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Preface:

We are honoured to bring you this collection oictkets and extended abstracts from
the “10th International Conference on Computational andathematical Methods in
Science and Engineering(CMMSE 2010), held at Almeria, Spain, from 26 tod80,
2010.

Society is a human product plenty of works, prodoicthe human action and
Mathematics is, probably, one of these most womndlevbrks. Mathematics arises as a
response to problematic situations that may orhawe a mathematical root and the task
of those dedicated to mathematics is to find answer this type of questions.
Mathematics is a dynamic organization since itc@dores generate new problems and
appeal to new results that in turn lead to newlteghat may tackle and propose new
guestions. Traditionally, Engineering has gotraonnections with basic sciences in
general and, in particular, with Mathematics, beanfgindamental tool in all processes of
analysis and calculus that an engineer has to caty In the last decades, the idea of
Mathematics as a tool whose use allows to creatdelfaand solve real problems has
been strengthened at the same time that researcmamy fields of Science and
Engineering has growth rapidly due to interactibnhese disciplines and computational
and mathematical methods. Challenges that SciendeEmgineering face of are so
complex that only an interdisciplinary relation, v Mathematics plays a principal role,
will let to solve them. On the other hand, thduahce of a general computerization of a
part of our culture is leading to a great incregif interest in computational methods.
Computation has joint as a third crucial comportenthe two classical elements of the
scientific method, experimentation and theory. Cotimg that only a few years ago was
intractable today is carried out routinely. Manyoplke expect to control size and
complexity with the help of more powerful computers this is a vain hope without the
existing of an adequate development of Mathema@dsMSE aims to detach how these
computational and mathematical methods are, baéther, crucial in the development
of many disciplines.

CMMSE 2010 is a forum where experts of many diffiérgcientific fields present
their latest advances and share ideas and expesi@morder to explore new directions in
Science and Engineering. CMMSE 2010 special sessrepresent some of these
emerging disciplines: from differential equatiomeated from different points of view,
with applications to propagation of sound or heatelectrodynamics to Mathematical
Biology; from signal or image processing to from n@uutational Chemistry or
Information Theory. These special sessions invaluenerical solution of differential
equations, mathematical models in artificial ingghce, computational science
education, algorithms and computation for complegtworks, bio-mathematics,
computational chemistry, asymptotic preserving hods for kinetic and hyperbolic
equations, numerical solutions of PDE’s error eation and reliability, applications of



algebra to cryptography and coding theory, highfquertance computing, sampling
theory and meshfree methods, orthogonal polynonaiats applications and COMSOL.:
multiphysics for modelling.

Today the resolution of scientific problems is unkiable without High
performance computing techniques. For second yeahave the pleasure to work with
the Spanish Network CAPAP-H "High Performance Cotimgu on Heterogeneous
Parallel Architectures.” We would like to give aesp@l mention to José Ranilla, Esther
Garzon and Enrique S. Quintana-Orti for their fabsland very organized work.

An essential issue in the society of informatioattive are living in is privacy and
integrity of communications. We are grateful to thanagers of the Spanish Network
MatSlI for their collaboration in the promotion aachanization of the mini symposium
“Applications of Algebra to Cryptography and Codimbeory”. We also would like to
mention Consuelo Martinez for her support in thigamization.

We would like to thank the plenary speakers foiirtlegcellent contributions in
research and leadership in their respective fidlls. express our gratitude to special
session organizers and to all members of the Stee@ommittee, who have been a very
important part of the conference, and, of cousalltparticipants.

These four volumes contain all the results of theference. For a question of style,
volumes [, Il and Il contain the articles writtém LaTeX and volume IV contains the
articles written in Word and short-abstracts.

We cordially welcome all participants. We hope pmjoy this conference.

Almeria, Andalucia, Spain, June 26, 2010

J. Vigo-Aguiar, H. Adeli, Juan A. L6pez-Ramos(haru, J. Ranilla,
J. Rosenthal, N. Stollenwerk, Ezio Venturino, Brii¢ade
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Abstract

A new proof of the general representation for the entries of the inverse of any
unreduced Hessenberg matrix of finite order is found. Also this formulation is
extended to the inverses of reduced Hessenberg matrices. Those entries are given
with proper Hessenbergians from the original matrix. It justifies both the use of
linear recurrences for such computations and some elementary properties of the
inverse matrix. As an application of current interest in the theory of orthogonal
polynomials on the complex plane, the resolvent matrix associated to a finite Hes-
senberg matrix in standard form is calculated. The results are illustrated with two
examples on the unit disk.

Key words: General orthogonal polynomials, Hessenberg matrixz, Hessenbergian,
inverse matriz, lower semiseparable (plus diagonal) matriz, resolvent matriz
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1 Introduction

The significance of matrix inversion in many parts of science and engineering and the
methods used for its resolution are well known. The Cayley formula for the entries
of the inverse matrix in terms of the adjoint matrix involves determinants. Both the
computation and the expansion as a sum of products of these determinants present
difficulties. These problems can be avoided by taking advantage of the special structure
of certain matrices, for example tridiagonal, band, or Hessenberg matrices, to develop
less costly algorithms or to identify properties invariant under matrix inversion.

In this direction, algorithms for the inversion of unreduced symmetric tridiagonal
matrices were introduced in [3]. These algorithms were generalized to unreduced Hes-
senberg matrices in [10] and to banded unreduced matrices in [21]. In all of them the
entries of the matrix inverse were represented as a product of two linear recurrences.
The relation between certain elements of the inverse matrix of an unreduced Hessenberg

@CMMSE Page 1 of 1328 ISBN 13: 978-84-613-5510-5



INVERSES OF REGULAR HESSENBERG MATRICES

matrix and the product of two linear recurrences was proven in [6]. These recurrences
were obtained from a closed formula for the entries on and above the diagonal of the
inverse matrix of a lower Hessenberg matrix in terms of the Hessenbergians, [20], of
its proper principal submatrices. In parallel, the low rank properties of submatrices of
the inverse matrices of tridiagonal and banded matrices were outlined in [1], based on
explicit representations of their minors. The results of [1, 6] were closely related with
the nullity theorem. The subsequent development of this theorem and its implications
for the invariance of low rank properties in the inversion of semiseparable matrices,
[4, 7, 8, 14, 19], have dominated research up to the present time. A first closed and
general representation for all entries of the inverse of any unreduced Hessenberg ma-
trix was given by one of the authors, V. Tomeo, in [17]. Later, analogous expressions
are obtained in [22]. In addition, there is an abundant literature related to general or
specialized algorithms for the inverse of structured matrices. These only work for unre-
duced Hessenberg matrices. Recent algorithms for the inversion of Hessenberg matrices
can be found in [2, 5] .

Without loss of generality we work with upper Hessenberg matrices. The compact
expression for the entries below and on the diagonal is straightforward when using the
Cayley formula and the Sylvester theorem on determinants,

A N A det H;_ jdet HY
HYj=—2 = (=)™ ] hikir— ! et 1
(H )i =g g =V (M ki—k 1) det H (1)

The submatrix H;_ is the left principal one of order j — 1. The submatrix HY(LZL is
the right principal one of order n — ¢, which begins in the ¢ + 1-th row and column and
finishes in the n-th row and column. This formula is equivalent those given in [6] for the
entries on and above the diagonal, ¢ < j, for the inverse matrix of a lower Hessenberg
matrix.

The validity of the representation in closed form for all entries of the inverse matrix
H~1 in terms of proper Hessenbergians given in [17, 22] for unreduced Hessenberg ma-
trices is extended here to the reduced case. In addition, a new and more compact proof
is introduced. This class of expressions allows us to solve for all the entries of the matrix
using homogeneous linear recurrences, [11, 12], with well defined coefficients for each
Hessenberg matrix. This approach has been applied in the case of tridiagonal matrices.
A solution for the elements of the inverse matrix using a set of linear recurrences was
introduced in [9]. A more sophisticated method was given in [13], where the solutions
of second order linear difference equations were used in a boundary value problem.
Thus, a compact representation for the inverse matrix of any unreduced tridiagonal
matrix was obtained via combinatorial expressions, equivalent to the Leibniz formula
for determinants.

In Section 2 we introduce a new proof for the representation of all entries of the
inverse matrix of any unreduced Hessenberg matrix, in terms of proper Hessenbergians.
The representation is extended to reduced Hessenberg matrices, although we must
consider the avoidable indeterminacies that could arise. Section 3 is devoted to the
linear recurrences involved in the computation of Hessenbergians and recalls some of
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the elementary properties of the inverse of a Hessenberg matrix. As an interesting
application of our results, in Section 4 a closed formula is given for the elements of the
finite sections of the resolvent matrix associated to any sequence of monic orthogonal
polynomials on a bounded region of the complex plane. It is illustrated with two
examples on the unit disk.

2 Inverses of regular Hessenberg matrices

To begin with there is proved a preliminary lemma which will simplify the later proofs.
For 1 <k <m —1 < n, we define the upper Hessenberg submatrix Hg_l_k of order
m — 1 — k associated to a left principal submatrix H,,_1. Its first m — 2 — k columns
are equal to those of H,,_1_g, while the last column comprises the elements of the last
column, m — 1, of H,,,_1. For example, for m = 8, k = 3, the resulting matrix Hf is

hi1 hiz hiz hay
hoi  hoa haz  har
0  hsx hsz hsr

H =

Lemma 1 The proper Hessenbergians, det Hgl, det HT(QZ, and first order minors M;.;

with 1 < j < i, of an upper Hessenberg matrix H of order n satisfy the following
equations

i—1
(—1)™ iy det HE det HY =S hjme1(~1)™ 17 My, (2)
j=1

The submatrix HZ.C_1 s defined relative to the left principal submatric Hy,—1, 1 < m.

Proof. Expanding det H | along its last row and using (1), we have
(=)™ h; ;g det HC | det H =
= (=)™ 0D h o Mg+ (1™ hy gy ioo det HE 5 det Hfjlz

Iterating the procedure, the left side of (2) is equal to
i—1 ' ' 2 )
S hjmer (<) My 4 (1) (H hik,i“) det HC ; det HY .
j=i—2 k=0
After 7 — 2 iterations, with the convention that det Hy = 1, there results

(=)™ h; ;1 det HC | det HY , =

i—1 i—2
=" hjmea (1) My 4 (1) (H hik’i“) det HC det H'”
=2 k=0
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.
= hjm-1 (=)™ My

]

The centered principal submatrices H ]('?1;1 or order j — i — 1 appear in the next
theorem in a role analogous to that played by the submatrices of H in the definitions
given in (1). These matrices are formed from the matrix H, taking the elements from

(i + 1)-st to the j-th rows and columns .

Theorem 1 Any upper Hessenberg matriz H of order n with complex coefficients sat-
isfies the equations

j—i—1
det Y, det H = det H; 1 det H" , — (H R 1) (3)

for 1 <1 < j <n, where Mj, is the corresponding first order minor of the matriz H.

Proof. For fixed i, 1 < i < n, we proceed by induction on j, i < j < n.
If j =i+ 1, the result follows straightforwardly from expanding det H,, along its
j-th row: '
1-det H = det Hj_l det Hg_}?l — hj,j_1Mj;i (4)

We suppose the statement is true for : < 7 < m —1 < n. Then, for j = m < n,
expanding the Hessenbergians in (3) for the matrices depending on m along their last
rows and using the induction hypothesis, we have,

det Hy,_y det HY . — det H') . det H =

m—i—1

m—i—2
- ( H h(ml)k,(ml)k1> hin—1,m—1Mm_1;i
k=0

b1 (det HG, 1)y det HY, —det HC, . det H)

@)C

The Hessenberg matrices H(C 1)1 and H (m—1)—i—1 are evident in this context and
they are associated to the left principal submatrix H,,—1 and the centered principal
submatrix H ((271)71., respectively.

If we expand the determinants indexed by m along their last rows one more time
and use the induction hypothesis,

det Hyy_q det HY . — det HY . det H =
m—i—2 m—1
( H h(m 1)—k,(m—1)—k— 1> < Z hl,m—l(_l)mllMl;Z‘> +
l=m—2

T P (det HG, gy ydet HY, — det H)C, | dev H)

@CMMSE Page 4 of 1328 ISBN 13: 978-84-613-5510-5



J. ABDERRAMAN MARRERO, VENANCIO TOMEO

After m — i iterations and using the induction hypothesis,

det H,,,—1 det HS) — det H() _det H =

m—i—2
= ( H h(ml)k,(ml)kl) X
k=0

<Z A1 (=1)" " My 4+ (—1)™ hy 1 det HY detHfﬁi) (5)

The induction hypothesis can be used up to here. We make the convention that any
Hessenbergian of negative order is null. Thus det Hﬂc = 0.
If we invoke Lemma 1, then (5) yields,

det Hy,_y det H , — det HY)

m—i—1

m—i—2
( H hm 1)—k,(m—1)— )(Zhlm 1 m - lMlz) (6)

In order conclude the proof, it is sufficient to show that any upper Hessenberg matrix
H of order n satisfies:

det H =

1-1
Z hl m— 1 m Ml i hm,m—le;i

For this purpose we give the sum with cofactors of the matrix H,

1-1 1— l
Zhlm 1 m Mlz— m Zzhlm 1 +ZMlZ

Because m — 1 # i, the sum of alien cofactors, [20], of the matrix H is null. Taking
into consideration that we are working with an upper Hessenberg matrix of order n,
we have,

1— l 1— l
m ZZhlm 1 +ZMZZ_ m ZZhlm 1 —HMlz—O

The induction step is verified, after an appropriate change in the index k of the product
from equation (6),

m—i—1
det Hy,_y det H” . — det HY . det H = ( I1 hm_k,m_,@_l) My

This concludes the proof. m
The general representation for entries of the inverse of an upper Hessenberg matrix
H as products of proper Hessenbergians, [17, 22], is also a consequence of Theorem 1.
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Corollary 1 A general expression for the elements (H™'); j of the inverse matriz of
an upper Hessenberg reqular matriz H, is

n—i j—i—1

(TTh—y hag—1) det H

(1) (TTi_y hioi—1) (detHj_ldetH(i) ~ det HY detH)

(H™ )iy = (7)

That is, the element (H™1); ; of the inverse matriz can be represented as, [17, 22]

(—1)i+ (L= hifk,i—kdft)};iet Hj ydetH" i
€
_qyigdetHi v det Hy oy mdet Hy o,y det P

=) (T420 " hj—kij—k—1)det H if i<y

i 27

The cases with ¢ > j are equation (1). For ¢ < j, when the matrix H is not unreduced,
the result is also valid as a consequence of Theorem 1. Indeed, for i < j,

n—i J

| | j=ic
det Hj—l det H(l) — det H(27L—1 det H = < H hj—k,j—k—l) Mj;i
k=0

Then, (7) results in,

i1
(TBZ5" hymrgmrmt) Mys 4,

(H™)ig = (=1)" = :
(Hizzo ! hj—k:,j—k—l) det g  detH

the Cayley formula for (H~1); ;.

3 Recurrences for the computation and some elementary
properties of the inverse matrix

Although fast numerical algorithms can be used for the computation of Hessenbergians
from (8), we concentrate on the homogeneous linear recurrences found for them.

Determinants of left principal submatrices, det H;, ¢ = 1,--- ,n and det H,, =
det H, of any upper Hessenberg matrix of order n satisfy the following large recurrence
relations, with det Hy = 1,

7 m—1
det H; = Z (=)™t (H hi—k+1,i—k> Pi—m1idet Hi_p, 9)
m=1 k=1

For Hessenbergians of right principal submatrices, det H, @ for i < J < n, the recur-

n—ia’

rences are similar, now with the initial conditions det H((]i) =1 for j =i.

] Jj—i m—1 ]
det H](Qz = Z(—l)mil <H hj—k—l—l,j—k) hj—m+17j det H](?z—m (10)
m=1 k=1
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The recurrences for Hessenbergians of the centered principal submatrices, det H j(l_)i_l,
can be obtained as particular cases of (10). Therefore, when the matrix H is unreduced,
the computation of the elements of its inverse presents no difficulty.

When the matrix H is reduced, the numerical computation of the elements of
its inverse presents no difficulty if ¢ > j, or if ¢ < j and the null elements from the
subdiagonal do not appear in the product of the denominator of (8). The computational
difficulty appears when ¢ < j and one or more null elements of the subdiagonal of the
matrix H appear more than once in the product of the Hessenbergians of the numerator
of (8). This can happen when the minor associated to this element of the inverse matrix
is not a Hessenbergian and it has in its second subdiagonal null and non-null elements
from the subdiagonal of the matrix H.

We overcome indeterminacies by introducing auxiliary parameters in place of the
zeros that can appear in the product of the denominator of (8). We use as an illustration

a reduced Hessenberg matrix of order 6, obtained in a random way

4 2 -4 1 —4 —17
13 2 0 -1 4
00 1 2 4 1
H=1"9 0 4 -4 2 -2 (11)
000 0 2 3
L0 0 0 0 1 2 |

Elements h3y and hsy of the subdiagonal are null. The element (H *1)275 = %1 has
associated the minor Ms.o, which is not a Hessenbergian. In this case, by (8), using
parameters instead of the zeros in hse and hs4 in the Hessenbergians of the numerator
and in the product of the denominator, we have

det Hy det Hf) — det H2(2) det H

(H a5 = (—1) 5
(Hk:() h4—k,3—k> det H
_ 264803 331
-~ 480aB 60 °

We can obtain the right numerical result using the previous recurrences, replacing the
parameters a and [ by the value 1.

To calculate the element (H_1)176 = —12@, we work with the minor Mg, of the
matrix H, which is also not a Hessenbergian. We proceed in a similar way,

det Hs(«, 8) det Hél) (v, B) — det Hil) (v, B) det H(av, B)
(—4a5) (120)

_ —2560%3% 4 768073 — 10160,3% + 309608 —32a8 + 96a — 1273 + 387

(H )16 =(-1)

H-!
(H™ s — 48003 —60
If we give now to the parameters their null values,
129
H! =——
(H™ )16 50
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we obtain the right result using the recurrences associated to the Hessenbergians and
elementary symbolic computations. Were we to solve numerically as for the element
previously obtained, replacing the parameters o and § in the recurrences involved in
(8) by the value 1, it is obvious that the result would be inaccurate.

3.1 Some elementary properties of the inverse matrix

It is well known that the inverse of an upper Hessenberg matrix is a lower semiseparable
(plus diagonal) matrix, as can be derived easily from (8) for i > j + k,

(H Yij  (H Yijx
(Hil)i-d—l,j (Hil)iﬂ—l,j-i-k

It is also known that the inverse matrix is semiseparable if and only if the matrix H is
tridiagonal. In the unreduced case, more important in applications, if there are zeros
in the diagonal of the inverse matrix, some principal, left or right, submatrices have
non-maximal rank, with null associated Hessenbergians.

Moreover, the low rank property of some of the principal submatrices involved is
a sufficient condition for the nullity of some element above the diagonal for the inverse
matrix of a unreduced Hessenberg matrix H. The next illustrative matrix has an inverse
with null diagonal elements and some elements above the diagonal are also null. This
can be checked using (8).

det =0

1010 0 1 0 —1
1011 4 |0 o0 1 0
B=1o 100 * 7 =1 10 1

0011 -1 1 0 0

The entry (H_l)lyg is 0, because det Hy and det Hfl) are null. Also the entry (H_1)2,4 =
0 because det Hs, det H§2), and det H 1(2) are null Hessenbergians.

4 General Orthogonal Polynomials: Hessenberg matrices
in standard form

The computation of the resolvent matrices associated to orthogonal polynomials on the
real line and on the unit circle and their associated tridiagonal and pentadiagonal Green
matrices, are of current interest. Our results have application to the more general case
of finite sections of the resolvent matrix associated with any sequence of orthogonal
polynomials on an arbitrary and bounded domain in the complex plane. We will give
two particular examples on the unit disk.

Given an infinite HPD (Hermitian positive definite) matrix, M = (¢;;)75-¢, whether
it comes from a measure or not, we denote by M’ the matrix obtained by eliminating
from M its first column. Let M, and M/, be the corresponding sections of order n of
M and M’, respectively, i.e., the corresponding left principal submatrices. As M is an
HPD matrix, an infinite upper Hessenberg matrix D = (d”)i‘; can be built. Matrix
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D is in standard form. That is, it has a positive subdiagonal. Its sections of order n
satisfy, [18],

Dy =T, "M, T, ", (12)
where M,, = T,,TH is the Cholesky decomposition of M,,, and {ﬁn(z)}ffzo is its associ-
ated orthogonal sequence of monic polynomials, [16]. From the properties of the matrix

D,,, we have a determinantal expression for P,(z). That is, the zeros of the orthogonal
polynomials are the eigenvalues of the Hessenberg matrix:

P,(2) = det (zI,, — Dy,) (13)

If this Hessenbergian is expanded along the last row and the procedure is iterated, we
obtain, as a particular case of (9), the large recurrence relation for monic orthogonal
polynomials:

n—1 n—1
Po(z) = (2 — dn,n)ﬁnfl(z) - Z di.n [H dm+1,m ﬁk—l('z)v (14)
k=1 m=k

with initial condition Py(z) = 1.

The matrix obtained when deleting from D its first ¢ rows and columns is denoted
D@, From D@ we can build the infinite HPD matrix M (i), for all i € Z,. It defines
an inner product. Then, the associated monic polynomials are defined, for n > i, as

Pi(2) = det (21, - D)) (15)
with ﬁéi) (z) = 1. They are orthogonal with respect to the inner product defined by
M (i). When expanding this Hessenbergian, we obtain, as a particular case of (10), the
large recurrence relation for the associated monic polynomials,

n—1 n—1
P,SL,)@(Z) = (z - dn,n)Pr(LZf)ifl(z) - Z dk,n [H dm+1,m P]§Z,)7;71(z>7 (16)
m=k

k=i+1

Corollary 2 The elements for finite sections (Inz — Dy)~', n > 1, of the resolvent
matriz related to the monic orthogonal polynomials coming from the matrix D are

i+ s ﬁ'_ z ﬁ(z) z . i .
(=1)* (Hk:]() 1di—k,i—k—1) % if j<i
((Inz = Dp)7Y), . =
J _ (=1 I3j—1(f)13§b?i(z) _ pli). o) i i<
(T2 " dj—jmr—1) Pa(2) j—i—1
(17)

If there are known expressions in closed form for the orthogonal polynomials of
the sequence under analysis and those of its associated sequences, then the closed form
expressions for the finite sections of the resolvent matrix are easily obtained. When
expressions in closed form for the monic polynomials are not known, the entries of the
resolvent matrix, for any complex number z, can be obtained numerically using the
preceding recurrences.

@CMMSE Page 9 of 1328 ISBN 13: 978-84-613-5510-5



INVERSES OF REGULAR HESSENBERG MATRICES

4.1 A measure with radial symmetry on the unit disk

Let 1 be a measure on the unit disk with a radially symmetric weight function constant
on every circle centered on the origin. We suppose also that p is a probability measure,
i.e. coo = 1. We have w(z) = w(|z|). In this case, writing r = |z|, the moments are

1 2
Cij = / Zizjw(r)dxdy:/o w(r)riﬂﬂdr/o el i=9)0 g9,
|z|<1

where the imaginary unit is denoted by I, to avoid confusion with the ¢ index. By
symmetry if ¢ # j then ¢;; = 0. We have

1 1
Cii = 27r/ w(r)r?*dr, i>1, with 27r/ w(r)dr =1,
0 0

The moment matrix M = (c;;)75_, is diagonal and the associated Hessenberg matrix
D = (dij)fj-zl satisfies djy1; = ,/—%— and d;; = 0 if ¢ # j + 1. The monic polyno-

Ci—1,i—1
mials are ﬁn(z) = 2" and the associated polynomials, for n > i, are 13151)1(2) = 2"
with PT(LO)(Z) = 1. Using Corollary 2, we obtain the resolvents of the finite sections

1/z 0 0 )
1
o, 1/z 0 0

(L= D))t =| /&= 25 1/2 0| as)

Cn—1,n—1 i Cn—1,n—1 1 Cn—1,n—1 1 . 1/Z
L coo 2" c11 2"t c22 22 ]

4.2 A measure without radial symmetry on the unit disk

Now, we give an example partially treated in [15] with a full Hessenberg matrix in
standard form. We consider the density function on the unit closed disk given by
w(2) = |z — 1|? with |z] < 1. The density function is null for z = 1 and positive in the
rest of the disk. The moments are obtained by applying Green’s formula,

1 / P A S S G 7172
o — _ 5 _
Y] j+1 j+1  j+2 Jj+2

/=1

Therefore, the matrix of moments is

_ ﬂ-(ljr_%) 1_g 1 O7r 0
-5 73 + 3) o8 0
M= 0 -5 7(3+1) 3 (19)
o0 U apty
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The elements of the matrix D are given by

,Q\ﬁ

— it i<y
VD) (256 +1)(+2)
0 it i>j41
The monic polynomials are obtained from (13)-(14),
P, (z) = _ ” (k4 2)(k+1)2" (21)
T () +2) &

and the associated monic polynomials, if n > 4, from (15)-(16),
BY () = 2" (k- 2) (k41— 0)2h 22
n-i(2) = 2 +(i+2)(n+1 n+2) kz: T2k A1 —0)z (22)

. . . : ()
In the particular case n = 5 — 1 > 4, the monic polynomials Pj_1
from (22).

The resolvent matrices of D, are readily obtained using Corollary 2, with the
subdiagonal entries of D,, given in (20). The monic polynomials and their associated

polynomials are obtained from (21) and (22), respectively.

_;(2) are obtained
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Abstract

Adapting parallel codes to state of the art parallel computers composed of het-
erogeneous multinode-multicore processors is a fundamental problem in parallel
computing. The strong dependence on the parallel architectures means that ap-
plications must be tailored with a high programming effort. We have devoloped
a lightweighted library that allows the dynamic load balancing of iterative codes
in heterogeneous dedicated and non-dedicated systems. The library eases porting
homogeneous parallel codes to heterogeneous platforms, since the code intrusion is
low the programming effort is quite reduced. The preliminary tests developed on
iterative programs show that the overhead introduced by the library is negligible.

Key words: Heterogeneous computing, Dynamic load balancing, Non-dedicated
System

1 Introduction

High performance computing is the field of computational science dealing with engi-
neering and scientific applications of cluster-based computing. It concerns with the
development of models and strategies which allow hard computing applications to be
solved using the most advanced computing platforms. Up to now most of the appli-
cations requiring large computing resources have been solved on supercomputers or
clusters composed by a large number of identical processors. Nowadays, the concept
of cluster computing has been enlarged. Currently, a cluster can be seen as a flexible
reconfigurable computing system which is composed of nodes with different charac-
teristics and performance, which can be simultaneously used by multiple users and
processes. These computing environments are known as non dedicated heterogeneous
computing systems, and there exists a strong demand for developing new strategies for
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adapting the software to this kind of heterogeneous environments. The performance of
this kind of system is very conditioned by the strong dependence that exists between
parallel code and architecture [6] and the process of allocating tasks to processors often
becomes a problem requiring considerable programmer effort [7].

Specifically, we set out to solve the problem of synchronizing parallel programs in
heterogeneous architectures. Given a program developed for a homogeneous system,
we hope to obtain a version that makes use of the system’s heterogeneous abilities
by allocating tasks according to the computational ability of each processing element.
The simplest way to approach the problem consists on manually adapting the code
as required by the architectural characteristics[10]. This approach usually implies at
least a knowledge of said characteristics, such that the parallel program’s tasks can
be allocated according to the computational capacity of each processor. A more gen-
eral approach can be obtained in the context of self-optimization strategies based on
a run time model [8, 11]. In this approach, an analytical model that parametrizes the
architecture and the algorithm is instantiated for each specific case so as to optimize
the program execution. This strategy is considerably more general than the previous
one, though more difficult to apply since the modeling process is not trivial [12], nor is
its subsequent instantiation and minimization for each case. A search of the literature
yields some generic tools such as mpC [14, 13] and HeteroMPI [14, 15] that provide the
mechanisms that allow algorithms to be adapted to heterogeneous architectures, but
which also demand some input from the user and are quite code intrusive. Adaptive
strategies have been also proposed in AMPI [16] and Dyn-MPI [17]. AMPI is built on
Charm++ [18] and allows automatic load balancing based on process virtualization.
Although it is an interesting generic tool, it involves a complex runtime environment.
DynMPI has been implemented as a MPI extension and has a wider range of appli-
cability. However, it is highly code intrusive since data structures, code sections and
communication calls must be instrumented.

Our interest is focussed on the efficient implementation of iterative algorithms on
non dedicated heterogeneous computing systems. This type of algorithms can be found
in a wide set of scientific and engineering problems such as partial differential equations
solvers (PDEs) or image processing algorithms, among others; their common feature
is its iterative behavior [5, 9]. As main goal, we pursue the design of an approach
to be able of dynamically adapt the computational burden related to each processor
according to the computational power supplied by the non dedicated heterogeneous
nodes, where the overhead of the node is also a source of heterogeneity. Additionally,
under this approach the managment of the dynamic heterogeneity of the system must
be hidden to the programmer.

The ULL_Calibrate library presented in [1] facilitates the programmer the task
of tailoring parallel code developed for homogeneous systems to heterogeneous ones,
reducing the runtime on dedicated heterogenous systems. However, this library does
not collect information about the dynamic load on the system, so the approach to
load balance described in [1] is not useful on non dedicated systems. In the same
direction, recently, the ADITHE approach has also been proposed to adapt the iterative
computation on dedicated heterogeneous clusters of multicore nodes [4]. It has been
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shown its ability to automatically load balance on these systems, however it is relevant
the programmer’s effort in order to implement ADITHE in the context of every specific
application.

The goal of this work is to extend the ULL_Calibrate library to non dedicated sys-
tems, without losing its advantages, that is: (1) its use does not require changing any
line of code in existing programs, thus minimizing code intrusion; and (2) it allows
dynamic task balancing within a parallel program running on a non dedicated hetero-
geneous system, while adapting to system conditions during execution. The new library
proposed in this paper facilities the automatic Adaptive Load Balancing of Iterative
Computation (ALBIC) on non dedicated heterogeneous systems. Hereinafter it will be
referred as ALBIC library.

We validated our proposal using as test problem the resource allocation optimiza-
tion via dynamic programming algorithms [9]. The preliminary computational results
show that the benefits yielded by using our balancing library offer substantial time
reductions in every case. The efficiency level obtained, considering the minimum code
intrusion, and the reduced extraoverhead introduced by ALBIC in the load balancing
process makes this library a useful tool in the context of

heterogeneous non-dedicted platforms.

This paper is structured as follows: in Section 2 we introduce the goals and back-
ground of this work; Section 3 shows how to use ALBIC library and the advantages our
approach yields; in Section 4 a model of computational power of non-dedicated proces-
sor and the load balancing algorithm; next, Section 5 shows the preliminary validation
performed on the selected problem (RAP) ; and finally, we close with some conclusions
and future research directions.

2 Background

Our objective is to develop a simple and efficient dynamic adaptation strategy of the
code for heterogeneous systems that minimizes code intrusion, so that the program
can be adapted without any prior knowledge of the architecture and without the need
to develop analytical models. We intend to apply the technique to a wide variety
of problems, specifically to parallel programs which can be expressed as a series of
synchronous iterations. To accomplish this, we have developed ALBIC library with
which to instrument specific sections in the code. The instrumentation required is
minimal, as it is the resulting overhead. Using this instrumentation, the program will
dynamically adapt itself to the destination architecture. This approach is particularly
effective in SPMD applications with replicated data.

Our library’s design is directed at solving the time differences obtained when ex-
ecuting the parallel code. It is based on an iterative scheme, such as that appearing
in Listing 1, which shows a parallel version of the dynamic programming approach
to the resource allocation problem considered as an iterative procedure. The code in-
volves a main loop that executes N iterations where a amount of calculation operation
(work load) is performed for each iteration. Each processor performs calculations in
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accordance with the size of the task allocated, M /nproc. Following this calculation,
a collective communication operation is carried out during which all the processors
synchronize by gathering collecting data before proceeding to the next iteration. Note
that each iteration of the inner loop (the loop in j) has a complexity order of O(j).
That means that when a block data distribution with blocks of the same is used by the
parallel code the load is not balanced among the processors.

// mprocs = Number of processors
// myid = Process ID

// M = Number of columns

// N = Number of rows (iterations)

despl = (int %) malloc( nprocs * sizeof(int));
count = (int %) malloc( nprocs * sizeof(int));

)

// Static column distribution with blocks
// of fixzed size M/nprocs for myid process

despl[0] = 0; ncols = M/nprocs;
for (i 0; i< nprocs; i++) {
count [i] = ncols;
if (i) despl[i] = despl[i—1] + count[i—1];

}

for (i = 0; i <= N; i++) {

/x=====—=—=begin iterative section=—=———=—x/

fin = despl|[myid] + count[myid];

for (j = despl[myid]; j < fin; j++) {
6l1113] = (+1)(1, 0):

for (x = 0; x <= j; x++) {
fij = G[i — 1][j — x] + (#£)(i, x);
if (¢[i][j] < £ij)
GIi][3] = £i];
}
}
/x=====———end iterative section=———————==x/
MPI_Allgatherv(&G[i][despl[myid]], ... );

}

Listing 1: Basic algorithm of an iterative scheme.

The load balancing problem consists of allocating on each processor a static load
proportional to its computational capacity. The allocation of tasks according to the
computational power of the processors depends on the processors and also on the ap-
plication. When the processors are non-dedicated it is necessary to devise specific
approaches to estimate dynamically this parameter.

In Section 4 we propose the model of computational power that is key for the
ALBIC library to be able to dynamically balance the load. Before to analyze this
model we describe the more relevant characteristics of ALBIC.
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// mprocs = Number of processors
// myid = Process ID

// M = Number of columns

// N = Number of rows (iterations)

despl = (int %) malloc( nprocs * sizeof(int));
count = (int %) malloc( nprocs x sizeof(int));

despl[0] = 0; ncols = M/nprocs;
for (i = 0; i< nprocs; i++) {

count [i] = ncols;

if (i) despl[i] = despl[i—1] + count[i—1];
}

for (i = 0; i <= N; i++) {

ALBIC_MPI_calibrate (ALBIC_MPI_INIT, i, &counts,
&displ, threshold, 1, M+1);

fin = despl[myid] + count[myid];
for (j = displ[myid]; j < fin; j++) {
Gli][3] = (x£)(1, 0);

for (x = 0; x <= j; x++) {
£ij = G[1 — 1][j — x] + (x£)(1, x);
if (G[i][j] < fij)

} G[1][3] = £ij;

}

ALBIC_MPI_calibrate(ALBIC_MPI_FIN , i, &counts,
&displ, threshold, 1, M+1);
MPI_Allgatherv (&G[i][displ[myid]], count[myid],

Listing 2: Calibrated version of the basic algorithm of an iterative scheme.

3 Dynamic task allocation on non dedicated systems based

on ALBIC

The library we developed allows for dynamic balancing with the introduction of just
two calls to the ALBIC_MPI_calibrate() function in the section of code that is to be
balanced, as shown by the code in Listing 2. A call is introduced at the beginning and
end of the section to be balanced, so that each processor can know on runtime how long
it will take to execute the assigned task. The balanced load results from a comparison
of this execution time for each processor and the subsequent task redistribution.

It is worth noting that the collective communication at the end of each iteration
acts as a sort of barrier that forces a high degree of synchronization between all the
processes. Listing 3 shows the interface of the calibrating function. The following are
input arguments to the balancing function:
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int ALBIC_MPI_calibrate (ALBIC_MPI_Section section, int iteration,
int xxcounts, int xxdispls,
int threshold,
int size_object, int size_problem);

Listing 3: Prototype of the ALBIC calibrating function.

e section: The section is used to determine the entry point where the routine is
used. It can take the following two values:

— ALBIC_MPI Section ALBIC_MPI_INIT: Indicates the beginning of
the section to be balanced.

— ALBIC_MPI Section ALBIC_MPI_END: Indicates the end of the sec-
tion to be balanced.

e iteration: Indicates the iteration to be balanced. A 0 value indicates whether
the program is on its first or subsequent iterations. The first iteration has a
particular treatment.

e counts|], displs[]: Indicates the task size to be computed by each processor.
counts[] is an integer array containing the amount of work, W;, that is processed
by i-th processor. displs|] specifies the distance (relative to the work data vector)
at which to place the data processed by each processor.

e threshold: Corresponds to a number of microseconds which indicate whether to
balance or not. The semantics for this parameter in one iteration are as follows:

— Let T; be the time processor i takes to execute the task assigned.

— Thaz = Maximum(T;)

— Tin = Minimum(T;)

— If (Thhax — Tonin) > threshold then balance. If not, the system has already
balanced the workload.

e size_objects: The size of the data type manipulated during computation ex-
pressed as the number of elements to be communicated in the communication
routine.

e size_problem: Corresponds to the total problem size to be computed in parallel,
so the calculations of the new task sizes are consistent with the tasks allocated
to each processor counts|], displs]].

Note the library’s ease of use and the minimum code intrusion. The only change

necessary is to add calls to the functions at the beginning (ALBIC_MPI_init_calibratelib())
and end of the code, (ALBIC_MPI_shutdown_calibratelib()).
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4 The balancing algorithm on non-dedicated systems

Before to analyze the details of the balancing algorithm, we describe the model of
computational power which is key on this algorithm.

4.1 Model of computational power on non-dedicated systems

Although a large number of balancing algorithms can be found in the literature [19],
we opted for a simple and efficient strategy that yielded satisfactory results. The
methodology chosen, however, allows for the implementation of balancing algorithms
which may be more efficient.

The computational power of i-th node, denoted by «y, is proportional to the ratio
between the size of task to be computed by the node (counts;) and the run-times (7;)
to compute the task.

On the other hand, it is well known that to exploit an heterogeneous system com-
posed by a set of procs nodes, the workload on each node i has to be balanced. For a
heterogeneous system this condition means that the workload of every node has to be
proportional to its computational power or speed [2, 3]. So, to balance the workload
on the heterogeneous system, the load distribution has to verify the relation

countsy counts N N

o . procs R

—_——=...= = procs = counts; = q; procs (1)
aq Qprocs j=1 & j=1

where N = size_problem = Z?;Of * counts; is the total load to compute the algorithm.

Then, to adapt the parallel implementation of an algorithm on heterogeneous multi-
processors, it is necessary to know the computational power or speed of each node of
multiprocessor and the total load.

On non dedicated systems the computational power available to every task is a time
depending parameter, then «;(t) has to be periodically measured to dynamically adapt
the load attached to every node. ALBIC library is based on the accurate estimation of
a;(t) by means two timing mechanisms: (1) the information from /proc file updated
every 10 ms by the Linux Operative System and (2) the user-time provided by the C
library getrusage(). The /proc file supplies information about the node load taking
account all the processes computed by the 7 node, and on the other hand, the time
during the specific process loads the node is get by means getrusage() and it is
denoted by T;(t). Then, «;(t) can be estimated by the following relation:

counts;(t
a;(t) = Ti(t)() (2)
1-Li(t)

where L;(t) denotes the load percentage of i-th node at instant ¢, 0 < L;(t) < 1,
L;(t) = 0 when the i-th node is absolute free of charge and L;(t) is close to one
when the i-th node is fully overloaded. Thus, the run-time T;(t) dedicated to the load
counts;(t) is divided by the factor 1 — L;(¢) to model the load in the i-th node due to
other processes.
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It is relevant to stress that to obtain the value of parameter L;(t) it is necessary to
compute the exponential moving average of instant loading factor over the [ last time
samples [20], to warranty that short temporal high loads do not excessively penalize the
estimation of computational power of the node. In order to measure the load of proces-
sors, L;(t), according this model, an operative system kernel module for Linux, called
Non Dedicated system Load Monitor (NDLM-module), has been developed. NDLM-
module monitories the parameter L;(¢) and supplies it to ALBIC_MPI_calibrate() func-
tion on fly by means the /proc file.

4.2 Keys of the balancing algorithm

The call to the ALBIC_MPI_calibrate(...) function must be made by all the processors
and implements the balancing algorithm. All processors perform the same balancing
operations as follows:

e The time required by each processor to carry out the computation in each iteration
has to be given to the algorithm. Since each processor needs the times of the other
processors, the exchange is performed through a collective operation.

— T[] = vector where each processor gathers all the times (73).
— L[] = vector where each processor gathers all the processors loads (L;).
— size_problem = the size of the problem to be computed in parallel.
— counts|] = vector holding the sizes of the tasks to be computed by each
processor.
e The first step is to verify that the threshold is not being exceeded
if (MAX(T'[]) - MIN(T[])) > THRESHOLD then, BALANCE

e The computational power «;(t) is calculated for each i processor according the
model before described:

e Finally, the sizes of the new counts are calculated for each processor.

countsli] = size_problem x pmf%
Do

Once the counts vector is computed, the displs vector is also updated. Using
this method, each processor fits the size of the task allocated according to its own
computational capacity. The system could be extended to run on heterogeneous non
dedicated systems and on systems with dynamic load. For that purpose, the array 7]
must be fed not only with the execution times but with the loading factor on each
processor.
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5 Evaluation

To evaluate the ALBIC library we have used a multicore dual node composed of two
nodes of 8 Core shared memory system (2 AMD Opteron processors with 4 cores
each), 16 cores in total, and use the resource allocation problem as benchmarking test.
Although the platform is heterogeneous, the irregular inner loop of the test applications
introduces the desired heterogeneity when testing in dedicated mode. To test the library
in non-dedicated mode we artificially introduce extra overload on the cores. The results
can be extrapolated to an heterogeneus platform without loss of generality. We develop
several experiments. First we try to analyze the overhead introduced by ALBIC when
performing the load balance. Then, we check that ALBIC balances properly when
working in non-dedicated clusters and finally the increase of performance obtained
from ALBIC when developing the dynamic load balance in a non-dedicated cluster.
To fulfill it, three versions of the parallel code are considered, the parallel version,
a block homogeneous code, the ULL_Calibrate a parallel version where the dynamic
load balance is obtained through the use of the U LL_Calibrate library, and the ALBIC
code that performs the dynamic load balance using ALBIC.

Figure 1 shows the running times and efficiency of the three parallel codes when
executed on the homogeneous dedicated system. We can see that as a consecuence of
the dynamic load balance, U LL _calibrate and ALBIC outperform to the parallel code.
The natural parallelization by homogeneous blocks produces an unbalanced execution
than can be corrected with our dynamic load balance approach. We can also see that
the overhead introduced by ALBIC is negligible and the improvement obtained from
the dynamic load balance is observable. When the larger number of processors is
used with the bigest problem the curves ULL_calibrate and ALBIC almost overlap,
what means that the overhead introduced by our module is compensated by a better
balancing that includes the load of the processors. We also observe in this figure the
gain of the efficiency when using ALBIC. The overhead introduced by ALBIC relative
to ULL_calibrate is also quantified in Figure 2.

The lightweighted NDLM introduces a very slow burden that tends to vanish.
When the size of the problem is large enough for the number of processors used, ALBIC
performs even better than ULL_calibrate due to the use of the system load on the
metrics. The negative value observed in the relative benefit presented in Figure 2-right
denotes that ULL_calibrate performs better than ALBIC in this case, since the size
of the problem per processor decreases when the number of processors increase.

In Figure 3-left a diagram of iterations is presented on a non-dedicated system
where the artificial load is introduced on the first of three processor. We observe as
starting with an unbalanced distribution due to the nature of the problem, after a few
iterations ALBIC converges to a distribution where the first processor (50% artificially
overloaded) receives the half of the work, in terms of execution time. The other two
processors receive double amount of work. Figure 3-right shows the benefit of using
ALBIC on a non-dedicated system, where the 50% of the processors are overloaded
on each execution, the execution with 8 processors overloads only 3 of them. The gain
of ALBIC is clearly stated.
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Figure 2: The overhead of the NDLM module. Left - Benefit of ULL_calibrate and
ALBIC relative to the parallel code. Right - Relative benefit of U LL _calibrate versus

ALBIC

6 Conclusions and future works

We have developed the ALBIC library that allows for the dynamic load balancing of
iterative parallel codes on heterogeneous dedicated and non-dedicated systems. The
preliminary tests described in this work show that the tool achieves a good perfor-
mance, the overhead introduced by the library and the input required from the user
are minimum. In the near future we plan to extend the library to other problem and
architectural domains, considering the dynamic thread allocation in shared memory

architectures.
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Figure 3: Left - A traced exection of ALBIC on a non dedicated system, the first
processor is overloaded. Right - parallel vs ALBIC on a non dedicated system the
50% of the processors are artificially overloaded up to the 50%.
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Abstract

We investigate dengue fever epidemiology via a multi-strain model including
seasonality and compare with empirical data from Thailand. The empirically ob-
served fluctuations suggests a crucial role of deterministcal chaos in understanding
the system dynamics.

Key words: dengue fever, seasonality, parameter estimation, deterministic chaos

1 Introduction

For two strain model to capture primary and secondary infection, we have the following
SIR-type model, now labelling the SIR classes for the hosts that have seen the individual
strains. Susceptibles to both strains (S) get infected with strain 1, (I;), or strain 2,
(I2), with force of infection (31 and (2 respectively. They recover from infection with
strain 1 (becoming R;) or from strain 2 (becoming Rs), with recovery rate . In this
recovered class, people have full immunity against the strain that they were exposed
to and infected, and also, temporary immunity against the other strain (called the
period of temporary cross-immunity). After this, with rate «, they enter again in the
susceptible classes (S respectively Ss), where the index represents the first infection
strain. Now, S; can be reinfected with strain 2, to become (I12), meeting I with
infection rate (B2 or meeting I1o with infection rate ¢232, and So can be reinfected with
strain 1 (becoming I1) meeting I; or Ip; with infections rates 41 and ¢10; respectively.

The parameter ¢ in our model also acts decreasing the infectivity of secondary
infection, where people are more likely to be hospitalized because of the severity of
the disease (DHF/DSS), and do not contributed to the force of infection as much as
people with first infection do. Finally, I15 and I2; go to the recovered class (R), immune
against all strains. We include demography of the host population by denoting the birth
and death rate by u, assuming constant population size N, and seasonality by 7. For
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simplicity, we consider 81 = B2 =: By and ¢1 = ¢, i.e, no epidemiological asymmetry
between strains.

The complete mean field ODE system for the two-strain epidemiological system is
given by

% - _%S(h + ¢1ln) — %S(b +2li2) + p(N — 5)

% = %S(h + ¢1la1) — (v + p) 1y

% _ %sug +éal1z) — (v + )]

% = L — (a4 p) R

% — AL~ (a+ )Ry (1)
% = —%Sl(fg + ¢2l12) + aRy — Sy

% _ —%Sg([l + ¢1lo1) + Ry — Sy

% = %51(12 + ¢2l12) — (v + p) 12

% = %52(11 + ¢1l21) — (v + p) o

%If = (L2 + I21) — pR

where 5 = [y * (1.0 + € * cos(w * t)).

As initial conditions we take: For a constant population size N = 100.0, S =
70,11 =20,Io =10,R; =0,Ry =0,51 =0,52 = 0,119 = 0,157 =0, R =0. We fix the
transition rates of the model as far as is known, as it follows, p = 65y~ 1,7 = 52, a0 =
2, andf = 27, and vary the most unknown parameter ¢. The seasonality rate is e = 0.1.

We investigate the influence of the seasonal forcing in the infection rate on the
dymanics, which was previously investigated giving deterministic chaos just with the
multi-strain aspect of the dengue model [1, 2, 3].

Empirical data

Empirical data in form of time series of dengue incidences per month are in good
quality avaliable e.g. from Thailand. The time series of provinces in the north of
Thailand, here for the province of Chiang Mai, show irregular epidemics each year
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with a smooth increase and decrease, Fig. 1. On the otehr hand, the times series of
Bangkok, on which much research attention has been focused, presents rather erratic
und uncorrelated dynamics, see Fig. 2, much more noisy than Fig. 1.

3000

2500 L

2000 L

)

1500 o

1000 -+

bl ]

1983 1986 1989 1992 1995 1998 2001 2004

t

Figure 1: Time series of dengue cases in Chiang Mai.

The time series in Fig. 1 shows clear seasonality, but irregular maxima of dengue
outbreaks each year. On these observations the modelling in terms of ODEs with
possibly deterministically chaotic dynamics might have a chance to at least describe
qualitatively the dynamics of the epidemiological system.

2500
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Figure 2: Time series of dengue cases in Bangkok.

To investigate the case further we add seasonality to the previously investigated
dengue model with temporary cross-immunity which showed bifurcations and deter-
ministic chaos in wide parameter regions. Whereas technical parameter estimation is
notoriously difficult for chaotic time series but temporally local approaches possible (e.g.
the Tonides approach [5] which will be described and applied below), we first invetigate
which parameter regions are most likely to give seasonal outbreak with chaotic max-
ima, based on our previous experience on chaotic parameter regions of the non-seasonal
model.
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Simulations with seasonality

For the simulations we use the parameters as given above and vary the parameter of
difference in force of infection between primary and secondary infection, the parameter

o.
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Figure 3: Simulations for ¢ = 0.2, for detailed description see main text.

In Fig. 3 we show for ¢ = 0.2 in a) a time series of the total number of infected with
any strain, in b) the state spcae plot projection for susecptibles and logarithm of total
infected, in ¢) and d) time series for infected with strain one respectively strain two.
Plotting the individual strains on top of each other shows the phase relation between
the two, in most cases the strains are out of phase. For ¢ = 0.2 the non-seasonal
model shows a limit cycle after a Hopf bifurcation from a stable fixed point. Hence
here including seasonality we observe a torus in state space which is densely filled.

The following Figures are in the same formate, but for different ¢-values, moving
through the bifurcation diagram given before for the non-forced case. The bifurcation
diagram with seasonality is not very informative since we have many local extrema
even for the most simple case of the torus, as observed in Fig. 3 b).
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Figure 4: Simulations for ¢ = 0.5.
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Figure 5: Simulations for ¢ = 0.6.
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Figure 6: Simulations for ¢ = 0.8.
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Figure 7: Simulations for ¢ = 1.0.
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Figure 9: Simulations for ¢ = 2.5.
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For ¢ values up to nearly 1.0 we observe oscillations from the seasonal forcing on
top of the chaotic outbreaks every years observed already for the non-forced model,
whereas for ¢ = 1.0 and further the troughs become so low that there are no outbreak
for many years observed, making the interplay between non-seasonal chaotic signal and
seasonality less plausible to describe the fluctuations observed in the data time series
of northern Thailand, e.g. with much higher incidence rates than the noisy Bangkok
data.

To further investigate the dynamics of the system, all other pareameters have to
be varied, biologically most unknown are the seasonality and the temporary cross-
immunity. But also the contact rate is not precisely known. A first attempt is shown
in the next section.
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Figure 10: Likelihood slices from the parameter estimation using the Ionides approach.
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First parameter estimation

To contrast our model Eq. (1) to data we have used monthly incidence of Dengue
Hemorrhagic Fever (DHF) for the province of Chiang Mai in Thailand, see Fig. 1.
As DHF is expected to occur mostly after secondary infections, we computed monthly
incidence rates as x; = fttfl v(I12(t) + I1(t))dt therefore considering only secondary
infections. The obtained predicted values (x;) were contrasted to the real monthly
reported incidence, y;, with an observation process characterized by a reporting rate
(p). We set Yi|pt,xr ~ P(pi, ) (where P stands for the Poisson distribution) and,
to account for overdispersion, we allow variability in the reporting rate by assuming
that p; ~ F(é, p¢), where I' is the gamma distribution. The observation process can
then be fully described by a negative binomial distribution (N B): Y;|z; ~ N B(mean =
pT, size = %)

For better agreement with the data, we have implemented a stochastic version
of Eq. (1) using an Euler-multinomial approximation to the continuous-time Markov
process. To avoid definitive extinctions, we add immigration to the model by intro-
ducing an extra parameter () in the force of infection, now defined by B(I + 7).
As extra-demographic stochasticity is to be expected in data we added white noise
to the transmission rate of the Markov chain compartment model using the general
framework described in [4]. As DHF is strongly seasonal, see Fig. 1, seasonal forc-
ing was also added on the transmission rate with the following parametric choice:
B(t) = Bo(1l + esin(2n(t + d) ), with Ry roughly being By/v. Whereas in bifurcation
analysis the phase factor d does not play any decisive role, the parameter estimation
process is very sensitive to it, and d has to be estimated from the data as well.

Parameter inference was achieved through an implementation of maximum likeli-
hood via iterated filtering (MIF), the [5] approach written in C. Essentially, one starts
with an number of simulations with ensembles of parameter values and intial conditions
for the first part of the time series and compared the performance with the data part,
then taking the best performers, one goes along the next piece of time series etc., hence
a temporarilly local approach. On top there is a simulated annealing type procedure,
while going several times over the whole time series. Finally the best performing sets
of parameters, called particles, give the best estimate in this approach. Results were
obtained with 1000 particles and an integration time step of 1 days.

Fig. 10 shows the best performing parameters in red, and in addition calculated
likelihood slices to give an idea of the relyability of the estimates, confidence intervals.
E.g. for some parameters the likelihood slice shows a well defined maximum, hence
the corresponding parameter being well estimated, and for other parameters, namely
here a. Finally, Fig. 11 shows a comparison of a realization of the model with the
best parameter set and the actual empirical time series of dengue cases in Chiang Mai.
Remember that the dynamics shows deterministic chaos, hence realizations and data
set never can coinside, but describe the qualitative dynamic features of the system. Jus
short term predictability can be obtained, limited by the prediction horizon given by
the largest Lyapunov exponent.

Further investigations will be needed to obtain definite insight into the realistic
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Figure 11: Typical trajectory (corrected by reporting rate) of model of Eq. (1) for the
mazimum likelihood estimates of the parameters.

parameters and the interplay between noise levels, as well dynamic as observation
noise, with the deterministically chaotic dynamics.
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Abstract

A nondifferentiable multiobjective programming problem is considered. We intro-
duce a new class of generalized dr-univexity in which each component of the objective
and constraint functions is directionally differentiable in its own direction d;. Based
upon these generalized functions, sufficient optimality conditions are established for a
feasible point to be efficient and properly efficient under the generalised dj-univexity
requirements, Moreover, weak, strong and strict converse duality theorems are also
derived for Mond-Weir type dual programs.
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1. Introduction

The field of multiobjective programming, also known as vector programming, has
grown remarkably in different directions in the setting of optimality conditions and dual-
ity theory. It has been enriched by the applications of various types of generalizations of
convexity theory, with and without differentiability assumptions, and in the framework of
continuous time programming, fractional programming, inverse vector optimization, sad-
dle point theory, symmetric duality and vector variational inequalities etc.

Hanson [1] introduced a class of functions by generalizing the difference vector z — T
in the definition of a convex function to any vector function n(z, ). These functions were
named invex by Craven [2] and 7-convex by Kaul and Kaur [3]. Hanson and Mond [4]
defined two new classes of functions called Type I and Type II functions, which were fur-
ther generalized to pseudo Type I and quasi Type I functions by Rueda and Hanson [5].
Zhao [6] established optimality conditions and duality in nonsmooth scalar programming
problems assuming Clarke[7] generalized subgradients under Type I functions.

Kaul et al. [8] extended the concept of type I functions from a single objective to a

multiobjective programming problem by defining the type I and its various generaliza-
tions. They investigated necessary and sufficient optimality conditions and derived Wolfe
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type and Mond-Weir type duality results. Suneja and Srivastava [9] introduced general-
ized d-type I functions in terms of directional derivative for a multiobjective programming
problem and discussed Wolfe type and Mond-Weir type duality results. In [10], Kuk and
Tanino derived optimality conditions and duality theorems for non-smooth multiobjective
programming problems involving generalized Type I vector valued functions. Gulati and
Agarwal [11] discussed sufficiency and duality results for nonsmooth multiobjective prob-
lems and (F, a, p,d— type I functions.

Antczak [12] studied d-invexity is one of the generalization of invex function, which is
introduced by [13]. In [12], Antczak established, under weaker assumptions than Ye, the
Fritz John type and Karush-Kuhn-Tucker type necessary optimality conditions for weak
Pareto optimality and duality results which have been stated in terms of the right differen-
tials of functions involved in the considered multiobjective programming problem. Many
authors [14, 15, 16] proved that the Karush-Kuhn-Tucker type necessary conditons [12] are
sufficient conditions under various generalized d-invex functions. Recently, Antczak [17]
corrrected the Karush-Kuhn-Tucker necessary conditions in [17] and discussed the suffi-
ciency and duality under d — r— Type I functions. More recently, Silmani and Radjef [18]
introduced generalzed dj-invexity in which each component of the objective and constraint
functions is directionally differentiable in its own direction and established the necessary
and sufficient conditions for efficient and properly efficient solutions. They also observed
the Karush-Kuhn-Tucker sufficient conditions [14, 15, 16] are not applicable. The duality
results for a Mond-Weir type dual are derived in [18].

In this paper, we introduce d;-V- univexity and generalized d; —V — univexity in which
each component of the objective and constraint functions of a multiobjective programming
problem is directionally differentiable in its own direction d;. Various Karush-Kuhn-Tucker
sufficient optimality conditions for efficient and properly efficient solutions to the prob-
lem are establish involving new classes of semidirectionally differentiable generalized type
I functions. Moreover, usual duality theorems are discussed for a Mond-Weir type dual
involving aforesaid assumptions. The results in this paper extend many earlier work ap-
peared in the literature.

2 Preliminaries and definitions

The following conventions for equalities and inequalities will be used. If z = (z1....,zy),y =
(Y1.eosYn) E R thenz =y < x; =y, i=1..n,r<y<sz <y, =1 .,n;
r<ys xSy, i=1,..,n,x<y<sx<y andx#y., We also note qu (resp.RZ or
qu) the set of vectors y € R? with y = O(resp. y > 0 or y > 0)

Definition 1 [19]. Let D be a nonempty subset of R™, n: D x D — R"™ and let x
be an arbitrary point of D.The set D is said to be invex at xg with respect to n, if for each
r €D,

xo + Mn(x, x0) € D,V € [0,1].

D is said to be an invex set with respect to 7, if D is invex at each xg € D with respect to
the same 7.
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Definition 2 [20]. Let D C R™ be an invex set with respect ton : D x D — R™.A
function f: D — R is called pre-inver on D with respect to n, if for all x,x¢ € D,

M(x) + (1= A) f(zo) = f(zo + An(x,20)), VA € [0, 1].

Definition 3 [12]. Let D C R"™ be an invex set with respect ton: D x D — R™. A
m-dimensional vector valued function ¥ : D — R™ is pre-invex with respect to n, if each
of its components is pre-inver on D with respect to the same function 7.

Definition 4[7]. Let D be a nonempty open set in R™. A function f: D — R is said
to be locally Lipschitz at xo € D, if there exist a neighborhood v(xy) of xg and a constant
K > 0 such that

l[f(y) = f@)| = Klly—=ll, ¥V =x,y€wv(w),

where ||.| denotes the Euclidean norm. We say that f is locally Lipschitz on D if its locally
Lipschitz at any point of D.

Definition 5 [7]. If f : D C R"™ — R is locally Lipschitz at xy € D, the clarke general-
ized directional derivative of f at xg in the direction d € R™,denoted by f°(zo; d) is given by

fo(xo;d) = lim sup fly +td) — f(y)

Y—=T0 40+ 13

And the usual one-sided directional derivative of f at xg in the direction d is defined by

f,(xo; d) = )\li,%l+ f(-%'o + )\i) B f(mO)

)

whenever this limit exists. Obuviously, f°(zo;d) = f'(xo;d).

We say that f is directionally differentiable at xq if its directional derivative
[/ (xo;d) exists finite for all d € R™.

Definition 6[13]. Let f : D — R™ be a function defined on a nonempty open set
D C R™ and directionally differentiable at xo € D. f is called d-invex at xo on D with
respect to n, if there exists a vector function n: D x D — R"™, such that for any x € D,

fi(z) = filzo) = fi(zo;n(x, @), for all i =1,...., N, (1)

where f;(zo;n(x,20)) denotes the directional derivative of fi at xq in the direction n =
fi(zo + An(z, o)) — fi(zo)

- (s = i )
(x,0) : f; (s (i, 0)) = lim, ;

If inequalities (1) are satisfied at any point xy € D, then f is said to be d-invex on D with
respect to 1.

Definition 7[18]. Let D be a nonempty set in R"™ and ¢ : D x D — R™ a function.
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o Wesay that f : D — R is a semi-directionally differentiable at xo € D,if there exist
a nonempty subset S C R™ such that f'(xo;d) exists finite for all d € S

e We say that f is a semi-directionally differentiable at xg € D in the direction
o(x,xg), if its directional derivative f'(xo; d(x,x0)) exists finite for all x € D.

Definition 8[18]. Let f : D — R™ be a function defined on a nonempty open set

D C R"™ and for all ¢ = 1--- N, f; is semi-directionally differentiable at xg € D in the

direction n; : D x D — R™. f is called dj-invex at xg on D with respect to (1;) =TV, if for
any x € D,

fi(z) = fi(zo) = fi(zo;mi(w,x0)), foralli, ..., N, (2)

where f;(xo;ni(x,20)) denotes the directional derivative of fi at xo in the direction

ni(x,2z0) : f; (zo; mi(x, 20)) = )\lif& filzo & Am(x)’\x(])) ~ Jilzo)

If inequalities (2) are satisfied at any point xy € D, then f is said to be dr-invex on D
with respect to (1;),_1

Consider the following multiobjective programming problem

(MP) Minimize f(z) = (f1(x), f2(x), ..., fn(x))
Subject to g(z) < 0,
r €D,

where f : D — RN, g : D — RF, D is a nonempty open subset of R". Let X = {z €
D : g(x) < 0} be the set of feasible solutions of (MP). For zy € D,we denote by J(z)

the set {j € {1,...,k} : gj(x0) = 0},J = [J(x0)| and byNJ(xo)(lfsp J(zg))the set {j €
{1, ...k} 2 gj(wo) < O(resp.gj(zo) > 0)}. we have J(xo) U J(xo) U J(z0) = {1,....;k} and if
zo € X, J(x0) = 2.

We recall some optimality concepts, the most often studied in the literature, for the
problem (MP).

Definition 9 A point zo € X is said to be a local weakly efficient solution of the
problem (MP),if there exists a neighborhood N(xy) around gy such that

f(x) £ f(zo) for all z € N(xg) N X

Definition 10 A Point zg € X is said to be a weakly efficient (an efficient) solution
of the problem (MP), if there exists no x € X such that

f(x) < fzo)(f(z) < f(w0))-

Definition 11 An efficient solution xy € X of (MP) is said to be properly efficient,if
there exists a positive real number M such that inequality

filwo) = filx) = M[fj(x) — fj(xo)]
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is verified for all ¢ € {1,--- , N} and = € X such that f;(z) < fi(xo), and for a certain
j€{l,---,N} such that fi(z) > fj(zo).

Following Jeyakumar and Mond [21] ,Kaul et al.[8]and Slimani and Radjef [18],we give
the following definitions.

Definition 12 (f,g) is d;-V-univex type I at xg € D if there exist positive real valued
functions o; and B; defined on X x D, nonnegative functions by and by,also defined on
XxD,gpo:R—R,¢p1:R—Ryn; : X xD — R", and 0; : X x D — R" such that

bo(x, a)po[fi(x) — fi(xo)] 2 ai(x,a) f; (zo; mi(z, o)) (3)

and
—bi(z120)P1[9j(20)] 2 Bj($a$0)g;($0§9j($a$0)) (4)

for every x € X and forall i =1,2,--- ,p and j=1,2,--- ,m.

If the inequality in (3) is strict ( whenever x # zp ), we say that (MP) is of semistrictly
dr-V-univex type I at zo with respect to (1;),_1x and(0;),_17.

Definition 13 (f,g) is quasi-dr-V-univex type I at o € D if there exist positive
real valued functions «; and (3;, defined on X x D, nonnegative functions bpand by, also
defined on X x D,¢g : R — R,¢1 : R — R and (N + k) dimensional vector functions
ni: X xD — R"i=1,N and 0;j: X xD — R",j = 1,k such that for some vectors
A€ RY and € RE:

N N
bo(2,0)b0 | > Nicvi(w, o) (fi(x) — filzo) | £ 0= D Nifi(woimi(z,20)) S0 Ve X

i=1 1=1
(5)
and

k k
bi(2,0)¢1 | D 1iBi(x,x0)gi (o) | = 0= pjg;(wo;0;(x,20)) S0 Yz e X  (6)
i=1 =1

If the second inequality in (5) is strict (x # x), we say that (MP) is of semi-strictly quasi
dr-V-univex type I at X,with respect to (1;),_7v and(6;)

j=1,k

Definition 14 (f,g) is pseudo-dr-V-univezr type I at xg € D if there exist positive
real valued functions o; and Bj, defined on X x D, nonnegative functions by and by,also
defined on X x D, ¢g : R — R,¢1 : R — R and (N + k) dimensions vector functions
n:XxD— R'i=1Nand0; : X x D — R",j = 1,k such that for some vectors
A€ RY and € RE:

N N
D Nifi (@i mi(x,20)) Z 0 = bo(w, xo)do | D Miai(x, z0)(fi(x) — filxo))| Z OV € X

i=1 i=1
(7)

@CMMSE Page 40 of 1328 ISBN 13: 978-84-613-5510-5



and

k
Zﬂggj 203 0;(,20)) 2 0 = by (2, 20)¢1 | Y 1;Bj(x, x0)gj(wo) | SOVz € X (8)
j=1

Definition 15 (f,g) is quasi pseudo-dr-V-univex type I at xg € D if there exist pos-
itive real valued functions o; and (j, defined on X x D, nonnegative functions by and
by,also defined on X x D,¢p9 : R — R,¢1 : R — R and (N + k) dimensions vector
functions m; X x D — R™,i = 1,N and 0;j: X xD — R"j= 1,k such that the rela-
tion (5) and (8) are satisfied. If the second inequality in (8) is strict (v # xg, we say that
(V'P) is of quasi strictly-pseudo dj— V—typel at xo with respect to (1;),_1 and(0;),_17

Definition 16 (f,g) is pseudoquasi -dr-V-univex type I at xo € D if there exist pos-
itive real valued functions o; and (3, defined on X x D, nonnegative functions by and
by,also defined on X X D,¢g: R — R,¢1 : R — R and (N + k) dimensions vector func-
tions; : X x D — R".i =1,N and 0; : X x D — R",j = 1,k such that pu € R’; the
relations (7) and (6) are satisfied. If the second inequality in (7) is strict (z # xg),we
say that (V P) is of strictly-pseudo quasi dj—V—typel at xg with respect to (n;) -1 and
(aj)jzl,k

3.0Optimality conditions

In this section , we discuss some sufficient conditions for a point to be an efficient or
properly efficient for (MP) under generalized d; — V — univex type I assumptions.

Theorem 3.1. Let zy be a feasible solution for (MP) and suppose that there exist
(N + J) vector functions n; : X x X — R",i = 1,N,0; : X x X — R",j € J(xo) and
N

scalars \; >0, i =

=1; 1; 20, j € J(xo) such that

ﬂUoﬂh x,xo) Z u]g] x0;0i(x,20)) 20 Ve X 9)

||M2

Further, assume that one of the following conditions is satisfied:

(a) (i) (f,g) is quasi strictly-pseudo d;—V — univex type I at zo with respect to (1), (0;)jes(z0)> A 1

and for some positive functions a;,i =1, N, 3;,7 € J(x0),
(i) for any u € R, u £ 0= ¢p(u) < 0;¢1(u) < 0= u < 0;b(x,z0) >0,b1(z,z0) > 0;

(b) (i) (f,9) is strictly-pseudo d; — V — univex type I at xo with respect to (7;);,_77v.
(0;)jet(z)» A i and for some positive functions a;, i =1, N, 85,7 € J(zo),

(i) for any u € R, ¢o(u) >0=u>0;u = 0= ¢1(u) = 0,by(x,z0) >0,b1(z,z0) = 0;

Then w is an efficient solution for (M P).
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Proof: Condition (a). Suppose that zg is not an efficient solution of (M P). Then
there exists an x € X such that

f(z) < f(xo),
which implies that

N
> Niai(w,zo)[fix) — filxo)] £ 0. (10)
i=1

Since bg(z,x0) > 0; u = 0 = ¢g(u) < 0, the above inequality gives

1‘ » L0 fl( ) fz(xO)] g

o(x, zo <750

||M2

From the above inequality and Hypothesis (a)(i), we have

N
> Xifi(woimi(, 20)) £ 0.

i=1
By using the inequality (9) we deduce that
Z u]gj x0;0;(x,20)) 2 0,
j€J(zo)
which implies from the condition a(ii) that
b1z, o) pr [, 1155 (2, 20)gs(x0)] < O.
Since by (z,xg) > 0;¢1(u) < 0= (u) < 0, we get

Z ;B (w, 20)gj(wo) < 0. (11)

jGJ(:Bo)

As A = 0 and gj(z9) = 0;Vj € J(xp), it follows that \;g;(zo) = 0,Vj € J(wp), which
implies that

> 1iBi(w,x0)g;(x0) = 0.
jGJ(:Bo)

The above equation contradicts inequality (11) and hence the conclusion of the theorem
follows:

Condition (b) : Since g;(zo) = 0,5 = 0,Vj € J(x¢), and F;(x,z9) > 0,5 € J(xp), we
obtain

Z wiBi(x, x0)g;(xo) =0, Vae X.
jEJ($0)

By Hypothesis (b)(ii), we get

bi(w,wo)di Y By, m0)] 2 0,

Jj€J(x0)

7
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From the above inequality and the Hypothesis (b) (i)( in view of reverse implication in
(8), if follows that

> wigi(r0;05(x,20)) <0, Vo € X\{xo}.
jEJ(:L'Q)

By using inequality (9), we deduce that

N
Z)\ifil(xo;m(x,xo)) >0, VreX\{zo}. (12)
i=1

which by virtue of relation (7) implies that

N
bo(, w0)do Y Nicvs(w, w0) (fi(x) — filwo))] > 0, Va € X\{wo}.
=1

The above inequality along with Hypothesis (b)(ii) gives

N
> Niai(w,mo)(fi(x) — fi(zo)) >0 Vo € X\{axo}. (13)
=1

Since (17) and (18) contradicts each other,and hence the conclusion follows:

Theorem 3.2. Let xy be a feasible solution for (MP) and suppose that there exist
(N + J) vector functions n; : X x X — R", i =1,N, 0; : X x X — R"j € J(xp) and

N
scalars \; = 0, i = 1, N, Z)\i =1, 1; 20, j € J(x0) such that (9) of Theorem 3.1 is
=1

satisfied.
Moreover, assume that one of the following conditions is satisfied.

(a)(i) (f,g) is pseudo quasi df — V — univex type I at xo with respect to (1;),_1x,
(6j)jeJ($0), A, o and for some positive functions oy, = 1, N and f;,j € J(xo),

(ii) foranyu € R, u =2 0= ¢1(u) 20, ¢o(u) 20=u=0,
bO(xaxO) > Oabl(waxO) Z 07

(b)) (f,g) is strictly pseudo d;y — V' — univex type I at o with respect to (7;),_17,
(07)jet(z0)» A 4 and for positive functions a; = 1, N and §3;, j € J(20),

(i) forany u € Ru =< 0= ¢p(u) < 0;u = 0= ¢1(u) = 0;bo(z,z0) >0,b1(z,z0) = 0;

Then zg is an efficient solution for (M P). Further Suppose that these exist positive real
numbers n;, m; such that n; < «o;(z,z9) < m;,i = 1, N for all feasible x.Then zg is a
properly efficient solution for (M P).
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Proof: (a): Suppose that x( is not an efficient solution of (M P).Then there exists an
x € X such that f(z) < f(xo) which implies that

N
Z )\,al(x,mo)(fl(x) — fz(.%'o)) < 0. (14)
i=1

Since gj(xo) = 0,5 2 0 and G}, (z,29) >0 Vj € J(xg) we obtain

> wBi(w, m0)g;(xo) = 0.

j€J(z0)

From the above inequality and hypothesis a(ii), we have

bi(w,xo)dr] Y 1By, w0)gi(wo)] 2 0.

jEJ(:L'Q)

Using hypothesis a(i), we deduce that

> wiBi(x,x0)g) (w03 0;(x, 0)) < 0. (15)
j€J(wo)

The inequalities (9) and (14) yield that

N
> O Nifi (zo;mi(z, 70)) 2 0,
i=1
which by Hypothesis (a)(i), we obtain
N
bo(, 0)po[Y_ Nicvi(w, w0) (fix) — fi(z0))] 2 0, (16)
i=1
The inequality (16) and Hypothesis (a)(ii) give
N
> Xiavi(z, o) (fi(x) — filzo) 2 0 (17)
i=1
Since (14) and (17) contradict each other,we conclude that z( is not an efficient solution
of (M P). The properly efficient solution follows as in Hanson et al. [22]. For the proof
of part (b), we proceed as in part (b) of Theorem (3.1), we get inequality (17). Thus
complete the proof.

4. Mond-Weir type duality

Consider the following multiobjective dual to problem (M P)

(M D) Maximize f(y) = (fi(y), f2(v),--- [N (y))
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subject to

ZAf yi i () +Zu;g]y, 7,y)) 20, VreX

1igi(y) 20,5 =1,2,....k, yeD e RY,neRE
ni:XxD, Yi=1,2..N, 0;:XxD—R"j=1,2,..k

Let Y be the set of feasible solutions of problem (M D); that is,

Y = {(y, A, 1, (m:)i» (0 ZAf yima(x,y)) +Zu]g]y7 (z,y)) 0,
j=1

pigi(y) 20,V € X;ye D\ e R]ZV,,u € Ré;m : X xD—R" V1,2,..,N;
0;: X xD—R" Vj=1,2,.. k}.
We denote by P.pY, the projection of set Y on D.

We state the following duality theorems.

Theorem 4.1 (Weak Duality). Let z and (y, A, u, (1:),_17v, (0;); = 1, k) be feasible
solution for (M P) and (M D) respectively. Moreover, assume that one of the following
conditions is satisfied:

(a)(i) (f,g) is pseudo quasi d;-V-univex type I at y with respect to A >0, u, (m:);_1 7>
(HJ-)j:ﬂ and for some positive functions oy, 8; for i =1,2,.., N and j =1,2,. ,k:

(i) for any u € R ¢o(u) 2 0=u 2 0; u=0= ¢1(u) 2 0; bo(z,y) >0, bi(z,y) 2 0;

(b)(d) (f,g) is strictly-pseudo quasi dj-V-univex type I at y with respect to A, p, (7;);_7 7>
(HJ-)j:ﬁ and for some positive function «;, 3; for i =1,2,...,N and J =1,2,...,k,

(i) for any u € R, do(u) 20 =u>0; u = 0= ¢1(u) 2 0;b1(z,y) 2 0, bo(x,y) > 0;

(c)(d) (f,g)is quasi strictly-pseudo dy—V-univex type I at y with respect to A, i, (n;),_7 7 (0;)
and for some positive functions o, 3; for ¢ = 1,2,.., N
and j =1,2,...k,

j=Lk

(i) for any u € R,(;So(u) >0=u>0; u>0= ¢1(u) >0; bo(x,y) >0, bi(z,y) > 0.
Then f(z) £ f(y

Remark 1: If we omit the assumption A > 0 in the condition (a)(i) or the word
“strictly” in the condition (b),we obtain, for this part of theorem, f(z) £ f(y).

Theorem 4.2 ( Strong Duality ).Let z¢ be a weakly efficient solution for (M P).Assume
that the function g satisfies the d;- constraint qualification at z, with respect to (6;),_7.

10
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Then there exist A € Rg and p € RIZ( such that (zo, A, 1, (0i),—1. (0;);_17) € ¥ and ob-
jective functions of (M P) and (M D) have the same values at zo and (9, A, /, (1) i=17 (0) ;—1F)
respectively. If, further, the weak duality between (MP) and (MD) in theorem holds

with the condition (a) without A > 0 ( resp. with the condition (b) or (c)), then
(@o, A, 1t (0i)i—i > (03)j—15) € Y is a weakly efficient (resp. an efficient) solutions of
(MD).

Theorem 4.3 (Strict Converse Duality ). Let 2o and (yo, A, i, (m:);—13 (0;),—7%) be
feasible solutions for (M P) and (M D) respectively, such that

N N
D Nifilwo) =Y Nifi(yo)- (18)
i=1 =1

(ii) (f, g) is strictly pseudo quasi d;—V — type I at y, with respect to (1;);,_1 y (Hj)jzl,k
and for A\ and p. Then z¢ = yo
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Abstract

The Lagrange interpolation problem in Banach spaces is a crucial point
for some applications of the artificial neural networks. The interpolation
problem is approached by cardinal basis interpolation. A localizing scheme
is then applied and some error estimates are given. Finally, the results of
several numerical tests are reported in order to show the approximation
performances of the proposed interpolants.

Key words: neural networks, interpolation in Banach spaces, cardinal basis

functions

1 Introduction

Three-layers networks are one of the basic structures in the study of neural net-
works; they consists of an input layer, a hidden layer, and an output layer. In
the present paper we consider a linear output F of the type

N
F(z) =Y aili(2), (1)
=1

where N is the number of neurons in the hidden layer and a; are the coefficients
of the linear output, belonging to IR. An important case occurs when the [; are
determined by an activation function «, that is

N
F(z) =) aia(z ), (2)

=1

where each ¢; is the center vector for the i-th neuron in the hidden layer. In
particular, o can be taken as a radial function, that is

a(z,¢;) = B(l|lz —ail), (3)
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S0 to obtain a so-called radial basis function network (see, e.g., [8]). As the output
F is often a multivariate function F' : R? — IR, the norm considered in (3) is
usually the Euclidean distance.

Networks of type (2), and in particular RBF networks (3), can be also nor-
malized. In this case the output is

N iz, c N
Fla) = 2= B0E ) NS (4)

- N
Zkzl a(zv Ck) i=1

where
() a(z,¢)
9i\z) = =5
Zkz:l a(z ) Ck)
If we assume that the ouput is known at a finite number of points, that is,
N couples of input-output data {(zk, yk)}szl are given, the parameters a; and ¢;
are determined such that the fit between the artificial output F' and the known
values is optimized. Though there are many criteria one can use to choose the
parameters, here we focus our attention on the case in which we require that F'
satisfy the interpolation conditions

1=1..,n.

F(z) =y, 1=1,..,n.

What we obtain is, from a mathematical point of view, a multivariate Lagrange
interpolation problem, which can be solved by many well-known methods (see,
e.g., [5])-

However, in many applications of the artificial neural networks, such as learn-
ing theory (see, e.g., [4]), the classical input domain IR is unsuited, since the
input data may belong to more general spaces, namely Banach spaces. Then, in
those cases it is essential to develop suitable Lagrange interpolation schemes in
Banach space, which is the topic of the paper.

In the case of Hilbert spaces the interpolation problem can be solved, for
instance, by a sort of generalization of the Lagrange formula (see [9]) constructed
with scalar products, which is a particular case of polynomial operator inter-
polant ([6], [7], see [10]). This interpolant can be modified so to get a cardinal
basis solution to the same problem (see [1]), obtaining acceptable approximation
performances. In a Banach space setting the constructions made using the inner
product cannot be easily generalized, while it seems quite natural to use cardi-
nal basis interpolation, both because Shepard-type functions can be constructed
wherever a norm is present, and because the corresponding interpolant would be
a particular case of normalized neural network.

Section 2 introduces the Lagrange interpolation problem in the Banach space
setting, some basic properties of the cardinal basis interpolants, and Cheney’s
construction of the cardinal basis functions. Then, in Section 3, we apply a
localizing scheme to the interpolant and we are then able to make more accurate
error estimates, especially for the noteworthy case of Shepard-type functions. In
Section 4 we provide examples and numerical tests in the space C[—, 7] equipped
with the infinity norm.
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2 Cardinal Basis Interpolation in Banach Spaces

Let X and Y be Banach spaces on the field R, let 2 be a bounded open subset
of X, and let S = {z1,...,2,} C Q be a given set of distinct points. We consider
the Lagrange interpolation problem which consists of determining a continuous
function F': X — Y such that

F(z) =y, 1=1,...,n,

where y; € Y, i = 1,...,n. It is convenient to suppose the existence of an un-
derlying continous function f : X — Y, whose values at the nodes are the data
values, that is y; = f(zi), ¢ = 1,...,n. A simple way to determine a solution of
(2) is by considering

n

F(z) = Zli(z)f(zi)a (5)

=1

where [;(z), for i = 1,...,n, are functions from X into R satifying l;(z;) = d;;,
i,7 = 1,...,n. This approach has been studied, in the particular case X =Y
and [; polynomials, by Prenter [9], who proved the existence of a (non-unique)
solution but did not succeeded in giving a constructive formula, since the proof is
based on the existence of the projections of X on certain subspaces, which cannot
be explicitly constructed in general. Here, we attempt to solve the problem by a
different and more constructive approach, using as [; the cardinal basis functions.

We define the interpolant

F(z) =) gi(2)f(z), (6)

=1

where g; : Q@ — R, i =1, ..., n, are cardinal basis functions, that is, satisfy
n
gi € C°(Q), 9i(2) = 0, Zgz‘(z) =1 9i(zj) = 645, (7)
i=1

Note that for a given z € €2, each g;(z) takes a scalar value, while f(z;) € Y, and
so F(z) € Y. From now on we will consider the underlying function f bounded
on 2.

If f(z;) =¢, i =1,...,n, we have from (6)
P =Y (e =c )
i=1

Another noteworthy property is

1)) = max || f(25)]]- (9)
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In fact
[F(2)] < Zgz W) < Zgz ) max|| f(z)|] = max [ f(z)]],

where both the norms in X and Y are represented for simplicity by the same
symbol.

The interpolant (6) has also some good approximation properties. In particular
we can give the rough error bound

If(2) = F) < 1) 9i(2)f(2) = ]l <
=1
max [ f(2) = f(z0)ll < supmax||f(z) = f(z)]] (10)

The dependence of the error bound from the underlying function, the distribution
of the nodes and the diameter of €2 can be better shown by the inequality

1£(2) = F(2)]| < w[fl(max||z = z]) < w[f](diam(€2)), (11)

where

w[f1(0) = sup {|[f(u) = f(v)[], lu — o] <&}

u,VES)

is the modulus of continuity of f. However, these are just rough error bounds,
which does not provide information about the error behaviour when the nodes
get closer and closer to each other.

An important way to construct cardinal basis functions defined on IR? is Cheney’s
method (see [3], pp. 67-68), which can be extended to a Banach space X.

Definition 2.1. Let a: X x X — R be a continuous function such that
oz, 2) = 0, a(z,2) >0, i=1,...n.

Then, setting

n

H a(z, ;)

gi(z) = j l’j# , 1=1,...,n,
S I ates)
k=1j=1,j#k

we get Cheney’s cardinal basis functions.

These functions can be also represented in the barycentric form

1/a(z, z; .
gl(z) = n/(—Z)v gl(zl) = 17 1= 17 -y N,

Z 1/a(z, z)

k=1
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which is usually more suitable from a computational point of view. In the fol-
lowing, for simplicity, we will omit to specify g;(z;) =1,i=1,...,n

The g¢i(z), i = 1,...,n, are continuous functions on X, since they are ratios of
continuous functions and the denominators are non-vanishing. So, the interpolant
F(z) in (6) is continuous too, being a linear combination of the values f(z;) with
coefficients g;(z).

The barycentric form of the interpolant clearly shows that Cheney’costruction
corresponds to a normalized network (4).

A natural choice for « is

a(zw) = |z —w|,  peR".

In this case, we have

1/1l2 — 2|
gi(2) = n/”z zil  i=1,..n, (12)

> Yl =zl

k=1

that is, a version of Shepard basis functions for Banach spaces.

3 Localizing scheme

In practice, in many cases it is convenient to use a localized version of Cheney’s
construction, that is

_ n G (2 1/a(z Zz)) _
_Zz_;gz( ) sz L Th(z 1/OZ(Z,Zk))f( i), 0>0, (13)

where 7; : @ — IR™ is a continuous function such that
T(z) =1, 7(2)>0 forz:|z—zl <d, and 7(z)=0, forz:|z—z] >,

and ¢ is suitably chosen. Hence the interpolant F, when evaluated at any z € €,
considers only the nodes closest to z, that is, the nodes z; such that ||z — z]|| < 4.
We note that F is a continuous operator like F. We also note that the cardinal
basis functions in (13) are still a partition of unity, and therefore the constant
functions are reproduced by the interpolant. As a consequence of this localization,
the error estimate (11) can be improved:

1£(2) = F(2)]| < w[f1(6).

If we consider the Shepard-type cardinal basis functions (12), in the sum (6) only
the terms corresponding to the nodes z; closest to z are significantly different
from 0. It seems natural to localize taking, for instance,

Ti(z) = (1 —|lz — zi|\/5)+, 2€Q, i=1,..,n,
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so to get the interpolant

R = zll/0)  (1/llz — z]]")
_;gZ( ZZk 1 1_HZ_ZkH/5) (/12 = 2ll*)

f(zz), 6> 0.

(14)
The localized version of the Shepard-type interpolant in (14) gives us the op-
portunity to obtain more meaningful error estimates involving the so-called fill

distance

hs.q := sup mln |z — z]|.
z€Q %

To get the following error bound we will assume €2 convex. Let ¢ € Y be any
constant vector and let I5 be the ball of radius d centered at z, taking 6 = C1hg
with C7 > 1 real constant. Moreover, let us cosider the neighborhood of z
Js = I5 N Q; then we have for z € Q

1f(2) = F) < I (2) = ell + lle = F()| = () = ell +

Zgl —

< Ifz —ﬂﬂ+§:% NFGi) —ell < (143 ai(2)) sup |1 (w) e
=1

and, then, .
1f(z) = F(z)|| <2 sup [[f(w) —cl|, zef

weJs

This relation shows that the local errors (and the global error as well) depends
on the distance of the interpolated function f from the set of constant vectors.
Then, taking ¢ = f(z0), where zg is the node (or one of the nodes) closest to z,
we obtain the bound

1f(2) = F(2)]| <2 sup || f(w) — f(=0)l

weJs

and, since ||lw — zp|| < C1hgq for any w € Jjs,

1£(2) = F(2)|| < 20[f)(2C1hsg).

Finally, if we suppose that f is Gateaux-differentiable in €2, then, by the finite
increment formula applied on the segment [z, w] C J5, we have

1£(z) = F(2)[| <2 sup sup ||f'(z0 + 0Aw)] [ Aw]],
weJs 0<0<1

with Aw = w — zg, and, if the derivative is uniformly bounded on €2, then

I£(2) = F(2)]| < 2C1hsq sup [|f'(w)]],

weJs

where || f/(w)]|| stands for the norm of the operator f’(w) in the space of linear
and continuous operators from X into Y. This shows that this method has
approximation order O(hgq).
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4 Numerical tests

Now we consider a numerical example. Let X = C[—7, 7] with norm

o = 1.
2] X |2(t)]
and let
Q= {asint + @sin(2t); o, 5 € [1,1 + 1/20]},

and Y = R. Let the nodes be z; = a;sint + §;sin(2t), (o4, 3;) € [1,1 4+ 1/20] x
[1,141/20],i=1,...,N, and

f(Zl) = /ﬂ— tzi(t)dt, 1= 1, ,N

—Tr

The operator

™
z(t) — tz(t)dt
-
plays here the role of a test function. We choose 1 = 2 in Shepard-type cardinal
basis functions because, in general, a small value of y avoids “flat spots "near the
nodes (see, e.g., [2]). The cardinal basis interpolant, in the barycentric form, is

g Ym0
2121/( max [=(0) ~ (1)) 7

te[—m,m]

tz;(t)dt.

Here we tested the interpolant taking nodes with coefficients (o, ;) first on a
regular 7 x r grid over [1,1+ 1/20] x [1,1+ 1/20] (r = 5,10, 15,20, 30, 40), and
then constructing Halton points (with generating primes 2 and 3) on the same
square [5]. Note that this choice for the nodes makes sense, because we have the
inequality

|| [ sint 4 By sin(2t)] — [ sint + By sin(2t)]|| <

lay — as| 4 |61 — Ba| < 2||(ca, B1) — (@2, B2) |-

The interpolant has been evaluated, using the barycentric formula, at 1089 points
taking the coefficients («, 3) on a regular 33 x 33 grid over [1,1+ 1/20] x [1,1+
1/20]. The results are reported in Table 1 and Table 2

nodes RMSE nodes RMSE nodes RMSE
4 1.988-1072 | 25 |[2037-1072| 400 | 1.387-1072
9 2.315-1072 | 100 | 1.667-10"2| 900 | 1.227-1072
16 | 2.172-1072| 225 | 1.493-1072| 1600 | 1.161 1072

Table 1: Evaluation of test operator by cardinal basis interpolant (nodes on a
regular grid) in C[—m, 7| with infinity norm
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nodes RMSE nodes RMSE nodes RMSE
4 5.617-1072 | 25 |3.418-1072 | 400 | 1.857-10"2
9 4.103-1072 | 100 | 2.313-1072| 900 | 1.632-102
16 | 3.644-1072| 225 |2.018-10"2| 1600 | 1.510-1072

Table 2: Evaluation of test operator by cardinal basis interpolant (Halton points
as nodes) in C[—m, | with infinity norm

Then we tested the localized version of the formula considering the same example.
Note that in this slightly different framework the choice of the parameter ¢ in
(14) is a crucial point. Here we used a stationary approach, that is, § decreases
proportionally to the fill distance hg q; in particular, for these numerical exper-
iments we set § = 2hgq. The results, reported in Tables 3-4, show significantly
better approximation errors.

nodes RMSE nodes RMSE nodes RMSE
4 2.887-1072 | 25 |8398-1073 | 400 | 1.844-107°
9 1.606-1072 | 100 | 3.819-1073 | 900 | 1.204-1073
16 | 1.102-1072 | 225 |2.480-1072 | 1600 | 8.953-10~*

Table 3: Evaluation of test operator by localized cardinal basis interpolant (grid-
ded points as nodes) in C|—m, 7| with infinity norm

nodes RMSE nodes RMSE nodes RMSE
4 5.168-1072 | 25 |1.853-1072 | 400 | 3.599-1073
9 2.938-1072 | 100 | 7.348-1073 | 900 | 2.150-1073
16 | 2.356-1072 | 225 | 4.906-1072 | 1600 | 1.665-1073

Table 4: Evaluation of test operator by localized cardinal basis interpolant (Hal-
ton points as nodes) in C[—7,w| with infinity norm
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Abstract

This paper presents a parameterised shared-memory scheme for parameterised
metaheuristics. The use of a parameterised metaheuristic facilitates experimenta-
tion with different metaheuristics and hybridation/combinations to adapt them to
the particular problem we are working with. Due to the large number of experi-
ments necessary for the metaheuristic selection and tuning, parallelism should be
used to reduce the execution time. To obtain parallel versions of the metaheuristics
and to adapt them to the characteristics of the parallel system, an unified param-
eterised shared-memory scheme is developed. Given a particular computational
system and being fixed the parameters for the sequential metaheuristic, the appro-
priate selection of parameters in the unified parallel scheme eases the development
of parallel efficient metaheuristics.

Key words: parallel metaheuristics, shared-memory

1 Introduction

Currently most of the computational parallel systems are formed by multicore compo-
nents. Laptops and personal computers are multicore, and clusters and supercomputers
are built by connecting multicore nodes. So, the development of efficient multicore ver-
sions of our algorithms is compulsory if we want to efficiently use the systems we have
access to. Multicore systems can be programmed with the shared-memory paradigm,
using OpenMP [10], which we use to develop the unified parameterised parallel shared-
memory scheme of an unified parameterised scheme of metaheuristics.

Given that most of the interesting and attractive combinatorial problems belong
to the NP class, exact methods are not very useful except for small sized problems. For
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this reason many approximation methods have been provided that allow high quality
solutions to be obtained in acceptable running times. In recent decades, metaheuristics
have emerged as an advantageous technology for approximation algorithms [2]. They
bring together methods and ideas from very different fields, such as artificial intelligence,
mathematics and biology. The main concern here lies in their easy and immediate
applicability to hard problems.

The use of a unified parameterised scheme for metaheuristics [9] facilitates the
easy development of new metaheuristics or hybrid metaheuristics for experiment and
adaptation to a particular problem. However, in the process of obtaining a well-tailored
metaheuristic for a problem, it is necessary to experiment with a large number of
metaheuristics and their parameters, and so the time dedicated to the experiments is
very large.

To alleviate this problem, parallel versions of the methods can be developed. There
are a large number of studies on the parallelization of metaheuristics [1]. Each meta-
heuristic may have a different parallel scheme, and some of them could follow a different
paradigm. In our approach, and as main contribution, we consider the common devel-
opment of parallel versions by using a unified metaheuristic scheme to obtain a unified
parallel scheme for metaheuristics.

In addition, the parallel scheme is parameterised, and the values of some algorith-
mic parameters can be selected to optimise the execution of the parallel metaheuristic
obtained from the sequential parameterised scheme of metaheuristics. The optimum
values of the algorithmic parameters will depend of those of the metaheuristic param-
eters and of the characteristics of the computational system.

The rest of the paper is organised as follows. Section 2 presents the parameterised
metaheuristic scheme. The corresponding parameterised shared-memory scheme for
metaheuristics is presented in seciton 3. Section 4 presents some experimental results
obtained when applying the parameterised parallel scheme to a particular problem.
These results confirm the validity of our proposal. Finally, in section 5 the conclusions
are summarised and some future research lines are outlined.

