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Preface: 
 

We are pleased to bring the reader these proceedings containing the articles and 
extended abstracts presented at the “ 11th International Conference on Computational 
and Mathematical Methods in Science and Engineering” (CMMSE 2011), held in 
Alicante, Spain, from 26 to June 30, 2011.   

 
The essence of science lies in the human motivation to understand the real world. 

This understanding has helped us to predict or even control some natural and physical 
phenomena. This goal would have been impossible without the use of technology, whose 
development is, in turn, undoubtedly linked to new scientific achievements. In this 
setting, Mathematics is the branch of Science that is most important to the development 
of other scientific disciplines and certainly contributes to important advances in 
technology that helps humans in their interaction with the real world.      

 
Throughout history, Mathematics has become an essential tool to strengthen the 

relation between other fields of Science and Engineering, especially during the last 
decades of the preceding century and the first years of the present one due to the 
increased use of computational and mathematical methods. Only a few years ago some 
challenges that Science and Engineering faced were out of reach without a technology 
that allowed that goal. Today, interdisciplinary groups of scientists and engineers are able 
to create models and solve problems of a complex nature that entail huge computations 
using methods developed during these last years. In this way, computation has joined the 
two traditional components—experimentation and theory—of the scientific method. 
CMMSE aims to show how computational methods influence new mathematical 
achievements and how Mathematics plays a fundamental role in the development of new 
technology that allows scientists and engineers to speed up and carry out complex 
computations.  

 
CMMSE is a forum where experts in many different scientific fields present their 

latest advances and share ideas and experiences in order to explore new directions in 
Science and Engineering. The CMMSE 2011 special sessions represent some of these 
emerging disciplines: from differential equations to Cryptology, from Biomathematics to 
mathematical models in Celestial Mechanics or Chemistry. 

 
Three of the mini-symposia to be held at the conference will deal with security 

issues from different points of view. First, Mathematics in Cryptology, will explore 
cryptographic challenges, solutions and techniques of mathematical interest, including the 
design and analysis of cryptographic protocols. Second, we have a session dedicated to 
the mathematical modelling of the future internet and developing the corresponding 
security technology. The third mini-symposium, Computational Methods for Privacy 
Protection, will offer the latest advances in methods of computational intelligence, such 
as evolutionary algorithms and fuzzy logic that offer new and not yet fully exploited 
opportunities to discover threats and protect data.  

 
Two other mini-symposia will be devoted to computational methods applied to 

Chemistry and Physics. Computational Nanoscience is becoming a growing and 
important discipline. The purpose of the Computational Nanoscience mini-symposium is 
to present new results of phenomena at the nanoscale, whose study generates a great need 
for modelling and computer simulations with applications in many fields but mainly 
focused on Chemistry and Physics. Mathematics in Optometry and Vision Sciences is 



 vi 

another mini-symposium where computational mathematical aspects apply to other 
sciences. 

 
Partial differential equations will be the topic of three other mini-symposia. The 

first mini-symposium will be on the use of meshfree methods combined with sampling 
theory with applications in signal and image processing. Partial differential equations also 
apply in the development of other sciences as will be evidenced in the mini-symposium 
on Celestial Mechanics and Rotation of Earth. Lastly, from both analytical and numerical 
points of view, the mini-symposium on Mathematics and Numerics of Mechanics and 
Diffusion will pay special attention to viscoelasticity and non-Fickian diffusion with 
particular regard to drug delivery from biodegradable and non-biodegradable platforms. 

 
Sophisticated numerical methods as well as efficient use of current high-

performance computers employing, for instance, parallel architectures to address complex 
problems with high computational requirements are important for many different 
scientific and engineering applications. Again, and for the third consecutive year, we 
have the pleasure of working with the Spanish Network CAPAP-H "High Performance 
Computing on Heterogeneous Parallel Architectures." We would like to give a special 
mention to José Ranilla Enrique S. Quintana-Ortí and Diego Llanos for their very 
organized efforts.  

 
We would like to thank the plenary speakers for their excellent contributions in 

research and leadership in their respective fields. We express our gratitude to the special 
session organizers and to all members of the Scientific Committee, who have been a very 
important part of the conference, and, of course, to all participants.  

 
These four volumes contain all the proceedings of the conference. As a matter of 

style, volumes I, II and III contain the articles written in LaTeX and volume IV contains 
the articles written in Word and short-abstracts.  

 
We cordially welcome all participants to CMMSE 2011. We hope you enjoy this 
conference.  

 
Alicante, Spain, June 26, 2011 

 
 

J. Vigo-Aguiar, R. Cortina, S. Gray, J.M. Ferrándiz,  A. Fernández,  
I. Hamilton, J.A. López Ramos, P. de Oliveira, R. Steinwandt, E. Venturino,  

J. Whiteman, B. Wade 
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Abstract

After a brief introduction and justification of the method, a simple numerical al-
gorithm for the inversion of tridiagonal nonsingular matrices (unreduced as well
as reduced) is introduced. We maintain here the numerical approach, without
invoking the symbolic computation, which has produced recent advances in the
inversion of such matrices.

Key words: Computational complexity, difference equation, inverse matrix, nu-
merical algorithm, tridiagonal matrix.

MSC 2000: 15A09, 15A29, 39A06, 65F05, 65Y20.

1 Inversion of general tridiagonal matrices

Algorithms for the inversion of tridiagonal nonsingular matrices are frequently used
in applied sciences. The tridiagonal matrix is usually denoted as T = {ai, bi, ci}
(1 ≤ i ≤ n), with a1 = cn = 0. The coefficients {bi} correspond to the principal diago-
nal and {ai}, {ci} correspond to the lower and upper subdiagonal, respectively. Com-
mercial packages are based in gaussian inversion algorithms with pivoting strategies.
These packages are efficient, specially when the tridiagonal matrix is reduced, but a
great amount of memory is required. Their run times are greater than other specialized
and simpler algorithms. Concerning the literature about such simple algorithms, we
can cite e.g., [3, 8, 9]. In general, they are applicable only to unreduced matrices.

An analysis of the inversion of tridiagonal nonsingular matrices, without imposing
any condition on the coefficients, was introduced in [5]. Nevertheless, the resulting
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numerical algorithm breaks down when some principal submatrices are singular. Re-
cently, some advances has been introduced with the symbolic computation [4, 6]. The
computational complexity of the algorithms given in [4, 5, 6] is O(n2). As a conti-
nuation on the numerical line from [5], we introduce here an algorithm to obtain the
entries of the inverse of any tridiagonal nonsingular matrix. It is based on the determi-
nants of its principal submatrices, which verify second order linear recurrences. These
determinants appear in a compact form for the entries of the inverse matrix, see [7],

(T−1)ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)i+j
(∏j−1

k=i ck

)
detTi−1·detT (j)

n−j

detT if i ≤ j,

(−1)i+j
(∏i

k=j+1 ak

)
detTj−1·detT (i)

n−i

detT if i > j.

(1)

Matrix Ti−1 is the left principal submatrix of order i − 1. Matrix T
(j)
n−j is the right

principal submatrix of order n− j, which begins from the (j + 1)-th row and column.

We define here detT0 = detT
(n)
0 = 1. This representation for the entries of the inverse

of tridiagonal matrices is a particular case of the closed representation for inverses of
regular Hessenberg matrices, see e.g., [2]. It can also be obtained easily using the
companion decomposition introduced recently in [1].

The complexity for the inversion of tridiagonal nonsingular matrices, is related to
the obtainment of the determinants of all their principal (left and right) submatrices.
Fortunately, such determinants have a fast computation when using second order linear
difference equations, with complexity O(n). The linear recurrence for determinants of
left principal submatrices is, with initial conditions detT1 = b1, detT2 = b2b1 − a2c1,

detTk+2 = bk+2 detTk+1 − ak+2ck+1 detTk, (1 ≤ k ≤ n− 2) . (2)

For determinants of right principal submatrices, with initial conditions detT
(n−1)
1 = bn,

detT
(n−2)
2 = bn−1bn − cn−1an, we have,

detT
(n−k−2)
k+2 = bn−k−1 detT

(n−k−1)
k+1 − cn−k−1an−k detT

(n−k)
k , (1 ≤ k ≤ n− 2) . (3)

Overflow and underflow can appear in the computation of such recurrences. Then, our
algorithm works into the usage range. For example, the solutions for the recurrences
of some diagonally dominant matrices grow quickly in magnitude. Then we must
introduce other methods, as scaling transformations on the recurrences.

The inverse entries are computed with the expression from (1). The introduction
of both vectors, proda for the product of the ai and prodc for the ci, is important
for the efficacy of the algorithm, in special for matrices with large order n. For the
computations of (T−1)i,j in (1), we can made the following substitutions,

(−1)i+j

⎛
⎝ i∏

k=j+1

ak

⎞
⎠ =

proda(i)

proda(j)
, (i > j) ; (−1)i+j

(
j−1∏
k=i

ck

)
=

prodc(j)

prodc(i)
, (i < j) .

The determinants are evaluated with the two vector solutions of the recurrences (2)-(3).
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2 An algorithm of inversion

Input:

• Order n and the components {ai, bi, ci} of the tridiagonal matrix T ..

• A vector with the positions of rows which have a zero in the lower subdiagonal, ( asigna ).

• The total number of zeros in the lower subdiagonal, ( numbera ).

• A vector with the positions of columns which have a zero in the upper subdiagonal, ( asignc ).

• The total number of zeros in the upper subdiagonal, ( numberc ).

(For unreduced matrices we take number = 1 and asign = 1 for both subdiagonals)

Output: T−1 the inverse of the tridiagonal matrix T .

1. Initialize T−1 as the null matrix of size n.

2. Set the initial conditions. For k = 3 : n+ 1; built the two vectors of principal determinants.

3. For i = 1 : n; evaluate (T−1)ii, the entries of the main diagonal.

4. Evaluate the entries of the lower triangle of T−1.

(a) proda(1)= 1. For k = 2 :asigna(1)−1; proda(k)= −ak∗proda(k-1).
For j = 1 : k − 1; evaluate (T−1)k,j .

(b) For m = 2 : numbera; proda(asigna(m-1))= 1.

For k = asigna(m-1)+1:asigna(m)−1: proda(k)= −ak∗proda(k-1);
For j = asigna(m-1):k − 1; evaluate (T−1)k,j .

(c) proda(asigna(numbera))= 1;

For k = asigna(numbera)+1:n; prodak) = −ak∗proda(k-1);
For j = asigna(numbera):k − 1; evaluate (T−1)k,j .

5. Evaluate the entries of the upper triangle of T−1.

(a) prodc(1)= 1. For k = 2 :asignc(1)−1; prodc(k)= −ck−1∗prodc(k-1).
For i = 1 : k − 1; evaluate (T−1)i,k.

(b) For m = 2 : numberc; prodc(asignc(m-1))= 1.

For k = asignc(m-1)+1:asignc(m)−1: prodc(k)= −ck−1∗prodc(k-1);
For i = asignc(m-1) to k − 1; evaluate (T−1)i,k.

(c) prodc(asignc(numberc))= 1;

For k = asignc(numberc)+1:n; prodc(k) = −ck−1∗prodc(k-1);
For i = asignc(numberc):k − 1; evaluate (T−1)i,k.

The algorithm does not break down when some principal submatrices are singular.
It is especially useful in the reduced case. The computational complexity is O(n2)
for unreduced tridiagonal matrices. This complexity diminishes when the number of
zeros in the matrix subdiagonals increases. In this situation the inverse is not a full
matrix. The unnecessary computation of almost all null entries is here avoided. This is
illustrated in Figure 1. The algorithm is valid in the limit case of two-band triangular
matrices. For unreduced matrices, the n2 entries of the inverse matrix are evaluated.

In Figure 1 we introduce graphics for the general as well as unreduced case. We
can observe the advantages of our algorithm with respect to the built-in function inv()
of the Matlab package. The tridiagonal matrices, with order 75 ≤ n ≤ 500 in steps
of 25 units, take random values from [−5, 5]. Note as its complexity diminishes in the
general case (reduced as well as unreduced) with respect to the unreduced case.
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Figure 1: Mean value of the elapsed time, 150 trials, in the computations of the inverses.
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Abstract

The advent of multicore systems, joined to the potential acceleration of the graphics
processing units, has given us a low cost computation capability unprecedented. The
new systems alleviate some well known important architectural problems at the expense
of a considerable increment of the programmability wall. The heterogeneity, both at
architectural and programming level at the same time, raises the programming diffi-
culties. As a contribution in this context, we propose a development methodology for
the automatic source-to-source transformation on specific domains. This methodology
is successfully instantiated as a framework to solve Dynamic Programming problems.
As a result of applying our framework, the end user (a physicist, a mathematician or
a biologist) can express her problem through a latex equation and automatically derive
efficient parallel codes for current homogeneous or heterogeneous architectures. The
approach allows an easy portability to new potential emergent architectures.

Key words: Translators, Dynamic Programming, Portability

1 Introduction

Current generation of computers is based on architectures based on multiple identical pro-
cessing units composed of several cores (multicores) and it is expected that the number of
cores per processor be incremented every year. It is also a well know fact that the current
generation of compilers is not being able to transfer automatically the capacity of the new
processing units to the applications. The situation is further complicated given that current
architectures are of heterogeneous nature, where this multicore systems can be combined,
for example, with the capabilities of using GPU system as general purpose processing archi-
tectures. This fact constitutes a severe difficulty that is appearing in the form of a barrier
to the programmability.
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Many are the proposals to tackle with this problem. Leaving aside the proposals based
on the development of new programming languages, due to inconvenience caused to the user
(new learning effort and code reusability), many of the approaches are based in the source-
to-source transformation of sequential code into parallel code or in the transformation of
parallel code designed for one architecture into parallel code for a different one [25, 9, 26, 16].
Another different approach is based in the use of skeletons. The programmer is provided
with a set of patterns already parallelized that constitute a frame to develop parallel code,
just by supplying sequential code [4, 13]. It worth also to mention the reasearch on
frameworks devoted to build the former source-to-source transformers [23, 20, 3, 7].

Although technologically impressive, none ofthe projects based in skeletal parallel pro-
gramming have achieved significant popularity in the wider parallel programming com-
munity. However, we claim that many of the developments made in the context of skeletal
programming may play an important role in the automatic code generation based in source-
to-source transformations. An important difficulty in the source-to-source transformation
process is to transform sequential code sections into their parallel equivalent sections. That
implies that the transformer must know in advance the sections to be parallelized, and how
they should be translated, typically the user annotates the sections to be transformed.

An interesting feature of parallel skeletons is that the parallelism is hidden to the end
user and is encapsulated into parallel patterns. Usually, the user fills gaps in the skeleton
by providing sequential codes. New parallelizations (for new architectures for example) can
be developed without any modification of the sequential code supplied by the user.

We have developed a source-to-source translator based in skeletons that generates code
for many parallel architectures. The main goal is that the end user may obtain parallel
code, without any knowledge in programming, just by defining her problem using a more
natural language as the mathematics.

An advantage of our approach is that, in general, a source-to-souce transformation from
sequential code to sequential code is semantically easier to develop that a transformation
from sequential to parallel code. That is one of the fundamentals of our project, we au-
tomatically fill the sequential gaps in a parallel skeleton starting from a very user friendly
specification. The parallelism is automatically provided by the skeleton and can be very
easily extended. Since many parallel skeletons have been already developed and they work
efficiently in current architectures, once the transformers have been developed, the level of
productivity in terms of parallel code generated is highly increased.

As a proof of concept we apply the methodology to the dynamic programming tech-
nique, this technique is frequently applied to many research areas such as Control Theory,
Operations Research, Biology, etc., [19, 11, 14]. As a result of this research it raises an spec-
ification language for Dynamic Programming problems that also constitutes a contribution
of this work.

This remaining of the paper has been structured as follows: in section 2 we present the
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methodology that we propose to broach the problem, in section 3 we raise the framework
developed in the context of Dynamic Programming problems and in section 4 we include
some computational results obtained from our tool and point out the high productivity
achieved by the approach while keeping the efficiency at the same time. Finally we end the
paper with some concluding remarks and future lines of work.

2 The methodology

Usually, source-to-source translators are used to make easier the work of developers. The
source language use to have a higher abstraction level than the target language. Many
translator have been developed and they typically follow the common structure shown at
Figure 1 that operates in two different phases, the Front-end and the Back-end. The Front-
end analyzes the input code and is responsible for the correctness of the code. For that
purpose it performs the Lexical Analysis, the Syntax Analysis and the Semantical Analysis.
The output of this phase is an intermediate code that will be the input of the next phase.
The Back-end generates the output on the target language. In this phase optimization
techniques can be applied to generate code so efficient as possible in the target architecture.

Input
Code

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer Intermediate
Code

Optimization

Front­end Back­end

Output
Code

Figure 1: Basic model in source-to-source transformation

This division provides a high flexibility to the translator since the Front-end depends
on the input language and is independent on the architecture. The Back-end on the other
hand depends on the platform, and is independent from the input language. That allows to
reuse the same Back-end to generate output code starting from several input languages, if
different Front-ends are used. At the same time, the same Front-end can be used to generate
output codes for different architectures, if Back-ends adapted to the target platforms are
used.

In the skeletal based translation we propose to follow the same structure presented in
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Figure 1 but introducing new layers and providing an increased general abstraction view
(Figure 2). The proposal is close to that presented in [3]. In this case, the code generated by
the Back-ends is the input code for a parallel skeleton. The input code in a parallel skeleton
use to be a sequential code that is guarantied to be executed in parallel through the parallel
patterns encapsulated into the skeleton. This patterns are adapted to several platforms.
New parallel patterns can be developed for new architectures and also de skeletons are
suitable for static and dynamic optimizations. Note that we separate the source to source
transformation from the parallelization. The transformations are only of sequential codes
to sequential codes, while the parallelizations are abstracted into the skeletons. The parallel
code generated by our Back-end is suitable to be executed in many parallel architectures in
terms of the parallel skeleton to be combined for the execution.

Input
Code

Intermediate 
Code

Source 
Translator

Language Dependent

…    …    ...

Target
Translator

Platform
Dependent

Output
Code

Skeleton

Architecture
Dependent

Figure 2: Model for the proposed architecture

Using this model, we propose a design structure where each of the phases can be
overviewed as source-to-source translators (Figure 2). The Front-end may be seen as a
source-to-source translator that generates an intermediate code, and the Back-end receives
as input this source intermediate code and generate the output. By adding the skeletons
the model allows to develop a source translator, that generates intermediate code indepen-
dent from the architecture, and also a second target translator independent from the input
intermediate language that generates an output code adapted and optimized for different
architectures.

This model is quite flexible since allows the use the same target translator, and different
source translators, to generate parallel code starting from various input languages. Or, at
the same time, the use or the same source translator, and different target translators, to
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produce output code for different skeletal software platforms. The target code generated by
the target translator can be used in many different parallel architectures just by combining
the skeleton. New adapted skeletons can be developed for new emergent architectures
without any change nor new developments in the whole translation process.

As a proof of concept we have implemented a source-to-source translator that follows
this model (Figure 3). The translator is directed to solve Dynamic Programming problems
on parallel architectures. Of course, although the specific development of this paper is
oriented to the Dynamic Programming technique, the same development model can be
applied to many other contexts.

3 The dynamic programming technique: a proof of concept

Dynamic Programming (DP) is an important problem-solving technique that has been
widely used in various fields such as control theory, operations research, economy, biol-
ogy and computer science [19, 11, 14]. In DP an optimal sequence of decisions is arrived at
by making explicit appeal to the principle of optimality.

For example [15, 8], however most of the parallelizations presented are for specific DP
problems (see [1, 2]) or are restricted to limited classes of recurrences. A unified parallel
general approach was presented in [6] as an extension to the work of [15] but the strong the-
oretical effort introduced in some cases dissuades us from using it as a model for developing
parallel tools.

In conclusion, generic parallel approaches for DP are limited to classes of problems or
they are not suitable to be assumed by a software component. It is worth mentioning that
another source of difficulties is the fact that the notation used changes substantially from
one formalization to the other. In most of the cases, how to obtain the optimal policy
providing the optimal solution is left outside of the formalizations, and usually remains
expressed as a non-formalized, sometimes intuitive, procedure.

Analyzing the software approaches for DP, we found a group of general libraries for
combinatorial optimization problems such as [10, 5]. They are used to supply interfaces
for sequential and parallel executions but in most of the cases DP is not considered at
all. Next, we can find specific DP sequential libraries such as [18], and interesting software
approaches derived from laboratories that apply solvers such as LINGO [17] to DP problems,
following particular methodologies. In [22] we contributed with DPSKEL, a parallel skeleton
where many efficient parallelizations for DP on different architectures are offered to the end
user. The end user fills gaps on a C++ sequential code and the parallelism is automatically
provided. In [21] we presented DPSPEC, a XML specification for DP problems that could be
used as an alternative instead of the C++ interface for the DP parallel skeletons. Although
for a scientist (a biologist, a physician, or an economist) XML is easier to manage, it still
remains as a non natural approach. By other side, the problem of finding the optimal policy
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InputData ≡


n ∈ N # The number of objects
C ∈ N # The capacity of the Knapsack
pk ∈ N ; k ∈ {0 . . . n− 1} # The profit of object k
wk ∈ N ; k ∈ {0 . . . n− 1} # The weight of object k

OutputData ≡
{

xk ∈ {0, 1}; k ∈ {0 · · ·n− 1} # The solution vector
n− 1, C # The index solution

DecisionDef ≡
{

dk,c ∈ {0, 1}; k ∈ {0 · · ·n− 1}; c ∈ {0 · · ·C} # The decisions

DPRecurrence ≡

fk,c =


0 ⇒ dk,c = 0 if c < wk

pk ⇒ dk,c = 1 if k = 0 and c ≥ wk

max{fk−1,c ⇒ dk,c = 0, fk−1,c−wk
+ pk ⇒ dk,c = 1} if k 6= 0 and c ≥ wk

FormerDecision ≡


# Assign solution k

xk = dk,c if k ≥ 0 and c ≥ 0
# Next decision to assign

k − 1; c− (wk ∗ xk); if k > 0 and c ≥ (wk ∗ xk)

Table 1: Latex specification for the Knapsack Problem

after the optimal value is computed remained unsolved at that moment.

As a contribution of this paper, we propose a new specification language for DP prob-
lems that integrates all the elements of the DP technique, including how to compute the
optimal policy. DP problems using this specification can be transformed automatically into
our parallel skeletons through our intermediate language DPSPEC. To achieve it, DPSPEC
and the parallel skeletons have been conveniently extended.

The input defines a structure where the user can define the DP problem without any
knowledge of programming, using a more natural language as the mathematics. The code
for this structure is defined using the LATEX processor, widely used by the scientific com-
munity. We define a template where the user can define the problem to be solved and
its parameters. We illustrate this specification using the well known DP approach for the
Knapsack Problem(Table 1). As we can see the input data and solution or a problem are
described at the InputData and OutputData sections respectively, the DP recurrence in
the section DPRecurrence. Note that when this section is defined, the decisions dk,c are
included so that the optimal policy can be obtained from the specification presented in
section FormerDecision.

This LATEX code will be transformed using the transformer Tex2DPS to DPSPEC.
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The use of LATEX is just a proof of concept, however from the methodological point of
view, any other transformer producing the intermediate DPSPEC code is valid. DPSPEC
is the input of a second translator (XML2Cpp), which is the responsible for translating
the XML specification to C++ code adapted to the parallel platform. The C++ code
generated corresponds with the sequential sections (Required sections in Figure 3) of the
parallel skeleton (Provided sections in Figure 3). The flexibility in our approach allows to
develop new translators from XML to another library of skeletons providing new or different
functionalities.

Input
Code

XML

Intermediate
Code

Source
Translator

Tex2DPSLatex
Xml2Cpp

Target
Translator

Language Dependent Platform Dependent Architecture Dependent

Output
Code

Required Provided

Skeleton

OpenMP

Seq

MPI

...

Hybrid

OpenCL

Figure 3: The proposed software architecture

Since skeletons are defined for different architectures, shared memory, message pass-
ing, hybrid shared memory/message passing (see Figure 3), the methodology provides a
huge portability, specially if one consider that extending the approach to a new emergent
platform, just means to include a new parallel skeleton.

4 Computational Results

To validate our methodology and the framework that we have developed, we tested with
several Dynamic Programming problems (Table 2). Five different DP recurrences have
been considered that are quite representative of wide class of problems. Note that the data
dependences are different in most of the formula considered. That means that different
parallel traverses of the DP table can be required. We just represented the DP problems
using our LATEX specification language and automatically generated the parallel codes. Four
parallel skeletons have been considered, the sequential one and parallel versions on OpenMP,
MPI and MPI/ULL CALIBRATE. This last version is a distributed memory MPI version
combined with the ULL CALIBRATE library [12] to optimize in run time through dynamic
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Problem Recurrence

0/1 Knapsack
KP fi,j = max{fi−1,j , fi−1,j−wi + pi}

Resource Allocation fi,j = p1,j if i = 1 and j > 0
RAP fi,j = max0≤k<j{fi−1,j−k + pi,k} if (i > 1) and (j > 0)

Matrix Parentization
MPP fi,j = mini≤k<j{fi,k + fk+1,j + (dimi ∗ dimk+1 ∗ dimj+1)

Triangulation
Convex Polygons

fi,j = costi ∗ costi+1 ∗ costi+2 if (i = (j − 2))

TCP fi,j = mini<k<j{fi,k + fk,j + (costi ∗ costk ∗ costj)} if (i 6= j − 1)

Guillotine Cut
GCP

fi,j = max


max0≤k<object{profitk}
max0≤z≤i/2{fz,j + fi−z,j}
max0≤y≤j/2{fi,y + fi,j−y}}

Table 2: Dynamic Programming test problems

load balancing.

The parallel platform used to execute our experiments is an AMD Opteron 6128 node
(4 processors, each processor composed of 8 cores), with 32 cores sharing the memory. We
have used only 20 of them in our tests. To simplify the experience, the tests have been
developed using squared matrices of sizes 1000, 2000 and 5000. Note that according to the
dependences of problems on Table 2, that are graphically represented in Figure 4, several
traversing parallel approaches can be used to obtain the solution. The parallel skeletons
used compute rows in parallel in the case of the RAP and KP, the MPP and TCP are
processed by computing the diagonals down-top in parallel and in the case of GCP the
diagonals are computed in parallel top-down.

Table 3 shows the running times of the sequential executions for all the proposed prob-
lems. This table provides a general view on the granularity of each problem. All the times
are expressed in seconds. We can see as the KP is the problem with the finest granularity.

Size 1000 2000 5000

KP 0.4 1.63 10.2

RAP 20 162 2545

TCP 30 275 5128

MPP 31 282 5240

GCP 84 773 14033

Table 3: Sequential execution for test problems
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0/1 Knapsack Problem Resource Allocation Problem

Matriz Parentization Problem Guillotine Cut

Figure 4: Dependences on the Dynamic Programming test problems
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Skeleton OpenMP MPI

Size
# cores # cores

2 4 8 16 20 2 4 8 16 20

1000 15 9 4 2.4 2 14 9 4 2.4 2

2000 126 73 39 20 16 119 70 37 19 16

5000 1993 1153 616 311 257 1882 1093 591 311 255

Skeleton MPI+ULL CALIBRATE

Size
# cores

2 4 8 16 20

1000 11 5 3 1.7 1.5

2000 81 44 23 12 10

5000 1304 700 399 180 141

Table 4: Running times of the RAP for several Skeletons

In Table 4 we show the running times obtained of executing all the skeletons over
the RAP. As expected in this machine, we observe no significative differences between the
the OpenMP and the MPI skeletons. When using mixed MPI/ULL CALIBRATE skeleton
the improvement is quite significative. This skeletons take advantage of the heterogeneous
nature of the RAP recurrence to develop a dynamic load balancing of the rows.

In Table 5 we show the running times obtained of the execution with the remaining
problems. We use the OpenMP skeleton for the KP, and the MPI skeletons for the MPP,
TCP and GCP. We can see the benefits obtained from the parallelizations with the little
effort of development imposed by our tool.

Figure 5 shows the speedup obtained for each one of the problems and for sizes 1000 and
5000. We can see as the KP decreases the speedup after a few number of processors, this is
due to the low granularity, and how the RAP keeps an increasing speedup as a consequence
of using the dynamic load balancer.

5 Conclusion and Future Work

We propose a source-to-source transformation methodology based in skeletal programming.
The model is quite flexible and allows high levels of code reusability, portability and pro-
ductivity. Since the parallel structure is decoupled from the translation model, no loss of
efficiency is introduced by the approach. As a case of use, we applied the technique to
Dynamic Programming problems. Several different problems expressed in LATEX are auto-
matically transformed into parallel programs that follow different parallelization patterns

@CMMSE                                 Page 30 of 1703                                 ISBN: 978-84-614-6167-7



A. Acosta, F. Almeida, I. Peláez

Problem MPP TCP

Size
# cores # cores

2 4 8 16 20 2 4 8 16 20

1000 17 8 3.9 1.9 1.6 18 9 3.7 1.9 1.5

2000 146 73 41 22 21 143 72 36 22 20

5000 2659 1358 669 349 386 2596 1344 669 349 373

Problem KP GCP

Size
# cores # cores

2 4 8 16 20 2 4 8 16 20

1000 0.22 0.11 0.06 0.08 0.07 57 32 17 7.3 7.5

2000 0.86 0.44 0.23 0.24 0.24 480 271 193 74 69

5000 5.7 2.7 1.4 1.3 1.1 8772 4858 2559 1309 1517

Table 5: Running times for MPP, TCP, KP and GCP

implemented in various parallel libraries. The efficiency of the parallel code generated has
been proved. For the near future we will be involved in two research directions. At the
level of the skeletons we aim to extend DPSKEL with an OpenCL new skeleton, that would
allow the portability of our methodology to GPUs. At the level of the Back-end translator,
we propose to generate code for a new output language from the intermediate language.
This output combined with the OpenCF [24] framework will provide web services interfaces
so that the translators, and the parallel platforms, can be used transparently through web
interfaces.

Acknowledgment

This work has been supported by the EC (FEDER) and the Spanish MEC with the
I+D+I contract number TIN2008-06570-C04-03 and by the Canary Government project
SolSubC200801000307.

References

[1] R. Andonov, S. Balev, S. Rajopadhye, and N. Yanev. Otimal semi-oblique tiling and its
application to sequence comparison. In 13th ACM Symposium on Parallel Algorithms
and Architectures (SPAA), 2001.

[2] R. Andonov and S. Rajopadhye. Optimal Orthogonal Tiling of 2-D Iterations. Journal
of Parallel and Distributed Computing, 45:159–165, September 1997.

@CMMSE                                 Page 31 of 1703                                 ISBN: 978-84-614-6167-7



From latex specifications to parallel codes

Figure 5: Speedups for the problems of sizes 1000 and 5000

[3] S. Benkner, E. Mehofer, and S. Pllana. Towards an intelligent environment for program-
ming multi-core computing systems. In Proceedings of the 2nd Workshop on Highly
Parallel Processing on a Chip (HPPC 2008), in conjunction with Euro-Par 2008, Au-
gust 2008.

[4] A. Benoit and M. Cole. Two fundamental concepts in skeletal parallel programming. In
The International Conference on Computational Science (ICCS 2005) , Part II, LNCS
3515, pages 764–771. Springer Verlag, 2005.

[5] B. L. Cun. Bob++ library illustrated by VRP. In European Operational Research
Conference (EURO’2001), page 157, Rotterdam, 2001.

[6] M. D., A. F., R. C., R. J., and D. A. Coloma I. Parallel dynamic programming and
automata theory. Parallel Computing, 2000.

[7] C. Dave, H. Bae, S.-J. Min, S. Lee, R. Eigenmann, and S. P. Midkiff. Cetus: A source-
to-source compiler infrastructure for multicores. IEEE Computer, 42(11):36–42, 2009.

[8] O. de Moor. Dynamic programming as a software component. In N. Mastorakis, editor,
Proc. 3rd WSEAS Int. Conf. Circuits, Systems, Communications and Computers, 1999.

[9] I. Dooley. Automated source-to-source translations to assist parallel program-
mers. Master’s thesis, Dept. of Computer Science, University of Illinois, 2006.
http://charm.cs.uiuc.edu/papers/DooleyMSThesis06.shtml.

[10] J. Eckstein, C. A. Phillips, and W. E. Hart. PICO: An object-oriented framework for
parallel branch and bound. Technical report, RUTCOR, 2000.

@CMMSE                                 Page 32 of 1703                                 ISBN: 978-84-614-6167-7



A. Acosta, F. Almeida, I. Peláez
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Abstract

Copyright is a form of protection provided by laws to the authors of “origi-
nal works of authorship”. In spite of several international laws the digital piracy
is growing. Therefore it becomes crucial to develop numerical algorithms in or-
der to hinder such phenomenon. In this paper we focus the attention on a new
watermarking technique applied to digital color images. Our aim is to describe
the realized watermarking algorithm based on multichannel wavelet functions with
multiplicity r = 3, called MCWM 1.0. At the end we describe some experimental
tests executed to analyze the properties of our algorithm. In particular we report
some important numerical results in order to show its robustness to geometrical
attacks. Key words: Copyright protection; watermarking techniques; digital color

image processing; multichannel wavelet functions
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1 Introduction

Copyright is an automatic author’s rights protection under international laws relative
to “original work of authorship”. The digital piracy involving images, music, movies,
books, and so on, is a legal problem that has not found a solution. Therefore it becomes
crucial to create and to develop methods and numerical algorithms in order to solve
the copyright problems. One of the most popular approaches considered as a tool for
providing copyright protection is digital watermarking. It is a method or technique that
hides information into digital objects. The insertion takes place by manipulating the
content of digital data. The watermarking techniques alone do not protect from illegal
copying. Indeed they are used to discourage a user from illegally redistributing copies
of the media. In this paper we focus the attention on watermarking techniques applied
to digital color images.
Generally watermarking algorithms are based on the embedding and the detection pro-
cesses. These two phases are temporarily independent, but without the embedding
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phase the detection phase would not be effective. An important property of the water-
marking algorithms is the robustness. In this context a robust algorithm is an algorithm
that is resistant to digital alterations, called attacks. These operations have the aim
to modify, delete, or substitute the watermark [1, 2]. A classification of watermarking
algorithm is based on type of different techniques for the embedding and detection
phases. Concerning the first phase the watermarking algorithms are classified into spa-

tial domain and frequencies domain algorithms according to the domain where the wa-
termarking signal is embedded. In the spatial domain techniques watermarking scheme
works directly on the pixel bit [3]. In the frequency domain techniques the watermark is
embedded by altering some frequency coefficients of the image transformed by Discrete
Cosine Transform (DCT) [4, 5], Discrete Wavelet Transform (DWT) [6, 7, 8, 9] or any
other transform. The spatial domain techniques are less robust than frequency domain
ones.In this article we present a novel approach for the watermarking process based on
multichannel wavelets for digital color images. In the literature [10, 11] multichannel

wavelet functions have been introduced to process vector-valued signals that must be
processed as multichannel signals. A digital color image in RGB (or HSV) color model
is a vector-valued two-dimensional signal because each pixel is a 3-vector. Therefore we
have used multichannel wavelet functions to realize a frequency domain watermarking
algorithm. We have applied our algorithm to images belonging to web virtual images
galleries. The numerical results show an improvement of robustness property compared
with our previous developed algorithms based on wavelet functions [6, 7]. The work
is organized into three parts. In the first part we introduce the multichannel wavelet
theory. In the second part we explain the realized watermarking algorithm for digital
color images. In the third part we show the results relative to a large experimentation
to verify the properties of imperceptibility and robustness to different attacks.

2 Multichannel wavelet theory

In this section we introduce multichannel wavelets from the point of view of multichan-

nel MRA [11]. Let L2(R)
Zr be the space

L2(R)
Zr =




f : R → R

r : ‖f‖2 =




∑

j∈Zr

∫

R

‖fj(x)‖2dx




1/2

< ∞





of square integrable vector fields. From now on we use the abbreviation “MRA” to
consider the multichannel MRA.

A MRA is defined by a nested sequence of closed subspaces V0 ⊂ V1 ⊂ ... ⊂
L2(R)

Zr , with the following properties:

1. they are shift invariant : f ∈ Vk ⇔ f(·+ j) ∈ Vk, j ∈ Z

2. they are scaled versions of each other: f ∈ V0 ⇔ f(2k·) ∈ Vk

@CMMSE                                 Page 36 of 1703                                 ISBN: 978-84-614-6167-7



Santa Agreste and Luigia Puccio

3. they are generated by stable integer translates of certain vector fields. Let

V0 = span
{
f j(· − k) : j ∈ Zr, k ∈ Z

}

then the translates of the vector fields f j , j ∈ Zr form a stable Riesz basis in
L2(R)

Zr , that is,

∥∥∥∥∥∥

∑

j∈Zr

∑

k∈Z

cjkf j(· − k)

∥∥∥∥∥∥
2

∼




∑

j∈Zr

∑

k∈Z

|cjk|2



1/2

(1)

Any MRA is generated by a matrix refinable function F ∈ L2(R)
Zr×Zr , that is, a

function for which there exists a finitely supported mask

A = (A(k) ∈ R
Zr×Zr : k ∈ Z)

such that:

F = (F ∗A)(2·) :=
∑

k∈Z

F (2 · −k)A(k)

where ∗ symbol represents the convolution operator between matrix valued function F

and matrix sequences A.
The matrix valued function F ∈ L2(R)

Zr which generates the MRA and whose columns
are the vector-fields fj , j ∈ Zr, is also called the scaling function. A MRA is generated
by an orthogonal matrix function F ∈ L2(Z)

Zr×Zr if

〈F ,F (· − j)〉 = δ0jI

where 〈·, ·〉 represents the skew symmetric bilinear form

〈·, ·〉 : L2(R)
Zm×Zk × L2(R)

Zm×Zl −→ R
Zk×Zl

defined as

〈F,G〉 :=
∫

R

F T (x)G(x)dx.

Since an MRA consists of a nested sequence of spaces

... ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ ... , j ∈ N

we can define the relative orthogonal complements Wj := Vj−1 ⊕ Vj . If F ∈ Vj and
G ∈ Wj the orthogonality condition can be rewritten as:

〈F ,G〉 = 0.

If F is an orthonormal A-refinable matrix function, i.e., F = F ∗ A(2·) then the
bi-infinite block matrix

A = [A(j − 2k) : j, k ∈ Z]
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satisfies:

ATA = 2I (2)

A function G ∈ V1 is called wavelet for MRA if

Wj =
{
G ∗ c(2j ·) : c ∈ `2(Z)

Zr

}
, j ∈ N.

and it is called an orthonormal wavelet if G is moreover orthonormal. Suppose that
F is an orthonormal A-refinable matrix function, i.e. ATA = 2I, then there exists a
bi-infinite block matrix

B = [B(j − 2k) : j, k ∈ Z]

where

B =
(
B(k) ∈ R

Zr×Zr : k ∈ Z

)
∈ `Zr×Zr

00

such that BTA = 0 and BTB = 2I. Moreover this matrix B satisfies AAT +BBT = 2I.
The matrix B is the key to the wavelet construction, in fact

G := F ∗B(2·) ∈ V1.

Let `00 be the vector space of all finitely supported matrix-valued and

[ · ] : `(Z)Zr −→ `(Z)

be a function mapping a vector-valued sequence c ∈ `(Z)Zr to c = [c] via

c(rj + k) = c(j)k, j ∈ Z, k ∈ Zr.

We define the subdivision operator SA and the decimation operator S∗

A
, for any A ∈

`Z×Zr

00 , to introduce a fast wavelet transform. Let A ∈ R
Z×Z be a bi-infinite matrix

with the block representation A = [A(j − 2k) : j, k ∈ Z] and let c ∈ `2(Z)
Zr be the

vector-valued input signal:

Subdivision operator :

SAc =
∑

k∈Z

A(· − 2k)c(k)

such that [SAc] = A[c].

Decimation operator :

S∗

Ac =
∑

j∈Z

AT (j − 2·)c(j)

which has the property that [S∗

A
c] = AT [c].

We can define the decomposition part of the pyramid scheme by setting

cj−1 =
1

2
S∗

Acj and dj−1 =
1

2
S∗

Bcj (3)
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Figure 1: CL, L = 1, l, with l = 2 represents 2-d DMCWT using filter with multiplicity
r = 3

and the reconstruction part as

cj = SAcj−1 + SBdj−1 (4)

where A and B are the bi-infinite matrices related to scaling and wavelet functions,
respectively. The formula 3 is called Discrete Multichannel Wavelet Transform (DM-
CWT). The formula 4 is called Inverse Discrete Multichannel Wavelet Transform (IDM-
CWT).

The multichannel wavelet decomposition can be generalized to the 2D case and in-
terpreted as a signal decomposition in a set of independent, spatially oriented frequency
channels. For the sake of simplicity let C0 ∈ R

n×m×3 be a three-dimensional matrix
with n rows and m columns representing the color image. The matrix C1 ∈ R

n′
×m′

×3,
with n′ = n/2 and m′ = m/2, is obtained applying level l = 1 of 2-d DMCWT using fil-
ter with multiplicity r = 3. For any matrix plane, j = 1, 2, 3, four coefficient sub-bands
form C1:

C1 =

[
C1
1,j C1

2,j

C1
3,j C1

4,j

]
(5)

where:

• the three-dimensional matrix C1
1,j represents the lowest frequencies;

• the three-dimensional matrix C1
2,j represents the vertical high frequencies and

horizontal low frequencies (horizontal edges);

• the three-dimensional matrix C1
3,j the horizontal high frequencies and vertical low

frequencies (vertical edges);

• the three-dimensional matrix C1
4,j represents high frequencies in both horizontal

and vertical directions (the corners).

In Figure 1 three matrix planes Ck, for two levels of decomposition, k = 1, 2 are shown.
Ck
θ,j , θ = 1, 2, 3, 4 and j = 1, 2, 3 represent the sub-bands the decomposition at level k.
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3 The watermarking algorithm MCWM 1.0

In this section we explain MCWM 1.0, our watermarking algorithm based on multichan-
nel wavelets with multiplicity r = 3 for digital color images belonging to web virtual
image galleries. It hides an invisible mark into an image and detects it by comparing
the original and the watermarked images. Therefore MCWM 1.0 is a private algorithm.
The color images are modeled in Hue Saturation Value (HSV) color model in according
to the Human Visual System study, which indicates that the human eye is less sen-
sitive to noise in those areas of the image where the brightness is high or low. The
watermarking signal is inserted in the coefficients of high frequency sub-bands of the
Discrete MultiChannel Wavelet Transform (DMCWT) in the Value. In the embedding

phase our efficient watermarking algorithm balances the properties of imperceptibly
and robustness of the mark in an accurate way. In the detection process the input
watermarked image could be different in pixel and dimension from the watermarked
image output of the embedding process. In fact it could have been modified by attacks

changing its dimension as cut or resize. Therefore we have introduced a new step called
alignment step in which the dimension of original and watermarked image are to each
other. In detection process the Neyman-Pearson statistic criterion is used to compute
the correlation between the DMCWT coefficients of the watermarked image and the
watermark [12]. This criterion allows to determine a detection threshold minimizing
the probability of missing detection respect to the given probability of false alarm.
We have introduced two thresholds to compare this correlation minimizing the false
positive case and obtaining a robust algorithm. The experimentation has been accom-
plished on images, in high and low resolution, building a real and commercial database
including CEI database. The images have been subjected to several attacks.

3.1 Embedding process

The embedding process is composed of the following steps:

Step E1. Let I ∈ R
m′

×n′
×3 be the matrix corresponding to the original color image in

HSV color model representation. It is necessary that m′ and n′ are divisible by
2l to compute the l levels of the 2D DMCWT. If these conditions are not verified
we compute a new matrix I from I ′. The dimension of I are m×n×3, such that:

m =

{
m′ if mod(m′, 2l) = 0
2lml otherwise

n =

{
n′ if mod(n′, 2l) = 0
2lnl otherwise

where ml =
⌊
m′

2l

⌋
and nl =

⌊
n′

2l

⌋
represent the integer part of m′

2l
and n′

2l
. The

new matrix C is obtained cutting the first and the last (m′
−m)
2 rows and the first

and the last (n′
−n)
2 columns of each plane of I.

Step E2. C is decomposed l-times by means DMCWT. We use the new class of full
rank filter built in [13]. In particular Cotronei-Puccio-Vocaturo multichannel
wavelet with multiplicity r = 3 has been applied [14]. The matrix C l ∈ R

n×m×3
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is the decomposition of the image I. We extract the decomposed matrix C l
3

that represents the Value component of the image. In C l
3 we consider the three

sub-matrices of high frequencies relative to the last level l of the decomposition:

C l
θ,3 =

{
cl,θi,j,3

}

i=1,..,ml, j=1,..,nl

with θ = 2, 3, 4.

Step E3. The watermark is embedded by means of the following casting formula:

C̃ l
θ,3 = C l

θ,3 + ω · Sθ , θ = 2, 3, 4 (6)

where:

• the parameter ω ∈ R represents the watermark strength:

ω = std
j=1,..,nl

max
θ=2,3,4

{
aθ,j ∈ R : aθ,j = mean

i=1,..,ml

cθ,li,j,3

}
(7)

where std and mean respectively the standard deviation and the mean.

• Sθ ∈ Z
ml×nl , with θ = 2, 3, 4 are three weight matrices whose value of

elements sθi,j , depend on the respective coefficients of the sub-matrices C l
θ,3:

sθi,j =





0 if |cl,θi,j,3| < ω

1 if cl,θi,j,3 > TS i = 1, ..,ml, j = 1, .., nl

−1 otherwise

(8)

• the threshold TS is computed such that the mean of not null entries of the
block matrix [S2 S3 S4] is zero:

TS = median sort
{
cl,θi,j,3 ∈ Cl

θ |cl,θi,j,3 /∈ [−ω, ω], i = 1, ..,ml, j = 1, .., nl, θ = 2, 3, 4
}

(9)

where median and sort are the operators that respectively, find the median
value and sort the vector elements.

The parameters ω and TS and the matrices S2, S3, S4 have been computed to
have a good arrangement between robustness property of algorithm and imper-

ceptibility property of watermark. It is important to emphasize that ω guarantees
the robustness property while S2, S3, S4 guarantee the imperceptibility property.

Step E4. We substitute the sub-matrices C l
θ,3 with C̃ l

θ,3, θ = 2, 3, 4 as in 6 obtaining

C̃L, whose value plane is C̃L
3 :

C l
1,3 C̃ l

2,3

C̃ l
3,3 C̃ l

4,3

.

.

.

.

.

.

. .
.

.
.

.
.

.

.
.

.
.

.
.

.

. . . . . . .

l

C0
2,3

C0
4,3C0

3,3

C̃L
3 =
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Figure 2: Original image
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Figure 3: Difference between the original image I and the reconstructed one Ĩ

We apply l-times the Inverse of DMCWT (IDMCWT) to C̃L for reconstructing
image Ĩ ∈ R

n×m×3. Note that, the watermark signal appears well-distributed in
all color planes after this step. For sake of simplicity we explain this feature of
our algorithm by an example. The original image is represented in Figure 2. In
Figure 3 the differences between Ĩ and I are presented. The watermarking signal
has been distributed also Hue and Saturation planes by means IDCMT2. We
have achieved this important result using multichannel wavelets that are vectorial
functions.

Step E5. The inverse process of Step E1. is applied to adjust the dimensions and
obtain the watermarked image Ĩ ∈ R

n×m×3 from Ĩ ∈ R
n×m×3.

3.2 Detection process

The detection process is composed of these steps:

Step D1. The presented algorithm is private, so the original image is necessary in
this process. Let I ′ be the original image and Ĩ? be the original and watermarked
image possibly modified by geometrical attacks. Their dimensions are respectively
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m′ × n′ × 3 and m̃? × ñ? × 3. A check procedure on matrices dimensions
is applied to verify if m′ = m̃? and n′ = ñ?. One of these conditions can be false
because the watermarked image could have been modified by geometric attacks,
such as resizing or cutting. Then the original and watermarked images are aligned
by executing the following operations:

• take out the central block B of dimension 8× 8 from I ′;

• compare B with some blocks B̃?
ij extracted from Ĩ? by means the Mean

Square Error function.

• resize the matrix I ′ from its original dimension to m̃? × ñ? × 3 according
to the position of the block B̃?

ij congruent to B.

Step D2. It is equivalent to Step E1. I ′ and Ĩ? are processed in order to obtain I
and Ĩ of dimension m′ × n′ × 3.

Step D3. I and Ĩ are decomposed by means of the multichannel wavelet. As in the

previous process the following matrices are computed: C l
θ =

{
cl,θi,j

}

i=1,..,ml, j=1,..,nl

relative to original image and C̃ l
θ =

{
c̃l,θi,j

}

i=1,..,ml, j=1,..,nl

relative to the water-

marked image, with θ = 2, 3, 4.

Step D4. To detect the watermarking signal the correlation between the watermarked/original
coefficients and watermarked signal are computed:

ρ =
1

zl

∑

θ=2,3,4




ml∑

i=1

nl∑

j=1

Sθ
i,j(c̃

l,θ
i,j,3 − cl,θi,j,3)


 (10)

where zl ∈ N is the total number of the non-zero elements of the matrices Sθ with
θ = 2, 3, 4.
The ρ value is compared with two thresholds: T1 and Tρ. This latter is es-
timated minimizing the probability of false alarm, according to the Neyman-
Pearson statistic criterion [15]:

Pf ≤ 1

2
erfc

(
Tρ√
2σ2

)
(11)

where erfc(x) is the complementary error function and σ represents the standard
deviation.
In order to refine the detect interval of the watermark, we have introduced a novel
threshold T1. To compute it, the Cθ

l -entries are sorted and inserted into a vector
v:

T1 = mean
i=1,..,zl

vi + ω (12)

Then the detection of watermarking signal is the following:

• if |ρ| ≤ T1 and |ρ| ≥ Tρ then the watermark exists;

• otherwise the watermark does not exist.
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Figure 4: Example of original and watermarked images

4 Numerical results

In this section we describe the experimental tests executed to analyze the properties
of our watermarking algorithm. The invisibility property has been observed by finding
out the Peak Signal to Noise Ratio (PSNR) and the Weight Peak Signal to Noise Ratio
(WPSNR). In Table 1 we have inserted the results of these measures obtaining on four
classic test images Lena, Baboon, Airplane and Peppers. Figure 4 provides a visual
quality comparison between the original and the watermarked images.
The second experimental test on the algorithm has the aim to verify the robustness of

Table 1: PSNR and WPSNR of the watermarked image
Lena Baboon Airplane Peppers

PSNR +35.74 +32.00 +33.77 +34.90

WPSNR +52.61 +49.34 +49.70 +53.65

watermarking algorithm. To estimate it we have applied several geometric attacks (i.e.
resize, distortion, StirMark) to the watermarked image before executing the detection
process. This important property has been tested on images (79), in high (44) and low
resolution (35), belonging the CEI’s database (http://www.chiesacattolica.it/beweb).
The typology of the images belonging to this inventory includes a wide range of his-
torical artistic assets that can be ordered according to objects and scenes: images
with typical objects of the sacerdotal equipment, vestments, altar, cloths and holy ves-
sels, equipment of churches (i.e. crosses, confessional, icons); images with scenes from
frescoes and paintings; images of statues. The differences of historical-artistic images
considered during the experimental tests have given a diversified and complex survey.
We have applied the following attacks: better blurring; distortion (deform, zigzag);
rotation; adding noise; cutting of image part; resize (+1%); resize (-1%); StirMark.
The results are showed in Table 2. In the fist row we have inserted the applied attacks.
In the second, third and fourth rows there are showed the number of low and high
resolution images and the total number of images which inserted watermark has been
detected after the attack. The last row represents the percentage of success obtained

@CMMSE                                 Page 44 of 1703                                 ISBN: 978-84-614-6167-7



Santa Agreste and Luigia Puccio

by attacks our watermarked images.

Image Blur Distortion Rota- Noise Cut Resize Resize Stir-

Deform Zigzag tion -1% +1% Mark

Low res. 43 43 42 44 42 42 43 42 42

High res. 31 35 29 34 29 35 35 32 35

Tot 74 78 77 78 71 77 78 74 79

Perc. 94% 99% 97% 99% 90% 97% 99% 94% 100%

Table 2: Results of the attacks applied on the watermarked image before detecting
the watermark by our algorithm. The used images to test the robustness belonging to
CEI’s database

This experimentation has shown that our algorithm is robust against geometrical
attacks and filtering with a ratio more than 90% on 79 images. Furthermore it is
very important to enphatize that the percentage of success respect to StirMark attack
is 100% against the results relative to digital watermarking commercial software in
[16]. We have developed a watermarking algorithm MCWM 1.0 based on multichannel
wavelet functions that is private, invisible and robust. We have obtaned a improvement
of the results respect to our previous algorithm [6].
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Abstract

In this paper, Adomian decomposition method is used to improve Newton’s
method for minimizing functions of several variables. Numerical solutions are cal-
culated in the form of convergent power series with easily computable components.
The significant of this work is that the improvement of Newton’s method reduces
computations, improves the accuracy, and yields fast convergence.

Key words: Adomian decomposition method, Newton’s method, Nonlinear Op-
timization.

MSC 2000: AMS codes (90C05, 65K05, 34K28)

1 Introduction

One of the most important problems in Mathematics is solving systems of nonlinear
equations. These systems arise often from the numerical solutions of mathematical
models in real life; especially in science and engineering [1]. These systems also arise
in discretization of boundary value problems by finite difference equations, or finite
element methods. The problem of solving systems of nonlinear equations can be seen in
finding the solutions of optimization problems. It is not an easy task to locate all critical
points of a real valued function f(x) on Rn by attempting to find exact solutions of
∇f(x) = 0. Instead, iterative methods are used to search out the extremum by means
of an approximating sequence whose points are generated in some computationally
acceptable way from f(x). More efficient methods for solving systems of nonlinear
equations are continuously being sought. Some of these methods depend on variations
of Newton’s approach [2], and spectral method [3]. Adomian decomposition method
(ADM) was first introduced by Adomian [4, 5], since the beginning of the 1980’s, and
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its used for solving a wide range of problems. This new iteration method has proven
rather successful in dealing with both linear as well as nonlinear problems, as it yields
analytical solutions and offer certain advantages over standard numerical methods [5].
ADM was used to solve a wide range of physical problems. An advantage of this method
is: it can provide analytical approximation or an approximated solution to a rather wide
class of nonlinear (and stochastic) equation without linearization, perturbation, closure
approximation, or discretization methods [1]. Unlike the common method, i.e., weak
nonlinearity and small perturbation which change the physics of the problem, ADM
gives the approximated solution of the problem without any simplification. Thus, its
results are more realistic [6]. In [7], the author has modified ADM to approximate the
root of a nonlinear equation in one variable. Abbasbandy [8] introduced a powerful
improvement of Newton-Raphson method by ADM for solving nonlinear equations.
Recently, ADM is applied to solve systems of nonlinear equations [9, 10]. Authors
in [12] proposed a modifications of ADM and used to obtain solutions of systems of
nonlinear equations. In [13] the author introduced an efficient extension of Newton’s
method by modified ADM. The results suggest that the use of extension techniques
introduced a promising tool for solving system of nonlinear equations. Abbaoui and
Cherrualt [14] applied this techniques to solve the equation f(x) = 0 and proved the
convergence of the series solution.

In this paper, we will focus on using the same technique mentioned in [13], and setup
an algorithm using Newton’s method to solve unconstrained optimization problems in
three variables by ADM. The proposed technique, as mentioned in [11] will be used to
solve two types of functions: exponential and logarithmic functions.

2 Preliminary Results

In this section, we introduce some basic materials that will be useful for this paper.

2.1 Nonlinear Programming

Optimization in mathematics referes to the study of problems which one seeks to min-
imize or maximize a real-valued function by systematically choosing the values of real
or integer variables from within the feasible region. Here, we bring out on some topics
in nonlinear programming that will be used in solving optimization problems in section
4.

Let f : Rn → R be an objective function, and X is the feasible region, then the
general form of nonlinear optimization problem is:

min
x∈X

f(x), gi(x) ≤ 0, i = 1, 2, ...,m, hi(x) = 0, i = 1, 2, ..., `. (1)

The constraints gi and hi are real-valued functions. The feasible solution is a solution
(x1, x2, ..., xn) which satisfies all components. The feasible region is the set of all possible
feasible solutions.
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2.2 Newton’s Method

Newton’s method is an efficient algorithm for finding approximations to zeros of a real-
valued function. Consider the equation f(x) = 0, suppose that α is a root of f , and f
is a continuously differentiable function on an interval containing α. Newton-Raphson
method is given by

xn+1 = xn −
f(xn)
f ′(xn)

, n = 0, 1, ... (2)

which started with the initial guess x0. It is well known that Newton’s method is
quadratically convergent. Newton’s method is used to find solution for systems of
nonlinear equations, as in the following algorithm:

Algorithm: Suppose that g is a differentiable function of n variables with values
in Rn, and that x(0) ∈ Rn. Then the sequence {x(k)} generated by Newton’s method
for solving g(x) = 0 is defined by

x(k+1) = x(k) −
[
∇g(x(k)

]−1
g(x(k)), k ≥ 0 (3)

Newton’s method can also be used to find a minimum, or maximum value for a
real-valued function in one or more variables, as in the following algorithm:

Algorithm: Suppose that f(x) is twice continuously differentiable real-valued
function of n variables, and suppose that x(0) ∈ Rn. Then the sequence {x(k)} generated
by Newton’s method for minimizing f(x) is defined by

x(k+1) = x(k) −
[
Hf(x(k))

]−1
∇f(x(k)), k ≥ 0 (4)

where Hf is the Hessian of f .

2.3 Adomian Decomposition Method

In this subsection, following [9] we present an algorithm based on ADM, which is used
to find an approximate solution for systems of nonlinear algebraic equations of the form

f(x) = 0 (5)

where f(x) = (f1(x), f2(x), ..., fm(x))T , x = (x1, x2, ..., xm)T , and f : Rm → Rm is a
nonlinear mapping with the following properties:

• There exists an x ∈ Rm with f(x) = 0.

• f is continuously differentiable in a neighborhood of x.

• f ′(x) ( Jacobian of f) is non-singular.

The ith component in (5) fi(x1, ..., xm) can be written in the form

xi = α + gi(x1, ..., xm) (6)
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where gi, i = 1, 2, ...,m are nonlinear functions. The ADM consists of calculating the
solution in the series form

xi =
∞∑

j=0

xi,j , i = 1, ...,m, (7)

where the components x1,0, x2,0, ... are usually determined recursively. From (6) we get
the following recursive relation:

xi,0 = α,
xi,k+1 = Ai,k, k ≥ 0.

(8)

where Ai,k are Adomian polynomials depending on x1,0, ..., x1,n;x2,0, ..., x2,n;xm,1, ..., xm,n.
Moreover, the nonlinear terms gi(x1, ..., xm), in equation (6) can be expressed in terms
of Adomian polynomial Ai,j as follows:

gi(x1, ..., xm) =
∞∑

j=0

λjAi,j , i = 1, ...,m (9)

Adomian polynomials Ai,j can be formally obtained from the relation

Ai,n(x1,0, ..., x1,n;xm,1, ..., xm,n) =
1
n!

dn

dλn
gi

[ ∞∑
j=0

λjx1,j , ...,
∞∑

j=0

λjxn,j

]
λ=0

, i = 1, 2, ...,m.

(10)
Upon substituting (7) and (9) into (6) yields

∞∑
j=0

xi,j = α +
∞∑

j=0

λjAi,j , i = 1, 2, ...,m. (11)

In practice it is difficult to compute the terms in the series (7). However, the kth−
term approximate solution xi, i = 1, ...,m, will be determined by only evaluating finite
number of terms as

Si,k =
k−1∑
m=0

xi,m, k ≥ 1, i = 1, ...,m (12)

and the approximate solution xi, i = 1, ...,m of the system (5) is given by

xi = lim
k→∞

Si,k, (13)

which is usually converges to an accurate solution [9].

3 Extended Newton’s Method

Newton’s method is a well-known algorithm for finding roots of equations in one or
more dimensions. Here, we use the same procedure mentioned in [13], where we go
one dimension further than [13], also we set up our algorithm to find local minima of
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functions in three variables. It can also be used to find local maxima of functions.
Consider a real-valued function of three-variables f : R3 → R, where (α, β, γ) be the
minimizing of f , then (α, β, γ) must be a critical point of f . For solving this system of
nonlinear equations, suppose fx, fy and fz are continuously differentiable in the open
convex set D ⊂ R3 including (α, β, γ). Suppose the inverse of the Hessian matrix of f
at (α, β, γ) exists and bounded, i.e., H(f(x, y, z))−1 exist with ‖ H(f(x, y, z))−1 ‖≤ η,
for η > 0. Using Taylor’s expansion of fx, fy, fz near (x, y, z), say at (x−h, y−k, z−w)
for some small values h, k and w, we obtain h

k
w

 = H(f(x, y, z))−1

 fx(x, y, z)
fy(x, y, z)
fz(x, y, z)

 (14)

Adding the column vector (x, y, z) to both sides of the above equation, Newton’s method
for function minimization is then given by the following iterative formula xn+1

yn+1

zn+1

 =

 xn

yn

zn

−H(f(x, y, z))−1

 fx(xn, yn, zn)
fy(xn, yn, zn)
fz(xn, yn, zn)

 (15)

with initial guess (x0, y0, z0). It is possible to go one step further, and write Taylor’s
expansion of fx, fy and fz to a higher order, we get h

k
w

 =

 c1

c2

c3

 + N

 h
k
w

 =

 c1

c2

c3

 +

 N1(h, k, w)
N2(h, k, w)
N3(h, k, w)

 (16)

where c1 = fx

fxx
(x, y, z), c2 = fy

fyy
(x, y, z) and c3 = fz

fzz
(x, y, z) are constants, and N

is a vector quadratic polynomial. For approximating h, k and w, we can apply the
multi-variable Adomain decomposition [8], which consists of representing

h =
∞∑

n=0

hn, k =
∞∑

n=0

kn, w =
∞∑

n=0

wn (17)

and the nonlinear functions are decomposed as

Ni(h, k, w) =
∞∑

n=0

Ai,n(h0, h1, ..., hn; k0, k1, ..., kn;w0, w1, ..., wn) (18)

where the A′i,ns are Adomian polynomials given by

Ai,n =
1
n!

dn

dλn

[
Ni

( ∞∑
j=0

λjhj ,

∞∑
j=0

λjkj ;
∞∑

j=0

λjwj

)]
λ=0

, i = 1, 2, 3; n = 0, 1, 2, ...

Substituting equations (17), (18) into (16) yields
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h0 = c1, hn+1 = A1,n, k0 = c2, kn+1 = A2,n and w0 = c3, wn+1 = A3,n, n = 0, 1, 2, ....
For i = 1, 2, 3, we have Ai,0 = Ni(h0, k0, w0) and

Ai,n =
∑
Ω

hp1
1

p1!
. . .

hpn
n

pn!
kq1

1

q1!
. . .

kp1
n

qn!
wr1

1

pn!
. . .

wrn
n

rn!
∂Ω1+Ω2+Ω3

∂hΩ1∂kΩ2∂wΩ3
Ni(h0, k0, w0), n 6= 0

where Ω stands for

(p1 + 2p2 + ... + npn) + (q1 + 2q2 + ... + nqn) + (r1 + 2r2 + ... + nrn) = n

and, Ω1 = p1 + p2 + ...+ pn,Ω2 = q1 + q2 + ...+ qn and Ω3 = r1 + r2 + ...+ rn. However,
in practice it is difficult to compute all terms of the series (16), instead the (M + 1)−
term approximate solutions h, k and w, will be determined by only evaluating finite
number of terms as:

HM = h0 + h1 + ... + hM = h0 + A1,0 + A1,1 + ... + A1,M−1 (19)

KM = k0 + k1 + ... + kM = k0 + A2,0 + A2,1 + ... + A2,M−1 (20)

and
WM = w0 + w1 + ... + wM = w0 + A3,0 + A3,1 + ... + A3,M−1 (21)

Since the series converges very rapidly, then the above equations can serves as a practical
solution in each iteration. Now, we will show that the number of terms required to
obtain an accurate computable solution is very small. Choosing different values for M
in equations (19)-(21) we discuss the following three cases:

1. M = 0:

Equations (19),(20) and (21) yields

h ≈ H0 = c1 −
fx

fxx
, k ≈ K0 = c2 −

fy

fyy
, w ≈ W0 = c3 −

fz

fzz

The approximate solution is

α = x− h ≈ x−H0 = x− fx

fxx
, β = y − k ≈ y −K0 = y − fy

fyy

and
γ = z − w ≈ z −W0 = z − fz

fzz

The generalized Newton’s method for minimizing functions is given by

xn+1 = xn−
fx(xn, yn, zn)
fxx(xn, yn, zn)

, yn+1 = yn−
fx(xn, yn, zn)
fxx(xn, yn, zn)

, zn+1 = zn−
fx(xn, yn, zn)
fxx(xn, yn, zn)
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2. M = 1: Equations (19),(20) and (21) yields

h1 = A1,0 = N1(h0, k0, w0) =

[
− fyfxy

fyyfxx
− fxfxz

fzzfxx
+

1
2

(f2
xfxxx

f3
xx

+
f2

y fxyy

f2
yyfxx

+
f2

z fxzz

f2
zzfxx

+
fxfyfxxy

f2
xxfyy

+
fxfzfxxz

f2
xxfzz

fyfzfxyz

fyyfzzfxx

)]
while

k1 = A2,0 = N2(h0, k0, w0) =[
− fxfyx

fyyfxx
− fzfyz

fzzfyy
+

1
2

(f2
xfyxx

f3
xx

+
f2

y fxyy

f2
yyfxx

+
f2

z fxzz

f2
zzfxx

+
fxfyfxxy

f2
xxfyy

+
fxfzfxxz

f2
xxfzz

fyfzfxyz

f2
yyfzzfxx

)]
and,

w1 = A3,0 = N3(h0, k0, w0) =[
− fxfyx

fyyfxx
− fxfxz

fzzfxx
+

1
2

(f2
xfxxx

f3
xx

+
f2

y fxyy

f2
yyfxx

+
f2

z fxzz

f2
zzfxx

+
fxfyfxxy

f2
xxfyy

+
fxfzfxxz

f2
xxfzz

fyfzfxyz

fyyfzzfxx

)]
The approximate solution is given by

α = x− h ≈ x−H1 = x− h0 −A1,0, β = y − k ≈ y −K1 = y − k0 −A2,0

and
γ = z − w ≈ z −W1 = z − w0 −A3,0

and hence we have the following iterations

xn+1 = xn −
fx(xn, yn, zn)
fxx(xn, yn, zn)

−A1,0(xn, yn, zn)

yn+1 = yn −
fy(xn, yn, zn)
fyy(xn, yn, zn)

−A2,0(xn, yn, zn)

and,

zn+1 = zn −
fz(xn, yn, zn)
fzz(xn, yn, zn)

−A3,0(xn, yn, zn)

3. M = 2: Equations (19),(20) and (21) yields

α = x− h ≈ x−H2 = x− h0 − h1 − h2 = x− h0 −A1,0 −A1,1

β = y − k ≈ y −K2 = y − k0 − k1 − k2 = y − k0 −A2,0 −A2,1

and,

γ = z − w ≈ z −W2 = z − w0 − w1 − w2 = z − w0 −A3,0 −A3,1
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The small values of h2, k2, w2 can be found as follows:

h2 = A1,1 = h1
∂N1

∂h
(h0, k0, w0)+k1

∂N1

∂k
(h0, k0, w0)+w1

∂N1

∂w
(h0, k0, w0) = (h1T1+k1T2+w1T3)

k2 = A2,1 = h1
∂N2

∂h
(h0, k0, w0)+k1

∂N2

∂k
(h0, k0, w0)+w1

∂N2

∂w
(h0, k0, w0) = (h1T4+k1T5+w1T6)

and,

w2 = A3,1 = h1
∂N3

∂h
(h0, k0, w0)+k1

∂N3

∂k
(h0, k0, w0)+w1

∂N3

∂w
(h0, k0, w0) = (h1T7+k1T8+w1T9)

where

T1 = h0
fxxx

fxx
+

k0

2
fxxy

fxx
+

w0

2
fxxz

fxx
, T2 = −fxy

fxx
+ k0

fxyy

fxx
+

h0

2
fxxy

fxx
+

w0

2
fxyz

fxx

T3 = −fxz

fxx
+ k0

fxzz

fxx
+

h0

2
fxxz

fxx
+

k0

2
fxyz

fxx
, T4 = −fyx

fyy
+ h0

fyxx

fyy
+

k0

2
fyxy

fyy
+

w0

2
fyxz

fyy
,

T5 = k0
fyyy

fyy
+

h0

2
fyxy

fyy
+

w0

2
fyyz

fyy
, T6 = −fyz

fyy
+ w0

fyzz

fyy
+

h0

2
fyxz

fyy
+

k0

2
fyyz

fyy
,

T7 = −fzx

fzz
+ h0

fzxx

fzz
+

k0

2
fzxy

fzz
+

w0

2
fzyz

fzz
, T8 = −fzy

fzz
+ k0

fzyy

fzz
+

h0

2
fzxy

fzz
+

w0

2
fzyz

fzz

Finally,

T9 = −fzzz

fzz
+

h0

2
fzxz

fxx
+

k0

2
fzyz

fzz
,

and hence

xn+1 = xn − h0(xn, yn, zn)− h1(xn, yn, zn)− h2(xn, yn, zn)

yn+1 = yn − k0(xn, yn, zn)− k1(xn, yn, zn)− k2(xn, yn, zn)

and,

zn+1 = zn − w0(xn, yn, zn)− w1(xn, yn, zn)− w2(xn, yn, zn)
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i Newton M = 1 M = 2
1 (1.92, 1.92, 1.92) (1.984, 1.984, 1.984) (2.0096, 2.0096, 1.99936)
2 (1.9968, 1.9968, 1.9968) (2.0, 2.0, 2.0) (2.0, 2.0, 2.0)
3 (1.99999, 1.99999, 1.99999)
4 (2.0, 2.0, 2.0)

Table 1: Results for Example 4.1.

i Newton M = 1 M = 2
1 1.0× 10−3 5.00025× 10−3 4.99988× 10−3

2 5.00029× 10−3 2.50016× 10−3 1.25020× 10−3

3 4.99995× 10−3 1.25008× 10−3 6.24984× 10−4

4 2.50018× 10−3 6.25042× 10−4 1.56275× 10−4

5 2.49975× 10−3 3.12521× 10−4 7.81231× 10−5

6 1.25010× 10−3 1.56260× 10−4 1.95344× 10−5

7 1.24988× 10−3 7.81302× 10−5 9.76538× 10−6

Table 2: Results for Example 4.2.

4 Applications to Optimization Problems

In this section, two optimization problems are given to illustrate the efficiency of using
the extensions of Newton’s method by ADM.

Example 4.1: Logarithmic function Consider the following nonlinear function
in R3

f(x, y, z) = ln(x2y2z2)− x− y − z.

The function f has a maximum point at (2, 2, 2). Changing the sign of the function,
then the problem become of finding a minimizer for the new function −f. With initial
guess (x0, y0, z0) = (1.6, 1.6, 1.6), Table 1, shows some numerical results using Newtons
method and the extension of Newtons method for M = 1 and M = 2. The numerical
results obtained by the proposed method justify the advantage of using ADM to extend
Newtons method.

Example 4.2: Exponential function Consider the following nonlinear function
in R3,

f(x, y, z) = ex−y + ey−x + ex2
+ z2.

The Hessian H(f(x, y, z)) is positive definite, and so the function f has a strictly
global minimizer at any critical point of f , namely at (0, 0, 0). With initial guess
(x0, y0, z0) = (0.1, 0.1, 0.1), Table 2 shows the supremum norm error between the exact
solution (0, 0, 0) and the approximate solution using Newton’s method and the extended
Newton’s method, and reported as ‖ (xi, yi, zi)− (0, 0, 0) ‖∞.
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Abstract

The Cosmic Microwave Background is a diffuse radiation which is contaminated
by the radiation emitted by point sources. In this work, we present an efficient
algorithm, with a high degree of parallelism, which can replace advantageously the
classical approaches for detecting point sources in Cosmic Microwave Background
maps. High performance computing libraries and parallel computing techniques
have allowed to construct a portable, fast and numerically stable algorithm.

Key words: Efficiency, Cosmic Microwave Background
MSC 2000: 65F05, 65Y20, 68W10

1 Introduction

The cosmic microwave background (CMB) is a radiation which comes from the be-
ginning of the Universe, carrying relevant information about its origin, evolution and
structure. Since its discovery in 1964 by Penzias and Wilson (see [6]), the CMB has
been measured by instruments aboard balloons and satellites such as the NASA COBE
satellite (1992) ([7]), whose principal investigators, Mather and Smoot, detected the
CMB fluctuations for the first time. In 2003, another Nasa satellite, WMAP, used
these fluctuations to determine the cosmological parameters with unprecedented ac-
curacy (see [8]). In 2009 the ESA Planck satellite was launched and nowadays it is
gathering CMB data in order to improve the knowledge about our Universe (see [9]).
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The CMB is a diffuse radiation which is contaminated by the radiation emitted by
point sources. The detection of these point sources is vital for cleaning the radiation
maps and also from the astrophysical point of view ([5]).

In [1] we presented the Neville Elimination as an efficient tool for detecting point
sources in CMB maps. In this work, we present other efficient method for the same
goal. The detection of these point sources is vital for cleaning the radiation maps and
also from the astrophysical point of view.

2 Problem description

In this section we will present a typical method of point source detection in CMB maps.
In a region of the celestial sphere, we suppose to have a certain number n of

radio sources that can be considered as point-like objects if compared to the angular
resolution of our instruments. This means that their actual size is smaller than our
smallest resolution cell. The emission of these sources is superimposed to the radiation
f(x, y). In our particular case this radiation is the CMB. A model for the emission as
a function of the position (x, y) is:

d̃(x, y) = f(x, y) +
n∑

α=1

aα δ(x− xα, y − yα)

where δ(x, y) is the 2D Dirac delta function, the pairs are the locations of the point
sources in our region of the celestial sphere, and aα are their intensities. We observe
this radiation through an instrument, with beam pattern b(x, y), and a sensor that adds
a random noise n(x, y) to the signal measured. Again, as a function of the position,
the output of our instrument is:

d(x, y) =
n∑

α=1

aα b(x− xα, y − yα) + (f ∗ b)(x, y) + n(x, y) (1)

where the point sources and the diffuse radiation have been convolved with the beam.
In our application, we are interested in extracting the locations and the intensities of the
point sources. We thus assume that the intensities of the point sources are sufficiently
above the level of the rest of the signal, and consider the latter as just a disturbance
superimposed to the useful signal. If c(x, y) is the signal which does not come from the
point sources, model (1) becomes

d(x, y) =
n∑

α=1

aα b(x− xα, y − yα) + c(x, y). (2)

If our data set is a discrete map of N pixels, the above equation can easily be
rewritten in vector form, by letting d be the lexicographically ordered version of the
discrete map d(x, y), a be the n-vector containing the positive source intensities aα, c
the lexicographically ordered version of the discrete map, c(x, y), and φ be an N × n
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matrix whose columns are the lexicographically ordered versions of n replicas of the
map b(x, y), each shifted on one of the source locations. Equation (2) thus becomes

d = φ a + c. (3)

Looking at Eqs. (2) and (3), we see that, if the goal is to find locations and
intensities of the point sources, our unknowns are the number n, the list of locations
(xα, yα), with α = 1, ...n and the vector a. It is apparent that, once n and (xα, yα) are
known, matrix φ is perfectly determined. Let us then denote the list of source locations
by the n× 2 matrix R, containing all their coordinates. For the CMB we can assume
that c is a Gaussian random field with zero mean and known covariance ξ. Thus the
likelihood function is

p(d|n,R, a) = exp (−(d− φ a)tξ−1(d− φ a)/2). (4)

If we define M = φtξ−1φ, e = φtξ−1 d, the maximization of (4) leads us to the linear
system

Ma = e (5)

where M is a n × n matrix. The solution of this system will yield the maximum
likelihood estimator of the source intensities.

One problem with this approach is that, in principle, we know neither the number
n of point sources nor their positions. One standard way of dealing with this difficulty
is considering (5) the local maxima of e and selecting as source positions these local
maxima above a certain threshold. A 5σ threshold, with σ the standard deviation of
e, is typically used, since such high fluctuations rarely have their origin in the CMB or
the noise.

Finally, we have to find suitable methods to solve the system shown in (5), taking
into account that the number of sources can range from tens to thousands depending
on the size of the region studied and also on the frequency analyzed.

The problem statement, as described above, involves the processing of large ma-
trices, if we want to cover a significant region of space. This can lead to excessive
computation times as well as loss of precision. In this work, we provide an efficient so-
lution with both aspects in mind: to get a reasonable run time and a numerically stable
algorithm. To achieve both objectives, we resorted to the use of parallel computing and
high performance numerical libraries.

3 Efficient implementations

First, it should be noted that when we are building the system Ma = e we consider
that the matrices M , φ and ξ are of order N , while the vectors e and d have N rows.
Once vector e has been filtered by using the fixed threshold, matrix φ is set to N × n
by choosing the adequate rows.

To solve the system (5) is necessary to calculate the matrix M = φtξ−1φ, and the
vector e = φtξ−1 d, which should do so as efficiently as possible. A classical approach
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could start by computing the inverse of ξ as a mean for calculating vector e and matrix
M . Then, after applying a threshold process, the linear system Ma = e can be solved.
The computational cost of the classical approach implies 2N3 + 2N2 + 6Nn Flops.

