6) also shows a difference in depth between 0 and 50 

mt loads. The difference is stronger on both ends of the wall and matches with 

what shown of row 6 (the right parts of the representations for row 6 and for 

column 6 correspond to the same area of the wall). 

 

Generally speaking, other representations of the background of other rows and 

columns follow these same tendencies (that is, they show a stronger effect at the 

start and end of the B-scan). Nevertheless, they keep the same values in the 

central area of the wall. This behavior seems consistent with in situ measurements 

of the wall’s distortions. 

 

  

  

Figure 5. Steps in the processing of radargrams for flaw detection: a) original 

map; b) background removal; c) migration; d) contrast enhancing. Wall, 

column 1, 80 mt load. 

  

@CMMSE                                                               Page   1271  of 1328                                               ISBN 13: 978-84-613-5510-5



FLAW DETECTION IN HISTORIC WALLS 

 

3. Analysis of Flaws Within the Wall 

For the purpose of flaw detection, some algorithms were implemented to 

emphasize the discontinuities (typically due to changes in the material) in the 

radargrams. These methods, as seen on previous sections, were: background 

removal, depth resolution enhancing, Kirchoff migration and improvement of the 

contrast in the B-scan. 

 

Because it is a homogeneous wall, there are no important flaws within the ashlars 

that compose the wall. This means discontinuities found in the radargrams are due 

only to mortar interfaces with the ashlars. These interfaces are the less dense 

material in the structure and thus are the most susceptible to strains because of a 

compression load. We can check the compression suffered under a load of 80 mt 

in Figure 6. This Figure also includes the unloaded radargram for comparison. 

 

As a matter of fact, we can notice the greatest effect takes place over the central 

area of the wall, where the compression forces are bigger. This means that the 

mortar interfaces between ashlars in the wall under study are no longer visible. 

 

  
Figure 6. Effect of the load on the detected discontinuities. First column; a) 

no load; b) 80 mt load. 

4. Conclusion 

The proposed approach for the auscultation of historical masonry walls with 

ground-penetrating radar (GPR) has proved to be effective for the detection of 

flaws and the characterization of walls under load. It was possible to detect flaws 

with a size of millimeters and variations in the interfaces between ashlars and 

mortar caused by effect of the compression suffered under load. 

 

Radargrams are techniques that allow representing the internal structure of walls. 

Nevertheless, one must take into account that inhomogeneities inside the walls 

will be more or less visible due to their geometry and their physical properties 

(especially their contrast with the surrounding medium). Because of this, adaptive 

processing techniques are required to successfully show the different flaws. 

 

@CMMSE                                                               Page   1272  of 1328                                               ISBN 13: 978-84-613-5510-5



FLAW DETECTION IN HISTORIC WALLS 

 

In addition, we would like to point out that the proposed approach is a low-cost 

operation with no required previous preparation of the material or a complex and 

extensive setup. Even more, one can capture data continuously along the surface 

of the wall (and its interior) in a short amount of time. 

5. Acknowledgments 

This work has been supported by the Generalitat Valenciana under grant 

PROMETEO/2010/040; the Spanish Administration and the FEDER Programme 

of the European Union under grant TEC 2008-02975/TEC; and the Generalitat 

Valenciana under grant GV/2009/003 within the research and development 

programme for Emergent Research Groups. 

6. References 

[1] A. ZHAO, Y. JIANG AND W. WANG, Exploring Independent Component 

Analysis for GPR Signal Processing, Progress In Electromagnetics 

Research Symposium (2005) 750-753. 

[2] F. ABUJARAD AND A. OMAR, Comparison of Independent-Component 

Analysis (ICA) Algorithms for GPR Detection of Non-Metallic Land 

Mines, Proceedings of SPIE. 6365 (2006) 6365.1-6365.12. 

[3] J.X. LIU, B. ZHANG AND R.B.WU, GPR Bounce Removal Methods Based 

on Blind Source Separation, Progress In Electromagnetics Research 

Symposium (2006) 256-259. 

[4] P.K. VERMA, A.N. GAIKWAD AND M.J. NIGAM, Analysis of Clutter 

Reduction Techniques for Through Wall Imaging in UWB Range, 

Progress in Electromagnetics Research B 17 (2009) 29-48. 

[5] J.F. CARDOSO AND A. SOULOUMIAC, Blind Beamforming for Non 

Gaussian Signals, IEEE Proceedings-F 140 (1993) 362-370. 

[6] A. BELOUCHRANI, K.A. MERAIM, J.F. CARDOSO AND E. MOULINES, 

Second-Order Blind Separation of Temporally Correlated Sources, 

Proceedings of the International Conference on Digital Signal Processing 

(1993) 346-351. 

[7] A. ZIEHE AND K.R. MULLER, TDSEP – An Efficient Algorithm for Blind 

Separation Using Time Structure, Proceedings of the Eight International 

Conference on Artificial Neural Networks (1998) 675-680. 

[8] A. SALAZAR, L. VERGARA, A. SERRANO, J. IGUAL, A general 

procedure for learning mixtures of independent component analyzers, 

Pattern Recognition, 43 (2010) 69-85. 

[9] J.M. REYNOLDS, An Introduction to Applied and Environmental 

Geophysics, Wiley, 1997. 

 

@CMMSE                                                               Page   1273  of 1328                                               ISBN 13: 978-84-613-5510-5



Proceedings of the 10th International Conference 
on Computational and Mathematical Methods 
in Science and Engineering, CMMSE2010 
Almeria, Spain, 27-30 June 2010  

 

Estimation of Missing Seismic Data based on Non-linear 

Systems 
 

Gonzalo Safont
1
, Addisson Salazar

1
, Jorge Gosalbez

1 
and 

Luis Vergara
1 

1
 Instituto de Telecomunicaciones y Aplicaciones Multimedia, 

Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, 

Valencia, Spain 

 

emails: gonsaar@upvnet.upv.es, asalazar@dcom.upv.es, 

jorgocas@dcom.upv.es, lvergara@dcom.upv.es  

 

Abstract 

This paper presents a new method for the reconstruction of 

missing data in seismic signals. The method is based on non-

linear (NL) systems considering non-Gaussian statistics in the 

probability density function of the seismic data. We propose 

different NL structures by combining different techniques for 

the linear and non-linear stages. The linearity in the data is 

recovered using kriging and cross correlation, and the data non-

linearity is reconstructed using direct sample estimation and a 

third order polynomial approximation. The results by linear and 

NL structures are compared with the results of Multi-Layer 

Perceptron and Radial Basis Function neural networks. 

 

Key words: kriging, non-linear systems, seismic signals, missing 

data 

 

Introduction 

In seismic analysis, the wavefield generated by seismic sources is captured by a 

number of sensors located over a large area. Reconstruction of missing data and 

data interpolation are important issues in the processing of seismic signals. 

Incomplete data happen due to problems, such as disconnection of sensors during 

signal acquisition or need for resampling of data at particular non-measured 

locations. Several techniques have been proposed to deal with these issues, for 

instance: matching pursuit [1], wave equation-based interpolation [2], 
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autoregressive spectral extrapolation [3], prediction error filtering interpolation 

[4], and Fourier reconstruction [5]-[7]. The problem of seismic signal 

reconstruction can be posed as an inverse problem, where from incomplete data a 

recovering of the complete seismic wavefield is attempted. 

 

In this paper, we propose a new method for seismic trace reconstruction based on 

Wiener structures that are composed of a linear processor followed by a non-

linear processor. Wiener, Hammerstein, and Wiener-Hammerstein structures 

represent simple methods to build non-linear predictors capable of prediction for 

non-Gaussian data [8]-[10]. 

 

Several examples of seismic data reconstruction are included using real seismic 

data from a public dataset of BP Amoco [12]. In order to evaluate the proposed 

method, maps with simulated missing data were generated by subtracting zones of 

4 contiguous A-scans from the complete data set. The quality of the data 

reconstruction was assessed using mean squared error (MSE), Kullback-Leibler 

distance (KLD), and absolute values of the differences in variance and kurtosis 

between the original and the reconstructed data [13].   

Prediction Based on Wiener Systems  

Wiener structures have been used to model non-linear systems in quite different 

applications, such as blind deconvolution in digital communications [14] and 

prediction applied to infrared signals [15]. The structure consists of a linear stage 

followed by a zero-memory non-linear stage (see Figure 1).  

 

From Figure 1, 𝑥𝑝(𝑛 + 𝑙) is the output of the linear predictor (i.e. 𝑥𝑝(𝑛 + 𝑙) is the 

linear prediction of 𝑥(𝑛 + 𝑙) from the past samples 𝑥 𝑛 , 𝑥 𝑛 − 1 ,… , 𝑥(𝑛 − 𝑁 +
1) ). 𝑁 is the order of the linear predictor and 𝑙 the prediction time lag. Thus, the 

output of the Wiener system is the conditional mean defined as 

 

  𝐺  𝑥𝑝 𝑛 + 𝑙  = 𝐸 𝑥(𝑛 + 𝑙)/𝑥𝑝(𝑛 + 𝑙)  (1) 

 

Assuming stationarity, a sample estimate of 𝐺(·) can be made. In this paper we 

implement Wiener structures with kriging or cross correlation for the linear stage 

and direct sample estimation or a third order polynomial approximation for the 

non-linear stage. Let us review the techniques applied in the two stages of the 

Wiener structure. 
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Figure 1. Scheme for nonlinear prediction. 

 

Linear Stage 

 

Cross correlation 

    

This method consists of assigning a weight to each point involved in the 

prediction. The weights are obtained from the linear transform that minimizes the 

mean squared error 𝐸   𝐰 −𝐰𝑝𝐷 
2
 , where 𝐰 are the original signal values 

𝐰 =  𝑤 𝑛 + 1 ,… ,𝑤 𝑛 + 𝐷  𝑇  and 𝐰𝑝𝐷 = 𝐇 ∗  𝑤 𝑛 + 1 ,… ,𝑤 𝑛 + 𝐷  𝑇 are 

the predicted values. This problem is a particular case of the Wiener-Hopf 

equation, and the optimum weight matrix 𝐇 is obtained by means of 

 

 𝐇 = 𝐑𝑥𝑤 ∗ 𝐑𝑤𝑤
−1  (2) 

 

The generic elements of these matrixes are: 𝑅𝑤𝑤  𝑖, 𝑗 = 𝑅𝑤 𝑖 − 𝑗 , 𝑖 = 1,… ,𝑁,
𝑗 = 1,… ,𝑁; and 𝑅𝑥𝑤  𝑖, 𝑗 = 𝑅𝑤 𝑖 + 𝑗 − 1 , 𝑖 = 1,… , 𝐷, 𝑗 = 1,… ,𝑁, being 

𝑅𝑤(𝑚) the autocorrelation function of the signal, 𝑁 the number of samples used 

and 𝐷 the number of values to be predicted. 

 

Kriging 

 

This algorithm estimates the weights 𝜆𝑖(𝐫) such that the estimator for the 

interpolated value 𝑍  has an optimal relationship with a given set of data values 

𝑍 𝐫𝑖 , 𝑖 = 1, … , 𝑁. Thus, 

 

 𝑍  𝐫 =  𝜆𝑖 𝐫  𝑍(𝐫𝑖)
𝑁

𝑖=1
 (3) 

 

where 𝐫 is the position vector. 
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The restrictions, minimum residual variance 𝜎𝑒
2 = 𝐸   𝑍  𝐫 − 𝑍 𝐫  

2

  and 

𝐸 𝑍  𝐫 − 𝑍(𝐫) = 0, impose the condition that the estimator is both unbiased  

and gives the least dispersion. 