2 Parameterised metaheuristic scheme

The use of a general scheme for metaheuristics (algorithm 1) allows us to quickly
develop and experiment with different metaheuristics to decide which metaheuristic,
combination/hybridation of metaheuristics and tuning parameters are the most suitable
for solving a particular problem. With such a scheme, some of the functions can be
reused for different methods, so facilitating the development of metaheuristics.

Each basic function in this unified metaheuristic scheme can be parameterised so
that different values of the parameters give different metaheuristics, hybridation/com-
bination of metaheuristics or different versions of a particular metaheuristic. In that
way, scheme 1 changes by making the basic functions in it parameterised functions, as
shown in algorithm 2.

Different sets of parameters can be established for the different functions, and it
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Initialize(S)
while (not EndCondition(S)) {
SS = Select(S)
if (|SS| > 1) SS1 = Combine(SS)
else 881 = SS
SS2 = Improve(SS1)
S = Include(SS2)

Algorithm 1: General scheme of a metaheuristic method.

Initialize(S,ParamInit)

while (not EndCondition(S,ParamEndCond)) ({
SS = Select(S,ParamSelec)
if (|SS| > 1) SS1 = Combine(SS,ParamComb)
else 881 = S8
SS2 = Improve(SS1,ParamImpr)
S = Include(SS2,ParamIncl)

Algorithm 2: General parameterised scheme of a metaheuristic method.

is not the objective of this paper to study the best selection of the parameters. As an
example, in the Initialize function ParamInit could be composed by four parameters:
one corresponding to the size of an initial reference set; another for the number of
elements to be improved with some improvement function (which also could be used
in the improvement function inside the while loop); a third parameter to indicate the
intensity of the improvement, as for example how big the neighborhood in a local search
is; and the number of elements in the reference set. Similarly, a set of parameters should
be determined for each function, and for a particular problem different metaheuristics
and combinations of them are obtained by giving different values to those parameters.

3 Parameterised shared-memory scheme for metaheuris-
tics

The parameterised metaheuristic scheme in algorithm 2 can be used to develop the
corresponding unified parameterised shared-memory scheme. To do so, the functions
in the scheme are parallelised independently, and different parallel patterns should be
identified in the basic functions of the scheme. Two basic parallel schemes are identified
for the functions in algorithm 2.

In the first scheme (algorithm 3) the elements in a set are treated independently.
The set of metaheuristic parameters (MetaheurParam) is passed to the function, and the
number of threads to be used in the parallel loop (one-loop-threads) is obtained as a
function of the values of the metaheuristic parameters. This scheme can be used for ex-
ample when crossing elements in a genetic algorithm, when randomly generating the ini-
tial set of elements... For different functions, the optimum value of one-loop-threads
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depends of the values of the parameters of the metaheuristic and also of the cost of the
processing function (cost of crossing function, random generation function...), which
depends of the metaheuristic and the computational system.

one—loop(MetaheurParam):
omp_set_num_threads (one—loop—threads (MetaheurParam))
#pragma omp parallel for
loop in elements
treat element

Algorithm 3: Parallel scheme for independent treating elements (scheme 1).

The second scheme is a two-level parallelism scheme (algorithm 4), and a number
of threads should be determined for each level. The number of threads to work in
the first level (first-level-threads) is obtained as a function of the parameters
of the metaheuristic (also of its functions, and consequently of the cost of them in
the computational system). Once this number of threads has been determined, the
number of threads to work in the second level (second-level-threads) is obtained as
a function of the metaheuristic parameters and the number of threads working in the
first level. Of course, the first scheme is a particular case of this second scheme when
the number of threads in the second level is fixed to one, but it is better to consider
two different schemes because the number of parameters to obtain and how they are
obtained are different. This type of parallelism appears for example in the improvement
functions, when a number of elements is selected to improve them (which gives a loop
in the number of elements to improve) and each element is improved by analysing some
elements in its neighbourhood (loop in the second level). It can appear in other parts,
as for example when crossing elements if the crossing function is not a simple one and
to parallelize it can contribute to reduce the execution time.

two—level (MetaheurParam):
omp_set_num_threads (first—level—threads (MetaheurParam))
#pragma omp parallel for
loop in elements
second—level (MetaheurParam,first—level—threads)

second—level (MetaheurParam,first—level—threads):
omp_set_num_threads(second—level—threads(MetaheurParam, K first—
level—threads))
#pragma omp parallel for
loop in elements
treat element

Algorithm 4: Two-level parallel scheme (scheme 2).
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4 Computational results

To validate our proposal, some experiments have been carried out. Here, the results of
some experiments with Simultaneous Equation Models (SEM) are presented. We will
not explain what they are, but the interested reader could refer to some well known
books [4, 5]. SEMs shave been traditionally used in econometrics, but they have begun
to be used in other fields (networks simulation [6], medicine [7]...), so it is a problem
of great interest. Normally they are developed by people with a wealth of experience
in the particular problem represented by the model, but the use of automatic tools to
provide the experts with satisfactory models is interesting in some cases, as for exam-
ple when the dependence of the variables is not clear or when experiments are being
carried out to determine variables to be included in the model. To automatically ob-
tain satisfactory models, it is necessary to evaluate a large amount of candidate models
and to measure their quality according to some criteria, like for example the Akaike
Information Criterion (AIC) [3]. Genetic algorithms have been applied to this prob-
lem [8], and using the parameterised sequential scheme here presented the application
of different metaheuristics to the problem is facilitated. Furthermore, the use of the
parallel scheme allows us to make in a reasonable time the experiments with different
metaheuristics to decide a satisfactory one for the specific model we are working with.

The problem consists of, given a set of values (obtained by experimentation, sur-
vey...), to obtain the variables which appear in each equation in the system, which
means, the model which best represents the variables dependences.

To apply metaheuristic methods to obtain SEMs, a set of models is explored. Each
element in the set is a candidate to be the best model. An element is defined as a
matrix. In each row, an equation is represented using ones and zeros. If variable j
appears in equation ¢, the value for the (i, j) position is one, and zero if not.

Experiments have been carried out in the supercomputer BenArabi of the Super-
computing Centre of Murcia. The part Ben is a HP Integrity Superdome SX2000 with
128 cores of the processor Intel Itanium-2 dual-core Montvale, and Arabi is a cluster
of 102 nodes, each one with 8 cores of the processor Intel Xeon Quad-Core L5450. So,
experiments have been made in systems with 8 and 128 cores.

Experiments have been carried out by randomly generating a system and the values
of the exogeneous variables, and obtaining from them the values of the endogenous vari-
ables. By selecting the values of the parameter in algorithm 2, different metaheuristics
have been applied. The methods considered to parallelize are: GRASP, a genetic algo-
rithm (Genet), a scatter search (Scatt), two hybrid methods with a GRASP followed
by genetic (GRA+Gen) and scatter search (GRA+Sca), a combination of genetic and
scatter search (Gen+Sca) and a GRASP followed by this combination (GR+Ge+Sc).
The parameters used for each method are shown in table 1. Note the advantage of us-
ing a unified metaheuristic scheme, both for sequential and parallel development, that
allows for the testing of numerous methods and parallelizations. The meaning of the
parameters in the table are: numbers of elements in the initial set (Init. num. elem.),
numbers of elements in the reference set (Num. elem. iter.), percentage of elements
of the initial set to be improved (Perd. impr. init.), intensification of the initial im-
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provement (Int. impr. init.), number of best elements selected for combination (Num.
best elem.), number of worst elements selected for combination (Num. worst elem.),
number of combinations of best elements (Num. best-best), number of combinations
of best elements with worst elements (Num. best-worst), number of combinations of
worst elements (Num. worst-worst), percentage of elements generated by combination
which are improved (Perc. impr. elem.), intensification of the improvement (Int. impr.
elem.), percentage of elements to be mutated (Perc. elem. mut.), intensification in the
improvement of elements obtained by mutation (Int. impr. mut.), and number of best
elements included in the reference set (Num. best elem.). To compare the parallelism,
the number of iterations in genetic and scatter search (or combinations) has been fixed

at 50.
GRASP  Genet Scatt GRA+Gen GRA+4Sca Gen+Sca GR+Ge+Sc

Init. num. elem. 200 500 100 200 200 100 200
Num. elem. iter. - 500 20 200 20 50 50
Perc. impr. init. 100 0 100 100 100 100 100
Int. impr. init. 10 - 10 10 10 10 10
Num. best elem. - 500 10 200 10 25 25
Num. worst elem. - 0 10 0 10 25 25
Num. best-best - 250 90 100 90 90 90
Num. best-worst - - 100 - 100 100 100
Num. worst-worst - - 90 - 90 90 90
Perc. impr. elem. - 0 100 0 100 100 100
Int. impr. elem. - - 5 - 5 5 5
Perc. elem. mut. - 10 0 10 0 10 10
Int. impr. mut. - 0 - 0 - 5 5
Num. best elem. - 500 10 200 10 25 25

Table 1: Values of the parameters for the different combinations of metaheuristics
considered in the experiments.

Figure 1 shows the speed-up achieved in the two systems with the seven meta-
heuristics, when using the maximum number of cores in the systems (8 in Arabi and
128 in Ben) and without nested parallelism (it is called 8 or 128 in the figure), with
the configuration (number of cores in each parallelism level) which gives the lowest
execution time (lowest), and with the best combination of threads in the initialisation
part and in the iteration part (parts).

In Arabi the speed-up is close to the number of cores, and normally the best
configuration is to use non nested parallelism and 8 cores. Only in two cases do other
combinations give better results. In the metaheuristics with lowest execution time per
iteration the speed-up is lower because the sequential time of the parallelised parts is
very low.

The situation is different in Ben. To use the maximum number of cores is not
a good option, and some strategy to select the number of threads to work on the
solution of the problem is preferable. So, the speed-up is always far from the maximum
achievable (it may be otherwise with bigger problems). Furthermore, the randomness
in the execution in the metaheuristics makes it difficult to draw definitive conclusions,
but experiments with other problem sizes and configurations confirm this behaviour.
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Figure 1: Speed-up of different metaheuristics, with the maximum number of cores,
the maximum achieved speed-up and that obtained with different numbers of threads:
a) Arabi, b) Ben.

5 Conclusions and future research

The use of a parameterised sequential scheme allow us to obtain different metaheuris-
tics and hybridation/combination of metaheuristics by selecting different values for
the parameters in the unified scheme. Furthermore, the parameterised metaheuristic
scheme in algorithm 2 has been parallelized by parallelizing each basic function, with
common parallelization strategies for functions with the same structure. So, a param-
eterised shared-memory scheme of metaheuristics has been obtained, so that parallel
versions of different metaheuristics and combinations are obtained by simply selecting
the values of the parameters of the metaheuristic. In addition, the use of the parame-
terised parallel scheme allows us to adapt the scheme to the metaheuristic (determined
by the values of the parameters in the sequential metaheuristic scheme), the specific
problem to be solved and the characteristics of the parallel system where it is solved.
The applicability of the proposal has been tested with experiments with the problem
of automatically obtaining satisfactory Simultaneous Equation Models from a set of
values of variables.

A satisfactory selection of the values of the parallelism parameters in the different
functions of the parallel produces a reduction in the parallel execution time. At present,
we are working on the inclusion of a decision engine in the parallel scheme to decide
the optimum parallel execution parameters.
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Abstract

Many computational applications rely heavily on numerical linear algebra op-
erations. Part of these applications are data and computation intensive that need
to run in high performance computing environments. On the other hand, Cloud
Computing is emerging as a new computing paradigm which aims to provide re-
liable, customized and QoS guaranteed dynamic computing environments for end
users. For research groups, while the ACTS Collection brings robust and high-end
software tools to the hands of application developers, cloud Computing provides
convenient access to reliable, high-performance clusters and storage without the
need to purchase and maintain sophisticated hardware. In this paper we propose
to join these two paradigms of scientific computing in a framework that allows ex-
ecuting high performance tools included in ACTS in a heterogeneous and dynamic
system.

Key words: Cloud Computing, high performance, Software Tools, ACTS, Python,
Web Services, instructions

1 Introduction

Scientists and engineers in virtually every field are turning to high performance parallel
computers to simulate and solve some of their problems. One reason for this trend
resides in the fact that the models, algorithms, and phenomena are becoming more
complex. Unfortunately, parallel architectures are expensive and hard to configure and
administrate. Only major research centers have the necessary financial and human
resources to manage a center of High Performance Computing.
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In last two years, a new concept is emerging: Cloud Computing [2]. Clouds are
hinting at a future in which we will not compute on local computers, but on central-
ized facilities operated by third-party computing and storage utilities. We can relate
it to other similar technologies, especially grid-computing, but there are significant dif-
ferences show in Table 1. In resume, Cloud computing describes a new supplement,
consumption and delivery model for IT services based on Internet, and it typically
involves the provision of dynamically scalable and often virtualized resources as a ser-
viceover the Internet.

Grid Cloud
Underlying Concept Utility Computing Utility Computing
Main Benefit Solve computationally Provide a scalable
complex problems standard environment for

network-centric application
development, testing
and deployment

Resource distribution | Negotiate and manage Simple user
/allocation resource sharing Provider model
schedulers pay-per-use
Domains Multiple domains Single domain
Character /history Non-commercial, Commercial

publicly funded

Figure 1: Main differences between Cloud and Grid Computing

In previous work, OpenCF [8, 11] has been presented as a framework on a Cloud
Computing infrastructure, where users can access to the computing facilities on demand
according to their needs. A significant difference between OpenCF and others Cloud
Computing projects is that OpenCF does not revolve around the creation of virtual
machines as a way to offer services to users. Rather, it allows for direct instances of
applications to be run on the computing servers(SaaSapproach).This, which at first
glance might seem like a disadvantage, is proposed as a way to facilitate access to this
type of tool to end users with limited knowledge of programming or high performance
computing.

This paper proposes the use of scripts such as computing service to users of cloud
computing. That is, in addition to providing access to applications compiled on com-
puting servers, the user can program interpreted Python code programming its own
high performance application to be executed on any platform in the cloud. Users can
make use of precompiled libraries in high performance computing servers through dis-
tributions like PyACTS [5]. Thus, the code can make use of high performance libraries
to the lowest level and to be independent of the platform on which to run.

This paper is arranged as follows. Section 2 and 3 introduces OpenCF and PyACTS
respectively. In section 4, we present the framework that integrates both architectures
and we show several examples that illustrates the advantages of these new paradigm.
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Figure 2: OpenCF and PyACTS’s models

2 OpenCF

This section describes the architecture of OpenCF. OpenCF software architecture is
shown in Figure 2(a). As introduced in [9], OPenCF is highlighted by a modular
design: module server and client module. The modules can be replaced independently
and even extended to provide new functionality without disturbing the rest of the
system components. The client and server implement the three lower layers of the
stack that describes the Web service: Description of Services, XML Messaging and
Transport. The fourth level, Service Discovery has not been implemented for security
reasons. Therefore, system administrators still control access by of customers to parallel
platforms through traditional techniques authentication.

The client provides an interface for the end user and translates the requests queries
to the server. The server receives requests from clients Authenticated and transforms
them into jobs for the queue manager. These modules, in turn, are also modularized.
The module Control Access, Submission Process and Collector can be found on
both the server and client. The client also maintains a database to manage information
generated by the system. The server includes elements for generating scripts and work
release the queuing system.Briefly, we should describe the features of the modules listed.

1. Client Module: The client is the interface between the end user and the system,
where users are registered through a form. Below is a list of sub-modules.
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e The Database stores information about users, servers, work, input and out-
put files, etc.. It has been implemented as a base MySQL relational data [6]
and is accessed through PHP scripts.

e The Request processor is via a Web interface which the user can access the
list of available applications. Each entry in the list shows a short description
of the routine. Tasks grouped according to the servers that support them.
It also manages dynamically generate XHTML form input data according
to the job description.

e The Collector manages the output generated by launched work on the
server. We can also check the status of submissions through the Web inter-
face, and download the results.

2. Server Module: The server handles all matters related to the work, making them

available through the service and monitor its status and implementation.

e The Request Processor consists of a set of PHP scripts that are responsible
for analyzing the requests received from the client. In addition, it is also
responsible to generate and export the Web service, to maintain updated
the WSDL document [13] (Web Service Description Language) encapsulated
with the protocol messages SOAP generated by NuSOAP [12].

e The Queue Manager Interface manages the queue of the HPC system. The
server needs to know how to run a work and how to check its status on the
server is installed. Additionally, we need an XML description of each of the
routines available to specify the job. In section 4 we will show an integrated
example with the PyACTS library. In current version of OpenCF, once the
user sends a job request, the server executes the code binary associated with
the supplied arguments. In this way, we can incorporate new services by
adding the file with the XML description with compiled code in the server
module. This is the main difference with the proposed system in 4, where
the application are programmed in a scripting language and not need to be
compiled.

e The Script Generator produces the necessary scripts for execution of work
in different systems of queues. It is composed of a set of templates. We need
a different template for each one of the queue managers supported.

e The Launcher is the interface between OpenCF and operating system. For
security reasons, you need a non-privileged user created to run the OpenCF
code.

3. The collector is the interface that delivers the output data produced by execu-

@CMMSE

tion of a job. Once work is complete, the queuing system automatically sends an
email to the user, and moves output files to a temporary directory until they are
downloaded by the client collector.
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PyOpenCF born from the idea of developing OpenCF in a single programming lan-
guage, so that it is more portable and independent as well as more efficient in upgrad-
ing the platform. For this, the language used was Python [7]. Python is an scripting
language widely used by scientific and academic community. Same functions and char-
acteristics of OpenCF have been implemented in this version. In this way, PyOpenCF
offers a platform to submit precompiled jobs to the computing servers. However, if we
would program our algorithm we could do it with an scripting language like Python,
and submit this script with PyOpenCF. The main disadvantage is the bad performance
in scripting languages, but according to [3], an application can be written in Python
but the hard computational tasks can be executed in tunned libraries to each HPC
system, without significant penalty in performance. In this sense, we will introduce
PyACTS concepts in the next section.

3 PyACTS

The Advanced CompuTational Software (ACTS) Collection [4] is a set of software tools
for computational sciences that helps programmers write high performance scientific
codes for high-end computers. ACTS tools are mostly libraries (some are C libraries,
some C++ class libraries, and some are Fortran libraries). They are primarily designed
to run on distributed memory parallel computers. Portability and performance were
both considerations in their design and implementation. The ACTS tools use the
standard Message Passing Interface (MPI) [10] for communication. The computational
model of ScaLAPACK, BLACS and PBLAS (included in the ACTS tools) consists of a
one or two-dimensional process grid, where each process stores pieces of matrices and
vectors. The prime beneficiaries of ACTS tools are developers of parallel engineering
and scientific applications. Many areas of scientific computing are covered by ACTS
tools, and can potentially make use of them. Nevertheless, parallel software can be
more complex than serial software and significantly more expensive to implement.

In this context, we developed PyACTS as a set of modules which can be imported
from the Python interpreter to enlarge the number of users that can make use of
the routines included in ACTS. PyBLACS, PyPBLAS and PyScalLAPACK were our
first steps to achieve our goal: an easy and integrated set of tools that can be used
from Python but offers all the performance of the libraries in the original development
environment (Fortran and C).

In Figure 3, we present a script used to test the interface to the PBLAS level 3
routine (pvgemm, cAB + C, o, € R, A,B,C € R™"™). This example reads the
data from three text files and stores them in PyACTS Arrays. Note that this reading
is completed by a single process (usually, [0,0] in the process grid) and it sends the data
to the rest of the processes using PyBLACS to obtain a two-dimensional block-cyclic
distribution. After executing Txt2PyACTS in Figure 3, the variables a, b and ¢ are
PyACTS Arrays and can be used as parameters in PyACTS routines. Once the matrix
multiplication is done, the routine PyACTS2Text collects the (distributed) results and
writes them into the text file. It is interesting to compare this script of with a Fortran or
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from PyACTS import *

import PyACTS.PyPBLAS as PyPBLAS
ACTS_1ib=PyACTS.ScaLAPACK_ID # ScalLAPACK ID
PyACTS.gridinit () # Grid initialization
alpha=Scal2PyACTS(1.2,ACTS_1ib) # Distribute scalars
beta=Scal2PyACTS(2,ACTS_1ib)
a=Txt2PyACTS("data_a.txt",ACTS_lib) # Read Text files and
b=Txt2PyACTS("data_b.txt" ,ACTS_lib) # store in PyACTS Arrays
c=Txt2PyACTS("data_c.txt" ,ACTS_lib)
result=PyPBLAS.pvgemm(alpha,a,b,beta,c) # Call routine
PyACTS2Text ("data_result.txt",result) # Write results
PyACTS.gridexit ()

Figure 3: Example of PyPBLAS: pvgemm

C implementation with same functionality. The implementation with python is usually
more readable and easily, allowing faster development. Performance tests demonstrated
that the Python interfaces do not involve a significant performance penalty. In sum,
PyACTS is an intuitive, handy, and powerful tool to access ACTS tools from Python
in a parallel setting.

4 A well-matched couple

We present an evolution of both tools (and PyACTS PyOpenCF) which is precisely
the union and interaction to achieve high performance platform for cloud computing
philosophy. For this purpose, a new service called PyOpenCF&PyACTS Web Client
was added to the PyACTS’ distribution web (http://pyacts.umh.es). Thus, a user
can log into the portal and submit their papers through the web browser, without
need for compilation or libraries linking. The same code can be executed by Python
different computing platforms without being rewritten. The work environment OpenCF
management control processes and their results in the various computer servers as
explained in section 2. The innovation introduced by the union of both tools are the
programming flexibility and power in performance we achieved by making use of ACTS
library routines from the Python language. In Figure 4, the pyacts.umh.es web client
is shown.

The features of the application that has been developed in this version are the
following:

e List of servers: the list of registered computing servers in the system, including
server name and the address on the same.

e List of scripts: shows the user a list of previously existing scripts or stored on a
remote system.
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puting as a service is achieved with this architecture.

Home

Development

CLIENT ACCOUNT

_Username:

A python open computational framework

PyACTS-PyOpenCF

Welcome to PYACTS-PyOpenCF

Web Client!

| |
Password:
| |

Registar
|

Figure 4: PyACTS-PyOpenCF Web Client

What ean you find!

This is the main page of our pyopencf web client platform, so you can feel
free to navegate over this current page in order to search information that

wou need,

“Internet iz the ocean in wich information whales can swim free,”

Creation of new scripts / applications: allows user to define their own algorithms
and programs using the Python scripting language.

Launch a job from a script: From a Python uploaded code , user can launch a
job selecting a computing server.

Job Status: You can view the status of a particular job. It shows both the ID of
the job, as the status in the remote server.

Download results: if the job produces results as a file, we could it at any time by
downloading from the web service.

Deleting scripts: You can remove applications you no longer need to use.

In short, it seeks to achieve a more comfortable computing services work without
worrying about the implementation of where or how the computation is done. Com-

5 Conclusions

In this work we have presented a new web service which provides a framework to
execute user applications in high performance servers in a comfortable and simple way.
Python example has demonstrated that PyACTS is a user friendly interface that hides
the challenges of parallel programming from non professional users, and PyOpenCF
has illustrated a integrated framework for managing jobs in a set of remote servers.
Both architectures allows users writing and submitting their own codes in available
computing servers without worrying about compiling, linking, queue management, etc.
The proposed web client is available for scientific community at pyacts.umh.es.
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Abstract

Neville elimination is a direct method for the resolution of linear systems of
equations alternative to Gaussian elimination, with advantages for some classes
of matrices and in the context of pivoting strategies for parallel implementations.
The growth factor is an indicator of the numerical stability of an algorithm. In the
literature bounds for the growth factor corresponding to Neville elimination with
some pivoting strategies have appeared. In this work we determine all the matrices
such that the minimal upper bound of the growth factor corresponding to Neville
elimination with those pivoting strategies is reached.

Key words: Newille elimination, pivoting strategies, maximal growth factor
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1 Introduction

The usual direct method to solve a linear system of equations Ax = b is Gaussian elim-
ination (GE). Neville elimination (NE) is an alternative procedure to GE to transform
a square matrix A into an upper triangular matrix U, and it has advantages for some
classes of matrices and in the context of pivoting strategies for parallel implementa-
tions. NE makes zeros in a column of the matrix A by adding to each row a multiple of
the previous one. Here we only give a brief description of this procedure (for a detailed
and formal introduction we refer to [11]). If A € R™*", NE consists of at most n — 1
steps:
A=A 5 AW 5 A@) Q) o A = gD — [,

where U is an upper triangular matrix.
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On the one hand, A® can be obtained from the matrix A® through an adequate
pivoting strategy, so that the rows with a zero entry in column ¢ are the final rows and

Al =0, i>t = all=o0, VYh>i

For example, partial pivoting for NE was already introduced in [12]. On the other hand,
A+ g obtained from A® making zeros in the column ¢ below the main diagonal by
adding an adequate multiple of the ith row to the (i + 1)th fori =n —1,n—2,...,t.
If A is nonsingular, the matrix A® has zeros below its main diagonal in the first
t — 1 columns. It has been proved that this process is very useful with totally positive
matrices, sign-regular matrices and other related types of matrices (see [10] and [11]).

A real matrix is called totally positive (TP) if all its minors are nonnegative. TP
matrices arise in a natural way in many areas of Mathematics, Statistics, Economics,
etc. (see [7]). In particular, their application to Approximation Theory and Computer
Aided Geometric Design (CAGD) is of great interest. For example, coefficient matrices
of interpolation or least square problems with a lot of representations in CAGD (the
Bernstein basis, the B-spline basis, etc.) are TP. Some recent applications of such kind
of matrices to CAGD can be found in [16] and [17]. For applications of TP matrices
to other fields see [10]. In [9], [11] and [13] it has been proved that NE is a very useful
alternative to GE when working with TP matrices.

In addition, there are some studies that prove the high performance computing of
NE for any nonsingular matrix (see [6]). In [5] the backward error of NE has also been
analyzed. In [1] we give a sufficient condition that ensures the convergence of iterative
refinement using NE for a system Az = b with A any nonsingular matrix in R™*",
and then we apply it to the case where A is TP. Other applications and a study of the
stability have been presented in [2].

The growth factor is an indicator of the numerical stability of an algorithm. The
growth factor for different pivoting strategies has been studied in [8], [14], [15], [18]
and [4] for both Gaussian and Neville elimination. In addition, in [3] the authors have
presented some examples where NE outperforms GE, showing the relation of this fact
with the growth factor.

2 Matrices with maximal growth factor for Neville elim-
ination

In the backward error analysis of GE with partial pivoting or complete pivoting on a
matrix A performed by Wilkinson (see for example page 108 of [19]) it was shown the
influence of the growth factor defined by

k
mazx; j x |al}|

pn(A) =

max; j |ag|

k . . e
where al(-j) occurring during the elimination process.
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The growth factor corresponding to GE with partial pivoting for a matrix A is
bounded above by 2"~!. In [15] N. J. Higham and D. J. Higham determined all the
matrices for which that bound is reached.

The backward error analysis of NE was performed in [5]. Again the growth factor
plays an important role in the numerical stability of NE. The growth factor correspond-
ing to NE with a row pivoting strategy such that the magnitude of the multipliers are
less than or equal to one for a matrix A is bounded above by 2"~!. For clarity we will
denote this growth factor by p] (A). In this work we determine all the matrices for
which that bound is reached:

Theorem 1 All real n x n matrices A for which pl,(A) = 2"~ are of the form

on ]

where D = diag(£1), B = (bij)1<i,j<n is the lower triangular matriz given by
b 0, if i < g,
v { (7). iz,
T is a nonsingular upper triangular matrix of order n — 1, d is the vector given by

(1,-2,4,...,(=2)" 1),

and 0 is a scalar such that 6 = maxi<; j<n |as;|.
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Abstract

This paper analyses the performance of several versions of a block parallel al-
gorithm in order to apply Neville elimination in a distributed memory parallel
computer. Neville elimination is an alternative procedure to Gauss elimination to
transform a square matrix A into an upper triangular one. This analysis must take
into account the algorithm behaviour as far as execution time, efficiency/speedup
and scalability are concerned. Special attention has been paid to the study of the
scalability of the algorithms trying to establish the relationship existing between
the size of the block and the performance obtained in this metric. It is impor-
tant to emphasize the high efficiency achieved for the studied cases. Moreover,
the experimental results confirm the theoretical approximation obtaining a tool of
analysis of high predicting ability.

Key words: Neville elimination, block parallel algorithms, execution time, effi-
ciency, scalability

1 Introduction

This paper analyses the performance of several versions of a block parallel algorithm in
order to apply Neville elimination to a matrix in a parallel computer using a message
passing paradigm and identifying the values of the parameters that are necessary to
obtain an optimal performance.

With regard to Neville elimination, it is an alternative procedure to that of Gauss
to transform a square matrix A into an upper triangular one. Neville elimination makes
zeros on an A column adding a multiple of the previous row to each row (for a detailed
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and formal introduction, we refer to [7]). This strategy has been proved to be specially
useful when using certain types of matrices as is the case of those which are totally
positive or sign-regular matrices (see [1] and [6]).

A real matrix is called totally positive if all its minors are non-negative. It is
possible to come across this sort of matrices in many different branches of science such
as Mathematics, Statistics, Economy (see [6]), or Computer Aided Geometric Design
(see [12] and [11]). According to [9], [5], [8] and [7], Neville elimination is considered
to be an interesting alternative to Gauss elimination for certain types of research.
Furthermore, there are other works (see [2], [3] and [4]) that show the advantages of
the foresaid procedure in the field of High Performance Computing.

In the developing of the parallel algorithms to solve Numeric Linear Algebra prob-
lems, the block-organization seems to be the most efficient one in order to get the
highest performance in current machines when dealing both with the good usage of
the memory hierarchy of shared memory machines and with the harnessing of the ex-
plicit parallelism of those distributed memory ones. Thanks to this organization both
efficient and scalable algorithms are usually obtained. Well-known subroutines such
as Lapack and Scal.apack use the block organization as their main algorithm strategy
design.

In our work, we propose an organization of the block Neville elimination algorithm
for computers with the message passing model and we carry out a general analysis
based on upper bounds for the three metrics: execution time, efficiency/speedup and
scalability. We will concentrate on the most common block distributions and on two dif-
ferent representative machines of the message passing model: a network of workstations
and a multicomputer. Special attention has been paid to the study of the scalability
of the algorithms trying to establish the relationship existing between the size of the
block and the performance obtained in this metric. It should be noted that previous
works (see [2], [3] and [4]) have only addressed the scalability for some particular cases.
However, in this paper we analyze the general cases obtaining general conclusions.

In the rest of this paper we briefly review some of the aspects that will be considered:
the performance model (Section 2), the block parallel algorithm (Section 3) and a
reduced set of experiments obtained (Section 4).

2 Performance model

In multicomputers, the physical environment used to share this information is the inter-
connection network, while the logical paradigm is, in general, so-called Message Passing.
In message passing the information moves from its origin to its destination establishing
communications in which the speakers cooperate actively. In our experiments we have
used this kind of paradigm.

The evaluation of a parallel algorithm requires a minimum study of the character-
istics of the systems and a theoretical model that could predict its behaviour. Several
models have been already proposed and they keep becoming more complex and precise
as well as having a more complex application. Together with several authors, this paper
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has adopted a model based on the compromise between the precision of the predictions
and their simplicity of usage (see [10]).

3 Block parallel algorithm

In order to handle a matrix in parallel, we must divide it in such a way that the
partitions can be assigned to the different processors. The distribution of the matrix
data affects the performance of the parallel system as explained in the following sections.
Therefore, determining the best distribution for each algorithm becomes a relevant
issue. This section studies a type of generic partition where the matrix A = (a;j)1<ij<n
is divided into ng x n1 submatrices A = (A;j)1<i<ng,1<j<n, Of mg x my dimension:

A A - Aig,
A1 Ao A2 n,

A= ,
Ano,l An072 T Anoml

where ng = n/mg and n; = n/m;. We can assume that n is divisible by mg and m;.

Let us consider a rectangular mesh of py x p; processors where the processor in row
s and column t is denoted as Py, with 1 < s < pg and 1 < ¢t < p;. The submatrices
will be distributed in a cyclical way among the processors so that each processor will
contain different non-adjacent blocks.

The number of submatrices assigned to each processor is the same: hg X h; where
ho and hy are obtained in the following way:

n

h() = and hl =

mo Po mi pr

Let us study the parallel algorithm performance in a jth stage. In this iteration
the variable x; must be removed. Hence, it is necessary to nullify the elements a,;,
(p—1,s - -+, @j4+1,5- So that, the following steps must be accomplished:

1. Each active processor Py will send the a;;, elements, with i, k > j, of the last row of
each of its submatrices to the immediately inferior processor; that is: Ps;1¢. The
processors of the last row of the processors mesh will send the foresaid elements
to the corresponding processors of row 1.

2. Those processors containing a;; elements, with ¢ > j, of matrix A will be the
ones in charge of calculating the multipliers of the j stage. Let ¢ be the column
of the mesh of processors where these processors are placed then the operative
processors Fy,, with 1 < s < pg, will calculate these multipliers.

3. The forementioned processors will communicate the calculated multipliers to the
active processors placed in the same row of the mesh of processors. Therefore,
the broadcast will take place from each active processor Py, with 1 < s < pg, to
the active processors Py, with 1 < r < p;.
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Figure 1: IBM SP2 (left) and network of PCs (right) scaled efficiency

4. Fach active processor will update all the elements of matrix A which correspond
to the rows and columns with index larger than j.

Taking into account the mentioned steps, we analyze the execution time of the
foresaid parallel algorithm in detail. Next we will discuss three particular cases of data
partition. Firstly, we will deal with a bidimensional partition in which the coefficient
matrix of the system is divided into square submatrices (SD). As far as the classic
unidimensional partitions are concerned, we will study those in which the data matrix
is divided into complete consecutive rows (RRD) or columns (RCD). In the three cases,
the submatrices are cyclically distributed among the processors.

4 Experimental results

Once finished the theoretical studies, we will compare the theoretical model with the
empirical values as far as the efficiency and the scalability are concerned.

The experimental results showed in this section have been obtained from two vari-
ants of the distributed memory model: an IBM SP2, subcategory MPP, and a network
of PCs (a cluster subcategory). The programming paradigm used for the communi-
cations is message passing through the implementation MPICH 1.2.7 of the standard
MPI 1.2.

As far as the ability of our first distribution (SD) to keep a constant efficiency is
concerned, figure 1 shows that when increasing n and W (the number of basic operations
required by the fastest-known sequential algorithm to solve the foresaid problem in
one processor) equally the efficiency is slightly weakened in the IBM SP2 while this
weakening is stronger in the network of PCs. For instance, in the IBM SP2 the efficiency
ranges from 0.91 for (n,p) = (1210,2) to 0.77 for n = 3841 and p = 64. Thus, there
has been a 0.14 loss of efficiency. The efficiency loss is 0.24 in the network of PCs as it
drops from 0.81 to 0.57.

Figure 1 shows the evolution of the scaled efficiency as the number of processors
and W increase equally in the second distribution (RRD). It is obvious that efficiency
does not remain constant being its degradation lower in the IBM SP2 than in the
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network of PCs. Nevertheless, as many other authors have already pointed out, it may
be considered to be almost scalable provided that its scaled efficiency stays higher than
0 (EE(W,p) > 0) (see [13]).

Figure 1 shows the scaled efficiency that corresponds to the RCD. We can also
observe that the efficiency is reduced to 0.60 and to 0.27 in the IBM SP2 and the
network of PCs respectively. In both environments the drop of the efficiency is slightly
sharper than in the other distributions.

5 Conclusions

The capability of the algorithms has been analysed by using three different metrics:
execution time, efficiency/speedup and scalability.

As far as execution time is concerned, the SD and RRD often obtain good results.
Nevertheless, in dealing with this metric, the best distribution is the column-block
oriented one since its communication time does not depend on block size.

In RCD the size of the block can be lowered in order to reduce the calculation time
without increasing the communication time. However, for other distributions, we must
get an optimal device in the size of the block that will not damage the communication
time.

If the focus of the analysis were the efficiency, conclusions would be similar to the
forementioned in relation to execution time.

It is also important to point out that the best distribution is the one based on the
SD, as far as scalability is concerned. In this case, the advantage of the RCD disappears
since the size of the block does not influence the scalability.
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Abstract

The paper proposes a numerical method to simulate periodic travelling-wave
solutions of some nonlinear dispersive wave equations. The construction of the
method is based on an efficient computation of the elements that characterize
these solutions: the initial profile and the velocity of the wave.
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1 Introduction

The purpose of the paper is to introduce a numerical method to simulate travelling-
wave solutions of the periodic problem for nonlinear dispersive wave equations of the
general form

ut + f(u)y — Muy =0, xe€(-L,L), t>0. (1)

where u = u(z,t) is a 2L-periodic, real-valued function of the two real independent
variables x,t; f is a smooth, real-valued function of u, representing a nonlinear term
and M is a linear, nonnegative, formally self-adjoint operator, characterized as a Fourier
multiplier operator by its symbol

Mu(€) = a(£)5(¢),

where™ denotes Fourier transform. Equations of the form (1) appear in many models
concerning the propagation of small-amplitude, nonlinear, dispersive long waves, see
e. g. [1, 2] and references therein as a modest representation of the literature on
(1). Important cases are included, such as the generalized KdV equation ( f(s) =
sP/p, p > 2, M = —0,), the generalized Benjamin-Ono equation (f(s) = s?/p, p >
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2, M = —HO,, where H stands for the Hilbert transform) or the Benjamin equation
(f(s) = 5%, M = —y1HO; — y20,s, for some parameters 1, 72).

Periodic travelling-wave solutions of (1) are periodic functions of the form ¢(z—ct),
for ¢ > 0, representing the velocity of the wave, and they play a relevant role in the
models [12]. In general, explicit expressions of these solutions cannot be obtained by
analytical techniques and a numerical treatment is necessary. The numerical method
we describe here is focused on the elements that characterize these solutions. First we
need to implement an efficient computation of the profile ¢, combining a suitable spatial
discretization with an iterative procedure. On the other hand, a correct simulation of
the velocity determines the selection of the time integrator.

The paper is structured as follows: in Section 2 we make some hypotheses on (1)
and remind some analytical properties of the equations under study that are relevant
for our work. The numerical method is treated in Section 3. It includes a description
of the spatial discretization, the iterative technique to approximate the initial profiles
and the time integration. Some numerical illustrations are shown in Section 4.

2 Preliminaries
Several hypotheses on the nonlinear term f and the symbol « are assumed.

(H1) f is a polynomial of the form f(z) = apzP + - -+ + az2? with a, > 0, a; >0, j=
2,...,p— 1, for some p > 2.

(H2) a: R — R is continuous, even, nonnegative with «(0) = 0.

(H3) « is monotone increasing on [0,00) and there exists m > (p — 1)/p such that
limin feo0c(€)/[€]™ > 0.

We will consider (1) defined in the space X = H3,, of periodic, H® functions with

per
period 2L, for some s > 1/2 and with the usual norm

lull, = ( R \5!2)3\11(5)\2d£> "

Hypotheses (H1)-(H3) are assumed to guarantee the existence of solutions of (1) [4, 7]
in X and they include the important cases cited above. For initial data in H?®, the
following quantities

L
I(u) = / u(zx, t)dz, (2)

—L

L
Viu) = ;/LUQ(x,t)d:c, (3)

H(u) = /L <;(u(x,t)Mu(x,t)) — F(u(x,t))) dx, (4)

—L
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where F' = f, F(0) = 0, are invariants by the solutions of (1). The quantity (4) is the
Hamiltonian of the problem, that can be written as

ug = JOH (u), we H?,

where § denotes variational derivative and J = 0,.

A second relevant property we mention here is the existence of periodic travelling-
wave solutions. They are of the form u(z,t) = ¢(x — ct) where ¢ > 0 represents the
wave velocity and the profile ¢ = ¢, is 2L-periodic and satisfies the equation

j(éH((ﬁc) + C(SV((ﬁc)) =0,
that can be written as
6H(¢c) + cOV (dc) = AdI(ge), ()
that is
Mo, — f(¢c) +cpe = A, (6)
where A is an integration constant. We also note that the one-parameter group of
translations in space is a symmetry group of (6). This defines an orbit of solutions
{pe(x — x0) : ©op € R} whose elements remain in the same level set {¢/V (¢) =V (¢¢)}.
The parameter xg would play the role of the phase of the wave.
For further purposes (see Section 3) we will make the following assumptions on (6)
(14, 3]:
(H4) f(6u()) >0, w€R.
(H5) The linearized operator of (6) at ¢,
L. = C+M_f/(¢c)7
has a unique, negative, simple eigenvalue, the zero eigenvalue is simple and the
rest of its spectrum is bounded away from zero.
3 Description of the numerical method
We shall describe our proposal to simulate periodic travelling-wave solutions of (1),
whose analytical form is, in general, unknown. As mentioned above, the method is

focused on a suitable approximation to the elements that determine these solutions:
the profile ¢ and the velocity c.
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3.1 Spatial discretization

The nonlocal term in (1) makes the spectral-type methods a good selection for the
spatial discretization. Here we approximate the solutions of the 2L-periodic problem
of (1) by a Fourier pseudospectral discretization. First we make the description for the
2m-periodic problem and then we adapt the formulation for any interval of periodicity
(—=L,L) [5, 6, 13]. For an even number N of nodes x; = —7w + jh, h =27 /N, j € Z,
we consider the space Sj, of periodic functions Z = {Z;} ez defined on the grid, with
Zj+N = Zj. For each Z € S}, the discrete Fourier coefficients

<p<

N
S (7)

. 1 Cinin N
B=h 3 zemn Ny

0<j<N

provide the information of Z in the Fourier space. In (7), the double prime in the sum
denotes that the first and last terms are divided by two. The reconstruction of Z from
the Fourier coefficients is carried out by evaluating, at the grid points, the trigonometric
interpolation polynomial

Zy(z) = Z Zpe'P", (8)

—N/2<p<N/2

in such a way that Z; = Zp,(x;).
On the other hand, the pseudospectral differentiation operator on Z is obtained by
differentiating (8) with respect to = and evaluating at the z;:

"
(DZ);= > Zylip)e™", je.
—N/2<p<N/2

In terms of the discrete Fourier coefficients, we have

—

(DZ), = (ip)Zy, —N/2<p<N/2,

which means that, in the Fourier space, the operator D diagonalizes and differentiation
is represented by the product with the diagonal matrix with elements ip, —N/2 < p <
N/2.

With the Fourier pseudospectral method based on the z;, the semidiscrete approx-
imation to the 27-periodic problem of (1) is a map U : [0,00) — S}, satisfying

%(t) +(D(f(V))); () + M(DU);(t) =0, (9)
U;j(0) = u(x;,0), 0<j<N-—1,
where
e U(t) = (Up(t),...,Un—1(t)) and U;(t) is an approximation to u(zj,t), j =
0,....,N—1
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e The expression f(U(t)) denotes (f(Up(t)),..., f(Un-1(t))).

Observe that if ﬁp(t) is the p-th discrete Fourier component of U(t), the system (9)
can be described in a more suitable form

d,\ —

5 Up(t) = (ip)((p)Ty(t) + F(U),,(1)) (10)
0p(0) = (0),
where %,(0) denotes the p-th discrete Fourier component of (u(xo,0),...,u(zy—_1,0)).

System (9) is then implemented in the form (10). This system is stiff, which will
influence the choice of the time integrator. On the other hand, the computation of the
nonlinear term can be made by minimizing the generation of aliasing errors [5]. It is
also well known the properties of convergence of the pseudospectral method, depending
on the smoothness of the solution [13]. Finally, the connection with the 2L-periodic
problem of (10) requires to transform the spatial variable in the form X = n(z+ L)/L
and to write (1) with the corresponding scaling. In particular, the pseudospectral
differentiation operator must be multiplied by the factor 7/L.

3.2 Generation of the initial profile

The combination of the pseudospectral spatial discretization with the adaptation of the
Petviashvili’s method to compute travelling-wave solutions establishes a technique to
generate the initial profile.

Petviashvili’s method [15] was originally implemented to compute solitary waves
of the initial value problem for the KPI equation, and its application to stationary
and solitary-wave solutions of other problems has also been proposed (see e. g. [11]
and references therein). The method can be adapted to the periodic case as follows.
Denoting by 5(1:) the k-th Fourier coefficient of ¢, equation (6) generates a system for
the Fourier coefficients

(c+ a(k)d(k) — F($)(k) = Al(k), k€ Z,

where [(k) denotes the k-th Fourier coefficient of the function u = 1. Then the Fourier
coefficients of ¢ satisfy

Sy — LO)(R) + AL(R)
R e R (11)
Note that if we multiply (6) by ¢ and integrate in (—L, L) then
Sy o((e + M)g)da
K=K = =1. 12
O oAt o "

For the numerical approximation to the solution of (11), the classical fixed point
iteration usually diverges. The adaptation of the Petviashvili’s method would introduce
a modified iterative scheme with a stabilizing factor

—

L f (@) (k) + Al(k)
(c+a(k)

(k) = K () keZ, v=0,1,..., (13)
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where (/ﬁ\(k)[”] stands for the v-th iteration and + is a free parameter chosen to make (13)
be convergent. In the case of the initial value problems and solitary wave solutions, local
convergence is obtained under the assumptions (H4)-(H5) and for v € (1, (p+1)/(p—1))
[14]. Furthermore, the fastest rate of convergence occurs for v* = p/(p — 1).

Having in mind the spatial discretization described in the previous subsection, the
discrete version of the iterative procedure (13) can be written in terms of the discrete
Fourier coefficients of the pseudospectral approximation to the profile ¢:

—

ooy F(29), + Al(p)

7+ _ 72
e )

, —N/2<p<N/2, v=0,1,... (14)

The stabilizing factor K (Z) is obtained as follows. From the Parseval identity, (12) can
be written in terms of the Fourier coefficients as

PO S R ) 1o

YR (T(0) (k) + AL(R) B(k)
Then, for Z € S}, we define

N/2 c+«a 7|2
IN((Z): Zp:_N/Q( =+ (P))’Zp‘ . (15)

SN2 (2, + ALp))Z,

3.3 Time integration

The choice of the time integrator is determined by the search of a good simulation of
the velocity parameter of the periodic travelling wave. Classical discretizations of (1)
always include some properties of preservation of discrete versions of the invariants of
the problem in the features of the numerical method. Recently, some results ([3, §]
and references therein) show that a better simulation of the parameters of travelling
wave solutions is related to the preservation, through the numerical integration, of some
invariants of the problem. Explicitly, the analysis of the time propagation of the error
shows that this is affected by secular components, associated to the parameters of the
wave. These secular terms behave better in those methods that preserve discretized
versions of the invariants of the problem, providing a more suitable, in a qualitative
sense, simulation of the travelling wave. In [8] this was studied for one of the equations
included in (1), the KdV equation, and we conjecture that similar conclusions for the
cases covered by (1), under the hypotheses (H1)-(H5), also hold.

Accordingly to this, it seems that preservation of (2), (3) and (4) should be a desir-
able property for a time integrator in this context. By considering the pseudospectral
spatial discretization, we introduce the discrete versions of the invariants

N-1
I(z) = L)z, (16)

=
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hN—l

Vz) = 5> 7%, (17)
=0

_ N—l1

H(Z) = h) 5(2;(MZ);) - F(Z);, (18)
j=0

for Z € S,.

It is also necessary to pay attention to other difficulties of the discretization. Then
in this case our strategy will be to consider the problem of stiffness of (10) as a first
selection criterion of the time integrator to be used, and then studying the preservation

of the invariants. To this end, we first choose the simply diagonally implicit Runge-
Kutta (SDIRK) method of order three and tableau

6 6
3*6\/5 73/5 3+6\/§ (19)
‘ 1 1
2 2

The method has a good computational behaviour in the implicit systems for the
intermediate stages to be solved at each step. However, (19) does not preserve discrete
versions of the invariants (3) and (4). The preservation of (17), (18) will be forced
by using the projection technique (see [10, 9]). We can make a brief description of
the method in the case of the preservation of V (the case of H would be similar).
Assume that Vp is the value of (3) at the initial profile, and let U,, be the numerical
approximation to the solution wu(t) of (1) at some time discrete value t,. Then the
following approximation U, is carried out in two steps:

(i) Compute U, by using (19).
(ii) Project the value U, onto the manifold
Mo ={Z € Sp/V(2Z) = Vo}

The second step is done by solving a constrained minimization problem, see [10, 9]
for details.

Note that the first quantity (16) is not included since it is linear and therefore it is
preserved by almost all methods used in practice [10]. On the other hand, condition (5)
establishes a relation between the variational derivatives of the invariants (2), (3) and
(4) at the initial profile. When simulating periodic travelling-wave solutions, this has
two consequences. The first one is that we cannot implement a projection to preserve
the three quantities at the same time. The second one is that a better performance
is obtained when the method preserves two of the quantities, but there is no priority
in the selection of the invariants to be conserved (see e. g. [8] for the details). When
simulating perturbations of these periodic travelling waves or other periodic solutions
of (1), then (5) does not hold and the situation may be different.
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4 Numerical experiments

In order to illustrate the numerical performance of the method previously described, in
this section we will consider the periodic Benjamin-Ono equation as the model problem.
This equation is the case of (1) corresponding to f(u) = u?/2 and M = —H3, where
‘H is the periodic Hilbert transform

u(e) v L [ () ule —y)d
u(z) = PVgr 7Lco 57 Y) W —y)dy,
which has the symbol a(k) = |k|. Since periodic travelling-wave solutions of this

problem are known, this will serve us to illustrate the behaviour of the method. We
will consider the solution (see e. g. [16])

2¢62

1 — /1= 62cos(cd(x — et — x0))

with ¢ > 0, § = w/(cL), o € R. The corresponding profile ¢ (z) = u(x,0) satisfies
(6) with A = 0. In the next sections, we will take L = 16, ¢ = 1 and xg = 0. The
numerical experiments, according to the main goals of the method (explained above),
are focused on the computation of the profile and the simulation of the parameters.

ur(z,t) = x€(=L,L), t>0, (20)

4.1 Computation of the profile

As far as the first question is concerned, Table 1 shows, for two different starting
iterations, the error in Euclidean norm between the exact profile at the points x; and
the corresponding numerical approximation given by the iteration (14), controlled by
a maximum number of iterations and a tolerance for the relative error between two
consecutive iterations. The starting profiles are small perturbations of the exact one,
in the form Z; = ¢r(z;) + e, with € = 1E — 03 for the second column (ERRORI1)
and € = 1E —01 for the third column (ERROR2). The experiments are performed with
~ = 2, which is optimal for the iteration in the case of the initial value problem [14].
The results show the convergence of the iteration, although the third column reveals
its local character, since for an starting value which is not so close to the exact profile,
the convergence is slower. On the other hand, Figure 1 (left) shows the behaviour of

| Tteration | ERROR1 | ERROR2 |
9.8374E-07 || 9.5179E-03

5

6 7.3680E-07 || 7.1284E-03
7 5.5415E-07 || 5.3611E-03
8 4.1783E-07 || 4.0423E-03

Table 1: Errors of the iterative method (14). Starting iteration Z; = ¢r(z;) + e
with e = 1E — 03 (ERROR1) and ¢ = 1E — 01 (ERROR2).
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the error in the stabilizing factor (15) as a function of the number of iterations, for the
values v = 1.1,2,2.9. In Figure 1 (right), we take v = 0.8,3.1. Both are obtained with
the initial data used in the second column of Table 1. We have already mentioned that,
in order to assure the local convergence, for the corresponding iteration in the initial
value problem, v must be in the range (1,(p+1)/(p—1)) (p = 2 in our case) [14]. The
numerical computations performed here suggest that this also happens in the case of
the periodic problem. For values of v out of this interval, the stabilizing factor do not
converge and the the iteration procedure diverges. This is observed in Figure 1 (right).

x 10 x10°
25 T T 5

VN

ERROR 1-K

yyyy¥:

ERROR 1-K
s
w o
—t
_p
P S
JP— i
f—_— g
— F
—

. .
30 0 10 20 30
NUMBER OF ITERATIONS NUMBER OF ITERATIONS

Figure 1: Error in the computation of (15) against number of iterations. Left: v = 2
(%), v=12.9 (+), y=1.1 (A). Right: v=0.8 (%), v =3.1 (A).

4.2 Numerical simulation of the parameters

In order to illustrate the numerical evolution of the velocity, we have simulated the
periodic problem with two time integrators: the method (19), denoted by SD, as an
example of a nonconservative method, and the scheme (19) combined with a projection
to preserve the quantities (16) and (17), denoted by CSD. A Hamiltonian preserving
method gives similar results and will not be shown here (see the remarks in the previous
section). We have to observe that, although SD preserves (16), the modification to force
the conservation of (17) gives a not I-preserving method, and then it is necessary to
use a projection involving both quantities.

We first measure the differences in a long time simulation between the two methods,
comparing the corresponding approximation with the exact solution (20). Figure 2
shows, in logarithmic scale, the evolution of the error, for different values of the time
step, up to a final time ¢ = 103. Solid lines correspond to SD and broken lines to CSD.
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The slope of the lines show that, for the SD scheme, errors behave as t?, being the
growth only linear in the case of CSD. This reveals a better performance of the latter
for long time simulations.

The most harmful components of the error, considered as a function of time, seem
to be related to the parameters. Figure 3 shows, also in log-log scale, the evolution of
the error between the velocity of the numerical approximation and the exact one for
the same experiments as those of Figure 2. The computation of the numerical velocity
has been made in a standard way ([8] and references therein). Left figure corresponds
to SD and right figure to CSD. Note that, while the simulation of SD provides a
computation of the velocity that grows linearly with time with respect to the exact one,
the CSD method gives a constant in time approximation to the exact ¢, with no secular
perturbations. Note also that, due to the relation given in (20), the simulation of ¢ will
affect the amplitude of the numerical wave. The experiments performed in this section

10°

N
NV ARVACA
Ny s v

O N A2 Anane
N A ‘
MR VERVAVEAT R
U

- / v

10’ L L
10° 10" 10° 10°

TIME

Figure 2: Error vs time in log-log scale. Solid lines: SD. Dashed lines: CSD. The time
steps are At = 1/80,1/160,1/320.

for the Benjamin-Ono equation, and the theory explained in [8] for the KdV equation,
suggest the following behaviour of the parameters of the numerical approximations to
periodic travelling-wave solutions of the general problem (1) under the conditions (H1)-
(H5). The numerical solution would contain a travelling wave profile U(z, t,,, ¢y, Zo.n)
with the main source of the error. The parameters ¢, and xg, are perturbations of c
and x( respectively, that evolve with time and depend on the integrator used. In the
general case, the dominant terms of zg, contain quadratic in time perturbations of
the original phase, while the leading behaviour of ¢,, when comparing with c, is linear
in time. This would explain the performance of the SD method shown in Figures 2
and 3. This behaviour is improved when the method preserves discrete versions of the
quantity (2) and of one of the quantities (3) or (4). In this case, the leading term of
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the perturbation of ¢ is constant in time and the numerical solution is affected by a
change of phase which grows linearly in time. This provides, in a qualitative sense, a
better simulation for long times. We have also made the same experiments as above

10° ! ! 10°

. 107 F
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“ "
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0 11
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10° 10" 10° 10° 10° 10" 10° 10°
TIME TIME

Figure 3: Error in speed vs time in log-log scale. Left: SD with time steps At =
1/80,1/160,1/320. Right: CSD with time steps At = 1/80,1/320.

but with an initial profile obtained after a convergent process using (14) for v = 2 and
a perturbation of the exact profile as starting iteration. The numerical results in the
simulation where similar to those shown here, that were obtained with the exact profile
as initial data. This suggests to consider this combination of techniques as an efficient
way to approximate periodic travelling-wave solutions of (1) with unknown analytical
expression or to simulate perturbations of these waves.
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Abstract

The s-step methods were proposed by Chronopoulos to gain efficiency in par-
allel programming of iterative methods for linear systems. They converge for all
symmetric, nonsymmetric definite and some nonsymmetric indefinite coefficient
matrices. In this paper we introduce a s-step variant of a general orthogonaliza-
tion algorithm, we prove convergence and obtain error estimates. From this we
derive the well known s-step methods as particular cases, and some new others
to our knowledge. This provides a unified framework to derive and study s-step
methods. The new methods obtained are convergent for every nonsingular matrix.

Key words: Iterative methods; s-step; large linear systems; Krylov subespace;
parallel computation
MSC 2000: AMS codes (65F10, 65Y05, 68W10)

1 Introduction

In iterative method solvers for large linear systems most required computations are
vector-vector and matrix-vector operations. In the language of the basic linear alge-
bra subprograms (BLAS) [10], level 1 BLAS operations. On the other hand, BLAS 2
and BLAS 3 operations, based on blocks of submatrices, are much more efficient than
BLAS 1 operations on parallel computers with optimized BLAS kernels.

In order to improve the BLAS 2-3/BLAS 1 ratio, an alternative approach using
BLAS 3 operations in some iterative methods for linear systems was the s-step methods
proposed by Chronopoulos [5, 6]. The efficiency of these methods on parallel computers
is corroborated in [4].

The aim is to generalize these s-step variant to other Conjugated Gradient type
methods in order to obtain iterative algorithms for the resolution of large linear systems,
also valid even in the case of nonsymmetric and/or positive nondefinite matrices, with
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better performance in parallel programming. For such purpose we present a s-step
variant of the general orthogonalization algorithm that can be seen, for example, in
[9] and we obtain different s-step variants of this method by previously fixing two
parameter matrices.

2 Background

It is assumed throughout this paper that A is in general a real nonsingular matrix of
order n, b € R™ a column vector and M,,xs (R) the set of real matrices of order n x s.
Denote the symmetric and the antisymmetric part of any matrix A by A% and A®%
respectively. If vy, ..., vs are vectors, £{v1,...,vs} will stand for the vector subspace
they span. In an analogous way, if Ay,..., As are real matrices, £{A41,...,As} will
stand for the vector subspace spanned by all columns of all matrices. The aim of the
iterative methods, object of this paper, is the numerical resolution of the linear system

Az =10 (1)

whose exact solution will be denoted by c.

We shall now recall some elementary key definitions. For each v € R™, v # 0 and
s € N, s < n, we call the vector subspace £{v, Av, A%v,..., A tv} a Krylov subspace
of order s, and we denote it by Ks(A4,v).

If dim(KCs(A,v)) < s, and therefore the dimension of K4(A,v) were not maximum,
the inverse of A would be a polynomial in A of degree deg(v) — 1 at most and we could
easily construct the exact solution of the system. We often refer to this circumstance
as lucky breakdown, which is highly unlikely in practice.

The s-step variant of the Conjugated Gradient algorithm (s-CG) was introduced
by Chronopoulos and Gear in [5]. Subsequently, in [6], Chronopoulos generalizes this
method for some types of positive not necessarily definite and not necessarily symmetric
matrices. More specifically, article [6] deals with the s-step variants of the Generalized
Conjugated Residual method (s-GCR), of the Minimal Residual (s-MR) and of the
Orthomin(m) (s-Orthomin(m)), and particularly for the case s-Orthomin(1) known by
s-Conjugate Residual method (s-CR).

The convergence of these methods in at most [n/s| iterates is proved in [5, 6]
for symmetric positive definite matrices in s-CG, and for symmetric, nonsymmetric
definite indefinite matrices with definite symmetric part in s-Orthomin(m) and s-GCR.
Therefore these methods are not convergent for every nonsingular matrix.

The s-step variants of the Double Orthogonal Series can be seen in [1], which
converge for every nonsingular matrix. Basing ourselves on them, we shall try to
construct valid methods for a general nonsingular matrix.
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3 s-step variant of the General Orthogonalization Algo-
rithm

If matrix A is neither necessarily symmetric nor positive definite, there is a more general
algorithm than the Conjugate Gradient method, namely the General Orthogonalization
Algorithm (GOA). In what follows we describe this method in a summarized way (see
[9], for example).

Let Ax = b be the linear system of order n with nonsingular matrix A. Let H, K be
square matrices of order n with positive definite symmetric part. We set N = A'H5A
and M = L'NL, where LL' is the Cholesky factorization of the symmetric part of
K, and then K¥ = LL!. For all » € R" let us define E(r) =< r, Hr >. From the
equality E(r) =< H'r,r >=<r, Hr > we get E(r) =<r, %(H + HYr >=<r, Hr >.
Then E(r) must be a convex function. Next we write the General Orthogonalization
Algorithm (GOA), which is presented in [9]:

Algorithm 3.1 (GOA).

Let xg € R",

ro=b— Axg = A(x — x0)

go = A'HSrg = A'HS A(x — x0) = N(z — x0)

po = Kgo
Fori=0,1,... until convergence Do:
= —oedt 7

Tit1 = Ti + Qp;
git1 = gi —a;Np; = A'H r; 4
_< Kgi_;,_l,Npl >

l .
. 1=0,... 5
P < pi, Npp > '
i
Pi+1 = Kgiy1 + Z Biam (6)
1=0
EndFor

We denote as vectors g; the general residues, and as vectors p; the general descent
directions. The GOA converges in at most n iterations is proved in [9]. Moreover, if we
denote by E; = E(r;) =< r;, HSr; >, then the following error estimate is also proved
in [9]:

Amin(LHED)SD) Y @
cond(M)

where cond(M) is the condition number of M and Ay (LH(K~1)°L) the minimum

eigenvalue of the matrix (L*(K~1)°L). Since matrix K is symmetric:

EZ-SE()(l—

2i
cond(M) — 1) (8)

E,<FEy| —————F——
- 0<cond(M)—|—1
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Observe that, if K is a symmetric matrix, then iv) is valid for every ¢ # j and taking the
value of Np; from (4) to (5), we get B!, ; = 0 for all 0 < [ < i and the sum in (6) reduces
to the last term. In this case, storage of the preceding directions p;, I = 0,...,7 — 1,
is not necessary to compute p;+1. On the contrary, if K is a nonsymmetric matrix,
and more than a few iterations are needed, then the storage requirements become
prohibitive. To circumvent this, the general Orthomin(m) method computes p;+1 by
N-orthogonalizing to the m preceding directions only, m being a parameter previously
chosen. Giving matrix H and K particular values in the General Orthogonalization
Algorithm, we obtain some known methods [9].

Fixed n,s € Nand M € M, s (R), for v € R™ we define Ay (v) by the matrix with
column vectors v, Mv, M?v,..., M* 'v. Then K¢(KN, Kgg) is the vector subspace
generated by the column vectors of the matrix Ax (K go). We define the s-step variant
of the general orthogonalization algorithm (s-GOA):

Algorithm 3.2 (s-GOA).

Let xg € R"”

To = b— A.’EO

go = A"H"rg

Py = Arn(Kgo) = Qo

Fori=0,1,2,... until convergence Do
W; = (P;)'NP; (9)
zi = (Pi)'gi (10)
yi = (W)~ 'z (11)
Tiy1 = i + Py (12)
gi+1=gi — NPuy; = A'"H%ri 1y (13)
Qit1 = Arn(Kgit1) (14)

For j=0,...,i Do:

Bl =-W;'(P)'NQin (15)
EndFor
i
Piy1= Qi1+ Y PBl, (16)
=0

EndFor
By induction on ¢ we can obtain in (13) the following equation for the residual:
riy1 =1 — APy;. (17)

Comparing GOA (algorithm 3.1) with s-GOA (algorithm 3.2) it is easy to verify that
BLAS 1 and BLAS 2 become BLAS 2 and BLAS 3 operations, respectively.

We establish the following lemma relating direction and general residual vectors of
s-GOA:
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Lemma 3.1 It holds that:
(a) (P)'NP; =0 for alli # j.
(b) (Pj)tgi =0 for alli> j.
(¢) (P)'gi = (Qi)'gi-
(d) (Q;)'gi =0 for alli > j.
(e) (P)'NQj =0 for alli> j.
(f) (P)'NP; = (P)'NQ;.
(9) (P)'gj = (Pi)'go for alli > j.
Proof.— '
Part (a) is true since we have that (P;)'NP, = (P;)!NQ; + (P)) N;i; P.BY and

(P)) NPjBZj = —(Pj)'NQ;. Therefore from equations (9) and (15) in Algorithm 3.2,
we can easily prove by induction on ¢ > j that (P;)* NP, = 0. To prove (b), for a fixed
J € N we obtain by induction on i that g; is orthogonal to P; for all ¢ > j:

If i = j+1, since gj4+1 = g; — N Pjy; conclude that g; 1 is orthogonal to P; by definition
of y;, W and z;.

Now suppose that g; is orthogonal to P;, with ¢ > j + 1. Then, the orthogonality
between g;11 and P; is a consequence of the induction hypothesis and N-orthogonality
between P; and Pj. The equality (c¢) follows from definition of P; and (b). Since

Jj—1 Jj—1

Qj = Pj — ZPRBJ’-“ then (b) implies (d).Part (e) is also from Q; = P; — z:PkBJ’-C

k k
and (a). The equality (f) follows from definition of P; and (a). The identity g; =
gj—1 — NPj_1yj—1 and induction give (g). O

We denote by {po, p1, - - . ,p(Hl)S_l} the direction vectors computed in GOA and by
pz-l, ..., p; the direction vectors of s-GOA in each iteration, and then P; = (pz1 l...|p3).
Now, we can establish the following lemma relating Krylov and direction subspaces
generated in both algorithms:

Lemma 3.2 Let i,s € N be such that s(i + 1) < n. Suppose that g; # 0. If
dim Ics(i-l—l) (KN, Kgo) = S(Z + 1) then:

£{P07 ey 'PZ} = @ICS(KN7 Kg]) = Ics(i+1)(KN7 KgO) = "E{pOapla cee 7p(i+1)sfl}7
7=0
(18)
where @ denotes the direct sum of vectorial subspaces.
Moreover i1 minimizes E(r) =< r;, H%; > over xg + £{Py, ..., P}.
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Proof.— ‘
It is obvious that @ICS(KN, Kgj) = £{Qo,...,Q;}. Then, the equality
§=0
£{P,..., P} = PKJ(EN,Kg)) (19)
§=0

is proved by induction since Py = Qo and the definition of F;, from which we can also

i—1 .
obtain that Q; = P, — Y P;B;.
j=0
The equality

P K(KN, Kg;) = Kyi1)(EN, Kgo) (20)
=0
is trivial for ¢ = 0. The inclusion

P (KN, Kg;) € Kyivn)(EN, Kgo) (21)
j=0

is proved by induction since:
(KN)*Kg; = (KN)*(Kg;—1 — KNPi_1y;_1). (22)
for k € {0,...,s — 1} and, because of equality (19) and the induction hypothesis
(KN pig, o (KN Ry € Kygign) (KN, Kgo) (23)

so (k+1)+(s-i—1) =k+s-i < s(i+1)—1, and then (KN)*Kg; € Ky(i11)(KN, K go).
The other inclusion

Ksir1)(EN, Kgo) ¢ D K(KN, Kg;) (24)
j=0
is also proved by induction. Suppose that the inclusion verifies for ¢ — 1, ¢ > 1 fixed.

Since )
1s—1

g9i =90+ Y NN(KN) Kgo, (25)
j=0
which stems from (19), (21) and by induction in ¢; = ¢;—1 — NP,_1y;—1, we have, for
ked{0,...,s—1}
is—1 .
(KN)"Kg = (KN)FKgo+ > Nj(KN)TTFH K. (26)
§=0

i
Now, if we prove that As;j—1 # 0 then K ;1) (KN, Kgy) C @ICS(KN, Kgj). But
§=0
Asii—1 # 0 because if A\g;—1 = 01in (25), then Kg; € K.;(KN, Kgp). From the induction
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hypothesis and (19), Kg; €< Fo, ..., P,_1 >, which implies, by part (b) of Lemma 3.1,
that < g;, Kg; >= 0. This is a contradiction if g; # 0 because the symmetric part of
K is positive definite.

The last equality Ky11) (KN, Kgo) = £{po,P1;---,P(+1)s—1} is result vi) of GOA’s
properties previously cited.

Finally, let r;11 be the residual which corresponds to iterate x;;1. From definition of
r;+1 and by induction we have

Ti+1 =T0 — Z(Apjy]) (27)
=0
Since (AP;)'H®rg = (Pj)tg0 = (P;)tg; = zj for all j =0,...,i, using (27) and part (a)
of Lemma 3.1 we have that

i i
E(T’i+1) =< ’I“o,HSTo > *QZy;t-Zj +Zy§»ijj. (28)
j=0 §=0
Since E(r) is convex, r;y1 is the minimal of E(r) over xo+£{ Py, ..., P;} if the coefficient
vectors y;, with j = 0,...,4, are the solutions of the linear systems W;y; = z;, but this

is true by the definition of y; in s-GOA. [
We have to observe that W; is positive definite and consequently nonsingular. From
Lemmas 3.1 and 3.2 we obtain the following convergence theorem:

Theorem 3.1 If all previous hypothesis hold, the s-step gemeral orthogonalization al-
gorithm converges in at most [n/s] iterations.

Proof.—
Let ¢ € N. Since Lemmas 3.1 and 3.2, if g; # 0 then g; is orthogonal to Ks.;(K N, K gq).
But dim KCy.; (KN, Kgo) = s-i, and then, if s-i > n it is necessarily g; = 0. This implies
that r; = 0, because g; = A'H Sp; and A'H® is nonsingular. [

Let 7; and r; be the residual vectors in the ith iteration of the GOA and s-GOA,
respectively. Since E(r) is a convex function and from Lemma 3.2, if 2 is the same for
GOA and s-GOA then 7,; = r; in exact arithmetic. Thus we can establish the error
estimate:

Theorem 3.2 Under the hypothesis of Lemma 3.1, if r; is the residual vector in the
ith iteration of the s-GOA and E; = E(r;), it verifies:

Amin (LH(K~H)SL)\ ™
E, <Eyll-— 29
P=0 < cond(M) (29)
Moreover, if the matriz K is symmetric, we have:
cond(M) —1\**"
E,<BEy| ———~Ft—— . 30
‘e 0<cond(M)+1> (30)
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Proof.— The proof is obvious from the error estimate (7) and (8) in GOA and since
fs-i =T;. Il

As seen in GOA, we need all the previous matrices Pj, j = 0,...,i in s-GOA, for
the computation of B} +1- If more than a few iterations are needed, then the storage
requirements become prohibitive. Thanks to the following lemma, when matrix K is
symmetric it will only be necessary to store the last of the series of all previous matrices

P; for the computation of matrices B} 1

Lemma 3.3 If matriz K is symmetric then, for j =0,...,i—1
(P})'NQit1 = 0. (31)

Proof.— Let j € {0,...,i — 1} fixed. Then (P;)'NQ;4+1 is a square matrix of order s
whose kl element is < (KN)* 1K g1, Npé» >, with k, 1 € {1,...,s}. If K is symmetric
then

< (KN Kgip1, Np, >=< (giy1, (KN)*p, > . (32)

From Lemma 3.2 we get pé- € Kyj+1)(KN,Kgo) for I = 1,...,s. So, if j <i—1
and k € {1,...,s} then (KN)kpé» € Ky(it1) (KN, Kgo) because k + (j +1)s — 1 <
s+i-s—1=s(i+1)— 1. But again, from (b) of Lemma 3.1 and Lemma 3.2, g;;1 is
orthogonal to Fy, ..., P; whose columns span Ky(; 1) (KN, Kgp), then g;11 is orthogonal
to Ky(it1) (KN, Kgo) and thus we conclude that if 0 < j <7 — 1 then the right side of
(32) is zero. O

In this way, if K is symmetric, equations (15) and (16) of s-GOA becomes:

Biy1 = —W; N (P)'NQis1 (33)

and
Pii1 = Qi1+ PiBit1. (34)

4 Particular cases of the s-step General Orthogonalization
Algorithm

From particular choices of matrices H and K, first we shall proceed to obtain the known
s-step methods.

Suppose that matrix A is symmetric positive definite. Let H = A~! and K any
symmetric positive definite matrix. Then N = A and the s-GOA becomes into the
s-step variant of the Preconditioned Conjugate Gradient Algorithm proposed in [4]. In
the particular case of K = I we have the s-step variant of the Conjugate Gradient
Method [5].

Now choose H = I and K = A~!. Then N = A? and we obtain the s-step
variant of the Generalized Conjugate Residual Algorithm proposed in [6]. If matrix
A is symmetric positive definite, then K is symmetric and this method is the s-step
variant of the Conjugate Residual Algorithm [5].

@CMMSE Page 103 of 1328 ISBN 13: 978-84-613-5510-5



J.A. AwvARrEZ-Di10s, J.C. CABALEIRO, G. CASAL

Since matrix K is not symmetric in general we can consider the Orthomin(m)
method for this algorithm [6]. The Orthomin(0) is the s-step variant of the Minimal
Residual Algorithm proposed in [6], and the Orthomin(1) is the s-step variant of the
well known Axelsson’s Minimal Residual [2].

If A is a nonsingular matrix, H = I and K = I, then N = A'A and the resulting
algorithm is the s-step variant of the Normal Equation which appears in [3].

4.1 s-Minimal Error Algorithm

Let A be a nonsingular matrix, H = (AA%)~! and K = A'A. Then K is symmetric
and N = I. In this case we have that ¢; = A7 'r; and 2 = Pl-tgi. Then vector z;
depends on A~! whose calculation would render the algorithm useless in practice. To
avoid computing g; we introduce the following matrices:

Ri = Apai(ri), Qo= Ro and Q; = R; + Q;—1B;—1 for i >0
It is obvious that P, = A'Q; and, since P/P,_1 = 0, we deduce that Q!(4A4")Q;_1 = 0.
Thus we propose in this paper the s-step variant of the Minimal Error Algorithm.

Algorithm 4.1 (s-Minimal Error).

Let xg € R
ro = b— Al‘o
Qo = A (r0)
Fori=20,1,2,... until convergence Do
P = A'Q;
W, = PLP,
zi = Qlr;
Yi = Wflzi

Tit1 = x; + Py;

riv1 =1 — APy,

Riv1 = Apae(riey)

Bij1 = —W; Y (AP)!Ri 14

Qi+1 = Rit1+ QiBit1
EndFor

4.2 s-Biconjugate Gradient

If A is a nonsingular matrix, the Biconjugate Gradient method, [8], generates two CG-
like sequences of vectors, one based on a system with the original coefficient matrix
A, and another one with A’. In this subsection we propose a s-step variant of the
Biconjugate Gradient method. First, we define the following matrices:

(3 ) (D)a-(3)

Let Ho (Al < Atll (A’;))‘1 ) and K — ( ? é ) (36)
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then N = A'HA = A is a symmetric matrix. Superscript * denotes the array part
which is associated to the sequence based on A’. The s-step variant of the Biconjugate
Gradient method can be derived from the s-GOA method. Next we will write the s-
Biconjugate Gradient method in terms of n-dimensional vectors. For this purpose we

denote by e .
Pe( ) as(@)mn-(r) @

and enunciate the following lemma:

Lemma 4.1 In the s-Biconjugate Gradient method, and for all k € {0,1,2,...}, it
holds that:

(a) (@) AFry = QL (A" v
(b) (Q1)' AFQ; = Q! (A))* Q.

Proof.—
It is obvious from the fact that, for all k € {0,1,2,...},

i (AN e = ()t Abry. (38)

O
The following lemma can be enunciated as a consequence of Lemmas 3.1 and 4.1:

Lemma 4.2 In the s-Biconjugate Gradient method, and for all k € {0,1,2,...}, it
holds that:

(a) (PF)LARP, = P! (AY)* P

(b) (Pr)t ARy, = PE(AN 2,

(¢c) (Pf)riy1=Pirr =0

(d) (Py)try = Plry = (Qf)'r; = Qlr}.

Proof.—

We will prove statements (a) and (b) by induction on i. For i = 0 statements (a)
and (b) are true from Lemma 4.1 and since R; = Ry — APgyo. Suppose that (a) and
(b) are true for i — 1 with ¢ > 1, then (P})!A*P; =

= (Q))'AFQ; + Q) A*P, 1By + Bl_,(P},) A*Q; + B!_ (P} )" A*Pi_1B;—1 (39)

and
Pz‘t (At)k P =

= Qi(AY*QF + QUA) P Bioy + Bf_ Py (A)*Q} + Bf_ Pl (A)* P Bi-1 (40)
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The first summands of the second right hand side of (39) and (40) are equal as a
consequence of Lemma 4.1. So are the other corresponding summands by the induction
hypothesis on (a) and (b), which proves (a). On the other hand, (Pf)!Afr;,; =
(Py) Ary — (Py)L AR Py and P (AY) 7y, = PE(AY r7 = PE(AY) (P)"yi. Then
equality (b) is derived from (@), Lemma 4.1 and induction hypothesis since P; =
Q;+P;,_15;.

Section (¢) follows from statement (b) of Lemma 3.1, and statement (d) from
previous (c). O

Now, by the previous Lemma 4.2, we can write W; = (P*)'AP, + PIA'P} =
2(P¥)'AP; and then W;y; = 2(PF)'r;.

As consequence of section (b) of Lemma 4.2, we have that (P)'AQ;+1 = PLA'Q%, 4,
and then Bi+1 = —(Wi)il (PitAtQ:+1 -+ (R*)tAQH—I) = —2(WZ‘)71 (PitAt ;-kJrl).

Finally, we can write the s-Biconjugate Gradient method in the following way:

Algorithm 4.2 (s-Biconjugate Gradient).
Let zg,z € R"

ro = b— A.%'()

re =b* — Az

Py = Ax(ro)

By = Aue(rg)

Fori=0,1,2,... until convergence Do

W; = (PF)'AP;

Yi= Wz‘il(Pi*)tri

rit1 = x; + Py

riv1 =1 — APy;

Ti =T~ AtPi*yi

Qit1 = Aa(rit1)

Qf+1 = Ay (7“3+1)

Bit1 = —(Wy) Y (P AQit1

Piy1 = Qi1+ PiBity

P =Qi + BB
EndFor

Remark: Since matrices N and K are not positive definite in general, Theorem 3.1
cannot be used to assure the convergence of the s-Biconjugate Gradient. In practice,
we expect convergence to occur in similar conditions to the usual Biconjugate Gradient
method.

5 Conclusions and future work

In this work, a s-step variant of the general orthogonalization algorithm which gener-
alizes conjugate gradient methods has been presented. The s-step variants of known
iterative methods are derived as particular cases (some of which converging for every
nonsingular matrix) and two are unpublished to our knowledge. It has been verified
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that the convergence of these methods is supported in their s-step variants, by proving
some prerequisite lemmas and convergence and error estimate theorems.

The performance gains of parallel implementations of the s-steps methods have
been shown in some of the cited references, alongside the numerical results presented.
The implementation on parallel computers and an exhaustive numerical analysis of
those and other methods is at present under study by the authors.
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Abstract

The aim of the present contribution is to state an asymptotic property P of
type Shannon’s sampling theorem, based on normalized cardinal sines, and keeping
constant the sampling frequency of a not necessarily band-limited signal. It gener-
alizes in the limit the results stated by Marvasti et al. [7] and Agud et al. [1]. We
show that P is fulfilled for any constant signal working for every given sampling
frequency. Moreover, we conjecture that Gaussian maps of the form e=* ¢ , AERT,
hold . We support this conjecture by proving the equality %wen by P for the
three first coefficients of the power series representation of e~

Key words: Band-limited signal, Shannon’s sampling theorem, Signal theory
MSC 2000: 41A60, J1A46; Secondary 41A30, 41A45, 41A58, 42C10.

1 Introduction and statement of the main results

A central result of the signal theory in engineering is the well-known Shannon—Whittaker—
Kotel'nikov’s theorem (see for instance [9] or [11]) working for band-limited maps of
L3(R) (i.e., for Paley-Wiener signals), and based on the normalized cardinal sinus map

sinc(t) defined by
, 1 if ¢ =0,
Tt :

Another philosopher’s stone of the signal processing theory is the Middleton’s sam-
pling theorem for band step functions (see [8]). This result was one of the first modi-
fications of the classic Sampling theorem (see [10]) which only works for band-limited
maps. After this starting point many different extensions and generalizations of this
theorem appeared in the literature trying to obtain approximations of non band-limited
signals (see for instance [2] or [4]). Good surveys on these extensions are [3] or [11].
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In this paper we follow the spirit of the previous results in the sense of trying
to obtain approximations of non band-limited signals by using band-limited ones by
increasing the band size. But our approach is completely different to the previous ones
in the sense that we keep constant the sampling frequency generalizing in the limit the
results of Marvasti et al. [7] and Agud et al. [1] .

In this setting, we state the following asymptotic property of type sampling Shan-
non’s theorem where the convergence is considered in the Cauchy’s principal value for
the series and pointwise for the limit.

Property 1 Let f: R — R be a map and 7 € RT. We say that f holds the property P

for 7 if )
f(t) = lim (Z fu <§> sine(rt — k:)) . (1)

kEZ

The statement of the main results is:
Theorem 1 Every constant signal holds property P for every given 7 € RT .

Conjecture 1 The Gaussian maps, i.e. maps of the form e_)‘tQ, A € RT hold property
P for every given 7 € RT.

To support our feeling on the truth of the Conjecture 1 we prove, without loss of
generality for A = 1, that the Gaussian map e~** holds expression (1) for the three
first coefficients of the power series representation of e~t*. Note that since the Gaussian
map is analytical, for proving formula (1) is enough to show the equality between the
coefficients of the power series representation of the Gaussian map and the coefficients
of the series stated in the second member of (1) after proving the analitycity of the
second member of (1). The statement of our result is the following:

Theorem 2 Let et be a Gaussian map. Then the three first coefficients of the power
series representation of et are equal to the three first ones of the second member of
expression (1).

The paper is divided into three sections. In Section 2 we present the ideas and
results that have inspired us to formulate property P and Conjecture 1. Section 3 is
devoted to prove Theorem 1 and in Section 4 is proved Theorem 2.

2 On the property P and Conjecture 1

We state as a property P an approximation in the limit, through potentials of band-
limited maps of the original signal, based on [1] and [7].

In [1] is proven that given a sequence {s;}rez € [%™(Z), B > 0, 7 > 2B and n odd,
there exist exactly n band-limited signals {z,} with bandwidth equal to B such that
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k . _ .
xy <; = s. Moreover, is shown that =, = e,z(, where {e, ?:é are the roots of unity

of order n and zy(t) = Z S,lg/nsinc(QBt — k).
keZ
From this is directly deduced that if we consider an odd number n and a band-—

- k
limited signal f with bandwidth B such that the sequence of coefficients { f <—> ke Z}
T

2B

with 7 > — holds the properties stated in [1], then the signal admits a recomposition
n

of Shannon type in the form

£t = (Z (&) sinetre - k))n, 2

kEZ

where clearly the sampling frequency can be choosen bigger than the Nyquist one.

Our aim is to provide a method for approximating non band-limited signal by
band-limited ones and keeping the frequency of the sampling constant. And our idea
is to take limits in (2) obtaining an equality of the form

£(t) = tim (Z Iz (5) sinc(rt — k)) B

expressed as a property P.

In Section 3 we prove that property P is held by any constant map for every 7 € R™.
Thus, the universe of non—trivial signals which hold the conjecture is nonempty (note
that f(t) = 0 holds P). Our feeling is that there are a big number of representative
signals in engineering processes which satisfy property P.

We state as Conjecture 1 to prove that any signal of Gaussian type holds the state-
ment. Note that the Gaussian map, which is mathematically important in itself, plays
an important role in the signal theory because the Gaussian map is the unique function
which reachs the minimum of the product of the temporal and frecuential width. This
minimum is given by the Uncertainty Principle, see [6]. We believe in the working of
Conjecture 1 and we support it through Theorem 2 where we show the equality between
the three first coefficients of the power series representation of the Gaussian map and
property P. For proving completely the conjecture, by the 2aunalyticity of tr}}e Gaussian

k
map, is enough to prove that expression lim | >, e n?sinc(rt — k)| defines an
n—oo

analytical map and to show that the equality works for the rest of coefficients.

3 Proof of Theorem 1

The following lemma will play a key role in the proof of Theorem 1.

Lemma 3 Zsinc(z — k) =1 for every z € C.
keZ
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Proof. First of all we shall show that the result works for every ¢t € R. Indeed, if ¢t € Z,
the result is straight because of

Zsinc(t—k) = 1+Zsinc(t—k) =14+0=1

kEeZ kEL
k#t

Therefore, from now on we assume that ¢ € R\ Z. Taking simetric terms in the series
we obtain

> sinc(t—k) = sin(rt) +y (Sin (w(t —k)) N sin(m (¢ + k:))>

= mt = (t — k) w(t+ k) )
_ sin(nt) N 2t sin(7rt) Z (—1)k+1
Tt 7'(' k2 —¢2°
keN

On the other hand, for a given ¢ € R\ Z is known that

tm 9 (—1)F
=1+2¢
sin(tm) + I;\I 2 — k2’

and therefore
(—DF 1 ™

2 22 2sin(nt)

(4)
keN

Finally, replacing (4) in expression (3) the proof is over for every real number ¢.
The prove of the result for complex numbers is a consequence of the use of the
Analytic Prologation Principle. For applying it, is enough to prove that the series
Z sinc(z — k) is an analytic function. Indeed, by (3) the series can be written in the

kEZ
o in(rz) | 2zsin(mz) <~ (=)
sin(7mz zZsin(mwz —
inc(z — k) = .
>_sine(z —k) = — =+ ———> 5
kEZ keN

Obviously, the first term of the previous sum is an analytic map. For proving the

. . . —1)k+1
analyticity of the second term of the sum we shall prove that the series ), -y N
uniformly converges on every compact set L C C\N. In fact, let s = max{|z|: z € L}

and ko be such that kg > 2s, then for every k > kg is |z| < % for every z € L. Therefore,

4

<
— 3k%’

(_1)k+1
‘ k2 _ 22

which guarantees the uniformly convergency of the series in L and the proof is over. |

Remark 4 We underline that the fact of the series Z sinc(z — k) defines an analytic

kEZ
function is a direct consequence of the application of the Uniform Convergence Principle
for cardinal Series, see [5, pag. 70| or [11, pag. 22] for a more up-to-date reference. We
present a direct approach in the proof of Lemma 3 for completness of the arguments.
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Proof of Theorem 1. Let f(t) = C be a constant signal and 7 € R*. By Lemma 3 we

have
n
nlgrg() (Zf < >smc (tr — k:))
keZ
n
. 1 .
= 11113(}0 (C’n Z sinc (¢t — k))
keZ
n
= lim C <Zsmc (tr — k:)) = lim C =C.
n—oo n—oo
keZ
Thus, is shown that f holds property P ending the proof. |

4 Proof of Theorem 2

In the sequel we denote by J a set of consecutive natural numbers in the form {0, 1,2, ...}
which eventually can be NU{0}. By #(J) we denote the cardinal of the set J and we
assume the arithmetic of the infinity (i.e., Vk € N,oo + k = o0), therefore by m; we
denote #(J) —

Given a sequence o = {a, Jner of real numbers, by d(a) we denote the diameter of
the sequence a, i.e., d(a) = supi<,cp()i{lon — an—1|}. As usual by [| we denote the
integer part.

Lemma 5 Let v = {v,}nes be an increasing bounded sequence of real numbers holding
the following conditions:

i)a=7%<71<... <Y1 < <...<b=sup{y},
neJ

“) {’711 - r}/nfl}ne‘]\{o} 18 monotonic.

Let f : [a,b] — R be a continuous map of constant sign on |a,b], eventually f can be
equal to zero. Then for every sequence 8 = {Bnfnen oy such that B € [yk—1,7] and
for every € > 0 there exists § > 0 such that if d(y) < 6 then

M
Z (Bor) (vor — Y2k—1) ——/ f(@)de| <e (5)
k=

and

L
Z (Bak+1) (Y2k+1 — Y2k) ——/ f(z)dz

k=

where M = {W; ] nd L = [mJQ_ 1} .

<, (6)
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Proof. For proving (5) we assume, without loss of generality, that f > 0 and {7y, — Yn—1},,c J\{0}
is a decreasing sequence. We shall use the following notation

L
To(v,8) = Y F(Bors1)(ks1 = Y2k)s
k];(]
T.(v,8) = Y f(Bak)(ar — Yar-1);
=
Sie(y) = > F(ar) 2k = Yar-1),
k=1
L
Sre(r) = D F(ar) (a1 — Yar),
k];(]
Sro(v) = D F(yar-1)(Y2k — 26-1),
k=1
L
Sio() = D F(ars1) (Varr1 — Yar)-

i
o

For a given € > 0, since T, + T, is a Riemann sum of f on [a, b|, there exists dy > 0
such that if d(y) < dp, then

TO—i-Te—/bf(ac)dx <e. (7)

Taking €1 = > (, since the map f is uniformly continuous on the interval

£
3(b—a)
[a,b], then there exists 7 > 0 such that if |Box — yor| < 01 then |f(Bor) — f(2r)| < &1
and consequently if d(vy) < &3

M
Te = Siel =) _(f(Bar) — f(v2r)) (v2k — Y2k-1)

T (8)

€

<er Y ek — k-1l <erb—a) = 3

k=1
Proceeding in a similar way
€ € €

|T0 — Sre| < g, |Te — Sro| < g and |TO — Sl0| < g (9)

Now, it is easily deduced that

F(v2r) (Va1 — Y2r) < f(var) (Yok — Y2k—1),

and
Sre - Sle < f(’YO)(’Yl - '70)-
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So, taking d2 = min {51, %} if f(y) # 0 and 3 = 07 in other case, if d(y) < d2
70
then

Sre = Sie < F(00) 2 < .
Using the previous inequality, (8) and (9) we have that
T, —Te = (To — Sre) + (Sie — Te) + (Sre — Sie) < €. (10)
On the other hand, it is clear that
Sro — S0 <0 (11)

and so, using (9) and (11)

2
T, — T, = (T, — Sr0) + (Sto — Tp) + (Svo — Sio) < 35 <e

From here and (10), if d(vy) < 02,

’Te — TO‘ <e.

So, taking § = min{dp,d2} and using the previous inequality and (7), if d(y) < o
then

S |Te(7) - To(7)|

DN |

b
T.0) -5 [ fw)is

1 b
43 L) + 1) = [ f(a)da| <
a
which is just (5) as we want to show.
The proof of (6) follows in an analogous way. ]
1 — ek
Lemma 6 Letz € RT, k € Nand lx(z) = — Then for every k is lim+ (le(z) — lg41(z)) =0
x z—0

uniformly in k.
Proof. Note that for every x € R* and every k € N, [ () is decreasing in k.

We fixed = € (0,1). For a given € > 0 there exist C' > 0 holding [;(z) < § for any
k such that k?z > C and consequently

lk(.%') — lk+1(.%') <E. (12)

On the other hand, using the power series representation of the exponential function
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and the Newton’s binomial,

) = hsa(e) = 3 o () = (@ 10)

=+
00 p+12p 1 _q_+1
- \/Epzo p+1‘ Z( ) -
- f%ﬁ(”’“@%
el
- (1+ky/z)®

and if k%2 < C we have the following inequality
lo(z) — Loy (2) < V7 ( (1+V0)? 1) :

2
Since lin%] \/E(B(H‘/a) — 1) = 0, using the last inequality and (12) the proof is
over. o i
The following proposition will play a key role in the proof of Theorem 2.

Proposition 7 Let z € RT and L(z) = Z (=) (x). Then is held
keN

. 1

and lim L(x) = =.

z—0t

L(x) <

NN

Proof. We consider the functions oy (x) = arctgli(x) on [0,5]. Let 2 € RT fixed.
We note that ax(x) is a decreasing sequence on k. It is easily deduced that using the

Intermediate Value Theorem

L(z) =Y (lak-1(x) = lag(x)) = Y (tg asp—1(7) — tg agk(@)),

keN keN
and therefore
agg—1(x) — aog(x)
L = 13
0 =3 L, (13

for suitable fax_1 € (2r(x), aok—1(z)).
Note that oy (z) € (0, %] for all £ € N and consequently 0 < 3 < % Thus,

L(z) <2 (ag-1(x) — age(2)) <2 (an() — apya (@) = 201(x) <

keN keN

w|>1
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'L(x)—l‘ _ L(x)—l/f dt

2 2 cos 2t
(14)
1 @ g 1[5 dt
<|L(x) — = — = — .
< | L) 2/0 cos 2(t) * 2 /al(x) cos 2(t)
On the one hand, given £ > 0 clearly there exists dg > 0 such that if x < dy then
T dt
/ e (15)
ai(z) COs“t
On the other hand, using L 5 for f() ! { }OOE{E}OO
n the other hand, using Lemma 5 for f(z) = ———, v = {—« =
’ g COSZ(@_)?’Y r+1Jp=0> T r—1

such that B € [VE—1, V], Bop—1 = —PBop_1, a = —ai(x) and b =0, there exists 0; > 0
such that if d(v) < 01 then

3

<3 (16)

1 [a@®
Iw-3 [

cos ?(x)

Since arctan(-) is a continuous map on (0, §], for §; by Lemma 6 there exists do > 0
such that if # < d2 then d(a) < d;.