However, from the numerical point of view, it should be desirable to obtain M and
e without calculating the inverse of ξ. Some other ideas should be used in order to
obtain an efficient algorithm. We have applied the following ones:

• Avoid unstable operations like computing inverses or multiplying large matrices.
Instead use orthogonal transformations if possible.

• Try to solve large scale problems, having in mind this:

– Use moderately the memory, avoiding unnecessary storage of data.

– Get a moderately execution time.

• Organize the algorithms in such a way that high performance sequential or parallel
libraries can be used.

With these ideas an efficient algorithm can be derived. As ξ ∈ RN×N is a sym-
metric positive definite matrix, Cholesky decomposition can be used to obtain a lower
triangular matrix such that: ξ = LLt ([4]). Hence, vector e can be expressed as:

e = φtξ−1d = φtL−tL−1d = φtL−tc1 = φtc2

with c1 = L−1d and c2 = L−tc1.
Thus, vector e can be computed by performing a matrix-vector product, where

matrix φ ∈ RN×N . Observe that these operations involve a cost of (N3)/6 + 4(N2)
Flops.

As explained in the previous section, thresholding can be applied now to vector
e, obtaining those positions with a value higher than 5σ. This is equivalent to obtain
a selection matrix P ∈ RN×n, which consists of those columns of the identity matrix
with a ‘1’ in the position determined by the thresholding of vector e, and obtain ẽ =
P te = (φP )tc2.

Now, in order to construct the part of matrix M which is involved in the threshold
linear system, we construct

M̃ = P tMP = (Pφ)tξ−1(φP ) = φ̃L−tL−1φ̃,

with φ̃ = φP ∈ RN×n.
Thus, M̃ = (L−1φ̃)t(L−1φ̃) = ZtZ, with Z = L−1φ̃. If we compute the QR

decomposition of Z = QR, with Q ∈ RN×N , orthogonal, and R ∈ RN×n, upper
triangular, M̃ = ZtZ = (QR)t(QR) = RtR and linear system Ma = e can be expressed
as (RtR)a = φ̃c2. Thus, vector a can be computed by solving the triangular linear
systems Rty = φ̃c2 and Ra = y.

The construction of M̃ involves (N2)n + 2n2(N − n/3) Flops and the solution of
the final linear systems involves 2n2 Flops.
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These ideas can be summarized in the following algorithm:

Algorithm CMB

Input φ
′
, ξ, d, with φ, ξ ∈ RN×N , d ∈ RN×1

Step 1. Compute ξ = LLt (Cholesky factorization)
Step 2. Obtain e:

Solve L ∗ c1 = d and Ltc2 = c1

Compute e = φtc2

Step 3. Calculate the positions of e that are above the threshold (e(i) ≥ 5σ, e → ẽ)
Step 4. Get the columns of φ associated with the indices from Step 3: φ → φ̃

Step 5. Solve LZ = φ̃
Step 6. Compute the QR factorization of Z (Z = QR)
Step 7. Solve the triangular systems: Rty = ẽ, Ra = y

Output a

Finally, it should be noted that considering the high number of data and operations
involved in the resolution of the problem, the use of parallel strategies is particularly
suitable.

4 Parallelization strategy and experimental results

We have implemented the two algorithms described in the previous section. We called
Classical algorithm to which constructs the matrix M and the vector e, starting from
the inverse of ξ. In turn, the CMB algorithm avoids the inverse computation and uses
matrix decomposition techniques.

Experiments reported in this section employ ieee 754 double precision arithmetic.
The hardware platform has one Intel Xeon E5530 Quad-Core processors (that is, 4
cores), running at 2.40 GHz, and it is equipped with 48 GB RAM. The operating
system utilized is Ubuntu Linux distro (10.04.2 LTS).

High performance implementations of the BLAS were provided by Intel MKL
(Mathematical Kernel Library, version 10.3). Arithmetic intensive operations of al-
gorithms described in Section 3 have been addressed through calls to the appropriate
subroutines of MKL, i.e. Cholesky factorization with DPOTRF, QR factorization with
DGEQRF, and so on.

Figure 1 shows the execution times obtained for the algorithms considered. It shows
that the calculated times are much higher for the classical algorithm. For example, if
N is between 213 (8192) and 215 (32768), the time of classical algorithm is more than
13 times that of the CMB algorithm. These results can also be seen in Table 1.

The time of CMB algorithm is reasonably small when the problem size grows. This
suggests the possibility of studying wider regions of space, which involve the processing
of larger matrices at an affordable execution time, by using a larger number of cores.
In addition, the technique used in the CMB algorithm is an efficient alternative that
can be applied also in more complex computational methods such as Bayesian methods
proposed in [3].

@CMMSE                                 Page 62 of 1703                                 ISBN: 978-84-614-6167-7



Efficient tools in detecting point sources in CMB maps

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 64  2048  4096  8192  16384  24000  32768

T
im

e
 (

s
e

c
.)

Matrix dimension

Classical Approach

1  Core

2 Cores

3 Cores

4 Cores

 0

 200

 400

 600

 800

 1000

 1200

 1400

 64  2048  4096  8192  16384  24000  32768

T
im

e
 (

s
e

c
.)

Matrix dimension

CMB Approach

1  Core

2 Cores

3 Cores

4 Cores

Figure 1: Execution time for the Classical and CMB algorithms.

Algorithm/Cores 1 2 3 4

Classical 18870.30 9503.11 6336.63 4939.95

CMB 1360.64 686.77 460.99 353.76

Table 1: Time (sec.) for N = 215.

5 Concluding Remarks

We have proposed an efficient algorithm, with a high degree of parallelism that can
replace advantageously the classical approaches.

As main advantages of algorithm CMB we can cite:

• It allows to confront large scale problems with a reasonable execution time, opti-
mizing the memory usage.

• Its parallelization is very efficient; near-optimal speedups have been obtained in
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many cases.

• The constructed algorithm is scalable in the sense that execution time can be
maintained, by increasing the problem size and the number of cores at the same
rate.

• The use of high-performance libraries and the organization of the algorithm guar-
antees numerical stability and portability.

• Techniques developed can also be applied to the resolution of Bayesian methods
described in [3], thus completing an important analysis tool.
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Abstract

Bidiagonal factorizations of Pascal matrices are considered and they can be applied
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matrices is announced.
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1 Introduction

Pascal matrices have a long history (cf. [1], [5], [8]) and present important applications in
filter design and image and signal processing ([5], [11]), as well as in probability, combi-
natorics, numerical analysis and electrical engineering ([4]), among other fields. Recently,
several papers have presented fast algorithms for solving linear systems whose coefficient
matrices are Pascal matrices ([9], [12]) and fast eigenvalue algorithms ([13]).

In Section 3 of this paper we announce a result on the ill-conditioning of Pascal matrices,
showing that they are always worse conditioned than the Vandermonde matrices of the same
order. In spite of this result, we announce that one can obtain algorithms with high relative
accuracy (HRA) for the computation of eigenvalues and inverses of Pascal matrices, as well
as for solving certain linear systems whose coefficient matrices are Pascal matrices. HRA
means that the computations are such that subtractions (except for initial data) are not
required so that the accuracy is preserved. In order to construct HRA algorithms, two
tools are used. On the one hand, a result on bidiagonal factorizations of Pascal matrices
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mentioned in Section 2. On the other hand, the algorithms with HRA for totally nonnegative
matrices presented in [7]. Recall that a totally nonnegative matrix is a matrix whose minors
are all nonnegative and that Pascal matrices are totally nonnegative (see Section 2).

2 Factorization of Pascal matrices

A Pascal matrix of order n is the symmetric matrix

P = (pij)1≤i,j≤n; pij :=
(
i+ j − 2
j − 1

)
. (1)

A lower triangular Pascal matrix of order n is the lower triangular matrix

PL = (qij)1≤i,j≤n; qij :=
(
i− 1
j − 1

)
, (2)

where qij := 0 if j > i.
It is well known (cf. [10]) that the lower triangular Pascal matrix PL is the factor of

the Cholesky factorization of the Pascal matrix P :

P = PLP
T
L . (3)

The following well known result provides a bidiagonal decomposition of a lower trian-
gular Pascal matrix and will be a key tool in the accurate algorithms announced in this
paper.

Lemma 1 The lower triangular Pascal matrix of order n PL given by (2) satisfies

PL =

0BBBBB@
1
0 1

. . .
. . .

0 1
1 1

1CCCCCA

0BBBBB@
1
0 1

. . .
. . .

1 1
1 1

1CCCCCA · · ·

0BBBBB@
1
1 1

. . .
. . .

1 1
1 1

1CCCCCA . (4)

The joint use of the factorizations (3) and (4) gives a bidiagonal decomposition of a
matrix P that will be denoted by BD(P ). This factorization can also be used as a proof of the
total nonnegativity of a Pascal matrix because all factors are obviously totally nonnegative
and it is well known (cf. Theorem 3.1 of [3]) that the product of totally nonnegative matrices
is also totally nonnegative.

It should be noted that the factorization (4) also appeared in a previous work by the
authors (see proof of Lemma 1 of [2]). In this case, and considering the LU factorization
obtained by Neville elimination with a pivoting strategy, it was shown that |L| ≤ PL. Given
a matrix A = (aij)1≤i,j≤n, we denote by |A| the matrix whose (i, j)-entry is |aij |.
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3 Conditioning and accurate algorithms for Pascal matrices

Let us start this section by recalling the definition of a Vandermonde matrix. A Vander-
monde matrix of order n is the matrix

V = (vij)1≤i,j≤n := (ji−1)1≤i,j≤n. (5)

It is well known that Vandermonde matrices are ill-conditioned.
Given a nonsingular matrix A, let us consider the traditional and the Skeel condition

numbers of A, denoted by κ∞(A) and Cond(A), respectively, and given by

κ∞(A) := ‖A‖∞ ‖A−1‖∞, Cond(A) := ‖ |A−1| |A| ‖∞.

Let us recall the following two properties:

• Cond(A) ≤ κ∞(A) and it can be much smaller, and,

• in contrast to κ∞(A), Cond(A) is invariant under row scaling: if D is a nonsingular
diagonal matrix then

Cond(DA) = Cond(A).

These properties provide some of the reasons that explain why the Skeel condition
number Cond(A) is more satisfying than the traditional condition number κ∞(A) (see also
Section 7.2 of [6]).

Let us announce that Pascal matrices always present a worse conditioning than the
Vandermonde matrices of the same order.

Theorem 1 Let P and V be the Pascal and Vandermonde matrices of order n given by (1)
and (5), respectively. Then

Cond(P ) ≥ Cond(V ). (6)

However, in spite of the ill-conditioning of a Pascal matrix P , one can use its bidiag-
onal decomposition BD(P ) to provide accurate algorithms. In fact, as shown in [7], if the
diagonal entries of the diagonal matrix of the bidiagonal decomposition BD(A) of a totally
nonnegative matrix A and the off-diagonal entries of the remaining factors of BD(A) are
known with HRA, then we can find algorithms with HRA to perform some computations
with these matrices, such as the computation of their singular values, the computation of
their eigenvalues, the computation of their inverses or solving certain linear systems Ax = b
(those where b has a chessboard pattern of alternating signs). So, we can construct such
accurate algorithms for Pascal matrices because all mentioned entries are in this case 1’s.
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Abstract

This papers shows StructPack, a set of library subroutines and executable
commands to solve structured linear systems. It is an evolving software pack-
age that nowadays contains a solver for symmetric and tridiagonal symmetric
Toeplitz matrices. StructPack is freely-available and can be downloaded from
http://www.inco2.upv.es.

Key words: Software library, structured matrices, Toeplitz

1 Introduction

Matrix Computation is especially useful in many problems of engineering and science.
Often the types of matrix problems that appear in many of them are well-known stan-
dard problems. Thus the existence of matrix libraries is a useful tool that allows the
specialist in a particular field to focus on solving his problem and to save hours of
programming numerical routines with which this specialist is often not used.

In the market there are currently a large number of matrix libraries covering a
wide field of scientific and technological applications. To cite just a few: LAPACK [6],
ScaLAPACK [11], PETSc [10], SuperLU [14], ARPACK [1],. . . or commercial imple-
mentations such as Matlab [8], Mathematica [7], etc.

Many of the matrix libraries are designed for one or more classes of matrices. For
example, LAPACK works on dense or band matrices and their routines are optimized
for this type of matrices. Similarly, ARPACK is designed to work with sparse matrices.

In contrast, matrices arising in many scientific or technical problems often have an
explicit external structure, i.e., they are called structured matrices. Typical examples
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of structured matrices are Toeplitz matrices, Hankel, Vandermonde, Cauchy, circulant
matrices, etc. There are many areas where you often see these types of matrices.
Without wishing to be exhaustive we can include: image and signal processing, solving
differential and integral equations, calculation of spline functions, time series analysis,
Markov chains and queuing theory, polynomial and power series computations, etc.
(see for example references [19, 21, 22, 18, 24])

There is an unfilled space in the field of matrix libraries: that for structures matri-
ces. It is true that it represents a broad and ambiguous set of processing methods which
are dependent on the type of matrix. It is difficult to conceive an efficient library for a
large number of cases and with a certain unity of content in the using of computational
technology. In other words the creation of a library of these features is a challenge both
of scientific and technological importance.

The most significant precedents for this idea are the developments presented in
Netlib [9] and SLICOT [12]. The first one is a set of routines to solve systems of linear
equations, dating mainly from 1982 and became part of Netlib in the ’90s. The second
precedent is a set of subroutines included in the package SLICOT to solve systems of
linear equations with general Toeplitz matrices, symmetric positive definite Toeplitz
matrices, and block Toeplitz matrices.

Motivated by some applications we have encountered in the field of Signal Pro-
cessing and being aware of the potential uses in many other fields, we have begun the
task of developing a library for processing structured matrices. The library, named
StructPack [13], aims at solving typical computational matrix problems on struc-
tured matrices. These problems are fundamentally solving systems of linear equations,
solving least squares problems, calculation of eigensystems and calculation of singular
value decomposition. Some of these problems have been tackled by the authors during
the last years, [20, 23, 17, 16, 15].

Given the wide range of problems that StructPack tries to address is unthinkable
to present it as a closed and finished product. Therefore, our design goals include a
progressive development of different routines. This will also allow feedback needed to
ensure the quality of developments.

In this paper we present the basic ideas that have helped to design the library and
we give an overview of its functionality. We also describe the current state of present
developments and what are the next ones to be included in the short term.

The rest of the paper is organized as follows: Section 2 describes some general fea-
tures of the library and some problems which have already been solved by StructPack

routines. Section 3 describes the main features of the webpage that allows access to
the library. Section 4 is dedicated to showcasing the capabilities of the library and
examples of use. Section 5 shows the future lines of work.

2 Solving structured problems with StructPack

StructPack is a library of numerical routines that solve Numerical Linear Algebra
problems on structured matrices. The routines are written in Fortran90/95, but may
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also be called from C, for which appropriate interfaces have been provided. Currently,
the version v0.1 is designed for Linux environments, and optimized for use on sequen-
tial CPU type and multicore architectures. For it, the OpenMP API has been used
in its development. Versions for other operating systems like Windows, or for other
programming paradigms, such as distributed memory or graphic accelerator units, shall
be added in successive versions.

The problems to be solved with StructPack are the classical problems of Numer-
ical Linear Algebra, that is, solving systems of linear equations, solving least squares
problems, calculate eigenvectors and compute the singular value decomposition. Al-
gorithms implemented in StructPack to solve such above problems, act on different
types of matrices such as Toeplitz, Hankel, Vandermonde, or circulant matrices, . . . and
in general on matrices that present displacement structure [21]. This includes specific
cases within each of the previous types as tridiagonal Toeplitz matrices, positive definite
symmetric matrices, etc.

StructPack has been designed using efficient algorithms. Basically we are using
algorithms that use the displacement structure of structured matrices, and we are op-
timizing them for multicore architectures. For simple operations, of linear or quadratic
complexity, BLAS computational kernels [2] have been used. The codes also use li-
braries to calculate the FFT, either the MKL Intel library [5] (if provided by the user)
or the FFT Pack [3]. The source code can be compiled either by using public domain
compilers, like GNU gcc [4], or by commercial compilers like Intel compilers.

An important feature of the library is that it provides commands to resolve prob-
lems directly, simply by writing them in the command line. This provides primarily a
great ease of use. StructPack also provides files .mex, allowing the use of routines in
the Matlab environment.

Currently, the routines included in the library can be used to:

• Solve symmetric, tridiagonal, Toeplitz, linear systems.

• Calculate eigensystems and singular value decomposition of symmetric tridiagonal
Toeplitz matrices.

• Solve symmetric Toeplitz linear systems of equations.

• Solve non-symmetric Toeplitz linear systems.

Routines to calculate eigenvalues and eigenvectors of symmetric Toeplitz matrices
will be incorporated soon. All information on StructPack is public domain and is
accessible at [13]. The following sections describe in detail the contents of this website
and the main features of StructPack.

3 Website description

The website structure of StructPack is organized as usual manner. Thus, it has a
“Main page” and some tabs for “Installation”, “Documentation”, “Test”, “FAQs” and
so on.
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On the one hand, the main page shows a presentation of the website, the licensing
and last version news. Besides, a brief description of the groups involved on the devel-
opment of the package and the related projects are outlined. On the other hand, next
items summarize the most relevant tabs:

• Documentation. Here, a link to the Doxygen generated documentation is shown.
In this documentation we can find all the library API specifications and the
available line commands.

• Test. In this tab it is shown how to run performance tests to obtain the timing
and precision results of the installed package in the machine.

• Working Notes. The working notes of the package will be stored here. This
section will collect all the detailed information related to the entire package, to
some routines, to performance results or conclusions, etc. The chosen acronym is
SPAWN: StructPAck Working Notes.

• FAQs. The “Frequently Asked Questions” tab includes general questions, instal-
lation questions, how to use or program with StructPack, questions or problems
about different platforms or operating systems and miscellaneous questions.

• Third Party Software. This tab contains links to the websites of the used software
to produce StructPack. The software is grouped as:

– Compilers: gcc, gfortran, icc and ifort.

– Software version control: subversion.

– Software documentation: doxygen.

– Text editing: vi (vim, gvim, ...)

– Environment configuration: libtool, autoconf

– . . .

• References. In this tab we can find bibliographic references that have been used
to produce StructPack. They include our previous work in these algebraic prob-
lems and other related publications. Besides, we include links to other websites
with similiar contents.

• Installation. It contains three sections: “How to install”, “Download” and “In-
stallation test”. In the “Download” section the last versions of the software can
be chosen and downloaded, whilst “Installation test” tab shows the way to check
that the installation is correct.

In the “How to install” section all details of how to get a correct installation
are shown. A typical installation process, consisting of three steps, is used: $

./configure, $ make and $ make install.

In the configure step the system where the package is being installed is tested,
and the appropriate Makefile files for building the package are created. Several
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options, i.e. installation path, compilers and libraries, etc., can be specified at
configuration time in order to change the default installation settings. Make step
compiles and links all libraries and programs of StructPack. Both static and
shared versions of the libraries are built, unless otherwise stated at the configura-
tion time. Finally, make install step moves software and documentation toward
the desired folder.

By default, the source codes are compiled using the GNU compilers, though Intel
compilers are currently supported.

StructPack has been designed using efficient algorithms which use BLAS compu-
tational kernels for operations of linear or quadratic order complexity. Therefore
a generic BLAS implementation (the default choice), MKL Intel library or any
compatible package must be installed. StructPack also includes and uses li-
braries to calculate the FFT. The FFT Pack [3] is part of StructPack, but users
can use the solution provided by MKL.

Figure 1 shows partially the information shown in this tab. For a detailed de-
scription of the installation process see [13].

Figure 1: Installation instructions

4 Library usage and commands

Currently, StructPack offers solution to Toeplitz linear systems where the matrix can
be symmetric tridiagonal or full symmetric. The user has two possibilities of using
the package to solve this problem. He can implement his own application using the
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library modules provided by StructPack or he can use the operating system commands
available to solve the problem.

The most natural way to use our modules is by means of the design of a Fortran 90
application. Currently, the package provides modules tpsysv_module (full symmetric)
and tpsytrid_module (tridiagonal symmetric). They can be use as shown in the
following simplified example:

program tpsysv_test

use tpsysv_module

implicit none

double precision, dimension(100) :: t, x, b

integer :: nb = 20

logical :: pivoting = .true.

call random_number( t )

call random_number( b )

call tpsysv( t, x, b, nb, pivoting )

end program tpsysv_test

Routine tpsysv obtains the solution x of linear system Tx = b given the first
column (row) t of T and the right hand side vector b. The application is obtained by
linking with the library structpack.a provided by the package.

For its use in a C application, the package provides the header file tpsysv_module.h
which must be included, and the Fortran 90 module ctpsysv_module.F90 which the
application must be linked with. Each StructPack module that solves a given problem
has a counterpart module whose name is prefixed by c. This module interfaces C to
make possible to call a Fortran 90 routine/function from the C application. It uses
the iso_c_binding module which provides C/fortran interoperability. For example,
routine ctpsysv can be called from a C source code keeping the name, number and
type of arguments of the driver routine to be called described in the module as follows:

subroutine ctpsysv(n, t, x, b, nb, piv ) bind(c)

integer(kind=c_int), value, intent(in) :: n

real(c_double), dimension(n), intent(in) :: t

real(c_double), dimension(n), intent(out) :: x

real(c_double), dimension(n), intent(inout) :: b

integer(kind=c_int), value, intent(in) :: nb

integer(kind=c_int), value, intent(in) :: piv

. . .

end subroutine ctpsysv

Two commands are currently provided by the package to allow the user to solve
each one of the two problems tackled: tpsysv and tpsytrid. A calling example could
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be tpsysv -n 100 -p. In this example, the command solves the problem of a sym-
metric Toeplitz matrix of order 100 randomly generated using diagonal pivoting (-c
option). The independent vector is also randomly generated. The command returns
the execution time. Option --help outputs the available options that allow the com-
mand to receive, e.g. input data, or save the solution in a file. Other useful outputs of
the command are related to some accuracy error. For example, the following call

tpsysv -n 100 -p --raw-results --raw-headers --random-seed=123

returns some accuracy error statistics:

# n Time (sec.) Forward error Backward error

#===========================================================

100 0.19 1.16e-13 3.02e-16

5 Future of StructPack

One of the target of this package is to disseminate its existence among the scientific
community and also to include its maintenance.

In the future the working team will consolidate the existing methods, solving the
problems that may arise from use by other researchers. In the solution of linear systems
we are currently working on non-symmetric, complex and Hermitian linear systems of
Toeplitz matrices, all of them based on the same approach used for the solution of the
already tackled symmetric Toeplitz linear system. The same mathematical background
used for the efficient implementation of the symmetric solver in multicores can be
extended to the solution of a wide range of Toeplitz-like problems like block-Toeplitz,
Toeplitz-block, Toeplitz+Hankel, etc. Furthermore, the least squares problem with
Toeplitz-like matrices can also be solved with similar techniques so it will be part of
our solver. The extension to other non Toeplitz-like but also structured matrices like
Vandermonde are also part of our objectives.

The solution of the eigenproblem and the singular value problem involving struc-
tured matrices is also an important objective of the project. Some proposals are based
on the solution of linear systems such as those mentioned above, so it only remains to
be incorporated into our package.
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Abstract

The paper introduces a numerical method to improve the simulations of solitary-
wave solutions of some nonlinear dispersive wave equations. The properties that
characterize the proposal are a local basis in the spatial discretization, an invariant
preserving time integrator, a dynamical cleaning procedure which allows a simpler
implementation and the automation of the whole process.
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1 Introduction

The purpose of the paper is the description of a numerical technique to improve the sim-
ulation of solitary-wave solutions of nonlinear dispersive wave equations of the general
form

ut + ux + f(u)x + Mut = 0, x ∈ R, t > 0. (1)

where u = u(x, t) is a real-valued function of the two real independent variables x, t,
f is a smooth, real-valued function of u, representing a nonlinear term and M is a
linear, nonnegative, formally self-adjoint operator, characterized as a Fourier multiplier
operator by its symbol

M̂v(ξ) = α(ξ)v̂(ξ), (2)

wherêdenotes Fourier transform. Equations of the form (1) appear in many mod-
els about the propagation of small-amplitude, nonlinear, dispersive long waves, as an
alternative to the KdV-type equations, see e. g. [1, 2]. One of the most important
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cases included in (1) is the BBM equation and generalized versions [5, 18, 9] (with
f(s) = sp+1/(p + 1), p ≥ 1, M = −∂xx),

Solitary-wave solutions of (1) are of the form u(x, t) = φ(x− ct) for some positive
c, approaching some constant (zero in this case) at infinity. The parameter c > 1
represents the velocity of the wave. Assuming that Mφ → 0 at ±∞, the profile φ = φc,
whose explicit form is generally unknown, satisfies the equation

cMφc − f(φc) + (c− 1)φc = 0, (3)

The simulation of these solitary waves requires to pay attention to some numerical
problems (see e. g. [3, 4] and references therein). The one we focus on here appears
frequently when managing with small perturbations of the waves, in the context of
studies of stability (see e. g. [21, 19]). In some perturbations, numerical experiments
suggest the evolution of the perturbed wave into a main pulse (or a train of pulses)
along with dispersive tails (see Figure 1). If one is interested in the analysis of the
parameters of the pulses, or in a way to generate multipulses of (3), then the finite
computational window forces to ‘clean’ the solution: isolating the pulses, eliminating
somehow and sometime the tails, and leaving them alone to evolve. Several cleaning
procedures to this problem can be seen in the literature [12, 13, 6, 11, 7, 8, 15]. The
main new computational feature of the technique proposed here is the automation of
the whole process, from the selection of the interval of cleaning to the dynamic way
this is implemented through the evolution. In this sense, equations of the form (1) are
taking as a case study, being the technique applicable to other models for which the
dynamics of solitary waves is under study.

The paper is structured as follows. In Section 2 we remind some properties of the
equations (1) and complete the theoretical preliminaries. The numerical technique,
along with the scheme of approximation to (1) is described in Section 3. Finally, Sec-
tion 4 is devoted to show, taking the BBM equation as a case study, some numerical
experiments concerning the application of the method to small perturbations of soli-
tary waves. Extensions to the work concern the application to other equations and
the simulation of the dynamics of other structures, such as periodic travelling waves,
generalized solitary waves or multipulses.

2 Preliminaries

Several hypotheses on the nonlinear term f and the symbol α are assumed (see [21]
among others).

(H1) f is C2 with f ′(s) ≥ 0 for s ≥ 0 and f(s) = O(s2), s → 0.

(H2) There are positive constants m ≥ 1/2, A1, A2 such that

A2|ξ|2m ≤ α(ξ) ≤ A1(1 + |ξ|2)m.
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Figure 1: Solution from a perturbed solitary wave. BBM equation. Note the main
wave and the generation of the tail behind.

They concern some well-posedness results of (1) in Sobolev spaces X = Hs = Hs(R)
with the corresponding norm

Hs = {g,

∫ ∞

−∞
(1 + |ξ|2)s|ĝ(ξ)|2dξ < ∞}, ||g||s =

(∫ ∞

−∞
(1 + |ξ|2)s|ĝ(ξ)|2dξ

)1/2

and H0 = L2 [1]. Note that condition (H2) implies that the operator M is nonnegative
and self-adjoint. It also behaves essentially like (−∂xx)m,m ≥ 1/2, which allows to
define the operator L with symbol

ω(ξ) = α(ξ)/(iξ), ξ 6= 0, ω(0) = 0. (4)

This will be used later on. On the other hand, for initial data in Hs, s ≥ s0 > m, the
functionals

I(u) =
∫ ∞

∞
u(x, t)dx, (5)

V (u) =
∫ ∞

∞

1
2
(u(x, t)Mu(x, t) + u2(x, t))dx, (6)

H(u) =
∫ ∞

∞

(
1
2
u2(x, t) + F (u(x, t))

)
dx, (7)

are preserved by the solutions of (1), where F ′ = f, F (0) = 0 and the convergence of
the integral that defines (5) is assumed. The quantity (7) determines the Hamiltonian
structure of (1). As well, (6) is the Hamiltonian function of the Hamiltonian symmetry
group of (1) consisting of translations in space [17]. This defines orbits of solutions of
(3) {φc(x− x0) : x0 ∈ R} and the corresponding solitary wave is obtained by applying
the symmetry group with parameter ct to the profile φc(x− x0) .
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3 Description of the numerical technique

Our proposal of cleaning involves the three stages of the numerical simulation: the
generation of initial profiles, the spatial discretization and the time integration. First,
the generation of some initial solitary wave profiles is necessary in order to define a
support to guide the process. On the other hand, a local basis for the semidiscretization
in space is required by the local character of the cleaning algorithm. Finally, the time
integration must satisfy properties of conservation of invariants of the problem. This
ensures [3] a more correct simulation of the parameters of the emerging solitary waves,
with special emphasis on the amplitude and velocity. These are the main properties that
the elements of the simulation must have to implement the cleaning procedure. In this
sense, our specific choices below admit, under these requirements, other alternatives.

In order to adapt (1) to a finite computational window we consider the initial-
periodic-boundary problem

ut + ux + f(u)x + Mut = 0, x ∈ [0, L], t ≥ 0,
u(0, t) = u(L, t)
ux(0, t) = ux(L, t)
u(x, 0) = u0(x), x ∈ [0, L]

(8)

In (8), the corresponding periodic version of the operator M is considered, defining (2)
for the Fourier coefficients [20].

3.1 Generation of initial profiles

The cleaning procedure will require the generation of some initial solitary-wave profiles,
by solving numerically equation (3). The operator M suggests to treat the problem
in the Fourier space. Denoting by φ̂c(k) the k−th Fourier coefficient of φc, the corre-
sponding system for it, obtained from (3), has the form of fixed point condition

φ̂c(k) =
f̂(φc)(k)

c− 1 + cα(k)
, k ∈ Z, (9)

There are several techniques in the literature to solve (9) iteratively. Here we choose
the so-called Petviashvili’s method, which has been proposed in several works as an
efficient alternative to generate solitary wave profiles (see e. g. [16] and references
therein). Note that if we multiply (3) by φc and integrate in [0, L] then

K = K(φc) =

∫ L
0 ((c− 1 + cM)φc)φcdx∫ L

0 (f(φc))φcdx
= 1. (10)

Now, using (10), the Petviashvili’s method introduces a stabilizing factor and proposes
the following algorithm to solve (9) iteratively

φ̂(k)[ν+1] = K(φ[ν])γ f̂(φ[ν])(k)
c− 1 + cα(k)

, k ∈ Z, ν = 0, 1, . . . , (11)
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where φ̂(k)[ν] is the ν-th iteration and γ is a free parameter chosen to make (11) be
convergent [16].

For an even number N of nodes xj = jh, j = 0, . . . , N, with h = L/N , the practical
implementation of (11) to approximate the corresponding nodal values of the profile
can be done in the space Sh of N -th degree trigonometric polynomials defined on (0, L).
If Zj denotes an approximation to φc(xj), the p-th discrete Fourier coefficient

Ẑp =
1
N

′′∑

0≤j≤N

Zje
−ipjh̃, −N

2
≤ p ≤ N

2
, h̃ = 2π/N,

(the double prime in the sum means that the first and last terms are divided by two)
is obtained by solving the iteration

Ẑ [ν+1]
p = K̃(Z [ν])γ

f̂(Z [ν])p

c− 1 + cα(p)
, −N/2 ≤ p ≤ N/2, ν = 0, 1, . . . , (12)

where K̃(Z) is the approximation to the stabilizing factor K of the form

K̃(Z) =

∑N/2
p=−N/2(c− 1 + cα(p))|Ẑp|2

∑N/2
p=−N/2(f̂(Z)p)Ẑp

.

(Recall that the implicit change of variables may affect the computation of the formulas
by means of the scaling 2π/L [10]). Once (12) is iteratively solved with this technique,
the approximation to the nodal values of the initial profile is recovered from the Fourier
coefficients by evaluating, at the grid points, the trigonometric interpolation polynomial
Zh ∈ Sh given by

Zh(x) =
′′∑

−N/2≤p≤N/2

Ẑpe
2πipx/L,

in such a way that Zj = Zh(xj). Then it is ready to be used in the next stages of
the simulation. Thus, the generation of the initial profile is performed in the Fourier
space and then it can be adapted to the spatial discretization selected for (8). This
implementation is not necessary if explicit formulas for the profiles are known as, for
instance, in the case of the BBM equation and generalized versions.

3.2 Spatial discretization

The main property of the spatial discretization of (8), required by the cleaning tech-
nique, is the local character of the basis of discretization. In our case, for N, h and
the nodes xj previously defined in Subsection 3.1, we consider the space Vh of Her-
mite piecewise cubic polynomial functions on [0, L] and satisfying periodic boundary
conditions, see [3]. The Galerkin semidiscretization of the problem (8) is given by

〈(uh)t, wh〉+ 〈(Luh)t, (wh)x〉 = 〈uh, (wh)x〉+ 〈f(uh), (wh)x〉, ∀wh ∈ Vh, t ≥ 0
uh(0) = u0,h

(13)
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where the operator L is defined in (4). This spatial semidiscretization leaves to an
ordinary differential system

Rh
dUh

dt
= MhUh + F (Uh), (14)

where the array Uh = [u0, ũ0, . . . , uN−1, ũN−1]T is formed by the approximations of
the solution and its derivative at the nodes xj . The form of M will sometimes require
to treat the second inner product of the left hand side of (13) in an hybrid way: the
operator L is implemented in the Fourier space, in order to obtain approximations to
the corresponding nodal values (see Subsection 3.1) and then the result is projected on
Vh.

3.3 Time integration

The semidiscrete system (14) retains a Hamiltonian structure and has the corresponding
discrete versions of the invariants (5)-(7) as conserved quantities [3]. This property plays
a relevant role in the choice of the time integrator, since, in general, the use of geometric
integration techniques ([14] and references therein) has influence to obtain good results
when long time integration is required. In particular, the preservation of invariant
quantities through the numerical integration has turned out to be an important tool
to get a better simulation of the dynamics of solitary waves, including a more correct
computation of the parameters characterizing the waves, such as the amplitude, velocity
or phase (see e. g. [3, 4]).

In this sense, among all the possibilities cited in the literature, we have chosen the
implicit midpoint rule as time integrator for the numerical experiments. This classical
scheme [14] combines a good behaviour with respect to the invariants of (14), a simple
implementation and a good adaptation to the cleaning algorithm. In this case, for
a time step ∆t > 0 and given an approximate value Uh(tn) to the solution of (14)
at tn = n∆t, the numerical solution at the next step Uh,n+1 is obtained by solving
iteratively the nonlinear system

RhGh,n =
∆t

2
(Mh(Uh,n + Gh,n) + Fh(Uh,n + Gh,n)) ,

and then advancing with Uh,n+1 = Uh,n + 2Gh,n.

3.4 Cleaning procedure

We now assume that the initial condition in (8) evolves into a main pulse along with
some other small waves of possibly different nature and the experiment requires to
isolate the pulse. This may occur, for instance, in numerical tests about the stability
of solitary waves (see e. g. [9]). Our purpose is to automate, in an efficient way, a
procedure to select dynamically a support of the wave and clean the solution out of it
in a smooth way [6, 8]. The method assumes initially a relation between the velocity,
the amplitude and the ‘support ’ of the solitary-wave solutions of (1). For us, the term
‘support ’ represents an interval where the profile is greater than a previously fixed
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tolerance ε. This relation can be established, in general in approximate way, by using
the techniques of generation of solitary waves for a range of velocities (Subsection 3.1).

We now describe the cleaning procedure from time tn−1 to tn. The first step is
to estimate, at time tn, the amplitude of the main pulse and the point where this is
attained. This can be done as follows:

1. A first initial point is taken from the velocity cn−1 of the numerical main wave
and computed at the previous time tn−1. This reduces the search of the point
where the maximum of the numerical solution is attained to the nearest nodes
(cf. [11]).

2. From this point, the value xmax(n) where the cubic Hermite piecewise interpolant
associated to the numerical solution reaches its maximum is computed analyti-
cally.

3. The nodes xmax(n− 1), xmax(n) and corresponding computed amplitudes can be
used to estimate the velocity cn at tn.

The following step is to choose the cleaning region. To this end, we compute the interval
(β1(n), β2(n)) centered at xmax(n) where the values of the wave with velocity c = cn are
greater than the tolerance ε, by using the previous numerical study with the solitary-
wave profiles (notice that β1(n) y β2(n) could not be inside the computational window.
In this case, we need to locate the suitable values in this window taking into account
the periodic boundary conditions). The cleaning region is then the complementary of
this interval in the computational window.
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Figure 2: Procedure of cleaning with the smoothing technique. The figure at the
bottom is a zoom of the one at the top.

Now, the cleaning algorithm may be completed in two ways [11]. The first one is
setting all the nodal values uj and ũj located in this cleaning region equal to zero. This
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seems quite efficient in many cases, specially for well separated waves. Sometimes it is
necessary to clean in a smooth way (for instance, in the case of isolating a second pulse,
see e. g. [11, 8]). Then, a new region (γ1(n), γ2(n)) where the solitary wave associated
to the velocity cn is greater than another tolerance ε1 < ε may be computed. Now,
the solution out of (γ1(n), γ2(n)) is set equal to zero and in the intervals (γ1(n), β1(n))
and (β2(n), γ2(n)) a cubic interpolation is implemented. Figures 2 and 3 represent the
smoothing process (here the values β1, β2, γ1, γ2 are not located in its natural order
inside the computational window).
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Figure 3: The two cleaning techniques. − Without smoothing, −− with smoothing.

4 Numerical experiments

In this section, we test the technique in perturbations of solitary-wave solutions of the
BBM equation (equation (1) with f(s) = s2/2, M = −∂xx). In this case, the relation
between the amplitude and velocity is known and the explicit form of the solitary waves

u(x, t) = Asech2(K(x− ct− L0)), A = 3(c− 1), K =
1
2

√
1− 1

c
, (15)

allows to compute the support without the previous numerical generation of the profiles.

4.1 Perturbation of the parameters

We first consider, as initial condition, a perturbation in amplitude of a solitary wave

u0,j = (1 + α)Asech2(K(xj − L/2)), (16)

where A and K are given by (15), c = 2 and α = 0.5. The evolution of this profile shows
a type of experiments for which the cleaning may be necessary. The initial condition
evolves into a main pulse, travelling to the right, with a small tail behind it. This is
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Figure 4: Modified initial profile (16). Numerical solution at different times: −−
without cleaning, − cleaning with the smoothing technique.
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Figure 5: Modified initial profile (16). Time evolution of the velocity and the ampli-
tude of the numerical solution: −− without cleaning, − cleaning with the smoothing
technique.
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observed in Figure 4, which shows the numerical solution at different times (without
cleaning) and the corresponding cleaning process (in a smooth way). The application
of the technique allows to analyze the perturbed main pulse in more detail. This is
illustrated in Figure 5, which displays the differences in the computation of the velocity
and amplitude of the uncleaned and (smoothly) cleaned numerical solution. Thus, the
cleaning method provides a way to estimate the parameters of the main wave.

4.2 Perturbation of a solitary wave with a small gaussian profile
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Figure 6: Modified initial profile (17) . Time evolution of error in the amplitude: −−
without cleaning, − cleaning with the smoothing technique.

The cleaning algorithm can also be applied when an exact solitary-wave profile is
perturbed in the form

u0,j = Asech2(K(xj − L/2)) + α1 exp(−α2(xj − L/2)2), (17)

where A and K are given by (15) with c = 2 and α1 = 0.5 and α2 = 0.1. The
corresponding evolution also leads to a main pulse plus smaller tails behind. In Figure
6 we have calculated, for each tn, the corresponding amplitude of the exact solitary
wave with velocity c = cn and measured the evolution of the maximum difference with
the numerical solution. This may give basic information about the size and type of
the tails, as well as the evolution of the amplitude of the computed main wave. This
complements Figure 7, which shows, for this experiment, the evolution of the velocity
and amplitude of the cleaned and original numerical solution.
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tude of the numerical solution: −− without cleaning, − cleaning with the smoothing
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Abstract

We study the structure of the error when simulating relative periodic solutions
of Hamiltonian systems with symmetries. We identify the mechanisms for which
the preservation, in the numerical integration, of the Hamiltonian and the invari-
ants associated to the symmetry group, implies a better time behaviour of the
error. A second consequence is a more correct simulation of the parameters that
characterize the relative periodic orbit.
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1 Introduction

The aim of this paper is the analysis of long time numerical simulations of relative
periodic solutions for canonical autonomous Hamiltonian systems

u̇ = J∇H(u), u ∈ Ω, J =

(
0 −In
In 0

)
, (1)

where Ω is a domain of R2n, In is the identity matrix of order n and H : Ω → R is the
Hamiltonian and ∇H denotes the gradient of H. The so-called geometric numerical
integration is devoted to the construction and study of numerical methods specially
designed to preserve physical properties of the system under study (see [7] and refer-
ences therein for a modest representation of the literature on it). In this context, the
paper studies the time behaviour of numerical approximations to Hamiltonian relative
periodic solutions. These solutions may appear in Hamiltonian systems (1) admitting a
group of transformations as a symmetry group [10]. This means, roughly speaking, that
any element of the group takes solutions into other solutions. This symmetry group
may have influence on the dynamics of the system by identifying points that belong to
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the same group orbit and then considering the system for these group orbits. In this sit-
uation, solutions of the original system that project to special solutions of this reduced
system are of interest in some applications. The literature pays specific attention to the
relative equilibrium solutions (or RE, solutions that project to equilibria of the reduced
system) and relative periodic solutions (or RPO, associated to periodic solutions of the
reduced system), see [8, 9]. The long time simulation of RE has been studied in several
papers [5, 3, 1]. They show the influence of the numerical preservation of invariant
quantities of the system in the time propagation of the errors and the simulation of the
parameters that characterize the RE. In this paper, we analyze the structure of this
error when simulating RPO, studying the role of the reduction by group orbits and the
periodicity in the reduced system in order to obtain a better long time simulation. We
also establish the differences with respect to the numerical integration of RE.

The paper is structured as follows. The framework of Hamiltonian RPO is ex-
plained in Section 2. For simplicity, we will consider Hamiltonian one-parameter sym-
metry groups; the extension to the Abelian, Hamiltonian multi-parameter case is direct
[5]. The mechanism of reduction by symmetries and the generation of RPO are de-
scribed. In Section 3, the asymptotic behaviour of numerical approximations to RPO
is analyzed and invariant preserving conditions for a better long time simulation are
obtained. This section also contains some numerical illustrations of the results.

2 Hamiltonian relative periodic orbits (RPO)

We will describe the generation of Hamiltonian relative periodic solutions in a similar
framework to that of [5, 1]. We suppose that (1) admits a first integral I : Ω → R,
different from the Hamiltonian H and which is not a distinguished function [10]. Thus,
the Hamiltonian vector field g = J∇I is the infinitesimal generator of a one-parameter
symmetry group of (1), G = {Gs = σs,g : s ∈ R}, where, σs,g = exp(sg) denotes the
flow associated to g. For simplicity, it is assumed that the domain of the flow φt of (1)
and the diffeomorphisms σs,g is the whole Ω. The condition for G to be a symmetry
group can be established by using three equivalent conditions [5]:

(i) φt(Gs(u)) = Gs(φt(u)), s, t ∈ R, u ∈ Ω.

(ii) {I,H}(u) = ∇IT (u)(J∇H)(u) = 0, u ∈ Ω.

(iii) [J∇I, J∇H](u) = (J∇I)′(u)(J∇H)(u)− (J∇H)′(u)(J∇I)(u) = 0, u ∈ Ω.

That is, the commutativity between the flow of the system and the elements of the
group, the null Poisson bracket of the first integrals and the null Lie bracket of the cor-
responding vector fields. From now on, the prime denotes the corresponding Jacobian
matrix.

2.1 Reduced system and RPOs

The generation of RPO is closely related to the action of the symmetry group G on
the system. A solution u(t) = φt(u0) of (1) is a relative periodic solution or a relative
periodic orbit (RPO) if there exists a positive T0 > 0 (the relative period) such that
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the solution at t = T0 lies in the group orbit of the initial condition, that is

φT0(u0) = σ(u0), (2)

for some element σ ∈ G, called phase-shift symmetry or drift symmetry [8]. Now,
the symmetry group property implies that the solution must satisfy the condition of
relative periodicity

φt+T0(u0) = σ(φt(u0)), t ∈ R.

The Hamiltonian reduction [2, 10, 8] of (1) provided by the presence of the symmetry
group G can be used in the search of RPO. This reduction of the system requires first
foliating the phase space Ω with level sets of the invariant I. On each level set, the
corresponding system has one fewer variable. Now, a second step identifies, on each
level set, points that belong to the same group orbit, implying a reduction of one more
variable. Thus, this reduced system is the Hamiltonian system for the group orbits in
the corresponding level set. See e. g. [5] for a more detailed description of the process,
including local coordinates and multi-parameter symmetry groups.

In a similar way that relative equilibrium solutions of (1) are related to the equilibria
of the reduced system [2], the reduction connects relative periodic orbits with periodic
solutions of the reduced system. This can be briefly described as follows (see [11] and
references therein for details). Note first that the phase shift σ of (2) can be written as

σλ0T0,g(u) = exp(Tξ)u, ξ = λ0J∇I, (3)

for some parameter λ0. Then

Φt(u0) = exp(−tξ)(φt(u0)), (4)

is a solution of

u̇ = J (∇H(u)− λ0∇I(u)) , u ∈ Ω, u(0) = u0, (5)

and it is T -periodic. Thus, every RPO is associated to a periodic solution of the
Hamiltonian system (5). Thus, (4) can be interpreted as a change of variable to a frame
moving uniformly with velocity ξ, where the relative period motion is transformed to
a periodic motion. Inversely, it can be seen, by using the process of reconstruction [8],
that any periodic solution of the reduced system corresponds to a RPO of the original
one.

2.2 An example

The literature on the relative periodic solutions is very extensive. It includes many
physical applications, such as rigid bodies, Celestial Mechanics, Molecular systems,
Continuum Mechanics or Optics (for instance, the introduction of [12] includes an
important number of references about it). As a modest example, we consider here the
so-called Manev problem (for a description and references, se e. g. [11]), which is a
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Figure 1: Phase portrait of a reduced system of the Manev problem. Note the cycles
around an equilibrium (relative equilibrium of the original system). The presence of
RPO near stable RE is very typical, see [12].

two-body problem (alternative to the classical Kepler problem) with a Hamiltonian of
the form

H(p, q) =
1

2m
|p|2 − V (q), V (q) =

A

|q|
+

B

|q|2
,

where A,B are positive constants, (p, q) = (p1, p2, q1, q2) and m = M/(M + 1), being
M the mass of the (fixed) body and assuming that the other mass is one. Apart from
the Hamiltonian, the corresponding system (1) admits, as the Kepler problem, the
angular momentum I(p, q) = p1q2 − p2q1, as a second invariant. This is associated to
the symmetry group of the system, consisting of rotations. In polar coordinates, the
reduced Hamiltonian on the level set {I(p, q) = µ} has the form

Hµ(pr, r) =
p2r
2m

− Vµ(r), Vµ(r) =
A

r
+
µ2 − 2mB

2mr2
.

It can be seen that when µ2−2mB > 0, bounded motions occur in the reduced system.
In particular, for values of the energy H ∈ (Hc, 0), with Hc = −mA2/2(µ2 − 2mB),
the motion in the corresponding reduced phase space is periodic. This is illustrated in
Figure 1, which shows the phase portrait of one of these reduced systems. Thus, the
system describes periodic orbits, that lift to relative periodic motions in the original
phase space. The details can be seen in e. g. [11], where the phase shift symmetry and
the relative period are also computed

σ = ei∆φ, φ =
2πµ√

µ2 − 2mB
, T =

A
√
mπ√

2|H|3/2
. (6)

The form of one relative periodic solution in the configuration space and its projection
on the corresponding level set of I (the periodic orbit in the reduced phase space) can
be seen in Figure 2.
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Figure 2: (a) RPO for the Manev problem and for several times: µ = 1, m = 1, A =
1, B = 1/8. (b) Projection of the RPO on the level set {I = µ}: periodic orbit of the
reduced phase space.

3 Numerical behaviour in RPO simulations

In this section we will discuss the time propagation, at leading order approximation, of
the errors when simulating relative periodic solutions. Assume that a one-step method
of order r ≥ 1

un+1 = ψh(un), n = 0, 1, . . . , (7)

for a mapping ψh : Ω → Ω and stepsize h, is used to approximate an RPO u(t) =
φt(u0, T0, λ0) of (1), satisfying (2) with initial data u0 = u0(µ0,H0), relative period
T0 = T0(µ0,H0) and phase shift σ of the form (3) for some λ0 = λ0(µ0,H0). The values
of the momentum and the Hamiltonian at the initial data are denoted, respectively, by
µ0,H0. The hypotheses on (7) are standard, including local and global error expansions
at the solution and invariance of the function ψh by the symmetry group G, see [5].
As for the global error expansion, this is written in the form

un − u(tn) = hre(tn) + hrQ(tn, h), (8)

where e is the solution of the variational problem [6]:

ė(t) = JH ′′(u(t)) · e(t)− l(u(t)), e(0) = 0, (9)

Q is a remainder that, for fixed t, tends to zero as h → 0 and l is the leading term of
the asymptotic expansion of the local error. On the other hand, the hypothesis that
the mapping ψh is invariant by the symmetry group implies that [5]

l(Gs(u)) = G′
s(u)l(u), s ∈ R, u ∈ Ω. (10)
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3.1 Main result

Here we state the main result of the paper. The proof requires several steps.

Theorem 3.1 Under previous conditions and assuming the hypotheses of Lemmas 3.2,
3.3, 3.4 and 3.5 below, the numerical approximation to the relative periodic orbit u(t) =
φt(u0, T0, λ0, σ0) at times tN = NT0 can be written as

uN = GtN λ̃(ΦNT̃ (ũ)) + hrΓ(tN ) + hrq(h, tn), (11)

where Φt is given by (4) and

λ̃ = λ

(
µ0 −

1

2

(
tN
T0

+ 1

)
hrθ1,H0 −

1

2

(
tN
T0

+ 1

)
hrθ

)
+
α1h

r

T0
, (12)

T̃ = T

(
µ0 +

1

2

(
tN
T0

+ 1

)
hrθ1,H0 +

1

2

(
tN
T0

+ 1

)
hrθ

)
+
αhr

T0
, (13)

ũ = u

(
µ0 +

tN
T0
hrθ1,H0 +

tN
T0
hrθ

)
, (14)

for some constants α1, θ1, α, θ. If the method satisfies the orthogonality conditions

∇H(σ0(u0))
T e(T0) = ∇I(σ0(u0))T e(T0) = 0, (15)

then θ1 = θ = 0. In particular, (15) holds if the method (7) preserves both quantities,
that is, H(ψh(u0)) = H(u0), I(ψh(u0)) = I(u0).

Furthermore, Γ is a function that, if the RPO is linearly stable (as periodic solution
of the reduced system) and G consists of isometries, is bounded for t ≥ 0. The function
q is a remainder that, for fixed t, tends to zero as h→ 0.

Proof.

Step 1. Global error. We note first that, using (10) and the change of variables

e(t) = exp(tξ)′ (Φt(u0))∆(t), (16)

then (9) can be transformed into

∆̇(t, ϵ) = J(H ′′ − λI ′′)(Φt(u0)) ·∆(t)− l(Φt(u0)), ∆(0) = 0,

where Φt(u0) is given by (4). Equation (16) can be seen as a linearization of (5) at the
periodic function Φt(u0) with a nonhomogeneous term. Thus, in order to study the
time behaviour of ∆(t), it is sufficient to analyze its values at multiples of the period
T0. If ∆

(N) = ∆(NT0) for some integer N ≥ 1, then [4]

∆(N) =

(
N−1∑
i=1

M i

)
∆(1), ∆(1) = ∆(T ) =

∫ T

0
M̃(T, s)l(Φs(u0))ds, (17)
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where M̃(t, s) = Φ′
t−s(Φs(u0)) and the monodromy matrix M has the form

M = M̃(T0, 0) = Φ′
T0
(u0) = (σ′(u0))

−1φ′
T0
(u0). (18)

Then, (16) and (17) imply

e(N) = e(NT0) = exp(NT0ξ)
′ (u0)∆

(N). (19)

Therefore, the solution of the variational problem, at the RPO (9) evaluated at multi-
ples of the relative period is a product of two terms growing with time: The Jacobian
matrix exp(NT0ξ)

′ (u0) and the solution of (17) at tN = NT0.

Step 2. Structure of the monodromy matrix. The study of M can be made with
the following technical results, see [12] and references therein for the details.

Lemma 3.2 The vectors g1(u0) = J∇I(u0), g2(u0) = J(∇H(u0) − λ0∇I(u0)) are
eigenvectors of M with eigenvalue 1.

Note also that if the RPO is proper, that is, u0 is not a relative equilibrium, then
these vectors are independent.

Let V be now the unique M− invariant supplementary subspace of the generalized
eigenspace of M associated to the eigenvalue 1,

R2n = Kerg(M − I)⊕ V. (20)

Observe, on the other hand, that since φt(u0) projects to a periodic solution Φt(u0) of
the reduced system, we may consider the corresponding monodromy matrix MR of its
linearization at the periodic solution. Here we assume that the RPO is nondegenerate
as periodic solution of the reduced system, in the sense that the algebraic multiplicity
of one as eigenvalue of MR is two [4]. Then, taking local coordinates, we have [12]

Lemma 3.3 If W is the (unique) supplementary subspace satisfying

R2n−2 = Kerg(MR − I)⊕W,

then the eigenvalues and Jordan structure of the restriction M
∣∣∣
V

coincide with those

of MR

∣∣∣
W
.

Now, the following result is a consequence of a more general persistence theorem
proved in [12]. It establishes that, near a RPO, a continuum of relative periodic orbits
can be defined, with the family parameterized by the values of the invariants.

Lemma 3.4 Under the above conditions, assume that P = {g(φt(u0)), g ∈ G, t ∈
R} is nondegenerate as periodic solution of the reduced system. Let µ0 = I(u0)
and H0 = H(u0). Then, for (µ,H) close to (µ0,H0), there is a RPO P (µ,H) =
{g(φt(u(µ,H))), g ∈ G, t ∈ R}, with φT (µ,H)(u(µ,H)) = σ(µ,H)(u(µ,H)), for smooth
σ(µ,H), T (µ,H), u(µ,H) satisfying

u0 = u(µ0,H0), T0 = T (µ0, H0),

I(u(µ,H)) = µ, H(u(µ,H)) = H,

σ(µ,H) = exp (λ(µ,H)J∇I(u(µ,H))) , λ0 = λ(µ0,H0).
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Finally, Lemmas 3.2, 3.3, 3.4 complete the description of the structure of M [12]
(see also [5] to compare with the case of relative equilibria).

Lemma 3.5 With the notation and hypotheses of Lemmas 3.2, 3.3, 3.4, we assume
that the matrix

D =

( ∂λ
∂µ |µ0,H0

∂λ
∂H |µ0,H0

−∂T
∂µ |µ0,H0

− ∂T
∂H |µ0,H0

)
,

is nonsingular. Then dimKer(M − I) = 2, dimKer(M − I)2\Ker(M − I) = 2 and
the vectors {g1(u0), g2(u0), g3(u0), g4(u0)}, with g1, g2 given in Lemma 3.2 and

g3(u0) =
∂u

∂µ
|µ0,H0

, g4(u0) =
∂u

∂H
|µ0,H0

,

form a basis of kerg(M − I) satisfying

(M − I)g3 = T0
∂λ

∂µ
|µ0,H0

g1(u0)−
∂T

∂µ
|µ0,H0

g2(u0),

(M − I)g4 = T0
∂λ

∂H
|µ0,H0

g1(u0)−
∂T

∂H
|µ0,H0

g2(u0),

and the biorthogonality conditions

∇I(u0)T g3 = 1, ∇I(u0)T g4 = 0, ∇H(u0)
T g3 = 0, ∇H(u0)

T g4 = 1. (21)

Step 3. Application to the global error expansion. Proof of Theorem 3.1.
Now, we apply these results to the linearized problem (17) and incorporate the conclu-
sions to the global error expansion to prove Theorem 3.1. Following (20) and Lemma
3.5, we first decompose the term ∆(1) in (17) in the form

∆(1) = ∆(T0) = α1g1(u0) + αg2(u0) + θ1g3(u0) + θg4(u0) + ∆V , (22)

with ∆V ∈ V and where (21) implies

θ = ∇H(u0)
T∆(1), θ1 = ∇I(u0)T∆(1). (23)

The substitution of (22) in (17) and the previous results lead to

∆(N) = N (α1g1(u0) + αg2(u0)) + θ1

(
Ng3(u0) +

N(N − 1)

2
(M − I)g3(u0)

)
+θ

(
Ng4(u0) +

N(N − 1)

2
(M − I)g4(u0)

)
+

(
N−1∑
i=1

M i

)
∆V . (24)

We denote G′
tNλ0

= exp(NT0ξ)
′ (u0). Using (19) and (24), we write

φtN (u0)+h
re(tN ) = φtN (u0) +G′

tNλ0
∆(N) = GtNλ0 (ΦtN (u0))

+G′
tNλ0

(
∆(N) −

(
N−1∑
i=1

M i

)
∆V

)
+G′

tNλ0

(
N−1∑
i=1

M i

)
∆V . (25)
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Now, (22) and (4) prove that the first two terms differ from the term GtN λ̃(ΦNT̃ (ũ)),

with λ̃, T̃ , ũ given respectively by (12), (13) and (14), in o(hr) terms, that can be
included in the remainder of (8). This leads to (11) if we take

Γ(tN ) = G′
tNλ0

(
N−1∑
i=1

M i

)
∆V .

Note then that if the group consists of isometries, then ||G′
tNλ0

|| = 1. Furthermore,
if the RPO is linearly stable, as periodic solution of the reduced system, then the
other Floquet multipliers have modulus one and are simple; thus, the component of
∆(N) in the supplementary subspace V is bounded in time. This implies the bounded
behaviour in time of Γ(tN ). The rest of the theorem comes from (23) and the fact that
the preservation of the invariants implies (15) is standard, see e. g. [5]. �

Remarks

1. From (11)-(14), we observe that, in a leading term approximation (order O(hr)) and
at multiple values of the relative period, the numerical solution consists of three terms.
The first one is a modified relative periodic orbit, with initial condition and relative
period given, respectively, by (14) and (13). This factor is transformed by the element
of the group with a new phase shift given by (12). Note that the difference with respect
to the exact relative periodic solution at tN = NT0 grows, in general, quadratically with
time, due to the terms tN λ̃, NT̃ . If the method satisfies both orthogonality conditions
(15), this growth is reduced to linear. In particular, this holds if the integrator preserves
I and H. This could be compared with the case of approximations to relative equilibria
[1, 3, 5], where the preservation of only one of the invariants is sufficient to obtain linear
error growth.

2. The second term in (11) consists of the differential of the group at the RPO and
of the component of the error in the direction determined by the eigenvalues of the
linearization which are different from one. As mentioned in the proof, if the RPO is
linearly stable, then this element is bounded and the growth of the second term is
controlled by the behaviour of the group. In the typical case of isometries (as in the
example of Subsection 2.2), then the complementary term does not grow with time and
the time behaviour is that of the modified RPO and the remainder.

3. Finally, this remainder includes o(hr) terms, whose behaviour is not uniform. This
may affect the numerical solution, in the sense that, depending on N and h, it may
limit the dominance of the behaviour of the modified RPO in (11).

3.2 A numerical illustration

We illustrate the previous results with a numerical example. The test problem will be
the Manev problem, introduced in Subsection 2.2. Our goal is to observe the influence,
in the numerical simulation of a RPO, of the preservation of the invariant quantities of
the problem, by illustrating the results of Theorem 3.1. To this end, we will consider

@CMMSE                                 Page 99 of 1703                                 ISBN: 978-84-614-6167-7



On the influence of numerical preservation of invariants when simulating RPO

three numerical integrators: the first one is the simply diagonally implicit Runge-Kutta
method of order three and tableau

3+
√
3

6
3+

√
3

6 0
3−

√
3

6
−
√
3

3
3+

√
3

6

1
2

1
2

(26)

which will be denoted as [SD]. This is taken as an example of nonconservative integrator,
since it does not preserve any of the two invariants of the problem. This scheme has
been modified to preserve the momentum I. Among all the techniques, presented in the
literature, to do this, we have selected the so-called projection technique (see [6, 7] and
references therein). The resulting method is denoted by [SDI]. We have also considered
the corresponding scheme, obtained with the same technique but designed to preserve
H. This method, denoted as [SDH], gives similar results to those of [SDI] and they
will not be shown here (see comments in Subsection 3.2.2). Finally, a third method,
[SDIH], is designed as the previous one, but with the projection technique ensuring the
preservation of both quantities, momentum I and Hamiltonian H.

We have simulated the evolution of a RPO with parameters m = 1, A = 1, B =
1/8, µ0 = 1, H0 = −1/2. The relative period and the phase shift are given by (6). The
simulation is performed up to a final time of two hundred times the relative period
tN = 200T0.

3.2.1 Error growth
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Figure 3: Error vs time for the Manev problem: [SD] (solid lines), [SDI] (dashed lines)
and [SDIH] (dotted lines). The stepsizes are h = 2E − 03, 1E − 03, 5E − 04.

A first point to show the influence of the preservation of the invariants is given
in Figure 3. This shows, in logarithmic scale, the global error between the numerical
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solution and the RPO, at multiples times of the relative period, as a function of time
and for different values of the stepsize. We observe that for the nonconservative [SD]
(solid lines) and the method [SDI], that only preserves the momentum (dashed lines),
the slopes of the lines show that the growth of the error is quadratic with time. This
is improved by [SDIH], that preserves both I and H (dotted lines) and gives linear
error growth. This illustrates formulas (11) and (15) and may be compared with the
behaviour when simulating relative equilibria [5]. It is therefore necessary to preserve
both quantities to improve the time behaviour of the error.

3.2.2 Simulation of the parameters
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Figure 4: Manev problem. Left: error in relative period vs time. Up: [SD] (solid lines),
[SDI] (dashed lines) with h = 2E− 03, 1E− 03, 5E− 04 (log scale); down: [SDIH] with
h = 2E − 03. Right: error in the phase shift vs time. Up: [SD] (solid lines), with
h = 2E − 03, 1E − 03, 5E − 04 (log scale); down: [SDI] with h = 2E − 03.

The illustration of formulas (12) and (13) is given by Figure 4. On the left, we
measure (again in logarithmic scale) the time behaviour of the error in the relative pe-
riod, provided by the three methods (with the same values and rules as those of Figure
3). Figure of the right corresponds to the behaviour of the error in the phase shift.
In both cases the benefits of the preservation of both invariants are again observed,
providing, for moderately long times, a better simulation of the parameters that char-
acterize the relative periodic orbit. Thus, the numerical solution behaves essentially
as a RPO with perturbed relative period and phase shift. The perturbation in the
relative period grows linearly with time, with respect to the original parameters, in the
case of nonconservative methods (like [SD]) or that preserve I, like [SDI] (Figure 4, left
and up). The simulation of the parameters is more correct when the scheme conserves
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the Hamiltonian, since the relative period only depends on H, see (6). This is also
confirmed by the results of [SDIH] (left, down) or [SDH] (not shown here). On the
contrary, since the phase shift in (6) only depends on µ, the linear in time perturbation
provided by [SD] (Figure 4, right and up) is improved by the good simulation of [SDI]
(right, down) and [SDIH] (not shown here), because both preserve the momentum.
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Abstract

We introduce a protocol for secure multicast using GPU. The protocol is based
on an orthogonal system whose elements are distributed individually to every user
as a ticket for accessing the encrypted information. We use GPU to generate the
orthogonal system and to refresh cryptographic keys that protect the distributed
information.

Key words: Gram-Schmidt, Java, Threaded, GPU, Secure Multicast

1 Introduction

Most of security protocols are mainly applicable when communications take place be-
tween two single parties. Confidentiality may be reached by means of a secret key that
can be interchanged in a public channel using a public key cryptosystem. These are
usually known as unicast communications. However there exist many different situa-
tions where the usual secure unicast protocols cannot be used, mainly due to the nature
of the information to be transmitted. A typical example occurs when trying to deliver
data from a sender to multiple receivers, especially when a huge amount of data needs
to be delivered very quickly. Examples of these are video-conferencing, pay-per-view
TV or internet radio. One of the most efficient ways to do this is the so-called multicast.
In a multicast protocol a certain group of people receives the information and may also
act as a source of data. This group is usually highly dynamic, where users join and
leave the group constantly ([6]).

The typical approach to establish secure multicast communications is to agree on
one or several symmetric encryption keys in order to encrypt messages. However, the
key, or keys, must be renewed periodically to prevent outer or inner attacks.

Our aim in this paper is to deal with a centralized multicast scheme, i.e., a single
entity distributes every cryptographic key. We can encounter different approximations
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to the centralized schemes. On one hand we have those know as tree-based schemes.
A very well-known protocol is Hierarchical Tree Approach (HTA) [9].

It uses a logical tree arrangement of the users in order to facilitate key distribution.
The benefit of this idea is that the storage requirement for each client and the number of
transmissions required for key renewal are both logarithmic in the number of members.

A second group of protocols known as secure multicast framework uses some in-
termediate participants that act as trustable agents. The most well-known of this type
of protocols is the so-called IOLUS ([5]) where a large multicast group is partitioned
into subgroups and employing a hierarchy of group security agents to “relay key and
encrypt data.

Finally there is a third group of protocols based on number theoretic approaches.
Examples of this type are Secure Lock, introduced in [1] or Euclides in [4], where the
authors base their solution in the Chinese Remainder Theorem and in the existence of
modular inverses respectively. In the case of Euclides authors show that scalability is
better in every aspect when comparing with most of previous protocols, excepting the
length of messages.

Most used protocols currently are those that combine the distribution of users
by trees or groups and number theoretic approaches in order to deal with the main
drawbacks of all of them (for instance cf. [7]). In the first case, the big amount of
keys that have to be stored and secondly, the big computational overcomes or the huge
length of the refreshing messages. For instance the computing time at the key server
becomes problematic in Secure Lock as the number of member grows [2] or the the
length of the refreshing messages grows linearly with the number of users in order to
avoid factorization attacks [4].

The distribution by groups is in fact often beneficial and is used by most key
managing protocols. A first benefit is the parallelization of the process which speeds
up the rekeying operations. Secondly a compromised key in one of the groups does not
affect the others and, last but not least, in most applications of secure multicast the
group distribution is connected with the scalability of the system, i.e., the efficiency of
the communication protocols concerning the rekeying process, with particular reference
to leave and join operations. Groups are usually highly dynamic and the joining or the
leaving of users implies a rekeying operation, and thus key refreshment due to this fact
in one group does not affect the others.

Our aim in this paper is to deal with the implementation of a geometrical approach
introduced in [3] that allows to distribute a cryptographic key group using only a
refreshing message per group and where users store a single key in order to access at
the common secret. We introduce an implementation on a GPU of this method. GPU
have shown to be of undoubted help when managing problems with high computing
cost as usually occur in cryptography (cf. [8] or [10], not only to obtain the result of
the processing in much less time, but also to free up CPU resources, that can be crucial
when using the contents distribution server also as key server itself.

@CMMSE                                 Page 104 of 1703                                 ISBN: 978-84-614-6167-7



J.A. Alvarez-Bermejo, J.A. Lopez-Ramos

2 The protocol

Through this section we introduce the protocol for secure multicast discussed in [3].

We will denote the users with the integers 1, . . . , n

1. Initialization step:

Let IK be a field and V be a IK vector space of dimension m ≥ n with an inner
(scalar) product, say <,> and consider B = {e1, . . . , en} a set of n mutually
orthogonal vectors in V . We select then a family {xi}

n
i=1

of random scalars in IK.
Note that B′ = {x1e1, . . . , xnen} spans the same subspace as B (unless xi = 0 for
some i). These two sets are kept secret by the server and each user i is assigned
the vector vi = xiei.

2. Sending the information:

Let s ∈ IK be the secret to be distributed. Then we compute the vector x1e1 +
. . .+ xnen and multicast c = s(x1e1 + . . .+ xnen).

3. Recovering the secret:

Each user computes h =< c, vi >= s < vi, vi > and the secret s is recovered by
computing s = h < vi, vi >

−1.

4. Key refreshment:

(a) Join:

If user j joins, then she is assigned one of the vectors in B′ that is not being
used by another user, say xjej . The server selects a new secret s′ ∈ IK and
multicasts c′ = s′(x1e1 + . . .+ xnen).

(b) Leave:

If user j leaves, then her vector vj = xjej is deleted from B′ and a new set
B′′ is considered formed by the same vectors in B′ but substituting vj with
v′j = x′jej where x′j ( 6= xj) is selected at random in IK. A secret s′ is then
distributed as before.

3 Key Sharing: Implementation details

Regarding the implementation of the above cited key sharing protocol, it requires to
be developed under certain constrained bounds. One of the most limiting bounds is
that the solution should be architecture neutral due to probable internal representation
issues between clients and server. Another key to consider during development is that
the solution should seize all the processing units available in the server in order to
produce an efficient distribution scheme. Regarding this last issue, multicore platforms
are driving a new direction in software development where multithreaded applications
are elected as the style-to-follow development rules.
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Figure 1: Sequential implementation schema

Another issue to evaluate is the use of hardware accelerators (i.e. GPU) to act as
an intense matrix computing device, so the main memory and processing resources are
reserved to management tasks. Java was selected as a first tool to develop and deploy
the solution for several reasons: it is object oriented, which is an important issue if
considering parallel schemes [12], because this methodoloy prints a natural parallel
communication based on the flow of inter objects messages. As the multicore platform
is involved the threading part of the language is also an important characteristic to
consider. In this case, Java is a language but is also a virtual machine, so threads are
not native, this means that the threading package model that Java uses is on the user
side and is a light-weight package, this is directly translated into fast context-switches
and user control.

3.1 Sequential implementation

We have implemented a sequential approach, which may be considered as the seed
of the threaded versions, including the accelerator-based version. We may use this
case to explain the implementation details. As sketched in Figure 1, there are three
main objects, the Key Sharing Framework object (KSF from now) that acts as a
controller during the application life cycle, this object is in charge of invoking services
on the Server object which hosts the 2D-matrix that represents the vector space and
on the Client object. In this case the KSF invokes services on the server and client
sequentially, which is the main difference with the multithreaded version. The server
object is the hotspot in terms of computation due to the huge matrix it hosts. Several
matrix frameworks were tested such as EJML, JAMA, jampack and ujmp. EJML was
selected due to a better behaviour when compared with the rest of frameworks, as
it is shown in figure 2. We used several aspects inherited from EJML such as the
condensed matrix navigation [13]. One of the key aspects we seized from EJML was
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Figure 2: Memory foot print of the matrix model used (EJML Benchamrks).

the small memory foot print when managing huge and dense matrix data structures,
this accelerates accessing it, and favours cache. The implementation was divided in
several significative stages:

• Configuration of the vector space: this creates the 2D matrix, users will be pro-
vided each one of the 1D vectors contained in this data structure. This is a hot
spot to be accelerated. This stage is composed by two important sub-stages:
orthonormalization (hard to accelerate due to its data dependencies) and denor-
malization, stage used to accomodate the data to the key sharing protocol. The
initial matrix, prior to orthogonalization, was built using a method inherited from
the Semantic Vectors [14] package that accelerates the build in a 10% to 20% of
the normal procedure.

• Content Generator Coder : this is the key (calculated as the reduction of each
column in the main matrix (previous stage) that is used by the server (content
provider) to code the content itself. Whenever a user is removed or a security issue
is informed, this key must be refreshed. If the user is removed, its vector must be
replaced in the main matrix and then the content generator coder is recalculated.
If a security issue is reported, then the whole bunch of vectors are replaced, so
the content generator coder is refreshed. This stage is clearly threadable.

• User/Client login: this stage consists in creating data structures for each user
that claims a key to decode content provided by the server. In this phase we run
an authentication mechanism (password based). Once the client is authorised to
log in, we provide it the key needed to decode. This stage is clearly threadable.

• Server initialization and startup: Once the structure is ready, the KSF framework
opens the server to accept petitions from clients, eliminate clients, accept new
clients, key refreshing, etc.
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3.2 Multicore enabled: Threaded Version

Taking Figure 1 as a base, all the computational workload was distributed between
cores by the Operating System (OS in advance) itself. If we consider that we are
operating on a Java Virtual Machine, it is no hard to assume that the OS is doing a
coarse-grain distribution of tasks between cores. An easy way of making life easier to
the OS is by creating threads that can be easily identified as an independent workload
unit that can be attached to a different core. In this version, methods that were intially
sequential in the previous subsection, are threaded now. So, to serve as an example,
the KSF facilities regarding login/logout are threaded so clients can concurrently be
added or deleted. This implies that the method in the server object regarding the key
refreshment is to be reentrant and operated by rows.

Figure 3: Threading the content generator coder

To enable the threading, we used a pool of threads, whose threads were waiting
in the background their reactivation by filling a pool of tasks. This gave us enormous
flexibility to enable concurrence. The code was modified by moving the methods to be
executed in threads into a new method type, the Task method, the body of the method
was marked as Runnable and the method was interpreted as a separate unit (like an
object) that could be inserted as a task into the task’s data structure. Doing this, we
could thread the content generator coder in a easy way. As stated above, this key is
a vector where each element is the reduction of the corresponding column in the 2D
matrix. We built a task to traverse a matrix in column order (to host the 2D Matrix
we used an ArrayList, protected as adviced in [11]) and created as many tasks of this
type as columns we configured, see Figure 3, if threads are sharing caches then this
method seizes the cache when reading components.

The User login facilities only needed a simple threading (reads) in row order, so
we simply used the ArrayList in its conventional way to retrieve a row for each user or
client. In this case, each request sent by a client was queued in the tasks list. Another
benefit from our task list is that it is an heterogeneous task list, we can insert in it any
method by simply renaming it to be a Task method. This version still has a hard to
solve issue, it is how to accelerate the orthogonalization of the 2D Matrix. To do this
one must consider that each vector (k) to be orthogonalized (Gram-Smichdt) depends
on the orthogonalization of the previous k-1 vectors. Guessing a way to split the work
in such a way that we can feed any available core is hard. The results obtained were not
significantly good, so as this process is calculated only the first time the KSF framework
is started we decided to keep it single threaded.
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Figure 4: Cuda implementation schema

3.3 Cuda: Accelerator based version

When trying to scale such a system, it is advisable to leave the main processing unit
in charge of the KSF object and let the Server object derive its computation to a GPU
device that may act as a back-end service. When referring to matrix computations,
GPUs come to mind. In this implementation we are using jcuda [15] to interface
the GPU and impersonate it as a new computational object to which we can send
computational demands, see Figure 4, and wait for the results without having to
spend cpu cycles in this task. The NVIDIA GPU used is a GForce GTX-460, which is
a Fermi’s architecture graphics card. The 2D matrix used to build the vector’s space is
built randomly, in the sequential and multithreaded versions we used a method (short[]
to float[] expansion) to accelerate the process but this method is not necessary when
using GPUs. There were two options to have the 2D Matrix created in the device:
build it in the CPU and send the data through the PCI to the NVIDIA device which
was a bad idea because the program was not experiencing any improvement due to the
latencies, or simply write a kernel that using a random number generator could allocate
space for the 2D matrix and populate it. The experimental result was achieved with
this last option. We used the Dynamic Creator Mersenne Twister random number
generator. Using the GPU we reduced the orthogonalization in approximatedly 90% of
the time.
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4 Results

In this section we discuss the results obtained with the implementation of the key
sharing protocol proposed. The tables below shows the most significative cases in
everyone of the stages in which the protocol implementation was divided. We have run
our first experimental tests on two platforms: A Intel Coreo 2-duo T9500 processor
with 6MB cache L2, two hardware threads, a bus-core ratio of 13 and 4GB of RAM.
The second platform used was a Intel Core-i7 Extreme-Edition Sandy Bridge, with 6
cores and 12 hardware threads, 12MB L2 cache. 8GB of RAM, and Intel TurboBoost
technology. The BUS technology is QPI. This core-i7 is equipped with a NVIDIA
GForce GTX 460, used to accelerate the orthogonalization process up to a 90%.

Table 2 shows the execution of the cases where we used a 10000vectors base (that
is a 2D matrix of 10000x10000) that can host upto 10000 users. We have run tests from
10x10 to 10000x10000, and only the bigger cases are shown, smaller tests are always
around zero. In this case it is significative that the real hot spot is, as anounced before,
the orthogonalization, that as expected, have worst times as the 2D matrix grows. The
following stages were threaded with java threads, the thread pool was designed to have
only 12 java threads running at every instant so we could make a fair use of the 6 cores
and the two hardware threads per core. If the Key refreshment stage (which is the
phase where the 2D Matrix is updated row by row to get them multiplied by a random
number so each row is converted into a potential key for a client) and the Content
Generator coder stage (which is the phase where the 2D matrix is traversed column
by column to get the sum of each component in each column) have similar times this
means that the threading is acting properly, see the case in Table 2 with 10000 vectors
and 5000 users and the case of 10000 vectors and 10000 users, the time is kept due to
the pool of threads.

Table 1: Execution of the protocol in its sequential version on a core i7 sandybridge

stage 5000v x 5000u 10000v x 5000u 10000v x 10000u

Orthogonalization 114223 902736 912511
Key Refreshment 70 287 370
Generator Coder 70 287 370
Server activation 2 1 3
Client’s setup 46 80 168

Bcast 52 67 73
Client removal + refresh 1 2 2

The sequential table (Table 1 is presented to compare the first method with the
threaded implementation.