 

Kriging established the concept of structural analysis. The variogram indicates the 

degree of correlation between values of the variable as a function of distance. The 

definitions that are relevant to kriging are the covariance (𝐶) and the 

semivariogram (𝛾). They are defined by 

 

 
γ 𝐫1, 𝐫2 = 𝑣𝑎𝑟 𝑍 𝐫1 − 𝑍 𝐫2  /2

𝐶 𝑍 𝐫1 , 𝑍 𝐫2  = 𝐸  𝑍 𝐫1 − 𝐸 𝑍 𝐫1    𝑍 𝐫2 − 𝐸 𝑍 𝐫2    
 (4) 

 

with 𝑣𝑎𝑟{·} being the variance. We used two different methods. Simple kriging 

obtains the weights by solving the system of equations (5): 

 

  
𝐶(𝑍 𝐫1 , 𝑍(𝐫1)) ⋯ 𝐶(𝑍 𝐫1 , 𝑍(𝐫𝑁))

⋮ ⋱ ⋮
𝐶(𝑍 𝐫𝑁 , 𝑍(𝐫1)) ⋯ 𝐶(𝑍 𝐫𝑁 , 𝑍(𝐫𝑁))

  
𝜆1(𝐫)
⋮

𝜆𝑁(𝐫)
 =  

𝐶(𝑍 𝐫1 , 𝑍(𝐫))
⋮

𝐶(𝑍 𝐫1 , 𝑍(𝐫))
   (5) 

 

On the other hand, ordinary kriging assumes an unknown, constant trend μ. The 

system of equations to be solved changes to (6): 

 

  

𝛾(𝐫1, 𝐫1) ⋯
⋮ ⋱

𝛾(𝐫1, 𝐫𝑁) 1
⋮ 1

𝛾(𝐫𝑁 , 𝐫1) ⋯
1 1

𝛾(𝐫𝑁 , 𝐫𝑁) 1
1 0

  

𝜆1(𝐫)
⋮

𝜆𝑁(𝐫)
𝜇

 =  

𝛾(𝐫1, 𝐫)
⋮

𝛾(𝐫𝑁 , 𝐫)
1

  (6) 

 

Non-linear Stage 

 

Direct sample estimation 

 

The non-linear function that relates known to predicted data is estimated by a 

sliding window, 

 

 𝐺 𝑥𝑝𝑙 (𝑖) =
1

Δ
 𝑥𝑙(𝑖)

𝑖+Δ−1

𝑖
 (7) 

 

where 𝐱𝑝𝑙  is a vector with the predicted data sorted from highest to lowest, and 𝐱𝑙  
is a vector with the known values corresponding to each of the predicted values. 

The window defined in (7) is rectangular, but any kind of window can be used.  

 

@CMMSE                                                               Page   1277  of 1328                                               ISBN 13: 978-84-613-5510-5



WIENER SYSTEMS FOR RECONSTRUCTION OF MISSING SEISMIC TRACES 

 

Polynomial approximation 

 

In [15] we developed the following one-dimensional polynomial approximation 

for the non-linearity of the Wiener system. Assuming that 𝑥 ≡ 𝑥𝑙(𝑛 + 𝑙) and 

𝑥𝑝 ≡ 𝑥𝑝𝑙 (𝑛 + 𝑙), 

 

 𝐺 𝑥𝑝 =  
1

𝑚!
𝐶𝑚 𝑥, 𝑥𝑝 𝐻𝑚 𝑥𝑝 

∞

𝑚=1
 (8) 

 

where 𝐶𝑚 (𝑥, 𝑥𝑝) is the cross-cumulant defined as 

𝐶𝑚 𝑥, 𝑥𝑝 = 𝑐𝑢𝑚 𝑥, 𝑥𝑝 , … , 𝑥𝑝       
𝑚 𝑡𝑖𝑚𝑒𝑠

  and 𝐻𝑚  is the Hermite polynomial of order 𝑚. 

For the previous application ([15]) 𝑚 ≥ 3 was found to be enough to obtain 

approximate Gaussian predictions.  

Results and Discussion 

We used a dataset created by BP Amoco corresponding to Carpatheans thrusting 

over the North Sea [12]. From this dataset, a single 2D cut of the whole data 

model was used (see Figure 2.a). This 2D model has 252 scans, located at 

intervals of 25 m, and 314 time samples per scan. Time sample rate is 9.9 ms 

starting at time t = 0. For data reconstruction purposes, we considered that four 

consecutive scans had failed and no data could be recovered from them. These 

four scans were located for offsets between 1525 and 1600 m (see Figure 2.b) for 

a total of 1256 missing values, 1.6% of the available data. Some acronyms were 

used for the different methods applied for the sake of simplicity. They are shown 

in Table 1. 

 

  
Figure 2. Complete dataset (a) and dataset after for scans were removed (b). 
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For a better estimation, we divided the missing traces to be reconstructed in small 

zones. The size of these zones was adjusted depending on the applied method, see 

Table 1. The zones were estimated using training data blocks from zones directly 

adjacent to them. 

 

Figure 3 shows the nonlinearity present in one of the training data blocks and the 

estimated curves for the different methods. As we can see, the RBF neural 

network yields the better result in this particular case, with direct sample 

estimation being a close second. The polynomial fitting was not able to 

approximate the nonlinearity. MLP was able to model some of it but negative 

values were incorrectly modeled. That points to an over-fitting of the positive 

values in the training set.  

 

Table 1. Acronyms used for the different methods and sizes of zones to be 

reconstructed. Training data blocks and zones are the same size. These sizes 

are in number of samples. 

Acronym Linear predictor Nonlinear estimator Zone size 

CC Cross-correlation  1 x 5 

CC+SE Cross-correlation 
Direct sample 

estimation 
1 x 5 

CC+Poly Cross-correlation Polynomial fit 1 x 40 

SK Simple kriging  1 x 5 

SK+SE Simple kriging 
Direct sample 

estimation 
20 x 10 

SK+Poly Simple kriging Polynomial fit 30 x 10 

OK Ordinary kriging  10 x 5 

OK+SE Ordinary kriging 
Direct sample 

estimation 
10 x 5 

OK+Poly Ordinary kriging Polynomial fit 20 x 5 

MLP Multi-Layer Perceptron neural network 65 x 12 

RBF Radial Basis Function neural network 15 x 5 

 

Figure 4.a and Figure 4.b show four different error measurements for the whole 

reconstructed data: Mean Squared Error (MSE), Kullback-Leibler distance 

(KLD), absolute difference in variance (ΔVAR) and absolute difference in 

kurtosis (ΔKUR). There is an abnormality in Figure 4.a for OK+Poly. This was 

caused by a problem in the polynomial fitting: a few of the predicted data were 

outside the values given in their training set, and so the resulting polynomial fit 

was bad and yielded values out of range. This can be further confirmed in Figure 

4.b. 
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Figure 3. Estimate of the nonlinearity of a given training data block for all 

considered methods. x are the data to be fitted. 

 

  
Figure 4. Error estimators for the different methods: a) Mean Squared Error 

(left) and Kullback-Leibler distance (right) for all considered methods; b) 

absolute difference in variance (left) and kurtosis (right) between 

predicted data and real values. Best predictions are marked with circles. 

 

In Figure 4.b, variance and kurtosis for methods using polynomial approximations 

of the nonlinearities are further from the desired values. This is especially true in 

the case of kurtosis, which is a measure of the amount of outliers for a given data 

distribution. Real data had a kurtosis of 31.90 and a variance of 2.2·10-3. 

 

Figure 5 shows zoom-ins of two different reconstructed maps of missing data. 

The map given in Figure 5.a was obtained with CC+SE, while the second map 

(Figure 5.b) was obtained using a MLP neural network. The CC+SE results are 

better that those obtained with the MLP neural network Comparing them we 

appreciate CC+SE obtains results similar to the desired result; as a matter of fact, 

reconstructed values are hardly distinguishable from neighboring values. 
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It is worth noting that while CC+SE does not achieve the best possible MSE, it 

has a low Kullback-Leibler distance and higher-order statistics very close to those 

of the real data. Part of the reason for its comparatively high mean squared error is 

that its values are more attenuated than those obtained with other methods. 

Conclusion 

We demonstrated the feasibility of a procedure based on Wiener systems for 

recovering realistic estimates of data structures of missing seismic traces. The 

versatility of the procedure allows linear and non-linear dependencies of the data 

to be modelled using different techniques. The accuracy of the recovered data was 

evaluated by the mean squared error, density distance, kurtosis, and variance 

between the estimate and the real data. The best results were obtained using 

ordinary kriging in the linear part and direct sample estimation in the non-linear 

part of the Wiener structure.  

 

There are several research lines open from this work, such as including priors of 

the data distributions, attempting other linear and non-linear techniques, and 

processing in the frequency domain. 

 

 
Figure 5. Wiggle plot showing data predicted using: a) CC+SE; b) MLP. 
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Abstract 

The problem of correcting images with noise has been widely 
studied in the digital image processing literature, and many 
techniques and algorithms have been suggested for this purpose. 
However, due to their high computational cost, and in general 
their application for large sized images, the need exists to 
develop the same executable files in parallel. The 
implementation of image correction algorithms on the CUDA 
platform is a relatively new field. Although the platform is easy 
to program, it is not easy to optimize the applications due to the 
number of decisions that have to be made. Thus, it is necessary to 
perform an analysis in order to identify the best configuration for 
each problem. This paper reports an optimization study on the 
use of the CUDA platform with fuzzy metric and the concept of 
peer group for noise correction in images. 
 