Therefore, taking x < J = min {dg,d2}, and replacing (15) and (16) in (14) we
obtain

finishing the proof. |
Proof of Theorem 2. The aim of the proof is to show that the limit of the three first
nonzero coefficients of the power series representations of

<Z e#kj sinc(rt — k)>

keZ

and et are equal for every ¢t € R and 7 > 0 given. Indeed, for every m € NU {0} and
n € N we fix the following notation

()" (xr)?m

B = G (17)

1
57 lf m = O,
cT — -1 k+1 .2 18
e r2m Z 7( k2)m eﬁ, ifm>1; (18)
keN

m

Diw = Y BiCipu (19)
p=0
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Let

_ 2

Z en? sinc(rt — k).

kEZ

Note that by the analitycity is enough to consider pointwise convergence for all ¢ € (0, %)
Now, using expressions (17), (18), (19) and the power series of the sine function, the

map ¢(t,n) can be written in the form

1)*

_ K2
(& nr2

g(t,n)

27t si t -
sinc(rt) + Ttsin T Z Q(t2

_k2

keN

sin w7t

1
— 427t

s Tt

[

m=0
(=™

2t
il ﬂ(

and therefore

(9(t,n)
For m = 0 it is clear that Ef,, = (Dg )"
g% P

For m =1 1is

T

1n 1,n — n
n (. B
= g <C1,n * 7)
n7_2 (_1)k+1 62
= on-1 L2
keN
0 k+1 2
. (—1) T
So, using Z 5— = 5
Py k 12
k+11

2"ET, =-2> (-1

keN

>
Z€2m

==6366%m)

nTt

( 1)k+17_2m

(x
keN
> e

2m+1> (
m=—1
[

=2

en72>>
2
+1nt m)

n 0
(Z D t2m> — 9n Z Emnt2m
m=0

2—n and hence

71.2
12 ]
2
nr2 1
()
2 nTt

where L(+) is introduced in Proposition 7 and now by such result we obtain
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lim 2"E], = —1. (20)

n—o0

For m = 2 it follows that

D) (g, (07,

= n(BjCg,)""" (B3CG,, + BICT, + BjC3,,)

T T -1 7
E2,n - n(DO,n)n D2,n+

’I’L(’I’L - 1) T T -2 T T T \2
+T(Bo Ce)" " (BECT, + BICG L)
n (Bj n(n —1) BT\?
= Th1<3‘+3ﬂ3n+6504“7ﬁ:F‘Oﬁﬁ+‘;
Therefore
2"E3, = F, + G (21)
where
T B%— T T T
Fn = 2n 7 + Bl CLn + 02771 5
BT \?
G] = 2n(n-1) (Cin + 71> .
We will take the limit in each part separately. Since
1
G;::”2 (2"E7,)?,
from (20) we obtain
. '
Jm Gi=5 .

To determine the limit of F)7, replacing each BT and C7,, by (17) and (18), we get

11 (DM 2 1 (DR e
T 4 _4
Fn = 2w (Tm‘ng ERRLIER D D ek
keN

keN
k2
1 1 1—enr?
_ 4_4 | _~ - Nkl v
RN C R =D DIC 2
keN
1 —DEL 2 SN (=R
TR S = i )
7'(' k4 32 k?
keN k=1
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1 k+1 2 _1 k+1 7 4
Using again kz:l 7) = 7T— and applying ; 7) = %TO, the above expres-
sion becomes
=k k+1
1 —enr? 1 (-1) —k2
o 4_4 lc+1 il o
by = 2nmm 3'7122 +7T4Z o © :
keN
k2 2
1—enr? 1 1—en?
_ 4_4 k+1 k+1
= 2n7'm 3'7T2 Z — (—1) %
keN keN
2.2 1 —k? 1 —k?
T k411 —€m7 4 k411 —€m7
= ) DI
keN nr? keN n
72n? 1 9 k1l — eﬁki
keN nt2
= k+1 2
1—en? (—1)F+ T
1)k I W Gt A i
Therefore, since nlirrgo Z = Z 2 =19’ using Proposition
keN nt? keN
7 is
2,2 2
1
lim Fr=21"_.-_92:2.0 _

n . T — =
n—o0 3 2 12
So, from here and (22), taking limits in (21) we get

1 1
lim 2"E2n—0—|——:—

n—0o0 2

Note that from the results obtained for m = 0,1,2 is stated that the limit of the
three first nonzero coefficients of the power series representations of

<Z eﬁki sinc(7t — k))

kEZ
are equal to (7"11)!7”, coefficients of the power series representation of e*tQ, ending the
proof. |
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Abstract

The suitability of different programming languages for scientific computing has
been the subject of many debates and studies. Java is a popular multi-purpose
programming language and it is not surprising that many recent studies have been
conducted on its performances in various application areas, in particular, in the
scientific computing arena. In this instance, one aspect of Java involves its docu-
mented unpredictable behaviour in respect of floating point computations. Since
the Java virtual machine’s floating point behaviour has been designed to adhere
very strictly to IEEE standard for binary floating point systems with the intention
of achieving portability and consistency, we find that this restriction can lead to
inconsistent behaviours across various platforms. Moreover, such behaviour is not
confined to Java alone.

The other aspect which has interested the scientific computing community has
been the speed benchmarks for different languages employed in this arena.

We attempt to gain useful insight into these two performance aspects by port-
ing into Java, C/C++ and Fortran77, a code employing a two-dimensional high-
resolution finite-difference scheme for simulating nonlinear wave propagation a
multi-fluid plasma under electromagnetic fields and comparing the relative per-
formances of these implementations on 32-bit and 64-bit PC platforms.

Key words: Java floating point, IEEFE floating point, numerical simulation

1 Introduction

In this report we are concerned, in the first instance, in examining the behaviour of
Java as candidate of the IEEE 754 standard (1985) and revised IEEE 854 (1987, 2008)
standard [1, 2, 3] for binary floating point representation and computation so we briefly
review some salient features of this standard:

Here, floating-point numbers in general are normalized before storage and can be
represented in one of the forms [1, 2]:
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single precision (32 bits):

s E F = s eeee ecee fIf I I T AT I

with value (—1)% x 1.F x 2E-127

double precision (64 bits):

s E F = s ece eece eece {IfT T 1T T (T I T T O I I T 7T

with value (—1)% x 1.F x 2£-1023

where the sign bit (bit 31) is s = 0 for a positive number and s = —1 for a negative
number, the binary fraction F=fff...ff occupies bits 0-22, the exponent E=eeeeeceee,
which is biased (by 127) to avoid storing negative values occupies bits 23-30 so that
Emar = 111111115 = 255 and E,,;, = 0 in the first case. These extreme E values are
reserved for special conditions, so that the allowable range of E is 00000001 ... 11111110
(1... 254) giving an exponent range E-127 = -126... +127. Similar considerations apply
to the double precision case. In addition the IEEE standard includes provisions for
extended-precision numbers, for handling denormal numbers, i.e. numbers obtained
from calculations whose results fall in the range between the smallest non-zero number
that can be represented in the floating point system and zero (on the positive side),
for infinities and for not-a-numbers (NANs). Moreover, the default behaviour specified
by the IEEE is to allow the computations to continue in spite of the occurrence(s) of
these special values, by masking such particular exceptions. This may or may not be
desirable in every situation.

Most present day processors have floating point units (FPUs) which implement the
IEEE standard by default. In particular, on Intel x86 processors [4, 5], floating point
behaviour can be controlled by setting its floating point control word register (FPCSR),
a special 16-bit register. Then the current control word in the FPCSR, will control the
arithmetic accuracy employed in calculating intermediate results in the 80-bit FPU
general registers, control how rounding is done when register contents are manipulated
and stored in memory, and how denormals are handled, amongst other effects. Corre-
sponding to the FPCSR, is another floating point status-word register, which the CPU
sets, depending on the result of the last executed floating point instruction.

The x87 instruction set includes the FLDCW (load control word) and FSTCW
(store control word) machine instructions for manipulating the FPCSR. For example,
the instruction

FLDCW 639
will set it to the hexadecimal value 027F, allowing for 53-bit mantissa precision and
rounding to the nearest floating point number, and the instruction

FLDCW 895
will set it to the hexadecimal value 037F, allowing for 64-bit mantissa precision and
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rounding to the nearest floating point number.

In addition, more convenient functions may be available in some operating systems
with particular language bindings.

On more recent Intel processors, additional floating point operations [4, 5] can
carried out on separate processing units within the CPU as streaming pipelined in-
structions (MMX, SSE, SSE2, SSE3, ....) which can be enabled by compiler switches.
These machine instructions can be controlled by a separate combined control-status
word register, MXCSR. This is a 32-bit register which allows one to set flags to handle
denormal processing, rounding and so on. In this paper we shall deal essentially with
the former x87 instructions, since they are the more accurate, as the latter employ the
default IEEE register precision, a crucial aspect for our codes.

2 Code for simulating nonlinear waves in electromagnetic
plasmas

We handle performance issues here by multi-language implementations of a code for
simulating electromagnetic shock-like structures in a plasma fluid consisting of singly
charged ions an electrons subject to the electromagnetic field. A complete description
of the model and algorithm used is given elsewhere[6]. It suffices to mention that it em-
ploys a two-dimensional high-resolution Riemann-solver-free central difference scheme
on staggered grids to numerically solve model equations cast into the first-order PDE
hyperbolic system form [6]:

ou oF(U) 0G(U)

-+ +

ot ox Oy
In the above U(z,y, z,t) is the unknown (m-dimensional) vector, F'(U) is the z-flux
vector, G(U) is the y-flux vector and S(U) is a source vector function, with z and y
the only two spatial coordinates considered (for no variation in the z direction) and ¢
is the time coordinate.

To numerically integrate this system, a uniform rectangular grid with spacings Az

and Ay in the respective X and Y directions is used to obtain [6],

= 5(U) (1)

U::21,k+2 [U + Uk + Ui + U )

+% [Ugj,k —Ugjsie + Uy — Ui, k1)

+% [Uyik = Upirr + Uik = Uyl ]

_% [ ;fl,%k - F;lljz + Fn:l2k+1 4, k+1]

_2AAty [ Z:J%l_G]ZQ+G:1k+1 +lk]
+% [S;L—:rl%k—i-l + Sn:fk + Sanl + SnZQ] ' (2)
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This scheme advances the cell average vectors U;fk where j, k are the spatial dis-
cretization indices and n is the time level index, with time spacing At. It is used in
conjunction with the derivative array aproximations (U, and Uy) and suitable boundary
conditions. For more details consult [6].

3 Multi-platform implementations

We have coded the complete time-evolutionary algorithm into Fortran 77, C/C++ and
Java and linked the DISLIN package [7] to include real modelling-time graphics. Dou-
ble precision words (64-bits) were used for all the floating-point variables throughout.
The codes were run under Microsoft Windows XP 32-bit (Xp32) on various PC con-
figurations (Pentium IV desktop, Notebook with Intel Centrino CPU, Intel Pentium
Core 2 Quad). Additional tests on the Core 2 Quad machine were done with the Sal-
ford (32-bit) and Gfortran (32- and 64-bit) compilers under the Microsoft windows Xp
64-bit (Xp64) and under SUSE Linux 64-bit (SuSe64) operating systems. By selecting
a somewhat modest-sized problem (XY grid size of 201 x 201 discretization points)
our findings for various compiler suites, with their default settings are tabulated in
summary form below:-

Compiler/OS Stable? Consistent?
Salford FTN95 Yes, over —
(Fortran 77)/Xp32 long times
Mingw g77/ Yes, over Yes, with
Xp32 long times above
Gfortran 32-bit/ Yes, over Yes, with
Xp32 long times above
Mingw C Yes, over Yes, with
(GNU ¢)/Xp32 long times above

MS Visual C++ Emits NANs No: results
Express 8/Xp32 | over long times | meaningless
Sun Java 5/ Emits NANs No: results
Xp32 over long times | meaningless
Salford FTN95 Emits NANs No: results
(Fortran 77)/Xp64 | over long times | meaningless
Gfortran 32-bit/ Emits NANs No: results

Xp64 over long times | meaningless
Gfortran 64-bit/ Emits NANs No: results

Xp64 over long times | meaningless
Gfortran 64-bit/ Yes, over Yes, with

SuSe64 long times above 1st four

We observe that stable and consistent behaviour is obtained in the first four and last
cases in the table with Fig. 1 giving a typical result of the evolution of the electron
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fluid density as a shock wave. Such computations prevail over several thousands time
steps, whilst remaining stable and giving meaningful physical results.

For all other cases the results obtained are unstable and quite meaningless. Fig. 2
depicts such results for codes written in Visual C+-+ and Sun Java 5.

These codes emit NANs or meaningless results, of no physical significance. Upon
investigation of the discrepancies we find that both MS Visual C++ and Sun Java
adhere to the IEEE standard strictly: in particular, the most significant feature of
departure is that the FPU register precision is 64-bits (53-bit mantissa) whilst all the
first four compilers employ 80-bits (64-bit mantissa). Thus intermediate results in the
FPU registers can suffer from a significant loss in precision even before being rounded to
64-bits double-precision words for storage in memory. On large simulations codes such
as here, such errors can accumulate and swamp the computations over time. Another
IEEE feature is that floating point over/under flows are masked to allow computations
to continue, regardless of the occurrence of NANs at intermediate steps, which is the
situation observed in the last two implementations.

Furthermore, tests were performed on an Intel Core 2 Quad machine by installing
64-bit operating systems and compilers. We find here that, under MS Windows Xp-
64 all the compilers including the Gfortran 64-bit compiler fail to achieve consistency
and stability. However, under SUSE Linux-64 we can again achieve consistency and
stability with the Gfortran 64-bit compiler by setting the appropriate command-line
switches, as indicated in the next section.

4 Code fixes for numerical consistency

4.1 Fortran/C++4/Java 5 MS Windows Xp-32 implementations

In the case of Salford FTN95,GCC(MinGW C,C++) and Visual C++ 2008 we can set
the floating point control word either with inline assembly code or by using WIN32
functions, such as the call to the system function

_control87(_PC_64,MCW_PC) ;
or
_control87(0x0008001F ,0xFFFFFFFF) ;

These details are available in other works [4].
However, for Sun Java we cannot employ these means. We have thus created a
C++ DLL which may be called from Java by employing the following process:

1. Create a (Mingw) C++ project e.g cpplibDLL

2. Set the project options to WIN32 DLL The default output file name will be
cpplibDLL.dII

3. Include the standard header jni.h (Sun Microsystems’) and your cpplibDLL.h
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Figure 1: Salford FTN95/GNU C computed electron density shock structures
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Figure 2: Sun Java 5/VC++ computed electron density shock structures
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4. Compile/build this into cpplibDLL.dIl in your working directory
5. Create the Java invoking program javacppprog.java

6. Compile and run the Java program.
Then the following code implementations may be used:

//cpplibDLLcpp file looks like:

#include "cpplibDLL.h"
#include "jni.h"
#include <stdio.h>
#include <stdlib.h>
#include <float.h>

//To create an export function for
//the export library:
JNIEXPORT void JNICALL
Java_javacppprog_controlWord(
JNIEnv *env, jobject obj)
{
printf ("Hello from C++ function
controlWord() !'\n");
printf( "Original: 0x%.8x\n",
_control87(0,0));
//Set FPU control word:
_control87(0x0008001F ,0xFFFFFFFF) ;
//system("PAUSE") ;
printf( "New: Ox%.8x\n",
_control87(0,0));
return;

3

//etc...for other functions

/*

The header file may be generated by:
javah javacppprog.java

or you can edit the above-
mentioned header such as:

*/

#include "c:\...\jni.h"
#ifndef _Included_cpplibDLL
#define _Included_cpplibDLL

#ifdef cplusplus
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extern "C" {
#endif

JNIEXPORT void JNICALL

Java_javacppprog_controlWord(
JNIEnv *, jobject);

JNIEXPORT void JNICALL

Java_javacppprog_controlWord?2(
JNIEnv *, jobject);

#ifdef __cplusplus

X

#endif

#endif

//end of header file cpplibDLL.h

import java.io.IOException;
import java.text.NumberFormat;
public class javacppprog{
static final int NxPts = 201,
NyPts = 201,
MEQS = 16,

public static native void controlWord();

static{System.loadLibrary("cpplibDLL") ;}
public static void main(String [] args)

{
int NGRIDA, NDH, NT, ........

//Set FPU control word:
controlWord() ;

while (NT < NSTEPS)
{
controlWord();
t=t+dt;

} //main
} //end of class javacppprog
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Now, setting the FPU control word as in the Fortran/Mingw value we obtain stable
and meaningful results in agreement with those Fig. 1. The results from the similarly
amended Visual C++ program are the same. We note that in both these cases we
found it necessary to repeatedly apply this setting in the time-loop of the code since
returns from certain functions can cause the compiler or Windows default setting to
be resumed. The computational cost of this process is negligible in comparison to the
time-loop traversal time for any realistic simulation.

4.2 Sun Java 6 MS Windows Xp-32 implementations

In the case of Java 6 we find that attempts to set the control word as in the above
section fail, with the results as in Fig. 2 again. In fact Java 6 masks this low-level
function call. At this stage we can only speculate that this must be a deliberate design
feature in order to protect the Java working environment.

4.3 MS Windows Xp-64 implementations

We find, in these cases that even setting the control word as above does not fix the
problem. In fact, the Xp-64 operating system overrides the settings, so that the IEEE
standard is maintained. For instance, the command line to invoke the Gfortran 64-bit
compiler from an install-directory’s bin sub-directory for compilation of some prog.for
and force the generation of code for the the x87 FPU with 80-bit register precision is:

. .\bin\x86_64-pc-mingw32-gfortran -c
-mpc80 -mfpmath=387 prog.for

But, even this imposition is ignored under Windows Xp-64, since the latter switches
off access to the MMX and x87 units. It appears that [5] that Microsoft would migrate
to developing code employing floating point computations only for the SSE2 (and suc-
cessor) architectures, thus dropping the x87 legacy architecture, which might explain
our observations.

4.4 SUSE Linux-64 implementations

Here although the default floating point behaviour is IEEE compliant, the use of the
x87 FPU can be enforced by the command-line:

gfortran -c -mpc80 -mfpmath=387 prog.for

5 Speed tests

To gain some insight into the relative performance of Java with respect to speed, we
have conducted some benchmark tests on the Java-, C- and Fortran-code versions and
compare the CPU (user single code/thread + operating system support code) execution
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times of the three versions of our 2D code. The results are summarized in the table for
a 500 time step run in each case:

Compiler/OS CPU time (secs)
Salford FTN95(Fortran 77)/MS Win Xp32 264.141
Mingw C(GNU C)/MS Win Xp32 155.968
Sun Java6/MS Win Xp32 200.031

Thus it is clear that Java is competitive with C and moreover, performs better
than Fortran when the latter is runnning with no code optimizations.

6 Conclusion

By means of multi-language codings of an algorithm for the numerical integration of
hyperbolic systems for 3-D electromagnetic plasma fluid equations allowing wave prop-
agation in two dimensions [6] we have conducted floating point consistency tests and
speed benchmarks. Our findings indicate that for languages, such as Salford Fortran
95 and GNU Mingw Fortran and C/C++, that employ 80-bit FPU accuracy in the
FPU registers for intermediate calculations, overriding the IEEE standard of 64-bit
accuracy, the results over long time runs are stable and consistent, in agreement with
previous results. When, we employ compilers (Sun Java 5/6 and MS Visual C++ Ex-
press 8) that strictly adhere to the IEEE standard in this respect, the results obtained
are not consistent with the previous case, and more so, degenerate into meaningless
computations which just evolve NANs.

However, for 32-bit operating systems and compilers (MS Visual C++ Express 8,
Java 5), when in the latter we set the processor FPU control word to override the IEEE
accuracy to 80-bits we obtain stable and consistent results as before. Exceptionally, in
the case of Java 6 (and later) attempts to set the control word fail.

Under Windows Xp-64, all compilers (32- and 64-bit) are restricted by the operating
system to the IEEE default, and hence the codes fail. Nevertheless, under SUSE
Linux-64, we find Gfortran to exhibit stable behaviour when the compiler is invoked to
generate x87 code.

As far as speed benchmarks are concerned, our tests on 32-bit compilers indicate
the C++ performs best, followed (surprisingly) by Java 6 and then Salford FTNO95.
Thus Java may be seen to be competitive for large simulation codes, were it not for
inconsistencies in floating point behaviour.
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Abstract

We present a package, built upon libraries PLAPACK and POOCLAPACK,
that facilitates the use of out-of-core and parallel techniques for the solution of
large-scale dense linear systems to non-experienced programmers. The complexity
of dealing with secondary memory storage necessary to accommodate huge data
structures and the use of parallel distributed-memory message-passing architec-
tures are thus made transparent to users. The techniques described in this work
allow the solution of this type of systems on a wide range of computer facilities,
from commodity workstations to complex high performance computer systems.
Our package is tested on the solution of a real problem arising in condensed mat-
ter physics on a cluster of commodity computers. The experimental results for
systems with up to 100,000 equations illustrate the benefits of exploiting both
process-level and thread-level parallelism as well as demonstrate that the use of
secondary storage exerts a moderate impact on performance.

Key words: Linear systems, high performance computing, out-of-core algo-
rithms, LU factorization.

1 Introduction

Large-scale dense linear algebra problems, involving matrices with hundreds of thou-
sands of rows and columns, arise in boundary element methods for integral equations in
electromagnetism and acoustics, radial function methods, estimation of Earth’s grav-
itational field, molecular dynamic simulations, and quantum chemistry, among oth-
ers [1, 2, 3, 7, 9]. When the data structures involved in these problems are too large
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to fit in memory, the only solution is to rely on disk storage. Although such additional
memory can be accessed via virtual memory, careful design of out-of-core (OOC) algo-
rithms is generally required to attain high performance.

In this paper we extend the POOCLAPACK library [6] with the HDSS package,
a user-friendly application programming interface (API) to build OOC dense linear
algebra objects and to execute its OOC dense linear algebra routines. We believe our
high-level object-oriented API can be of wide appeal to a majority of scientists and engi-
neers, who need this class of environments to elaborate complex analyses, modeling, and
simulations, and who have little or no experience with parallel programming and OOC
techniques. As an additional contribution, our paper evaluates the performance of the
API/POOCLAPACK duo on a linear system with up to O(100,000) equations arising
in a condensed matter physics application. Both process-level or thread-level paral-
lelism are exploited for the efficient solution of these systems on a cluster of commodity
computers equipped with Intel multi-core technology and connected via a high-speed
Infiniband switch.

The rest of paper is structured as follows. Section 2 exposes the key routines of the
HDSS interface, illustrating their use by means of a simple example. In Section 3 we
evaluate the codes on a problem provided by a group from our university that conducts
research on . Finally, concluding remarks are summarized in the Section 4.

2 The HDSS Package

Our HDSS interface is based on PLAPACK [8] and its extension POOCLAPACK for
OOC computations. PLAPACK (Parallel Linear Algebra Package) provides a collec-
tion of parallel routines for the solution of dense linear algebra operations such as
dense linear systems, linear least-squares problems, and eigenvalue computations on
message-passing architectures. PLAPACK features an a object-based orientation, ab-
stracting the user from the layout of the data among the memory spaces of the nodes
in a distributed-memory platform. POOCLAPACK (Parallel OOC LAPACK) offers
additional flexibility to customize both the in-core and OOC algorithms. This in turn
allows to code OOC algorithms in such a way that data I/O becomes straight-forward,
reducing the porting effort and improving performance.

HDSS builds upon these two libraries, with the primary goal of providing a col-
lection of routines to help non-expert programmers to develop efficient, parallel OOC
codes by hiding details on the storage infrastructure and its use. Figure 1 shows the
layering of the libraries employed in our work and its use from HDSS.

A secondary objective for HDSS is to assist the programmer of parallel dense lin-
ear algebra routines, by easing the extraction of a large fraction of the performance
of current clusters. Moreover, our interface cannot only be used on parallel machines,
but also efficiently profit from modern multi-core commodity computers. In pursue
of this goal, the routines in the interface offer the possibility of exploiting parallelism
at two different levels. At the bottom level, thread-level parallelism can be extracted
by accessing multi-threaded implementation of BLAS (Basic Linear Algebra Subpro-
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é POOCLAPACK

PLAPACK
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Disk

Main memory

Figure 1: Architecture of parallel OOC dense linear algebra libraries.

grams). At the top level, the number of MPI processes and the data layout can be
easily configured from the HDSS routines to optimize the use of task- (or process-)
level parallelism.

HDSS exhibits an object-oriented style akin to those of PLAPACK and POOCLA-
PACK. This paradigm hides programming details which usually entail most of the
errors during the development process (basically, the intricate indexing present in most
traditional linear algebra codes and features related to the storage layout of the data
matrices). HDSS employs objects to represent matrices and vectors, which are defined
in HDSS using the HDSS_0bj datatype. These objects are implemented internally as a
structure containing an OOC matrix consisting of a distributed PLA_Obj matrix with
an attached file on each MPI process.

The usage of the routines in the HDSS package is illustrated with the excerpt of
Fortran-90 code in Figure 2. The code in that figure can be executed sequentially or
in parallel invoking the mpirun launcher. In the second case, routine hdss_init_env
initializes the parallel environment and routine hdss_finalize terminates it. The code
between the two previous routines can be viewed as a parallel region where all processes
execute the same code by default. Following the MIMD (multiple instruction, multi-
ple data) programming model, code executed by different processes can be customized
using the process’ unique identifier returned by routine hdss_get_myid. Several envi-
ronment parameters can be extracted using the appropriate routines of the API. For
example, routine hdss_get_numprocs returns the number of processes participating in
the parallel region.

Once the environment is initialized and the execution of the parallel region has
begun, the code in Figure 2 performs three main actions: First, it creates and initializes
the objects containing the OOC matrices of the linear system AX = B, namely, A_ooc
for the matrix containing the entries of A € RdmAxndimA 5nq B _ooc for those of
matrix B € RndimAXndimB'

The matrices involved in the problem are so large that they may not fit into the
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1 ¢ [% REER KA A KA KKK KA KKK A KA AR AK AR K KKK KA K KA KKK KKK A KA KKK KA KKK KKK KKK K [
2 ¢ /* Initialization misc.: environment, process identifier, etc. */
3
4 call hdss_init_env()
5 call hdss_ooc_set_scratch_dir( ’/state/partitionl’ )
6 call hdss_get_myid( me )
7 call hdss_get_slab( slab )
8 call hdss_get_numprocs( nprocs )
9
10 ¢ [ kKRR KKK KoK KK oK oK ok KoK ok ok kK ok oK ok Kok oK ok ok kK sk Kook kR ok ok kKo sk ok KRR Rk KKk ok [
11 ¢ /* Store ndimA x ndimA matrix in 00C HDSS object A_ooc by slabs of columns */
12
13 allocate( R(ndimA, (slab/nprocs)+1)) )
14 call hdss_ooc_create_matrix( A_ooc, ’A’, ndimA, ndimA )
15 do j = 1, ndimA, slab
16 col_begin = j
17 col_end = min(ndimA, j+slab-1)
18 call hdss_get_mycolumns(col_begin, col_end, me_col_begin, me_col_end )
19
20 ¢ /* initialize slab of columns in-core buffer R */
21 ¢ /% .. %/
22

call hdss_ooc_matrix_set_columns( R, A_ooc, col_begin, col_end )
enddo

/% seokskokokskok ok ok sk sk ok sk ok sk sk o ok sk sk sk sk o ok sk sk sk ok sk sk ke ksl sk ok sk sk e ok sk sk sk sk sk sk ok sk sk s ksl sk ok sk sk skok sk ok ok sk ok ok /
¢ /* Repeat the process for ndimA x ndimB matrix in 00C HDSS object B_ooc */
C VA T

Co DN DN DN DD DN DO N
QOO Uk W
Q

[ /% okskok ok ok ok ok ok skok ok kok ok ok ok o skok ok ok ok sk ok o ok ok sk ok sk ok ok sk ok sk ok ok sk ok Kok ok ok ok Kok ok Kok KoKk ok k /
31 C /* Solve system and store the solution in B_ooc */
32
33 call hdss_ooc_lu(A_ooc, ipiv_ooc)
34 call hdss_ooc_lu_solve(A_ooc, ipiv_ooc, B_ooc)
35
36 ¢ /% Fokokok ok ok ok ok Kok o Kok ok ok ok o Kok ok K ok ok K ok o Kok ok sk ok o Kok ok Kok ok ok ok ok ok ok Kok ok ok ok Kok kR KKk KKk Kk /
37 C /* Retrieve solution by slabs from 00C B_ooc to in-core buffer R */
38 do j = 1, ndimB, slab
39 col_begin = j
40 col_end = min(ndimB, j+slab-1)
41 call hdss_ooc_matrix_get_columns( B_ooc, R, col_begin, col_end )
42
43 ¢ /* Do something with the solution slab in in-core buffer R */
44 c /x o o*/
45 end do
46
47 ¢ /% kR sk ok ok ok ok ok Kok o K ok o K ok ok o Kok o K ok ok K ok o K ok ok ok ok o K ok ok K ok ok K ok ok K ok Kok ok ok ok KoKk KKKk KKk Kk /
48 ¢ /* Free memory and terminate environment */
49 deallocate( R )
50 call hdss_ooc_free_matrix( A_ooc )
51 call hdss_ooc_free_matrix( B_ooc )
52 call hdss_finalize()

Figure 2: Fragment of sample code that allocates and initializes two OOC matrices, A
and B (lines 13-29), solves the linear system AX = B overwriting the contents of B
with the solution (lines 34-35), and retrieves the solution by blocks of columns (lines
39-46).
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aggregated main memory of the cluster nodes. The solution is to rely on the aggregated
secondary memory (i.e., the disks) of the system. Thus, the OOC library stores the
elements on each process on a different file in the local disk the process is running
on. Function hdss_ooc_set_scratch_dir indicates the directory where these files are
stored for each process.

An additional problem of dealing with large matrices is that, during the initializa-
tion, one cannot store all their elements in the main memory of the processors; thus,
this stage also needs to proceed by blocks. In our example, we perform this local
manipulation by blocks of columns, or slabs, that are stored in an in-core buffer R on
the main memory of each processor; see the loop in line 15. During each iteration of
this loop, all processes invoke routine hdss_ooc_matrix_set_columns to initialize a
slab containing columns col_begin to col_end of the matrix. The routine distributes
the block of columns among the different processor following PLAPACK bidimensional
data layout. To assist in this slab-wise (or panel-wise) generation of the matrices, rou-
tine hdss_get_mycolumns returns the indexes of the initial and final columns of each
block of columns, me_col_begin and me_col_end respectively.

After the initialization is completed, the program solves the linear system. It first
uses routine hdss_ooc_1u to compute the LU factorization of matrix A, returning the
pivoting information in the HDSS object ipiv_ooc. It then solves the system invoking
routine hdss_ooc_lu_solve which overwrites object B_ooc with the solution to the
system.

Finally, once the system is solved, the solution is retrieved by slabs, using the in-
core buffer R to store them, with the help of routine hdss_ooc_matrix_get_columns.

In summary, most routines in the HDSS API can be considered collective operations
in the sense that they must be invoked by all processes to perform some collective action
in parallel. For example, all processes perform the same invocation to the routines to
create or fill the HDSS objects with data, to retrieve the data from the objects, or to
perform the LU factorization or the solution of the linear system.

3 Experimental results

All experiments in this section were performed on a cluster composed of 4 nodes, each
equipped with two Intel Quad Core E5520 processors operating at 2.27 GHz, with
36 GB of DDR3 main memory, and a single 250 GB SATA-HD at 7200 rpm. Peak
performance for a single node of this system in single precision arithmetic is 145.28
Gflops (128 x 10° floating-point arithmetic operations per second). Thus, the global
peak performance of the system is 4 x 145.28 = 581.12 Gflops. The interconnect is a
QDR Infiniband high-performance switch. Multi-threaded implementations of BLAS
and LAPACK are provided by MKL 10.2.

In the following, we report the performance of the OOC codes for the LU decompo-
sition in single-precision arithmetic. (The theoretical cost of the LU decomposition of
a dense matrix, in terms of floating-point arithmetic operations, is 2n3/3, and thus this
is the operation that dominates the cost of the system solution procedure via Gaussian
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elimination.) The data matrices appear in the modeling of the electrostatic properties
of recently synthesized metal-semiconductor nanostructures [5, 4]. For realistic models,
the size of the linear systems can be as large as 500,000 x 500, 000. Single precision
arithmetic provides enough accuracy for the application. With these constraints, stor-
age of a 100,000 x 100,000 matrix (the coefficient of the linear system) requires more
than 40 GB of memory, which does not fit into the main memory of a single node.

To check the correction of the solution, in our tests with small problems we com-
puted the relative residual R(X™*) = ||AX*—B| /|| X*| r, where X* stands for the com-
puted solution of the system AX = B. In all those tests, we obtained R(X*) < 1076.

500 ‘ ;
in-core LU - 4 nodes (450 Gflops)
400 | ]
R — +
——— »-_._*_ ot et e s e e e .+_ T
o 300 ]
8 in-core LU - 2 nodes (242 Gflops)
[0 200 | @F-mmmmmmmmmm s [ = T _E],
in-core LU - 1 node (131 Gflops)
| @-mmmmimmmm s O O ___ --0 |
100 4 nodes -—+--
2 nodes --3--
o L. ‘ 1node --o--
1x8 2x4 4x2 8x1
<procs>x<threads>

Figure 3: Performance of OOC codes in the solution of a linear system of dimension
51,239.

We first evaluate the in-core and OOC versions in order to asses the impact of
the disk storage on performance. In Figure 3 we report the performance of the OOC
codes as well as the maximum performance attained with the execution of the in-core
codes on 1, 2 and 4 nodes for a system with 51,239 equations. For 1 and 2 nodes,
the performance of the OOC codes is close to that of the in-core counterpart. If the
number of nodes is increased up to 4, the difference becomes more significant: when
four nodes are used to solve a problem of this dimension, the time needed to access the
data on disk is comparable to computation time, which yields an important decrease
in performance.

The plots in Figure 4 illustrate that, for the in-core codes, the exploitation of
process-level parallelism (1 x 8 x 1) clearly outperforms that of thread-level parallelism
(1 x 1 x 8). The behaviour of the OOC codes is similar.
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Figure 4: Performance on 1, 2 and 4 nodes of the in-core and OOC codes. Four different
parallelization alternatives are shown in each plot which illustrate different combina-
tion of the nodes/processes/threads numbers (<nodes>x<process>x<threads>). For
example, pure process-level parallelism is exploited by the tuples <nodes>x8x1 while
pure thread-level parallelism is given by the combinations <nodes>x1x8.
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4 Conclusions

In this paper we present a package that allows the solution of huge linear systems of
equations on a wide variety of platforms, from commodity workstations to large clusters
of computers. Our package is based on an OOC extension of PLAPACK library, namely,
POOCLAPACK.

We have designed our HDSS API so that the codes in these libraries can be easily
used by novel parallel programmers. The routines in the package involve a reduced
number of parameters and hide all the aspects regarding the distribution and storage
of the data and the parallel handling of the different tasks.

We have conducted an experimental analysis on a cluster equipped multi-core pro-
cessors and a high-speed interconnect. The results show that the package allows to solve
systems with up to hundreds of thousands of equations. We have exploited and com-
bined two different levels of parallelism, process-level (using PLAPACK) and thread-
level parallelism (using a multi-threaded implementation of the BLAS kernels). Our
results show good parallel performances, that in the case of the in-core version of the
routines are close to the peak of the processors: 478 Gflops on 32 cores. The per-
formance of the OOC codes is more modest for relatively small systems, but as the
dimension of the problem is increased, the performance gap between the two versions
Narrows.
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Abstract

We present a new approach of the decoding algorithm for Gabidulin Codes. In
the same way as efficient erasure decoding for Generalized Reed Solomon codes by
using the structure of the inverse of the VanderMonde matrices, we show that, the
erasure decoding Gabidulin code can be seen as a computation of three matrice
and an affine permutation , instead of computing an inverse from the generator or
parity check matrix. This significantly reduces the decoding complexity compared
to others algorithms
For r erasures, where r = n — k, the erasure algorithm decoding for Gaby, 1 (g)
Gabidulin code compute the r symbols by simple multiplication of three matrices.
That requires r%+r(k—1) Galois field multiplications, r(r —1)+2rk field additions,
r?2 + r(k + 1) field negations and r(k + 1) field inversions.

Key words: Gabidulin Codes, Generalized Reed solomon codes, Vandermonde
matriz, Cauchy matriz

1 Introduction

The Gabidulin codes are introduced in [2]. These codes are maximum rank distance
(MRD). They meet the best possible rank distance d = n + 1 — k, where k is the di-
mension of the code and n its lenght.

The Generalized Reed Solomon Codes are Maximum Distance Separable (MDS) for
the Hamming distance. (i.e. d =n' — k' +1 where n’ and k' are respectvely the lenght
and the dimension of code).

Given an [n’, k'] Generalized Reed Solomon Codes (GRS); his generator matrix G(a/, v')
can be written : G(a/,v") = V(«/)D(v') where V(a/) is a Vandermonde matrix and
D(v') a diagonal matrix.

In [1] we describe the existence of an affine permutation ¢ that conserves the Hamming
distance and transforms a Gabidulin code into a GRS code.
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Let be a Gaby, (g) Gabidulin code, H his parity check matrix, H is also a Gabidulin
code of parameters (n,r). Then ¢(H) is a GRS code. So, we can write ¢(H) =
V(a)D(v). This transformation allows to use the structure of the inverse of the Van-
derMonde matrix in order to construct our algorithm.

This paper is organized as follows. First we recall the definitions known on diagonals,
vandermonde and Cauchy matrices and we recall results on the GRS codes and the
Gabidulin codes which take us in the section 2. In the section 3 we state mains results
and we describe our erasure decoding algorithm. In section 4 we discuss the complexity
of our decoding algorithm.

2 Preliminary

In this section we present the results known that we will use in order to prove our
results.

2.1 Diagonal matrix

Definition 2.1 Let be K a finite field. Given v = (v1,...,vy), where (vi,...,v,) € K. we
define D(v) to be the n X n diagonal matriz as

V1 0 e 0

0 v2 ... 0
D(w) =

0 O Up,

2.2 VanderMonde Matrix

Definition 2.2 Given k non-zero and distinct elements o = (au, ..., o) we define the
k x k VanderMonde matriz as

1 1 1
(€51 Q2 g
2 2 2
« o «o
1 2
V(a) - U(ala ,Oék) = k
k=1 k-1 k—1
oy 5] Q.

2.2.1

Let us put fi(2) = ngtgk,i;ét(z — o) = Yi<r<kaii 2
The inverse of the VanderMonde matrix is given by
aqj

B H1§t§k,i¢t(0‘i — )

(U(O[l, ceny Oék)_l)ij
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2.3 Cauchy Matrix:

Definition 2.3 Let K be a field, v; € K for 1 <i <k and y; € K for 1 < j <r
such that {z1,...,z} are pairwise distinct and {yi,...,y.} are pairwise distinct and
ri+y; #0for 1<i<kand1<j<r.

The matriz

1 1 1
r1+yr xity2 T T+

i ) 1 Y 1 Yr
T2ty  T2ty2 7T x2+yr

1 1 1
Tetyr  Tety2 T Tityr

is called a Cauchy matriz over K generated by {x1,...,xp} and {yi,...,yr}.

2.4 Generalized Cauchy Matrix :

A k x r matrix A is a generalized Cauchy matrix if A = D(c)CD(d)
Where C is a k x r Cauchy matrix and ¢ = (¢1,...,¢x), ¢; # 0 for 1 < i < k and
d= (dl,...,dr), dj 75 0 for 1 < j <r.

2.5 Generalized Cauchy Codes

Let £k € N and k£ < n for some n € N.

Let C be k x (n— k) Cauchy matrix over a field K. Let ¢ = (cy, ..., ¢x) such that ¢; € K
andc; #0,V1<i<kandd=(di,...,dy—k) whered; e Kand d; #0V 1 < j <n—k.
Let A= D(c)CD(d) ( A is a generalized Cauchy matrix by definition ). Then the code
generated by the generator matrix [I;|A] is called the generalized cauchy code.

2.6 Generalized Reed Solomon Codes

Definition 2.4 Let GF(q™) be a finite field with q™ elements. Let n € N with
1 <n<qand o = (ai,...,0) an n-tuple of distinct elements of GF(¢™) and
let v = (v1,...,05) be an n-tuple of non -zero elements of GF(qm). Let k € N with
1 <k <n. Then the Generalized Reed Solomon codes, denoted by : GRSy, (o, v) is

GRS, (a,v) = {v1f(ar), ., vnf(an)/f € GF(¢™)[z],deg(f) < k —1}.

We can thus write the generator matrix of Generalized Reed Solomon code as

U1 V9 e Un
U101 18P UnQin

viarF T vk UnQpn~

is noted GRSk (a,v).
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The set of GRSk(a,v) codes is called by Generalized REED SOLOMON codes fam-

ily.
So,
1 1 1 (%] 0 0
(051 (0] anp 0 w9 0
G = X
alk_l agk_l A ank_l O 0 . . . vy

i.e. G(a,v) =V (a)D(v), where V(a) is a Vandermonde matriz and D(v) a diagonal
matriz.

2.7 Gabidulin Codes

Definition 2.5 Let gi,...,9n € GF(¢™)™ be n elements, which are linearly indepen-
dent over GF(q). The matrix

M
G =
gl[kil} gn[kil]

where [i] = ¢* is of rank k, is a generator matriz of Gabidulin code.

2.7.1 Properties

e The linear code C' with generator matrix G reaches the Singleton bound for
the rank metric, that is, let d be the minimum rank distance of C, we have
d—1=n-—k.

e The dual of the Gabidulin code is a Gabidulin code.

Remark 2.6 In the sequel, we will note Gab,, ;(g) the Gabidulin code of the lenght n,
the dimension k and generated by g

2.7.2 Definition of affine permutation

1. Let be Gab,, 1;(g) a generator matrix of Gabidulin code generated by g = (g1, ..., gn)
1;; is defined by
Vij : GF(¢") — GF(q™)

Tr — aijx
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where
k
11 (g = Nigi— > Ngi)
)\1,)\2,...7)\k6GF(q) I=1,l#1i
gi — 9i

with )\i 7é 0 and ()\1, AQ, ceny )\k) 7& (0,0, ...,0).
We are going to extend the action of 1;; to GF(¢"™)" by the following form :

(lij =

Y (GF(¢™))" — (GF(¢™))"
(1,22, 23,5, ..., Ty) — (21, T2, 23, Vi (25), ..., Yin(Tn))

2. ¢ is affine permutation define by:

¢: (GF(q™))" — (GF(¢™))"
(1717 vy Ly L1y oeey .ZEn) = (271, ceey Ty qbi,TJrl(xTJrl)a ceey qbl,n(xn))

¢ is an extension of ¢;; and ¢;;(x;) = ai_jlxj for x; € GF(¢™)

3 Main results

In this section we state our main results

3.1 The Erasure Decoding Algorithm

Proposition 3.1 if ¢ is a codeword of the Gabidulin code and H its parity matrix, the
following conditions are equivalents

1. Hte=0
2. Y(H)6(c) = 0.

Proof 3.2 Let us consider the [n,k| Gabidulin code generated by g = (g1,...,gn). Its
parity matric H = Gaby, »(h) is such that

hi  hy . . . hy
L i 1S
o .
pld=2 pli=2l o pld
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Let be ¢ = (c1, ..., ¢p) 18 a word.
If ¢ is codeword of Gabidulin code, then H'c = 0, that is to say

hl h2 hn (&1
1 1 1
Rl hy! e
X
h[ldlz} h[2d‘72] h,[f‘*z] e
hici + hoco + ... + hypcp =
h[f}cl + h[;]cg 4ot hble, =
— :
Ry + B ey 4 4 nl e, =
If c=(c1,...,cn), then
C1
t _ Cr
o) = P(cri1)
o(cn)
So,
woo i aenlhen)
h11 hzl hi' V2,41 (h’rl—i-l )
wEyee = " : |
h[ld_2] h[zd_Z] h[Td_Z] wr,r+1(h7[i_12])

0
0
0
0
0
0
C1
wl,n (hn) .
¢2,n(h£ll]) % Cr
d(crin)
Yrn (B ) '
o(cn)

where ¢ = (¢i5), with r —1 < j <n and i depending of the line of the ¢(H) matriz.

So, we have Y(H)'¢p(c) =
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hici + ...+ hycy + Yrrpr(her)rrpa(erin) 4 o F Yrn(hn)rn(cn)
h[11]Cl + .+ h/E’l]CT + wz,r+1(hﬂ1)¢2,r+1(0r+1) + . F ¢2,n(h£}])¢2,n(cn)
h[1d72]C1 + e + hg-diz]cr + "/}r,rJrl(h'[rd+712})¢1”,r+1(cr+1)+ oo+ ql}r,n(hkiim)(b’r‘,n(cn)

since ¥i;(X) = a;; X and ¢i5(y) = ai_jl, then we have ;;(hj)¢ij(c;) = hjcj, with
r+l1<j<nandl <i<r
Therefore (H)!$(c) = 0 is equivalent to H'c =0

Remark 3.3 Let be Gab, 1(g9) a Gabidulin code. If ¢ is not a codeword of Gabidulin
code, we have the following equivalent. Htc # 0, then ¢ (H)!¢(c) # 0.

Theorem 3.4 Let ¢ € Gaby, (g) and Gaby, x(9)t = Hy.(h) withr = n — k. Let us
suppose that the erasures are at locations {ey,...,e,} C {1,....,n}. Let {di,...,d;} =
{1,...,n}\ {e1,...,e,} be the non-erasure locations, then.

Cey Gdyd, (Cay),
= —D(y)CD(X)
Ce, ¢dk,d;(cdk)
With y = vgl;ll’ ), X = vdlgl, c e Vg Ck ), where (v1, ..., vy) 18

come from by calculatmg 1/1
& = hi<t<r(Ue; — Ue,) 1<i<re#e
G = h<i<r(ua; — ue,) 1<5<k
C is a cauchy matriz generated by {—ue,, ..., —ue, } and {uq,, ..., uq, }

Proof 3.5 Let be G the generator matriz of Gaby, (g) over GF(¢™) and H its parity
matriz. H = Gaby, »(h) where r =n —k

Since Y(H) is a generator matriz of GRS code i.e. Y(H) = GRS, »(u,v),

we have: Y(H) = [l1,...,1,] = Vi(u)D(v) where V. is a r x n VanderMonde matriz and
D is a n x n diagonal matriz.

Let us put (M) = D@)[V (uey, .., ue,) 1O(H) where © = (v, ...,v7 1), ¥(M) is a
7 X 1 malriz.

Let be ¢ = (c1,...,¢r) and ¢(c) = (1, -, Cry (Crg1y ey D(Cn))

BOMYG(e) = DOV (ttr, 1o, ]~ 0 (H ()
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Let us show that ¥(M) 4is a parity matriz of the code of gemerator matriz ¢(QG)

if ¢ is a codeword of Gaby, i (g), Y(H)'¢(c) = 0 according to Proposition3.1.
Moreover D(0) # 0 and [V (tey, ..., Ue,] "t # 0 because they are invertible matrices.

So, p(M)'¢(c) = 0 <= (H)'¢(c) = 0.

In the same way, if ¢ is not a codeword of Gabidulin code, (M)'p(c) # 0 <
(H) p(c) # 0.

Therefore (M) is a parity matriz of the code of generator matriz ¢(G).

Let us put § = [é, . é], with & = H (U, — Ue,)
1<t<reiter

Let us put fi(z) = H — Ug,) = Z a; s2°

lgtgr,ei;éet 1<s<r—1

aij-1
[V(u€17"‘7uer]_1 = ( H (te; — te,) ) = ( ?11 X G 51 )ij
ij

1<t<r.eier

& 0 0
0 1 aio ... QG1r-—1
= 52 X
0 ar,0 Qrr—1
1 70 eee Qpp—
0 &
We have, by replacing ¥(H) by its expression
V(M) = D@)[V (te, ., e, )] (H)
= D(0)[V (tey s s e, )] "' Vi(w) D(v)
El 0 0 ao ... Q1p—1
5 ) |
= D(o) <2 x V,(u)D(v)
0
1
0o ... & aro ... GQprpr—1
vl_l
ET 0 0 aro ... Q1r-—1 1 1
0 :
(M) = z x x D(v)
0
0 e ar0 -1 up”! ay !
Let us put W = D(i)\g)
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r—1 r—1

t t
Z(Il,t’ul e Z(ILtUn
t=0 t=0

V(M) =W : . D(v)

r—1 r—1

t t
Zamul e Zar,tun
t=0 t=0

Let us put

r—1 r—1

§ : t 2 : t
aptuy ... a1ty

t=0 t=0

r—1 r—1
t t
E QrtUy ... E Ay tUy,
t=0 t=0

Let us denote s; with 1 < i < n the columns of S , we have S = [S1,...,Sy], where
Si = [f1(wi), fa(ui), ..., fr(us)]= with f; defined as in subsection 3.1.

(M) =WSD(v)

(M) = D(g)SD(v)

(M) = D(@)D(£)SD(v)

Let be i € {eq,...,e,}, let us put i = ey for X € {1,...,r}. Then

H (UGA - uet)

fl (uek) 1<t<r,e1#et
Se, = : = :
fr(uey) H (Uey — Ue,)
1<t<r.er#et
Thus, we have
H (uex —Ue,) if Cp = €
fﬂ(uex) = 1<t<reu et
0 otherwise
For pe{1,...,r}. Since we can write £, = H (Uey — Ue,)

1<t<r.ey#et
S if €u = €x
0 otherwise

When i & {e1,...,e;}, then i = d, for some p € {1, ..., k}

and so, we can rewrite f,,(ue,) =
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Then

H (udp - uet) 1

f1 (udp) 1<t<r,e1#et Ud, —Uey

Ir (fl:Ldp) H ‘(’Ujdp — Ue,) ud i,U‘ET

P
1<t<r.er#et

where (, = H (uq, — Ue,)

1<t<r

Since we have ¥(M)!p(c) =0

— D(®)D(E)SD(v)!d(c) = 0

C1
U1 0 0 :
0 w 0
D(v)é(c) = i o s
0 0 v, :
¢(Cn>

and we can D(v)té(c) = [vicy, ..., VpCry Uy 1 Pt 1,41 (Crg1), ...,vnqﬁn,n(cn)]l
and so by multiplying by the S matriz at left we have :
n

SD(v)'é(c) = [ [sivie

=1

r k
SD(v)t(b(C) = Hseiveicei + Hsdivdi¢di7di (cdi)

i=1 i=1

~

We have D(0)D(£)SD(v)tp(c) = WSD(v)to(c)
r k
WSD(U)tQS(C) = HW‘Seiveicei + HWSdivdi¢di7di(cdi) (1)
i=1 i=1

1. Now, when t € {ey,...,e,} and t = e)

0
Wsey\VeyCep, = W | ey Ve, Cey
0
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0
vyt vt 0
WseyVeyCey = D(] g y e g ), EerVey Cey
1 r 0
0
0
”51;1 0 ... 0 :
1
0 % g 0
W se, Ve, Cey, = L X | EerveyCey
.o O O
—1
vy
0 0 & :
0

Where &, ve, s at the NP position in the array. Simplifying further we have

0 0

-1 0 O

Wse,VeyCey = %éex Ve, Cey = Cey
0 0

0 0

With cc, s at the P position in the array. Thus, we have

0

Wse,VeyCey, = | Cey

further we have

ﬁWseiveicei = : (2)

=1
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2. Whent & {e1,..,e,} thent € {dy,..,d;} and let us put t = d,

and so,

ERASURE DECODING FOR GABIDULIN CODES

1

Uqg

Wsa,v4,%d,.d,(ca,) =W

k
ZWSdivdi¢di,di (ca;) = WZ(
=1

7

—ug

1

vadp ¢dp7dp (Cdp )

Uqg

k

i=1

We can simplifying further by writing

1
Udy —Udy

Udy —Ud,

Ctvdt gbdt ,dt (Cdt )) =

7

—ug,

T

Ud

£~ Udy

Uq

’LLdl

7“61

Udl

1
udl 7&61

C = :
1
Uy —Uer

is a Cauchy matriz generated by {—ue,, ...

Thus ,

—Ue,

t

—Ug,.

Uqd

Ud

1
udk 7uel

1
Udy —Uer

Ctvdt ¢dt \dt (Cdt ))

k

1

7“61

—Ue,

1 Vdy ¢d1 ,d1 (Cd1 )
% .

CiVdy, Doy dy (Cdy,)

, —Ue, } and {uq,, ..., uq, }

k
Zwsdivdiqbdivdi(cdi) =wcC
i=1

C1vd; Pd, ,d1 (Cd1 )

CiVdy, Doy dy (Cdy,)

3)

Considering the relations (2) and (3), the relation (1 =) become, since ¥(M)ip(c) =0

Thus

@CMMSE

r k
HWSeiUeicei + HWSdivdi¢di,di (Cdi) =0

=1

Ce

Ce

1

r

=1

C1Vdy Pdy.dy (Cdy )

Ckvdk (z)dk ydk (Cdk )

C1dy Py dy (Cd1 )

+WcC
C€1
: =-wc
Ce,
oL -1
—D([*, .., =
([ 51 gr
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So, we have

Cey ~1 _1 ¢d1,d1 (Cd1)

”511 “gr 1) x C x D([vg, (1, .., va, Gk]) %

Ce, bdy.dy, (Cay,)

3.1.1 Algorithm

1. compute &;, (j, the cauchy matrix C and ¢

2. compute X' = ( vg,(1Pay a1 (cay), - - - VauChPd.dy(Cdy) )
3. compute X = CX’

4. compute—D(i o ”T;l))?
517 ’ é'r

gives the values at the erasure locations {ey, ..., e, }.

4 Analysis of Decoding complexity

In this section we discuss the complexity of the algorithm. Since the codes are defined in
a field GF'. It has two operations:addition and multiplication. Thus, we do an analysis
of the complexity of the decoding algorithm by counting the number of additions,
negations (additive inverse of an element),multiplications and inversions (multiplicative
inverse of an element ) required for the decoding algorithm.

Proposition 4.1 The erasure decoding algorithm for Gabidulin codes describe above,
require 72 + r(k + 1) negations, r(r — 1) + 2rk additions, r* + r(k — 1) multiplications
and r(k 4+ 1) inversions.

Proof 4.2 1. & = Ii<i<r(ae, — a,) 1 <i<re # e is calculated in r — 1
negations, r — 1 additions and r — 2 multiplications.

2. ¢ = ngtgr(adj — Q) 1 <j < k. to calculate ; we need k negations, k
additions and k — 1 multiplications
3. —D( g, L ”é > requires 1% negations, r(r — 1) additions, r(r — 1)

multiplications and r inversions

1L . . .
4. ( Va, C1bdydy (Cdy)y - - o Vd, Cr®dy.dy (Cay) ) requires Tk negations, rk addi-
tions and rk multiplications

5. C is ar xX k cauchy matriz, we need r negations, rk additions and rk inversions
Thus in total, we need : > +r(k+1) negations, r(r—1)+2rk additions, r?+r(k—1)
multiplications and r(k + 1) inversions.
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Remark 4.3 To decode each codeword, we first calculed
T = [ V4, C10dy.d (Cdy)s - - o VdCePdy,di (Cay,) ]J‘ which takes k multiplications as
v;C; and ¢q, 4,(cq;) have already been calculated.
Next, we calculate xo = Czy which takes r(k — 1) additions and rk multiplications.
Finally, we calculate

Ce,

-1 —1
Uy v

ST

= D(-] J)xa

Ce

r

, which takes r multiplications.
Thus, in total we have r(k — 1) additions and rk + n multiplications.

If

-1 ~1
vy v,

G

is compute first, then decoding takes rk multiplications and r(k — 1) additions while
setting up the structures for decoding requires further 2rk multiplications. Thus, totaling
72 +r(k — 1)+ 2rk = r2 + r(3k — 1) multiplications.

Y(M) =—-D(] DNCD(v4, Crddy dy (Cdy)s - Vi Ck Py, ()

5 Conclusion

In this paper we described an erasure decoding algorithm for Gabidulin codes by uti-
lizing the structure of the inverse of the VanderMonde matrix. We have shown that
this new algorithm compute the erasure locations fixed by a single multiplication of
three matrices; two of which are diagonal matrices and the other is a cauchy matrix.
This reduces significantly the decoding complexity compared to matrix inverse based
decoding algorithm.
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Abstract

In this paper we explore the problem of mapping game services of MMOFPS
(First Person Shooter games) games in a hybrid architecture, called OnDeGas
(On Demand Game Service), that combines the functionalities of a centralized
server infrastructure with a distributed P2P topology. We propose and analyze
two mapping strategies, for OnDeGas, that differ in the way that they tackle the
heterogeneity, in the number of cores, of nodes in the P2P area. We show through
simulation that both mapping mechanisms are able to provide a distributed plat-
form that scales on demand. However, they differ in performance, as it can be seen
that taking into account heterogeneity provides a better use of resources and faster
mapping decisions at the expense of having more communication overhead and a
broader variability of latency values.

Key words: MMOFPS, Mapping, Heterogeneity, Distributed System.

1 Introduction

Massively Multiplayer Online Games (MMOG) are the most popular genre in the com-
puter game world [6]. They can be divided into three categories: MMORPG (Mas-
sively Multiplayer Online Role Playing Games), MMORTS (Massively Multiplayer On-
line Real Time Strategy) and MMOFPS (Massively Multiplayer Online First Person
Shooter). The execution requirements vary with the way of playing in each of them
[11]. On the one hand, MMORPG and MMORTS can have thousands of players in
a single party, so bandwidth is an important feature for supporting them [5]. On the
other hand, in MMOFPS, players are divided into many isolated game sessions each
with a handful of players who are continuously interacting. Thus, response latency is
the key factor in this case.

According to that, the strategies to optimize the execution of MMOGs, in current
distributed platforms, are different depending on the category they belong to. In this
paper, we focus on the optimization of MMOFPS games. Traditionally, client-server
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systems have been the platforms to provide service to massively networked games.
However, when the number of players increases, this approach reaches its limits due to
problems of scalability.

The research community has proposed some alternatives to overcome client-server
limits with decentralized structures, where each machine contributes to, and benefits
from, a large service oriented network. Some works have focused on the game itself to
serve MMORPG. These solutions are based on splitting the game world into different
subspaces and distributing them into the decentralized nodes [8] [7], or to group players
according to the load on the map [9]. Unfortunately, these proposals do not fit into the
specific features of the MMOFPS games, mainly due to their low latency requirements
and the length of game sessions. In the specific case of MMOFPS, Bharambe et al [3]
proposes a solution for a pure P2P system. The increase in latency time, inherent to
this kind of architecture, is solved by proposing new rules in many features of current
MMOFPS games, such as the size of the AOI (Area of Interest) of players in order to
decrease the number of messages that players transfer to each other. These improve-
ments need to be included in the internal code of the game, which implies important
implementation efforts. Unlike Bharambe works, our efforts are focused to propose a
scalable architecture oriented to MMOFPS, which assures the players’ latency below a
specific satisfaction threshold without changing the internal code of games.

According to our aims, we propose a new system named OnDeGaS (On Demand
Game Service), devoted to mapping the MMOFPS game sessions without affecting the
game’s internal code. OnDeGaS is a hybrid system, which is made up of a central
server and a set of temporary servers, distributed throughout a P2P topology. The
central server executes several game services as long as it is not overloaded; in the case
of an overload situation in the central server, due to a peak number of players, new
game sessions are mapped into the P2P topology. An initial version of OnDeGaS was
reported in [1], focusing on the assignment of game sessions of a MMOFPS in the dis-
tributed area, without considering physical differences in player’ machines. However,
heterogeneity is an inherent property of these nodes and so, it is a key issue to im-
prove the efficiency of the system. For this reason, in this work, two mapping policies,
Non_Heterogeneity_aware and Heterogeneity_aware, are proposed and analyzed. When-
ever the central server is overloaded, Non_Heterogeneity_aware mechanism selects a new
distributed game server, among waiting players, taking exclusively latency criteria into
account. The Heterogeneity_aware policy applies a variation of previous lookup mecha-
nism taking advantage of all available computational resources throughout the system.
Thus, it maps the new game sessions into the available cores of the game servers already
created.

The effectiveness of our approaches has been evaluated by means of simulation.
Our results show that the OnDeGaS scales on demand. Moreover, the Heterogene-
ity_aware mechanism provides a better use of resources and faster mapping decisions,
at expense of having more communication overhead and higher latency variability. How-
ever, Non_Heterogeneity_aware policy, has more stable latency values, slower mapping
decisions and avoids the communication overhead.

The remainder of this paper is organized as follows. Section 2 describes the OnDe-
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GaS system composed of a set of algorithms and methodologies. Section 3 evaluates
the performance of the proposed mapping policies of the system in terms of scalability
and QoS. Section 4 outlines the main conclusions and future work.

2 OnDeGaS System Description

In this section, the OnDeGaS system is described globally, discussing the components,
their operation and implementation details.

2.1 System Model

Figure 1 shows the OnDeGaS system that is composed of two main areas: one central
area performing central services and a distributed area with several zones that grow in
a P2P like fashion.

77777777 - DISTRIBUTED AREA e

zove S W)

%*Zone Server Garr_le !
Service |
Game Service 1 E 3 ZONE
n
- % G WAITING: ™ — = = = 7 = & J
¢ [ ¢ )QUEUE
L

Game

¥
§ ;
ﬁ%‘ r Service N

;i Replicated
= Zone Server

(2]
o
3
o
"]
o
3
s 2t
a
—_——— e

CENTRAL AREA

i) - . . )

ZONE NOTIFICATIONS

Figure 1: OnDeGaS system global vision.

The central area is devoted to performing the global control of the system and
also to supplying players with services. The components of the central area are the
following:

o Master Server (MS). It is the system’s main server and acts as the bootstrap
point. All the players requesting to enter the system will attempt to connect to
it.

o Waiting Queue (WQ). This is a logical space in MS used to insert those players
who cannot be served due to overload situations. It is a transitory state for
players, who will be distributed in a short term.

e Zones Queue (ZQ)). This is a logical space in MS used to keep the information
about the created zones updated. This information is used for distributing players
to the already created zones.
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The distributed area is composed of players’ machines that are logically grouped
in zones, which are locally circumscribed places running physically out of the MS con-
forming a distributed platform. A Zone number ¢, Z;, in the system, has the following
components:

e Zone Server (ZS). This is the current server of the Zone.

e Replicated Zone Server (RZS). This is the current replicated server of the Zone.
It has the role of implementing fault tolerance policies.

Regarding games that are to be executed on this platform, we distinguish the
following elements:

e Player (P;). A Player number i, P;, is a client who connects to the system in
order to play a MMOFPS.

e Game Service (GS). It is an instance of a game, where a set of players is connected
to play. Each GS will be hosted in the MS or in a single core of a ZS. At
any moment, each GS can be in two different states: active when players are
interacting in the GS, or over, when the GS has ended due to player disconnections
or caused by the rules of the GSs. Normally, in MMOFPS, the number of players
per GS is in the order of tens, while the length of the GS is in the order of a few
minutes.

e Zones Notifications (ZV ). These are the set of N Zones that have sent a message
to the MS to notify that their respective GSs are over. In this case, the MS will
decide if the zone’s players can be reaccepted.

2.2 System Operation

The operation of the OnDeGaS platform is a hybrid between the classical centralized
client-server model, performed in the central area, and the distributed P2P model,
performed in Zones. The main idea of system operation consists of executing a set of
GSs in the central area until it reaches the limit of its capabilities. When no more
players can be accepted by the MS, new zones are dynamically created to avoid large
waiting times for players, and to provide scalability to the system.

The system operation is controlled by the continuous execution of Algorithm 1,
which has two input flows: new player connections (P;) and the set of zones (ZV) that
have ended their GS and want to enter the MS.

At each iteration of Algorithm 1, the MS checks its state (MS.state). If it is
overloaded, new player connections will be en-queued to the WQ. After en-queuing, the
MS checks if the number of players in the WQ is greater than or equal to a predefined
value «, or whether the uptime of the WQ is greater than or equal to a predefined value
5, too. If any of these two conditions is true, the MS will execute the mapping function
(MS.mapping(WQ)) to distribute players. This mapping policy can be undertaken
using one of the two following mechanisms that will be discussed in next subsection:
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Input: VP; connecting to MS
Input: ZN ={Z;, Zi11,..., Zn_i, Zy} notifying to MS

while True do

switch MS.state() do

case MS.state() == OVERLOAD

if 3 P; then MS.enqueue (WQ, P;);

if (WQ.size() > «) or (WQ.uptime() > () then MS.mapping(WQ);

nd

ase MS.state() == NOT OVERLOADED

if WQ.uptime() > [ then

forall P, in WQ do
| MS.accept(P;);

end

f ZN # () then MS.reaccept (P));

if 3 P; then

if MS.state() == NOT OVERLOADED then
| MS.accept(F;);

else MS.enqueue (WQ, P;);

o 0

e

end

end
end

Algorithm 1: OnDeGaS main Algorithm.

(a) Non_Heterogeneity_aware, that distributes one GS per zone independently of the
physical characteristics of nodes and, (b) Heterogeneity_aware that distributes GSs to
zones according to the number of cores of player’s nodes.

In the case that the MS state is not overloaded, Algorithm 1 evaluates the three
following conditional statements:

e The first condition evaluates if the uptime of the WQ is greater than or equal to 3;
if so, players located in the WQ will be accepted to play in the MS (MS.accept()).
This acceptance flow acts like a FIFO, the first player en-queued in the WQ is the
first to be reconnected to the MS if it has enough space. This way, the OnDeGaS
system rewards the players with more patience.

e The second conditional statement gives priority to enter to the MS, players of
those zones that sent an over message to notify that they have finished the GS,
and they want to start another GS in the MS. This happens whenever a round
of the game has finished and players are waiting for the next round. In this case,
if the set of notifying zones, Z, is not empty, the MS executes the Reaccept
function. For each Zone, Z;, in Z~, the MS re-accepts it, if it has enough free
space for all players of Z;. In this case, Z; is deleted from Z~. Note that the
algorithm tries to prioritize that all players of the re-accepted Zone are connected
to the same GS in the MS to avoid fragmentation of the zones’ players. If there
is not enough space in the MS, a deny message is sent to Z; notifying that it can
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start a new GS. Note that distributed players are playing continuously in the MS
or in the zones, and the time transitions are of the order of seconds, which is an
acceptable delay for the players.

e The last conditional statement evaluates the existence of new players trying to
connect to the system. These new players will be accepted to the MS if it is not
overloaded, or they will be en-queued to the WQ (MS.enqueue()) in other case.

2.2.1 Mapping function

The mapping function MS.mapping(WQ) is in charge to distribute the players located
in the WQ to a Zone. Depending on the mapping policy, players located in the WQ
will be assigned to a new Zone (Non_Heterogeneity_aware) or to a to an already created
Zone in the distributed area (Heterogeneity_aware).

Note that the two mapping policies proposed in this paper are based on the latency
requirements of such kind of games, and the difference between both is focused on taking
into account heterogeneity of nodes according to the number of cores.
Non_Heterogeneity_aware. The mapping function MS.mapping(WQ)) will create a
new Zone as it is shown in Algorithm 2. This function executes the lowest latency
function to find the best ZS, and the best RZS (the implementation details for the
lowestLatency function are discussed in subsection 2.3). Then, all players in the WQ
are linked to the new ZS (ZS.accept()). In addition, these players are also linked to
RZS (RZS.accept()) with the aim that RZS keeps the same information as ZS updated.
Finally, a Zone Z; comprises the ZS, RZS and the players that both of them manage.
Thus, a fault tolerance mechanism is maintained by the system (see section 2.3).

Input: WQ

MS.mapping (WQ):
begin
7S, RZS = MS.lowestLatency (WQ);
foreach P, € WQ do
ZS.accept (P);
RZS.accept (P);
end
end

Algorithm 2: Non_Heterogeneity_aware mapping function.

Heterogeneity_aware. The mapping function MS.mapping(WQ) (see Algorithm 3)
will firstly try to distribute the players located in the WQ to an already created Zone
contained in ZQ. If the previous function fails, then the MS will create a new Zone.
This mapping function begins with a loop that will add, those zones of ZQ whose
ZS has at least one free core (Z.S.freeCores()) to a local variable called AvailableZones.
Each free processor can host a GS composed of all players located in the WQ. If there is
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Input: ZQ,WQ

MS.mapping (WQ):

begin

AvailableZones ={);

forall ((ZS and RZS) € Z;)) € ZQ do

if (ZS.freeCores() and RZS.freeCores()) then
| AvailableZones =AvailableZones +{Z;};

end

f (AvailableZones/= () then
Z;=MS.lowestLatency(AvailableZones);
Z;.Accept (WQ);

else

ZS=MS.lowestLatency (WQ);
RZS=MS.lowestLatency(WQ-{ZS});

if (ZS.freeCores() > RZS.freeCores() ) then swap(ZS,RZS);
ZS.accept (WQ);

RZS.accept (WQ);

2Q=2Q+Z

end

o

end

Algorithm 3: Heterogeneity_aware Mapping function.

a zone available, the function will select the one which has the lowest latency between
the respective ZS and the MS (MS.lowestLatency()). Then the ZS and RZS of the
selected Zone will accept all players located in the WQ. If no Zone is found, then a
new Zone is created; first of all, it is executed the lowest Latency function to find the
best ZS and the best RZS, in latency and computational resource terms. Moreover, the
function ensures that RZS is able to serve at least the same number of GSs as the ZS to
avoid problems when the fault tolerance mechanisms acts (if statement with function
swap). Then, all players in the WQ are linked to the new ZS (ZS.accept()) and to the
RZS (RZS.accept()) with the aim of RZS keeping the same information as the updated
ZS. Thus, a fault tolerance mechanism is maintained by the system (see section 2.3).
Then, a Zone Z; comprises the ZS, the RZS and the set of players previously located in
the WQ. Finally, the created zone is added to the ZQ variable, in order to reuse them
in future situations of overload in MS.

2.3 Implementation Issues

The following issues need to be considered for the proper performance of the system:
Lowest Latency Functionality. Lowest_Latency function presented in Algo-
rithms 2 and 3 is based on a loop that checks the latency of all the ZS located in the
7Q with respect to the MS. Then, it selects the closest Zone to the MS to assign the
players located in the WQ. It guarantees that the ZS will be very similar to the MS (in
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latency terms) for the most players located in the WQ.

System Overload State. The state of system overload is determined by the
number of concurrent players playing in the MS. According to many authors, this is
the most important factor for determining the overload condition in MMOFPS [2, 11, 5],
as it has been proved experimentally that the number of concurrent players is directly
related to the CPU and network usage.

Free Cores Functionality. In Algorithm 3, the freeCores function is used. This
function returns the number of free cores of the ZS or RZS (depending on which node
executes the function). The studies carried out by Ye and Cheng in [11] show that with
an idle processor, is possible to easily provide an MMOFPS with QoS service. Likewise,
our system assumes that the player’s computational resources are totally dedicated to
the MMOFPS and therefore, it is feasible to take advantage of all these computational
resources of a player. Thus, the maximum number of GSs that a Zone is able to execute
is equal to the number of cores of the ZS, being that, a ZS reserves a core to run its
own GS when the ZS is involved in a player role, apart from the ZS role.

Fault Tolerance. In the OnDeGaS system, the fault tolerance mechanism is
introduced by the use of the RZS. The role of the RZS is to replace the ZS in case of
failure. For this reason, players in the distributed area play against the ZS and its RZS,
and the ZS sends the game state to both, players and the RZS. In the previous work
reported by the authors [1], there is a detailed explanation and performance analysis
of the fault tolerance mechanism, when it is applied to a homogeneous distributed
platform with a simple processor in each node.

3 Experimental Results

In this section, an experimentation process is conducted to demonstrate the feasibility
and good performance of the proposed OnDeGaS system as well as to compare the
influence in performance of the two presented mapping mechanisms for the distributed
area. The idea is to show that it configures a dynamically scalable-on-demand platform
and also that OnDeGaS provides a good game experience system with both mapping
policies, albeit with differences in performance in terms of latency, number of created
zones, waiting time for players located in the WQ and communication costs.

The experimentation was performed through simulation using SimPy [10]. SimPy
is a discrete-event simulation language based on standard Python. SimPy tools have
been used with python classes to implement the nodes of the platform, which can
develop four distinct roles: player, ZS, RZS and MS. SimPy procedures, allow random
behavior of the simulation to be created to represent the real behavior of a gamer.

Each simulation consists of 100, 000 player connections to the MS. The connections
are sequential with constant inter-arrival time (= 1 second) to submit the MS to a
constant stress situation or constant peak load, in order to verify that the distributed
area is dynamically adapted to the on-demand queries of players. When the MS reaches
its limit, 2,000 concurrent players, (since the computational resources of a typical single
machine server can support 2,000 to 6,000 concurrent clients [8]), no more players will
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be accepted, and new ones will be distributed to zones. Another important issue is
the calculus of the players’ latency against MS. This is determined by a triangulated
heuristic, delimiting the 2-Dimensional Euclidean Space to (z = [-110,+110],y =
[—110,110]). This methodology is based on the relative coordinates explained in [4].
Furthermore, each player has a lifetime determined by a Weibull distribution scaled
from 0 seconds up to 24 hours. For the parameters a and ( used in Algorithm 1,
we considered the values of 32 players and 120 seconds respectively, it having been
demonstrated in [1], that they are appropriate values to ensure a good performance
of the whole system. The GS of a Zone is over (able to try a reconnection to the
MS) when 900 seconds have passed [3] since the Zone creation on average; following an
exponential distribution.

The platform of the distributed area was considered with one core per node in the
non heterogeneous case, while an even distribution of 2, 4 and 8 cores in each node has
been considered when the Heterogeneity_aware mapping policy was applied.

According to the assumptions and functionalities established in the simulation pro-
cess, we show in next Subsection, the performance provided by the OnDeGaS system
according to the mapping mechanisms. The cases of the study are: ability to scale the
distributed area determined by the number of created zones and the QoS of the system,
measured by the zone’s average latency and the waiting queue time.

3.1 Performance Evaluation
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Figure 2: Study of the scalability performance of the mapping policies.

The scalability of the OnDeGaS system indicates its ability to manage more zones
on demand while the latency values of the whole system are maintained under an
acceptable threshold.

Figure 2a outlines, in logarithmic scale, the number of players served in the central
and the distributed area. The line which starts at time 0 represents the concurrent
MS players over time. When the MS reaches to its limit (2,000 concurrent players),
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i.e. it is overloaded, no more players will be accepted, and new ones will be distributed
to zones (top line). As can be observed, Figure 2a shows the huge difference between
the number of concurrent players centralized in the MS and those playing distributed
in zones. Note that this extra number of players would be rejected by the server of a
traditional client-server architecture, thus reflecting the benefits of our proposal.

We studied the evolution in the number of created zones, for 50 different simula-
tions, using both mapping policies. Figure 2b shows the average number of created
zones. The top solid line corresponds to Non_Heterogeneity_aware mapping alternative
with 1 core per node. The bottom dashed line represents the case of Heterogene-
ity_aware mapping policy where players can can have 2, 4 or 8 cores with the same
proportion of each. As can be observed, the distribution performed by Heterogene-
ity_aware is able to exploit the additional cores of the heterogeneous system, as it
creates a lower number of zones with more GSs in all cases. On average, the number
of created zones falls from 1690 with the Non_Heterogeneity_aware policy to 400 with
the other mapping policy.
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Figure 3: QoS evaluation of mapping policies.

Figure 3 shows the impact of the two mapping mechanisms in the QoS of the
system. Figure 3a shows the average latency in zones, in ms, with the same system
assumptions that were evaluated in Figure 2b. As can be observed, latency values
have similar average in both cases. However, they flow in a broader interval in the
Heterogeneity_aware case. This is due to the fact that in this alternative fewer zones
are created and so, the set of potential ZS to distribute players located in the WQ was
fewer. However, it is worth remarking that in all the cases, for both mapping policies,
latency values are below the maximum acceptable threshold for MMOFPS (180 ms).

Figure 3b shows the waiting time for players located in the WQ before they are
distributed to zones. The experiment reveals a significant impact depending on the
mapping policy. Whenever a new Zone is created, a new ZS and RZS must be searched
for. This process takes some seconds, which can be considered constant (30 seconds on
average). This situation happens continuously with Non_Heterogeneity_aware mapping
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policy as indicated by the average of 36.9 ms. Nevertheless, this happens less often with
the other mapping mechanism, as more players are mapped to zones already created,
giving an average of 25.12 ms in this case.

Another aspect to consider is the influence in the communication overhead associ-
ated to the process of creating new zones of both mapping policies. There is no need to
check the already created zones for Non_Heterogeneity_aware, then the communication
cost between the MS and the rest of zones in that case is none. However, for Hetero-
geneity_aware, before creating a new Zone, Algorithm 3 checks in ZQ if there is any
ZS and RZS with a free core to host a new GS in order to avoid a new Zone creation.
Then, in the worst case it has to be managed a communication between the MS and
the rest of zones existing in the distributed area before creating a new one.

To conclude, the proposed mapping mechanisms for MMOFPS game sessions are
able both to provide a distributed platform that scales on demand that keeps latency
values under an acceptable threshold. Regarding to differences, we have shown that
the Heterogeneity_aware mechanism exploits better the resource capabilities of nodes
and maps players quite faster, while the system is penalized by an increase in commu-
nications between the central and the distributed area and a latency variability.

4 Conclusion and Future Work

In this paper, we presented an hybrid system, called OnDeGaS (On Demand Game Ser-
vice), that fits the scalability and latency requirements of MMOFPS networked games.
The proposed new system is made up of a Master Server, carrying out centralized func-
tionalities, and several zones that make up a distributed P2P network. Whenever the
central server is overloaded, new Zones are created according to two different policies:
Non_Heterogeneity_aware and Heterogeneity_aware policy. Non_Heterogeneity_aware
mechanism selects a new distributed game server, among waiting players, taking exclu-
sively latency criteria into account. On the other hand, the Heterogeneity_aware policy
maps, whenever it is possible, the new game sessions into the available cores of the
game servers already created.

By means of simulation, it has been demonstrated that the system is able to scale
according to the demand. It has also been shown that this scalability does not damage
the average latency, as it is always possible to achieve in distributed area an average
latency below the maximum threshold allowed in MMOFPSs. Moreover, the player’s
waiting time is reduced if Heterogeneity_aware mapping policy is applied at the expense
of increasing the communication costs between the central and the distributed area.

Future work is oriented towards modeling MMORPGs requirements and extending
our hybrid architecture to them. Another important key would be to merge the current
simulator with a network simulator, to study the QoS of the game, and test the network
problems derived from an MMOG. Finally, the implementation of a prototype of the
simulated architecture would be an important step for the deployment of this proposal.
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Abstract

In this paper we present an algorithm of quasi-linear complexity for exactly
calculating the infimal convolution of convex quadratic functions. The algorithm
exactly and simultaneously solves a separable uniparametric family of quadratic
programming problems resulting from varying the equality constraint.
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1 Introduction

The infimal convolution operator is well known within the context of convex analysis.
For a survey of the properties of this operation, see [1].

Definition 1. Let F,G : R — R := R U {400, —00} be two functions. We denote
as the Infimal Convolution of F and G the operation defined as follows:

(FOG)(z) = ;gﬂg{F(w) +Gy—2)}
Furthermore, if A ={1,..., N}, we have that

(OicaF)(§) = _inf Y Fi(x)
Zzizg i€A
i€cA
When the functions are considered to be constrained a certain domain, Dom/(F;) =
[mi, M;], the above definition continues to be valid by redefining Fj(z) = +oo if z ¢
Dom(F;). In this case, the equivalent definition may be expressed as follows:

VA(E) = (QieaF)(€) = _min Fi(i)
A in=§ ;

i€A
m;<z;<M;
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This operator has a microeconomic interpretation that is quite precise: if ¥4 is the
infimal convolution of several production cost functions, \IIA(S ) represents the joint cost
for a production level £ when the latter is shared out among the different units in the
most efficient way possible.

In this paper we present an algorithm that leads to the determination of the analytic
optimal solution of a particular quadratic programming (QP) problem: Let {F;};c4 be
a family of strictly convex quadratic functions:

Fi(xi) = oy + Biwi + vix?

We denote by {PrA(ﬁ)} ceR the family of separable convex QP Problems:

minimize: ZFz(xl)
i€A
subject to: le =& mi <z < M;,Vie A
i€EA
QP problems have long been a subject of interest in the scientific community. Thou-
sands of papers [2] have been published that deal with applying QP algorithms to
diverse problems. Within this extremely wide-ranging field of research, some authors
have sought the analytic solution for certain particular cases of QP problems with ad-
ditional simplifications. For example, [3] presents an algorithm of linear complexity
for the case of a single equality constraint (fixed &), only including constraints of the
type z; > 0. The present paper generalizes prior studies, presenting an algorithm of
quasi-linear complexity, O(N log(N)), for the family of problems {PrA(&’)} cep Lhis
supposes a substantial improvement to a previous paper by the authors [4] in which
an algorithm was presented that, as we shall show in this paper, is one of quadratic
computational complexity, O(N?).

2 Algorithm

In this section, we first present the necessary definitions to build our algorithm.
Definition 2. Let us consider in the set A x {m, M} the binary relation < defined
as follows:

N

(i,m) % (j,m) == F/(m;) < Fj(m;) or (Fj(m;) = Fj(m;) and i < j)

(i,m) < (4, M) <= F{(m;) < Fj(Mj) or (Fj(m;) = Fj(M;) and i < j)
(i, M) < (J,m) <= F{(M;) < Fj(my) or (Fj(m;) = Fj(M;) and i < j)
(i, M) < (4, M) <= F{(M;) < Fj(M;) or (F/(m;) = Fj(M;) and i < j)

N

Definition 3. We denote by g the isomorphism

g(n) == (g1(n), g2(n)), g:({1,2,---,2N},<) — (A x {m, M}, <)

which at each natural number n € {1,2,--- 2N} corresponds to the n-th element of
A x {m, M} following the order established by <.
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We now present the optimization algorithm that leads to the determination of the
optimal solution. The algorithm generates all the feasible states of activity/inactivity
of the constraints on the solution of the problem. We build a sequence (£,,0,,Z,)
starting with the triad (A, @, @), which represents the fact that all the constraints on
minimum are active and ending with the triad (&, @, A), which represents the fact that
all the constraints on maximum are active. Each step of the process consists in decreas-
ing the number of active constraints on minimum by one unit or increasing the number
of active constraints on maximum by one unit, following the order established by the

relation <.
n=20,...,2N:

Qo

Ifgz() Qn = Qn1

Let us consider the following recurrent sequence,

Oy=09
On =On_1—{g1(n)}

If g2(n) =m: Qn =1 —{q1(n)} O, =06,_1U{g(n)}

We prove the following proposition.

Proposition 1. The function U4 (infimal convolution) is piecewise quadratic, con-
tinuous and, if ©, # @, Vn,0 < n < 2N, then it also belongs to class C*. Specifically,

Zf d)n < 5 < ¢n+17 with

1 E ;1(11) (m91 (n))
Gny1 = P + [Sn-l-l - Sn] = Sn = ,
Tn F91 (n) (Mgl (n))
we have
\I/A(g) = an + ﬂn(ﬁ - Nn) + ;V\n(g - ,un)2
where
{ Pn-1—Mg ) if g2(n)=m
Hn = .
Hn—1 Mg1 (n) if gQ(n) =M
~ (anﬁ-ﬁ (n))2
R Gt + g (m) ~ 1G] Forn) (M)
e (Buo1 =By m)’
~ n—1— (n)
Gn-1 =gy m) = 45 ey~ T (Mo (m)
1 ) ~ .
. B 1t gy ) [ﬁn—l “Ygi(n) T Bgl (n) ’Yn} if
ﬁn = .
SR [ Br-1- Ygi(n) T Bgi(n) n:| if
an— Yg1(n -
- %711—%’55;11((73) if  g2(n) =m
Tn = S 1y ) .
_m if g2(n) =M
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Xn = (Qn,@n,En),
:0—@
En=Zp-1U{g1(n)}
Sn = Sn—1

if ga(n)=m
if g2(n)=M
if ga(n)=m
if g2(n)=M
g2(n) =m
92(n) = M
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3 Computational Complexity of the Algorithm

In this section we analyze the complexity of the previous algorithm and compare it
to the one presented in [4]. Given the family of strictly convex quadratic functions
Fi(z;) = o; + Biz; + viz? with i = 1.....N and Dom(F;) = [m;, M;], each one of these
shall be represented by the list {m;, M;, «;, B;,7:}. The union of all these functions
constitutes the input for the algorithm:

{{m1, M1, 01, B1, 1}, {ma, M2, a2, B2, 72}, -, {mn, Mn,an, BN, YN} }

The output shall represents the infimal convolution, which we symbolize as:

{{¢17 ¢27alyﬁla§1}a et 7{¢na ¢n+1a anvﬁna?n}a e ){¢2N717 ¢2N7a2Naﬂ2Na§2N}}

The algorithm presents the following phases:

A) Construction of the set A x {m, M}.

B) Ordering of the set A x {m, M} following the ordering relation < .

C) Construction of the recurrent sequence X,, := (,,0,,2,), n=0,...,2N.
D) Construction of the sequence s,, n=0,...,2N.

E) Construction of the sequences a,, Bn, Y, n=1,...,2N — 1.

F) Construction of the sequences ¢,, n=1,...,2N.

We prove that:
Proposition 2. The complexity of the aforementioned algorithm is quasi-linear:
O(N log(N)), and the complexity of the algorithm [4] is quadratic: O(N?).
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Abstract

In this work, an efficient numerical method based on an adaptive finite element
technique is presented for simulating three-dimensional scroll waves turbulence
in cardiac tissue. The proposed numerical method enhances the accuracy of the
prediction of the electrical wave fronts. Illustrations of the performance of the
proposed method are presented using three-dimensional re-entrant waves.

Key words: Monodomain model, finite element method, anisotropic mesh adap-
tation, FitzHugh-Nagumo model.

1 Introduction

Scroll wave turbulence in cardiac tissue is known as fibrillation and implies cardiac
failure. From mathematical point of view, fibrillations can be represented by the
monodomain model with an appropriate ionic model. The monodomain model is a
reaction-diffusion system and consists of a nonlinear partial differential equation for
the transmembrane potential coupled with an ordinary differential equation for the re-
covery variable. This model is computationally very expensive and is known to require
extremely fine meshes (Bourgault et al. [9]).

To overcome these difficulties, many methods have been developed in the literature.
This includes parallel computing techniques with a fixed spatial mesh (Colli Franzone
and Pavarino [10]), fully and semi implicit time-stepping descritizations (Bourgault and
coauthors [9] and[13]) and operator-splitting methods (Lines et al. [16, 17]).
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In our work [5, 4, 7, 6], two- and three-dimensional mesh adaptation methods have
been introduced to capture transmembrane potential fronts using the monodomain
and bidomain model. The technique consists in locating finer mesh cells near the front
position while a coarser mesh is used away from the front. In this work, a three dimen-
sional adaptive algorithm is presented for accurately computing time-evolving scroll
wave. Although the scroll wave is in a noncoherent (turbulent) state, the method
proposed reduces the computational grid size, and concentrates the elements near the
depolarization and repolarization front positions, which leads to an efficient solutions.

This paper is organized as follows. Next section is devoted to the monodomain

model and adaptive mesh technique, and section 3 presents three-dimensional numeri-
cal results showing the accuracy of the proposed method.

2 Mathematical Models and Adaptive Mesh Technique

The monodomain model used in this work takes the following form:

a_U = V- (DVU) + Iion(U, V) + IS’

ot (1)
oV

L= cwv).

Where U describes the transmembrane potential and V' describes the recovery vari-
able. I is the current due to an external stimulus, and the nonlinear terms [0, (U, V)
and G(U, V') depend on the ionic model. In this work, a modified version of a piecewise
linearized FitzHugh-Nagumo model is used [2]:

Lm:kUﬂ—U)OJ—Zg£> and G(U,V) = g(U) - V.

where

0 ifU < 4
g(U) =< 1-675U0U —1)?, ifi<U<1
1 siU > 1.

A finite element method is used to solve the nonlinear system of equation (1). The
variational formulation of this system is straightforward and obtained by multiplying
this system by test functions (¢, 1) and integrating by parts the second order terms.

In all our numerical simulations, a quadratic (P») finite elements and a fully implicit

backward second order scheme are employed for the spatial and time discretizations,
respectively. For more details about a comparison between different time-stepping
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schemes and spatial dicretizations, the reader is refereed to Belhamadia [5].

An adaptive time-dependent meshing algorithm for accurately simulating moving
three-dimensional transmembrane potential is now presented. The adaptive strategy
employed in this work uses an error estimators based on a definition of edge lengths
using a solution dependent metric (see Habashi and coauthors [14, 1, 11] and Hecht
and Mohammadi [15],and Belhamadia et al. [8]).

The overall adaptive strategy is the following:

1. Start from the solutions UM™Y, U™ v (=1 and V(™ and a mesh M at time
(),

2. Solve the system (1) on mesh M ™) to obtain a first approximation of the solutions
(denoted U+ and V1) at time ¢+,

3. Adapt the mesh starting from the mesh M ™ and the solution dependent metric
calculated with the solution time-variations
Untl) Ly L gyhn-1) 1 yntl) Ly () 4 y(n-1)

an

3 3

to obtain a new mesh M (" +1)

4. Reinterpolate U™~V U™ v =1 and V™ on mesh M™+1;
5. Solve the system (1) on mesh M™+D for U+ and Vrtl,

6. Next time step: go to step 2.

The step 3 depends on time discretizations scheme. In this work, a fully implicit
backward second order scheme for time-stepping is employed. Thus, the mesh is re-
quired to represent the solutions at time ¢t~ ¢ and ¢t(+1,

3 Numerical Results

In this section, the performance of the adaptive method is presented using a three
dimensional scroll wave turbulence. The computational domain is the cube [0, 60] X
[0, 60] x [0, 60]. Homogeneous Neumann conditions are imposed on all sides, and the
initial condition is a scroll wave as presented in figure 1. This was obtained with the
technique described in Ezscroll software by Barkley et al. [3, 12] and using the following
parameters:
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a=0.84 | b=0.08
e=007| D=1
At =0.1

The scroll wave began to break up after some transient rotations. This wave travels
across the whole computational domain, calling for grids that are uniformly fine. In-
deed, coarse grids lead to wrong propagation speed and wave trajectories. The adaptive
technique presented in this work reduces the total number of element since the mesh
is refined only in the vicinity of the front position while keeping sufficient resolution in
other regions.

Figure 2 presents the adapted meshes and the transmembrane potential at different
times. As can be seen, the adapted mesh evolves with time and, at each time step,
elongated elements are obtained at the appropriate position to capture the depolariza-
tion and repolarization fronts, in spite of the fact that these fronts correspond to sharp
gradients of the transmembrane potential.

4 Conclusions

An efficient numerical method for the scroll wave turbulence in a three-dimensional
reaction-diffusion system was presented. The accuracy of the numerical solutions was
obtained by using an anisotropic time-dependent adaptive method. It will be interesting
to compare the adaptive method with regular meshes and also to see how the method
performs with a realistic heart geometry in case of scroll wave turbulence.
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Abstract

Massive convolution is the basic operation in multichannel acoustic signal pro-
cessing. Dealing with multichannel signals takes a big computational cost requiring
the use of multiple resources from the CPU. Graphical Processor Units (GPU), a
high parallel commodity programmable co-processors, can carry out a multichan-
nel convolution faster. However, the fact of transferring data from/to the CPU
to/from the GPU prevents to carry out a real-time application. In this paper, an
algorithm with a pipeline structure is developed, what allows to perform a massive
real-time convolution.

Key words: Massive convolution, Multichannel audio processing, FFT, GPU,
CUDA

1 Introduction

Multichannel acoustic signal processing has experienced a great development in recent
years, due to an increase in the number of sound sources used in playback applications
available to users, and the growing need to incorporate new effects and to improve the
experience of hearing [1].

Several effects, as the synthesis of 3D sound, are achieved through multichannel
signal processing, with an efficient implementation of the massive convolution. It con-
sists of carrying out different convolutions of different channels in a parallel way. All
these operations require high computing capacity.
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GPU offer us the possibility of parallelizing these operations, letting us not only to
obtain the result of the processing in much less time, but also to free up CPU resources.

The paper is organized as follows. Section 2 describes the convolution and the
problem of its implementation on GPU. In Section 3, an efficient GPU implementation
of massive convolution is presented. Section 4 is reserved for the results of different
tests on GPU. Finally Sections 5 is devoted to the conclusions, and the paper closes
with some references.

2 Convolution on GPU

2.1 Convolution Algorithm in GPU

The convolution describes the behavior of a linear, time-invariant discrete-time system
with input signal = and output signal y [2]:

N-1
yln) = Y =ljlhln - 4, (1)
§=0

Signal z will the input to the system, in our case, samples from audio signal. The
known signal h is the response of the system to a unit-pulse input. The output signal
y contains the samples of the desired acoustic effects. N, M and L = N + M — 1 will
be the lenghts of x, h and y respectively.

Convolution theorem [2] states that if x and h are padded with zeros to the length
L, then the Discrete Fourier Transform of y is the point-wise product of the Discrete
Fourier Transforms of x and h. In other words, convolution in one domain (e.g., time
domain) equals point-wise multiplication in the other domain (e.g., frequency domain).
This way of computing the convolution is advantageous because the number of opera-
tions is smaller than implementing the convolution in the time domain.