To test the architectural benefits of the architecture, where the tests in Table 2,
we launched the server in a conventional processor: core 2 duo. Although the trend
reflected in table 3 follows those studied in table 2, but times are worst. This is due
to certain main reasons: the number of hardware threads per core is one, so no native
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Table 2: Execution of the protocol in its threaded version on a core i7 sandybridge

stage 5000v x 5000u 10000v x 5000u 10000v x 10000u

Orthogonalization 114240 913866 913596
Key Refreshment 30 197 198
Generator Coder 30 197 198
Server activation 0 1 0
Client’s setup 1 1 2

Bcast 12 16 33
Client removal + refresh 1 1 1

concurrence is available. The design of the pool of threads, only two active threads
are running in any instant of time. Another significative difference is the bus (which is
much slower than the IQP used for the processor in Table 2).

Table 3: Execution of the protocol in its threaded version on a dual core T9500

stage 5000v x 5000u 10000v x 5000u 10000v x 10000u

Orthogonalization 169909 1339753 1371083
Key Refreshment 66 231 235
Generator Coder 66 231 235
Server activation 2 1 3
Client’s setup 46 80 168

Bcast 1 1 0
Client removal + refresh 45 300 556

One of the key aspects of this problem that we implemented is the client’s removal
and the time it takes to renew its key so it can be used by a new client logged in the
system. This time is reflected in the stage named Client’s setup. As it can be seen, the
time employed to refresh a client is not dependent on the size of the problem. Threads
can help this operation to scale if the server find bursts of client’s removal operations.

5 Conclusions

The protocol presented is fast but relies on the computational representation of vectos,
therefore the performance of the solution is on the computer architecture and memory
organization underneath. Here we have presented a sequential technique to implement
the proposed protocol and have improved the results by using techniques to accelerate
matrix operations, techniques to thread code and keep threading operations stable by
using pools of threads, mapped to hardware threads. Also we implemented a kernel for
CUDA devices that expand the 2D matrix and implement the orthogonalization.
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Abstract

We introduce a new for multicast distribution of secrets based on pairings, which
allows low cost of communications and key storage, improving some alternatives
existing for real time communications.

Key words: pairing, elliptic curve, secure communications
MSC 2000: AMS codes (optional)

1 Introduction

Traditional security measures are mainly applicable to a unicast environment, i.e. com-
munications take place between two single parties. For instance, data confidentiality,
one of the most important features in network security, can be offered in this environ-
ment by means of a pair of keys. However there exist many different situations where
usual secure unicast protocols cannot be used, mainly due to the nature of the infor-
mation to be transmitted. Multicast communications allow a host to simultaneously
send information to a set of other hosts, avoiding the establishment of point-to-point
connections with all of them. Applications of secure multicast are, among others, pay-
per-view IPTV or P2PTV, private multiconferences (oriented to business, politics or
even military affairs), or any private service that involves several participants or clients.

Key management is a crucial issue in secure multicast. Not only security is required,
but also efficiency in the key management, which includes key storage and refreshment
and perfect and backward secrecy, i.e., a new (resp. old) user should not be able to
access the contents before (resp. after) she joins (leaves) the multicast group. Depend-
ing on how key distribution and management are carried out, secure multicast schemes
are divided into centralized and distributed. Centralized schemes depend directly on a
single entity to distribute every cryptographic key.

A very well-known protocol is Hierarchical Tree Approach (HTA), (cf. [1]) is the
recommended option. It uses a logical tree arrangement of the users in order to facilitate
key distribution. The benefit of this idea is that the storage requirement for each client
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and the number of transmissions required for key renewal are both logarithmic in the
number of members. Other key tree approaches and extensions are LKH [2], LKH++
[3], OFT [4] or ELK [5].

In [6] the so-called Secure Lock protocol is introduced. The authors approach the
problem in a computational manner rather than a tree arrangement. It is based on the
Chinese Remainder Theorem, being its main drawback the inefficient computations
required at the key server side on each rekey operation: the computation time needed
quickly becomes excessive when the number of members grows [7].

In [8], a divide-and-conquer extension to Secure Lock is proposed. It combines the
Hierarchical Tree Approach and the Secure Lock: members are arranged in a HTA
fashion, but Secure Lock is used to refresh keys on each tree level. Therefore, the
number of computations required by Secure Lock is reduced.

Another computational approach is introduced in [9] with the particular application
on Pay-TV but extendable to any other secure multicast application. It is based on an
interpolator polynomial over some secret values in a finite field hold by the authorized
users and making use of hash functions. The main drawback is that the implementation
of this protocol needs changing the hash function used with every rekeying due to
security matters in the definition of the aforementioned polynomial.

Finally and more recently, in [10], the authors introduce a novel method for dis-
tributing keys in a centralized secure multicast based on the Extended Euclidean Al-
gorithm. It is shown that the behavior of this new approach is much better than the
others in what respects to number of keys stored on both the server and the user and
number of messages in a rekeying operation. However the length of a rekeying message
grows linearly with respect to the sum of the every user’s secret key length what rep-
resents a weakness for this. We have to note that similar situations occurs also in the
other computational approaches.

The aim of this paper is to give a new computational solution based on [10] with
the same good behavior concerning rekeying and reducing the length of the messages
to refresh the key.

2 The protocol

We will start this section by recalling some mathematical background that is needed
to introduce the proposed protocol. Although pairings are defined in different settings
such as modules over a ring we will focus in the case of elliptic curves.

Given an elliptic curve over a finite field IFp, say E, a pairing is a computable
mapping S : E × E → IFpk satisfying bilinearity, i.e., S(P + Q,R) = S(P,R)S(Q,R)
and S(P,Q + R) = S(P,Q)S(P,R) for every P,Q and R in E and non-degeneracy,
i.e., S(P, P ) 6= 1, for every P ∈ E. Examples of these mappings are the well-known
Weyl or Tate pairings and their use in public cryptography is extended not only for
constructing new encryption protocols as Identity Based encryption or signature (for
example cf. [11, Chapter X] ), but also even with hacking purposes as the pairing attack
by reducing the Elliptic Curve Discrete Logarithm Problem (ECDLP) to the Discrete
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Logarithm Problem (DLP).

Initial setup: each client i is assigned a different element xi ∈ IFpk and a point
Pi ∈ E. The pair (xi, Pi) constitutes the ticket.

Rekeying message:

1. The Key Server selects a secret value: K ∈ IFpk , H ∈ E and an integer n in the
rank of IFp .

2. The Key Server calculates P =
∑m

i=1 Pi ∈ E. P is kept private in the Key Server.

3. The Key Server calculates S(H,P ), S(nH,P ), αi = S(H,P − Pi) for every i =
1, . . . , n and p(x) = n+ Πm

i=1(x− xiαi) ∈ IFpk [x].

4. The Key Server multicasts (makes public) r = K + S(nH,P ), H, S(H,P ) and
p(x) on plain text.

Getting the key K: each client i calculates

• S(H,Pi)

• αi = S(H,P )S(H,Pi)
−1

• p(xiαi) = n

• K = r − S(H,P )n

3 Security

A passive adversary should know n in order to get K, what it is impossible without
knowing any right value in K ∈ IFpk to substitute in p(x).

A second option for this adversary is trying to get any ticket but this is twofold.
Firstly suppose that, somehow, she is able to get K at some moment. Then she could
try to factorize p(x)−K = Πm

i=1(x−xiαi) ∈ IFpk [x] and she is successful. Then what she
would get are the products xiαi, i = 1, . . . ,m that do not give any information on xi
and αi since there is not unique factorization in IFpk . Even in case P is public, this does
not let know anything on Pi’s and so, it cannot be used to factorize xiαi, i = 1, . . . ,m.

We note at this point that this extends the method used in [9]. In that case
the authors use a polynomial as the one introduced in the protocol to let the users
calculate the value of the exponent n. In that case, the server multicasts a polynomial
f(x) = K + Πm

i=1(x− h(xi)). In order to avoid a factorization attack by an authorized
user who can get all values h(xi, the authors change the hash function with every
refreshment of the key K. In our case, the polynomial changes with every refreshment
of K since values interpolating the polynomial depend on a random point H of the
curve E.
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An active adversary, as usual, could be more dangerous. In this case we can assume
that this is an authorized user that pretends to compromise the other clients’ tickets.
Suppose that we are using an elliptic curve with a prime number of points and user i is
able to factorize two polynomials p(x) and p′(x) constructed for two different rekeying
and using H and H ′ respectively. Suppose also that she is able to determine that xjαi

and x′jα
′
j belongs to some other user j. Then the quotient

xjαj

xjα′j
=
αj

α′j
=
S(H,P )S(H ′, Pj)

S(H ′, P ′)S(H,Pj)

Recall that the same users do not have to be “connected” in two different refresh-
ments, and so the sum of all the points corresponding to all users, P and P ′ may be
different.

Therefore what user i is able to get using the above quotient is S(H ′ − H,Pj)
since S(H,P ) and S(H ′, P ′) are public. Now, taking into account that the curve E is
generated by any point in it (excepting the infinite point) she can consider Q any point
in E as a generator. Then Pj = aQ and therefore S(H ′ − H,Pj) = S(H ′ − H,Q)a.
Thus, solving DLP she would be able to get a. We recall that she knows H ′, H and Q.
In this way, aQ = Pj and calculating S(H,Pj) she would get αj and therefore, from
xjαj , the ticket (xj , Pj) would be compromised.

There exist two different forms of avoiding this attack. The first one is to consider
a finite field big enouth in order that DLP is still a hard problem but this means
that rekeying messages would increase their length. A good alternative then could
be using a Hash function in the construction of the polynomial p(x) that allow the
clients to calculate the exponent n. In this way the polynomial would be of the form
p(x) = K + Πm

i=1(x− h(xiαi)), similar to that used in [9] but with the advantage that
unlike in that case, we do not have to change the hash function with every rekeying
message since the values where p(x) interpolates change in every rekeying since they
depend on a different random point H of the curve E.

4 Scalability

Scalability of a secure communications protocol concerns key storage, both in the server
and in every client and number of rekeying messages. The protocol that we introduce
in this paper has exactly the same behavior of that one that the authors introduced
in [10] concerning rekeying messages and number of keys stored by everyone. The
advantage that we present is the length of a rekeying message. We recall that security
of the algorithm in [10] lies on the factorization of an integer which is a product of
large prime numbers and the length of the message is of the same order of this integer.
Thus, a huge number of users produces a message that can be unaffordable for a
communication system and therefore it is needed (among other advantages that are
shown in [10]) the division of the users in groups. From the analysis of the protocol
that we are introducing we can observe that the length of a rekeying message is most
of it due to the polynomial, but in this case, the length of this polynomial over a finite
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field of standard size in these situations would produce, even when the audience is large,
a message whose length is perfectly affordable.
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Abstract

In a theoretical work, Dai and Yi [1] present an optimal investment problem
and its equivalence with a double obstacle problem, and prove some properties of
the solution and the free boundaries. We now present some numerical techniques
to approximate the solution of the obstacle problem, and show the results obtained
in a realistic simulation.

Key words: Investment, transaction costs, obstacle problem, free boundaries,
numerical methods

1 Introduction

This paper concerns the numerical solution of a continuous-time optimal investment
problem carried out by a constant relative risk aversion investor facing a finite horizon
when transactions costs are considered. In the absence of transaction costs the strat-
egy proposed by Merton in [4] is based on maintaining a constant fraction of the total
wealth in each asset. This cannot be applied in a real market with transaction costs due
to the required continuous trading. For infinite horizon problems [2] an appropriate free
boundary model for the case of transaction has been first proposed and the regularity
of solution is proved, later [5] used the viscosity solution approach. The finite horizon
case makes the free boundary time dependent (moving boundary); this problem has
been addressed by using the relationship between the singular control problem and the
obstacle problem in [1]. Thus, the original problem is transformed into an equivalent
double obstacle problem associated to a nonlinear parabolic differential equation. This
approach allows to apply the well developed techniques of double obstacle problems to
obtain the existence of solution and several properties of the free boundary.

∗Partially supported by Ministerio de Ciencia e Innovación (project MTM2010-21135-C02-01) and
Xunta de Galicia (project INCITE09-105-339-PR)

@CMMSE                                 Page 120 of 1703                                 ISBN: 978-84-614-6167-7



Investment problem with transaction costs

In the present paper the authors propose a set of numerical techniques to solve this
problem: time discretization based on characteristics method to cope with the con-
vection dominated aspect, spatial discretization with piecewise linear finite elements, a
Newton-Rapshon technique to solve the nonlinear term of the parabolic equation and
a projection method to treat the nonlinearity associated to the free boundaries. The
numerical results illustrate the performance of the method by verifying all the proper-
ties stated in [1], including a steady-state solution in certain cases. Moreover, the buy,
sell and no transaction regions can be recovered and the optimal value in terms of the
original economic variables can be obtained.

2 The continuous model

Let us suppose an investor who holds Xt and Yt in bank and stock, respectively, ex-
pressed in monetary terms. In the presence of transaction costs, their evolutions are
described by {

dXt = rXt dt− (1 + λ) dLt + (1− µ) dMt , X0 = x,

dYt = αYt dt+ σYt dBt + dLt − dMt , Y0 = y,
(1)

where r > 0 is the constant risk free interest rate, α > r is the constant expected
rate of return and σ > 0 is the constant volatility of the stock. Also, Bt denotes
a standard Brownian process on a filtered probability space. Moreover, Lt and Mt

are right–continuous, nonnegative and nondecreasing processes representing cumula-
tive money values for the purpose of buying and selling stock, respectively, while the
constants λ ∈ [0,∞) and µ ∈ [0, 1) account for proportional transaction costs incurred
on purchase and sale of stock, respectively.

Due to transaction costs, the investor’s net wealth in monetary terms at time t is
given by:

Wt =

{
Xt + (1− µ)Yt , if Yt ≥ 0,

Xt + (1 + λ)Yt , if Yt < 0,

and the solvency region is defined [2] as S = {(x, y) ∈ IR2 / x+(1+λ)y > 0, x+(1−µ)y >
0} . Given an initial position (Xt, Yt) = (x, y) ∈ S, an investment strategy (L,M) is
admissible if (Xs, Ys) given by (1) is in S for all s ∈ [t, T ]. Let At(x, y) be the set of
admissible investment strategies.

The investor’s problem is to choose an admissible strategy so as to maximize, at
initial time t, the expected utility of terminal wealth, that is,

sup
(L,M)∈At(x,y)

Ex,y
t [U(WT )]

subject to (1), where Ex,y
t denotes the conditional expectation at time t given an initial
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endowment (Xt, Yt) = (x, y), and the utility function is given by

U(W ) =



W γ

γ
, if γ < 1, γ 6= 0,

logW , if γ = 0 .

Thus, Dai and Yi [1] define the value function by

ϕ(x, y, t) = sup
(L,M)∈At(x,y)

Ex,y
t [U(WT )] , (x, y) ∈ S, t ∈ [0, T ) .

We assume that λ+µ > 0. The value function is the viscosity solution of the following
Hamilton–Jacobi–Bellman equation [5]:

min{−ϕt − L̂ϕ,−(1− µ)ϕx + ϕy, (1 + λ)ϕx − ϕy} = 0 , (x, y) ∈ S, t ∈ [0, T ) ,

with the terminal condition

ϕ(x, y, T ) =

{
U(x+ (1− µ)y) , if y > 0 ,

U(x+ (1 + λ)y) , if y ≤ 0 ,

where

L̂ϕ =
1

2
σ2y2ϕyy + αyϕy + rxϕx .

Considering y > 0 (as short selling is always suboptimal), V (x, t) = ϕ(x, 1, t) is defined
so that

ϕ(x, y, t) =

{
yγV (x

y
, t) , if γ < 1, γ 6= 0 ,

V (x
y
, t) + log y , if γ = 0 .

(2)

Then, by introducing

w(x, t) = γ−1 log(γV ) and v(x, t) = wx(x, t) , (3)

in [1] it is proved that v satisfies the following parabolic double obstacle nonlinear
problem in Ω×[0, T ):



−vt − Lv = 0 if
1

x+ 1 + λ
< v <

1

x+ 1− µ
,

−vt − Lv ≥ 0 if v =
1

x+ 1 + λ
,

−vt − Lv ≤ 0 if v =
1

x+ 1− µ
,

v(x, T ) =
1

x+ 1− µ
.

(4)

where Ω = (−(1− µ),+∞) and

Lv =
1

2
σ2x2vxx−

(
α− r − (2− γ)σ2

)
xvx−

(
α− r − (1− γ)σ2

)
v+γσ2

(
x2vvx + xv2

)
.

Moreover, the existence, uniqueness and regularity of solution to this problem and some
theoretical properties of the solution and the two free boundaries are proved.
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3 Numerical methods

In the present work, we propose a numerical method to approximate the solution of the
nonlinear problem (4). First, we use a localization procedure to consider the bounded
domain ΩN = (x∗, N) where x∗ > −(1− µ) and N is large enough so that the solution
is not affected in the region of economic interest. In this bounded domain we consider
the following mixed boundary conditions

v(x∗, t) =
1

x∗ + 1− µ
, vx(N, t) =

−1

(N + 1 + λ)2
. (5)

Let us define k0 =
1

2
σ2, k1 = −

(
α− r − (2− γ)σ2

)
, k2 = −

(
α− r − (1− γ)σ2

)
and k3 = −

1

2
γσ2 = −γk0. Next, we introduce a time to maturity variable τ = T − t

and take into account the identity (x2vx)x = x2vxx + 2xvx, so that the first equation
in (4) can be written as:

vτ + (2k0 − k1)xvx − k0(x
2vx)x − k2v + k3(x

2v2)x = 0 .

Next, we use a characteristics method for time discretization, which has been first used
in financial applications in [6]. For this purpose we introduce the material derivative
Dv/Dτ = vτ + (2k0 − k1)xvx so that the previous equation can be written as

Dv

Dτ
− k0(x

2vx)x − k2v + k3(x
2v2)x = 0 .

For M > 1, let ∆τ = T/M and τm = m∆τ, m = 0, . . . ,M . We approximate the total
derivative at time τm so that the time discretized governing equation results to be

Lm+1vm+1 =
vm+1 − (vm ◦ χm)

∆τ
− k0(x

2vm+1

x )x − k2v
m+1 + k3

(
x2(vm+1)2

)
x
= 0 (6)

where vm+1 ≈ v(tm+1, ·) and χm(x) = χ(τm) is obtained from the solution of the final
value problem:

dχ

dτ
(s) = (2k0 − k1)χ(s) , χ(τm+1) = x

so that the following discretized two obstacle nonlinear problem in (0, T ) × ΩN is ob-
tained: 



Lm+1vm+1 = 0 if
1

x+ 1 + λ
< vm+1 <

1

x+ 1− µ
,

Lm+1vm+1 ≥ 0 if vm+1 =
1

x+ 1 + λ
,

Lm+1vm+1 ≤ 0 if vm+1 =
1

x+ 1− µ
,

vm+1(x∗) =
1

x∗ + 1− µ
, vm+1

x (N) =
−1

(N + 1 + λ)2

(7)

@CMMSE                                 Page 123 of 1703                                 ISBN: 978-84-614-6167-7



I. Arregui, C. Vázquez

starting from v0(x) =
1

x+ 1− µ
.

After posing a variational formulation of (7), a piecewise linear finite elements
scheme for spatial discretization is proposed. The nonlinear term is treated with a
Newton–Raphson algorithm, leading to a discrete double obstacle problem at each
iteration. For this problem we propose a projected relaxation method [3].

4 A numerical example

In order to illustrate the behavior of the solution and the performance of the numerical
methods, we present in this section an example and the corresponding numerical results
obtained with the previously described techniques. Note that due to the presence of
the double obstacle, two free boundaries appear; we will use the notation xs and xb
for the selling and buying free boundaries, which are related to the upper and lower
obstacles, respectively.

Moreover, let us assume the following data set:

T = 4

σ = 0.25 r = 0.03 λ = 0.08

γ = 0.50 α = 0.10 µ = 0.02

According to [1] and the previous data set, the selling and buying free boundaries
should verify:

xs(t) ≤ −0.5425 , xb(t) ≥ −0.5979 , ∀t ∈ [0, T ] . (8)

In Figure 1 we show the numerical solution at time t = 0, jointly with the lower
and upper obstacles. The figure on the right is obtained by zoom from the one on the
left, to better illustrate the results. For this numerical solution, a time step ∆t = −0.01
and a finite element mesh size ∆x = 0.0195 have been considered.

Figure 2(a) shows the evolution in time of the two free boundaries. We can see
that they verify conditions (8), and all the other theoretical properties stated in [1] can
also be numerically proved. The region between both curves is the no transaction (NT)
region; the selling region (SR) and buying region (BR) are also represented.

In Figure 2(b) another representation of the solvency region is shown. In this case,
the coordinate axes represent the amounts that the investor holds in bank (X) and
stock (Y ), respectively. The ratio of these amounts is an indicator of the optimal strat-
egy: stock selling, no transaction or stock buying.

Once the function v has been computed, we can recover w(x, t) and V (x, t) from
(3). Finally, the value function ϕ is obtained from (2). Figure 3 shows the value
function over the solvency region.
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Figure 1: Numerical approximation of function v
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(a) (b)

Figure 2: Free boundaries and solvency region, including the no transaction, selling
and buying subregions

Figure 3: Value function, ϕ, over the solvency region
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Abstract

A continuous location problem in which a firm wants to set up one new facility in
a competitive environment is considered. Both the locations and the qualities of the
new facility are to be found so as to maximize the profit obtained by the firm. In most
location models, it is assumed that the demand is fixed, since such assumption reduces
the computational effort to solve the problem. However, demand varies depending on
prices, distances to the facilities, etc. and it influences the location decision very much.
In this paper, a competitive location and design problem with variable demand is solved.
The increase in the computational time is addressed using a shared memory parallel
model. A computational study has been carried out to check the new programming
method in terms of efficiency and effectiveness.

Key words: Evolutionary algorithm Parallelization Shared memory Continuous lo-
cation Competition variable demand

1 Introduction

Location science deals with the location of one or more facilities in a way that optimizes a
certain objective (minimization of transportation costs, minimization of social costs, maxi-
mization of the market share, etc.). For an introduction to the topic see [2, 5]. All location
problems share several components, which leads to different models. The mathematical
formulations and methods used to solve the problems vary substantially depending on the
type of model.

Depending on whether a single player or multiple players in the market are considered,
we can distinguish between non-competitive and competitive location models. A detailed
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taxonomy can be found in the survey papers [4, 6, 14]. In many location models it is assumed
that the decision maker, who plans the location of his facilities, faces an empty space without
any similar or competing facilities. Nevertheless, in most of the cases, similar facilities
already exist in the region and the task is to add new ones in an optimal way [4, 7, 8]. The
existing facilities may belong to the decision maker’s own chain or to a competitor’s chain
[3]. When a competition takes place, it may be static, which means that the competitors
are already in the market, the owner of the new facility knows their characteristics and no
reaction is expected from them, or with foresight, in which the competitors are assumed
to react after the new facility enters. Furthermore, if the competitors can change their
decisions, then we have a dynamic model, in which the existence of equilibrium situations is
of major concern.

Regarding customers, one of the important features is the so called demand. Demand
can be either fixed or variable. In the first case, the demand is known with certainty. This
is usually the case when the goods are essential for the customers, and then, they will buy
the goods independently of the distance to the facility or the price. In the second case,
goods are inessential for customers, so, demand can vary depending on prices, distances to
the facilities, etc. In most competitive location literature, it is assumed that the demand is
fixed, regardless of the conditions of the market. This is mainly due to the difficulty of the
problems to be solved: even with fixed demand, the corresponding location models may be
hard-to-solve global optimization problems.

In this paper, we consider the planar competitive location and design problem with
variable demand described in [9]. In that paper, the authors address the location problem
using two global optimization techniques, i.e. the interval B&B method and the evolution-
ary algorithm UEGO. The first one is an exact method that can solve nearly any continuous
optimization problem, although it can only solve small instances. The second one can gen-
erate solutions of large instances. However, to be effective, it requires to explore the search
space deeply to obtain good solutions. This translates directly into larger computational
times and larger resource requirements (memory, processors...). In such situation, a parallel
machine together with a parallel model is required. Literature contains many examples of
successful parallel implementations. Nevertheless, as nowadays new multicore systems are
become common as personal computers, to develop models based on this paradigm could
be appropriated.

In shared memory programming, the whole memory is directly accessible to all the pro-
cesses with an intent to provide communication among themselves. Depending on context,
programs may run on the same physical processor or on separate ones. Although there are
several ways to deal with parallelism in a shared memory model, the application program-
ming interface OpenMP (Open Multi-Processing) have been considered. It consists of a set
of compiler directives, library routines, and environment variables that are used to express
shared-memory parallelism.
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In this work, to achieve a substantial reduction of the computing effort for UEGO, a
shared memory programming model has been designed. To illustrate the performance of
such model, a set of computational experiments has been carried out.

The rest of the paper is organized as follows: In Section 2 the location model is pre-
sented. In Section 3, the main ideas and particularities of the evolutionary algorithm UEGO
are briefly described. The description of the parallel implementation is depicted in Section
4. It is Section 5 where the computational experiments to study the performance of the
parallel algorithm are carried out. The paper ends with some conclusions in Section 6.

2 The continuous competitive location and design problem
with variable demand

In [9] a planar competitive location and design problem was introduced, as well as a sensi-
tivity analysis. We briefly describe the model.

A chain wants to locate a new single facility in a given area of the plane, where there
already exist m facilities offering the same goods or product. The first k of those m facilities
belong to the chain (0 ≤ k < m). The demand is supposed to be variable and concentrated
at n demand points, whose locations pi given, as well as the location fj and quality of the
existing facilities. The following notation will be used throughout this paper:

Indices
i index of demand points, i = 1, . . . , n.
j index of existing facilities, j = 1, . . . ,m.

Variables
x location of the new facility, x = (x1, x2).
α quality of the new facility (α > 0).
nf variables of the problem, nf = (x, α).

Data
pi location of demand point i (i = 1, . . . , n).
ŵi demand (or buying power or total expenditure) at pi.
fj location of existing facility j (j = 1, . . . ,m).
dij distance between demand point pi and facility fj .
aij quality of facility fj as perceived by demand point pi.
gi(·) a non-negative non-decreasing function.
uij attraction that pi feels for fj (or utility of fj perceived by the

people at pi), uij =
aij

gi(dij)
.

γi weight for the quality of the new facility as perceived by demand
point pi.

dmin
i minimum distance from pi at which the new facility can be

located.
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αmin minimum level of quality.
αmax maximum level of quality.
S region of the plane where the new facility can be located.

Miscellaneous
di(x) distance between demand point pi and the new facility.
ui0 attraction that pi feels for the new facility, ui0 =

γiα

gi(di(x))
.

M(x, α) market share captured by the chain.
F (M(x, α)) expected sales obtained by the chain.
G(x, α) operating costs of the new facility.
Π(x, α) profit obtained by the chain.

We assume that gi(dij) > 0 ∀i, j. In this paper demand is considered variable, that is,
it varies depending on several factors. As it can be seen in [1], consumer expenditures on
products or services offered by the facilities may increase for a variety of reasons related
to the location of the new facility: opening new outlets may increase the overall utility of
the product; the marketing expenditures resulting from the new facilities may increase the
overall marketing presence of the product, leading to increased consumer demand; or some
consumers who did not patronize any of the facilities, perhaps because none were close
enough to their location, may now be induced to do so. On the other hand, the quality
of the facilities may also affect consumer expenditures, since a better service usually leads
to more sales. To be able to obtain good solutions to location problems, it is necessary to
describe them as close to reality as possible, which may result in hard-to-solve optimization
problems.

Therefore, the demand at pi is affected by the perceived utility of the facilities, given
by the vector ui = (ui0, ui1, . . . , uim). Making the simplifying assumption that the utility is
additive, then Ui = ui0 +

∑m
j=1 uij represents the total utility perceived by a customer at pi

provided by all the facilities. Hence, it is natural to assume that the actual demand at pi
is a function of Ui, wi(Ui) = maxdi · ei(Ui), where maxdi represents the maximun possible
demand at pi and eu(Ui) = ci · Ui is the utility given by a customer at pi, with ci a given
constant such that ci ≤ 1/Umax

i , where Umax
i is the maximum utility that can possibly be

perceived by a customer at i, see [1].
Based on these assumptions the market share captured by the chain is

M(x, α) =
n∑
i=1

wi(Ui)
ui0 +

∑k
j=1 uij

ui0 +
∑m

j=1 uij
.

and the problem of profit maximisation is described by
max Π(x, α) = F (M(x, α))−G(x, α)
s.t. di(x) ≥ dmin

i ∀i
α ∈ [αmin, αmax]
x ∈ S ⊂ R2

(1)
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where F (·) is a strictly increasing differentiable function which transforms the market share
into expected sales, G(x, α) is a differentiable function which gives the operating cost of a
facility located at x with quality α, and Π(x, α) is the profit obtained by the chain. The
parameter dmin

i > 0 is a given threshold, the parameters αmin and αmax are the minimum
and maximum values, respectively, that the quality of a facility may take in practice. By S
we refer to the region of the plane where the new facility can be located.

In this paper we assume function F to be linear, F (M(x, α)) = c ·M(x, α), where c is
the income per unit of goods sold. Function G should increase as x approaches one of the
demand points, since it is rather likely that the operational cost of the facility will be higher
around those locations (due to the value of land and premises, which will make the cost of
buying or renting the location higher). On the other hand, G should be a convex function in
the variable α, since the more quality we expect from the facility the higher the costs will be
at an increasing rate. We assume G to be separable, in the form G(x, α) = G1(x) +G2(α),
where G1(x) =

∑n
i=1 Φi(di(x)), with Φi(di(x)) = ŵi/((di(x))φi0 + φi1), φi0, φi1 > 0 and

G2(α) = e
α
β0

+β1 − eβ1 , with β0 > 0 and β1 given values.

3 The sequential optimization algorithm

UEGO has proved its ability at finding the global optimal solutions when solving different
competitive location problems and also test functions described in literature (see references
[9, 10, 11, 12, 13] and papers there in).

UEGO is an algorithm that works on a set of species (i.e. a population). Then, during
the optimization process, a list of species is kept by UEGO. UEGO is, in fact, a method for
managing this list (i.e. creating, deleting and optimizing species). In Algorithm 1, a global
description of the evolutionary algorithm is given. At the beginning, a single species (the
root species) exists, and as the algorithm evolves and applies genetic operators, new species
can be created (Create specie procedure). At every generation, UEGO performs a local op-
timizer operation on each species (Optimize species procedure). It is important to highlight
that UEGO, unlike other evolutionary algorithm, realizes two selection procedures during
the optimization process. The first one is carried out after the new offspring is generated.
This consist of the Fuse species and Shorten species list procedures. The second one takes
place after the optimization procedure, and only considers the Fuse species procedure. The
reader is referred to [12] for a more detailed description of the UEGO algorithm.

It is important to mention that the population can be separated into several isolated
subpopulations, which can evolve to the local or global optima without participation of the
remaining ones. Therefore, there exists an intrinsic parallelism that consists of dividing the
population into the available processing elements. Notice that, in UEGO, a subpopulation
is compounded by a single individual.
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Algorithm 1: Algorithm UEGO
1 Init species list
2 Optimize species
3 FOR i = 2 to L
4 Create specie
5 Fuse species
6 Shorten species list
7 Optimize species
8 Fuse species

4 Solving the location model in parallel

The parallel algorithm developed in this study considers a single population, which is stored
in shared memory. The parallelism comes from the concurrent execution of both creation
and optimization procedures. Notice that, in our case, the selection is a synchronization
point, since it is necessary to have the whole population to proceed as the sequential version.
Even so, partial selections are carried out concurrently, although finally a global one may
be necessary, since it is required the parallel algorithm behaves as the sequential one.

In the parallel model, MaxTh threads are created. This value refers to the maximum
number of available process units to solve the problem. Basically, the algorithm distributes
the species in the list among the MaxTh threads, they apply the Creation species or Op-
timize species procedures, and writes back the evaluation results. Threads only receive the
address memory of the corresponding species and they are in charge of either read or update
through this value. Notice that the distribution is carried out so that a single species is
assigned to each thread each time. When a particular thread finishes its task, another single
species will be picked up for working on it.

In the following, the procedures, which have been either modified or parallelized, will
be briefly described.

• Init species list paral: For the parallel version, as many individuals as available pro-
cessing elements, i.e. MaxTh, are created.

• Create specie paral: At each iteration of the algorithm, the current population is di-
vided among MaxTh threads. The distribution is carried out so that a single individ-
ual is assigned to each processing element in a sequential way. Then, the corresponding
genetic operators are applied to each species to obtain a new offspring. When such
procedures have finished, a new individual is picked up for working on it.

As result, each processing elements have a sub-population, which contains a set of
new candidate individuals. Then, partial selection is performed on such sub-list. The
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selected individuals are added to the global population. Notice that this is a critical
region and it is necessary to ensure that threads do not update the global population
simultaneously. At the end of a parallel region, there is an unavoidable synchronization
point.

• Optimize species paral: In this procedure, each individual of the population is opti-
mized using a local optimizer. The distribution of individuals is similar to the one
described for the previous procedure, that is, a dynamic schedule is considered: in-
dividuals are assigned to processing elements when they request them. Each one of
them works on a single individual applying the local optimizer. This procedure is
repeated while there exist individuals in the population that has not been assigned
yet.

5 Computational studies

All the computational studies in this paper have been run in the Supercomputer BenArabi
of Murcia, Spain. The shared-memory machine is a HP Integrity Superdome SX2000 with
128 cores and 1.5 TB of memory and the operating system is Linux. The algorithms have
been implemented in C++ and shared-memory applications programming interface used is
OpenMP.

In [9], a comprehensive computational study was carried out to compare the sequential
UEGO with other algorithm from literature when solving the current location problem.
In such a study, different types of problems, varying the number n of demand points, the
number m of existing facilities, the number k of those facilities belonging to the chain were
generated. For the current study, only some of the harder problems have been considered,
and in particular, for this abstract, only the results for four instances with setting n−m−k
equal to 1000 − 5 − 0, 1000 − 25 − 7, 1000 − 50 − 0 and 1000 − 50 − 30 are presented.
It is important to mention that, due to the stochastic nature of the algorithms, all the
experiments were executed 5 times and average values were considered.

To ensure the solutions provided by our parallel algorithm reach the same function value
than UEGO and to determine if our algorithm are efficient from a computational point
of view, numerical values of effectiveness and efficiency were registered. As effectiveness
measurement, we have computed the relative difference in objective value between the
value obtained by the sequential UEGO OptV al(UEGO) and the solution obtained by the
parallel algorithms using P processing elements OptV al(P ),

DifObj(P ) =
OptV al(UEGO)−OptV al(P )

OptV al(UEGO)
.

The closer to zero the value of DifObj, the better the effectiveness of the parallel model.
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The efficiency of the parallel versions, which estimates how well-utilized the processors
are in solving the problem, is computed as follows:

Eff(P ) =
T (1)

P · T (P )
,

where T (i) is the CPU time employed by the algorithm when i processing elements are used
(i = 1, 2, ..., P ).

The effectiveness analysis showed that the proposed parallel algorithm is able to provide
the same solution than the sequential UEGO for the complete set of problems, i.e. DifObj '
0. Regarding the efficiency, Figure 1 summarizes the obtained results by the parallel version
when it is executed with P = 2, 4, 8 processors.

As can be seen, the efficiency obtained by the parallel strategy is promising, since it
is closer to the ideal case when the number of processing elements is less or equal than
4. Nevertheless, the efficiency tends to decrease when the number of processing elements
increases. It could be due to those instances do not have enough computational load to be
divided among such amount of processing elements. Then, for the present study, P = 4
seems to be appropriated.

Figure 1: Efficiency obtained for different problems with n = 1000.

To determine if the parallel version is scalable or not, a set of three problems have been
generated with larger numbers of the parameters n −m − k. In particular, two instances
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with 20000− 100− 0 and 20000− 100− 30 have been executed. As can be seen in Figure
2, the obtained efficiency improves with regards to the previous case.

Figure 2: Efficiency obtained for different problems with n = 20000.

6 Conclusion

In this paper, a parallel algorithm for solving a single facility competitive location and design
problem on the plane with variable demand, is considered. The objective is to maximize the
profit obtained by the chain. The model is rather real, and as a consequence, it is also rather
difficult to solve. In [9] the evolutionary algorithm UEGO was proposed to deal with this
hard-to-solve optimization problem. The results showed that the evolutionary algorithm
UEGO provides good solutions in terms of objective value, although it is time consuming.

In this paper, a parallel model devised to reduce the computing time of UEGO has been
developed. This new method has a good behaviour in terms of effectiveness and acceptable
in terms of efficiency.

In the near future, other parallel strategies based also on shared memory programming
will be developed, evaluated and compared. But also some behaviours of the current parallel
version will be studied deeper.
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Abstract

In this paper we consider the Kepler problem with a perturbation. This is an
approximation to the Main Problem of the artificial satellite. We are going to use the
Liouville-Arnold theorem and a particular analysis of the momentum map in its critical
points and we obtain a complete topological classification of the different invariant sets
of the phase flow of this problem when we have two equilibrium points.

Key words: Hamiltonian system; Liouville-Arnold theorem; gyrostat; invariant man-
ifolds; amended potential; Hill regions; artificial satellites theory.

1 Introduction

In this work we are going to consider a perturbation of the case of the Main Problem of
the artificial satellite (ASP, artificial satellite problem, [7], [8]). We are in the case of an
artificial satellite orbiting around a celestial body, in particular a planet, like for example the
Earth. We are going to make an analytical, numerical and topology study of Hamiltonian
dynamics for a simplified case where we only considered the first one and second dominant
term of the gravitational potential.
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The Hamiltonian to consider is:

H =
1
2

(
p2
r +

p2
θ

r2

)
− 1
r

+ αpθ +
β

r3

and it corresponds to the dynamics of an artificial satellite orbiting around a celestial body,
in particular a planet, to which we have introduced the effect associated to the rotation of
the reference frame.

In accordance with [3]-[6] and [10], the dynamics of the movement comes given by the
Hamiltonian one H : E−→ R, being:

H = HKepler + αpθ +
β

r3

where HKepler represents the Hamiltonian associated to the classical two-body problem and

αpθ is the effect associated to the rotating reference frame (α =
2π
T
, with T = period of

rotation of the satellite around the celestial body) and
β

r3
is the effect associated to the

form of the celestial body. The parameters α > 0 and β ∈ R are two structural constants
of the system. Finally E = R+ × S1 × R2 is the phase space.

In order to do a qualitative study of the dynamics associated with the Hamiltonian
system, similar to ([9]) we are going to consider the following sets:

Eh = {(r, θ, pr, pθ) ∈ E : H (r, θ, pr, pθ) = h} , h ∈ R,

Jk = {(r, θ, pr, pθ) ∈ E : pθ = k} , k ∈ R,

Ihk = Eh ∩ Ik,

with z = (r, θ, pr, pθ) ∈ E y (h, k) ∈ R2.
These sets are invariant by the flow associated with Hamiltonian, namely H and pθ

first integrals of motion, independent and in involution.
The main results of this paper are the description of the foliation of the phase space E

by the invariant sets Eh, the energy sets Eh by the invariant sets Ihk and Ihk by the flow of
the Hamiltonian system. This foliation provides a good description of the phase space when
(h; k) ∈ R2 and depends on the different values of α and β. The main tool for this study is
the Liouville-Arnold theorem ([2],[9]), applied to the momentum map (H; pθ) : E×R −→ R2
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at regular values. A particular study of the sets Eh, Jk and Ihk for critical values of the
momentum map is made. These values come given by the equilibrium points of H or by
values where pθ = k is a maximum or a minimum of the energy surface.

2 Amended potential. Hill regions

The amended potential, in polar symplectic coordinates is:

Ṽ (r, θ) = −α
2r2

2
− 1
r

+
β

r3
(1)

The Hill regions are determinate by the critical points of the amended potential Ṽ. The
value z̃i = (ri, θi) is a critical point of Ṽ if it is a extreme of the amended potential. These
points are the real roots of the polynomial equation

α2r5 − r2 + 3β = 0, (2)

Using the Sturm algorithm we discuss, according to the values of the parameters α and
β, the number of positive real roots respect to r of the equation (2).

When 3125α4β4 − 4β > 0 the potential function (1) does not have critical points; if
3125α4β4 − 4β = 0, Ṽ has one critical point (in this case we obtain a double root for the
equation (2)); if 3125α4β4 − 4β < 0 y β > 0 thas two citical points; if β < 0, Ṽ has only
one critical point (in this case we obtain a simple root of the equation (2)). And finally, if
β = 0 has only one critical point.

Remark 1 Note that if β = 0 the amended potential is

Ṽ (r, θ) = −α
2r2

2
− 1
r

and the term
β

r3
, associated the effect of the form of the celestial body, disappears. In this

case, the Hamiltonian of the Kepler problem in rotating reference frame is obtained, (see
[3]).

Let π : E −→ R+×S1 be the natural projection of the phase space E in the configuration
space R+ × S1. For each h ∈ R the Hill region Rh is defined by Rh = π(Ih).

Rh={(r, θ)∈R+ × S1 : Ṽ ≤ h} (3)
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It easy to see that

Rh ≈ {r ∈ R+ : −α
2r2

2
− 1
r

+
β

r3
≤ h} × S1 (4)

where ≈ means diffeomorphic to.

From this it follows that the values of the amended potential, in each one of the critical
points ri (2), will be denoted by hi = Ṽ(ri) (i = 1, 2, 3, 4). The values Ai (i = 1, 2, 3, 4), are
the intersection points between the graph of the amended potential and Ṽ = h.

From now on, we are going to focus on the case of 3125α4β4− 4β < 0 and β > 0, when
the Hamiltonian has two equilibrium points. To a clearer understanding of the topology of
the Hill regions the following figure is presented.

Figure 1: The amended potential for 3125α4β4 − 4β < 0 and β > 0 (There are two critical points).

Using the previous results, the topological classification of the Hill regions is:
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h<h2 Rh ≈ [A1,+∞)× S1

h=h2 Rh ≈ {{h2} ∪ [A4,+∞)} × S1

β > 0 and

3125α4β4 − 4β < 0
h2<h<h3 Rh ≈ [[A1, A2] ∪ [A3,+∞)]× S1

h=h3 Rh ≈ [[A1, h3] ∪ [h3,+∞)]× S1

h >h3 Rh ≈ [A1,+∞)× S1

Table 1: Topological classification of the Hill regions for 3125α4β4− 4β < 0 and β > 0 (two
critical points). Correspond to the figure (1).

3 Qualitative study of the Hamiltonian flow

In this section we study the topology of the invariant manifolds H−1(h) = Eh and Ihk. To
give the topological classification of these invariant sets we need some notation and some
new results.

For the study of the topology of H−1(h) = Eh and Ihk, (h, k) ∈ R2 we must characterize
the equilibrium points of the Hamiltonian H, because the energy surfaces are regular when
h 6= hi, being hi = H(zei) where zei corresponds to each one of the equilibrium points of
the Hamiltonian H.

Note that ze = (re, θe, pre , pθe) ∈ E is an equilibrium point of the Hamiltonian flow if
and only if ze = (re, θe) is a critical point of the amended potential. Moreover, π (ze) = z̃e,
where π : E −→ R+ × S1 is the natural projection.

For this reason, when 3125α4β4 − 4β > 0, the Hamiltonian does not have equilibria;
one family of equilibrium points (there is a double root) when 3125α4β4 − 4β = 0; two
families of equilibrium points when 3125α4β4−4β < 0 and β > 0; one family of equilibrium
points (simple root) when β < 0 and one family of equilibrium points when β = 0.

@CMMSE                                 Page 142 of 1703                                 ISBN: 978-84-614-6167-7



The Main Problem of the Satellite in Planar Motion

In which it follows, the values of the energy in each one of the families of equilibrium
will be denoted by hi = H (ri, θ, 0, pθi

) , (i = 1, 2, 3, 4).
The sets Eh and Ihk come given by:

Eh = H−1(h) = {(r, θ, pr, pθ) ∈ E : g (r, pr, pθ) = h} ≈ g−1(h)× S1,

Jk = {z ∈ E : pθ = k} , k ∈ R,

Ihk = Eh ∩ Jk ≈ (g−1(h) ∩ {pθ = k})× S1,

where g : R+ × R2 −→ R is defined by g (r, pr, pθ) = H (r, θ, pr, pθ). If h ∈ R is a regular
value of the map g and g−1(h) 6= ∅, then g−1(h) is a surface of R+ × R2 called energy
surface.

Remark 2 g−1(h) = Eh/S
1.

The values cj , (j = 1, 2, 3) are the real roots respect to k of the equation:

18βk2 + k6 − 108β2(h− αk)− 12β
√

12β + k4 − k4
√

12β + k4 = 0 (5)

and correspond to the extremes of the energy surface Qj , (j = 1, 2, 3) .
To classify the trajectories we need the equilibrium points hi (i = 1, 2, 3, 4), the values

cj (i = 1, 2, 3) and a new value a1. This last value a1 is the real root respect to k of the
equation:

−2β − k2r + 2r2 − 2 (h− αk) r3.

Remark 3 From a1 the orbits are not bounded.

Finally, let Sn−1 be the sphere in Rn, with n > 1.
We obtained the topological classification for Eh and Ihk in the case of two equilibrium

points. In this case 3125α4β4 − 4β < 0 and β > 0. The different subcases can be shown by
means of the next figures:

4 Conclusions

In this paper we have considered the Kepler problem with a perturbation. This is an
approximation to the Main Problem of the artificial satellite. Using the Liouville-Arnold
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Figure 2: g−1(h) = Eh/S
1, h < h2 when

3125α4β4 − 4β < 0 and β > 0. Where
Q1 is a extreme of the energy surface and
k = pθ.

Figure 3: g−1(h) = Eh/S
1, h = h2 when

3125α4β4 − 4β < 0 and β > 0. Where Q1

is a extreme of the energy surface, h2 is an
equilibrium point and k = pθ.

Figure 4: g−1(h) = Eh/S
1, h2 < h < h3

when 3125α4β4 − 4β < 0 and β > 0.
Where Q1, Q2 y Q3 are three extremes
of the energy surface and k = pθ.

Figure 5: g−1(h) = Eh/S
1, h = h3

when 3125α4β4 − 4β < 0 and β > 0.
Where Q1 is an extreme of the energy
surface, h3 is an equilibrium point and
k = pθ.
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h Eh Ihk

h < h2 S3\S1, see figure 2

∅ k > c1

S1 k = c1

S1 × S1 a1 < k < c1

S1 × R k ≤ a1

h = h2 {S1} ∪ {S3\S1}, see figure 3

∅ k > h2

S1 k = h2

∅ c1 < k < h2

S1 × S1 a1 < k < c1

S1 × R k ≤ a1

h2 < h < h3 {S3} ∪ {S3\S1}, see figure 4

∅ k > c1

S1 k = c1

S1 × S1 c2 < k < c1

S1 k = c2

∅ c3 < k < c2

S1 k = c3

S1 × S1 a1 < k < c3

S1 × R k ≤ a1

h = h3 {S3} ∪ {S3\S1}, see figure 5

∅ k > c1

S1 k = c1

S1 × S1 h3 < k < c1

S1 k = h3

S1 × S1 a1 ≤ k < h3

S1 × R k ≤ a1

h > h3 S3\S1, see figure 6

∅ k > c1

S1 k = c1

S1 × S1 a1 < k < c1

S1 × R k ≤ a1

Table 2: Topological classification of Eh and Ihk when 3125α4β4 − 4β < 0 and β > 0, two
equilibrium points.

@CMMSE                                 Page 145 of 1703                                 ISBN: 978-84-614-6167-7



M. C. Balsas, E. S. Jiménez, J. A. Vera

Figure 6: g−1(h) = Eh/S
1, h > h3 when 3125α4β4− 4β < 0 and β > 0. Where Q1 is a extreme of the

energy surface and k = pθ.

theorem and a particular analysis of the momentum map in its critical points, we obtain
a complete topological classification of the different invariant sets of the phase flow of this
problem when we have two equilibrium points. The complete topological classification come
be obtained using the same tools.
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Abstract

In this paper we present a generalization of the classic Firm’s Profit Maximiza-
tion Problem, using the linear model for the production function, considering a
decreasing price wi(xi) = bi − cixi and maximum constraints for the inputs or,
equivalently, considering inputs that are in turn outputs in a economies of scale
with quadratic concave cost functions. We formulate the problem by previously cal-
culating the analytical minimum cost function in the quadratic concave case. This
minimum cost function will be calculated for each production level via the infimal
convolution of quadratic concave functions whose result is a piecewise quadratic
concave function.

Key words: Concave Programming, Economies of Scale, Infimal Convolution,
Piecewise Concave Functions, Algorithm Complexity

MSC 2000: 90C20, 90C26, 90C60

1 Introduction

Problems involving economies of scale (in production and sales) can often be formu-
lated as concave quadratic programming problems [1], [2]. Consider a case in which n
products are being produced, with xi being the number of units of product i and wi

being the unit production cost of product i. As the number of units produced increases,
the unit cost usually decreases. This can often be correlated by a linear functional

wi(xi) = bi − cixi (1)

where ci > 0. Thus, given constraints on production demands and the availability of
each product and using the classic linear production function model [3], [4], the Firm’s
Cost Minimization (FCM) problem [5], [6] can be written as:

C(y) = min
x

n∑
i=1

xiwi(xi)

s.t.
n∑

i=1
aixi = y; ai ̸= 0, i = 1, ..., n

0 ≤ xi ≤ Ui; i = 1, ..., n

(2)
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where y is the output. This is a concave minimization problem. As well as representing a
situation in which the inputs are acquired with a discount proportional to the amount,
the affine function model for the prices (1) can also be interpreted as dealing with
inputs that are in turn outputs of a prior production process of economies of scale
with a quadratic cost: xibi − cix

2
i . On the other hand, the linear production function

is presented in a natural way when the output is the result of the sum of the inputs
(ai = 1) or, in general, a specific fraction of each of these.

Similarly, when the Firm’s Profit Maximization (FPM) Problem is considered:

π(p,w) = max
x,y

(py −
n∑

i=1
xiwi(xi))

s.t.
n∑

i=1
aixi = y; ai ̸= 0, i = 1, ..., n

0 ≤ xi ≤ Ui; i = 1, ..., n

(3)

the economies of scale dictate that the profit per unit rises linearly with the number of
units produced. In this case, therefore, the problem becomes one of maximization of a
convex functional.

To solve the FPM problem, we formulate the problem by previously calculating the
analytical minimum cost function C(y) and then maximizing over the output quantity:

π(p,w) = max
y

(py − c(w,y)) = max
y

(py − C(y))

Concave programming [7], [8] constitutes one of the most fundamental and most widely
studied problem classes in deterministic nonconvex optimization. Concave program-
ming has a remarkably broad range of direct and indirect applications. Many of the
mathematical properties of concave programming are even identical to the properties
of linear programming. The goal in concave programming, or the concave minimization
problem (CPM):

globmin f(x)
s.t. x ∈ D

is to find the global minimum value that f achieves over D, where D is a nonempty,
closed convex set in Rn and f is a real-valued, concave function defined on some open
convex set A in Rn that contains D. The application of standard algorithms designed
for solving constrained convex programming problems will generally fail to solve CMP.
Accordingly, in this paper we shall present an algorithm specifically designed for the
problem we are going to solve that, as we shall see, presents very advantageous features.

To develop the algorithm which determines the optimal production level, we shall
make use of the infimal convolution operator. This operator is well known within the
context of convex analysis [9], [10] and [11]. However, convexity is only one desirable
property so as to be able to resort to differential techniques to tackle its calculation
and its use should definitely not be restricted to this context alone.

Definition 1. Let F,G : R −→ R̄ be two functions of R in R̄ := R ∪ {+∞,−∞}.
We denote as the Infimal Convolution of F and G the operation defined below:

(F
⊙
G)(x) := inf

y∈R
{F (x) +G(y − x)}
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It is well known that (z(R, R̄),
⊙

) is a commutative semigroup. Furthermore, for every
finite set E⊂ N, it is verified that

(
⊙

i∈EFi)(K) = inf∑
i∈E

xi=K

∑
i∈E

Fi(xi)

When the functions are considered constrained to a certain domain,Dom(Fi) = [mi,Mi],
the above definition continues to be perfectly valid redefining Fi(x) = +∞ if x /∈
Dom(Fi). In this case, the definition may be expressed as follows:

(F1
⊙
F2)(ξ) := min

x1+x2=ξ
mi≤xi≤Mi

(F1(x1) + F2(x2)) = min
m1≤x≤M1

m2≤ξ−x≤M2

((F1(x) + F2(ξ − x))

2 Statement of the Generalized Problem

We first consider the FCM problem (2). Using (1) and making these changes in the
variables

aixi = zi; aiUi =Mi

bi
ai

= βi;
ci
a2i

= γi

the FCM problem may be re-written as follows:

C(y) = min
z

n∑
i=1

βizi − γiz
2
i

s.t.
n∑

i=1
zi = y

0 ≤ zi ≤Mi; i = 1, ..., n

(4)

which makes C(y) the infimal convolution of the quadratic functions:

Fi(zi) := βizi − γiz
2
i

respectively constrained to the domains [0,Mi]; i.e.

C = F1
⊙
F2
⊙
. . .
⊙
Fn

In this paper we shall demonstrate that C(y) is piecewise concave such that the solution
to the FPM problem:

max
y

(py − C(y))

s.t.
n∑

i=1
zi = y

0 ≤ zi ≤Mi; i = 1, ..., n

(5)

cannot be tackled by means of marginalistic techniques (coinciding of marginal cost
and price). In fact, the maximum profit will be obtained at a production level y∗ where
C is not differentiable, or at boundary values

y∗ = 0 or y∗ =

n∑
i=1

Mi
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3 The infimal convolution in the concave case

In this section we shall study the infimal convolution of two concave functions, which
is crucial as the basis for the optimization algorithm.

Lemma 1. Let F1 and F2 be concave functions with domains [m1,M1] and [m2,M2],
respectively. We shall consider the following four functions:

Ψ−
1 (x) := F1(x−m2) + F2(m2) with domain [m1 +m2,M1 +m2]

Ψ+
1 (x) := F1(x−M2) + F2(M2) with domain [m1 +M2,M1 +M2]

Ψ−
2 (x) := F2(x−m1) + F1(m1) with domain [m1 +m2,m1 +M2]

Ψ+
2 (x) := F2(x−M1) + F1(M1) with domain [M1 +m2,M1 +M2]

then
(F1
⊙
F2)(x) = min{Ψ−

1 (x),Ψ
+
1 (x),Ψ

−
2 (x),Ψ

+
2 (x)}

Proof. Due to the concavity of the functions involved, the minimum value of F1(x1)+
F (x2) constrained to x1 + x2 = ξ can only be achieved in those pairs (x1, x2) in which
only one of the components can be inside the corresponding domain of Fi. In other
words, the aforementioned minimum value can only be achieved in pairs of the following
form

(m1, ξ −m2), (m1, ξ −M2), (m2, ξ −m1) and (m2, ξ −M1)

Thus, for each value of ξ, we have that

(F1
⊙
F2)(ξ) = min{F1(ξ −m2) + F2(m2), F1(x−M2)+

+ F2(M2), F2(ξ −m1) + F1(m1), F2(ξ −M1) + F1(M1)}

�
Unfortunately, the operator of the infimal convolution does not preserve the con-

cave nature of the functions. In general, the result is a piecewise concave function. This
means that the infimal convolution of more than two functions cannot be obtained by
means of a simple reiteration of the aforestated lemma, but requires resorting to calcu-
lating the infimal convolution of several piecewise concave functions. To carry out this
calculation, we shall interpret a piecewise concave function as the minimum function
of several concave functions, preceding as shown in the following obvious lemma.

Lemma 2. Let the function

F (x) =


F1(x) if x ∈ [m1,M1]
... ... ...

Fk(x) if x ∈ [mk,Mk]

be piecewise concave (concave in each interval [mk,Mk]). Thus,

F (x) = min
i∈{1,...k}

Fi(x)

where, we have redefined each function Fi(x) as

Fi(x) :=

{
Fi(x) if x ∈ [mi,Mi]
∞ if x /∈ [mi,Mi]

, i = 1, ...k
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Once redefined in this way, the calculation of the infimal convolution of two piecewise
concave functions requires a combinatorial exploration that is reflected in the following
theorem.

Theorem 1. Let F (x) := min
i∈A

(Fi(x)) and G(x) := min
i∈B

(Gi(x)), then:

(F
⊙
G)(t) = min

(i,j)∈A×B
(Fi
⊙
Gj)(t)

Proof.

(F
⊙
G)(t) = min

x
(F (t− x) +G(x)) = min

x
(min
i∈A

(Fi(t− x)) + min
j∈B

(Gj(x)))

= min
x

( min
(i,j)∈A×B

(Fi(t− x) +Gj(x))) =

= min
(i,j)∈A×B

(min
x

(Fi(t− x) +Gj(x))) = min
(i,j)∈A×B

(Fi
⊙
Gj)(t)

�
This theorem justifies the construction of the infimal convolution of the two func-

tions defined piecewise as the minimum function of all the possible infimal convolutions
of ”pairs of pieces”.

Now, bearing in mind the associative nature of the infimal convolution operation,
the infimal convolution may be calculated by means of a recursive process, carrying out
n operations of infimal convolution considering the following recurrence:

H1
⊙
H2
⊙

· · ·
⊙
Hn = (H1

⊙
H2
⊙

· · ·
⊙
Hn−1)

⊙
Hn

4 Algorithm and complexity

In this section we analyze the computational complexity of the previously proposed
recursive algorithm for calculating the analytical solution for the piecewise concave
quadratic functions. We first analyze the calculation of the minimum of a set of piece-
wise quadratic functions.

4.1 Algorithm

Let G be a quadratic function and let F be a piecewise quadratic function:

F (x) =


F1(x) if x ∈ [m1,M1]
... ... ...

Fk(x) if x ∈ [mk,Mk]

considering Fj(x) := ∞ if x /∈ [mj ,Mj ] and G(x) := ∞ if x /∈ [m̃, M̃ ]. Hence,

F (x) = min
i∈A={1,...k}

Fi(x)

The calculation of the infimal convolution

(F
⊙
G)(x) = min

i
((Fi

⊙
G)(x))
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is carried out in two phases:

PHASE (1) Calculation of Fi
⊙
G for each i

PHASE (2) Calculate min
i
(Fi
⊙
G)(x)

4.2 Computational Complexity

The nature of the underlying problem in the calculation of the infimal convolution of
piecewise concave functions suggests that the computational complexity of the algo-
rithm is exponential seeing as it entails exploring all the combinations of intervals of
concavity of the functions involved. In certain cases, this is effectively so; however, we
shall see that the complexity is polynomial in some other cases.

Theorem 2. Let {Fi}ni=1, where Fi(x) := βix−γix2, with γi > 0, with the same do-
main [0,M ]. If Fi(x) ̸= Fj(x) for all 0 ̸= x ∈ [0,M ], then the computational complexity
of the algorithm is cubic in order; i.e. T ∈ O(n3).

5 Example

A program that solves the FPM problem was written using the Mathematica package
and was then applied to one example using the previously developed model for the cost
function

C(y) = min
z

n∑
i=1

βizi − γiz
2
i

and maximum constraints for the n = 4 inputs.

max
x,y

(py −
n∑

i=1

(
βizi − γiz

2
i

)
)

s.t.
n∑

i=1
zi = y

0 ≤ zi ≤Mi; i = 1, ..., n

The data on the inputs is summarized in Table 1.

Table 1. Example data.

i 1 2 3 4

βi 1 2 3 4

γi -0.01 -0.03 -0.03 -0.01

Mi 10 15 4 2

Applying the aforementioned algorithm, we have that the infimal convolution

C = (F1
⊙
F2
⊙
F3
⊙
F4)

is a piecewise quadratic function:

C(y) =


y − 0.01y2 if 0 ≤ y ≤ 10
−14 + 2.6y − 0.03y2 if 10 ≤ y ≤ 25
−61.5 + 4.5y − 0.03y2 if 25 ≤ y ≤ 29
−80.64 + 4.58y − 0.01y2 if 29 ≤ y ≤ 31
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Finally, considering different values of the price p, we calculate the solution to the FPM
problem

max
y

(py − C(y))

The results are summarized in Table 2.

Table 2. Solution y∗.

p 2 1 1
2 5

y∗ 25 10 0 31

As already mentioned, despite having the analytical cost expression, C(y), the optimum
level of output cannot be obtained via marginalistic techniques; i.e. ∂C(y)/∂y coincides
with the price p. The maximum profit is always obtained with a level of output y∗ in
which either C is not differentiable or y∗ is one of the extreme values of the interval
[0,
∑n

i=1Mi].
In fact, for p = 2 → y∗ = 25 and for p = 1 → y∗ = 10, the solution is obtained

from angle points of C(y), whereas, as we have already seen, for p = 1/2 → y∗ = 0, i.e.
production is not profitable, and for p = 5 → y∗ = 31, the maximum is produced at
the technical maximum.

6 Conclusions

Concave quadratic problems often arise involving economies of scale. In this paper
we present an algorithm for calculating the analytical solution for the classic firm’s
cost minimization problem in the case of economies of scale, with n inputs, maximum
constraints for the inputs and a general output y (i.e. a family of monoparametric prob-
lems). The algorithm uses the infimal convolution of piecewise concave functions. For
the firm’s profit maximization problem, the solution cannot be obtained using deriva-
tives and our method calculates the exact solution, without any kind of simplification,
searching non-differentiable points of the analytical formulae of the cost or extreme
values of the output.
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Abstract

Audio effects like spatial sound, crosstalk cancellation, multiple equalizations,
etc., are based on real time multichannel applications. They have experienced a
major development in recent years due to its demand in theaters, funfairs, etc. Op-
erations like convolutions or correlations are frequently used in multichannel audio
applications and they require a high computing capability. Our target is to compute
these operations efficiently. Graphics Processors Units (GPUs), a highly parallel
programmable co-processors, offer the possibility of parallelizing these operations
obtaining the desired efficiency. In this paper, different parallel programming en-
vironment parameters related to the GPU are analyzed in order to obtain the best
performance in an audio multichannel application.

Key words: Convolution, FFT, GPU, Multichannel, Audio

1 Introduction

Multichannel applications have experienced a major development in recent years. Con-
volutions and lineal combinations among different signals are especially important in
an audio application [6]. Also, a multichannel system [3] is configured by Cin inputs
and Cout outputs. In case of an audio application, Cin is the number of audio sources
and Cout the number of loudspeakers [4]. Figure 1 shows a multichannel system with
two input signals and four output signals.
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x0[n]

Digital Signal 

Processing

x1[n]

y0[n]

y1[n]

y2[n]

y3[n]

Figure 1: Multichannel system.

The block Digital Signal Processing is composed by different filters which mod-
ify several characteristics of the input signals. Here, multiple convolutions are carried
out among input signals and filter impulse responses. Output signals from convo-
lutions are combined among them according to the number of outputs. In general,
any multichannel application output can be represented by Equation 1. Input signals
(sources in the application) are represented by xj , j ∈ [0, Cin − 1]) and output sig-
nals by yi, i ∈ [0, Cout − 1] (loudspeakers). The sequence hij [n] represents the filter
impulse response implemented between the j-source and i-loudspeaker and ∗ denotes
the convolution operation. Ctot is the total number of necessary filters to execute the
application ( Ctot = Cin · Cout )

yi[n] =

M∑
j=0

(hij [n] ∗ xj [n]). (1)

The convolution operation can be carried out using several FFT transformations
and element-wise multiplications between blocks of signal samples and the correspon-
dent filter [10]. Both of them are vectors in the frequency domain. FFT transformations
are carried out efficiently by the NVIDIA FFT library, CUFFT [7]. However, carrying
out multiple element-wise multiplications between different vectors (signal block and
filter) will not be an easy task when multiple channels and large filters are involved in
the application. In next sections, the optimum CUDA [2] parameters will be explained
to obtain multiple element-wise multiplications in an efficient way.

2 Data Structure in a Multichannel System

In a real-time application, it is essential to give the response within the required time.
In that sense, it must be taken into account, from where the input samples for every
channel will be read. System response (data processing) must be at least as fast as the
input-buffer filling, in order to avoid sample losses. Figure 2 shows a system with 4
sources and 2 loudspeakers. In a real-time application, it is clear that tapp < tbuff.
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Time

tbu 

Cin1

Cin2

Cin3

procGPU

tapp

Cout0

Cout1

procGPU

tbu 

Cin0

Figure 2: Response of a real-time system.

Also, when the size of hij is too large, this filter is usually fragmented into parts of
equal size to the input buffer [5]. Following the overlap-save technique [1], samples in
the input-buffer must be element-wise multiplied in the frequency domain for all the
fragments of the filters. So, in case of 4 sources, and 2 loudspeakers, it will be necessary
8 filters (h00, h01, h02, h03, h10, h11, h12, h13). Using a tridimensional matrix structure
with the fragments of the filters, data will be transferred to the GPU as Figure 3 shows,
where L is the buffer size and F the number of fragments of the filter.

x0

L
 GPU

F

L

Cin

x3

x1

h00

h01

h02

h03

h10

h11

h12

h13

L

x2

Cin    =  4

Cout =  2

Ctot   = 8

Figure 3: Data structure in the GPU.

@CMMSE                                 Page 158 of 1703                                 ISBN: 978-84-614-6167-7



Analysis of GPU thread structure in a Multichannel audio application

3 Implementation on GPU

As incoming samples in the buffer must be element-wise multiplied with every fragment
of the filter, they will be stored in the shared-memory in the GPU. Now a GPU-kernel
must be configured. CUDA 4.0 [8] lets configure a tridimensional grid, composed of
tridimensional blocks: ( ThreadIdx.x , ThreadIdx.y and ThreadIdx.z ), see Figure 4.

blockDim.x

blo
ck

D
im

.z

b
lo

ck
D

im
.y

. . .. . . . .

. . .. . . .

. . .. . .

. . .. .

. . .. . . .

. . .. . .

. . .. .
(ThreadIdx.x, ThreadIdx.y, ThreadIdx.z)

Figure 4: Tridimensional thread block.

Looking at Figure 3, CUDA grid is configured as:

<<< (Cout*L)/blockDim.x , F/blockDim.y , Cin/block.z >>>

Figure 5 clarifies the position of each threads.Each thread will access to its corre-
sponding value in the GPU shared-memory and executes an element-wise multiplication
obtaining the results in Figure 6.

block
Dim.

z
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ck
Dim

.y

F

L L

Cin

.. . . . .

.. . . .

. . .. . .

. . .. .

.. . . .

. . .. . .

. . .. .

.

.

.

. . .. .

.

.

. . ..

.

.

.

.

.

. . .. .

. . .. .

. . .. .

. . .. .

. . .. .

. .

. .

. .

blockDim.x

Figure 5: Thread block grid structure for Cin=4 and Cout=2.

The last step will be carried out for a bidimensional kernel which will accumulate
all the values en the same plane. The second CUDA grid will be (see Figure 7):

<<< (Cout*L)/blockDim.x , F/blockDim.y , 1 >>>
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L
 GPU

F

Cin

H10X0

H11X1

H12X2

H13X3

L

Cin    =  4

Cout =  2

Ctot   = 8

H00X0

H01X1

H02X2

H03X3

Figure 6: Thread Block Grid Structure for Cin=4 and Cout=2.
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Figure 7: Thread Block Grid Structure for accumulating the resulting values

The second kernel will add up all the planes (Figure 8) according to the Equation 1.

4 Test System

There are a lot of possibilities for the values of blockdim.x, blockdim.y and blockdim.z.
In our case, we have tested a typical audio system where every input-buffer size is 128
samples. Taking into account that one sample of one channel arrives every 1/44100 s,
the tbuff showed in Figure 2 will be 2.9 ms. The filters used in the test have a length
of 2048 coefficients. So, the value of F (rows of the tridimensional filters matrix) will
depend on the value of blockdim.y.

The test executions evaluate the tapp (Figure 2), covering all the possiblities of the
Cin and Cout, and try to look for the maximum number of filters Ctot that a GPU is
able to manage in a real time application ( tapp < tbuff ). The test focuses mainly on
different configurations varying the number of threads per block that NVIDIA recom-
mends: 256, 512 and 1024. The device used for the experiments is a Fermi architecture
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H00X0
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H02X2

H03X3

Y0 Y1

Figure 8: The second kernel will sum up all the planes

TESLA C2070 GPU[11].

5 Results and Conclusions

In this section, the maximum number of filters that different CUDA configurations
can manage is analyzed. Table 1 shows different grid configurations with different
number of threads per block that allows to manage a real time multichannel application
(configurations with minimum tapp, which is lower than tbuff ).

Num Cin Cout Ctot bdim.x bdim.y bdim.z NumThreads tapp
conf per block

1 22 64 1408 16 8 2 256 2.6037ms
2 38 32 1216 8 16 2 256 2.7119ms
3 102 16 1632 32 8 2 512 2.7734ms
4 102 16 1632 16 16 2 512 2.889ms
5 22 64 1408 64 8 2 1024 2.7924ms
6 38 32 1216 32 16 2 1024 2.7422ms

Table 1: Maximum number of filters, (Ctot) which let manage a real-time multichannel
application with different grid size. bdim.x, bdim.y and bdim.z refer to blockDim.x,
blockDim.y and blockDim.z respectively.

As it is appreciated in Table 1, the configuration number 3 with blockDim.x=32,
blockDim.y=8 and blockDim.z=2 (512 threads per block) achieves the larger number
of filters (1632) that a GPU can manage in a real time multichannel application. Com-
paring configurations 1 and 5, we observe that the best results in time are not obtained
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using the maximum number of threads that CUDA allows in a block. If the number
of threads per block is high, there are not enough blocks for all the multiprocessors
in the Fermi GPU. So, it is better to design the kernels launching a higher number of
blocks without configuring the maximum number of threads possible per block, instead
of setting maximum number of threads per block and less blocks. Also, it is noticeable
(see configurations 3 and 4) that a larger number of threads in blockDim.x improves the
performance because it provides coalescing access to global memory, even more when
this number is multiple of 32 [9]. Although this property has not the importance of
the previous architectures, it plays still a important role in the Fermi architecture. A
good way to speedup the CUDA application is to find first the number of threads per
block that achieves the best performance and then distribute the number of threads in
the three dimensions. From an acoustic perspective, it is clear that every multichannel
application will have its own optimum configuration of the CUDA parameters. Differ-
ent sizes of input-buffer and lengths of filters could modify the values of blockdim.x,
blockdim.y and blockdim.z to obtain the best performance. Therefore, the GPU can be
used as a co-processor carrying out audio processing tasks. As a result, the GPU can
free up resources of the CPU and/or increase the performance of the audio application.
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Abstract

The interior of the Earth is heterogeneous with different material and it may have
complex geometry. The free surface can also be uneven. Therefore, the use of a meshless
method with the possibility of using and irregular grid-point distribution can be interest
for modelling this kind of problem.
This paper shows the application of GFDM to the problem of seismic wave propagation
in 2-D for homogeneous and heterogeneous media. To use this method in unbounded
domains one must truncate the computational grid-point avoiding reflection from the
edges. PML absorbing boundary condition has then been included in the numerical
model proposed in this work.

Key words: meshless methods, generalized finite difference method, moving least
squares, seismic waves, perfectly matched layer.
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1 Introduction

The GFDM [1, 6, 7] is a robust numerical method applicable to structurally complex me-
dia. Due to its relative accuracy and computational efficiency it is the dominant method in
modelling earthquake motion [4]. The perfectly matched layer (PML) absorbing boundary
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performs more efficiently and more accurately than most traditional or differential equation-
based absorbing boundaries [2, 3, 5].
The paper is organized as follows. Section 1 is an introduction. Section 2 describes the
GFDM obtaining the explicit generalized differences schemes for the seismic waves prop-
agation and the heterogeneous media approach. Section 3 shows the recursive equations
where the model include PML in once and two directions. In Section 4 some numerical
results are included. Finally, in Section 5 some conclusions are given.

2 Explicit Generalized Differences Schemes for the seismic
waves propagation problem for a perfectly elastic, hetero-
geneous and isotropic medium

2.1 Equation of motion

The equations of motion for a perfectly elastic, homogeneous, isotropic medium in 2-D are
∂2Ux(x, y, t)

∂t2
= α2 ∂

2Ux(x, y, t)

∂x2
+ β2 ∂

2Ux(x, y, t)

∂y2
+ (α2 − β2)

∂2Uy(x, y, t)

∂x∂y
∂2Uy(x, y, t)

∂t2
= β2 ∂

2Uy(x, y, t)

∂x2
+ α2 ∂

2Uy(x, y, t)

∂y2
+ (α2 − β2)

∂2Ux(x, y, t)

∂x∂y

(1)

with the initial conditions

Ux(x, y, 0) = f1(x, y);Uy(x, y, 0) = f2(x, y);
∂Ux(x, y, 0)

∂t
= f3(x, y);

∂Uy(x, y, 0)

∂t
= f4(x, y)

(2)

and the boundary condition{
a1Ux(x0, y0, t) + b1

∂Ux(x0,y0,t)
∂n = g1(t)

a2Uy(x0, y0, t) + b2
∂Uy(x0,y0,t)

∂n = g2(t)
en Γ (3)

where f1(x, y), f2(x, y), f3(x, y), f4(x, y), g1(t) y g2(t) are showed functions, α =

√
λ+ 2µ

ρ
,

β =

√
µ

ρ
, ρ is the density, λ and µ are Lamé elastic coefficients and Γ is the boundary of Ω.

2.2 A GFDM Explicit Scheme

The aim is to obtain explicit linear expressions for the approximation of partial derivatives
in the points of the domain. First of all, an irregular grid or cloud of points is generated in
the domain Ω∪Γ. On defining the central node with a set of nodes surrounding that node,
the star then refers to a group of established nodes in relation to a central node. Every

@CMMSE                                 Page 165 of 1703                                 ISBN: 978-84-614-6167-7
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node in the domain has an associated star assigned to it.
Following [1, 6, 7], the explicit difference formulae for the spatial derivatives are obtained


∂2Ux(x0,y0,n4t)

∂x2 = −m0u
n
x,0 +

∑N
j=1mju

n
x,j

∂2Uy(x0,y0,n4t)

∂x2 = −m0u
n
y,0 +

∑N
j=1mju

n
y,j

∂2Ux(x0,y0,n4t)

∂y2 = −η0un
x,0 +

∑N
j=1 ηju

n
x,j

∂2Uy(x0,y0,n4t)

∂y2 = −η0un
y,0 +

∑N
j=1 ηju

n
y,j

∂2Ux(x0,y0,n4t)
∂x∂y

= −ζ0un
x,0 +

∑N
j=1 ζju

n
x,j

∂2Uy(x0,y0,n4t)

∂x∂y
= −ζ0un

y,0 +
∑N

j=1 ζju
n
y,j

(4)

where N is the number of nodes in the star whose central node has the coordinates (x0, y0)
(in this work N = 8 and the are selected by using the four quadrants criteria [7]).
m0, η0, ζ0 are the coefficients that multiply the approximate values of the functions U and
V at the central node for the time n4t (un0 and vn0 respectively) in the generalized finite
difference explicit expressions for the space derivatives.
mj , ηj , ζj are the coefficients that multiply the approximate values of the functions U and
V at the rest of the star nodes for the time n4t (unj and vnj respectively) in the generalized
finite difference explicit expressions for the space derivatives.
This scheme uses the central-difference formulae for the time derivative

∂2Ux(x0, y0, n4t)
∂t2

=
un+1
x,0 − 2un

x,0 + un−1
x,0

(4t)2 ;
∂2Uy(x0, y0, n4t)

∂t2
=
un+1
y,0 − 2un

y,0 + un−1
y,0

(4t)2 (5)

The replacement in Eq. 1 of the explicit expressions obtained for the partial derivatives
leads to the explicit difference scheme. As we are using a explicit method, we have studied
the stability and we have obtained the star stability condition in [6], we have also studied
in [6] for the phase and group velocities.

2.3 Heterogeneous formulation

If density ρ and Lame’s coefficients λ and µ are functions of spatial coordinates, in agreement
with [4], in seismological problems the homogeneous approach can be complicated and, then,
the so-called heterogeneous formulation is preferred. Therefore, the same formulas are used
for all points in the domain and material discontinuities are accounted by spatial variation
of the material parameters.
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3 Recursive Equations

3.1 Recursive equations for PML in x-direction.

For computational convenience, we split the second order equations of motion 1 into five
coupled first order equations by introducing the new field variables γxx, γxy, γyy

ρ
∂Ux(x, y, t)

∂t
=
∂γxx(x, y, t)

∂x
+
∂γxy(x, y, t)

∂y

ρ
∂Uy(x, y, t)

∂t
=
∂γxy(x, y, t)

∂x
+
∂γyy(x, y, t)

∂y

∂γxx(x, y, t)

∂t
= (λ+ 2µ)

∂Ux(x, y, t)

∂x
+ λ

∂Uy(x, y, t)

∂y

∂γxy(x, y, t)

∂t
= µ

∂Ux(x, y, t)

∂y
+ µ

∂Uy(x, y, t)

∂x

∂γyy(x, y, t)

∂t
= λ

∂Ux(x, y, t)

∂x
+ (λ+ 2µ)

∂Uy(x, y, t)

∂y

(6)

We shall make two simplifications, we shall assume that the space far from the region
of interest is homogeneous, linear and time invariant.Then, under these assumptions, the
radiating solution in infinite space must be (superposition of plane waves):

ω(x, t) = W (x, t)ei(κ·x−wt) (7)

whereW (x, t) = {Ux, Uy, γxx, γxy, γyy}T , w is the angular frequency and κ is the wavevector
As ω is an analytic function of x,then we can analytically continue it, evaluating the solution
at complex values of x. Then, the solution is not changed in the region of interest and the
reflections are avoided.