 
Key words: noise correction in images, GPU, CUDA 
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1. Introduction 
In recent years, the incorporation of GPUs (Graphics Processor Units) in graphic 
cards has achieved significant improvements in computational speed, offering a 
high parallel processing level combined with a very competitive price. For this 
reason, developments based on this hardware have become increasingly 
widespread, not only for graphic implementations but also for general purpose 
applications. The most commonly used programming platform for these graphic 
cards is CUDA (Compute Unified Device Architecture) [10]. Its multiple fields of 
application include medicine, astrophysics, biology, computational chemistry and 
signal processing, among many others. For example, [1] provides an illustration of 
biomedical image processing for color and phenotype analysis. In [13], the 
performance obtained by processing various algorithms in several classic images 
was analyzed, whilst in [2], two proposals for accelerating bioinformatics 
applications used to analyze DNA sequences are presented. [5] reports the 
implementation of algorithms for hyperspectral image analysis, and another 
spectral imaging application is described in [3]. Finally, [7] depicts the scope of 
FFT (Fast Fourier Transform) for filtering images. 
Whilst it is relatively easy to use the CUDA platform to program the GPU, and the 
process is well documented, the problem lies in the difficult task of optimizing 
application performance, due to several hardware restrictions and the multiple 
types of memories included, which are organized on several levels and display 
different storage capacities, different access patterns and other limitations. Thus, it 
is necessary to carry out a specific study in order to identify the best approach to 
using the resources offered by CUDA in each case. Such a study is the subject of 
the present paper, applied in this case to noise correction in images. 
The images used in this study were all in RGB format (three color channels: red, 
green and blue, with values in a range of 0 to 255), with impulsive noise (where 
several pixels have changed the value of one of their channels to maximum or 
minimum, white or black respectively). Many algorithms have been proposed for 
correcting impulsive noise, for instance those mentioned in [4]. In the present 
study, the process of noise correction was divided into two steps: (1) erroneous 
pixel detection, also divided into two phases, and (2) the elimination of these 
pixels. The fuzzy metric is used [11] together with the concept of peer group P 
previously mentioned in [12]. In this concept, a set is of pixels created similar to 
one already given and then a decision is made, according to the cardinality of the 
set, as to whether the pixel should be treated as corrupted or uncorrupted by noise. 
In this research, we implemented an adaptation of the algorithms 1 and 3 
previously proposed in [6], and algorithm 2 is modified so that each thread labels 
the pixel as corrupted or not.   
This paper is organized as follows: In section 2, the GPU is described together 
with CUDA programming models. Section 3 illustrates the noise correction 
method employed and its implementation on CUDA. Experimental results are 
shown in section 4, and lastly, the conclusions are presented in section 5.  
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2. GPU and CUDA programming models  
Recent years have witnessed a spectacular growth in the parallel calculation 
capacity of Graphic Processing Units (GPU), due to the high demand for video 
game applications. Although initially these constituted the principle application of 
this hardware, in November 2006 NVIDIA introduced CUDA, a technology which 
enables these units to be used to develop programs for other calculation purposes. 
Such applications have become increasingly popular in the scientific community 
due to their combination of reasonable costs and good calculation power. 
Physically, the GPU, called a device in CUDA terminology, contains a set of 
multiprocessors. These execute programs following the SIMD (Single Instruction, 
Multiple Data) model, whereby each of the multiprocessor’s processor clock 
cycles executes the same instruction applied to different data, taking into account 
each application if this instruction is performed by a different thread. 
A device has a physical memory (the size of which may vary from 384MB to 
1GB, in NVIDIA 9 series) that can be used in different ways. The main use is as 
global shared memory among the GPU multiprocessors. However, this memory 
also permits its several areas to be used in other modes: 

• As local memory. Each thread may make individual use of 16KB of global 
memory. 

• As texture. In this case, an area of the global memory is blocked in order to 
be used as read-only, in shared mode and optimized to store structures 
(arrays) of 1, 2 or 3 dimensions. 

• As a constant reading area, shared between all the threads. 
Internally, each multiprocessor has four kinds of memories [9]: 

• A set of 32 bit registers per processor with read or write access. 
• A read/write 16KB cache memory for optimizing access to the global 

memory, shared by all the multiprocessor processors. 
• A constant read-only 64KB cache memory, shared by all the processors, 

which speeds up reading of the constant memory. 
• A read-only cache memory called texture cache, which is shared by all the 

processors and accelerates reading of the texture memory. 
The large variety of memories and their different features complicate the task of 
achieving optimum performance in programs using CUDA. One of the main issues 
that must be considered in order to obtain efficient programs is the coalescence of 
accesses to global memory. 
Global memory is addressed in 16 or 32 byte displacements. Furthermore, it is 
possible to read 4, 8 or 16 Bytes of the global memory in a simple instruction. 
However, if a variable is not stored just after a memory address multiple of 16, or 
if its size is not a multiple of 4, more than one access must be performed, 
penalizing performance. In addition, when the GPU contains a large number of 
threads, this problem intensifies since even two threads may compete for access to 
the same memory area. When this happens, it is said that the accesses do not have 
coalescence [8], that is, they are not well aligned, a situation to be avoided at all 
costs. The most elemental method (although there are others) is for a thread with 
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value i access to a value i variable (or array index), and the access address to that 
point to become multiples of 16. 
According to the CUDA programming model, it is necessary to distinguish 
between the code that is executed on the CPU (“host code” following CUDA 
terminology) and the code that is executed on each GPU core (“device code”). In 
particular, the function which we propose here for execution on the GPU takes the 
name of “kernel”. A kernel is processed in parallel by a set of threads which will 
apply the instructions of that function to a different part of the data in the memory. 
When the GPU has several multiprocessors, the threads must be grouped in 
“blocks” to clarify assignment of the execution of a block to a specific GPU 
multiprocessor (nowadays, a block can contain a maximum of 512 threads). This 
particularity implies that threads can only be synchronized if they belong to the 
same block. Once a block of threads has finished, new blocks are launched in the 
empty multiprocessors. 
Meanwhile, the CPU code must analyze the following steps in order to launch 
execution of the GPU kernels: 

• Copy data from the host memory to the device memory. 
• Run the kernel, deciding on the number of threads (and their organization 

in blocks) needed for the processing. 
• Wait for kernel execution to finish before moving data from the GPU 

memory to CPU memory. 
A kernel has a predefined variable enabling each thread to recognize its ID and, 
from this value, identify data to be processed. Initially, data are available in the 
GPU global memory but if coalescence problems arise, it becomes necessary to 
consider whether it would be advisable to copy data from the global memory to the 
cache memories of each multiprocessor in order to process them (returning them 
later to the global memory). Another option is to use textures, if part of the 
information is read-only and the information contained is organized dimensionally 
(in arrays). 
As can be seen, the design problems of a CUDA program are: 

• Deciding the number of threads and their organization in blocks. 
• Deciding at each moment the best location (among the different available 

memories) for the input and output data, and how to access to them, 
performing the necessary copies at the appropriate time. 

3.  Image noise correction and implementation strategies with CUDA  

In the present study, the process of image noise correction was divided into two 
steps. The first step was to detect erroneous pixels and the second, to eliminate 
them. The process was divided into two steps so that in the elimination step, the 
condition of neighboring pixels could be taken into account (whether previously 
evaluated as corrupted or not) when defining the new values for corrupted pixels. 
 
For the detection stage, the fuzzy distance between the vectors of the color image 
xi and xj was used, which is given by the following function:  
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where (xi (1), xi (2), xi (3)) is the color vector for the pixel xi in space color RGB. 
In [6], k =1024 was shown to be an appropriate setting, and this was therefore the 
value that was used in the present study. Fuzzy distance measure is employed in 
peer group P (xi, d), giving the central pixel xi in a window W with size n x n and    
d [0,1] א; P (xi, d) represents the set: 
 

{ }.),(: dxxMWx jij ≥∈  
 

The peer group associated with the central pixel of W is a set consisting of the 
central pixel xi and its neighbors belonging to W, whose distance from xi exceeds 
d. After several tests, d =0.95 proved to be a good value for d. 
Detection was also divided into two phases, with two kernels for execution. In the 
first step (described in algorithm 1), the image was divided into (N1  x N2)/n 
windows W disjointed with dimension n x n, where n {… ,3,5,7} א; in the present 
case, n =3 was considered and the kernel was configured to set (N1 x N2)/n threads. 
Each thread analyzes their n x n pixels of W, xi as the central pixel in W, and (f, c) 
for the thread. Given the parameter d, each thread calculates its peer group. 
 
Require: m, d, image noise 
1: Each thread defines the row and column corresponding to the central pixel  xi  of 

the windows W disjoint. 
2: Each thread builds its Windows W of pixels. 
3: Calculate P (xi, d) in W. 
4: If  ( P (xi, d) ≥ m +1)*  
5:        thread mark: 
6:       ∈∀ jx  P (xi, d), xj as uncorrupted. 
7:       ∉∈∀ kk xWx ,   P (xi, d), xk as undiagnosed.  
8: else 
9:        thread  mark: 
10: pixel xi as provisionally corrupted. 
11: jj xijWx ,, ≠∈∀   as undiagnosed. 
12: end if 

 
Algorithm 1: S1P1 - Step 1 Phase 1 Detection of erroneous pixels. 

 
Once the value of m has been established (the optimal value according to [6], if the 
window is n x n, is m =n - 1; in our case n =3 and m =2), if the peer group contains 

*  representa la cardinalidad del conjunto 
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at least m+1 elements, then the thread labels the central pixel xi  as uncorrupted and 
peer group members as uncorrupted. On the other hand, if the central pixel is 
declared as corrupted, members of the peer group are left as undiagnosed, and also 
as members of the window outside the peer group. 
In the second step (described in algorithm 2), the kernel was reconfigured to set 
more threads in each block and many threads were set so that each thread 
processed one item of pixel data. The thread corresponding to the pixel xi (central 
pixel of a n x n window) labeled as undiagnosed calculates the peer group and if 
this satisfies the cardinality m+1, the central pixel is diagnosed as uncorrupted;  if 
not, it is diagnosed as corrupted. 
 
Require: m,d, threads corresponding to the pixels labeled as not diagnosed 
Each thread defines the row and column corresponding to the central pixel xi. 
Each thread builds its Windows W of pixels. 
1: Calculate  P (xi, d) in W. 
2: If  ( P (xi, d) ≥ m +1)  
3:        thread mark: 
4:        pixel xi as uncorrupted. 
5: else 
6:       thread  mark: 
7:       pixel xi as corrupted.  
10: end if 

 
Algorithm 2: S1P2 - Step 1 Phase 2 Detection of erroneous pixels. 

 
In the correction step (described in algorithm 3), we used an equal number of 
threads for kernel 2. The threads corresponding to pixel xi apply filtering by 
substitution where this has been labeled as corrupted in step 1. The replacement 
value is determined by creating a window W for the pixel xi and calculating the 
AMF (Arithmetic Mean Filter) on corrupted pixels W. Threads with uncorrupted 
pixel values continue as before. 
 
Require: n, threads corresponding to the pixels labeled as corrupted 
Each thread defines the row and column corresponding to the central pixel xi.  
Each thread builds its Windows W of pixels. 
1: Calculate the AMF of uncorrupted pixels W. 
2: Thread corresponding to the pixel xi replaces value obtained by the AMF. 

 
Algorithm 3: S2 - Step 2 Elimination of erroneous pixels. 

 
To determine the number of threads per block that best fits the application, a 
heuristic study concluded that 64 x 64 threads per block gave lowest computational 
costs. The function cudaMallocPitch was used to ensure optimal global memory 
alignment of the pixels through textures. 
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As can be observed in section 2, a series of choices must be considered in order to 
implement an algorithm on CUDA. In the present case, two strategies were 
employed: 
 

a. Storing the image with 3 channels per pixel or 4 channels per pixel.  
b. Accessing data through the texture memory or not 

 
Deciding whether to store the image in RGB (three channels) or RGBA (3 
channels + padding) is necessary since the RGB format uses 3 bytes and thus does 
not achieve access coalescence. However, if a padding byte is added, even using a 
time for it, the accesses will fit in blocks of 4 bytes and performance may improve. 
Furthermore, the addition of a fourth byte can be used to indicate pixel status: 
corrupted, uncorrupted or undiagnosed. 
In addition, we evaluated the improvements deriving from the use or not of texture 
memory. For this research, two textures were used: one in the first phase of 
detection, another in phase 2 and in the elimination phase. In all cases, these were 
used with the purpose of reading xi neighboring pixels in the fuzzy and peer group 
calculations. In the detection phase, and once the pixels are in the device memory, 
each block thread reads its corresponding pixel for analysis, together with its 
neighbors, through two texture. At the end of this stage, the RGB fill channel 
contains the state of the pixel: corrupted, uncorrupted or undiagnosed.  
In the elimination phase, each thread reads its corresponding pixel, together with 
its neighbors, through the two texture. Once this is completed, the new values are 
written onto the pixel which has been analyzed. 
 