There exist different libraries that implement efficient FFT algorithms. They allow
to obtain the Discrete Fourier Transform of a signal, in a CPU (like MKL [7] or IPP [8])
or in a GPU (like CUFFT [5] from NVIDIA whose performances have been analized in
9)).

The use of a GPU may offer two benefits: less execution time due to a high level
of parallelization of the computations and the freeing up resources of the CPU.

Let us consider x and input audio signal, h an acoustic filter and y the desired
output audio signal of our system. The execution of the convolution using a GPU
can be enumerated in the next steps: first, the lenghts of x and A must be checked;
then both signals must be transferred from the CPU to the GPU; next, the FFT (from
CUFFT) is applied to each signal obtaining X and H; the frequency domain output
Y is obtained multiplying point-wise X and H; the time domain output y is obtained
applying the IFFT to Y; Finally, y is transferred from the GPU to the CPU. Figure 1
shows this process.

We can observe that:

1. Long time of the algorithm is spent in transfers between the CPU and the GPU.
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Transfer Catulate Catulate Multiply Catulate Trensfer
x and h »  X=FFT(x) »| H=FFT(h) »| point-wise » y=IFFT(Y) » y
CPU->GPU Y=X*H GPU->CPU

Figure 1: Steps in order to calculate convolution of signals x and A on GPU.

2. Signals must be sent to the GPU before beginning the operations, and the whole
output signal must be received at the CPU to be reproduced.

In spite of the parallelism in operations that offered by the GPU, the transfer
time penalty prevents us to carry out a real time application in a GPU. More even, if
the signal x is compound by several channels, then a multiple convolutions would be
required. On the other hand, if a CPU is used to make a massive convolution, all our
resources would be used and no more applications could be run at the same time.

2.2 Convolution of Large Signals

In a real-time environment, the length of signal z can not be known a priori. There
exist techniques that allow us to cut the signal in chunks, and from the convolution of
each chunk we can obtain the convolution of the whole signal. One of these techniques
is called overlap-save [3] and it consists of:

1. Chunks of L samples are taken, where L will be either the next power of two,
bigger than M (length of h) or 512.

2. In the first chunk, the first M — 1 samples will be padded with zeros.

3. From the second and following chunks, the first M — 1 samples will be duplicated
from the last M — 1 samples of the previous chunk.

4. Following the steps of the previous subsection, yo[n], y1[n], y2[n], ..., are obtained
as the result of the convolution of zg[n|, z1[n|, x2[n|, ..., with h respectively.

5. From each chunk result, the first M — 1 samples will not be valid values so they
will be eliminated.

3 Pipelined Algorithm of convolution on GPU

Recently, the new CUDA toolkit 3.0 [4] lets use CUFFT [5] with the property concurrent
copy and execution. Therefore, the latency of transferring data from the CPU to the
GPU and vice versa can be overlapped by computations. That fits perfectly with the
steps described in the previous section.

In fact, in order to maximize the overlapping of the computations in the GPU and
the communications between CPU and GPU, a matrix can be configured with each
chunk obtained with the signal samples.
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In this matrix, the first M — 1 values of one row will coincide with the last M —
1 values of the previous one, except the first configured matrix at the start of the
algorithm whose first M — 1 values from the first row will be zeros. This matrix will
have the following shape with R rows and L columns:

The last M — 1 samples from the last row of the matrix will be kept in an internal
buffer in order to occupy the first M — 1 positions of the next matrix to be filled.

M-1 L M-1 M-1 L M-1
— —
imEBEmBER=E22
R R
e ]

Figure 2: Samples are sent to GPU in a chunks-matrix- configuration. matriz;_, (left
side) shares a M — 1 samples with, previously sent to matrix; (right side).

The concurrent copy and execution property lets sending the matrix; using the
asynchronous transfer while carrying out the other tasks in parallel:

1. Beginning to configure the next matrix matriz;+; with new samples.

2. Execution of the convolution algorithm at the GPU with the matrix which was
previously sent matriz;—;. So, R chunk-convolutions (the matrix sent to the
GPU has R rows) will be executed in a parallel way.

3. Chunk-convolutions results from matrixz;_o will be sent back from GPU to the

CPU

The unit-impulse response h will have been sent to the GPU before sending the
first matrix. h will be kept in the GPU memory and reused over and over with all the
convolutions.

All the previous tasks can be viewed in a pipeline configuration as shown in Figure 3.

3.1 Extrapolation to a multichannel signal: Massive Convolution

Dealing with a multichannel-signal will be totally scalable due to an equal distribution
of the resources. So, the matrix that contains the chunks will be divided in the number
of channels of the signal.

In the same way if more than one effect is going to be applied, each of the impulse
responses would be sent and kept in the GPU.
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Impulse
Resp onse

Transfer
CPU->GPU|

Signal
Matrix

Transfer Signal
CPU->GPUl  Matrix

Execution | Transfer Signal
inGPU | CPU->GPU  Matrix

Transfer Execution | Transfer Signal
GPU->CPU| inGPU |CPU->GPU| Matrix

Transfer Execution | Transfer
GPU->CPU| inGPU |CPU->GPU

Transfer Execution
GPU->CPU| in GPU

Transfer
GPU->CPU|

Figure 3: Pipeline Configuration.

The parallel architecture of the GPU give us freedom to configure several possibil-
ities such as: Apply the same effect to all the channel signals. Apply one specific effect
to one channel and other effect to the rest. Even, apply one effect to a determinate
number of channels.

So, all the combinations are possible, and therefore, the possibilities of mixing
several acoustic effects, as well.

4 Results

Many are the tests that are being carried out in order to know the achievement of
the massive convolution. One of the most significative resolves around the comparison
between the convolution algorithm in GPU, shown at Figure 1 (implemented, for ex-
ample, in [6]), and the pipeline algorithm. In this case, as it can be shown in table 2,
the second achieves the convolution of the signal in half of the time than the first one.

Test has been carried out on a signal x and a impulse-response h compound by
176400 samples and 220 coefficients respectively. Results are shown in Table 1. A time
comparison with the basic convolution algorithm is shown in Table 2.

As it can be appreciated, performance are improved if an algorithm in convolution
with a pipeline configuration is used.

5 Conclusions

With this article, it has been revealed that GPU can be used for carrying out a massive
convolution of multichannel-acoustic signals in real-time. It has been possible thanks
to the pipeline configuration that is now available with the new CUDA Toolkit 3.0. It
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must be pointed that one of the advantages of using a GPU, is the fact of freeing up
CPU resources, letting us to run more applications in the CPU.

R//L| 512 1024 2048 4096 8192
32 | 625.92 833.28 802.83 836.83 870.70
64 | 730.80 745.64 809.62 890.21 876.21
128 | 761.43 819.39 865.55 906.63 981.27
256 | 870.89 913.35 1094.1 995.02 1111.4
512 | 937.24 951.26 949.20 994.04 1206.3
1024 | 1005.2 110.51 1080.4 1278.7 1622.8
2048 | 1089.1 1274.8 1436.7 1603.1 1969.1

Table 1: Time in miliseconds of the pipelined algorithm varying number of rows (R)
and columns (C) of the matrix.

Type of Algorithm Time
Convolution Algorithm in GPU 1330ms
Configuration Pipeline (Best Performance) | 802.83ms

Table 2: Comparison between basic and pipelined algorithm.
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Abstract

In this paper we consider an ecoepidemic model with disease in the prey, in
which the disease-carriers are identifiable by other individuals of their own popula-
tion. Therefore the contact with infectious can be avoided and thereby the disease
incidence decreased. We model the situation and investigate the long term behav-
ior of the system, showing that bifurcations leading to sustained limit cycles may
occur.
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model
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1 Introduction

Population theory is a branch of mathematical biology dealing with the study of inter-
acting populations. From the early classical models on single populations, predator-
prey models have been developed in the second decade of the past century. From the
latter, many investigations followed, extending also to other types of interactions, like
competition and commensalism.

Epidemiology investigates the spreading of infectious diseases in populations, with
the goal of fighting and possibly eradicating them. The role of mathematical modeling
of epidemics in this context appears to be fundamental, as the infectious individuals, i.e.
those that are able to propagate by contact the infection, are not usually recognizable.
However, the human behavior is in general different. In fact, when an epidemic spreads,
people tend to take measures in order not to be infected. This has been remarked and
used as the basis for proposing a model, now well known in the literature, [2].

Ecoepidemiology is a rather recent subject of investigation, merging the epidemi-
ological features with those of interacting systems of populations. The issues tackled
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are important, since diseases are present in the real world, and therefore influence en-
vironments in which clearly more than just one species is present. For a summary of
some of the earlier results in this relatively new field of study, see Chapter 7 of [5].

In this paper, we address the problem of how to modify the classical ecoepidemic
models when the disease carriers are identifiable by the other individuals in the popu-
lation, and therefore avoided in order not to catch the disease.

2 Model formulation

We consider here a predator-prey model in which prey can catch an infectious disease,
which spreads by contact among an infectious and a susceptible. The disease is unre-
coverable, i.e. once contracted, the infected individual carries it for its lifespan. We
denote by S the healthy prey, by I the infected prey and by P the predators. The
differential equations describing this ecosystem are:

ds S )

7= (1-%) s W
dr IS
ar_ IS i
i Ay MoME
%:fmp+eaSP+ebIP.

The model is characterized by the interactions among the three populations in the
environment under consideration. To capture their meaning, we focus at first on the
interpretation of the system’s parameters.

The meaning of the parameters of the model are as follows: K is the environment
carrying capacity for the prey; r represents the healthy prey’s reproduction rate; a is the
predation rate on healthy prey, while b is the one upon sick prey; m is the predators’
mortality, p the sick prey’s mortality; v denotes the disease incidence rate; e is the
conversion factor, a pure number, i.e. dimensionless, beetween zero to one; A has a
role similar to the half saturation constant in the Holling type II model.

We now describe each equation in the model (1). The first term of the first equa-
tion represents the logistic growth of the prey. The second one in the first equation
represents the disease incidence term, i.e. it counts all the healthy prey which become
sick upon contact with an infected one and leave their class. The new characteristic
of the ecoepidemic model being introduced here is exactly this term. We are indeed
making the assumption that for the particular disease in consideration the disease car-
riers are in fact recognizable. In fact, the functional response of sound prey is to try
to avoid contact with an infectious individual when the disease is widespread i.e. there
are many infectious around. Notice in fact that as I — oo, for the functional response
we have

The third term represents instead the reduction of the prey number due to predation.
As for the second equation the first term is once again the disease incidence, this time
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accounting for the susceptibles that become new infected. The second one represents
the natural plus disease-related prey mortality, and the last one describes losses due
to predation. Note that the predation rate is here different from the one related to
be sound prey. In the third equation the first term is the predators’ mortality; then
there are two growth terms, accounting for gains due to predation of sound and of
infected prey respectively resulting in new individuals. Remark also that in this model
the infected prey do not reproduce, nor do they contribute to intraspecific competition
nor there is vertical transmission of the disease, i.e. newborns are always born sound.

3 Equilibria

We are now interested in finding the equilibrium points Ey = (Sk, Iy, Py), i.e. the
points to which the system tends as time flows. Easily, the origin Ey = (0,0,0) is an
equilibrium point; the other boundary ones are

m _r m p 2
B = (K,0,0), E:(—,O,—(l— )) By = (HAa+12),13,0),
1= ) 2 ea a eaKK 3 fy( +13), T

and then there is the coexistence equilibrium

m — ebT} ym + vebTy + pAea + uTiea
E4 = 7T47 2 .
ea bea(A+1T7)

In the above expressions, T3 denotes the solution of the following quartic equation
ruzt + (2rpA — rKv)a? + v* Ko — rK Ay + rpA% =0
and T} represents instead a root of the following cubic equation
reb?z? + (rKeab+a’ K pe—rmb)x? +rAeb*x —aKym+a’ K pAe+rK Aeab—r Amb = 0.
The feasibility condition for Fs is as follows
m < eak, (2)

and one for the interior equilibrium Fj places an upper bound on the location of the
positive root, namely

m
— > Ty.
eb =4 (3)

A condition ensuring a positive root for the quartic is
pA < K. (4)

In fact, we do not have the closed form expression for the point F3, but it is possible to
determine some necessary conditions for existence. From the equations of the system
(1), setting P = 0 we get the equations:

K I M 2
L L —Fayr
S1 r(r A—i—Ig) So /y( + )
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From the graphs of the two functions it is possible to obtain the existence condition
(4) as indicated above.
A condition instead giving a positive root for the cubic is given by

a’KuAe +rK Aeab < rAmb + aK~ym.

Here again, we do not have the closed form expression for the point Ey4, but it is possible
to determine some necessary conditions for existence as well. From the equations of
the system (1), we find

(pa + rb)(A + I%) + bl b m
Ss=K Sy=—1T+—
s aKvy+rb(A+12) ° 7* o Tea
and by graphing these functions, we get the existence and feasibility condition:
m KA(pa + rb)
Sy < —, Syg=—757"—"7-.
> ea b aK~ +rbA

4 Stability analysis of equilibria.

The general form of the Jacobian matrix of the system (1) at the generic point (S, I, P)
is the following

2rS I 5(12—A)
T — K ﬁ —aP ’7(1244_#)2 —CLS
I S(A—I7)
pes Gy M- bP —bI
eaP ebP —m + eaS + ebl

We begin by considering the origin. One of the eigenvalues of this Jacobian matrix, r,
is positive, the other ones are —u and —m. Hence Ej is an unstable equilibrium.
We then consider Fi: the stability conditions of this equilibrium are

m > eaK, Ap>K. (5)
The characteristic equation for Ey factors, to give explicitly an eigenvalue
752
—= —u—bP.
A 2,
and then the quadratic equations
M Kea +rm\ +rmeaK — rm? = 0. (6)

For such equation, the Routh Hurwitz conditions ensure two negative roots if and only
if this condition is satisfied

eaK >m (7)
Similarly from the explicit first eigenvalue we obtain
br  ym brm

— > — . 8

pt a = aeA + a’eK ()

We do not have the closed form expression for the points F3 and Fy, so that it is
not possible to perform the stability analysis theoretically, to this end we will have to
use numerical simulations.
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5 Biological significance of the results

The instability of equilibrium FEy means that even the presence of a small number of
predators or prey makes the system evolve, toward population values that will never
all be zero at the same time. The equilibrium FE; corresponds to the situation in which
predators and sick prey vanish, i.e. only sound prey survive in the system at the
environment’s carrying capacity K. It is attained if and only if conditions (5) hold,
i.e. the mortality of predators must be higher than a quantity that depends on the
product of the predator’s hunting rate on sound prey a by the conversion factor and
the carrying capacity, e and K. A similar condition holds for the infected. If their
combined, natural plus disease-related mortality pu exceeds a quantity that depends on
the disease incidence coefficient =, scaled via the constant A, as well as once again on
the the sustem’s prey carrying capacity, K. Combining these result we can claim that
the sound-prey-only equilibrium is attained if the reduced mortality rates of infected
prey and predators do not exceed the carrying capacity of the environment, where
“reduced” means the ratio of each mortality respectively by the assimilation term due
to hunting and the disease incidence, namely

K > max{m,AM}.

ea y

The disease-free equilibrium point Ejs is feasible if (2) holds, i.e. the opposite of
that one of stability of previous point, and (8). The requests seem reasonable: the
mortality of predators should be limited, while that of diseased prey must exceed a
threshold value. Note that FE; is stable if and only if E5 is infeasible.

Equilibrium FEs5 describes the situation where healthy and diseased prey survive,
while the predators become extinct. The simulations indicate that there is a set of
parameters for which the equilibrium is reached.

The interior equilibrium F, represents the situation when predators thrive together
with healthy and diseased. Again the simulations show that this equilibrium is attained
for a particular set of parameters.

6 Simulations

To verify theoretical results we have done some graphical simulations with Matlab.
We start from point Fj. Assigning the following values to the parameters,

r=09,K=2~v=01,A=1,a=0.1,b=02,1=09,m=04,¢ = 0.6

we get the result shown in Figure 1, showing that the equilibrium is indeed attained,
as theoretically predicted. Note indeed that the stability condition (5) is satisfied for
this parameter choice.

For the point F9, we consider the parameter values

r=09,K=2~v=01,A=1,a=09,b=03,1=09,m=03,¢=0.8
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Figure 1: Equilibrium Ej is reached. On the left the solutions as function of time, on
the right the trajectory in the phase space.
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Figure 2: Stability of the disease-free equilibrium Fs. On the left the solutions as
function of time, on the right the trajectory in the phase space.

obtaining the behavior shown in Figure 2. Once more, the disease-free equilibrium
is reached by the system’s trajectories, verifying the theoretical results. Indeed both
conditions (7) and (8) are satisfied, for the above parameter choice.

We do not have the analytical coordinates of the remaining equilibria E3 and FEj.
To investigate their behavior, simulations are the only resource. For the former, the
following parameter values

r=03,K=20,vy=1,A4=08a=0.1,b=0.1,=0.6,m=0.1,e=0.9

provide a stable behavior, as depicted in Figure 3.
Around the point Ey4, the values

r=10,K=30,y=1,A=0.01,a=0.1,b=0.1,u=05,m=0.1,e = 0.9
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Figure 3: Stability of the predator-free equilibrium Fs. On the left the solutions as
function of time, on the right the trajectory in the phase space.

provide the empirical verification that the interior equilibrium in such situation is stable
and therefore can be attained, as shown in Figure 4.

\
0 20 40 60 80 100 120 140 160 180 200
t

Figure 4: Stability of equilibrium F, indicating that coexistence of the ecosystem at a
constant level is possible. On the left the solutions as function of time, on the right the
trajectory in the phase space.

At Ej a situation that induces oscillatory behavior arises. In fact if we change the
parameter values and consider

r=0.9,K=30,v=011,A=0.1,a=0.1,b=0.1,u = 0.5.m = 0.4,e = 0.9

we have the behavior shown in Figure 5.
We have also investigated some of the limit cycles arising. Taking as reference
values for the parameters the following values,

r=10, K=30, =1, A=.01, a=.1, b=.1, p=.5, m=.05 e=.9,
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Figure 5: Limit cycles arising around E4. Thus coexistence can be attained also via
stable oscillations. On the left the solutions as function of time, on the right the
trajectory in the phase space.

and letting one of them vary at each time, we have constructed some bifurcation dia-
grams. We report below some of the results.

In Figure 6 we provide a bifurcation diagram as a function of the parameter m, in
Figure 7 the bifurcation diagram as a function of the parameter a, in Figure 8 the one
relative to the parameter b, in Figure 9 the one relative to v, finally in Figure 10 the
one of . Here, stars denote the largest value of the limit cycle and circles the smallest
one.
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Figure 6: Bifurcation diagram as a function of the parameter m.
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Figure 7: Bifurcation diagram as a function of the parameter a.
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Figure 8: Bifurcation diagram as a function of the parameter b.

7 Conclusions

In this investigation we have introduced a response against infected individuals in
predator-prey ecoepidemic models, in which the disease spreads among prey. We have
examined the equilibria and studied the limit cycles that originate when the latter bi-
furcate. These persistent oscillations are similar to the ones found in the classical model

for these situations, [2], in contrast instead to what is reported in [4].

With respect

to other similar models using Holling type I interaction terms, [6], the oscillations here
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Figure 9: Bifurcation diagram as a function of the parameter ~.
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Figure 10: Bifurcation diagram as a function of the parameter u.

found constitute a novelty. But a similar model using Holling type II interactions shows

also limit cycles, [3].
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Abstract

In this work we present a numerical method to approximate the solution of the
Volterra integral equation of the second kind. The properties of Schauder bases
and fixed point theorem are the fundamental tools used for this purpose.

Key words: Volterra integral equation, fized point, Schauder bases, numerical
methods.
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1 Introduction

Modeling many problems of science, engineering, physics and other disciplines leads to
linear and nonlinear Volterra integral equations of the second kind:

x(t) = yo(t) —i—/ K(t,s,x(s))ds, t e lo,a+pl, (1)

where yo : [o, a+8] — R and the kernel K : [o, a+3]? xR — R are assumed to be known
continuous functions and the unknown function to be determined is = : [a, a + 5] — R.

These are usually difficult to solve analytically and in many cases the solution must
be approximated transforming the integral equation into a linear or nonlinear system
that can be solved by direct or iterative methods (see for example [1] and [4]). The
purpose of this paper is to develop an effective method for approximating the solution of
(1). This is the previous work of an forthcoming paper and generalizes to the nonlinear
case the results for solving the linear case appearing in [2]. Among the main advantages
of our numerical method as opposed to the classical ones, we can point out that it is not
necessary to solve algebraic equation systems and the integrals involved are immediate
and we do not require any quadrature method to calculate them.
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2 Analytical tools to be used

Let C([a,  + S]) be the Banach space of all continuous and real-valued functions on
[a, & + B], endowed with its usual sup-norm. Observe that (1) is equivalent to the
problem of finding fixed points of the operator T : C([a, + f]) — C([o,x + 5])
defined by

(Tz)(t) == yo(t) + /tK(t,s,x(s)) ds, tefo,a+pland e C(la,a+p]). (2)

(67

To establish the existence of fixed points of (2), we will use the version of the
Banach fixed-point theorem (see [7]) which we enunciate below: Let (X, | -||) be
a Banach space, let F': X — X and let {u,}n>1 be a sequence of nonnegative real
numbers such that the series ) - pn, is convergent and for all x,y € X and for all
n>1, ||F*z — F'y|| < pnllz — y||. Then F has unique fixed point u € X. Moreover, if
T is an element in X, then we have that for alln > 1, ||[F"T —u|| < (3.2, )| FT —Z||.
In particular, u = lim,, F"(T).

Schauder bases will be another important tool in development work. They have
been previously used successfully in the numerical study of integral and differential
equations (see [2], [3], [5] and [8]). If {xy}n>1 is a Schauder basis of a Banach space
X, we denote the sequence of (continuous and linear) finite dimensional projections by
{P,} and the associated sequence of (continuous and linear) coordinate functionals by
{z}}n>1 in X*. Reader is referred to [2], [6] and [9], where can see the construction of
the usual Schauder bases {b,},>1 in C([a, @+ B]) and { By, }n>1 of O([a, a + B]?).

3 Development of the numerical method and example

Before presenting the proposed method, we establish the following two preliminary
results:

Proposition 1. Assume that in (1) the kernel K satisfies a Lipschitz condition in its
third variable:

|K(t,s,x) — K(t,s,9)| < M|z —y| forallt,s€|a,a+f] and z,y € R

for some constant M > 0. Then the integral equation (1) has a unique solution x €
Cla, a+f]. In addition, for each @ € C([a, a4+ 3]), the sequence {T"Z},>1 in C([a, a+
B]) converges uniformly to the unique solution x and for alln > 1,

(MB)

n
"7 —z| < S MBI TE — 7.
n!

Proposition 2. Let T : C([o,a 4 8]) — C([a, a + B]) be the continuous integral
operator defined in (2). Let z € Cla,a + f], and let us consider the function ® €
C([o, o + B]?), defined by ®(t,s) = K(t,s,2(s)). Let {\,}n>1 be the sequences of
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scalars satisfying ® = 3, <1 Ay Byn. Then for all t € (o, o+ 8] we have that

(Tz)(t) )+ An / t,s)ds (3)

n>1

where A\ = ®(ty,t1) and for n > 2, A\, = ®(t;,t;) — Sop—i Bi(®)By(ti,t;) with o(n) =
(i,74), where 0 = (01,02) : N — N x N is the bijective mapping defined by

(i, V), it [Va] = v
on)i={ (- WPVl +1), i 0<n— [l <[va]
(Wal + Ln— [Val? = [Va)), if [V <n - [Vn]?

and [a] denote the integer part of a € R.

In view of Propositions 1 and 2, (3) gives the unique solution z(t) of (1). The
problem is that generally this expression can not be calculated explicitly. The idea of
the proposed method is to truncate to calculate approximately a sequence of iterations
and projections that converge to the solution. More specifically, let 7 : [a, a+ ] — R
be a continuous function, and n1,ns, ns, ..., € N. Consider the continuous functions

20(t) :=Z(t), t € la,a+f] (4)
and for r € N, we define

L._1(t,s) := K(t,s,2,-1(5)) (t,s € [, + f]). (5)

20 (t) = yo(t / Qn2(Lr—1(t, ) ds (t € [a, 0 + f]). (6)

In order to obtain the convergence of the sequence {z, },>1 to the unique solution of
(1) we introduce the following notation: If {t,},>1 is the dense subset of distinct points
in [, &+ 3] we considered to define the Schauder basis, let T}, be the set {t;,1 < j < n}
ordered in an increasing way for n > 2. Let AT,, denote the maximum distance between
two consecutive points of T;,.
Theorem 3. With the previous notation, let T € C ([, + 8], yo € C([o, @ + B]

and K € C'([a,a + 8] x R) with K, 0K 0K 0K

5 B Oz satisfying the Lipschitz global
s z
condition of the third variable. Then:

L,_ L,_ .
a) Then {3 ! } , {8 ! } are uniformly bounded.
ot ), ds [ >

b) There is p > 0 such that for all r > 1 and n, > 2
[Lr—1 = Quz(Lr—1)|| < pAT,.
The main result that establishes that the sequence defined in (4), (5) and (6)

approximates the solution of (1) as well as giving an upper bond of the error committed
is given below:
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Theorem 4. Let K € C([a,a + f]? x R) such that K satisfies a global Lipschitz

condition in the third variable and let T € C(Jo, + f5]. Let m € N,

certain positive numbers €1, . . ., &, satisfy
Tzr—1— 2| <e&ry, T=1,...,m

and let x be the exact solution of the integral equation (1). Then

MB)™ m MBYm—T
o =zl < PO s 30, OO

—  (m—r)!

where M is the Lipschitz constant of K.

and assume that

)

Under the hypothesis of Theorem 3, there is p > 0 such that for r > 1 and n, > 2,

||TZT—1 - Z’FH < /BHLr—l - QnZ(Lr—l)H < /BPATTLT

Hence, given certain €1,...,&, > 0, we can find m positive integers nq,...,n, such
that ||Tz,—1 — 2| < &r, and by Theorem 4 we can state the convergence of {z,},>1 and

an estimation of the error.
Example 5. Consider the equation

x(t) = %tcos(t?’) + 13— g +/0 t s sin(z(s))ds (te
y(0)=0

whose exact solution is x(t) = ¢3.

[0,1])

9

To construct the Schauder basis in C([0, 1]?), we considered the particular choice
t1 =0, to =1 and for n € NU {0}, t;11 = %’Zﬂ if i =2"4+ k41 where 0 < k < 2™ are
integers. To define the sequence {z,},>1, we take 2o(t) = 1 and n, = j (for all r > 1).
In the following table we exhibit, for j = 9 and 17, the absolute errors committed in
eight representative points (t;) of [0,1] when we approximate the exact solution x by

the iteration zs.

t; 0.125 0.250 0.375 0.5 0.625 0.750 0.875 1

i=9
|22(t:) — x ()]

1.6E-7 6.0E—-6 4.7TE-5 29E—-4 6.2E-4 17E-3 3.1E-3 21E-3

=17
|22(ti) — x(t)]

4.7E-8 1.5E-6 12E-5 94E-5 1.6E—-4 49E-4 87E—-4

1.1E-4
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Abstract

In this paper we re-examine the commonly accepted meaning of the two kinetic
constants characterizing any enzymatic reaction, according to Michaelis-Menten
kinetics. Expanding in terms of exponentials the solutions of the ODEs governing
the reaction, we determine a new constant, which corrects some misinterpretations
of current biochemical literature.

Key words: Michaelis-Menten kinetics, quasi-steady state approximations, asymp-

totic expansions
MSC 2000: 41A58, 41A60, 92C45

1 Introduction

The question addressed in the title of this paper is not merely a rethoric one. Our
answer, of course, is definitely yes: we do think that there is still a lot of room in this
field. Formulated more than one century ago, the Michaelis-Menten-Briggs-Haldane
approximation, or standard quasi-steady state approximation (sQSSA) [24, 7, 33], still
represents a milestone in the mathematical modeling of enzymatic reactions. Neverthe-
less, the hypothesis of quasi-steady state is crucial for the interpretation of the reaction
and must be handled with much care. It is based on the assumption that the complex
can be considered “substantially” constant, but this statement has led to many mis-
interpretations of the model. In fact, as Heineken et al. showed in [15], the correct
mathematical interpretation of the quasi-steady state assumption is that when we ex-
pand asymptotically the solutions of the ODEs governing the process with respect to
an appropriate parameter, the SQSSA is the zero order approximation of the solution.
As already observed by Briggs and Haldane by a chemical point of view, when the
parameter of the expansion is sufficiently small this approximation is valid. Heineken
et al. used the parameter given by the ratio of the initial concentrations of enzyme F
and substrate S, obtaining the well-known chemical requirement.
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In 1987 Fraser [13] pointed out that, geometrically speaking, the steady state as-
sumption for chemical reactions is an approximation in the phase space to the slow
manifold, i. e., the singular trajectory which strongly attracts all fast transient flow.
He also described an iterative scheme to approximate this singular trajectory without
any restrictions on the rate constants of the system. The same arguments were applied
to the Michaelis-Menten mechanism in 2006 by Calder and Siegel [8]. In 1988 Segel
[32] and in 1989 Segel and Slemrod [33] obtained the Michaelis-Menten approximation
expanding the solutions in terms of a new parameter, including the Michaelis constant
and showing that the sQSSA is valid in a wider range of parameters than the one
supposed before. However it is well known that while in wvitro the condition on the
concentrations can be easily fulfilled, in vivo it is not always respected [34, 35, 36, 1], in
particular when the reaction is not isolated but is part of complex reaction networks.
This means that, though very useful, this approximation cannot always be applied.

Michaelis-Menten kinetics has recently become one of the most important tools in
the field of Systems Biology and in particular of mathematical modeling of intracellu-
lar enzyme reactions, but in most literature any aprior: analysis of the applicability of
sQSSA is absent, even in very complex reaction networks. This fact has led to sev-
eral problems concerning the study of particular phenomena, like oscillations [12, 28],
bistability [10], ultrasensitivity [29] or Reverse Engineering [27]. Following [20], recent
papers [6, 38, 39, 26, 10, 29, 40, 23, 11, 28, 2] have introduced and explored a new
approximation, called total quasi-steady state approximation (tQSSA), which has been
shown to be always roughly valid in the case of an isolated reaction. Nevertheless, since
it is in any case an approximation, also the tQSSA can dramatically fail, as shown in
[28], in more complex mechanisms, involving more than one reaction, but it is doubtless
that it is valid in a much wider range of parameter than the sQSSA [10, 26, 27, 28, 31].

One of the main problems of the mathematical treatment of the sQSSA is the misin-
terpretation of the hypothesis that the complex time concentration has zero derivative.
Many papers and even monographies tend to indicate, probably for the sake of sim-
plicity, the ”substantial” equilibrium as a real equilibrium [21, 42, 30, 14], which is
obviously not true; in this case any simplification can be definitely misleading. As ob-
served in [15], p. 97, this use of the equations seems scandalous to any mathematicians
and can bring to results which are absolutely inconsistent and false. In this work we
want to re-examine some mathematical aspects of Michaelis-Menten reaction and of
the sQSSA, trying to clarify some aspects of the enzyme reactions; in particular we dis-
cuss the biochemical and mathematical meaning of the tQSSA, comparing it with the
sQSSA, then we analyse the consequences of the misuse of the sQSSA, reconsidering
the meaning of the two kinetic constants V.., and Kj;; finally we introduce an ex-
pansion in terms of exponentials, which is valid for every choice of the parameters and
enzyme initial concentrations; this expansion is the most appropriate to approximate
the asymptotic behavior of the solution for large values of ¢, in absence of product
degradation; moreover we use it to solve a serious incoherence present in literature,
related to the biochemical interpretation of the constant K.
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2 Notations, definitions and main known results

The model of biochemical reactions was set forth by Henri in 1901 [16, 17, 18] and
Michaelis and Menten in 1913 [24] and further developed by Briggs and Haldane in
1925 [7]. This formulation considers a reaction where a substrate S binds an enzyme E
reversibly to form a complex C. The complex can then decay irreversibly to a product
P and the enzyme, which is then free to bind another molecule of the substrate. This
process is summarized in the scheme

a

E+S<?CLE+P, (1)

where a,d and k are kinetic parameters (supposed constant) associated with the reac-
tion rates: a is the second order rate constant of enzyme-substrate association; d is the
rate constant of dissociation of the complex; k is the catalysis rate constant. Following
the mass action principle, which states that the concentration rates are proportional
to the reactant concentrations, the formulation leads to an ODE for each complex and
substrate involved. We refer to this as the full system. From now on we will indicate
with the same symbols the names of the enzymes and their concentrations. The ODEs
describing (1) are

45 = —a(Br —C)S+dC,

o (2)
42 =a(Ep — 0)S — (d+ k)C,

with initial conditions

S(0) = Sr,  C(0) =0, (3)

and conservation laws

E+C=FEpr, S+C+P=S5r. (4)

Here Erp is the total enzyme concentration assumed to be free at time ¢ = 0. Also
the total substrate concentration, S, is free at ¢ = 0. This is called the Michaelis-
Menten (MM) kinetics [24, 3]. Let us observe that (2) — (4) asimptotically admits
only the trivial solution given by C' = S = 0, P = Sy and £ = Ep. This means
that all the substrate eventually becomes product due to the irreversibility, while the
enzyme eventually is free and the complex concentration tends to zero. Assuming
that the complex concentration is approximately constant after a short transient phase
leads to the usual Michaelis-Menten (MM) approximation, or standard quasi-steady
state approximation (sQSSA): we have an ODE for the substrate while the complex is
assumed to be in a quasi-steady state (i. e., % ~0):

ET'S ds Vmaxs
~ - — > [y ——/ =
cx= ZE5 L U= hox oS so) -5 ()
where
d+k
Vmax = kETa KM = % . (6)
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and Ky is the Michaelis constant. Applying a quasi-steady approximation reduces
not only the dimensionality of the system, passing from two equations (full system)
to one (MM approximation or sQSSA). It reduces also its stiffness and thus speeds
up numerical simulations greatly, especially for large networks as found in vivo. It
allows also a theoretical investigation of the system which cannot be obtained with the
numerical integration of the full system. Moreover, the kinetic constants in (1) are
usually not known, whereas finding the kinetic parameters for the MM approximation
is a standard in vitro procedure in biochemistry. See e.g. [3] for a general introduction
to this approach. We stress here that this is an approximation to the full system, and
that it is valid only under suitable hypotheses, e. g., when the enzyme concentration
is much lower than either the substrate concentration or the Michaelis constant Ky,
i. e., (see, for example, [33])

E
EMM T <1 (7)

o St + Ky
This condition is usually fulfilled for in vitro experiments, but often breaks down in
vivo [36, 35, 34, 1]. We refer to [31] for a nice, general review of the kinetics and ap-
proximations of (1). It is useful to quote also the recent papers [12, 41, 25, 10, 28] which
discuss the applicability of the sQSSA. In order to solve this problem, in 1955 Laidler
[20], discussing the mathematical theory of the transient phase, found expressions for
the behavior of P in the quasi-steady state and found several sufficient conditions for
%16 applicability of the approximations. These conditions were much more general than

T
St
proach to a recent one, based on the total quasi-steady state approximation (tQSSA). It
was introduced by Borghans et al. [6] and refined by Tzafriri [38] for isolated reactions.
It arises introducing the total substrate

< 1. The importance of Laidler’s results can be understood comparing his ap-

S=S5+0C, (8)

and assuming that the complex is in a quasi-steady state as for the sQSSA. Reaction
(1) then gives the tQSSA [6, 20]:

5 _ o
== —kC_(S), S(0)=sr, (9)

where

(ET+KM+§)— \/(ET+KM —|—§)2—4ET§
C_(S) = .

2

Numerical integration of (9) gives the time behavior of S and then (8) and (10) give
the corresponding C and S. Tzafriri [38] showed that the tQSSA (9) is valid whenever

K E K S
E1QSSA ‘= T+ HAmtor —-1] <1, (11)
25T \/(ET + Ky + ST)2 — 4E7 ST

(10)
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Substrate Substrate + Complex
100% 200

Complex Product

Figure 1: Dynamics of the model (1) for a=1, k=1, d=4, Sy = 100, Er = 89. Plots
show (top-left, bottom-right) S, S, C, P. Circles: numerical solution of the full system;
dashed line: sQSSA; solid: tQSSA; dotted: first order approximation of tQSSA. Notice
that the sQSSA and the tQSSA, representing only the outer approximations, do not
(and are not expected to) satisfy the initial condition for C'. This is why the initial
boundary layer is missed.

k
(where K = —), and that this is at least roughly valid for any sets of parameters,
a

in the sense that ;9554 < ﬁ < %. This means that, for any combination of pa-

rameters and initial conditions, (9) gives a decent approximation to the full system
(2). The parameter K is known as the Van Slyke-Cullen constant. The dissociation

constant Kp = — [3] is related to the previous kinetic constants by the simple formula
Kp = Ky — K Let us remark that, in recent literature, the sQSSA is applied to
complex enzyme reaction networks, like, e.g., the MAPK cascade, without any a priori
analysis on its applicability, setting to zero not only the derivatives of the complex
concentrations, but also, surprisingly, the complex concentrations themselves (see, e.g.,
[22, 19, 9]). This produces serious inconsistencies with experimental observations and
has resulted in the discovery of the so-called “substrate sequestration” hypothesis [4, 5],
which states that the enzyme can sequester a significant amount of substrate by binding
to it, making this sequestered fraction of the substrate no longer accessible to other
kinases. The importance of the choice of S as one of the system variables lies in the
fact that substrate sequestration is naturally included in the total substrate. Indeed,
the latter takes into account both the free and the “sequestered” substrate.
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Figure 2: Plot of %S for a=1, k=0.9, d=0.1, Sp = 100, Ep = 0.55. Solid line: numerical
solution of the full system; dashed: K;; dashed-dotted: Kyy; dotted: Kp. Parameters
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Figure 3: (A) Plot and (B) zoom of %S for a=1, k=0.9, d=0.1, Sy = 100, Er = 0.04.
Solid line: numerical solution of the full system; dashed: Kj;; dashed-dotted: Kyy;
dotted: Kp.
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Figure 4: (A) Plot and (B) zoom of %S for a=1, k=0.9, d=0.1, S = 100, Ex = 89.
Solid line: numerical solution of the full system; dashed: Kj;; dashed-dotted: Kyy;
dotted: Kp.

3 Use and misuse of the Quasi-Steady State Approxima-
tion (sQSSA)

The roles of Vj,4:, the maximal reaction velocity, and Kj;, the Michaelis constant,
become essential when characterizing biochemical reactions in vitro as well as in vivo.
Moreover, the description of cooperative reactions, inhibition and many other biochem-
ical processes have up to now exploited the fundamental ideas of the MM scheme, i. e.,
the sQSSA and the parameters V;,q, and Ky (see, e.g., [3]). However, these approx-
imations cannot be expected to be valid in vivo. Figure 1 shows that, for particular
values of the parameters and the initial conditions, the sSQSSA cannot be adequate to
approximate the solutions of the full system at the beginning of the process, failing
widely also to approximate the time in which the system reaches its equilibrium. This
is due to the fact that (7) is not always fulfilled. The dependence of the product velocity
dP
== kC (12)
on the concentration of S is based on the a priori (and not always true) assumption
that the sQSSA is valid. In this case

(O

Vmaac -8
Consequently V.4 is usually intended as the limit of the “initial velocity” for the S
concentration tending to infinity and Kjs as the value of S such that
Vmaa;‘

5 -

v=FkC = (13)

U(S:KM) =

(14)

@CMMSE Page 210 of 1328 ISBN 13: 978-84-613-5510-5



ANYTHING TO SAY ON ENZYME KINETIC CONSTANTS AND QSSA?

Since the tQSSA is much more appropriate than the sSQSSA, we can use formula (10)
and very simple algebra to define in a more appropriate way Ky; (if S > Kpy):

i) when the value of the total substrate is equal to S = Ky + TT’ then the rate of P
. Vinaz .
is equal to ——

— E V,

v (S =Ky + L) = mer (15)
2 2

This result can also be found in [37]. Let us remark, by the way, that if we used the

Tzafriri approximating formula , we would obtain the following definition:

ii) when the value of the total substrate is equal to S = Ky + Er, then the velocity

max

of P is equal to —

v (S = K+ By) = 12 (16)

Then the estimate given by (16) becomes largely incorrect for high values of Erp.

4 The equilibrium constant revisited

Though the sQSSA is based on the approximation @ 2 (), several biochemistry text-
books (see for example [21, 42, 30, 14]), in order to simplify the mathematics, consider
the approximation as a true equality, leading to a misinterpretation of the QSSA. As a
consequence, the Michaelis constant is determined by equating to zero the right hand
side of the second equation of (2) [42, 30, 14], obtaining

E-S (Br-C)-S

K
M= C

(17)

Actually, as shown in Figure (1), the derivative of C is equal to zero only at time
t = tmaz, when C reaches its maximum value. Consequently we cannot declare that
the right hand side in (17) remains constant. On the other hand, we could interpret K/

as the equilibrium value for ——, reached for large t (supposing that no degradation,
product inhibition or back reaction phenomena are involved), in the same way as the
dissociation constant Kp is interpreted in the original Michaelis-Menten reaction, where
k = 0 [30]. Actually, while this last reaction, which is completely reversible, reaches a
steady-state where both S and C' are different from zero, in reaction (1), as remarked
above, S and C tend to zero and consequently we cannot use (17), which gives an

undefined ratio, for ¢ — oo. Thus the equality Ky =

is valid for every reaction
only at t = ;4. We can however try to solve the indetermination of the ratio for ¢ — oo
in the following way. From Figure (1) we can observe that, after the transient phase,
all the reactants seem to follow asymptotically an exponential behavior, with negative
exponent. If we suppose that the asymptotic decay of C is proportional to e~®, for
some «, formula (12) implies that also S7 — P will be asymptotically proportional to
e~ ', By means of the conservation laws (4) we can conclude that also S and Er — E
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will follow the same asymptotic behavior as C'. Thus let us expand S and C' in powers

of e=: we have
S(t) = So+ Sp e + Sye 2ot 4 p(e2) (18)
C(t) = Co+ Cre ™ 4+ Cye 2 4 p(e™20t) (19)
After some computations, we get then
Sus(t) =2 Spe™ (20)
Cas(t) = © ° — 5 (21)
where

o = %(KM + ET) (22)

4k ET
11— J1- =T
CL(KM + ET)2

There is still an unknown parameter, S7, which could be estimated from experi-
mental data via a least-squares procedure.

We are now in position to state the main results of this section.

Theorem 4.1. Fort — oo

ES
C

Eus Sas k—a
t) = t Er =K 23
(1= =22 0) — (=2 ) Br = Ko (23)

The constant Ky, here introduced for the first time, gives the exact asymptotic
value of the ratio —— and, in contrast with biochemical literature [21, 42, 30, 14], in

general is different from Kj;. This result is clearly illustrated in Figures (2) - (4), where

ES
we have plotted the time course of the ratio ——, where the values E, S, C are obtained

by the numerical integration of system (2) - (4). Finally, let us state some important
properties of Kyy.

Theorem 4.2. For any admissible choice of the kinetic parameters and the initial
conditions, the following inequalities hold:

Kp <Kw <Ky . (24)

Varying appropriately the parameter values, we can obtain for Ky, every value
between Kp and Kj;. In particular,

Theorem 4.3. For any admissible choice of the kinetic parameters and for any K €
(Kp, Kyp), there exists Ex such that %S — K when t — oo.
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Abstract

A Manufacturing Execution System (MES) is a highly complex, large, multi-
task application that is used to manage production in companies and factories. It
monitors and tracks every aspect of all factory-based manufacturing processes. One
of the challenges of a MES is to find ways of integrating it with other information
techology (IT) systems; i.e., business process management (BPM) systems, so that
compatible information may be shared between both systems. This work studies
the integration of a local company MES into a BMP to assist with budgeting, in
which a data set is gathered from the MES and a soft computing model helps
the expert with cost-level estimation. Various modelling methods are used, such
as fuzzy rule based ones, in order to determine whether white box or black box
models are suitable for the task. The results of the study show how information
may be integrated between manufacturing and business management software.

Key words: Manufacturing Execution Systems, Fuzzy Rule Based Systems, Ap-
plied Soft Computing

1 Introduction

Over recent years, the presence of IT applications in industry has increased consider-
ably. IT has been applied to different tasks such as assisting with production or on-line
process management and manufacturing, which includes what are nowadays known
as Enterprise Requirements Planning (ERP) and Manufacturing Resources Planning
(MRP) [11, 19]. Manufacturing Execution Systems (MES) are information systems that
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are used to manage the way in which manufacturing resources -equipment, employees
and inventories- are planned [2, 18].

The objective of a MES depends on whether it is implemented in the context of
a production control system or for manufacturing monitoring and supervision. In the
former case, the objective is to provide the company with a research laboratory for
products and processes, while in the latter, the MES is considered a computer-aided
system that assists with decision-making processes related to manufacturing.

However, designing and deploying a user-friendly MES, which has to fulfil the
above-mentioned objectives, represents a significant challenge, owing in great part to
the complexity of the different production systems, plants and products in use. In this
study, several soft-computing techniques are applied, in order to assist with budgeting
for a plastic products factory. The main objective of this study, however, is to develop a
computer-based assistant to detect faults and loss of competitiveness in the production
system. The problem is defined in the following section, while in section 3 the chosen
models are described and the results are discussed. Finally, the conclusions and future
lines of work are outlined.

2 The case of a plastic products factory

In this study, the system will be applied to a plastic products factory in Spain. It
manufactures different products, such as tubes, sheets, bags, polypropylene sheets,
garbage bags and others. Its production process is divided into a storage area, an
extrusion area, and a printing and clothing area.

The schema of the local plastic bags factory is depicted in Figure 1, where the
production system is totally supervised and monitored. Each machine includes its own
control system based on Programmable Logic Controllers (PLC). There are up to 75
machines, each producing a range of different products. There are also several Human
Machine Interfaces (HMIs) all connected to an ethernet network; a Data Acquisition
System (DAQ) which collects various process signals, among which pressures and tem-
peratures. The operators can control and operate the machines that are programmed
to manufacture the product. Finally, the monitoring and supervising computers are
connected to this network to request information from the PLCs and DAQs. This is
known as the Manufacturing Control System (MCS). The company has recently started
to store all available data in a data-base management system to broaden the capacity
of its staff to plan production processes in the factory, as the amount of available data
was rather small.

This is the scenario into which the MES has to be integrated. Production dynamics
characteristics should firstly be determined. For this purpose, manufacturing conditions
in the current operational stage have to be defined, in the form of data that may be
gathered from the MCS network. Once the manufacturing dynamics data have been
gathered, then a model of the present production operation may be obtained [4]. In
other words, the relevant variables for measurement and storage need to be determined.
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Figure 1: Schematic diagram of the MES installed in the plastic products factory. The
PLCs controlling each machine and the DAQs and HMIs connected through the field
network constitute the MCS.

2.1 The expected objectives

The final objective of this study is to develop a computer-based assistant to detect faults
and loss of competitiveness in the production system. Consequently, the available data
from the MCS should be examined in order to design the final data base; rather than
storing all the signals, it was only intended to store those signals that were sufficiently
informative of the process evolution in the MCS. As this represents a virtually costless
task, the factory representative and the research group agreed to present a prototype
for a simpler task; the factory would invest in such a system according to the obtained
results.

The simpler task involved assisting the staff in budgeting a manufactured product.
The working method was as follows: a client requests a product, following which a staff
member assigns the job to a certain machine chain and a cost is estimated. This is
not automated yet, so before assigning a machine chain, the employee must analyse
several plots and reports. So, the challenge was to develop a model to automatically
assist the staff in establishing the cost level for a tuple <product, client, machine>.
They collected a data set of 1471 examples, including the available historical records
of 22 input variables such as client identification, product identification, the machine,
the operator, units produced and length of operation, among others. The output of the
data set was a variable indicating whether the cost was high, medium or low.
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3 Generating the models for computer-aided decision mak-
ing

Several tasks were carried out once the data set was defined. Firstly, the data set had to
be analysed and pre-processed, in order to determine whether there were any dependent
variables. It was also analysed to decide whether it was necessary to normalise and
partition the data. KEEL software was used [1] in all the experimental and modelling
stages.

3.1 Soft Computing tools and algorithms used

KEEL stands for Knowledge Extraction based on Evolutionary Learning. KEEL soft-
ware is a research and educational tool for modelling data mining problems which
implements more than one hundred algorithms, including classification, regression, clus-
tering, etc. Moreover, it includes data pre-processing and post-processing algorithms,
statistical tests and reporting facilities. Finally, it has a module for data set analysing
and formatting, which was used for the first task in this experiment.

As the model would be used as a IT support tool, it was considered desirable to
obtain a white box model, such as Fuzzy Rule Based Systems or Decision Trees. Several
different techniques provided the ability to manage the type of available data. Different
techniques compared the results and the viability of the models. The statistical meth-
ods included Quadratic Discriminant Analysis (QDA) [12], the Multinomial Logistic
regression model with a ridge estimator (LOG) [3], the Kernel Classifier (KC with 0.01
and 0.05 sigma values) [12], and the K-nearest neighbour (KNN with 1 and 3 K values)
[7]. The fuzzy rule-based methods included the Fuzzy Adaboost rule learning method
(ADA) [10], the Fuzzy GA-P algorithm (FGAP) [15] and the Ishibuchi Hybrid Fuzzy
GBML (HFG) [9]. Finally, the decision tree and decision tree rule-based methods were
the well-known C4.5 [13] and C4.5 rule-based methods. (C45R) [14].

In the QDA algorithm, the cost of classifying an example X with class k is calcu-
lated through Eq. 1, where 7, is the unconditional prior class k& probability estimated
from the weighted sample, and uj; and Y are the population mean vector and covari-
ance matrix for the k class. Hence, an example X is assigned with the minimum cost
class as stated in Eq. 2.

de(X) = (X — ) TS HX — ) + In | S — 2w (1)

di(X) = mini<p< g di(X) (2)

The LOG algorithm is based on the standard logistic regression. The probability
that the class k correctly classifies the example X = {X7, ..., X} is calculated following
Eq. 3,where the parameter § = {f1,...,0,} is estimated, i.e., with the maximum
likelihood estimation obtained by maximising Eq. 4. It is classified in the class with
the higher probability, as in the example.
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1(8) = [klogp(k|X) + —klog{1 — p(k|X)}] (4)
k

The Kernel method is a classifier that uses the Bayes rule using a ”non-parametric
estimation of the density functions through a Gaussian kernel function” as stated in [8].
In the KEEL software, covariance matrix tuning is carried out by means of an ad-hoc
method. On the other hand, the K-nearest neighbour method classifies the example X
with the majority class in the K examples of the data set with a shorter distance to X.
Note that the use of the KNN implies that a metric is defined in the space to measure
the distance between examples.

The Fuzzy Adaboost method is based on boosting N weak fuzzy classifiers (that
is, N unreliable fuzzy classifiers are weighted according to their reliability) so that the
whole outperforms each of the individual classifiers. Moreover, each example in the
training data set is also weighted and tuned in relation to the evolution of the whole
classifier.

The GAP is a Fuzzy Rule-Based Classifier learned using the Genetic Programming
principles but using the Simulated Annealing algorithm to mutate and to evolve both
the structure of the classifier and the parameters. At each iteration, the whole Fuzzy
Rule set will evolve.

The Ishibushi Hybrid Fuzzy Genetic Based Machine Learning method represents
a Pittsburgh style genetic learning process which is hybridised with the Michigan style
evolution schema: after generating the (Npo,p — 1) new Fuzzy Rule sets, a Michigan
style evolutionary scheme is applied to each of the rules for all the individuals. Recall
that each individual is a complete Fuzzy Rule set.

The Ishibushi Hybrid Fuzzy Genetic Based Machine Learning method represents
a Pittsburgh-style genetic learning process which is hybridised with the Michigan style
evolution schema: after generating the (Npo, — 1) new Fuzzy Rule sets, a Michigan
style evolutionary scheme is applied to each of the rules for all the individuals. Recall
that each individual is a complete Fuzzy Rule set.

Finally, the C4.5 algorithm is a well-known decision-tree method based on infor-
mation entropy and information gain. A node in the decision tree is supposed to
discriminate between examples of a certain class based on a feature value. At each
node, the feature that produces the higher normalised information gain is then chosen.
In the case of C4.5R, the decision tree is presented as rules, where each node in the
path from the root to a leaf is considered an antecedent of the rule. These rules are
then filtered to eliminate redundant or equivalent rules.

3.2 The experimentation and results

After analysing the original data set it was found that most of the examples corre-
sponded to the tuning of the plant, which could therefore be discarded. In addition,
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Figure 2: Boxplot of the classifiers results for the {Medium, High} experiments.

there was also a large quantity of totally erroneous samples, which were also discarded.
Finally, the data set included 168 examples corresponding to 9 machines.

Several relationships were found, such as the one between the number of faulty units
and the weight of discarded material. In the end, the data set included information
on the product, the machine, client identification and the number of units to produce.
The output variable was the class of the cost level, which could be Low, Medium or
High.

The second task consisted of the modelling step, in which the modelling algorithm
had to be chosen and the statistical tests carried out. The 9 methods described in the
previous Sub-Section were used to obtain a classifier.

Two series of experiments were designed. The first experiment generated two clas-
sifiers. On the one hand, one discriminated between Low and —Low classes, on the
other hand, the second classifier, which was run when a —Low example was found,
discriminated between Medium and High classes. As a result of the first experiment,
two different data sets were generated: one contained the examples characterised with
class Low or —Low, and another one contained only the —Low examples characterised
by the corresponding class Medium or High. The second experiment made use of all
150 examples in the data set to generate a 3-class classifier. Finally, in both cases, since
the number of examples was so small, the 10-fold cross-validation schema was selected
and performed in a KEEL environment.

The results from the first experiment are presented in Table 1, Figure 2 and Figure
3. As it can be seen, the kernel methods and Fuzzy AdaBoost, although not inter-
pretable, were found to be the best models. On the other hand, in view of the results
and considering the standard deviation of the FGAP and the HFG algorithms, it could
be said that these two methods may improve their performance by means of a better
definition of their parameters (population and sub-population sizes, number of islands,
etc.) and a larger number of generations. It is worth remarking on the ease with which
the problem of discriminating between Medium and High may be solved, provided no
Low class classifications are involved.
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{Low, —Low} {Medium, High}
GCE | SGCE | CC GCE | SGCE | CC
C4.5 0.2276 | 0.0748 | 0.7724 || 0.1018 | 0.1220 | 0.8982
C4.5R || 0.2324 | 0.0620 | 0.7676 || 0.1018 | 0.1230 | 0.8982
KCO01 || 0.0949 | 0.0651 | 0.9051 || 0.0949 | 0.0651 | 0.9051
KCO05 || 0.1143 | 0.0879 | 0.8857 || 0.1018 | 0.0758 | 0.8982
KNNI1 || 0.2860 | 0.1002 | 0.7140 || 0.2464 | 0.1746 | 0.7536
KNN3 || 0.2857 | 0.0695 | 0.7143 || 0.3107 | 0.2295 | 0.6893
LOG || 0.2504 | 0.0530 | 0.7496 || 0.0750 | 0.0829 | 0.9250
QDA || 0.3040 | 0.0858 | 0.6960 || 0.0911 | 0.0820 | 0.9089
FGAP | 0.2335 | 0.0973 | 0.7665 || 0.0893 | 0.0810 | 0.9107
ADA | 0.0945 | 0.0598 | 0.9055 || 0.0500 | 0.0829 | 0.9500
HFG || 0.2206 | 0.0800 | 0.7794 || 0.0750 | 0.0829 | 0.9250

Table 1: Mean results of the classifiers for the {Low, —Low} {Medium, High} experi-
ments. GCE, SGCE and CC stand for Global Classification Error, standard deviation
of the GCE and the percentage of correctly classified examples.
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Figure 3: Boxplot of the classifiers results for the {Medium, High} experiments.
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GCE | SGCE | CC
C4.5 | 0.2974 | 0.0441 | 0.7026
C4.5R | 0.3103 | 0.0967 | 0.6897
KCO01 | 0.1077 | 0.0648 | 0.8922
KC05 | 0.1077 | 0.0531 | 0.8923
KNN1 | 0.3445 | 0.0796 | 0.6555
KNN3 | 0.3684 | 0.1120 | 0.6316
LOG | 0.2434 | 0.0840 | 0.7566
QDA | 0.3338 | 0.0857 | 0.6662
FGAP | 0.4118 | 0.0975 | 0.0975
ADA | 0.1783 | 0.0785 | 0.8217
HFG | 0.3857 | 0.0799 | 0.6143

Table 2: Mean results for the {Low, Medium, High} classifier experiment. GCE, SGCE
and CC stand for Global Classification Error, standard deviation of the GCE and the
percentage of correctly classified examples.

The results of the first experiment did not prepare us for the results of the second
experiment. A much poorer performance of the methods was observed, despite method
C4.5, which is unable to manage a three-class problem. Only the kernel methods keep
track of the problem. The reason for these results is related to the kind of features in-
volved in the modelling; several of them being integer valued features with an unknown
upper limit. As an example, the number of units to be produced is quite dependent
on the machine, as each machine has a maximum production rate. But this data was
not given for the experimentation, so it was not possible to normalize those variables
which, in turn, make the classifier worse.

A main conclusion may be drawn from this experimentation: the data set should
be more informative and representative of the problem, if better models are to be
generated. The company should rely on an in-depth analysis of available data and
measurements, but it is also necessary for it to study the relationships between the
variables under study, i.e. using Cooperative Maximum Likelihood Hebbian Learning
(CMLHL) [6] as shown in [17, 16]. The results illustrate the way in which the research
team may help the company to design their MES.

4 Conclusions and future work

A MES development to improve its capacity and link up with other business manage-
ment applications has been tested in this work. A computer assisted-budgeting problem
has been solved through the application of different computing techniques. Neverthe-
less, it was shown that the data gathered from a MCS must be carefully chosen and the
amount of data should be representative and informative of the real process. A clear
list of the objectives to be accomplished by the MES should be prepared prior to the
collection and analysis of relevant data.
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Figure 4: Boxplot of the classifiers results for the {Low,Medium, High} experiments.

Future work will include modelling the relationships between operators, machines,
products and the overall performance of the plant, so that resource planning may be
introduced. More knowledge and data should be gathered from the plant, such as
machine operating limits. Finally, a complete analysis of the data through the use of
well-known techniques (such as CMLHL) would contribute to reliable MES design and
engineering.
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Abstract

Clusters of computers that act in a collaborative manner to execute parallel jobs
are known as multi-clusters. In a multi-cluster environment, it is possible to treat
computational problems that require more resources than those available in only
one cluster. However, the degree of complexity of the scheduling process is greatly
increased to take advantage of multi-cluster capabilities, and the scheduler must
take into account the co-allocation process that distributes the tasks of parallel
jobs across cluster boundaries.

In this work, a scheduling strategy is presented based on a linear programming
model, which brings together the parallel jobs in the system queue that fit into the
system and allocates them simultaneously, instead of assigning them individually
as is usual in the literature. The proposed scheduling technique is shown to reduce
the execution times of the parallel jobs by about 8% on average, and the waiting
times by about a 35% compared with other scheduling techniques in the literature.
This reduction in response time provides greater resource utilization and improved
overall system performance.

Key words: Multi-cluster systems, co-allocation, job scheduling, mized integer
programming

1 Introduction

Nowadays the use of clusters of computers is becoming common in all kinds of research
laboratories or institutions. Computation problems that would require the use of more
computational resources than just one of these clusters can offer can be resolved by
the use of multiple clusters in a collaborative manner. These environments are known
as multi-clusters and are distinguished from grids by their use of dedicated intercon-
nection networks among clusters with a known topology and predictable performance
characteristics [1].
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A critical aspect of exploiting the resources in a multi-cluster environment is the
challenge of scheduling [2]. Multi-cluster schedulers can take advantage on distributed
resources among different clusters to allocate those jobs that cannot be assigned to one
single cluster or to take profit of the underutilized resources. This allocation strategy,
known as co-allocation, can maximize the job throughput by reducing the queue wait-
ing times and then the job response times [3]. However, mapping jobs across the cluster
boundaries can result in rather poor overall performance when co-allocated jobs con-
tend for inter-cluster network bandwidth. Additionally, the heterogeneity of resources
increases the degree of complexity to the scheduling problem [4][5].

The scheduling process in multi-cluster environments can be solved by two ap-
proaches [2]; (a) using a multi-scheduler mechanism, where each cluster has its own job
queue and scheduler, and all the clusters are coordinated by a global meta-scheduler.
In this situation, the job queue of each cluster can be directly accessed by the user
in order to allocate those jobs that fit into the cluster, and those jobs that do not fit
are delegated to the meta-scheduler to be co-allocated. Or (b), when there is only
one global scheduler with a single system queue, where all jobs to be executed in the
multi-cluster are waiting to be assigned. This second option is the considered in the
present work.

The scheduling strategies by applying co-allocation in multi-cluster environments
have awakened great interest in recent years. The work in [2], analyzes the performance
of four different scheduling strategies to deal with co-allocation, based on job queues,
local to each cluster or global for all of them. This work concludes that using a global
scheduler, as in our case, simply allowing co-allocation without any restriction is not
desirable and requires more complex strategies. Thus, in the literature, the authors have
dealt with the co-allocation process in the multi-cluster environments by developing
different approaches. Some of these, applying load-balancing techniques minimize the
execution time of the jobs from the system queue [6][7]. The work presented in [8]
applies a linear programming based approach for modeling and solving the allocation
of jobs by attempting to avoid inter-cluster links saturation. Another point of view is
presented in [4], which characterizes the bandwidth requirements of the parallel jobs
that are co-allocated in order to minimize the inter-cluster links usage and obtain the
lowest execution time. This work was extended in [3], where the computation needs
are also taken into account to reduce the execution time of the parallel jobs, while
preventing the saturation of the interconnection links.

Nevertheless, those previous works follow a FCFS scheme to allocate the jobs from
the system queue. This means that they consider all the available resources to allocate
the current job, but as they do not take into account the other jobs in the system queue,
the current allocation could affect the next assignments negatively. The main problem,
and also the big challenge, is the capacity of the techniques to extent the scheduling
process to more than one job at the same time.

In the present work, we extend the Mixed-Integer Programming model (MIP) pre-
sented in [3] by adding the power to allocate multiple jobs simultaneously in a het-
erogenous multi-cluster environment, in order to obtain the best overall performance
for a set of parallel jobs. Additionally, we propose a scheduling strategy, named PAS
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for Package Allocation Srategy, which selects those jobs from the system queue that
can be concurrently executed with the available resources. Once the package of jobs is
selected, the MIP model proposed is responsible for finding the best possible allocation
for the set of jobs. With our approach, the best resources for each parallel job are
obtained considering the other applications that can be executed concurrently in the
multi-cluster environment, and thus, the scheduling process will be able to reduce the
global response times while making better use of the resources and also preventing the
saturation of the inter-cluster links.

The rest of the paper is organized as follows. In Section 2, we present the scheduling
strategy proposal based on minimizing the global response time for multiple allocated
jobs by using a Mixed-Integer Programming model that takes into account the het-
erogeneity and non-dedicated nature of multi-cluster resources. Section 3 presents the
experimentation and the results obtained from comparison with other scheduling strate-
gies presented in the literature. Finally, the conclusions and future work are presented
in Section 4.

2 Multiple Job Scheduling Strategy

In [3] we presented a new execution time model for parallel jobs. The goodness of
this model was that it defines the execution time by considering both processing re-
source availability and communication resource utilization. This model was applied in a
Mixed-Integer Programming model (MIP) in order to find the allocation of the current
job that minimizes its execution time, while avoiding the negative effects of sharing the
communication links and processing resources. The drawback of our previous proposal
was that jobs in the system queue were selected and scheduled individually in a FCFS
manner, allocating the best resources for each job without considering the effects on
the execution time of the remaining jobs in the system queue.

One of the main contributions of the present work is the improvement of the Mixed-
Integer Programming model presented in order to achieve the best possible allocation
of multiple jobs, i.e. one that provides the minimum overall execution time.

In subsection 2.1, the execution time model of parallel jobs in heterogeneous multi-
cluster environments is defined and in subsection 2.2, we define the multiple job alloca-
tion problem as a MIP (Mixed-Integer Programming) model where the best solution is
the one that minimizes the global execution time of a set of jobs. Finally in subsection
2.3 the proposed multiple job scheduling strategy is presented.

2.1 Multi-cluster and Parallel Job Models

We define a multi-cluster as a collection of arbitrary sized clusters with heterogeneous
resources. Each cluster has its own internal switch. Clusters are connected to each
other by single dedicated links by means of a central switch.

Formally, a multi-cluster can be defined as a system comprised by « heterogeneous
clusters {C}..C,} interconnected by means of dedicated links {£;..L,}, where each
cluster C; (1 <i < «) is also made up of §; nodes C; = {N}..Nf"}, see Figure 1.
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Figure 1: Diagram of a multi-cluster topology

We assume that parallel jobs are not supposed to be malleable, the processing and
communicating requirements of every job task are very similar, and the job tasks follow
an all-to-all communication pattern.

Taking this assumptions into account, the execution time (7.) of a parallel job
in a heterogeneous and non-dedicated environment can be defined as its execution
time in a dedicated environment (7.) delayed by a slowdown factor (SD) produced
by the heterogeneity and non-dedicated nature of the slowest allocated resources, and
expressed by equation 1.

Te:Te'SD (1)

However, the slowdown of a parallel application depends on the capacity and avail-
ability of resources of both computation and communication, and thus, we can express
SD based on processing SP and communication SC slowdowns by equation 2.

SD=0-SP+(1—-0)-5C (2)
where o denotes the weighting factor that measures the relevance of the processing
time with respect to the communication time of the corresponding job.
2.1.1 Processing Characterization

We assume that parallel job tasks are generally similar in size and they are executing
separately, and thus, the job execution time is bounded by the slowest allocated re-
source. Taking this into account, the job processing slowdown (SP) is obtained from
the allocated resource with maximum processing slowdown, expressed by equation 3.

SP) = max{SP,|r € P’} (3)
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where P7 denotes the set of processing nodes allocated to job j. In a heterogeneous
and non-dedicated environments the computing resources capabilities can be quite dif-
ferent. To measure these differences we use the Effective Power metric (I',) defined
in [3], which relates the computing power of each resource with its availability. Thus,
I, = 1 when resource r has full capacity to run tasks at full speed, and otherwise
I < 1. Assuming this, the processing slowdown of such resource SP, is inversely
proportional to its Effective Power weight, SP, = (')~ L.

2.1.2 Communication Characterization

The parallel job co-allocation consumes a certain amount of bandwidth across inter-
cluster network links (BW}). These are shown by equation 4.

. ) , VR
BW/ = <t{€-PNBWJ> : (%) . Vkel.a (4)
nT—

where n%ﬂ is the total number of tasks of the job j, ti denotes the total number of
tasks allocated to cluster Cy and PN BW/ is the average per-node bandwidth require-
ment by job j from the jobs. The first term in the equation is the total bandwidth
required by all the nodes associated with job j in cluster C%. The second term repre-
sents the communication percentage of job j in other cluster nodes (not in Cj) that
will use the inter-cluster link k.

The degree of saturation of inter-cluster links relates the available bandwidth of
each link (ABW}) with the bandwidth requirements of the allocated parallel applica-
tions, which is calculated by equation 5.

ABW,

BW" = ————
Xin BWE

Vkel.a (5)
When the required bandwidth is lower than the available, the link is not saturated
and the communications will not suffer delays. Otherwise, the network link is saturated
drastically reducing the performance of all the jobs sharing the link.
Thus, the job communicating slowdown (SC') is obtained from the slowest, most
saturated, communication link used by the job, calculated as the inverse of the satura-
tion bandwidth by equation 6.

SCY = maz{(BW) Yk e 1..a} (6)

2.2 Mixed-Integer Programming Model

In [3] we presented a Mixed-Integer Programming model (MIP) in order to find the
best allocation for a parallel job, i.e. one that minimizes its execution time. However,
the allocation of the best available resources to an application without considering the
requirements of the other applications in the system queue impairs the overall system
performance.
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Input arguments:

PCK: Queue of jobs to be matched.

77: number of tasks making up job j € PCK.

PNBW?7: per-task bandwidth requirement for each job j € PCK.

o’: weighting factor that relates the processing and communication time.
L: set of inter-cluster links.

w: set of multi-cluster resources.

I',: Effective Power weight of node r € P

ABW;: maximum communication capacity for each inter-cluster [ link € £

S I o ol

Output parameters:

9. X(jr), J € PCK and r € P: X(;,)=1 when j is matched to resource 7, and 0 otherwise.
10. P;: Set of allocated resources to job j, P; = {r € p| X(;,y =1 and j € PCK}

11. SP?: processing slowdown. SP? = max{SP, | j € PCK and r € P;}.

12. SC?: communication slowdown. SCY = maxz{SC(;; | j € PCK and | € L}.

Objective Function:
13. min{y>, , T/ - SD7}
Constraints:

14. Gang matching.
15. Non inter-cluster link saturation.

Figure 2: MIP model definition for multiple job allocation

The new proposal is described in Figure 2. The objective function and constraints
correspond to linear expressions that concern the simultaneous allocation of several
parallel jobs on a multi-cluster. In this case, the solution is presented as binary values,
1 or 0, indicating the allocation, or not, of each processing node to each parallel job.
The objective function corresponds to the lowest global execution time for a set of jobs,
giving us the best possible allocation, which may or may not be co-allocated between
different clusters.

In order to find the best allocation, information about job requirements and multi-
cluster status are required (lines 1-8). The information about each job j corresponds
to the number of tasks (77), the required per-node bandwidth (PNBW7Y), and the
weighting factor (07), which measures the relevance of the processing and communi-
cation time in the total job execution time. For multi-cluster resources, its status is
specified by the Effective Power weight of each resource (I',) and the availability of the
communications links (ABW)).

The set of output variables (lines 9-12) consists of an array of binary decision
variables X(;,), with values of 1 or 0 when a task of job j is allocated in node r,
or not, respectively. The SP7 and SCY variables, obtained by equations (3) and (6)
respectively, represent the processing and communicating slowdowns obtained for each
allocated job, and provide the job Slowdown SD7 using equation 2.

@CMMSE Page 232 of 1328 ISBN 13: 978-84-613-5510-5



H. BLANCO, A. MONTANOLA, F. GUIRADO, J.L. LERIDA

2.2.1 Objective function

When there are many possible solutions, the objective function defines the quality of
the solution. Our main aim was the allocation of multiple jobs in heterogeneous and
non-dedicated resources over a multi-cluster system, obtaining the lowest execution
time for the job set.

In order to deal with multiple jobs obtaining a fair allocation for all of them, we
attempted to minimizing the global execution time of the entire job set PC'K. This is
done by summing the individual obtained execution times for all the allocated jobs, as
shown in equation 7.

min Y T! - SDI (7)
17j
where the execution time for each allocated job is expressed based on the execution

time measured in a dedicated environment 77 lengthened by the job slowdown SDJ
obtained by equation 2.

2.2.2 Constraints

The constraints (lines 14-15) define a feasible matching scheme. In this model, two main
constraints that must be satisfied are defined, the gang matching and non-saturation
of the inter-cluster links.

The gang matching constraint ensures that all the tasks in each job are assigned,

according to equation 8.
Y. Xgm=T7 (8)

jeEPCK,reP

where 77 is the number of tasks for the job j. This ensures that the sum of resources
allocated for each job j corresponds to its number of tasks.

The non-saturation constraint ensures that the bandwidth consumed on inter-
cluster links once the set of jobs is allocated, does not exceed the total capacity of
these links, thus preventing saturation and delay of the parallel jobs. This constraint
is formalized by equation 9.

SCI <1,Vj € PCK (9)
where SC7 is the communication slowdown calculated by eq. (6), for each allocated
job j.
2.3 Package Allocation Scheduling Strategy

A common feature of most on-line scheduling strategies in cluster, multi-cluster and
grid environments, is the individual allocation of resources to applications. First, the
strategy selects the next job to be executed by order of arrival or according to a priority
criteria. When there are insufficient resources to run the selected job, the scheduler can
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wait for the release of enough resources in order to follow a First Come First Served
(FCFS) schema, or select a new job from the system queue that can be executed
with the existing resources by applying such a schema as Fit Processors First Served
(FPFS), backfilling, etc. Once a job is selected, it is individually allocated to the most
appropriate resources according to the chosen allocation strategy.

However, allocating the best available resources to a job without considering the
requirements of the rest of the jobs in the system queue can impair the performance of
future allocations and therefore the overall system performance. The proposed strategy,
named Package Allocation Scheduling (PAS), is able to package those jobs that can be
executed in the available resources and allocates them using the MIP model proposed
in the previous subsection. To do this, the PAS strategy implements a job selection
function (F) that determines the job package that can be simultaneously allocated in
a set of multi-cluster resources, selected under certain criteria. This function can be
expressed by equation 10.

PCK = F(Q,R,C) (10)

where Q is the set of jobs in the system queue, R is the set of multi-cluster resources
and C denotes the criteria to be met by resources to accommodate the job package.

In this work, under a FCFS schema, the function F selects the set of jobs in the
system queue that fits in the free multi-cluster resources, that is, those computational
nodes non-assigned to other parallel applications. This function is formally expresed
by equation 11.

IPCKCQ] Y <R (11)
jEPCK

where PCK is the subset of jobs from the system queue (Q) whose total number
of tasks is less than or equal to the multi-cluster resources in R, that represents the
subset of multi-cluster resources (R C R) that meets the criteria (C), which in our
case are those resources non-assigned to other parallel jobs. With this, we attempt to
minimize the job waiting times, and reduce the execution times by applying the MIP
model.

It must be taken into account that this expression can be defined in many other
ways, adapted to the multi-cluster environment, both in the point of view of the re-
sources or the parallel jobs nature to be executed. Any strategy or heuristic is suitable
to be implemented.

3 Experimentation

In this section we assess the performance of the proposed Package Allocation Scheduling
strategy (PAS) for heterogeneous multi-cluster environments and compare the obtained
results with two other techniques in the literature. The first strategy presented by Jones
in [4], named C'BS for Chunk Big Small tries to co-allocate a “large chunk” (75% of the
job tasks) into a single cluster in an attempt to avoid inter-cluster link saturation. The
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second strategy presented by Naik in [8], named JPR for Job Preferences on Resources,
allocates parallel jobs depending on their processing or communication requirements,
selecting the most powerful resources when the jobs are computational intensive and
minimizing the communication saturation when jobs are highly communicative, co-
allocating or not the jobs as needed.

The experimental environment was a multi-cluster made up of 4 clusters, inter-
connected by a dedicated Giga-Ethernet network. Each cluster was made up of 16
nodes with the same characteristics. Heterogeneity was implemented assigning differ-
ent Effective Power weight to each individual cluster, with values of {0.4,0.6,0.8,1.0}
respectively, from lesser to higher capability.

In order to evaluate the performance of each strategy under different workload
conditions, three different kinds of workloads were defined. Each workload was made
up of 35 parallel jobs with different processing and communications requirements with
an inter-arrival time chosen from a Poisson distribution with a mean of 40 seconds.
The Highly Processing workload consisted of cpu-intensive jobs, with a weighting factor
(07) randomly selected in the range of [0.75,1]. The Highly Communicative workload
consist of communication-intensive jobs, with a weighting factor randomly selected in
the range of [0.05,0.35]. Finally, the Mixed workload consisted of a mix of cpu- and
communication- intensive jobs.

The parallel jobs had sizes 10, 20 and 30 of tasks, and appeared in the workload with
an exponential probability distribution, with higher frequency of small jobs than large
ones, as is common in real systems. The execution time of parallel jobs in a dedicated
environment (or base execution time, T,), were randomly selected from the range of
[60,180] seconds. The average per-node communication requirements PN BW7 were
randomly selected from the range of [0.05,0.1] Gbps, obtaining jobs with low bandwidth
requirements and other with high bandwidth requirements.

Different kinds of metrics were defined to measure the performance of the scheduling
strategies. The Average Response Time measures the mean elapsed time in the system,
by the jobs in the workload. The Average Overhead measures the delay in base time
produced by the allocated resources.

Both metrics help us to measure the goodness of the allocation strategy for the
reduction of the response times and its efficiency from the parallel application point of
view. Makespan measures the total time spent by each scheduling strategy to execute
the workload, and helps us to evaluate the goodness of the allocation strategy for
improving the overall system performance. The results were obtained by using the
CPLEX solver package.

Figure 3 shows the average response time obtained for each scheduling strategy for
different kinds of workload. The average response time is shown divided into its three
basic components, the average base execution times, the average overhead produced by
the allocated resources and the average waiting time.

As can be seen, the PAS scheduling strategy had the lowest average response time.
The fact that this strategy is able to allocate many jobs at a time, minimizes the overall
execution time and reduces considerably the waiting times. This allows the system to
free resources earlier, and thus, improve the response time of the whole workload.
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Figure 3: Comparison of average response times

The JPR strategy attempts to find the best resources by taking into account
the job characterization, i.e. for the Highly Communicative workload, the strategy
selects the best communication resources, while for the Highly Processing workload it
minimizes the processing time. The strategy obtained an 8% higher average response
time compared with the PAS strategy. The C'BS groups job tasks in order to reduce
the communications, but does not take into account the processing characteristics of
the jobs or the environment. Due to this, the strategy performs well in the Highly
Communicative workload, but has poor performance in the other two. Overall, it
obtains a 38% higher response time than PAS.

Figure 4 shows the makespan obtained for the three kinds of workload. The x-axis
represents the workloads, while the y-axis represents the makespan of the full workload,
in seconds. A lower makespan implies that the workload finishes its execution earlier.

As can be seen, the PAS obtained the lowest makespan in the three kinds of
workload. The values obtained were overall 3% and 13% lower than those for JPR and
CBS respectively.

Finally, we studied how the small jobs were treated by each strategy. In [2], it
was shown that systematic co-allocation yields the poorest performance, because jobs
with conflicting requirements can make the performance worse than in the absence of
co-allocation. With this, the small jobs are desirable to be allocated without crossing
the cluster boundaries. With lower co-allocation on small jobs it will be more feasible
to maintain free the inter-cluster links for those jobs that must be co-allocated and
then improving the system performance. By this reason, we evaluated the number
of co-allocated small jobs, those composed of 10 tasks, for each one of the compared
strategies.

Figure 5 shows the number of small jobs co-allocated by the strategies for the three
workloads. The total number of small jobs is indicated, between parentheses, in the
label of the workload. The results show that the PAS strategy was able to co-allocate
the lowest number of small jobs on average. In the Highly Communicative, the CBS
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had the lowest value. This was because, in order to minimize the waiting time, the PAS
co-allocates even the smallest jobs taking advantage of the free resources in different
clusters, as can be seen in Figure 3.

Co-allocated Small Jobs
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Figure 5: Degree of co-allocation for small jobs

In all workloads, JPR co-allocated the higher amount of jobs. In the case of
the Highly Processing and Mized workloads, their allocations were based just only on
obtain the better Effective Power resources, instead the co-allocation. For the Highly
Communicative workload, it only treated to not saturate the inter-cluster links without
taking into account to maintain the tasks at the same cluster.

To summarize, under all workloads, the PAS strategy demonstrated its ability to
reduce the response times. This was because evaluating multiple jobs simultaneously
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allowed a fairness allocation for the jobs, and thus a great reduction in the waiting
times was possible. Furthermore, the MIP model obtained the lower Slowdown (SD),
the average execution overhead being the lowest.

4 Conclusions

In the present work a multiple job schedulling strategy, named PAS for Package Allo-
cation Scheduling strategy, is presented, based on a Mized-Integer Programming model
(MIP). The MIP model minimizes the global execution time for a package of jobs, se-
lected by the PAS strategy from the system queue, taking into account both processing
and communication requirements. Our strategy was tested against others in the litera-
ture, and the results of the experimentation show that we are able to produce solutions
with the lowest execution and waiting times for all the jobs, and also the makespan.

In the future work, we plan to extend our model in a stochastic, to take into account
temporal scenarios where the allocations will be done considering the future jobs in the
queue.
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Abstract

Scalability is one of the most important features in exascale computing. Most
of this systems are heterogeneous and therefore it becomes necessary to develop
models and metrics that take into account this heterogeneity. This paper presents
a new expression of the isoefficiency function called H-isoefficiency. This function
can be applied for both homogeneous and heterogeneous systems and allows to
analyze the scalability of a parallel system. Then, as an example, a theoretical a
priori analysis of the scalability of Floyd’s algorithm is presented. Finally a model
evaluation which demonstrate the correlation between the theoretical analysis and
the experimental results is showed.

Key words: Heterogeneous Computing, Scalability Analisys, Isoefficiency

1 Introduction

The performance of parallel programs must be evaluated together with the computer
system on which they are run. Otherwise, an algorithm that solves a problem well
using a fixed number of processors on a particular architecture may perform poorly
if the number of processors changes [3]. Common speedup graphs teach us that the
speedup of a system does not grow linearly with the number of processors but tend
to saturate. On the other hand, a higher speedup can be obtained as the problem
size increases on the same number of processors [4]. Then, a system is considered
to be scalable if the performance measures remain constant whenever the number of
processors is increased by selecting the appropriate problem size. The system’s degree
of scalability is given by the ratio problem growth to system growth needed to keep
those measures constant. It can be said that scalability has been a desired capability
that means not just the ability to operate a system, but to operate it efficiently and
with an adequate quality of service over the available range of configurations [6].
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But moreover, in the age of exascale computing, a 21st century attempt to push
computing capabilities beyond the existing ones, a quick look to the top500 list reveals 6
machines with more than 100,000 processors (3 of them over 200,000). Since processors
are affordable and quite powerful nowadays (currently up to 12 cores and growing),
other aspects as performance loose importance while scalability emerges as one of the
key concepts in parallel computing.

The study of scalability of homogeneous parallel systems has not come up with
a unique and common way of evaluation, although the isoefficiency metric [3] is the
most accepted and used. In it, the degree of scalability is given by the isoefficiency
function, that expresses the dependence of the problem size on the number of processors
needed to keep the efficiency constant. The smaller the problem size is, the lower is
the isoefficiency value and therefore the higher the scalability of the parallel system is.

This paper presents a new expression of the isoefficiency function, called heteroge-
neous isoefficiency. It is a more general definition than the one presented in [10], since
the functions they use to analyze the overhead time are always linear with respect to
the problem size, so their definition is only valid for the examples they propose. It also
improves other existing extensions, as the ones proposed by Kalinov [7] and Chen et al.
[1], as it is explained in section 2. In order to prove the use of this model it has been
applied to the Floyd algorithm, obtaining from the experiments results quite close to
those predicted by the model.

The rest of the paper is organized as follows: Section 2 presents a brief overview of
the related work. Section 3 presents the new definition of the isoefficiency function for
heterogeneous systems. Section 4 presents the application of this model to a practical
problem. Section 5 shows the experimental results achieved. Finally, conclusions and
future work are summarized in Section 6.

2 Related Work

Despite its importance for parallel and distributed systems, there is no unique and
commonly accepted metric for scalability evaluation. A number of techniques have been
suggested throughout the years. They are typically based on the selection of a metric
which is used for characterizing the behavior of an homogeneous system [5, 8, 12, 14, 18].
Among the most representative works, it can be mentioned the use of latency as a metric
to do an experimental measurement and evaluation of the scalability of programs and
architectures [15, 17]. The model is based on the average latency, a function of the
problem size and the number of processors. It determines the average overhead time
needed so that each processor finishes its assigned work. Scalability is then defined as
a combination of the machine and the implementation of the algorithm.

Another model quite used is the one raised by Sun and Rover [13], who proposed
an isospeed scalability metric to describe the scalability of an algorithm-machine com-
bination in homogeneous environments. This model is based on reducing the response
time by means of increasing the speed. The execution speed of an algorithm is de-
fined as the amount of work needed to complete its execution divided by the response
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time. Ideally, this measure should increase linearly with the size of the system. In
general communication and synchronization overheads prevent such a behavior. Chen
and Wu [1] extended this model to heterogeneous systems. Its main drawback is that
isospeed is an a posterior: measure, so it demands to implement the model and obtain
the measures empirically to be able to decide about the system’s scalability.

The isoefficiency is the most widespread model [9, 3]. It defines scalability as the
ability of a parallel system to keep the parallel efficiency constant when both system
and problem sizes increase. Then, parallel efficiency is defined as the speedup over
the number of processors. Speedup is defined in turn as the ratio sequential execution
time to parallel execution time. Pastor and Bosque [10] proposed an extension to
heterogeneous systems, although their approach lacks of generality, since the functions
they define to analyze the overhead time are linear with respect to the problem size for
every case.

Kalinov [7] has also extended the isoefficiency model to heterogeneous systems. In
this work it is imposed that the system has to keep constant the computational power
of the slowest processor, the computational power of the fastest processor and also the
average computational power of the system. These are indeed three tight restrictions
quite difficult to satisfy when a system is upgraded with new nodes, conditioning its
real heterogeneity.

The model presented in this paper has several advantages over the isospeed model
and the extension to the isoefficiency model presented by Kalinov, since as it is explained
in the following, it is an a priori model that successfully predicts the scalability of a
system and also deals with both power and physical scalability.

3 The Isoefficiency Function for Heterogeneous Clusters

The isoefficiency function depends only on the number of processors assuming all of
them have the same computational power [9, 3]. This is not the case for heterogeneous
systems where the performance of a single processor can affect the overall performance
of the system. In fact, the response time will depend on the slowest node: Ty =
maz | T; — being P the number of processors and 7T} the response time for node i.

In this way the computational power of a heterogeneous system (Pr) can be defined
as the sum of the computational power of its processors (P;) [10]:

P

Pr = Y P (1)
=1

(2)

Assuming W is the size of the problem, in this work the computational power of

each node has been computed using the following expression:

P o= — (3)
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3.1 Heterogeneous Efficiency

As previously mentioned the computational power of a heterogeneous system does
not only depend on the number of processors but also depends on each processor’s
computational power. In order to improve the computational power of this type of
systems both the number or the power of some processors have to be increased. The
latter is called physical scalability while the former is referred as power scalability [16].

The efficiency of a parallel (either homogeneous or heterogeneous) system, denoted
by &, can be defined as the ratio between the ideal response time in a single node
with the same computational power and the real response time achieved [10]. The best
response time is achieved when the workload is evenly distributed and no overhead
time is introduced. This is reflected in the following equation:

_ Optimal achievable time w

= (4)

Actual response time Tr- Pr

For homogeneous systems, it is easy to demonstrate that € becomes the traditional
efficiency.

3.2 H-Isoefficiency

T; can be decomposed into computation and overhead times: T; = t! + t/. The iso-
efficiency function assumes that t., is constant for all of the processors and therefore
it does not affect the scalability of the system. However, this is not true for heteroge-
neous systems, where not only the number but also the performance of nodes have a
high impact on the scalability of the system.

Based on the definition of the efficiency given in the previous section, an isoef-
ficiency function for heterogeneous systems, H-isoefficiency, can be defined. In the
heterogeneous case the key parameter will be the total computational power of the
system, instead of the number of processors.

Given a heterogeneous parallel system S(P, Pr, W) with P processors, a total com-
putational power Pr and a total amount of work represented by W and given also
S'(P', Pj.,,W'), a scaled system with PJ. > Pp, it can be said that S is a scalable sys-
tem if, whenever the system is upgraded from S to S’, it is possible to select a problem
size W’ such that the efficiencies of S and S’ are kept constant.

Now the heterogeneous isoefficiency function, H-isoefficiency for heterogeneous par-
allel systems can be computed, starting from the heterogeneous efficiency definition for
S. Furthermore we define the response time of the parallel algorithm as the sum of the
execution time plus the overhead time: T = Tppe +T,. Assuming that the workload is
evenly distributed among the nodes proportionally to each node’s computational power,
Terze will be the same for all of the nodes, and it can be determined as T, = PET. Then
the response time will be given by the following expression: T = PET + T,. Hence, the
H-Isoefficiency function is defined as:

oW W 1
- Tr-Pr W+T,-Pr 14 Llr

e
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For scalable heterogeneous parallel systems, the efficiency can be maintained at a

desired value if the ratio LMfT in the expression of the efficiency is maintained at a

constant value. To maintain a certain efficiency we can do:

T,-Pr 1-c¢ €
W € 1—e° T
Let K = 1= be a constant depending on the efficiency. Then the H-isoefficiency
function can be write as:
W =K T,(P)- Pp(P) (5)

From this expression can be pointed out that the scalability of heterogeneous en-
vironments depends on both, the number of nodes and the total computational power
of the scaled system.

This expression is similar to the one proposed for homogeneous isoefficiency. The
main difference between both is that instead of using a single t. parameter, which
remains constant for the whole set of nodes of the system and which is included in
the K parameter, a new Pp parameter is introduced to represent the total aggregated
computational power of the system.

Therefore, when scaling a system, the computational power of new nodes has to
be taken into account in order to increase the size of the problem in a proportional
way. This problem can be seen from a qualitative point of view: if a system is scaled
using nodes more powerful than the system’s, the total response time would be lower
than the time achieved if the nodes had the same computational power. In this way the
total overhead (7,) would be a bigger percentage of the response time and the efficiency
would be decreased. This fact makes necessary to increase the size of the problem in
order to achieve the same efficiency as is represented in Eq. 5.

A big advantage of the proposed approach compared to Kalinov’s generalization of
the isoefficiency function [7] is that our approach allows to study the behavior of the
system both when scaling by the number of processors (physical scalability) and when
scaling increasing the power of some of them (power scalability) Kalinov’s work forces
to maintain the average computational power and therefore a power scalability study
can not be done. With our approach a priori studies can be carried out in order to
analyze if a specific algorithm is more suitable for its execution using a large number of
less powerful processors or a lower number of more powerful ones. This is demonstrated
in the experimental results section.

4 Scalability of the Floyd Algorithm

Once the H-isoefficiency has been defined it becomes necessary to experimentally vali-
date and verify it. In this way, as an example, Floyd’s algorithm has been chosen. This
algorithm solves the all-pairs shortest-path problem. In this Section the performance
of a parallel implementation of this algorithm is analyzed in order to obtain both the
isoefficiency and H-isoefficiency. In Section 5 experimental results are presented.
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4.1 Performance Analysis

Let’s assume a model for communication cost in parallel programs. The time spent
in a single point-to-point communication over an uncontested interconnection network
can be well approximated in terms of startup latency (\) and bandwidth (). Then the
time to communicate a m word message can be approximated by: Ty = A - %

A broadcast function to p processors requires [logp| message-passing steps. Hence
the time spent in broadcasting a m word message can be approximated by Tp =
A % - logp.

The sequential implementation of the Floyd algorithm is composed by three nested
loops, from 0 to n — 1, where n is the dimension of the adjacency matrix. Therefore
the complexity of the sequential Floyd algorithm is ©(n?).

With respect to the parallel algorithm the innermost loop has complexity ©(n).
Given a row-wise block-striped decomposition of the adjacency matrix, each process
executes at most [%] iterations of the middle loop. Hence the complexity of the inner

two loops is @(%)' Immediately before the middle loop is the broadcast step. Pass-
ing a single message of length n from one processor to another has time complexity
©(n). Since broadcasting to p processors requires [logp| message-passing steps, the
overall time complexity of broadcasting each iterations is ©(nlogp). The outermost
loop executes n times. Hence the overall time complexity of the parallel algorithm is:

n2 n3
O(n(nlogp +—-)) = O(-- + n*logp)

Now let’s come up with a prediction of the response time of the parallel algo-
rithm. The parallel Floyd program requires n broadcasts, each of them with [logp]
steps. Each step involves passing messages that are 4n bytes long. Hence the expected
communication time of the parallel program is:

nllogn] (A + %”)

If t. is the average time needed to update a single cell (a basic algorithm operation),
then the expected computational time of the parallel algorithm is:

However it is possible to overlap communication and computation operations. The
computation time per iteration exceeds the time needed to pass messages. For this
reason after the first iteration each process spends the same amount of time waiting
for or setting up messages: [logp|A. If [logp] %" < [§Intc, the message transmission
time after the first iteration is completely overlapped by the computational time and
should not be counted toward the total execution time. Hence a better expression for
the execution time of the parallel program is:

T = [ 2|t + nllogn] A + [togp] ) (6)
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4.2 Isoefficiency Function

Let’s determine the isoefficiency function for the parallel implementation of the Floyd’s
algorithm. The sequential algorithm has time complexity ©(n?®). Each of the p pro-
cesses executing the parallel algorithm spends ©(nlogp) time performing communica-
tions. Therefore the isoefficiency relation is:

3 3
n° > K(nplogp) = n > K (plogp)?2

where K is a constant.