Ux(x, y, t) = ux(x, y)e−iwt ⇒ U̇x(x, y, t) = −iwux(x, y)e−iwt = −iwUx(x, y, t)

Uy(x, y, t) = uy(x, y)e−iwt ⇒ U̇y(x, y, t) = −iwuy(x, y)e−iwt = −iwUy(x, y, t)
γxx(x, y, t) = Γxx(x, y)e−iwt ⇒ γ̇xx(x, y, t) = −iwΓxx(x, y)e−iwt = −iwγxx(x, y, t)
γxy(x, y, t) = Γxy(x, y)e−iwt ⇒ γ̇xy(x, y, t) = −iwΓxy(x, y)e−iwt = −iwγxy(x, y, t)
γyy(x, y, t) = Γyy(x, y)e−iwt ⇒ γ̇yy(x, y, t) = −iwΓyy(x, y)e−iwt = −iwγyy(x, y, t)

(8)

Thus, we have a complex coordinate

x̃ = x+ if (9)

As this complex coordinate is inconvenient, we have a change variables in this region (PML)

∂x̃ = (1 + i
df

dx
)∂x (10)
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In order to have an attenuation rate in the PML independent of frequency, we have

df

dx
=
δx(x)

w
(11)

where δx is some function of x.
PML x-dir can be conceptually assumed up by a single transformation of the original equa-
tion. Then wherever an x derivative appears in the wave equations, it is replaced in the
form

∂

∂x
→ 1

1 + i δx(x)w

∂

∂x
(12)

The equations are frequency-dependent, and to advoid it a solution is to use an auxiliary dif-
ferential equation (ADE) approach in the implementation of PML. The following equations
are obtained

∂Ux(x, y, t)

∂t
=

1

ρ
[
∂γxx(x, y, t)

∂x
+
∂γxy(x, y, t)

∂y
] + ψ1(x, y, t)− δxUx(x, y, t)

∂Uy(x, y, t)

∂t
=

1

ρ
[
∂γxy(x, y, t)

∂x
+
∂γyy(x, y, t)

∂y
] + ψ2(x, y, t)− δxUy(x, y, t)

∂γxx(x, y, t)

∂t
= (λ+ 2µ)

∂Ux(x, y, t)

∂x
+ λ

∂Uy(x, y, t)

∂y
+ ψ3(x, y, t)− δxγxx(x, y, t)

∂γxy(x, y, t)

∂t
= µ

∂Ux(x, y, t)

∂y
+ µ

∂Uy(x, y, t)

∂x
+ ψ4(x, y, t)− δxγxy(x, y, t)

∂γyy(x, y, t)

∂t
= λ

∂Ux(x, y, t)

∂x
+ (λ+ 2µ)

∂Uy(x, y, t)

∂y
+ ψ5(x, y, t)− δxγyy(x, y, t)

∂ψ1(x, y, t)

∂t
=
δx
ρ

∂γxy(x, y, t)

∂y

∂ψ2(x, y, t)

∂t
=
δx
ρ

∂γyy(x, y, t)

∂y

∂ψ3(x, y, t)

∂t
= λδx

∂Uy(x, y, t)

∂y

∂ψ4(x, y, t)

∂t
= µδx

∂Ux(x, y, t)

∂y

∂ψ5(x, y, t)

∂t
= (λ+ 2µ)δx

∂Uy(x, y, t)

∂y

(13)

Where the five last equations 13 are ADE approach and the new field variables

ψ1(x, y, t) =
1

ρ
i
δx
w

∂γxy(x, y, t)

∂y

ψ2(x, y, t) =
1

ρ
i
δx
w

∂γyy(x, y, t)

∂y

ψ3(x, y, t) = iλ
δx
w

∂Uy(x, y, t)

∂y

ψ4(x, y, t) = iµ
δx
w

∂Ux(x, y, t)

∂y

ψ5(x, y, t) = i(λ+ 2µ)
δx
w

∂Uy(x, y, t)

∂y

(14)

@CMMSE                                 Page 168 of 1703                                 ISBN: 978-84-614-6167-7



A GFDM with PML for seismic wave equation in heterogeneous media

3.1.1 An scheme in GDFM for domain of interest.

Following [1, 6, 7], the explicit difference formulae for the spatial derivatives of a function
are obtained,

∂Ux(x0, y0, n4t)
∂x

= −m1,0u
n
x,0 +

N∑
j=1

m1,ju
n
x,j ;

∂Ux(x0, y0, n4t)
∂y

= −m2,0u
n
x,0 +

N∑
j=1

m2,ju
n
x,j (15)

and similarly for first spatial derivatives of the functions: Uy, γxx, γxy, γyy, ψ1, ψ2, ψ3, ψ4, ψ5

Substituting Eq. 16 into Eq. 7 the explicit difference scheme in GFDM for elastic part is
obtained



un+1
x,0 = un

x,0 +
4t
ρ

[−m1,0γ
n
xx,0 +

N∑
j=1

m1,jγ
n
xx,j −m2,0γ

n
xy,0 +

N∑
j=1

m2,jγ
n
xy,j ]

un+1
y,0 = un

y,0 +
4t
ρ

[−m1,0γ
n
xy,0 +

N∑
j=1

m1,jγ
n
xy,j −m2,0γ

n
yy,0 +

N∑
j=1

m2,jγ
n
yy,j ]

γn+1
xx,0 = γn

xx,0 +4t[(λ+ 2µ)(−m1,0u
n
x,0 +

N∑
j=1

m1,ju
n
x,j)

+λ(−m2,0u
n
y,0 +

N∑
j=1

my,ju
n
2,j)]

γn+1
xy,0 = γn

xy,0 +4t[µ(−m2,0u
n
x,0 +

N∑
j=1

m2,ju
n
x,j)

+µ(−m1,0u
n
y,0 +

N∑
j=1

m1,ju
n
y,j)]

γn+1
yy,0 = γn

yy,0 +4t[λ(−m1,0u
n
x,0 +

N∑
j=1

m1,ju
n
x,j)

+(λ+ 2µ)(−m2,0u
n
y,0 +

N∑
j=1

m2,ju
n
y,j)]

(16)
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3.1.2 An scheme in GDFM for PML part.

Substituting Eqs. 15 into Eqs. 13 the explicit difference scheme in GFDM for PML part is
obtained



un+1
x,0 = un

x,0 +
4t
ρ

[−m1,0γ
n
xx,0 +

N∑
j=1

m1,jγ
n
xx,j−

m2,0γ
n
xy,0 +

N∑
j=1

m2,jγ
n
xy,j ] +4t[ψn

1,0 − δxun
x,0]

un+1
y,0 = un

y,0 +
4t
ρ

[−m1,0γ
n
xy,0 +

N∑
j=1

m1,jγ
n
xy,j−

m2,0γ
n
yy,0 +

N∑
j=1

m2,jγ
n
yy,j ] +4t[ψn

2,0 − δxun
y,0]

γn+1
xx,0 = γn

xx,0 +4t[(λ+ 2µ)(−m1,0u
n
x,0 +

N∑
j=1

m1,ju
n
x,j)+

λ(−m2,0u
n
y,0 +

N∑
j=1

m2,ju
n
y,j)] +4t[ψn

3,0 − δxγn
xx,0]

γn+1
xy,0 = γn

xy,0 +4t[µ(−m2,0u
n
x,0 +

N∑
j=1

m2,ju
n
x,j)+

µ(−m1,0u
n
y,0 +

N∑
j=1

m1,ju
n
y,j)] +4t[ψn

4,0 − δxγn
xy,0]

γn+1
yy,0 = γn

yy,0 +4t[λ(−m1,0u
n
x,0 +

N∑
j=1

m1,ju
n
x,j)+

(λ+ 2µ)(−m2,0u
n
y,0 +

N∑
j=1

m2,ju
n
y,j)] +4t[ψn

5,0 − δxγn
yy,0]

ψn+1
1,0 = ψn

1,0 +
4t
ρ
δx[−m2,0γ

n
xy,0 +

N∑
j=1

m2,jγ
n
xy,j ]

ψn+1
2,0 = ψn

2,0 +
4t
ρ
δx[−m2,0γ

n
yy,0 +

N∑
j=1

m2,jγ
n
yy,j ]

ψn+1
3,0 = ψn

3,0 + λ4tδx[−m2,0u
n
y,0 +

N∑
j=1

m2,ju
n
y,j ]

ψn+1
4,0 = ψn

4,0 + µ4tδx[−m2,0u
n
x,0 +

N∑
j=1

m2,ju
n
x,j ]

ψn+1
5,0 = ψn

5,0 + (λ+ 2µ)4tδx[−m2,0u
n
y,0 +

N∑
j=1

m2,ju
n
y,j ]

(17)
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3.2 Recursive equations with PML in x-direction and y-direction.

In this case the transformation are


∂

∂x
→ ∂

∂x
(1 + i

δ

w
)−1

∂

∂y
→ ∂

∂y
(1 + i

δ

w
)−1

(18)

and, if we perform these transformations, we obtain



∂Ux(x, y, t)

∂t
=

1

ρ
[
∂γxx(x, y, t)

∂x
+
∂γxy(x, y, t)

∂y
]− δUx(x, y, t)

∂Uy(x, y, t)

∂t
=

1

ρ
[
∂γxy(x, y, t)

∂x
+
∂γyy(x, y, t)

∂y
])− δUy(x, y, t)

∂γxx(x, y, t)

∂t
= (λ+ 2µ)

∂Ux(x, y, t)

∂x
+ λ

∂Uy(x, y, t)

∂y
− δγxx(x, y, t)

∂τxy(x, y, t)

∂t
= µ

∂Ux(x, y, t)

∂y
+ µ

∂Uy(x, y, t)

∂x
− δγxy(x, y, t)

∂γyy(x, y, t)

∂t
= λ

∂Ux(x, y, t)

∂x
+ (λ+ 2µ)

∂Uy(x, y, t)

∂y
− δγyy(x, y, t)

(19)

3.2.1 An scheme in GDFM for elastic part.

The explicit difference scheme for the elastic part is given by Eq. 16
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3.2.2 An scheme in GDFM for PML part.

Substituting Eqs. 15 into Eqs. 19 the explicit difference scheme in GFDM for PML part is
obtained

un+1
x,0 = un

x,0 +
4t
ρ

[−m1,0γ
n
xx,0 +

N∑
j=1

m1,jγ
n
xx,j−

m2,0γ
n
xy,0 +

N∑
j=1

m2,jγ
n
xy,j ]−4tδun

x,0

un+1
y,0 = un

y,0 +
4t
ρ

[−m1,0γ
n
xy,0 +

N∑
j=1

m1,jγ
n
xy,j−

m2,0γ
n
yy,0 +

N∑
j=1

m2,jγ
n
yy,j ]−4tδun

y,0

γn+1
xx,0 = γn

xx,0 +4t[(λ+ 2µ)(−m1,0u
n
x,0 +

N∑
j=1

m1,ju
n
x,j)+

λ(−m2,0u
n
y,0 +

N∑
j=1

my,ju
n
y,j)]−4tδγn

xx,0

γn+1
xy,0 = γn

xy,0 +4t[µ(−m2,0u
n
x,0 +

N∑
j=1

m2,ju
n
x,j)+

µ(−m1,0u
n
y,0 +

N∑
j=1

m1,ju
n
y,j)]−4tδγn

xy,0

γn+1
yy,0 = γn

yy,0 +4t[λ(−m1,0u
n
x,0 +

N∑
j=1

m1,ju
n
x,j)+

(λ+ 2µ)(−m2,0u
n
y,0 +

N∑
j=1

m2,ju
n
y,j)]−4tδγn

yy,0

(20)

4 Numerical Results

4.1 Discretization and wavelength

Table 1 shows the values of the global error, for n = 500, for several analytical solutions
of the problem Eq.1, with Ω = [0, 1]× [0, 1] ⊂ R2, with Dirichlet boundary conditions and
initial conditions

Ux(x, y, 0) = sinx sin y;Uy(x, y, 0) = cosx cos y;
∂Ux(x, y, 0)

∂t
= 0;

∂Uy(x, y, 0)

∂t
= 0 (21)

using the irregular mesh with 121 nodes (see Fig. 1) with IIC = 0.8944, n = 500 and
4t = 0.01.
The weighting function is

w(hjx, hjy) =
1

(
√
h2jx + h2jy)

3
(22)
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Figure 1: Dispersion of the waves P in the irregular mesh fig. 2 with IIC = 0.8944

and the criterion for the selection of star nodes is the quadrant criterion [1, 2, 4]. The
global error is evaluated for each time increment, in the last time step considered, using the
following formula

Global error =

√∑NT
j=1(sol(j)−exac(j))2

NT

|exacmax|
(23)

where sol(j) is the GFDM solution at the node j exac(j) is the exact value of the solution
at the node j, exacmax is the maximum value of the exact solution in the cloud of nodes
considered and NT is the total number of nodes of the domain.
IIC is the index of irregularity of the cloud and it is the smallest of the index of irregularity
of the star (IIS) for all the nodes of domain, define by

IIS(x0,y0) =

√
5(
√

2 + 1)√
3(|m0|+ |η0|+

√
(m0 + η0)2 + ζ0

2
)

(24)

The analytical solutions are:

Ux(x, y, t) = cos(
√

2βt) sinx sin y; Uy(x, y, t) = cos(
√

2βt) cosx cos y (25){
U(x, y, t) = cos(0.5

√
2βt) sin(0.5x) sin(0.5y)

V (x, y, t) = cos(0.5
√

2βt) cos(0.5x) cos(0.5y)
(26){

U(x, y, t) = cos(2
√

2βt) sin(2x) sin(2y)

V (x, y, t) = cos(2
√

2βt) cos(2x) cos(2y)
(27){

U(x, y, t) = cos(4πβt) sin(2
√

2πx) sin(2
√

2πy)

V (x, y, t) = cos(4πβt) cos(2
√

2πx) cos(2
√

2πy)
(28){

U(x, y, t) = cos(8πβt) sin(4
√

2πx) sin(4
√

2πy)

V (x, y, t) = cos(8πβt) cos(4
√

2πx) cos(4
√

2πy)
(29)
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{
U(x, y, t) = cos(16πβt) sin(8

√
2πx) sin(8

√
2πy)

V (x, y, t) = cos(8πβt) cos(8
√

2πx) cos(8
√

2πy)
(30)

Table 1: Global errors for several analytical solutions of the problem Eq.1

Analytical Sol. Error global U Error global V

25 1.646× 10−6 1.778× 10−6

26 1.232× 10−5 2.443× 10−5

27 4.081× 10−4 2.001× 10−4

28 9.188× 10−2 8.647× 10−2

29 3.035× 10−1 3.275× 10−1

30 4.942× 10−1 4.999× 10−1

4.2 Dispersion and Irregularity

Figure 1 shows the dispersion of the waves P in each node of the irregular mesh with
IIC = 0.8944.

4.3 GFDM with PML

Let us solve the Eq. 1, in Ω = [0, 2]× [0, 1] ⊂ R2, with homogeneous the Dirichlet boundary
conditions and the initial conditions are given by Eq. 22, using the regular mesh with 861
nodes (see Fig. 2), the analytical solutions is given by Eq. 25 (see Fig. 3). The weighting
function is given by Eq. 23 and the criterion for the selection of star nodes is the quadrant
criterion.
Figure 5 shows the graphic the approximated solution of ux, after 100 time steps, with PML
in x-direction and y-direction for 1.4 ≤ x ≤ 2 and 0.6 ≤ y ≤ 1 (see Fig. 4).

Figure 7 shows the graphic the approximated solution of ux, after 100 time steps, with
PML in x-direction and y-direction for ≤ x ≤ 0.6 and 0 ≤ y ≤ 0.2, 0.8 ≤ y ≤ 1 (see Fig. 6).

Figure 9 shows the graphic the approximated solution of ux, after 100 time steps, with
PML in x-direction and y-direction for ≤ x ≤ 0.6 and 0 ≤ y ≤ 0.2, 0.8 ≤ y ≤ 1 and for a
heterogeneous region of interest defined(see Fig. 8), and with the properties
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Figure 2 Regular mesh (861 nodes) Figure 3 Exact solution Ux without PML.

Figure 4: Regular mesh with PML region. Figure 5: Approximated solution Ux with PML.

Figure 6: Regular mesh with PML region. Figure 7: Approximated solution Ux with PML.

Figure 8: Regular mesh with PML region and heterogeneous dates. Figure 9: Approximated solution Ux

with PML.
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Table 2: properties of the region

λ µ ρ α β

z1 0.5 0.25 1.0 1.0 0.5

z2 0.7 0.4 1.2 1.118 0.577

z3 0.8 0.5 1.1 1.279 0.674

5 Conclusions

This paper shows a scheme in generalized finite differences, for seismic wave propagation in
2-D for homogeneous and heterogeneous media.
The formulation of the PML is compatible with GFDM and numerical results confirm that
PML has an extraordinary performance in absorbing outgoing waves for homogeneous and
heterogeneous media.
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Abstract

Differential Riccati Equations (DREs) arise in many scientific and engineering
applications. Particularly, they play an important role in control problems, where
a finite-time horizon of integration is considered. In this paper, we present several
high-performance implementations of the Rosenbrock method for multi-core and
graphic processors (GPUs). The Rosenbrock method for solving DREs is an itera-
tive technique that requires the solution of a Lyapunov equation per step, which in
our approach is solved via the highly parallel sign function method. Mainly, this
is an iterative procedure, where the most time-consuming operation is the com-
putation of a matrix inverse per step. Hence, an efficient implementation of the
Rosenbrock method can be obtained providing an efficient matrix inversion ker-
nel. We analyze two different approaches for the matrix inversion: the traditional
method based on the LU factorization and the Gauss-Jordan elimination method.
Numerical experiments show that the execution time can be drastically reduced by
off-loading part of the computations to one or more GPUs.

Key words: Differential Riccati equations, Rosenbrock methods, matrix sign
function, graphics processors, multi-core processors.
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1 Introduction

Consider the symmetric differential Riccati equation (DRE)

Ẋ(t) = Q+X(t)A+ATX(t)−X(t)SX(t) ≡ F (X(t)),
X(t0) = X0,

(1)

where t ∈ [a, b], A ∈ ℝn×n, Q ∈ ℝm×n, S ∈ ℝn×m, and X(t) ∈ ℝm×n. The solution
of (1) exists and it is unique, e.g., [1, Thm. 4.1.6]. Symmetric DREs arise in linear-
quadratic optimal control problems such as LQR and LQG design with finite-time hori-
zon, in H∞ control of linear-time varying systems as well as in differential games, e.g.,
[1, 2]. Unfortunately, in most control problems fast and slow modes occur. Then, the
DRE will be fairly stiff, so implicit methods have to be used for solving the DRE numer-
ically. Matrix-valued algorithms based on generalizations of the Rosenbrock methods
have been proved to yield accurate solutions for large-scale DREs arising in optimal
control problems for parabolic partial differential equations [4, 6]. Using Rosenbrock
methods for solving DREs requires the solution of one Lyapunov equation per itera-
tive step. The Lyapunov equation is usually solved by exploiting the structure of the
matrices (sparsity, symmetry, low rank), see, e.g., [3]. However, in some applications,
a large interval of integration has to be considered and/or a thiner mesh is required to
describe the solution accurately, which turns these methods un affordable due to their
high computational cost.

We will focus on the method of order one, i.e, the so-called linearly implicit Euler
method, on equidistant meshes. For practical purposes, the method should be used with
adaptive time steps as suggested in [4]. Here we will focus on the parallel perfomance of
the computation of one time step, which is independet of the grid chosen. Thus, we keep
things as simple as possible for this purpose. The resulting Lyapunov equation is solved
via the highly parallel sign function method, where the most time-consuming operation
is the computation of a matrix inversion per step. We analyze two different approaches
for the matrix inversion: the traditional method based on the LU factorization and the
Gauss-Jordan elimination method.

We present several high-performance implementations of the Rosenbrock method
for a hybrid platform composed of multi-core processors and several graphics processors.
The use of high-performance kernels of several linear algebra libraries, and several
optimization techniques, like padding or the concurrent computation in all the devices
of the platform, report a remarkable performance in the developed implementations.

This paper is organized as follows. In Section 2, we briefly describe the application
of the Rosenbrock method of order one to DREs and the sign function method for
solving Lyapunov equations. The different implementations are described in Section 3.
Then, in Section 4, numerical experiments showing the performance of the proposed
methods are included. Finally, conclusions and future work are pointed out.
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2 Numerical solution of DREs

We focus on the solution of DREs arising in optimal control for ordinary differential
equations. Using the Rosenbrock method of order one for solving an autonomous
symmetric DRE of the form (1) yields:

ÃT
kXk+1 +Xk+1Ãk = −Q−XkSXk − 1

ℎ
Xk (2)

where Xk ≈ X(tk) and Ãk = A − SXk − 1
2ℎI; see [6, 4] for details. In addition, we

assume that

Q = CTC, C ∈ ℝp×n,
S = BBT , B ∈ ℝn×m,
Xk = ZkZ

T
k , Zk ∈ ℝn×zk ,

with p, m, zk ≪ n. If we denote Nk = [CT , Zk(Z
T
k B),

√
ℎ−1Zk ], then the Lyapunov

equation in (2) results in

ÃT
kXk+1 +Xk+1Ãk = −NkN

T
k , (3)

where Ãk = A − B(Zk(Z
T
k B))T − 1

2ℎI. Observing that rank(Nk) ≤ p + m + zk ≪ n,
we can efficiently solve (3) with the sign function method as described in the following
subsection. This is stated in Algorithm 1

Algorithm 1: Rosenbrock method of order one for DREs

Data: A ∈ ℝn×n, B, C, Z0 satisfying (2), t ∈ [a, b], and step size ℎ.
Result: (Zk, tk) such that Xk ≈ ZkZ

T
k , Zk ∈ ℝn×zi with zi ≪ n.

begin1

t0 := a2

for k := 0 to ⌈ b−a
ℎ ⌉ do3

Nk := [CT , Zk(Z
T
k B),

√
ℎ−1Zk ]4

Compute Zk+1 such that the low rank factor product Zk+1Z
T
k+15

approximates the solution of ÃT
kXk+1 +Xk+1Ãk = −NkN

T
k .

tk+1 := tk + ℎ.6

end7

end8

2.1 The sign function method

The matrix sign function is an efficient tool to solve stable Lyapunov equations. There
exist several iterative schemes for the computation of this matrix function. Among
those, the Newton iteration described in Algorithm 2 is specially appealing for its
simplicity, efficiency, parallel performance, and asymptotic quadratic convergence [7].
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Algorithm 2: Matrix sign function for Lyapunov equations

Data: A ∈ ℝn×n, N ∈ ℝj×n.
Result: S̃ such that S̃T S̃ ≈ X and ATX +XA = NNT .
begin1

A0 := A2

Ŝ0 := NT3

k := 04

repeat5

Ak+1 :=
1√
2

(
Ak/ck + ckAk

−1
)

6

Compute the rank-revealing QR (RRQR) decomposition7

1√
2ck

[
S̃k, ckS̃k(A

−1
k )T

]
= Qs

[
Us

0

]
Πs.

8

S̃k+1 := UsΠs9

k := k + 110

until

√
∥Ak+1+I∥∞

n < ¿∥Ak∥∞11

end12

Algorithm 2 roughly requires 2n3 floating-point arithmetic operations (flops) per iter-
ation.

On convergence, S̃ is the factor of the approximated solution and satisfiesX ≈ S̃T S̃.
Convergence can be accelerated using several techniques [7]. In our approach, we
employ a scaling defined by the parameter

ck =

√
∥Ak

−1∥∞/∥Ak∥∞.

In the convergence test, ¿ is a tolerance threshold for the iteration that is usually
set as a function of the problem dimension and the machine precision ².

3 High-performance implementations

In this section we describe several high-performance codes for the solution of DREs.
All the implementations use linear algebra libraries (e.g., MKL or CUBLAS) and
employing single precision arithmetic. A double precision accurate solution can be
obtained, at a low-computational cost, applying an iterative refinement technique like
the one proposed in Benner et al. [8].

The solution of the Lyapunov equation is the most expensive part when solving
DREs using the Rosenbrock method (see Algorithm 1). Particularly, most of the com-
putational cost is due to the matrix inversion required at each iteration of the sign
function method (Algorithm 2). Thus, we have optimized the matrix inversion process.
The rest of operations are mainly matrix-matrix products of small matrices, which can
be efficiently computed on the multi-core architecture invoking a multi-thread imple-
mentation of BLAS.
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We present three different algorithms/implementations of the Rosenbrock method
which, basically differ in the procedure to compute the matrix inverse. All the remaining
steps in these algorithms/implementations are performed on the CPU and therefore,
we do not go into detail.

3.1 Implementation on a multi-core CPU: Ros(CPU)

The traditional approach to compute the inverse of a matrix A ∈ ℝn×n is based on
Gaussian elimination (i.e., the LU factorization), and consists of the following three
steps:

1. Compute the LU factorization PA = LU , where P ∈ ℝn×n is a permutation
matrix, and L,U ∈ ℝn×n are unit lower and upper triangular factors, respectively,
see [9].

2. Invert the triangular factor U → U−1.

3. Solve the system XL = U−1 using backward substitution for X.

4. Undo the permutations A−1 := XP .

LAPACK [10] is a high-performance linear algebra library, which provides efficient
routines to compute the previous steps. In particular, routine getrf yields the LU fac-
torization (with partial pivoting) of a nonsingular matrix (Step 1), while routine getri
computes the inverse matrix of A using the LU factorization obtained by getrf (Steps
2–4). The computational cost of computing a matrix inverse following the previous
four steps is 2n3 flops.

3.2 Implementation on a many-core GPU: Ros(GPU)

The traditional algorithm for matrix inversion (see Section 3.1) shows some limitations
from the high-performance computing point of view. There is no possibility to compute
concurrently several steps, so parallelism has to be extracted within each step. Also,
step 2 and 3 are unbalanced, because they operate on triangular matrices. The Gauss-
Jordan elimination algorithm (gje) is a reordering of the computations performed by
the Gaussian elimination procedure for matrix inversion. Thus, the arithmetic cost of
matrix inversion using gje is the same as the one based on the LU factorization. How-
ever, the gje method is better suited for parallelization. We present an implementation
of the gje method on a GPU.

Algorithm 4 illustrates a blocked version of the gje for matrix inversion. A de-
scription of the unblocked version (GEINGJ), called from inside the blocked one, can
be found in [11]; for simplicity, the application of pivoting during the factorization is
concealed; see [11]. The bulk of computations is cast in terms of matrix-matrix prod-
ucts; an operation which exhibits a high degree of concurrency. Therefore, gje is a
highly appealing method for matrix inversion on emerging architectures like GPUs,
where many computational units are available and a highly tuned implementation of
the matrix-matrix product is available (e.g., in the nVidia CUBLAS library).
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Algorithm 3: Blocked Gauss-Jordan elimination algorithm for matrix inversion

Data: A ∈ ℝn×n.
Result: A := A−1.
begin1

t0 := a2

for k := 1 to ⌈nb ⌉ do3

A →
⎛
⎝

A00 A01 A02

A10 A11 A12

A20 A21 A22

⎞
⎠ where A00 ∈ ℝ(k−1)b×(k−1)b, A11 ∈ ℝb×b

4

[A01, A11, A21]
T := GEINGJ([A01, A11, A21]

T )5

A00 := A00 +A01A106

A20 := A20 +A21A107

A10 := A11A108

A02 := A02 +A01A129

A22 := A22 +A21A1210

A12 := A11A1211

end12

end13

3.3 Implementation on multi-GPU: Ros(MGPU)

Ros(MGPU) is in essence an extension of the Ros(GPU) solver which targets platforms
equipped with multiple GPUs. As mentioned before, the critical operation of the
Rosenbrock method is the matrix inversion. In this variant we employ a highly tuned
implementation for this operation that targets a platform with several GPUs connected
to a single CPU. This matrix inversion routine includes several optimization techniques,
in particular, the use of optimized CUBLAS kernels, padding to accelerate the GPU-
memory access, an optimized task schedule that permits the concurrent computation in
all the devices, a look-ahead approach to minimize the negative impact from the critical
path, a cyclic distribution that maximizes load balance, and the use of two block-sizes
that allows to adapt the routine execution to the particularities of the CPU and the
GPU architectures simultaneously. See [12] for more details on the matrix inversion
routine.

4 Numerical Results

In this section we evaluate the performance of the implementations introduced in Sec-
tion 3 on a hybrid platform composed of a multi-core CPU and several many-core
GPUs. Particularly, the experiments are performed on a computer with two Intel
Xeon QuadCore E5530 processors at 2.27GHz, connected to an nVidia Tesla C1060
(consisting of four nVidia Tesla S1060 GPUs) via a PCI-e bus (more details about the
platform can be found in Table 4).
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Algorithm 4: Blocked Gauss-Jordan elimination algorithm for matrix inversion

Require: A ∈ ℝn×n

1: t0 := a
2: for k := 1 to ⌈nb ⌉ do

3: Partition A →
⎛
⎝

A00 A01 A02

A10 A11 A12

A20 A21 A22

⎞
⎠ where A00 ∈ ℝ(k−1)b×(k−1)b, A11 ∈ ℝb×b

4: [A01, A11, A21]
T := GEINGJ([A01, A11, A21]

T )
5: A00 := A00 +A01A10

6: A20 := A20 +A21A10

7: A10 := A11A10

8: A02 := A02 +A01A12

9: A22 := A22 +A21A12

10: A12 := A11A12

11: end for

Processors #proc. #cores Frequency L2 Memory
(per proc.) cache

(GHz) (MB) (GB)

Intel QuadCore E5530 2 4 2.27 8 48
nVidia TESLA c1060 4 240 1.3 – (4x4)16

Table 1: Hardware employed in the experiments.

A multi-thread version of the Intel MKL library (version 10.2) provided the
necessary LAPACK and BLAS kernels for the CPU, and nVidia CUBLAS (version
2.1) for the GPU computations.

4.1 Test examples

We evaluate the performance of the implementations using two problems from the
Oberwolfach Model Reduction Benchmark Collection1: the semi-discretized heat trans-
fer problem for the optimal cooling of steel profiles (steel), and the butterfly gyro
problem (gyro). In the following we briefly describe these two models.

4.1.1 STEEL

This model arises in a manufacturing method for steel profiles. The goal is to design
a control that yields moderate temperature gradients when the rail is cooled down.
The mathematical model corresponds to the boundary control for a 2-D heat equation.
A finite element discretization, followed by adaptive refinement of the mesh, results

1http://www.imtek.de/simulation/benchmark/.
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in several instances of this benchmark. We employed two instances of this problem,
steelS and steelL. For both DREs, m = 7 and p = 6. The order of the system (size
of A) is n=5,177 for the steelS instance and 20,209 for the steelL instance.

4.1.2 GYRO

The Butterfly is a vibrating micro-mechanical gyro that has been proposed for iner-
tial navigation applications. The model is a simplified version which includes the pure
structural mechanics problem only. It is designed to test model reduction approaches.
The dimension of the mechanical system described by a system of second-order dif-
ferential equations is n = 17, 361. Hence, for the numerical experiments we first need
to transform the system into a first order one, the main dimension of the transformed
system is thus n = 34, 722.

4.2 Numerical Results

All the experiments were done using single-precision arithmetic, and all the reported
execution times include the overhead introduced by data transfers between the CPU
and the GPUs memory spaces.

We first study the steel case, because our three implementations can tackle this
problem using the available hardware (the large dimension of the matrices involved in
gyro did not allow us to solve this problem using Ros(GPU)).

Tables 2 and 3 present the total time as well as the time spend in the sign function
Lyapunov solver (Fsign) required to solve the DRE associated with both instances of
steel on the [0, 1] interval with a stepsize of ℎ = 0.1.

Ros(CPU) Ros(GPU) Speed-up Ros(MGPU) Speed-up
Time Time Time

Fsign Total Fsign Total Fsign Total Fsign Total Fsign Total

92.06 94.65 47.55 50.13 1.94 1.89 26.44 28.99 3.48 3.27

Table 2: Execution time (in seconds) and speed-up obtained for the steelS benchmark.

Ros(CPU) Ros(GPU) Speed-up Ros(MGPU) Speed-up
Time Time Time

Fsign Total Fsign Total Fsign Total Fsign Total Fsign Total

8703.2 9061.6 3406.5 3712.7 2.56 2.44 1338.2 1688.5 6.50 5.37

Table 3: Execution time (in seconds) and speed-up obtained for the steelL benchmark.

The experimental results in the tables show that most of the time (approximately
97%) is dedicated to the computation of the sign function method. They also shown
how this computation can be drastically accelerated using graphics processors. The
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hybrid CPU-GPU implementation accelerates the computation time of Fsign between
1.94× and 2.56×. The use of the four GPUs available on the platform enhances this
acceleration factor to 3.48× for the steelS problem and 6.5× for the steelL case.

In a second experiment we evaluate the performance of the CPU and the multi-
GPU implementations (Ros(CPU) and Ros(MGPU)) using the gyro example. Table 4
summarizes the results obtained for this benchmark. Once more, most of the time is
spent in the computation of Fsign and important time reductions are obtained from the
use of the four GPUs. In this problem routine Ros(MGPU) computes Fsign approximately
9× faster than the Ros(CPU) implementation.

Ros(CPU) Ros(MGPU) Speed-up
Time Time

Fsign Total Fsign Total Fsign Total

44919.69 46136.36 4986.36 6141.64 9.01 7.51

Table 4: Execution time (in seconds) and speed-up obtained for the gyro benchmark.

From the results we can conclude that the hybrid CPU-GPU implementation re-
ports an important reduction of the computational time, but the amount of memory
limits its application to small and medium problems. The multi-GPU permits to target
larger problems while simultaneously providing a notorious performance, e.g., acceler-
ating the execution of the gyro problem 7.51×.

Finally, we remark that in the Ros(CPU) implementation based on the LAPACK
routines for the matrix inversion, approximately the 97% from the execution time is
dedicated to the computation of the sign function. Despite the effort to optimize this
operation in the GPU-based implementations (Ros(GPU) and Ros(MGPU)), the sign
function still concentrates a 80% of the total time for the fastest implementation and
the largest problem studied in this work.

5 Conclusions and future work

The numerical results show the dramatic acceleration when using GPUs for solving
DREs. The single GPU-based implementation reports a speed-up of 2.5× over the
multi-core CPU implementation based on LAPACK. The multi-GPU implementation,
executed on four GPUs, increases this ratio up to 7.5× Another remarkable advantage
from the use of several GPUs is the increment of the aggregated memory. As each device
includes its own memory, an increase in the number of devices reports an increment
in the amount of available memory and, hence, also the dimension of the affordable
problems. This is specially important in many optimal control problems, where the
dimension of the related mathematical models is extremely large.

The use of four GPUs reduces the percentage of time dedicated to compute matrix
inverses from 97% to 80%. The use of more GPUs will probably keep decreasing this
percentage. In general, GPUs show an excellent relationship between cost and com-
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puting power, achieving more FLOPS per dollar than the traditional high performance
architectures in many application areas, e.g., in the execution of dense linear algebra
operations.

The acceleration of other stages involved in Algorithm 1, the implementation of
higher order methods and a stepsize control will be discussed in future works.
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Abstract

A recent version of the Lax–Milgram theorem allows us to show that a wide
class of linear elliptic boundary value problems, whose data belong to reflexive Ba-
nach spaces that are not necessarily Hilbert, admits a weak or variational solution.
In addition we provide the associated Galerkin scheme. The generation of the cor-
responding finite–dimensional subspaces for concrete examples of boundary value
problems is developed by means of certain biorthogonal systems in the reflexive
Banach spaces in question. In particular, we obtain a numerical solution for some
of these problems for which the classical results of Hilbertian nature do not apply.

Key words: Lax–Milgram theorem, variational formulations, Galerkin methods,
biorthogonal systems, elliptic boundary value problems.

MSC 2000: 65N30, 58E30, 49J40.

1 Introduction

The celebrated Lax–Milgram theorem [7] is a fundamental tool in the solvability theory
for linear elliptic partial differential equations, as well as for their numerical solution.
Recently, in [8, Theorem 1.2] an extension of this result has been stated in the setting
of real locally convex spaces (our statements are equally valid in the complex case).
The aim of this work is to show how this result, including its particular case for real
reflexive Banach spaces, extends the class of linear elliptic boundary value problems
that admit a variational formulation with a solution and in addition, is able of be solved
numerically through the associated Galerkin method.

2 The discrete problem and numerical testing

In order to recall the mentioned version of the Lax–Milgram theorem, we present some
standard notation: given real linear spaces E and F , a bilinear form a : E × F −→ R
and x0 ∈ E, y0 ∈ F , a(·, y0) denotes the linear functional on E

x ∈ E 7−→ a(x, y0) ∈ R,
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whereas a(x0, ·) stands for the analogous linear functional on F . Besides, given a real
normed space E, we write E∗ for its topological dual space. Finally, ()+ is the positive
part, i.e., for t ∈ R, (t)+ = max{t, 0}.

Proposition 1 ([8]). Assume that E is a real reflexive Banach space and that F is
a real normed space, y0 ∈ F ∗, a : E × F −→ R is bilinear and that C is a nonempty
convex subset of F such that for all y ∈ C, a(·, y) ∈ E∗. Then

there exits x0 ∈ E such that for all y ∈ C, y∗0(y) ≤ a(x0, y)

if, and only if,

there exists α > 0 such that for all y ∈ C, y∗0(y) ≤ α∥a(·, y)∥.

In addition, if one of these equivalent statements is satisfied and for some y ∈ C we
have that a(·, y) ̸= 0, then

min{∥x0∥ : x0 ∈ E and for all y ∈ C, y∗0(y) ≤ a(x0, y)} =

(
sup

y∈C, a(·,y) ̸=0

y∗0(y)

∥a(·, y)∥

)
+

.

As a consequence of the uniform boundedness theorem we arrive at the correspon-
ding global version of Proposition 1 (the functional y∗0 ∈ F ∗ is arbitrary), which clearly
generalizes the classical Lax–Milgram theorem:

Theorem 2. If E is a real reflexive Banach space, F a real normed space,
a : E × F −→ R a bilinear form and C a nonempty convex subset of F such that
for all y ∈ C we have that a(·, y) ∈ E∗, then

for all y∗0 ∈ F ∗ there exists x0 ∈ X such that y ∈ C ⇒ y∗0(y) ≤ a(x0, y) (1)

if, and only if,

existe α > 0 such that y ∈ C ⇒ α∥y∥ ≤ ∥a(·, y)∥. (2)

Furthermore, if one of these equivalent assertions holds and C ̸= {0}, then, for all
y∗0 ∈ F ∗,

min{∥x0∥ : x0 ∈ E and for all y ∈ C, y∗0(y) ≤ a(x0, y)} =

(
sup

y∈C, y ̸=0

y∗0(y)

∥a(·, y)∥

)
+

. (3)

Let us note that when C = Y , inequality (1) becomes an equality and the stability
condition (3) is more natural:

min{∥x0∥ : x0 ∈ E and y∗0 = a(x0, ·)} ≤ ∥y∗0∥
α

.
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Uniqueness in the variational inequality (1) is nothing more than that of the co-
rresponding homogeneous problem if C is balanced: if C = −C and the variational
equation

find x0 ∈ X such that y ∈ C ⇒ y∗0(y) = a(x0, y)

has a solution, then it is unique if, and only if,

x ∈ E and for all y ∈ C, a(x, y) = 0 ⇒ x = 0.

Now we show a simple but illustrative elliptic boundary value problem that does
not admit a classical variational formulation in terms of a continuous and coercive
bilinear form and a linear functional on a Hilbert space, but it can be weakly solved by
means of the Lax–Milgram theorem above:

Example 3. Let 1 < p <∞, let f ∈ Lp(0, 1) and consider the Poisson’s problem with
homogeneous Dirichlet boundary conditions{

−x′′ = f in (0, 1)
x(0) = x(1) = 0

.

For p = 2, and only for p = 2, the classic Lax–Milgram theorem guarantees that it
admits a unique weak solution. Otherwise we can apply Theorem 2 (or Proposition
1). More specifically, if q is the exponent conjugate to p, and we multiply by a test
function y ∈W 1,q

0 (0, 1) the equation −x′′ = f in (0, 1) and integrate by parts, then we
arrive at the following variational formulation of the boundary value problem above:

find x0 ∈W 1,p
0 (0, 1) such that y ∈W 1,q

0 (0, 1) ⇒
∫ 1

0
x′0y

′ =

∫ 1

0
fy, (4)

that clearly generalizes the usual one with f ∈ L2(0, 1). Let us consider the reflexive
Banach spaces E := W 1,p

0 (0, 1), F := W 1,q
0 (0, 1), the continuous linear functional

y∗0 : F −→ R given by

y∗0(y) :=

∫ 1

0
fy, (y ∈ F )

and the continuous bilinear form a : E × F −→ R defined as

a(x, y) :=

∫ 1

0
x′y′, (x ∈ E, y ∈ F ).

It is not difficult to prove that a satisfies the inf–sup condition (2), making use of the
Poincaré’s inequality [1, Theorem 6.30]. Therefore Theorem 2 guarantees the existence
of a solution of variational problem (4) and its uniqueness turns out to be obvious
thanks to the comment given after Theorem 2. �

Now we deal with the Galerkin scheme related to the variational problem (1), as
well as with its stability. In particular we have proven the following result that includes,
a an special case, a generalization of Céa’s inequality:
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Proposition 4. Let E be a real reflexive Banach space, let F be a real normed space,
let y∗0 ∈ F ∗ and let a : E × F −→ R be a continuous bilinear form such that and

there exists a unique x0 ∈ E such that a(x0, ·) = y∗0.

Suppose in addition that for all n ≥ 1, En and Fn are finite–dimensional subspaces of
E and F , respectively, and that

there exists a unique xn ∈ En such that a(xn, ·)|Fn
= y∗0 |Fn

.

If moreover for each n ≥ 1 there exists µn > 0 such that

y ∈ Fn ⇒ µn∥y∥ ≤ ∥a(·, y)|En
∥

and
µ := inf

n≥1
µn > 0,

then, for all n ≥ 1 we have that

∥x0 − xn∥ ≤
(
1 +

∥a∥
µ

)
dist(x0, En).

The adequate use of biorthogonal systems (see [6]) in certain real Sobolev reflexive
spaces allows us to generate finite–dimensional subspaces that satisfy the mentioned
above stability condition which, together with a immediate aproximation property of
such systems, imply the convergence of the Galerkin method. Let us emphasize that the
biorthogonal systems also become a fundamental tool in the develop of a wide family
of numerical methods for solving differential, integral and integro–differential problems
([2, 3, 5]).

Example 5. Let {fn} be the Schauder basis in W 1,p
0 (0, 1) and W 1,q

0 (0, 1) given in [4,
Proposition 4.8.]. Let {En} and {Fn} be sequences of finite–dimensional subspaces of
E and F where En = Fn := Span{f1, ..., fn} . The Galerkin scheme associated with
Example 3 is to find xn ∈ En such that for all yn ∈ Fn, a(xn, yn) = y∗0(yn).

The next table illustrates the statements above for p = 3
2 and f(t) = t−

3
5 . We

exhibit xm(t) for certain t of [0, 1] and xm has been chosen in such a way that, letting

max


∣∣∣∣∣∣1−

xm

(
1
j

)
xm+1

(
1
j

)
∣∣∣∣∣∣ : j = 1, 2, . . . , 9

 < 10−2

t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9

x32(t) 0.1071 0.16922 0.20450 0.21904 0.21619 0.1979 0.16605 0.12185 0.066240
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Abstract

In this paper we expand the equations governing Michaelis– Menten kinetics in
a total quasi-steady-state setting, finding the first order uniform expansions. Our
results improve previous approximations and work well especially in presence of an
enzyme excess.
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1 Introduction

Since the pioneering papers by Bodenstein and Underhill and Chapman in 1913 [1, 2]
the quasi-steady state approximation (QSSA) has represented a very important tool
in the mathematical modeling of biochemical reactions. It brings to a simplification of
the model and allows the qualitative analysis of the reaction, in terms of time scales
separation, asymptotic behavior etc., which any numerical analysis could not, in gen-
eral, capture.
In enzyme kinetics, the standard QSSA (sQSSA), or Michaelis-Menten-Briggs-Haldane
approximation [3, 4] was introduced in order to describe the phase after the short tran-
sient, where the catalytic enzyme and the substrate rapidly form complexes at high
concentrations.
From the Sixties of the last century, mathematicians have interpreted the QSSA in
terms of leading order in asymptotic expansions with respect to an appropriate pa-
rameter ε, which must be supposed sufficiently small. Heineken, Tsuchiya and Aris
[5] use ε = ET

ST
, where ET and ST are respectively the total catalyst concentrations

and the substrate concentrations; Segel and Slemrod [6] use ε = ET
ST+KM

, where KM is
the Michaelis constant or affinity constant, showing that the sQSSA is valid in a more
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extended parameter range than the one supposed by biochemists.
The technique of singular perturbation allows us to mathematically reproduce the
boundary layer in the temporal evolution of the complex concentrations and the separa-
tion between the two characteristic time scales, related to the rapid complex formation
and to the substrate depletion.
Laidler in 1955 [7] and Borghans, deBoer and Segel in 1996 [8] have approached enzyme
kinetics from a different point of view, which is known as total QSSA (tQSSA) and is
valid in a wider range of parameters (see also [9]). The tQSSA has been applied to
several enzyme reactions [10, 11, 12, 13, 14, 15] even in a stochastic framework [16].
In the papers [8, 9, 14] the tQSSA has been approached requiring some conditions
which simplify equations, without any formal tool in terms of asymptotic expansions.
In 2002 Schnell and Maini [17] studied the tQSSA by means of aggregation or lumping
techniques, which reduce the number of differential equations describing the system
[18]. They nondimensionalized the system of differential equations governing the re-
action and introduced the perturbation parameter ε = KET

(KM+ET+ST )2
, where K is the

van Slyke-Cullen constant. In 2008 Dingee and Anton [19] developed a two-parameter
singular perturbation analysis which curiously, at the leading order, does not reproduce
the approximated solutions given by Laidler and Borghans, deBoer and Segel, but the
zero-order approximation of the tQSSA, obtained by Tzafriri [9] with respect to the
parameter

ε =
K

2ST

(
ET +KM + ST√

(ET +KM + ST )2 − 4ET ST
− 1

)
In this paper we find the tQSSA as the leading order of an asymptotic expansion,
obtained with respect to the parameter ε = KET

(KM+ET+ST )2
, we find the first order cor-

rections of the inner and the outer solutions (reproducing, respectively, the transient
and the QSSA phase) and finally the uniform approximations.

2 Model equations and nondimensionalization

Let us consider the classical system of (dimensional) equations describing the Michelis–
Menten kinetics:

dS

dt
= −k1(ET − C)S + k−1C,

dC

dt
= k1(ET − C)S − (k−1 + k2)C,

(1)

with initial conditions

S(0) = ST , C(0) = 0, (2)

and conservation laws

E + C = ET , S + C + P = ST . (3)
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Introducing the total substrate S = S + C, we obtain

dS

dt
= −k2C,

dC

dt
= k1

[
C2 − (ET + S +KM )C +ET S

] (4)

with initial conditions

S(0) = ST , C(0) = 0, (5)

and conservation laws

E + C = ET , S + P = ST . (6)

If we adopt the change of variables

S = α s , C = β c , t = γ τ

we find that eq(s). (4) become

α

γ

ds

dτ
= −k2β c

β

γ

dc

dτ
= k1

[
β2 c2 − (ET +KM + α s)β c+ ET αs

] (7)

We should first scale the inner variables, since they are supplemented by the initial
conditions (5) that give us, when they are nonzero, information about the magnitude
of the variables involved. Thus it follows immediately that α = ST . Therefore the
second equation of (7) becomes

β

γ

dc

dτ
= k1

[
β2 c2 − (ET +KM + ST s)β c+ ET ST s

]
(8)

Now we attempt to ensure that all the terms on the right hand side of (8) are of the
same magnitude, supposing that both c and s are O(1). Proceeding as in [6] and [8],
neglecting the term in c2 and then setting for scaling purposes s = 1 and c = 1 we find

(ET +KM + ST )β = ET ST , i.e., β =
ETST

ET +KM + ST
(9)

while γ is determined by requiring that the left side of (8) is of same magnitude of the
right side, i.e.,

γ =
β

k1ETST
=

1

k1(ET +KM + ST )
(10)

The parameter γ corresponds to the time scale tc of the complex formation [8, 19].
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3 Asymptotic expansions

Substituting in (7) we have the inner equations:

ds

dτ
= −ε c

dc

dτ
= σ ηc2 − (η + χM ) c− σ s c+ s

(11)

with initial conditions s(0) = 1 and c(0) = 0, where

σ =
ST

KM + ET + ST
, η =

ET

KM + ET + ST
, χM =

KM

KM + ET + ST

and

ε =
KET

(KM + ET + ST )2
(12)

where K = k2
k1

is the Van Slyke–Cullen constant.
The parameter ε, appearing in the right hand side of the first equation (11), arises as
the natural perturbation parameter of our asymptotic expansion.
Let us remark that, with our scaling argumentation, we obtain the same perturbation
parameter as in [17, 19]. Moreover, for any set of kinetic parameters and initial condi-
tions, ε ≤ 1

4 [19].
Observe that

σ + χM + η = 1 (13)

Let us expand the solutions of (11) in the form

s = Σ0 + εΣ1 + o(ε) , c = Γ0 + εΓ1 + o(ε) .

Substituting in (11) and taking into account the initial conditions, we find at order 0
that Σ0 = const. = 1 and

dΓ0

dτ
= σ η Γ2

0 − Γ0 + 1 (14)

whose solution, complying with (5), is easily found as

Γ0(τ) =
exp(

√
1− 4σ η τ)− 1

σ η [Γ+
0 exp(

√
1− 4σ η τ)− Γ−

0 ]
(15)

where Γ±
0 =

1±
√
1− 4σ η

2σ η
. At order 1 we have

dΣ1

dτ
= −Γ0 (16)

dΓ1

dτ
= Γ1 (2σ η Γ0 − 1)− σΣ1 Γ0 +Σ1 (17)

with homogeneous initial conditions, which give
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Σ1 =
1

σ η
log

(
Γ+
0 exp(

√
1− 4σ η τ)− Γ−

0

Γ+
0 − Γ−

0

)
− Γ+

0 τ (18)

and the corresponding Γ1. Details for this latter fuction are given in the Appendix (A).
Now we turn our attention to the outer solutions of (7). We only need to change

the timescale γ; to this aim let us focus on the first equation of (7). In the slow, quasi-
steady state phase the total variable s cannot anymore be considered roughly constant:
it decreases monotonically from ST to zero. Hence, to balance the left hand side with
the right one we set

γ =
α

k2 β
=
ET +KM + ST

vmax
(19)

where vmax = k2ET is the maximal reaction velocity. In this case, γ represents the
time scale ts, related to the total substrate depletion [8, 19]. Note that, having denoted
by tc the time scale in the fast, pre-steady phase and by ts the time scale in the slow,
quasi-steady phase, we get

tc
ts

= ε . (20)

Setting T = γ t and substituting (19) in (7) we obtain

ds

dT
= −c

ε
dc

dT
= σ ηc2 − (η + χM ) c− σ s c+ s

(21)

Let us expand the solutions of (21) in the form

s = s0 + ε s1 + o(ε) , c = c0 + ε c1 + o(ε) .

Upon substitution in (21) we find, at leading order,

ds0
dT

= −c0

σ ηc20 − (η + χM + σ s0) c0 + s0 = 0

(22)

which correspond to the equations obtained in the tQSSA [8].
The second equation above is algebraic in c0 with solutions

c±0 =
η + χM + σ s0 ±

√
(η + χM + σ s0)2 − 4σ ηs0
2ση

and it is easy to see that only c−0 is admissible. Note that, being s0(0) = lim
τ→∞

Σ0(τ) = 1 ,

we have automatically that c0(0) = c−0 (0) = Γ−
0 .
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From (21) it is found that the first correction terms in the outer solutions are given
by

ds1
dT

= −c1

c1 =
c′0 + s1 (σ c0 − 1)

2 η σ c0 − σ s0 − η − χM
.

(23)

4 Figures and discussion

We have solved numerically (1) and we have compared the results with our approxi-
mations at leading order and first order. This is shown in fig.(s) (1–2), where we have
changed only two kinetic parameters, in order to have different values of ε. In both
cases our uniform expansion gives very good results.
In fig.(s) 2–4 we observe a less accurate approximation around the matching point,
since in this case the value of ε = 0.1856 is close to the bound 1

4 .
Observe that we have chosen values for ST and ET such that the sQSSA approximates
the dynamics with very low accuracy. In fact this latter approximation, in general,
works well when there is a substrate excess, or when KM ≫ ET [5, 6]. When there is
an enzyme excess, as in our figures, the perturbation techniques rely on the same pa-
rameter ε given in (12), but in a QSSA setting [20, 17, 21]. In fig.(s) (3–4) we compare
our first order uniform approximations with the corresponding ones given in [21]. Also
in these cases the results are very good.

A Solution of eq.(17)

Let us set R =
√
1− 4ησ.

The equation for the term Γ1 is

dΓ1

dτ
= (2σηΓ0 − 1)Γ1 + (1− σΓ0)Σ1 (24)

i.e.
dΓ1
dτ +

{
1 + 2

[
1−eRτ

Γ+
0 eRτ−Γ−

0

]}
Γ1 =

{
1
ση log

[
Γ+
0 eRτ−Γ−

0

Γ+
0 −Γ−

0

]
− Γ+

0 τ
}{

1 +

[
1−eRτ

η(Γ+
0 eRτ−Γ−

0 )

]} (25)

whose formal solution is

Γ1(τ) = e−A(τ)·
∫ τ

0

{
1

ση
log

[
Γ+
0 e

Rw − Γ−
0

Γ+
0 − Γ−

0

]
− Γ+

0 w

}{
1 +

[
1− eRw

η
(
Γ+
0 e

Rw − Γ−
0

)]} eA(w) dw

(26)
where

eA(τ) = exp

(∫ τ

0

{
1 + 2

[
1− eRw

Γ+
0 e

Rw − Γ−
0

]}
dw

)
=

[
Γ+
0 e

Rτ − Γ−
0

Γ+
0 − Γ−

0

]2
· e−Rτ . (27)
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Figure 1: Dynamics of S (left panel) and of C (right panel): full system (solid), leading
order uniform approximation (dotted), first order uniform approximation (dashed).
Kinetic parameters: ET = 3, ST = 1, k1 = 1, k−1 = 1, k2 = 1, ε = 0.0833.
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Figure 2: Dynamics of S (left panel) and of C (right panel): full system (solid), leading
order uniform approximation (dotted), first order uniform approximation (dashed).
Kinetic parameters: ET = 3, ST = 1, k1 = 1, k−1 = 0.04, k2 = 4, ε = 0.1856.
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Figure 3: Dynamics of S (left panel) and of C (right panel): full system (solid), first
order uniform approximation as in [21] (dashed-dotted), first order uniform approxi-
mation (dashed). Kinetic parameters: ET = 3, ST = 1, k1 = 1, k−1 = 1, k2 = 1,
ε = 0.0833.
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Figure 4: Dynamics of S (left panel) and of C (right panel): full system (solid), first
order uniform approximation as in [21] (dashed-dotted), first order uniform approxi-
mation (dashed). Kinetic parameters: ET = 3, ST = 1, k1 = 1, k−1 = 0.04, k2 = 4,
ε = 0.1856.
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Solving the integrals and setting

M(τ) =
eRτ

R ·
(
Γ+
0 e

Rτ − Γ−
0

)2 ; N(τ) = −Γ+
0

Rη
M(τ) ; Q(τ) =

1

ση2
M(τ) (28)

we have

Γ1(τ) = N(τ) · {eRτ (Rτ − 1)(ηΓ+
0 − 1)Γ+

0 + e2Rτ

2

(
Γ+
0 + Γ−

0 − 2Γ+
0 Γ

−
0 η
)
+ Γ−

0 (ηΓ
−
0 − 1) ·

[
−e−Rτ (Rτ + 1) + 1

]
}+Q(τ){Γ+

0 (ηΓ
+
0 − 1)

[
eRτ log

(
Γ+
0 eRτ−Γ−

0

Γ+
0 −Γ−

0

)
− eRτ + 1

]
+

(Γ−
0 − Γ+

0 ) log
(
Γ+
0 eRτ−Γ−

0

Γ+
0 −Γ−

0

)
+ Γ−

0 (ηΓ
−
0 − 1)

[
−e−Rτ log

(
Γ+
0 eRτ−Γ−

0

Γ+
0 −Γ−

0

)
− Γ+

0

Γ−
0

Rτ
]
+

(Γ+
0 + Γ−

0 − 2ηΓ+
0 Γ

−
0 )
∫ eRτ

1
1
z log

(
Γ+
0 z−Γ−

0

Γ+
0 −Γ−

0

)
dz} .

(29)
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Abstract

In this contribution we outline the basic ideas behind metaecoepidemics. We
consider a simple predator-prey system with two possible habitats and where an
epidemic spreads by contact among the predators, in the patch in which prey are
absent. Only the sound predators can freely move from one environment to another.
The equilibria of the system are analyzed for stability. Theoretical and simulation
results show that modifying the environment in which interacting populations live
may entail unforeseen consequences. In particular circumstances however, it could
constitute also a possible way of eradicating pests.

Key words: Eco-epidemiology; Local Stability; Metapopulations; Habitat
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1 Background information

Population theory started from the famous paper by Malthus at the end of the sev-
enteenth century, [26], stating that populations either disappear or grow exponentially
and therefore more and more resources are needed to sustain this growth, which is ulti-
mately mot possible. These ideas were improved in the following century by Verhulst,
who introduced the so-called logistic growth, [38, 39, 40]. But it is only in the twenties
of the past century that the works of Lotka and Volterra on interacting species, [24, 41],
originated many fruitful subsequent developments of this branch of science.

In more recent times, after many years of investigations involving not just two
populations but entire food webs, researchers formulated a new concept, metapopula-
tion. By this word namely, populations are considered living in different environments,
among which possibly they freely migrate, [42].
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The metapopulation tool is a good way of modeling real life situations in which
human activiy, or natural causes, fragment the landscape and lead therefore to hetero-
geneous environments. Especially human activity, breaking the landscape via artifacts
such as buildings, roads, or simply by clearing the vegetation from wild areas in or-
der to find new fields for agriculture, is a major cause for the loss of natural habitat.
Ultimately, this landscape reshaping might threaten the existence of wild populations,
and for environmentalists and conservationists this has become a major issue, [43].
In fact, the original population settled in the unperturbed environment, in view of
this landscape fragmentation, becomes separated into subpopulations. Each of them
continues to independently thrive in each patch, but now it is more sensitive to per-
turbations, such as adverse climatic conditions. This fact is ultimately responsible for
species extinction.

It has been observed that in fragmented environments in general the population
persists globally, although sometimes the populations become locally extinct [8, 13, 16,
42, 45]. This positive finding is attributed to the migration possibility between patches.

The role of mathematical models, which are able to predict possible outcomes of
specific situations [21], reveals to be essential in this situation, since data collections
constitute a major problem, and are generally not gathered, [8, 13, 21]. Metapopu-
lations represent a tool for assessing population dynamics in patched environments,
[17, 31]. The classical Levins model [23] assumes that colonization depends only the
part of the environment in which populations settle. Here only the habitats providing
the most favorable living conditions become populated, while the ground that connects
them is only used for interpatch migrations.

Two real life situations in which metapopulation dynamics has been successfully
used are represented by the spotted owl (Strix occidentalis) and the mountain sheep
(Ovis canadensis) populations, [14].

A further more complex instance is the study of Melitaea cinxia [18]. This butterfly
in Finland, as well as other species [27, 28], has been studied with the help of incidence
functions. For the butterfly, observations led to the conclusion that variations in local
populations are related to the interaction with a specialist braconid parasitoid, Cotesia
melitaearum [22]. This is a clear indication that there is a need for a metapopulation
approach which accounts also for a host-parasitoid metapopulation dynamics [19]. With
this background a first metapopulation model accounting for diseases in the above type
of models has been proposed, [37]. To set up such models, we need to backstep and
describe the idea of ecoepidemiology, a field of investigations dealing with population
systems among which diseases spread, see [25] for an introduction.

From the first studies which assume mostly quadratic predator-prey models to
model rather simple situations, [15, 11, 3, 32, 33, 35], more complex hypotheses have
been considered, [6, 1]. But other kinds of demographic interactions have also been
studied, for instance competition and symbiotic interactions, [34, 36].

By considering ecoepidemic systems in fragmented habitats, we obtain metaecoepi-
demics. This new field of study, [37] therefore investigates environments that are phys-
ically separated, but among which disease-affected populations can migrate.

The paper is organized as follows. In the next Section we provide some real life
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examples in which these situations arise. The basic model studied here is presented in
Section 3. Then in the next Section we analytically determine its equilibria and study
their stability in Section 5. Numerical simulations are then provided and with a final
discussion they conclude the paper.

2 Biological examples

The biological examples provided in the previous Section fall also in the framework of
the metaecoepidemic models. In fact, there are well known diseases that affect these
populations.

Ovis canadensis has various predators among which we mention the wolf (Canis
lupus), coyote (Canis latrans), bear (Ursus), Canada lynx (Lynx canadensis), mountain
lion (Puma concolor), golden eagle (Aquila chrysaetos), [9]. Bighorn sheep also host
several parasites, such as nematode lungworms, Protostrongylus stilesi and P. rushi,
[10].

Strix occidentalis is affected by helmints and it is hunted by the great horned owl,
Bubo virginianus, which hunts the spotted owl either for feeding purposes but also to
fight it as a competitor for resources. The two species in fact have several prey in
common, [20]. Note that the prey of Strix occidentalis, mainly small rodents, play an
important role, as they appear to be the vector by which the spotted owl gets the
parasites, i.e. the infection, [20].

Predators of Lepidoptera are mainly birds, bats, parasitoids, small mammals, rep-
tiles and other insects, especially ants and dragonflies. In particular the larvae are
preferred in the diet of Parus caerulens, P. major, [7]. Some species of bats can
eat Lepidoptera up to half their weight per night, [4, 5]. Hymenoptera and Diptera
either kill, immobilize or implant in Lepidoptera eggs, that later will kill the host,
[12, 30]. Viruses, e.g. nuclear polyhedrosis virus (NPV), cytoplasmatic polyhedrosis
virus (CPV), granulosis virus (GV), entomopox virus (EPV), small RNA viruses also
affect Lepidoptera, [29]. The common bacterium Bacillus thuringiensis var. kurstaki
kills caterpillars when they assume it, by poisoning their digestive tract. Butterflies use
several ways of defending themselves from predators, using shapes, producing colors or
sounds which scare them, [30]. Another means of defense is myrmecophily, by which
the caterpillars associate with ants, finding safe refuge near the ant nests, [2].

In addition to the three cases mentioned above, we provide another example as-
sessing the need of studying populations living in fragmented habitats, which are also
affected by epidemics. It is represented by the predator-prey interaction of red fox
Vulpes vulpes (L.) and rabbits Oryctolagus cuniculus (L.), affected by the Myxoma
virus. This is a classical case, since the wild rabbits in Australia have been inoculated
with myxomatosis by humans to try to control their population, [44].

The necessity of studying epidemics-affected populations living in fragmented habi-
tats is thus clear from the mentioned situations. Having outlined the basic ideas behind
metaecoepidemics, in this contribution we specifically investigate a kind of dual situ-
ation that has been examined in [37]. In this context, we consider two patches in
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which predators live, in the first one of which they have a prey population to hunt, in
the second one however no resource to survive upon. In addition, we assume that in
this second patch an epidemics spreads. Finally, only healthy predators can migrate
between the two patches. This assumption is meaningful in view of the fact that migra-
tion might require an effort, and the weakest individuals, namely the disease-affected
ones, are unable to exert it.

3 The model

We denote the two patches by A1 and A2. In A1 there are prey N (t) and the healthy
predators S1 (t). In A2 there are only predators, among which an epidemic spreads.
This is a harsher environment, with no resources for the survival of predators. We
denote by S2 (t) the heatlhy individuals and by I (t) the infected ones. We assume that
only the predators can migrate between the two patches, and in particular only if they
are strong enough. Thus, infected individuals, being weakened by the unrecoverable
disease, are confined to the second patch. This also implies that the epidemic cannot
spread to the first environment. The model reads as follows

dN

dt
= rN

(
1 −

N

K

)
− aNS1, (1)

dS1

dt
= bNS1 − mS1 − n21S1 + n12S2,

dS2

dt
= −γS2I − mS2 + n21S1 − n12S2,

dI

dt
= γS2I − µI.

Here, a denotes the hunting rate on prey, r their reproduction rate and K their carrying
capacity. Thus the first equation models logistic growth for the prey and the hunting
on them by the predators in A1. In the second equation we describe the dynamics of
the predators in the first patch. Let b < a denote the reward they get from hunting,
m their mortality rate and n21 and n12 their migration rates from and into patch A1

respectively. The second equation then states the fact that predators reproduce when
they hunt successfully, are subject to natural mortality, and increase and decrease their
population size based also on migrations out and into the patch. In the third equation
we begin to describe patch A2. Let γ denote the disease incidence and µ the natural
plus disease-related mortality. The susceptible predators possibly catch the disease
by interaction with infected ones, die from natural causes and migrate into and out
from this environment. The last equation contains the infected predators dynamics.
Individuals enter into this class from the healthy class by catching the disease, and die
by biological or disease-related causes.
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4 Equilibria

In this Section we study the model’s equilibria. We easily find the origin, E1, since the
system (1) is homogeneous. We investigate at first the boundary equilibria, in which at
least one population vanishes. Only two such points turn out to be feasible. We thus
find the point E2 = (K, 0, 0, 0). Further, if we seek points for which I = 0, and solve
for S2 the third equilibrium equation, we find

S2 =
n21

m + n12

S1 (2)

and substituting into the second one, we have

Ñ =
m(m + n12 + n21)

b(m + n12)
. (3)

From the first equation we find then

S̃1 =
r[Kb(m + n12) − m(m + n12 + n21)]

aKb(m + n12)
(4)

which in turn upon substitution into (2) provides the value of S2

S̃2 =
rn21[Kb(m + n12) − m(m + n12 + n21)]

aKb(m + n12)2
. (5)

We have thus found the equilibrium point E3 =
(
Ñ , S̃1, S̃2, 0

)
, where the population

values are explicitly given in (3),(4) e (5).

It is easily established that

bK(m + n12) > m(m + n12 + n21) (6)

represents the only feasibility condition for the equilibrium E3. It amounts to say that
the prey carrying capacity for the A1 environment must exceed the number of prey at
equilibrium.

Next we examine the case for which all populations do not vanish, namely the
metasystem exhibits coexistence. In this case we solve first from the last equation to
get

Ŝ2 =
µ

γ
. (7)

Substitution into the second one gives

S1 =
−n12µ

γ (bN − m − n21)
. (8)

From the first equation we then obtain the following quadratic equation in N

rγbN2 − rγ (bK + m + n21) N − K(an12µ − rγm − rγn21) = 0, (9)
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the discriminant of which is always positive, since

∆ = r2γ2(bK + m + n21)
2 + 4rγbK (an12µ − rγm − rγn21) (10)

= [rγ(bK − m − n21)]
2 + 4rγbKan12µ > 0.

Both roots are then real,

N1 =
rγ (m + bK + n21) +

√
[rγ(bK − m − n21)]2 + 4rγbKan12µ

2rbγ
,

N2 =
rγ (bK + m + n21) −

√
[rγ(bK − m − n21)]2 + 4rγbKan12µ

2rγb
.

Substitution of N1 into (8) leads to the expression

S1 =
−2rn12µ

rγ(bK − m − n21) +
√

[rγ(bK − m − n21)]2 + 4rγbKan12µ

in which the denominator is positive while the numerator is instead negative, so that
this value is S1 < 0 and therefore it is not acceptable. We thus consider only

N̂ = N2 =
rγ (bK + m + n21) −

√
[rγ(bK − m − n21)]2 + 4rγbKan12µ

2rγb
, (11)

from which S1 > 0 is acceptable. Final substitution of this expression into (8) gives

Ŝ1 =
−2rn12µ

rγ (bK − m − n21) −
√

[rγ(bK − m − n21)]2 + 4rγbKan12µ
. (12)

From the third equation we find

I =
(m + n12)S2 − n21S1

−γS2

.

Substituting the values of S2 and S1 into (7) and (8), we finally have

Î =
−2rn12n21

rγ (bK − m − n21) −
√

[rγ(bK − m − n21)]2 + 4rγbKan12µ
−

m + n12

γ
. (13)

We have thus found the components of E4 =
(
N̂ , Ŝ1, Ŝ2, Î

)
, i.e. the coexistence equi-

librium point.
We discuss now how to ensure feasibility. Since Ŝ1 > 0 and Ŝ2 > 0, we need to

require
rγ (bK + m + n21) >

√
[rγ(bK − m − n21)]2 + 4rγbKan12µ

which reduces to
m + n21 >

an12µ

rγ
. (14)

As far as Î > 0 is concerned, the study is more complicated. It is equivalent to

−2rn12n21

rγ (bK − m − n21) −
√

[rγ(bK − m − n21)]2 + 4rγbKan12µ
>

m + n12

γ
.
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Note that the denominator on the left is negative, so that the condition reduces to

2rγn12n21

m + n12

+ rγ(bK − m − n21) >
√

[rγ(bK − m − n21)]2 + 4rγbKan12µ,

which in turn gives




[rγ(bK − m − n21)]
2 + 4rγbKan12µ ≥ 0,

2rγn12n21

m + n12

+ rγ(bK − m − n21) > 0,
[
2rγn12n21

m + n12

+ rγ(bK − m − n21)

]2

> [rγ(bK − m − n21)]
2 + 4rγbKan12µ.

In view of (10) the first above inequality is always satisfied. The second one gives

bK − m − n21 > −
2n12n21

m + n12

and the third one

bK − m − n21 >
bKaµ(m + n12)

rγn21

−
n12n21

m + n12

.

The system reduces to




bK − m − n21 > −
2n12n21

m + n12

,

bK − m − n21 >
bKaµ(m + n12)

rγn21

−
n12n21

m + n12

.

Since the condition

−
2n12n21

m + n12

<
bKaµ(m + n12)

rγn21

−
n12n21

m + n12

holds true inconditionally, the positivity of Î reduces to only

m + n21 < bK +
n12n21

m + n12

−
bKaµ(m + n12)

rγn21

. (15)

To sum up, E4 is feasible if the following condition holds

an12µ

rγ
− n21 < m < bK +

n12n21

m + n12

−
bKaµ(m + n12)

rγn21

− n21. (16)

5 Local stability analysis

The Jacobian J ≡ J (N, S1, S2, I) of the system (1) at a generic point is given by

J =




−aS1 + r

(
1 −

N

K

)
−

rN

K
−aN 0 0

bS1 bN − m − n21 n12 0
0 n21 −γI − m − n12 −γS2

0 0 γI γS2 − µ




.
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5.1 Local stability of E1

J0 ≡ J (0, 0, 0, 0) has two explicit eigenvalues, r and −µ, while the remaining two are
the roots of the quadratic

(−m − n21 − λ) (−m − n12 − λ) − n21n12 = 0

which has the roots
−m − n12 − n21, −m.

In view of the first eigenvalue being positive, the origin is an unstable equilibrium.

5.2 Local stability of E2

Again, the Jacobian factors to provide immediately two explicit eigenvalues, namely
−µ and −r, while the remaining ones are the roots of the quadratic

(bK − m − n21 − λ) (−m − n12 − λ) − n21n12 = 0,

or, rearranging,

λ2 + (−bK + 2m + n21 + n12)λ − bKm − bKn12 + n12m + n21m + m2 = 0.

Its roots turn out to be

bK − 2m − n21 − n12 ±
√

b2K2 + n2
21

+ n2
12

+ 2bKn12 − 2bKn21 + 2n21n12

2
.

Observing that

(bK − n12 − n21)
2 = b2K2 + n2

12 + n2

21 − 2bKn12 − 2bKn21 + 2n12n12

the argument of the root becomes

(bK − n12 − n21)
2 + 4bn12

and the eigenvalues simplify to the form

λ3 =
bK − n12 − n21 −

√
(bK − n12 − n21)2 + 4bn12

2
− m = c0 − m

with c0 < 0 and

λ4 =
bK − n12 − n21 +

√
(bK − n12 − n21)2 + 4bn12

2
− m = c1 − m

In summary, we obtain conditional stability for this equilibrium, since λi < 0 for
i = 1, 2, 3 and λ4 < 0 for m > c1, while λ4 > 0 for 0 < m < c1.

Summarizing,

Existence Stability Equilibrium

— 1 > 1

2m

[
bK − n12 − n21 +

√
(bK − n12 − n21)2 + 4bn12

]
E2

true true stable
true false unstable
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5.3 Local stability of E3

In this case the Jacobian turns out to be a tridiagonal matrix. One eigenvalue factors
out, namely γS̃2 − µ, see (5). The remaining ones are those of the matrix of order 3

J ′

3 =




−rm(m + n12 + n21)

bK(m + n12)

−am(m + n12 + n21)

b(m + n12)
0

r [bK(m + n12) − m(m + n12 + n21)]

aK(m + n12)

−n12n21

m + n12

n12

0 n21 −m − n12




which gives a cubic characteristic equation

−PJ ′

3
(λ) = λ3 − tr(J ′

3)λ
2 + Z(J ′

3)λ − det(J ′

3), (17)

with

Z
(
J ′

3(λ)
)

=
rm(m + n12 + n21)[n12n21 + bK(m + n12)]

bK(m + n12)2
+

+
rm(m + n12 + n21)[−m(m + n12 + n21) + (m + n12)

2]

bK(m + n12)2
.

To investigate the roots of this equation, we use the Routh-Hurwitz criterion. Note
that since −tr(J ′

3
) ≥ 0 and −det(J ′

3
) ≥ 0 it is enough to study the sign of D2, where

D3 = −det(J ′

3
)D2. Explicitly, we have

D2 = −tr(J ′

3)Z(J ′

3) + det(J ′

3) =

=
rm(m + n12 + n21)[rm(m + n12 + n21) + bKn12n21][n12n21 + (m + n12)

2]

K2b2(m + n12)3
+

+
rbKm(m + n12 + n21)(m + n12)

2[n12n21 + (m + n12)
2]

K2b2(m + n12)3
,

so that also D2 ≥ 0. Therefore the Routh-Hurwitz criterion ensures that all the roots
of PJ ′

3
(λ) have negative real part. Hence stability is regulated by the first eigenvalue.

Explicitly, we then find the stability conditon

µ >
rγn21[bK(m + n12) − m(m + n12 + n21)]

Kab(m + n12)2
. (18)

In summary

Existence Stability Equilibrium
bK(m + n12)

m(m + n12 + n21)
≥ 1 1 >

rγn21[bK(m + n12) − m(m + n12 + n21)]

µaKb(m + n12)2
E3

true true stable
true false unstable
false true infeasible
false false infeasible

@CMMSE                                 Page 212 of 1703                                 ISBN: 978-84-614-6167-7



A metaecoepidemic model

5.4 Local stability analysis of E4

Also in this case the Jacobian is a tridiagonal matrix. Its entries are rather compli-
cated. However, it is possible to ascertain the sign of each one of them, as follows.
Firstly, in addition to the zero entries due to the matrix structure, in this case also
J(E4)44 = 0. Furthermore, J(E4)23 = n12, J(E4)32 = n21, J(E4)34 = −µ. Letting Ω =
[rγ(bK + m + n21)]

2+4rγbK(an12µ−rγm−rγn21) ≡ [rγ(bK−m−n21)]
2+4rγbKan12µ

we have

J(E4)11 =
r
√

Ω + r2γ(m + n21) − 2ran12µ − r2γbK

−2rγ(m + n21) + rγ(bK + m + n21) −
√

Ω
≡

N11

D11

, (19)

J(E4)12 = −a
rγ(bK + m + n21) −

√
Ω

2rγb
, (20)

J(E4)21 =
−2rγn12µb

γ
[
rγ(bK + m + n21) −

√
Ω − 2rγ(m + n21)

] , (21)

J(E4)22 =
rγ(bK + m + n21)

2rγ
+

−
√

Ω

2rγ
− m − n21, (22)

J(E4)33 =
2rγn12n21

rγ (bK − m − n21) −
√

Ω
, (23)

J(E4)43 =
−2rγn12n21

rγ (bK − m − n21) −
√

Ω
− m − n12. (24)

We now proceed to study the sign of the Jacobian entries. Easily, J12 = −aN̂ < 0,
J21 = bŜ1 > 0, J23 = n12 > 0, J32 = n21 > 0, J33 = −γÎ − m − n12 < 0, J34 = −µ < 0,
J43 = γÎ > 0. Moreover, for J11 we have

D11 = rγ (bK − m − n21) −
√

Ω < 0 (25)

while N11 < 0 if and only if

√
Ω < 2an12µ + rγbK − rγ(m + n21)

which then gives the following system of inequalities





Ω ≥ 0,

2an12µ + rγbK − rγ(m + n21) > 0,

Ω < [2an12µ + rγbK − rγ(m + n21)]
2 .