4.  Experimental results 
 
This section presents the results obtained for the implementations discussed in 
section 3. The CPU used was a Mac OS X Intel Xeon Quad-Core processor at 2 x 
2.26 GHz with 8GB memory. The GPU was an NVIDIA GeForce GT 120 with 
512MB of memory. Our implementation used C language. Many images are used 
in the area of image processing; for the present research, the lenna image [6] was 
employed, with RGB format square dimensions 256, 512, 1024 and 2048 pixels 
and 5 and 10% noise impulse. 
For each algorithm, we designed both the CPU serial code and the GPU parallel 
code and then compared execution time. When calculating execution time, data 
transfer time from host memory to device memory was not considered. 
The first experiment on GPU was to run the three algorithms for correction of 
erroneous pixels in RGB and RGBA format (strategy a Section 3), whilst the 
second experiment used textures (strategy b of section 3). Table 1 and Figure 1 
show a comparison of computational costs obtained by the process described. 
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 Size 

5% noise 10% noise 
RGB RGBA Texture RGB RGBA Texture 

246 4.25 3.09 1.79 4.77 3.47 1.95 
512 20.56 12.59 7.11 24.38 14.41 7.88 

1024 87.14 51.01 29.33 105.80 59.21 32.50 
2048 408.67 250.96 136.91 503.79 278.29 141.24 

 
Table 1.Processing time (msec) for the CPU and GPU-based implementations. 
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Figure 1.Comparation GPU for RGB, RGBA and Texture.5% impulse noise. 
 
It can be seen that in the case of using the RGBA format on GPU with 5% noise, 
the improvement is at worst 27% for the 256 image size and at best, 41% for the 
1024 image size, compared to RGB implementation. On the other hand, with 10% 
noise, the performance is at worst 27% for the 256 image size and at best, 44% for 
2048 image size. The best performance was obtained when using GPU with 
texture, since the improvement is approximately 45% with 5% noise and 43% to 
49% with 10% noise compared to RGBA (without texture) implementation.  
The results regarding relative GPU time spent by each kernel are shown in Table 
2.  
As can be seen, the computational cost of S1P1 is less than that for S1P2 in all 
cases. For RGB strategy S2, computational cost is less than that for S1P2 with 
image sizes 2048. 
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 strategy          kernel
     
        size 

Step 1. 
Phase 1 
(S1P1) 

Step 1. 
Phase 2 
(S1P2) 

Step 2 
(S2) 

GPU time. 
RGB 

256 0.59 1.77 1.90 
512 3.53 8.48 8.55 

1024 17.41 34.61 35.12 
2048 77.56 175.03 156.08 

GPU time. 
RGBA 

256 0.44 1.29 1.36 
512 2.33 4.61 5.64 

1024 11.03 17.40 22.58 
2048 55.08 93.97 101.91 

GPU time. 
Texture 

256 0.43 0.63 0.73 
512 1.69 2.56 2.88 

1024 7.34 10.22 11.76 
2048 40.36 44.05 52.51 

 
Table 2. Computational times for kernels. 

 
To conclude the comparison, CPU times are compared with GPU times (image 
with textures) in Table 3 and Figure 2.  
 

        
    size   

Textures 
GPU CPU Speedup 

246 1.79 111.88 62.30
512 7.11 467.63 65.69

1024 29.33 1932.72 65.89
2048 136.92 7907.12 57.75

 
Table 3. Speedup for different image sizes. 
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Figure 2.Comparison GPU (texture strategy) and CPU. 
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As can be seen, excellent results were obtained by using optimization with textures 
on GPU compared with CPU for this application. 
Figure 3 show the speedup (speed performance of one implementation with 
respect to another) when comparing the sequential version running on CPU and 
the parallel version on GPU using textures. As can be seen, even the worst result 
for the GPU version is 57 times faster than sequential, which is an excellent 
outcome. 
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Figure 3. GPU vs CPU speed-up for different image sizes. 
 
Finally, although not the objective of this research, we would highlight the quality 
obtained for impulse noise correction using the method described in Section 3, of 5 
and 10% in different image sizes compared with the result in [6]. Table 4 shows 
the results using the measures PSNR (Peak Signal-to-Noise Ratio) [12], MAE 
(Mean Absolute Error) and NCD (Normalized Color Difference). 
 

 5% 10%
Filter MAE PSNR NCD

(10 -2) 
MAE PSNR NCD 

(10 -2) 
AMF 16.415 22.422 7.358 16.825 21.947 8.798 
VMF 2.775 32.051 1.781 2.874 31.767 1.847 
DDF 2.764 31.808 1.663 2.982 31.325 1.788 

BVDF 2.985 31.382 1.720 3.248 30.773 1.869 
FIVF 0.414 35.685 0.482 0.743 34.158 0.669 

PGF m=2 0.404 37.996 0.297 0.696 35.257 0.553 
FMPGF m=2 0.521 36.196 0.370 0.900 33.390 0.687 

GPU FMPGF m=2 0.500 36.220 0.420 1.187 33.989 0.790 
 

Table 4.Quality Comparison. 
 
As can be seen, the quality achieved by implementing this algorithm in parallel is 
competitive. 
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5. Conclusions 
 
In this paper we have described a study conducted in order to determine the best 
method for implementing image correction processing in RGB format with 
impulsive noise on a GPU using a CUDA platform. This processing was divided 
into two steps: noise detection and noise elimination. For detection, the fuzzy 
measure and the concept of peer group were used, obtaining a set with pixels 
similar to a given and then deciding, according to the cardinality of the set, 
whether the pixel was noisy or not. In the correction stage, corrupted pixel values 
were replaced by calculating the mean of those neighbors not labeled as corrupted 
in the first stage. 
The experimental results show that if the accesses are coalescing, the results 
improve significantly. This is demonstrated by the versions in which we added one 
padding byte to the three-byte RGB format dedicated to each pixel. Additionally, 
this byte is useful for storing the assessment of whether the associated pixel is 
corrupted or not, making it unnecessary to access another area of global memory 
for this purpose. Furthermore, we have also shown that the use of textures for 
accessing data in global memory is less complex compared, for example, with 
versions used in multiprocessor caches to avoid accesses to the global memory 
(since this would have to include codes performing the copy.) Likewise, through 
the use of textures we have obtained outstanding results in speed, compared to 
sequential versions of the implementation, in the order of approximately 65%. 
Based on the results of this study, we would suggest two future lines of research. 
Firstly, optimal utilization of CUDA on GPUs would be interesting in order to 
obtain implementations for large images, spread the processing load between 
multiple GPUs available in the system and evaluate performance. The second line 
of research would be GPU implementation of the improvements in computational 
times and quality achieved using the implementation developed in this work. 
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Abstract
The gas transport through non-volatile random porous media is 
investigated numerically.  We extend our  previous research of 
the transport of molecules inside the uppermost layers of space 
bodies, assess the validity of the simplified capillary model and 
its assumptions to simulate the gas flux trough the porous non-
volatile  layer  as  it  has  been  applied  in  planetary  physics.  A 
microphysical  computational  model  for molecular transport  in 
random porous media formed by packed spheres is presented. 
The main transport characteristics such as the mean free path 
distribution and the permeability are calculated for a wide range 
of model parameters and compared with those obtained by more 
idealized models. Finally a practical way is suggested to adjust 
the  algebraic  Clausing  formula  taking  into  consideration  the 
nonlinear  dependence  of  permeability  on  layer  porosity.  The 
retrieved  dependence  allows  us  to  accurately  calculate  the 
permeability of layers whose thickness and porosity vary in the 
range  of  values  expected  for  the  near-surface  regions  of  a 
cometary nucleus. 

Key words: gas, porous media, planetary physics

As the physical models of the surface layer structure become more sophisticated 
and possibly more realistic  (e.g.  material  may be porous,  its  composition may 
include a variety of volatile and non-volatile additives, etc.) determination of the 
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effective  gas  production  is  becoming  a  more  and  more  complicated  problem. 
Various  aspects  of  this  fundamental  problem  of  planetary   physics  were 
considered by us in numerous articles published over the past few years (e.g., [1], 
[2]). Here we focus on the release of gas through a porous non-volatile surface 
layer of a cosmic body.

1. Capillary models of gas transfer through a porous dust layer 

The vast majority of publications containing theoretical modeling of gas transfer 
in  the uppermost  porous layers  of  a  space  body uses one and the same basic 
algebraic  formula  to  calculate  effective  gas  activity  -  namely,  the  formula  of 
Knudsen, that  describes  the mass  flow  rate  per  unit  capillary  area

1/2 ( ) ( )32
9

t t b b
K

t b

P T P Trm
k L T Tπ

  Ψ = −       

where r is the channel  radius,  L is the length, (Pb,  Tb)  and  (Pt, Tt) are pressures 
and  temperatures  at  the  bottom  and  top  of  the channel, respectively. This 
formula is very popular in planetary physics and has been used without change for 
almost thirty years [3]. The Knudsen formula refers  to  a  very  simple  model  of 
the  porous  medium  as  a bundle  of  disjoint,  straight  cylindrical  capillary 
channels of  radius  r,  and  length  L with diffusively scattering walls. The gas in 
the channel is in the free-molecular regime, i.e. the intermolecular collisions are 
negligible,  whereas  scattering  by  the  walls  plays  a  major  role.  A simple 
generalization of the Knudsen approach exists which allows us to calculate the 
rarefied gas flow in a  Knudsen regime through a cylindrical  tube of  arbitrary 
length with diffusion scattering walls with high accuracy.  This is the Clausing 
formula which apparently was for the first time considered in cometary physics by 
Steiner [4]:

1/2

2

20 8( / )
2 20 19( / ) 3( / )

t b
C

t b

P Pm L r
k L r L r T Tπ

 + Ψ = −    + +   

He also performed a quantitative comparison of the Knudsen and the Clausing 
formulas and showed that even for a sufficiently long channel in which the ratio 
of length to radius equals 10, the gas flow calculated using the former formula is 
overestimated by 50%, while for short tubes (L ≈ r) the relative error is about 
eight times higher. Later Skorov et al. [1] applied this approach for modeling a 
gas flow through a cylindrical tube with icy walls of varying temperature. 

Both formulae considered above were obtained for the molecular gas flow in a 
tube, while our ultimate goal is the calculation of gas flow in natural stochastic 
porous media, where statistically the length of a void is the same in any arbitrary 
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direction. The transition from the model of a single pipe to the model of porous 
medium can not be realized in a simple way when the capillary approach is used. 
The other serious obstacle for use of the capillary models in planetary physics 
applications is the anisotropic character of the model generated medium. In order 
to  compensate  for  this  problem  an  additional  model  parameter  the  above-
mentioned  tortuosity,  τ, is  usually  added.  The  formal  purpose  is  to  replace  a 
straight cylindrical channel by a broken one of greater length and thereby to make 
the  model  environment  more  isotropic.  Unfortunately  the  tortuosity  can  be 
introduced in a non-unique way into the simplest capillary model. For a natural 
porous media the tortuosity is an empirical quantity, that should be determined 
from the experiments.  Note that,  in  contrast  to  porosity,  tortuosity  can not be 
easily measured directly. Often it is derived from independent measurements of 
the Knudsen diffusion coefficient and porosity.  