4.3 H-isoefficiency of the Floyd Algorithm

Now let’s determine the H-isoefficiency function of the Floyd’s algorithm. For obtaining
the execution time in a heterogeneous environment, we have to take into account that
the workload is evenly distributed according to each node’s computational power. Then
each node has a computational workload given by w; = P—M; - P

In such a way, the middle loop executes w; times per each node, but all the nodes
spend the same amount of time P—VZ. A performance analysis similar to the one presented
in Section 4.1 gives the following response time and complexity expressions:

3
TH = 1o flogp] - (\+ ) = T, = n- logal - O+ ) (7)
n3 2
@(P—T + n“logp) (8)

Then the H-isoefficiency function is:

4 4
W = KPrT, = n® = KPr(n\[logp]| + ﬁn [logp]) = K Prn\[logp| + KPTFTL [logp]
)

Analyzing each term independently we reach the same expression for the H-isoefficiency:

3
2

©((Prlogp)2). (10)

5 Model Evaluation

A practical experiment was set up in order to test the analytical results presented in
the previous sections and to show how the heterogeneous isoefficiency model could be
applied. The tests were performed on a heterogeneous HP Cluster with up to 142
processors, interconnected with Gigabit Ethernet network. The cluster is composed of
the following resources:

e 20 HP Proliant DL 145 with two 1.8 GHz Dual Core AMD Opteron 265 processors,
labeled as Node Slow (NS) in this paper.

@CMMSE Page 246 of 1328 ISBN 13: 978-84-613-5510-5



H-ISOEFFICIENCY: SCALABILITY METRIC FOR HETEROGENEOUS SYSTEMS

2.4

22

0.8
1.8

16}/ 06

1.4

Eficciency
Eficciency

i Fd i :
T2rs o4t / 2 Processors —x—

1 C S 2 Procegsors —e— 4 Processors ----x--
; 4'Processors —-x--- 8 Processors x
/ 8 Processors - 16 Processors
08 i 16 Processors - | 0.2 32 Processors -=---
; 32 Processors 64 Processors - -~
0.6 64 Processors - 128 Processors -
04 ) ) ) . 128 Processors --x--- o . . Lo
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Dimension of the adjacency matrix Number of files of work
(a) Efficiency in a heterogeneous cluster (b) Heterogeneous efficiency in a heterogeneous

cluster. eps

Figure 1: Comparison of classic and proposed efficiency figures in a heterogeneous
cluster

e 25 HP Proliant DL 160 with two 3.0 GHz Quad Core INTEL Xeon 5472 proces-
sors, labeled ad Node Fast (NF).

In this cluster the parameters of the model have been measured and they are listed
in Table 1. The application was developed using GNU tools and the MPICH 1.2.7
library [2, 11].

| Label | P; | te; | A | 3 |
Node Fast (NF) | 83.088.126 | 0,0000000119
Node Slow (NS) | 34230899 | 0,0000000292 | 2° | 2:000.000.000

Table 1: Parameters of the cluster

The first experiment compared the values of classical and proposed efficiency in a
heterogeneous cluster under variable node count and workload conditions (figures 1(a)
and 1(b)). In all the configurations, the cluster is composed of 2 NS processors while
the rest of processors are NF. It can be seen that the efficiency figures computed using
the classical efficiency definition on the heterogeneous cluster are not consistent. On
the other hand the proposed efficiency yields results very close to those obtained in the
homogeneous cluster.

In the second experiment we have measured the heterogeneous efficiency value for
a cluster composed by two nodes and a dimension of the adjacency matrix of 128.
Then we have estimated the workload needed to maintain constant this efficiency when
the number of nodes is increased in a heterogeneous cluster and compared with the
real measured values. Table 2 presents the results achieved, where P is the number
of nodes, Pr is the total computational power, N is the measured workload and H-
isoefficiency is the theoretical computed value for the workload. Additionally the values
of heterogeneous and classical efficiency are shown.
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Table 2 presents the workload computed through Equation 10 (labeled as H-
isoefficiency), necessary to keep the heterogeneous cluster’s efficiency constant at a
value around 0.842. The column N shows the workload actually measured. Keeping
the heterogeneous efficiency constant requires that the problem size must be increased
according to the H-isoefficiency expression rather than with respect to homogeneous
one. The errors between the estimated and measured workload values are very small,
validating the assumption that the H-isoefficiency function provides an accurate, a
priori method for analyzing scalability in heterogeneous clusters.

Table 2 also presents the values of efficiency obtained measuring the sequential
time in both the fast and the slow processors. It has to be noted that these results are
not consistent with the efficiency definition, in the NF processor. On the other hand
the heterogeneous system is not scalable which is not reasonable.

[ P ] Pr | N | e JTENF) [ E(NS) | H-isoeff. |
2 68461798 128 | 0,842 0,842 0,343 128
4 236438050 336 | 0,841 1,453 0,592 336,40
8 572390554 640 | 0,841 1,758 0,717 641,05

16 1244295562 1088 | 0,841 1,910 0,779 1091,38
32 2588105578 1760 | 0,842 1,989 0,811 1759,79
64 5275725610 2752 | 0,842 2,027 0,826 2752,34
128 | 10650965674 | 4216 | 0,841 2,045 0,833 4224,05

Table 2: H-isoefficiency for a E=0.842

Finally Table 3 shows the H-isoefficiency and the H-efficiency values for different
cluster configurations with the same number of nodes. It has been to highlight that
H-isoefficiency predicts different values of workload to different configurations, depends
on the total computational power. This predictions are consistent with the measured
values and the H-efficiency can be maintained constant. Again, the figures presented
by classical efficiency are not consistent.

[ Configuration | Pr | Hiisoeff. | ENF) [ ENS) | & |

128 NF 10750480128 | 3680,60 0,800 1,964 0,800
114 NF 16 NS | 10122340748 | 3571,45 | 0,754 | 1,849 | 0,800
96 NF 32 NS 9158248864 3397,12 0,682 1,673 0,801
64 NF 64 NS 7566017600 3087,72 0,563 1,382 0,800

Table 3: H-isoefficiency for a E=0.80, P=128 with different cluster configurations

6 Conclusions

This paper presents a new expression of the isoefficieny function, called H-isoefficiency,
which can be applied to homogeneous and heterogeneous systems and which can be used
for predicting algorithm scalability without needing the actual implementation of the
algorithm in the selected architecture. Comparing this model with others previously
described in the literature, it presents several advantages, just like the isoefficiency
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model proposed by Kumar and Rao [9] does. Its most remarkable advantages are that,
on one hand, being an a priori method it does not require the implementation of the
algorithm to be studied in the selected architecture. On the other hand, it deals with
both power and physical scalability without imposing any restriction on the system’s
setup.

The experiments performed have shown that the proposed method yields results
quite close to the values theoretically predicted. This shows that the H-isoefficiency
function is an accurate model that allows performing scalability analysis both for ho-
mogeneous and heterogeneous systems. The results have also verified the strong impact
that different configurations have on the scalability of a heterogeneous environment.

Future work includes the development of more systematic and precise methods
for estimating both overhead and relative node computational power. Additionally the
assumption of the “workload evenly distributed according to each’s node computational
power” will be removed from the scalability theorems.
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Abstract

This paper presents a counterexample to the conjecture that the semi-
explicit Lie-Newmark algorithm is variational. As a consequence the Lie-
Newmark method is not well-suited for long-time simulation of rigid body-
type mechanical systems. The counterexample consists of a rigid body in a
static potential field.

Key words: rigid body, long-time simulation, Newmark algorithm
MSC 2000: 65P10

1 Introduction

In this paper we will focus on the dynamics of a rigid body in a static potential field.
To describe this system, denote by Q(t) € SO(3), W (t) = [Wi(t) Wa(t) Ws(t)]" €
R3, and I = diag(Iy, Iz, I3) € R3*3 the configuration, body angular velocity and
inertia matrix of the body, respectively. Let 7 : SO(3) — R3 be the torque acting
on the body and ~: R? — R3*3 the hat map

0 Wiz Wy
W= | W3 0o -
Wy W 0
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In terms of this notation, the governing equations are
Q =QwW (La)
IW =1IW x W +7(Q), (1b)

with initial conditions Q(0) = Qo € SO(3) and W (0) = Wy € R3. This rigid body
corresponds to a mechanical system whose Lagrangian is of the form

L@QW)=T(W)-U(Q) (2)

where T(W) = WTIW and U(Q) are the potential and kinetic energy of the
body, respectively. Notice that the total energy is separable and T'(—W) = T'(W).
The flow of (1) possesses certain structures such as total energy preservation, time-
symmetry, and symplecticity. Moreover, the path @ lies on a configuration mani-
fold SO(3) which possesses a Lie-group structure.

This paper investigates the long-run behavior of two integrators for (1): the
Lie-Newmark [1] and Lie-Verlet methods [2]. Both methods are semi-explicit,
second-order accurate and symmetric. They are also ‘Lie group methods’ because
they respect the Lie group structure of the configuration manifold [3]. The main
difference between the integrators is that the Lie-Verlet method is designed to be
variational, whereas the Lie-Newmark method is not.

Variational integrators are time-integrators adapted to the structure of me-
chanical systems [4, 5, 6]. They are symplectic, and in the presence of symmetry,
momentum preserving. The theory of variational integrators includes discrete ana-
logues of Hamilton’s principle, Noether’s theorem, the Euler-Lagrange equations,
and the Legendre transform. The variational nature of Lie-Verlet guarantees its
excellent long-time behavior. In fact, one can prove this. The basic idea of the
proof is to show that a trajectory of a variational integrator is interpolated by
a level set of a ‘modified” energy function nearby the true energy [7, 8, 9]. This
implies that a trajectory of the variational integrator is confined to these level
sets for the duration of the simulation. As a consequence variational integrators
nearly preserve the true energy and exhibit linear growth in global error. For these
reasons variational integrators are well-suited for long-time simulation.

Even though the Lie-Newmark integrator is not designed to be variational, this
does not rule out the possibility that the algorithm is variational in a subtle way
like vector space Newmark [10]. Specifically Kane et al. prove that a trajectory
of the vector space Newmark method is shadowed by a trajectory of a variational
algorithm. In other words the Newmark integrator is not directly symplectic,
but a so-called conjugate symplectic method [9]. This possibility was supported
by numerical evidence showing that the Lie-Newmark algorithm exhibits good
behavior analogous to vector space Newmark [11]. In that paper Krysl and Endres
conjecture that the Lie-Newmark algorithm is variational.

This paper disproves this conjecture. In particular, the paper presents a sim-
ple numerical counterexample showing that the Lie-Newmark method exhibits sys-
tematic energy drift. In contrast, the Lie-Verlet method nearly preserves the true
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energy and exhibits the qualitative properties one expects of a variational integra-
tor. In summary, the Lie-Verlet method is well-suited for long-time simulation of
rigid body-type mechanical systems while the Lie-Newmark method is not.

2 Integrators

Lie-Newmark methods were originally proposed in [1]. The methods consist of
a Newmark style discretization of (1b) and a discretization of (la) that ensures
the configuration update remains on SO(3). This paper focuses on the following
semi-explicit member of the Lie-Newmark family tested in [11].

Given (Qp, Wy) and time-stepsize h, the algorithm determines (Qx11, Wg41)
by the following iteration rule:

h
Wiy = Wi+ 5T [IW x Wi+ 7(Qx)) (3a)
Qry1 = Qpcay(hWy 1) (3b)
h__
Wk+1 = Wk—i—% + §H 1 (H Wk+1 X Wk+1 + T(Qk+1)) , (3C)

where cay : R? — SO(3) denotes the Cayley map:

- —1 ~
E g 4 ~ 2 2
e ( 2) (*2) ottt W

This integrator is semi-explicit because (3a) and (3b) involve explicit updates,
and (3c) is only implicit in the angular velocity, not in the torque. Hence, the
implicitness of the Lie-Newmark method is not severe. In fact, this numerical
algorithm is called explicit Newmark in [11]. In the Appendix we check for the
reader’s convenience that this algorithm is symmetric and reversible. It is also
second-order accurate. There are other maps one can use in place of the Cayley
map in (3b) (see, e.g., §5.4 of [12]), but the Cayley map is known to be the most
computationally efficient in practice.

The velocity Lie-Verlet integrator was proposed in [2] and inspired by the
theory of discrete and continuous Euler-Poincaré systems [13, 14]. The method
is closely related to, but different from the RATTLE method for constrained me-
chanical systems.

Given (Qp, Wy) and time-stepsize h, the algorithm determines (Qx11, Wg41)
by the following iteration rule:

h__ h
Wk+%:Wk+§H l|:HWk+%XWk+%_§(Wg+éHWk+%> Wk+%+T(Qk):| (5&)
Qry1 = Qrcay(hWy 1) (5b)

h__ h
Wk+1:Wk+%+§H l[HWk+%XWk+%+§(WkTJr%HWH%)WH%‘F T(Qk+1)]~ (5¢)
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Similar to the Lie-Newmark method, this algorithm is symmetric, semi-explicit and
second-order accurate. In particular, the updates in (5b) and (5c) are explicit, and
the implicitness in (5a) does not involve the torque. We emphasize the Lie-Verlet
integrator is variational and refer the reader to [2] for a proof of this result.

3 Numerical Counterexample

This section describes a numerical experiment in which a trajectory of the semi-
explicit Lie-Newmark integrator (3) exhibits systematic drift in total energy. Such
drift proves that the method is not a conjugate symplectic integrator for (1), and
hence, is not variational. The numerical counterexample we discuss is strongly
inspired by a numerical experiment reported in [15, §4.4]. In that paper a sys-
tematic drift in the total energy of a spring pendulum (with exterior forces) was
found when using a fourth-order accurate, implicit, and symmetric Lobatto II1IB
integrator.
Consider the function dist : SO(3) x SO(3) — R defined as

dist(Q1,Q2) := vV2tr(Q2 — Q1) .

Let || - || denote the Frobenius matrix norm. We recall that [|Al|p := \/tr(AT A)
for A € R™™. Tt is straightforward to verify that dist(-,-) is a distance func-
tion in SO(3) induced by the Frobenius norm using the identity 2tr(Qs — Q1) =
= Q2 — Q1%

For the numerical experiment, consider a single rigid body in a static potential
field. Let I € SO(3) be the identity element. The potential energy U : SO(3) — R
is the sum of two contributions and is defined as

U(Q) = (dist(Q, 1) — 1) (6)

@
dist(Q, Qm) -
The first term in the right hand side of (6) is a bounded potential which attains
its minimum value at @ € SO(3) satisfying dist(Q,/) = 1. The second term
is an unbounded potential that generates an attraction toward the configuration
Qm € SO(3). The parameter « is a tuning parameter.
For a = 0, the potential U attains its minimum value on the set

S:={Q € S0(3) : dist(Q,I) =1},

a two-dimensional surface in SO(3). The set (S,0) C SO(3) x R? is a stable set (in
the sense of Lyapunov). If we choose the initial condition (Qg, Wy) € SO(3) x R?
so that Qg is close to S and Wy is small, the resulting trajectory (Q(t), W(t)),
t > 0, stays close to the set S, in the sense that dist(Q(¢),/) ~ 1. Furthermore,
if we choose Wy to have a component ‘tangential’ to the surface S at )y, then
the rigid body will wander along S reaching configurations quite distant from the
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initial condition @)y while staying close to the set S. This latter fact will be key to
the numerical experiment we will describe.

For a > 0, the unbounded attractive potential will cause a distortion of the
two-dimensional surface S. On this distorted energy landscape, the rigid body
experiences an attraction toward the configuration @Q,,. For dist(I,Q,,) # 1 and
a > 0 sufficiently small, the set S gets distorted into a set, that we label S, with
similar stability properties as previously discussed.

Let the inertia matrix be I = diag(2.0, 2.0, 4.0). Select the potential en-
ergy tuning parameter to be a = 0.3. Place the attraction point at @, =
exp (9, ), where v, = [2.5 0 2.5]7 € R3. Now select the initial configuration
to be Qo = exp vy, where vy = [0 0.7227 O]T, and the initial angular velocity to be
Wo = [0 0 0.625]7. Notice that the initial condition (Qg, W) is selected so that
dist(Qo, I) is nearly one.

In the numerical experiment we test the two integrators, Lie-Newmark (LNE)
and velocity Lie-Verlet (VLV), on a long time interval [0,15000]. The energy
error obtained with the time-stepsize h = 0.125 is shown in Figure 1(a). The
experiment was repeated with a time-stepsize h = 0.25 and results are reported in
Figure 1(b). A systematic drift for the LNE scheme can be observed in both cases.
The drift appears linear in the time span 7" and quadratic in the time-stepsize h.
We abbreviate this fact by saying the total energy error behaves like O(Th?). No
energy drift is observed for the VLV scheme. The trajectory generated by Lie-
Newmark for time-stepsize h = 0.25 is shown in the axis/angle representation of
SO(3) in Figure 2. The semi-transparent surfaces correspond to isosurfaces of the
potential energy (6).

The time-precision diagrams, shown in Figures 3(a) and 3(b) confirm that LNE
and VLV are second-order accurate. Observe from the figures that the slope of the
two lines denoting the global error is O(h?). The diagrams have been generated
by computing the global error in the configuration and angular velocity evaluated
at T = 5. The simulations have been performed for a variety of time-stepsizes
as shown in the figures. The reference solution was computed using the function
ode45 in MATLAB, with an absolute tolerance 10~* and relative tolerance 2-10714.

4 Conclusion

The Lie-Newmark method was proposed as a generalization of the vector-space
Newmark algorithm to Lie groups [1]. However, unlike its counterpart on vector
spaces, this paper shows that the Lie-Newmark method does not possess excellent
long-time behavior when applied to a rigid body in a potential force field. In par-
ticular, the paper presents a numerical experiment which shows systematic energy
drift along a Lie-Newmark trajectory that behaves like O(Th?). The experiment
consisted of simulating a simple rigid body system in a static force field. On the
other hand, the Lie-Verlet method which is designed to be variational does not ex-
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(a) h = 0.125 (b) h = 0.25

Figure 1: This figure shows the energy error of the Lie-Newmark (LNE) and
velocity Lie-Verlet (VLV) algorithms for the rigid body in the potential energy
landscape defined by (6) for two different timesteps. LNE exhibits a systematic
energy drift. On the other hand, the energy error of VLV method remains bounded
as predicted by theory. The initial conditions and parameters used are provided
in the text.

Figure 2: This figure shows the Lie-Newmark trajectory using the axis/angle rep-
resentation of SO(3) for the initial conditions and parameters provided in the text.
The semi-transparent surfaces are level sets of the potential energy (6). The dot
in the figure corresponds to the attraction point @), of the potential energy.
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Figure 3: This figure shows the global error of the Lie-Newmark (LNE) and ve-
locity Lie-Verlet (VLV) algorithms. The global error is evaluated in configuration
and body angular velocity at a physical time of T" = 5 for a variety of time-stepsizes.
We use as a reference solution an integration of (1) using the MATLAB function
ode45 with low tolerance. Observe that both integrators are second-order accurate.

hibit energy drift as theory predicts. Since the two methods are semi-explicit and
computationally similar to implement, we conclude that the Lie-Verlet method is
better suited for long-time simulations of rigid body-type systems.
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Appendix A Properties of Lie-Newmark Algorithm

Let us call

Py (Qr, Wi) = (Qkr1, Wit1)

the map defined by the Lie-Newmark algorithm (3). For the reader’s convenience
we provide a standard proof that Lie-Newmark is symmetric and reversible.
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Proposition 1. The Lie-Newmark algorithm (3) is symmetric and reversible.

Proof. Exchanging h <+ —h and (Qk, W) <> (Qr41, Wi1), it is straightforward
to see that the method is unaltered.
Define the involution p : (Q, W) — (Q,—W). Recall [9] that a numerical
algorithm is p—reversible if
O _pop=pody.

Evaluating ®_;, o p(Qg, Wi) = ®_,(Qr, —Wx), we obtain

Wii1a =—Wi— %H—l (IWi x Wi, + 7(Qx))
Qk—i—l = Qk cay(—hWkH/g) (7)
Wit =Wiyigo = 5T ([Whin X Wi +7(Qpi1)) -

Comparing (7) with (3), it can be seen that Wk+1/2 = —Wj41/2, which also implies
that Q)11 = Qk+1. We can thus rewrite the last equation of (7) as

- hoo .
Wit1=—Wig12 — 511 YIWiir X Wi + 7(Qr1))

hooo_ _
== [Wis2 + 51 PIW g1 X Wit + 7(Qi+1))

It is straightforward to see that —W},_ 1 is a solution for the last equation; moreover,
if h is sufficiently small the implicit function theorem assures that the solution is
unique, that is, W11 = =Wy O
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Abstract

An attribute based encryption scheme capable of handling multiple authorities
was recently proposed by Chase. The scheme is built upon a single-authority at-
tribute based encryption scheme presented earlier by Sahai and Waters. Chase’s
construction uses a trusted central authority that is inherently capable of decrypt-
ing arbitrary ciphertexts created within the system. We present a multi-authority
attribute based encryption scheme in which only the set of recipients defined by the
encrypting party can decrypt a corresponding ciphertext. The central authority is
viewed as “honest-but-curious”: on the one hand it honestly follows the protocol,
and on the other hand it is curious to decrypt arbitrary ciphertexts thus violating
the intent of the encrypting party. The proposed scheme, which like its predeces-
sors relies on the Bilinear Diffie-Hellman assumption, has a complexity comparable
to that of Chase’s scheme. We prove that our scheme is secure in the selective ID
model and can tolerate an honest-but-curious central authority.

Key words: pairing-based cryptography, attribute based encryption
MSC 2000: 94A60

1 Introduction

In both standard public key encryption and identity based encryption a message is to be
transmitted to a single recipient known at the time of encryption. Similarly, broadcast
encryption addresses scenarios where a sender explicitly specifies a set of receivers (or
revoked users) when encrypting a plaintext. In contrast, in an attribute based encryption
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scheme, the sender does not provide an explicit list of recipients or revoked users when
encrypting a plaintext, but instead, the recipient of a ciphertext is specified through
a set of credentials, also referred to as the attributes, which are sufficient to decrypt a
ciphertext. Fuzzy identity based encryption proposed by Sahai and Waters [7] can be
used to address such a setting, if all attributes are controlled by a single authority.

The starting point of the current paper is a recent proposal of Chase [4] which
considers multi-authority attribute based encryption, therewith solving an open problem
from [7]. Chase’s scheme is capable of handling disjoint sets of attributes that are
distributed among multiple authorities. In this setting, an encrypting party specifies a
set of attributes Ao with the attributes in A¢ being controlled by several authorities.
Let Aj be the set of attributes controlled by authority k. Then the ciphertext C
associated with the attribute set A¢ can only be decrypted by those users v with a set
of attributes A, for which the cardinality of the intersection A, N A N A¢ exceeds the
respective threshold dy, for each authority k.

As pointed out in [4], one of the primary challenges in implementing such a multi-
authority attribute based encryption scheme is the prevention of collusion attacks
among users that obtain secret key components from different authorities. Moreover,
it is desirable that there be no communication between the individual authorities. To
overcome these difficulties, Chase’s scheme relies on a trusted central authority. The
resulting scheme is capable of tolerating multiple corrupted authorities, but the honesty
of the central authority remains of vital importance since, by the constriction from [4],
the trusted authority has the capability of decrypting every ciphertext.

Our contribution. Building on Chase’s proposal, we construct a threshold scheme
for multi-authority attribute based encryption which offers the same security guarantees
provided by Chase’s construction, but in addition can tolerate an honest-but-curious
central authority. Assuming the central authority is honest during the initialization
phase, the indistinguishability of encryptions is guaranteed. As in [4], our security
analysis is in the selective ID model and builds on the Decisional Bilinear Diffie Hellman
assumption.

Related work. Since Shamir posed the problem of identity based encryption [8],
various proposals have been made, a very partial list being the work in [6, 9, 10, 2, 5].
Building on the Bilinear Diffie Hellman assumption and the selective ID model [3, 1],
at EUROCRYPT 2005 Waters presented an identity based encryption scheme in the
standard model [11]. Sahai and Water’s proposal for a fuzzy identity based encryption
[7] provides an attribute based encryption with a single authority. Here, fuzzy refers
to an identity id’ being able to decrypt a ciphertext encrypted by an identity ¢d if and
only if id and id’ are close to each other in the “set overlap” distance metric. This
is of interest when dealing with noisy inputs, such as biometric templates. Building
on the ideas from [7], Chase proposed a solution for multi-authority attribute based
encryption, provided that a trusted central authority is available [4]. Our proposal aims
at improving Chase’s construction by imposing a weaker assumption on the central
authority without paying a high cost in terms of efficiency.
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2 Notation and preliminaries

As already mentioned, our proposal relies on the Decisional Bilinear Diffie Hellman
assumption. For the sake of clarity, the next sections review the relevant terminology
related to bilinear maps and multi-authority attribute based encryption. Section 2.3
discusses the security model where, like in [4], we make use of the selective ID model.

2.1 Bilinear maps and the Bilinear Diffie Hellman assumption

Let G1, G2 be groups of prime order p, and let P a generator of G;. We assume p to be
superpolynomial in the security parameter £ and that all group operations in G; and
G5 can be computed efficiently, i.e., in probabilistic polynomial time. We use additive
notation for G; and multiplicative notation for Go. By e : G; x G1 — G2 we denote
an admissible bilinear map, i.e., all of the following hold [2]:

e For all P,Q € Gy and for all a, 3 € Z we have e(aP, Q) = e(P, Q).
e We have e(P, P) # 1, i.e., e(P, P) is a generator of Gs.

e There is a probabilistic polynomial time algorithm that for arbitrary P, Q € G
computes e(P, Q).

In the above setting, the Decisional Bilinear Diffie Hellman (D-BDH) problem in
(G1,Go, e) is the problem of distinguishing between the challenger’s possible outputs in
the following experiment: The challenger chooses «, 3,v,n7 < {0,1,...,p— 1} indepen-
dently and uniformly at random, flips a fair binary coin ¢ < {0, 1}, and then outputs
the tuple

(P, aP, 3P, P, e(P, P)>8r+1=0)m)

In other words, with probability 1/2 the last component of the challenger’s output
is e(P, P)*?7, and with probability 1/2 the last component is a uniformly at random
chosen element from G9. We define the advantage of algorithm A in solving the D-BDH
problem as

Adv(0) :=Pr(8' =0) — 5

where ¢’ is the output of A when trying to guess the value of the fair binary coin §. We
say that an algorithm A has a non-negligible advantage in solving the D-BDH problem,
if Advt’fh is not negligible! where the probability is over the randomly chosen «, 3,7,n
and the random bits consumed by A.

Definition 1 (Decisional Bilinear Diffie Hellman assumption) The Decisional
Bilinear Diffie Hellman assumption holds for (G1,Ga,e) if there exists no probabilistic
polynomaial time algorithm having non-negligible advantage in solving the above D-BDH
problem.

"We refer to a function f : Nso — R as negligible, if | f| = |f(¢)] € @%'
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2.2 Authorities, attributes and users

Let K be the polynomial size set of authorities and U the polynomial size set of users we
consider, and denote by Ay the polynomial size set of attributes handled by authority
k € K. We impose that the sets Ay are pairwise disjoint, i.e., the universal attribute
set
A= L-_I-J Ay
ke

is the disjoint union of the Ax. In addition to the authorities k& € K, there is one central
authority kca € K which we will model as honest-but-curious—the central authority
kca honestly follows the protocol, but will try to decrypt ciphertexts sent by users in the
system. During an initialization phase we allow communication between kca and k for
each authority k& € I, but thereafter no communication between the central authority
and the authorities k € K is possible: while the central authority kca is involved in
setting up the system, we do not want to rely on kca being available throughout the
complete lifetime of the system. Also, we do not allow any communication among the
authorities in K.

To distinguish different users, we follow [4] and assume that each user u € U
has a unique identifier. Depending on the application, the identifier could refer to a
social security number or a passport number, for instance. We denote the set of those
attributes in A that are available to user u € U by A,. Similarly, we write A¢c for
the set of attributes that is associated with a ciphertext C. This set A¢ is chosen by
the encrypting party as part of the input to the encryption algorithm, the other part
of the input being the plaintext. We associate with each authority k € IC a threshold
di, € N5g. The goal is that exactly those users u satisfying

| A, N A N Ag| > di, for every k € K

are able to decrypt the ciphertext C'. In other words, for each authority k, user
u must have at least dj of the attributes that have been specified at the time of en-
cryption. To decrypt a ciphertext, user u € U uses the secret keys obtained during the
initialization phase from the authorities k € KC. Figure 1 lists the main components of
a multi-authority attribute based encryption scheme (cf. [4]).

Remark 1 Unlike [4] we do not make use of a central key generation algorithm, run by
the central authority kca to generate secret keys for users u. Without loss of generality,
in the security model we therefore will not give the adversary the possibility to query
kca for private user keys. In the scheme we discuss, private user keys are generated by
the attribute authorities k € IC only.

A crucial feature of a multi-authority attribute based encryption scheme is the
prevention of collusions among users: we want to prevent that any set of users, each of
which is not able to decrypt a ciphertext C, can combine their information to decrypt
C. The security definition discussed next tries to capture this design goal.
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Setup. A probabilistic polynomial time algorithm® that given the security parameter
1¢, a list of pairwise disjoint sets of attributes [Ay]rexc and thresholds [di]rex
generates

e a (public key, secret key)-pair for each attribute authority k €

e public system parameters.

Attribute key generation. A probabilistic polynomial time algorithm that given
an attribute authority k’s secret key, the corresponding threshold di, a (unique
identifier of a) user u and a subset A, C A outputs decryption keys for user
u.

Encryption. A probabilistic polynomial time algorithm that given a plaintext, at-
tributes A¢ C A and the public system parameters, outputs a ciphertext C.

Decryption. A deterministic polynomial time algorithm that given a set of decryp-
tion keys for a set of attributes A, and a ciphertext C encrypted with attribute
set Ac, outputs the corresponding plaintext M if |A, N A N Ac| > dj for all
attribute authorities k € KC; otherwise it outputs an error symbol L.

“Tt may be preferable to realize this computation in a distributed fashion, involving individual
attribute authorities and some central authority. Below we will use such a distributed realization.

Figure 1: Algorithms in a multi-authority attribute based encryption scheme.

2.3 Security model

Like [4], we use a selective ID model for the security analysis. The adversary H has to
specify the set of attributes that he wants to attack before receiving any public keys
of the system. Figure 2 shows the game an adversary has to win to defeat the security
of our scheme. As in [4], for our security analysis we impose the technical restriction
that the adversary does not query the same attribute authority twice for private keys
of the same user.

For a multi-authority attribute based encryption scheme to be secure, we require
that there is no efficient algorithm achieving a non-negligible advantage in the game in
Figure 2. More specifically, we define the advantage of an adversary H in the game in

Figure 2 as

Advs{(0) :=Pr(8' = 6) — %

and make the following definition.

Definition 2 (Security in the selective ID model) A scheme for multi-authority

attribute based encryption is secure in the selective ID model, if for all probabilistic
polynomial time adversaries H, the advantage Adv%d (£) is negligible.
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Setup. 1. Given the security parameter 1¢, the adversary H outputs

e a non-empty list & of (unique identifiers of) users
e a non-empty list K of (unique identifiers of) attribute authorities

a list [(Ag, corrupted, di)]rexc of non-empty, pairwise disjoint attribute
sets, each along with a threshold dy € Nyg and a flag indicating if
the respective authority is corrupted. There must be at least one
uncorrupted authority.®

e a non-empty set of attributes Ac C |4, Ax that will be associated
with the challenge ciphertext.
2. The public and secret keys are generated, and H learns

e the public keys of all attribute authorities
e the public system parameters
e the complete history of all those authorities & € I that are corrupted.

Secret key queries. The adversary can query the authorities £ € K for private
user keys for attributes in Ay, for user u. Whenever the adversary queries k for
a secret key for attribute a € A;, for user u, the attribute a is added to the
(initially empty) set A,. The only restrictions for secret key queries are the
following:

e at any time, for each user u there is at least one uncorrupted authority
k= k(u) with |A, N A; N Ac| < d;°
e for each user u, no authority k& € K is queried more than once for private
keys of wu.
Challenge. 1. The adversary H outputs two equal length messages My, M.

2. The challenger flips a fair binary coin 6 < {0,1} and then applies the
encryption algorithm to My and the attribute set Ac.

3. The resulting ciphertext C' is given to the adversary H.
Further secret key queries. The adversary can query for further private keys of
users, subject to the same restrictions as before: for each user u there is at least

one uncorrupted authority k = k(u) with |4, N A; N Ac| < dj, and for each
user u, no authority k € K is queried more than once for private keys of u.

Guess. The adversary H outputs a guess ¢’ for the challenger’s secret coin 4.

“Note that the central authority kca is not included in this list and in particular cannot be
corrupted.
*The uncorrupted authority k = k(u) may be different for each user w.

Figure 2: Attacking multi-authority attribute based encryption in the selective ID
model.
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The security requirement in Definition 2 does not address the question which in-
formation is available to the central authority. Specifically, in Chase’s scheme [4], the
central authority has the capability of reading arbitrary ciphertexts constructed by the
users within the system. To express a requirement that limits the possibilities of an
honest-but-curious central authority, we take a more detailed look at the setup phase,
which is combined into a single algorithm in Figure 1. More precisely, this step can be
seen as a simple protocol where the central authority kca securely communicates with
the attribute authorities.

Remark 2 From a practical perspective, it is desirable to have no communication
among attribute authorities, and only very limited interaction of the central author-
ity with each attribute authority. In the protocol in Section 3.1, the central authority
sends one message to each attribute authority and derives the public system parameters
from the replies.

The game in Figure 3 captures a setting where an honest-but-curious central au-
thority tries to violate the indistinguishability of ciphertexts. We introduce a “curious”
algorithm B which, similarly as the “outside adversary” H in Figure 2, fixes the at-
tribute sets and their distribution among the attribute authorities. Further on, B
specifies the set of attributes that will be associated with the challenge ciphertext. At
the end of the setup phase, B learns the complete state of the central authority, and
based on this knowledge then tries to violate the indistinguishability of ciphertexts.
For an algorithm B, we define the advantage in the game in Figure 3 as

Advg (0) :==Pr(8' =6) — =

Definition 3 (Tolerating an honest-but-curious central authority) A scheme
for multi-authority attribute based encryption can tolerate an honest-but-curious central
authority, if for all probabilistic time algorithms B, the advantage Advg (£) is negligible.

Remark 3 Unlike for the adversary 'H in Figure 2, we do not require that an honest-
but-curious central authority specifies the challenge attributes Ac in advance: algorithm
B in Figure 8 does not have to provide this set before the challenge phase.

We are now in the position to describe our suggestion for a multi-authority attribute
based encryption scheme and to discuss its security in the sense of both Definition 2
and Definition 3.

3 Proposed protocol

We adopt the notation from Section 2 with Gy, G5 being groups of prime order p, P
a generator of Gy and e : G; X G; — (G5 an admissible bilinear map. We assume
the unique identifiers for users v and for the attribute authorities £ € K to be public.
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Setup 1. Given the security parameter 1¢, the algorithm B outputs

e a non-empty list & of (unique identifiers of) users

e a non-empty list K of (unique identifiers of) attribute authorities

e a list [(Ag, corrupted, di)|xex of non-empty, pairwise disjoint attribute
sets, each along with a threshold dy € Nsg and a flag indicating if
the respective authority is corrupted. There must be at least one
uncorrupted authority.®

2. The public and secret keys of all authorities k € K are generated, and B
learns

all public keys

the public system parameters

the complete history of all those authorities & € I that are corrupted

the complete history of the central authority kca.

Challenge 1. The algorithm B outputs two equal length messages My, M7 and a
non-empty set of attributes Ac C [Hyex Ak

2. The challenger flips a fair binary coin binary § < {0,1} and then applies
the encryption algorithm to My and the attribute set Ac.

3. The resulting ciphertext C' is given to B.

Guess

The algorithm B outputs a guess &’ for the challenger’s secret coin §.

“Note that the central authority kca is not included in this list and in particular cannot be
corrupted.

Figure 3: Dealing with an honest-but-curious central authority.

Similarly, we assume the sets of attributes Ay and the corresponding threshold dj to be
public—in particular, all these values are known to the central authority kca, which we
invoke (only) in the setup phase. In order to generate secret keys for users, we assume
that each attribute a € A can be identified with a number ¢(a) € {1,...,p — 1}—for
practical purposes, ¢(a) could be based on a hash value, for instance.

3.1 The proposed protocol
3.1.1 Setup.

The setup phase requires one message to be sent from the central authority to each of
the attribute authorities. It is assumed that the adversary has no possibility to interfere
with or to access this communication:
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The central authority kca chooses, for each pair (k,u) € I x U, uniformly at random
a secret value s;, < {0,...,p — 1}. In additon, kca chooses ¢ € {0,...p — 1}
uniformly at random, and for each u € U computes a “dummy secret” si., , =
0 — > kek Skw- The sequence

[Sk,u : P]uelx{
——

=:Sku

is sent to attribute authority k (k € K), and kca publishes the public system
parameters

([sk‘CA,u : P]UEU7 e(P7 P)U) .
———
=:pk

Remark 4 The value sic, ., - P is only needed by user u. To decrease the size of
the public parameters, instead of publishing the sequence sk, v - Plucu, alterna-
tively a scenario could be considered where sy, o - P is transmitted to u (only).

Attribute authority k € K receives the corresponding sequence of Sy, ,-values from kca
and chooses a value r, < {0,...,p—1} uniformly at random. Moreover, for each
of its attributes a € Ay, a secret value t, <« (Z/pZ)* is chosen uniformly at
random by k, and the pair

<6(Pa P)Tkv [tk,a : P]aeAk>

::Tk,a

forms k’s public key. The secret key of k contains the aforementioned values
Tk, [Skulueu, and [ty qleca,. Finally, for each user u € U, attribute authority &
chooses uniformly at random a secret polynomial f,, € F,[X] of degree < dy.

Remark 5 The value e(P, P)"™ is only used during encryption and decryption to com-
pute the product pk - [[,cxc e(P, P)™ —which is ciphertext-independent. If one allows
the attribute authorities to contribute to the generation of the public system parameters,
the e(P, P)"s-component in the attribute authorities’ public keys can be omitted. To do
so, the public system parameter pk = e(P, P)° can be replaced with e(P, P)72rex s,

3.1.2 Attribute key generation.

To extract the secret decryption key associated with an attribute a € A N A, for a
user u € U, attribute authority k& proceeds as follows:

e The secret value Xy, ,, := Sk, + (7 — fr,u(0)) - P, which depends on k and u, but
not the specific attribute a, is computed and given to u.

e The attribute-specific value Dy,  q := W - P is computed and given to u.
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3.1.3 Encryption.

To encrypt a plaintext M € G5 with associated attribute set Ao C A, the encrypting
party chooses s < {0,...,p — 1} uniformly at random and computes the ciphertext

((pk-TI,_ ePP)™) - M5 Pls  Tralacac ) -

3.1.4 Decryption.

Let C' = ((pk-[[1exc (P, P)™*)*-M,s- P,[s-Tialaca.) be a ciphertext with associated
attribute set A¢, and suppose that user u’s attribute set A, satisfies | A, N Ag| > di
for all £ € K. Then u can recover the plaintext M as follows.

1. For each k € IC, he chooses dj, attributes a € A, N A, and computes
e(s Tha> D) = e(P, P)Ir ),
Then, using Lagrange polynomial interpolation, u computes

e(P, P)fk,u(o)'s‘

2. Further on, for each k € K, user u can use the X}, ,-component of his secret key
to compute e(Xp, s P) = e(P, P)kutms=fiu(0)s,

3. Multiplying e(s - P, sy, - P) with all of the above values yields

e(s+ P, skcpu- P)- H e(P, P)fk,u(0)~s e(P, P)(sk,u-s-rk_fk’u(o)).s
kel
- €(P, P>S-SkCA’u'e(P, P)SAZkEIC(Skm‘H’k)
= ¢(P,P)* ("t kexs)

= <pk~He(P,P)Tk> .

ke

By inverting this element and multiplying the result with the first component of
the ciphertext, the plaintext M can be recovered.

3.2 Adding new authorities

The “dummy secrets” sy, ., facilitate the introduction of new authorities to a previously
established protocol. To add a new authority k*, the central authority kca replaces
the old value o with a new uniformly at random chosen ¢’, and replaces each sy, 4
with o/ — Zke,w{k*} Sgu- Then the updated “dummy public keys” si, . - P have to
be communicated to the users, and the new authority k£* can compute its secret and
public key as before.
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4 Security analysis

The protocol proposed in Section 3 can be shown to be secure both both in the sense
of Definition 2 and Definition 3. Proofs for the subsequent two theorems are given in
the extended version of this paper.

Theorem 1 Suppose there exists a probabilistic polynomial time adversary H against
the protocol in Section 3.1 having a non-negligible advantage in the game in Figure 2.
Then there is a probabilistic polynomial time algorithm S having a non-negligible ad-
vantage in solving the D-BDH-problem.

Our proof of Theorem 1 builds on the analysis of Chase’s scheme in [4], and it is worth
noting that the reduction to a D-BDH adversary S in the proof is tight: Essentially,
the advantage of the adversary H violating security in the selective ID model is only
halved at the cost of simulating the attribute authorities k£ and the central authority

kca.

Theorem 2 Let B be a probabilistic polynomial time adversary against the protocol in
Section 3.1 having a non-negligible advantage in the game in Figure 3. Then there is a
probabilistic polynomial time algorithm S having a non-negligible advantage in solving
the D-BDH-problem.

To prove Theorem 2, i. e., that the proposed scheme can tolerate an honest-but-curious
central authority in the sense of Definition 3, a similar argument as in the proof of
Theorem 1 can be used. It turns out that again there is a tight security reduction:
Essentially, for the price of simulating the central authority and the attribute author-
ities, from an adversary B described in the game from Figure 3, we obtain a D-BDH
adversary whose advantage is half the advantage of B.

5 Conclusion

Building on the proposal for multi-authority based attribute based encryption from [4],
we constructed a scheme where the central authority is no longer capable of decrypting
arbitrary ciphertexts created within the system. In addition to providing security
in the selective ID model, the proposed system can tolerate an honest-but-curious
central authority. Since both Chase’s scheme and the proposed scheme rely on the
same hardness assumption, and have a comparable complexity, the new scheme seems
a viable alternative to Chase’s construction. However, since only the proposed method
is capable of handling a curious yet honest central authority, the proposed scheme is
recommended in applications where security against such a central authority is required.
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Abstract

The problem of approximating/tracking the value of a Wiener process is con-
sidered. The discretization points are placed at times when the value of the process
differs from the approximation by some amount, here denoted by 7. It is found
that the limiting difference, as n goes to 0, between the approximation and the
value of the process normalized with 7 converges in distribution to a triangularly
distributed random variable.
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1 Introduction and preliminaries

An adaptive approximation scheme of the Wiener process is considered. The dis-
cretization points are placed at times when the value of the true process differs from
the approximation by some amount, here denoted by 7. This can be seen as a control
problem where we want to track the true value of the process with our approximation,
and where both the process and its approximation are fully observable. The approxi-
mation strategy presented here may be feasible when discretization is associated with
some cost that should be kept low. Examples of related problems is that of discrete time
hedging of derivative contracts in financial markets (see e.g. [3]) and certain space-time
discretization schemes of stochastic differential equations (see e.g. [5]).

Let X be a diffusion process defined by X, = oW}, where W denotes a one di-
mensional standard Wiener process. Define, for some 1 > 0, a sequence of stopping
times {t]'}i>o by ¢, = inf{t > t]||X, — Xt?\ = n}, where ¢} = 0. The compo-
nents of the sequence ¢t may be seen as epochs of the renewal process N defined by
N]' = sup{i : t] < ¢}. Furthermore, let the sequence {7;'};>1 of interarrival times be

n
defined by 7;' = t] —t] |, and define the renewal-reward process ¢ by ¢ := ?21 ).
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The process X , may also be seen as a renewal-reward process, but with a reward that
takes the values —n and n with equal probability.

The aim of this work is to investigate the asymptotic behavior of (X, — X ) /m as
1 approaches 0. It will be seen that this quantity converges, pointwise for each t >0,
in distribution to a stochastic variable which is triagularly distributed.

Before we end this section we will state some resluts regarding barrier crossings and
renewal processes. The main result is presented in Section 2. In Section 3 we perform
a simulation study and investigate the transition to the limiting distribution.

1.1 The Wiener process with two absorbing barriers

Since the components of the sequence {7;'};>1 are independent and identically dis-
tributed, we will let 77 denote a stochastic variable with the same properties as these
7,"’s, and which may be characterized by 77 = inf{¢t > 0]|X,| = n}.

Now, consider the process X absorbed in —n and 7, that is X,,,. The transition
density of this process, from Xy = 0, may be represented by (see [1])

x) = S ie_i(kgnw)%sin kr sin kr(z +n) x 00 -
P =3 (5) s (M52 - (ta) € 0,00 x [ ()

This transition density may also be expressed as an infinite sum over Gaussian kernels

(see [1])

(z—dkn)? (z—2n+4kn)?

202t — e 202t > , (t,x) €[0,00) x [-n,n]. (2)

)= 3 (e

k=—o00
Lemma 1. The integral of p'(t,x)

a) with respect to t over the interval [a,b] C [0,00) may be represented as

1 2
6_5 ) (kr\ . (kn(x+n)
/ (t,x)dt = Z/a ——  sin <7> sin (7277 > dt, x € [-n,n].

b) with respect to x over the interval [a,b] C [—n,n] may be represented as

b o b _%(kza_ﬁ)Qt k k
mn
/a p(t, z)dx = kz_:oo/a GT sin <77T> sin (%) dr,t>0. (3)

or as

/ txdx—z

k=—00

(z—dkn)? (m—2+4kn)?

202t —¢ 202 > de,t>0. (4)

[l
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Proof. a) Define the functions g,f and GE'by

P e_%<%7r>2t . (kr\ . [kr(x+n)
g (t,x) = Tsm <7> sin <T> ,

and GL(t,x) = Y }_; gF (t,x) then lim,10 GE (t,2) = p7(t,x). Since gf (¢,0) > 0
it follows that 0 < GE(¢,0) < GE,,(t,0), and consequently by Lebesgues monotone
convergence thorem f; limy o0 G (t,0)dt = limypee f; Gn(t,0)dt. Extending the in-
tegral we get lim, oo fab Gn(t,0)dt < limyjae [y Gp(t,0)dt. Moving the integral in-
side of the sum in G,(t,0) and performing the integration over R, we get the sum
limp,joe Yoy 8/(k*m%0?) = 4/(30?), and hence limy, o [5° Gn(t,0)dt < co. Since
| sin(kn/2) sin(km(z + n)/(2n))] < 1 it holds that |gF (t,x)| < gF (t,0) which implies
that |GE'(t,2)| < GE(t,0). Since GL(¢,0) is bounded by lim,, 1o, GE (¢,0) the function
GI(t,r) is dominated by the integrable function lim,jo. G%(t,0) and by the domi-
nated convergence theorem it follows that f: limy oo G (t, 2)dt = limypoo f; G (t,z)dt.
Moving the integral inside of the sum on the right hand side the claim is proved.

b) Eqn. (3) From the proof of a) we know that GZ (¢, x) < p"(t,0) = limyjee Gn(t,0)
which is bounded for every t > 0. Since the set [a, b] is bounded (i.e. [a,b] C [-n,7]),

the claim now follows from the bounded convergence thorem.
Eqn. (4) Define the functions g,? and G¢ by

_ (a—k)? n
G e 2% G G G
Ik (t,:ﬂ) = 5 and G, (t’x) = E (g4kn(t’x) _92—4kn(t’x))’
V2most e

then lim,, 1o, GS (t,2) = p"(t,x). The function G may be decomposed as
Gi(t,@) = G (L @) + G2 (¢ ),

where

n

Gg,l(ta r) = Z(ggcn(t7 .%') - gganrQ(ta x))a
k=0

—n

Gg’Q(t,m) = Z (ggcn(tax) - gﬁcn+2(tax))'
k=-—1

Since each term in GS'! is positive and each term in GS? is negative it holds that

0 < GGL(t,2) <GS\ (t,2) and 0> G§2(t,2) > GS2 (¢, ).
The claim now follows by Lebesgues monotone convergence theorem. U

Lemma 2. It holds that

o [ 4 Dt = (1 — 2D+
a/opu,)dt (1= [a])*.
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Proof. From Lemma 1 a) we have that

[t 53 b (4 B (F )

The idea is to find a function that can be expressed as a series which corresponds to
the above sum. Let s1 = 1/2 and sy = (x + 1)/2, then

nlo?

1 1
(¢, = —sin (k — k .
3 /0 x)d k; k: TS ksm( TS2)

Define the function hg by

_ [0, 0=z <,
hs(x)_{l, s<lz|<1.

The Fourier Cosine coefficients of hg are given by

1
00:/ hs(x)dz =1—s,
0

! 2sin(rk
ay = 2/ cos(kmzx)hs(z)dr = —M.
0 7T]C
Applying Parseval’s formula yields
! 2. sin(mksy) sin(mksy)
/0 h31(x)hsz(x)dx:2z Tk s + (1 —51)(1—s9).
k=1

Assume that z € [0, 1], then 0 < s1 < s9 <1 and

N2

Z 2 sin(mksy) sin(mksy) =1 —s9 — (1 — s1)(1 — s2) = s1(1 — s9).

k=1
Thus

o - k 1
02/0 Z sm( >sin <%> =(1-ux).
k=

Repeating the argument with = € [—1,0] yields the result. O

One important property in the theory of renewal processes is that of direct Riemann
integrability of a function. A function function H(-) is said to be directly Riemann
integrable over [0, 00) if for any h > 0, the normalized sums

h inf H(nh—9§ and h sup H(nh —9),
Zo< 5<h ) nzlogégph ( )

converge to a common finite limit as h | 0 (see chapter 4.4 in [2]).
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Lemma 3. The function p'(t,z) is directly Riemann integrable with respect to t for
each x € [—1,1].

Proof. We will start by considering the case when z = 0. The function p!(¢,0) is directly
Riemann integrable if p'(¢,0) is nonegative, monotonically decreasing and Lebesgue
integrable (see chapter 4.4 in [2]). Since each term in the representation (3) is nonegative
and monotonically decreasing for z = 0 so is p!(¢,0), and by Lemma 2 the integral of
p'(t,0) over [0,00] is given by [;° p'(¢,0)dt = 1 and thus p'(¢,0) is Lebesgue integrable
which proves that p!(t,0) is directly Riemann integrable.

Next let x € [—1,1] \ {0}. The function p(¢,z) is directly Riemann integrable
with respect to t if p'(t,z) > 0, p(t,z) is uniformly continuous in ¢ and bounded
from above by a monotonically decreasing integrable function (see chapter 4.4 in [2]).
Since p(t,x) is a probability distribution for each t it is clear that p(t,z) > 0. To
show uniform continuity we will split the interval [0, 00) into two parts, say [0, 1] and
[1,00), and show that p'(¢,z) is uniformly continuous on each part. For the interval
0,1] we will use the representation (4). Let ¢ and G be defined as in the proof
of Lemma 1. It is clear that each g,(j is uniformly continuous in ¢ and thus also G¢
is uniformly continuous for each n < oco. If we can shown that GS(t,z) for each
x € [—1,1] \ {0} converges uniformly with respect to t over [0,1] as n T oo, then also
the limit p(¢, z) will be uniformly continuous. Rewrite G§ as GS (t,z) = Y7 _ 35 (t, 7)
where S (t,z) = ¢§ (¢, ) — ¢S (t, ) and

35 (t,x) = g5 (t, @) — g5 4u(t,2) + g%t x) — 92G+4k(t79€)7 for k > 1.

According to Weierstrass M-test, if there is a series of constants M, such that >~ 72 o M,
is convergent and |3 (t,2)| < M, for all t € [0,1] then G§ converges uniformly in [0, 1]
asn | co. The functions g (¢, z) attains its maximum at ¢t = (z—k)2/o? Al for t € [0, 1],
and thus g (t,7) < gr((x — k)?/0? A 1,x). The function go(z%/0? A 1,7) is bounded
and it is easily seen that the functions g¢ may be bounded by C/(1 + k?), for some
bounded constant C, and which is clearly convergent. Hence, for each = € [-1,1]\ {0},
p(+, x) is uniformly continuous in [0,1]. To show uniform continuity in [1,00) we will
use the representation (3). Let ¢ > 1, then

1 1 > _k20'27r2t _k20'27r26 >
P (t+0,2) —p' o) <) e F e w1 <y
k=1 k=1

82 k20272

kiodnt 8

3
.
402

where we used the inequalites e ¥ < y~2 and |e =¥ — 1| < y which holds for y > 0. Hence
for every € > 0 we may chose § such that § < 402¢/3 which holds for every ¢ in [1,00).
Hence p!(-, ) is also uniformly continuous in [1,00), which together with the previous
result yields that p(-, z) is uniformly continuous in [0, 00). In the proof of Lemma 1 we
showed that p(t,z) < p(¢,0), and that p(¢,0) is a monotonically decreasing Lebesgue
integrable function. Hence, p(t, ) is also directly Riemann integrable with respect to ¢
for x € [—1,1]\ {0}, which together with the first result of this proof yeilds that p(t, z)
is directly Riemann integrable for z € [—1,1]. O
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The next two lemmas regards properties of the random variable 77 defined earlier
in this section. Let Frn denote the distribution function of 7”7. Lemma 5 states that
that 7" has a density, which we will denote by frn.

Lemma 4. The expectation of 7" is given by E[t"] = n?/o? .

Proof. Let g(xg) = E[r"], where xy denotes the initial point of the process. The
function g satisfies the following ordinary differential equation (see [1])

% d%g
7@(360) =—1, mi(-n) =mi(n) =0.
0

The solution to this problem, with xp = 0, is given by g(0) = n?/0?, as was to be
shown. O
Lemma 5. The random variable 7" has a density, denoted by fm, that may be repre-
sented as

0
_ (ntdkn)? (n+2—4kn)?

1
frrt) =) oot ((77 +akn)e 2o — (42— 4knle 2%

k=—o0

_ (n—4kn)? _ (n—2+4kn)?
+ (n —4kn)e” 2% — (n—2+4kn)e” 2% ,t>0.

Proof. In this proof we will use the representation (4). Let ng and G¢ be defined as
in the proof of Lemma 1. By the use of Lemma 1 for ¢ € [0, 00)

Persg-1- Y [ (GG (£.2) — g (£ 2))dz
-n

k=—00

If each term in the sum above is differentiable on [0, 00) and
(e o]
d [
> | (Gagltin) o gy (t.0))da )
k=—o0 -

converges uniformly on [0, 00) then

d —~ d ["
GPE < == 3 & [ 6 t0) — o syt
k=—00 -

Calculating the integral and differentiating with respect to ¢ we get for each term in (5)

d n
G | (6t = o8 syt
-n

(n+4kn)? _ (n+2-4kn)?

(n+4kn)e” 2%t — (n+4 2 —4kn)e” 2% (6)

1
2tV 2mo2t <
_ (n—4kn)? _ (n—2+4kn)?
+ (n—4kn)e 2% —(n—2+4dknle” 2%,
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The maximum of the function exp{— (Q;Ukt }/t3/2 in [0,00) is attained at t = (z —

k)2/(302). For the first term in the expression above we get that

(n+ dkn) _Crtapa? ( )3/206 51

o <
2t3/2\/ 202 “\2)  n*Vm(L+4k)%

which may be bounded by C/(1 + k?), where C' is a bounded constant. In a similar
manner it can be shown that the rest of the terms in (6) may also be bounded by

C/(1 +k?), and thus

4C

< .
— 14k (7)

d n
] 6ant0) = st 2tz
-n

Since Y32 4C/(1 + k%) is a convergent series by Wierstrass M-test the sum (5)
converges uniformly on [0, 00), and hence, the density, f;», may be represented by the
sum (6). Since the terms in the sum of (6) could be bounded by 4C/(1 + k?) we
have that |frn(t)] <4C > 72 1/(1+ k?) < oo which shows that f»(¢) is bounded in
[0, 00). O

1.2 Renewal processes

In this paragraph we will focus on a renewal process denoted by N with idenpendent
and identically distributed interarrival times {7;};>1. Define the renewal function M
by My = E[N¢], and let p denote the mean time between renewals, that is p = E[r;],
which holds for all 7 > 1. Next, we will state the well known key renewal theorem that
will be needed later on. For a proof see e.g. [2].

Lemma 6 (Key renewal theorem). If H(:) is a directly Riemann-integrable function
then

t

lim [ H(t—x)dM(x / H(x
t—oo Jg

Let F; denote the common distribution function of the stochastic variables 7;. Since

the components of {T,}Z>1 are idependent and identically distributed the distribution

function of the sum ZZ , 7 may be represented by the k-fold convolution of F; (here
denoted F*), ie. P(YF_ 75 < t) = F¥¥(1).

Lemma 7 (Theorem 5.4 in [4]). There exists a one-to-one correspondence between Fy
and M, and M has the representation My =Y oo | F¥5(t) ..

Under the assumption that F, has a density (here denoted f,) we have that f*(t) =

iF:k( ), where f7* is the k-th convolution of the density function f,. We may now

define the renewal density m by

= —Mt Zf*k (®)
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2 Main result

In this section we state and prove the main result of this paper. To ease the notation
we will let 7! = X' — XZ,,.
t

Theorem 1. Fiz a point t > 0, then
1 d
;(Xt—Xw;,) oA asn—0,

where A is a stochastic variable with density function fa(z) = (1 —|z|)*"

Proof. Denote by Y,"(u) the quantity Y,"(u) = X, — X@n]{t — ¢ = u}. Because of the
t
time homogeneity of the process X the following equality in distribution holds

d
X¢g|{f - =u} = X, {1 X, <n, 0< s <u}.
Consequently the density function of Y,’(u) can be expressed as

fYt"(u)(y) = %7

The distribution function of Z; is given by

fz” / fY” u) ( )

where
dF,_gn(u) = { 6(u—t)P(r7 > t) Z—a 7 <u, N =k) b du

The probability in the last term of the above expression can be rewritten as
P(t—¢! <u, N/ =k) = t—ZT"<u ZT <t<ZT +7’k+1

k
=P t—Z¢?§u,0<t—Z¢}7<Tg+l /tu/tv v) fm(2)dzdo,

J=1 J=1

where frn (which exists due to Lemma 5) is the density function of 77, and fF denotes
the k-th convolution of f.». Differentiating the above expression with respect to u
yields

ou </t u/t Y V) fr(z dZdU) / w) frn(2)dz = f2N(t —u)P(1" > u).
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This gives us that

dFt(p?(u):{é(u—t P(r" > 1) —|—Z n(t—u)P T">u)}du.

Using the scaling property of the Brownian motion the following two relations are easily
deduced P(7" > t) = P(t! > t/n?) and Y;"(u)/n 2 Y, (u/n?). The first of these two
relations yields

d d 1
frolt) =~ P > 1) = =GP > 40) = gt/

and consequently

o0

dFy_n(u) = {5(u —t)P(r! > t/n?) Z % < ) P(rt > u/n2)} du

k=1

The relation Y;"(u)/n LY (u/n?) yields

t t
A fYtn(u)/n(y)dF%—cpz’(u) :A fYtl(u/nQ)(y)dFt—gof(u)a

t 1 U 2 2
Fzm(#) = / %&u—t)ﬂflw/n%du

and thus

PTluénu/; anzf*k( ) P(r! > u/n?)du
:pl(t/n27z)+/0 (u/n?, 2 g% < >du.

Now, by a change of variables (v = (t — u)/n?)

12 (s 1<i_ > ok d
Faan) =@/t + [0 (- > st

Since [pt(t/n? z)] < Do,y k28 22 > = g%z we have that lim, .o p"(y,t/n*) = 0. For the

second term we have using (8), Lemma 4 and Lemma 6

t/n?

li = — *k _ 2/001 ’ du .
Jim p<y U>Zf dv=0" | p'(y,u)du

0
Now by Lemma 2 limy o fzn,(2) = (1 — |z])T, as was to be shown. O

Remark 1. Note that the limiting distribution does not depend on ¢. This is unlike
the case when discretization takes place on an equidistant grid, where o affects the
variance of the limiting distribution. Instead, in the case of adaptive approximation, o
is related to the expected number of discretization points.
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3 Numerical results

In this section the transition of thn /n as 1 goes from some large value towards zero
is investigated. We will argue that for large values of 7 the stochastic variable Z;/n
is approximately normally distributed, and thus as 1 approaches zero we will see that
fzt” /n goes from the density of a normally distributed random variable to the density
of a triangularly distributed random variable.

A total of 50000 trajectories of the process X was simulated, over a period from
t =0tot = 0.5, with ¢ = 1, on a time grid with 200001 equally spaced points.
Trajectories of the approximation X@? were calculated for a number of different values
of n in the range [0.5,4.0].

Recall, from the proof of Theorem 1, the expression of the density

t/n? 00
Fz1 () = PH(t /7%, 2) +/0 K . (% — v7z> Zf:{f (v)dv. 9)
k=1

It is clear that for large values of 7 it is the first term in (9) that is the dominant
one. Thus, in this case the density is approximately the same as the absorbed Wiener
process. Furthermore, since 1 was assumed to be large the density of the absorbed
Wiener process is approximately the same as the Wiener process without absorbing
barriers. Hence, for large n we have that

Fanle) o (-2 (10)

where ¢ denotes the standard normal density function.

In Figure 1 the density of thn/n, at ¢ = 0.5, as we let n go from 4.0 to 0.5 is
depicted. It is seen that when n = 4.0 the distribution is quite close to the normal
distribution. For n = 0.5 the distribution on the other hand is quite close to the
triangular distribution.

To further illustrate the transition from the normal distribution to the triangular
distribution we measured the distance in therms of the Wasserstein metric between the,
from the Monte Carlo simulation, estimated distribution and these two distributions.
The distance between two distributions, with distribution functions F' and G, in terms
of the Wasserstein metric is defined by dw (F,G) = [ |F(z) — G(z)|dx.

In Figure 2 the Wasserstein distance between the empirical distribution and the
triangular distribution as well as the distance between the empirical distribution and
the normal distribution (10), at t = 0.5, as a function of 1 is depicted. Note that
in the case of the normal distribution (10) not only the empirical distribution but
also the normal distribution that we compare with is dependent of 7. It is seen that
for n smaller than 1.25 the empirical distribution is relatively close to the triangular
distribution whereas for values over 2.25 it is close to the normal distribution (10). For
7 in the interval (1.25,2.25) the distribution is probably better explained by a mixture
of the two distributions. The small offset from zero for small values of the distance is
due to the variance of the monte carlo simulation.
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Figure 1: Left (large values of 7): kernel estimates of fzn/,(z) where n = 4.0 (dotted),
n = 3.25 (dash-dotted) and n = 2.5 (dashed), and the Gaussian distribution (solid).
Right (small values of n): kernel estimates of fzn/,(z) where n = 2.5 (dashed), n = 2.0
(dash-dotted) and n = 0.5 (dotted), and the triangular distribution (solid).

Figure 2: Distance in terms of the Wasserstein metric between the triangular distribu-
tion and the empirical distribution (squares), and the normal distribution (10) and the

empirical distribution (circles).
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Figure 3: The variance of Z;'/n as a function of time where 7 = 0.50 (dotted), n = 0.75
(thin dash-dotted), n = 1.00 (thin dashed), n = 1.50 (thick dash-dotted) and n = 2.25
(thick dashed), together with the function (¢/0.5%) A (1/6) (solid).

From (9) it is clear that it is possible to fix n and instead of letting n approach
zero let t approach infinity. To capture this we have plotted the variance of Z;'/n as
a function of ¢ for a couple of different values of 7 (see Figure 3). The constant 1/6,
that is the value of the variance of the triangularly distributed random variable, is also
plotted in the figure. As expected it is seen that for low values of n the limiting variance
of 1/6 is attained much faster than for higher values of 1. From the argumentation
above regarding high values of 7 it is also clear that for low values of ¢ the distribution
is approximately normal. Hence, the slope of the lines near zero is given by 1/5?, as is
seen in the figure.
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Abstract

The computation of all nonzero entries of a sparse Jacobian matrix using either
divided differencing or the forward mode of automatic differentiation is considered.
Throughout this article, we assume that the sparsity of the Jacobian stems from a
stencil-based computation of the underlying function which is typical for numerical
applications in computational science and engineering involving partial differential
equations. The minimization of the time needed to compute all nonzero Jacobian
entries is formulated as a combinatorial optimization problem. We present three
different, yet equivalent, representations of that problem and discuss each of its
advantages and disadvantages. Broadly speaking, the three representations belong
to the areas of linear algebra, grid discretization, and graph theory.

Key words: sparsity, derivative computation, graph coloring, partial differential
equations, discretization
MSC 2000: 05C15, 05C50, 90C27, 65D25, 65F50, 68N19

1 Introduction

Various algorithms for the solution of problems arising from scientific computing re-
quire the evaluation of derivatives of some underlying function. Prominent examples
include Newton-type algorithms for the solution of nonlinear systems and continuous
optimization problems. It is not uncommon that the underlying mathematical func-
tions are given in the form of computer programs rather than as formulse. In practice,
real-world problems from science or engineering give rise to complicated programs writ-
ten in C/C++, Fortran, MATLAB or any other high-level programming language. In
realistic applications from computational science and engineering, the evaluation of a
function f corresponds to the execution of a corresponding program implementing f
that requires substantial amount of computing time. The derivatives of f are either ap-
proximated by divided differencing involving truncation error or computed exactly, i.e.,
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without truncation error, using automatic differentiation. In both cases, the computing
time to evaluate the Jacobian matrix of f is a multiple of the time to evaluate f. For
derivative computations in large-scale problems, it is therefore crucial to exploit any
available structure of the problem at hand to reduce time and/or storage requirement.

If the Jacobian is sparse it is well-known that a given sparsity pattern can be
exploited to reduce the time to evaluate the Jacobian [11]. In this article, we focus on
the special case where the function

fRMN _ RMN (1)

is computed by a stencil operation on a regular M x N grid. That is, the value
of a quantity on a grid point is updated by the weighted values of the quantity on
neighboring grid points. We consider only neighbors in space rather than in time. The
neighborship relation for a grid point (m, n) is defined by the stencil N'(m,n), the set of
all neighboring grid points whose values influence the new value at (m,n). We assume
that the update of a grid point involves its old value so that (m,n) € N(m,n). The
grid point (m,n) is called the center of the stencil N'(m,n).

Since stencil operations perform global sweeps over a possibly large data structure
that exceeds the capacity of available data cache, they typically achieve only a low
fraction of the theoretical peak performance on today’s processors. It is therefore no
surprise that researchers extensively studied the reorganization of stencil operations in
an attempt to better exploit deep memory hierarchies. These performance optimiza-
tions are based on improving locality in both space and time; see [9] and the references
therein. Rather than considering any such performance optimization, the focus of this
paper is on combinatorial optimization problems arising from computing the Jacobian
of some stencil-based function of the form (1). Because of the spatial locality of a sten-
cil, the Jacobian of such a function is sparse. In general, the exploitation of sparsity
in derivative computations leads to a rich set of hard combinatorial optimization prob-
lems [11]. The combinatorial problem considered in the present article consists of min-
imizing the number of function evaluations in divided differencing or, equivalently, the
number of automatic differentiation passes for the computation of all nonzero elements
of a sparse Jacobian of an underlying function that is based on stencil computations.
This combinatorial problem is NP-complete for general nonzero patterns [6] and can
be formulated using different representations. The new contribution of this article is to
bring together three different representations for stencil-based Jacobian computations
where, in contrast to general nonzero patterns, explicit solutions for various special
stencils are known [12,17].

The organization of this article is as follows. In Section 2, we give an outline of
the combinatorial optimization problem using the language of linear algebra. In par-
ticular, matrix-vector and matrix-matrix multiplications are crucial in this context.
In Section 3, the same combinatorial problem is described in terms of the underlying
grid where the spatial neighborhood is extensively addressed. Amnother contribution
of this paper is presented in Section 4 where a third representation of the combina-
torial problem based on a suitable graph model is sketched for stencil-based Jacobian
computations. A discussion of the three different representations is given in Section 5.
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2 Linear Algebra Representation

To describe the combinatorial problem associated with stencil-based Jacobian compu-
tations in terms of matrices and vectors, we first introduce an ordering of the grid points
to map a two-dimensional index of a grid point into a one-dimensional index. To this
end, let ¥)(m, n) denote the one-dimensional index used for the grid point (m,n) in such
a numbering scheme. Given a regular M x N grid and a stencil N'(m,n) describing
the neighborhood relationship for all grid points 1 < m < M and 1 < n < N, the
sparsity pattern of the M N x MN Jacobian A = (a;;) of the function f defined in (1)
is determined and given as follows. A nonzero Jacobian entry is characterized by

a;; #0 <<= i=1v(m,n),j =Y(k1), and (k,1) € N(m,n).

An example of a nonzero pattern is illustrated in Fig. 1. Here, we consider a 3 x 3 grid
and a five-point stencil defined by

Nspt(m,n) = {(m +1,n),(m —1,n), (m,n),(m,n + 1), (m,n — 1)} (2)

for any grid point (m,n) that is not located on the boundary of the grid. That is,
the neighbors of a grid point are immediately adjacent in the north, south, west, and
east directions. Grid points on the boundary have less neighbors. We assume a natural
ordering where the grid points are numbered starting from left to right and from bottom
to top:

B =1, $(1,2) =2, $(1,3) =3, $21) =4

As depicted in Fig. 1, the only non-boundary grid point (2,2) of this small grid induces
five nonzero entries, denoted by crosses, in row/column (2,2) = 5 of the nonzero
pattern.

The derivative of a vector-valued function f with respect to some vector x into the
direction of a vector s is defined by

Let A := 0f/0x denote the Jacobian whose columns are given by
A =laras---apyn|.

Then, by choosing s € {0,1}™" as a binary vector, any sum of columns a; can be
computed where the jth entry of s is nonzero, i.e.,

As = E aj.
J with s;=1

Moreover, the product of the Jacobian A and some M N x p matrix S can be approxi-
mated by p + 1 evaluations of the function f using divided differencing. Similarly, the
forward mode of automatic differentiation is capable of computing that product, A -5,
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Figure 1: (a) Five-point stencil (top) and regular 3 x 3 grid (bottom). (b) Nonzero
pattern of Jacobian matrix resulting from a five-point stencil using a natural ordering of
grid points on a 3 x 3 grid. Background padding indicates p = 5 groups of structurally
orthogonal columns.

without truncation error using p + 1 times the time needed to evaluate f. Therefore, p
indicates a rough measure of the time needed to compute the Jacobian.

The idea to reduce p—and hence the time to compute all nonzero entries of a
sparse Jacobian—consists of partitioning the columns of the Jacobian into groups of
those columns whose sum contains all the nonzero elements of the columns in that
group [8]. The property characterizing such a group is introduced in the following
definition.

Definition 1. Two columns a; and a;, are structurally orthogonal if and only if they
do not have any nonzero element in the same row, i.e.,

aj La, = Pi:aj#0Nay#0.

In the example given in Fig. 1, the columns a3 and a4 are structurally orthogonal
since there is no row in which both columns have a nonzero element. So, the sum as-+a4
contains all nonzero elements of these two columns. The combinatorial optimization
problem is now formulated as follows.

Problem 1. Given a Jacobian matriz A, partition its columns into a minimal number
of groups of structurally orthogonal columns. More precisely, find a binary MN X p
matriz S such that all nonzero elements of A are contained in the matriz-matriz product
A - S and the number of columns p, representing the number of groups, is minimized.
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There is a solution to that problem. However, the solution may not be unique. For
the example illustrated in Fig. 1, a solution is given by

1 0 0 0 0]
01 00O
00100
00100
S=1(0 0 01 0
0 00O01
000O01
10 000

01 0 0 0]

Any solution satisfies p = 5 since, from inspection of the fifth row which involves 5
nonzero elements, there is no matrix S with p < 5.

3 Grid Representation

Rather than considering the linear algebra representation we now focus on the underly-
ing regular M x N grid and the stencil N (m,n). The combinatorial problem can then
be reformulated in terms of the underlying grid. Since a grid point corresponds to a
row/column of the Jacobian matrix we arrive at the following definition that charac-
terizes the property needed to partition the grid points into groups.

Definition 2. Two grid points (i, 7) and (k,) are structurally orthogonal if and only
if their stencils do not overlap, i.e.,

(i,5) L (k1) <= PHlm,n): (i,5) e N(m,n) A (k1) € N(m,n)
— N(i,j) NN(k,1)=0.

To illustrate this definition, we resume the example of the five-point stencil given
in the previous section but vary the grid size. The centers of all stencils depicted in
Fig. 2(a) are structurally orthogonal. A group of structurally orthogonal center grid
points is called a cover. In general, there are grid points that are not structurally
orthogonal so that multiple covers are needed to contain all grid points. Therefore, the
corresponding combinatorial optimization problem is given as follows.

Problem 2. Given a grid, partition its grid points into a minimal number of groups of
structurally orthogonal grid points. More precisely, find a sequence of covers containing
all grid points such that stencils within a cover do not overlap and the number of
covers p, representing the number of groups, is minimized.

To reduce the number of covers it is reasonable to construct “compact” covers,
meaning that the non-overlapping stencils are placed close to each other. In this sense,
the cover depicted in Fig. 2(a) is compact since any placement of stencils attempting to
reduce the distance between two stencils would violate the structural orthogonality of its
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Figure 2: (a) Cover corresponding to a group of structurally orthogonal center points
for the five-point stencil. (b) Sequence of covers obtained from using p = 5 covers of
the form given in (a).

centers. In Fig. 2(b), a solution is shown that was constructed by taking p = 5 covers
of the form shown in Fig. 2(a) and arranging them so as to contain all grid points.
The different covers are depicted in that figure using different background padding.
Since the stencil involves five grid points, there is no solution with p < 5. Hence,
the sequence of covers shown in Fig. 2(b) is indeed a solution to the combinatorial
optimization problem. For this five-point stencil, the open literature [12,17] gives the
explicit formula to construct the sequence of covers given in Fig. 2(b).

Goldfarb and Toint [12] also present solutions for various other stencils showing
that, in general, the solution does not consist of a sequence of identical covers. For in-
stance, the sequence of covers used for a nine-point stencil is constructed using different
covers. More recently, grids with periodic boundary conditions are analyzed [7].

4 Bipartite Graph Representation

Coleman and Mor¢ [6] were the first authors who modeled the computation of sparse Ja-
cobians by graphs. In particular, they introduced the column intersection graph. Since
then, various graph models were used to describe different sparsity-related derivative
computations [3,5,13-15]. In the present article, we follow the approach taken in [11]
where a bipartite graph G(V,, V., F) is introduced. To every grid point, a row and a
column vertex is associated leading to the vertex sets

Vi={ri|1<i<MN} and V.={¢;|1<j<MN}.

There is an edge (73, ¢j) € E if there is a stencil to which the grid points represented by
r; and ¢; belong. This graph model is illustrated using the five-point stencil again. In
Fig. 3(a), the subgraph representing a single stencil is depicted. There is an edge from
the row vertex r; corresponding to the center of the stencil to the column vertices ¢;_ s,
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Figure 3: (a) Bipartite subgraph representing a five-point stencil. (b) Bipartite graph
corresponding to a 3 x 3 grid with a coloring representing p = 5 groups of structurally
orthogonal column vertices. (¢) Corresponding graph for a 5 x 5 grid.

Ci—1, Ci, Ci+1, and c;4 s that belong to the stencil. The bipartite graph representing a
regular 3 x 3 grid is shown in Fig. 3(b). The graph depicted in Fig. 3(c) corresponds to
a larger grid displaying the structure of the graph more clearly. In particular, the graph
given in Fig. 3(b) contains only a single subgraph of the form displayed in Fig. 3(a)
whereas the larger graph given in Fig. 3(c) contains nine of them.

The following definition is used to partition the column vertices into different

groups.

Definition 3. Two column vertices ¢; and ¢; are structurally orthogonal if and only if
they are not connected by a path of length two, i.e.,

¢ilej = FrpeVi: (rhc) € EA (rg,¢) € E.

An illustration of this definition is given in Fig. 3(b) and Fig. 3(c) where groups of
structurally orthogonal vertices are indicated using the same color. The combinatorial
optimization problem in terms of the bipartite graph is then as follows.

Problem 3. Given a bipartite graph G = (V,., Ve, E), partition its column vertices into
a minimal number of groups of structurally orthogonal vertices. More precisely, find a
coloring of V. such that all vertices connected by paths of length 2 are colored differently
and the number of colors p, representing the number of groups, is minimized.
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Recall from the previous sections that a solution of this problem for the five-point
stencil satisfies p = 5. In Fig. 3(b) and Fig. 3(c), a solution is given with p = 5 colors.
There is no solution with p < 5 because the subgraph corresponding to a stencil consists
of 5 column vertices that are pairwise not structurally orthogonal.

5 Discussion

A few comments on the three equivalent representations to describe the combinatorial
optimization problem for stencil-based Jacobian computations are in order. The linear
algebra representation is the one closest to the algorithms that make use of the Jacobian
values. Consider, for instance, Newton’s method for the solution of a nonlinear system.
Here, the algorithm involves the subproblem of solving a system of linear equations
whose coefficient matrix is given by the Jacobian of the underlying function. From that
perspective, the linear algebra representation of the combinatorial problem is therefore
intimately connected to the linear algebra view of the Jacobian in Newton’s method.
However, the linear algebra representation is inherently based on some ordering of the
grid points. A different ordering corresponds to a permutation of the rows and columns
of the Jacobian. Although the minimal number of groups of structurally orthogonal
columns is invariant under such permutations, it could be difficult to expose the problem
structure using an ordering that is not carefully chosen. Moreover, the ordering may
influence the number of groups of structurally orthogonal columns that is computed by
some heuristic.

The advantage of the grid representation is that it offers a clear view on the ori-
gin of the problem including its structure. This could be important for efficient data
handling trying to capture the data locality available in the implementation of the un-
derlying function [9]. A disadvantage of the grid representation is that it tends to be
more difficult to address stencils in three and more space dimensions. In applications
with a high number of space dimensions, it is less intuitive to analyze structural orthog-
onality for stencils. In contrast, the linear algebra and the bipartite graph model both
handle higher spatial dimensions using a one-dimensional representation of all spatial
dimensions which reduces the human effort for the analysis of structural orthogonality.

The bipartite graph representation offers an abstraction on a high level. It also pro-
vides a unified scheme to describe all sorts of different coloring problems associated with
derivative computations [11]. Another advantage is the availability of a rich number
of related results in the matured field of graph theory. For instance, preordering tech-
niques used in various areas of combinatorial scientific computing can also be used for
graph coloring [1,16,18]. In the graph representation, the sparsity is directly available
and does not need to be encoded in some data structure. In contrast, an implemen-
tation of the linear algebra representation is based on some sparsity-exploiting matrix
data structure geared toward efficient numerical computations on that matrix but may
lead to less efficient data accesses when carrying out algorithms involving neighbor-
ship relations. Moreover, software tools implementing graph coloring heuristics are
available [2-5,10].
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Stencil Grid Size p CPR
NO LFO SLO IDO
50 x 50 5 7 7 7 6
Nipt(m,n) 100x 100 5 7 7 7 6
200 x 200 5 7 7 7 6

50 x50 10 16 17 14 14
Nopt(m,n) 100 x 100 10 17 17 14 14
200 x 200 10 17 17 14 14

Table 1: Number of groups of structurally orthogonal grid points for five-point and
nine-point stencil and different grid sizes.

To illustrate the discussion, we consider again the five-point stencil Nspi(m,n)
from (2) and, in addition, the nine-point stencil defined by

Nopt(m, n) = Nape(m,n) U{(m +2,n),(m —2,n), (m,n +2),(m,n —2)}.

In [12], an assignment of every grid point to a group of structurally orthogonal grid
points is derived for both stencils. The explicit formulae given therein present a solution
of the combinatorial optimization problem with a minimal number of groups. This
minimal number is p = 5 for Nspi(m,n) and p = 10 for Nypi(m,n). We compare
these numbers with the corresponding values obtained from applying the standard
CPR heuristic [8]. This greedy heuristic is designed to solve the general NP-complete
problem. The results of the comparison applied to a set of instances varying the grid
size is summarized in Table 1. In that table, the minimal number of groups p is given
in the third column. The fourth column states the number of groups computed by
the CPR heuristic using the natural ordering (NO). The following three columns are
obtained by CPR with three different preordering algorithms: Largest First Ordering
(LFO) [18], Smallest Last Ordering (SLO) [16], and Incident Degree Ordering (IDO) [1].
For Nspi(m,n), the number of groups resulting from any CPR heuristics is no larger
than p+ 2. The lowest number of groups is computed by IDO. The difference between
the optimal number of groups p and the ones computed by heuristics is larger for
Nopt(m,n). Here, the heuristics compute 14, 16 or 17 groups rather than p = 10. In
summary, the results indicate that there is an influence of the ordering on the number of
groups. This is consistent with the observations of other authors who studied this effect
for general nonzero patterns [1,6] and shows the potential of using graph-theoretical
elements in that context.

6 Concluding Remarks

The evaluation of derivatives of given functions is important for various techniques in
computational science and engineering. We address the problem of combinatorially
optimizing the number of function evaluations to approximate a Jacobian matrix with
a given sparsity pattern using divided differencing. In automatic differentiation where
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the derivatives are computed exactly, the same combinatorial optimization problem
occurs in the forward mode. Throughout this article we focus on the Jacobian of a
function defined on a regular grid using a stencil operation.

The main contribution of the present article is to present the combinatorial op-
timization problem using a consistent description of three different representations:
linear algebra, grid discretization, and graph theory. We also compare these represen-
tations with their advantages and disadvantages. This collection of representations is
beneficial for researchers who are familiar with the grid representation of their underly-
ing mathematical function and want to explore the potential of exploiting the sparsity
in derivative computations using a different representation. It is also interesting for
educational purposes when teaching combinatorial problems in connection with sci-
entific computing. Furthermore, it paves the way for research directions that involve
more than one of the three representations, for instance, graph-based preconditioning
of Jacobian matrices.

Acknowledgements

We thank Simon Leflenich for his help in preparing the figures and Armin Jéager for
discussions on stencil-based Jacobian computations. This research is partially sup-
ported by the German Federal Ministry of Education and Research (BMBF) under the
contract 03SF0326A “MeProRisk: Novel methods for exploration, development, and ex-
ploitation of geothermal reservoirs—a toolbox for prognosis and risk assessment.” The
Aachen Institute for Advanced Study in Computational Engineering Science (AICES)
provides a stimulating research environment for our work.

References

[1] D. Brélaz. New methods to color the vertices of a graph. Communications of the
ACM, 22:251-256, 1979.

[2] T. F. Coleman, B. S. Garbow, and J. J. Moré. Algorithm 618: Fortran subrou-
tines for estimating sparse Jacobian matrices. ACM Transactions on Mathematical
Software, 10(3):346-347, 1984.

[3] T. F. Coleman, B. S. Garbow, and J. J. Moré. Software for estimating sparse
Jacobian matrices. ACM Transactions on Mathematical Software, 10(3):329-345,
1984.

[4] T.F. Coleman, B. S. Garbow, and J. J. Moré. Algorithm 636: FORTRAN subrou-
tines for estimating sparse Hessian matrices. ACM Transactions on Mathematical
Software, 11(4):378-378, 1985.

[5] T. F. Coleman, B. S. Garbow, and J. J. Moré. Software for estimating sparse
Hessian matrices. ACM Transactions on Mathematical Software, 11(4):363-377,
1985.

@CMMSE Page 293 of 1328 ISBN 13: 978-84-613-5510-5



H. M. BUCKER, M. LULFESMANN

[6] T.F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and graph
coloring problems. SIAM Journal on Numerical Analysis, 20(1):187-209, 1983.

[7] D. W. Cranston and P. D. Hovland. Colorings for efficient derivative computation
on grids with periodic boundaries. Preprint of the Mathematics and Computer
Science Division ANL/MCS-P1557-1108, Argonne National Laboratory, Argonne,
IL, USA, 2008.

[8] A.R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of sparse Jacobian
matrices. Journal of the Institute of Mathematics and Applications, 13:117-119,
1974.

[9] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Optimization
and performance modeling of stencil computations on modern microprocessors.
SIAM Review, 51(1):129-159, 2009.

[10] A. H. Gebremedhin. The enabling power of graph coloring algorithms in auto-
matic differentiation and parallel processing. In U. Naumann, O. Schenk, H. D.
Simon, and S. Toledo, editors, Combinatorial Scientific Computing, number 09061
in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2009. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, Germany.

[11] A. H. Gebremedhin, F. Manne, and A. Pothen. What color is your Jacobian?
Graph coloring for computing derivatives. SIAM Review, 47(4):629-705, 2005.

[12] D. Goldfarb and P. L. Toint. Optimal estimation of Jacobian and Hessian ma-
trices that arise in finite difference calculations. Mathematics of Computation,
43(167):69-88, 1984.

[13] S. Hossain and T. Steihaug. Computing a sparse Jacobian matrix by rows and
columns. Optimization Methods and Software, 10:33-48, 1998.

[14] S. Hossain and T. Steihaug. Sparsity issues in the computation of Jacobian matri-
ces. In ISSAC ’02: Proceedings of the 2002 International Symposium on Symbolic
and Algebraic Computation, pages 123-130, New York, NY, USA, 2002. ACM
Press.

[15] S. Hossain and T. Steihaug. Graph coloring in the estimation of sparse derivative
matrices: Instances and applications. Discrete Applied Mathematics, 156(2):280—
288, 2008.

[16] D. Matula, G. Marble, and J. Isaacson. Graph coloring algorithms. In R. Read,
editor, Graph Theory and Computing, pages 109-122. Academic Press, New York,
1972.

[17] D. K. Melgaard and R. F. Sincovec. General software for two-dimensional nonlin-
ear partial differential equations. ACM Transactions on Mathematical Software,
7(1):106-125, 1981.

@CMMSE Page 294 of 1328 ISBN 13: 978-84-613-5510-5



COMBINATORIAL OPTIMIZATION OF STENCIL-BASED JACOBIAN COMPUTATIONS

[18] D. J. A. Welsh and M. J. D. Powell. An upper bound for the chromatic number
of a graph and its applications to timetabling problems. The Computer Journal,
10:85-87, 1967.

@CMMSE Page 295 of 1328 ISBN 13: 978-84-613-5510-5



Proceedings of the 10th International Conference
on Computational and Mathematical Methods

in Science and Engineering, CMMSE 2010
27-30 June 2010.

Bit parallel circuits for arithmetic operations in
composite fields GF(2")

A.A.Burtsev!, R.A.Khokhlov?, S.B.Gashkov? and I.B.Gashkov?

L Moscow Institute of Physics and Technology, Moscow, Russia
2 Department of Mechanics and Mathematics, Moscow State University, Russia

3 Department of Mathematics, Faculty of Technology and Science , Karlstad
University, Sweden

emails: a-burtsev@yandex.ru, khokhlov@mail.ru, gashkov@lsili.ru,
igor.gachkov@kau.se

Abstract

It was constructed circuits with low depth and complexity for multiplication
and inversion in some finite fields of characteristic two.

Key words: : finite field, circuits, complexity .

1 Introduction

We investigate the depth an the complexity of realization of operations of multiplication
and inversion by circuits consisting of two-input logic elements.

Our goal is the minimization of the depth of arithmetic circuits. The depth is
the maximal number of elements in any chain connecting inputs of given circuit and
its outputs. Also we were aimed to minimize the complexity of this circuits. The
complexity is the number of elements in a circuit.

Circuits for finite field arithmetical operations are used in coding (see, for example,
[1], [3], [2]), cryptography (see, for example, [4], [5]), digital signal processing (see, for
example, [6]) etc. In these applications usually the fields of characteristic two are used.

In public key cryptography large dimensional fields are applied. For security it is
necessary to use fields of dimension 1000 and greater. But in ECC — elliptic curve
cryptography (see, for example, [7]) fields of dimension less than 200 are used.

The multipliers in standard bases generated by irreducible trinomials and pen-
tanomials were constructed in the Ph.D. thesis of E.D. Mastrovito [8]. For example, in
[8] the complexity of GF(2")—multipliers for n = 2,3,...,16 is equal

7,17,31,49,71,97, 148, 161,199, 241, 351, 371, 478, 449, 537
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and the depth is equal
3,4,4,6,5,5,6,7,7,7,8,7,8,6,7.

The general bounds of the complexity (and the depth) of these multipiers are equal
O(n?),O(logn).

By Karatsuba’s method (see, for example, [9]) it is possible to construct the mul-
tipliers with the complexity O(n!°923).

Problems of practical application of Karatsuba’s method for multiplication in a
field GF(2") are considered in the Ph.D. thesis of C.Paar [10].

In [11] some architectures of multipliers are given for a field GF(2%") Best multi-
pliers for n = 8,12, 16, 20, 24, 28, 32 have the complexity

117,216, 390, 546, 813, 1020, 1569,

and the depth 10,9,11,13,11, 14. For multiplication in normal bases are known the
methods [14], [15], [16].

The best bounds of the depth of inversion in a field GF(2") is equal O(logn) [17],
[18]. However, this result have only theoretical significance.

In [19] is given the GF(2") inversion algorithm with the complexity O(n3)logn
and depth O(log?n). It is based on the identity

n_ [n/2] _
221 <$2 1)

High bound of the complexity has the reason in the high complexity of normal basis
multiplication [14] (it is generally equal O(n3).) Main idea of the method [19] is fast
computation of powers 22" 1. This algorithm of powers computation is known since
the thirtieth years and belongs to A.Brauer and A.Scholz ( see [20]).

We propose for inversion in some fields of composite dimension circuits of smaller
depth and smaller complexity than well- known. These fields are considered as the
extension of the subfields and also are called composite fields. For multiplication in
these fields is known the method [15]. For a completeness we give in some special cases
this method with simpler proof, than in [15].

oln/2]
ln/2) _
ZL‘2 1 .

2 Low depth circuits for operations in normal bases of
composite fields

Further we need some definitions and notations

2.1 Normal and optimal normal bases

Finite field of the order ¢" is denoted by GF(q"). Elements of a field GF(q") is repre-
sented as polynomials of a degree no more n — 1 with coefficients from a field GF(q).
If the polynomials are represented in a standard base

By ={a%at,...,a" 1}
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(‘an element « is called the generator of a base), then a multiplication of elements of a
field is a multiplication of polynomials modulo of some irreducible over the field GF'(q)
polynomial g(z).
Sometimes instead of a standard base it is more convenient to use a normal base,
namely a base
B* = {oﬂo,aql, .. .,oﬂnil},

generated by an generator a of a standard base (« is a root of a polynomial g(x)).
Ezxponentiation in the degree ¢ (and in any degree ¢") in a normal base is a shift of
coefficients, because

(! =zp1a+ x0a + $1aq2 4+ -+ 33n7204qn71
B={a,a%a®, ... ,aqnfl}

Let T be the matrix, in which i—th line is the vector of coefficients of element ar?’
fields GF(¢") concerning base B The number of nonzero elements in the T is called the
complexity C'p of a given normal base. This definition explain by the Massey-Omura
algorithm of multiplication in a normal base B (see, for example, [1]): Let

n—1 ) n—1 )

i J

=Y ma? (=) yaf
i=0 j=0

be any elements of the field GF(¢"), then product of this elements may be calculated
by the formula

™= mea y Pm = Z timjm—j%iYj = Z ai jS™ (x:)S™ (y;)

1,j=0 4,j=0

where S™ is a shift of coordinates of the given vector on m positions, and

n—1
z,y) = Z Q;,5T;Yj
i,j=0
is a bilinear form with a matrix A, defined by the equalities a; ; = t;—; —;, where i — j
and —j are calculated modulo n.

The complexity of multiplication over normal base of a field GF(¢") is less or equal
to n(2Cp + n — 1) operations in the subfield GF(q).

It is known, that the complexity C'p of any normal base B of a field GF'(¢") is not
less than 2n — 1. Normal bases with the complexity 2n — 1 are called optimal normal
bases. These bases were found in [22].

Optimal normal bases of the first type there exist if n + 1 = p is a prime number,
and ¢ is a primitive element modulo p. A generator of a base is a primitive root of
degree p from 1 in a field GF'(q"™). Bases of the second type there exist if 2n+ 1 = p is
a prime, and ¢ is a primitive element modulo p. Bases of the third type there exist if
2n+1 = pis a prime, p = 3(mod 4), and the order of ¢ modulo p is equal n. Generators

in the last two cases are aw = ¢ + (!, where ( is a primitive root of degree p from 1 in
a field GF(¢*").
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2.2 Reduction of inversion in a field GF(nin;) to inversion in a field
GF(TLQ).

Let’s present a field GF((2")"2) as the extension of degree ny of fields GF'(2™). In
the field GF(2™) we choose any base Bj. Suppose the circuits for multiplication
and inversion for this base in this field are constructed with the complexity and the
depth L(M(n1)) = L(Mg, (m)), D(M(ny)) = D(Mg, (m)), L(I(n1)) = L(Ip, (m)),
D(I(n1)) = D(Ip,(n1)). In the considered extension we choose any base By over the
subfield GF'(2"'). Then in the field GF(2") we choose the base

B=B1® By = {Oéiﬁj Loy € Bl,ﬁj € BQ}.

It is possible according to the following lemma (for example, see [1, Lemma 3.3.12],
[23])

Lemma 1 Let A = {ag,...,am-1} and B = {fo,...,Bn-1} be a bases of a fields
K = GF(¢™) and L = GF(q") over a field F = GF(q) and g.c.d(m,n) = 1. Then
C={afj:i=0,....m—1,5=0,...,n— 1} is the base in the field GF(¢"™") over
the F.

It is valid also (for example, see [1, Theorem 3.3.13], [23])

Theorem 1 Let o and 3 be generators of normal bases A and B fields K = GF(q™)
and L = GF(q"™) over a field F = GF(q) and and g.c.d(m,n) = 1. Then v = af3 is a
generator of a normal base of the field E = GF(q™") over the F'.