In view of (10) the first inequality always holds. From the remaining ones we get

m <
an12µ

rγ
− n12
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which gives γr(m + n21) < an12µ, and using (14) the latter is never satisfied when E4

is feasible. It follows that N11 > 0 and therefore J11 > 0.
For J22 we have

J22 = −2rγ(m + n21) + rγ(bK + m + n21) −
√

Ω = rγ (bK − m − n21) −
√

Ω < 0.

In summary, the Jacobian has the following sign structure

J(E4) =




− − 0 0
+ − + 0
0 + − −
0 0 + 0


 (26)

Now the characteristic polynomial is

PJ4
(λ) ≡

4∑

i=0

piλ
i = λ4 − (J33 + J22 + J11)λ

3

+(J33J22 − J43J34 − J32J23 + J33J11 − J21J12 + J22J11)λ
2

+[(J22 + J11)J43J34 + J33J21J12 − J33J22J11 + J32J23J11]λ

+(J21J12 − J22J11)J43J34.

The polynomial is monic and p3 = −J33 − J22 − J11 > 0. Furthermore since J33J22 =
n21n12, we find that

p2 = −J43J34 + n21n12 + J33J11 − J21J12 + J22J11 > 0.

Also, since J32J23J11 = J33J22J11, we have

p1(J22 + J11)J43J34 + J33J21J12 − J33J22J11 + J32J23J11 > 0

which is always satisfied since (26) implies that every term is positive.
Finally, p0 = (J21J12 − J22J11)J43J34 > 0, in view of (26). Thus every coefficient

of the characteristic equation is positive, pi > 0, for all i = 0, . . . , 4. Thus the Routh-
Hurwitz criterion since D1 = p3 > 0 requires only

D3 = det




p3 p1 0
p4 p2 p0

0 p3 p1


 > 0.

The latter explicitly gives

D3 = −p2

3p0 + p1p2p3 − p2

1p4 > 0. (27)

Summarizing, the only feasible cases are the following ones

Existence Stability Equilibrium

C1 C2 E4

true true stable
true false unstable

where C1 is the condition given by (16) and C2 is the condition (27).
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Figure 1: The prey-only equilibrium E2 is attained for the parameter values .

6 Simulations and interpretation

We have used Matlab to simulate the system’s behavior. In the figures we report the
system’s behavior, left column, compared to the two uncoupled models, right column.
In the latter, it is apparent that the predators die out in patch A2 because of lack of
resources, in view of our assumptions.

Figure 1 shows the system behavior at equilibrium E2. In both the coupled and
uncoupled models, sound predators are wiped out in both patches.

In Figure 2 we discover instead an interesting phenomenon. While in the uncoupled
patches predators disappear in the harsh environment, as stated above, the fact that
they are allowed to migrate from one to the other one makes them survive also in the
unfavorable territory. Viewed from the converse point of view, to interfere with the
environment in a way as to cut out the possibility for animals to move freely between
two patches, may make one population that formerly thrives in it to vanish altogether.

Figure 3 shows the same phenomenon, in which however also the disease persists
in the unfavorable environment in addition to the healthy predators. This is the co-
existence equilibrium E4. In this case instead, if the aim is to fight the disease and
possibly eradicate it, the measure of breaking the contacts with the environment in
which resources are available could constiture a good way of controlling the epidemic.

In Figure 4 we find another interesting system’s behavior. Namely, persistent limit
cycles in the uncoupled system are damped when they two subystems are connected
together. On one hand this shows a stabilizing behavior of the larger more complex
unified system. On the other hand, by breaking a thriving metaecosystem, one may risk
not only to wipe out the predator’s population from the harsher environment, but also
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Figure 2: The disease-free equilibrium E3 is attained for the parameter values .

Figure 3: The coexistence equilibrium E4 is attained for the parameter values .
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Figure 4: Limit cycles are obtained for the parameter values a = 0.5, b = 0.5, r = 0.5,
K = 100, m = 0.5, γ = 0.5, µ = 0.24625, n12 = 0.5, n21 = 0.5.

to trigger persistent oscillations in the predator-prey environment. It is well-known
that sometimes these oscillations in view of stochastic environmental fluctuations in
particularly unfavorable circumstances may possibly lead to the disappearance of one
or both populations. This is therefore one of the risks in which one delves by tampering
with the natural environment. A similar behavior is obtained in Figure 5, but here also
the infected individuals survive in the uncoupled system. In Figure 6 we find instead
that the persistent oscillations arise in both coupled and uncoupled systems.

In Figure 7 we find that by coupling the two patches, the total prey settle to a
different value than the one they have in the uncoupled system, the former being about
50% higher than the latter. Figure 8 shows instead that in the coupled ecosystem
both species thrive, while in the separate patches the predators are wiped out. This
is another possible consequence to be weighted before undertaking activities that may
change the physical shape of the territory. On the other hand, if the predators are
a population that needs to be fought, the measure of breaking a larger environment
into smaller patches could be a suitable measure to get rid of it. In Figure 9 however,
predators vanish in both types of environments.
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Abstract

Image segmentation is one of the fundamental approaches of digital image pro-
cessing. In this work we propose an efficient segmentation method for medical
blood cell images analysis. We propose a method that combines the wavelet trans-
form with the morphological operations for segmentation of significant cells. We
show that an efficient computational technique based on a wavelet thresholding
technique can be use to smooth the original image while filtering out noise and
prepare it for suitable segmentation. We propose an algorithm based in Matlab
environment to segment the biomedical image and the results we have achieved
with this algorithm are very encouraging.

Key words: image segmentation, Wavelet Transform, blood cell, morphological
operations.

MSC 2000: 68, 90.

1 Introduction

Image segmentation is a technique widely employed in many applications such that
object detection [7], object tracking [9], image retrieval [1] and medical image [4], for
example.

The need for accurate segmentation tools in medical applications is driven by the
increased capacity of the imaging devices. Tools, such as segmentation, can aid the
medical staff in browsing through such large images by highlighting objects of particular
importance.

Image segmentation technique is the first step in the analysis image. It is the
process of partitioning image pixels connected subsets, called regions, on the basis of
homogeneity criteria. That is, with segmentation technique, an image is separated into
disjoint regions which the union of them gets the whole picture.

Cell classification has high interest for laboratories. For example, blood cell seg-
mentation is used to study the diagnosis, treatment planning or locate tumors and
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other pathologies [2]. Segmentation of blood cell images is an important step for auto-
matic cell analysis, because their final classification depends on the correct use of this
technique.

On the recent years, segmentation technique is used to extract useful information
on medical images. This technique is a noninvasive pre-processing step for biomedical
treatment. For example we cite three of them. An iterative approach based on circular
histogram used to detect white blood is given in [8]. An approach for color image
segmentation using entropy to determine the threshold is discussed in [6]. Segmentation
method of red blood cell using different algorithms based in gray level thresholding,
gradient-in method and morphological operators is developed in [5].

This paper is about blood diseases. Some diseases can be detected by analyzing the
white blood cells (leukemia, for example). Cells with a disease have a specific structure
and we can segment them in order to label them.

The aim of this paper is to segment cell blood images to obtain leukocytes. For
that, we show a modified method of the segmentation technique to improve the results
desired. In this method we integrate the wavelet transform to binarize the images. Also,
we use morphological operations that allow us to improve the segmentation technique
of images of blood cells. This algorithm is fully automated, fast and accurate.

We applied this method to 47 images of blood cells with a high success rate. And
the experiment shows that this method can obtain the boundary of the desired part of
the biomedical images quickly and reliably. It can show isolated cells and obtained the
area and perimeter of them. It has practical value in biomedical image analysis.

The set of images used in this work are provided by the UAB Pathology Department
PEIR Digital Library and by the webpage of Peter G. Anderson. These databases are
selected according to the variety cases included.

In our method to isolate the diseased cells of the blood in order to label them, we
use MatLab software. And the procedure is defined as follows.

a) Transforming color image to grayscale image.
To transform RGB image to grayscale image is to calculate gray pixel value I of
gray image by 3 components R, G and B of a pixel.

b) Improving contrast of images.
To make this stage we use the histogram equalization. This function involves
transforming the intensity values.

c) Binary image processing.
Binary image means that the whole image is only black and white. For that we
apply wavelet analysis.

In our case, we apply the universal threshold given by σ
(√

2log (m× n)
)
, where

σ is the estimated noise variance and m×n is the number of pixels in the image.
We use this threshold because is a soft threshold and it has some advantages. For
example, it makes algorithms mathematically more tractable (see [3] for more
information).
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On wavelet families, we have chosen Daubechies (dbN), N = 1, 2, 3, Coiflets
(coifN), N = 1, 2, 3, and Symlets (symN), N = 2, 3, being N the order.

The choice of these families is because they share some characteristics such as
orthogonality, biorthogonality, compact support, a large number of zero moments
and we can make their analysis using the Discrete Wavelet Transform or using
the Continuous Wavelet Transform. Next, we chose the adequate level to analysis
wavelet.

d) Image processing fundamental operations.
We use two fundamental operations. First, we use the complement of the image.
So, in the output image, the objects take the value 1 (white) and the background
takes the value 0 (black). Next, we fill the holes in this image.

e) Removing small objects.
When the image is binarized we remove small objects using a morphological
technique.

f) Segmented image.
Finally, the algorithm traces region boundaries in the image and label the image
for later use. Thus, the image is segmented.

This method is represented, for example, in figure 1.

Figure 1: Segmentation of cell blood image that contains a small lymphocyte.

If we apply the above algorithm to a set of images, we can conclude that the
accuracy of the segmentation depends strongly on which wavelet is chosen.
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We prove that if we use the correct wavelet family and the correct decomposition
level, we obtain good results to segment the images. Moreover, we obtain the area and
perimeter of the segmented section.

Thus, the algorithm combines automatic threshold selection with the use of mor-
phological operations to segment blood cell images obtaining an excellent result.
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[4] V.Grau, A.U. Mewes, M. Alcáñiz, R. Kikinis, S., K. Warfield, Im-
proved watershed transform for medical image segmentation using prior informa-
tion, IEEE. Trans. Med. Imaging 23(4) (2004) 447–458.

[5] K.B. How, A. S. Kok Bin, N.T. Siong, K.K. Soo , Red Blood Cell Segmen-
tation Utilizing Various Image Segmentation Techniques, Proceedings of Interna-
tional Conference on Man-Machine Systems, Malaysia, 2006.

[6] R. S. Kumar, A. Verma, J. Singh, Color Image Segmentation and Multi-Level
Thresholding by Maximization of Conditional Entrophy, Int. Sig. Processing 3(2)
(2007) 91–99.

[7] D. Liu, T. Chen, DISCOV: a framework for discovering objects in video,
Int. Trans. Multimedia 10(2) (2008) 200–208.

[8] J. Wu, P. Zeng, Y. Zhou, C. Olivier, A Novel Color Segmentation Method
and Its Application to White Blood Cell Image Analysis, IEEE Proceeding, ICSP
2006, 2006.

[9] J. Y. Zhou, E. P. Ong, C. C. Ko, Video object segmentation and tracking
for content-based video coding, Proceedings of IEEE International Conference on
Multimedia and Expo, ICME 2000, USA, 2000.

@CMMSE                                 Page 227 of 1703                                 ISBN: 978-84-614-6167-7



Proceedings of the 11th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2011
26–30 June 2011.

Scalability in Parallel Applications with Unbalanced
Workload

Jose Luis Bosque1, Oscar D. Robles2, Pablo Toharia2 and Luis Pastor2

1 Dpto. de Electrnica y Computadores, Universidad de Cantabria, Spain

2 Dpto. de ATC y CCIA , Universidad Rey Juan Carlos, Spain

emails: joseluis.bosque@unican.es, oscardavid.robles@urjc.es,
pablo.toharia@urjc.es, luis.pastor@urjc.es

Abstract

This paper presents a new formulation for the isoefficiency function which can be ap-
plied to parallel systems executing balanced or unbalanced workloads. For that purpose,
an unbalanced workload model is proposed first. Using this model and the theoretical
properties of homogeneous systems with unbalanced workloads, a new proposal for the
isoefficiency function is posed. This new formulation permits analyzing the scalability
of homogeneous parallel systems under either balanced or unbalanced workloads. Last,
the validity of this new metric is evaluated using some synthetic benchmarks. The re-
sults produced in these tests allow assessing the importance of considering the specific
problems that unbalanced workloads introduce while analyzing the scalability of parallel
systems.

Key words: Scalability analysis, isoefficiency, workload imbalance

1 Introduction

Thanks to the multicore architecture, the number of cores available in supercomputers has
been dramatically increasing during the last years. The last top500 list (November 2010
[1]) shows 12 machines with more than 100,000 cores. This fact has turned scalability into
a factor of increasing importance in the design and implementation of parallel applications,
being currently even more important than performance.

On the other hand, it is widely known that load balancing has a deep impact on
the performance of a parallel system, and therefore, on its efficiency [3]. Following the
isoefficiency function [4], the scalability of a parallel system (computer + application) can
be defined based on how much the workload has to be increased so that the efficiency
remains constant when the system is scaled up by introducing more processors. Then, if
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scalability is defined as a function of the problem size, an interesting aspect to consider is
the effect of load imbalance on the system’s scalability.

All work done up to now that models scalability on parallel computing systems [4, 2, 6,
5, 7] consider, either implicitly or explicitly, a workload which is perfectly balanced among
all of the system nodes. This means that every node receives a workload proportional to its
computational power, in such a way that all processors will finish its work simultaneously,
if communication overheads are ignored.

This is a non-realistic hypothesis for conventional parallel applications. First, because
it means that the workload can be considered continuous and infinitely divisible. Although
this assumption can be valid whenever the differences among the work packages assigned to
each node fall below certain threshold. And second, because parallel systems have multiple
sources of imbalance, such as: (a) a poor initial workload distribution which does not take
into account, for example, initial data communication times, and (b) to be non-dedicated
systems, in which computational power of nodes can change during the execution of an
application. It can happen when additional tasks appear in the system. In order to illustrate
the problem, let us consider a parallel application without any communication overhead (i.
e., an embarrassing parallel application). Its isoefficiency function should be constant; that
is O(K), where K ∈ <, and the system should be perfectly scalable. Figure 1 shows
the isoefficiency function, that is, the evolution of the workload in front of the number of
processors so as to keep the efficiency constant and make the system scalable, labeled as
“Theoretical isoefficiency”.

However, once the application has been implemented and its isoefficiency function has
been experimentally measured, the results obtained can be seen in Figure 1 under the label
“Real isoefficiency”. The figure shows an isoefficiency function which is linear with respect
to the number of processors. It means that to have a scalable system, the problem size has
to grow linearly with respect to the number of processors.

Which is the source of this difference between theoretical predictions and real results
measured? The answer is simple: the application has a workload showing constant imbal-
ance for all configurations and system sizes evaluated. Then, for improved accuracy the
workload imbalance has to be included in the isoefficiency theoretical model.

Hence, it can be seen the importance of imbalance to obtain an accurate scalability
model, since not taking imbalance into account yields poor predictions. This paper presents
a new expression for the isoefficiency model that includes a model for unbalanced workload,
i. e. a more general isoefficiency function that can be applied to parallel systems with
or without load balancing, taking into account theoretical properties of the systems. To
the author’s knowledge, this is the first work that highlights this problem and suggests a
suitable solution. Although this result is eminently theoretical, it has a great impact in the
design and implementation of parallel applications.

Using the new isoefficiency function, a number of theoretical examples are considered
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Figure 1: Theoretical and real Isoefficiency function: unbalanced parallel application

in this paper, studying different aspects of the scalability of parallel systems which include
the communication overhead as well as the overhead originated by workload imbalance.
Finally, an experimental validation has been carried out in order to verify the validity and
correctness of the proposed model.

The rest of the paper is organized as follows: Section 2 presents the workload imbalance
model and its inclusion into the isoefficiency function. Section 3 analyzes the influence of
unbalanced workloads in parallel applications, while Section 4 introduces communication
and imbalance overheads. Section 5 shows the experimental evaluation and finally Section
6 shows the conclusions and future work.

2 Scalability of unbalanced parallel systems

2.1 Imbalance workload model

Up to a first approximation, a parallel homogeneous system can be seen as a set of m
interconnected nodes, N = n1, . . . , nm. If the system is homogeneous, all of the nodes will
be identical, offering the same performance. The workload to be executed within a specific
parallel application can also be characterized by a set of basic operations which can be
executed in parallel; it will be assumed that the workload size is W and that it can be
decomposed into a set of computational units.

In order to parametrize the system’s performance while executing this application, the
computational power of each node within this environment (p) can be defined as the number
of basic operations the system is capable of execute per time unit. Similarly, the system’s
overall computational power (pt) can be defined as the total number of basic computational
operations the whole system can execute per time unit, pt = m · p.

If the workload is continuous and divisible ad infinitum, the system can achieve a perfect
load balancing by assigning the same workload to every node: wi = W

m . Therefore, assuming
that there are not any overheads due to synchronization or communication operations, the
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execution time of all of the nodes will remain the same, given by the expression: TCPU =
W
pt
∀ ni with i ∈ 1...m

However, in real applications, the workload can not be divided continuously, due to the
intrinsic grain size of the problem to be solved. This forces to assign an integer number
of jobs to each node, leading to an unbalanced load distribution situation not covered by
the previous expression, since the computation time is not equal for every node. Moreover,
some applications might have a complex data structure that affect grain size, making these
differences significantly larger.

In consequence, in unbalanced systems there will be some nodes executing less workload
while others process than the optimal. Let’s define ∆wi as the difference between the optimal
and the actual workload of node i. Note that this value can be both positive or negative,
if that node has more or less workload than the optimal. Taking into account this fact, the
previous equation can be rewritten as follows:

wi =
W

m
+ ∆wi (1)

Hence, the execution time of a single node, assuming no communication overhead (i. e.,
only CPU time), is given by the following expression:

TCPU =
W
m + ∆wi

p
⇒ TCPU =

W

m · p
+

∆wi

p
(2)

Let Tqi represent the time needed by processor Ni for computing the additional workload.
Then, Tqi = ∆wi

p . Also, the maximum deviation between ideal and real execution times

because of the additional workload will be Tq = maxm
i=1{

∆wi
p }. The processor achieving

this maximum will be the last one to finish its computation, assuming no communication
or synchronizing overhead.

The overhead introduced by this fact, as it will be shown later on, can be a constant
value, but it can also depend both on the total workload W and on the number of processors
m, so it is redefined as Tq(W,m). In the first case, the imbalance introduced will depend on
the total size of the problem to be solved, i. e., increasing the size of the problem will lead
to an increase or decrease of the imbalance proportional to W . Taking into consideration
an overhead time To(W,m), the response time will be:

TR =
W

pt
+ Tq(W,m) + To(W,m) (3)

It is important to remark that while To increases when the number of processors does
(or, at least, it remains constant), Tq might decrease when m increases. This is possible
because of the way both grain size and number of processors affect imbalance, and in
consequence, Tq.
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2.2 Isoefficiency function

As explained above, the response time of a parallel system is: TR = W
pt

+ Tq(W,m) +
To(W,m). Thus, based on the same parameters, the sequential time needed to solve the
same problem with the same input size would be: TS = W

p , which is equivalent to solving the
problem by executing the whole workload in a single processor with computational power
p. Therefore, this concept can be applied to the efficiency expression defined by E = TS

TR·m
obtaining the following expression:

E =
TS

TR ·m
=

W
p

( W
p·m + To + Tq) ·m

=

W
p

W
p + m · (To + Tq)

=
1

1 +
m·p·(To+Tq)

W

Hence, for scalable parallel systems, the efficiency can be kept at a desired value if the ratio
m·(Tq+To)

W in the expression above can be kept at a constant value. In order to maintain a
specific efficiency figure, the following expression gives how large the workload W has to be:

m · p · (Tq + To)

W
=

1− E

E
⇒W =

E

1− E
·m · p · (Tq + To)

Let K = p · E
1−E be a constant (K) depending on the efficiency. Then the isoefficiency

function with load imbalance support can be written as:

W = K ·m · (Tq + To) (4)

This means the effect of the workload imbalance can be modeled as an additional overhead
of the system, the same way as communication time can be dealt with. In this case the
factor Tq = ∆wm

p is the additional time that the processor that gets the largest workload
chunk needs in order to process it in the CPU, i. e. without taking into consideration
communication and synchronization times. This factor multiplied by the computational
power gives the global wasted time and thus the achieved efficiency.

Moreover, another remarkable fact that can be pointed out from this expression is that
in every parallel system, even those which present no communication overheads, the presence
of an unbalanced workload means that the system can not be perfectly scaled. As it can
be seen, the imbalance is modeled as an additional overhead that has to be added to the
other ones (communication and synchronization, typically). Besides, it has an important
specific behavior: as overheads always increase with the number of nodes, the imbalance
can change the other way around, since an unbalanced system might become more balanced
when scaled up.

3 Influence of the imbalance workload in the scalability

Equation 4 means that the imbalance can vary when the system size, the problem size or
both of them change. Then, a system would be perfectly scalable if Tq = To = 0. That is, if
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there is not any imbalance and synchronization/communication overhead at all the system
is completely scalable, and accordingly it is not needed to increase the size of the problem
when the number of processors grows (satisfying that every processor has a part wi > 0 of
the workload W ).

This section presents some interesting examples of the scalability of parallel systems
around the variation of Tq and assuming To = 0. It is a study of the way the evolution of an
unbalanced workload affects the system as its size is scaled. In all cases the starting point
is a parallel system defined by S(m,W ) and a scaled system S′(m′,W ′), being To = 0 in
both of them. All the assumptions made are useful to isolate the effect of imbalance on the
theoretical cases studied.

If each system’s workload is distributed among its processors being Tq = c, i. e. there
is a constant imbalance in both S and S′, and it is independent of m and W , then the
system is scalable if and only if there is an increase of workload proportional to the number
of processors in the system, that is, W is O(m). This situation can happen whenever the
problem size is relatively coarse, and the number of available work-packages is not a multiple
of the number of processors.

Let us define Tq = c ∈ <, constant independent of p and W. In this case the isoefficiency
function is:

W = K ·m · Tq ⇒W = K ′ ·m, where K ′ = K · c (5)

Then W = K ′ · m, that is the growth of W must be linear to the system’s number of
processors and computational power, independently of the system’s imbalance.

Also, if the imbalance depends on the number of processors in a linear way, that is
Tq = c1 · m + c2, with c1, c2 ∈ <, and there is not any additional overhead, the system
will be scalable if and only if the problem size grows as a function of O(m2). The proof is
straightforward by replacing Tq in Equation 5 for the new expression.

If the imbalance is inversely proportional to the number of processors, that is Tq = c1
m ,

with c1 ∈ <, then the system will be perfectly scalable since the isoefficiency function
remains constant independently of the number of processors that are added to the system,
that is W is O(K). It can be noticed that, when W > p, this situation brakes the lower
bound established by Grama et al. [4] for the isoefficiency function.

Given Tq = c1 ·W , with c1 ∈ <, i. e. the imbalance is linearly dependent of the size of
the problem, then the system is non scalable, since an increase in the workload size produces
also an increase in the imbalance. In consequence, the efficiency can not remain constant.
A similar situation occurs when the imbalance can be given as a percentage of the size of
the problem.

Finally, if the imbalance is inversely proportional to the size of the problem, that is
Tq = c1

W , with c1 ∈ <, it is straightforward to prove that the system will be scalable if an
only if the size of the problem grows as a function of O(

√
m). Once again, it brakes the

lower bound established by Grama et al. for perfectly balanced systems, since the growth
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obtained here is under the linear one.

4 Combining overhead and imbalance

A number of theoretical cases regarding the isoefficiency of unbalanced systems were given
in the previous section. These cases did not take into consideration the overhead due to
communication or synchronization, being valid only for embarrassing parallel application.
A theoretical study of how these two factors affect the overall scalability will be presented
in this section.

Given a parallel system S(m,W ) and a scaled version of it S′(m′,W ′), let’s assume
its workload is always distributed proportionally to the number of processors, with an
imbalance Tq. In order to analyze its system scalability, its imbalance and overhead behavior
have to be modeled. For example, if both the imbalance and the overhead are assumed to
be constant and independent of m and W , i.e., Tq = c1 and To = c2, being c1, c2 ∈ <,
the system is scalable if and only if the size of the problem W grows proportionally to
the number of processors, that is, W is O(m). This can be easily demonstrated using the
isoefficiency function previously presented in Section 2.2:

W = K ·m · (Tq + To)⇒W = K ·m · (c1 + c2)⇒W = K ′ ·m

where

K ′ = K · (c1 + c2)

This means that W is O(m), i.e., the computational power of the system must grow linearly
with m, independently of the system imbalance, just as if it was perfectly balanced.

Thus, if the system has an overhead due to process communication or synchronization
and the imbalance remains constant with size, then the imbalance has no effect on the
system’s scalability. It only has impact on the maximum scalability the system can achieve
but not on the evolution of the efficiency when increasing the system size. Therefore, in
this case W has to grow linearly with the number of nodes, which is the lower bound posed
by Grama et al. [4].

One last remarkable example of this type of a priori study would be a system where the
imbalance grows inversely with the number of processors (Tq = c1

m ), and where the overhead
grows linearly with the number of processors (To = c2 ·m, being c1 y c2 ∈ <). In this case it
can be deduced, using the same expression as previous examples, that W would be O(m2).
Then, in order to get a scalable system, W has to grow quadratically with the number of
processors.
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5 Model evaluation

A number of experiments was carried out in order to test empirically the validity of the
proposed model. The main goals behind the tests were: (1) To verify the hypothesis posed
in this paper about the influence of an unbalanced workload in the scalability of parallel
systems from an empirical point of view. (2) To validate the scalability model proposed in
Section 2 in situations in which there is an unbalanced workload. Also, to verify the proper-
ties stated for scenarios with no communication overhead but with unbalanced workloads.
(3) To verify the correctness of the model stated in Section 4, by showing how a simple
application with communication overheads behaves when the proportion of workload im-
balance changes. Altamira, the cluster from the Universidad de Cantabria used in these
tests, is composed of 18 eServer BladeCenter, with 256 JS20 nodes (512 processors) linked
by a Myrinet network with 1 Gbps of bandwidth.

A number of tests have been performed changing the system and workload sizes. For
each of them, 4 repetitions have been done, and response and communication times have
been measured. The means of these values have been computed and efficiency values are
thus obtained for each system and workload. Then, for every system’s size a curve showing
the evolution of the efficiency for different workloads has been obtained.

5.1 Validation of imbalance model

In order to validate the model of scalability in the presence of unbalanced workloads a
number of ad hoc benchmarks without any communication overhead have been developed.
This situation appears quite often in embarrassing parallel applications. %

The starting point is a basic benchmark in which each node works on local data and
obtains its own solution without any communication or synchronization with the remaining
nodes, which means that the communication overhead is null and therefore its efficiency
is constant and equal to 1.0, with independence of the workload and the system’s number
of nodes. Then, this benchmark should be fully scalable since its isoefficiency function
is O(K), with K ∈ <. This statement is true if the workload is perfectly balanced, but
the isoefficiency function changes when different levels of imbalance are introduced in the
system, as the experimental results show.

The experiments have been arranged as follows: First, there is an initial efficiency
value which is computed for a specific benchmark on a system with the minimum number
of nodes. For all the system configurations used in the tests, this efficiency value should
remain constant. This way, it will be shown whether experimental results verify the model
proposed in this paper.

All the constants used on the experiments depend on the nodes’ computational power
and on the problem’s nature. They have been measured in the sequential implementation
of the benchmarks. Four different workload distributions are considered:
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Figure 2: Isoefficiency function for proportional m benchmark

• Imbalance proportional to the number of processors, i. e. Tq = c ·m, where c ∈ <. It
will be labeled proportional m.

• Imbalance inversely proportional to the number of processors, i. e. Tq = c
m , where

c ∈ <. It will be label-led inverse m.

• Imbalance proportional to the workload, i. e. Tq = c ·W , where c ∈ <. It will be
label-led proportional w.

• Imbalance inversely proportional to the workload, i. e. Tq = c
W , where c ∈ <. It will

be label-led inverse w.

Figure 2(a) shows the results obtained in the proportional m test, presenting the evolu-
tion of the efficiency as the workload size grows, considering also different system’s sizes. It
can be observed that the initial efficiency (0.83 in this case) is reached in all cases, showing
that the system is scalable. Figure 2(b) shows the isoefficiency obtained from these results,
being the lower curve the linear isoefficiency. As it can be seen, the isoefficiency function
follows a parabolic curve; in this case the problem size should grow quadratically (W 2).
This situation matches the prediction made by the theoretical model in Section 3.

Table 1 shows the results obtained regarding the evolution of the efficiency for the
inverse m test. It can be seen that the efficiency remains constant, around 0.50, with
independence of the problem’s size and the number of nodes. Therefore, the isoefficiency
function in this situation is constant and the system is fully scalable, as predicted by the
model.

Figure 3 shows the variation of the efficiency in front of the workload for different
system’s sizes for the proportional w benchmark. In this case it can be seen that given a
certain system’s size, the efficiency remains almost constant when the workload grows. On
the other hand, it can be seen that increasing the system’s size it is not possible to keep
the efficiency constant, whatever the workload is. Therefore, the isoefficiency function says
the system is not scalable.
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Table 1: Evolution of the efficiency as a function of the problem’s size and the number of
nodes (inverse m benchmark).

Workload 2 nodes 4 nodes 8 Nodes 16 Nodes 32 nodes 64 nodes 128 nodes

1024 0.500 0.503 0.499 0.496 0.497 0.495 0.485
4096 0.500 0.503 0.502 0.499 0.498 0.498 0.498
16384 0.500 0.501 0.499 0.501 0.502 0.499 0.496
65536 0.500 0.498 0.499 0.501 0.498 0.500 0.502
262144 0.500 0.501 0.502 0.500 0.500 0.503 0.500
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Figure 3: Isoefficiency variation vs. workload for different system’s sizes (proportional w
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Last, Figure 4 shows the variation of both efficiency (Figure 4(a)) and the isoefficiency
function (Figure 4(b)) with an imbalance that changes inversely to the workload (the upper
line in Figure 4(a) corresponds to the function of linear isoefficiency). In this case (propor-
tional w benchmark) it can be sen that in all of the tests the initial efficiency is reached,
so it can be said that the system is scalable. The isoefficiency function obtained is O(

√
m),

under a linear growth.
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Figure 5: Isoefficiency: benchmark with both communication and imbalance overheads.

Some important conclusions can be extracted from these cases. First, it is clear the
great impact that an unbalanced workload has on the scalability of a parallel system. The
results obtained allow concluding that the same parallel system can have quite different
scalability behaviors, based on the workload distribution, being able to even turn into a
non-scalable system, even if it does not have any communication overhead.

On the other hand, the four cases presented here allow to asses the correctness of the
model posed in this paper. They have been analyzed from a theoretical point of view in
Section 4, and the results obtained match perfectly the theoretical predictions.

5.2 Influence of the imbalance in systems with overhead

Finally, this section presents some experimental results obtained from a benchmark that
introduces both imbalance and communication overheads. The communication overhead
introduced has been proportional to the number of processors. In this case, the classic
isoefficiency function, which does not take into account the workload imbalance, would be
O(m). In this paper two different imbalance scenarios are presented as examples:

• Constant imbalance, i.e, Tq = c1, where c1 ∈ <.

• Imbalance inversely proportional to the number of processors, i.e., Tq = c1
m , where

c1 ∈ <.

In both cases, the communication overhead is proportional to the number of processors,
being To = c2 · m. Therefore, taking into account both overhead sources, the scalability
model presented in this paper predicts an isoefficiency function O(m2). Figure 5 shows the
collected experimental results showing the isoefficiency function achieved for both cases.

Figure 5(a) shows two results achieved for the isoefficiency function regarding the exist-
ing relationship between the values of To and Tq. These results show the influence of both
c1 and c2 constants in the scalability properties. If these values are similar (in the same
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order of magnitude) both communication and imbalance overheads have similar weight in
the isoefficiency function. Therefore, it can be seen that the isoefficiency function grows
quadratically with the number of processors, i.e., it is O(m2) as the presented model has
predicted. Nevertheless, if c1 � c2 the influence of the communication overhead is almost
negligible and has no impact on the isoefficiency function. In this case the isoefficiency
function is linear (instead of quadratic), although the slope is slightly over 1, that would
be the ideal scalability. This behavior is due to the relationship between both overheads
when Tq � To, which makes the linear growth of To negligible compared to Tq. Hence, the
effect it produces to the efficiency is also almost negligible, being the value of Tq the one
that actually controls the efficiency behavior, and thus the isoefficiency.

A similar effect can be observed in Figure 5(b) for the case where Tq = c1
m . Again

if c1 � c2, the same value controls the behavior of the system and thus, the obtained
isoefficiency remains constant. If both c1 and c2 are similar the isoefficiency function is
quadratic, as predicted by the theoretical model presented here.

These results point out the importance of taking into account the workload imbalance
when estimating the scalability of a parallel system. Additionally, it remarks the importance
of the constant parameters. In general, when complexity studies are carried out, these
parameters are assumed to have a small influence and only “big picture” tendencies are
taken into account. Nevertheless, in these cases two different effects have to be added up
and it is important not to forget the weight of each of them in the final efficiency value.
This weight is determined by the complexity of the expression but also by the constant
values. Not taking into account this values might lead to an unexpected system behavior.

6 Conclusions and Future Work
Since long ago there is evidence that unbalanced workloads is one of the aspects that
have the biggest impact on the performance of parallel applications. This paper gives the
proof for the very first time, as far as the authors know, that this statement can also be
applied to scalability. Thus, the main contribution of this paper is that the evaluation
of the scalability of a parallel system without considering the workload imbalance leads to
potentially erroneous predictions. Although many authors have proposed scalability models
before, none of them considers load imbalance.

Once it is clear the great importance of workload imbalance, it has to be included in all
the evaluation tools. This paper proposes a simple mathematical model for node imbalance
in parallel systems. The model allows considering unbalanced workloads as another overhead
in the system, in a conception quite similar to the communication overhead. This way, it
is quite simple to introduce this factor in the isoefficiency function, in order to successfully
predict the scalability of unbalanced parallel systems.

The new isoefficiency function proposed here makes it possible, as it has been done
in this paper, to perform a deep analysis of the influence of imbalance on the scalability
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of parallel systems, as well as its relationship with the communication overhead. This
way, a number of theoretical analysis have been presented with one remarkable result: if
the variation of imbalance is inversely proportional to the workload or to the number of
processors, the system’s scalability can be under linear. This result brakes the lower bound
established by Grama et al. [4] for the isoefficiency function.

Both the model and its application to scalability studies have been experimentally
validated using some synthetic benchmarks. In all of the experiments carried out done the
correlation between theoretical predictions and empirical results is excellent, and therefore,
it can be stated that the model is quite accurate. Another important conclusion from the
experiments is the importance of the relative value of both communication and imbalance
overheads. Thus, since the isoefficiency function is a complexity analysis, it only collects
the function’s tendency as the number of processors grows. This is valid if all sources of
imbalance are homogeneous and therefore they all present similar constants. But the results
achieved show that if one of the overheads is much bigger than the others (for example,
an imbalance on the order of seconds while the communication overhead is on the order of
milliseconds) then the first one can clearly control the systems’ behavior, even when they
have hundreds or thousands of nodes.

Finally, the next step is the use of this model with real applications in order to obtain
a methodology that facilitates modeling unbalanced workloads as proposed here. Also,
an extension of this model to heterogeneous computing systems in which the nodes have
different computing and communication capabilities has to be done.
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Abstract

Gliomas are diffusive and highly invasive brain tumors. Even with aggres-
sive surgical resection and radiotherapy and/or chemotherapy, gliomas almost al-
ways recur, with fatal consequences. The median survival for patients with glioma
doesn’t go beyond 1 year. Thus, due to their highly invasive and recurrent be-
haviour, effective therapeutic strategies for gliomas are extremely important to
improve survival time.

Although more clinical trials are necessary to determine the optimal treatment
strategies, the development of mathematical models to address this questions is
also appropriate and timely. Carefully devised and validated mathematical models
might be useful for developing hypotheses to be tested in future clinical trials, and
for optimizing the design of future trials.

The aim of this paper is to present an overview on mathematical models for
gliomas growth going from the simplest model described by the classical reaction
diffusion equation to a complex system characterized by an integro-differential
equation where a certain memory effect is introduced.

Key words: Tumor growth, glioma, mathematical modeling, radiation, resec-

tion, chemotherapy.

1 Introduction

Cancer is a complex disease which leads to the uncontrolled growth of abnormal cells,
destruction of normal tissues and invasion of vital organs. There are different stages
at tumor development of varying duration, starting from genetic changes of the cell
level and finishing with detachment of metastases and invasion. Tumor cell transport
and proliferation are the main contributors to the malignant dissemination ([14]). This
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evolution, related to collective or macroscopic behaviour of cells, is described by kinetic
approaches ([11]).

Extensive investigations have been done to modeling cancerous growth, especially
on solid tumors, in which growth primarily comes from cellular proliferation. However
the understanding of malignant gliomas is much less complete, mostly because gliomas
proliferates as solid tumors invade the surrounding brain parenchyma actively. Prolife-
ration and specially migration of gliomas provide a significant challenge for modeling.

Gliomas are diffusive and highly invasive brain tumors accounting for about 50%
of all primary brain tumors and, unfortunately, the prognosis for patients with gliomas
is very poor. Median untreated survival time for high grade gliomas ranges from 6
months to 1 year and even lower grade gliomas can rarely be cured. Theorists and
experimentalists believe that inefficiency of treatments results of the highly motile
capacity from glioma cells. Additionally gliomas can exhibit very high proliferation
rates.

This overview is organized in five sections. In Section 2 we present the most signi-
ficant mathematical models described in the literature. In Section 3 a mathematical
description of of chemotherapy and radiation are introduced. Resection is addressed in
Section 4. Plots illustrating the evolution of gliomas obtained using the mathematical
models described in the previous sections are presented in Section 5. In Section 6 we
present some conclusions.

2 Mathematical modeling of tumor growth

Mathematical modeling is a powerful tool to analyze biological problems allowing re-
searchers to develop and test hypotheses which can lead to a better understanding of
the processes involved. Upon comparison with real life results, the models can be mo-
dified to more accurately emulate the phenomena. This iterative process of simulating
model results and making biological comparisons can continue to the point at which the
model suggests appropriate experiments to clarify portions of the biological mechanism
not yet understood and to make realistic predictions ([11]).

Cancer research has been a fertile ground for mathematical modeling, beginning
with the early concept of simple exponential growth of solid tumors doubling at a
constant rate. The introduction of logistic or gompertzian growth (there is increased
doubling time and decreased growth fraction as a function of time) allowed to slow
the growth in the later stages. With the recognition that tumor cells might spread
outside the grossly visible mass, invading locally and metastasizing distantly, and that
some cells die during the development process, the mathematical concepts necessarily
became more complicated than the ones used in the original simple models for solid
tumors.

An exponential growth

The initial answer to the question of how we can measure the growth of an infil-
trating glioma was provided by Murray in the early 90s. He formulated the problem as
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a conservation law where the rate of change of tumor cell population is define by the
summation of the mobility (diffusion) and the net proliferation of tumor cells. Mathe-
matically, this law, for untreated gliomas, can be reasonably quantified by the partial
differential equation

∂c

∂t
+ ∇J = f(c) , (1)

where c(x, t) denotes the tumor cell density at location x and time t, f(c) denotes net
proliferation of tumor cells, and ∇ defines the spatial gradient operator. Under the
assumption of the classical Fick’s law for the diffusion,

J = −D∇c , (2)

where D is the diffusion coefficient, the model can be written as

∂c

∂t
= ∇(D∇c) + f(c) . (3)

The mathematical model is completed by boundary conditions which impose no migra-
tion of cells beyond the brain boundary

∇c.η = 0 on the boundary,

where η denotes the unitary exterior normal to the brain region, and by initial condi-
tions c(x, 0) = c0(x), where c0(x) defines the initial spatial distribution of malignant
cells. Net proliferation rate and invasiveness are defined histologically but practically
never defined accurately. As gliomas consists of mobile cells that can migrate as well
as proliferate, the invasiveness makes it almost impossible to define growth as a clas-
sical volume-doubling time, even in the ideal case where as least two scans, magnetics
resonance image (MRI) or computational tomography (CT), are analyzed at different
times without treatment intervening. In general gliomas are not encapsulated and con-
sequently the boundary between tumor and normal tissue is not sharp and the number
of cells in the normal tissue is not determinable.

Brain geometry and diffusion coefficient

In the first stage of the mathematical modeling of gliomas it was assumed that
the brain tissue is homogeneous being the diffusion coefficient D, that defines ran-
dom mobility of the glioma cells, constant and uniform throughout the brain. Tumor
growth is generally assumed to be exponential, so that the cell growth term is given
by f(c) = ρ c, where the net proliferation rate ρ is constant. However, logistic and
gompertzian growths are also possible and have been considered but found to be un-
necessary in the time frames considered for gliomas. The parameters D and ρ can
be calculated for an individual tumor from two pre-treatment MRIs, eliminating the
estimation and exploration of large parameter domains, and providing an immediately
applicable metric for glioma growth and invasion for any given tumor in vivo. Current
data show a range of 6 − 324 mm2/year for D and 1 − 32 /year for ρ ([9]).

An interesting consequence of the basic model assumptions is that the profile of the
concentration of tumor cells depends on the ratio of the growth rate ρ and the diffusion
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coefficient D. For ρ/D fixed, the geometry of the tumor growth and invasion remains
the same, only the time scale on which the growth and invasion occurs changes. This
illustrates the clinical difficulty of using only one MRI/CT observation of the lesion and
proceeding with treatment without really knowing the expected pattern of growth of
the untreated lesion. When ρ/D is large, the tumor is predominantly growing, so most
of the tumor is detectable by an imaging technique. As ρ/D decreases, the relative
contribution of the motility of the cells increases, spreading the density profile. The
more diffusive tumor is less likely to be accurately identified on medical images. Burgess
et al. ([3]) studied this model in three-spatial dimensions with spherical symmetry.

To apply the modeling approach to specific patients, a more realistic look at the
brain geometry and structure was necessary. Swanson et al. ([13]) introduced the
complex geometry of the brain and allowed diffusion to be a function of the spatial
variable x to reflect the observation that glioma cells exhibit higher motility in the
white matter than in grey matter ([6]). Mass conservation equation (1) still applied
but Fick’s law for the mass flux involves a spatially varying diffusion coefficient D(x)

D(x) =

{
Dg, x in grey matter
Dw, x in white matter ,

(4)

where Dg and Dw are constants such that Dw > Dg . Estimates of the difference in the
diffusion coefficients in grey and white matter have ranged from 2 to 100 fold ([13]).

To accurately analyze the dynamics of this model under the influence of the hete-
rogeneous structure of the human brain, a detailed description of the grey and white
matter distribution throughout the brain was necessary. This was made possible by
the neuro-anatomical atlas available on the BrainWeb database ([4]).

To compare the numerical simulation obtained from the mathematical modeling
with practical clinical measures and to quantify the effectiveness of treatment, it was
necessary to model the concept of survival time. Analysis of observations in live patients
and in dead revealed that gliomas are detectable on enhanced CT at an average diameter
of 3 cm (based on a sphere of equal volume to the tumor) and fatal at an average
diameter of 6 cm. Given estimates of model parameters for a particular virtual patient,
the expected survival time could be calculated as the time that it takes to growth from
3 to 6 cm in average diameter.

Since most of the information regarding gliomas of specific patients comes from
medical images of various types, it is necessary to translate the model results in terms
of their manifestations on CT, MRI, macro and microscopic examinations. No presently
available medical image will show the entire tumor, including individual cells, because
only that portion of the tumor above the threshold of detection will appear on the image.
To approximate the threshold of detection associated with the detectable boundary of
a glioma on enhanced CT, postmortem microscopic analysis of the patient’s brain with
the treated glioma was compared with the apparent tumor edge defined on enhan-
ced CT, producing an estimate of the threshold of detection on enhanced CT of 400
cells/mm2.

Tumor cell’s migration
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Since the tumor cell’s migration is the most critical feature of brain cancer, causing
treatment failure, the transport process has to be properly understood. In [5] Fedotov
and Iomin proposed an alternative approach for the migration-proliferation dichotomy,
employing a two-component continuous time random walk, assuming that the glioma
cells are of two phenotypes. In state 1 (migratory phenotype) the cells randomly move
but there is no cell fission. In state 2 (proliferation phenotype) the cancer cells do
not migrate and only proliferation takes place. The exact mechanism of switching be-
tween the two phenotypes is not known. Many of the proposed models are too complex
because the switching mechanism involves many parameters. Fedotov and Iomim pro-
posed a stochastic approach for the proliferation-migration switching involving only
two parameters ([5]). They assumed that a cell of type 1 remains in state 1 during a
waiting time τ1 and then switches to a cell of type 2. After a waiting time τ2, spent in
state 2, it switches back to a cell of type 1. Both waiting times τ1 and τ2 are mutually
independent random variables and exponentially distributed with parameters β1 and
β2, were β1 is the switching rate from state 1 to 2, while β2 determines the transition
rate from state 2 to 1. Based in the previous considerations, and assuming that the
density probability function j associated with the cell jumps of the migratory cells
satisfies

∫
znj(z)dz = 0 when n ∈ N − {2} and taking D = 1

2

∫
z2j(z)dz the following

system partial differential equations




∂u

∂t
= D

∫ t

0
α(t− s)

∂2u

∂x2
ds− β1u+ β2v

∂v

∂t
= ρv(1 −

v

K
) + β1u− β2v ,

(5)

was proposed in [5]. In (5) u(t, x) and v(t, x) represent the density of the cells of
migratory and proliferation phenotypes, respectively, the diffusion coefficient D is de-
termined from the random variable associated with migration jump length, ρ denotes
the cell proliferation rate, K represents the carrying capacity of the environment. The
kernel α(t) is determined by the probability density of waiting times between jumps ψ
in terms of its Laplace transform

L{α}(s) =
(s+ β1) L{ψ}(s+ β1)

1 − L{ψ}(s+ β1)
. (6)

In most cases its impossible to find an explicit expression for the memory kernel α(t)
for arbitrary choices of waiting time function ψ(t). However, if the random waiting
time ψ s given by ψ(t) = λe−λt then L(α)(s) = λ. Consequently α(t) = λδ(t) and (5)
assumes the form 




∂u

∂t
= λD

∂2u

∂x2
− β1u+ β2v

∂v

∂t
= ρv(1 −

v

K
) + β1u− β2v .

(7)

Otherwise, if ψ is the Gamma distribution, ψ(t) =
λmtm−1e−λt

Γ(m)
, then

L(α)(s) =
λ2

2λ+ s+ β1
.
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Consequently α(t) = λ2e−(2λ+β1)t and (5) is given by





∂u

∂t
= λD

∫ t

0
e−(2λ+β1)(t−s)∂

2u

∂x2
ds− β1u+ β2v

∂v

∂t
= ρv(1 −

v

K
) + β1u− β2v .

(8)

The first equation of (8) can be deduced considering a modified Fick’s law for the
mass flux. In fact, replacing (2) by

∂J

∂t
+

1

τ
J = −D̂

∂u

∂x
(9)

with D̂ = Dτ and τ =
1

2λ+ β1
we get

J(x, t) = −D̂

∫ t

0
e−

t−s

τ
∂u

∂x
ds (10)

where J(x, 0) = 0. Relation (9) is a first order approximation of the equality

J(x, t+ τ) = −D̂
∂u

∂x
(x, t) (11)

which establish that the mass flux at time t is related with the gradient of the concen-
tration u at a delayed time. This observation means that the system (8) incorporates
a certain memory effect presented in the behaviour of migratory cells.

We remark that as the authors observed in [1] and [2], neither Fick’s law, as used in
(3), or generalized Fick’s law , as used in (8), are an accurate description of the tumor
evolution. In fact a more accurate description should be obtained by a ”mix” of the
two diffusion models, as presented in [1]. In this case a generalized model of type

∂c

∂t
= D1

∫ t

0
∆c ds+ ∇(D2 ∇c) + f(c) . (12)

is obtained.

3 Modeling treatment

The most popular treatment used to combat gliomas are chemotherapy and radiation.
Treated patients data base is obviously much longer than untreated ones. From this
data base realistic parameter estimates can be obtained.

Chemotherapy

Cancer chemotherapy involves the use of drugs to disrupt the cell cycle and so
block proliferation. The success of chemotherapy agents varies widely, depending on
cell type and the type of drug being used. The effectiveness of a particular drug is
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dependent on the concentration of drug reaching the tumor, the duration of exposure
and the sensitivity of the tumor cells to the drug.

Tracqui et al. ([15]) incorporated chemotherapy into the spatially homogeneous
model equation (3) by introducing cell death as a loss term. If G(t) defines the time pro-
file of the chemotherapy treatments then, assuming a loss proportional to the amount
of therapy at a given time, model (3) can be re-written as

∂c

∂t
= ∇(D∇c) + ρ c−G(t) c , (13)

where

G(t) =

{
k, when chemotherapy is being administered
0, otherwise .

(14)

Here k describes the rate of cell death due to exposure to the drug. We point out that
the diffusion coefficient D can be constant or given by (4).

For a tumor to decrease in size during chemotherapy, k must be larger than the
growth rate ρ of the cell population. The model developed by Tracqui et al. ([15]) in-
cluded drug-sensitive and drug-resistant tumor cell subpopulations. This work strongly
suggested that multiple tumor cell subpopulations could be modeled to respond differ-
ently to treatment and could be responsible for the treatment failure. El-Kareh and
Secomb ([10]) demonstrated that mathematical models accounting for the kinetics of
metabolic and cellular processes can effectively lead to a more rational basis optimizing
drug administration in chemotherapy treatments.

If we assume that the cancer cells population are divided into two phenotypes and
the chemotherapy has the same effect in both cell types, then, for instance, the system
(8) is replaced by





∂u

∂t
= λD

∫ t

0
e−(2λ+β1)(t−s)∂

2u

∂x2
ds− β1u+ β2v −G(t)u

∂v

∂t
= ρv(1 −

v

K
) + β1u− β2v −G(t) v .

(15)

However, if the resistance of the cells is different during the period of administration
depending on the phenotype then the system (8) should be modified according this
difference.

Radiation

Radiation therapy is used as a treatment for gliomas because of the precision with
which it targets the tumor region, and its ability to increase survival as much as two fold.
Assessing response to therapy in gliomas has historically focused on visible changes in
gross tumor as measured on MRI. Using the classical linear-quadratic model ([8]) for
the radiation efficacy, Rockne et al. ([12]) suggested an extension of the basic model to
include delivery and effect of radiation therapy.

Rockne et al considered the following extension of the classical model (3)

∂c

∂t
= ∇(D(x)∇c) + ρ c−R(x, t) c , (16)
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where R(x, t) represents the effect of XRT at location x and time t and it is given by

R(x, t) =





0 , t 6∈ therapy,

1 − S(x, t) , t ∈ therapy.
(17)

In (17) S denotes the survival probability of the cancer cells which is given by
S(x, t) = e−γ1n d(x,t) eff(x,t), where n is the number of dosage fractions, d(x, t) is dosage

fraction distribution. The relative effectiveness eff is given by eff(x, t) = 1 + d(x,t)

1+
γ1

γ2

.

In the previous definitions, γ1, γ2 are measured parameter.
The advantage of this mathematical model lies in the ability to observe tumor

response at any point during therapy, and to virtually alter the treatment schedule and
dose delivery, options not otherwise available in vivo.

In [12] Rockne et al presented numerical simulation of the growth of a virtual
tumor under a variety of treatment schedules and dose distributions. The authors
also investigated the cancer response to the treatments using different metrics. Based
in their results, they suggested that the conventional course of treatment, involving
radiation dose administrated on a per day basis, is much more effective than several
treatments per day, and that an optimal response is produced by a low frequency and
high dose scheme.

To take into account the radiation therapy when it is assumed that the cancer cells
are differentiated into two phenotypes, the system (8) for instance should be modified
incorporating in each equation the term R, that is, the system (8) is replaced by





∂u

∂t
= λD

∫ t

0
e−(2λ+β1)(t−s)∂

2u

∂x2
ds− β1u+ β2v −R(x, t)u

∂v

∂t
= ρv(1 −

v

K
) + β1u− β2v −R(x, t) v .

(18)

Clearly, if the radiation effect is different for each type of cells then the previous system
should be adapted.

4 Modeling resection

Resection, the surgical removal of an accessible tumor, is one of the usual treatments
for gliomas even though it has shown only limited success, because recurrence of tumor
growth at the resection boundary is a very common phenomenon. Experimentalists
and theoreticians believe that the distantly invaded cells are the responsible for tu-
mor reappearance following surgery. The modeling framework suggests that, since the
density of cancerous cells remaining at this after resection is highest at the resection
boundary, reappearance at this location seems most likely. Several experimental results
support that to extend the range of resection, to apply radiotherapy or other localized
treatments is not going to be generally successful due to the very diffusive nature of
gliomas. Mathematical modeling shows that at the time of resection many tumor cells
have already migrated not only well beyond the margin of the resection region but also
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beyond the radiation effects. Although resection may have succeeded in reducing the
pressure effects of the bulk tumor, it is the diffusely invaded tumor cells well beyond
the margin that continue to grow and migrate and damage the normal brain tissue,
ultimately causing death.

To simulate surgical resection, the tumor cell density is set zero inside the resection
bed. The basic conservation law (1), that is (3) with diffusion coefficient D constant
or non constant given by (4) still applies before and after resection. If we consider
different phenotypes in the cells cancer the we should consider (8).

The model supports the concept that gliomas infiltrate so extensively that they
cannot be cured by resection alone. Increasing the size of the resection does increase
life expectancy but significantly. Besides the minimal increase in life expectancy, the
model has made no effort to differentiate eloquent regions of the brain that must be
spared during such surgical procedures. The theoretical analysis combined with the
reality of human brain surgery suggests that resection can never be the sole solutions
to the treatment of these lesion. Realistic mathematical modeling can be helpful in
highlighting and demonstrating the fact that any local treatment of a diffusely invading
glioma will fail.

5 Numerical simulation

In this section we present some numerical simulations of the previous models obtained
using standard numerical methods. We consider a square homogeneous domain with
[0, 15 cm] × [0, 15 cm] with diffusion coefficient D = 0.05 cm2/day, exponential growth
f(c) = ρc with ρ = 0.05 /year, initial condition defined by 106 tumor cells at the point
(7.5, 7.5) and we observe the behavior of the tumor cells during the following 100 days.
For the 2D model we obtain the results presented at Figure 1. We observe a decreasing
on the highest values of the tumor cells concentration at initial times followed by an
increasing and very intense spreading of cells.

In Figure 2 we plot numerical solutions when chemotherapy is administered with
a protocol of one cycle between days 20 and 34, with G = 0.15Gy. The results are as
expected: between day 20 and 34 we observe a decreasing on the tumor cell concentra-
tion. The increasing behaviour of tumor cells restarts when the drug administration
stopped. The numerical experiments show us that this behaviour occurs for each che-
motherapy application. From figures 1 and 2, at day 50, we observe that chemotherapy
application leads to reduction of tumor cells although we do not observe a significant
reduction of tumor’s area.

Finally, in Figure 3 we present the numerical simulations obtained with models (7)
and (8). Here we considered β1 = 10−6, β2 = 0.036 and 2λ + β1 = 1. At initial times
the migratory cells defined by the classical model (7) presents a delay when compared
with the same phenotype defined by the non Fickian model (8). At large times we
observe an inversion on the behaviour of the two models, that is, migratory phenotype
cells defined by the non Fickian model (8) presents a higher concentration levels than
the migratory phenotype cells defined by the Fickian model (8).
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Figure 1: Numerical results obtained with 2D model (3).

6 Conclusions

In this paper we presented a review of some of the most significant mathematical models
of brain tumors, specially on gliomas. To improve accuracy mathematical models should
be ideally include a huge array of complex processes to simulate the evolution of tumors.
However compromise should exist between the complexity of the model and a large set of
parameters that cannot be directly measured. The models presented have the advantage
of needing a relatively small number of parameters and input data necessary to run
the model (D, ρ and 2 pretreatments MRI). The mathematical basis of all models
is the mass conservation equation (1) combined with Fick’s law (2) for the classical
models and modified Fick’s law (9) for models presenting memory effect. To include
chemotherapy and radiation therapies the diffusion models were adapted modifying the
reaction terms.
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Abstract

Traffic flow theory appeared in the 1930s, however it has not yet reached a level
that would satisfy both authors and consumers. Thus, the traffic on complex traffic
networks remains a stimulus to search for ”the traffic jam formula” that would be as
simple as a quadratic equation and provide a miracle cure for jams.
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1 Introduction

Active development of the motor transport, a ”tsunami wave” of traffic, is overwhelming
the planet. In many of the world’s largest cities road networks now constantly operate at
capacity and traffic jams have become part of everyday life.

Traffic flow theory appeared in the 1930s, however it has not yet reached a level that
would satisfy both authors and consumers. Thus, the traffic on complex traffic networks
remains a stimulus to search for ”the traffic jam formula” that would be as simple as a
quadratic equation and provide a miracle cure for jams.
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2 Traffic Theories and Experiments

With performance capabilities of computers constantly increasing, incessant attempts are
made to perform multi-agent modeling of traffic, [1]. However, to follow the trains of thought
of a large number of drivers is apparently impossible. Modeling necessarily involves some
reasonable averagings and abstraction; latest advancements in the field of automatic traffic
monitoring must also be taken into account.

The overwhelming majority of theoretical works are devoted to describing behaviour of
the traffic on a road section: follow-the-leader models, hydrodynamical analogies, cellular
automata models, etc., [2].

Research is still going on, as no universally recognized approach to modeling local traffic
flow behaviour in the entire spectrum of states, from free to congested, has yet been found.
Modern means of measurement reveal the insufficiency of theoretical conceptions of traffic
flow even on an elementary carrier, i.e. a single road section [3].

3 NODE Model

If we consider the problem of traffic on a complex city network, it is reasonable to describe
the behavior of the flow on an individual road section with a state function, which accounts
for the dependence of speed on density, number of lanes and control mode. The mathe-
matical model of a network is a bidirectional graph with corresponding state functions. In
the elementary case there is an interchange in each node, and a dynamic system on the
graph is considered, with each edge described with a particle density function and each
node assigned a Markov mixing matrix.

The simplest cases of the problem, for which exact solutions can be found, were pub-
lished in [4], and a general study of the qualitative properties of solutions with respect to
the stability of stationary points is carried out in [5].

Let G be a directed graph with M nodes and N = M ·(M−1) be the maximum possible
number of edges (for a complete graph). For each edge a dependence of velocity on density is
defined, which is used as the state function fi(ρi). E.g., fi(ρi) = vmax i (1 − ρi/ρmax i), where
ρmax i is the maximum density on the i-th edge, 0 ≤ ρi ≤ ρmax i, vmax i is the maximum
velocity, Fi(ρi) = ρifi(ρi) is flow intensity (volume).

If li is the length of the i-th edge, then the system of ordinary differential equations

d (liρi)

dt
=

N∑
j=1

αijFj(ρj) − Fi(ρi), i = 1, . . . , N, (1)

is called the NODE model. Here α = (αij)
N
i,j=1 is the mixing matrix, i.e. the stochastic

matrix that determines how the flow entering a node from the i-th edge is distributed among
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all the j-th edges connected in the node,
N∑
i=1

αi,j = 1, j = 1, . . . , N.

Then αi,j = 0, if the i-th and j-th edges do not have a common node. If α is time-
independent, then by renormalizing time we can reduce (1) to (2):

dρi
dt

=

N∑
j=1

αijFj(ρj) − Fi(ρi), i = 1, . . . , N. (2)

From (2) we obtain the law of conservation of mass for the flow

ρ1 + · · · + ρN ≡ C. (3)

A simulation of the dynamic system (2), (3) is planned to present at the Conference, [4].

4 Flow Model with Control (NODEC)

Traffic light system is an essential part of real traffic. However, any traffic lights cause the
input flow density to reach maximum while the ”stop” signal is on. Therefore the flow on
the i-th edge is described with the following state parameters:

yi is the length of the congestion in front of the traffic lights;
ρi is flow density on the part of the edge before the congestion;
xi = (li − yi) is the length of that part of the edge;
si is the intensity of dissipation of the congestion in front of the traffic lights.

It is assumed that control is only carried out in the nodes of the graph; if not, a new
node is added.

The problem is stated and some results for simple graphs are given in [5]. ” Some
theoretical results and the NODEC computer model described here will be presented.

5 The Problem of Identification

Edge state functions, mixing matrices and traffic control in the nodes are model parameters
that have to be adjusted and tested for non-stationarity from time to time.

5.1. Each edge of the graph is, in general, a model of a multi-lane road. The outside
lanes may be occupied by parked vehicles. With this in mind, state functions cannot be
considered time-independent. Centralized traffic monitoring usually is not total. GPS
tracking system based on a server–client structure (smartphones) has been developed under
the project. The system enables one to establish the necessary parameters of edge state
functions, accounting for random events on the road such as accidents, breakdowns, etc.
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5.2. For a complex road network model, the mixing matrix in the system (1), (2)
is sparse, since the number of nodes amounts to thousands while the number of edges
connected by a single node is sure to be under 10. A mixing matrix for an intersection
equipped with intelligent monitoring systems such as traffic cameras is recovered in the
natural way; as a rule, using special procedures.

For other intersections, signal-controlled as well as uncontrolled, a client–server system
and related software were developed. The algorithm is based on synchronized measurement
of series of input flow rate vectors Q̄in and output flows Q̄out. The interval of generation of
flow rate vectors must be long enough so that it is possible to average the stationarity of
the mixing matrix on the control period of the signal-controlled intersection. At the same
time it has to be short enough so that the non-stationarity of input flow is not overlooked
in consecutive series of measurements. The square matrix Q̄in obtained from series of
observations must have full rank. Otherwise, regularization methods are applied.

6 Mobile Distributed System for Traffic Synchronization

Behavior of millions of drivers on a road network cannot be accurately modeled unless ad-
vanced methods of data exchange between observers, controllers, and objects of observation
and control are developed. Modern means of communication, smartphones, permit synchro-
nization of traffic on road networks using special-purpose software and involving existing
and proven techniques and tools, from long-term route planning to rigid traffic control using
local client–server data exchange in the neighborhood of bottlenecks (”soft traffic lights”).
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Abstract

We initiate the exploration of the residuated operations in the framework of hyper-
structures. We focus on the case of a multilattice as underlying algebraic structure,
introduce the notion of residuated multilattice and study some of its properties, among
which we have shown that the idempotency of the monoidal operation characterises the
subclass of Heyting algebras.

Key words: hyperstructures, pocrim, multilattices, residuation.

1 Introduction and preliminary definitions

Residuation has a prominent role in the algebraic study of logical systems, which usually
are partially ordered sets together with some operations reflecting the properties of the
connectives. This work is related to the use of residuated implication in the framework of
hyperstructures and fuzzy logic reasoning.

Although the most used structure in this context is that of residuated lattice, there are
reasons which suggest to weaken some of its properties, leading to a more general class of
algebraic structures for computation. A commonly considered algebraic structure is that of
partially ordered commutative residuated integral monoid [2].

Definition 1 A tuple 〈A,→, ∗,>,≤〉 is said to be a partially ordered commutative resid-
uated integral monoid, briefly a pocrim, if, for every a, b, c ∈ A, the following properties
hold:
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• 〈A, ∗,>〉 is a commutative monoid with neutral element >

• 〈A,≤〉 is a partially ordered set which is compatible with ∗ (i.e., a ≤ b implies a ∗ c ≤
b ∗ c) and > is the maximum of 〈A,≤〉

• 〈A,≤〉 has the residuum property, that is a ∗ c ≤ b if and only if c ≤ a→ b.

If some extra properties hold, we obtain other well-known structures, such as those given
below:

Definition 2

• A pocrim 〈A,→, ∗,>,≤〉 is said to be a residuated lattice if, in addition, 〈A,≤〉 is
a lattice.

• A residuated lattice in which ∗ coincides with the meet operation is said to be a Heyt-
ing algebra.

It is well-known that residuated lattices are considered to be the algebraic structures
of substructural logics [8], which are logics without some of the structural rules of logic:
weakening, contraction, or associativity.

We focus here on some extensions of the previously defined notions, by considering a
partially-ordered set together with two non-deterministic operations which generalize the
supremum and the infimum by weakening the restrictions imposed on a (complete) lattice,
namely, the “existence of least upper bounds and greatest lower bounds” is relaxed to the
“existence of minimal upper bounds and maximal lower bounds”. Specifically, a multisupre-
mum of a and b is defined as a minimal element of the set of upper bounds of a and b, we
write atb to refer to the set of all the multi-suprema of a and b; the notion of multiinfimum
au b is introduced similarly. Now, we can proceed with the formal definition of multilattice
and related structures.

Definition 3

• A poset (M,≤) is said to be a multilattice if for all a, b, x ∈M with a ≤ x and b ≤ x,
there exists1 z ∈ a t b, such that z ≤ x; and, similarly, for all a, b, x ∈M with a ≥ x
and b ≥ x, there exists z ∈ a u b, such that z ≥ x.

• A multilattice is said to be full if a t b 6= ∅ and a u b 6= ∅ for all a, b ∈M .

1Note that the definition is consistent with the existence of two incomparable elements without any
multisupremum. In other words, a t b, and also a u b, can be empty.

@CMMSE                                 Page 260 of 1703                                 ISBN: 978-84-614-6167-7



I.P. Cabrera et al

The notion of multilattice was introduced originally by Benado [1], and further studied
by Hansen [4], who proposed an algebraic equivalent definition of multilattice. More re-
cently, another algebraic formalisation of the notion of multilattice was introduced in [5, 6]
as a theoretical tool to deal with some problems in the theory of mechanised deduction in
temporal logics. Multilattices arise as well in other research areas, such as fuzzy extensions
of logic programming [7]: for instance, one of the hypotheses of the main termination result
for sorted multi-adjoint logic programs [3] can be weakened only when the underlying set
of truth-values is a multilattice (the question of providing a counter-example on a lattice
remains open).

Definition 4 A residuated multilattice is a pocrim whose underlying poset is a multi-
lattice. If, in addition, there exists a bottom element, we say that the residuated multilattice
is bounded.

It is convenient to remark that any finite poset is actually a multilattice, hence the only
proper examples of pocrims not multilattices have to be infinite. The following example,
taken from [9], shows a proper residuated multilattice, in that its carrier is not a lattice.

Example 1 Let Z, Z− and Z+ denote, respectively, the sets of all integers, of all non-
positive integers, and of all non-negative integers. Given ⊥,> /∈ Z, a pocrim A with carrier

A =
(
{⊥} × Z+

)
∪
(
Z+ × Z

)
∪
(
{>} × Z−

)
Let ≤ be the partial ordering on A depicted in Figure 1 and note that

〈α, i〉 ≤ 〈β, j〉 iff i+ |α− β| ≤ j

The operation ∗ on A is defined as follows:

x ∗ y = y ∗ x

〈>, i〉 ∗ 〈>, j〉 = 〈>, i+ j〉 (i, j ≤ 0)

〈>, i〉 ∗ 〈α, j〉 = 〈α, i+ j〉 (i ≤ 0)

〈>, i〉 ∗ 〈⊥, j〉 = 〈⊥,max{0, i+ j}〉 (i ≤ 0 ≤ j)

〈α, i〉 ∗ 〈β, j〉 = 〈⊥,max{0, i+ j + |α− β|}〉

〈α, i〉 ∗ 〈⊥, j〉 = 〈⊥, k〉 ∗ 〈⊥, j〉 = 〈⊥, 0〉 (0 ≤ j, k)
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1, 20, 2 2, 2 3, 2

1, 10, 1 2, 1 3, 1

1, 00, 0 2, 0 3, 0

1,−10,−1 2,−1 3,−1

Z+ × Z

{>} × Z−
>, 0
>,−1
>,−2

{⊥} × Z+

⊥, 0
⊥, 1
⊥, 2

Figure 1: Hasse Diagram of 〈A;≤〉

This makes (A; ∗, 〈>, 0〉) to be residuated multilattice when considering the following resid-
uate implication.

x ≤ y iff x→ y = 〈>, 0〉

〈>, i〉 → 〈>, j〉 = 〈>,min{0, j − i}〉 (i, j ≤ 0)

〈>, i〉 → 〈α, j〉 = 〈α, j − i〉 (i ≤ 0)

〈>, i〉 → 〈⊥, j〉 = 〈⊥, j − i〉 (i ≤ 0 ≤ j)

〈α, i〉 → 〈β, j〉 = 〈>,min{0, j − i− |α− β|}〉

〈α, i〉 → 〈⊥, j〉 = 〈α, j − i〉 (0 ≤ j)

〈⊥, i〉 → 〈⊥, j〉 = 〈>,min{0, j − i}〉 (0 ≤ i, j)

2 Algebraic properties of residuated multilattices

We study here some properties of the structures defined above.

Lemma 1 Every residuated multilattice is full.
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Proof: For all a, b ∈ M we have that a, b ≤ > and, therefore, a t b 6= ∅. Furthermore,
a ∗ b ≤ a, and a ∗ b ≤ b, hence a u b 6= ∅. �

Lemma 2 Let M be a residuated multilattice, then the following items hold:

1. a ∗ b t a ∗ c = minimals{a ∗ (b t c)} for all a, b, c ∈M .

2. a ∗ (b u c) ⊆ (a ∗ b u a ∗ c)↓ for all a, b, c ∈M .

3. There exists c ∈ a u b such that a ∗ (a→ b) ≤ c, for all a, b ∈M .

4. There exists c ∈ a u b such that a ∗ b ≤ c, for all a, b ∈M .

Proof: For item 1, we firstly prove that a ∗ bt a ∗ c ⊆ a ∗ (bt c). Let x ∈ a ∗ bt a ∗ c. Since
a∗ b, a∗ c ≤ x, then b, c ≤ a→ x and, hence, there exists y ∈ bt c such that y ≤ a→ x and,
thus, a ∗ y ≤ x. Moreover, by monotonicity of ∗, we have that a ∗ b ≤ a ∗ y and a ∗ c ≤ a ∗ y
and, by definition of t, x = a ∗ y ∈ a ∗ (b t c).

Finally, since any element in a ∗ (bt c) is an upper bound of a ∗ b and a ∗ c, the equality
a ∗ b t a ∗ c = minimals{a ∗ (b t c)} holds.

Items 2, 3 and 4 are immediate consequence of basic properties of pocrims and the
definition of multilattice.

�

Example 2 The previous example illustrates the fact that we cannot get rid of the compu-
tation of the minimals in the first item of Lemma 2, but a ∗ b t a ∗ c 6= a ∗ (b t c) because,
for instance,

〈0, 0〉 t 〈1, 0〉 = {〈0, 1〉, 〈1, 1〉}

〈2, 0〉 ∗ (〈0, 0〉 t 〈1, 0〉) = {〈2, 0〉 ∗ 〈0, 1〉, 〈2, 0〉 ∗ 〈1, 1〉} = {〈⊥, 3〉, 〈⊥, 2〉}

〈2, 0〉 ∗ 〈0, 0〉 t 〈2, 0〉 ∗ 〈1, 0〉 = 〈⊥, 2〉 t 〈⊥, 1〉 = 〈⊥, 2〉

Proposition 1 Let M be a residuated multilattice such that a ∗ b ∈ a u b for all a, b ∈ M ,
then M is a Heyting algebra.

Proof: Given x ∈ a u b, since x ≤ a, then x = a u x = a ∗ x and the same for b. Thus
a ∗ b ∗x = a ∗x = x which implies that x ≤ a ∗ b. As x, a ∗ b ∈ au b, then x = a ∗ b. We have
obtained that, for all a, b ∈M , a ∗ b = au b, in particular, there exists the infimum for all a
and b. Being M full (see Lemma 1), there also exists the supremum of a and b, by [5,6]. �

Lemma 3 Let M be a residuated multilattice with idempotent product, then, for all a, b ∈
M ,
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1. If x ∈ a t b, then a ∗ x = a.

2. a ≤ b if and only if a ∗ b = a.

3. a ∗ b ∈ a u b

Proof:

1. Observe that a = a t a ∗ b = a ∗ a t a ∗ b = minimals{a ∗ (a t b)}. If x ∈ a t b, then
a ≤ a ∗ x. Since, by monotonicity of ∗, a ∗ x ≤ a, we have a ∗ x = a.

2. By monotonicity of the product, if a ≤ b, then a∗b ≤ a∗> = a and a = a∗a ≤ a∗b and,
hence, a∗ b = a. On the other hand, if a∗ b = a, then > = a→ a = a→ a ∗ b ≤ a→ b
which implies a ≤ b.

3. By item 4 of Lemma 2, there exists c ∈ au b such that a∗ b ≤ c, and so a∗ b∗ c = a∗ b.
On the other hand, from item 2, since c ≤ b and c ≤ a, we have that a∗b∗c = a∗c = c.
Therefore, a ∗ b = c ∈ a u b.

�

Theorem 1 Any idempotent residuated multilattice is a Heyting algebra.

Proof: It is a direct consequence of the previous lemma and proposition.
�

Sometimes, in connection to an algebraic structure with a binary operation ∗, the
following relation so-called natural preordering has been considered:

a v b if and only if a ∗ b = a

In the framework of residuated multilattices, the operation ∗ is assumed to be both asso-
ciative and commutative, and this implies anti-symmetry and transitivity of v. Moreover,
this relation is included in ≤. That is, a v b implies a ≤ b (it is due to item 4 in Lemma 2).
Note, finally, that v is reflexive if and only if the product is idempotent. Specifically, v is
a partial ordering relation (in a residuated multilattice) exactly in the subclass of Heyting
algebras.

Example 3 Let us consider the meet-semilattice 〈A;≤〉 depicted in Figure 2, the product
being the meet operator and the residuated implication → defined by

x→ y = > iff x ≤ y
ci → x = x for all x ≤ ci
a→ ⊥ = a→ b = b
b→ ⊥ = b→ a = a
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>

c1

c2

a b

⊥

Figure 2: Hasse Diagram of 〈A;≤〉

then 〈A,→, ∗,>,≤〉 is an idempotent pocrim, but it is not a lattice (elements a and b do
not have a supremum) and, hence, is not a Heyting algebra.

Note that this example shows that, in general, the presence of idempotency in a pocrim
is not a sufficient condition to guarantee the structure of Heyting algebra.

3 Conclusions and future work

The algebraic structure of residuated multilattice has been defined between those of partially
ordered commutative residuated integral monoids (pocrims) and residuated lattices. All
finite pocrims are trivial examples of residuated multilattices, an instance of an infinite
pocrim not being a residuated multilattice has been shown.

Preliminary algebraic properties of this new structure have been studied and, specif-
ically, we have shown that the idempotency of the monoidal operation characterises the
subclass of Heyting algebras.

Future work will focus on the study of the ideals and filters, which turn out to be
specially important in relation to the algebraic semantics of logical systems.
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References

[1] M. Benado. Les ensembles partiellement ordonnés et le théorème de raffinement de
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Abstract

In this paper, we characterize digraphs of 3 vertices associated with Lie algebras

according to isomorphism classes of these associated Lie algebras. At this respect,

we introduce and implement two algorithmic methods: the first is devoted to

draw the digraph associated with a given Lie algebra and the second allows us

to determine if a given digraph is associated or not with a Lie algebra.

Key words: Digraph, Lie algebra, Isomorphism class, Algorithm.

MSC 2000: 17B60, 05C25, 05C20, 05C90, 17B20, 17B30.

1 Introduction

Finding new links among different fields of Mathematics has always been one of the
most interesting challenges in mathematical research, since it allows to use alternative
techniques to solve open problems, improve known theories and reveal new ones. This
paper is devoted to link Lie Theory and Graph Theory. On one hand, research on
Graph Theory is running in a high level, being used as a very useful tool to deal with
other knowledge fields. Regarding this, this work continues the line opened in [1], where
a mapping between Lie algebras and combinatorial structures was introduced in order
to translate properties of Lie algebras into the language of Graph Theory and vice
versa.
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On the other hand, applications of Lie Theory are being considered in fields like
Engineering, Physics and Applied Mathematics, for instance, being its research very
extensive both theoretically and practically. However, several topics are still unsolved
and new alternatives are welcome to work them. In this sense, determining which
isomorphism classes there exist for nilpotent and solvable Lie algebras is nowadays an
important open problem, especially if we take into account that other types of Lie
algebras (like semisimple and simple) were completely classified in 1890.

The main goal of this paper is to make progress in the relation between graphs
and Lie algebras, carrying on with previous papers like [1, 2, 3]. The structure is
the following: firstly, we determine all isomorphism classes of Lie algebras admitting
configurations of 3 vertices described in [1]. In fact, we characterize the different con-
figurations that correspond to the same isomorphism class. Secondly, we introduce and
implement two new algorithmic methods based on the relation between graphs and Lie
algebras: one to obtain the digraph associated with a given n-dimensional Lie algebra
and another to determine if a given digraph is associated with a Lie algebra or not.

In our opinion, the procedures introduced here allow us to advance, make easier
and improve the characterization of Lie-algebra isomorphism classes by means of the
classification of their associated combinatorial structures (graphs, in this case).

2 Preliminaries of Lie algebras

Some preliminary concepts of Lie algebras are recalled, bearing in mind that the reader
can consult [4] for a general overview. In this paper, we consider K = R or C and
K∗ = Kr {0}.

Definition 1 A Lie algebra g is a vector space with a second bilinear composition law

[·, ·] called the bracket product, which satisfies two conditions: [X,X] = 0, ∀X ∈ g and

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0, ∀X,Y, Z ∈ g. This last condition is called the

Jacobi identity and denoted by J(X,Y, Z) = 0.

Definition 2 The Lie algebra g is semisimple if it does not contain any proper abelian

ideals. If g is non-abelian with no non-trivial ideals, then it is simple.