2. Models of granular packed bed

There is an alternative way to describe the Knudsen diffusion in a porous medium 
- a way where the molecular gas flow is regarded to be external to the nonvolatile 
matrix: “flow around obstacles”. The matrix itself is constructed (composed) of 
elementary scattering or absorbing objects, for example,  spheres. Interaction of 
gas molecules with the surfaces of matrix elements is similar to interaction with 
the walls of a capillary in the models of the first type. Thus, the weakening of gas 
flow and reduction of effective diffusion rate can be well modeled as before. 

We  generate  porous  media  consisting  of  mono-disperse  spheres  using  two 
different  methods:  ballistic  deposition  (RBD)  and  random  sequential  packing 
(RSP). For RBD spheres are dropped one by one vertically into a control volume 
where  they touch either  the  bottom or  another  sphere.  The porosity  of  media 
generated by RBD is about 0.85, with a more compact base and a fluffier top. For 
RSP spheres are placed one by one at random locations within a control volume. 
Locations that would result in overlapping spheres are rejected. This results in a 
homogeneous,  isotropic  medium  with  a  porosity  that  can  be  determined  by 
specifying the total number of spheres used. We generated media with porosities 
of 0.65, 0.70, 0.75, 0.80 and 0.85.

In order to estimate the transport  properties  of the model  media we apply the 
random walk algorithm used extensively in studies of disordered granular media. 
The  major  characteristics  of  a  porous  layer  that  are  important  for  planetary 
applications  are  the  permeability  and  the  resulting  return  flux.  These 
characteristics are examined by tracing the geometric paths of a large number of 
test particles through the medium using the Monte Carlo method. We use 100.000 
test particles for each simulation.  Since the outflow is assumed to be rarefied, 
intermolecular collisions and particle velocities are not considered. Therefore, the 
geometric paths of test particles only are a result of their starting direction and 
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subsequent  interactions  with  the  spheres  that  represent  the  nonvolatile  matrix. 
These interactions are modeled as either specular reflections or diffuse scattering.

3. Results and conclusions

The present work aims at three primary goals:
• Revise or adjust the capillary models used in planetary physics to describe 

the  transport  of  sublimation  products  through  porous  nonvolatile  layer 
accurately.  

• Present  alternative  description  of  porous  media  based  on  ballistic 
deposition and random sequential packing methods. Use direct statistical 
simulation to retrieve major geometrical and transport properties of model 
media as a function of porosity and layer thickness. 

• Suggest a way to adjust the Clausing formula taking into consideration the 
nonlinear dependence of permeability on layer porosity.  

In view of these goals we summarize below the main results:

Knudsen's formula is not applicable for modeling the gas transport through short 
channels. Satisfactory agreement with experimental data is achieved only when 
the channel radius is much smaller than its length. As an alternative, Clausing’s 
formula  can  be  used.  This  formula  gives  an  exact  agreement  with  the 
experimental data for straight cylindrical channels with an arbitrary ratio of radius 
to length. However, the spatial anisotropy of the capillary model leads to the fact 
that its  transfer characteristics are highly different for different directions.  The 
transition from the permeability of one channel to the permeability of the medium 
can not be accurately and correctly generalized. Adding an additional linear factor 
- tortuosity to the formula does not solve the problem, but on the contrary, only 
confuses the situation.

To avoid these inconsistencies accurate statistical calculations are performed for 
media formed either by ballistic deposition (RDB) of test particles or by random 
filling of a control volume (RSP).  Two types of interaction of molecules  with 
scattering spheres are tested: diffuse and specular scattering.  It turns out that for 
the random model of the porous medium the permeability is virtually independent 
of the type of interaction.  We show that a relatively small variation of porosity 
(not more than 30%) leads to a strong change of permeability.  The permeability 
depends on the medium porosity in a nonlinear way. 

In order to overcome the resource consuming calculations for direct use of the 
statistical  models,  we  present  a  practical  way  to  calculate  the  effective 
permeability. We preserve the overall structure of Clausing’s formula, accurately 
describing the kinetics of transport through a single cylindrical capillary. To take 
into  consideration  the  porosity  of  the  medium  in  an  appropriate  manner  we 
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assume  that  the  effective  radius  of  the  capillary  is  an  unknown  function  of 
porosity.  The  explicit  form  of  this  functional  dependence  is  derived  from  a 
nonlinear approximation based on statistical modeling results. Thus, the effective 
permeability,  as before, depends on the thickness of the layer  and its effective 
pore  size,  which  in  turn  is  a  function  of  porosity.  The  retrieved  algebraic 
expression  allows  us  to  accurately  calculate  the  permeability  of  layers  whose 
thickness and porosity vary in the range of values expected for the near-surface 
regions of a cometary nucleus. The simplicity of this approach makes it practical 
to include the computational block that accurately describes the transport of gas in 
the overall thermal model of a cometary nucleus.

This work was supported by the German Research Foundation (DFG grant BI 
298/9-1).
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Abstract 

Wireless Sensor Networks (WSN) have become much more 

relevant in recent years, mainly because they can be used in a 

wide diversity of applications. Real-Time Location Systems 

(RTLS) are one of these applications and represent a currently 

growing market. However, accuracy in RTLS is still a problem 

requiring novel solutions. This paper presents an innovative 

mathematical fuzzy model for improving the accuracy of RTLS. 

The proposed approach and the preliminary results obtained are 

presented in this paper. 

 

Key words: Wireless Sensor Networks, Real-Time Location 

Systems, Location Algorithms, Fuzzy Logic, Artificial Neural 

Networks. 

 

1. Introduction 

 

Wireless Sensor Networks allow us to obtain information about the environment 

and act on this, expanding users' capabilities and automating daily actions. One of 

the most interesting applications for WSN is the Real Time Localization System 

(RTLS). Although outdoor localization is covered to a large degree by systems 

such as GPS, indoor localization is still an area in need of development, especially 

with respect to locating people or objects within an enclosure [13] [14]. 
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Therefore, it is in indoor spaces that localization presents the most difficulty. For 

this, it has become necessary to develop systems that allow the performance of 

efficient localization in terms of precision and optimization of resources (for 

example, sensor infrastructure and calculation capacity). The process necessary 

for carrying out localization must take into account the type of sensors used and 

the algorithm applied for the calculation of the final position based on the 

information recovered by these sensors.  

Amongst the technologies that are currently used most in the development 

of RTLS are, RFID (Radio Frequency IDentification), Wi-Fi y ZigBee [3] [4] [5]. 

However, in addition to the technology used, it is necessary to establish 

mathematic models that allow us to determine the position from the signals 

recovered. For this, various algorithms exist, such as Triangulation, 

Fingerprinting and Multilateration [10]. However, these models present important 

disadvantages when developing a precise localization system, especially indoors. 

Therefore, it is necessary to define new models that allow the improvement of 

precision in this type of system. 

In this article, a new model based on fuzzy logic is presented in order to 

improve the precision of localization systems based on wireless sensor networks, 

in real time. The basic functioning of these systems is as follows: Firstly, it is 

necessary to place a fixed node network within the space where localization will 

be carried out. In turn, a series of mobile nodes exist, generally called "tags", 

which periodically transmit a signal that contains their identifier in the network. 

That signal is detected by the fixed nodes within their coverage area, containing 

power measurements (RSSI: Received Signal Strength Indication) and quality 

(LQI: Link Quality Indicator) of the signal received. A central node compiles all 

the reference measurements from all of the fixed nodes in the network and sends 

them to a computer to be processed. The model proposed in this article takes 

RSSI as inputs and based on this executes an estimation of the position of each of 

the mobile nodes in the system. In a first stage, the model establishes the most 

probable position of each mobile node based on the RSSI levels. In the second 

stage, the data generated is used by the diffused model to train an MLP neuronal 

network [2]which will be what finally estimates the positions when the system has 

already been trained. 

The paper is structured as follows: Section 2 presents different localization 

techniques. Section 3 describes the planning model. Section 4 describes a set of 

tests evaluating our proposal. 

2.  Localization Systems 

Localization Systems allow the identification and localization of different 

elements in an environment. Localization Systems are composed of two elements: 

sensors and tags. The tags are placed on the elements while the sensors are 

normally placed in fixed points, that way generating a sensor network which 

allows us to locate different devices. 
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Currently, different systems of localization exist based on the technology used, 

and the different alternatives are: 

 GPS: The operation of a real time localization system based on GPS 

(Global Positioning System) basically consists of a set of satellites (fixed 

transmitters) that constantly send information, which is collected by 

mobile devices (receivers). The receivers calculate their position based on 

the coordinates of the satellites, so the more satellite references had, the 

better the precision. It is necessary to have at least 3 satellite references in 

order to be able to calculate the position. 

 GSM/GPRS: Mobile phone operators also offer localization services. 

Their operation is based on using the same network of antennas that the 

telephone service provides. In this case, localization can be carried out as 

much by the mobile device as by the service provider, due to the fact that 

antennas and devices both act as transmitters and receivers. To calculate 

localization, they use parameters such as the time of arrival of the signal, 

incidence angles, triangulation of signals or belonging cells. 

 RFID:  Radio Frequency IDentification (RFID) [3] is another of the 

alternatives used for the development of real time localization systems. Its 

operation is based on a network of RFID readers and tags. The readers 

transmit a constant RF signal, which is collected by the tags, which in turn 

respond to the readers by sending a number of identification. In this type 

of localization, each reader covers a determined zone through its RF signal 

(reading field) When a tag passes through the reading field of the reader, it 

is said that the tag is in that zone. An RFID system is mainly composed of 

four elements: 1) Tags, 2) Readers, 3) Antennas and Radios and 4) 

Processing Hardware [4] [5]. RFID tags or chips can be passive (without 

batteries), in which case they are called transponders [3]. Transponders are 

much cheaper and smaller than active chips (with batteries), but have 

much less of a reach range. The main RFID technology applications have 

taken place in industrial, transport environments, etc., but their application 

in other sectors, including medicine, is increasingly important [3][4] [5]. 

 Wi-Fi: Localization systems based on WiFi [6] employ wireless network 

devices to calculation position. A mesh of nodes is employed (fixed 

transmitters and receivers) which function as a reference for mobile nodes. 

The system calculates the position of the mobile nodes starting from the 

signals received by the fixed nodes. A large amount of techniques exist for 

processing these signals and determining their position, including 

symbolic or signpost localization, triangulation, trilateration, etc, 

Localization based on Wi-Fi has three main components: 1) An RFID tag 

that transmits and receives signals under the regulation 802.11 [7], 2) a 

WLAN infrastructure, formed by access and controller points, and 3) a 

localization engine, consisting of software capable of interpreting 
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information provided by the Wi-Fi infrastructure and tags to provide data 

relating to the location of users [6]. 