Suppose the constructed circuit for multiplication for base Bs consist of m elements
of multiplication in a subfield GF(2™) and a elements of addition, where m + a =
L(Mp,(n2)) and have depth D(Mp,(n2)). Suppose in any chain of elements connecting
inputs and outputs of the circuit there is only one element of multiplication. Then this
circuit generates the circuit of multiplication in base B with the total complexity

L(Mp(n)) = mL(Mg, (n1)) + any < L(Mp,(n2)) L(Mp, (1)),
with the multiplicative complexity (the number of elements of multiplication)
M(Mp(n)) = m(Mp, (n1))m(Mp,(n2)),
and with the depth
D(Mp(n)) = D(Mpg, (n1)) + D(Mag, (n2)) — 1.

It is known, that the set of all automorphisms of a field GF'((2"1)"2) over a subfield
GF(2™) is a cyclical group . This group (is called usually the Galois group of the
given extension) may be represented as the group G = {o,...,0"2} of powers of the
automorphism o : x — 2%, ¢ = 2™, such that 02 = e. ( for example, see [1, Theorem
1.2.2]). The automorphism o : & — z9 is the Frobenius automorphism . For an
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extension £ = GF(q") of a field FF = GF(q) with the Galois group generated by an
automorphism o : x — x? the function

n—1

) = I R A

Ng/p(z) =20(2)...0
of any x € F is called the norm of this element.

Further instead of N, p(z) we write N, (), if the field E is the extension of degree
n of a field F' or N(ny/ny), if a field E are the extension of degree no of a field GF(2™).

The norm of any element of extension of a field always belongs to this field (see,
for example, [1, Lemma 1.6.1]).

Using the notation Z,,(z) = o(z)...0™~!(x), a inverse element can be computed
by the formula =1 = Z,,,(2)(Ny,(x)) L. The multiplication in this formula is multi-
plication an element of the field GF((2™)™) on an element of the subfield GF(2™),
therefore the complexity of multiplication is equal noL(Mp, (n1)), and the depth is
equal D(Mp, (n1)).

Let us the circuit computing simultaneously N, (z) and Z,,(x) denote by N Z,,(x).
Suppose the complexity of this circuit is equal L(N Z,,(n1)), the depth of the subcircuit
computing N, (z) is equal D(N,,(n1)), and depth of the subcircuit computing Z,, ()
is equal D(Z,,(n1)). Then the circuit I,,,, for inversion in the field GF(2""?) can be
constructed from the circuit N Z,,, the circuit for inversion I,,, in the subfield GF(2™)
and circuit of multiplication M (ning,n1). The complexity of this circuit is equal

L(Inyny) = L(In,) + L(N Zny (n1)) + no L(M (n1)), (1)
and the depth is equal
D(Inyn,) = max{D(In,) + D(Nny(n1)), D(Zn, (n1))} + D(M(n1)). (2)

We need a nontrivial methods of constructions of the circuit N Z,,(n;). The trivial
methods give bounds L(N Z,,(n1)) < (ng — 1)L(M(nq)),

D(N Zn, (n1)) < [logy(2n2 — 2)|D(M(n1)).

3 Towers of fields.

3.1 Reduction of inversion in a field GF™™" to inversion in a field
GF™s,

Applying two times the construction 2.2, it is possible to reduce inversion in the field
GF(((2™)™)™) to inversion in the subfield GF(2™ ). The complexity of the obtained
circuit is equal

L(I,) = L(Inn,) + L(NZy,(nin2)) + n3L(M(ning)) =

L(In,) + L(N Zpn,(n2)) + naL(M(n1)) + L(N Zpg(nin2)) + n3L(M (n1n2))
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and the depth is equal
D(In) = max{D(Inn,) + D(Nns(nin2)), D(Zns(nin2))} + D(M(ning)) =
max{max{D(In,) + D(Nn,(n1)), D(Zn,(n1))} + D(M(n1))+

+D(Nns(nin2)), D(Zn;(nang))} + D(M(ning)).

It is possible to construct the circuit with greater complexity but smaller depth as
follows. Let’s consider the field GF(((2™)"2)") as the extension of degree ngng of field
GF(2") and once apply the construction of the previous section. Then we obtain the
circuit for inversion with the complexity

L(I,) = L(In,) + L(N Znyng(n1)) + nanz L(M (n1)),
and the depth
D(I,) = max{D(In,) + D(Nnyny(n1)); D(Znyny(n1))} + D(M(n1)).

Nontrivial constructions for a circuit NZ, p,(n3) are given in the sequel.

3.2 Inversion in towers of fields and circuits NZ,,,,(ns).

Let’s consider the extension of degree nins of field GF(2"3) as a field tower consisting
of the extension of degree ng of field GF(2"?) and the extension of degree n; of field
GF(2m"). It is known, that the Galois group of the field GF(2") over the subfield
GF(2™) is cyclical group of the order nijny. We present this group as

{o,..., 0™},

where ¢ is a generating automorphism. Let’s consider the subgroup of automorphisms
of the field GF(2™) over the subfield GF(2"2"3). This subgroup has the order nj,
therefore it is equal to the subgroup

{o"2, oz ,omnz

generated by the automorphism ¢"2. Restriction this automorphism(and all other au-
tomorphisms from this subgroup) on the subfield GF(2"2"3) is equal to the identical
automorphism.

Let’s obtain in a convenient kind a well-known property of norm ( see, for example,
[1, the theorem 1.6.8]).

As the norm of the extension of degree nins is equal

Npny () = zo(z) ... o™ (z),
and the norm in this field, considered as the extension of degree ni, is equal

Ny, (2) = 26™(2)0?" (z) ..o ™I (3) = g7 (z) ... 7" (z), 7 = 072,
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therefore, putting y = Ny, (x), we have

Ny () = zo(z) ... 0™™ N z) = yo(y)...0™ L(y),y € GF(2"2"3).
The automorphism ¢ maps the subfield GF(2"2"3) in itself( so there are no other
subfields of the same order), automorphism 0”2 is equal the identical automorphism
on this subfield, and other automorphisms o,k < ny are not identical(otherwise it

belong to the subgroup automorphisms of thr field GF(2") over the subfield GF(2"2"3),
therefore the set of restrictions of automorphisms

{o,...,0™}

on the subfield GF'(2"2"3) form the group of automorphisms this field over the subfield
GF(2™3). Therefore for norm

Nio(y) = yo(y)...0" 7 y),y € GF(2"™),
the equality is valid
Npny (2) = zo(z) ... 0™ N z) = yo(y)...0™ Hy) = Nuy(y) = Npy (N, ().
Deleting in this product the first multiplicand, we obtain the identity

Zpang () = 0(2) ... 0™ (@) = Zn, (2)0(y) ... 0™ (y) =

Zn, (2)Zny (y) = Zn, () zn2(Nn, (7)),
where Z,, (z) = o™ (z)0?™2(z)...0c™M V"2 (g) = 7(z)...7" N (2), 7 = 0™, Z,(y) =
o(y)...c™ 1(y). Let’s denote by M (n,nan3) the circuit of multiplication of any ele-
ment of a field GF(2") on any element of a subfield GF(2™2"3) and denote by NZ,,(y)
the circuit for simultaneous computation N, (y), Zn,(y). Also we denote by NZ,, (x)

the circuit for simultaneous compution Ny, (z), Zn, (). From these four circuits it is
possible to construct the circuit N Z,,,,(x) with the complexity

L(N Znyny(n3)) = L(N Zn, (n2n3)) + L(N Zn, (n3)) + L(M (n, n2n3))

and the depth
D(Nn1n2 (7”L27”L3)) = D(Nm (’I’Lgng)) + D(an (n3))a

D(Zn1n2 (77,277,3)) =

max{D(Zy, (nan3)), D(Zn,(n3)) + D(Np, (n2n3))} + D(M(n,nang)).
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3.3 On the circuits M(n,nyng).

If a base B of the extensions of degree ning of field GF(2"3) is represented as a product
of a base By of the extensions of degree ny of the same field and a base B; of the
extensions of degree n; of the field GF'(2"2"3), then are valid the equalities

L(M(n,nang)) = n1L(M(nans3)), D(M(n,nons)) = D(M(nans)),

L(M(n)) < L(Mp, (n1))L(M (n2n3)),
D(M(n)) = D(Mp, (n1)) + D(M(ngn3)) — 1,

where Mp, (n1) is the circuit of multiplication in the base Bj consisting of elements
realizing arithmetic operations in the subfield GF(2"2"3). If g.c.d(n1,n2) = 1, then in
the subfield GF(2™"3) it is possible to choose arbitrary base Bj.

As an example we consider Application to the biquadratic extension

It is valid

Theorem 2 If in the field tower GF(((2")?)?) were chosen the optimal normal base
{a1,0a2} and the base {1, a2}, ad+as = a1 then is valid the following recurrent relations
for the complexity and the depth of multiplication

L(M(4n)) < 9L(M(n)) + 20n,

D(M(4n)) < D(M(n)) + 4,

and for the complexity and the depth of inversion
L(I(4n)) < 14L(M(n)) + 16n + L(I(n)),

D(I(4n)) < 3D(M(n)) + 2+ max{D(I(n)), 2}

4 Table

In the first column the dimension n of a field GF'(2") is given. If the second column is
empty, then the circuit is constructed by computing an explicit inversion formula and
optimizing of the obtained circuit. If the second column is not empty, for example,

it contains the sign 2(—>St), then it means that the circuit was constructed using of the
quadratic extension and in the field GF(2?) was choosen the standard base. By badges
opt and norm denote an optimal normal or an ordinary normal base. The absence of
a badge means that the base is neither normal nor standard. In the fourth column are
given the complexity and the depth of inversion circuits as I,, = (number, number), the
complexity and the depth of multipliers as M,, = (number, number), the complexity

and the depth of squaring circuits as K, = (number, number). In the last column the
badges st, norm, opt means that a base in a field was chosen standard, normal, optimal
normal.
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Table 1: Table

2: I, =(0,0), My=(7,3) opt

3 I; = (6,2), Ms = (18,4) opt

1 I = (24,3), My = (31, 4) opt

4 I = (21,4), My = (31,4), K1 = (2,1) st

5: I5 = (55,4), M5 = (55,5) opt

6 Ts = (156,6), Mg = (31,5) opt

6: | 2| I = (60,10), Mg = (66,6) norm
6 : 3lop) Is = (84,8), Mg = (66,6) norm
8: | | = (125,11), Ms = (112,6), Ks = (7,2), M4 = (3,1)

10: | 2| 1 = (220,14), Mo = (230, 15) norm
10: | 2% 1o = (213,15), Mo = (229, 16)

10: | 2% 1 = (871,16), Mo = (185,7) norm
12: | 2% 1, = (335,16), Mis = (234,7) norm
12: | -5 | Lo = (306,16), M = (222,8)

15: | 29 | 15 = (590,20, Mis = (390,8) norm
15: | 29 | 15 = (556,21), Mis = (354, 8)

16: | 2| 1g = (502,24), My = (378,9), K16 = (32,5), Mys = (10,2)

16: | > 116 = (475,25), M16 = (382,12), M, 5 = (14,3)

20 | ¢ = (905,21), Msg = (595,9)

ou: | 4 (1078 30), Moy = (767,11)

30: | "V | [y = (8229, 18), My = (1455,9) norm
30 | e 130 — (1925,28), Mzy = (1230, 10) norm
32. | 20 — (3275,39), Mss = (1772,13), M,.16 = (26,3)

4 | Py — (4128,52), Mus = (2460, 12)

96: | rt — (19707,79), Mg = (11016, 16)

120 : S(Lpi) 1120 = (73930, 74), M120 = (12480, 14) norm
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Abstract

We have considered some mathematical models of traffic flow. There are for-
mulations of basic modern approaches to description of traffic jam characteristics
on a network. We also lead a few open problems.

Key words: traffic flow, traffic jam, shock waves, macroscopic and microscopic
models, leader’s following models, conservation laws.
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1 Introduction

Modelling of traffic flows on megacities network is as actual, extremely difficult prob-
lem. And the exact formalization of these questions gives the contensive mathematical
problems.

The question of modelling complexity has two aspects: how much wide is the flow
support and how much the flow components are synchronized. Really, as only the
support is reduced to “two rails”, and synchronization of flow component are as iron
connection, than the flow kinematics becomes trivial. It is more than freedom at a
military column, Which, nevertheless, should keep steady regular distribution. At last,
on multilane road with possibility of transition from one lane to another ( non channel
movement) and with the various qualifying Skills and purposes of drivers movement
becomes incomparable More difficult. So more difficult, that since thirtieth years the
twentieth century there is a search of adequate models, [1].
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Growth of quantity of cars on roads, capacity and high-speed properties lead to the
aggravated a problem of safety of the traffic inadequate behaviour of a part of drivers
on the road, the limited possibilities human body according to road conditions.

The car becomes more and more smart, it means that share of formalizable actions
in traffic increases. For example, unlike the driver, the technical device can more
precisely estimate the dynamic dimension, i.e. the safe distance to ahead following
car. Thus, transition to the formalized algorithms of car control reduces a share of
unpredictable actions of drivers and gives the chance to fashion designers of traffic
flow. At last after we hope to construct the general theory of traffic flows the lapse of
many tens years, also we can describe the behavior of a separate car, a flow of cars on
a road section and a set of cars on a complex city network.

2  Models for the leader following

For movement on one lane the position of points can be presented as of the sequence
of the functions
o<z (t) < ao(t) < oo < zp(t)... (2.1)

We consider necessary the following conditions for functions x;(t),i = 0, %1, ...
a) the functions satisfy (2.1);
b) they strictly monotonously increase;
c¢) the functions are continuously differentiable and

2| Lo (1) < M. (2.2)

d) & are absolutely continuous and almost everywhere differentiable, and

il | 1o (r4) < Mo (2.3)

Let d = d(x) be a positive and monotonously growth function of nonnegative argument,
which defines safe distance between the next points, i.e. dynamic dimension.
For example, )
Tpal — Ty = 5622 +z, + 1. (2.4)

The movement of the pair (x,,x,1) by the law (2.4) we call connected. If the
relation (2.4) are executed for sequence n = 1..., N — 1 then we receive a connected
chain.

For a correctness of problem formulation it is necessary to add initial conditions,
i.e. the positions of points at the time moment ¢ = 0, and boundary conditions, for
example, behaviour of the leader (or the outsider).

We note physical statements of model of following for the leader concern the sixtieth
years of the last century [8]. The further development is received in many researches,
for instant [9]. We consider following questions.

Question 1: Whether there is a connected chain of the set length N7 What are
necessary conditions of existence? What are sufficient conditions?
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Question 2: How can be the description of qualitative behaviour of a chain de-
pending on behaviour of the leader (Or the outsider)?

Question 3: What is an asymptotics of system solutions for a circle.

The following cycle of questions concerns to descriptions of flow dynamics in case
of nonconnected a component. For a statement correctness we will enter function g(z),
strictly monotonously decreasing, g(0) = 0 and smooth.

Dynamics of nonconnected pair is described by the following law

By = g(Tn — f(Tns1 — 70)), (2.5)

where 11 — 2, = d(xy) © T = f(Tp41 — Tn)-

Questions 4. What are the necessary and sufficient conditions on function , g, for
which the system (2.5) would describe non-critical (without collisions) the movement
converging to connected state.

3 Intensity, a plane and continual traffic models

Real numerical characteristics of a flow of following for the leader are the quantity of
particles passing through fixed section (intensity) ¢ and quantity of particles, on length
unit at fixed moment (density) p. Long-term theoretical and experimental researches
of experts in the traffic show, that there does not exist a simple dependence between
these values. Moreover, in some researches formal definitions of density and intensity
do not every often consider necessary to show. But every technology of these values
measurement have themselves nuances and details.

Nevertheless, at certain conditions, about which it is supposed to mention, de-
pendence v = F'(p) ( speed on density) and, as consequence, ¢ = pF'(p) (intensity on
density) adequately reflects real behaviour of a chain. Then the model of following for
the leader can to be reduced to the mathematical physics equation.

If we fulfill automodel reduction for the leader following model we obtained (in first
order) conservation law (Lighthill - Whitham - Richards model), [9] ,

9p  94lp) _
ot + or 0
where p is density; v(p) = f(1/p) is velocity and q(p) = pv(p) is intensity, “fundamental

diagram”.
And in second order conservation law with diffusion D(p) = —v'(p)/2 (Whitham

model, 1974) , [9]
op . Oale) _ 9 (00
ot T or — o\ PPy )

This models (and also their future generalization) are rather convenient for in-
vestigation because of the hydrodynamic analogues. In this text we restrict ourselves
only these macroscopic models, for more detail see [1], [2]. First of all, it is rather
interesting to comprehend how these equations can describe traffic jam. Mathematical
theory of shock and training waves was developed in works of A.N. Kolmogorov, I.G.
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Petrovsky, N.S. Piskunov, Ya.B. Zel’dovich, .M. Gel’fanfd, E.A. Hopf, P.D. Lax, A.M.
Ilijn, O.A. Oleijnik, S.N. Kruzhkov, N.S. Petrosyan, G.M. Henkin, A.A. Shananin and
other (see, for example, [10]). We plane to describe the contemporary state-of-the-art
of this branch.

The other interesting question is how to stay the initially-boundary problem, say,
for LWR model on the graph of the transport network. The main difficulties are
boundary conditions in the nodes of the graphs (see, for example, [15]).

4  Deterministic-stochastic model of movement

We consider multilane movement of a considerable quantity of cars (particles). In a case
when velocities of all particles are identical, it is possible to consider a flow configuration
invariable. In this case intensity is configuration function, and averagings on various
intervals of time lead to various estimations of intensity. It is natural to consider, that
particles are not crossed by the dynamic dimensions and all motion field (multilane
road) can be broken into corresponding cells in which or there is a particle, or there is
no it. We receive a set connected clusters with an invariable configuration.

As in the field there are free cells as soon as the mode of velocities becomes non
tense, there are particles which try to increase own velocity for the account changes
of a configuration of own position in the flow. This situation generates a stochastic
(individual) component of the flow.

Thus particle movement is summarized from collective and individual components.

Research of individual components of traffic flow is reduced to so-called models
of integer automatic automata in traffic or to an percolation problem in physics [7],
[13-14] or to problems of random walk in probability theory [2], [7].

As Blank notes [3] the first not trivial results, basically numerical, are received
by Nagel K, Schreckenbag, Herman, Simon, Krug, [7], [10]. In these researches it was
found, for example, that average particles velocity of movement on a cellular ring with
probability 1

o(p) = {1, pe[0,1/2); p'—1, pe (1/2,1)}.

Exact formulations and statements in the elementary model and generations is
received by the Blank, [3], [4].

Problems on numerical characteristics for moving on a multilane cellular field are
open. With the fixed probability p, 0 < p < 1 and on the closed path with knots
(crossings), for example, a path with shape as “eight”.

It is offered to discuss some results in this topics.

5 Network dynamic system

Let G be a the plane oriental graph with vertices rate n and with the ends of rate 1,
“n-th ended star”, fig. 1.

The system state is characterized by a vector of density, flow mass on each edge.
Flow process is defined by a mixed matrix in a vertex (Markov’s matrix of the size nxn)
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and dependence of flow velocity on density (state function of an edge). The variant of
dynamic system with control assumes two operating modes in vertex on input(“ closed”
and “opened”) and also in case of open system there are an input and output of mass.

Already on an example “ n-th ended star” there are substantial the problems of
the stationary states description, of stability, critical modes when the flow mass on any
edge reaches a maximum, flow control.

The considered elementary scheme allows to create more difficult traffic graphs by
means of stars pasting, including regular lattices. For example, a triangulation (fig. 2)
and a quadrature (fig. 3).

Except above questions there are actual mathematical problems are recovery of
dynamic system states on a network under the information on its behaviour on a part
network, i.e. approximate information. In what points of the network and with what
accuracy it is necessary to measure information, that it will be possible to restore
a dynamic system state on whole network, to estimate time of approach of a critical
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Figure 3:

mode. It is offered to give mathematically exact formalizations, to give some qualitative
results and to show of computer simulations on above topics.
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Abstract

In this work we introduce de input-state-output representation of turbo codes and we
present conditions for that the obtained representation was observable and minimal. Key

words: convolutional code, turbo code, linear system

1 Introduction

A turbo encoder is formed by parallel concatenation of two recursive systematic convolutional
encoders separated by a random interleaver. Turbo codes were first introduced in 1993 by
Berrou, Glavieux, and Thitimajshima [1]. Actually are one of the most effective methods of
generating codes with high error correction capability. In this paper, using the input-state-
output representation of convolutional codes introduced by Rosenthal Schumacher and E.V.
York [5] and, in a similar way that Climent, Herranz and Perea [3, ?], we introduce the mod-
elization of turbo codes from linear system point of view. The structure of the paper is as
follows. In the next section we introduce the preliminary results and in Section 3 we present
the main results.

2 Preliminary results

In this paper, we denote by I = F, the Galois field of ¢ elements, F[z] the polynomial ring on
the variable z with coefficients in IF and F(z), the field of rational functions over F and FF, the
algebraic closure of F.

Following [4] and [5], we define a convolutional code as a submodule C C F"[z]. Since
[F[z] is a principal ideal domain and since C is a submodule of the free submodule F"[z], the
code C is free and it has a well defined rank k. Let {g;(2), ..., gr(2)} C F"[z] be a basis of the
free module C and let G(z) be the n x k polynomial matrix whose ith column is the polynomial
vector g;(z), fori = 1,..., k. Then, C is defined as
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Figure 1: Turbo Code

C={v(z) e F"[z] : v(z) = G(2)u(z), with wu(z)ec F*[z]}

where G(z) is a generator matrix of C. We say that C has rate k/n if k is the rank of the
module C. The free distance of a convolutional code is given by

dfree(C) = min{wt(v(z)) : v(z) € C, with wv(z)# 0},

where wt denotes the Hamming weight of a codeword. Another important parameter of a
convolutional code is the degree or complexity, which is defined as the largest degree § of the
k x k full size minors of any generator matrix G(z).

Tyl = A.%'t +BUt,
Y = Cﬂ?t + Dut, (1)
vy = < Zi ) ) €To = Oa

where for each instant ¢, z; € F? is the state vector. The set of all codeword sequences vy € F"
is the convolutional code C and we say that C is generated by (A, B,C, D). By abuse of
notation we denote it by C(A, B, C, D). In systems literature, representation (1) is known as
the input-state-output representation. The integer d describes the McMillan degree of the linear
system (1). That is, the McMillan degree is equal to the dimension of the state-space realization
of a rational and systematic convolutional encoder.

3 Turbo Code

Let C; and Co two convolutional codes of rate k/ni and k/ng, respectively. In the turbo code
TCW, the first encoder, C;, operates directly on the input information and the second one, Cs,
encodes the interleaved input information, denoted by Pu;. Thus the codeword of the turbo
code consists of the parity vectors of both encoders following by the information vector.

Next theorem shows the input-state-output representation for the Turbo code 7C (1) from
the input-state-output representation of the constituent encoders.
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Theorem 1 LetCi(Ay, B1,C1, D1) bea (ny, k,01)-encoder. Let Co(Aa, B2, Ca, D3) be a(na, k, d2)-
encoder. Then the input-state-output representation for the (n1 + no — k, k, d)-turbo code is

given by (1), where
(A O By
a=(0 a) m=(ap)

_( Ci O D,
C‘(o @)’D (DQP)’
Proof. Let u; be the information vector of the turbo code. Let 24 and y! be the state vector

and the parity vector of the encoders C;, for [ = 1, 2.
Now, from equation (1), we have, for Cy,

(@)

:rtl+1 = Al:):t1 + Biug
ytl = C’lxtl + Dyug
and for Co,
x?+1 = AQ.T? + By Puy
y? = Cyz?+ DyPuyy

Since the state space of the turbo code 7C!) is the union of the state spaces of the con-
2

stituent encoders, that is, x; = ( xﬁ >, we obtain:
t

2
= (5)-(5 &) (o ) ®

1
Now, the parity vector of the turbo code is y; = ( ZE ) SO
¢

1
I _(Ci O Dy

yt_(yt2>_<0 Cg)xt+(D2P Ug, 4)

2

where x; = < i’;i
Finally, from relations (3) and (4), we get the input-state-output representation of the Turbo

code.
O

Our gain now is to obtain an observable Turbo code with minimal input-state-output rep-
resentation. The following theorem gives the conditions for this.

Theorem 2 Let Ci(Ay, B1,C1, D1) be an (ni,k,01)-code and let Co( A, Ba, Co, D2) be an
(n2, k, 82)-code. Let TCW(A, B, C, D) be the Turbo code described by (2). Assume that the
following conditions hold

1. rank(B) = 61 + 09.

2. The pair (A, Cy) is observable for | = 1, 2.
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Then (A, B, C, D) is a minimal representation with complexity 6 = §1 + 2.
Furthermore, TC () is an observable convolutional code.

Proof. From condition 1, we have
rank (A—z[ B) =01 + 09 forall z € F.

So, the pair (A, B) is controllable and consequently (A, B, C, D) is a minimal representation
of 7C(W.
Now, for all z € T,

Al — 215, O

A—zI\ @) Ay — 215, |
rank< c >—rank o o =01+ 09

@) Co

) A — 21
since rank ( ! &
G
observable convolutional code. O

= ¢, for | = 1,2, from condition 2. So the turbo code 7C™) is an
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Abstract

We discuss correlation attacks in a setting that extends classical LFSR, showing
the relation with a coding theory problem and types of autonomous behavior that
shoud be avoided because of existing fast correlation attacks.

Key words: stream cipher, autonomous system, correlation attack
Additive stream ciphers are an important class of stream ciphers. Hereby a pseu-
dorandom bitstream is XORed to the message. The generation of the bitstream is often
based on linear feedback shift registers (LFSRs). An LFSR stream r = (r;);>0 satisfies
a linear recurrence relation of the form

cort + C1rip1 + gy + -+ 1rip—1 + 140 = 0,8 > 0.

The sequence 7 is completely determined by its [ initial values (rg,...,7_1)7 =: Ro,
which in most cases equals the secret key of the corresponding stream cipher.
An LFSR can be described by the linear system:

o 1 0 ... 0
0 0 1 ... 0
Re=1 ¢ 0 0 0 [ R
0 0 0 1
cChp €1 Cp ... (C-—1
r=(100 ... 0)R

It is clear that the output of such a system cannot directly be used as keystream,
since the linearity of the system allows to recover the initial state (key). Hence, the
stream generated by this linear system is fed into a nonlinear function f to destroy
linearity. Hence recovery of the initial state in principle comes down to solving systems
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of nonlinear equations, which is known to be hard. However often f is not correlation

immune, i.e. there exists a linear sequence {s;};>o such that Pr(f(zi4i,...,z14i) =
si) = % + €, with |¢| > 0. Now it can be shown that the observation of
1
N =~ —

€
streambits theoretically allows the recovery of the initial state.

We would like to generalize this result to general autonomous systems in Iy, of the
form:

Tr+1 = Axy
yr = Cxy

Let o : (FZ)Z — (FQ)Z, st — S¢41 be the shift operator. Given an n x n polynomial
matrix P € Fy[z]"*", P defines an autonomous behavior in the sense of Willems [5]:

B:=kerP(o) C (IFZ)Z

Assume P := U(z)P(z), with U(z) an n x n unimodular matrix, has row degrees
61 > ... > 0, and high order coefficient {natrix I,,. Let X(z) be the n x r basis matrix
with 7 := Y"1 ;;. Then kerP(0) = kerP (o) and there exist an r X r matrix A and an
n X r matrix C' such that:
ker(X (2)|P(z)) = im ( ZITJ A )

The autonomous behavior of P is equivalently described by a system as above. More-
over, the matrices A and C' can be computed ’by Inspection’ [3].

Let (yi)i>0 be a sequence in some behavior kerP(c). This sequence can be also
computed as:

(0 C
Y2 CA
. = . T
YN C AN -1
Given a highly noisy sequence 9y, ...,yn—1, how can we obtain the initial state (key)?

We face a decoding problem.

In this paper we explain correlation attacks in this general setting and we show
types of autonomous behavior which should be avoided because of existing fast corre-
lation attacks.
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Abstract

In this paper we study the possibilities that the parallelism implemented by net-
work processors offers to accelerate the network interface, and thus, to improve the
performance of applications that need communication (nowadays almost all appli-
cations). To achieve adequate communication performance levels efficient parallel
processing of network tasks and interfaces should be considered. This way, we
considered the use of network processors as heterogeneous microarchitectures with
several cores, that implement multithreading and are suited for packet processing,
to investigate on the use of parallel processing to accelerate the network interface
and thus the network applications developed above it. More specifically, we have
implemented an intrusion prevention system (IPS) and an OpenFlow switch in an
heterogenous node that includes such a network processor. We describe the IPS
we have developed that after its offloaded implementation allows faster packet pro-
cessing of both normal and corrupted traffic. We also describe a complementary
design to previous OpenFlow reference designs that takes advantage of the parallel
processing allowed by network processors.

Key words: network processors, heterogeneous processors

1 Introduction

The availability of high bandwidth links and the scale up of network I/O bandwidths
to multiple gigabits per second have shifted the communication bottleneck towards the
network nodes. Therefore, the network interface (NI) performance is getting decisive
in the overall communication path performance and it is determinant to reduce the
communication protocol overhead due to context switching, multiple data copies, and
interrupt mechanisms.
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Network processors (NP) are programmable circuits that provide fast and flexible
resources for high-speed communication functions processing as they are composed of
multiple cores that makes it possible to take advantage of parallel processing in these
tasks and to leave free clock cycles for the CPU to process the applications. Network
processors (NP) usually have heterogeneous microarchitectures with cores optimized
for packet processing.

NP-based acceleration cards such as [12] have been designed to change the way
in which packets are handled in network systems by offloading packet processing from
host CPU level to Network Interface Card (NIC) level.

These network processor cores usually have multithreading capabilities that can be
used to improve the performance of network applications by offloading parts of them to
the NP in order to take advantage of the parallelism and the memory hierarchy imple-
mented at the NP microarchitecture. This way, not only the networking applications
can be accelerated thanks to their implementation in the proximity to the network but
also the CPU load is reduced and the free cycles can be allocated to other tasks thus
improving the server throughput.

In this same research line, the paper [22] describes how a content-aware switch
implemented in a NP can reduce the latency for HT'TP processing, improve the packet
throughput, and optimize the cluster server architectures, by processing requests and
distributing them to the server according to the application-level information. The
authors have used the IXP2400 NP [1] and compare their NP-based switch with a
Linux-based one. The latency on the NP-based switch is reduced between 83% (for
small file sizes) and 89% (at 1024 Kbytes sizes) and the throughput is improved between
5.7 and 2.2 times.

In this work we discuss the protocol offloading approach as an optimization of the
communication subsystem. We also propose and analyze an offloaded implementation
of a network intrusion prevention system and a converged architecture to accelerate
OpenFlow switching using network processors.

The demand of firewalls and network intrusion detection and prevention systems
has grown with the increasing importance of network services and infrastructure along
with the difficulty of designing end-system security strategies [21]. Another application
that can be improved by using network processors is OpenFlow switching, which enables
flexible management of enterprise network switches and to accomplish experimental
work on regular network traffic. We also apply network processor based acceleration
cards to perform OpenFlow switching.

In Section 2 the protocol offloading optimization for the network interface is ex-
plained. Later, in Section 3 our network interface using network processors is detailed.
It is used as the base for the applications described in Section 4. After that in Section
5 the main conclusions of this research work are provided.
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2 Protocol Offloading

The protocol offloading moves part of the protocol processing to the NIC, leaving more
cycles to be used by the CPU for the application computational needs. With this
approach a processor located in the NIC (different from the CPU) is used for the
communication tasks.

Basically, in this work we analyze the effect of offloading in NP-based NICs. The
potential benefits of protocol offloading are an increase in the CPU cycles available for
the application, a latency reduction, an increase in DMA efficiency (as small messages
can be gathered into groups) and a reduction in the number of I/O collisions.

Nevertheless there are papers such as [10, 16, 4, 14] that defend that protocol
offloading, specially in the TCP case, does not give any benefit for the application
performance. The difficulties to achieve some benefits for the application performance
come from the implementation, maintenance and test of the offloaded protocols [10].
Moreover the protocol between the NIC and the host CPU can have the same level of
complexity as the protocol being offloaded [14]. Moreover, as a consequence of Amdahl’s
law, to offload the protocol processing to processors that are slower than the CPU will
not give a better performance [16].

Nevertheless, the reasons detailed in these papers have to be balanced with the
possible benefits from protocol offloading listed above. This way, in [20] the authors
emulate a NIC connected to the I/O bus and controlled by one the processors in a SMP.
The improvements are between a 600% and 900% with the TCP offloaded emulation.
Moreover, the models proposed in [5] [17] exposes the possible benefits from protocol
offload. It can be also taken into account that, although a processor runs at lower clock
frequencies, it is possible to take advantage from its microarchitecture. For example,
in the case of networking processors, although they have lower clock frequency than
the CPU, they provide resources that allows us to take advantage of multithreading
processing of packets, asynchronous memory accesses, multilevel memory hierarchy and
parallelism and multithreading.

It is important to take into account that the actual processors provide many cores of
processing (multicore) both for the host CPU and for the network processor at the NIC.
Every core might have multiple threads. This high parallelism motivates to change the
techniques used for offloading as well as the placement of the different communication
tasks.

The study provided in [18] shows that parallelizing the reception path can deliver
benefits for unidirectional as well as bidirectional traffic. In fact, this scheme allows
the authors to reach the theoretical throughput of the medium. Therefore, offloading
can be improved by using parallelism.

Another approach to take advantage of parallel processing in protocol offloading is
the use of network processors. In [8] communication tasks are distributed between the
central processor (CPU) and a network processor (NP) included in the network card.
This way, the NP executes part or all of the communication tasks, and even part or
the whole application. The NP and the CPU cooperates in the application execution
that runs in the node and communicates by means of the buses existing on the node.
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Through those buses the data among the main memory and the memory included in
the network card (i.e. local memory of the NP) is also transferred. Therefore, even if
it is called offloading due that part of the code that use to be run in the CPU is moved
to a processor that is in a NIC connected to a I/O bus, actually it tries to implement a
distribution of the tasks to be completed by the node according to the location of the
NP close to the network, and its micro-architecture oriented to the packet processing.

3 A network interface using network processors

Because of the importance of the network interface (NI) in the communication perfor-
mance we have decided to create a network interface using network processors. This
network interface uses a NP-based NIC and allows us to have the base to ofload com-
munications tasks to this NP.

The network processors (NP) are programmable circuits optimized for the process-
ing of communication functions at high speed. It plays a very important role in the
design of current routers. Moreover, these processors also include hardware compo-
nents to accelerate common operations in communication functions (CRC processing,
hash calculation, etc.) [15, 19]. They are located midway between the ASICs (more
speed but less flexibility) and a general purpose processor. Usually, they are compound
of a central processor for control and several packet processors (usually multithreaded
processors).

Families of network processors have been marketed with diverse flexibility charac-
teristics, prices and performance [2]. Among the different alternatives, we have chosen
Intel IXP processors [7]. The IXP series implement micro-architectures with a high
level of parallelism, including several programmable processors: a general-purpose In-
tel XScale processor (RISC architecture compatible with the ARM architecture), and
up to 16 optimized co-processors (called MicroEngines or MEs) for packet processing.

This network interface is created as a platform to offload part or all of the protocol
processing from the host CPU to the MicroEngines. The network interface is a Linux
kernel device driver as explained in detail in our work [3].It is configured to use the
communication API host-MicroEngines, our card provides a complete network interface
as shown in Figure 1. This figure compares the software distribution of the interface
directly available with the card (Figure 1(a)) and the elements of the network interface
developed by us (Figure 1(b)). In these two figures the arrows with dotted lines indi-
cate the need for synchronization between the corresponding modules; the bold arrows
indicate the data transfers; and the thinnest arrows show the interactions between the
modules that control each transfer. In Figure 1(b) the bold rectangles indicate the
software modules developed by us.

As it has been said, this network interface is used as a platform to study the
offloading of communication tasks.

Figure 2 provides measures corresponding to the parallelism that can be obtained
by devoting more MicroEngines to a specific communication task. In our experimental
configuration we have considered that one MicroEngine is dedicated to packet trans-
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Figure 1: Complete offloaded network interface.
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Figure 2: IP latency.

mission, other MicroEngine to packet reception, and other two MicroEngines to the
PCI Express bus transfers. Nevertheless, the best results have been obtained using
two MicroEngines (up to 16 threads) for transmission and other two MicroEngines for
reception.

4 Applications and experimental results

In the next subsections two applications developed in top of our network interface are
explained and evaluated.
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4.1 OpenFlow

OpenFlow tries to address the needs of researchers to control and experiment with
production networks and not only with simulators or special networks. OpenFlow was
started in Stanford by [9] and soon was followed by many other Universities. Also the
industry has developed some OpenFlow devices [13].

In a regular switch both the data and control plane are done in the same physical
device. The OpenFlow Switch initiative separates these two paths. In an NP usually
the data plane runs at the MicroEngines and the control plane at the XScale main core.
With the OpenFlow idea, the data plane stays at the switch while the control plane
is implemented in an external entity called the controller. Translating the OpenFlow
idea to the IXP architecture means that the MicroEngines run the data plane while
the control plane is in another computer, usually external to the switch.

An OpenFlow switch can easily help to share the network into several pieces, each
for every kind of flow. This was done previously by using Ethernet VLAN codes for
every different subnet. The main objective that can be achieved with OpenFlow is to
manage in an easy way a complete network. A flow is determined by ten fields that
can be found in packets. These fields range from Layers 1 to 4 in the OSI model, or
from the physical layer to transport layer.

Once a specific flow is detected an OpenFlow switch has to determine which action
to take on this flow. The switch needs a Flow table where a list of flows and actions
to take on the packets belonging to a flow is stored. The typical actions are to forward
packets to a specific output port, to drop the packet, or to forward to the controller.
The controller in an OpenFlow switch is the external entity that runs the control plane.
It decides the flows and associated actions of the switch. In case a new packet arrives
to the switch and it does not belong to any flow in the Flow table as created by the
controller, the switch will encapsulate the new packet into a message and send it to the
controller, the controller will decide what to do and inserts a flow-action row into the
Flow table.

The baseline OpenFlow design is briefly described here. As it uses a Linux based
PC equipped with several regular NICs (or at least one dual port NIC) running the
OpenFlow software we will call it the software reference design. In Figure 3 the archi-
tecture is illustrated. Even if this reference design consists of two different sub-designs,
(one for user-level and one kernel-level) the architecture is the same. The switch creates
a secure channel' to the OpenFlow controller through an out-of-band connection, i.e.,
a dedicated NIC port is allocated for communication with the controller. The flow table
is maintained in the host memory, and the host CPU looks up flows entries, modifying
them upon receiving the OpenFlow control packets from the controller. The packets
received by the switch are forwarded to either the controller or the destination port,
depending on the result of the lookup.

In Figure 4 the details of our OpenFlow switch accelerated with a network processor
are shown. The Flow table resides at the host memory and at the NP memory and both
are synchronized. As in the case with the FPGA the first packet is send to the host,

! A communication channel using cryptography
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that in turn will query the controller about what to do, and the rest of the packets in
the flow will be processed at the NP directly.

The results for packet forwarding throughput are shown in Figure 5 with the dif-
ferences for the three different architectural options: user-level (x86), kernel-level (x86-
kernel) and NP accelerated (NFD).

Mbps Delay = min
1000
800
600
400
200

0
64 500 1500

Packet Size (bytes)
W x86 M x86-kernel NFD

Figure 5: Packet forwarding throughput. (Inter-packet delay = minimal)

First of all, the kernel-level switch and NFD-based switch perform consistently
better than the user-level switch when dealing small (64B) or medium (500B) packets.
This result can be explained by the data copying from kernel to user space in user-level
switch software. Such overheads (buffer allocation/deallocation, copying, interrupt)
are more significant for small packets since they occur on a per packet basis. Second,
the forwarding rates are more or less the same for all the explained three designs when
the packet is of maximal size. The data-copying overhead from kernel to user space
is amortized in the case of large packets. The question is why the NP does not out
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perform the other two setups since it does not transfer packets to host CPU via PCle
bus. There are several reasons. The network links used in the experiments are only 1
Gbps, which might not be enough to show any difference between the processing power
of the CPU and the NP.

We also analyze the round trip time reported by ping on the measurement node.
This number reflects the delay incurring at the OpenFlow switch of a packet. In this set
of experiments we compare the packet delay in three scenarios: OpenFlow with regular
NIC, OpenFlow with NP-enabled virtual NICs where the flow tables still reside in the
host server, and OpenFlow with NP-accelerated flow table manipulation. The results
show that NP based OpenFlow switch can reduce the packet delay by up to 35% (from
0.157ms to 0.102ms).

4.2 Intrusion prevention system

An Intrusion Prevention System (IPS) is a system that prevents the network attacks.
An TIPS needs to analyze the headers and the content of the packet at higher-level proto-
cols to detect undesired behavior. It is also required that the function implemented by
the intrusion prevention system to be updated with new detection procedures due to the
evolving characteristics of the attacks. As this application requires high-performance
processing capabilities and flexibility it is a good candidate to be implemented in a
network processor.

In our research work we focus on monitoring the network. The most common
setup for IPS is to monitor all the network traffic entering and exiting the network of
an organization by placing a computer running an IPS software at the main Internet
connection of the organization. Packets coming from the Internet enter the organization
through this computer that process them before eventually let the packets reach the
organization network and systems. Usually packets are received into this computer
through a regular NIC, processed at the CPU to decide whether to stop the packet or
let it reach the computer where is destined through another regular NIC. This approach
has the disadvantage that all packets have to reach and be processed at the CPU. The
processing can be very CPU resources consuming, ant therefore if there are too many
packets force the IPS software to discard some packets that will affect the computers
of the organization.

Our approach is to move the IPS, partial or completely, from the host CPU to the
network processor (NP) at the NIC by using our network interface (Section 3. Thanks
to this network interface we can control where to place the different parts of the IPS
and evaluate how it affects the overall performance of applications using the network.
It is possible to place the IPS at the MicroEngines or at the host. Using Figure 1(b) the
IPS could be either at “Parallel microcode” box or at the “Application” box. When
running in the microcode at MEs it will be placed to check every received packet that
it is to be sent to the host. The corrupted traffic will be stopped and the legitimate
traffic will follow the path to the host. In the case the IPS is executed by the host
CPU, it will receive all packets, including the normal and corrupted traffic. The closer
position to the network and the specialized hardware of the MicroEngines makes it the
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candidate alternative to give better results. This will be checked in the experimental
results section. Moreover, in this chapter, it will be studied how the location of our
IPS affects the processing of corrupted traffic with respect to the legitimate one.

The microcode for this IPS is based in the one used for the network interface. One
MicroEngine is devoted to reception of packets, another one to transmission (with the
help of two others), two MicroEngines to communicate with the host through the PCle
bus, and one MicroEngine for processing. It is this MicroEngine that is modified to act
as an IPS and drop packets that matches some rules and not let them reach the CPU.
As it is explained for the network interface there are not shared data structures for
this IPS since the rules are written in the code (i.e. new rules require the modification
of the code) and not in a memory structure shared by all the threads (eight in our
prototype). With only one MicroEngine used for the processing task it can handle the
traffic injected.

The obtained results with the intrusion prevention system test have been very
successful. In our experiment both corrupted and legitimate traffic are sent through
the MicroEngines to the host. In the first case the corrupted traffic is dropped at the
MicroEngines while in the second one the activity of the IPS is done in the host. The
corrupted traffic matches a set of snort rules, implemented in both the host and the ME,
while the legitimate traffic is the one used in the communications benchmark Netgauge
[6]. We measure how the processing associated to the detection of the corrupted traffic
affects the performance of this benchmark. The legitimate traffic is raw Ethernet
because it can achieve a higher throughput than using TCP/UDP. The corrupted traffic
is an HTTP header.

In Figure 6 a latency comparison among two setups is shown. The corrupted
traffic rate goes from 100 Mbps to 1000 Mbps. When corrupted traffic is stopped at
the MicroEngines the legitimate traffic latency is lower. This is, it is almost not affected
by sharing the same communication path than the corrupted traffic. When the IPS is
run at the host (snort) and the corrupted traffic rate goes up to 600 Mbps the latency
behaves similarly to the case when the IPS runs at the network processor. But from
700 Mbps to the 1000 Mbps of corrupted traffic rate the IPS running at the host does
not perform well in terms of latency and even the benchmark can not be completed
due to timeouts. There is a significative higher latency when the IPS runs at the host
compared to when it runs at the network processor. If the corrupted traffic rate is
higher than 600 Mbps it makes the IPS to drop legitimate packets.

The same results are observed when comparing the performance, in terms of the
throughput of the network benchmark, depending on the IPS placement (Figure 7).
If the corrupted packets are stopped at the MicroEngines level, the CPU of the host
can give a better service to the legitimate traffic. The benefit for this kind of traffic,
whenever the IPS is located at the NIC, is that it is not affected after the 700 Mbps
corrupted traffic rate limit.

Another experiment we have completed has been to evaluate the performance of
the network benchmark when only legitimate traffic is sent to the host through the
MicroEngines, compared with the alternative of sending normal and corrupted traffic
to the host. As expected, when only legitimate traffic is sent, the performance is better,
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in terms of both lower latency and higher throughput. Nevertheless, the difference is
bigger when the IPS is run at the host CPU, instead of run at the MicroEngines. It
can be concluded from Figure 8 where it is shown that the difference in throughput
is not important compared with Figure 9. The processing of corrupted packets affects
more significative to the processing of normal packets if it is done at the host than at
the MicroEngines.

Thus the conclusions are clear for the IPS processing: running it on a network
processor does not affect much the rest of the traffic. If it is implemented in the host,
it takes a lot of cycles that the CPU can be available to be used by other functions (as
processing of legitimate traffic or computation).

5 Conclusions

The TIPS based on a multi-threaded network interface here proposed makes possible
to take advantage of the parallelism implemented in network processors to improve
not only the latency, but also the bandwidth of legitimate traffic that shares the same
communication path with the corrupted traffic. The benefits from placing the IPS close
to the network, by using specialized network processors, gives up to many times lower
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latency and higher bandwidth available to the legitimate traffic. The analysis of the
possible optimizations to the IPS processing, along with the evaluation of the effect
of the improvements in real communication applications are the main tasks for our
future work. With respect to OpenFlow switching, the NP implementation provides
up to 35% of delay reduction. Precisely our future work in OpenFlow switching is to
develop more actions for packets, and not only dropping or forwarding to reach more
performance improvements.
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Abstract

In this survey we pay attention to some formulas for Sobolev orthogonal poly-
nomials obtained in two recent papers. They are known as Mehler-Heine type
formulas and allow us to obtain interesting consequences about the asymptotic
behaviour of the corresponding zeros. We illustrate our results with numerical
examples.
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1 Introduction

The issue of Sobolev orthogonal polynomials has been considered in the literature from
many points of view. These polynomials are not orthogonal with respect to a standard
inner product like (p,q) = [ pgdu where p is a positive measure with support on the
real axis. As a consequence, the properties of the standard polynomials do not hold any
more. Apart from other considerations, the fact is that Sobolev orthogonal polynomials
are different from the standard ones and this motivates to study them deeply. Thus, it
is natural to make an exhaustive study of their properties such as it has been done for
the standard polynomials and is going on at present.
Here, we consider the following Sobolev inner product

1
(P, q)s = /_lp(fb‘)Q(JE)d#(x) +/ p(2)¢ (z)dv(z), (1)

supp(v)

where 1 is a Gegenbauer or Jacobi measure and v is a measure related to p. Mehler—
Heine formulas for the orthogonal polynomials with respect to u are well known (see, for
example, [5]). Our objective is to obtain the corresponding Mehler—Heine type formulas
for the polynomials orthogonal with respect to (1). This is an expository paper and
the results appearing here have been obtained recently in [1] and [3]. Therefore, we
recommend to consult these articles to the reader interested in the analytic tools used.
Here we introduce new numerical experiments to illustrate the results.
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2 Notation and background

We consider the nonstandard inner product

1
(P, q)s = /_lp(ﬂf)Q(iv)du(J?) +/ p'(x)q (x)dv (), (2)

supp(v)
where p is a Gegenbauer or Jacobi measure and v is a measure related to pu. We
also denote by (G%a)) the sequence of monic Gegenbauer polynomials when du(z) =
(1 —CL‘Q)a_%dl‘ and by (PT(LO"B )) the sequence of monic Jacobi polynomials when du(x) =
(1 — 2)*(1 + 2)%dx. In fact, we consider two cases:

e Gegenbauer—Sobolev inner product:

1 1
(P q)s = /_lp(w)Q(fﬂ)(l — %)% 2dx +/ p'(x)¢ (z)dv(z), (3)

supp(v)

where
1
(k1 + kg + gra®) (1 —a?)*"2 ( ( (,_/1> (\/1 >>
dv(z) = de 4+ keMD (6 —= )+ (—) ),
v(x) 15 ga? x4 Ko = =
with a > —1/2, ¢ > —1, k1 > 0, k2 > 0, and

@) =0, if ¢>0,
M {20, if —1<gq<0.

e Jacobi-Sobolev inner product:
1

1
(P q)s = /lp(fﬂ)(J(ﬂf)(l —2)*(1+ ) da + / p'(x)q (z)dv (@), (4)

-1
where

k(K1 + K2) — K1x

dv(z) = (1 — ) (1 4+ )P da 4 korsd(k),
KR—X
with |f€| >1,k9>0,k3>0and k1 > — ‘KJ| K9.
1+ K|

We can observe that in both inner products the measure v is a rational modification
of the type of measure p with the addition of one or two mass points outside the support
of p.

We know (see [5]) the Mehler—Heine formulas for Gegenbauer and Jacobi orthogonal
polynomials. We write them in the following Theorem.

Theorem 1 ([5]) Let (Gsla)) and (Pr(La’ﬁ)) be the sequences of monic Gegenbauer and
Jacobi orthogonal polynomials, respectively. Then,

n (@)
lim 2"Gy, ' (cos(x/n))

= Vr(2z)2 T, 1 (x), (5)

n—oo n 2

n (Oé,ﬁ)

2" P, _ _
lim (iof(”“’/ n) 9B frx= Jo(z), (6)
n—oo na 2
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where J, is the Bessel function of the first kind. Both limits hold uniformly on compact
subsets of C.

From the above theorem and using Hurwitz’s Theorem in a straightforward way
we obtain the asymptotic behaviour of the zeros of the corresponding orthogonal poly-
nomials.

Let m be the number of positive zeros of Gegenbauer or Jacobi polynomials. We
denote by ajglaz) and x&f{ﬁ ) the positive zeros of Gegenbauer and Jacobi polynomials,

respectively, ordered as

[0 (03
a:ga% < :1:5177)”_1 <... < 3721)7

m%o‘r,’?) < 557(1625111 <... < :Ugffiﬁ).

We also denote by 0 < j%a) < jéa) < < ]}(ﬁ“) the first m positive zeros of the Bessel

function of the first kind J,.

Corollary 1 We have
)y _ a3

(a,ﬂ)) (a)

nyi = Ji -

lim n arccos(zx
n—oo

lim n arccos(z
n—oo
From now on, we will denote by (S&) and (S;) the sequence of orthogonal poly-
nomials with respect to the Sobolev inner products (3) and (4), respectively. For the
Gegenbauer—Sobolev case we consider the t zeros STGM- of S¢ inside (0,1) ordered as
sﬁt < Sgt_l < < 87?72 < 3765,1- In the same way, for the Jacobi-Sobolev case we con-
sider the r zeros s ; of S;] inside (—1,1) ordered as s, < ;.| <--- <855 <8 |.
More details about the zeros of these families of Sobolev orthogonal polynomials
can be found in [3], [1], and the references therein.
Finally, notice that both Gegenbauer and Gegenbauer—Sobolev orthogonal polyno-
mials are symmetric, that is, G&“)(—x) = (1—)"G£la) (z) and SG(—z) = (—1)"SS ().

3 Mehler—Heine type formulas

In [1] and [3] we have found the following Mehler—Heine type formulas for the Sobolev
polynomials considered here.

Theorem 2  a) We have for a > —1/2,

. 2"SY (cos(x/n)) 14 4b(@
lim =
n—00 no 1+ 4a(9:k1,K2

) VA(22)2 T (x), (7)

where 1
~W(q), ifqg>—1and M@ =0,
pla — ) 4 1

—— . if —1<qg<0and M@ > 0,
4V(q)

@CMMSE Page 335 of 1328 ISBN 13: 978-84-613-5510-5



MEHLER—HEINE TYPE FORMULAS

and

a(q,m,@) — E\I] < qr1 > ,
4 K1+ K2

where W is a real function defined by W(z) = 2/(1 + 1+ )%, for x > —1. For
x>—1, |[¥(x)] < 1.

b) We have for o, 3 > —1 and k1 > 0,

2787 (cos(z/n)) 14 2b(k) /7

. Vi —a
A nots T Tr2a(r) 27" Ja (@), ®
where
-@g% if kg >0,
b(k) =
- if k3=0
st re) e o,
o= R1
) 4o, ifki =0,k > 1,
—00, ifki =0,k < —1,
d
an ]

being ¢ the complex function
o(z)=z+V22—-1, forzeC\[-1,1],

with V22 —1> 0 when z > 1, and p(+00) = +00.

Both limits hold uniformly on compact subsets of the complex plane.

The proofs of these results can be found in [1] and [3]. Here, we only pay attention
to the interpretation of these results. We summarize our conclusions in the following
items:

e Except for a constant in each case, formulas (7) and (8) are equal to (5) and
14 4b(@)

m in the Gegenbauer case and
a\?mvl

(6), respectively. These constants are
1+ 2b(k)
1+ 2a(R)
type of asymptotic behaviour for the standard and nonstandard polynomials is
the same. But, what happens if the constants are zero? In this case the previous
theorem does not provide any asymptotic information since the value of the limits
in (7) and (8) is 0. It very easy to deduce that this situation occurs when

in the Jacobi case. If these constants are nonzero, we can say that this

(a) '@ = —1/4, in the Gegenbauer case. That implies that ¢ = —1.
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(b) b(k) = —1/2, in the Jacobi case. That implies that k = 1.

Thus, for ¢ = —1 and £ = 1, and taking into account the restrictions on the
parameters described in Section 2, the corresponding measures v in the Sobolev
inner products are:

(a) Gegenbauer case.
dv(z) = (k1 + K2 — k122)(1 — 22)* 2dz + ke MY (5 (—1) + 5 (1)) .
(b) Jacobi case.
dv(z) = (k1 + ke — k12)(1 — 2)*(1 + )P da + kok3d(1).

Thus, additional efforts should be made to obtain the asymptotic behaviour of
the Sobolev orthogonal polynomials in these special cases. Notice that they occur
when we put the mass (masses in the Gengebauer case) at the point 1 (at the
points -1 and 1 in the Gengebauer case), i.e., the mass or masses are located in
the extremes of the support of the classical measure.

e The techniques used to prove this theorem are analytic. They need previous
results obtained in other papers (see the references in [1] and [3]) and addition-
ally we obtain other Mehler—Heine type formulas for other standard polynomials
related to Gegenbauer or Jacobi polynomials.

3.1 Mehler—Heine type formulas for the special cases

The tools used to obtain the asymptotic results for the special cases mentioned above
are more difficult technically than in the general case. The details can be found in [1]

and [3].
Theorem 3 Let us define go(x) = (22)"*Jo(z) .

a) Then, for ¢ = —1 and o > 1/2, it holds

o 258 (cosa/n) _ [ e (207001 40) + 49,4 (@), MED >0,
N —1 T _
n—o0 ne Ewmeanoroy ga,%(SU)a M=) — 0.
b) For a >0, 3> —1 and k1 > 0, it holds
lim 2 S (cos(z/n)) _ )~ H%a(ﬁﬂﬁ_% (#%gat1(x) + ga(@)) , K3 >0,
1
n—oo n*" 2 mﬂ—i\/g—}—l Ja-1(z), k3 = 0.

Both limits hold uniformly on compact subsets of the complex plane. All the constants
are given in Theorem 2.
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Therefore, the presence of the masses in these special cases changes the Mehler—
Heine type formulas for the Sobolev polynomials in an essential way. We can observe
that this does not occur in the general case when ¢ # —1 or k # 1. Some natural
questions arise: Why does it occur?. In the Jacobi case, why are there not any essential
changes in the Mehler—Heine type formula when k = —17 We leave these questions for
the reader to think about them. In our opinion, the answers for these questions are
nice. Thus, these cases and their consequences about the zeros are more interesting.
Moreover, in the process to obtain Theorem 3 we also get Mehler—Heine type formulas
for some cases of so—called Krall type polynomials.

4 Zeros

Mehler—Heine type formulas in the previous Section have immediate consequences on
the asymptotic behaviour of the zeros. We only use Hurwitz’s Theorem.

In [4] some results for the zeros of Gegenbauer—Sobolev polynomials, S&, have been
obtained under the assumptions

20 + 3
2c0 + 2

a>0, KQZ( +2(1-|—q)>/€1>0. (9)
When —1 < ¢ <0, Sg has n distinct real zeros and at least n — 2 of them lie inside the
interval (—1,1). If ¢ > 0, all the 2m + 1 zeros of SQGmJrl are real, simple and within the
interval (—1,1), and S§ has at least 2m — 2 distinct real zeros in (—1,1).

For the Jacobi case, in [2] the authors have proved that under the conditions

OZS,B, if &S_la

a>B, if rk>1, (10)

Ko >2k1 >0, k3>0, a+B>2 and {
the polynomial S/ has n distinct real zeros and at least n — 1 of them lie inside (-1, 1)
With this information and using Theorem 2 we can deduce that in the general case
(i.e, ¢ # —1 in the Gegenbauer case and x # 1 in the Jacobi case) the asymptotic
behaviour of zeros of the Gegenbauer—Sobolev and Jacobi—Sobolev orthogonal poly-
nomials is the same as the one for Gegenbauer and Jacobi orthogonal polynomials,
respectively (see Corollary 1 in [3] and Corollary 4.1 in [1]).
As we have commented, this situation changes for the special cases considered in
Theorem 3. We show the results obtained in [1] and [3] about the asymptotic behaviour
of the zeros in the following result.

Corollary 2 a) Let « > 1/2 and q = —1 and let k1 and ko which satisfy the
restrictions given in (9). We denote by

. [n/2] — 1, if SS has 2 zeros outside (-1,1),
1 [n/2], otherwise.

If MY >0, then

)

lim narccos(s,;;

n—oo
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where 0 < hga) < hga) < e < hga) denote the first t positive real zeros of the
function

Y (@000 0) 49, ,0).

h(Oé) (:L') e ——1 + 4(]/(717“17){2

If MY =0, then

. G\ _ -
lim narccos(s, ;) = j; ,
n—oo

b) Let k =1 be and we assume (10). If k3 > 0 then,

lim narccos(s? ;) = hl(a),
n—oo ’

i=1,2,....m

where 0 < lAlga) < lAlga) < e < iL1(aa) denote the first r positive zeros of the function

1 JE

ple) — _
1 + 2a(R) 2601

(#°gat1(2) + ga(2)) .
If k3 = 0 then,

. J
lim narccos(s;, ;)
n—oo

5 Numerical experiments

We illustrate some results about the asymptotic behaviour of the zeros of the Sobolev
orthogonal polynomials throughout numerical examples. In fact, we only provide the
numerical experiments for the special cases (i.e, ¢ = —1 in the Gegenbauer case and
k =1 in the Jacobi case) which are the most interesting ones because the asymptotic
behaviour of the zeros is different from the one for the classical polynomials considered
here.

Table 1: narccos(sS,), fori = 1,2,3, @ =2, g = —1, M) =2, 5; = 5, kp = 10. ALY

are the positive real zeros of the function h(®(z) defined in Corollary 2.

n arccos(s;) i=1 i=2 i=3

n = 25 5.301243629 | 8.637758826 | 11.818000401
n =50 5.370276013 | 8.755170554 | 11.986782042
n =125 5.415977473 | 8.830425757 | 12.091104881
n = 200 5.427998421 | 8.850069288 | 12.118073521
h{®) 5.448613315 | 8.883697867 | 12.164144564
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Table 2: narccos(s$;), for i =1,2,3, a =4, ¢ = -1, M"Y =0, k1 = 6, 5y = 10.

Table 3: narccos(s;{d), fori=1,2,3,a=2,=5,Kk1=2,ke=4,k3 =3, k=1. ilga)

MEHLER—HEINE TYPE FORMULAS

narccos(s,(ii) i=1 i=2 1=3

n =25 5.276145490 | 8.305156684 | 11.223253003
n =50 5.484008796 | 8.652527556 | 11.720687343
n = 125 5.643506553 | 8.905646547 | 12.066229304
n = 200 5.687215106 | 8.974677590 | 12.159867298
(@=572) 5.763459197 | 9.095011331 | 12.322940970

are the positive real zeros of the function 2(*)(x) defined in Corollary 2.

J

narccos(s;, ;) i=1 i=2 i=3

n =25 5.410734932 | 8.489113162 | 11.417201399

n = 50 5.727335091 | 8.985463646 | 12.085719646

n =125 5.941783580 | 9.321642061 | 12.537979871

n = 200 5.998754710 | 9.410975350 | 12.658127778

hi(@) 6.096997096 | 9.565066652 | 12.865374333
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Abstract

By applying the Banach contraction principle to the product quasi-metric of
two complexity spaces we show the existence and uniqueness of solution for the
recurrence equations associated to certain algorithms with two recurrence proce-
dures.
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1 Introduction and preliminaries

Schellekens introduced in [8] the complexity (quasi-metric) space to construct a suitable
mathematical model for the complexity analysis of algorithms. In fact, he proved in
Section 6 of [8] the existence and uniqueness of solution for the recurrence equations
associated to Divide and Conquer algorithms by applying a quasi-metric version of the
Banach fixed point theorem to the complexity space. Recently it was shown in [4]
and [7] that Schellekens’ technique can be systematized to deduce the existence and
uniqueness of solution for the recurrence equations associated to Probabilistic Divide
and Conquer algorithms, and for the recurrence inequations associated to ExpoDC
algorithms, respectively (see [3] and [2, Section 7.7] for a study of such algorithms).
Here we show that such a technique also allow us to prove the existence and unique-
ness of solution for the pair of recurrence equations associated to a class of algorithms

@CMMSE Page 342 of 1328 ISBN 13: 978-84-613-5510-5



APPLICATION OF THE BANACH CONTRACTION PRINCIPLE ON THE PRODUCT OF COMPLEXITY SPACES

with two recurrence procedures, as considered by Atkinson in [1]. With the help of the
notion of an improver (see Definition 1 in Section 2) we also deduce the well-known
fact that if (fo, go) denotes the solution of such recurrences, then fo(n) € O(e**) and
go(n) € O(e*™). In order to prove these results, with our approach, we will need to
apply the Banach fixed point theorem to the “product complexity space” instead to
the original one.

In the rest of this section we recall some pertinent concepts and previous results.

The letters N and w will denote the set of positive integer numbers and the set of
nonnegative integer numbers, respectively. The supremum of two real numbers z and
y will be denoted by = V .

By a quasi-metric on a set X we mean a function d : X x X — [0, c0) such that for
all z,y,z€ X : (i) 2 =y < d(z,y) = d(y,z) =0, and (ii) d(z, z) < d(z,y) + d(y, 2).

A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric
on X.

Each quasi-metric d on X induces a Ty topology 74 on X which has as a base the
family of open balls {By(x,r) : © € X, € > 0}, where By(z,e) = {y € X : d(z,y) < &}
for all x € X and € > 0.

Given a quasi-metric d on X, then the function d~! defined by d=!(z,y) = d(y, x),
is also a quasi-metric on X, called the conjugate of d, and the function d* defined by
d*(x,y) = d(z,y) Vd~'(z,y) is a metric on X.

A quasi-metric space (X, d) is said to be bicomplete if (X, d*) is a complete metric
space.

By a contraction map on a quasi-metric space (X, d) we mean a self-map f of X
such that d(fz, fy) < kd(z,y) for all z,y € X, where k is a constant with0 < k < 1.
The number £ is called a contraction constant for f.

It is clear that if f is a contraction map on a quasi-metric space (X, d) with contrac-
tion constant k, then f is a contraction map on the metric space (X, d*) with contraction
constant k.

Therefore, the classical Banach contraction principle can be generalized to the
quasi-metric setting as follows (see for instance [5, Lemma 2.4])

Theorem 1. Let f be a contraction map on a bicomplete quasi-metric space (X,d).
Then, for each x € X, the sequence of iterations (f™x)ne. is convergent in (X,d*) to
a point xg € X which is the unique fixed point of f.

Let us recall that the product quasi-metric space of two quasi-metric spaces (X, d)
and (Y, e) is the quasi-metric space (X x Y,d X e), where d x e is defined by

(d x e)((z1,91), (v2,y2)) = d(21,72) V e(y1, y2),

for all (z1,y1), (x2,92) € X x Y.
In this case, d x e is called the product (or box) quasi-metric of d and e.
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The so-called complexity space ([8]) is the quasi-metric space (C,d¢), where
C=<f:w—(0 oo]'i2_”i<oo
o el 2 2 gy <o
and d¢ is the quasi-metric on C given by
5.0 => 2" (G5 - ) v0)
c\J» = N TN
22"\~ g

for all f,g € C. (We adopt the convention that 1/00 = 0.)
The elements of C are called complexity functions.

The following useful result is a consequence of [6, Theorem 1, and Remark on p.
317 ].

Theorem 2. The complexity space (C,dc) is bicomplete.

2 The results

Following Atkinson [1, p. 16-17], consider the two recursive procedure algorithm de-
fined, for two procedures P and @, and n € w, by:

function P(n)
if n > 0 then Q(n-1); C; P(n-1); C; Q(n-1)

function Q(n)
if n > 0 then P(n-1); C; Q(n-1); C; P(n-1); C; Q(n-1)
where C' denotes any statements taking time independent of n.
Then, the execution times S(n) and T'(n) of P(n) and Q(n), satisfy, at least ap-
proximately, the recurrences
Sn)y=Smn—-1)+2T(n—-1)+ K,
and
T(n)=2Sn—-1)+2T(n— 1)+ Ko,

for n € N, and with K7, K5, nonnegative constants. (We assume that S(0) > 0 and
T(0) > 0).

The following extension to our context of Definition 6.2 of [8] will be need.

Definition 1. A functional ® from (C x C,d¢ X d¢) into itself is an improver with
respect to an element (f,g) € C x C if for each n € w, ®"*(f, g) < ®"(f, 9).
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Note that if ® is monotone increasing (i.e., ®(f1,91) < ®(f2,92) whenever f; < fo
and g1 < g2), to show that ® is an improver with respect to (f,g) it suffices to verify

that ®(f, g) < (f,9)-

Intuitively (compare, for instance, [4, p. 348|), an improver is a functional that
corresponds to a transformation on algorithms and satisfies the following condition:
the iterative applications of the transformation to a given algorithm yield an improved
algorithm at each step of the iteration.

In Theorem 3 below (whose proof will be presented in a full version of this paper)
we construct a monotone increasing functional ®, associated with the two recurrences
equations T and S given above, which is a contraction on (C x C,d¢ X d¢). Then, its
unique fixed point (fy, go) will be the solution of the recurrence equations. We can also
deduce, with the help of Theorem 1, that fo(n) € O(e?®) and go(n) € O(e*™).

(As usual, for g : w — [0, 00), we write f(n) € O(g(n)) if f: w — [0,00) and there
exist ng € w and ¢ > 0 with f(n) < cg(n) for all n > nyg.)

Theorem 3. Let ® be the functional on C x C defined by
®(f,9)(0) = (5(0),7(0)),
and
(f,9)(n) =(f(n—=1)+29(n - 1)+ K1, 2f(n— 1)+ 2g9(n — 1) + K2),

for ne N and f,g € C. Then:

(1) @ is a monotone increasing contraction on (C x C,d¢ X d¢) with contraction
constant 3/4.

(2) @ has a unique fized point (fo,go)-

(3) fo(n) € O(e**) and go(n) € O(e").
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Abstract

We show an algorithmic method to compute the set of all abelian subalgebras
and ideals of any finite-dimensional Lie algebra, starting from the nonzero brackets
in its law. To implement this algorithm we use the symbolic computation package
MAPLE. It is also shown a brief computational study considering both the com-
puting time and the memory used in the two main routines of the implementation.
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algorithm.
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1 Introduction

Nowadays, there exists a very extensive research on Lie Theory. However, some aspects
of Lie algebras remain unknown. In fact, the classification of solvable Lie algebras is
still an open problem, although the classification of other types of Lie algebras (like
semi-simple and simple ones) was already obtained in 1890. In order to solve these and
other problems, the need of studying other properties of Lie algebras arises. In this
way, considering abelian Lie subalgebras of a finite-dimensional Lie algebra constitutes
the main goal of this paper.

Indeed, the topic dealt in this paper is the maximal dimension of the abelian
subalgebras in a given finite-dimensional Lie algebra g. Although this concept has
been studied in previous papers, most of them (for example [15]) consider abelian
ideals instead of abelian subalgebras, which implies that more restrictive hypotheses
are needed. However, we do not assume such restrictions, but our work considers all
the subalgebras contained in the given Lie algebra g.
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Let g be a finite-dimensional Lie algebra. We denote by «(g) the maximal dimen-
sion of an abelian subalgebra of g, and by ((g) the maximal dimension of an abelian
ideal of g. Note that these concepts are proved to be invariant and they are important
for many subjects. First of all, they are useful in the study of Lie algebra contractions
and degenerations. There exists a large literature, in particular for low-dimensional Lie
algebras, see [3, 8, 10] and the references given therein, for example.

Secondly, there are several results concerning the question of how big or small this
maximal dimension can be, compared with the dimension of the Lie algebra. Some of
them show that a Lie algebra of large dimension contains abelian subalgebras of large
dimension. For example, the dimension of a nilpotent Lie algebra g satisfying a(g) = ¢

is bounded by dim(g) < @, see [9, 11]. Another sets that if g is a complex solvable

Lie algebra with a(g) = ¢, then we have dim(g) < W;s), see [7]. To prove these bounds
several conditions are also fixed for the value of 3 invariant.

For a semisimple Lie algebra s, the invariant «(s) has been completely determined
by Malcev [6]. Since there are no abelian ideals in a simple Lie algebra s, we have
B(s) = 0. Very recently the study of abelian ideals in a Borel subalgebra b of a simple
complex Lie algebra s has drawn considerable attention. We have indeed a(s) = 5(b),
and this number can be computed purely in terms of certain root system invariants,
as can be seen in [13]. Let us note that the a invariant can be usefully applied, for
example, to characterize Lie algebras in several senses. So Tenorio [14] gave some
criteria about properties of Lie algebras starting from this notion. Moreover, this
topic has already been studied by different authors, being classical and fundamental
the following references: Krawtchouk [4]; Laffey [5], which computed the « invariant
of the algebra of n x n matrices over any field; or Suprunenko and Tyshkevich [12],
which dealt with the problem of determining abelian subalgebras of maximal dimension
of nilpotent type. However, in some cases like in [15] abelian ideals were considered
instead of abelian subalgebras.

Previously, we have already studied abelian subalgebras by considering both points
of view: Theoretical and practical. Moreover, the « invariant was computed for two
different families of complex Lie algebras: g,,, of n xn strictly upper-triangular matrices
(see [1]); and by, of n x n upper-triangular matrices (see [2]). To do it, an algorithmic
procedure was introduced in [1]. Now, this paper is devoted to show an algorithmic
procedure which works for any arbitrary finite-dimensional complex Lie algebra. The
algorithm is given by indicating and commenting each of its steps. Besides, a compu-
tational study of its implementation with MAPLE is also shown.

2 Theoretical background

This section is devoted to recall some concepts and results on Lie algebras to be applied
later. For a general overview on such subjects, the interested reader can consult [16].
Let us note that, from here on, only finite-dimensional Lie algebras over the field F are
considered, where F can be R or C.

Given a finite-dimensional Lie algebra g, a vector subspace h of g is an abelian
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subalgebra if the following conditions hold [h, h] C b; and [u,v] =0, ¥V u,v € b.

Moreover, if the subalgebra h satisfies the condition [h, g] C b, then we say that b
is an ideal of g.

To compute the basis of an abelian subalgebra of maximal dimension of g, we
consider a basis By = {X;}%; of g and another basis B = {v;}}_, of an arbitrary
r-dimensional (abelian) subalgebra b (with r» < d). As each vector vy, € B is a linear
combination of the vectors in B, the vectors in B can be expressed as vy, = Z?:l ap,iX;.
Hence, the basis B can be translated to a matrix in which the ht" row records these
coordinates of v, with respect to the basis By

a1 ai2 - a1d
(1)
Qr1 Qr2 -+ Grd

The rank of the matrix (1) is obviously equal to r and, hence, its echelon form is
the following by using elementary row and column transformations

bin 0 - 0 biyy1 - big
0 bao -+ 0 bapp1 -+ bag
. o . . . (2)
0 0 o br,'r br,r+1 o br,d

So, without loss of generality, we can assume that any given basis B of h can be
expressed by (2). Hence, each vector in B is a linear combination of two different types
of vectors X;: The ones coming from the pivot positions and the remaining ones. The
first are called main vectors of B with respect to By, being called non-main vectors the
rest.

3 Algorithm computing abelian subalgebras

Let us consider a n-dimensional Lie algebra g with the basis B, = {Z1,...,Z,}. If
n is lower, the abelian subalgebras and ideals of g can be easily computed because
the number of nonzero brackets with respect to B, is quite greater in proportion with
the dimension of g. To solve this computational problem, we have implemented an
algorithmic method which computes a basis of each non-trivial abelian subalgebra of
g. In this algorithm, we will use the main and non-main vectors to express any given
basis of the subalgebra in order to determine the existence of nonzero brackets. The
vectors in this basis will be expressed as a linear combination of the vectors in B,,.

To implement the algorithm, we have used the symbolic computation package
MAPLE. We start loading the libraries 1inalg and ListTools to activate commands
like Flatten and others related to Linear Algebra, since Lie algebras are vector spaces
endowed with a second inner structure: The Lie bracket. Besides, the library combinat
has to be also loaded to apply commands related to Combinatorial Algebra.
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Now, we show the different steps which constitute the algorithm and its respective
implementation. The structure of the algorithm is based on two main routines calling
several other subroutines with different functions.

1. Implementing a subroutine which computes the Lie bracket between two arbitrary
basis vectors in B,. This subroutine depends on the law of g.

2. Programming a subroutine to compute the bracket between two vectors expressed
as a linear combination of vectors from the basis B, of g.

3. For each k-dimensional subalgebra § of g, computing the bracket between two
arbitrary vectors in the basis of . Those vectors are linear combinations of a
main vector (with coefficient equal to 1) and the n — k non-main ones. These
expressions depend on the dimension of bh.

4. Solving a system whose equations are obtained by imposing the abelian law to
the brackects computed in the previous step for the subalgebra b.

5. Programming a subroutine which determines the existence of abelian subalgebras
in a fixed dimension.

6. Computing a(g) by ruling out dimensions for abelian subalgebras.

7. Computing the basis of an abelian subalgebra of maximal dimension, that is, a
subalgebra with dimension «(g).

8. Computing the basis of an abelian subalgebra for a fixed set of non-main vectors
and some restrictions given by the previous subroutines.

9. Programming a subroutine which computes a list with all the abelian subalgebras
of g with certain dimension k.

10. Implementing the routine to compute a list with the basis of all the non-trivial
abelian subalgebras of g by using the previous subroutines.

11. Programming a subroutine which determines if there is an abelian ideal associated
with a given abelian subalgebra.

12. Computing 3(g) from a(g) and the previous subroutine.

13. Implementing a subroutine which determines the set of abelian ideals of maximal
dimension, that is, abelian ideals with dimension (3(g).

14. Programming the routine to compute a list with the basis of all the non-trivial
abelian ideals of g by using the previous subroutines.

The first subroutine, named law, receives two natural numbers as inputs. These
numbers represent the subindexes of two basis vectors in B,,. The subroutine returns
the result of the bracket between these two vectors. Besides, conditional sentences are
included to determine nonzero brackets (which are introduced in the subroutine) and
the skew-symmetry property.
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law:=proc(i,j)
if i=j then return 0; fi; if i>j then return -law(j,i); fi;
if (i,j)=... then return ...; fi;

vV V. V V VvV

else return O; fi; end proc;

The first two suspension points are associated with the computation of [Z;, Z;]:
First, the value of the subindexes (i, j) and second, the result of [Z;, Z;] with respect to
B,,. The third ellipsis denotes the rest of nonzero brackets. For each nonzero bracket,
a new sentence if has to be included in the cluster.

Then, we implement a subroutine, bracket, which computes the bracket between
two arbitrary vectors of g. These vectors are expressed as linear combination of the
vectors in B,,. Due to this fact, the subroutine law is called in the implementation.

> bracket:=proc(u,v,n)
> local exp; exp:=0; for i from 1 to n do for j from 1 to n do
> exp:=exp + coeff(u,Z[i])*coeff(v,Z[j])*1law(i,j); od; od; return exp; end proc:

After introducing the law of g, we have to compute the brackets in an arbitrary
subalgebra . To do it, we implement the subroutine eq, which requires four inputs:
The dimension n of g; the subindexes i and 1, indicating the main vectors in the bracket
to be computed; and a list M with the subindexes of the non-main vectors in . To do
it, three local variables eqt, L and P are defined. For computing the brackets between
the vectors in B, the subroutine eq calls the subroutine bracket, which is necessary
to obtain each bracket in the law of . Whereas the variable eqt saves the expression of
the bracket belonging to the law of b, the list P takes the elements of M two by two and
finally, L is a list containing all the coefficients in the expression of eqt with respect
to B,,. Precisely, the list L is the first term of the output of the subroutine eq. The
second is a list with the subindexes i and 1 corresponding to L. Let us note that the
subindexes of the main vectors has to be saved together with the coefficients in order
to use them in a later subroutine.

Each vector in the subalgebra h can be expressed as a linear combination of one
main vector and the n — k non-main ones according to expression (2), where each row
represents the coefficients of one vector in the basis of h. Obviously, we can assume that
the coefficient of each main vector is equal to 1, because the row of (2) corresponding
to that main vector can be divided by its coefficient. To implement the subroutine eq,
the coefficients of the non-main vectors are denoted by al[i,k].

eq:=proc(n,i,1,M::1list)

local eqt,L,P; L:=[]; if nops(M)=1 then P:=[[M[1],M[1]]] else P:=choose (M,2);
end if; eqt:=law(i,1l); for k from 1 to nops(M) do

eqt:=eqt + all,M[k]]*law(i,M[k]) + ali,M[k]I*law(M[k],1);

end do; for j from 1 to nops(P) do eqt:=eqt+(ali,P[j][1]]*all,P[jI[2]]-
ali,P[jI1[2]]1*al1,P[j]1[1]1])*bracket(P[j1[1]1,P[j1[2]); od; for m from 1 to n do
L:=[op(L),coeff(eqt,Z[m])]; end do; return L,[i,1]; end proc;

V V. V V V Vv VvV

Let us note that it is also possible to program the subroutine eq by using the
subroutine bracket. However, we will consider the previous implementation for the
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computational study due to the fact that if we consider an implementation of eq which
calls the subroutine bracket, both the computing time and the used memory will
increase.

> eq:=proc(n,i,1,M::1list)

> local eqt,L,u,v; L:=[]; eqt:=0;u:=Z[i];v:=Z[1]; for k from 1 to nops(M) do

> u:=u+ali,M[k]I*Z[M[k]]; v:=v+a[l,M[k]]1*Z[M[k]]; od; eqt:=bracket(u,v,n);

> for m from 1 to n do L:=[op(L),coeff(eqt,Z[m])]; od; return L,[i,1]; end proc:

Next, we implement the subroutine sys, which receives two inputs: The dimension
n of g and a list M with the subindexes of the non-main vectors in the basis of . This
subroutine solves the system of equations generated by the subroutine eq. Four local
variables L, P, R and S have been defined for its implementation: L is a list with the
subindexes of the main vectors; the list R contains the expressions computed by the
subroutine eq; P is defined as in the previous subroutine; and, finally, S is a set where
the equations of the system are saved

sys:=proc(n,M: :1list)

local L,P,R,S; L:=[1; R:=[]; S:={}; for x from 1 to n do

if member(x,convert(M,set))=false then L:=[op(L),x]; fi; od;

if nops(L)=1 then P:=[[L[1],L[1]]] else P:=choose (L,2); fi;

for j from 1 to nops(P) do rl[jl:=[eq(n,P[j1[1],P[jI1[2]1,M1; od;

R:=[seq(r[i] [1],i=1..nops(P))]; for y from 1 to nops(R) do

for k from 1 to n do S:={op(8),R[y][k]1=0}; od; od; return {solve(S)}; end proc;

V V. V V V VvV

The following subroutine, called absub, is implemented by introducing two natural
numbers n and k, namely: n is the dimension of g and k is less than n. This subroutine
determines the existence of abelian subalgebras with dimension k. Two local variables
are used by the subroutine: L and S. The first variable, L, is a list whose elements are
lists with the subindexes of the n—k non-main vectors. The variable S is a set with the
solutions given by the subroutine sys. In this way, absub returns a message indicating
the non-existence of k-dimensional abelian subalgebras or, if there exist k-dimensional
abelian subalgebras, returns the set S. Since the coefficient of each main vector is 1,
the system given by the subroutine sys has not solutions when S vanishes. When the
system has some solution, the family of computed vectors is linearly independent and
forms a basis of the subalgebra. Let us note that, if all the solutions in S contain some
complex coefficient, there are no real solutions for the system solved by sys and there
do not exist any abelian subalgebras of dimension k for the case F = R. For this field,
it would be necessary to include a conditional sentence for determining if such complex
coefficients appear.

absub:=proc(n,k)

local L,S; L:=choose(n,n-k); S:={ }; for i from 1 to nops(L) do

if sys(n,L[i])={{}} then S:=S else for j from 1 to nops(sys(n,L[i])) do
S:={op(8) ,{convert(L[i],set),sys(n,L[i]) [jI1}}; od; fi; od;

if S={} then return "There is no abelian subalgebra"; fi;

if S={{}} then return "There is no abelian subalgebra"

else return S; fi; end proc;

V V V V V Vv V
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Next, we implement the subroutine alpha, which receives the dimension n of g as
its unique input and returns the « invariant of g. The subroutine starts studying if
a(g) = n by using the subroutine absub. Then, a loop is programmed to stop when
absub does not find abelian subalgebras.

alpha:=proc(n)

if type(absub(n,n-1),set)=true then return n-1; fi;

for i from 2 to n-1 do if absub(n,i)="There is no abelian subalgebra"
then return i-1; fi; od; end proc;

vV V V VvV

The following subroutine, named asmd, receives as input the dimension n of g
and returns the basis of an abelian subalgebra of maximal dimension. To do so, this
subroutine calls the subroutines alpha and absub.

asmd:=proc(n)

local u,L,R,S,B,k; k:=alpha(n);S:={};L:={}; u:=absub(n,k);

if k=1 then return {seq({Z[il},i=1..n)}; fi;

if type(ul[1] [1],set(integer))=true then R:=u[1][1]; S:=u[1][2] else
R:=ul1][2]; S:=ul1][1]; fi; for x from 1 to n do

if member(x,R)=false then L:={op(L),x}; fi; od; for i from 1 to nops(L) do
bl[il:=Z[L[il]; od; for i from 1 to nops(L) do

for j from 1 to nops(R) do b[il:=b[il+alL[il,R[j11*Z[R[j1]; od; od;
B:={seq(b[i],i=1..nops(L))}; return eval(B,S); end proc:

V V V V V V V V.V

Now, we implement the subroutine basabsub, which receives three inputs: the
dimension n of g and two sets, S and T, with the subindexes of the non-main vectors in
the basis of . We will use this subroutine with the solution given by sys. Four local
variables R, B, M and N have been defined for its implementation. First, a conditional
sentence if, for the sets M and N, is introduced in the cluster to find out wether S or T
is the set of non-main vectors. This is due to the fact that MAPLE sometimes returns
the solutions in different order. R is a set with the subindexes of the main vectors and,
in the set B, we compute the basis for the abelian subalgebra. In this way, B is the
output of this subroutine.

basabsub:=proc(n,S::set,T::set)

local R,B,M,N; R:={};B:={}; if type(S,set(integer))=true then

M:=S; N:=T else M:=T; N:=S; end if;

for x from 1 to n do if member(x,M)=false then R:={op(R),x};

fi; od; for i from 1 to nops(R) do b[i]l:=Z[R[il]; od; for i from 1 to nops(R) do
for j from 1 to nops(M) do b[i]l:=b[i] + al[R[i],M[j11*Z[M[j]1];

od; od; B:={seq(b[i],i=1..nops(R))}; return eval(B,N); end proc:

V V. V V V Vv V

The following subroutine, named listabsub, requires two inputs: The dimension
n of g and a natural number k, less than n and which corresponds with the dimension
of the abelian subalgebra. To implement it, two local variables S and L are considered.
This subroutine calls the subroutine basabsub for computing the basis for each k-
dimensional abelian subalgebra. Whereas this value is saved in the local variable S, L
is a set with the basis of each abelian subalgebra of g with dimension k. Precisely, the
list L is the output of the subroutine 1listabsub.
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listabsub:=proc(n,k)

local S,L; S:=absub(n,k);L:={}; if k=1 then return {seq({Z[i]},i=1..n)}; fi;

if S="There is no abelian subalgebra" then return {}; fi; for i from 1 to nops(S) do
L:={op(L) ,basabsub(n,S[i] [1],8[i][2])}; od; return L; end proc:

vV V V VvV

Let us note that it is also possible to give an equivalent implementation for the
subroutine asmd by using the subroutine 1listabsub:

> asmd:=proc(n)
> local k; k:=alpha(n); return listabsub(n,k); end proc:

Now, we implement the routine allabsub, which receives the dimension n of g as
its unique input. The routine allabsub returns a set with the basis of all the abelian
subalgebras of g with dimension less than or equal to «(g). In this way, the routine
starts computing «(g) and then, the output is defined by using the previous subroutine
listabsub.

> allabsub:=proc(n)
> local B,k; k:=alpha(n);B:={}; for i from 1 to k-1 do B:={op(B),listabsub(n,i)};
> od; return B; end proc:

Next, we explain the subroutine abideal, which requires two inputs: A set, S, with
the basis of an abelian subalgebra and the dimension n of g. The subroutine is devoted
to determine the existence of an abelian ideal from the basis of an abelian subalgebra,
S, obtained with the subroutine 1listabsub for a fixed dimension. To do so, we impose
that S has to be the basis of an abelian ideal. Then, we solve the system: if there is no
solution, the output of this subroutine is the message “There is no abelian ideal” and
if there is a solution, it returns the basis of an abelian ideal.

abideal:=proc(S,n)

local w, R, L, Q, M; w:=0; R:=[1; L:=[1; Q:={}; M:={}; N:={3};

for i from 1 to nops(8) do w:=w + a[il*S[i]; od; for i from 1 to nops(S) do
for j from 1 to n do if linbracket(S[i],Z[j],n)<>0 then
L:=[op(L),linbracket(Z[j],S[i],n)]; else L:=L; fi; od; od;

for i from 1 to nops(L) do r[i]:=0; for j from 1 to nops(S) do
r[il:=r[i]+b[i,j1*S[j]l; od; od; R:=[seq(xr[il,i=1..nops(L))];
M:={seq(L[k]-R[k], k=1..nops(L))}; for i from 1 to nops(M) do

Q:={op(Q) ,seq(coeff (M[1],Z[j1)=0,j=1..n)}; od; if {solve(Q)}={} then return
"There is no abelian ideal" else return eval(S,solve(Q)); fi; end proc:

V V V V V V V V VYV

The subroutine beta receives the dimension n of g as its unique input and returns
the 8 invariant of g. Let us note that this value can be zero (semisimple Lie algebras).
The subroutine starts computing the value of . Then, a loop is programmed by using
the previous subroutine and listabsub

> beta:=proc(n) local r; r:=alpha(n); for k from 0 to r-1 do

> for i from 1 to nops(listabsub(n,r-k)) do

> if abideal(listabsub(n,r-k)[i],n)<>"There is no abelian ideal"
> then return r-k; fi; od; od; return O; end proc:
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Next, in this subroutine, named aimd, we compute the basis of an abelian ideal
of maximal dimension; that is, an abelian ideal with dimension ((g). To do so, the
routine aimd calls the subroutines beta, listabsub and abideal. First, we compute
the set of all abelian subalgebras of dimension (g) and then we apply the subroutine
abideal to obtain abelian ideals.

> aimd:=proc(n)
> local k,S,T; k:=beta(n);S:=listabsub(n,k);T:={};
> for i from 1 to nops(S) do T:={op(T),abideal(S[i]l,n)}; od; return T; end proc:

The routine allabideal receives the dimension n of g as its unique input. This
routine returns a set with the basis of all the abelian ideals of g with dimension less
than or equal to #(g). The output of this routine is defined by using the subroutines
listabsub and abideal.

allabideal:=proc(n)

local B, k; k:=beta(n); B:={};

if k=0 then return {}; else for i from 1 to k do

for j from 1 to nops(listabsub(n,i)) do

if abideal(listabsub(n,i)[j],n)<>"There is no abelian ideal" then
B:={op(B) ,abideal(listabsub(n,i) [j],n)};

end if; end do; end do; end if; return B; end proc:

V V. V V V V V

Now, we show an example with a 4-dimensional Lie algebra with brackets [Z], Zs] =
Z37 [Zla Z3] = Z4-

> alpha(4);
3
> listabsub(4,3);
{z[1]1, Z[2], Z[31}}
> allabsub(4);
{{{z[2], z[3], z[4]}}, {{z[11}, {z2[2]1}, {z[3]}, {Z[41}},
{{z[41, z[1]+al1, 2]1z[2]+al1, 31z[31}, {z[4], Z[2]+al2,11Z[1]+a[2, 31Z[3]},
{z[4], z[31+al3, 11Z[1]1+a[3, 21Z[2]}, {Z[2]+a[2, 31Z[3], Z[4]+al4, 3]1Z[3]},
{z[2]+al2, 41Z[4], Z[3]+al3, 41Z[41}, {Z[3]1+al3, 2]1Z[2], Z[4]l+al4, 2]1Z[2]1}}}
> beta(4);
3
> allabideal(4);
{{z[41}, {z[31, Z[41}, {z[2]1, Z[31, Z[41}}

4 Statistical and computational data

In this section, we show a computational study of the previous algorithm, which has
been implemented with MAPLE 12, in an Intel Core 2 Duo T 5600 with a 1.83 GHz
processor and 2.00 GB of RAM. Table 2 shows some computational data about both
the computing time and the memory used to return the output of allabsub according
to the value of the dimension n of the algebra.
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This computational study was done considering a particular family of Lie algebras:
The Lie algebras s,, generated by {ej,ea,...,e,} with the following nonzero brackets:

lei,en] = €5, fori < n.

This family has been chosen because they constitute a special subclass of non-nilpotent
solvable Lie algebras, which allow us to check empirically the computational data given
for both the computing time and the used memory.

In Table 1, the set of all non-trivial abelian subalgebras has been computed for
the algebras in this family up to dimension n = 13 inclusive. Starting from n = 8,
the computing time is about three times greater when the dimension n is increased in
one unit.

Table 1: Computing time and used memory for allabsub.

Input | Computing time | Used memory
n=2 0s 0 MB
n=3 0s 0 MB
n=4 0.11 s 3.13 MB
n=>5 0.15 s 5.06 MB
n==6 0.43 s 5.38 MB
n="7 1.05 s 5.56 MB
n=3_ 2.67s 6.06 MB
n=9 6.98 s 7.06 MB
n =10 20.27 s 8.25 MB
n=11 61.17 s 11.50 MB
n=12 187.89 s 13.87 MB
n=13 804.73 s 51.93 MB

Table 2: Computing time and used memory for allabideal.

Input | Computing time | Used memory
n=2 0s 0 MB
n=3 0.08 s 3.31 MB
n=4 0.50 s 5.75 MB
n=>5 1.98 s 5.88 MB
n==~6 8.03 s 6.50 MB
n=7 35.97 s 6.94 MB
n=3~8 169.54 s 7.56 MB
n=29 779.37 s 8.19 MB

n =10 4118.78 s 9.31 MB

In Table 2, the set of all non-trivial abelian ideals has been computed for the same
family of Lie algebras up to dimension n = 10 inclusive.

Next we show brief statistics about the relation between the computing time and the
memory used by the implementation of the main routines allabsub and allabideal
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for the Lie algebras s,,. In each case, the figure on the left corresponds to the routine
allabsub and the other to the routine allabideal.

Figure 1 shows the behavior of the computing time (C.T.) for both routines ac-
cording to the dimension n of s, and Figure 2 shows the behavior of the used memory
(U.M.) for both routines according to the dimension n of s,.

We can observe that the computing time increases more quickly than the used
memory in both cases. Besides, whereas the increase of the computing time corresponds
to a positive exponential model, the used memory does not follows such a model.

We have also studied the quotients between used memory and computing time. The
resulting data can be observed in the frequency diagram shown in Figure 3. In this
case, the behavior can be also considered exponential, although this time is negative.