Definition 3 The commutator central series and the lower central series of a finite-

dimensional Lie algebra g are, respectively,

C1(g) = g, C2(g) = [g, g], . . . , Ck(g) = [Ck−1(g), Ck−1(g)], . . . and

C1(g) = g, C2(g) = [g, g], . . . , Ck(g) = [Ck−1(g), g], . . .

Hence, g is (m − 1)-step solvable if there exists m ∈ N such that Cm(g) ≡ {0} and

Cm−1(g) ̸= {0}. Analogously, g is (m − 1)-step nilpotent if there exists m ∈ N such

that Cm(g) ≡ {0} and Cm−1(g) ̸= {0}
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3 Associating combinatorial structures with Lie algebras

Given an n-dimensional Lie algebra g with basis B = {ei}ni=1, the law of g with respect
to B is given by its structure constants cki,j as follows: [ei, ej ] =

∑n
k=1 c

k
i,jek. The

pair (g,B) can be associated with a combinatorial structure by the following method,
introduced in [1]:

a) For each ei ∈ B, one vertex labelled as index i is drawn.

b) Given three vertices i < j < k, the full triangle can be drawn. The weights cki,j ,

cij,k, and c
j
i,k are assigned to the edges {i, j}, {j, k} and {i, k}, respectively.

b1) If cki,j = cij,k = cji,k = 0, then the triangle is not drawn.

b2) If a structure constant is zero, its corresponding edge is drawn using a dis-
continuous line and called ghost edge.

b3) If two triangles of vertices {i, j, k} and {i, j, l} with 1 ≤ i < j < k < l ≤ n
satisfy cki,j = cli,j , then the edge {i, j} is shared.

c) Given two vertices i < j, draw a directed edge from j to i if cii,j ̸= 0 or from i to

j if cji,j ̸= 0.

4 Digraphs of 3-vertices associated with Lie algebras

There exist only 4 digraphs of 3 vertices associated with 3-dimensional Lie algebras
according to Lemma 3.1 in [1] (see Figure 1). We study their isomorphism classes.

Figure 1: Digraphs of 3 vertices associated with Lie algebras.
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Proposition 1 Let us consider the Lie algebra g = ⟨w1, w2, w3⟩ : [w1, w2] = c21,2w2;

[w2, w3] = c22,3w2, with (c21,2, c
2
2,3) ∈ K2 r {(0, 0)} associated with the configuration a)

in Figure 1. Then

i) There exists a basis {ei}3i=1 of g with respect to which: [e1, e2] = e2; [e2, e3] = e2.

ii) There exists a basis {vi}3i=1 of g with respect to which: [v1, v2] = p1v1 + p2v2 with

(p1, p2) ∈ K2 r {(0, 0)}.

Proof: For i), it suffices to consider the basis change ϕ : g → g given by e1 = ϕ(w1) =
1

c21,2
w1; e2 = ϕ(w2) = w2; e3 = ϕ(w3) =

1
c22,3

w3.

To prove ii), we consider an arbitrary basis change from an arbitrary basis to the
basis given in i) as follows: ei =

∑3
j=1 ai,jvj , with [vi, vj ] =

∑3
k=1 d

k
i,jek. Imposing the

law given in i) and solving the resulting system, we obtain the law expressed in ii). �

Remark 1 Statement ii) in Proposition 1 means that there exists an isomorphism

between the two structures of Figure 2, independently of the weights.

Figure 2: Isomorphism from Proposition 1.

Corollary 1 Lie algebras associated with configuration a) constitutes a unique isomor-

phism class g1: [e1, e2] = e2, [e2, e3] = e2. This class also contains 3-dimensional Lie

algebras with center of dimension 1 (associated with a graph having a unique isolated

vertex).”

Proposition 2 Let us consider the Lie algebra g = ⟨w1, w2, w3⟩ : [w1, w2] = c11,2w1;

[w2, w3] = c32,3w3, with c
1
1,2, c

3
2,3 ∈ K∗ associated with the configuration b) in Figure 1.

Then, there exists a basis {ei}3i=1 of g verifying [e1, e2] = e1; [e2, e3] = pe3 with p ∈ K∗.

Proof: It is sufficient to consider the basis change ϕ : g → g defined by e1 = ϕ(w1) = w1;

e2 = ϕ(w2) =
1

c11,2
w2; ϕ(w3) = w3 and denote p =

c32,3
c11,2

. �

Remark 2 From here on, g2(p) with p ∈ K∗, will denote the 3-dimensional Lie algebra

of law: [e1, e2] = e1; [e2, e3] = pe3, obtained in Proposition 2.
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Proposition 3 Let us consider the Lie algebra g = ⟨w1, w2, w3⟩ : [w1, w2] = c11,2w1 +

c21,2w2; [w1, w3] = c31,3w3; [w2, w3] = c32,3w3, with c
1
1,2, c

2
1,2, c

3
1,3, c

3
2,3 ∈ K∗ associated with

the configuration c) in Figure 1. Then, there exists a basis {ei}3i=1 of g with respect to

which [e1, e2] = p(e1 − e2); [e1, e3] = e3; [e2, e3] = e3, with p ∈ K∗.

Proof: It is sufficient to consider the basis change ϕ : g → g defined by e1 = ϕ(w1) =
1

c31,3
w1; e2 = ϕ(w2) =

1
c32,3

w2; e3 = ϕ(w3) = w3, denote p =
c11,2
c32,3

and keep in mind that

c11,2c
3
1,3 + c21,2c

3
2,3 = 0, due to the Jacobi identity. �

Remark 3 From here on, g3(p) with p ∈ K∗, will denote the 3-dimensional Lie algebra

of law [e1, e2] = p(e1 − e2); [e1, e3] = e3; [e2, e3] = e3, obtained in Proposition 3.

Proposition 4 Let us consider the Lie algebra g = ⟨w1, w2, w3⟩ : [w1, w2] = c11,2w1 +

c21,2w2; [w1, w3] = c11,3w1+c
3
1,3w3; [w2, w3] = c22,3w2+c

3
2,3w3, with c

1
1,2, c

2
1,2, c

1
1,3, c

3
1,3, c

2
2,3,

c32,3 ∈ K∗ associated with the configuration d) in Figure 1. Then

i) There exists a basis {ei}3i=1 of g verifying [e1, e2] = −p1
p2
(e1 − e2); [e1, e3] =

p1e1 + e3; [e2, e3] = p2e2 + e3, with p1, p2 ∈ K∗.

ii) There exists a basis {vi}3i=1 of g verifying [e1, e2] = −p(e1−e2); [e1, e3] = e1+e3;

[e2, e3] =
1
pe2 + e3, with p ∈ K∗.

Proof: For i), it is sufficient to consider the basis change ϕ : g → g given by e1 =
ϕ(w1) = 1

c31,3
w1; e2 = ϕ(w2) = 1

c32,3
w2; e3 = ϕ(w3) = 1

c21,2
w3 and the Jacobi identity

J(e1, e2, e3) = 0, as well as denoting p1 =
c11,3
c21,2

and p2 =
c22,3
c21,2

. Starting from this law

and considering the basis change ψ : g → g with e1 = ψ(w1) = w1; e2 = ψ(w2) = w2;
e3 = ψ(w3) =

1
p1
w3, we obtain the law stated in ii) after denoting p = p1

p2
. �

Remark 4 From here on, g4(p) with p ∈ K∗, will denote the 3-dimensional Lie al-

gebra of law [e1, e2] = −p(e1 − e2); [e1, e3] = e1 + e3; [e2, e3] =
1
pe2 + e3, obtained in

Proposition 4.

Proposition 5 The dimension of the derived Lie algebra D(gi) = [gi, gi] is

dim(D(gi)) =


1, if i = 1;

2, if i = 2, 3 ∨ (i = 4 ∧ p = 1);

3, if i = 4 with p ̸= 1.

Proof: In virtue of Propositions 1, 2, 3 and 4, we only need to study D(g4) = ⟨−p(e1 −
e2), e1 + e3,

1
pe2 + e3⟩. The coefficient matrix is −p 1 0

p 0 1
p

0 1 1


whose rank equal to 2 if and only if p = 1. �
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Corollary 2 The following two statements are verified

1. g1 is not isomorphic to g2(p), g3(p) or g4(p), for p ∈ K∗. Consequently, the last

three are not isomorphic to Lie algebras associated with configurations having an

isolated vertex.

2. Given p ∈ K∗ \ {1}, g4(p) is not isomorphic to g2(q), g3(q) either g4(1), for

q ∈ K∗.

Proposition 6 Given p1, p2 ∈ K∗ and i ∈ {2, 3, 4}, the Lie algebras gi(p1) and gi(p2)

are isomorphic if and only if p1 = p2 or p1 · p2 = 1.

Proof: Fixed and given i ∈ {2, 3, 4}, the Lie algebras gi(p1) and gi(p2) are isomorphic
if and only if there exists a basis change leading from the law of gi(p1) to the one
of gi(p2). Let {ej}3j=1 and {wj}3j=1 be the bases giving the law of gi(p1) and gi(p2),
respectively and let us consider a general basis change given by w1 =

∑
a1,jej , w2 =∑

a2,jej , w3 =
∑
a3,jej . Imposing the law of gi(p1) over gi(p2), we obtain a system

whose solutions are p1 = p2 or p1 · p2 = 1. �

Proposition 7 Given p ∈ K∗, Lie algebra g2(p) is isomorphic to Lie algebra g3(p).

Proof: The isomorphism is ϕ : g2(p) → g3(p) defined by w1 = ϕ(e1) = −e2 + e3;
w2 = ϕ(e2) = −e2 − e3; w3 = ϕ(e3) = e1; where {ei}3i=1 and {wi}3i=1 are the respective
bases of g2(p) and g3(p). �

Remark 5 Proposition 7 involves that configurations of Figure 3 are associated with

the same Lie algebra for a given p.

Figure 3: Isomorphism from Proposition 7.

Proposition 8 Lie algebra g2(−1) is isomorphic to Lie algebra g4(1).

Proof: The isomorphism is given by ϕ : g2(−1) → g4(1), where w1 = ϕ(e1) = e1 −
e2;w2 = ϕ(e2) = −e2 + e3;w3 = ϕ(e3) = e1 + e2 + e3. �
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Figure 4: Isomorphism from Proposition 8.

Remark 6 Proposition 8 establishes that configurations in Figure 4 correspond to the

same Lie algebra.

Proposition 9 sl2(K) is isomorphic to g4(p) if and only if p = −1.

Proof: Given p ∈ K∗ r {1}, we consider the Lie algebra g4(p) = ⟨e1, e2, e3⟩ with
law [e1, e2] = −p(e1 − e2); [e1, e3] = e1 + e3; [e2, e3] = 1

pe2 + e3 and Lie algebra
sl2(K) = ⟨w1, w2, w3⟩ with law [w1, w2] = 2w2; [w1, w3] = −2w3; [w2, w3] = w1. When
defining an arbitrary basis change ei =

∑3
j=1 ai,jwj , for i = 1, 2, 3 and imposing the

laws of g4(p) and sl2(K), we obtain a system of equations such that every solution
involves p = −1, which concludes the proof. �

Remark 7 Proposition 9 implies that configurations in Figure 5 comes from the same

Lie algebra.

Figure 5: Isomorphism from Proposition 9.

All the previous results can be summarized as follows

Theorem 1 The isomorphism classes of 3-dimensional Lie algebras are the following

a) g1.

b) g2(−1) ∼= g3(−1) ∼= g4(1).
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c) g2(p) ∼= g2(
1
p)

∼= g3(p) ∼= g3(
1
p),∀p ∈ K∗ r {−1}.

d) g4(−1) ∼= sl2(K).

e) g4(p) ∼= g4(
1
p),∀p ∈ K∗ r {−1, 1}.

Moreover, the algebras belonging to the first three classes are 2-step solvable and

non-nilpotent, while the corresponding with the fourth class is simple.

5 Algorithmic methods

In this section we show two algorithms dealing with converse questions: the first is
devoted to obtain the digraph associated with a given Lie algebra starting from its law;
and the second is useful to determine if a weighted digraph is associated with a Lie
algebra or not.

5.1 Algorithm to obtain the digraph associated with a Lie algebra

Given an n-dimensional Lie algebra g with basis Bn = {ei}ni=1, its law consists only of
brackets [ei, ej ] = cii,jei + cji,jej . This is because of dealing with digraphs and not with
full triangles.

To implement the algorithm, we have used the symbolic computation package
MAPLE 12, loading the libraries linalg, GraphTheory and Maplets[Elements]. The
first two libraries allow us to apply commands of Linear Algebra and Graph Theory,
respectively; whereas the last is used to display a message so that the user introduces
the required input in the first subroutine, devoted to define the law of the Lie algebra
g. The algorithm to obtain the digraph associated with g considers the following two
steps:

1. Entering the law of g by means of a routine computing the Lie bracket between
two arbitrary basis vectors in Bn.

2. Defining the digraph associated with g using the method reviewed in Section 3.

The first routine, named law, receives two natural numbers as inputs. These num-
bers represent the subindexes of two basis vectors in Bn. The subroutine returns the
result of the bracket between these two vectors. In addition, conditional sentences are
inserted to determine the non-zero brackets and the skew-symmetry property. Since the
user has to complete the subroutine inserting the non-zero brackets of g, we have also
added a sentence at the beginning of the implementation, reminding this fact. Note
that before running any other sentence, we must restart all the variables and delete all
the computations saved for previous law. Additionally, we must update the value of
variable dim with the dimension of g.
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> restart:

> maplet:=Maplet(AlertDialog("Don’t forget to introduce non-zero brackets of the algebra

and its dimension in subroutine law",’onapprove’=Shutdown("Continue"),

’oncancel’=Shutdown("Aborted"))):

> Maplets[Display](maplet):

> assign(dim,...):

> law:=proc(i,j)

> if i=j then return 0; end if;

> if i>j then return -law(j,i); end if;

> if (i,j)=... then return ...; end if;

> if ....

> else return 0; end if;

> end proc;

The ellipsis in command assign corresponds to write the dimension of g. The
following two suspension points are associated with the computation of [ei, ej ]: first,
the value of the subindexes (i, j) and second, the result of [ei, ej ] with respect to Bn.
The last ellipsis denotes the rest of non-zero brackets. For each non-zero bracket, a
new sentence if has to be included in the cluster.

Next, we implement the second step of the algorithm with the routine drawdigraph,
receiving the dimension n of g as input. This routine draws the digraph associated with
g. To do so, two local variables V and E have been defined: V is a list with the vertices of
the digraph and E is a set containing the edges. Hence, several loops are programmed to
include all the directed, weighted edges in the set E according to the non-zero brackets
saved in the subroutine law.

> drawdigraph:=proc(n)

> local E,V; E:={};V:=[];

> for x from 1 to n do

> V:=[op(V),x]; end do;

> for i from 1 to n do

> for j from i+1 to n do

> if coeff(law(i,j),e[j])<>0 then

> E:={op(E),[[i,j],coeff(law(i,j),e[j])]}; end if;

> if coeff(law(i,j),e[i])<>0 then

> E:={op(E),[[j,i],coeff(law(i,j),e[i])]};

> end if; end do; end do;

> G:=Digraph(V,E);

> return DrawGraph(G);

> end proc:

Example 1 To illustrate this algorithm, we apply it to the 6-dimensional Lie algebra

with law [e1, e3] = 2e3, [e1, e4] = −e4, [e1, e6] = e6, [e2, e3] = −e3, [e2, e4] = e4,

[e2, e5] = e5. First, we complete the routine law as follows:

> restart:
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> maplet:=Maplet(AlertDialog("Don’t forget to introduce non-zero brackets of the algebra

and its dimension in subroutine law",’onapprove’=Shutdown("Continue"),

’oncancel’=Shutdown("Aborted"))):

> Maplets[Display](maplet):

> assign(dim,6):

> law:=proc(i,j)

> if i=j then return 0;end if;

> if i>j then return -law(j,i);end if;

> if (i,j)=(1,3) then return 2*e[3];end if; if (i,j)=(1,4) then return -e[4];end if;

> if (i,j)=(1,6) then return e[6];end if; if (i,j)=(2,3) then return -e[3];end if;

> if (i,j)=(2,4) then return e[4];end if; if (i,j)=(2,5) then return e[5];

> else return 0;

> end if;

> end proc:

Next, we run the routine drawdigraph and execute the sentence drawdigraph(dim)

obtaining the digraph in Figure 6.

Figure 6: output from Example 1.

5.2 Algorithm to decide if a digraph is associated with a Lie algebra

We show an algorithmic procedure to determine if a given digraph is associated or not
with a Lie algebra. The algorithm consists of two steps: a) generating the law candidate
to be a Lie algebra using the construction reviewed in Section 3; and b) checking if
the Jacobi identities are satisfied for this law. To implement the algorithm, we need
load the libraries DifferentialGeometry, LieAlgebras and GraphTheory to activate
commands related to Lie algebras and Graph Theory.

First, we build a vector space associated with the digraph using the routine program,
receiving two inputs: a list V with the vertices of the digraph and a set E with the di-
rected, weighted edges. As output, we obtain a vector space with basis {ei}ni=1 where
ei corresponds to vertex i from the list V and the brackets associated with the edges
in the set E. To implement this routine we define two local variables: B and L, where B
saves the basis {ei}ni=1 and L is a list containing the indexes of the structure constants
from the non-zero brackets.
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> program:=proc(V,E)

> local B, L;

> B:=[]; L:=[];

> for x from 1 to nops(V) do

> B:=[op(B),e[x]];

> end do;

> for i from 1 to nops(E) do

> L:=[op(L),[[op(E[i][1]),E[i][1][2]],E[i][2]]];

> end do;

> return _DG([["LieAlgebra",Alg1,[nops(V)]],L]);

> end proc:

Next, the vector space having such basis and law is generated when evaluating the
sentence

> DGsetup(program(V,E));

After defining this vector space Alg1, we can operate over it. More concretely, we
check if Jacobi identities hold or not for Alg1:

Alg1 > Query(Alg1,"Jacobi");

The vector space Alg1 defined by the output of program is a Lie algebra if and
only if the answer is true for this question.

Example 2 Consider the digraph in Figure 7. After running the routine program, we

define the list V of vertices and the set E of edges. Then the routine program generates

the vector space associated with the graph and finally Jacobi identities are checked

Figure 7: Digraph of Example 2.

> V:=[1,2,3,4];

> E:={[[1,2],1],[[1,3],1],[[2,4],1],[[3,4],1]};

> DGsetup(program(V,E));

Alg1 > Query(Alg1,"Jacobi");

> false

Since the answer is false, the digraph in Figure 7 is not associated with a 4-

dimensional Lie algebra.
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Abstract

We consider a dynamic gas-liquid transfer model without chemical reaction
based on unsteady film theory. Using an explicit representation of the model, we
study the quadratic optimal control problem. For that, some results on controlla-
bility,observability and stability criteria and the relation between these properties
and the parameters of the model are shown. After, the steady-state solution of
the Riccatti equation is used. And finally, the optimal control problem with a
quadratic cost functional is solved.

Key words: controllability, observability, stability, optimal control, quadratic
cost.

MSC 2000: 34, 93

1 Introduction

Optimal control theory is a mature mathematical discipline with numerous applications
in both science and engineering. The objective of optimal control theory is to determine
the control signals that will cause a process to satisfy the physical constraints and at
the same time minimize (or maximize) some performance criterion. A control problem
includes a cost functional that is a function of state and control variables. An optimal
control is a set of differential equations describing the paths of the control variables
that minimize the cost functional.

One useful part of optimal control theory for ordinary differential equations is the
theory of optimal control of linear differential systems with a quadratic cost criterion.
This theory is also the most complete, both for systems evolving in a finite-time interval
as well as over an infinite-time interval. It is well known that in the finite-time case the
optimal control can be expressed in linear feedback form, where the “feedback gains”
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satisfy a matrix differential equation of Riccati type. In the infinite-time case by using
the theory of controllability, the asymptotic behavior of the controlled system can be
studied and a rather complete solution to the problem is available, see [5] for more
details.

In this paper we solve the optimal control problem when we have a dynamic gas-
liquid reactor. Bubble column reactors are widely used in chemical, petrochemical,
biochemical and metallurgical industries. The absence of moving parts, their low op-
erating and maintenance costs and the excellent mass and heat transfer rates explain
the large number of applications developed with this kind of reactor against the others
[3], [4]. However, the design and scale-up of bubble columns are difficult because of the
complexity of the gas and liquid flow patterns coupled with mass transfer and chemical
reactions. Key factors such as gas hold-up, ε, volumetric mass transfer coefficient, kLa,
specific interfacial area, a, bubble size, r32, and kinetic rate constants, kn, and how
those parameters are related is fundamental for the proper design and the operational
control of gas-liquid reactors.

The classical description of mass transfer processes in gas-liquid reactors makes use
of two spatial-temporal scales which one refers to the physical mass-transfer at the gas-
liquid interface level, i.e. the microscopic model, and the other time scale is referred to
the modelling of the reactor configuration which considers the mixing processes and the
chemicals distribution in the whole volume of the reactor, i.e. the macroscopic model.
Assuming the two-film theory to model the gas-liquid mass transfer at the microscopic
level and an ideal mixing flow reactor model to describe the macroscopic behaviour
of the gas and the liquid phases in the reactor, the simplest gas-liquid mass transfer
model is given by the following system of partial differential equations:

dy(t)
dt

=
RT

PV

1− ε

ε
F1

(
y0

1− y0
U(t)− y(t)

1− y(t)

)
+

RT

P

1− ε

ε
aD

(
∂C(z, t)

∂z

)

z=0

(1)

∂C(z, t)
∂t

= D
∂2C(z, t)

∂z2
∀z ∈ [0, δ] (2)

dCb(t)
dt

= −aD

(
∂C(z, t)

∂z

)

z=δ

with the initial and boundary conditions:

t = 0

∣∣∣∣∣∣

y(0) = 0
C(z, 0) = 0
Cb(0) = 0

(3)

t > 0 C(0, t) =
P

H
y(t)

t > 0 C(δ, t) = Cb(t)

where the state variables of the system are y(t), the gas phase concentration, C(t), the
concentration in the interface of the transferred substance and Cb(t) the concentration
at the liquid bulk. Considering the Method of Lines as an approximate solution of the
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partial differential equation (2) applied to the spatial coordinate z, the system (1-3) is
transformed to the linear system:

ẋ1 =
K1p1

K2 − 1
U(t)− K1p1

K2
x1 −NK3

p1

p2

p3

p4
p5(3x1 − 4x2 + x3)

ẋi = N2 p3

p2
4

(xi−1 − 2xi + xi+1) (4)

ẋN+1 = −N

2
p3

p4
p5 (xN−1 − 4xN + 3xN+1)

where the parameters of the model are defined as:

p1 =
1− ε

ε
p2 = H p3 = D p4 = δ p5 = a

together with the constants:

K1 =
RT

PV

F1

y0
K2 = y−1

0 K3 =
1
2
RT

All the initial conditions of the equations (4) are set to zero, xi(0) = 0, ∀i.
So, the present paper is concerned with a study of the optimal feedback control

problem for the model given in (1) with a quadratic cost using the approximate system
(4). The theory is currently being completed in order to show the relation of the theory
of controllability and observability to the infinite-time quadratic cost problem.

One of the most remarkable results in linear control theory and design is that if
the cost criterion is quadratic, and the optimization is over an infinite horizon, the
resulting optimal control law has many nice properties, including that of closed loop
stability.

For that, we note that optimal control theory is intimately connected no only to
system structural properties of controllability and observability but also to the property
that relates to the system response to inputs or disturbances, the stability. If we want
to study the optimal control problem, the system must be controllable and observable.
The goal in optimal control theory is to transfer a system from an arbitrary initial
state to the origin while minimizing some performance measure. On the other hand,
it is important to note that although practical optimal control systems that minimize
quadratic performance indexes are almost always asymptotically stable.

Remind that a system is controllable, if given two state x0 = x(t0) ∈ Rn and
xf = x(tf ) ∈ Rn, there exists a time tf , with t0 < tf and a control vector u(t) defined
on de interval [t0, tf ] which takes the state vector state from x0 to xf . A system is said
to be observable, if there exist a time tf , with t0 < tf such that given the vectors u(t)
and y(t) over the interval [t0, tf ] it is possible to deduce the initial state-vector x(t0),
see [7] for more details.

Finally, in a chemical process, when two compartments are in contact, they can
achieve equilibrium points. An equilibrium point of system (1) denoted by x∗ ∈ Rn,
verifies x∗ = A(p)x∗, being A(p) the system matrix of model (4). An equilibrium point
x∗ is said to be asymptotically stable if every trajectory starting in a neighborhood of
it is around the x∗and converges on x∗.
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To apply optimal control it is necessary that the model given in (1) being identi-
fiable. The problem of the structural identifiability of the model consists of the deter-
mination of all parameter sets which give the same input-output structure. In the last
years many papers of different fields were published in structural identification, [1] and
[2]. A identifiability relation of the proposed model is given in [6] and this property
gave a relation between some of those parameters.

The main contribution of this paper is a characterization of the sequence of control
to appropriate optimal control. We proposed an approach for solving optimal control
problem for the model described in (1). In particular, we derived the derivatives of the
cost and use optimization techniques to locate the optimal control. To solve this prob-
lem, the system must be controlable, observable and asymptotically stable, we also
study these properties and the relation between them and optimal control problem.
Additionally, we give some conditions on the parameters in order to verify these prop-
erties. The results provide a theoretical foundation for extending the use of numerical
algorithms.
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Abstract

In this paper we introduce a new construction of MDS array codes. In order to
obtain a code with this property, we construct the parity-check matrix just using
a superregular matrix by blocks composed by powers of the companion matrix of
a primitive polynomial.

Key words: Array code, MDS code, superregular matrix, companion matrix,
primitive polynomial

1 Introduction

Array codes are a class of error control codes. They have several applications in com-
munication and storage systems [3, 14, 15] and they have been widely studied [1, 2, 4].
Array codes are very useful to dynamic high-speed storage applications since they have
low-complexity decoding algorithms over small fields and low update complexity when
small changes are applied to the stored data [3]. In general, Reed-Solomon codes have
none of these properties; thus, they are more efficient than Reed-Solomon codes in
computational complexity terms [3, 6]. Furthermore, if they are MDS, they provide
the maximum protection against device failure for a given amount of redundancy [2].
It is possible to find some constructions of this kind of codes in [1, 2, 5, 10, 14, 15]. In
this paper we propose a new construction to obtain array codes which are MDS.

The rest of the paper is organized as follows. In Section 2 we introduce some
notation and recall some properties and definitions. In Section 3 we introduce the
construction of an array code using a superregular matrix and the companion matrix
of a primitive polynomial. Finally, we present some conclusions in Section 4.

2 Preliminaries

Let Fq be the Galois field of q elements and consider b a positive integer. If C is a code
of length n over Fb

q, we can consider the codewords of C as codewords of length nb over
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Fq. Then, a code C is said to be a linear array code of length n over Fb
q if it is a linear

code of length nb over Fq (see [5]). If dim C is the dimension of C as a vector space over
Fq, then k = dim C

b is the normalized dimension of C, and thus, the parameters of
the code over Fb

q are [n, k, d], where d is the minimum distance.

In order for the code to be MDS over Fb
q, the Singleton bound

d ≤ n− k + 1

must be attained [5, 11].
The following two theorems are useful to check whether an array code is MDS or

not.

Theorem 1 ([5]): Let H = (H1, H2, . . . ,Hn) be an rb × nb systematic parity-check
matrix of an Fq-linear [n, n− r] code C over Fb

q, where each Hi is an rb× b submatrix
of H. Then C is MDS if and only if the rb columns of any r distinct submatrices Hi

form a linearly independent set over Fq.

Theorem 2 ([5]): Let H = (A, Irb) be an rb × nb systematic parity-check matrix of
an Fq-linear [n, n − r] code C over Fb

q and write A = (Ai,j)
r,n−r
i,j=1 , where each Ai,j is a

b× b block submatrix of A. Then C is MDS if and only if every square submatrix of A
consisting of full blocks submatrices Ai,j is nonsingular.

Several constructions of MDS block codes based on superregular matrices have
been proposed [8, 13]. Our purpose is to extend these constructions using the charac-
terization given in Theorem 2 in order to obtain array codes which are also MDS.

Definition 1 ([12]): A matrix A is said to be a superregular matrix if every square
submatrix of A is nonsingular.

It is worth pointing out that some authors have used the term superregular to define
a related but different type of matrices, see for instance [7]. This type of matrices is
not suitable to contruct MDS array codes using Theorem 2, as we will see in Example 2
below.

3 Main results

Let p(x) = p0 + p1x + · · · + pb−1x
b−1 + xb ∈ Fq[x]. Remember that the companion

matrix of p(x) is given by

C =



0 0 · · · 0 −p0
1 0 · · · 0 −p1
0 1 · · · 0 −p2
...

...
...

...
0 0 · · · 0 −pb−2
0 0 · · · 1 −pb−1


.
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Moreover, if p(x) is a primitive polynomial, it is well known that (see [9])

Fq[C] = {0, I, C,C2, . . . , Cqb−2} ≈ Fqb . (1)

The isomorphism ψ : Fqb → Fq[C], with ψ(α) = C, where α ∈ Fqb is a primitive
element, can be extended to a ring isomorphism

Ψ : Matm×t(Fqb) −→ Matm×t(Fq[C])

in the following way: if A = (αij) ∈ Matm×t(Fqb), then Ψ(A) = (ψ(αij)) where ψ(αij) ∈
Fq[C] for i = 1, 2, . . . ,m, j = 1, 2, . . . , t.

Theorem 3: If A = (αij) ∈ Matm×t(Fqb) is a superrregular matrix, then H = (A, Ibm),
where A = (ψ(αij)), is the parity check-matrix of an [m+ t, t,m+ 1] MDS array code
C over Fb

q.

Proof: It is sufficient to consider that A ∈ Matm×t(Fqb) is superregular if and only if
A = Ψ(A) ∈ Matm×t(Fq[C]) is superregular by blocks. �

Remember that if we have an MDS block code, the dual code is MDS as well [11].
This result can be extended for array codes. Therefore, the dual code C⊥ of the code
constructed in Theorem 3 is an [m+ t,m, t+ 1] MDS array code over Fb

q.

The following example helps us to understand this construction.

Example 1: Let p(x) = x3 + x+ 1 ∈ F2[x] then

C =

 0 0 1
1 0 1
0 1 0

 .

The matrix A =

(
1 α
1 α3

)
where α ∈ F23 is a primitive element, is a superregular

matrix over F23 . Then, according to Theorem 3 the parity-check matrix of C is given
by

H =

(
I3 C

I6I3 C3

)
=



1 0 0 0 0 1 1 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0

1 0 0 1 0 1 0 0 0 1 0 0
0 1 0 1 1 1 0 0 0 0 1 0
0 0 1 0 1 1 0 0 0 0 0 1

 .

As a code over F2, the parameters of C are n = 12, k = 6 and d = 3. If we consider
this code as an array code over F3

2, the parameters of the code are n = 4, k = 2 and
d = 3. Thus, the code is MDS.
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Furthermore, the generator matrix of C, or equivalently the parity-check matrix of
C⊥, is

G =

(
I6

I3 I3
CT (C3)T

)
=



1 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 1 0 1 1 0
0 0 0 0 1 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1 0 1 1 1


so, the dual code C⊥ is also an MDS array code over F3

2. Its parameters are n = 4,
k = 2 and d = 3 as well. �

Next example shows that the concept of superregular matrix in the sense of [7] is
not suitable for this construction.

Example 2: Let p(x) = x3 + x2 + 1 ∈ F2[x] then

C =

 0 0 1
1 0 0
0 1 1

 .

The matrix A =

(
1 0
1 α

)
where α ∈ F23 is a primitive element, is a superregular

matrix over F23 in the sense of [7]. According to Theorem 3 the parity-check matrix of
C is given by

H =

(
I3 O

I6I3 C

)
=



1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0

1 0 0 0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0 0 1 0
0 0 1 0 1 1 0 0 0 0 0 1

 .

In this case, the parameters of the code over F3
2 are n = 4, k = 2 and d = 2. Conse-

quently, the code is not MDS. �

As we said before, the construction of MDS codes using superregular matrices has
been studied by several authors [8, 13]. We can use some of these constructions to
extend these results for MDS array codes. For example, a Cauchy matrix over Fq is an
m× t matrix A = (αij) with αij = (xi−yj)−1 where xi, yj ∈ Fq satisfying the following
conditions for i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , t}:

• xi 6= yj

• xi 6= xk for k ∈ {1, 2, . . . ,m}\{i}

• yj 6= yl for l ∈ {1, 2, . . . , t}\{j}
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This kind of matrices are superregular matrices [12, 13].
Consider (u1, u2, . . . , um) and (v1, v2, . . . , vt), satisfying the following properties for

i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , t}:

• ui, vj ∈ {0, 1, . . . , qb − 2}

• ui 6= vj

• ui 6= uk for k ∈ {1, 2, . . . ,m}\{i}

• vj 6= vl for l ∈ {1, 2, . . . , t}\{j}

If C is the companion matrix of a primitive polynomial of degree b, according to The-
orem 3, the matrix (M, Ibm), where M = (Mij), with

Mij = (Cui − Cvj )−1

for i = 1, 2, . . . ,m, j = 1, 2, . . . , t, is the parity-check matrix of a [m+ t, t,m+ 1] MDS
array code C over Fb

q.

Example 3: For q = 2 and b = 3, consider (1, 2) and (4, 5, 6). The matrix M is given
by

M =

(
(C − C4)−1 (C − C5)−1 (C − C6)−1

(C2 − C4)−1 (C2 − C5)−1 (C2 − C6)−1

)
.

As a result, the matrix (M, I6) is the parity-check matrix of a [5, 3, 3] MDS array code
over F3

2. �

4 Conclusions

In this paper we have introduced a construction of MDS array codes based on super-
regular matrices. The main idea is replace the elements of a superregular matrix by
powers of the companion matrix of a primitive polynomial. The resultant matrix helps
us to construct the parity-check matrix of an MDS array code.
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1 Introduction

Classical Laguerre polynomials, L
(α)
n (x) = (−1)n

n! xn + . . ., are orthogonal with respect
to the inner product

(p, q) =
1

Γ(α+ 1)

∫ ∞

0
p(x)q(x)xαe−xdx, α > −1. (1)

We know many properties of the sequence of orthogonal polynomials {L(α)
n }n. One of

them is the Mehler–Heine formula (see [5, p.199]), i.e.,

lim
n→∞

L
(α)
n (x/n)

nα
= x−α/2Jα(2

√
x), (2)

uniformly on compact subsets of C, where Jα is the Bessel function of the first kind
given by

Jα(x) =
∞∑
n=0

(−1)n

n! Γ(n+ α+ 1)

(x
2

)2n+α
.
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Thus, if we denote by xn,i the zeros of the classical Laguerre polynomials L
(α)
n (x)

ordered as 0 < xn,1 < xn,2 < . . . < xn,n, and we apply Hurwitz’s Theorem in (2), then
we can deduce

lim
n→∞

nxn,i =
j2α,i
4
, i ≥ 1,

where jα,i are the positive zeros of Jα ordered as 0 < jα,1 < jα,2 < . . . .

On the other hand, in the early 90s Koekoek and Meijer began to modify the
standard inner product (1) by adding derivatives of Dirac delta functions at the point
x = 0 (see [3] or [4]). Thus, we can consider the nonstandard inner product which is
called Sobolev–type inner product

(p, q) =
1

Γ(α+ 1)

∫ ∞

0
p(x)q(x)xαe−xdx+Np′(0)q′(0), N > 0, α > −1. (3)

Asymptotic properties of these polynomials were studied in [1], where Mehler–Heine
type formulas got relevance because they are able to describe precisely the asymptotic
behaviour of the polynomials around the point where we have posed the perturbation.

Let us denote by L
(α,N)
n the orthogonal polynomials with respect to (3). Then, it was

proved in [1] that

lim
n→∞

L
(α,N)
n (x/n)

nα
=

1

α+ 2
(g2(x)− (α+ 2)g1(x)− g0(x)), (4)

uniformly on compact subsets of C, where gi(x) := x−α/2 Jα+2i(2
√
x). It was also

proved in [1] that the function

hα(x) =
1

α+ 2
(g2(x)− (α+ 2)g1(x)− g0(x)) (5)

has only one negative real zero. Thus, denoting by yn,1 < yn,2 < . . . < yn,n the zeros of

L
(α,N)
n , we have

lim
n→∞

nyn,i = hα,i,

where hα,i denotes the i–th real zero of hα.

Now, we wonder about what happens if we pose a sequence of masses {Nn}n in the
inner product (3) instead of a fixed mass N. Thus, the rest of this paper is devoted to
show the changes produced in the Mehler–Heine type formula and in the asymptotic
behaviour of the zeros of the orthogonal polynomials with respect to a varying Sobolev
inner product.

2 Varying Laguerre–Sobolev orthogonal polynomials

We consider a sequence of nonnegative numbers, {Nn}n, such that

lim
n→∞

Nnn
γ = N > 0, γ ∈ R. (6)
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Then, we introduce the varying inner product

(p, q)n =
1

Γ(α+ 1)

∫ ∞

0
p(x)q(x)xαe−xdx+Nnp

′(0)q′(0), α > −1. (7)

We denote by {L(α,Nn)
n }n the sequence of orthogonal polynomials with respect to

(7), and we call them varying Laguerre–Sobolev orthogonal polynomials. The leading

coefficient of the polynomial L
(α,Nn)
n is taken as (−1)n

n! .
Following the paper [4], it is easy to prove

Proposition 1 We have,

L(α,Nn)
n (x) = A0(n)L

(α)
n (x) +A1(n)xL

(α+2)
n−1 (x) +A2(n)x

2L
(α+4)
n−2 (x), n ≥ 0,

where

Ai(n) =
Bi(n)

B0(n)− nB1(n) + n(n− 1)B2(n)
, i = 0, 1, 2, (8)

and

B0(n) = 1− Nn

α+ 1

(
n+ α+ 1
n− 2

)
,

B1(n) = − (α+ 2)Nn

(α+ 1)(α+ 3)

(
n+ α
n− 2

)
,

B2(n) =
Nn

(α+ 1)(α+ 2)(α+ 3)

(
n+ α
n− 1

)
.

Therefore, taking limits in (8) and using (6) we get the following result.

Lemma 1 It holds

lim
n→∞

A0(n) =


− 1

α+ 2
, if γ < α+ 3,

(α+ 1)Γ(α+ 4)−N

D(α,N)
, if γ = α+ 3,

1, if γ > α+ 3.

lim
n→∞

nA1(n) =


−1, if γ < α+ 3,

−N(α+ 2)

D(α,N)
, if γ = α+ 3,

0, if γ > α+ 3.

lim
n→∞

n2A2(n) =


1

α+ 2
, if γ < α+ 3,

N

D(α,N)
, if γ = α+ 3,

0, if γ > α+ 3,

where D(α,N) = (α+ 1)Γ(α+ 4) +N(α+ 2).
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3 Mehler–Heine type formula and zeros

The results in the previous section allow us to obtain the Mehler–Heine type asymp-

totics for the polynomials L
(α,Nn)
n .

Theorem 1 Let {L(α,Nn)
n }n be the sequence of orthogonal polynomials with respect to

(7), and let {Nn}n be the sequence of nonnegative numbers satisfying (6). We denote
gi(x) := x−α/2 Jα+2i(2

√
x). Then, we get

lim
n→∞

L
(α,Nn)
n (x/n)

nα
=

− g0(x) + (α+ 2) g1(x)− g2(x)

α+ 2
, if γ < α+ 3,

((α+ 1)Γ(α+ 4)−N) g0(x)−N(α+ 2)g1(x) +Ng2(x)

D(α,N)
, if γ = α+ 3,

g0(x), if γ > α+ 3,

where D(α,N) = (α+ 1)Γ(α+ 4) +N(α+ 2).

Remark. There are important differences with respect to the particular case Nn = N,
for all n. We recover the result for this case taking γ = 0. For the varying case we have
three cases which are related to the asymptotic behaviour of the sequence of masses
{Nn}n.

• Case γ < α+3. Here we obtain the same Mehler–Heine type formula as the one
obtained in [1], that is, we have (4).

• Case γ > α+ 3. The sequence of the masses does not play any role in this type
of asymptotic behaviour, and the Mehler–Heine type formula is the same as the
one we know for classical Laguerre orthogonal polynomials given in (2).

• Case γ = α+3. That is the most interesting situation, because it is the transition
case between the other two ones. In fact,

lim
N→0

((α+ 1)Γ(α+ 4)−N) g0(x)−N(α+ 2)g1(x) +Ng2(x)

D(α,N)
= g0(x),

lim
N→∞

((α+ 1)Γ(α+ 4)−N) g0(x)−N(α+ 2)g1(x) +Ng2(x)

D(α,N)

= − g0(x) + (α+ 2) g1(x)− g2(x)

α+ 2
.

Thus, in the limit situations (N → 0, and N → ∞) this case transforms itself in
one of the other cases in a smoothing way.
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Castaño–Garćıa, Moreno–Balcázar

Therefore, the asymptotic behaviour of the sequence of masses {Nn}n influences
on this type of asymptotics.

We denote by sn,1 < sn,2 < . . . < sn,n the zeros of L
(α,Nn)
n . Note that the zeros,

yn,i, of L
(α,N)
n are a particular case of these zeros. Now, applying Hurwitz’s Theorem

in Theorem 1, we obtain

Corollary 1 We have,

• If γ < α+ 3,
lim
n→∞

nsn,i = hα,i,

where hα,i denotes the i–th real zero of the function hα defined in (5).

• If γ = α+ 3,
lim
n→∞

nsn,i = kα,i,

where kα,i denotes the i–th real zero of the function

kα(x) := ((α+ 1)Γ(α+ 4)−N) g0(x)−N(α+ 2)g1(x) +Ng2(x).

• If γ > α+ 3,

lim
n→∞

nsn,i =
j2α,i
4
,

where jα,i are the positive zeros of Jα.

All these results appearing here have been obtained for the Doctoral Dissertation
of L. Castaño–Garćıa (see [2]). To finish, we show some numerical experiments. In all
the tables Nn = N

nγ .

Table 1: n sn,i, for α = 2, N = 2.5, and γ = 2.

nsn,1 nsn,2 nsn,3 nsn,4
n=50 -4.67417494 11.78361837 27.67607672 48.18603357

n=100 -4.65064916 11.99470471 28.09657336 48.86487599

n=150 -4.64142765 12.06761219 28.24354141 49.10595374

n=300 -4.63183332 12.14180148 28.39403289 49.35478356

Limit h2,1 = −4.62207114 h2,2 = 12.21727721 h2,3 = 28.54812610 h2,4 = 49.61159809
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Table 2: n sn,i, for α = 2, N = 2.5, and γ = 5.

nsn,1 nsn,2 nsn,3 nsn,4
n=50 6.32483175 17.08681030 32.67713219 53.09435429

n=100 6.41954598 17.33635506 33.13808389 53.81364179

n=150 6.45191350 17.42227844 33.29867796 54.06832509

n=300 6.48469330 17.50963439 33.46292274 54.33088113

Limit k3,1 = 6.51789433 k3,2 = 17.5984621 k3,3 = 33.63093373 k3,4 = 54.60158096

Table 3: n sn,i, for α = 2, N = 2.5, and γ = 6.

nsn,1 nsn,2 nsn,3 nsn,4
n=50 6.40166849 17.20456306 32.80572808 53.22742477

n=100 6.49586617 17.45226673 33.26452025 53.94442724

n=150 6.52805175 17.53756902 33.42438700 54.19834120

n=300 6.56064474 17.62430027 33.58790080 54.46012418

Limit
j22,1
4 = 6.59365410

j22,2
4 = 17.71249972

j22,3
4 = 33.75517721

j22,4
4 = 54.73004728
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Abstract

This paper proposes a distributed computing architecture, named DisCoP, based
on the P2P paradigm. Our proposal gathers the peers into markets according to their
available multi-attribute computational resources. A Hilbert function is used to arrange
multi-attribute markets in an ordered and mono-dimensional space. Each market is
internally grouped in an N-tree, which are linked by a Bruijn graph. The tree topology
allows efficient searching of available resources in a specific market, while Bruijn provides
good scalability as searching complexity does not depend on the number of markets.
This way, the proposed architecture exploits the Bruijn and Hilbert functions to provide
the system with a good locality. The locality feature over a market overlay allows a lack
of resources in a given market to be satisfied quickly by any other market with similar
resources, whenever they are closer to each other. Consequently, locality concern arises
as an essential challenge. According to this, a new procedure to measure locality is
carried out, together with an extensive analysis of the DisCoP locality in relation to
others overlays. Our results reveal the good performance of our proposal with gains of
up to 80% compared with others.

Key words: P2P computing, P2P topologies, locality.

1 Introduction

P2P computing is a distributed computing paradigm that uses Internet to connect thou-
sands or even millions of users into a single large virtual computer based on the sharing of
computational resources [4]. Although the P2P paradigm can not hope to serve as a totally

∗This work was supported by the MEyC-Spain under contract TIN2008-05913, TIN2010-12011-E and the
CUR of DIUE of GENCAT and the European Social Fund
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general-purpose efficient parallel computer, it can still serve as an excellent platform with
unlimited computational resources for solving a wide variety of computational applications.
In order to schedule and execute these applications efficiently, a P2P computing platform
needs a mechanism to search and manage the set of peers, whose available computational
resources (i.e. CPU, Memory or Bandwidth) fit the requirements of the application to be
executed. Taking into account both the large-scale and the mutable amount of computa-
tional resources provided by each peer, resource management in P2P computation becomes
a research challenge [9].

This paper proposes a reliable and scalable platform with a three-layer architecture,
orientated to P2P computing, named DisCoP (Distributed Computing Platform). The top
layer is a Hilbert SFC, which allows peers to be classified into markets according to their
computational attributes. Markets are interconnected by means of a Bruijn graph in the
second layer. Finally, the nodes of the same market are arranged with a tree topology in
the bottom layer.

Grouping peers with similar computational attributes in markets significantly reduces
the search time for the requested computational resources and minimizes unnecessary out-
going queries throughout the network. Unfortunately, the lookup queries are totally unbal-
anced, as those markets made up of peers with the most popular computational resources
are those required most by the platform’s users. Thus, the peers of the most popular mar-
kets are rapidly busied and, as a consequence, a huge avalanche of unsuccessful queries
appears in the system. P2P computing platforms should accordingly provide alternative
resources with capabilities as close as possible to those requested. So locality, thought of in
terms of market proximity, is a key aspect to consider in the design of structured networks
for P2P computing systems. We are interested on the locality defined in [8] as a value that
indicates the closeness of the markets with similar computational resources (called similar
markets henceforth) mapped into a multi-dimensional space using the distances provided
by a specific overlay.

To this end, our paper analyzes the benefits of providing proximity or locality to a
P2P computing environment. In order to do so, a procedure to measure the degree of
locality of any topology is also provided. Based on this, we analyze the locality features
of our proposal in relation to the most widely used topologies, such as Chord [17]. In
addition, we optimize the linkage of similar markets over the DisCoP architecture by means
of adding extra-links, which allow the Hilbert keys (markets) to run throughout the Bruijn
topology. Our simulation results reveal that the interaction between the three levels of
DisCoP architecture (Hilbert, Bruijn and Tree levels) together with the added extra-links
allows the best degree of market locality to be achieved. It means that our proposal locates
similar computing resource providers (markets) as close as possible.

The outline of this paper is as follows; the related work is described in Section 2. Section
3 introduces the proposed DisCoP architecture. The metrics and a procedure for obtaining
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overlay locality is proposed in Section 4. Finally, the main conclusions and future work are
explained in Section 5.

2 Related Work

Recently, several researchers have dedicated their efforts to developing new frameworks
oriented to P2P computing [11, 6, 15, 14, 1]. To our knowledge, the CompuP2P architecture
proposed by Gupta et al. [6] is the most closely related to our work. CompuP2P creates
dynamic markets of network accessible computing resources, connected by means of a Chord
network [17]. Chord is a distributed lookup algorithm based on DHT to locate a node that
stores a particular resource. Unlike the Bruijn graph used in our proposal, the Chord overlay
network does not have a constant degree and as a consequence, the communication speed is
degraded. Likewise, the Chord protocol is not well suited to multi-attribute range queries
since hashing does not preserve locality of data.

To address the locality problem, P2P systems such as SkipNet [7], Graps [16] and
Brocade [18] have emerged [8]. In SkipNet [7], the storing position of resources was limited
and a locality-based routing mechanism proposed. Because the locality information is stored
into the resource name, it is not physical location-based locality but a logical location-based
locality. Like in SkipNet, the nodes of the DisCoP platform have logical locations determined
by the Hilbert ordering.

In Graps [16], the authors proposed a hierarchical virtual network to support lookup ser-
vices. The hierarchical virtual network consists of sub-networks composed of physically close
nodes. The leaders of each sub-network are interconnected by means of a super-network. As
the resources and nodes in a sub-network increase, the leaders of such sub-network sacrifice
load-balancing in the super-network. To solve imbalance, the DisCoP platform arranges the
peers into markets according to their available computational resources, independently of
their physical location. But, when the markets are filled, the nodes are inserted into similar
markets according to the locality metric proposed in this paper.

In Brocade [18], a secondary overlay that exploits knowledge of the underlying network
features, such as bandwidth and capacity, is presented. The secondary overlay builds a lo-
cation layer between super-nodes. By associating local nodes with their nearby super-node,
messages delivered across the wide-area can take advantage of the highly connected network
infrastructure between these super-nodes, greatly reducing point-to-point routing distance
and network bandwidth usage. We expand the Graps and Brocade idea by connecting the
super-peer nodes though a Bruijn graph. In our proposal, super-peers act as managers of
the the bottom layer. The existence of super-peers, who manage a group of peers (in our
case, a market tree) and facilitates trade-off between peers on structured P2P networks, is
an essential issue to be considered for optimizing the locality feature [5].
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Figure 1: DisCoP system architecture.

3 The DisCoP Architecture

Our proposal, named DisCoP (Distributed Computing Platform), is made up of three dif-
ferent layers (Hilbert, Bruijn and Tree). This is depicted in Fig.1. The top layer is a Hilbert
SFC, which allows peers to be classified into markets according to their computational re-
sources. In general, each market Mi of the overlay is identified by k-dimensional coordinates
(X1, .., Xi, .., Xk), where k is the number of computational attributes and Xi ∈ Z+ is the
coordinate of the ith attribute in the range [0, Xmax

i ]. Likewise, it is worth pointing out
that each coordinate Xi has an associated range of values V j

i of such ith attribute, where
0 < V j

i ≤ V max
i , V max

i being the maximum value to be taken by the ith attribute. Fig. 1
(first layer) shows an example of the top layer with k = 2 attributes, CPU and Memory,
with a range of values for CPU and Memory of (0, 4Ghz] and (0, 8GB], respectively. There-
fore, V max

CPU and V max
Memory would be 4Ghz and 8GB, respectively. As we can see in the same

Figure, the top layer of DisCoP associates a Hilbert key Hi to each market Mi. Next, these
Hilbert keys are mapped into the second layer of DisCoP through a Bruijn graph. Finally,
a market of nodes, which are arranged by means of a tree topology, hangs from each Bruin
node. The choice of each level of the DisCoP overlay is discussed and justified below.

The first layer of DisCoP uses a Hilbert Multi-Dimensional Space-Filling Curve
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Graph Degree Diameter
Baton k+1 2logkN

Chord log2N log2N

Pastry (b− 1)logbN logbN

Bruijn k logkN

Viceroy k 2logkN(1− o(1))

Table 1: Degree-diameter complexities.

(SFC) to map the k-dimensional coordinate of each market into a 1D domain identifier,
Hi. As Fig. 1 (first layer) shows, an SFC is a thread that goes through all the points
in a space while visiting each point once. In the P2P computing case, it means that the
k-attributes (computational resources) provided by a node are mapped into a single key,
which represents the identification of the market where the requested resources are available.
A simple example is also depicted in Fig. 1 (first layer). A new peer characterized by the
2-tuple {XCPU = 3, XMem = 1} wishes to be inserted into the system and the Hilbert
SFC returns the key = H12, which identifies such a market with nodes characterized by the
2-tuple {3, 1} (see Fig. 1 (second layer)). It is worth pointing out that our system assumes
that the attribute values are obtained with a specific benchmark tool. The Hilbert SFC
was chosen for our purposes due to the fact that it achieves a better clustering property
[13] than other SFCs widely used in the literature, such as Sweep, Scan, Peano and Gray
[12]. Note that clustering means that the locality between objects in the multi-dimensional
space is also preserved in the linear space. Thus, the SFC key-mapping in the Bruijn graph
is made easier.

The second layer of DisCoP uses a Bruijn graph to arrange markets. The Bruijn graph
is a directed graph with e outgoing and incoming edges at each node (market). Each node
has a unique and fixed length key Hi. The maximum number of markets is N = eD, where
D is the diameter (maximum distances between any two markets). A classic Bruijn for e = 2
and N = 16 is shown in Fig.1 (second layer). From this Figure, we can see the routing
algorithm followed by Bruijn. A node with key Hi is linked to two nodes with keys 2Hi and
2Hi + 1. Bruijn was chosen from among the most widely used P2P topologies, [9, 10], such
as Chord, Baton, Pastry, Bruijn and Viceroy, because it offers the best diameter-degree and
connectivity. This is shown in Tables 1 and 2, where Table 1 shows the asymptotic degree-
diameter properties of the different graphs and Table 2 its graph diameter for a maximum
number of nodes N = 106.

The third level of DisCoP is made up by N-ari Trees, which are used to arrange the
nodes belonging to the same market. This topology was chosen due to its low look-up
complexity (log(NTree)), where NTree is the total number of peers, its constant degree and
its hierarchical topology for managing and maintaining the system-growing capacity. Thus,
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Graph/k 2 3 4 10 20
Baton - 40 26 13 10
Chord - - - - 20
Pastry - - - - 20
Bruijn 20 13 10 6 5
Viceroy 31 20 16 10 8

Table 2: Diameter (N = 106 nodes).

Figure 2: 3-Tree.

the good scalability of the system is favored. Likewise, as we can see in Fig. 2, nodes with
high reputation are located on the higher levels of the tree, close to the root, whereas nodes
with low reputation are located instead on the lower levels. We define reputation as the
time elapsed since the entry of a node into the system. Note that the root node of the tree
obtains information about all the available resources in the market, which is provided by
the DisCoP maintenance system, explained in detail in [2]. Their main drawback is the
congestion of the nodes near the root. Because of this, our architecture assumes that the
size of the tree (market size) is limited. In the same way, our architecture assumes a huge
number of different markets connected through the Bruijn graph.

Given that, our previous works tackled the main functionalities related to the manage-
ment of the peers (insertion, maintenance and departure of peers) at the tree level [3, 2],
the current paper is mainly focused on the interaction between the Hilbert SFC and the
Bruijn graph.

3.1 Adding extra-links

In order to better map the Hilbert keys (market keys) over the Bruijn graph, some extra-
links have been added in the Bruijn overlay. The three layers described above, together
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with the extra-links make up the proposed system architecture of the DisCoP platform.
The Hilbert function assigns contiguous keys to markets with similar resources. For

instance, according to the example in Fig. 1, the market with tuple {0,1} has a key H3,
whereas the market with tuple {0,2} has a key H4. In order to maintain this locality in the
Bruijn graph, a new bi-directional link (called extra-link) was added between two markets
with contiguous Hilbert keys. It means that market H2 will be linked (←→) to market H3

and H3 ←→ H4 ←→ H5 ←→ H6 ←→ .... and so on. This way, the platform can perform
searches for similar attributes with very few hops, taking advantage of the clustering Bruijn
properties.

4 Locality

One of the most desired properties of a P2P overlay is its locality, given that a high locality
will increase the efficiency in the searching of resources throughout the overlay. According to
this, this section is devoted to defining a procedure for obtaining the overlay locality metrics
in a given P2P topology. This procedure is applied to measuring and analyzing the locality
of our proposal (Hilbert and Bruijn) in relation to other two-level overlays, composed by
Hilbert and Chord. Moreover, we will analyze the locality performance of these overlays
when extra-links, described in Section 3.1, are added.

4.1 Overlay Locality Metrics

Taking the described concepts into account, the procedure for obtaining the Locality metrics
for a given overlay O is as as follows:

1. For each market Mi, calculate its set of Similar Markets SMi. Each market Mi has
an associated set of Similar Markets, denoted as SMi, so that two markets are similar
whenever their coordinates differ by exactly one unit in a single attribute. Thus, each
market Mi will have two similar markets (previous and next) for each attribute, except
when the attribute takes an extreme value, 0 or V max, that in both cases only have
one similar market, next or previous, respectively. This is depicted in Table 3.

2. For each market Mi, obtain the Similar Market Distance (SMDi), defined as:

SMDi =
|SMi|∑
k=0

dO(Mi, Mk)
|SMi|

, (1)

where |SMi| is the size of the set SMi and dO(Mi, Mk) is the distance in hops of
the overlay O between market Mi and its similar market Mk ∈ SMi. It is worth
pointing out that this metric depends totally on the overlay O. This way, whenever
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Previous similar market for the ith attribute{
(X1, .., Xi − 1, .., Xk) if Xi > 0
(X1, .., 0, .., Xk) if Xi = 0

Next similar market for the ith attribute{
(X1, .., Xi + 1, .., Xk) if Xi < V max

i

(X1, .., V
max
i , .., Xk) if Xi = V max

i

Table 3: Obtaining the previous and next similar markets for the ith attribute of market
(X1, .., Xi, .., Xk).

Figure 3: Locality process for a two-level overlay.

the overlay is composed of two levels, such as the DisCoP case, this calculation will
imply two different steps. The first one converts the multi-dimensional coordinates
of markets Mi and Mk into one-dimensional coordinates, Hi and Hk respectively, by
means of a SFC Hilbert function. Next, the distance between Hi and Hk, dO(Hi, Hk),
is calculated according to the topology of the second overlay. This process is depicted
in Fig. 3.

3. For a given overlay O, calculate the Mean Market Distance (MMDO), defined as
the mean of the Similar Market Distances (SMDi). This metric provides a way to
assess the absolute locality in function of the distance between similar markets of an
overlay. Thus, the locality increases with the Mean Market Distance. Formally:

Mean Market DistanceO =
∑

i

SMDi

NO
, (2)

where NO is the number of markets in the overlay O and 1 ≤ i ≤ NO.

4. Compute the Relative Locality (RLO) of an overlay, defined as:
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Relative LocalityO =
MMDO

DO
, (3)

where DO is the maximum distance between any pair of markets in the overlay O.
This is the overlay diameter. Note that the RLO is not normalized because this metric
varies in the range

[
1

DO
, 1

]
.

5. Calculate the Normalized Locality (NLO) of an overlay O, defined as:

Normalized LocalityO = 1−
RLO − 1

DO

1− 1
DO

. (4)

Therefore, the values of the NLO metric are normalized in the range [0, 1]; this is:

• NLO = 0 means that the locality degree of the overlay O is null. In this case,
all elements would be at a distance between them equal to DO.

• NLO = 1 means that the degree of locality is maximum. It indicates that the
distance between a given market Mi and all its similar markets is equal to 1.

It is worth pointing out that MMDO gives the real proportions of the magnitude of locality,
while NLO is better for comparing performance between different overlays or combinations
of these.

4.2 Locality Results

In this section, we show how to apply the procedure described above to analyzing the
locality of the DisCoP two-level overlay, made up of the Hilbert and Bruijn overlays, in
relation to other referential two-level topologies, composed of overlays of the Hilbert and
Chord. In addition, we analyze the improvement of the DisCoP locality with the addition
of the extra-links, described in Section 3.1, to the Bruijn graph. Fig. 4 shows an example
of the analyzed overlays with 4 nodes each and 2 links per node. Note that the nodes are
represented by the tuple X1X2/Hi, where X1X2 represents the 2-dimensional notation and
Hi the order in the uni-dimensional Hilbert space. These overlays are scaled by means of
increasing the number of attributes, from 2 to 5, and bits per attribute, between 1 and
5. So, the maximum number of markets was N = 3355443 = (25)5 markets. The locality
performance of each overlay is measured by using the Mean Market Distance (MMD)
and the Normalized Locality (NL) metrics.

Fig. 5(right) and (left) show the MMD results obtained for the HB (Hilbert+Bruijn)
two-level overlay, with and without applying the extra-links, respectively. Notice that HB
topology with extra-links corresponds to the DisCoP case. Comparing both figures shows
how DisCoP obtains an average improvement of 36.7% due to the use of the extra-links.

@CMMSE                                 Page 310 of 1703                                 ISBN: 978-84-614-6167-7



Figure 4: Two-level overlay: (left) Hilbert and Bruijn, (right) Hilbert and Chord.

Figure 5: MMDHB/DisCoP Locality: (left) HB topology and (right) DisCoP (HB with
extra-links) topology.

Fig. 6(right) and (left) show the obtained MMD results for HC (Hilbert+Chord) two-
level overlay, with and without applying the extra-links, respectively; and under the same
conditions described above. In this case, the application of the extra-links again increases
the locality performance by an average of 45.7%.

Finally, the average gains for the NL metric, between all the two-level overlays described
above, are shown in Table 4. Thus, each of the overlays in each row is compared with all
those in each of the columns. In general, we can see that the Hilbert+Bruijn (HB) topology
always behaves better than the Hilbert+Chord (HC) combination. This proves that similar
multi-attributes are always better mapped in Bruijn than Chord. In addition, the Bruijn
gain is obtained with lower links per node, 2, than with Chord, which has log2NHC links per
node. In this sense, it is worth remarking that Bruijn locality improves drastically with the
addition of new links per node (Bruijn degree). Likewise, the application of the extra-links
produces a remarkable gain for both topologies; although this effect is slightly higher in the
HC case, which means that Hilbert locality counteracts the lower Chord locality.
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Figure 6: MMDHC Locality. (left) HC topology, (right) HC topology with extra-links.
Normalized Locality (NL) Gain (in %)

Row vs HB HB with HC HC with
Column extra-links extra-links

HB -64,2% 14,2% -62,9%
HB with extra-links 36,7% 46,3% 0,98%

HC -17,5% -91,15% -89,0%
HC with extra-links 35,8% -1,3% 45,7%

Table 4: Normalized Locality gains between different two-level overlays.

5 Conclusions and Future Work

In this paper, a computing resource management system oriented to P2P computing (Dis-
CoP) is presented. Our proposal is based on an architecture made up of three different
layers: the top layer is a Hilbert function, which classifies the nodes into markets according
to their computational multi-attribute resources, the medium layer is a Bruijn graph, which
links the different markets into a cohesive system and the bottom layer is a set of trees
(markets), where each tree gathers those nodes with similar resources. In order to opti-
mize the Hilbert-Bruijn interaction, some extra-links between two markets with contiguous
Hilbert keys were also added to the Bruijn graph.

A procedure to obtain the locality in P2P topologies is also presented. In doing so,
two metrics to measure the locality degree are proposed. Both proposals have been used to
measure the good election of the DisCoP architecture in terms of locality, defined in this
case in terms of neighboring proximity of the Bruijn nodes. This in turn is equivalent to
measure the proximity of markets. Likewise, our results reveal the locality improvement
produced by the addition of the extra-links to our two-level architecture.
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The future trend is directed towards achieving market balancing depending on the
popularity of using of computational resources. Market trees and consequently the third
level of DisCoP architecture would therefore be balanced.
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[2] D. Castellà, J. Blanco, F. Giné, and F. Solsona. A computing resource discovery
mechanism over a p2p tree topology. In Proceedings of the 9th international conference
on High performance computing for computational science, VECPAR’10, pages 366–
379, 2011.
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Abstract

In this paper a procedure to construct distribution curves on Normal S-P Plots
is provided. These distribution curves are useful to identify viable alternative
probability models if the proposed distribution for the sample observations is
rejected.

Key words: Normal S-P Plots, Distribution Curves

1 Introduction

The Normal Stabilized-Probability Plot or Normal S-P Plot is a probability plot used
to assess the normality of a data set.

If the hypothesis of normality is rejected, it would be useful to have a procedure
to determine an alternative probability model for the sample data. For this reason the
distribution curves appear.

2 Normal S-P Plots

Let {x1, x2, ..., xn} be a simple random sample of size n from a distribution F (x) and
the ordered observations x(i) i = 1, ..., n. Let Φ be the standard normal distribution
function, that is, that with which the distribution of observations is compared.

The aim of the S-P Plots or Stabilized-Probability Plot [1] is to stabilize the variance
of the points in some probability plots, like P-P Plots.

The S-P Plot appears as a transformation of the P-P Plots to stabilize the variance
of the plotted points, i.e., in this type of plot the above mentioned variances are
approximately equal.

In S-P Plots we represent the values

ri =
(

2
π

)
arcsin(

√
pi) i = 1, ..., n
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against

si =
(

2
π

)
arcsin(

√
ui) i = 1, ..., n

where
ui = Φ

(
x(i) − µ

σ

)
i = 1, ..., n

and pi is an appropriate plotting position.
If the theoretical distribution (normal distribution) is a good approximation of

the empirical distribution, plotted points are arranged around the bisectrix of the first
quadrant, i.e., about the line y = x defined between 0 and 1.

In this paper, the plotting position pi proposed by Weibull [2] in (1939) is used1:

pi =
i

n + 1
i = 1, ..., n

3 Distribution Curves for S-P Plots

As stated above, by using the Normal S-P Plot we can assess whether a set of observa-
tions has a normal distribution. If the plotted points do not follow a straight configura-
tion, that indicates that the sample data do not have a normal distribution.

To determine an alternative probability model for the data set, Gan, Koehler and
Thompson (1991) [3] constructed the so-called “distribution curves”applied to the P-P
Plots. These curves allow us to propose an alternative probability model for observa-
tions when the normal distribution is rejected. The idea is to include in the graph
different distribution curves and to study whether the plotted points are close to any of
those curves, so that, it is possible to visually choose an appropriate probability model.

In this paper, we propose to extend the concept of distribution curves to the S-P
Plots.

The procedure to construct a G distribution curve in a Normal S-P Plot for a
location-scale family is the following [4]:

1. Construct a Normal S-P Plot with the sample observations.

2. Select a number k and compute the k plotting position pi, for example, by using
the following expression:

pi =
i

k + 1
i = 1, ..., k

3. Apply the transformation to stabilize the variance:

r∗i =
(

2
π

)
arcsin(

√
pi) i = 1, ..., k

1Although in this paper we have chosen to use the definition proposed by Weibull, other definitions
may also be used. See [4] and [5] for more details.
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4. Obtain the values G−1(r∗i ) for each i = 1, ...k.

5. Use the values obtained in the previous step to calculate the estimates of location-
scale parameters of normal distribution, µ̂ and σ̂.

6. Calculate values
yi = Φ

(
G−1(r∗i )− µ̂

σ̂

)
i = 1, ..., k

7. Apply arcsine transformation to stabilize the variance:

s∗i =
(

2
π

)
arcsin(

√
yi) i = 1, ..., k

8. Plot the pairs of points (r∗i , s
∗
i ) i = 1, ..., k on the Normal S-P Plot of step 1,

joining them to get a smooth curve.

4 Numerical Example

An application of the procedure explained above is presented below by providing the
following example.

We have a simple random sample from a distribution F (x) and we want to know
if the sample observations have a normal distribution.

Figure 1 shows a Normal S-P Plot together with the sample observations and four
distribution curves for four different probability distributions: Exponential, Uniform,
Cauchy and Gumbel distributions. In this example a value of k = 100000 has been
used.

Figure 1: Normal S-P Plot and Distribution Curves
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First, it can be clearly seen that the sample data do not have a rectilinear configura-
tion in the S-P Plot, so these observations are not normally distributed.

By observing the different distribution curves, we conclude that the Cauchy distribu-
tion would be a good candidate as an alternative probability model for the sample data.
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Abstract

In this paper, we establish an axiomatic model of multi-measures, capturing some
classes of measures studied in the fuzzy sets literature, where they are applied to only one
or two arguments. Specifically, we look at multi-measures for determining the degrees
of incompatibility and supplementarity between any number of fuzzy sets. Additionally,
we introduce multi-measures for ranking their opposite properties, that is, compatibility
and unsupplementarity.
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1 Introduction

Traditionally, a measure has been defined as a real-valued set function on Boolean alge-
bras or on σ-algebras of classical sets and, more recently, on fuzzy sets (like vagueness or
ambiguity measures, etc.). However there are other measurable properties that it makes
sense to apply on not only one but also two or more sets. Several works concerning how to
measure the contradiction, the incompatibility or the supplementarity, among other prop-
erties, between two fuzzy sets have already been published in this respect. Nevertheless, it
might be worth studying these properties for more than two fuzzy sets, since we are left
wondering how incompatible or supplementary a set of n fuzzy premises is. This is why
multi-argument functions should be addressed.

Of the multi-argument functions, aggregation functions [3, 6, 9] deserve a special men-
tion. Their purpose is to combine several inputs into a single output. The nature of the
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inputs depends on the context: they can be degrees of membership in fuzzy sets, degrees of
preference, and so on. They play a significant role in many applications, which has driven
their constant growth. They are useful in different areas like multi-criteria decision making,
group decision making, fuzzy logic and rule-based systems, etc.

Other works have dealt with other kinds of multi-argument functions. In this respect,
consider Mart́ın and Mayor’s recent papers on multi-distances [10] introducing a way to
measure “how separated” the points of a collection of more than two elements are.

The main aim of this paper is to establish a general axiomatic model of multi-argument
measures in order to capture some measures that we have examined previously and, in
particular, incompatibility measures [7, 8] and supplementarity measures [8].

The remainder of the paper is organized as follows. Section 2 provides the axioms or
conditions of multi-measures and describes some examples. Section 3 focuses on two multi-
measures on the lattice of fuzzy sets with the order induced by the order of real numbers,
whereas Section 4 studies two multi-measures on the lattice again composed of fuzzy sets
but with the order induced by the reverse order of the real numbers. Finally, the paper
ends with a summary of the results, and some future lines of research.

2 Multi-argument measures on lattices

Let L = (L,≤L, 0L, 1L) (or simply (L,≤L)) be a bounded lattice [4, 5] whose minimum and
maximum elements are denoted by 0L and 1L, respectively. For each n ∈ N, let us consider
the set

Ln = {(a1, . . . , an) | ai ∈ L, ∀i ∈ {1, . . . , n}}

and the order relation ≤n induced by ≤L, that is, given ā = (a1, . . . , an), b̄ = (b1, . . . bn) ∈
Ln,

ā ≤n b̄ ⇐⇒ ai ≤L bi, ∀i ∈ {1, . . . , n}.

We have that Ln with the order relation ≤n is also a bounded lattice, whose minimum
element is 0Ln = (0L,

n). . ., 0L) and whose maximum element is 1Ln = (1L,
n). . ., 1L), and we

say that Ln = (Ln,≤n, 0Ln , 1Ln) is induced by L. Moreover, if L is complete, then Ln is
also complete.

Definition 2.1. Let L = (L,≤L, 0L, 1L) be a bounded lattice. Also, for each n ∈ N, let
Ln = (Ln,≤n, 0Ln , 1Ln) be the lattice induced by L. Consider the bounded and complete
lattice of real numbers ([0, 1],≤, 0, 1). A map M :

⋃
n∈N L

n → [0, 1] is said to be a multi-
argument ≤L-measure or multi-measure on (L,≤L) (or, simply, on L if there is not likely
to be confusion) if, for each n ∈ N, the function restriction of M to Ln, M |Ln , satisfies:

i) (Boundary conditions) M(0Ln) = 0 and M(1Ln) = 1.
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ii) (Monotony condition) For all ā, b̄ ∈ Ln such that ā ≤n b̄, M(ā) ≤ M(b̄); that is,
for each n, M is increasing with respect to the orders of the lattices (Ln,≤n) and
([0, 1],≤).

Moreover,

iii) M is increasing with respect to the argument n or n-increasing if M(a1, . . . , an) ≤
M(a1, . . . , an, an+1) holds for all n ∈ N and for all a1, . . . , an, an+1 ∈ L.

iv) M is decreasing with respect to the argument n or n-decreasing if M(a1, . . . , an) ≥
M(a1, . . . , an, an+1) holds for all n ∈ N and for all a1, . . . , an, an+1 ∈ L.

Remark 2.2. If M is a multi-measure on (L,≤L), note that:

1. M is n-increasing if and only if M(ā) ≤M(ā, b̄) holds for all n,m ∈ N and for all ā =
(a1, . . . , an) ∈ Ln and b̄ = (b1, . . . , bm) ∈ Lm, where (ā, b̄) denotes (a1, . . . , an, b1, . . . , bm) ∈
Ln+m.

2. M is n-decreasing if and only if M(ā) ≥ M(ā, b̄) holds for all n,m ∈ N and for all
ā ∈ Ln and b̄ ∈ Lm.

Example 2.3. Let X be a non-empty and finite set, and let P(X) denote the set of all
subsets of X, that is, the power set of X. Consider the bounded lattice (P(X),⊆, ∅, X),
which is, in fact, a Boolean algebra, and let us define two multi-argument measures on
(P(X),⊆).

a) Let MI :
⋃
n∈N
P(X)n → [0, 1] be the map defined for each (A1, . . . , An) ∈ P(X)n as

MI(A1, . . . , An) =
|A1 ∩ · · · ∩An|

|X|
,

where |A| means cardinal of the set A. Then MI satisfies:

i) MI(∅, . . . , ∅) = 0 for all n-tuple of empty sets; and MI(X, . . . ,X) = 1 for all n-tuple
of elements X.

ii) MI(Ā) ≤ MI(B̄) holds for all n ∈ N and for all Ā= (A1, . . . , An), B̄= (B1, . . . , Bn) ∈
P(X)n such that Ai ⊆ Bi for each i ∈ {1, . . . , n}.

iv) MI(A1, . . . , An, An+1) ≤MI(A1, . . . , An) for all n ∈ N and for all A1, . . . , An, An+1 ∈
P(X).
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Hence, MI is an n-decreasing multi-argument ⊆-measure on P(X); it provides a measure
of the size of the intersection of any finite family of subsets of X.

b) Let MU :
⋃
n∈N
P(X)n → [0, 1] be the map defined for each (A1, . . . , An) ∈ P(X)n as

MU (A1, . . . , An) =
|A1 ∪ · · · ∪An|

|X|
.

Then, MU also satisfies axioms i and ii of the multi-argument measure and, moreover,
axiom iii, therefore MU is an n-increasing multi-argument ⊆-measure on P(X); it provides
a measure of the size of the union of any finite family of subsets of X. C

Example 2.4. Any aggregation function is a multi-argument measure on ([0, 1],≤). Indeed,
recall that an aggregation function [3, 6, 9] is a map A :

⋃
n∈N

[0, 1]n → [0, 1] such that

1. A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

2. A(a) = a for all a ∈ [0, 1].

3. For all n ∈ N and for all ā = (a1, . . . , an), b̄ = (b1, . . . , bn) ∈ [0, 1]n such that ai ≤ bi
with i = 1, . . . , n, A(ā) ≤ A(b̄) holds. C

Thus, the occurrence of symmetric aggregation functions suggests the following defini-
tion. We denote Sn = {π : {1, . . . , n} → {1, . . . , n} |π is a bijection}, that is, Sn is the set
of permutations of {1, . . . , n}.

Definition 2.5. A multi-argument measure M on a bounded lattice (L,≤L) is symmetric if,
for each n ∈ N, the function M |Ln is symmetric, that is, M(a1, . . . , an) = M(aπ(1), . . . , aπ(n))
holds for any π ∈ Sn and for any (a1, . . . , an) ∈ Ln.

Example 2.6. The maps MI and MU defined in Example 2.3 are both symmetric multi-
measures on P(X). C

Example 2.7. The aggregation functions Max,Min :
⋃
n∈N[0, 1]n → [0, 1], defined as

Max(a1, . . . , an)=max{a1, . . . , an} and Min(a1, . . . , an) = min{a1, . . . , an} for each (a1, . . . , an)∈
[0, 1]n, are symmetric multi-measures on ([0, 1],≤).

Nevertheless, for each k∈N\ {1}, the function Ak :
⋃
n∈N[0, 1]n → [0, 1], defined as

A(a1, . . . , an) = a1

n∏
i=2

aki

for each (a1, . . . , an) ∈ [0, 1]n, is a non-symmetric multi-measure on ([0, 1],≤)
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In what follows, we study the particular instance of multi-measures on fuzzy set lattices:
if X is a non-empty set, the set of all fuzzy sets on X is identified with the set of all its
membership functions, L = [0, 1]X , with an order relation � such that L = ([0, 1]X ,�
, µ∧, µ∨) is a bounded lattice, where µ∧ and µ∨ denote the minimum and maximum elements,
respectively. For each n ∈ N, if In denotes [0, 1]n, lattice L induces the bounded lattice

Ln = (IXn ,�n, µ̄∧, µ̄∨) as IXn = ([0, 1]n)X = [0, 1]X× n). . . ×[0, 1]X . Thus, a multi-measure
on ([0, 1]X ,�) is a multi-argument function M :

⋃
n∈N

IXn → [0, 1] where i) M(µ̄∧) = 0 and

M(µ̄∨) = 1; and ii) M(µ̄) ≤M(σ̄) holds for all µ̄, σ̄ ∈ IXn such that µ̄ �n σ̄.

3 Multi-measures on lattice ([0, 1]X,≤)

In this section, we deal with multi-measures on ([0, 1]X ,�) when � is the order induced by
the usual order on the real line, that is, if µ, σ ∈ [0, 1]X , µ � σ if and only if µ(x) ≤ σ(x)
for all x ∈ X; and we naturally denote this by µ ≤ σ. In this case, µ∧ = µ∅ and µ∨ = µX ,
and thus L = ([0, 1]X ,≤, µ∅, µX).