 The ZigBee standard allows operation in the ISM (Industrial, Scientific 

and Medical) band, which includes 2.4GHz almost all over the world. The 

underlying IEEE 802.15.4 standard is designed to work with low-power 

nodes with limited resources. ZigBee adds network and application layers 

over IEEE 802.15.4 and allows more than 65,000 nodes to be connected in 

a mesh topology WSN. Another standard for deploying WSNs is 

Bluetooth. This standard also operates in the 2.4GHz band and allows the 

creation of star topology WSNs of up to 8 devices, one acting as master 

and the rest as slaves, but it is possible to create larger WSNs through 

devices that belong simultaneously to several WSNs. However, it is not 

easy to integrate devices from different technologies into a single WSN 

[1]. The lack of a common architecture may lead to additional costs due to 

the necessity of deploying interconnection elements amongst different 

WSNs. 

 

The most adequate technology for indoor localization is that based on ZigBee 

since others such as GPS can only be used outdoors as it is necessary to receive 

satellite signal. Other networks like GSM allow the implementation of 

localization but the margin of error is too high so it is not considered to be 

adequate for use as is the case with WI-FI.  

3. Localization Algorithms 

There are three main algorithms employed by real time localization systems for 

determining the position of mobile nodes (tags): Triangulation, Fingerprinting and 

Multilateration [10]. Triangulation allows us to obtain localization coordinates 

through the calculation of longitude of the sides of a triangle from the input angles 

of the received signal in each antenna, for which it is necessary to provide at least 

3reference points [10]. Fingerprinting, also known as signpost or symbolic 

localization, is based on the study of the characteristics of each area of 

localization, carrying out measurements of radio frequency characteristics and 

estimating in which area of influence each tag is found [1][11]. Finally, 

Multilateration is based on the estimation of distances from the readers to the tags 

by measuring parameters such as RSSI (Received Signal Strength Indication) or 

TDOA (Time Difference of Arrival) [12], so that intersecting the estimated 

differences from each tag to three or more fixed nodes can determine the points 

where these tags are found. Multilateration  allows us to obtain better results 

outdoors than with triangulation, but its performance lowers notably indoors. This 

is because indoor RSSI levels will vary in function of the presence of elements  

(people, objects or animals) and  are also based on the calculation of distances, so 

that it is necessary to carry out a prior estimation of these distances starting from 

RSSI values which change constantly.  
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For this, we propose a new model which makes use of fuzzy logic and 

neural networks to improve the calculation of the position of mobile nodes. This 

model is described below. 

3.1. New Fuzzy Model 
The model proposed in this article is based on the level of the RSSI signal 

(Received Signal Strength Indication) detected by the nodes (sensors). The 

absolute value of RSSI is exponentially related to the distance that is found. 

Therefore, initially it seeks to convert these values in such a way that the 

connection is more linear although it is not necessary to carry out a precise 

conversion. In figure 1, there is an example of the operation of a sensor network 

and a tag. The sensors have been represented in red and the tag in the centre of the 

image is represented in blue. For each of the sensors, some circles have been 

represented related to a logarithm of the absolute value of the RSSI detected. The 

colour of the circles is related to the radio coverage. Thus, it can be seen that the 

circles intersecting different regions so that the darkest region is the one found 

closest to the point. 

 

 

Figure 1. Graphic representation of localization based on RSSI levels.  

From the information shown in the previous figure, we can proceed to making an 

estimation as to the most likely regions in which there is a tag. For this, for each 

one of the cells a relevance index is calculated based on the circles that are drawn 
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over it, finally having something similar to that shown in Figure 2. The darker the 

colour of the cell, the greater the possibility of finding a tag in this cell. 

 

Figure 2. Graphic representation of the possibility of localization in each of the cells. The 

darker the cell is, the higher the probability. 

Finally, once the region with the most possibility is determined, the midpoint, 

which will represent the estimated location of the node, is calculated. 

Due to the fact that the RSSI level does not remain constant and that it will vary 

according to rebounds from appropriate waves emitted by the sensors, it is 

necessary to stabilize the positions through the use previously estimated values. 

For this, the relevance index for each cell is calculated depending on what has 

previously been observed. Thus, the calculation process of levels follows the 

algorithm below. In equation (1) the calculation of each relevance index of the 

tags to each cell is shown. 

1

))(()(
)1(






k

ktrftw
tw

rij

ij



  (1)   

where t represents the sequence, wij the index of pertinence of the tag to the cell ij 

, k the rate of update and fr the function of calculation of the new index based on 

the vector r of sensitivities. fr is defined in function of the equation (2).  
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kr trtrf
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  (2)   
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)(tr


 is the vector of signal intensities corresponding to the sensors that have 

detected the tag. In this vector, only the sensor readings for the distances between 

them are included and the cell is less than the range of the sensor for the 

sensitivity detected. ****** Namely, the vector only stores the sensor component 

if the cell that is found within the circle corresponds to the sensor as in Figure 1. 

Formally )(tr


 is described in the following manner: 

|}log(|),(/)(*|{log(|)( jjjj RSSIscdRSSIpRSSItr 


  (3)   

where j represents each one of the sensors that detect the tag y ),( jscd  the 

Euclidian distance between the cell c and the sensor j.  pj represents a weighting 

based on the levels of RSSI detected. The weighting is used due to the fact that 

not all the RSSI levels are equally reliable due to interference. Thus the values 

obtained between -51 and -80 are less reliable than those obtained from 80 and 

much less than values near 1 so that a weighting is defined based on these values. 

The weighting chosen follows the equation below (4). 
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The final position of the sensor is estimated according to the middle position of 

the cells with a greater probability rate of belonging to equation (5). 

n

p

l

n

i

ij
 1   

(5)   

 

3.2. Operation Stage 
As the fuzzy model is capturing data, from the signals and estimating positions, it 

stores these in a memory to subsequently use to carry out the training of an MLP.  

The neural network allows us to make the fastest estimations and is more 

responsive to variations resulting from the reflections of the waves emitted. Input 

data from the neural network corresponds with the intensity values detected by a 

pre-fixed number of sensors. Output has two coordinates, one for the space 

coordinate. The number of neurons in the hidden layer is 2n+1, where n is the 

number of neurons in the input layer. Finally, there is one neuron in the output 

layer. The activation function selected for the different layers has been the 
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sigmoid. Taking into account the activation function fj, the calculation of output 

values is given by the following expression  

))(
1

j

N

i

p

ijij

p

j (t) x(twfy  
   

(6)   

The neurons exiting from the hidden layer of the neural network contain 

sigmoidal neurons. Network training is carried out through the error 

Backpropagation Algorithm [2]. 

 

4. Results and Conclusions 

To analyze the system we proceeded to install a network of ZigBee devices in a 

laboratory. The sensor network was formed by 15 fixed devices distributed in 3 

rooms, following the distribution shown in figure 3. The dimensions in meters are 

19x19m. 

 

Figure 3. Distribution of the network of ZigBee devices in the laboratory 

To analyze the results, an estimation of error was carried out in 19 measurements 

and the error during the training and estimation phases was calculated. Figure 4 

shows the sensors, the real location of the tags and the estimated locations using 

the multilateration and fuzzy methods. 

 
Figure 4. Location of tags using Multilateration and Fuzzy 

19 m
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Figure 5 shows the estimated errors obtained using the fuzzy, Multilateration and 

the localization models described in section 3. The X axis represents the different 

measurements and the Y axis, the Euclidian distance in meters from the estimated 

position to the real position of the tag.  

 

Figure 5. Prediction Errors in meters 

The proposed model is capable of carrying out localization of the tags in a more precise 

way. Furthermore, it allows us to carry out an estimation which subsequently makes the 

estimation of positions though the use of a neural network possible.  The neural network 

improves the operation of the fuzzy model since it has a greater capacity for adaptation 

than fuzzy models. Thus, measuring errors due to noise have less effect. 
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Abstract 
Stochastic (or probabilistic) programming is an optimization 
technique in which the constraints and/or the objective function 
of an optimization problem contains random variables. The 
mathematical models of these problems may follow any 
particular probability distribution for model coefficients. The 
objective here is to determine the proper values for model 
parameters influenced by random events. In this study, DE and 
its two recent variants LDE1 and LDE2 are presented for 
solving multi objective linear stochastic programming (MOSLP) 
problems, having several conflicting objectives. The numerical 
results obtained by DE and its variants are compared with the 
available results from where it is observed that the DE and its 
variants significantly improve the quality of solution of the 
given considered problem in comparison with the quoted results 
in the literature.  
 
Key words: Differential Evoltuion, stochastic programming, 
multiobjective optimization. 
 

1 Introduction 
Stochastic programming (SP) is a mathematical programming where stochastic 
element is present in the data. In contrast to deterministic mathematical 
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programming where the data (coefficients) are known numbers in stochastic 
programming these numbers follow a probability distribution. Thus we can say 
that SP is a framework for modeling optimization problems that involve 
uncertainty. The goal here is to find some policy that is feasible for all (or almost 
all) the possible data instances and maximizes the expectation of some function of 
the decisions and the random variables. More generally, such models are 
formulated, solved analytically or numerically, and analyzed in order to provide 
useful information to a decision-maker.  
 
In the recent past, SP has been applied to the problems having multiple, 
conflicting and non-commensurable objectives where generally there does not 
exist a single solution which can optimize all the objectives. Several methods for 
solving Multi-Objective Stochastic Linear Programming (MOSLP) problems and 
their applications to various fields are available in literature [1] – [7]. Most of the 
probabilistic models assume normal distribution for model coefficients. Sahoo 
and Biswal [8] presented some deterministic equivalents for the probabilistic 
problem involving normal and log-normal random variables for joint constraints. 
Charles et al. [9] addressed different forms of distributions like Power Function 
distribution, Pareto distribution, Beta distribution of first kind, Weibull 
distribution and Burr type XII distribution. In the present study we have followed 
the models proposed by Charles et al [9] and have solved them using Differential 
Evolution (DE).  
 
The rest of the paper is organized as follows: Section 2 briefly describes the 
classical DE, LDE1 and LDE2 algorithms. The problem definition is given in 
section 3. In section 4; the experimental settings and numerical results are 
discussed. Finally the paper concludes with section 5.  
   

2 Differential Evolution Algorithms 

2.1  Classical Differential Evolution (DE) 
Differential Evolution (DE) [10] is a population based metaheuristics that has 
been consistently ranked as one of the best search algorithm for solving 
benchmark as well as real life problems in several case studies. The algorithm 
mainly has three advantages; finding the true global minimum regardless of the 
initial parameter values, fast convergence, and uses a few control parameters [11]. 
DE has been successfully applied to solve a wide range of real life application 
problems such as clustering [12], unsupervised image classification [13], digital 
filter design [14], optimization of non-linear functions [15], global optimization of 
non-linear chemical engineering processes [16] and multi-objective optimization 
[17] etc. Also it has reportedly outperformed other optimization techniques [18] – 
[20]. 
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A general DE variant may be denoted as DE/X/Y/Z, where X denotes the vector to 
be mutated, Y specifies the number of difference vectors used and Z specifies the 
crossover scheme which may be binomial (bin) or exponential (exp). Throughout 
the study we shall consider the mutation strategy DE/rand/1/bin [10] which is 
perhaps the most frequently used version of DE.  
 