Figure 1: Graphs for the C.T. with respect to dimension.
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Figure 2: Graphs for the U.M. with respect to dimension.
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Figure 3: Graphs for the quotients U.M./C.T. with respect to dimension.
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Abstract

In this work, we deal with an optimal shape design approach for a problem
modelling a process of welding. Our interest is the numerical approximation of the
solution of this optimal shape design problem. We consider a discretization of this
problem based on linear finite elements. We present a numerical study of genetic
algorithms proposed to solve this problem. Then we give some numerical results
to demonstrate the accuracy and efficiency of the proposed method.

Key words: Welding problem, Inverse problem, Shape Optimization, Non coer-
cive opertor, Finite element, Bézier curves, Genetic algorithms.

1 Introduction

The Welding remains one of the most common joining processes in manufacturing.
The Joining of two workpieces occurs as a result of solidification of the metal molten
in the neighborhood of the contact area following application of a heat source, such
as a plasma arc, electric current, laser beam, liquid filler droplets, etc.... Thus, the
mechanical properties of the resulting joint, such as its strength, uniformity, resistance
to fatigue, etc. .., are determined by the complex thermo-fluid phenomena occurring
in the weld pool. To solve this problem, many models are proposed in literature [1, 3].
We are interested by an approach which deals only with the solid part of the work-
piece. Particularly we focus to the numerical approximation of the shape optimization
formulation proposed to solve this problem with this approach in [2].
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Figure 1: 2-dimensional configuration of the welding process

2 State of the problem

We consider a problem of welding where the solid part of the body denoted by (2, is
illustrated in Figure 1. This problem consist in finding (7', T") solution of:

;

oT
Ko-=V.
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Aa—:OonFOUIHUFgUFg
1%

(AVT) + f in Q

T:TdonF4
T:TOOHPO

T'=TronT

where I is the free boundary, K is a constant dependent of the material characteristics

(density of the plate and heat capacity,. .

.), A is the thermal conductivity and f,

a source term, is a given function. The quantities Ty, Tp and T are given temperatures.
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3 Numerical approximation

We consider a discretization of this problem based on linear finite elements. We present
a numerical discussion of some new genetic algorithms developed to solve the obtained
discrete problem.

3.1 Numerical results

In practice the free boundary is parameterized by the Bézier curves. The corresponding
optimal shape discrete problem is solved by the genetic algorithms. The following
figures show that the cost decreases with respect to the number of iterations. The
obtained numerical results are found to confirm the actual effectiveness of the method
proposed.
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Figure 2: Cost evolutionary
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Abstract

The recent introduction by NVidia of Compute Unified Device Architecture
(CUDA) libraries for High Performance Computing on Graphic Processing Units
has started the trend of video cards for resolution of many computationally hard
problems in different areas like fluid dynamics, molecular dynamics, computer vi-
sion and astrophysics. In this paper we show how CUDA libraries and hardware
can be introduced in cryptography as a cryptoanalytic tool.We describe an im-
plementation of a parallelized Pollard’s rho attack on ECDLP, based upon recent
results about the optimization of Pollard’s rho method and enhanced by some
”ad-hoc” choices for CUDA.

Key words: Cryptanalysis, Elliptic curves, High Performce Computing.

1 Introduction

Cryptography is essentially aimed at protecting data from unauthorized access. This
is particularly important when data involve sensible informations and are transmitted
on insecure channels. Typical examples are business via internet and the payment
with a credit card. The data involved in such transactions are usually encrypted to
make it harder for an attacker to retrieve secret informations. In the past, the key for
encryption was the same for decryption raising a serious problem regarding key distri-
bution. In 1976 W.Diffie and M.Hellman|[1] invented an agreement protocol that allows
two users to exchange a secret key over an insecure channel without any prior con-
tact. This event is commonly considered the birth of public-key cryptography. Then,
relying on some hard mathematical problem, many cryptosystems have been proposed.
However, since some attacks to such math problems succeded most of these cryptosys-
tems become insecure or simply impratical. Actually, three mathematical problems
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are still considered to be hard: the integer factorization problem (IFP), the discrete
logarithm problem in the multiplicative group of a finite field (DLP) and in the group
of points of an elliptic curve (ECDLP). There is no real proof that the aforementioned
problems are intractable. However, a lot of work has been done to try to solve them effi-
ciently (see [Odlyzko] for an overview). All these efforts amount to the development of
subexponential-time algorithms for IFP and DLP resolution (index-calculus methods),
but these methods are not applyable to ECDLP resolution. Elliptic curve cryptogra-
phy (ECC) became more and more attractive essentially for such a reason. Moreover,
parameters of the ECC are usually much smaller than parameters of cryptosystems
based on IFP and DLP. Consequently ECC has lower communication overhead.

In this paper we study how the Rho Pollard algorithm can be implemented on graph-
ics cards. Some experimental results by E.Teske[2][3] showed that the running time
of the Pollard’s algorithm tends to the expected value /mn/2 as the number of such
subsets increases. Mainly storage can be efficiently reduced to a negligible amount at
the cost of some extra computation. By using Floyd’s algorithm called ”tortoise and
hare” ([4] exercises 6 and 7, page 7) it can be reduced to a constant. Van Oorschot
and Wiener[5] proposed to record only points satisfying a precise condition for a better
trade off between space and performances. Moreover, they showed that the algorithm
can be efficiently parallelized on an arbitrary number of processors. While each of them
generates a random walk from a different starting point, collision detection is completed
by another designated computer.

In [6] the authors show a first implementation of a CUDA based code in which a par-
allel algorithm is reported. In this work an optimized computational code is proposed
in order to avoid the so called ”divergent threads” as in the following. The paper is
organized as follows: in Section 2 we give preliminary notion on elluptic curves; then
Section 3 reports mainly argumtens on ECDLP; in Section 4 a Cuda based implemen-
tation algorithm and numerical results, and finally, conclusions are provided in Section
D.

2 Overview of elliptic curves

Let K be a field of characteristic # 2, 3. The set F of points (x,y) € K x K satisfying the
equation y? = 234 ax + b with a,b € K, is called elliptic curve whenever 3+ ax + b has
no multiple roots in K. The definition of an elliptic curve is slightly more complicated
in when the charateristic of K is 2 or 3. The set F, enriched with a so-called ”point
to infinity” O and a well defined addition +, becomes an elliptic group, denoted by
E(K) where the point Oy acts as the group identity. If K = R, the real field, then
the addition can be described geometrically through the method ”chord-tangent” (see
[7] p.55).The inverse of a point P = (x,y) is —P = (x, —y) by definition.Moreover, one
has the following explicit formulas for the sum and the doubling of points on E(R). If
P = (z1,y1), Q = (x2,y2) and P+ Q = (z3,y3), then 1 # x9 implies
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More remarkable is the fact that these formulas are still valid in F(K) for a generic
ground field K, where the so called elliptic curve discrete logarithm problem can be
formulated as it follows: given P,Q € E(K), determine the integer k (if there’s one) so
that Q = kP = ktimesP + P + ... + P. This problem is significantly hard if the ground
field is finite.

Indeed, V. Miller[8] and N. Koblitz[9] proposed (independently each other) to use
the elliptic group E(F,), defined on a finite field F,, as an arithmetic base of a cryp-
tosystem.

3 ECDLP

Altough ECDLP is a particular case of DLP, there is no generic algorithm with subex-
ponential running time that solves it. One reason is that there’s a primary difference
between the underlying algebraic structures, i.e. the multiplicative group F; of a finite
field F), for DLP and the elliptic group E(F,). Mainly, while [} is completed in a struc-
ture with two operations, the elliptic group has only its own addition. For example, the
indez-calculus methods, which solves DLP instances with subexponential running time,
fail when it comes to elliptic groups (except in very special and well-understood cases).
As usual, algorithms for ECDLP are classified as it follows: generic algorithms which
are appliable to all instances of ECDLP, special algorithms which take advantage of
the particular instance of the problem. Since all special attacks to the ECDLP can be
easily avoided by means of a suitable choice of the parameters, it is more interesting
to focus on generic algorithms. The most used generic methods are variations of the
Pollard’s rho method. Indeed, in 1997 CERTICOM introduced a list of ECDLP chal-
lenging problems offering a money prize for each solution[10]. The solved problems got
a solution through the use of a parallelized Pollard’s rho method.

3.1 Pollard’s rho algorithm for ECDLP

Let us consider P, € E(F,) and assume that we want to compute k such that Q) = kP.
The main idea of Pollard’s rho algorithm is to determine distinct pairs (¢/,d’) and
(c”,d") of integers modulo n such that

CP+dQ=Jd"P+d'Q
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where n is the order of the subgroup (P) generated by P. Then, one can compute
(c/ _ c//)P — (d// _ d/)Q — (d// _ d/)kp,

which implies
(d =" = (d" —d)k (modn).

Thus,
k=(d -V —d)t (modn).

The naive method requires to generate at random ¢,d € [0,n — 1] , compute cP + dQ
and store each triple (¢,d,cP + d@) in a table sorted by the third element until a
point cP + d@ is obtained twice (this occurrence is called ”collision”). The birthday
paradozr' helps to estimate the expected number of iterations (or equivalently the com-
plexity of the algorithm) before a collision is found. This number is approximately

/2 ~ 1.2533/n. Instead of randomly generated points Pollard[11] proposed an
iteration function acting on (P) with a pseudo-random behaviour. If this function
is "random enough”, then, the algorithm has the same expected running time of
the naive method. The original Pollard’s function partitions (P) into three subsets
51,852, 53 of approximately equal size. Then, from the starting point Py it iterates
P, = f(Ry), P> = f(P1),..., Pit1 = f(P;). More precisely, it is defined as:

P+ a1 P+ bQ if  PeS
P =f(P) = 2P; if P, € S5y
P+ aoP + b2Q) if P, e S;

Some experimental results by E.Teske[2][3] showed that the running time of the
Pollard’s algorithm tends to the expected value \/7n/2 as the number of subsets S;
increases. Mainly storage can be efficiently reduced to a costant by using Floyd’s algo-
rithm ([4] exercises 6 and 7, page 7). Van Oorschot and Wiener[5] proposed to record
only points satisfying a precise condition (for example, the last 30bits of the x coordi-
nate have to be equal to zero) for a better trade off between space and performances.

4 CUDA based implementation

CUDA is a general purpose parallel computing architecture developed by NVidia. Pro-
gramming of CUDA devices is realized mainly through ”C for CUDA”, an extension of
the C language that gives user access to CUDA capabilities. Even if C is the main lan-
guage in CUDA hardware programming, third party wrappers are available for Python,
Fortran, Java and MatLab. Actually, as it is reported by NVidia, there are millions of
CUDA-capable gpus which are already installed with prices ranging from a few euros
for hardware with limited computing capabilities (20 euros-30 euros for an 8400GS-
256mb video card) to thousands of euros for high-end hardware with 4 teraflops (single

'The birthday paradox can be formulated as it follows: how large the number of people must be in
a room in order to expect at least two of them have the same birthday ? Surprisingly the number is

small: /7m365/2 ~ 24.
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precision) power (Tesla C1060 with 960 cores). Some advantages offered by CUDA ar-
chitecture are: scattered reads(code has access to all memory addresses), a fast shared
memory region (a region that grants really high performances and can be used by all
threads together), full support of integer and bitwise operations and fast downloads
and readbacks to and from gpu.

CUDA has also some limitation that must be considered while developing software:
no support for recursive functions on the device, division and inversion are computa-
tionally expensive and the device memory management is difficult(threads using device
memory should access it avoiding multiple requests on the same bank).

4.1 Parallelized Pollard’s rho algorithm

Considering high processing power of actual gpus, it makes sense to take advantage
from them for a parallelized Pollard’s rho algorithm. Here we give a brief description
of our implementation of this Pollard’s rho algorithm for gpu, discussing later some
implementation details:

Algorithm 1 RhoCuda

~

The host makes precomputations needed for the Pollard’s Ttho algorithm.
Precomputed data is sent to the device.

The host starts threads on gpu.

Such threads generate pseudorandom points through the iteration function.
Threads look for distinguished points (DPs)

Treads reports DPs to the host.

DPs are stored into a hash table.

The host looks for collisions.

ST T S T S S o R

Stop procedure if a collision is found.

Observe that distinguished points having last 30 bit of z coordinate all equalto
zero so an optimizated storage strategy can be acted. In the following figure we show
a simple scheme of the algorithm on GPU.

4.2 Modular arithmetic and numerical results

Since we are considering ECDLPs on finite fields IF,, with p prime, first tools that we
need are efficient modular arithmetic functions that can be implemented with CUDA.
As already said, integer division and modulo operations are really expensive. Hence,
one has to find suitable solutions for an efficient modular arithmetic, especially when
we handle multiword integers. It is due to Single Instruction Multiple Threads (SIMT)
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=Y Got a "good"
No collisions 2

4

Figure 1: Figure: Cuda based implementation scheme

structure of NVidia GPUs.
Modular addition and difference. If a,b are the operands, and n is modulus, the
modular addition is operated computing:

a+banda+b—n

and then choosing the right result (the one between 0 and n). In this way, we don’t
use the 7if” statement avoiding the so called ” divergent threads” on GPUs. Divergent
threads determ an decreasing of the run-time algorithm preformance due to synchro-
nization of threads.

The modular difference is operated in an analogous way computing a —b and a — b+ n.

Modular multiplication. It is realized through the so called Montgomery product([12]
p.395-397).

If n is the modulus, we call k the integer so that 2¢=! < n < 2F and r is 2F. Given
an integer a < n, we define Montgomery representation (or n-residue) with respecto to
r as

a=a-r(modn) .

Observe thata sum and difference of the Mongomery representations of two integers
is Montgomery representation of their sum or difference. Given two numbers a, b in their
Montgomery representations (@, b respectively) the Montgomery product is defined as

a-b-r Ymodn) ,

u

where 7! is the multiplicative inverse of » modulo n.
The result of Montgomery product @ is the n-residue of the product u = a-b(modn)
since
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U=a-b-r~(modn)
=(a-r)-(b-r) -r~(modn)
= (a-b) - r(modn) .

To describe Montgomery reduction algorithm, we need also the quantity n’, that
satisfies the property

S

ror-t—n.n=1.

Both integers r~! and n’ can be easily computed through the extended Euclidean
algorithm| inserire citazione].
Given the integers a, b the Montgomery product is computed by this algorithm:

Algorithm 2 MonPro(a,b)

1.t=a-b

2. m=t-n/(modr)

= (t+m-r)/r

4. if w > n then return w —n else return u .

The main feature of this product is that the operations involved are multiplications
modulo r and division by r that can be efficiently implemented using bitwise operations.

If n is odd, Montgomery product algorithm can be used to compute (normal)
product u = a - b(modn):

Algorithm 3 ModMul(a,b)

1. Compute n' using extended Euclidean algorithm

a = a-r(modn)

b

b - r(modn)
W =MonPro(a,b)

u =MonPro(u,1)

S & L e

return u .

A better algorithm is obtained observing that
MonPro(a, b)=(a - r) - b-r~!(modn) = a - b(modn)
Thus we can modify the algorithm above:

Algorithm 4 ModMul(a,b)

1. Compute n' using extended Euclidean algorithm, and r?(modn)
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2. @ =MonPro(a,r?)
3. w=MonPro(a,b)

When a lot of modular multiplication must be performed, all having same modulus,
values n/ and 72 can be precomputed.

If we handle multi-word integers, better implementation of Montgomery product
is through the coarsely integrated operand scanning method(CIOS)[13]. This method
integrate multiplication steps and reduction steps(instead of first computing full prod-
uct and then making reduction) requiring an additional space for the operation of three
words regardless of lenght in words of the operands.

4.3 The iteration function.

The starting points are linear combinations of P and (). Each point is generated with
a different multiple of P. If ¢ threads are executed, each of them is associated to a
starting point:

A =aqP+Q

where 0 < [ < t and 0 < a; < n. Our iteration function is a so-called "add only”
function which partitions (P) into r subsets. Let A;; = (24, v1,;) be the point corre-
sponding to the walk of the [-th thread and the i-th iteration. The iteration function
is defined as:

F(AL) = A = A + 0P +Q

if z; = j(modr), Vj=0,.,r—1, VI=0,..,t—-1
The congruence z;; = j(modr) can be easily checked through bitwise operators if r
is a power of 2. In our application we choose r = 64.

4.4 Points representation and storage.

The array:

(boP +Q,..., bjP +Q,....;bp_1 P+ Q)

is stored by using affine coordinates. More precisely, since the size of these coordi-
nates turns out to be small and since the points do not vary within the program, the
array can be fitted into theconstant memory region of the graphic card. That allows
to avoid memory problems due to simultaneous accesses of more than one thread to
the same point. Moreover note that all data of the curve are recorded in the constant
memory.
Since formulas 1 and 2, all the other points (4;) are represented with the so-called
Jacobian coordinates([14], 3.2).
With this implementation strategy we can avoid division and inverse calculation while
adding points on the elliptic curve through mixed addition Jacobian-affine formulas.
In order to get coalesced memory access, a single word of each Jacobian coordinate is
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memorized in a locations multiple of 16 (number of threads that can do a coordinated
read from memory).

The following table reports the usage of two middle level N-Vidia gpu, on Fyigg listed
in CERTICOM site. In particular the first test (M1) is curried out on 8800GTS with
g92 chip of 80-90euros cost; the second one (M2) is curried out on 8400 GS 256mb of
cost 25-30euros cost. Here we analyse the performances on two cases: the code with

if” statements that implies a lot of divergent threads (dt); the optimized code where
divergent threads are minimized (mdt)

GPU Model | points/secs code | points/secs opitmized code
M1 320.000 720.000
M2 220.000 425.000

5 Conclusions

CUDA-enabled gpus turn out to form a very interesting platform for high performance
computing for many remarkable reasons: the wide diffusion, a rapidly and continuously
increasing power, a good performance/price ratio and the possibility of installing more
than one gpu into a single workstation.

In this paper we have shown that graphic cards can be useful to improve on perfor-
mances for ECDLP resolution. We think that all we have done here is new because all
CERTICOM problems were attacked only by using cpus (in distributed environment).
Now a mixed approach cpu-gpu can also be considered (gpu being a co-processor). At
least, computations for our problem can be performed only on gpu while cpu remains
free and available for other jobs.
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In this paper we establish some algebraic properties of a Boolean function that
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1 Introduction

Boolean functions are used in several different types of cryptographic applications, in-
cluding block ciphers, stream ciphers, hash functions [3, 4, 7, 9], and coding theory [2, 6],
among others. There is already a well established theory of S-boxes which has sprung
from cryptography. This theory concentrates on the design and analysis of Boolean
functions which possess desirable cryptographic properties such as balancedness, strict
avalanche criterion, correlation immunity, high nonlinearity and high degree. For ex-
ample, the implementation of an S-box needs nonlinear Boolean functions to guarantee
the cryptographic effectiveness in order to resist powerful methods of attack such as
the linear and differential cryptanalysis [1, 5, 8, 10].

One of the basic requirements relative to the Boolean functions used in stream
ciphers is that they allow to increase the linear complexity [9, 15, 16], which is obtained
if these functions have a high algebraic degree.

Both the use of the algebraic normal form or the truth table, have their advantages
and disadvantages. For example, the algebraic normal form of a Boolean function
directly provide their degree, but not its weight, but if we know the truth table, we
know its weight, but do not know its degree.

The complete determination of the algebraic normal form of a Boolean function of
which we know its truth table or its support requires simultaneously to compute all the
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coeflicients of the corresponding polynomial, but if we want to know only the degree of
the function, it is possible to reduce substantially the number of necessary operations
using the properties that we present beforehand here.

The rest of the paper is organized as follows. Firstly, in Section 2 we introduce some
basic definitions and notations that are used hereafter. In Section 3, we introduce the
main results of this paper; in particular, we present some properties which allow us to
determine the degree of a Boolean function of n variables from its support. Finally, in
Section 4, we introduce more properties that allow us to improve the process described
in Section 3.

2 Preliminaries

We denote by Fo the Galois field of two elements, 0 and 1, with the addition (denoted
by @) and the multiplication (denoted by juxtaposition). For any positive integer n, it
is well-known that % is a linear space of dimension n over Fy with the usual addition
(denoted also by @). We denote by Span {wui,us,...,u;} the linear subspace of F¥
generated by the vectors wi, us,...,ur € F5. If FF C F3 and a € [}, we denote by

adbF={ad®u|uecF}

When F is a k-dimensional linear subspace of Fy we say that a® F' is the k-dimensional

affine subspace of Fy passing through a in the direction of F. Finally, if we denote

by ¢ the binary expansion of n digits of the integer ¢, for i = 0,1,2,...,2" — 1, then
n—{i|0<i<2n—1}.

A Boolean function of n variables is a map f : F§ — . The set of all Boolean
functions of n variables is denoted by B,; it is well known that B,, with the usual
addition of functions (that we also denote by @), is a linear space of dimension 2"
over [Fy.

If f € B, we call truth table of f (see, for example, [11, 12]) the binary sequence
of length 2" given by

§r = (f(0), f(1),..., f(2" — 1)).

We call support of f, denoted by Supp (f), the set of vectors of F§ whose image by f
is 1, that is,
Supp (f) ={a € Fy | f(a) =1}.

If f € B, we call weight of f, and we write w(f), the number of 1s of the truth table
of f, therefore, w(f) = |Supp (f)|.

Obviously, f is the null function if and only if Supp (f) =
Analogously, f is the constant function 1 if and only if Supp (f)
w(f) = 2.

It is easy to check that if f,g € B,, then Supp (f @ g) = Supp (f) A Supp (9),
where A denote the symmetric difference of sets and, as a consequence,

0 and then w(f) = 0.

F% and, in this case,

w(f ®g) =w(f)+w(g) (mod 2).
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In general, if f; € B, for j = 1,2,...,m, then

m

Supp | P /i = 2 Supp (£5) (1)
=1

and, therefore,
@f] = Zw fj) (mod 2). (2)

Assume now that € = (z1, 2, ..., 2,) where each z;, for j =1,2,...,n, is a binary
variable. If f € B,,, we can write f(x) uniquely as (see, for example, [6, 11, 12, 13, 14])

= P n(wz* (3)

uclky
where pif(u) € Fo and if w = (uq,u, ..., u,), then

L, if Uj = 1,

¥ =z)'xy? - -xpn with xjj— )
1, ifu;=0.

Expression (3), in which each one of the terms z* is a monomial, is known as the

Algebraic Normal Form (ANF) of f(x). We call degree of f, denoted by deg (f),
the maximum of the degrees of the monomials of its ANF. So, if w(u) denotes the
number of components of u equal to 1, then

deg (f) = max{uw(u) | () = 1}.

We said that f is an affine function if deg (f) = 1; in this case expression (3)

becomes

f(x) =ap @ arz1 ® asxa ® -+ - D anxy,
with a; € Fo, for j = 0,1,2,...,n. In particular, if ap = 0, we say that f is a linear
function.

On the other hand, if

pp = (p(0), pp(1), ..., pp(2™ — 1)),

then (see for example [13])

Ky = £fAn
where ) N
_ n—1 n—1 > : —
Ay [ o0 A } forn > 1, with Ay = [1].
Now, if

u = (ug,ug, ..., Uy) = W2 ' B u2" 2B B upy_12 D uyl
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and S(u) = Span {u12”_1,u22n_2, e, Up—12, unl} , then, it is easy to prove by in-

duction over n, that
) = @ fla). (4)
acS(u)
Finally, if f € B, and for all a € F§ we consider gq € B, such that gq(x) = f(zPa),
then, it is difficult to establish the relation between p; and p, , nevertheless, it is
evident that deg (gq) = deg (f), for all @ € F3, and it is not difficult to see that

Supp (ga) = a ® Supp (f), for all a € Fy.

3 Main Results

Throughout this paper we denote by S,, the set of all the permutations of {1,2,...,n}.
Moreover, if o € S,, = (z1,22,...,2,) € F§, M C Fy, and f € B,, we write
x’ = (xa(l),$0(2)7 . ,xa(n)) y, M7 ={x |x € M}, and f7(x) = f(x?).

The following result, whose proof is immediate, establishes the relation between
Supp (f?) and Supp (f) for all o € S,,.

Theorem 1: Assume that o € Sy,. If f € By, then Supp (f?) = (Supp (f))° and, as
a consequence, w(f7) = w(f).

The following result, whose proof is also immediate, allows us to determine, expli-
citly, the support and, therefore, the weight of any monomial.

Theorem 2: Assume that 1 < i1 < i9 < --- < i, < n and consider o € S,, such that
a(j) =1ij, forj=1,2,... k. If f(x) = zi,zi, - 75, and u = (1,1,...,1) € F5, then

(Supp (f))” = {u} x F3~*

and, in particular, w(f) = 2"F,

An immediate consequence of the previous result is that the weight of the monomial
formed by all the variables (that is, when k = n) is 1, whereas the weight of any other
monomial is a power of 2 and, therefore, an even number.

Another immediate consequence that we can deduce of Theorem 2 is that the degree
of a Boolean function f € B, is n if and only if w(f) is an odd number, as we establish
in the following result.

Theorem 3: If f € B, then deg (f) = n if and only if w(f) is an odd number.
Proor: Clearly f = g @ h, with g,h € B,, such that h(x) = axz2 -, with a € Fy

and deg (g) < n — 1. Note that w(h) = a, and deg (f) = n if and only if a = 1.
Moreover, if g(z) = @/L, gj(x), with g;(z) a monomial such that deg (g;) <n—1,

for j =1,2,...,m, then, from expression (2) and Theorem 2 we have that
w(f) = Zw(gj) +w(h) (mod 2) =a (mod 2)
j=1
and so, deg (f) = n if and only if w(f) is odd. O
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Another immediate consequence of Theorem 2 is that if the degree of a Boolean
function of n variables is less than or equal to n — 2, then the sum of the elements of
its support is the null vector. Before, nevertheless, we introduce the following technical
lemma which allows us to simplify the proof of the above mentioned result.

Lemma 1: Assume that 1 < i1 < 9 < -+ < i < n. If f(x) = xyxiy -2, and

1<k<n-—2, then P ya=0.

k

acSupp(f

PROOF: Assume that w = (1,1,...,1) € F§. Clearly

D o @ (@ @ o]0

ac{u}xFy—F vely—k TS TS A

because each one of the components of the vectors @vng—k u and eaveIF;“k v is the
sum of an even number of 1s.

The result follows now from the fact that if we consider o € S, such that o(j) = i,
for j =1,2,...,k, then, by Theorem 2, the elements of Supp (f) are obtained from the
elements of {u} ng_k permuting their components according to the permutation o ~1.0J

Note that the condition 1 < k < n — 2 of the previous lemma is necessary, because
if & = n, then Supp (f) = {u} C FY, whereas if k = n — 1 and f(«) is the monomial
of degree n — 1, which does not contain the variable z;, then Supp (f) = {u,u;} with
uj =ud 27~ and, clearly, u ® uj # 0.

Theorem 4: Let f € B,,. If deg(f) <n —2, then @ 0.

acSupp(f) a =

PRrOOF: Assume that f(z) = @]., fj(z) with f;(z), for j = 1,2,...,m, a monomial
of degree less than or equal to n — 2.
We proceed by induction over m. For m = 1 the result is true by Lemma 1.
Assume that the result is true for m — 1 and we will prove that it is true for m.
Firstly, note that from expression (1)

Supp (f A Supp (f;) = ( A Supp f])> A Supp (fm) -
To simplify the notation, we denote by

A=Supp(f), B= jélsllppm), and  C = Supp (fm) .

From the properties of the union, intersection and symmetric difference of sets, and
from the induction hypothesis and by Lemma 1, we have,

OZ@b: @ b @ d and 0:@02 @ c® @ e.

beB bec ANB de BNC ceC ce ANC ecBNC

@CMMSE Page 377 of 1328 ISBN 13: 978-84-613-5510-5



SOME ALGEBRAIC PROPERTIES RELATED TO THE DEGREE OF A BOOLEAN FUNCTION

Now, adding the two previous expressions, we obtain

0= @ b®d EB c:@a

beANB ceANC acA
because @ e g @ D Decprc e =0. O
The converse of the previous theorem is not true, as we can see in the following
example.
Example 1: If f € B3 and Supp (f) = {3,5,6}. We have that 3® 5 @ 6 = 0, but,
from Theorem 3, deg (f) = 3. So, the converse of Theorem 4 is not true. O

The following result shows that the situation described in the previous example
only can appears when |Supp (f)| is odd, that is, when deg (f) = n.

Theorem 5: Let f € By such that [Supp (f)| is an even number. If @ qegupp(s) @ = 0,
then deg (f) <n — 2.

PROOF: Since [Supp (f)]| is even, from Theorem 3, we have that deg (f) <n — 1.
If deg (f) = n— 1, then f has at least one monomial of degree n — 1. Assume that

=P yi(x) @ h(x)
j=1

with g;(x), for j =1,2,...,m, a monomial of degree n — 1 which does not contain the
variable z;; and deg (h) <n — 2.

Proceeding as in the proof of Theorem 4, taking into account that from Theorem 4,
b acSupp(h) @ = 0, and according to the comment previous to Theorem 4, we have that

2n—4 if m is even
0= a= a®d a= = ’
® o-® @ w0 @ (I e
acSupp(f) Jj=1 aeSupp(yg;) acSupp(h Jj=

which is a contradiction. Therefore, deg (f ) <n-2. O

Let f € B,, and assume that we know Supp (f). Since w(f) = |Supp (f)|, Theorem 3
allows us to ensure that the monomial zz2 - - -z, is part of the ANF of f(x) if and
only if |Supp (f)| is an odd number. The following theorem establishes a necessary and
sufficient condition in order that the ANF of f(x) contains any monomial of degree k

with 1 < k < n. Before, nevertheless, we need the following result which will facilitate
the proof of the above mentioned theorem.

Lemma 2: Assume that 1 < iy < iy < --- < i}, < n and consider the map ¢ : F§ — F2
gwen by ©(y1,y2, ..., yk) = (1, 22,...,2,) with

o g g,
"y, ifl=i, forj=1,2,... k.
If f € B, and consider h € By, such that h(y1,y2, ..., yx) = f(o(y1,y2,-..,Yx)), then

|Supp (h)| = ‘Supp (f) N Span {2"_"1,2"427 .. ,2"_i’“}‘ )
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Theorem 6: Assume that we know Supp (f) for f € B,. The ANF of f(x) contains

the monomial x;, x;, - - - x;, with 1 < k < n if and only if

Supp (f) N Span {275, 2n=2 . gn=in ]
is an odd number.

Proor: With the notation of Lemma 2, we have that the ANF of f(x) contains the
monomial z;, z;, - - - x;, if and only if the ANF of h(y) contains the monomial y1ys - - - Y.
Also, from Theorem 3, the ANF of h(y) contains the monomial y1y2 - - - yi if and only
if [Supp (h)| is an odd number. Finally, from Lemma 2, the ANF of f(x) contains the
monomial z;, z;, - - - z;, if and only if !Supp (f) N Span {2"_i1, n—iz  gm—ik }‘ is an
odd number. O

Applying successively the previous result, we can determine the degree and the
ANF of a Boolean function of which we know its support.

Furthermore, if 1 < k£ < n, by a similar argument to that followed to obtain
expression (4), we can separate the n variables in two sets with k& and n — k variables,
respectively, as we describe in the following result. The proof is straightforward but
large and, therefore, we omit it.

Theorem 7: Assume that f € B,. If 1 <k <n, then
5)- @ (@ i)
beFk \ acS(b)
where fq € By, for a € FE, satisfies fo(x) = f(a,x). Furthermore,

1. Supp (fa) = {v € F3 % | (a,v) € Supp (f)},

2. Supp (@acss) fa) = Dacse) Supp (fa), for all b € F,

3. deg (f) = maxpcpk {deg (@aeS(b) fa) + w(b)}.

Before to continue, we show an example that will help us to understand the process
to follow.

Example 2: Let f € Bs such that
Supp (f) = {6,7,12,13,16,17, 18,20, 21,23, 24, 25, 26, 30}
Since |Supp (f)] is even and
6070120130160 17T018020021 023 H24P25026430=0

from Theorem 5, we have that deg (f) <5 —2=3.
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Now, according to Theorem 7.3, we have that

deg (f) = max{deg (fo) ,deg (fo ® f1) + 1}

with fo, f1 € By such that

fo(ze, x3, 4, 25) = f(0, 22, 23,74, 75), f1(z2,73,24,75) = f(1, 22, 73,74, 75),
and, from Theorem 7.1,

Supp (fo) = {6,7,12,13} and Supp(f;)=1{0,1,2,4,5,7,8,9,10,14}.

Therefore,

Supp (fo ® f1) = Supp (fo) ASupp (f1) ={0,1,2,4,5,6,8,9,10,12,13,14}.
In addition, since 6 7 ® 126 13 =0 and

0102040506080 9010012013314 =0,
from Theorem 5, we have that
deg (fo) <4—2=2 and deg(fo® fi)<4-2=2

and, therefore deg (f) < max{2,2+ 1} = 3.
Now, again from Theorem 7.3, we have that

deg (f) = max{deg (fo),deg (fo ® f1)+1,deg (fo ® f2)+1,deg (fo @ f1 ® f2 @ f3)+2}
with fo, f1, f2, fa € B3 such that
fo(xs, za,25) = f(0,0,23, 24, 25), fi(xs, x4, 25) = f(0,1, 23, 24, x5),
f2($3,$4,$5) = f(1,0,$3,334,x5), f3(l‘3,l’4,335) = f(lv 1,$3,$4,$5),

and, from Theorem 7.3

Supp (fO) = {67 7}7 Supp (fl) = {4’ 5}7
Supp (f2) ={0,1,2,4,5,7} and Supp(f3) ={0,1,2,6}

in which case

Supp (fo © f1) = Supp (fo) A Supp (f1) = {4,5,6,7},
Supp (f() ©® f2) = Supp (fO) A Supp (f2) = {Oa 1> 23 4a 5> 6}7
Supp (fo © f1 © f2 © f3) = Supp (fo) A Supp (f1) A Supp (f2) ASupp (f3) = 0.

Moreover, since

607T=140, 495060 T7=0 and 001020 4P5H6=4+£0
from Theorem 5, we have that

deg(fo) =3—-1=2, deg(fo® f1)<3-2=1, deg(fo® f2)=3-1=2
and fo @ f1 @ f2 @ fg = 0, therefore, deg (f) = 3. O
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4 More results

In this section we introduce some results that allow us to simplify the process described
in the previous section.

The following result establishes that any k-dimensional linear subspace of F§ (or
the complement of any k-dimensional linear subspace of F%) is the support of a Boolean
function of n variables with degree n — k.

Theorem 8: Assume that1 < k <n. If F or FY\ F is a k-dimensional linear subspace
of F%, then there exists f € By, such that deg (f) =n —k and F = Supp (f).

PRrROOF: Firstly, assume that F' is a k-dimensional linear subspace of F3. Clearly, the
map f : Fy — Fy given by
1, ifxekF,
-]

0, ifxé¢kF,

is a Boolean function of n variables whose support is F.
Assume that n — k +1 <[ <n and that the ANF of f(x) contains the monomial
Ty Tiy - - - T43,; then, by Theorem 6 we have that

‘F N Span {2”_"1’ gn—iz  gn—i H
is an odd number. Nevertheless, since
dim (F N Span {2"_“, 27 iz . " })
— dim F + dim Span {277 2n=2  gni ]
— dim (F+ Span{zn‘ilﬂn—"z,. . .,2"—“}) >k+1-n>1,
necessarily
’F N Span {2"_i1, gn—iz  gn—u H _ odim(FnSpan{2n~i1,2n—iz  an—it})

is an even number. So, we have a contradiction. Therefore, the ANF of f(x) does not
contain any monomial of degree [ and, consequently, deg (f) <n — k.

Assume now that {b1, ba, ..., bg} is a basis of F' and complete such basis, with the
vectors of the canonical basis, to obtain a basis

{b17 b27 RN bka 271—'1:17 271—1',2’ ey Zn_i"—k}

of F§. Clearly F N Span {27™~% 2n~%  27n~i-t} = {0} and, by Theorem 6, the
ANF of f(x) contains the monomial x; ;, - - - x;, ,; so deg (f) > n — k.
Now, from this inequality and the previous one, we have that deg (f) =n — k.
Assume now that G = F3y \ F' is a k-dimensional linear subspace of F. Then, from
the above part, there exists g € B,, such that deg(g) = n — k and G = Supp (g). Let
f € By, such that f = 1@ g, clearly, deg (f) = deg(g) and Supp (f) = F5 \ Supp (9);
that is deg (f) =n — k and F = Supp (f). O
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The converse of the above theorem is not true in general as we can see in Example 3
below. Nevertheless, if & = n, then F' = F} is the support of the constant function
f(x) = 1 whose degree is 0. Furthermore, if & = n — 1, then the converse of Theorem 8
also holds as we can see in the following result.

Theorem 9: Assume that F C Fy. Then F or Fy \ F is an (n — 1)-dimensional
linear subspace of Fy if and only if there exists f € By, such that deg(f) = 1 and

F = Supp (f).

Proor: If F or F§ \ F is an (n — 1)-dimensional linear subspace of Fy, by Theorem 8§,
there exists f € B,, such that deg (f) =1 and F' = Supp (f).
Conversely, let f € B, such that deg (f) = 1 and F' = Supp (f). On the one hand

f(®) =a0 @ a1z1 ®axs @ -+ B apxy,
for some ag, a1, a9, ..., a, € Fa, and clearly
S = {(ur,ug,...,uy) € Fy | ayus ® agua @ -+ - O apuy, = 0}

is an (n — 1)-dimensional linear subspace of F§. On the other hand, it is easy to see
that S = F, ifag =1, and S =F} \ F, if a9 = 0. O

Next result establishes that Theorem 8 also holds if we change “linear subspace”
by “affine subspace”. The proof is straightforward and therefore we omit it.

Corollary 1: Assume that1l < k <n. If F or F§\F is a k-dimensional affine subspace
of F%, then there exists f € By, such that deg (f) =n —k and F = Supp (f).

Theorem 9 also holds if we change “linear subspace” by “affine subspace”. But
in this case, the proof follows by the fact that if F' is an (n — 1)-dimensional linear
subspace of F5, then

S\F=a@®F forallacFy\F

is an (n—1)-dimensional affine subspace of F%. This can not be true if dim F' = k # n—1,
because 2" — 2F = 2¥(2"=F — 1) is not a power of 2.

The following example shows how we can use the above results to improve the
process described in the above section.

Example 3: Let f € Bs the Boolean function of Example 2. Note that |[Supp (f)| = 14
and ‘Fg \ Supp (f)} = 18, so neither Supp (f) nor F3\ Supp (f) can be a linear subspace
nor an affine subspace of F3.

After some computations, we obtained in Example 2 that

deg (f) = max{deg (fo) ,deg (fo ® f1) + 1}

with fo, f1 € B4 such that

fo(xe, w3, 4, 25) = f(0, 22,23, 24,%5), fi(w2, 23,24, 25) = f(1, 22,23, 24, 25),
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and that
Supp (fo) = {6,7,12,13}, Supp (fo® f1) ={0,1,2,4,5,6,8,9,10,12,13,14}.

Note that none of the sets Supp (fy), F3 \ Supp (fo), Supp (fo ® f1) and F§ \
Supp (fo @ f1) can be linear subspaces of F3. Nevertheless

Supp (fo) = 6 @ {0,1,10,11} = 6 & Span {1, 10},
F% \ Supp (fO @ fl) = {37 7,11, 15} =3 {074787 12} =39 Span {478}

are affine subspaces of dimension 2. So, by Corollary 1,
deg(fo)=4—2=2 and deg(fo® fi)=4—2=2

and, therefore deg (f) = max{2,2+ 1} = 3.
Remember that in Example 2 we obtained that

deg (fo) <4—2=2 and deg(fo® fi) <4-2=2

and, therefore deg (f) < max{2,2+ 1} = 3. O
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Abstract

In this paper we deal with the problem of obtaining a random procedure for
generating points in an order polytope. For this, we use the fact that it is easy to
make a triangulation in order polytopes in a way such that all simplices have the
same hypervolume. As an application, this allows to build a procedure to generate
fuzzy measures in a random way.

Key words: Random generation, order polytopes, linear extension, triangula-
tion, fuzzy measures

1 Motivation

Consider X = {z1,...,x,} a finite referential set. The set of non-additive mea-
sures [8], fuzzy measures [23] or capacities [5] over X, denoted by FM(X), is the
set of functions p : P(X) — [0, 1] satisfying

o u(0) =0,u(X) =1,
o 1(A) < u(B) for all A, B € P(X) such that A C B.

Fuzzy measures have been applied to many different fields, as Multicriteria Decision
Making, Decision Under Uncertainty and Under Risk, Game Theory, Welfare Theory
or Combinatorics (see [11] for a review of theoretical and practical applications of fuzzy
measures). Moreover, they are included in the field of Aggregation Operators, that
constitutes a major research topic nowadays [10].

An interesting problem arising in the practical use of fuzzy measures is the identi-
fication of the fuzzy measure modeling the situation. The problem in this case is that
the number of coefficients needed to define a fuzzy measure is 2" — 2 for a referential of
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cardinality n, so that the complexity grows exponentially. The problem of identifica-
tion has attracted the attention of many researchers in the field; for example, different
procedures (in many cases restricted to a subfamily of fuzzy measures) can be found
in [1], [18], [6] among many others. The information background used by each method
also varies; in some of the previous methods, a sample data is supposed; others used a
questionnaire; the data can be numerical or just ordinal, and so on.

Once an algorithm is suggested, it is necessary to test its performance. In many of
the previous references a fuzzy measure is considered, some data are generated (possibly
with some random noise), and the corresponding procedure is applied. This also serves
as an example of applicability. If the procedure works properly, it should obtain a fuzzy
measure near the initial measure.

However, in order to evaluate the performance of a procedure, it should be tested
in many different cases, and the fuzzy measure considered in each case should be chosen
randomly. Surprisingly, to our knowledge there is not a method to generate randomly
a fuzzy measure. The aim of this paper is to fill this gap.

From the definition of fuzzy measure, it can be seen that the set of fuzzy measures
is a polytope. So, the problem reduces to derive a procedure for the uniform random
generation in a polytope. However, this is a complex problem and several methods have
been suggested to cope with it. Indeed, the uniform random generation in a polytope
is a hot problem in Computer Sciences (see for example [9] and [21]).

In our case, we will use the fact that the set of fuzzy measures is a special type of
polytope called order polytopes. Then, as explained in the paper, the problem simplifies
and it is possible to obtain an efficient procedure.

2 Order polytopes

Let us recall the basic notions about order polytopes. Consider a finite poset (P, <)
(or P for short) of p elements. We will denote the subsets of P by capital letters A, B, ...
and also Aj, Ag, ...; elements of P are denoted a,b, and so on. If A is a subset of P, it
inherits a structure of poset from the restriction of < to A. In this case, we say that A
is a subposet of P. If two elements a,b of P satisfy a < b or b < a, we say that they
are comparable. A poset (P, <) is a chain if for any a,b € P, either a < b or b <X a.
A poset can be represented by the so-called Hasse diagram, where a < b if and only
if there is a sequence of connected lines upwards from a to b. An example of Hasse
diagram is given in Figure 1.

A subset I of P is an ideal or downset if for any a € I and any b € P such that
b = a, it follows that b € I. We will denote ideals by I, Io, ... Notice that with this
definition the empty set is an ideal. The dual notion of an ideal is a filter or upset,
i.e., a set that contains all upper bounds of its elements. We will denote by Z(P) the
set of all ideals of poset P.

Given two ideals I; and Is of P, we can define I; U Iy and Iy N I5 as the usual
union and intersection of subsets. It is trivial to check that I; U I and I; N I are also
ideals in P. In fact, the set of all ideals of P forms a lattice under set inclusion called
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Figure 1: Example of Hasse diagram of a poset.

the ideal lattice of P (see [2]). The ideal lattice of the poset presented in Figure 1 is
given in Figure 2.

Figure 2: Ideal lattice corresponding to poset of Figure 1.

Let us now turn to order polytopes. Given a poset (P, <), it is possible to associate
to P, in a natural way, a polytope O(P) in R? called the order polytope of P (cf. [22]).
The polytope O(P) is formed by the p-uples f of real numbers indexed by the elements
of P satisfying

e 0 < f(a) <1 for every a in P,
e f(a) < f(b) whenever a < b, a,b € P.

Thus, the polytope O(P) consists in (the p-uples of images of) the order-preserving
functions from P to [0, 1]. It is a well-known fact [22] that O(P) is a 0/1-polytope, i.e.
its extreme points are all in {0, 1}P. Applied to distributive lattices, the notion of order
polytope has been also defined in [13] with the name of geometric realization.
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From the point of view of order polytopes, FM(X) is the order polytope of the
poset (P, <) where P = P(X)\{X, 0} and < is the inclusion between subsets [7]. So,
the problem reduces to obtain a random procedure for generating points in an order
polytope. This is treated in next section.

3 Algorithm for random generation on order polytopes

There are several procedures to generate random points in a polytope: the grid method
[9], sweep-plane method [15], and triangulation methods [9]. In this paper we have
chosen the triangulation method for the properties that order polytopes share; more
details become apparent below.

Consider n + 1 affine independent points in R™,m > n, i.e. n+ 1 points of R™ in
general position. The convex hull of these points is called a simplex. This notion is a
generalization of the notion of triangle for the n-dimensional space.

The triangulation method is based on decomposing the polytope into simplices,
choosing one of them with probabilities proportional to their volumes and, finally,
generating a random tuple on the simplex.

The random generation in simplices is very simple and fast [20]. Indeed, if z1, ..., Zp4+1
are the vertices of the simplex, it suffices to generate random values oy, ..., ap4+1 € [0, 1]
such that Z?jll a; = 1; the point generated is Z?jll a;x;. However, it is not easy to
split a polytope in simplices. Moreover, even if we are able to decompose the poly-
tope in a suitable way, we have to deal with the problem of determining the volume of
each simplex in order to properly select one of them. This is the Achilles heel of the
triangulation method and the reason for which it is not very popular [21].

However, we will see below that for order polytopes the triangulation method can
be adapted in a way such that it works properly.

3.1 Step 1: Triangulation of an order polyotpe

Consider a poset (P, <). An extension (P, <’) of (P, <) is another poset on the same
referential such that if @ < b, then a <’ b. A linear extension is an extension that is
a chain. The linear extensions of the poset of Figure 1 are given in Figure 3.

The triangulation of an order polytope that we are going to consider is based on
the following result (see [17], pag. 304):

Theorem 1 Let (P, =) be a poset.

e If < is a linear ordering on P, then the corresponding order polytope O(P, <) is
1

a simplex of volume ;.

e For any partial ordering < on P, the simplices of the order polytope of (P, <),
where < is a linear extension of <, cover the order polytope O(P,=) and have
disjoint interiors. Hence, vol(O(P,=)) = 4e(=), where (=) is the number of
linear extensions that are compatible with =< .
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Figure 3: Linear extensions of poset of Figure 1.

These results are also outlined in [22]. From this theorem, we can obtain the
following conclusions:

e It suffices to obtain the number of linear extensions of the poset in order to
determine the volume of the corresponding order polytope.

e Any linear extension provides a simplex included in the order polytope. Moreover,
these simplices have disjoint interiors. As the probability of generating a point
in the border of the simplex is zero, we can arbitrarily assign the borders to any
simplex, so that this determines a partition of the order polytope in simplices.

e All the simplices generated by linear extensions have exactly the same volume.

Consequently, it suffices to generate randomly a linear extension of < and then
generate a point in the corresponding simplex. Therefore, the problem of random
generation in an order polytope reduces to generate randomly a linear extension of the
poset. This is achieved in next subsection.

3.2 Step 2: Generating linear extensions of a poset

The problem of randomly generating a linear extension of a poset is a §P-problem [3] .
We will use the algorithm developed in [16]. This algorithm performs in general better
than the one developed in [19]; other algorithms that approximate randomness has
been suggested in [14] and [4], but we have preferred the previous approach because it
provides an exact method.

The idea of the algorithm is the following: first, we construct the ideal lattice of
the poset. Next, from the ideal lattice, a random linear extension is generated; for this,
it is used the fact that a linear extension consists exactly in a path from the source
(the empty ideal) to the sink (the whole poset).
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The use of the ideal lattice instead of directly enumerating all linear extensions is
justified by the fact that the number of linear extensions is in general much larger than
the number of ideals, as next table, obtained in [16], shows:

|P| | Linear extensions | Ideals
5 6 9
10 5.4 x 10? 33
15 2.39 x 10° 148
20 1.13 x 10” 518
25 1.07 x 10'2 953
30 7.83 x 1014 1406
35 5.57 x 107 2637

The posets considered in the table have been obtained by choosing uniformly at
random n points out of a two-dimensional grid of size 20 by 20, equipped with the usual
ordering. Of course, for other polytopes these figures could vary, but it can be seen
that in general the number of linear extensions grows much faster than the number of
ideals.

An algorithm for generating the ideal lattice of a poset appears in [12]. The idea
is to use the so-called spanning tree of the lattice; in [12], an algorithm to build this
spanning tree is provided.

When the spanning tree is obtained, we can build the corresponding lattice in an
efficient way.

Once the ideal lattice is built, we proceed to generate a linear extension. A such
algorithm appears in [16].

4 Conclusions

In this paper we have obtained an algorithm for the random generation of points in order
polytopes. The algorithm is based on the fact that order polytopes can be studied in
terms of the subjacent poset, thus reducing the complexity of the procedure. The main
point is the fact that order polytopes are easy to triangulize using linear extensions. In
addition, it is easy to generate linear extensions in a random way from the lattice of
ideals.

As a straightforward application, this provides us with a method for generating
fuzzy measures in a random way. We think that this could be useful to compare the
different approaches of identifying a fuzzy measure from sample data. Moreover, this
also applies to any subfamily of fuzzy measures that is an order polytope, as for example
p-symmetric measures [7].

As a future work, we intend to compare the different methods of identification of
fuzzy measures. We also intend to improve our algorithm by comparing the different
procedures that exist in the literature for generating linear extensions.
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Abstract

Commutative semifields of dimension 4 over the center are considered. Prop-
erties of these objects are presented, and a computational based classification for
small orders is provided.

Key words: Finite semifield, Finite division ring, Projective planes

1 Introduction

The classification of finite nonassociative division rings (commonly known as finite
semifields [3]) is not only relevant from an algebraic point of view because of their
connections to projective semifield planes [11], coding theory [8, 9], combinatorics [7]
and graph theory [12].

A finite semifield (or finite division ring) D is a finite nonassociative ring with
identity such that the set D* = D\ {0} is closed under the product. In case it has no
identity it is known as a presemifield. The survey [10] provides a good introduction
to the topic together with a state of the art on the classification of these rings. In
particular, it is remarked the singular situation of odd characteristic: the number of
different semifields in such a characteristic is relatively small compared to the actual
number of different construction of this type of semifields. So, it seems that different
constructions yield the same semifields.

On the other hand, the classification of these objects is far from being an easy task.
Recent results on the classification of small semifields ([6, 13, 2]) show the existence
of a relatively big number of unknown semifields, that is, semifields which can not be
produced by any of the currently known constructions.

However, the situation in the case of commutative semifields of odd characteristic
is slightly better, since these semifields benefit from the connections to the theory of
planar functions [4].

We consider the concrete case of commutative semifields of dimension 4 over its
center. We study the properties of these objects in small orders, and we present a
computational based classification of them.
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2 Commutative semifields of odd order

In this section we collect some definitions and facts on finite semifields, presemifields
and planar functions (see, for instance [3, 11, 4, 5]).

We restrict ourselves to the particular case of a semifield D of dimension 4 over a
finite field F, (¢ = p®, odd), which is contained in its associative-commutative center
Z(D). Other relevant subsets of a finite semifield are the left, right, and middle nuclei
(N, Ny, Nyy,), and the nucleus N which have to be field extensions Fge (e < 4).

Classification of presemifields is usually considered up to isotopy (since this cor-
responds to classification of the corresponding projective planes up to isomorphism):
If Dy, Dy are two presemifields of order ¢*, an isotopy between D; and Dy is a triple
(F,G, H) of bijective F3—linear maps D; — Do such that

H(ab) = F(a)G(b) , Va,b € D;.

Any presemifield is isotopic to a finite semifield.

If B=[x1,...,24] is a Fy-basis of a presemifield D, then there exists a unique set
of constants Ap g = {Ailim}fhmig:l C F, such that

4
Ti Tiy = Z Ai1i2i3ﬂii3 V’L'l,iQ S {1, ... ,4}

13=1

This set of constants is known as cubical array or 3-cube corresponding to D with
respect to the basis B, and it completely determines the multiplication in D. If D is a
presemifield, and o € S5 (the symmetric group on the set {1,2,3}), then the set

o _ . . . 4
D,B — {AZU(I)ZU(Q)ZO'(S) }i17i27i3=1 g Fq

is the 3-cube of a presemifield. Different choices of bases lead to isotopic presemifields.
Up to six projective planes can be constructed from a given finite semifield D using
the transformations of the group S3. So, the classification of finite semifields can be
reduced to the classification of the corresponding projective planes up to the action of
the group Ss.

Commutative semifields of order ¢* (¢ odd) can be easily constructed from certain
types of planar functions, induced by Dembowski-Ostrom (DO) polynomials.
A planar function is a map

JiFpu — Fpa

such that for all nonzero = € F 4 the difference mapping
Af,sl::]Fq4 —>]Fq4 ) y—>f($+y)_f(x)_f(y)

is bijective, i.e, induces a permutation of F,. Also, it is called a DO polynomial in
case it has the form

3
f(z) = Z ai,jwq”rqj

i.j=0
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where a; ; € Fga, i.e., if its g—weight is at most 2. The construction of a finite presemi-
field Dy from one of such mappings f is as follows. Take (Dy,+) = (F,4,+) and define
a multiplication by the following rule:

rTxyY = Af,z(y)

Any finite presemifield of order ¢* and center F, € Z(D) is isotopic to one of these con-
structions and classification of presemifields up to isotopy is equivalent to classification
of the corresponding DO polynomials up to extended affine (EA) equivalence.

Two DO polynomials F,G : Fpa — Fga are called EA-equivalent if G = A; o
F o Ay + A for some affine permutations Ay, Ay : Fpa — Fpa and an affine mapping
A :Fga — Fpa. In particular, the presemifield Dy is isotopic to Fg if and only if f is
EA-equivalent to g(z) = 22, and it is isotopic to Albert’s twisted fields [1] if and only
if f is EA-equivalent to h,(z) = 29 1 (r € N).

3 4-dimensional commutative semifields of small order

With the help of computational tools and parallel processing we have achieved a com-
plete classification of commutative semifields of dimension 4 over its center IF,,, for small
values of p.

Our results (which will be presented in full detail in the poster communication)
show that, for every order there exists two different isotopy classes of semifields, that
also correspond to different S3-classes. One of them is the class of the finite field [,
where as the other corresponds to a non proper semifield of order p?.
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Abstract

In recent years, high-order methods have shown to be very useful in many
practical applications, in which nonlinear systems arise. In this case, a classical
method of positional astronomy have been modified in order to hold a nonlinear
system in its establishments (that in the classical method is reduced to a single
equation). At this point, high-order methods have been introduced in order to
estimate the solutions of this system and, then, determine the orbit of the celestial
body. We also have implemented a user friendly application, which will allow us to
make a numerical and graphical comparison of the different methods with reference
orbits, or user defined orbits.

Key words: orbit determination, Gauss method, nonlinear systems, Newton
method, iterative function, order of convergence, efficiency

1 Introduction

Orbit determination is an old problem with new applications: at the early XIX century,
Gauss designed a method to predict the future positions of asteroids, as Ceres, or other
celestial bodies of our solar system with elliptical orbits. Nowadays, orbit determination
methods are an essential tool in order to, by example, correct the position of artificial
satellites in their orbits. This kind of methods only determine preliminary orbits, as
the motion analyzed is under the premises of the two bodies problem, not taking into
account any other force than mutual gravitational attraction between both bodies.
The inertial system which the orbit is placed in is a geocentric system whose fun-
damental plane is the projection of the terrestrial equator to the celestial sphere, the
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perpendicular axis points to Celestial North and South Poles (NP and SP, respectively),
and the X axis points to the Vernal point v, in Aries constellation. This is shown in
Figure 1.

NP

Orbkital plane

Equator plane

SP

Figure 1: Orientation elements in 3-dimensional coordinate system.

If we focus on the orbital plane, as we can see in Figure 2, it is possible to set a
two-dimensional coordinate system, where the X axis points to the perigee of the orbit,
the closest point of the elliptical orbit to the focus and center of the system, the Earth.
in order to place this orbit in the celestial sphere and determine completely the position
of a body in the orbit, some elements (called orbital or keplerian elements) must be
determined.

Then, the orbital elements are:

e . (right ascension of the ascending node): defined as the equatorial angle between
the Vernal point v and the ascending node N; it orients the orbit in the equatorial
plane.

e w, (argument of the perigee): defined as the angle of the orbital plane, centered
at the focus, between the ascending node N and the perigee of the orbit; it orients
the orbit in its plane.

e i, (inclination): Dihedral angle between the equatorial and the orbital planes.
e a, (semi-major axis): Which sets the size of the orbit.
e ¢, (eccentricity): Which gives the shape of the ellipse.

e Ty, (perigee epoch): Time for the passing of the object over the perigee, to
determine a reference origin in time. It can be denoted by a exact date, in Julian
Days, or by the amount of time ago the object was over the perigee.
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=

Figure 2: Size, shape and anomalies in orbital plane 2-dimensional coordinate system.

Different methods have been developed for this purpose (see [1, 2, 3]), constitut-
ing a fundamental element in navigation control, tracking and supervision of artificial
satellites. By using these methods, from position and velocity coordinates for a given
time, it is possible to determine those orbital elements for the preliminary orbit, which
should be refined with later observations from ground stations, whose geographic coor-
dinates are already known. In order to get this aim, some angles (or anomalies) must
be determined on the planar orbit. Firstly, the object position in the ellipse can be
determined by an angle, the true anomaly (v), with center on the focus of the ellipse,
which is the covered angle by a position vector, from its last perigee epoch (v = 0), to
the observation instant. Another related angle with the previous one is the eccentric
anomaly (F), whose center is on the center of the ellipse. This is the covered angle by
a line from this center to the point where a circumference of radius a, the semi-major
axis, is cut by a perpendicular line to X axis passing by the coordinates of the position
vector, from its last Perigee epoch (E = 0) to the observation moment.

Using the Earth as the center of the coordinates system, it is useful to establish
related units: the distance unit is the Earth radius (e.r.), approximately 6370 Km, and
time unit is the minute, although some dates are described in Julian days (JD).

Now, some fundamental constants must be expressed in terms of these units, as
the Earth gravitational constant, k = v/G - mgargn = 0.07436574(e.r.)2 /min, deduced
from the universal gravitational constant, G, and the Earth mass, mgg¢h, (see [2]). The
objects under study are very light compared with the Earth, like satellites orbiting our

planet, so it is possible to relate both body’s masses as the unit, p = mEl - (MEBarth +
Mobject) = 1. Then, modified time variable is introduced as
T =k(ta — t1), (1)

where t7 is an initial arbitrary time and t¢o is the observation time. So, 7 is considered
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here as a measure of time difference, which will simplify calculations.
To estimate the velocity we can make use of the closed forms of the f and g series

(see [2, 3]),
a
le—ﬁ[l—cos(Eg—El)] (2)
and Va3
a .
9=T—7[(E2—E1)—SIH(E2—E1)]7 (3)
so we can express the rate respect two positions vectors and time as
. ra—f-r
R It ALY (4)
g

So, it is clear that, known two position vectors and its corresponding observational
instants, the main objective of the different methods that determine preliminary orbits
is the calculation of the semi-major axis, a, and the eccentric anomalies difference,
E5 — E1. When they have been calculated, it is possible to obtain by (4) the velocity
vector corresponding to one of the known position vectors and, then, obtain the orbital
elements.

Most of these methods have something in common: the need for finding the solution
of a nonlinear equation or system, as in Gauss method. Usually, fixed point or secant
methods are employed.

From the available input data, two position vectors and times for the observations,
7 can be immediately deduced from equation (1), and other intermediate results as the
difference in true anomalies, (5 — 1), deduced by:

172
cos (o — 1) = RG] (5)
and
sin (v —v1) =+ 1192 T 120 \/1 — cos? (v — 1), (6)

|z1y2 — T2y
with positive sign for direct orbits, and negative for retrograde orbits.

Once the difference of true anomalies is obtained from the position vectors and
times, the specific orbit determination method is used. In our particular case, we will
introduce in the following section the classical Gauss method and, thereafter, we will
modify it in order to estimate the value of the semi-major axis and eccentric anomalies
by means of high-order iterative methods.

Let us also note that the inverse problem, it is the calculation of ephemeris (position
an velocity in a given time) knowing the orbital elements, can be done easily, with direct
operations that can be found in related bibliography (see [1, 2, 3]).

2 Gauss method of orbit determination

This method calculate a preliminary orbit of a celestial body by means of only two
observations (position vectors). It is based on the relation between the areas of the
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Figure 3: Ratio sector to triangle, in Gauss method.

sector ABC and the triangle ABC, as Figure 3 illustrates, delimited by both position
vectors, 1 y 73, ratio sector- triangle

__ Ve VAT
rarsin (v = 1) 2/ay/rar sin () cos (234)’
(with (v — v1) # 7), and on the first

(7)

2 m

4 :H—:U ()

and second
v (y—1) =mX. 9)

Gauss equations, where the constants of the problem (based on the data and the pre-
viously made calculations by (4), (5) and (6)), are

1
o+ 11 1 (10)

= -
4\/rary cos (B57) 2

and )

m = HT . 11
2,/ cos (2524)] -

Moreover, also must be determined in the process the value of:

T = % [1 — cos (EQ;Elﬂ = sin? <E2;E1> (12)

EQ - E1 — sin <E2 - El)
ngEl) ’

2
With this equations we present two different schemes to solve the problem: the

classical method, which reduces first and second Gauss equations to a unique nonlinear
equation, solved by fixed point method, and the modified Gauss scheme, which solve
directly the nonlinear system formed by both Gauss equations.

and
X =

sin ( (13)
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2.1 Classical Gauss method scheme

In the classical method, an only nonlinear equation is obtained by, substituting second
Gauss equation (8) into first equation (9):

y=1+X(+a). (14)

Them a fixed-point scheme is used to estimate the solution of (14), making a first
estimation of the ratio , yg = 1, and by using the first Gauss equation to get xg:

m
Yo
From the definition of x in equation (12), it is possible to calculate cosine and
sine of the half difference of eccentric anomalies, which is known to be between 0 an 7
radians, determining uniquely the difference of eccentric anomalies:

Ey,—F
Ccos <221> =1 — 2z, (16)

then

sin (E2gEl) = +v/4z0(1 — 20). (17)

Then, with equation (13), an estimation of X, Xy, can be calculated and used in
the reduced nonlinear equation (14) in order to get a better estimation of the ratio:

y =1+ Xo(l + $0).

This iterative process gets new estimations of the ratio, until a given tolerance
condition is satisfied. If there is convergence, the semi-major axis a, can be calculated
by means of equation (7), from the last estimations of ratio and difference of eccentric
anomalies, and the last phase of the process is then initiated, to determine velocity and
orbital elements.

The Gauss method has some limitations, as the critical observation angles spread,
in vy — 11 = m, where the denominator of equation (7) vanish. Moreover, it is known
that this method is only convergent to a coherent solution if the observation angles
spread is less than 70°, where this method has order of convergence 1. The ratio y
grows with spread, leading to an invalid solution, if it converge. So this method is
suitable for small spreads in observations, that is, observations which are close to each
other.

2.2 Modified Gauss schemes

It is possible to make a different approach to the problem, solving the nonlinear system
formed by both Gauss equations with different higher order iterative methods, instead
of solving a unique nonlinear equation, which have the ratio y as unknown.

Firstly, it is necessary to establish the nonlinear system to be solved. In this case
we can use the ratio v = y and the difference of eccentric anomalies, v = Ey — E1, as
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our unknowns, and substitute (12) and (13) in first an second Gauss equations, (8) and
(9), so the system F'(u,v) = 0 becomes:

2

u2+%<1—cos%>—m: , (18)
v —sinv
2

Let us note that [ and m are constants, with the input data, calculated with
equations (10) and (11). Moreover, it is easy to check that the jacobian matrix F’(u,v)
associated to this system is ill-conditioned, so the iterative methods used to estimate
its solutions must be robust enough. General information about iterative methods to
solve nonlinear equations and systems can be found in [4].

Firstly, we will use Newton’s method. Then, new estimations of the solution can
be deduced with the following iterative scheme:

2D = g8 _ pr (0= p(p®)), (20)

with convergence order up to 2. Also the well-known Jarrat’s method (see [5]) will be
employed, with forth order of convergence and iterative expression:

k1) k)

24D = o) = S3F () - F@0) 7 G (W) + F@) F ) 7 Fe® (21)

1

2
where y®) = z(k) — 2/ () =L p(2(0).

Moreover, a new family of methods is introduced:

where y®) = 2(0) —cF/ ()1 F(2(), A = ay F' () +ay F'(y®) and B = by F' () +
bo F'(y*)) which will be denoted by N5 methods and whose convergence order will be
proved to be five for some values of the parameters.

Theorem 1 Let F: D C R®™ — R" be sufficiently differentiable at each point of an
open neighborhood D of T € R™, that is a solution of the system F(x) = 0. Let us
suppose that F'(x) is continuous and nonsingular in Z. Then the sequence {x*)}3>¢
obtained using the iterative expression (22) converges to T with order 5 if c =1, ags # 0,

a] = —(%2, bl = &% and bQ = —ai.

In the last section, we will use a member of this family in order to compare the
precision of the calculated orbit with the other methods. In particular, we will take
az = b and its iterative expression is:

y® = 20— ()T () (23)
-1
D) = k) <_ Fz®) 45 Ff(yw))) (3 Fz®) 1 Ff(yw))) F (2001 p(y Ry,
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Let us remark that this new uniparametric family of methods has better efficiency
index than the well-known Jarrat’s method and it is more efficient from the computa-
tional point of view, as it gets higher order of convergence with the same number of
operations and only one more functional evaluation. In order to measure the efficiency
of an iterative method, the efficiency index is defined as I = p'/? (see [6]), where p
is the order of convergence and d is the total number of new functional evaluations
(per iteration) required by the method. In the particular case of the modified Gauss
method, the size of the nonlinear system involved is two; then, the respective efficiency
indices are Inewton = 1.1225, Ij4prqt = 1.1487 and Iy, = 1.1610. So, the new method
is specially appropriated to this problem.

All this Newton’s variants applied to the nonlinear system appearing in Gauss
method, (18), are expected to be at least so accurate as the classical scheme, but to
drastically reduce the number of iterations needed to find a solution to the problem, as
it will be seen later.

3 Comparing Gauss method schemes

Now, tests are needed to analyze the previously described schemes. For that purpose
a graphical application was developed with Matlab GUIDE (Graphical User Interface
Development Environment) to make graphical and numerical comparison. This pro-
gram, (see Figure 4) lets the user define or load reference positions vector and times
(in Julian Days) for two observations and, after setting the desired iterative method to
solve the nonlinear system, it determines the velocity vector in the first observation and
the orbital elements. Then, the orbit is plotted in both coordinate reference systems.
Some other information about iterates is also displayed in graphics and messages. It is
possible to choose other details, such as maximum number of iterations and the toler-
ance of the iterative scheme. It also lets the user to calculate ephemeris from reference
or user defined orbital elements and times. The schemes presented will work with 200
digits of mantissa as it uses variable precision arithmetics, so we can set more restrictive
tolerances.
The reference or test orbits we will use, found on [2], are:

e Test Orbit I:

71 = [2.46080928705339, 2.04052290636432, 0.14381905768815] e.r.
71 = [1.98804155574820, 2.50333354505224, 0.31455350605251] e.r.
t1 = 0JD to = 0.01044412000000 JD

0=30° w=10° i=15° a=4er. e=02 Ty=0m

e Test Orbit II:

[—1.75981065999937, 1.68112802634201, 1.16913429510899] e.r.
[—2.23077219993536, 0.77453561301361, 1.34602197883025] e.r.
0JD to = 0.01527809000000 JD

80° w=60° 1=30° a=3er. e=01 Typ=0m

QDS G
I
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vectares de Referencia
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Figure 4: OrbitDet, software developed for testing.

e Test Orbit III:

71 = [0.41136206679761, —1.66250000000000, 0.82272413359522] e.r.
75 = [0.97756752977209, —1.64428006097667, —0.04236299091612] e.r.
ty, =0JD to = 0.01316924000000 JD

Q =120° a=2er. e=0.05 Ty=0m,

w =150° ¢ =60°

o Test Orbit IV:

71 = [0.65241964490697, 3.80258035509303, 2.22750000000000] e.r.
73 = [—1.35626966531604, 2.95849708305651, 3.05100082701246] e.r.
t7, =0JD to = 0.04622903000563 JD

0 =145° w=45° i=45° a=45er. e=0.01 Ty=0m

By using the first test positions vectors and times, we can first compare the number
of iterations and estimated accuracy of classical (C'), Newton (), Jarrat (J) and new
fifth-order (N5) schemes described in this paper with as = 5, described in (23). As we
can see in Table 1, with tolerance = 107!%° higher order methods reduce significantly
the number of iterations, getting even more accuracy than the classical scheme.
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Scheme | Iterations | [|[x&+t1) — x®)||
C 54 1.8364e-101
N 8 7.3258e-133
J 5) 7.0e-200
Ny 4 1.0658e-108

Table 1: Comparison of different Gauss method schemes for reference orbit 1

Due to limitations in number of digits and format in observations data, and to the
last phase of calculations, some accuracy is lost, but it is hard to determine differences
in errors in the presented schemes. As far as results can be represented, errors in the
final results of the orbital elements, for classical Gauss method, are shown in Table 2,
where the exact orbit elements are compared with the calculated ones by means of the
classical method.

Errors C N J Ns

|a’ —al | 3.3032e-070 e.r. | 3.3032e-070 e.r.

e’ —e| 6.6064e-071 6.6064e-071
Ty — To| | 2.3162e-048 min | 2.0726e-069 min

i’ — i 3.0000e-198° 4.0000e-198°
|w — W] 1.6900e-069° 1.6900e-069°
I — Q[ | 2.0000e-108° 1.0000e-198°

@CMMSE

Table 2: Error in classical Gauss method for reference orbit I

Now we can compare the new schemes with the classical, seeing in Table 2 the
differences between the calculated orbital elements by the classical method and each
one of the modified methods. It can be observed that Jarrat’s and new fifth-order
methods obtain almost the same estimation of the solution than Newton’s method.
Nevertheless, the reduction in the number of iterations needed justifies the use of high-
order methods.

0~ 100 0—498

If we vary tolerance from 1 up to 1 , we can compare in Table 3 how
number of iterations grows, making it clear that solving the nonlinear system, instead
of reducing it to a nonlinear equation, does not increase number of iterations so fast as
the classical scheme.

Finally, in Table 4, we can compare the number of iterations needed for different test
orbits with different spreads in observations SP = vy — vy, to realize that the limitation
of spread is still present, but overall process is made faster, not increasing iterations
to find a solution in worse cases, that is, with bigger difference of true anomalies in
observation.
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Scheme | tol = 107199 | tol = 107198 | tol = 10498
C 54 106 172
N 8 9 10
J 5 5 6
Nj 4 5 5

Table 3: Iterations if varying tolerances, for reference orbit I

Test Orbit I | Test Orbit II | Test Orbit III | Test Orbit IV
Scheme | SP =12.23° SP = 22.06° SP = 31.46° SP = 30.29°
C 54 76 101 99
N 8 8 8 8
J 5 5 5 5
N5 4 4 5 5

Table 4: Iterations needed for different spreads

4 Conclusion

A new approach to the problem of orbit determination is proposed, consisting in solving
directly a nonlinear system formed by both Gauss equations, by means of well known
iterative functions as Newton’s and Jarrat’s and a new method which have higher
convergence order.

In the test of these variants of the Gauss methods, it is seen that they can reduce
significantly the number of iterations, making the process faster, so it is possible to
use more limiting tolerances to improve accuracy, without increasing much more the
number of iterations. Some limitations of the classical scheme are still present in the
alternatives introduced in this paper, such as spread limitation in observations, that
is, the difference of true anomalies of observations. As the ratio y grows with spread,
bigger spreads mean more iterations to find a solution, but in the proposed modified
schemes this increment is very limited. If the difference is greater than 70°, the process
will probably lead to invalid solutions, which makes Gauss method suitable only for
observations that are close enough.
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Abstract

In the present paper, by approximating the derivatives in the well known order
Ostrowski’s method and in an sixth order improved Ostrowski’s method by central
difference quotients, we obtain new free from derivatives modifications of these
methods. We prove the important fact that the obtained methods preserve their
convergence orders four and six, respectively, without calculating any derivatives.
Finally numerical tests confirm the theoretical results and allow us to compare
these variants with the corresponding methods that make use of derivatives and
with classical Newton’s method.

Key words: Central approximation, Steffensen’s method, derivative free method,
convergence order

1 Introduction

In the last years, a lot of papers have developed the idea of removing derivatives from
the iteration function in order to avoid defining new functions as the first or second
derivative, and calculate iterates only by using the function that describes the problem,
obviously trying to preserve the convergence order. In this sense, in the literature of
nonlinear equations can be frequently found the expression “derivative free”, referring
in most cases to the second derivative (see [3, 4, 5]). The interest of these methods is
to be applied on nonlinear equations f(z) = 0, when there are many problems in order
to obtain and evaluate the derivatives involved.
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There are different methods for computing a zero of a nonlinear equation f(x) = 0,
the most known of these methods is the classical Newton’s method

Tt = )
n

n=0,1,..., (1)

that, under certain conditions, has quadratic convergence.

Newton’s method has been modified in a number of ways to avoid the use of
derivatives without affecting the order of convergence. For example, replacing in (1)
the first derivative by the forward approximation

A [T R

Newton’s method becomes

Tpoq = Ty — fan)?
" " f(xn + f(zn)) = flzn)’

which is called Steffensen’s method [6]. This method has still quadratic convergence,
in spite of being derivative free.

When an iterative method is free from first derivative, authors refer to it as a
“Steffensen-like method”. Some of these methods use forward divided differences for
approximating the derivatives. For example, in [7] Pankaj Jain present a family of
Steffensen’s methods for solving nonlinear equations, with second and third order of
convergence. Other Steffensen-like method and its higher-order variants are presented
in [8] and a modified forward difference approximation is used in [9] in order to obtain
a third-order Steffensen’s method. Amat et al. in [10] considered a class of the general-
ized Steffensen iterations procedures for solving nonlinear equations on Banach spaces
without derivatives.

If we try to use the same strategy, forward-difference approximation, with the
fourth order Ostrowski’s method [11]

. _ f(xn)
Yn = TIn f/(-fn)’

(2)
Tyl = Tp— f(@n) f(yn) — f(@n)
" " P en) 2F(yn) — F(n)

the order of convergence of the new method goes down to three. For this reason, we
have used central differences to replace the first derivative. Classical Newton method
has been modified in this sense in the paper of M. Dehghan and M. Hajarian [12].
Using central approximation in (2), we obtain a variant of Ostrowski’s method
that preserves the convergence order four and is derivative free. In the same way, using
central approximation to substitute the derivative in the sixth order method proposed
by M. Grau et al. in [13] as an improvement to Ostrowski root-finding method, which
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iteration is:

o [fl=m)
T Py
_ Yn — Tn
A= 2 ) — fan) )
Zn = Yn — Mnf(yn)a
Tp+l = 2Zn — Mnf(zn)a

we obtain a new method that preserves the sixth convergence order and is derivative
free.

The rest of this paper is organized as follows. In Section 2, we describe our free from
derivatives methods as a variants of Ostrowski’s method and the improved Ostrowski’s
method, respectively. In Section 3, we establish the convergence order of these methods.
Finally, in Section 4 different numerical tests confirm the theoretical results and allow us
to compare these variants with the corresponding methods that make use of derivatives
and with Newton’s method.

2 Description of the methods

In [12], Dehghan et al. approximate the derivative by a central differences quotient
2f($n) ’

obtaining a variant of Steffensen’s method that is of second order of convergence and
derivative free,

fl(xn) ~

By using this approximation in the fourth order Ostrowski’s method (2), we obtain

a new method free from derivatives, that we call modified Ostrowski’s method free from
derivatives (ODF):

Tn41 = Tn —

L 2 (2)?
Un = ) — fam — (@) )
Tng1 = Tp— Qf(l’n)Q f(yn)_f(-rn) (6)

f@n + f(an) = f(@n = f(@n)) 2f(yn) = f(2n)

In [13], Grau et al. propose an improvement of Ostrowski’s method (3) and prove
that it has sixth order of convergence. By approximating the derivative by central
difference quotients we obtain a new method free from derivatives, that we call improved
Ostrowski’s method free from derivatives (IODF):

2f(33n)2
f(@n + f(zn)) — f(2n — f(xn))’

(7)

Yn = Tp —
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Zn = Yn — Qf(;/J:)_—x;(."L‘n) f(yn)’ (8)
Tn+l = 2n — Yn — Tn f(zn) (9)

2f(yn) — f(xn)
3 Convergence of the methods

In this section we analyze the order of convergence of the methods described previously.

Theorem 1 Let o € I be a simple zero of a sufficiently differentiable function f :
I C R — R in an open interval I. If xg is sufficiently close to o, then the modified
Ostrowski’s method free from derivatives defined by (5) and (6) has order of convergence
four.

Proof: Let e, = x,, — a. The Taylor series of f(x,) about « is:
fxn) = cren + cael, + ez + caep + O(e), (10)

fP(a)
S k=12,

Computing the Taylor series of f(z, + f(z,)) and substituting f(x,) by (10) we have
f(xn + f(zn)) =
=ci(14c1)en+ (crea + (14 ¢1)?e)e? + (2(1 + ¢1)e3 + cres + (1 4 ¢1)3e3)ed +
+(3(1+c1)?cacs + ca(c3 +2(1 + c1)es) + crea + (14 1) es)en + O(€D). (11)

where ¢, =

Analogously, the Taylor series of f(z, — f(xy)) is:
f(xn - f(xn)) =
= (1 — cl)clen + ((1 — 01)262 — 6162)6721 + (—2(1 — Cl)C% + (1 — 61)303 — 6163)6731 +
+(—3(1 — 61)26203 + CQ(C% — 2(1 — 61)63) + (1 — 01)464 — 0104)(3:11 + 0(62) (12)
Then, the quotient in (5) is:

2f ()2 . coe? N (2¢3 — c1(2 + 2)ez)ed N
fon + f(zn)) — f@n — f(20)) " a1 C%
4c3 Tca o 3cq 1 5
2 2 T O(ed). 13
( C? “+ cacs + C3 “ Cc1 — 46164 ‘n + (en) ( )
We obtain y,, — a taking into account (13)
Qf(l’n)Z

Yn — Q@ = €n — =
coe? B (2¢3 — c1(2+ c3)ez)el N
C1 C%
4c3 7 3
N ( ¢ Tecs c4

2
c?l’ — coc3 ct 1+ 4cieq

> et +0(ed). (14)
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Now, substituting (14) in the Taylor series of f(y,), we have

flyn) = coep -
C1
3 3
A 4e; Teacs 3¢4 4 5
+( 2+ - + +O(B). (15
(c% “ (ci{’ — CoC3 c? c1 +4ciey n (en) (15)

From (10) and (15) we obtain

9 2 2 2
fyn) = flzn) = —cren + <—C3 - al2t c1)03> ey +
C1

3 4 3
+ (02 2 ( < Teacs + 3¢ >> efl + O(ei). (16)

I—c+c c‘;) — C9C3 c% c1 + 4ciey

and

2(20% — 01(2 + C%)C3)> 63+
C1 "

3 4 3

+ <—C4 +2 < Y (Cf — coc — 702203 p 3 4c1C4>>> el 10@B). an
o “ “ ‘1

6) and (17), we finally obtain

2f (yn) — f(zn) = —cren + c2e? + <—03 —

Taking into account (13), (1

2
C C3
enil = —C2 <—C§ +c3+ c2> et +0(ed). (18)
1 1

This proves that the method is of fourth order. ([

Theorem 2 Let o € I be a simple zero of sufficiently differentiable function f : 1 C
R — R in an open interval I. If xq is sufficiently close to «, then the improved
Ostrowsky’s method free from derivatives defined by (7) -(9) has order of convergence
S

Proof: Let e, = x, — a. The Taylor series of f(z,) about « is:
f(xn) = cren + 026721 + c;;ei + C4efl + csed + 6662 + O(efl), (19)

(k)
/ ,(a),k:1,2,...

Computing the Taylor series of f(x, + f(z,)) and substituting f(z,) by (19) we have

where ¢, =

fan+ f(zn) = a(l+ea)en+ (a1 + (1+¢1)?) coess +
+(2(1+ )e3 4 crez + (1 + 01)303) es +
+ (3(1 4 c1)%cacs + 2 (3 + 2(1 + c1)es) +
+ e+ (1+ 01)404) efl +
+ (3(1+c1)es (c3 +c3 + cies) +4(1+ c1) eacat
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+ 2ca(cacs + cq + creq) + 105 + (1 + 61)565) e +

+ (2(1 + ¢1)? (3¢5 + 2(1 + c1)es) cat

+ 3 (3 +6(1 + c1)eaes + 3(1 + c1)?eq) +

+5(1 4 ¢1)eacs + (C§ + 2(cocs + ¢5 + c105)) +

+ c1c6 + (L4 ¢1)%¢) €S + O(ef). (20)

The Taylor series of f(x, — f(zy)) is:

f@n— f(@n) = —(=1+c1)eren+ (1—3c1 +¢}) coer +

(2(=1+c1)c3 — (=1 +c1)’cs — cres) b +

(=3(=1+c1)?cocs + c2 (3 +2(—1 +c1)e3) +

(—1+ 61)464 — C1C4) ei +

+(=3(=1+c1)es (3 + (=1 +ci)es) +4(—1+e1)3ereat

+ 2¢o(cacs + (=14 c1)eq) — (-1 + 01)505 - 6105) 6751 +

+ (—c3es +2 (4 — 6er + 3cf) caeat

+(=1+ c1)*(=7 +4er)eses + c2 (T — 6er)e3+

+ (77 +22¢1 — 30¢% + 203 — 50411) 05) +

+ (1 =71+ 15¢2 — 20¢5 4 15¢f — 6¢3 + C(f‘) cg) €S + O(er).
(21)

+
+
+

Substituting (20) and (21) in (7), gives us

o = w 2f (wn)? _
" ! f(@n + fzn)) = f(@n = f2n)
24z )" .
co€2 (202 —c1(2+¢f)cs) e
5 =+

= en—

551

&1
e 3c

< — coC3 — 022 3 + o + 46164)
1

4

1

2

1

1 €1
( —c (20 + 30%) ez 4 2¢8 (5 + 20%) cocq+
((6 +3c3 + cl) c3—C1 (4 +10¢% + cl) 05)) -
( 16¢5 + c1 (52 + 701) caes —4c2 (7 + 301) C5C4—

— 6102 ((33 + 1201 + cl) c3+c1 ( 13 — 106% + c‘f) 65) +
+c ((17 + 1762 + 801) €3Cq—
-5+ 20¢3 + 60‘11) c6)) e +0(el). (22)
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Now, substituting (22) in the Taylor series of f(y,) we have

2c2
flyn) = Czei + <—012 + 2¢3 + C%Cg) 6% +
5¢3 7
+ <622 _ et cicocs + 3cq4 + 4C%C4> ei +
(&) C1

—}—ci?) (—120‘2L +c1 (24 + 50%) cac3 — 2¢3 (5 + 20%) cacy+
1
+ e (= (643cf+c)ci+er (4+10cF +cf) c5)) ed +
+cl4 (2803 —c1 (73 + 130?) caes +2¢2 (17 + 100%) eyt
1
+ cfe ((37 + 16¢7 + 2¢1) ¢ + e1 (=13 — 10¢ + f) e5) +
+ & (= (17 + 1762 + 8¢t) czeat
+ c1 (5+20¢; + 6¢1) cg)) €5 + O(el). (23)

Using (19), (22) and (23) into (8), gives

2 (3 — 1 (1+ ) es) e

= = Yo~ pnf(yn) = 3 -
(g —2c (4+cF) Ses + ] (243c] + i) G +2¢] (L +26]) caea) €
‘i
- 01? (=105 + 2¢1 (15 + 2¢7) ches — 4cf (34 2¢1) caea + ¢ (T + 17¢ + 8¢t) czeat
+ cfea ((—18 —8cf +¢1) &5 + 1 (34 10c] +¢f) ¢5)) €5 + O(ep) (24)

and substituting (24) in the Taylor series of f (z,) we have

c2 (C% - (1 + C%) 03) er B

fn) = 2
B (4¢3 —2c1 (44 c}) Bes + 3 (2+ 3¢ + 1) &3 + 267 (14 263) cacu) €, B
o
— cl‘ll (—1003 + 2¢ (15 + 20%) ceg — 4c? (3 + 20?) ey +c (7 +17¢2 + 8611) c3cs+
+ oo ((—18 —8ct +¢) i3 + 1 (34 10cF + ) cs)) €S + O(el). (25)

Taking into account (24) and (25), we finally obtain

€n+l = Zp — O — an(zn) =
—2¢2 4+ c1 (1+2)e3) (=3 +¢1 (1 + ¢2) eac
(2 +alra) 3)§ sra(l+d) “)e2+0(e;). (26)
€1
This proves that the method is of sixth order. O
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4 Numerical results

In this section we check the effectiveness of the new methods ODF and IODF applied
to the solution of several nonlinear equations. We use equations (a) to (j) to compare
the obtained methods with their counterparts that make use of derivatives, that is,
Ostrowski’s method (OM) and improved Ostrowski’s method (/OM) and the classical
Newton’s method (NM).

(a) f(z) =sin’z — 22 + 1, a = 1.404492,

(b) f(z) =2% —e® — 32+ 2, a = 0.257530,

(¢) f(z) =cosx —z, a = 0.739085,

(d) fl2)=(z—-1° -1, a=2

(e) f(x) =23 —10, a = 2.154435,

(f) f(z) = cos(x) — xe® + 2%, a = 0.639154,
(g) f(x) =e" — 1.5 —arctan(z), o = 0.767653,
(h) f(z) = 23 + 422 — 10, a = 1.365230,

(i) f(x) =8z — cos(z) — 222, a = 0.128077,

(j) f(z) = arctan(x), o = 0,

Numerical computations have been carried out using variable precision arithmetics
with 256 digits in MATLAB 7.1. The stopping criterion used is |xg+1 — x| + | f(zr)| <
10719 therefore, we check that the iterates succession converge to an approximation
to the solution of the nonlinear equation. For every method, we count the number of
iterations needed to reach the wished tolerance and estimate the computational order
of convergence p, according to (see [14])

In(|zpg1 — x| / |2k — T—1])
In(|zy — 1]/ |Tk—1 — Tr—2])

(27)

The value of p that appears in Table 1 is the last coordinate of vector p when the
variation between its values is small. A comparison between methods using derivatives
and derivative free methods can be established. The behavior of the new methods is
similar to the classical ones of the same order of convergence, as theoretical results show.
It can be observed that new methods need more iterations than their partenaires, in
some cases, but when the initial estimation is not good and methods using derivatives
diverge, derivative free methods ODF and IODF converge quickly.
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f(x) | zo Iterations p
NM | OM | IOM | ODF | IODF | NM | OM | IOM | ODF | IODF
a) [1 [ 9]5 ] 5 5 5 ]2.00]4.00]6.00 | 4.00 | 6.00
b) [07] 7 | 5 | 4 5 6 [2.00]4.00]6.00][4.00 | 5.99
o |1 [ 8[5 ] 4 5 5 ]2.00]4.00]6.00 | 3.80 | 6.00
d) [15] 11| 6 [ 5 6 6 [2.00]4.00]6.00 [ 4.00 | 6.00
e) 8 | 5] 4 5 6 [2.00]4.00]6.00[4.00 | 5.99
f) 9 | 5| 4 6 | NC [2004.00]6.00[ 400 -
g) 9 | 5 | 4 5 5 200 ]4.00]6.00 [ 4.00 | 6.00
h) [15] 8 | 5 | 4 6 6 [2.00]4.00]6.00][4.00 | 6.01
) [1 ]9 5 ] 4 5 6 [2.00]4.00]6.00 [ 4.00 | 5.99
pl1r] 8] 5] 5 5 5 ]3.00]5.00 700|500 | 7.00
j) |25 NC|[NC]| 5 8 6 - - | 7.00 | 5.00 | 7.00

Table 1: Numerical results for nonlinear equations from (a) to (j)

5 Conclusions

We have used central quotient difference approximations for the first derivative in
Ostrowski’s method, that has order of convergence four and in a improved version
of Ostrowski’s method with sixth order of convergence, obtaining two new iterative
methods for nonlinear equations free from derivatives and we have proven that they
preserve their convergence order. The theoretical results have been checked with some
numerical examples, comparing our algorithms with a modified Newton’s method free
from derivative and with the corresponding methods that make use of derivatives.
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Abstract

This work has mainly methodical purposes. Although the ideal presentations
of the codes that we consider here appeared in [1, 2, 3] long ago, we give different
presentation of these ideals. We also show that Reed—Muller codes are connected
in some sense with Reed—Solomon codes by means of the trace function.

Key words: Reed—Solomon codes, Reed—Muller codes, group rings, trace function

1 Reed-Solomon codes as group codes

Let p be a prime, Q = F; a field of ¢ = p! > 2 elements and 1 its unit element. Let
(H,-) be a p-elementary abelian group of order g. The identity element of H (that is
also identity element of the group ring QH) will be denoted by e.

The following representation of Reed-Solomon codes as group codes plays a key
role in our approach.

For a given isomorphism of abelian groups ¢ : (H,:) — (Q,+) we consider the
following elements

uS:Zgo(h)SheQH, s=0,...,qg—2. (1.1)
heH

Theorem 1.1 For everyi, 1 <i < q—1 the subspace
Ri=Quo+...+Qui—1 < QQH (1.2)
is a Reed-Solomon [q, i, ¢+ 1 —1i],-MDS code and an ideal in QH. In particular

R = AQH). (1.3)
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It is well known that the code dual to a Reed-Solomon [g, i, ¢ + 1 — i]4-code is
itself a Reed-Solomon [¢q, ¢ — i, i + 1]4,-code. A similar relation remains valid in ring
theoretic terms.

Theorem 1.2 For everyi € 1,q — 1 the equality
AHDS (Rl) = Rq—i (14)

holds.

2 Basic Reed—Muller codes

Let now P be a subfield of order 7 in @), ¢ = 7. For any i € 0,q — 1 let w, (i) be the
m-weight of 1, i.e.
wr (1) = io(m) +i1(m) + . + im—1(7), (2.1)

where
i =io(m) + i1 ()T + oo F i1 ()T, (7)1 (m) €0, — 1 (2.2)

is a m-adic decomposition of i. Keeping the notation of (1.1) define the basic Reed—
Muller code of order k as

M (m, k) = > Qui. (2.3)

i€0,g—1, wr (1) <k

Then M (m, k) is a linear code of dimension M, (m, k) over @), where

M, (m, k) = Zi:o {’;’f}ﬂ (2.4)
(=g ()

Theorem 2.1 For every k € 0, (m — 1)m the code My (m,k) is an ideal in QH.

Note that if &k = (7 — 1)m then M;(m, k) = 7™ = q and My(m, k) = QH, so this case
is trivial.

3 Extended Reed—Muller codes

Let k < (m — 1)m and take a primitive element ¥ of the field Q). Consider a polynomial

Grlz) = 11 (z — 9. (3.1)

i€0,q—1, wx (1)<k
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Then Gj(x) is a polynomial over P and its degree is M;(m, k). Let Lp(Gg(z)) be the
set of all linear recurring sequences (LRS) over P with characteristic polynomial G (x).
It is well known [4], that the set L%q_Q(Gk(:r)) of all initial segments

u[ 07 q— 2 ] = (U(O), ceey u(q - 2))

of sequences u € Lp(Gg(z)) is the cyclic Reed—Muller [q — 1, My (m, k), dr(m, k)]r-code.
The distance of this code is defined as follows:

dr(m, k) = (p+ )7 — 1,

where s and p are respectively the integer ratio and remainder of m(w — 1) — k modulo
m—1 mr—1)—k=2sx(r—1)+p, 0<p<m—1. Adding parity check to this code
gives a [q, Mr(m, k), dr(m, k) + 1]z-code called the extended Reed-Muller code.

We show how this code is presented as an ideal in the group ring PH.

Let tr = trg be the trace function from the field @ to the field P and Tr = Trgg
its natural extension to group rings.

Theorem 3.1 The image
RMz(m, k) = Tr(Mz(m,k)) < PH

of the ideal M(m, k)<QH 1is the extended Reed—Muller [q, M;(m, k), dr(m, k)+1]z-code
over the field P.

Note again that if & = (7 — 1)m then RM (m,k) = PH is a trivial extended
Reed-Muller [g, ¢, 1]z-code.
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Abstract

The concept of multilevel network and some structural tools are presented in
order to analyze heterogeneous-type social networks and to show that this model
fits perfectly with several real-life heterogeneous-type complex systems, including
social systems and public transportation networks.