Let us look at two types of multi-measures on ([0, 1]X ,≤): multi-measures that evaluate
how compatible a set of fuzzy sets is and multi-measures that evaluate how supplementary
the set is. Remember that, in classical logic, two statements are compatible if they can
both be true at the same time. As we can identify a statement on a universe X with the set
of elements of X that satisfy that statement, we can translate this concept to set theory:
A,B ⊂ X are compatible if A∩B 6= ∅. On the other hand, supplementarity can, in a sense,
be understood as a symmetric property of incompatibility: A an B are supplementary if
A ∪ B = X. These concepts are extended to the fuzzy set framework and studied in the
following sections.

3.1 Compatibility multi-measures on fuzzy sets

In order to define compatible fuzzy sets, we need a function that models the intersection
of fuzzy sets, that is, a t-norm. Remember that a t-norm [1, 2, 11] is a binary aggregation
function T on the unit interval [0, 1], which is commutative, associative, monotone increasing
with respect to the usual order on the real line, and whose neutral element is 1. As in
the classical case, given a t-norm T , two fuzzy sets on X, or their membership functions
µ, σ ∈ [0, 1]X , are T -compatible if T (µ, σ) 6= µ∅, where T (µ, σ) ∈ [0, 1]X is defined by
T (µ, σ)(x) = T (µ(x), σ(x)) for each x ∈ X. This can be generalized similarly as follows.

Definition 3.1. Given X 6= ∅ and a t-norm T , then

1. {µ} ⊂ [0, 1]X is said to be T -compatible if µ 6= µ∅.

2. If n > 1, {µ1, . . . , µn} ⊂ [0, 1]X is said to be T -compatible if T (µ1, . . . , µn) 6= µ∅.
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The following definition determines the conditions that a multi-argument function must
satisfy to fittingly assign a degree of compatibility to every {µ1, . . . , µn} ⊂ [0, 1]X .

Definition 3.2. Let T be a t-norm and X 6= ∅. A function CT :
⋃
n∈N IXn → [0, 1] is a T -

compatibility multi-measure on [0, 1]X if it is a symmetric and n-decreasing multi-measure
on ([0, 1]X ,≤) satisfying CT (µ1, . . . , µn) = 0, provided that {µ1, . . . , µn} ⊂ [0, 1]X satisfies
T (µ1, . . . , µn) = µ∅.

Remark 3.3. Note that CT is a T -compatibility multi-measure on [0, 1]X if and only if it
satisfies the following axioms:

ci) CT (µX ,
n). . ., µX) = 1 for each n ∈ N.

c.ii) If {µ1, . . . , µn} ⊂ [0, 1]X is not T -compatible, then CT (µ1, . . . , µn) = 0.

c.iii) CT (µ1, . . . , µn) = CT (µπ(1), . . . , µπ(n)) holds for all π ∈ Sn and µ1, . . . , µn ∈ [0, 1]X .

c.iv) If µ1, . . . , µn, σ1, . . . , σn ∈ [0, 1]X satisfy µi ≤ σi for all i ∈ {1, . . . , n}, then CT (µ1, . . . , µn) ≤
CT (σ1, . . . , σn).

c.v) CT (µ1, . . . , µn+1) ≤ CT (µ1, . . . , µn) holds for all n ∈ N and µ1, . . . , µn+1 ∈ [0, 1]X .

As is well known, if ϕ ∈ A([0, 1]) = {ψ : [0, 1] → [0, 1] |ψ is an increasing bijection}
and T is a t-norm, then Tϕ : [0, 1]2 → [0, 1] defined for each (a, b) ∈ [0, 1]2 by Tϕ(a, b) =
ϕ−1(T (ϕ(a), ϕ(b))) is also a t-norm, and we say that it is the t-norm ϕ-conjugated with T .
One of the main t-norms is the so-called Lukasiewicz t-norm that is defined for each (a, b) ∈
[0, 1]2 by TL(a, b) = max{0, a+ b−1}. Moreover, if TϕL is the t-norm ϕ-conjugated with TL,
then TϕL (a1, . . . , an) = ϕ−1(max{0, ϕ(a1) + · · ·+ϕ(an)− (n− 1)}) for all a1, . . . , an ∈ [0, 1].
For more details about t-norms see [1, 2].

Given {µ1, . . . , µn} ⊂ [0, 1]X , since TϕL (µ1, . . . , µn) 6= µ∅ if and only if there exists x ∈ X
such that

∑n
i=1 ϕ(µi(x)) > n − 1, then a natural way to measure the TϕL -compatibility of

{µ1, . . . , µn} could be to conveniently take into account the difference between
∑n

i=1 ϕ(µi(x))
and n− 1, as follows.

Proposition 3.4. Let X 6= ∅ and ϕ ∈ A([0, 1]). The function CϕL :
⋃
n∈N IXn → [0, 1] defined

for each µ̄ = (µ1, . . . , µn) ∈ IXn , by

CϕL(µ̄) = max

{
0, sup
x∈X

n∑
i=1

ϕ(µi(x))− (n− 1)

}

is a TϕL -compatibility multi-measure on [0, 1]X
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Proof. First, note that CϕL is well defined; indeed, since
∑n

i=1 ϕ(µi(x)) ≤ n then
∑n

i=1 ϕ(µi(x))−
(n− 1) ≤ 1.

Axioms c.i and c.iii follow straightforwardly from the definition of CϕL. Regarding
axiom c.ii, if µ = µ∅, then CϕL(µ) = 0; if µ̄ ∈ IXn satisfies TϕL (µ1, . . . , µn) = µ∅, then∑n

i=1 ϕ(µi(x)) ≤ n− 1 for all x ∈ X and thus CϕL(µ̄) = 0. CϕL is monotonic increasing: given
µ̄ = (µ1, . . . , µn), σ̄ = (σ1, . . . , σn) ∈ IXn such that µi ≤ σi for every i ∈ {1, . . . , n}, as ϕ is

increasing, then
n∑
i=1

ϕ(µi(x)) ≤
n∑
i=1

ϕ(σi(x)) and thus CϕL(µ̄) ≤ CϕL(σ̄).

Finally, CϕL is n-decreasing: given n ∈ N and µ1, . . . , µn, µn+1 ∈ [0, 1]X , it follows that

CϕL(µ1, . . . , µn+1) ≤ CϕL(µ1, . . . , µn) as
n+1∑
i=1

ϕ(µi(x)) ≤
n∑
i=1

ϕ(µi(x)) + 1.

3.2 Supplementary multi-measures on fuzzy sets

As applies in the case of compatible fuzzy sets, we need a tool to model the union of fuzzy
sets in order to define supplementary fuzzy sets, and t-conorms are suitable functions for
this purpose. Remember that a t-conorm [1, 2] is a binary aggregation function S on the
unit interval [0, 1], which is commutative, associative, monotone increasing with respect
to the usual order on the real line, whose neutral element is 0. Given a t-conorm S, two
fuzzy sets on X or their membership functions µ, σ ∈ [0, 1]X are S-supplementary [8] if
S(µ, σ) = µX , where S(µ, σ) ∈ [0, 1]X is defined by S(µ, σ)(x) = S(µ(x), σ(x)) for each
x ∈ X. This can be generalized similarly as follows.

Definition 3.5. Given X 6= ∅ and a t-conorm S, then

1. {µ} ⊂ [0, 1]X is said to be S-supplementary if µ = µX .

2. If n>1, {µ1,. . . , µn}⊂ [0, 1]X is said to be S-supplementary if S(µ1, . . . , µn) = µX .

Definition 3.6. Let S be a t-conorm and X 6= ∅. A function SS :
⋃
n∈N IXn → [0, 1] is

an S-supplementarity multi-measure on [0, 1]X if it is a symmetric and n-increasing multi-
measure on ([0, 1]X ,≤) satisfying SS(µ1, . . . , µn) = 0 provided that {µ1, . . . , µn} ⊂ [0, 1]X

is not S-supplementary.

Remark 3.7. Note that SS is an S-supplementarity multi-measure on [0, 1]X if and only
if:

s.i SS(µX ,
n). . ., µX) = 1 for each n ∈ N.

s.ii If {µ1, . . . , µn} ⊂ [0, 1]X is not S-supplementary, then SS(µ1, . . . , µn) = 0.

s.iii SS(µ1, . . . , µn) = SS(µπ(1), . . . , aπ(n)) holds for all π ∈ Sn and µ1, . . . , µn ∈ [0, 1]X .

s.iv If µ1, . . . , µn, σ1, . . . , σn ∈ [0, 1]X satisfy µi ≤ σi for all i ∈ {1, . . . , n}, then SS(µ1, . . . , µn) ≤
SS(σ1, . . . , σn).
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s.v SS(µ1, . . . , µn) ≤ SS(µ1, . . . , µn+1) holds for all n ∈ N and µ1, . . . , µn+1 ∈ [0, 1]X.

As in the t-norm case, if ϕ ∈ A([0, 1]) and S is a t-conorm, the function defined for each
(a, b) ∈ [0, 1]2 by Sϕ(a, b) = ϕ−1(S(ϕ(a), ϕ(b)) is also a t-conorm, the t-conorm ϕ-conjugated
with S. The Lukasiewicz t-norm has a dual t-conorm defined for each (a, b) ∈ [0, 1] by
SL(a, b) = min{1, a + b}. Moreover, if SϕL is the t-conorm ϕ-conjugated with SL, then
SϕL(a1, . . . , an) = ϕ−1(min{1, ϕ(a1) + · · ·+ ϕ(an)}) for all a1, . . . , an ∈ [0, 1].

To find a way to measure the SϕL-supplementarity of {µ1, . . . , µn} ⊂ [0, 1]X , note that
SϕL(µ1, . . . , µn) = µX if and only if

∑n
i=1 ϕ(µi(x)) ≥ 1 for all x ∈ X; hence we can fittingly

use the difference between 1 and
∑n

i=1 ϕ(µi(x)). So, we can prove the following result.

Proposition 3.8. Let X 6= ∅ and ϕ ∈ A([0, 1]). Let SϕL :
⋃
n∈N IXn → [0, 1] be the function

defined:

1. For each µ ∈ [0, 1]X , by SϕL(µ) =

{
1 if µ = µX

0 if µ 6= µX ,

2. For each µ̄ = (µ1, . . . , µn) ∈ IXn with n > 1, by

SϕL(µ̄) = min

{
1,max

{
0, inf
x∈X

n∑
i=1

ϕ(µi(x))− 1

}}
.

Then SϕL is an SϕL-supplementarity multi-measure on [0, 1]X .

Remark 3.9. We have that SϕL(µ1, µ2) = max {0, infx∈X(ϕ(µ1(x)) + ϕ(µ2(x)))− 1} for
each (µ1, µ2) ∈ IX2 , thus the restriction of SϕL to IX2 = [0, 1]X×[0, 1]X is an SϕL-supplementarity
measure regarding the definition reported in [8].

4 Multi-measures on lattice ([0, 1]X,≥)

In this section, we deal with multi-measures on ([0, 1]X ,�) when � is the order induced
by the usual reverse order of the real line, that is, if µ, σ ∈ [0, 1]X , µ � σ if and only if
µ(x) ≥ σ(x) for all x ∈ X; and we naturally denote this by µ ≥ σ. In this case, µ∧ = µX
and µ∨ = µ∅, where, for all x ∈ X, µX(x) = 1 and µ∅(x) = 0, then the lattice L is
([0, 1]X ,≥, µX , µ∅).

Let us look at two types of multi-measures on ([0, 1]X ,≥): multi-measures that evaluate
how incompatible a set of fuzzy sets is and multi-measures that evaluate how unsupplemen-
tary the set is, where the concepts of incompatibility and unsupplementarity are opposite to
compatibility and supplementarity, respectively. That is, given a t-norm T and a t-conorm
S, {µ1, . . . , µn} ⊂ IXn is T -incompatible if it is not T -compatible, and it is S-unsupplementary
if it is not S-supplementary.
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4.1 Incompatibility multi-measures on fuzzy sets

Although the concepts of compatibility and incompatibility are opposites, the negation of
a compatibility measure cannot be used to assign degrees of incompatibility. Indeed, let CT
be a non-trivial T -compatibility multi-measure, that is, at least it takes a value a ∈ (0, 1),
and let N be any strong negation [12] (i.e., N : [0, 1]→ [0, 1] is an involutive and decreasing
bijection); if a is achieved on µ̄ ∈ IXn , then 0 < CT (µ̄) = a < 1, and it follows from axiom
ii of Remark 3.3 that µ̄ is T -compatible, and also 0 = N(1) < N(CT (µ̄)) < N(0) = 1
holds. Thus N(CT (µ̄)) cannot be considered as a degree of the T -incompatibility of µ̄ since
the incompatibility measure of compatible sets should be 0. Therefore, it makes sense to
propose a mathematical model for the study of the incompatibility.

Definition 4.1. Let T be a t-norm and X 6= ∅. A function IT :
⋃
n∈N IXn → [0, 1] is

a T -incompatibility multi-measure on [0, 1]X if it is a symmetric and n-increasing multi-
measure on ([0, 1]X ,≥) satisfying IT (µ1, . . . , µn) = 0, provided that {µ1, . . . , µn} ⊂ [0, 1]X

is T -compatible.

Remark 4.2. Note that IT is a T -incompatibility multi-measure on fuzzy sets on X if and
only if:

ic.i IT (µ∅,
n). . ., µ∅) = 1 for each n ∈ N.

ic.ii If {µ1, . . . , µn} ⊂ [0, 1]X is T -compatible, then IT (µ1, . . . , µn) = 0.

ic.iii IT (µ1, . . . , µn) = IT (µπ(1), . . . , µπ(n)) holds for all π ∈ Sn and µ1, . . . , µn ∈ [0, 1]X .

ic.iv If µ1, . . . , µn, σ1, . . . , σn ∈ [0, 1]X satisfy µi ≤ σi for all i ∈ {1, . . . , n}, then IT (σ1, . . . , σn) ≤
IT (µ1, . . . , µn).

ic.v IT (µ1, . . . , µn) ≤ IT (µ1, . . . , µn+1) holds for all n ∈ N and µ1, . . . , µn+1 ∈ [0, 1]X .

As in the case of compatibility, if TϕL is the t-norm ϕ-conjugated with the Lukasiewicz t-
norm, taking into account that TϕL (µ1, . . . , µn) = µ∅ if and only if

∑n
i=1 ϕ(µi(x)) ≤ n−1, we

can find a TϕL -incompatibility multi-measure by fittingly considering the difference between
n− 1 and

∑n
i=1 ϕ(µi(x)), and thus we can prove the following result.

Proposition 4.3. Let X 6= ∅ and ϕ ∈ A([0, 1]). Let IϕL :
⋃
n∈N IXn → [0, 1] be the function

defined:

1. For each µ ∈ [0, 1]X , by IϕL(µ) =

{
1 if µ = µ∅

0 if µ 6= µ∅,

2. For each µ̄ = (µ1, . . . , µn) ∈ IXn with n > 1, by

IϕL(µ̄) = min

{
1,max

{
0, (n− 1)− sup

x∈X

n∑
i=1

ϕ(µi(x))

}}
.
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Then IϕL is a TϕL -incompatibility multi-measure on [0, 1]X .

Remark 4.4. We have that IϕL(µ,µ2) = max {0, 1− supx∈X(ϕ(µ1(x)) + ϕ(µ2(x)))} for each
(µ1, µ2) ∈ IX2 , thus IϕL |[0,1]X×[0,1]X is a TϕL -incompatibility measure regarding the definition
reported in [7].

4.2 Unsupplementarity multi-measures on fuzzy sets

As for incompatibility, although unsupplementary is the opposite to supplementary, it is not
possible to assign degrees of unsupplementarity by means of a negation of a supplementarity
multi-measure. Hence we establish a mathematical model to measure the unsupplementarity
property.

Definition 4.5. Let S be a t-conorm and X 6= ∅. A function UT :
⋃
n∈N IXn → [0, 1] is an

S-unsupplementarity multi-measure on [0, 1]X if it is a symmetric and n-decreasing multi-
measure on ([0, 1]X ,≥) satisfying US(µ1, . . . , µn) = 0, provided that {µ1, . . . , µn} ⊂ [0, 1]X

is S-supplementary.

Remark 4.6. Note that US is an S-supplementarity multi-measure on [0, 1]X if and only
if:

us.i US(µ∅,
n). . ., µ∅) = 1 for each n ∈ N.

us.ii If {µ1, . . . , µn} ⊂ [0, 1]X is S-supplementary, then US(µ1, . . . , µn) = 0.

us.iii US(µ1, . . . , µn) = US(µπ(1), . . . , µπ(n)) holds for all π ∈ Sn and µ1, . . . , µn ∈ [0, 1]X .

us.iv If µ1, . . . , µn, σ1, . . . , σn ∈ [0, 1]X satisfy µi ≤ σi for all i ∈ {1, . . . , n}, then US(σ1, . . . , σn) ≤
US(µ1, . . . , µn).

us.v US(µ1, . . . , µn+1) ≤ US(µ1, . . . , µn) holds for all n ∈ N and µ1, . . . , µn+1 ∈ [0, 1]X .

As in the case of supplementarity, if SϕL is the t-conorm ϕ-conjugated with the Lukasiewicz
t-conorm, taking into account that SϕL(µ1, . . . , µn) = µX if and only if

∑n
i=1 ϕ(µi(x)) ≥ 1

for all x ∈ X, we can use the difference between
∑n

i=1 ϕ(µi(x)) and 1 to assign degrees of
SϕT -unsupplementarity. So, we can prove the following result.

Proposition 4.7. Let X 6= ∅ and ϕ ∈ A([0, 1]). The function UϕL :
⋃
n∈N IXn → [0, 1] defined

for each µ̄ = (µ1, . . . , µn) ∈ IXn , by

UϕL (µ̄) = max

{
0, 1− inf

x∈X

n∑
i=1

ϕ(µi(x))

}

is an SϕL-unsupplementarity multi-measure on [0, 1]X
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Conclusions

In this paper, we first introduced an axiomatic model of multi-measures on the bounded
lattice structure, illustrating some examples in lattices of classical sets. Then, we studied
two types of multi-argument measures in the particular case of the lattice of fuzzy sets
([0, 1]X ,≤), multi-measures of T -compatibility and S-supplementarity. Finally, we tackled
two multi-measures on ([0, 1]X ,≥), capable of ranking their opposite properties, that is,
compatibility and unsupplementarity. They all assume the classical case. We identified
four types of multi-measures, taking any t-norm T or t-conorm S conjugated with the
respective Lukasiewicz t-norms or t-conorms.

In the future, we intend to study the possible relations between given pairs of multi-
measures, as well as searching other measures referred to t-norms and t-conorms that are
not examined in this article.
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Abstract

Minimal faithful unitriangular matrix representations of filiform Lie algebras

are computed in this paper. These representations are obtained by using nilpotent

Lie algebras gn, of n×n strictly upper-triangular matrices. This family of algebras

allows to represent a given (filiform) nilpotent Lie algebra as a subalgebra of gn
for some n ∈ N \ {1}. In this sense, for a given filiform Lie algebra, we search the

lowest natural integer n such that the Lie algebra gn contains this algebra as a

subalgebra. In addition, we compute a representative of these representations too.

It is convenient to note that all the computations in this paper have been carried

out by using MAPLE 12.

Key words: Filiform Lie Algebra, Minimal Faithful Unitriangular Matrix Rep-

resentation, Algorithm.

MSC 2000: 17B30, 17B15, 17B45, 68W30, 68W05.

1 Introduction

Filiform Lie algebras constitute a very special subclass of nilpotent Lie algebras. In fact,
they are the most structured Lie algebras in the nilpotent class and were introduced by
Vergne [10] in 1966. A well-known result about nilpotent Lie algebras states: Given a
finite-dimensional nilpotent Lie algebra g, there exists n ∈ N such that g is isomorphic
to a subalgebra of the algebra gn, of n×n strictly upper-triangular matrices [9, Theorem
3.6.6]. Therefore, a very interesting question for a given finite-dimensional filiform Lie
algebra is the following: Determine the minimal n ∈ N such that gn contains this
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Lie algebra g as a subalgebra (i.e. obtain the minimal faithful unitriangular matrix
representation of the algebra).

At this respect, Benjumea et al. [1] already obtained an algorithmic method to
compute explicitly minimal unitriangular matrix representations of filiform Lie alge-
bras and their associated Lie groups. However, they only computed representations
explicitly for giving examples of application of the method in dimension less than 6.
Later, Benjumea et al. [2] gave the list of minimal faithful unitriangular matrix repre-
sentations for nilpotent Lie algebras of dimension less than 6. Nevertheless, they left
open the following question: What Lie algebras have an n-dimensional representation
for arbitrary dimensions? In this paper, we will study which filiform Lie algebras satisfy
that property, giving minimal faithful unitriangular representations in the case of both
model algebras and non-model ones.

Other authors, like Burde [4] or Ghanam et al. [8], studied the minimal dimension
µ(g) for the representations of a given Lie algebra g. However, these authors considered
any faithful g-module instead of the family of Lie algebras gn. Consequently, the value
of µ(g) is less than or equal to the dimension to be computed and determined in this
paper. In particular, Ghanam et al. [8] computed matrix representations for low
dimensional nilpotent Lie algebras, but their minimality was not studied. In fact, some
representations in [8] were not minimal.

Independently, Echarte et al. [5] introduced some invariants of filiform Lie algebras,
improving them in [6]. In this paper, we use these invariants to express and classify
the law of filiform Lie algebras.

The structure of this paper is as follows: after reviewing some well-known results on
Lie Theory in Section 2, Section 3 is devoted to show the general method used to com-
pute a minimal faithful unitriangular matrix representation for filiform Lie algebras.
Due to reasons of length, we only compute explicitly minimal faithful unitriangular
matrix representations for filiform Lie algebras of dimension less than nine, although
the method can be applied to any arbitrary finite-dimensional filiform Lie algebra pro-
vided its law is known, which is not easy for higher dimensions. Remember that the
classifications of filiform Lie algebras are only known up to dimension 12, inclusive.

2 Preliminaries

Some preliminary concepts on Lie algebras are recalled in this section. For a general
overview, the reader can consult [9]. Let us note that only finite-dimensional Lie
algebras over the complex number field C are considered from here on.

2.1 Lie Algebras

The lower central series of a given Lie algebra g is defined by

C1(g) = g, C2(g) = [g, g], C3(g) = [C2(g), g], . . . , Ck(g) = [Ck−1(g), g], . . .

The Lie algebra g is nilpotent when there exists a natural integerm such that Cm(g) ≡ 0.
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Let h be a subalgebra of a Lie algebra g. The centralizer of h in g is the set of
elements of g which commutes with all the elements of h.

Related to the lower central series associated with a subalgebra of g, the following
result holds:

Proposition 1 Let h be a subalgebra of a Lie algebra g. Then Ck(h) ⊆ Ck(g), ∀ k ∈ N.

Let us denote by gn the nilpotent matrix algebra of n×n strictly upper-triangular

matrices, where n ∈ N \ {1}. The expression of the vectors in gn is the following

gn(xr,s) =


0 x1,2 · · · x1,n−1 x1,n
0 0 · · · x2,n−1 x2,n
...

...
. . .

...
...

0 0 · · · 0 xn−1,n

0 0 · · · 0 0

 (xi,j ∈ C).

The dimension of gn is n(n−1)
2 . Fixed i and j such that 1 ≤ i < j ≤ n, a basis of gn

is Bn = {Xi,j = gn(xr,s) | [xr,s = 1 ⇔ (r, s) = (i, j)]∧ [xr,s = 0 ⇔ (r, s) ̸= (i, j)]}1≤i<j≤n

with the law: [Xi,j , Xj,k] = Xi,k, for 1 ≤ i < j < k ≤ n. Consequently, the dimension

of each term in the lower central series of gn is

(dim(gn), dim(gn−1), dim(gn−2), . . . , dim(g2), 0) (1)

A particular family of nilpotent Lie algebras is formed by abelian Lie algebras. A

Lie algebra g is said to be abelian if [v,w] = 0, for all v, w ∈ g. An equivalent condition

is the following: Z(g) = g, where

Z(g) = {X ∈ g | [X,Y ] = 0 , ∀Y ∈ g}

We also consider a second subclass of nilpotent Lie algebras in this paper: Filiform

Lie algebras. An n-dimensional Lie algebra g is filiform if its lower central series satisfies

the following

dim(C1(g))=n, dim(C2(g))=n− 2, dim(C3(g))=n− 3, . . . ,dim(Cn(g))=0. (2)

A basis {ei}ni=1 of the filiform Lie algebra g is called an adapted basis if these

relations are verified
[e1, eh] = eh−1, for 3 ≤ h ≤ n;

[e2, eh] = 0, for 1 ≤ h ≤ n;

[e3, eh] = 0, for 2 ≤ h ≤ n.

(3)

Remark 1 If {ei}ni=1 is an adapted basis of an n-dimensional filiform Lie algebra g,

then the vector e2 belongs to the center Z(g) of the algebra.

A filiform Lie algebra g is called model if the only nonzero brackets in its law are
[e1, eh] = eh−1, for 3 ≤ h ≤ n.
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2.2 Invariants of Filiform Lie Algebras

This subsection is devoted to recall the definitions of two invariants for filiform Lie

algebras given in [6]. First, the invariant z1 is defined as follows

z1 = max{k ∈ N |Cg(Cn−k+2(g)) ⊃ C2(g)},

where Cg(h) is the centralizer of a given subalgebra h of g. Let us note that the set in
the previous definition may be empty. In this case, it is easy to see that g is a model
filiform Lie algebra. Besides, the definition of z1 means that the ideal Cn−i+2(g) is the
largest whose centralizer contains C2(g). Let us note that the previous definition is
equivalent to the following: z1 = min {k ≥ 2 | [ek, en] ̸= 0}, which is more convenient
to be used in the practice, and where {ei}ni=1 is an adapted basis of g.

The invariant z2 is defined as

z2 = max {k ∈ N | Cn−k+1(g) is abelian}.

An immediate consequence of this definition is that the ideal Cn−j+1(g) ≡ ⟨e2, . . . , ej⟩
is the largest abelian subalgebra in the lower central series of g.

3 Computing Minimal Matrix Representations

In this section we obtain a minimal faithful unitriangular matrix representation for each
model filiform Lie algebra. Additionally, we also introduce a method for obtaining such
representations for non-model filiform Lie algebras. Finally, we apply our method to
compute minimal faithful unitriangular matrix representations of filiform Lie algebras
with dimension less than 9.

Given a Lie algebra g, a representation of g in Cn is a Lie-algebra homomorphism
ϕ : g → gl(Cn) = gl(C, n). The natural integer n is called the dimension of this
representation. Ado’s theorem states that every finite-dimensional Lie algebra over a
field of characteristic zero (as in the case of C) has a linear injective representation on
a finite-dimensional vector space, that is, a faithful representation.

Usually, representations are defined by using an arbitrary n-dimensional vector
space V (like in [7]) and homomorphisms of Lie algebras from g to gl(V ) of endomor-
phisms of V ; that is, by using g-modules.

With respect to minimal representations of Lie algebras, Burde [4] introduced the

following invariant value for an arbitrary Lie algebra g

µ(g) = min{dim(M) | M is a faithful g-module}.

In this section, matrix representations of filiform Lie algebras are studied. Moreover,

we are interested in minimal matrix representations of these algebras with a particular

restriction: the representations have to be contained in gn. In this way, given a fili-

form Lie algebra g, we want to compute the minimal value n such that gn contains a

subalgebra isomorphic to g. This value is the invariant of g expressed as follows

µ̄(g) = min{n ∈ N | ∃ subalgebra of gn isomorphic to g}.
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Let us note that the invariants µ(g) and µ̄(g) can be different from each other.

Proposition 2 Let g be an n-dimensional filiform Lie algebra. Then µ̄(g)≥ n.

Proof: For a given n-dimensional filiform Lie algebra g, we have to prove that it is not
possible to find a subalgebra of gn−1 isomorphic to g.

First, we write the vectors of an adapted basis {ei}ni=1 of g as linear combinations

of the vectors in the basis Bn−1 of gn−1

ek =
∑

1≤i<j≤n−1

λki,jXi,j , for 1 ≤ k ≤ n.

We will prove that all the coefficients λ2i,j of e2 ∈ Z(g) have to be zero.

From [e1, eh] = eh−1, for 3 ≤ h ≤ n, the following relations are obtained

λh−1
β,β+1 = 0,

λh−1
β,αβ

=
∑

β<p<αβ
(λ1β,pλ

h
p,αβ

− λ1p,αβ
λhβ,p),

}
for

{
1 ≤ β ≤ n− 2;

αβ ≥ β + 2.
(4)

From [e1, e3] = e2, we can conclude that λ2β,β+1 = 0, for 1 ≤ β ≤ n − 2. Now, we

have to prove that λ2l,αl
= 0, for 1 ≤ l ≤ n − 3. To do so, we are going to prove that

λ3p,αβ
= λ3β,p = 0 in each case.

From [e1, ek] = ek−1, for 3 ≤ k ≤ n − 1, we can affirm that λk−1
β,β+1 = 0, for

1 ≤ β ≤ n− 2. This implies that λ3p,q = 0, when q − p < n− 4.

If we consider the bracket [e1, en] = en−1, we conclude that λn−1
β,β+1 = 0, and,

therefore, λ3p,q = 0, where q− p = n− 3. Consequently, all the coefficients of e2 are null
and this is a contradiction. �

3.1 Model Filiform Lie Algebras

The law of a fixed n-dimensional model filiform Lie algebra g with an adapted basis

{ei}ni=1 is the following

[e1, eh] = eh−1, for 3 ≤ h ≤ n. (5)

Now, we will construct the n-dimensional subalgebra f′n of gn and whose law is

exactly the same of the model filiform Lie algebra g. Just define a basis {ei}ni=1 of this

subalgebra as linear combinations of the vectors in the basis Bn of the Lie algebra gn

e1 =
n−2∑
i=1

Xi,i+1, e2 = X1,n, e3 = X2,n, . . . , en = Xn−1,n (6)

Consequently, we have defined the subalgebra f′n whose elements are the following

f ′n(xk) =



0 x1 0 · · · 0 x2
0 0 x1 · · · 0 x3
...

...
...

. . .
...

...

0 0 0 · · · x1 xn−1

0 0 0 · · · 0 xn
0 0 0 · · · 0 0


(xk ∈ C, for k = 1, . . . , n).
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With respect to this faithful matrix representation, the adapted basis {ei}ni=1 of f′n
is given as follows

eh = f ′n(xk), with xk =

{
1, if k = h;

0, if k ̸= h.

According to the reasoning just given above and Proposition 2, we can affirm the
following result

Proposition 3 Every n-dimensional model filiform Lie algebra has an n-dimensional

minimal faithful unitriangular matrix representation. Moreover, a representation of

this type is the Lie algebra f′n given in (6). �

3.2 Non-Model Filiform Lie Algebras

If the filiform Lie algebra g is non-model, then the invariants z1 and z2 exist. Hence,
there exist some additional nonzero brackets to [e1, eh] = eh−1, for 3 ≤ h ≤ n. Conse-
quently, non-model filiform Lie algebras cannot be represented by the algebras f′n.

Now, we show an algorithmic method to compute minimal faithful unitriangular
matrix representations for non-model filiform Lie algebras. These representations are
minimal in the following sense: Finding a faithful matrix representation of a given Lie
algebra g in gn, but no representations of g can be obtained in gn−1.

To do so, we give a step-by-step explanation of the method used to determine these
minimal representations for a given filiform Lie algebra g of dimension n > 4.

1. According to Proposition 1, we have to compute the first natural integer l such
that the lower central series of gl is compatible with the one associated with g. By
bearing in mind Proposition 2, we can start considering l = n, for n-dimensional
filiform Lie algebras. Hence, we have ruled out the Lie algebra gl with l < n.

2. Now, we search a subalgebra of gl isomorphic to g, where l ≥ n and l is as little

as posible. To do so, an adapted basis {ei}ni=1 of g is considered and its vectors

are expressed as linear combinations of the basis Bl

eh =
∑

1≤i<j≤l

λhi,jXi,j , for 1 ≤ h ≤ n.

3. The next step is to impose the brackets given in (5), obtaining again the equations
shown in (4), but with respect to the algebra gl considered by the method.

4. After solving the system of equations resulting from the previous step, we solve
a new system obtained by imposing the rest of the brackets in the law of g.

Obviously, the solutions of this system depend on the particular Lie algebra studied
in each moment. Hence, we have generalized some cases by using the invariants z1 and
z2 in Section 4. The solutions of the system given in Step 4 have been computed
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by using the command solve of the symbolic computation package Maple 12. This
command works efficiently with polynomial equations, receives as inputs the list of
equations and the list of variables, and returns as output the algebraic expression of
the solutions.

After checking the existence of representations in the Lie algebra gl, we search a
natural representative in the sense of considering the following conditions: e2 ∈ ⟨X1,l⟩
and there exist the greatest possible number of null-parameters. The first condition is
due to the fact that Z(gl) = ⟨X1,l⟩ and is also in concordance with Proposition 2.

Another point to consider is the number of solutions for the system. This number
can be studied by defining the set F of polynomial expressions and by using the com-
mand is finite, which determines if the number of solutions is or not finite for the
system defined by the input set F . Likewise, Noether’s normalization lemma is also
very useful to describe the elements in an algebraic variety.

Furthermore, in order to compute a particular solution of the previous system, we
have searched one whose number of null coefficients is as greater as possible. In this
way, the coefficients could be assumed equal to zero when they do not appear in the
relations obtained. This will be a natural representative of the Lie algebra g.

4 Minimal Representations of Filiform Lie Algebras of Di-

mension less than 9

This section is devoted to show explicit representatives for the minimal faithful unitri-
angular matrix representation of filiform Lie algebras with dimension less than 9 and
the generalization for two families of n-dimensional filiform Lie algebras. In Tables
1–3, we write those representatives by using the classification given in [3]. Let us note
that, for these algebras, we have only written down the nonzero brackets not given by
filiformity; i.e. we are assuming implicitly Equation (5). In virtue of these tables, we
can state the following result:

Proposition 4 If g is a filiform Lie algebra of dimension n < 9, then µ̄(g) = n (i.e.

the minimal faithful matrix representation of g is a subalgebra of gn). Moreover, such

representations can be obtained with a natural representative. �
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Table 1: Minimal faithful matrix representations for dimension ≤ 7

Law Representation

f13 e1 = X1,2, e2 = X1,3, e3 = X2,3.

f14 e1 = X1,2 +X2,3, e2 = X1,4, e3 = X2,4, e4 = X3,4.

f15
e1 = X1,2 +X2,3 +X3,4, e2 = X1,5,

e3 = X2,5, e4 = X3,5, e5 = X4,5.

f25 [e4, e5] = e2.
e1 = X1,2 +X2,3 +X3,4, e2 = X1,5, e3 = X2,5,

e4 = X1,4 +X3,5, e5 = X2,4 +X4,5.

f16
e1 = X1,2 +X2,3 +X3,4 +X4,5, e2 = X1,6, e3 = X2,6,

e4 = X3,6, e5 = X4,6, e6 = X5,6.

f26 [e5, e6] = e2.
e1 =

∑4
i=1 Xi,i+1, e2 = X1,6, e3 = X2,6,

e4 = X3,6, e5 = X1,5 +X4,6, e6 = X2,5 +X4,6.

f36
[e4, e6] = e2,

[e5, e6] = e3.

e1 =
∑4

i=1 Xi,i+1, e2 = X1,6, e3 = X2,6,

e4 = X3,6 +X1,5, e5 = X2,5 +X4,6, e6 = X3,5 +X5,6.

f46

[e4, e5] = e2
[e4, e6] = e3,

[e5, e6] = e4.

e1 = X1,2 +X2,3 +X3,4 +X4,5, e2 = X1,6,

e3 = −1
2
X1,5 +X2,6, e4 = 1

2
X1,4 + 1

3
X1,5 +X3,6,

e5 = −1
2
X1,3 + 1

3
X2,5 +X4,6, e6 = −1

2
X1,2+

1
3
X1,3 −X2,3 + 1

3
X2,4 −X3,4 − 1

3
X3,5 −X4,5 +X5,6

f56

[e4, e5] = e2
[e4, e6] = e3 + e2,

[e5, e6] = e4 + e3.

e1 = X1,2 +X2,3 +X3,4 +X4,5, e2 = X1,6, e3 = −1
2
X1,5

+X2,6, e4 = 1
2
X1,4 +X3,6, e5 = − 1

2
X1,3 +X2,5 +X4,6,

e6 = − 1
2
X1,2 −X1,3 −X2,3 −X3,4 −X4,5 +X5,6.

f17
e1 =

∑5
i=1 Xi,i+1, e2 = X1,7, e3 = X2,7,

e4 = X3,7, e5 = X4,7, e6 = X5,7, e7 = X6,7.

f27 [e6, e7] = e2
e1 =

∑5
i=1 Xi,i+1, e2 = X1,7, e3 = X2,7, e4 = X3,7,

e5 = X4,7, e6 = X1,6 +X5,7, e7 = X2,6 +X6,7.

f37
[e5, e7] = e2,

[e6, e7] = e3

e1 =
∑5

i=1 Xi,i+1, e2 = X1,7, e3 = X2,7, e4 = X3,7,

e5 = X4,7, e6 = X5,7, e7 = −X1,4 −X2,5 −X3,6 +X6,7.

f47
[e5, e7] = e2,

[e6, e7] = e2 + e3

e1=
∑5

i=1 Xi,i+1, e2=X1,7, e3=X2,7, e4=X3,7, e5=X1,6

+X4,7, e6=X2,6+X5,7, e7=−X1,5−X2,6+X3,6+X6,7.

f57

[e4, e7] = [e5, e7] = e2
[e5, e6] = −e2,

[e6, e7] = e3

e1=
∑5

i=1 Xi,i+1, e2=X1,7, e3=X2,7, e4=−X1,6+X3,7,

e5=X1,6−X2,6+X4,7, e6=X1,4+X2,5+X2,6+X5,7,

e7=−2X1,3−X2,4+X3,6+X6,7.

f67

[e4, e7] = e2,

[e5, e7] = e3
[e6, e7] = e2 + e4

e1=
∑5

i=1 Xi,i+1, e2=X1,7, e3=X2,7, e4=X3,7,

e5=X4,7, e6=X5,7, e7=−X1,3−X1,5−X2,4−
X2,6−X3,5−X4,6−X5,6+X6,7.

f77

[e5, e7] = e3,

[e4, e7] = e2
[e6, e7] = e4

e1=
∑5

i=1 Xi,i+1, e2=X1,7, e3=X2,7, e4=X3,7,

e5=X4,7, e6=X5,7, e7=−X1,3−X2,4−X3,5−
X3,5−X4,6−X5,6+X6,7.

f87

[e4, e7] = αe2,

[e5, e6] = e2
[e5, e7] = (1 + α)e3,

[e6, e7] = (1 + α)e4

e1=X1,3+X2,3−X2,4+X3,4+βiX3,6+X4,5+iX5,6+X6,7,

e2=−iX1,7, e3= iX1,6−iX1,7, e4=−X1,5+iX1,6+

( 1
2
iβ−1− 1

2
i)X1,7+

1
2
i(β+1+2α)X2,7, e5=X1,4−X1,5

+X1,6−(1+α)iX2,6+
1
2
i(β+3+2α)X2,7+

1
2
i(β−1)X3,7,

e6=−X1,3+X1,4+iX1,5+(α−β+1)X2,5−i(1+α)X2,6+

(β+ 4
3
αi+2+i+α+ 1

3
iα2)X2,7−iβX3,6− 1

2
i(β+1)X4,7,

e7=(β−i)X1,4+X1,2+(2β−1−α)X2,4+(1+α)X2,5−
(β+ 4

3
iα−2−i−α− 1

3
iα2)X2,6+βX3,5− 1

2
i(β+1)X5,7,

β is a root of 3Z2−2α2−5α− 3−3αZ.
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Table 2: Minimal faithful matrix representations for dimension 8 (I)

Law Representation

f18
e1=

∑6
i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8,

e5=X4,8, e6=X5,8, e7=X6,8, e8=X7,8.

f28 [e7, e8] = e2
e1=

∑6
i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8, e5=X4,8,

e6=X5,8, e7=X1,7+X6,8, e8=X2,7+X7,8.

f38
[e6, e8] = e2,

[e7, e8] = e3

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8, e5=X4,8,

e6=X5,8, e7=X6,8, e8=−X1,5−X2,6−X3,7+X7,8.

f48
[e6, e8] = e2,

[e7, e8]= e2+e3

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8, e5=X4,8,

e6=X5,8, e7=X6,8,

e8=−X1,5−X1,6−X2,6−X2,7−X3,7+X7,8.

f58

[e5, e8] = e2,

[e6, e8] = e3
[e7, e8]= e2+e4

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8, e5=X4,8,

e6=X5,8, e7=X6,8,

e8=−X1,4−X1,6−X2,5−X2,7−X3,6−X4,7+X7,8

f68

[e5, e8] = e2,

[e6, e8]= e2+e3
[e7, e8]= αe2+e3+e4

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8, e5=X4,8,

e6=X5,8, e7=X6,8, e8=−X1,4−X1,5−αX1,6+X1,8−
X2,5−X2,6−αX2,7−X3,6−X3,7−X4,7+X7,8

f78

[e5, e8] = αe2,

[e6, e7] = e2
[e6, e8]= (1+α)e3
[e7, e8]= (1+α)e4

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8,

e5=−X1,7+X4,8, e6=X1,6+X5,8,

e7=X2,6+X3,7+X6,8, e8=−(1+α)X1,4+X1,8

−(1+α)X2,5−αX3,6+(1−α)X4,7+X7,8

f88

[e5, e8] = αe2,

[e6, e7] = e2
[e6, e8]=(1+α)e3+e2
[e7, e8]=(1+α)e4+e3

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8,

e5=−X1,7+X4,8, e6=X1,6+X5,8, e7=X2,6+X3,7+X6,8,

e8=−(1+α)X1,4−X1,5+X1,8−(1+α)X2,5−X2,6

−αX3,6−X3,7+(1−α)X4,7+X7,8.

f98

[e4, e8] = e2,

[e5, e8] = e3
[e6, e8] = e4,

[e7, e8] = e5

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3= X2,8, e4=X1,7+X3,8,

e5=X2,7+X4,8, e6=−1
2
X1,5− 1

2
X2,6+

1
2
X3,7+X5,8,

e7=−1
2
X2,5−X3,6− 1

2
X4,7+X6,8,

e8=−1
2
X3,5− 3

2
X4,6−2X5,7+X7,8.

f108

[e4, e8] = e2,

[e5, e8] = e3
[e6, e8] = e4,

[e7, e8]= e2+e5

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X1,7+X3,8,

e5=X2,7+X4,8, e6=−1
2
X1,5− 1

2
X2,6+

1
2
X3,7+X5,8,

e7=−1
2
X2,5−X3,6− 1

2
X4,7+X6,8,

e8=−X1,6−X2,7− 1
2
X3,5− 3

2
X4,6−2X5,7+X7,8.

f118

[e4, e8] = e2,

[e5, e8] = e3
[e6, e8]= e2+e4,

[e7, e8]= αe2+e3+e5

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X1,7+X3,8,

e5=X2,7+X4,8, e6=−1
2
X1,5− 1

2
X2,6+

1
2
X3,7+X5,8,

e7=−1
2
X2,5−X3,6− 1

2
X4,7+X6,8, e8=−X1,5−αX1,6

−X2,6−αX2,7− 1
2
X3,5−X3,7− 3

2
X4,6−2X5,7+X7,8.

f128

[e4, e8] = e2,

[e5, e8] = e3,

[e6, e7] = e2,

[e6, e8]= αe2+e3+e4
[e7, e8]= αe3+e4+e5

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X1,7+X3,8,

e5=−2X1,7+X2,7+X4,8, e6=−1
2
X1,5+X1,6− 1

2
X2,6

−X2,7+
1
2
X3,7+X5,8, e7=−1

2
X2,5+X2,6−X3,6−

1
2
X4,7+X6,8, e8=−2X1,4−αX1,5−2X2,5−αX2,6

−1
2
X3,5−X3,6−αX3,7− 3

2
X4,6−X4,7−2X5,7+X7,8.

f138

[e4, e8] = −e2,

[e6, e8] = e3 + e4,

[e6, e7] = e2 + e3,

[e5, e7] = e2,

[e7, e8] = e4 + e5

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8,

e5=X1,6+X2,7+X4,8,

e6=−X1,5+
1
2
X1,6+

1
2
X2,7+X3,7+X5,8,

e7=−1
2
X1,5−X2,5−X3,6+

1
2
X3,7+X6,8,

e8=X1,3+X2,4− 1
2
X2,5− 1

2
X3,6−X4,6−X5,7+X7,8.

f148

[e4, e8] = αe2,

[e5, e7] = e2
[e5, e8] = −e3,

[e6, e7] = e3

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8,

e4=−2X1,7+X3,8, e5=X1,6−X2,7+X4,8,

e6=X2,6+X5,8, e7=X3,6+X4,7+X6,8,

e8=X4,6+2X5,7+X7,8.
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Table 3: Minimal faithful matrix representations for dimension 8 (II)

Law Representation

f158

[e4, e8]=−2e2,

[e5, e7]=e2
[e5, e8]=−e3+e2,

[e6, e7]=e3
[e6, e8]=e3,

[e7, e8]=e4

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8,

e4=−2X1,7 +X3,8, e5=X1,6 +3X1,7−
X2,7 +X4,8, e6=X2,6 +3X2,7 +X5,8,

e7=X3,6 +X3,7 +X4,7 +X6,8,

e8=2X1,4 +2X2,5 +2X3,6+

X4,6 + 5X4,7 +2X5,7 +X7,8.

f168

[e4, e7] = e2,

[e5, e6] = −e2
[e4, e8] = e3
[e5, e8] = e4,

[e6, e8] = e5,

[e7, e8] = e6.

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3= − 1
2
X1,7+

X2,8, e4=
1
2
X1,6 +X3,8, e5= − 1

2
X1,5+

X4,8, e6=
1
2
X1,4 +X5,8, e7= − 1

2
X1,3

+X6,8, e8=− 1
2
X1,2−X2,3−X3,4−X4,5

−X5,6−X6,7 +X7,8.

f178

[e4, e7] = e2,

[e4, e8] = e3
[e5, e6] = −e2,

[e5, e8] = e4,

[e6, e7] = e2,

[e6, e8] = e3 + e5
[e7, e8] = e4 + e6.

e1 =
∑6

i=1 Xi,i+1, e2 = X1,8, e3 = − 1
2
X1,7

+X2,8, e4 = 1
2
X1,6 +X3,8, e5 = − 1

2
X1,5−

3X1,7 +X4,8, e6 = 1
2
X1,4 +X1,6

−2X2,7 +X5,8, e7 = − 1
2
X1,3 +X2,6 −X3,7

+X6,8, e8 = −3X1,4 − 1
2
X1,2 −X2,3−

3X2,5 −X3,4 − 2X3,6 −X4,5−
3X4,7 −X5,6 −X6,7 +X7,8.

f188

[e4, e7] = e2,

[e4, e8] = e3
[e5, e6] = −e2,

[e5, e8] = e4,

[e6, e8] = e2 + e5
[e7, e8] = e3 + e6.

e1 =
∑6

i=1 Xi,i+1 + 3
40

X7,8, e2 = X1,8,

e3 = − 10
3
X1,7 + 3

4
X2,8, e4 = 4

3
X1,6 − 2X2,7

+ 3
5
X3,8, e5 = − 4

3
X1,5 − 2X3,7 + 9

20
X4,8,

e6 = 4
3
X1,4 − 2X4,7 + 3

10
X5,8, e7 = − 4

3
X1,3

−2X5,7 + 3
20

X6,8, e8 = 1
3
X1,2

−5X1,5 −X2,3 − 5X2,6 −X3,4 − 5X3,7

−X4,5 − 3
8
X4,8 −X5,6 − 3X6,7 − 3

40
X7,8.

f198

[e4, e7]=e2, [e4, e8]=e3
[e5, e6]=−e2, [e5, e8]=e4,

[e6, e7] = e2,

[e6, e8] = e2 + e3 + e5
[e7, e8] = e3 + e4 + e6.

e1 = X1,2 +X1,3 −X2,3 + 164X2,5 −X3,4−
164X3,6 + 164

3
X3,7 − 164X4,5 + 164X4,7

−X5,6 −X6,7 − 1
328

X7,8, e2 = X1,8, e3 =

164X1,7 + 1
2
X2,8, e4 = 164X1,6 + 164X1,7−

1
2
X3,8, e5 = 164X1,5 + 164X1,6 −X1,8+

1
2
X4,8, e6 = X1,4 + 164X1,5 + 164X1,6−
164
3

X1,7 − 1
3
X2,8 − 1

2
X3,8 − 1

328
X5,8,

e7 = X1,3 +X1,4 + 820
3

X1,6 − 328
3

X2,7

+ 1
328

X6,8, e8 = X2,3 − 164
3

X2,6+

X3,4 + 328X3,6 + 164X4,5 +X5,6 +X6,7.

f208

[e4, e7]=e2, [e4, e8]=e2+e3
[e5, e6]=−e2, [e5, e7]=−2

5
e2,

[e5, e8] = e4 + 3
5
e3,

[e6, e7] = − 2
5
e3,

[e6, e8] = e5 + 1
5
e4,

[e7, e8] = e6 + 1
5
e5.

e1 = X1,2 +X1,3 −X2,3 + 3
5
X2,4 − 37

25
X2,5

−X3,4 + 2
5
X3,5 − 2

5
X3,6 + 1

25
X3,7

− 3
250

X3,8 −X4,5 − 2
5
X4,6 − 2

25
X4,7

−X5,6 − 3
5
X5,7 −X6,7 − 1

2
X7,8,

e2 = X1,8, e3 = X1,7 −X1,8 + 1
2
X2,8,

e4 = X1,6 + 3
5
X1,8 − 1

2
X2,8 − 1

2
X3,8,

e5 = X1,5 + 3
5
X1,6 + 1

5
X1,7 − 3

25
X1,8

− 6
25

X2,7 + 3
10

X2,8 + 1
5
X3,8 + 1

2
X4,8,

e6 = X1,4 + 4
5
X1,5 + 1

5
X1,6 + 6

25
X1,7+

3
125

X1,8 − 3
5
X2,6 − 29

25
X2,7 − 1

25
X2,8+

3
5
X3,7 − 1

5
X3,8 − 1

10
X4,8 − 1

2
X5,8,

e7 = X1,3 +X1,4 + 7
25

X1,6 + 1
5
X2,5−

7
5
X2,6 − 2

25
X2,7 + 3

250
X2,8 + 4

5
X3,6+

1
5
X4,7 + 1

2
X6,8, e8 = X2,3 − 1

25
X2,6

+X3,4 + 8
25

X3,6 +X4,5 +X5,6 +X6,7.
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Now, we show two results which determine a representative for the minimal faithful
unitriangular matrix representations of filiform Lie algebras in two specific cases where
the derived ideal C2(g) = [g, g] is abelian.

Proposition 5 Let f be a n-dimensional filiform Lie algebra verifying z1 = z2 = n−1.

Then, µ̄(f) = n and a natural representative of f is determined by the following vectors

e1 =

n−2∑
i=1

Xi,i+1; ek = Xk−1,n, ∀ 2 ≤ k ≤ n− 2;

en−1 = X1,n−1 +Xn−2,n; en = X2,n−1 +Xn−1,n.

Proof: To prove this result, it suffices to apply our algorithmic procedure taking into

consideration that non-zero brackets for the case z1 = z2 = n− 1 are the following

[e1, eh] = eh−1, ∀ 3 ≤ h ≤ n; [en−1, en] = e2.

�

Proposition 6 Let f be a n-dimensional filiform Lie algebra verifying z1 = n− 2 and

z2 = n − 1. Then, µ̄(f) = n and a natural representative of f is determined by the

following vectors

e1 =

n−2∑
i=1

Xi,i+1; ek = Xk−1,n, ∀ 2 ≤ k ≤ n− 2; en−2 = X1,n−1 +Xn−3,n;

en−1 = X2,n−1 +Xn−2,n; en = X3,n−1 +Xn−1,n.

Proof: To prove this result, it is sufficient to apply our algorithmic procedure taking

into consideration that the non-zero brackets for the case z1 = n − 2 and z2 = n − 1

are the following

[e1, eh] = eh−1, ∀ 3 ≤ h ≤ n; [en−2, en] = e2; [en−1, en] = e3.

�

5 Conclusions

At present, researchers on Lie and Representation Theories need to deal with examples
of Lie algebras in higher dimensions. The representation of these algebras is a difficult
task due to computing time and memory used. Besides, solvable, nilpotent and filiform
complex Lie algebras are classified only up to dimension 6, 7 and 12, respectively (as
can be seen in [3]).

In this paper we have shown an algorithmic method to obtain a minimal faithful
unitriangular matrix representation of a given finite-dimensional filiform Lie algebra,
introducing its law. In our opinion, this constitutes a new little step forward to tackle
the classification problem of these algebras and the obtainment of their representations.
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[3] L. Boza, E.M. Fedriani and J. Núñez, A new method for classifying complex
filiform Lie algebras, Appl. Math. Comput. 121 (2001), 169–175.

[4] D. Burde, On a refinement of Ado’s Theorem, Arch. Math.(Basel) 70 (1998),
118–127.
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Abstract

In this work we consider the numerical approximation of the solution of a time-dependent
initial-boundary value problem of reaction-diffusion type, for which the diffusion pa-
rameter can be arbitrary small. We construct a finite difference scheme combining the
classical implicit Euler method to discretize in time, which is defined on a uniform mesh,
together with a hybrid finite difference scheme based on a HODIE compact fourth order
method and the standard central finite difference approximation to discretize in space,
which is defined on a mesh of Vulanovic type condensing the grid points in the bound-
ary layer regions. We prove that the fully discrete method is uniformly convergent with
respect to the singular perturbation parameter having first order in time and almost
fourth order in space. The proof of the uniform convergence is based on splitting the
contribution to the error from the time and the space discretization, and it uses the
asymptotic behavior of the solution of the semidiscrete problems resulting after the
time discretization. We show some numerical results obtained for a test problem, which
confirm in practice the good results and the efficiency of the method.

Key words: time dependent reaction-diffusion problems, hybrid finite difference scheme,
Vulanovic mesh, uniform convergence

MSC 2000: 35K20, 65N06, 65N12

1 Introduction

In this work we are interested in the numerical approximation of the following time-dependent
initial-boundary value problem of reaction-diffusion type{

ut + Lx,εu = f(x, t), (x, t) ∈ Q = Ω× (0, T ] ≡ (0, 1)× (0, T ],

u(x, 0) = 0, x ∈ Ω, u(0, t) = u(1, t) = 0, t ∈ (0, T ],
(1)
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where the spatial differential operator is given by Lx,εu ≡ −εuxx + b(x, t)u. We assume
that 0 < ε ≤ 1 and it can be very small, the reaction term satisfies b(x, t) ≥ β > 0 for all
(x, t) ∈ Q, and the solution is smooth enough to complete the forthcoming analysis (see
[7]).

In general, the solution of (1) has a boundary layer at x = 0, 1 of width O(
√
ε| ln ε|)

(see [5, 9]) and applying the classical theory (see [7]) for partial differential equations it is
possible to prove that the solution of (1) satisfies the crude bounds

|u(k,m)(x, t)| ≤ Cε−k/2, 0 ≤ k + 2m ≤ 8. (2)

Nevertheless, these bounds do not reflect the presence of boundary layers in the solution; so,
it is necessary to have a more precise information of the asymptotic behavior, with respect
to ε, of the solution and its derivatives. Following [6] it is possible to prove that the solution
of (1) satisfies

|u(k,m)(x, t)| ≤ C(1 + ε−k/2Bε(x)), 0 ≤ k + 2m ≤ 6, (3)

where Bε(x) = e−
√
β/εx + e−

√
β/ε(1−x). These estimates clearly show the presence of two

boundary layers. Moreover, the solution can decomposed into a regular and a singular
component, u = φ+ ψ, where the regular component φ satisfies

|φ(k,m)(x, t)| ≤ C(1 + ε2−k/2), 0 ≤ k + 2m ≤ 6, (4)

and the singular component ψ satisfies

|ψ(k,m)(x, t)| ≤ Cε−k/2Bε(x), 0 ≤ k + 2m ≤ 6. (5)

In this work we follows the ideas of [1, 2] to deduce the uniform convergence of the numerical
method, which is based on two steps, providing one after the other the contribution to the
error of the time and space discretizations. In previous papers the analysis of the uniform
convergence of the space discretization uses some auxiliary problems arising in the definition
of the method after the time discretization. Nevertheless, in [3] the uniform convergence
was proved without the use of any auxiliary problems. The analysis requires to know the
asymptotic behavior of the exact solution of the semidiscrete problems resulting from the
time discretization, which is based on an inductive argument and the well–known behavior
of steady singularly perturbed reaction-diffusion problems (see [9]). In [3] the implicit Euler
method was considered to approximate the time variable and the central finite difference
approximation for the spatial variable. Here we show that the idea can be extended to
a HODIE compact fourth order scheme [8], proving that the fully discrete method is first
order uniformly convergent in time and almost fourth order convergent in space.

Henceforth, C denotes a generic positive constant independent of the diffusion param-
eter ε and also of the discretization parameters N and M .
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2 The fully discrete method: uniform convergence

The first step to construct the fully discrete method is the time discretization. We use the
backward Euler method, which on the uniform mesh

ωM = {tk = kτ, 0 ≤ k ≤M, τ = T/M} ,

is given by 
z0 = 0,{

(I + τLx,ε)z(x, tn) = τf(x, tn) + z(x, tn−1), 1 ≤ n ≤M,
z(0, tn) = z(1, tn) = 0.

(6)

In [4] it was proved that the global error associated to the method (6), defined by en =
u(x, tn)− z(x, tn), satisfies

‖en‖Ω ≤ Cτ, 1 ≤ n ≤M, (7)

and therefore the Euler method is a first order uniformly convergent method.
For the analysis of the uniform convergence of the space discretization we need to know

the asymptotic behavior of the exact solution z(x, tn) of (6). Following similar ideas to
these ones given in [3] it is possible to prove the following result.

Theorem 1 Let z(x, tn) be the solution of problem (6) at the time level n. Then, it holds

|z(k)(x, tn)| ≤ C(1 + ε−k/2Bε(x)), 0 ≤ k ≤ 6, 1 ≤ n ≤M. (8)

Nevertheless these bounds are not sufficient and it is necessary to decompose z(x, tn) in a
similar way to the continuous problem. Then, we have z(x, tn) = v(x, tn) + w(x, tn), 0 ≤
n ≤M , where the regular component v is the solution of the problem v(x, t0) = 0,

v(x, tn)− v(x, tn−1)

τ
+ Lx,εv(x, tn) = f(x, tn), x ∈ [0, 1], 1 ≤ n ≤M,

with appropriate values in the boundary. The singular component w is the solution of the
problem 

w(x, t0) = 0,
w(x, tn)− w(x, tn−1)

τ
+ Lx,εw(x, tn) = 0,

w(0, tn) = −v(0, tn), w(1, tn) = −v(1, tn), 1 ≤ n ≤M.

x ∈ [0, 1], (9)

Lemma 1 Let assume that b, f ∈ C(8,4)(Q); then, the regular component v satisfies

|v(k)(x, tn)| ≤ C(1 + ε2−k/2), 0 ≤ k ≤ 6, 1 ≤ n ≤M.

Moreover, the singular component w satisfies

|w(k)(x, tn)| ≤ Cε−k/2Bε(x), 0 ≤ k ≤ 6, 1 ≤ n ≤M.
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To discretize (6) in space, we use a hybrid finite difference scheme which combines the
central difference and a HODIE type operator constructed on a special mesh of Vulanovic
type (see [10]), which condenses the grid points in the boundary layer regions, which is
constructed as follows. Let N = 4k be, where k is a positive integer; then, we divide [0,1]
into three intervals [0, σ], [σ, 1− σ], [1− σ, 1], where σ is

σ = min {1/4, 4
√
ε/β lnN}. (10)

The grid points are defined by xj = ℵ(j/N), j = 0, 1, . . . , N/2, with ℵ ∈ C2[0, 1/2] and

ℵ(z) =

{
4σ/N, z ∈ [0, 1/4],
p(z − 1/4)3 + 4σ(z − 1/4) + σ, z ∈ [1/4, 1/2].

(11)

The coefficient p is such that ℵ(1/2) = 1/2 and the mesh is symmetric with respect to the
point x = 1/2. Note that in [0, σ] and [1− σ, 1] the mesh is uniform; otherwise, in [σ, 1− σ]
it is nonuniform and the step sizes satisfy

|hj+1 − hj | ≤ CN−2, j = N/4, . . . , 3N/4. (12)

Note that if σ = 1/4 the mesh is uniform in [0, 1] and therefore a classical analysis could be
made; so, here we are only interested in the case σ = 4

√
ε/β lnN .

On this mesh, the finite difference scheme is given by (see [2]),

LN,Mε Unj ≡ Γ[
Unj − U

n−1
j

τ
]− εδ2

xU
n
j + Γ[bnjU

n
j ] = Γ[fnj ], 0 < j < N, Un0 = UnN = 0, (13)

where

Γ[vnj ] =


vnj , if N/4 ≤ j ≤ 3N/4, and h2

max

(
‖b‖∞ +

1

τ

)
≥ 6ε,

1− γ−j
6

vnj−1 +
4 + γ−j + γ+

j

6
vnj +

1− γ+
j

6
vnj+1, otherwise.

with

γ−j =
h2
j+1

2hj~j
, γ+

j =
h2
j

2hj+1~j
,

and

δ2
xU

n
j :=

1

~j

(
Unj+1 − Unj

hj+1
−
Unj − Unj−1

hj

)
,

hj = xj − xj−1, j = 1, · · · , N, ~j =
hj + hj+1

2
, j = 1, · · · , N − 1.

Lemma 2 Let N ≥ N0 be, where N0 > 0 is a positive integer independent of ε such that

64(‖b‖∞ +
1

τ
) <

3βN2
0

ln2N0

. (14)

Then, the scheme (13) is of positive type, it satisfies a discrete maximum principle and it
is ε-uniform stable in the maximum norm.

@CMMSE                                 Page 346 of 1703                                 ISBN: 978-84-614-6167-7



C. Clavero, J.L. Gracia

Proof. The proof is trivial using that the matrix associated with the discrete operator is
an M -matrix (see [9]).

Theorem 2 Let assume that N ≥ N0 and the space and time discretization parameters N
and τ satisfy the following relation

1

τ
≤ ln4N. (15)

Then, the error associated with the hybrid finite difference scheme (13) satisfies

‖[U − z]nj ‖∞ ≤ C(N−1 lnN)4. (16)

Then, from (7) and (16) it follows

‖[u− U ]nj ‖∞ ≤ C
(
τ + (N−1 lnN)4

)
, (17)

proving the uniform convergence of first order in time and the almost fourth order in space.

3 Numerical experiments

In this section we show the numerical results obtained for the test problem{
ut − εuxx + (1 + xe−t)u = f(x, t), (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = 0, x ∈ Ω, u(0, t) = 0, u(1, t) = 0, t ∈ (0, 1],
(18)

where f is taken such that the exact solution is

u(x, t) = t

(
e−x/

√
ε + e−(1−x)/

√
ε

1 + e−1/
√
ε

− cos2(πx)

)
.

Figure 1 shows the numerical solution for ε = 10−6; from it we clearly see the boundary
layers at both edges x = 0 and x = 1.

From the error Eε,N,Mj,n = |U ε,N,Mj,n −u(xj , tn)|, at each grid point, we compute the max-

imum global errors and the numerical orders of convergence by Eε,N,M = max
j,n

Eε,N,Mj,n , p =

log (Eε,N,M/Eε,2N,2M )/ log 2.
We denote the ε-uniform errors and the ε-uniform orders of convergence by EN,M =

maxε∈Sε E
ε,N,M , puni = log (EN,N/E2N,2M )/ log 2, where Sε = {20, 2−2, . . . , 2−30} has been

chosen in the numerical experiments performed.
Table 1 displays the maximum uniform errors and the computed uniform order of

convergence of method (13) on the Vulanovic mesh. From it we can deduce the almost
fourth order convergence of the method in agreement with (17).

Finally, we compare the maximum errors associated to method (13) with those ones for
the basic method given in [3], which combines the implicit Euler method in time with the
central difference approximation in space. Table 2 displays the results obtained with that
method and we see that the maximum errors are considerably larger than in Table 1. So,
we can conclude that the hybrid method (13) is more efficient than the method used in [3].
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Figure 1: Solution of problem (18) for ε = 10−6

Table 1: Maximum uniform errors and uniform orders of convergence for method (13)

N=64 N=128 N=256 N=512 N=1024 N=2048
M= 8 M= 16 M= 32 M= 64 M= 128 M= 256

EN,M 0.521E-3 0.615E-4 0.672E-5 0.678E-6 0.645E-7 0.590E-8
puni 3.084 3.193 3.311 3.392 3.450
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Abstract

In this paper we use a basis of Fn
2 (with n even) to establish an iterative construction

of some sets of Fn
2 which are the support of bent functions of n variables.

Key words: Boolean function, bent function, balanced function, support

1 Introduction

A Boolean function maps a number of input bits into a single bit. Boolean functions are
widely used in different types of cryptographic applications such as block ciphers, stream
ciphers and hash functions [3, 4, 13], in coding theory [2, 7], among others. A cryptographic
function should have high nonlinearity in order to prevent attacks based on linear approx-
imation [1, 6, 11, 14]. The functions achieving the maximal possible nonlinearity possess
the best resistance to the linear attack and they are called bent functions [16, 18]. Bent
functions have been the subject of some interest in coding theory [9, 10], in logic synthesis
[20] and in cryptography [13].

A general method for generating all bent functions is not known to exist yet, except
for some particular cases (n = 2, 4, 6); the classification for n ≥ 8 is still an open problem,
although recently Langevin and Leander [8] provided the number of bent functions of 8
variables. The origin of bent functions goes back to a theoretical article of McFarland [12]
on sets of finite differences in finite non-cyclic groups. One year after, Dillon [5] systematized
and extended the ideas of McFarland, proving a great quantity of properties. The name
bent for these functions is due to Rothaus [15].
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The rest of the paper is organized as follows. Firstly, in Section 2 we introduce some
basic definitions and notations that are used hereafter. In Section 3, starting with a bases
of F2k

2 we introduce some sets of F2k
2 with the property that they are the supports of bent

functions of 2k variables. Finally, in Section 4 we present some conclusions.

2 Preliminary results

We denote by F2 the Galois field of two elements, 0 and 1, with the addition (denoted by
⊕) and the multiplication (denoted by juxtaposition). For any positive integer n, it is well-
known that Fn

2 is a linear space of dimension n over F2 with the usual addition (denoted
also by ⊕). If for i = 0, 1, 2, . . . , 2n − 1, we denote by i the binary expansion of i of n
digits, then Fn

2 = {i | 0 ≤ i ≤ 2n − 1}. Furthermore, we denote by Span {u1,u2, . . . ,uk}
the linear subspace of Fn

2 generated by u1,u2, . . . ,uk ∈ Fn
2 . Moreover, if S ⊆ Fn

2 and
a⊕ S = {a⊕ u | u ∈ S} for a ∈ Fn

2 , then

card (a⊕ S) = card (S) .

A Boolean function of n variables is a map f : Fn
2 −→ F2. The set of all Boolean

functions of n variables is denoted by Bn; it is well known that Bn, with the usual addition
of functions (that we also denote by ⊕), is a linear space of dimension 2n over F2. If f ∈ Bn,
we call support of f , denoted by Supp (f), the set of vectors of Fn

2 whose image by f is 1,
that is,

Supp (f) = {a ∈ Fn
2 | f(a) = 1} .

If f ∈ Bn, we call weight of f , and we write w(f), the number of elements of Supp (f), i.e.,
w(f) = card (Supp (f)). We said that f is balanced if w(f) = 2n−1.

The following result gives us a characterization of a bent function.

Theorem 1 ([17, 18]): Let f(x) be a Boolean function of n variables with n even. Then
f(x) is a bent function if and only if the Boolean function f(x)⊕ f(a⊕ x) is balanced for
all a ∈ Fn

2 \ {0}.

As a consequence of the previous result we have the following characterization of a bent
function that we will use in the rest of the paper.

Corollary 1: Assume that S ⊆ Fn
2 with n even. Then S is the support of a bent function

of n variables if and only if S ∆(a⊕ S) is the support of a balanced function of n variables
for all a ∈ Fn

2 \ {0}, where ∆ is the symmetric difference of sets.

Proof: Let f ∈ Bn. If S = Supp (f), then S ∆(a ⊕ S) is the support of the Boolean
function f(x)⊕ f(a⊕ x). So the result follows by Theorem 1. �
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3 Main results

From now on, we assume that n = 2k and that U = {u1,u2, . . . ,u2k−1,u2k} is a basis of
Fn
2 . For i = 1, 2, . . . , k, consider the linear subspaces

Gi = Span {u1,u2, . . . ,u2i−1,u2i} and Hi = Span {u2i−1,u2i}

of Fn
2 . Clearly, dimGi = 2i and dimHi = 2. Furthermore, if we consider G0 = {0}, then

Gi = Gi−1 ⊕Hi and Gi−1 ∩Hi = {0},

and therefore, Gi is the direct sum of Gi−1 and Hi. For convenience in the notation, we
refer the elements of Hi, for i = 1, 2, . . . , k, as

a
(i)
0 = 0, a

(i)
1 = u2i−1, a

(i)
2 = u2i and a

(i)
3 = u2i−1 ⊕ u2i.

For p ∈ {0, 1, 2, 3} consider the sets

B(p) =
{
a(1)
p

}
and B̂(p) =

3⋃
q=0
q 6=p

{
a(1)
q

}
.

It is evident that
G1 = B(p) ∪ B̂(p) and B(p) ∩ B̂(p) = ∅. (1)

Furthermore, if r, s ∈ {0, 1, 2, 3} with r 6= s, then B(r) 6= B(s).
Now, let (p1, p2, . . . , pi−1, pi) ∈ {0, 1, 2, 3}i and assume that we have defined the sets

B(p1, p2, . . . , pi−1) and B̂(p1, p2, . . . , pi−1). Then, we define

B(p1, p2, . . . , pi−1, pi)

=
(
a(i)
pi ⊕ B̂(p1, p2, . . . , pi−1)

)
∪

3⋃
q=0
q 6=pi

(
a(i)
q ⊕B(p1, p2, . . . , pi−1)

)
, (2)

B̂(p1, p2, . . . , pi−1, pi)

=
(
a(i)
pi ⊕B(p1, p2, . . . , pi−1)

)
∪

3⋃
q=0
q 6=pi

(
a(i)
q ⊕ B̂(p1, p2, . . . , pi−1)

)
. (3)

Our goal is to prove that the sets B(p1, p2, . . . , pk) and B̂(p1, p2, . . . , pk), for all (p1, p2, . . . , pk) ∈
{0, 1, 2, 3}k, are the supports of two bent functions of 2k variables, such that one is the com-
plementary function of the other. However, we need to introduce beforehand a technical
lemma which will simplify the proof of the above mentioned result.
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Lemma 1: For i = 1, 2, . . . , k, if (p1, p2, . . . , pi) ∈ {0, 1, 2, 3}i and u ∈ Gi \ {0}, then:

1. Gi = B(p1, p2, . . . , pi) ∪ B̂(p1, p2, . . . , pi)

2. B(p1, p2, . . . , pi) ∩ B̂(p1, p2, . . . , pi) = ∅

3. card (B(p1, p2, . . . , pi)) = 22i−1 − 2i−1

4. card
(
B̂(p1, p2, . . . , pi)

)
= 22i−1 + 2i−1

5. card
(
B(p1, p2, . . . , pi) ∩

(
u⊕B(p1, p2, . . . , pi)

))
= 22i−2 − 2i−1,

6. card
(
B̂(p1, p2, . . . , pi) ∩

(
u⊕ B̂(p1, p2, . . . , pi)

))
= 22i−2 + 2i−1,

7. card
(
B(p1, p2, . . . , pi) ∩

(
u⊕ B̂(p1, p2, . . . , pi)

))
= 22i−2,

8. card
(
B̂(p1, p2, . . . , pi) ∩

(
u⊕B(p1, p2, . . . , pi)

))
= 22i−2.

We are now able to prove that the sets B(p1, p2, . . . , pk) and B̂(p1, p2, . . . , pk) are the
supports of a bent function of 2k variables and its complementary, respectively.

Theorem 2: For all (p1, p2, . . . , pk) ∈ {0, 1, 2, 3}k the sets

B(p1, p2, . . . , pk) and B̂(p1, p2, . . . , pk)

are the supports of two bent functions of 2k variables so that one is the complementary
function of the other.

Proof: Assume that u ∈ F2k
2 \ {0}. Since F2k

2 = Gk, by Lemma 1 we have that

card (B(p1, p2, . . . , pk) ∆ (u⊕B(p1, p2, . . . , pk)))

= card (B(p1, p2, . . . , pk)) + card (u⊕B(p1, p2, . . . , pk))

− 2 card (B(p1, p2, . . . , pk) ∩ (u⊕B(p1, p2, . . . , pk)))

= 22k−1 − 2k−1 + 22k−1 − 2k−1 − 2
(

22k−2 − 2k−1
)

= 22k−1,

and therefore, B(p1, p2, . . . , pk) ∆(u⊕B(p1, p2, . . . , pk)) is the support of a balanced function
of 2k variables. So, by Corollary 1, we have that B(p1, p2, . . . , pk) is the support of a bent
function f(x) of 2k variables.

Moreover, from parts 1 and 2 of Lemma 1 we have that B̂(p1, p2, . . . , pk) = Gk \
B(p1, p2, . . . , pk) and, consequently, the set B̂(p1, p2, . . . , pk) is the support of the comple-
mentary function 1⊕ f(x). �
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To count the number of bent functions provided by Theorem 2, we need the following
result.

Theorem 3: For i = 1, 2, . . . , k, let (p1, p2, . . . , pi), (q1, q2, . . . , qi) ∈ {0, 1, 2, 3}i. If p1 = q1,
p2 = q2, . . . , pl = ql, but pl 6= ql for some l ∈ {1, 2, . . . , i− 1}, then

B(p1, p2, . . . , pl, pl+1, pl+2, . . . pl+m) 6= B(p1, p2, . . . , pl, ql+1, ql+2, . . . ql+m),

B̂(p1, p2, . . . , pl, pl+1, pl+2, . . . pl+m) 6= B̂(p1, p2, . . . , pl, ql+1, ql+2, . . . ql+m)

for m = 1, 2, . . . , i− l.

Thus, as a consequence of this result we have that the number of bent functions of 2k
variables that we can construct using a basis U = {u1,u2, . . . ,u2k−1,u2k} is

2 card
(
{0, 1, 2, 3}k

)
= 22k+1.

Since the number of different basis in F2k
2 (see [19, page 46]) is

∏2k−1
i=0 (22k − 2i) we can

construct

22k+1
2k−1∏
i=0

(22k − 2i)

bent functions of 2k variables. For example, for k = 2, we can construct 645 120 bent
functions. Nevertheless, the number of different bent functions of 4 variables is 896.

So there are different bases that provide the same bent functions. For example, it is
not difficult to see that the bases U = {1,2,4,8} and V = {6,7,9,13} of F4

2 provide both
the supports of the same bent functions of 2 variables.

4 Conclusions

In this paper we use a basis of F2k
2 to construct 22k+1 sets in F2k

2 that are the supports of
bent functions. Half of the bent functions obtained are the complementary functions of the
other half. Since different bases can produce the same bent functions, we need to establish
under what conditions two different bases provide the same bent functions.
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Abstract

In this paper we introduce some key exchange protocols over noncommutative
rings. These protocols uses some polynomials with coefficients in the center of the
ring as part of the private keys. We give some examples over the ring End(Zp×Zp2)
where p is a prime number.

Key words: Key exchange protocol, noncommutative ring, center of a ring,
polynomial, public key cryptography.

1 Introduction and preliminaries.

Most common public key cryptosystems and public key exchange protocols presently in
use, are number theory based and hence theoretically depend on the structure of abelian
groups. Their robustness is based on the difficulty of solving certain problems over finite
commutative algebraic structures. One of these is the Integer Factorization Problem
over the ring Zn, being n the product of two large prime numbers; the well known
cryptosystem RSA [8] is based in this problem. The second classical problem is the
Discrete Logarithm Problem over a finite field Zp, being p a large prime; the ElGamal
protocol [4] and all its variants (see, for example, [7]) is based on this problem.

It is believed that the strength of computing machinery has made these techniques
less secure. As a consequence of this there exists an active field of research named as
noncommutative algebraic cryptography [6], with the aim to develop and analyze new
cryptosystems and key exchange protocols based on noncommutative cryptographic
platforms. Several authors have used nonabelian groups for public key exchange. In
[1, 5], the authors suggested the braid groups as platform groups for their respective
protocols.
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The main idea of this work is the design of some public key exchange protocols
over noncommutative rings, in particular over the ring of endomorphisms of Zp × Zp2

where p is a prime number p. Bergman [2] showed that this ring has p5 elements
and it is semilocal, but it cannot be embebed in matrices over any commutative ring.
Nevertheless, Climent, Navarro, and Tortosa [3] established that

End(Zp × Zp2) =

{[
a b
pc d

]
| a, b, c ∈ Zp and d ∈ Zp2

}
where the addition and multiplication are given, respectively, by[

a1 b1
pc1 d1

]
+

[
a2 b2
pc2 d2

]
=

[
(a1 + a2) mod p (b1 + b2) mod p
p(c1 + c2) mod p2 (d1 + d2) mod p2

]
and [

a1 b1
pc1 d1

]
·
[
a2 b2
pc2 d2

]
=

[
(a1a2) mod p (a1b2 + b1d2) mod p

p(c1a2 + b1c2) mod p2 (pc1b2 + d1d2) mod p2.