For a D-dimensional search space, each target vector gix , , a mutant vector is 
generated by 

)(* ,,,1, 321 grgrgrgi xxFxv −+=+                                                                    (1) 

where },....,2,1{,, 321 NPrrr ∈ are randomly chosen integers, must be different from 
each other and also different from the running index i. F (>0) is a scaling factor 
which controls the amplification of the differential evolution )( ,, 32 grgr xx − . In 
order to increase the diversity of the perturbed parameter vectors, crossover is 
introduced. The parent vector is mixed with the mutated vector to produce a trial 
vector 1, +gjiu , 

⎩
⎨
⎧ =∨≤

=
+

+
+ otherwisex

kjCrandifv
u

gij

rjgij
gij

1,,

1,,
1,,                (2) 

where j = 1, 2,……, D; ]1,0[∈jrand ; CR is the crossover constant takes values in 
the range [0, 1] and ),.....,2,1( Djrand ∈ is the randomly chosen index. 
The final phase of DE algorithm is selection. Here the population for the next 
generation is selected from the individual in current population and its 
corresponding trial vector according to the following rule: 

⎩
⎨
⎧ ≤

= ++
+ otherwisex

xfufifu
x

Gi

GiGiGi
Gi

,

,1,1,
1,

)()(
    (3) 

Thus, each individual of the advance (trial) population is compared with its 
counterpart in the current population. The one with the lower objective function 
value will survive from the tournament selection to the population of the next 
generation. As a result, all the individuals of the next generation are as good as or 
better than their counterparts in the current generation. 

2.2  Laplace Differential Evolution (LDE) 
The LDE algorithms are proposed by Thangaraj et al. [21]. These algorithms 
differ from the classical DE in the mutation phase in a twofold manner. These 
schemes make use the absolute weighted difference between the two vector points 
in place of the usual vector difference as in classical DE and secondly, in LDE 
schemes amplification factor, F (of the usual DE), is replaced by L, a random 
variable following Laplace distribution.  
 
The mutation schemes of LDE1 and LDE2 algorithms are defined as follows: 
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2.2.1 LDE1 Scheme 

||*L ,,,1, 21 grgrgbestgi xxxv −+=+        (4) 
In LDE1 scheme, the base vector is the one having the best fitness function value; 
whereas the other two individuals are randomly selected. 
 
2.2.2 LDE2 scheme 

If (U(0,1) < 0.5) then  
||*L ,,,1, 21 grgrgbestgi xxxv −+=+       

Else          
)(* ,,,1, 321 grgrgrgi xxFxv −+=+          

In LDE2 scheme, mutant vector using equation (4) and the basic mutant vector 
equation are applied probabilistically using a predefined value. A random variable 
following normal distribution U(0,1) is generated. If it is less than 0.5 then LDE1 
scheme is applied otherwise Eqn. (1) is applied. 
Both the modified versions, LDE1 and LDE2 have reportedly given good 
performances for solving benchmark as well as real life problems [21]. 

3 Problem Definition 
Mathematical model of a constrained MOLSP may be given as [9]: 

Maximize ∑
=

=
n

j
j

k
jk xcz

1
, Kk ,...,2,1=  

Subject to pbxabxabxaP
n

j
mjmj

n

j
jj

n

j
jj ≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≤≤≤ ∑∑∑

=== 11
22

1
11 ,...,,   

njx j ,...,2,1,0 =≥  
Where 0 < p < 1 is usually close to 1. It has been assumed that the parameters aij 
and cj are deterministic constants and bi are random variables. For more details 
the interested reader may please refer to [9]. In the present study, we have 
considered the two test problems which are used in [9]. These problems are multi-
objective stochastic linear programming problems (MOSLP) involving random 
variables following different distributions.  
 
Test problem 1: MOSLP1: 

Maximize 3211 365 xxxz ++=  
Maximize 3212 536 xxxz ++=  
Maximize 3213 852 xxxz ++=  

Subject to 
90.0)223( 1321 ≥≤++ bxxxP  
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98.0)582( 2321 ≥≤++ bxxxP  
95.0)235( 3321 ≥≤++ bxxxP  

90.0)25.05.05.0( 4321 ≥≤++ bxxxP  
99.0)438( 5321 ≥≤++ bxxxP  

0,, 321 ≥xxx  
 
Here, b1 follow Power Function distribution, b2 follow Pareto distribution, b3 
follow Beta distribution, b4 follow Weibull distribution; b5 follow Burr type XII 
distribution. The problem is converted to deterministic model as follows: 
 
Maximize )536()365( 32123211 xxxxxxz +++++= λλ )852( 3213 xxx +++ λ  
 
Subject to 

3096.6223 321 ≤++ xxx , 0812.8582 321 ≤++ xxx  
7115.4235 321 ≤++ xxx , 9379.025.05.05.0 321 ≤++ xxx  
0321.10438 321 ≤++ xxx , 1321 =++ λλλ  
0,,,,, 321321 ≥λλλxxx  

 
Test problem 2: MOSLP2: 

Maximize 3211 583 xxxz ++=  
Maximize 3212 347 xxxz ++=  
Maximize 3213 5.1076 xxxz ++=  
 

Subject to 
95.0)245( 1321 ≥≤++ bxxxP  

95.0)37( 2321 ≥≤++ bxxxP  
95.0)372( 3321 ≥≤++ bxxxP  

95.0)25.05.05.0( 4321 ≥≤++ bxxxP  
95.0)5.125( 5321 ≥≤++ bxxxP  

0,, 321 ≥xxx  
 

Here b1 follow Power Function distribution; b2 follow Pareto distribution; b3 
follow Beta distribution of first kind; b4 follow Weibull distribution and b5 follow 
Burr type XII distribution. The deterministic model of the problem is given as: 
 
Maximize z = )347()583( 32123211 xxxxxx +++++ λλ  )5.1076( 3213 xxx +++ λ  
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1321 245 yxxx =++ , 2321 37 yxxx =++  

3321 372 yxxx =++ , 4321 5.232 yxxx =++  

5321 5.125 yxxx =++ , 1321 =++ λλλ  
0,,,,,,,,,, 32154321321 ≥λλλyyyyyxxx  

4 Experimental Settings and Numerical Results 

4.1 Parameter Settings 
DE has three main control parameters; population size, crossover rate Cr and 
Scaling factor F which are fixed as 50, 0. 5 and 0.5 respectively. For LDE 
schemes the scaling factor is a random variable, L, following Laplace distribution. 
For each algorithm, the stopping criterion is to terminate the search process when 
the maximum number of generations is reached (assumed 1000 generations). 
Constraints are handled according to the approach based on repair methods 
suggested in [22]. A total of 50 runs for each experimental setting were conducted 
and the best solution throughout the run was recorded as global optimum. Results 
obtained by basic DE and LDE versions are also compared with previously 
quoted results [9]. 

4.2 Numerical Results 
We have considered four test cases in each of the test problems. 
Since, 1321 =++ λλλ , one of λi, i = 1, 2, 3 could be eliminated to reduce the 
number of  dependent variables from the expression of objective function. So, we 
assigned equal weights to two terms at a time in the objective expression. The 
resultant test cases are as follows: 

(i) 10,
2

1, 321 ≤≤
−

=== WWW λλλ  

(ii) 10,
2

1, 312 ≤≤
−

=== WWW λλλ  

(iii) 10,
2

1, 213 ≤≤
−

=== WWW λλλ  

(iv) 1λ , 2λ , and 3λ  are dependent variables. 
 

The numerical results of the given two test problems MOSLP1 and MOSLP2 are 
recorded in Tables 1 and 2 respectively. The best solution obtained by DE and 
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LDE algorithms for MOSLP1 in terms of optimal decision variable values and 
objective function value are given in Table 1. For the test case (i), the 
performance of LDE1 is better than all the other algorithms. For the remaining 3 
test cases, LDE2 performs better than other compared algorithms. If we compare 
the LDE algorithms with classical DE algorithm then from the numerical results 
we can see that LDE algorithms are superior with classical DE algorithm. There is 
an improvement of 52% in objective function value when the problem is solved 
by LDE2 in comparison with the quoted result [9], where the problem is solved 
by Genetic Algorithm. The results of test problem MOSLP2 are given in Table 2. 
From this table also we can see that LDE2 algorithm is superior with others in all 
the test cases. The improvement of LDE2 algorithm in comparison with the 
results in the literature is 141%. Figure 1 shows the performance of DE and LDE 
algorithms in terms of objective function value. 
 

Table 1 Results of MOSLP1  
 DE LDE1 LDE2 GA [9] 

λ1 = W, λ1 = λ2 = (1-W)/2, 0 ≤ W ≤ 1 
Z 10.9905 10.997 10.996

--NA-- x1 0.349128 0.351905 0.35171
x2 0 0 0
x3 1.47618 1.47538 1.47539

λ2 = W, λ1 = λ3 = (1-W)/2, 0 ≤ W ≤ 1 
z 9.48974 9.48975 9.48975

--NA-- x1 0.35214 0.35215 0.352142
x2 0 0 0
x3 1.47538 1.47537 1.47538

λ3 = W, λ1 = λ2 = (1-W)/2, 0 ≤ W ≤ 1 
z 12.9277 12.9288 12.9292

--NA-- x1 0 0 0
x2 0 0 0
x3 1.61611 1.61612 1.61617

Problem described as in [9]
z 9.48978 11.3988 12.9299 8.5089 
x1 0.352147 0.334378 0 0.3727 
x2 2.12479e-007 0.00514505 0 0.2319 
x3 1.47538 1.47426 1.61624 1.0761 
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Table 2 Results of MOSLP2  
 DE LDE1 LDE2 GA [9] 

λ1 = W, λ1 = λ2 = (1-W)/2, 0 ≤ W ≤ 1 
z 5.5452 6.3844 6.86328

--NA-- 

x1 0.170342 0.275175 0.297729
x2 0.0367932 0.0654974 0.00485206
x3 0.759151 0.627495 0.726168
y1 2.5158 2.89285 2.96039
y2 2.06291 2.7502 2.82483
y3 2.862 2.89131 2.80793
y4 2.36484 2.31558 2.42544
y5 2.06754 2.44811 2.5876

λ2 = W, λ1 = λ3 = (1-W)/2, 0 ≤ W ≤ 1 
z 5.3215 7.01255 7.72732

--NA-- 

x1 0.170342 0.12258 0
x2 0.0367932 0.0575791 0.00166162
x3 0.759151 0.777962 0.995503
y1 2.5158 2.39914 1.99765
y2 2.06291 1.80875 1.00048
y3 2.862 2.98209 2.99814
y4 2.36484 2.36281 2.49374
y5 2.06754 1.895 1.49658

λ3 = W, λ1 = λ2 = (1-W)/2, 0 ≤ W ≤ 1 
z 6.60213 9.3271 10.4638

--NA-- 

x1 0.170342 0.126015 0
x2 0.0367932 0 0.00166304
x3 0.759151 0.816303 0.995504
y1 2.5158 2.26268 1.99765
y2 2.06291 1.69841 1.00049
y3 2.862 2.70093 2.99815
y4 2.36484 2.29278 2.49374
y5 2.06754 1.85453 1.49659

Problem described as in [9]
z 6.87235 7.13425 7.73912 3.2081 
x1 2.65138e-006 0.000944931 0.000308158 0.1939 
x2 0.000127494 0.061029 0.127573 0.2810 
x3 0.664552 0.738963 0.688939 0.1968 
y1 1.32963 1.72678 1.88971 2.4872 
y2 0.664947 0.928675 1.07383 2.3971 
y3 1.99454 2.64598 2.96046 2.9454 
y4 1.66177 2.03239 2.10569 1.7229 
y5 0.9971 1.0 1.0 1.8267 
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Figure 1 Performance of DE and LDE algorithms in terms of objective function 

value 

5 Conclusion 
The Stochastic Programming is an optimization technique in which the constraints 
and/or the objective function of an optimization problem contains certain random 
variables following different probability distributions. In the present study DE and 
two of its recent variants LDE1 and LDE2 are used to solve two constrained 
multiobjective stochastic linear programming problems. Four test cases were 
considered with respect to the weighing factors and the results were produced in 
terms of objective function value and decision variable values. From the 
experimental results it was observed that the DE algorithm and its variants 
significantly improve the quality of solution of the considered problems in 
comparison with the quoted results in the literature. As expected the modified 
versions LDE1 and LDE2 performed better than the basic version of DE because 
of the presence of the Laplace mutation operator. In conclusion we can say that 
DE’s present an attractive option for solving stochastic programming problems. 
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New Approaches to Characterizing the Information
Theory of MIMO Wireless Channel

Yang Chen1 and Matthew McKay2
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Technology Clear Water Bay, Hong Kong

Abstract

In this talk we compute the Shannon capacity of multi-antenna Gaussian channel through its
moment generating function. It transpires that such a quantity can be described as a particular
Hankel determinant of a (n x n) moment matrix generated by a perturbed Laguerre weight,
with a parameter t. We show that the logarithmic derivative of the Hankel determinant with
respect to t, satisfies the Jimbo-Miwa-Okamoto sigma form of a Painlevé V.