Key words: Complex networks, multi-scaled networks, hyper-networks, struc-
tural properties.

1 An overview of multi-scaled complex networks

The study of structural properties of complex networks is an attractive and fascinating
branch of research in applied mathematics, sociology (social networks, acquaintances
or collaborations between individuals), science (metabolic and protein networks, neural
networks, genetic regulatory networks, protein folding) and engineering (phone call
networks, computers in telecommunication networks, Internet, the World Wide Web)
(see, for example, [1], [2], [5] or [12] and the references therein).

The wide range of systems in the real world which can be modeled by complex
networks share behavioral and structural properties, and they can be studied by using
non-linear mathematical models and computer modeling approaches (see, for example,
[5], [10] and [13]).

Social networks analysis is used in the social and behavioral sciences, as well as
in economics, marketing, and industrial engineering ([13]), but some questions related
to the structure of social networks have been not understood properly. Starting from
the fact that a social network can be understood as a set of people or groups of people
with some pattern of contacts or interactions between them ([11],[13]), a first and naive
approach to social networks such as Facebook or Linkedin networks can give us the
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impression that all the connections or social relationships between the members of
those networks take place at the same level. But the real situation is far from this.
The real relationships amongst the members of a social network take place inside of
different groups.

In this note we will analyze in a non exhaustive way how to combine these different
levels into a multilevel mathematical model. For example, if we want to model how
a rumour is spread within a social network, it is necessary to have in mind that, on
one hand, different groups are linked only through some of their members and, on the
other hand, two people who know the same person don’t have necessarily to know each
other.

From a schematic point of view, a complex network is a mathematical object
G = (V, E) composed by a set of nodes or vertices V = {v;...,v,} that are pairwise
joined by links or edges {/1,...,{y}. We consider the adjacency matrix A(G) = (a;;)
determined by the conditions

= 1 if {Ui,'l)j} c E,
Y71 0 otherwise.

Hyper-graphs appeared as the natural extensions of graphs (see, for example [4] and
[7]). They are used in many applications to represent different concepts that graphs
cannot do. For example, ordinary graphs in Chemistry do not adequately describe
chemical compounds of nonclassical structure ([9]). A substantial drawback of the
structure theory is the lack of a convenient representation for molecules with delocalized
polycentric bonds. By using hyper-graphs, the defects of the structure representation
are eliminated.

Let X = {vy,va,...,v,} be a finite set. A hyper-graph on X ([4], [7]) is a family
H = (E1,Es, ..., Ey) of subsets of X such that:

(i) BE;#0 (i=1,2,...,m).
(i) | JEi = X.
i=1
A simple hyper-graph is a hyper-graph H = (F1, Ea, ..., E,,) such that

The elements v1,v9, . .., v, of X are called vertices, or nodes and the sets E1, Fo, ..., E,
are the hyper-edges or the hyperlinks of the hyper-graph. We say that a vertex wv; is
incident to edge Ej if v; € Fj;.

Two vertices are adjacent if there is a hyper-edge E; that contains both of these
vertices. The degree of vertex v; is the cardinality of the set of all hyperedges incident
to vertex v; and is denoted by dg(v;). The degree of edge Ej is the cardinality of the
set of all vertices incident to the edge F;. A simple graph is a simple hyper-graph each
of whose edges has cardinality 2; a multigraph is a hyper-graph in which each edge has
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cardinality < 2. A hyper-graph in which all vertices have the same degree is said to be
regular. The maximum degree of the hyper-graph H will be denoted by

A(H) = {)ng}({dH(v).

We can define a finite hyper-graph by its incidence matrix. The incidence matriz
B = (b;j) is defined by
1 ifo; € Ej,
bij =

0 otherwise.

with columns representing the edges E1, Fo, ..., E,, and rows representing the vertices
U1,02,...,0,. The adjacency matriz, A(H) = (a;;), of the hyper-graph H is a square
symmetric matrix whose entries a;; are the number of hyper-edges that contain both
vertices v; and vj, that is

e { 0 if i =j

N ’{EkGE:{’UZ’,Uj}CEkH, 1f27£’L

If we denote by D the diagonal matrix whose entries are the degrees of the vertices,
then A(H) = B(H) - B(H)T — D(H). A(H) can be regarded as the adjacency matrix
of a multigraph. We have to notice that the adjacency matrix of a hyper-graph does
not inform about the hyper-edges, hence it is not as useful as the incidence matrix.

But, as we can see, the concept of hyper-graph does not fit for modeling different
levels in social networks, since this model is only sensitive in a global way to the different
social groups, i.e., for each node it only takes into a ccount which social groups it
belongs, and not the actual relationships between the nodes or members belonging to
the same group.

In order to avoid this drawback, the concept of hyper-structure was introduced in
[6] since it represents special properties that cannot be regarded only in terms of graphs
or hyper-graphs. If G = (X, E) is a graph with n vertices and m edges, a hyper-graph
H for this graph G is a family H = (E1, E», ..., Ey) of subsets of X. Then, a hyper-
structure S = (X, E, H) is a triple formed by the vertex set X, the edge set E and the
hyper-edge set H.

Note that not every pair of vertices in the same hyper-edge has to be joined by
and edge or a link. So, we can have two or more vertices belonging to the same hyper-
edge but with no links (in terms of graph structure) between them. This makes the
difference with the hyper-network approach of [8], where every vertex belonging to a
hyper-edge is linked to all the vertices of that hyper-edge. But this approach is not
adequated for modelling social networks either, because, in fact, not only the members
(or nodes) belongs to a specific social group but also the links between them are part of
a specific social group. If we give colours to our represention, we have to color not only
the nodes (the members of the group) but also the edges (the links between them).

2 Mathematical Model and structural analysis

As we pointed out in the previous section, a sort of naive approach to heterogeneous-
type complex systems could suggest that hyper-networks and hyper-structures fit per-
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fectly to these real-life systems. The key-point that makes these mathematical model
not to be the best solution for heterogeneous-type systems has to do with the fact
that either hyper-networks and hyper-structures are node-based models, while many
real systems combine a node-based point of view with a link-based perspective. For
example, if we have a look again at an heterogeneous-type social network, when we
consider a relationship between two members of one social group(or several), we have
to take into account not only the social groups that hold the members, but also the
social group that holds the relationship itself, i.e., if, for example, there is a relationship
between two people that share the same working group and the same sport group, we
have to highlight if the relationship is due to share the same group of work or it has
sport nature. This fact is not particular of heterogeneous-type social networks and a
similar situation occurs, for example, in public transportation systems, where a link
between two stations belonging to several transport lines can occur as a part of different
lines.

In order to avoid this node-based nature of hyper-networks and hyper-structures,
we propose to introduce the following concept that combines the node-based with the
link-based perspective:

Definition 2.1 Let G = (X, E) be a (simple, directed or un-directed) network. A
multilevel network is a triple M = (X, E,S), where S = {S1,...,Sk} is a family of
subgraphs of G.

The network G is the projection network of M and each subgraph S; € S is
called a slice of the multilevel network M.

This mathematical model perfectly suits heterogeneous-type social systems as well
as other heterogeneous-type complex systems, since each social group can be understood
as a slice graph in a multilevel network and therefore we simultaneously take into
account the nature of the links (i.e. relationships) and the nodes involved.

It is easy to check that this new mathematical object extends both, the classic
complex network model and also the hyper-network model [4]. Let us point it out very
briefly. On the one hand, if G = (X, F) is a network, then it can be understood as a
multilevel network by considering M = (X, E,S), where S = {G}.

On the other hand if H = (X, H) is an hyper-network (i.e. X is a finite set of
nodes and H = {H;,..., Hi} is a family of finite subsets of X, each of them called and
hyper-link of H), then it can be seen as the multilevel set M = (X, Ex, Sy), given by

Sy ={Ku,,...,Ku,},

where Ky, is the complete network obtained by linking every pair of nodes of H; and

k
By = Ku,-
j=1

By using similar argument we can show that every hyper-structure [6] can be understood
as a particular multilevel network, by considering one slice network for each hyper-link
in the hyper-structure and each slice graph being a set of isolated nodes.
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Once we have introduced this new and novel mathematical object, we have to give
suitable structural parameters to analyze it. We can give natural extensions of many of
the usual tools of the complex networks’ analysis, such as the clustering coefficient, an
adjacency matrix/tensor, a natural network representation as a tripartite network or a
geodesic structure, among many others. For example, if we want to introduce metric
tools in a multilevel network M = (X, E, S), we first have to give the notion of path and
length. A path P in M = (X, E,S) is a set of the form P = {(¢1,---,4,),(S1,--+,5¢)}
such that

(i) (1,---,4,) is a sequence of links ¢y,---,¢, € E,

(i) (Si,---,5,) is a sequence of slice graphs Si,---,5, € S,

i11) For every 1 < j < ¢, we have that ¢; € S, i.e. £; is an edge in the slice graph S;.
J J J J

By using this concept we can introduce a metric structure in a multilevel graph M =
(X, E,S) as follows.

Definition 2.2 Let M = (X, E,S) be a multilevel network, 3 > 0 fixred and P =
{(l1,--,4q),(S1,--,5¢)} be a path in M. The length of P is the nonnegative value

where 1S 45
N 1 3 j 7—1;
AG) = { 0 otherwhise.
The distance in M between two nodes vi,ve € X is the minimal length among all
possible paths in M from vy to va.

If we take B = 0, the previous definition gives the natural metric in the projection
graph (under some constraints), while if 5 # 0, we introduce new metrics that take into
account, not only the global structure of the projection network, but also the interplay
between the slice networks, that helps to model the multi-scale nature of real-life social
networks.

In this work we introduce this type of parameters and many other structural tools
for analyzing multilevel networks and we present some relationships between them and
the corresponding parameters of the projection and slice networks. The analytical
results obtained will support the validity of this model in real life heterogeneous-type
complex systems, including social systems and public transport networks.
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Abstract

The theory and tools of Complex Networks have been few applied to Image
Analysis and Computer Vision problems. This paper presents a new application
for detecting interest points in digital images. We associate a spatial and weighted
complex network to each image and propose two different methods for locating
these feature points based on both local and global (spectral) centrality measures
of the corresponding network.

Key words: Interest Points, Feature Detection, Image Analysis, Computer Vi-
sion, Geometrical Networks

1 Introduction

Feature detection is an essential stage in many Image Analysis and Computer Vision
systems [2]. Some of the most low-level features to be detected in an image are the
specific positions of some distinguishable points like corners. Interest points are a set of
pixels in an image which are characterized by a mathematically well-founded definition
[6]. These keypoints (usually, the corners which appear at the intersection of two or
more image edges) present some interesting properties [7]: in particular, they have
a clearly defined position in the image space, they are rich in terms of information
content, and they are also stable on local and global changes in the image domain.
These point variations are mainly due to image perspective transformations (i.e. scale
changes, image rotations or translations) or due to illumination changes. Interest points
are commonly used as local features in many image applications like content-based
image retrieval or object recognition. In particular, the corresponding feature points
in overlapping images can be matched among them using stereo vision techniques for
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3D image reconstruction. Moreover, these feature points can also be good indicators
of object boundaries and occlusion events in image sequences.

Some of the most known interest point detectors are: Moravec algorithm, Har-
ris and Stephens algorithm, multi-scale Harris operator, SUSAN detector, genetic-
programming algorithms, and affine-adapted interest point operators, among others.
[11] Moravec algorithm (1980) was one of the first proposed algorithms and it defines
the corner strength of a point as the smallest sum of squared differences (SSD) between
the point patch and its neighbors patches (horizontal, vertical and on the two diago-
nals). The Harris and Stephens detector computes the locally averaged moment matrix
using the image gradients, and then combines the eigenvalues of the moment matrix to
compute each corner “strength”. Multi-scale Harris detector works at different scales to
produce a more robust detector which responds to interest points of varying sizes in the
image domain. The SUSAN operator (acronym for Smallest Univalue Segment Assim-
ilating Nucleus) is highly robust to noise and it finds corners based on the fraction of
pixels that are similar to the center pixel within a small circular region. Some authors
[12] have introduced genetic programming (GP) methods to automatically synthesize
image operators aimed to find the interest points in an image. These GP operators use
fitness functions which measure the stability of the operators through the repeatability
rate, and also promote the uniform dispersion of detected points. Finally, detector
which add robustness to perspective transformations has also been proposed [7]. These
affine invariant interest points can be obtained through an affine shape adaptation pro-
cess where the shape of a smoothing kernel is iteratively warped to match the local
image structure around the interest point. Schmid et al [8] have proposed different
techniques to compare the interest point detectors.

The purpose of this work is to introduce a novel approach to computing the interest
points of an image by using complex network analysis. We associate a weighted geo-
metrical and fast-computable complex network to each image that gives some valuable
information about the location of the interest points and we can rank the regions of
an image according to its interest in the whole image. The use of complex networks
with a spatial structure are usual in several real-world applications [1], but this work
presents a new use in the realms of Computer Vision. Since the classical mathematical
definition of the interest points are mainly of local nature, we use local measures of the
associated network and we discuss the use of other tools and properties of the weighted
geometrical network.

2 Analyzing images through complex networks

The relevance and complexity of problems stated in Computer Vision area have mo-
tivated the use of different approaches coming from a wide range of scientific areas,
including partial differential equations [9], wavelets [10] or physic-based models [13]. In
this work, we propose a mathematical model based on complex networks that can help
to give alternative solutions to some problems that come from Computer Vision.

The use of tools and techniques of complex network’s analysis in problems dealing
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with Computer Vision is an appealing scientific topic that have been stated in the last
years [4] and that it is far from being well understood. The basic philosophy is to
associate a complex network G = (X, E) to each image I in such a way that we can
analyze some properties of I from the structural and dynamical properties of G (see, for
example [4]). One of the first mathematical models related to this idea was introduced
in [3]. If I is an gray-level image of N x N pixels, we can associate to it a weighted
network G = (X, E) of | X|=N? nodes such that each node correspond to each pixel of
I and the weight of each link (i,j) € FE is:

w(i, ) = | F; = F;

where || - |2 denotes the Euclidean norm and E) € R™ is a feature vector that describes
some local visual properties about the respective image pixel [3]. Using the L-expansion
of such network G, in [3] it was obtained an image characterization method and an image
segmentation algorithm that showed the link between visual properties of an image [
and local structural properties of G. Other examples of complex networks associated
to an image can be found in [5], where a visual saliency detector method related to a
Markov chain on other associated network G was proposed.

The main disadvantages of the associated networks introduced in [3, 5] deals with
the computational complexity on such networks when the number of pixels is big.
This inconvenience comes from two different facts. On the one hand the number of
nodes of the associated network G is the same that the original image I, which makes
computations on G to be quite slow and on the other hand, the weighted network is
always a complete weighted graph, which implies inefficient computations (in time and
memory). As a computationally efficient alternative, we propose considering a complex
spatial network G with less nodes and much less links (actually it is a sparse network)
associated to each image I.

We start with an image I of N x N pixels, such that for each of them p € I we
have its intensity value f(p) € [0, K]. We compute an watershed-based segmentation
R = R(I) = {r1,...,rx} of I and we choose a set of pixels X(R) = {p1,...px} C I
such that for every 1 < j < k, p; € r;. There are several methods for spoting these
pixels from the segmentation R (for example, by choosing the centroid of each region,
at random, and many others), but the results obtained are similar since all the pixels in
a given region have similar intensity. By using these pixels X (R) = {p1,...px} as nodes
we construct a weighted, sparse and spatial network G(I) = (X (R), E) by defining each
link weight w(p;, p;) as follows

w(ps,p;) = { | f(pi) . f(pj)l ftﬁlef;lig are adjacent regions in R(I), 1)
Note that in this case the weighted associated network is sparse and its number of
nodes k < N, which makes that the computations on such networks be much more
efficient than those previously stated in the associated networks. It is easy to check that
the networks introduced in [3] or [5] can be also defined by using this model, simply
by considering the appropriate feature vector describing some visual properties of each
region r;.
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3 Interest points and centrality measures: local vs. global
approaches

The main goal of associating a (weighted) complex network to each image is to analyze
some visual properties of the image from the structural and dynamical properties of
the corresponding network. In this section we spot the interest points of an image
I by using some structural properties of its associated network G(I). The heuristics
behind the proposed methods deal with the fact that the interest points are related
to points with a high gradient values compared to their surrounding pixels. As we
pointed out in the introduction, many of the classic algorithms for the detection of
interest points (such as the Moravec, or the Harris and Stephens algorithms) are based
on this idea, and therefore we should try to translate them into structural properties
of the associated network. Under the perspective of discrete mathematics, having in
mind that the associated network G([I) is a weighted network related to the difference of
intensity between adjacent regions of the image, then points with high intensity gradient
are related to points of high centrality in the associated network. Hence, we can spot
the interest points of an image by computing the centrality of the corresponding nodes
in the associated network.

There are many different centrality measures of the nodes of a network (see, for
example [1]), each one of different nature and with different applications. The range
of centrality measures goes from the local level (i.e. only taking into account the
neighbors of each node) to the global scale (i.e. considering the whole structure of the
network). Therefore, we propose two different methods according to these two scales,
that are the classical level in the analysis of complex networks. In the local level, we
can give an interest point detector based on the strength of each node, and therefore
the interest points are related to nodes with high strength centrality. Let us remind
that the strength of a node i € X in a network G = (X, E) is the value

s(i)= Y w(ij),

(i,9)EF

where w(i, j) is the weight of the link (i,7) € E. After some normalization, this value
allow us to rank the nodes of the network by a local criterium that helps to locate the
interest points.

If we also consider the global scale of the associated network G(I), we can also
get an alternative method to detect the interest points, by computing the Bonacich
centrality of G(I) (which is one of the most relevant example of global-scale centrality).
This centrality measure is related to the dominant positive eigenvector of the adjacency
matrix of G(I) (see, for example [1]). After some normalization, the Bonacich centrality
of each node help us to give a global ranking of the nodes in order to spot the interest
points of a considered digital image.

Fig. 1 shows the results produced by our two proposed local and global centrality
approaches on the same Cameraman image at a 256 x 256 spatial resolution. The
global centrality method (i.e. highest-eigenvalue method) was applied by filtering the
best 30% of the points with highest interest producing 9 interest points located at the

@CMMSE Page 431 of 1328 ISBN 13: 978-84-613-5510-5



R. CRIADO, M. ROMANCE AND A.SANCHEZ

head region. The local centrality method (i.e. strenght-of-vertex method) was applied
by filtering the best 40% of the points with highest interest produced 49 interest points
uniformly distributed along the strongest edge regions in the image.

Figure 1: Visual comparison of our interest point detectors based on global centrality (on the
left) with the interest point detector obtained by using the local centrality (on the right).
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Abstract

Electron tomography combines the acquisition of projection images using the elec-
tronic microscope and techniques of tomographic reconstruction to allow the structure
determination of complex biological specimens. This kind of applications requires an
extensive use of computational resources and considerable processing time because 3D
reconstructions of high resolution are demanded. The new tendency of high performance
computing heads for hierarchical computational systems, where several shared memory
nodes with multi-core CPUs are connected. In this work, we propose a hybrid parallel im-
plementation for tomographic reconstruction of cellular specimens. Our results show that
the balanced and adaptative algorithm allows an ideal speedup factor when large datasets
are used.

Key words: hybrid parallel computing, heterogeneous clusters

1 Introduction

The study of 3D structure of cellular specimens is essential for understanding the cellular role
played by the specimen in the environment where it is located [9]. The electron microscope
allows us to tilt the specimen around one or more axes and to take views from different direc-
tions collecting the projection images in digital format. The technique which makes possible

to determine the 3D structure of biological samples from two-dimensional projection images
obtained by electron microscope, is known as electron tomography (ET) [6]. Weighted back-
projection (WBP) is the standard 3D reconstruction algorithm in ET. Furthermore, because of
the resolution needs, ET of complex biological specimens requires large projection images.
So, ET requires an extensive use of computational resources and considerable processing time
to allow the 3D structure of cellular specimens [11]. High performace computing (HPC) has
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Figure 1: Acquisition of a 2D projection image while the object is dilegound an axis.

been widely investigated for many years as a means to address large-scale and grand-challenge
applications. In the particular, in the field of ET, HPC allows determination of 3D structure of
large volumes in reasonable computation time [4, 5, 7, 8].

On the other hand, Moore’s law estimated that the number of transistors that can be placed
on an integrated circuit would double approximately every two years. Given the actual physi-
cal limitation of this prediction, new types of architectures begin to appear getting less com-
puting time. Nowadays, supercomputers are based on hierarchical computer systems which
consist on several shared memory multicore nodes interconnected. Therefore the parallelism
of this new generation of computer systems must be exploited at two levels: one level of pa-
rallelism distributed among the interconnected nodes and a second level of parallelism shared
within the node itself [10]. In this paper, we propose a hybrid parallel implementation that ex-
ploits the parallelism of the heterogeneous architectures for 3D reconstruction of cellular spe-
cimens. Message passing libraries (OpenMPI) for communications between distributed nodes
and POSIX-Thread for parallel processing within each node have been used. The results show
that the balanced distribution of workload and the optimal choice of processors determine the
goodness in the execution times obtained.

2 Electron Tomography

Tomography refers to the cross-sectional imaging of an object viewed from different angles.
The electron tomography (ET) consists on the three dimensional (3D) reconstruction of a ob-
ject from the projected two-dimensional slices which were obtained through the electron mi-
croscope. The biological specimen is placed inside the electron microscope, it is tilted over a
limited range and electron beams will cross the specimen resulting a projection image with the
same object area (see Fig. 1). The specimen is tilted typically f@6% to +70°, at small tilt
increments (1-2°). These projection images will be acquired using the so-called single-axis
tilt geometry and they will be recorded for each tilt angle via usually in CCD cameras. In the
field of ET these projection images are known as sinograms.

The most common reconstruction methods in ET are Weighted BackProjection (WBP)
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Figure 2: 3D reconstruction from projections using the WBP method.

and terative reconstruction. Specifically, our work looks at first method, that is, WBP. Under
the assumption that projection images represent the amount of mass density encountered by
imaging rays, this method simply distributes the known specimen mass present in projection
images evenly over the reconstruction volume. When this process is repeated for a series
of projection images recorded at different tilt angles, backprojection rays from the different
images intersect and reinforce each other at the points where mass is found in the original
structure (see Fig. 2).

3 New tendencies of High Performance Computing and ET

Parallel computing has been widely investigated for many years as a means to provide high-
performance computational facilities for large-scale and grand-challenge applications [12].
HPC addresses the computational requirements of different applications by means of the use
of parallel computing on supercomputers or networks of workstations, sophisticated code opti-
mization techniques, intelligent use of the hierarchical systems in the computers and awareness
of communication latencies. In ET, the reconstruction files are usually large and, as a conse-
quence, the processing time needed is considerable [1]. Parallelization strategies with data
decomposition provide solutions to this kind of problem [4, 5, 7, 8].

The single-axis tilt geometry in ET involves the application of a computational model
widely used in parallel computing known as SPMD (single-program multiple-data). In this
model, all nodes of the parallel system run the same program for different data subdomains.
In ET, the SPMD model consists on the decomposition of the volume in subsets of 2D slices
which will be distributed among different nodes. This computational model led us to implement
different strategies based on MPI parallel master-slave paradigm to study the tradeoff between
distributed load and the number of nodes that perform the processing in distributed systems
[3].

On the other hand, Moore’s law estimated that the number of transistors that can be placed
on an integrated circuit would double approximately every two years. Given the actual physical
limitation of this prediction, new types of architectures begin to appear getting less computing
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Figure 3. Decomposition of the global 3D problem into multiple, indhe®nt reconstruction
problems of slabs (i.e. subsets) of slices that are assigned to different nodes in the parallel
computer. Each column represent a 2D slice orthogonal to the tilt axis of the volume to be
reconstructed.

time. In fact, the new architectures are based on a hierarchical computer system consisting of a
distributed memory system where each node is a shared memory system with several cores and
different architectural features. The SPMD parallel computation model and the new architec-
tures lead us now to study the data parallelism at two levels: one level of parallelism distributed
among the interconnected nodes and a second level of parallelism shared within the node itself.
Therefore in this case, the SPMD model assumes that the different data subdomains will be
distributed among the nodes and they will be again distributed within each node assigning the
same workload to each core (each thread) of the shared memory system. We can observe this
fact in Fig. 3.

3.1 Hybrid approaches for 3D reconstruction of cellular specimens

In this paper, we propose a parallel algorithm with centralized load balancing for the 3D re-
construction of cellular specimens, BAHPTomo (Balancing Adaptative algorithm for Hetero-
geneous Parallel systems in Tomography).

The proposed algorithm has two steps. During the first step, the program evaluates the per-
formance of each node in the distributed system. To this end, node 0 sends the same sinogram
to each node using MPI and each node creates a thread to perform the processing of the sino-
gram. Finally, node 0 gathers the time spent by each node in the processing of the sinogram. It
can be observed in Fig. 4, in the first diagrams of step 0.

In the second step, node O does a final distribution of workload among nodes. Node
0 decides what is the best choice of cores for each node and what is the optimal workload
distribution among nodes and cores. The data subsets are sent from node 0 to each node. Each
one receives the new workload and it creates as threads as cores; it can be seen in Fig. 4 in the
first diagram of step 1. Each thread runs the same reconstruction algorithm for different data
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Figure 4: Diagrams of the different steps that BAHPTomo follows.

subse(it was explained in Fig. 3). Thus, each node will have a different subset of reconstructed
images (see the last diagram of Fig. 4). These slices or reconstructed images will form the 3D
reconstruction of the biological specimen.

In order to evaluate the algorithm eficency described above, other reconstruction algorithm
was implemented. This algorithm has been called HPTomo (Hybrid Parallel algoritm for To-
mography). It does not perform the testing step and it takes an equal number of processors in
each node. The criterion for the workload distribution is according to the number of processors
on each node.

3.1.1 Static Load Balancing

The different characteristics of each node of the heterogeneous system should be considered to
do a balanced distribution of workload [2]. The approach explained above (BAHPTomo) takes
into account the one hand the time spent in processing a sinogram on each node and on the
other hand, the number of processors available on each node. This load balancing strategy will
be formalized mathematically below.

We consider a heterogeneous computing system compof¢daodles, where each node
is a shared memory system consistingmrprocessors witlj =0, ..., N—1. TSis the total
number of sinograms to be distributed between the different nodes\Vansl partial work
assigned to each node. The apportionment of worki®agroposed in this article can be
mathematically expressed as follows:

kj = pltitm'” (1)
j
kixTS
Wi = o1 (2)
Y0 Kj

, Wheretmin is the time spent by the fastest node for the processing of a sinograr),iand
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the time spent by each node for processing of the same sinogram.

3.1.2 Optimal choice of processors

The heterogeneous systems have several nodes with different computational performances as
we already have explained previously. These nodes can be composed of the same or different
number of processors. If we decide to do experiments, we will have to scale the number of
processors to study the performance of each one. Then, we will have to decide how many
processors choose in each node for obtaining the best performance.

Different processor combinations have been tested and we have concluded that to choose
the larger number of processors in the fastest node is the optimal choice. This conclussion has
been taken into account in our algorithm (BAHPTomo) so that not only the application adapts
to the architecture, also the architectures adapts to the application. The algorithm applied to
choose the best processors is next explained.

Algorithm 1 Choice of processors

Wiile total > 0 do
i <- i +1
posM n <- posM nTi ne(t Parc)
i f MAXTHRDSMAXTHRDS[ posM n] >= total - (nunprocs-i) do
MAXTHRDS[ posM n] <- total - (nunprocs-i)

end if

total <- total - MAXTHRDS[ posM nj
end while
4 Results

Datasets based on a synthetic mitochondrion phantom [4] have been used for the evaluation
of the hybrid implementations. These datasets consisted of 180 projection images taken at a
tilt range[—90°,4+-89°] at interval of £ and they had different sizes: 128, 256, 512 and 1024.
The dataset referred to as 128 had 128 sinograms of 180 1D projections »flP3%pixels to

yield a reconstruction of 128 128x 128 voxels, and so forth. The number of processors has
been increased following a geometric progression at the rate oE2(2...,32}, and up to

reach eventually the total number of processors among the three nodes, that is, 56 processors.
Each experiment was evaluated three times and the average times for the reading, processing,
writing, comunications, testing, balancing and total time were computed.

4.1 Preliminary study of our heterogeneous cluster

The hybrid approaches were implemented in C, using MPI and POSIX-Thread libraries to
exploit the parallelism on node and core levels. Our models were evaluated in a heterogeneous
cluster, which has three nodes with different architectural features. The first node consists on
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Table 1: Processing time of 1 sinogram in each node.

Node Sin. 128x180  Sin. 256x180  Sin. 512x180  Sin. 1024x180
NO: Opteron 0,0745709 0,287073 1,12996 4,56124
N1: Xeon 00477531 0,179863 0,700783 2,80184
N2: Itanium 0,193778 0,738971 2,88673 11,5836

8 processors Opteron Quad Core, it has 64 GB of RAM and the memory asdd&iMA.

The second node has 2 processors Intel Xeon Quad Core and it has 16 GB of RAM. Finally,
the third node consists on 8 processors Intel Iltanium Dual Core, it has 64 GB of RAM and the
memory access is NUMA.

A preliminary study of our heterogeneous cluster has been performed. The processing
time of the same sinogram in each node has been measured. We can notice in Table 1 that N2
is 1,56 times faster than N1, N2 is 4 times faster than N3 and N1 is 2,6 faster than N3. Several
tests have been done concluding that the best distribution of processors is obtained when more
processors of the fastest node are chosen. The BAHPTomo algorithms take into account this
event.

4.2 Speed-up for heterogeneous clusters

New indicators for the measurement of the performance must be used in heterogeneous envi-
ronments. We will consider the heterogeneous speed-up suggested in [10]H®&ti3; /Ty,
whereT; is the execution time in the fastest nodg,is the execution time using nodes. Fol-

lowing the same notation that Eq. 2, the ideal value of HS will be:

HSIdeal— %tm'” Z) *tmin* p’ 3)

, WhereP is the total number of processors.

We can observe in Fig. 5 that BAHPTomo achieves the ideal speedup when the number of
processors and the size of datasets are increased. However, we can see too, if we works with a
dataset of 128 and the algorithm is runned in 32 or 56 processors, the speed-up of BAHPtomo
decreases. This inflection point occurs because each node has few sinograms to process and
then the load balancing does not mean a great advantage between the algorithms. In fact, we
can sense that the performance of BAHPtomo converges from 56 processors on.

On the other hand, we can see in Fig. 5 that penalties for testing and communication times
are not significant because the speedup of BAHPTomo is very well suited to ideal speedup.
This fact does not affect to the curvature change shown in Fig. 5 with 128 sinograms and 32 or
56 processors, because although there are more communications, they are lighter. Finally, we
can observe in Fig. 5 that BAHPtomo algorithm gets an ideal speedup when large datasets are
used, where we can obtain a speedup almost of 30 with 1024 sinograms and 56 processors.

@CMMSE Page 440 of 1328 ISBN 13: 978-84-613-5510-5



HYBRID MPI/PTHREADS IMPLEMENTATIONS INET

Speed-up 128 Sinog. Speed-up 512 Sinog.
35 37
30 = 30 /—
: 25 s 25 /
-?!J 20 .g 20 /
.;H,' 15 —+—BAHPiomo L% 15 & —+— BAHPtomo
T —#—HPtomo T . 2 o —#—HPtomo
5 «— Ideal-Ptoma g - A Ideal-Ptomo
0 a
2 4 a8 16 32 56 2 4 8 16 32 56
Mumber of processors Mumber of processors
Speed-up 256 Sinog. Speed-up 1024 Sinog.
35: 35
30 AL 30 -
25 et 25 .
g « 2 >
e 3 20
g i . —4—BAHPtomo :%‘ - —+— BHPtomo
x 10 i . —si— HPtG MO =z 4 ¥ A —s— HPtama
5 s / +— |deal-Ptomo 5 a / +— |deal-Ptomo
o F o F
2 4 8 16 32 56 2 4 8 16 32 56
Number of processors Number of processors

Figure 5: Speedup for datasets of 128, 256, 512 and 1024 sinograms.

5 CONCLUSIONS

In this work, the computational requirements to allow the 3D reconstruction of cellular spe-
cimens through ET have been shown. The new tendencies of high performance computing
lead us to implement hybrid algorithms in order to exploit the parallelism at node and core le-
vels. So, a hybrid C algorithm have been implemented using MPIl and POSIXThread libraries.
Static centralized load balancing and optimal choice of processors are taken into account in
this algorithm (BAHPtomo) and a balancing method has been proposed. BAHPTomo has been
evaluated in a heterogeneous cluster and it was compared with another algorithm (HPTomo)
which does not take into account the different features. The results have shown that BAHPtomo
algorithm gets an ideal speedup when large datasets are used. In fact, the penalties for testing
time are offset by optimal load distribution. Our results demonstrate that to use our suggested
balancing method has been crucial to achieve a speedup nearly at 30. So, we can conclude that
it is very important to use a good load balancer to obtain the best performance in heterogeneous
environments.
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Abstract

Modern personal computers, including laptops, notebooks and perhaps smart-
phones, often have a low-resolution camera and a powerful graphic card. In this
paper we present a system that uses these resources (camera and GPU) to build
a low cost virtual 3D Human Interface Device. To do this, we apply an optical
flow algorithm which is characterized by its high degree of parallelization. The
experimental results confirm the performance of our system.

Key words: Virtual 8D-HID, GPU, Optical Flow Algorithms.

1 Introduction

Today, personal computers, laptops, notebooks and smartphones have an integrated
low-resolution camera (high-resolution in the case of smartphones). Besides, most of
them have a graphic processing unit (GPU), a specialized processor that offloads 3D /2D
graphics rendering from the microprocessor.

A new computing parading is to use a GPU as a stream processor. This concept
turns the massive floating-point computational power of a modern graphics accelerators
into general-purpose computing power. In certain applications, this allow us to increase
the performance in several orders of magnitude compared to a conventional CPU.

Recently, NVIDIA! began releasing cards supporting an API extension to the C
programming language CUDA (Compute Unified Device Architecture), which allows
specified functions from a normal C program to run on the GPU’s stream processors.
This makes C programs capable of taking advantage of a GPU’s ability to operate on
large matrices in parallel while still making use of the CPU when appropriate.

Being aware of these capabilities (CUDA compatible GPUs and a low-resolution
camera), in this work we present a system that uses these resources to build a Low Cost
Virtual 3D Human Interface Device (3D-HID). Users can interact with the environment

"http://www.nvidia.com
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(real 3D world) by simply moving the camera (in the case of lightweight devices such as
smartphones) or moving objects (e.g. hand) in the vicinity of the camera (e.g. laptops).
In order to do this, we use an optical flow algorithm, which is characterized by its high
degree of parallelization.

In order to point out the aim of this paper, we briefly review some aspects that
will be considered. Thus, in section 2 we explain the optical flow algorithms. Section
3 is devoted to the built system. The experimental results are showed in section 4 and
finally, section 5 summarizes our conclusions.

2 Optical Flow

Optical flow is the 2D vector field projection of the 3D velocities of object points. In
Figure 1 a pair of frames of a classic test sequence is shown, with the true optical flow
overimposed. As can be seen, the motion of the objects in the scene is well represented
by the optical flow.

both frames and optical flow

Figure 1: Optical Flow example, from two frames (left) the motion of the scene is
measured for each pixel. The resulting vector field (red arrows) is shown in the right
side of the figure. Both frames are overimposed.

In the literature, optical flow algorithms are classified in: correlation based tech-
niques, frequency based techniques and gradient based techniques.

Correlation based techniques or block matching algorithms [1] try to maximize a
measure of similarity between patches (taken from two consecutive frames) centered
in a given pixel. The displacement that maximizes the selected measure divided by
the time interval within the acquisition of the frames is the velocity of the pixel (see
Figure 2).

Frequency based techniques use a set of tuned spatiotemporal filters to search for
the velocity of a pixel [3].

Gradient based techniques use the well known Optical Flow Constraint (OFC)
shown in equation 1 in order to compute the optical flow [4].
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t frame t+1 frame
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Figure 2: Optical Flow computation using a block matching algorithm. The neighbor-
hood in the first frame (blue dotted square) is found in the second frame in different
position. This displacement defines the Optical Flow vector for each pixel.

LOf _0fde 0fdy Of O oo o
ot Oxdt Oydt Oz 0

Equation 1 makes the assumption that intensity changes in a sequence of images are
only due to the movement of the objects in the scene: a single pixel will have constant
brightness in the different positions that it takes during the sequence. Unfortunately,
the Aperture Problem (see [5]) states that there is no way to recover the complete
optical flow vector using only local (one pixel) information.

In Figure 3 a synthetic example is shown. As can be seen, OFC holds for the
selected pixel (4, 1), (—1,—1) velocity verifies the obtained equation: replacing % by
1, 8—5 by 2 and %{ by 3, u + 2v = —3 is obtained. Unfortunately, a suitable value that
verifies the OFC can be found for one of the components substituting the other by an
arbitrary value.

Some authors try to solve the aperture problem with the incorporation of some
kind of global information, involving a process of regularization [4]. Some researchers
perform a clustering of the OFCs themselves in order to find the most reliable one. Once
obtained, the corresponding normal flow to that OFC is obtained [6]. Another alter-
native is to analyze the measurements in the space of the velocities that is, performing
an estimation of the velocity with the results of many systems of OFC equations. Each
system of equations is obtained from one pair of pixels in order to estimate the velocity.
In this way, the analysis is performed directly in the domain of the data that we want
to recover, that is, the u, v space [7, 8, 9].

All the previously approaches are computationally expensive. For example, for a
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t frame t+1 frame

0..4 grey level

Figure 3: Optical Flow computation using OFC. As can be seen OFC holds for pixel
(4,1): 9L =1, %‘ =2 and 9 =3, then OFC is u + 2v = —3, that holds for (—1,—1).

n X m pixels image, a search space of p X ¢ pixels and a neighborhood of s x t pixels,
the number of floating point operations in the case of BMA isn X m X p X ¢ X § X
t. Similar numbers are obtained for gradient based approaches. Because of this, an
implementation using a GPU and CUDA speeds up the computation process.

3 The System

System architecture is divided in four main blocks: Video Input, Optical Flow Algo-
rithm, Motion Estimator and Control (see figure 4).

Each subsystem comprises several basic computing units (called basic-units). Thus,
the execution of several basic-units of different images is concurrent (like works pipelined
CPUs). This solution is adequate even for single core CPUs; simply the degree of
concurrence is smaller.

The communications between basic-units use circular buffers. This leads to an
increasing of memory consumption but allows more efficient asynchronous execution of
the basic-units.

Because of the low image resolution, only a smoothing with a small Gaussian
kernel is needed in order to decrease the acquisition noise. This benefits the parallel
implementation of the whole system because the separability of the filtering.

We will use optical flow field estimation in order to measure/detect the motion in
the image sequence acquired with the cameras. The goal is to use the translations in
X, Y and Z along with rotation in Z as input signals to the proposed virtual interface.

In order to discriminate the predominant motion in the scene, we use the following
operators:

e X and Y translations are measured as the average optical flow in the image:

=6 270 (FasFy)ig . .
(X,Y)p = ==2=i=0 (Fo ) =, where (X,Y)r is the traslation vector, (Fy, F}); ;

nm
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is the Optical Flow Vector for pixel (i,j), n, m are the number of rows and
columns in the image.

e 7 translation is measured with the divergence of the optical flow averaged across
. im0 I (B, Fy )i . L

the image: Zp = == ZF‘;”Z( v)is The previous expression is evaluated and
averaged for each optical flow value across the whole image.

e Z rotation is measured with the rotational of the optical flow averaged across the
i=0 2j=0 VX(Fz,Fy)i;
nm

image: Zp =

We implemented two algorithms using CUDA, the proposal in [7] and an hierarchical
implementation of Lucas-Kanade algorithm available with OpenCV library [10]. Fi-
nally, a bottleneck in Otero et. al. algorithm [7] leads us to choose Lukas-Kanade
algorithm [10]. The output of this algorithm is evaluated with the previous operators.
The highest output defines the predominant motion in the scene.

. GPU Optical Flow . .
Video Input Al Motion Estimator

Control

Image Capture H Image Filter H Optical Flow H Motion Estimator H Movement Filter H Output ‘
‘ Image Capture H Image Filter H Optical Flow H Motion Estimator H Movement Filter }—»
‘ Image Capture H Image Filter H Optical Flow H Motion Estimator }—»

Figure 4: System Architecture

4 Experiments

The hardware setup comprises a laptop and two cameras with different resolution, the
usual integrated in the screen frame and an off the shelf usb camera, with the following
technical specs:

e CPU AMD Athlon 64 3000+ (1.8 GHz) AM2.
e GPU nVidia GeForce 9500 GT.
e RAM 1024 MB Dual Channel 800 MHz.
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e Web cam 1 Logitech Quickcam E2500.
e Web cam 2 Logitech Webcam C200.

The system detects easily the motion in different axis, only when velocity module
falls below a threshold some errors may appear, mainly due to image acquisition and
illumination issues (flickering or low illumination).

Low illumination leads to noise in the image and to the false detection of small
movements due to the noisy pixels that appear and disappear. We decided to filter the
movements that are below a threshold in order to minimize that error.

During the experiments we found that X and Y translations are easily detected
but Z translation is easily detected as X or Y motion, because small displacements
in X or Y directions (by the user) lead to relatively high values compared with the
divergence of the optical flow field.

When the algorithm was running in the CPU we obtained 17 frames per second,
with the performance of other tasks being degraded.

Using CUDA implementations the frame rate increases to 30 frames per second,
the hardware limit of the cameras. Standard GPU tasks are not degraded and the CPU
can be fully dedicated to other tasks. Thus, the user experience is real-time alike.

Another kind of movement useful as input signal in the virtual interface is rotation
in Z axis. The amount of motion cannot be accurately measured but if we use a
threshold it can be used to simulate a click.

Summarizing, X and Y translations are correctly detected and measured. Z trans-
lations cannot be accurately measured and it is not useful as input signal. Z rotation
cannot be accurately measured but a suitable threshold can be used and then, it serves
as binary signal.

5 Conclusions

In this work we have showed how to build a Virtual 3D Human Interface Device by
using standard resources of the current computers: the integrated camera (or Web cam)
and the graphic processing unit (GPU). The system applies optical flow techniques and
uses CUDA (Compute Unified Device Architecture, nVidia) to exploit the capabilities
of the GPU as stream processor.

X and Y translations are correctly detected and measured by the system. Z trans-
lations are detected but not accurately measured and Z rotation cannot be accurately
measured but a suitable threshold can be used and then serves as binary signal.

Summarizing, the presented solution is simple, the frame rate is now limited by
the resolution of the camera (30 frames per second vs 17 in the case of CPU’s based
solutions), users experience is real-time alike, computer’s performance is not being
degraded and powerful/additional hardware it is not necessary. Therefore, we have
built an efficient and low cost 3D interface.
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Introduction

As gaining access to statistical micro-data (i.e. those data are not summarized by some
statistics) is becoming a common tool for researchers, issues regarding disclosure of sen-
sitive information about individuals and organizations arise. While releasing provides
researchers with useful information, the risk is to involuntary disclose information that
should kept reserved.

Micro-data are generally organized in tables whose attributes can (i) lead to iden-
tities, such as address, name, social security number, and (ii) release sensitive informa-
tion, such as diseases and income, such those regarding census, medical issues, finance
and others. In particular those attributes that are directly linked to identity are know
as identifiers, whilst other attributes related at some extent to identity potentially able
to identify an individual are known as quasi-identifiers.

This is functional to make distinction between identity disclosure and attribute
disclosure in released table. The first occurs when an individual is linked to a particular
record, whilst the latter occurs when new information regarding some individuals is
revealed.

Objective of statistical disclosure control (SDC) is to limit the risk of releasing
sensitive information to an acceptable level. This goal is achieved by anonymization of
data, obtained by removing explicit references to identity and by replacing the other
attribute values related to identity with values less specific but semantically consistent.
This leads to group records with the same quasi-identifier values into equivalence classes.
In an equivalence class, individuals are made indistinguishable.
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Disclosure risk metrics

In literature, different metrics able to quantify the disclosure risk with respect to an
anonymized table have been proposed.

Samarati and Sweeney [7, 8] define k-anonymity as the property that each record
is indistinguishable with at least k — 1 other records with respect to the quasi-identifier,
that is requiring that each equivalence class contains at least k records. Although k-
anonymity is able to quantify the risk of identity disclosure, it is not able to assess the
risk of attribute disclosure.

Machanavajjhala et al. [5] propose [-diversity as means to overcome k-anonymity
limitations. [-diversity requires that the distribution of a sensitive attribute in each
equivalence class has at least [ values. In particular, authors consider three different
declinations of [-diversity, known as (i) distinct diversity, entailing that at least [ distinct
values of sensitive data occur in each equivalence class, (ii) entropy diversity, requiting
that entropy of sensitive values distribution is greater or equal than log(n), (iii) recursive
diversity, ensuring that the most frequent value does not appear too frequently, and
the less frequent values do not appear too rarely. Although improving the definition
of k-anonymity (i.e. it is stronger definition of privacy), this metric does not asses the
risk of Skewness and Similarity attacks. Indeed [-diversity does not face the risk of
attribute disclosure when the distribution of sensitive data is skewed, as belonging to an
equivalence class would make individuals more vulnerable to be associated to sensitive
data than considering the overall distribution. In addition, [-diversity does not take
into account that data although different can be similar. This is especially the case of
numeric values.

Li, Li and Venkatasubramanian [4] attempt to solve leaks of k-anonymity and (-
diversity by proposing a definition of privacy based on distance between values and
known as t-closeness. In particular, this metric requires that the distribution of a
sensitive attribute in any equivalence class is close (i.e. below the threshold ¢) to the
distribution of the attribute in the overall table. The distance between distribution is
measured as Earth Mover distance (EMD), that is the minimal amount of work needed
to transform one distribution to another by moving distribution mass between each
other. Although this approach introduces the concept of similarity between values and
distribution, definition is based on distance instead of number of values, so that it is
not possible to link it to k-anonimity and [-diversity. In addition, EMD does not fit
well categorical data as based on total ordering of values.

Contribution

In this paper we assume a different perspective, related to the granularity of informa-
tion. Similarly to t-closeness, relations that are not visible when observed on punctual
data, become more evident when we generalize data. For instance, let us consider Table
1.

Table 2 and Table 3 respectively propose 3-diversity and 0.3-closeness anomyzation
schemes. In particular the second is EMD is 0.167 for Salary and 0.278 for Disease.
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Table 1: Original Salary/Disease Data

ZIP Code | Age | Salary | Disease
1| 47677 29 3K gastric ulcer
2 | 47602 22 4K gastritis
3 | 47678 27 5K stomach cancer
4 147905 43 6K gastritis
5 | 47909 52 11K flu
6 | 47906 47 | 8K bronchitis
7 | 47605 30 7K bronchitis
8 | 47673 36 9K pneumonia
9 | 47607 32 10K stomach cancer

Table 2: Anonymization induced by [-diversity

ZIP Code | Age | Salary | Disease
1| 476%* 2% 3K gastric ulcer
2 | 476%* 2% 4K gastritis
3 | 476%* 2% 5K stomach cancer
4 | 4790* > 40 | 6K gastritis
5 | 4790* >40 | 11K flu
6 | 4790%* > 40 | 8K bronchitis
7| 476%* 3* 7K bronchitis
8 | 476%* 3* 9K pneumonia
9 | 476%* 3* 10K stomach cancer

Table 3: Anonymization induced by t-closeness

ZIP Code | Age | Salary | Disease
1| 4767* <40 | 3K gastric ulcer
3| 4767* <40 | 5K stomach cancer
8 | 4767T* <40 | 9K pheumonia
4 | 4790* > 40 | 6K gastritis
5 | 4790* >40 | 11K flu
6 | 4790%* > 40 | 8K bronchitis
2 | 4760%* <40 | TK gastritis
7 | 4760%* <40 | 9K bronchitis
9 | 4760%* <40 | 10K stomach cancer
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Although Table 2 provides an anonymized version of Table 1 which satisfies the
distinct and entropy 3-diversity, there are some threats to privacy. For example, let us
suppose to know that Bob is in the 20s and that he lives in the area 47678. Then we
deduce that his salary is relatively low, i.e. in between 3k and 5k. In addition we can
infer he suffers of some stomach related disease. Both information can be deduced due
to similarity of information.

At this end, fuzzy set theory provides a natural framework to analyze data gen-
eralization and to identify threats to privacy. Since generalization is about grouping
elements in classes, and membership cannot be sharply defined, a class of elements
can be regarded as fuzzy set. Privacy is preserved and disclosure protected, if the
anonymization scheme chosen is able to mix sensitive data in such a way to make them
indistinguishable at different level of generalization.

Therefore, a key point in defining privacy in our approach is about counting ele-
ments in a fuzzy set. In literature, several definitions of cardinality for finite fuzzy sets
have been proposed [9]. They can be roughly divided in two categories: the scalar car-
dinalities [2, 10], which associate to each fuzzy set a quantity (natural or real number)
and the fuzzy cardinalities [6, 3, 1], which associate to each fuzzy set a function over
the natural numbers with values in the unit interval [0, 1]. Both can be appropriately
employed in a definition of privacy by fuzzy sets. Fuzzy sets can be assumed in isolation
or as member of partitions. With respect to a fuzzy set, to a collection of them or to
a partition, the aim is to check if the number of elements for each equivalence class,
is similarly distributed along the whole dataset, and if elements are enough sparse so
that identification of individuals does not lead to associate sensitive data to them.

As an example let us consider for Salary a partition made of triangular fuzzy
sets Low = (—00;2;5), Average = (2;5;8) and High = (5;8;+00). With respect to
anonymization scheme outlined in Table 2, we get

Table 4: Cardinalities w.r.t. Table 2

ZIP Code | Age | Salary | Low | Average | High
1| 476*%* 2% 3K 0.67 0.33 0
2 | 476%* 2% 4K 0.33 0.67 0
3 | 476%* 2% 5K 0 1 0
4 | 4790* > 40 | 6K 0 0.67 0.33
5 | 4790%* >40 | 11K 0 0 1
6 | 4790% > 40 | 8K 0 0 1
T | 4T6%F 3* 7K 0 0.33 0.67
8 | 476%* 3* 9K 0 0 1
9 | 476%* 3* 10K 0 0 1

If we assume o-count as simple definition of cardinality, we get that |Low| = 1,

|Average| = 3, |High| = 5, whose entropy is 0.937 (log3 = 1.099). If we restrict
attention to the first three records, we have |Low|i 23 = 1, |Average|;23 = 2 and
|Highl123 = 0, with entropy 0.637. Differently, if we assume anonymization outlined
in Table 3, we have
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Table 5: Cardinalities w.r.t. Table 3

ZIP Code | Age | Salary | Low | Average | High
1| 4767* <40 | 3K 0.67 0.33 0
3| 4767* <40 | 5K 0 1 0
8 | 4767* <40 | 9K 0 0 1
4 | 4790* > 40 | 6K 0 0.67 0.33
5 | 4790* >40 | 11K 0 0 1
6 | 4790* > 40 | 8K 0 0 1
2 | 4760%* <40 | 4K 0.33 0.67 0
7 | 4760* <40 | TK 0 0 1
9 | 4760* <40 | 10K 0 0 1

Obviously the overall cardinalities do not change as still | Low| = 1, |Average| = 3,
|High| = 5. But |Low|1 38 = 0.67, |Average|1 38 = 1.33 and |High|1 38 = 1, whose
entropy is 1.062. Higher entropy entails better dissimulation of data, thus stronger
privacy preservation. Example above, shows how t-closeness is related to cardinalities.
This relationship stands in a more general way.

As this is required at any level of generalization, a further step consists in checking
if there exists at least one fuzzy set or partition able to violate the condition above.

This contribution aims at proposing a theoretical framework for privacy based
on fuzzy sets and cardinalities, and investigating properties and relationship to other
privacy definitions. Several examples and experiments prove this approach is feasible,
leading to a natural definition of privacy able to include k-anonymity and [-diversity as
special cases. Although similar to t-closeness in facing similarity and skewness attacks,
and in being oriented to information gain, this approach differs as it is directly based
on notion of classes instead of assuming distance as means of similarity.
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Abstract

The goal of steel heat treating is to create a hard enough part over certain
critical surfaces or volumes of the workpiece and at the same time keeping its
ductibility properties all over the rest of the workpiece.

We consider a mathematical model for the description of the heating-cooling
industrial process of a steel workpiece. This model consists of a nonlinear coupled
partial differential system of equations involving the electric potential, the magnetic
vector potential, the temperature, together with a system of ordinary differential
equations for the steel phase fractions. Due to the different time scales related to
the electric potential and the magnetic vector potential versus the temperature,
we introduce the harmonic regime, leading to a new system of nonlinear PDEs.
Finally, we have carried out some 2D numerical simulations of this heating-cooling
industrial process.

Key words: Steel hardening, phase fractions, nonlinear parabolic-elliptic equa-
tions, Sobolev spaces, finite elements method.
MSC 2000: 35A15, 35G30, 35J57, 35K05, 35K55, 35Q61, 35Q80, 46ES35.

1 Introduction

This work deals with the mathematical analysis and numerical simulations of a model
governed in terms of a nonlinear system of partial differential equations/ordinary dif-
ferential equations describing the industrial process of steel hardening, including phase
transitions. This subject has been extensively studied during the last years ([3, 5, 6, 7,
9]). A complete model, including thermomechanical effects can be seen, for instance,
in [9]. Here our main concerned is the description of the temperature, dropping out
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Figure 1: Domains D, Q = Q*UQ°U S and the interface I' C 2°. The inductor € is
made of copper. The workpiece contains a toothed part to be hardened by means of
the heating-cooling process described below. It is made of a hypoeutectoid steel.

mechanical effects. The mathematical model is governed by a coupled nonlinear system
of PDEs/ODEs, namely

V- (0(0)Vep) =0in Qp =Q x (0,7,
70(0)A; + V x (;V x A) = 6V(V - A) = —09(0)V¢ in Dy = D x (0, T),
A0) = Ag in Q,
2 = F(0,2) in Q5 = Q% x (0,7T), (1)
2(0) = zp in %,
pcely — V- (k(0)VO) = 00(0)|A; + Vo|? + pLz + G in Qrp,
0(0) = Oy in Q.

where Q, D c RN, N =2 or 3, are bounded, connected and Lipschitz-continuous open
sets such that Q C D, Q = Q°UQ*US is the set of conductors, Q° the inductor (usually
made of copper), 2° the steel workpiece, Q¢ and Q° being open sets, and S = QN Q°
is the surface contact between Q° and °, Q°NQ° = @ (see Figure 1); T' stands for the
final time of observation; ¢ the electrical potential; A the magnetic vector potential;
G a given external source coming for the mechanical deformation (here assumed to be
known); 0 the temperature; z = (z1,22), 21 and zy are the phase fractions ([1,2,6]) of
austenite and martensite, respectively; F' = (Fy, Fy) gives the phase fractions model;
k(0) is the thermal conductivity; o(6) the electrical conductivity (by o(f) we mean
the function (z,t) — o(x,0(z,t)), and also for (), etc.); oo(z,s) = o(x,s) if x € Q,
oo(x,s) = 0 elsewhere; p = p(x) is the magnetic permeability; p the density; L =
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Figure 2: Car steering rack.

(L1, L2) is the latent heat; ¢, is the specific heat capacity at constant strain; 6 > 0 is a
small constant. System (1) is supplied with suitable boundary conditions.

The induction-conduction model (1) describes the heating process of a steel work-
piece. Once the desired high level of temperature is reached at certain critical parts
along the workpiece, the supplied electric current is switched off and the workpiece is
then quenched in order to cool it down rapidly. The goal is to produce martensite
(hard and brittle steel phase transition) in these critical parts, keeping the rest ductile.
Usually, these parts correspond to particular structural components whose surface is
going to be highly stressed during its mechanical lifetime. This is the case of a car
steering rack (see Figure 2).

In [9], it is assumed the Coulomb gauge condition for the magnetic vector potential,
namely, V - A = 0. In our analysis, we do not impose this condition since this makes
appear an undesired pressure gradient in the equation for .A. In its turn, we include a
penalty term in this equation of the form —§V(V - A).

2 The mathematical description for the heating-cooling
process

We split the time interval [0, 7] into two intervals: [0, 7] = [0, T,)U[T}, T¢], T > Ty, > 0.
The first one [0,7},) corresponds to the heating process. All along this time interval,
a high frequency electric current is supplied through the conductor which in its turn
induces a magnetic field. The combined effect of both conduction and induction gives
rise to a production term in the energy balance equation, namely b(6)|A; + V|2, This
is Joule’s heating. At the instant ¢ = T}, the current is switched off and during the
time interval [T}, 7] the workpiece is cooled down by means of aqua-quenching.

@CMMSE Page 458 of 1328 ISBN 13: 978-84-613-5510-5



ANALYSIS AND NUMERICAL SIMULATION OF A MODEL ARISING IN STEEL HEAT TREATING

The heating model

The current passing through the set of conductors 2 = 2°U® is modeled with the aid
of an auxiliary smooth surface I' C Q¢ cutting the inductor €2° into two parts, each one
of them having a surface contact over the boundary of the workpiece Q° (see Figure 1).
For the sake of simplicity, we will assume that pc. = 1. The heating model reads as
follows

V- (U(@)V(ﬁ) =0in QTh =0 x (O,Th), (2)
% =0 on 92 x (0, 1), (3)
[J(@)%}F =jsgonI x(0,T}), (4)

50(0) Ay + V x (iv X .A) V(Y - A) = —00(0)V in D x (0,Th),

(
A =0on 0D x (0,T}), (6)
A(0) = Ap in 0, (7)
z = F(0,2) in O x (0,T}), (8)
2(0) = zp in Q°, (9)
0, — V- (k(0)VO) = 09(0)|A; + Vo> + pLz, + G in Qr, (10)
% =0 on 9Q x (0,T}), (11)
0(0) = 6 in €. (12)

In (4) [-]r stands for the jump across the inner surface I The function jg re-
presents the external source current density. The domain D containing the set of
conductors is taken big enough so that the magnetic vector potential A vanishes on
its boundary 0D. Since z is only defined in Q°, the term pLz; appearing in (10), and
n (15) below, is assumed to be zero outside §2°.

The cooling model

Once the heating process ends, aqua-quenching begins. This situation is modeled via
the Robin boundary condition given in (16).

We put zg, = 2(14,), that is, 27, is the phase fraction distribution at the final hea-
ting instant 73, obtained from (8). In the same way, we define 07, = 0(T},). Obviously,
these functions will be taken as the initial phase fraction distribution and temperature,
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respectively, in the cooling model.

5= F(0,2) in O x (Th, T), (13)
AT}) = 27, in OF, (14)

0, — V- (5(0)V0) = pLz + G in Q x (Ty, Ty, (15)
—m(@)% = B(0 — 0,) on 0Q x (T, To), (16)
0(Th) = 67, in Q. (17)

In (16), the constant value 6, stands for the temperature of the spray water quenching
the workpiece during the cooling time interval [T}, Tc]. Also, the function f is a heat
transfer coefficient and is given by

0 on 002 N ONE,
Bla,t) = { Bo(t) on OQ N A,

where 5y(t) > 0 (usually taken to be constant).

3 The harmonic regime

We focus our attention on the heating induction-conduction process. For this reason
and from now on, we will just write T instead of Tj,.

Electromagnetic fields generated by high frequency currents are sinusoidal in time.
Consequently, both the electric potential, ¢, and the magnetic potential field, A, take
the form ([1, 2, 12, 13]) M(x,t) = Re [¢“* M (z)], where F is a complex-valued function
or vector field, and w = 2xf is the angular frequency, f being the electric current
frequency. In general, M also depends on ¢, but at a time scale much greater than 1/w.
In this way, we may introduce the complex-valued fields ¢, A and j as

¢ =Re[e“"p(z,t)], A=Rel[e A(z,t)], js=Rele"j(z)]. (18)

As a far as the numerical simulation of a system like (2)-(12) is concerned, the intro-
duction of the new variables ¢ and A is quite convenient since the time scale describing
the evolution of both ¢ and A is much smaller than that of the temperature 6. In the
case of steel heat treating, f is about 80 KHz.

When we rewrite the original system (2)-(12) in terms of the new complex-valued
variables, ¢ and A, neglecting the term A;, we obtain the so-called harmonic regime.
Furthermore, in the energy equation, the expression |A; + V¢|? is substituted by its
mean value measured over a time period [t,t + w]:

1 t+w 1
o] AP Jliwa + vl
w Jy 2
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In this way, the effective Joule’s heating takes the form %J(@)]iwA + V¢|?. The equa-
tions in the harmonic regime are the following.

V- (a(0)Vp) =0 in Qr, (19)
Oy
= 0 on 9Q x (0,7, (20)
op| .
[J(G)EL —jonT x (0,T), (21)
1
iwog(0)A 4 V x (;V X A> —d0V(V-A)=—00(0)Vyp in Dr, (22)
A=0o0n0dD x(0,7), (23)
2z =F(0,2) in Q* x (0,T), (24)
2(0) = zp in Q°, (25)
1
00—V - (5(0)V0) = So(0)]iwA + Vol?> + pLz + G in Qr, (26)
0
B = 0 on 992 x (0,7, (27)
0(-,0) = 6o in Q, (28)

Remark A similar simpler stationary model involving only the unknowns A and 6 and
with non-homogeneous Dirichlet boundary conditions is studied in [4].

4 An existence result

We consider the system (19)-(28) describing the heating process by conduction-induction
in the harmonic regime. Besides the assumptions on data already mentioned along the
Introduction, we will considered the following hypotheses.

(H.1) o,k : 2 x R — R are Carathéodory functions and there exist some constant
values 01, 09, k1, ke € R such that 0 < 01 < o(z,s) < 09, 0< k1 < K(z,s) < Ka,
almost everywhere x € ) and for all s € R.

(H.2) j € L*(0,T; H~Y2(I")) and (j(t), 1)r = 0, almost everywhere t € (0,T}).
Here, (-, -)p stands for the duality pair between H~Y/2(I') and HY(I").

(H.3) p € L*°(D) and there exists a constant value p, such that 0 < p, < pin D.

(H4) F € L=¥(R x R?) N C(R x R?) and there exists a constant Lz such that

|F(s,s1) — F(s,82)| < Lp|s1 — sa|, for all s € R and for all s1,s9 € R2.

(H.5) 20 = (2’01,202) S LOO(QS).

(H.6) pL,G € L'(2®* x (0,T)).
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(H.?) Oy € Lt (Q)

Remark In the situation described here, we are just considering the evolution of two
phase fractions which correspond to austenite and martensite. Of course, we may
consider a more general setting which includes other phase fractions like bainite, pearlite
and ferrite or a mixing of them all (see [7]).

Remark In practice, the magnetic permeability is of the form

pw(x) = pixes + paxae + U3X D\

where p; > 0, 1 <14 < 3, are constant values such that tales que puo < ps < .

Variational formulation

The variational formulation corresponding to the system (19)-(28) allows us to give the
concept of a solution (¢, A, z,60) to this system.

We denote by H*(Q) = {v € L?(Q) / Vv € (L*(Q))N}, N = 2 or 3, the complex-
valued usual Sobolev space, the derivatives of v taken in the sense of distributions.
We also use the complex-valued Sobolev space H} (D) = {v € HY(D) /v = 0 on dD}.
Then we put H (D) = (H(D))N. All these spaces are Hilbert spaces provided with
their respective inner products.

The quotient space H'(2)/C is a Hilbert space provided with the inner product
(a,0) = / VuVo,
Q

where u, respectively v, is any element in the class of u, respectively v, and v stands
for the conjugate of v.

For 1 < p < oo, we also consider the Banach (real) space W1P(Q) provided with
their standard norm, and (W1?(Q))’ its dual (topological and algebraic) space.

If X is a Banach space, we put LP(X) = LP(0,T; X) and W'P(X) = WlP(0,T; X),
that is

WP(X) = {v € IP(X) /v € L(X)},

the derivative v; taken in the sense of distributions in (0, T"). Both, LP(X) and WP(X)
are Banach spaces. Remember that

WP(X) € C(0,T}; X)

with continuous embedding.
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Definition 1 We say that (¢, A, z,0) is a weak solution to the system (19)-(28) if the
following conditions hold

p € L*(H'(Q)/C), (29)

A€ L3(HND)), (30)

z € WhH™(L®(QF)), (31)

6 € LP(WP(Q)) N C([0, T); (W' (Q))) for all p [1, %—ﬁ) Lel=1 (32
6(-,0) = 6o in (33)

| [o@%e-vi+ [ G =0, poranve 2ar@/o, @1
0 Q 0

iw/OT/U(H)A-v—i—/T/D%VXA-va—i—é/OT/DV-AV-v
/ / 0)Vy-© =0, for allv e L*(H}(D)) (35)

z =20+ / F(0,z), forallte|0,T] (36)
0

—/T/egt+/T/n(0)vevg
/ /( yzwA+V<p\2+pth+G> ¢,

for all ¢ € CY(Q x [0,T]) such that ¢(-,0) = (-, T) =0 in Q. (37)

Remark As long as N < 3, Sobolev embedding implies that L'(Q) c (WH4(Q))’ for
all ¢ > 3. On the other hand, since p < 5/4 < (N +2)/(N + 1) we have p’ > 5; in
particular, L'(Q) c (W' (Q))’ for all p € [1,5/4). Consequently, according to (H.7)
and the regularity 0 € C([0,T]; (W' (Q))’) stated in (32), the initial condition (33)
makes sense at least in the space (Wl’p,(Q))’ . Under a more restrictive assumption on
the thermal conductivity » (see (H.8) below), it can be shown that 6 € C([0, T]; L*(Q)).
Thus, the initial condition (33) also makes sense in L!(12).

The main result

An existence result of a weak solution (¢, A, z,0) to the system (19)-(28) is given below.
To this end, we also consider the following hypothesis on the thermal conductivity .

(H.8) There exist g > 0 and Lo > 0 such that for all e € (0,¢¢] one has
|k(x,81) — K(x, 82)| < Lo|s1 — sal,

almost everywhere x € Q and for all s1,s2 € R such that |s; — s3] < e.

@CMMSE Page 463 of 1328 ISBN 13: 978-84-613-5510-5



J. M. Diaz, C. GAarcia, M. T. GONZALEZ, F. ORTEGON

THEOREM 1 Assume the assumptions (H.1)-(H.7). Then there exists a weak solution
to the system (19)-(28) in the sense of Definition 1.

Moreover, if the thermal conductivity k verifies (H.8), then 6 € C([0,T]; L}(Q2))
and it also satisfies the variational formulation

_/OT/Qegt+/Qe(x,T)g(x,T)—/Qeo(x)g(x,())+/OT/QK(9)VHVC

T
= / / (%J(@)”i(ﬂA + Vo|? + pLz + G> ¢, for all ¢ € CH(Q x [0,T)).
0o Jo

The proof of this result will be developed in a forthcoming paper ([8]).

5 Numerical simulation

We have carried out some numerical simulations for the approximation of the solution
to the system (19)-(28). We want to describe the hardening treatment of a car steering
rack during the heating-cooling process. The goal is to produce martensite along the
tooth line together with a thin layer in its neighborhood inside the steel workpiece.

Figure 1 shows the open sets D, Q@ = Q° U Q° U S and the inferface I' which
intervene in the setting of the problem. The inductor Q¢ is made of copper. The
workpiece contains a toothed part to be hardened by means of the heating-cooling
process described above. It is made of a hypoeutectoid steel. The open set D\ € is air.
The magnetic permeability p in (22) is then given by

140 if z€ D\ Q,
pu(x) = ¢ 0.99995. if x € Q°,
2.24 x 103 g if z € O,

where g = 47 x 1077 (N/A?) is the magnetic constant (vacuum permeability).

The martensite phase can only derive from the austenite phase. Thus we need to
transform first the critical part to be hardened (the tooth line) into austenite. For our
hypoeutectoid steel, austenite only exists in a temperature range close to the interval
[1050, 1670] (in °K). During the first stage, the workpiece is heated up by conduction
and induction (Joule’s heating) which renders the tooth line to the desired temperature.
In order to transform the austenite into martensite, we must cool it down at a very
high rate. This second stage is accomplished by spraying water over the workpiece.
This latter process is called aquaquenching.

In this simulation, the final time of the heating process is T, = 5.5 seconds and the
cooling process extends also for 5.5 seconds, that is T, = 11.

We have used the finite elements method for the space approximation and a Crank-
Nicolson scheme for the time discretization. Figures 3 and 4 show the triangulation of
D in our numerical simulations. We have used P»-Lagrange approximation for ¢, A
and 8 and P; for z.

In Figure 5 we can see the temperature distribution of the rack along the tooth
line at the final stage of the heating process. The initial temperature is 8y = 300°K.
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Figure 3: Domain triangulation. The triangulation of D contains 61790 triangles and
30946 vertices.

At t = 5.5 the heating process ends and the computed temperature shows that the
temperature along the rack tooth line lies in the interval [1050, 1670] (°K).

Figure 6 shows the austenization along the tooth line at the end of the heating
process T' = 5.5 seconds.

Figure 7 shows the final distribution of martensite from austenite along the rack
tooth line through the cooling stage ¢ = 11 seconds. We have good agreement versus
the experimental results obtained in the industrial process.
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Abstract

Although classical logic was studied by logicians in depth, no efficient applica-
tions were presented until the Robinson resolution rule was introduced. Thus, the
resolution rule may be considered as the first step in logic programming. Besides
that, in artificial intelligence and relational databases, functional dependency (FD)
is a useful notion to describe data knowledge. In literature, there exists several
logics to specify and manipulate FDs. Nevertheless, their inference systems are
suitable to illustrate FD semantics but they may not be used as a formal base to
develop automated deduction methods. In this work, we use an axiomatic system,
denoted S% g, which is based on new FD inference rule, named Simplification
Rule, which plays the same role as the resolution rule. We introduce the Deduction
Theorem for Functional Dependencies that has theoretical relevance, and is the
key for solving the FD implication problem using Sf 4. Moreover, we present the
paradigm functional dependencies programming. This paradigm uses an inference
engine as an automated deduction method, based on three rules of simplification.
An extension of classical FD language with empty attributes (T atom) is intro-
duced in order to specify facts and goals. The set of FDs plays the role of rules
in classical logic programming languages. Finally, we apply this paradigm to solve
the FD implication problem with a novel and efficient algorithm.

Key words: Logic, Implication, Functional dependencies

1 Introduction

Classical logic was conceived (and successfully used) as a formal framework suitable for
specification and metatheoretical development. Thus, Logic has gone down in history
as the formalism selected by mathematicians and philosophers to formally explain their
theories. When computer science was born, classical logic (with its different deduction
methods) was moved from a theoretical field to a practical one, where it reveals its
power.
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From then, logic was not considered to be only a formal tool and it became itself
a subject of research.

One of the most important milestones in the history of logic was the introduction
of the resolution method, due to Robinson [11]. He presents a new rule, called the
resolution rule, which allows the definition of a new automated deduction method.

Before the resolution rule was introduced, semantic tableauz [7] were considered to
be a good method to build logical inferences, but only at a theoretical level. In fact,
tableaux was considered to be a method to systematize countermodel searches, but
the method was not applied in practice until the 80s, when computers acquired better
perfomance.

Robinson’s work opens a new door, not only to the use of logic, but also to the use of
computers. Up until that moment, software was developed solely with the Von Newman
style in mind. Since Robinson introduced the Resolution Rule, the field of programming
was enlarged and the area of logic programming was born. Logic programming paradigm
got the support of a great number of researchers and, in a few years, it matured and
was considered as an important subject in computer science.

In the relational database community, researchers focus not only on the data itself,
they are also interested in the constraints that these data must fulfill. A very important
role in database constraint is played by dependencies. As J. Paredaens et al. say
in [10]: “they are constraints in the description of a database in order to ensure that
the instances we might obtain are meaningful”.

There exists a wide range of dependencies. Some of them were investigated in
the past (Functional Dependencies, Multivalued Dependencies, Join Dependencies, In-
clusion Dependencies, etc.) and others are being studied today (Nested Functional
Dependencies, Generalized Data Dependencies, XML Functional Dependencies, Fuzzy
Dependencies, etc.).

At the same time, logic has been used properly as a specification tool and for
metatheoretical development in the area of database dependencies. Moreover, each
dependency definition is usually followed by its corresponding logic. These different
dependency logics provide several formal languages to specify different kinds of database
constraints but none of them has been used successfully in automated deduction. The
reason is that their corresponding inference systems were created to explain dependency
semantics more than to design an automated deduction system.

In this work we concentrate on functional dependencies (FD), the most popular
database dependencies. They add semantics to a database schema and are useful
for studying various problems such as database design, query optimization and how
dependencies are carried out a view. They were introduced by E.F. Codd ! in 1970.
FDs may be viewed as a relationship among some attributes of a table. Thus, if the
FD Ay,..., A, —By,..., B, holds in a database D, then two tuples of D that agree on
Aq,..., A, agree on By,...,DB,.

There exist several equivalent FD Logics [3, 6, 8, 10, 13] but all their inference

'E.F. Codd died in April 2003. We are in debt to him for his revolutionary ideas about data storage
and management and we particularly appreciate his tireless fight at the beginning of the 70s’, when
academic and business organizations had no faith in his Relational Model.
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systems are strongly based on the transitivity paradigm. These characteristics avoid the
construction of efficient deduction methods directly based on these inference systems
and the most successful approaches come from indirect ways (graph theory, matrix
operators, etc).

As semantics tableaux in the case of classical logic, all these inference systems
allow us to guide the search for new FD inferred from a given set of FDs, but they do
not allow us to search for new dependencies automatically. In the same role that the
Robinson rule plays in the application of classical logic, we will use the Simplication
Rule presented in [4] to make FD logic become a useful tool for computer science.

The Simplification rule was presented in [4] and in [9] we use it to design a prepro-
cessing transformation which efficiently reduces database redundancy.

Unfortunately, this transformation of sets of FDs is not complete, and it cannot be
used to solve the implication problem: to answer the question if an FD can be deduced
from a given set of FDs.

In this work, we illustrate how the Simplification Rule can be considered to be
the triggering event at the beginning of Functional Dependencies Programming. Thus,
we extend the language of FD Logic to allow empty left hand side formulae and we
use this new well formed formulae as goals to be satisfied in a given FD theory. The
Simplification rule is used to build a novel Simplification algorithm directly based on
the inference system. This work opens the door to the management of FD constraints
in relational databases in an efficient and intelligent way.

This work is organized as follows: In section 2 we show how previous FD logics
reason about FDs and the limitations of these logics to manipulate automatically a
set of FDs. We introduce the problem that we solve in this paper, named ”the FD
implication problem”. Section 3 shows the novel Simplification rules and introduces
the FD logic with Simplifications. In section 4 we propose a new automated deduction
method to solve the FD implication problem and finally we establish several conclusions
and future works in section 5.

2 Reasoning about FDs

In literature, there exists a set of equivalent FD logics [3, 6, 8, 10, 13]. These classical
FD logics may be considered as formal tools to formally explain how to deduce a FD
from a given set of FDs. With no loss of generality, we select FD Paredaens Logic [10]
to illustrate how these inference systems work:

Definition 1 (The Lrp language) Let Q be an infinite numerable set of atoms and
let — be a binary connective, we define the language Lrp = {X—Y | X,Y € 22 and X #
o}

Notation 1 Let X,Y be a set of atoms. In the following, XY denotes the union XUY ;

X CY denotes the set inclusion relation; Y — X denotes the difference (elements in'Y
that are not in X ) and T denotes the empty set.

@CMMSE Page 470 of 1328 ISBN 13: 978-84-613-5510-5



LoGIC-BASED FUNCTIONAL DEPENDENCIES PROGRAMMING

Definition 2 (The L, logic) L, . is the logic given by the pair (Lrp, Spar) where
Spar 1S an axiomatic system with one axiom scheme and two inference rules:

|Azpar| @ Fsp,, XY ifY CX Axiom
|Trans|] X—Y Y—Zts, X—Z Transitivity Rule
|Augm| X—Y kg, X—XY Augmentation Rule

In Spar we have the following derived rules (these rules appear in [10] together
with other derived rules):

|Comp| XY, W—Ztg,, XW—YZ Composition Rule
|Frag| X—YZtgs,, XY Fragmentation Rule
|lgAugm| X—Y ts,.  U—V, where X CU and V C XY

Generalized Augmentation Rule

|gTrans| X—Y,Z—U Fs,, V=W, where ZC XY; X CV;W CUV
Generalized Transitivity Rule

Unfortunately, Spy and all the other classical FD axiomatic systems are not suitable
tools to develop automated deduction techniques, because all of them are generated by
Armstrong Axioms [2], a set of propositions introduced in 1974 to explain FD semantics.
This is a well-known problem in other deduction methods, like tableaua-like methods,
whose rules are closed to connective semantics.

The main problem concerning FD deduction is the implication problem, which can
be enunciated as follows:

Let T to be a set of FDs and v a FD. Is it possible to affirm that I' - ~¢
In the following example we apply Spy,r to solve an implication problem.
Exmaple 1 Let I' be the following set of FDs
{ad—c, b—eh, ber—c, be—d, c—a, cd—b, ce—af, cfr—bdh}

We try to prove that I' = bd—ah. We apply Spar to obtain the following sequence of
equivalent sets of FDs.

'y {b—e,b—h}, using |Frag|b—ehts,, b—e,b—h

'y {b—e,b—h,bd—h}, using [gAugm]| : b—hts,,  bd—h

'y {b—e,b—h,bd—h,b—c}, using |gTrans] : b—e,be—c ks, b—c

'y {b—e,b—h,bd—h,b—c,bd—c}, using [gAugm]| : b—cts,,, bd—c

'y {b—e,b—h,bd—h,b—c,bd—c,bd—a}, using |[Trans| : bd—c,c—a ks, bd—a

ry {b—e,b—h,bd—h,b—c,bd—c,bd—a,bd—ah}, using [Comp] : bd—a,bd—h s, bd—ah

So, we have that bd—ah is deduced from I.
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How can X+—Y be deduced from I'? The classical methods consist of adding derived
FDs to I' in each step until X—Y is obtained. This method has two disadvantages:

e The rules are not applied in a systematic way, so it is very difficult to select the
rule that will be applied in each step. This is not an inference system suitable for

automation 2.

e An additional problem arises when the target FD is not obtained from I'. In this
case, two undistinguishable causes exist: the FD can not be obtained from I" or
the selection of the rules has not been done properly. The theoretical approaches
of testing every applicable rule in each step is not a real solution, since it is an
exponential method that consumes a huge amount of time.

The use of this method in computers is not viable even with a set of FDs whose
size is not very great [1].

We are looking for an efficient method to solve the implication problem. Instead
of that, in literature a closure operator for attributes is used. Thus, if we have to prove
if X—Y is a consequence of I', we compute X+ 3 and we test if Y is a subset of X+.
In literature there are several algorithms to compute the closure of a set of attributes
in linear time (see [3, 5] for further details). These works ensure that the implication
problem can be solved in polynomial time.

3 A novel rule in a new logic: The Simplification rule and
SL

FD

In [4] we formally introduce a new database redundancy notion and, for the first time,
lattice theory is used as a formal framework for functional dependencies. In the cited
work, we also present a new logic SL, ,, that incorporates two novel Simplification
rules 4, which removes redundancy from a given set of FDs.

Definition 3 The SL,, logic is the pair (Crp, Srps) where Lrp s the language

shown in Definition 1 and the axiomatic system Sppg has one axiom scheme:
Azpps: Fsppgs XY, where Y C X # @,

And the inference rules are the following:

Fragmentation rule: |Frag|: XY kg, XY, where Y CY

Composition rule: |[Comp|: XY, U=V kg, o XU=YV

Simplification rule: |Subst|: X—=Y, U=V tg,., . (U-Y)—(V-Y), where X CU

and XNY =0

2A human must have a high level of expertise to find the sequence of rules in a reasonable period of
time. Moreover, if the reader tries to solve the above example, the derivation could be different from
the one presented here.

3The closure of X in I

“The rules that we introduce may be considered as transformations of equivalence [9].
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In [9] we proved that SL,,, axiomatic system is equivalent to other well known FD
axiomatic systems [3, 6, 8, 10] and thus, all Paredaens derived rules are derived rules
in SL

Besides that, in [4] we introduce a new derived rule:

Right Simplification rule

|rSust]: XY, U=V EU—(V-Y), #H#XCUV,XNY =0

The definition of SL,, has made it possible that, for the first time, interesting
problems in database area can be solved using logic-based automated deduction meth-
ods.

The first step in this direction was the use of Simplification rules included in
SL,, [4], as a new tool for reasoning about FDs. In [9] we used Prolog for imple-
menting a new pre-processing transformation that prunes a set of FDs and in [1] we
used Maude for comparing FD logic by Paredaens and SL,,. Mainly, in these previ-
ous works the rules of SL ., are applied in order to reduce the size of a set of FDS
progressively.

FD

4 A new automated deduction method

In this section, we extend the language of FD Logic to allow empty left hand side
formulae and we use this new well formed formulae as goals to be satisfied in a given
FD theory. The Simplification rule is used to build a novel Simplification method to
solve the implication problem directly based on the inference system.

4.1 An extension of SL,,: The SL  logic

We remark that Lrp includes the following formula schema: X+ T. In [12] the author
considers this FD schema to solve some problems, concerning the management of FDs
in a given algorithm but X+—T does not appear in any FD logic in literature. In our
logic, the symbol T is a central element in SL,, and it guides the utilization of the
logic to solve several problems.

However, Lrp does not allow the use of the FD T—X. We extend SL,, to
represent and manipulate this FD.

Definition 4 (The L%, language) Let () be an infinite numerable set of atoms and
let — be a binary connective, we define the language LS., = {X—Y | X,Y € 29} That
is, L$p = Lpp U{TwV |V € 29},

Definition 5 (The SL¢  logic) The SLS  logic is the pair (L% p, Sgpg) where L&
is the language shown in Definition 4 and the axiomatic system Sgpq has one axiom

scheme: AxGpg : Fse o XY, where Y C X. And the inference rules are |Frag]|,
|Comp| and | Subst].

Obviously, from the above definition we directly obtain that: for all I' C Lrp and all
X—=Y € Lpp, 1fF|—5 X—Y then'Fge XY
Now we are mterested in the benefits of the extension that we have just introduced.
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Lemma 1 Let I' C LS, there exists I' C Lpp and X € 2 such that T =Stps
T’y {T—X} ie T }_S;‘DS ’u {T—X} and IV {T—X} l_vaDs r

Proof 1 It is an immediate consequence of the composition and fragmentation rules.

The following theorem is the key to solving the FD implication problem using the SL,
logic.

Theorem 2 (Deduction Theorem for Functional Dependencies) GivenI' C Lrp,
we have the following equivalence:

1. For all X,U,V € 2% T U {T—X} I—S;DS U=V ifand only if T kg
UX—V. And, in particular:

FDS

2. For all X,Y € 22, the following equivalence is stated: T U {Tr—X} Fse
T—Y if and only if I'ks X—=Y

FDS

Proof 2 First, if ' bs_  UX—V then we have that T' I_S;‘DS UX—V and the fol-
lowing sequence proves that T'U{T—X} I—S;DS U—V.

R I by hypothesis
. U X =V by hypothesis
3 U—-X=V =X by 1., 2. and | Subst|
4. U= XV X by 1., 8. and |Comp]|
5. U — XV by 4. and |Frag|
6. U= T by Ax%pg
e by 5., 6. and |Comp]|

Conversely, we prove that, if T U {T—X} I—S;DS U=V, then I' ks, UX—V.
Let us consider the following sets:

e Y is the inductive set freely generated by I' and the axioms set in Sppg via the
constructors given the inference rules in Spps. That is,

S={YZ|Tts, Y2}

o X5 is the inductive set freely generated by I' U {T—X} and the azioms set in
St pg via the constructors given the inference rules in Sg.q. That is,

X ={Y—Z | TU{T—X} Fse o Y—Z}
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We prove, by induction, that
U=V e X% implies that UX—V eX

1. If U=V €T, then U=V € X and, since ¥ is closed for the inference rules in S, ¢
and UX—V is obtained from U—V by |gAugm|, we have that UX—V € X.

2. From T—X we obtain X—X that belongs to ¥ because it is an axiom in Sppg.

3. If U=V is an aziom in S, then UX+—V € ¥ because it is an axiom in Spps.

4. If U=V € X5 because it is obtained applying |Frag|, then there exist V! OV
such that U=V’ € X% and, by | Frag|, U=V € X5%.

By induction hypothesis, we have that UX—V' € ¥ and applying | Frag| we have
that UX—V € X.

5. IfU—V € X% because it is obtained applying |Comp|, then there exists Up—V;, Uay—Vs €
X% such that UyUs = U and V1Va =V and, by induction hypothesis, we have that
U1 X—Vy, U1 XV, € 3. Finally, we obtain that UX—V € X applying |[Comp|.

6. IfU—V € X5 because it is obtained applying | Subst| then there exists Uy—Vy, Us—Va €
X% such that Uy C Us, U — Vi = U and Vo — Vi = V. Moreover, by induction
hypothesis, we have that Uy X+—Vy, Us X+—V, € X, Finally, the following sequence
proves that UX+—V € 3.

L Ul X = by hypothesis
2. U X =V by hypothesis
3 U1 XV — X by 1. and |Frag]|
4. X — (V= X)=Vo— (Vi = X) oo by 3., 2. and | Subst|
5 U X — (Vi = X)=V by 4. and |Frag|®
0. UX =T by Ax%pg
T U XV by 5., 6. and |Comp|©

In the next section the above theorem is used for designing a new methodology
able to manage FDs as a logic programming language.

4.2 Rules of simplification for solving the FD implication problem

In this section, a novel technique for applying in a systematic way the system SL¢ is
introduced. With this aim, three rewriting rules of simplification are defined using the
symbol ~ where I" ~ I" means that all the elements in I" must be replaced by all the
elements in I”.

®Note that V =Va — V4 C Vo — (Vi — X)
SNote that Us X — (V4 — X) CUX CUX
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Definition 6 Given X,U,V € 2°.
SC Simplification: If U C X then {T—X,U—V} ~ {T—XV}
SA Simplification: If V.C X then {T—X, U=V} ~ {T—X}
S Simplification: {T—X, U=V}~ {T—X,U - XV — X}

Lemma 2 Let I' and IV be two sets of FDs. If ' is obtained from T' applying the
rewriting rules of simplification introduced in definition 6 then I’ =sc . I’

Proof 3

SC Simplification: {TX, UV} =5 {ToX,U-XV—X} Z5.  {TXV}
Simplification rule is applied in 1 and, since U C X, Composition rule is applied
n 2.

SA Simplification: {T—X,U—V} %SIETDS {T—X,U - XV - X} éSIETDS {T—X}
Simplification rule is applied in 3 and, since V. C X, the Axiom is applied in 4.

S Simplification: {T—X,U—V} ES;DS {T—X,U — XV — X} Simplification
rule is applied in 5.

Theorem 3 Given I' C Lrp and X—Y € Lpp. If T’ is obtained from T U {T—X}
applying the rewriting rules of simplification introduced in definition 6 while these rules
can be applied then there exists a unique T+—Z € IV with X C Z and

I'ks X—=Y ifandonlyif Y CZ

FDS

Proof 4 First, there exist T—Z € I with X C Z because we apply the rewriting rules
to TU{T—X} and, when these rules modify X, X increases.

The uniqueness of T—Z is ensured by SC rule.

Y C Z implies I' ks, X—Y is obtained using Theorem 2, Lemma 2 and the
fragmentation rule.

Conversely, the following steps prove that I’ I—SFDS XY implies that Y C Z. Let
I bel" —{T—Z}:

1. Since T—Z is unique, I C Lrp.

2. IfT'ks, . XY then Theorem 2 ensures that I’ l_waDs T=Y and, from I =
{T—Z}ul", (1) and Theorem 2, "' Fs_ Z—Y is obtained.

3. If U=V e IV then UNZ = & and V N Z = &, since otherwise S rule of
simplification could be applied.

4. If T Fs,,s 2Y thenY C Z because, due to (3), Z—Y must be an axiom.
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T—X Simp.Rule | ad—c b—e be—cg be—g c—a cd—b cf—bh cg—af
T—bd S ad—c b—e ber—cg be—g c—a cd—b cf—bh cg—af
Trbd SC ar—~c b—e ber—cg be—g c—a cd—b cfr—bh cg—af
Tr—bde SC ar—c be—cg be—g c—a cd—b cf—bh cg—af
Tr—bedeg SA ar—c bc—g c—a cd—b cf—bh cg—af
Trbedeg SC ar—c . a—a cde—b cfr—=bh cg—af
Tr—abcdeg SA ar—c cd—b cf—=bh  cg—af
Tr—abedeg S ar—c cfr—bh cg—af
Tr—abcdeg SC ar—c f—=h cg—af
Trabedef g SA ar—c f—h
Trabedefg SC f=h
Trabede f gh

Figure 1: Table of the example 1

The above theorem states the method to determinate if I’ I—SFDS X+—Y. The solution
arose from adding the goal T+—X to I', rendering an initial I'. Then, rewriting rules
of simplification are applied to I obtaining {T—Z} UT". Finally, I' s = XYV if
and only if Y C Z.

Below, we solve the implication problem presented in Example 1 using our new
methodology:

Exmaple 2 Let I' = {ad—c, b—eh, ber—c, be—d, c—a, cd—b, ce—af, cf—bdh} be this
set of FDs.

In order to know whether T' = bd—ah, firstly we initialize T! = T U {T+—bd} ren-
dering: T' = {Tw—bd, ad—c, b—eh, ber—c, be—d, c—a, cd—b, ce—af, cfr—bdh}

The table in figure 1 shows step by step how the rewriting rules of simplification
are applied. Note that the underscore points the FD that is being reduced. The second
column shows the applied rule:

Since ah C abedefgh and by Theorem 3, the following deduction is obtained:
I' = bd—ah

A novel algorithm for solving the implication problem using rules of simplification
defined below is shown in figure 2. The algorithm simply adds T—X and, in an ex-
haustive way applies the rules of simplification based on the theoretical study (Theorem
2).

Since every step adds at least one attribute, in the worst case, the “Closure” loop
is repeated at most | A | times. The “Simplify” loop is repeated at most | I' | times.
Consequently, the complexity of the algorithm is O(] A || I' |). We emphasize the
following characteristics of the algorithm :

e The algorithm has the same complexity as the previous algorithms [5, 10] cited
in literature, namely linear with regard to the input.
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Yes, ifY C Closure(X,nil,I",1);

Implies?(I', X — Y):{ No otherwise.

X, if 's =nil or b = 0;

Gl T b):{ Closure(Simplify(X,T'1,T'2,0)), otherwise.

Simplify(X,T'1,nil,b) = (X,nil,I'1,b)

Simplify(X,I',U — V : T'9,b) =

Simplify(X,I['1,T2,b), if V C X;
=< Simplify(XV,I'1,I's, 1), fUCX and V € X;
Simplify(X,U-X — V-X :T'1,T'2,b), otherwise.

Figure 2: Algorithm to solve the implication problem

e Contrary to these previous algorithms, our algorithm has a solid base, since it uses
the SL,,, logic . Consequently proofs and explanations are given automatically
by the algorithm applying directly the logic SL,,. Namely, the trace shown in
column Simp. Rule reflects the rules of SL,, logic that must be applied to prove
the implication and the order in which the rules need to be applied.

5 Conclusions

As the Resolution Rule is considered to be the first step of Logic Programming, Sim-
plification Rules are the key to open the door to a new area: functional dependencies
programming . We have illustrated the difficulties of directly using other previous FD
logics to face up to the implication problem.

As in a logic programming language we present an engine inference for solving the
implication problem, and how rules, facts and goals are established. We propose a novel
paradigm: the functional dependencies programming. This paradigm uses three rules
of simplification based on theorem 2 and an inference engine. The set of FDs in the
Lrp language plays the role of rules in a usual logic programming language as Prolog.
We have defined SL | logic as extension of SL,, logic in order to specify goals in
L%, language. The fact X (a set of attributes) is specified adding T+—X to the set of
FDs. And the goal is another set of attributes Y. Finally, the inference engine, based
on the theoretical study, is applied automatically to the extended set of FDs and T—Z
is obtained. The goal Y is achieved if Y C Z.

None of the classical FD logics can solve the implication problem efficiently without
using indirect methods. The algorithm we have proposed in this paper has the same
complexity as typical indirect methods but using directly a novel logic. Thus, we
can reason and we are ready to offer explanations. So, this new algorithm is more
appropriate to be used in an artificial intelligence environment.
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Abstract

An optimal control problem for cooling strategies in polymer crystallization
processes described by a deterministic model is solved in the framework of a free
boundary problem. The strategy of cooling both sides of a one dimensional sample
is introduced for the first time in this model, and is shown to be well approximated
by the sum of the solutions of two one-phase Stefan problems, even for arbitrary
applied temperature profiles. This result is then used to show that cooling both
sides is always more effective in polymer production than injecting the same amount
of cold through only one side. The optimal cooling strategy, focused in avoiding low
temperatures and in shortening cooling times, is derived, and consists in applying
the same constant temperature at both sides. Explicit expressions of the optimal
controls in terms of the parameters of the material are also obtained.

Key words: optimal contr