We show how to reconcile the Coulomb Fluid approach (valid for large n) with the moment
generating function with this PV and obtain 1/n and higher order corrections.

On a degenerative version of the Favard’s theorem

R.S. Costas-Santos and J.F. Sánchez-Lara

Abstract

We state a degenerate version of Favard’s theorem that allow us to extend the orthogonality
properties valid up to some integer degree N to Sobolev type orthogonality properties. We also
present the process to obtain the factorization and the non- standard Sobolev-type orthogo-
nality property for those families of classi- cal orthogonal polynomials which satisfy a finite
orthogonality property, i.e. it consists in sum of finite number of masspoints.

@CMMSE                                                               Page   1321  of 1328                                               ISBN 13: 978-84-613-5510-5



Proceedings of the 10th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2010
27–30 June 2010.

Public-Key Cryptography based on Modular Lattices

Marcus Greferath and Jens Zumbrägel (University College Dublin)

Abstract

This contribution seeks to generalize pairing-based public-key cryptography to more general
algebraic structures. It focuses on modular lattices, presents a pairing on such lattices, and
studies a projective-geometry based cryptosystem.

A class of asymptotic preserving schemes for kinetic
equations and related problems with stiff sources

Shi Jin

University of Wisconsin-Madison, USA

Abstract

We propose a general time discrete framework to design asymptotic preserving schemes for
initial value problem of the Boltzmann kinetic and related equations. Numerically solving
these equations are challenging due to the nonlinear stiff collision (source) terms induced by
small mean free or relaxation time. We propose to penalize the nonlinear collision term by
a BGK-type relaxation term, which can be solved explicitly even if discretized implicitly in
time. Moreover, the BGK-type relaxation operator helps to drive the density distribution
toward the local Maxwellian, thus naturally imposes an asymptotic-preserving scheme in the
Euler limit. The scheme so designed does not need any nonlinear iterative solver or the use of
Wild Sum. It is uniformly stable in terms of the (possibly small) Knudsen number, and can
capture the macroscopic fluid dynamic (Euler) limit even if the small scale determined by the
Knudsen number is not numerically resolved. It is also consistent to the compressible Navier-
Stokes equations if the viscosity and heat conductivity are numerically resolved. The method
is applicable to many other related problems, such as hyperbolic systems with stiff relaxation,
and high order parabolic equations.
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New results on Laguerre-type orthogonal polynomials

Edmundo J. Huertas1, Francisco Marcellán1 and Herbert Dueñas2
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Abstract

This contribution is devoted to the study of the Laguerre-type monic orthogonal polynomial
sequences (MOPS, in short) defined by an Uvarov?s canonical spectral transformation of the
Laguerre weight supported on the positive semi-axis of the real line. In such a way, we state
a comparative analysis with the behavior of the standard Laguerre-type polynomials, taking
into account that, in our case, we are dealing with a mass point located outside the support
of the measure. The outline of the talk is the following. In the first part we introduce the
representation of the perturbed MOPS in terms of the classical ones, we deduce the three
term recurrence relation that they satisfy, as well as the behavior of their coefficients. Next,
we obtain the lowering and raising operators associated with these polynomials, and thus the
corresponding holonomic equation follows in a natural way. The second part of the talk is
devoted to the study of the behavior of the zeros of these polynomials in terms of the mass M.
We also provide an electrostatic interpretation of them. Finally, we analyze the outer relative
asymptotics as well as the Mehler-Heine formula for these polynomials.

Key words: Orthogonal polynomials, Zeros of polynomials, Christoffel transforms, Uvarov
transforms, Connection Formula, Structure relation.

MSC 2000: 33C47.
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The Seysen reduction algorithm and its application to
MIMO systems

Gerard Maze1
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Abstract

Given a lattice L, a basis B of L together with its dual B∗, the orthogonality measure S(B) =∑
i ||bi||2||b∗i ||2 of B was introduced by M. Seysen [5] in 1993. This measure is at the heart of

the Seysen lattice reduction algorithm and is linked with different geometrical properties of the
basis [2, 3, 6, 7]. In this talk, we will derive different expressions for this measure as well as new
inequalities related to the Frobenius norm and the condition number of a matrix. This approach
allows us to improve known upper bounds for the Seysen measure and the orthogonality defect.
We will then review the Seysen reduction algorithm [5, 1] and describe its application to the
field of MIMO systems [4]. We will concentrate on the conceptual differences between the LLL
algorithm and the Seysen reduction algorithm. The LLL algorithm focuses on local optimization
(i.e., on 2 dimensional sublattices) but Seysen’s algorithm performs global angle optimization
to produce a reduced lattice. As a consequence, Seysen’s scheme can achieve a better BER
performance. We will also present the work of [4] showing that it requires less computational
time than the LLL algorithm in the linear detection case.
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On numerical integration of perturbed rigid body
problems

A. Pascual and J. M. Ferrándiz

University of Alicante, Department of Applied Mathematics, Spain

Abstract

The accurate numerical integration of rigid and non-rigid solid bodies is an important
issue in Space Geodesy. Its main difficulty is that a very high level of accuracy is required in
many cases, as well as long-term validity of the solution. For instance, in the case of the Earth
rotation the accuracy must be better than 0.15 milli arcseconds during time periods spanning
several decades. Besides, the problem includes dissipations which prevents the use of the of
symplectic or other geometric integrators and the variables that have been successful when
deriving asymptotic analytical solutions give rise to virtual singularities. This presentation
reports on the last progress we have made in the derivation of systems of variables and of
equations of motion convenient for the numerical integration of such problems. An application
to a simplified Earth rotation problem is included.
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Building Public Key Crypto-Systems

Joachim Rosenthal
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Abstract

Cryptography has a long history and its main objective is the transmission of data between two
parties in a way which guarantees the privacy of the information. There are other interesting
applications such as digital signatures, the problem of authentication and the concept of digital
cash to name a few. The proliferation of computer networks resulted in a large demand for
cryptography from the private sector.

A basic building block in public key cryptography are the one-way trapdoor functions.
These are one-one functions which can be efficiently computed. The inverse function can how-
ever only be computed if some additional trapdoor is known. The best known one-way trapdoor
function is the RSA function whose difficulty of inverting is related to the difficulty of factoring.
Other one-way trapdoor functions use the arithmetic of elliptic curves and more general abelian
varieties,

In this talk we will first provide a survey for the non-specialists. We then explain some
new ideas on how to bulid one-way trapdoor functions from actions of finite simple semi-rings
on finite semi-modules. The presented results constitute joint work with Elisa Gorla, Gerard
Maze and Chris Monico and Jens Zumbrägel.

Multiphysics Simulation

Pablo Vallejos

Applications Department, COMSOL Multiphysics Sweden

Abstract

Simulation is a necessary task for every researcher and design engineer. Multiphysics simulation
takes this task to the next level by introducing everything required to build precise comprehen-
sive models. That is why multiphysics simulation is one of the fastest growing research fields
in industrial engineering and academic research. In this presentation, you will be introduced to
COMSOL Multiphysics. It is a simulation environment that facilitates all steps in the modeling
process - defining your geometry, meshing, specifying your physics, solving, and then visualizing
your results.

We will present the mechanics of the new (COMSOL Multiphysics 4.0) model-builder-based
user interface which not only is much more efficient and quick to use, but also provides new
functionality to the user to modify and quickly adapt models. We will work through a 3-physics
coupled example to demonstrate the speed and efficiency of the new work flow. This will be of
interest to both new and existing users of COMSOL Multiphysics.
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Coupled Heat Transfer in Simulations

Pablo Vallejos
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Abstract

In almost every manufacturing or product design process one must consider the effects of thermal
fluctuations. A combination of capabilities to model heat transfer via conduction, convection,
and radiation, as well as the ability to couple these to other physics is presented. In addition
a case story of Ugitech S.A., a manufacturer of stainless steel in France is presented. It runs
its continuing casting machines as fast as possible while maintaining quality. Yet, If it cuts
off individual pieces from the square bloom coming out of the casts prematurely, the inside
of the steel section will not completely solidify, and a molten metal well with as much as 1.5
tons of liquid steel can empty into the bottom sections of the vertical concast machine, causing
major damage. Through modeling, Ugitech has optimized the proper temperatures and process
speeds for each of the 150 different steel grades the company produces.

Randomization Techniques on Lattice Reduction
Algorithms

U. Wagner

Abstract

Lattice reduction algorithms are of crucial importance in many cryptographic protocols. The
goal of reduction algorithms is hereby to output lattice bases that consist of short and nearly
orthogonal vectors. The notion of reducedness is not uniquely defined and several measurements
of reducedness like the Seysen measure [1],[6] and the Gram-Schmidt log [2] exist. Often the
output of the shortest vector in a lattice is desired. However it is hard in general to find short
vectors in lattices in higher dimensions and known reduction algorithms such as LLL can tackle
the problem of finding the shortest vector in a lattice only to a certain (low) dimension [3], [4].
Our work builds on the fact that most algorithms are not deterministic for the given lattice,
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i.e. the basis to apply the reduction algorithm on in uences the performance of the algorithm.
Hence randomization of the lattice basis randomizes the whole algorithm. Our interest lies in
ran- domization techniques in order to find suitable bases, on which the reduction algorithms
perform better than on the average basis. In order to recognize a considerable improvement the
average behaviour of the reduction algorithms have to be known. Fortunately results in this
direction exist ([2] and [5]), where extensive tests on the behaviour of LLL and BKZ have been
done. In special the Hermite factor of the reduced bases is computed, which gives information
on the quality of the shortest vector found by the reduction algorithm. Hence our goal is to
have a comparison of the diferent randomization techniques by means of the Hermite factor.
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