]
We denote for simplicity End(Zp × Zp2) by Ep.

The center of the ring Ep is the set

Z(Ep) =

{[
x 0
0 py + x

]
| x, y ∈ Zp

}
.

It is easy to check that the number of elements of Z(Ep) is p2 which coincides with the
characteristic of Ep.

2 A modification of Stickel’s Protocol over nonconmuta-
tive rings

From the Stickel’s key exchange protocol [10] we propose the following protocol over a
noncommutative ring R.

Protocol 1: The elements M , N ∈ R are public.

Step 1: Alice and Bob choose their private keys (r, s), (u, v) ∈ N2 respectively.

Step 2: Alice computes her public key PA = M rNM s and sends it to Bob.

Similarly, Bob computes his public key PB = MuNMv and sends it to Alice.

Step 3: Alice and Bob compute SA and SB respectively as

SA = M rPBM
s and SB = MuPAN

v.

The shared secret is SA = SB as we can see in the following theorem. �

Theorem 1: With the above notation, it follows that SA = SB.
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Proof: The result follows from the fact that MkM l = M lMk for all k, l ∈ N. �

Note that if MN = NM then

PA = M rNM s = NM rM s and PB = MuNMv = NMuMv,

therefore
NSA = PAPB = NSB,

and the shared secret SA = SB may be easily obtained by an unauthorized part, since
N , PA and PB are public.

Then, we need that MN 6= NM ; therefore, from now on we will assume that
N 6∈ Z(R).

Thus, the security of this protocol is based on achieving an element M with large
order. However, using the ideas of Shpilrain [9] it is easy to cryptanalyze the above
protocol because the element M is public.

In order to avoid this weakness in the protocol, we propose in the next section
two new protocols in which, instead of considering the element M directly, we consider
the elements f(M) and g(M) obtained from M and two polynomials f(X), g(X) ∈
Z(R)[X].

3 Key exchange protocols using polynomials over a non-
commutative ring

Assume that R is a noncommutative ring. If we consider f(X), g(X) ∈ Z(R)[X] and
k, l ∈ N, although R is not commutative, we have that

f(M)kg(M)l = g(M)lf(M)k, for all M ∈ R. (1)

This property allows us to establish the following protocol.

Protocol 2: The elements M ∈ R and N ∈ R \ Z(R), are public.

Step 1: Alice choose her private key f(X) ∈ Z(R)[X] and r, s ∈ N.

Bob choose his private key g(X) ∈ Z(R)[X] and u, v ∈ N.

Step 2: Alice computes her public key PA = f(M)rNf(M)s, and sends it to Bob.

Analogously, Bob computes his public key PB = g(M)uNg(M)v, and sends it to
Alice.

Step 3: Alice and Bob compute SA and SB respectively as,

SA = f(M)rPBf(M)s and SB = g(M)uPAg(M)v. �

As in Protocol 1, the shared secret is SA = SB, as we can see in the following
theorem.
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Theorem 2: With the above notation, it follows that SA = SB.

Proof: The result follows from expression (1). �

In the next example we show how to share a secret using the above protocol over
the ring E11.

Example 1: The starting point of the protocol consists on the sharing the elements

M =

[
5 8
44 102

]
∈ E11 and N =

[
10 3
77 37

]
∈ E11 \ Z(E11).

Now, we run the steps of the protocol.
Step 1: Alice chooses her private key r = 3, s = 5 and

f(X) =

[
3 0
0 47

]
+

[
3 0
0 80

]
X +

[
9 0
0 108

]
X2 +

[
5 0
0 49

]
X3 ∈ Z(E11)[X].

Then, f(M) =

[
10 8
44 74

]
.

Bob chooses his private key u = 2, v = 4 and

g(X) =

[
9 0
0 86

]
+

[
6 0
0 72

]
X +

[
5 0
0 38

]
X2 ∈ Z(E11)[X].

Then g(M) =

[
10 5
88 39

]
.

Step 2: Alice computes her public key PA as

PA = f(M)rNf(M)s =

[
10 8
44 74

]3 [
10 3
77 37

] [
10 8
44 74

]5
=

[
10 5
110 9

]
,

and sends it to Bob.
Similarly, Bob computes his public key PB as

PB = g(M)uNg(M)v =

[
10 5
88 39

]2 [
10 3
77 37

] [
10 5
88 39

]4
=

[
10 2
99 31

]
,

and sends it to Alice.
Step 3: Alice computes SA as

SA = f(M)rPBf(M)s =

[
10 8
44 74

]3 [
10 2
99 31

] [
10 8
44 74

]5
=

[
10 1
99 56

]
.

Bob computes SB as

SB = g(M)uPAg(M)v =

[
10 5
88 39

]2 [
10 5
110 9

] [
10 5
88 39

]4
=

[
10 1
99 56

]
.

As we established in Theorem 2, the shared secret is SA = SB.
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Ep Degree of the polynomial

HH
HHp
n

2 3 4 5 · · · 12 13 · · · 20 · · ·

2 12 16 20 24 · · · 52 56 · · · 84 · · ·
3 27 36 45 54 · · · 117 126 · · · 189 · · ·
5 75 100 125 150 · · · 325 350 · · · 525 · · ·
7 147 196 245 294 · · · 637 686 · · · 1029 · · ·
11 363 484 605 726 · · · 1573 1694 · · · 2541 · · ·
...

...
...

...
...

...
...

...
97 28227 37636 47045 56454 · · · 122317 131726 · · · 197589 · · ·
...

...
...

...
...

...
...

...

Table 1: Number of polynomials for different degrees n and primes p

Note that an attacker knows the element M because it is public, but the elements
f(X), g(X) ∈ Z(E11)[X] are unknown. Consequently, the following elements are also
unknown

f(M)r =

[
10 8
44 74

]3
=

[
10 5
88 72

]
and f(M)s =

[
10 8
44 74

]5
=

[
10 0
0 76

]
.

as well as

g(M)u =

[
10 5
88 39

]2
=

[
1 3
77 25

]
and g(M)v =

[
10 5
88 39

]4
=

[
1 1
66 9

]
.

To recover the secret, an attacker must consider, for each user, the resolution of
the equation

XkNX l = P,

where only N and P are known while X, k and l are unknown. �

We could think about a brute force attack on the set of polynomials with coefficients
in the center of the ring. However, an attack of this kind is not viable because the
number of polynomials of degree n and coefficients in Z(Ep), is (n+ 1)p2. It is enough
to take n or p sufficiently big. Table 1 shows the values of (n+ 1)p2 for different values
of n and p.

Note that Protocol 2 presents some symmetry in the sense that Alice and Bob uses
the same polynomial to multiply both on the right and the left. To avoid this symmetry
we introduce two polynomials for each user.

Protocol 3: The elements M ∈ R, N ∈ R \ Z(R), are public.

Step 1: Alice chooses her private key f1(X), f2(X) ∈ Z(R)[X] and r, s ∈ N.

Bob chooses his private key g1(X), g2(X) ∈ Z(R)[X] and u, v ∈ N.

Step 2: Alice computes her public key PA = f1(M)rNf2(M)s and sends it to Bob.

Similarly, Bob computes his public key PB = g1(M)uNg2(M)v, and sends it to
Alice.
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Step 3: Alice and Bob compute SA and SB respectively as

SA = f1(M)rPBf2(M)s and SB = g1(M)uPAg2(M)s.

By a similar argument as in Protocol 2, it follows that SA = SB. �

In the next example, we show how to share a secret using the above protocol.

Example 2: We consider again the elements M and N of E11 as in Example 1.
Step 1: Alice chooses her private key r = 3, s = 5 and f1(X), f2(X) as

f1(X) =

[
3 0
0 47

]
+

[
3 0
0 80

]
X +

[
9 0
0 108

]
X2 +

[
5 0
0 49

]
X3 ∈ Z(E11)[X],

f2(X) =

[
4 0
0 81

]
+

[
3 0
0 14

]
X2 +

[
1 0
0 34

]
X3 +

[
1 0
0 56

]
X4 ∈ Z(E11)[X].

Then, f1(M) =

[
10 8
44 74

]
and f2(M) =

[
4 10
55 29

]
.

Bob chooses his private key u = 2, v = 4 and g1(X), g2(X) as

g1(X) =

[
9 0
0 86

]
+

[
6 0
0 72

]
X +

[
5 0
0 38

]
X2 ∈ Z(E11)[X],

g2(X) =

[
4 0
0 70

]
+

[
5 0
0 49

]
X +

[
10 0
0 87

]
X2 +

[
10 0
0 109

]
X3 ∈ Z(E11)[X].

Then, g1(M) =

[
10 5
88 39

]
and g2(M) =

[
8 6
33 56

]
.

Step 2: Alice computes her public key PA as

PA = f1(M)rNf2(M)s =

[
10 8
44 74

]3 [
5 8
44 88

] [
4 10
55 29

]5
=

[
1 2
99 20

]
,

and sends it to Bob.
Similarly, Bob computes his public key PB as

PB = g1(M)uNg2(M)v =

[
10 5
88 39

]2 [
10 3
77 37

] [
8 6
33 56

]4
=

[
7 3
77 56

]
,

and sends it to Alice.
Step 3: Alice computes SA as

SA = f1(M)rPBf2(M)s =

[
10 8
44 74

]3 [
7 3
77 56

] [
4 10
55 29

]5
=

[
4 8
11 82

]
.

Bob computes SB as

SB = g1(M)uPAg2(M)v =

[
10 5
88 39

]2 [
1 2
99 20

] [
8 6
33 56

]4
=

[
4 8
11 82

]
.

@CMMSE                                 Page 362 of 1703                                 ISBN: 978-84-614-6167-7



J.-J. Climent, P. R. Navarro, L. Tortosa

Ep Degree of the polynomials
PPPPPPp

[m,n]
[2, 3] [3, 4] [4, 5] · · · [9, 10] · · ·

2 192 320 480 · · · 1760 · · ·
3 972 1620 2430 · · · 8910 · · ·
5 7500 12500 18750 · · · 68750 · · ·
7 28812 48020 72030 · · · 264110 · · ·
11 175692 292820 439230 · · · 1610510 · · ·
...

...
...

...
...

97 1062351372 1770585620 2655878430 · · · 9738220910 · · ·
...

...
...

...
...

Table 2: Number of polynomials for different values of the degrees and p

The shared secret is then SA = SB.
Note that an attacker knows M because it is public, but f1(X), f2(X), g1(X), g2(X) ∈

Z(E11)[X] remain unknown. Consequently,

f1(M)r =

[
10 8
44 74

]3
=

[
10 5
88 72

]
and f2(M)s =

[
4 10
55 29

]5
=

[
1 8
44 98

]
,

are unknown, as well as

g1(M)u =

[
10 5
88 39

]2
=

[
1 3
77 25

]
and g2(M)v =

[
8 6
33 56

]4
=

[
4 1
66 78

]
.

Following a similar argument as for Protocol 2, an attacker who want to discover
the shared secret must solve the equation

XkNY l = P,

where N and P are public and X, Y , k, l are unknown. �

In this protocol a user needs two polynomials with degrees m and n, respectively;
therefore the number of possible polynomials becomes (m+ 1)(n+ 1)p4. Table 2 shows
the values of (m + 1)(n + 1)p4 for different values of m, n and p.

4 Conclusion

In this paper we propose two new key exchange protocols based on noncommutative
rings that avoid the weaknesses of the Stickel’s protocol. The central idea underlying
these protocols is the use of polynomials with coefficients in the center of the ring;
these polynomials become a part of the private key for each user. Thus, an attacker
who wants to recover the shared secret must solve an equation of the form

XkNX l = P or XkNY l = P

where only N,P ∈ R are known.
These protocols have been designed to work, in general, with any noncommutative

ring. In our case, they have been applied to the particular case of the ring End(Zp×Zp2).
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Camino de Vera, s/n, 46022 València, Spain
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Abstract

Based on Steffensen-like methods and Padé approximant, a technique to obtain
derivative-free methods, with optimal order in the sense of the Kung-Traub conjec-
ture, for solving nonlinear smooth equations is described. Derivative-free methods
of fourth and eighth optimal orders are theoretically discussed. Numerical exam-
ples are made to show the performance of the presented methods, on nonsmooth
equations, and to compare with another ones.

Key words: Nonlinear equations, derivative-free, iterative methods, convergence
order, efficiency index, Padé approximant.

1 Introduction

Finding iterative methods for solving nonlinear equations is an important area of re-
search in numerical analysis and it has interesting applications in various branches of
science and engineering. In this study, we describe new iterative methods to find a
simple root α of a nonlinear equation f(x) = 0, where f : I ⊂ R → R is a scalar
function on an open interval I. The known Newton’s method for finding α uses the
iterative expression

xn+1 = xn − f(xn)
f ′(xn)

, n = 0, 1, . . .

which converges quadratically in some neighborhood of α. If the derivative f ′(xn) is
replaced by the forward-difference approximation

f ′(xn) ≈ f(xn + f(xn))− f(xn)
f(xn)

,
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the Newton’s method becomes

xn+1 = xn − f(xn)2

f(zn)− f(xn)
, (1)

where z=x+f(xn), which is the known Steffensen’s method (SM), (see [8]). This scheme
is a tough competitor of Newton’s method. Both methods are of second order, both
require two functional evaluations per step, but in contrast to Newton’s method, Stef-
fensen’s method is derivative-free.

The procedure of removing the derivatives usually increases the number of func-
tional evaluations per iteration. Commonly in the literature the efficiency of an iterative
method is measured by the efficiency index defined as I = p1/d (see [9]), where p is the
order of convergence and d is the total number of functional evaluations per step. Kung
and Traub conjectured in [6] that the order of convergence of any multipoint method
cannot exceed the bound 2d−1, (called the optimal order). Thus, the optimal order for
methods with 2, 3 or 4 functional evaluations per step would be 2, 4 or 8, respectively.
Newton and Steffensen’s methods are optimal schemes of order 2.

Recently, Ren et al. derive in [10] a one-parameter class of fourth-order methods
(RWB) with three functional evaluations per step. In these methods, an interpolation
polynomial of order three is used to get a better approximation to the derivative of the
given function. The iterative expression is:

xn+1 = yn − f(yn)
f [xn, yn] + f [yn, zn]− f [xn, zn] + a(yn − xn)(yn − zn)

, (2)

where yn is the approximation of the Steffensen’s method and f [x, y] is the divided
difference of order one. Other Steffensen type methods and their applications are also
discussed by Liu et al. in [7] and by Cordero and Torregrosa in [4], where the authors
also obtain different optimal fourth-order methods; by Zheng et al. in [11] and by Feng
and He in [5]. As far as we know, there is not optimal derivative-free schemes of order
greater than four.

In this paper, the technique used to improve the local order of convergence consists
of the composition of two iterative methods of order p and q, respectively, to obtain
a method of order pq (see [8]). In the first proposed method, we compose Steffensen
and Newton’s methods and we use a Padé approximant of degree one to get a good
approximation to the derivative of the given function. The resulting method has order of
convergence four and requires three evaluations of the function f(x) per step, therefore
it is an optimal method with efficiency index 41/3 = 1.587.

If we compose again the above method with Newton’s method and use a Padé
approximant of degree two, we can derive a new iterative scheme of eighth-order of
convergence, which requires four evaluations of the function f(x) per step, that is an
optimal scheme with efficiency index 81/4 = 1.6817. We think that this technique can
be extended in order to obtain a derivative-free optimal methods of orders 16, 32, . . .

The paper is organized as follows. In Section 2 we describe the new methods and
analyze its convergence order for smooth equations. In Section 3, different numerical
tests confirm the theoretical results and allow us to compare these methods with other
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known schemes mentioned in this section. We also analyze in this numerical section
the behavior of the new schemes on nonsmooth equations.

2 Description of the methods and convergence analysis

We first compose the well-known Steffensen method, defined by (1), with Newton’s
method obtaining the fourth-order scheme

yn = xn − f(xn)2

f(zn)− f(xn)
,

(3)

xn+1 = yn − f(yn)
f ′(yn)

,

where zn = xn+f(xn). Now, in order to avoid the evaluation of f ′(yn), we approximate
it by the derivative m′(yn) of the following Padé approximant of the first degree

m(t) =
a1 + a2(t− yn)
1 + a3(t− yn)

, (4)

where a1, a2 and a3 are real parameters to be determined satisfying the following
conditions:

m(xn) = f(xn), (5)

m(yn) = f(yn), (6)

and
m(zn) = f(zn). (7)

Directly from (6) one obtains

a1 = f(yn). (8)

From (5) and (7), we obtain, respectively,

a2 − f(xn)a3 = f [xn, yn] (9)

and
a2 − f(zn)a3 = f [zn, yn]. (10)

After some algebraic manipulations, the following values are obtained for the parame-
ters:

a2 = f [yn, zn]− f(zn)f [xn, yn, zn]
f [zn, xn]

(11)

and
a3 = −f [xn, yn, zn]

f [xn, zn]
, (12)

where f [xn, yn, zn] = f [xn,yn]−f [yn,zn]
xn−zn

denotes the divided difference of order 2.

@CMMSE                                 Page 367 of 1703                                 ISBN: 978-84-614-6167-7



Fourth and eighth-order optimal derivative-free methods

Therefore, the derivative of the Padé approximant evaluated in yn can be expressed
as

m′(yn) =
f [xn, yn]f [yn, zn]

f [xn, zn]
, (13)

and substituting (13) in the last step of the iteration, we obtain a new iterative method,
which we denote by M4, whose expression is:

yn = xn − f(xn)2

f(zn)− f(xn)
,

(14)

xn+1 = yn − f(yn)f [xn, zn]
f [xn, yn]f [yn, zn]

.

Let us note that in each iteration we only evaluate f(xn), f(yn) and f(zn), so that
the method will be optimal in the sense of Kung-Traub’s conjecture, if we show that
its convergence order is 4.

Theorem 1 Let α ∈ I be a simple zero of a sufficiently differentiable function f : I ⊆
R −→ R in an open interval I. If x0 is sufficiently close to α, then the method M4
defined by (14) has optimal convergence order 4.

This technique can be applied on higher order methods than Steffensen’s one,
in order to obtain a new high-order derivative-free method. So, let us consider a
composition between M4 and Newton’s scheme; if a Padé approximant of degree two is
applied on the estimation of the derivative in the last step, the resulting method would
appear as:

yn = xn − f(xn)2

f(zn)− f(xn)
,

un = yn − f(yn)f [xn, zn]
f [xn, yn]f [yn, zn]

, (15)

xn+1 = un − f(un)
m̄′(un)

,

where m̄(t) = b1+b2(t−un)+b3(t−un)2

1+b4(t−un) , and the parameters b1, b2, b3 and b4 must satisfy
the following conditions:

m̄(xn) = f(xn), (16)

m̄(yn) = f(yn), (17)

m̄(zn) = f(zn), (18)

and
m̄(un) = f(un). (19)

Again, from (19) one obtains

b1 = f(un), (20)
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and, by solving the system described by (16), (17) and (18) in a similar way as before,
the following values are obtained for the parameter b4:

b4 =
f [yn, un, xn]− f [yn, un, zn]

f [yn, zn]− f [yn, xn]
(21)

and also b3:
b3 = f [yn, un, zn] + b4f [yn, zn] (22)

and b2:
b2 = f [yn, un]− b3(yn − un) + f(yn)b4. (23)

Therefore the derivative of the second-degree Padé approximant can be expressed
as

m̄′(un) = b2 − b1b4, (24)

and substituting (24) in (15), we obtain a new scheme, denoted by M8, whose iterative
expression is:

yn = xn − f(xn)2

f(zn)− f(xn)
,

un = yn − f(yn)f [xn, zn]
f [xn, yn]f [yn, zn]

, (25)

xn+1 = un − f(un)
b2 − b1b4

.

Let us note that in each iteration we evaluate f(xn), f(yn), f(zn) and f(un), so
that the method would be optimal, if we show that its convergence order is 8.

Theorem 2 Let α ∈ I be a simple zero of a sufficiently differentiable function f : I ⊆
R −→ R in an open interval I. If x0 is sufficiently close to α, then the method M8
defined by (25) has optimal convergence order 8.

We conjecture that this technique would allow us to design new methods of in-
creasing order of convergence (16, 32, ...) by using, respectively, Padé approximants of
degree three, four, ..., which would be optimal derivative-free schemes.

3 Numerical results

In this section we check the effectiveness of the new optimal methods of order for and
eight, M4 and M8, comparing them with Steffensen’s and RWB methods of second
and fourth order, respectively.

Nowadays, high-order methods are important because numerical applications use
high precision in their computations; for this reason numerical tests have been carried
out using variable precision arithmetic in MATLAB 7.1. with 2000 significant digits.
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Tables 1 and 2 show for each initial estimation and every method, the exact ab-
solute error at first and last iterations, the number of iterations required to obtain
incr1 = |xk+1 − xk| < 10−150 or incr2 = |f(xk+1)| < 10−150 and the corresponding
computational order of convergence ρ (usually called ACOC), defined by Cordero et al.
in [3]:

p ≈ ρ =
ln(|xk+1 − xk| / |xk − xk−1|)

ln(|xk − xk−1| / |xk−1 − xk−2|) . (26)

The value of ρ appearing in Tables 1 and 2 is the last component of the vector defined
by (26), when it is stable, in other case we will denote it by ’-’.

The first test has been made on the nonsmooth function:

f(x) =
{

x(x + 1), if x < 0,
−2x(x− 1), if x ≥ 0,

(27)

that can be found in [2]. We use three initial estimations in order to approximate the
three different roots of the equation, {−1, 0, 1}. From Table 1 it can be inferred that, as
every root is close to each other, the initial estimation must be quite good if convergence
to the central root is looked for. In fact, for x0 = −20, method M4 converges to 0,
instead of the closest root, -1. Moreover, the nonsmoothness of the function (27) in
0 is the reason why the estimated order of convergence is 2 for all the methods. The
stability problems do not allow the order of convergence to increase. When the initial
approximation is near of 1 or -1, the behavior of the methods is stable and the ACOC
is near the theoretical order of convergence. High-order methods are shown to be more
efficient when the root is far enough; for x0 = −20, the number of iterations needed
have been reduced in a reason of 1/7 from Steffensen’s method.

Now, we consider the nonsmooth function that can be found in [1]:

f(x) =
{

10x(x4 + x), if x < 0,
10x(x3 + x), if x ≥ 0,

(28)

The numerical experiments made on this function are summarized in Table 2. In this
case, function (28) has a unique root in x = 0. Then, we test the different methods
with 3 initial estimations, each of them further from the zero than the previous one.
Smoothness difficulties make the calculation of the ACOC unstable, so we have no
information at this point. Nevertheless, the number of iterations needed is much lower
in high-order methods, indeed in the optimal eighth-order method M8. Moreover, Table
2 shows that the exact error per iteration in M8 is lower than the one calculated by
the fourth-order methods, in most of cases from the first iteration.

4 Conclusions

Two new high-order methods to solve nonlinear equations have been developed, both
of them optimal and derivative free. The optimal eighth-order method is, as far as we
know, the first optimal Steffensen-type scheme developed of this order of convergence.
It seems to be quite stable and robust, as it can be faster than other known, excellent
methods as RWB even on nonsmooth functions.
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SM RWB M4 M8
x0 = 0.1 iter error iter error iter error iter error

1 4.52e-2 1 1.93e-2 1 0.1 1 0.1
2 4.60e-3 2 6.95e-4 2 1.98e-2 2 6.74e-3

α = 0
...

...
...

...
8 9.98e-124 7 1.80e-92 7 6.50e-92 7 5.82e-130
9 2.99e-246 8 6.45e-184 8 8.45e-183 8 5.08e-259

incr1 9.98e-124 1.80e-92 6.50e-92 5.82e-130
incr2 2.99e-246 6.45e-184 8.45e-183 1.02e-258
ρ 2.0058 2.0000 2.0000 2.0000
x0 = 3 iter error iter error iter error iter error

1 2.86e-1 1 1.75e-1 1 1.75e-1 1 3.70e-1
2 1.53e-1 2 2.13e-3 2 4.52e-3 2 4.33e-5

α = 1
...

...
... 3 4.92e-35

9 2.72e-114 4 1.91e-43 5 2.40e-144 4 1.38e-274
10 7.38e-228 5 1.34e-171 6 6.66e-575

incr1 2.71e-114 1.91e-43 2.40e-144 4.92e-35
incr2 1.48e-227 2.69e-171 0.0000 2.77e-274
ρ 2.0000 4.0005 4.0000 7.6157
x0 = −20 iter error iter error iter error iter error

1 18.44 1 9.34e-1 1 9.13 1 4.23
2 17.88 2 4.47e-1 2 4.19 2 5.25e-1

α = −1
...

...
...

...
33 2.01e-115 6 6.19e-27 11 1 4 7.05e-36
34 8.09e-335 7 5.61e-158 12 1 5 6.03e-422

incr1 2.0e-115 6.19e-27 1.37e-106 7.05e-36
incr2 0.0000 5.61e-158 3.74e-212 0.0000
ρ - - 2.0000 -

Table 1: Numerical results for function (27)
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SM RWB M4 M8
x0 = 1 iter error iter error iter error iter error

1 9.96e-1 1 4.86e-1 1 4.98e-1 1 8.97e-2
2 9.91e-1 2 1.10e-1 2 1.37e-1 2 2.03e-6

α = 0
...

...
... 3 1.05e-46

100 6.61e-105 5 1.03e-60 5 9.70e-76 4 0
101 3.81e-311 6 0 6 0

incr1 3.69e-36 1.03e-60 9.70e-76 1.05e-46
incr2 0 0 0 0
ρ - - - -
x0 = 16 iter error iter error iter error iter error

> 104 1 10.65 1 10.65 1 6.76
2 7.08 2 7.08 2 2.79

α = 0
...

...
...

11 1.13e-87 11 4.72e-33 6 1.36e-46
12 0 12 3.40e-159 7 0

incr1 1.13e-87 4.72e-33 1.36e-46
incr2 0 3.40e-158 0
ρ - - -
x0 = 32 iter error iter error iter error iter error

> 104 1 21.33 1 21.33 1 13.56
2 14.21 2 14.21 2 5.71

α = 0
...

...
...

13 4.40e-58 13 1.78e-62 7 2.34e-98
14 0 14 2.57e-306 8 0

incr1 4.40e-58 1.78e-62 2.34e-98
incr2 0 2.57e-305 0
ρ - - -

Table 2: Numerical results for function (28)
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Abstract

In this paper we analyze the dynamical behaviour of Potra-Pták and Midpoint
methods on second degree complex polynomials. We obtain that, in both cases,
the Julia set is a connected set that separates the basins of attraction of the roots
of the polynomial: the Julia set of the Midpoint method is the same as for the
Newton operator, but it is more complicated for the Potra-Pták operator. We
explain these differences by obtaining the conjugacy function of each method.

Key words: Nonlinear equations, iterative methods, complex dynamics.

1 Introduction

Many engineering applications involve nonlinear equations f (x) = 0 whose solution
can not be found by means of analytical methods. To approximate the solution of
these equations we use iterative methods. This means that the output of the method
is a sequence of images {x0, R (x0) , R

2 (x0) , ..., R
n (x0) , ...} for the initial condition x0,

where R is a rational function that represents the fixed point operator of the iterative
scheme. Therefore, it can be seen as a discrete dynamical system and we can study it
from this point of view.

There is an extensive literature on the study of iteration of rational mappings R
of a complex variable (see [5], [6], for example) and, moreover, the Newton’s method
(see [4], [7] for example) applied on polynomials is a rational function. In this case, the
Riemann sphere Ĉ is also considered.

To our knowledge, the study on the dynamics of Newton’s method has been ex-
tended to other point-to-point iterative methods used for solving nonlinear equations,
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with convergence order up to three (see, for example [1], [2] and, more recently, [8] and
[11]).

S. Amat et al. in [3] make a brief raid into the study of the dynamics of the
Potra-Pták method (see [12]) defined on the real numbers and applied on polynomials
of second and third degrees. This study, although interesting by itself, does not allow
to see all the richness of the dynamics of the method when it is defined on the complex
numbers.

Now, let us recall some basic concepts on complex dynamics. Given a rational
function R : Ĉ → Ĉ. The orbit of a point z0 is defined as:

z0, R (z0) , R
2 (z0) , ..., R

n (z0) , ...

and we are interested in the study of the asymptotic behaviour of the orbits depending
on the initial condition z0, that is, we are interested in the study of the phase plane of
the map defined by the iterative method.

To obtain this phase space, the first of all is to classify the initial conditions from
the asymptotic behavior of their orbits.

As α is a root of f , f (α) = 0, the basin of attraction of α is defined as the set of
pre-images of any order:

A (α) = {z0 ∈ C|Rn (z0)→α, n→∞}.

A fixed point z0 is a point that satisfies: R (z0) = z0. A periodic point z0 of period
p > 1 is a point such that Rp (z0) = z0 and Rk (z0) ̸= z0, k < p. A pre-periodic point is
a point z0 that is not periodic but there exists a k > 0 such that Rk (z0) is periodic. A
critical point z0 is a point where the derivative vanishes, R′ (z0) = 0.

On the other hand, a fixed point z0 is called attractor if |R′(z0)| < 1, superattractor
if |R′(z0)| = 0, and repulsor if |R′(z0)| > 1.

The set of points z ∈ Ĉ such that their families {Rn (z)}n∈N are normal in some
neighborhood U (z) , is the Fatou set, F (R) , that is, the Fatou set is composed by the
set of points whose orbits tend to an attractor (fixed point, periodic orbit or infinity).
Its complement in Ĉ is the Julia set, J (R) ; therefore, the Julia set includes all re-
pelling fixed points, periodic orbits and their pre-images. That means that the basin of
attraction of any fixed point belongs to the Fatou set. On the contrary, the boundaries
of the basins of attraction belong to the Julia set.

1.1 The Newton’s Method

The Newton’s method is the best known method to find the roots of a nonlinear func-
tion:

f (z) = 0

where f ∈ C1
(
Ĉ
)
is defined on the Riemann sphere Ĉ. The Newton’s iterative operator

is

Nf (z) = z − f (z)

f ′ (z)
(1)
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which satisfies that f (z) = 0 if and only if Nf (z) = z. So, to find the roots of f (z) is
equivalent to find the fixed points of the operator Nf (z) . Actually, the global analysis
of convergence of Newton’s method of f(z) is equivalent to compute individual orbits
of the dynamical systems generated by the Newton map Nf (z) .

The equation (1) on a polynomial p (z)

Np (z) = z − p (z)

p′ (z)
(2)

verifies the following properties:

1. The roots of p (z) correspond to the finite fixed points of Np.

2. The point at the infinity is a repelling fixed point.

3. As the derivative of the iteration function is

N ′
p (z) =

p (z) p′′ (z)

p′ (z)2
(3)

the simple roots of p (z) are superattracting fixed points. Multiple roots are
attracting fixed points, but not superattracting.

For simplicity, we begin by studying the Newton’s method on quadratic polynomi-
als. It is known that the roots of the polynomial can be transformed by an affine map
without qualitatively changing the dynamics of the correspondent Newton function.
So, we can use the quadratic polynomial p (z) = z2 + c.

Then, we obtain that the two basin of attraction of the roots are separated by the
perpendicular bisector of the line segment from one root to the other. This bisector is
the Julia set for this polynomial, that it is connected.

Moreover, it is desirable that the convergence regions of both maps be essentially
the same, except for the change of coordinates, see [10] for example.

Theorem 1 Let f be an analytic function on the Riemann sphere, and let A(z) =
αz + β, with α ̸= 0, be an affine map. If g(z) = λ(f ◦ A)(z), where λ ∈ C− {0}, then
the Newton’s iteration function Nf is analytically conjugated to Ng by A:

A ◦Nf ◦A−1(z) = Ng(z).

Moreover,

Theorem 2 [4, Th. 2] Let p (z) be a quadratic polynomial with distinct roots. The
Newton’s method Np (z) is globally, analytically conjugate to the quadratic polynomial
z2.

P. Blanchard, in [4], proves it by considering the conjugacy map

h (z) =
z − i

√
c

z + i
√
c
, (4)

with the following properties:
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i) h (∞) = 1,

ii) h (i
√
c) = 0,

iii) h (−i
√
c) = ∞.

Then, (
h ◦Np ◦ h−1

)
(z) = z2. (5)

So, for quadratic polynomials, the Newton operator is always conjugate to the
rational map z2, satisfying the following properties:

1. The dynamics of this operator gives the unit circle S1(z) = {z ∈ Ĉ : |z| = 1}
as the invariant Julia set.

2. The Fatou set is defined by the two basins of attraction of the superattracting
fixed points: 0 and ∞.

In this paper, we study the dynamics of two iterative methods of order three: the
Potra-Pták’s method (Section 2) and the MidPoint method (Section 3) on quadratic
polynomials.

2 The Potra-Pták’s method

The iterative method of Potra-Pták ( see [12]) is:

xk+1 = yk −
f(yk)

f ′(xk)
,

where yk comes from the Newton’s method. The fixed point operator associated to this
method on the complex plane

Tf (z) = z − f (z)

f ′ (z)
−
f
(
z − f(z)

f ′(z)

)
f ′ (z)

. (6)

In this section, we study the dynamics of this operator on quadratic polynomials,
p (z) = z2 + c, c ∈ C,

Tp (z) =
3z4 − 6cz2 − c2

8z3
. (7)

The Scaling Theorem for this method can be found in [3].

Theorem 3 (Amat et.al., [3]) Let f be an analytic function on the Riemann sphere,
and let A(z) = αz + β, with α ̸= 0, be an affine map. If g(z) = λ(f ◦ A)(z), where
λ ∈ C − {0}, then the Potra-Pták’s iteration function Tf is analytically conjugated to
Tg by A:

A ◦ Tf ◦A−1(z) = Tg(z).
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We obtain four fixed points for this operator: two of them are the roots of the
polynomial. The other two are called strange fixed points.

Tp (z) = z ⇒ z = ±i
√
c,±i

√
c

5

As each component of the Fatou set contains at least a critical point, the dynamical
properties of a complex analytical functions are often determined for the dynamics of
its critical points. In this case, the derivative of (7)

T ′
p (z) =

3

8

(
z2 + c

)2
z4

,

allows us to deduce that the only critical points are the roots of the polynomial and
these roots are also fixed points of the operator.

Moreover,
T ′
p

(
±i

√
c
)
= 0

implies that these roots are superattractor fixed points. The other fixed points of Tp (z)
are repelling

(
T ′
p

(
±i
√

c
5

)
= 6
)
; so, they are in the Julia set.

As in Newton’s method, the Fatou set consists of the basins of attraction of the
two roots of the polynomial. That means that this method never fails for quadratic
polynomials when it is applied on open sets of the complex plane. The dynamical
plane of the operator (7) is shown in the Figure 1.

Figure 1: Dynamical plane of the Potra-Pták method on quadratic polynomials
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From Theorem 2, we know that Newton’s iteration function on any quadratic poly-
nomial is conjugated to z2. In this case, we prove that Tp on quadratic polynomials
has a more complicated expression:

Theorem 4 Let p (z) be a quadratic polynomial with distinct roots. The fixed point
operator associated to the Potra-Pták method Tp (z) has the following properties:

i) Tp (z) is globally, analytically conjugate to the rational map z3 z+2
2z+1 .

ii) The dynamics of this operator gives the unit circle S1(z) = {z ∈ Ĉ : |z| = 1}
as the invariant Julia set. Moreover, this set is connected.

iii) The Fatou set is defined by the two basins of attraction of the superattracting fixed
points: 0 and ∞.

Proof. As before, we consider the conjugacy map

h (z) =
z − i

√
c

z + i
√
c

(8)

which has the same properties:

a) h (∞) = 1

b) h (i
√
c) = 0

c) h (−i
√
c) = ∞

So,

h−1 (z) = i
√
c
z + 1

1− z

and, therefore (
h ◦ Tp ◦ h−1

)
(z) = z3

z + 2

2z + 1
(9)

is a rational map of degree three that has superattracting fixed points at 0 and ∞. As
in the previous case, this map does not depends on the parameter c, therefore the Julia
set is connected for every c.

Because of the rational part, the Julia set is more complicated that the unit circle
obtained in the Newton’s method; nevertheless, all the points in the unit circle belongs
to the Julia set (see Figure 2). As above, the Julia set separates the two basins of
attraction of the two superattractor fixed points: 0 and ∞.
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Figure 2: Dynamics of the conjugacy map for the Potra-Pták method on quadratic polynomials

3 The Midpoint Method

In this section we study the dynamics of the operator associated to the Midpoint
Method (see [9]) on the complex plane

Mp (z) = z − f (z)

f ′
(
z − f(z)

2f ′(z)

) , (10)

for the same family of quadratic polynomials p (z) = z2 + c, c ∈ C.

Mf (z) =
3cz − z3

c− 3z2
. (11)

Now, we state the Scaling Theorem for this iterative method.

Theorem 5 Let f be an analytic function on the Riemann sphere, and let A(z) =
αz + β, with α ̸= 0, be an affine map. If g(z) = λ(f ◦ A)(z), where λ ∈ C− {0}, then
the Newton’s iteration function Mf is analytically conjugated to Mg by A:

A ◦Mf ◦A−1(z) =Mg(z).

In this case, the fixed points are the roots of the polynomial:

Mf (z) = z ⇒ z = ±i
√
c,
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which are also the critical points:

M ′
p (z) =

3
(
z2 + c

)2
(c− 3z2)2

= 0.

As in the previous cases, these roots are superattracting fixed points. As in New-
ton’s method, the Fatou set consists of the basins of attraction of the two roots of the
polynomial. That means that this method never fails for quadratic polynomials when
it is applied on open sets of the complex plane. The dynamical plane of the operator
(10) is the same as the corresponding of Newton’s method.

This result is very well understood from the following result

Theorem 6 Let p (z) be a quadratic polynomial with distinct roots. The fixed point
operator associated to the Midpoint method Mp (z) has the following properties:

i) Mp (z) is globally, analytically conjugate to the cubic polynomial z3.

ii) The dynamics of this operator gives the unit circle S1(z) = {z ∈ Ĉ : |z| = 1}
as the invariant Julia set. Moreover, this set is connected.

iii) The Fatou set is defined by the two basins of attraction of the superattracting fixed
points: 0 and ∞.

Proof. Similarly to the previous theorems, we consider the conjugacy map

h (z) =
z − i

√
c

z + i
√
c

(12)

which have the same properties as in the previous theorem: h (∞) = 1, h (i
√
c) = 0

and h (−i
√
c) = ∞. So,

h−1 (z) = i
√
c
z + 1

1− z

and, therefore (
h ◦Mp ◦ h−1

)
(z) = z3 (13)

is a cubic polynomial of degree three that has superattracting fixed points at 0 and ∞
separated by the unit circle. As before, this map does not depends on the parameter
c, therefore the Julia set is connected for every c.

Moreover, (13) implies that the origin is a zero of order three.

4 Conclusions

Firstly, we would mention that we have obtained the conjugacy function of the Potra-
Pták and Midpoint operators applied on quadratic polynomials.

Secondly, we note that the dynamical plane for the Midpoint operator on quadratic
polynomials is the same that in the Newton case. This is explained from the fact that
the two operators are conjugate to monomials of z (Theorems 2 and 6).
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However, the Julia set in the dynamical plane for the Potra-Pták operator is more
complicated. Theorem 4 explain this difference because it shows that this operator is
conjugated to the product of a monomial and a rational function.
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Instituto Politécnico do Porto

2 CM-UTAD - Centro de Matemática da UTAD,
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Abstract

Constrained nonlinear optimization problems are usually solved using penalty or
barrier methods combined with unconstrained optimization methods.

Another alternative used to solve constrained nonlinear optimization problems is the
filters method. Filters method, introduced by Fletcher and Leyffer in 2002, have been
widely used in several areas of constrained nonlinear optimization. These methods treat
optimization problem as bi-objective attempts to minimize the objective function and
a continuous function that aggregates the constraint violation functions.

Audet and Dennis have presented the first filters method for derivative-free nonlinear
programming, based on pattern search methods. Motivated by this work we have de-
veloped a new direct search method, based on simplex methods, for general constrained
optimization, that combines the features of the simplex method and filters method.

This work presents a new variant of these methods which combines the filters method
with other direct search methods and are proposed some alternatives to aggregate the
constraint violation functions.

Key words: Constrained nonlinear optimization, Filters method, direct search meth-
ods

MSC 2000: 90C56; 90C30; 49M37; 65K05
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1 Introduction

Let us consider a Constrained Nonlinear Programming Problem (NLP):

min
x∈Rn

f(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I

(1)

where:

- f : Rn → R is the objective function;

- ci(x) = 0, i ∈ E , with E = {1, 2, ..., t}, define the Problem equality constraints;

- ci(x) ≤ 0, i ∈ I, with I = {t + 1, t + 2, ...,m}, represent the inequality constraints;

- Ω = {x ∈ Rn : ci = 0, i ∈ E ∧ ci(x) ≤ 0, i ∈ I} is the set of all feasible points, i.e.,
the feasible region.

In the resolution of a problem of this type we have two objectives: minimize the objective
function f (Optimality) and minimize the constraints violation h, which must be 0 or tend
to 0 (Viability).

If we consider the possibility of the objective function and/or the constraints functions
of being non smooth, non continuous, non convex and/or with many local minimums then
it is not possible to use derivative-based methods.

Derivative-based methods can be deterministic or heuristic. In this work we deal with
deterministic direct search methods, i.e., methods which only need information about the
objective and constraints functions values, in some points, and only use this information
comparing these values to find next iteration.

The known direct search methods are unconstrained optimization methods and then we
need some constrained techniques to treat the constraints information. The the most used
techniques are based in penalty or barrier functions, and more recently the filter methods
has proved to be effective to deal with the information given by the constraints.

Filters Method was introduced by Fletcher and Leyffer, [6]. Unlike penalty or barrier
methods, the filters method considers the feasibility and optimality separately, using the
concept of dominance of multiobjective optimization. A filters algorithm introduces a func-
tion that aggregates constraint violations and constructs a bi-objective problem attempts to
minimize simultaneously that function (feasibility) and the objective function (optimality),
giving priority to the feasibility at least until a feasible iterate is found.

First filters method for derivative-free nonlinear programming was presented by Audet
and Dennis, [1]. This method is based on pattern search methods. Motivated by this work
we have developed a method that combines the features of the simplex method and filters
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method, [4, 3, 5]. The promising results that were obtained with this method encouraged
the development of more features of the method, namely the combination of filters method
with other direct search unconstrained optimization methods and the definition of other
measures to aggregate the constraint violation functions.

2 General concepts

Filters method considers a nonnegative continuous function h which aggregates the con-
straint violation functions. Then h is a function such that h(x) ≥ 0 with h(x) = 0 if and
only if x is feasible.

This function is used in the definition of successive filters along the iterative process,
because a point is accepted in a filter if and only if the point has better values of h or f
than the points found so far.

A point x ∈ Rn is said to dominate y ∈ Rn, denoted as x ≺ y , if f(x) ≤ f(y) and
h(x) ≤ h(y) or f(x) < f(y) or h(x) < h(y) .

A filter, denoted by F , is a finite set of points in the domain of f and h such that no
point x in the set dominates other point y in the set, i.e., there is no pair of points x and y
in the filter that have the relation x ≺ y.

Figure 1, based in Ribeiro et. al. [7], illustrates the graphic concept of a filter with four
points (a, b, c and d).

Figure 1: Filters Method - Graphic Concept

Points represented by a, b, c and d define a forbidden region, shaded area. Only points
with better (lower) values of f and h should be in the filter, i.e. the aim is to have h = 0
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and the lowest possible values for f . Therefore the point represented by y, as it is in the
forbidden region, it will not be accepted in the filter. But the point represented by z is out
of the forbidden region and therefore it will be included in the filter. The same applies to
the point represented by w, however, in this case, the points represented by c and d would
be eliminated of the filter, since they are in the forbidden region defined by w, i.e., c and d
are dominated by w.

We consider that a point x is filtered by a filter F if:

- There exists a point y ∈ F such that y ≺ x or y = x;

- or h(x) ≥ hmax;

- or h(x) = 0 and f(x) ≥ fF ;

where fF is the objective function value of the best feasible point found so far and hmax
is a previously defined bound for h value, so each point x ∈ F satisfies h(x) < hmax.

3 Filters algorithm implemented

The algorithms presented in other works that use the filters method, define the procedures
in a generic way, without spelling out clearly the steps of implementation, [1, 6, 8, 7]. Thus
it was necessary to study the best way to do this implementation, so the work went through
several phases and different versions have been implemented.

The first version tested was presented in [3] and more detailed in [4]. In this version of
the filters method was implemented in combination with the Hooke and Jeeves method, a
pattern search method as Audet and Dennis in [1], and in combination with Nelder-Mead
method. These two combinations were compared and it was concluded that the second,
which is called the Simplex Filter Algorithm (SFA), may be considered as an alternative for
solving problems with nonlinear constraints and obtained satisfactory results.

In [5] some improvements were presented and a comparison was made of a New Simplex
Filter Algorithm (NSFA) with the first version of the same method, SFA.

Numerical results obtained have motivated the generic implementation of filters method,
i.e. so that it can be applied not only with Nelder-Mead and Hooke and Jeeves methods,
in optimization of h and f , but also in other direct search type methods.

The procedure used to implement the NFSA in [5] is presented in Figure 2. Changes
made in this work are adaptations and generalizations of this method, because the process
is similar.

Adaptations are made in the designations. Instead of Simplex we have Initial search
set and instead of Simplex search we use Search set. These designations are adapted to
the generic character of the algorithm but both processes, the construction and the search,
are done using the same procedure used in the previous algorithm. The generalizations are
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Figure 2: Implemented Algorithm in [5]

related to the internal process, i.e. the unconstrained optimization process of the previous
algorithm was done exclusively using Hooke and Jeeves and Nelder-Mead algorithms and
in this implementation five unconstrained direct search optimization algorithms are used.
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Filters algorithm implemented
The procedure begins with an initial filter that contains the initial iteration, F0 = x0. Then, it is

constructed an initial set/simplex (Sk) containing n + 1 points from that iteration (xk) and: Sk = {xk} ∪
{xk + ei, i = 1, ..., n} , where ei, i = 1, ..., n represents the vectors of the canonic basis in Rn, starting with
the set/simplex search i = 0, ..., n.

If the point, under analysis, is a feasible point its inclusion in the filter is evaluated:

• If it is not accepted:

– Nelder-Mead Method (or one of five unconstrained optimization methods) is applied to the func-
tion f;

– A new point is obtained, xk;

– Go back to the construction of the set/simplex: Sk = {xk} ∪ {xk + ei, i = 1, ..., n} , using xk;

• If it is accepted:

– Filter is updated with the new approximation to the solution, i.e., the new iteration;

– If the stop criterion is verified, this approximation is the solution. Otherwise, go back to the
set/simplex construction, using this point.

If the vertex is an infeasible point, its inclusion in the filter is evaluated:

• If it is not accepted:

– Nelder-Mead Method (or one of five unconstrained optimization methods) is applied to the func-
tion h;

– A new point is obtained, xk;

– Go back to the to the construction of the set/simplex : Sk = {xk}∪{xk + ei, i = 1, ..., n} , using
xk;

• If it is accepted:

– The filter is updated with the new approximation to the solution, i.e., the new iteration;

– If the stop criterion is verified, this approximation is the solution. Otherwise, go back to the
set/simplex construction, using this point.

Thus, the method contains two distinct processes: the external iterative process, involv-
ing the set/simplex construction and the filter update and the internal iterative process,
involving the optimization of f and h, where unconstrained optimization problems are
solved, with objective functions f or h, using the Nelder-Mead Simplex method (or other
unconstrained optimization method).

The NSFA also has a stronger component dedicated to the feasibility, when compared
with SFA. It includes an unconstrained optimization process for h, when the set/simplex
point being analyzed, in the set/simplex search, is infeasible. For feasible simplex points, it
includes an unconstrained optimization process for f .

Furthermore, SFA only optimizes f (and not h) for infeasible points. And SFA, for
feasible points, only verifies its admittance to the filter. If it is accepted, the point is added
to the filter otherwise the Shrink step is applied. No optimization of h is then made in SFA,
unlike NSFA.
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With this generalization in the internal process methods availability, we can say that
the method presented here is a direct search filters method for constrained optimization.

The five methods used in internal process are: Opportunistic Coordinate search method
(CS); Hooke and Jeeves method (HJ); A version of Audet et. al. method (AA); Nelder-
Mead method (NM) and a Convergent Simplex method (SC). The first three are Pattern
Search Methods or Directional Direct-Search Methods. These methods determine possible
points using fixed search directions during the iterative process, starting at an iteration xk,
the next iteration will be found in a pattern or grid of points, in the fixed directions, at a
distance sk, said step size.

The last two are Simplex Methods or Simplicial Direct-Search Methods. These methods
are characterized by to construct an initial simplex and change the directions of search at
each iteration, using reflection, expansion and contraction movements and shrunk steps.

4 Alternatives to aggregate the constraint violation func-
tions

Considering equality constraints as two inequality constraints:

ci(x) = 0, i = 1, ..., t ⇔ ci(x) ≤ 0 ∧ ci(x) ≥ 0, i = 1, ..., t
⇔ ci(x) ≤ 0 ∧ −ci(x) ≤ 0, i = 1, ..., t

settle 2t + m = n and defining:
ri(x) = ci(x) ≤ 0, i = 1, ..., t
rj(x) = −ci(x) ≤ 0, i = 1, ..., t; j = t + 1, ..., 2t
rj(x) = ci(x) ≤ 0, i = t + 1, ...,m; j = 2t + 1, ..., n

problem to solve is:
min
x∈Rn

f(x)

s.t. ri(x) ≤ 0, i = 1, ..., n
. (2)

Usually norm 2 is used to define h (function that aggregate the constraint violation
functions) i.e.:

h (x) = ‖C+ (x)‖2 =

√
n∑
i=1

max (0, ri (x))2.

with

C+ (x) =
{

ri (x) if ri (x) > 0
0 if ri (x) ≤ 0

, i = 1, ..., n.
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but the requirements for h only are: to be continuous and h(x) ≥ 0 with h(x) = 0 if
and only if x is feasible, i.e., h must be a non negative continuous function which h(x) = 0 if
and only if x is feasible. Therefore we propose some alternatives to aggregate the constraint
violation functions.

Penalty / Barrier methods penalizes (or implies the rejection) infeasible points, using
penalty/barrier functions, which are measures for violation of constraints. These measures
motivated the definition of some alternatives to aggregate the constraint violation functions,
i.e., to define h. Some adaptations were made in the penalty or barrier functions expressions,
since filters method does not require penalty/barrier parameters.

Then we can use some alternative measures to aggregate the constraint violation func-
tions, i.e. to define h, Table 1.

Measure h

Norm 1/`1 Penalty N1 h (x) = ‖C+ (x)‖1 =
nP
i=1

max [0, ri (x)]

Norm 2 N2 h (x) = ‖C+ (x)‖2 =

s
nP
i=1

n
max [0, ri (x)]2

o
Extreme Barrier NEB h (x) =


0 if x ∈ Ω

+∞ if x /∈ Ω

Progressive Barrier

Classic Penalty NP h (x) =
nP
i=1
{max [ri (x) , 0]}2

Static/Dynamic Penalty

Table 1: Alternatives to aggregate the constraint violation functions

5 Used parameters

In both processes, internal (Unconstrained Optimization - Direct Search Methods) and
external (Constrained Optimization - Filters Method), it is necessary to choose some pa-
rameters. Parameters used are presented in Tables 2 and 3.

6 Numerical Results

Test Problems were selected from Schittkowski [9] and CUTE [2] collections. The fifteen
Schittkowski problems are: S224; S225; S226; S227; S228; S231; S233; S234; S249; S264;
S270; S323; S324; S325 and S326 and of Cute collection were chosen two test problems:
C801 and C802. The last problem is the PA problem presented in [3].

The choice of these eighteen tests was not made in accordance with any special require-
ment, they are only used to illustrate the performance of the methods implemented.
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Parameters Coordinate Search Hooke-Jeeves Audet Nelder-Mead Simplex Convergent

kmax 100 100 100 100 100
s 1 1 * 1 1
sm * * 1,5 * *
sp * * 1 * *
smin 10−3 10−3 10−3 * *
α * * * 1 1
β * * * 0,5 0,5
γ * * * 2 2
T1 10−5 10−5 10−5 10−5 10−5

T2 10−5 10−5 10−5 10−5 10−5

Tvar * * * 10−5 10−5

Tvoln * * * * 10−5

kmax → Maximum number of iterations; s→ Length of the initial step

sm → Length of the initial mesh search step (Audet); sp → Length of the initial poll step (Audet)

s→ Length of the initial step; smin → Minimum value for the step length

α→ Reflexion parameter (Nelder-Mead); β → Contraction parameter (Nelder-Mead)

γ → Expansion parameter (Nelder-Mead)

T1 = |xk − xk+1| → Tolerance for the distance between two consecutive iterations

or Tolerance for the distance between the last iteration and the latest iteration (Nelder-Mead)

T2 = |f (xk)− f
`
xk+1

´
| → Tolerance for

the distance between two values of the objective function in successive iterations

Tvar → Tolerance to the variance of the objective function values in the vertices of the simplex (Simp. Conv.)

Tvoln → Tolerance to the normalized volume of the simplex

∗ → Parameter non used in the method

Table 2: Unconstrained Optimization - Direct Search Methods - Parameters used

kmax = 40→ Maximum number of iterations in the external process;
ρ = 1→ Initial search step length;

T1 = |xk − xk+1| = 0.00001→ tolerance for the distance between two consecutive iterations;
T2 = |f (xk)− f (xk+1) | = 0.00001→

Tolerance between 2 values of the objective function in two consecutive iterations;
hmax = +∞→ Maximal valor of constraints violation.

Table 3: Constrained Optimization - Filters Method - Parameters used
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In order to classify the solution approximations we define some criterions. Then, an
approximation xk to the problem solution is:

• a Feasible solution approximation if h(xk) = 0, being:

– Good if: |f(x∗)− f(xk)| ≤ 0.0001;

– Medium if: 0.0001 < |f(x∗)− f(xk)| ≤ 0.01;

– Bad if: |f(x∗)− f(xk)| > 0.01;

• an Infeasible solution approximation if h(xk) 6= 0, being:

– Good if: |f(x∗)− f(xk)| ≤ 0.0001 ∧ |V (xk)| ≤ 0.0001;

– Medium if:

∗ 0.0001 < |f(x∗)− f(xk)| ≤ 0.01 ∧ |V (xk)| ≤ 0.0001;
∗ ou |f(x∗)− f(xk)| ≤ 0.0001 ∧ 0.0001 < |V (xk)| ≤ 0.01;
∗ ou 0.0001 < |f(x∗)− f(xk)| ≤ 0.01 ∧ 0.0001 < |V (xk)| ≤ 0.01;

– Bad if: |f(x∗)− f(xk)| > 0.01 ∨ |V (xk)| > 0.01.

Using these criterions we classified the solution approximations obtained.
In the Table 4 are presented the numerical results obtained in the resolution of the 18

problems, using the filters method (FM) and parameters presented in Tables 2 and 3. No
medium solution approximations were found in the resolutions.

We can see in Table 4 that numerical results are similar for all direct search methods.
What stands out most is the HJ method with which it was possible to find 16 Good ap-
proximations to the admissible solution of test problems (5 with the measure N1, 5 with
the measure N2, 2 with the measure NEB and 4 with the measure NP).

For these 18 test problems, the methods and combinations of measures that have proven
most effective were the HJ method with measures N1, N2 and NP. In all three cases the
percentage of Bad approaches feasible and infeasible is greater than the percentage of Good
approximations.

With the NEB measure we cannot find any infeasible approach and the number of
problems for which it was possible to find feasible approaches is reduced.

Therefore one can not specify which is the best algorithm for all problems, so that, in
the presence of a problem to be solved using these methods/algorithms should be tested all
the algorithms, choosing the best approach to the solution.

7 Conclusion

We can conclude that it is possible to use other methods of direct search in combination
with the filter method, since the efficiency of each method is similar to the other.
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Table 4: Numerical Results obtained with MF algorithm, with default parameters
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We can also conclude that the proposed measures for aggregate the constraint violation
functions are as efficient as the usual measure N2, therefore they represent alternatives
measures for constraints violation.

Thus, the suggestions in this work are another alternative for solving constrained prob-
lems without using derivatives of the functions involved or their approximations.
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Abstract

The centrality and efficiency measures of a network G are strongly related to the
respective measures on the associated line graph L(G) and bipartite graph B(G) as was
shown in [8]. In this note we consider different ways to obtain a line graph from a given
directed or undirected network and we obtain some interesting relations. Key words:

complex networks; dual graph; line graph; line digraph.

Many relevant properties of complex systems in the real world, such as social networks,
Internet, the World Wide Web and other biological and technological systems may be de-
scribed in terms of complex network properties [1, 3, 4, 5, 13, 10, 16, 17, 18, 20, 21, 22, 24]. In
fact, the study of structural properties of complex networks is an attractive and fascinating
branch of research in sociology (social networks, acquaintances or collaborations between
individuals), science (metabolic and protein networks, neural networks, genetic regulatory
networks, protein folding) and technology (Internet, computers in telecommunication net-
works, the World Wide Web,...).

The motivation behind this contribution is to consider the importance that edges have
sometimes over nodes in the context of networks and graphs. An example of this comes
from urbanism [11, 12], transport networks [25, 2] or urban traffic [19], where the line (dual)
graph L(G) associated to a given graph (network) G is considered.

For example, in the context of urban traffic, when the underlying (primal) graph is
considered then intersections (or settlements) are seen as nodes while roads (or lines of
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relationship) are seen as edges. In contrast when the dual (line) graph is considered roads
become nodes, while intersections become links between the corresponding nodes [19].

In [8] we showed some relationships between the network’s efficiency and the network’s
Bonacich ([6], [7]) centrality of a network G and the respective measures on the dual L(G)
and the bipartite B(G) associated networks (see below for definitions). Some other prop-
erties and relationships between the centrality of a network G and the centrality of its
dual network L(G) have been studied in [9]. Note that the networks considered there were
undirected.

The main goal of this note is to exhibit some relations arising from the various ways
in which line graphs can be obtained from a given directed network. This in turn can be
applied to obtaining estimations for several parameters that measure different properties
related to the network structure and performance.

In order to investigate such properties, it is necessary to understand the main structure
of the underlying network [3, 20] and also to consider other complementary topological
aspects.

From a schematic point of view, a complex network is a mathematical object G = (V,E)
composed by a set of nodes or vertices V = {v1 . . . , vn} that are pairwise joined by links
or edges {l1, . . . , lm}. We consider the adjacency matrix A(G) = (aij) determined by the
conditions

aij =

{
1 if {vi, vj} ∈ E
0 if {vi, vj} /∈ E.

The bipartite network B(G) associated to G is defined by B(G) = (X ∪ E,E(B(G)))
whose adjacency matrix is given by

A(B(G)) =

(
0 I(G)

I(G)t 0

)
where I(G) is the incidence matrix of G. It is shown that

A(B(G))2 =

(
A(G) + gr 0

0 A(L(G)) + 2In

)
where A(G) + gr denotes the matrix obtained by adding to A(G) the diagonal matrix (bij)
and bii is the degree of the vertex vi while L(G) denotes the line (or dual) network associated
to G ([14], pag. 26, [15], pag. 273).

As we showed in [8], if we know the Bonacich centrality c(L(G)), we can recover c(B(G))
and reciprocally. If, in addition, G is regular then each of the three centralities can be re-
covered from any of the other two. Moreover, we have a relationship between the efficiencies
of the dual graph L(G) and the primal graph G (see [8]):
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If G = (V,E) and L(G) = (E,L), n is the number of nodes of G, m is the number of
nodes L(G) and p is the number of edges of L(G), we have

n(n− 1)

8m(m− 1)
E(G) +

15p− 2

8m(m− 1)
≤ E(L(G)) ≤ max

i6=j
(grigrj)

n(n− 1)

m(m− 1)
E(G) +

2p

m(m− 1)
.

These results have potential interest in the context of urban streets networks ([11, 12])
and urban traffic ([19]).

If now A(G) = (aij) is the adjacency matrix of the directed network G determined by
the conditions

aij =

{
1 if (vi, vj) ∈ E
0 if (vi, vj) /∈ E,

the bipartite network B(G) associated to G is defined by B(G) = (X ∪E,E(B(G))) whose
adjacency matrix is given by

A(B(G)) =

(
0 H(G)

T (G)t 0

)
where H = H(G) is the incidence matrix of heads of G defined by

Hij =

{
1 if ej = (vi,−)
0 otherwise

and T = T (G) is the incidence matrix of tails of G defined by

Tij =

{
1 if ej = (−, vi)
0 otherwise

it is shown that

A(B(G))2 =

(
A(G) 0

0 A(~L(G))

)
where ~L(G) denotes the line (or dual) network associated to G.
Recall that the Bonacich centrality of a complex network G is the non-negative normalized
eigenvector cG ∈ Rn associated to the spectral radius of the transposed adjacency matrix
of G [6, 7, 20]. The following relations between the Bonacich centralities of G, ~L(G) and
B(G) are obtained:

Theorem 1 Let G = (V,E) be a connected directed graph with n vertices and m edges. Let
cG ∈ Rn, c~L(G) ∈ Rm and cB(G) = (c1, c2) ∈ Rn × Rm be the Bonacich centralities of G,

~L(G) and B(G). Then, if ‖v‖1 =

n∑
i=1

|vi| for any arbitrary v = (v1, . . . , vn) ∈ Rn, we have:
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Figure 1: An example of the line-graph of a undirected network (on the left) and for a
directed network (on the right).

(i) cG = c1
‖c1‖1 and c~L(G) = c2

‖c2‖1 .

(ii) Reciprocally, cB(G) = 1
2 (cG, c~L(G)) and

cG =
HG c~L(G)

‖HG c~L(G)‖1
, c~L(G) =

T t
G cG

‖T t
G cG‖1

.

Let D(G) denote the associated symmetric digraph obtained by replacing each edge of
G by an arc pair in which the two arcs are inverse to each other. Since A(G) = A(D(G)), the
Bonacich centralities of G and D(G) coincide and, in particular, the Bonacich centralities
of G and ~L(D(G)) are closely related.

There is an alternative definition for the line graph associated with G that has received
relatively little attention. We will call it the oriented line graph L (G) and it will be defined
as follows. If D(G) = (V (D(G)), E(D(G))) denotes the associated symmetric digraph, the
vertices of the oriented line graph L (G) are the arcs E(D(G)) of D(G), while (e, f) is an
arc in L (G) if the end of e coincides with the origin of f and f is not the inverse of e. is
not the inverse of e (see [23] and the references cited therein). In the same reference [23]
the oriented line graph L (G) is employed to capture graph-class structure and clustering
graphs.
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Figure 2: An example of line graphs of a directed network G, U(G) and D(U(G)).
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Abstract

Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening
illness caused by the protozoan parasite, Trypanosoma cruzi (T. cruzi). The main mode
of transmission of Chagas disease in endemic areas is through an insect vector called a
triatomine bug. A triatomine becomes infected with T. cruzi by feeding on the blood
of an infected person or animal. Chagas disease is consider the most important vector
borne infection in Latin America. It is estimated that between 16 to 15 millions of
persons are infected with T. cruzi, with about 50,000 deaths each year.

In this work we formulate a model to study the transmission of this illness among the
vector, humans and some mammals. Our main objective is to assess the effectiveness of
some control measures for the infection. We attain this through a sensitivity analysis of
the basic reproductive number R0 with respect to the epidemiological and demographic
parameters.

Key words: Chagas, Trypanosoma cruzi, triatomines, basic reproductive number,
control measures

MSC 2000: AMS 92D30

1 Introduction

Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening
illness caused by the protozoan parasite, Trypanosoma cruzi (T. cruzi). The main mode
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of transmission of Chagas disease in endemic areas is through the bite of an insect vector
called a triatomine bug. Because they tend to feed on peoples faces, triatomine bugs are
also known as kissing bugs [4].

Chagas disease may also be spread through blood transfusion and organ transplantation,
ingestion of food contaminated with parasites, and from a mother to her fetus. The rate of
trans-placental transmission from mothers with chronic T cruzi infection to their newborns
is 2-10% [5].

Chagas disease is considered the most important vector borne infection in Latin Amer-
ica. It is estimated that between 16 to 18 millions of persons are infected with T. cruzi,
with about 50,000 deaths each year [6].

In the early, stage of the infection, acute stage, the symptoms are mild and usually
produce no more than local swelling at the site of infection, usually around the eyes in
children. Anti parasitic treatment with benznidazol and nifurtimox in the acute phase may
result in cure rates between 60 and 90 percent. There is an asymptomatic middle stage
in which the infection can not be detected at all, even blood test results are negative.
The length of this period is not well determined. Usually, after 48 weeks, individuals with
active infections enter the chronic phase of Chagas disease that is asymptomatic for 60
to 80 percent of chronically infected individuals through their lifetime. The anti parasitic
treatments also appear to delay or prevent the development of disease symptoms during the
chronic phase of the disease, but 20 to 40 percent of chronically infected individuals will
still eventually develop life-threatening heart and digestive system disorders [1].

Control measures include insecticides to kill the vector, screening blood donors, and
treatment to patients in the acute phase. Recently, a controversial strategy, Zooprophylaxis
, has been proposed for the control of vector transmitted diseases [8]. This controversial
technique refers to the control of vector-borne diseases by attracting vectors to domestic
animals in which the pathogen cannot amplify (a dead-end host).

2 Formulation of the model

We consider transmission by triatomine bites, and vertical transmission since these are the
most common routes of infection.

We will consider the following populations:

• Humans

• Transmitters: mammals that can be infected by the Triatomine bugs, and can transmit
the infection (like dogs, cats, etc.)

• Non-transmitters: animals that can be bitten by the Triatomine bugs, but can not be
infected, and in consequence do not transmit the infection (like hens, birds, etc.)
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• Vectors: Triatomine bugs

The infected human population is divided into infected humans in the acute phase, Ia, and
infected humans in the chronic phase, Ic. The infected transmitters, and infected vector
populations are denoted by It, and Iv, respectively.

The dynamics of the disease is modeled by the following system of differential equation

dIa
dt

= pµhIc +
bhβh

Nh +Nt +Nnt
(Nh − Ia − Ic)Iv − (γ + µh)Ia

dIc
dt

= (1− q)γIa − µhIc

dIt
dt

=
bhrtβt

Nh +Nt +Nnt
(Nt − It)Iv − µtIt (1)

dIv
dt

=
bhαaIa + bhαcIc + bhrtαtIt

Nh +Nt +Nnt
(Nv − Iv)− µvIv

in the invariant region

Ω = {0 ≤ Ia + Ic ≤ Nh, 0 ≤ It ≤ Nt, 0 ≤ Iv ≤ Nv} ⊂ R4.

In the model Nh, Nt, Nnt, Nv denote the population sizes of humans, transmitters, non-
transmitters, and vectors, respectively. Since the non-transmitters population do not enter
in the infection process, we consider Nnt as a parameter rather than a dynamic variable. The
other populations are constant with mortality rates given by µh, µt, and µv, respectively.

The parameters bh, bt, and bnt represent the number of triatomine bites per day in hu-
mans, transmitters, and non-transmitters, respectively; βa, and βt the transmission prob-
abilities from vector to susceptible humans and susceptible transmitters, respectively; and
αa, αc, αt the transmission probabilities from acute infective humans, chronic infective
humans, and infective transmitters to susceptible vectors.

We assume that a proportion p of newborns from chronic infected humans are acute
infected. Finally, we assume that acute infectious become chronic infectious at a per capita
rate γ, this quantity is diminished by qγ where q is the proportion of acute infectious that
are treated and return to the susceptible class.

Triatomines can be considered as a predator of mammals and birds since they feed on
these species to maintain themselves and reproduce. Then, growth of triatomine population
depends upon the number of blood meals they take, their species preference, and the number
of individuals of each species. We assume that the dynamics of the triatomine bugs is given
by

dNv

dt
= φ(bhNh + btNt + bntNnt)− µvNv (2)
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where φ denotes the egg-production rate from blood meals rate. It is easy to see that
solutions Nv of this equation approach the equilibrium

N̄v =
φ(bhNh + btNt + bntNnt)

µv
. (3)

as t goes to infinity.

3 Mathematical analysis of the Model

3.1 Disease-free equilibrium

Definition. The Basic Reproductive Number denoted by R0, is the average number of
secondary infections caused by an infected individual in a whole susceptible population
during the infection period.

The equilibrium E0 = (0, 0, 0, 0) of system (1) is called the disease-free state. Using the
next generation operator approach ([7]), we obtain the basic reproductive number in terms
of the epidemiological and demographic parameters as

R0 =

√
b2hβhNhN̄v

KµvN2

(
αa +

(1− q)γ
µh

αc

)
+
b2tβtαtNtN̄v

µvµtN2
. (4)

Hence, using Theorem 2 of [7], the following result is established.

Theorem. The disease-free equilibrium, E0, of the model (1) is locally-asymptotically
stable (LAS) if R0 < 1, and unstable if R0 > 1.

The above theorem shows that Chagas disease disappears if R0 < 1, i.e., if the secondary
cases derived from an infected individual are less than one.

R0 can be written as

R0 =

√
R2

h

Nh

N
+R2

t

Nt

N
(5)

where

Rh =

√
b2hβhN̄v

KµvN

(
αa +

(1− q)γ
µh

αc

)
(6)

is the number of secondary infections derived from an infected individual in the human-
vector cycle, and

Rt =

√
b2tβtαtN̄v

µvµtN2
(7)
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is the number of secondary infections derived from an infected individual in the transmitters-
vector cycle.

It is interesting to observe that R0 given in (5) is the average of the basic reproduc-
tive numbers of the humans and transmitters, weighted by their corresponding population
proportions with respect to the total number of the vector hosts, N . Then, the balance
between the competence of humans and transmitters, and their corresponding population
density will determine the evolution of the disease.

3.2 Endemic state

An endemic state is a non trivial solution of the algebraic system obtained setting the
derivatives of (1) equal to zero. We have the following result.

Theorem 2. System (1) has a unique endemic state E1 = (Īa, Īc, Īt, Īv) in Ω if and only if
R0 > 1. Furthermore, E1 is locally asymptotically stable.

4 Sensitivity Analysis

In this section we analyze the effect of the control measures on the spread of Chagas disease.
The parameter values used in the simulations given in Table 1.

parameter meaning value
bf daily blood feeding rate per triatomine 0.26
bh number of triatomine bites per day in humans 0.04
bt number of triatomine bites per day in transmitters 0.1
bnt number of triatomine bites per day in non-transmitters 0.12
βh infection prob. vector-human 0.0009
βt infection prob. vector-transmitter 0.0009
αa infection prob. acute human-vector 0.04
αc infection prob. chronic human-vector 0.0025
αt infection prob. transmitter-vector 0.49
µh humans mortality 0.000042
µt transmitters mortality 0.00027
µnt non-transmiters mortality 0.00039
µv triatomines mortality 0.005
p percentage of human trasplacental transmission 2%− 10%
γ rate of acute infectious that become chronic 0.0178-0.0357

Table 1. Parameters of the model. The values are taken from [1, 3].

Measures to control Chagas disease are limited, among them are reducing the population
of vectors, the early treatment of the disease, and the use of no transmitters to reduce the
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number of bites in humans.
Periodic use of insecticides is the usual way to reduce the vector population. In terms of

our model, this control translates into increasing vector mortality. If we denote by µ̄v = θµv,
θ > 1 the increment of the vector mortality due to insecticide application, then R0 decreases
by a factor 1/

√
θ.

Assuming two dogs, three chicken and five humans in a household, Nt = 2Nh/5, Nnt =
3Nh/5, and N = 2Nh. If Nv = 100Nh, p = 0.06, q = 0.4, γ = 0.02675, and the other
parameters as in Table 1, Rh = 2, Rt = 12, and R0 = 6. Disease can be eradicated if
1/
√
θ×6 < 1, or 36 < θ, which means than vector mortality should be increased more than

36 times. Figures 1-3 illustrate the behavior of R0, Rh, and Rt when µv is incremented by
the factor θ. We note that these basic reproductive numbers decrease faster for lower values
of θ, suggesting that is more efficient to spray a smaller amount of insecticide at greater
frequency.

Other way to control Chagas disease is by identification and treatment of the acute
cases. In our model, this control is achieved increasing the proportion of acute infectious
that are treated and cured, q. To assess the effect of this parameter on R0, we assume as in
the previous case that it increases by a factor θ > 1, with θq ≤ 1. Then, denoting q̄ = ηq,
and expanding R0 in terms of q we obtain

R0(q̄) ≈ R0(q) +
∂R0

∂q
(1− θ)q

= R0(q)

[
1− Q

2R2
0(q)

]
(θ − 1)q (8)

where

Q = R2
hγ

(µhαa + (1 + (1− q)pγ)αc)

K(µhαa + (1− q)γαc)
(9)

From the above expression we see that the decreasing of R0 is more pronounced when Rh

big. However, since treatment only reduce acute infected humans, the minimum value that

R0 can achieve by this control is around R0

[
1− Q

2R2
0(q)

]
(1 − q) when θ = 1/q. In the

example illustrated in Figure 1, R0 can be reduced from 5.88 to only 5.71 given the initial
values of q = 0.04, µv = 0.005, and other parameters as in Figure 1, R0 can be reduced
from 5.88 to 5.71. In this particular example this small reduction is due to the fact that
transmission animal-vector is more important than transmission human-vector. On the
other hand, Figure 2 shows that Rh decreases form its initial value of around 1.8 to around
0.5, which indicates that human treatment is a very effective control when the transmission
is mainly between humans and vectors.

Since 1982, the World Health Organization has recommended the use of animals for
zooprophylaxis as a protective measure against vector borne diseases, in particular the
use of cattle in the case of malaria [8]. In the following we will test the efectiveness of
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zooprophylaxis for the case of Chagas disease. For this end, we assume that the population
of non transmitters Nnt increases to N̄nt = θNnt, with θ > 1, and as in the previous example,
we expand R0 in Taylor series in terms of Nnt to obtain

R0(N̄nt) ≈ R0(Nnt)

[
1 +

Φ

2NN̄v
((bnt − 2bh)Nh + (bnt − 2bt)Nt − bntNnt)

]
. (10)

R0 has a unique local maximum when

Nnt =
(bnt − 2bh)Nh + (bnt − 2bt)Nt

bnt
, (11)

which is positive if (bnt−2bh)Nh + (bnt−2bt)Nt > 0, and negative if the opposite inequality
holds. It follows that depending on the density, and biting rate of the three populations

involved, R0 increases or decreases. For instance, if the biting rates satisfy
bnt
2
≤ min

{bh, bt}, R0 always decreases monotonically to zero, but if
bnt
2
> max {bh, bt}, R0 increases

to a maximum value and then decreases asymptotically to zero. Decreasing of R0 can be
very slow, at it is shown in the example of Figure 1, where it is necessary to increase the
initial value of Nnt = (3/5)Nh around 140 times to get R0 < 1. In this particular example
bnt = 0.06, and the other parameters are as in Table 1, which implies that R0 always
decreases.

Figures 2 and 3 show the behavior of Rh, and Rt with respect to θ. It can easily show
that when Nnt grows without bound, Rh and Rt always approach a limit value different
from zero, which can be bigger or lower than the initial one. In the example illustrate in
Figure 1, Rh, and Rt remain almost constant with a very small increasing from their initial
values.

5 Conclusions

In this work we formulated a mathematical model to study the impact of control measures
in the transmission of Chagas diseases. Here, we consider vector and vertical transmission,
but we did not include blood transmission [2] Our results can be summarized as:

• Elimination of Triatomines is the control measure that has more impact on the di-
minishing of R0.

• Treatment of disease in the acute phase is effective if people is isolated from other
transmitters.

• Zooprophylaxis has little impact on the reduction of the infection transmission, and
in some cases can even increases it.
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• A combination of elimination of Triatomines, early treatment, and keeping the trans-
mitters animals out of the houses can be considered the most effective control measure.
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Abstract

Given a numerical method and a family of stable linear systems, we find conditions
that guarantee the existence of a positive real number 0 < h∗ ≤ ∞ such that for each
h, 0 < h < h∗, the numerical solutions of those systems converge to zero.

Key words: A-stability, Linear differential equations, Runge-Kutta methods, robust-
ness, stability radius.

1 Introduction and preliminary results.

Let A ∈ Rn×n be a Hurwitz stable matrix, that is to say the set of its eigenvalues σ(A) is
included in C− = {z ∈ C : Re(z) < 0} or equivalently that the solutions x(t), of the system

ẋ = Ax (1)

verifies lim
t→0

x(t) = 0.

Let V ⊂ Rn×n be a compact balanced set with 0 ∈ V , associated with system (1) we
have the set of systems

ẋ = [A+M ]x (2)

where M ∈ V ρ, ρ ∈ R+ and V ρ = ρ · V = {ρG : G ∈ V }.
We define the real stability radius

rR ≡ rR(A, V ) := inf
{
ρ > 0 : ∃M ∈ V ρ, σ (A+M) * C−

}
That is to say, if M ∈ V ρ and 0 < ρ < rR the solucions of the perturbed system (2)

converge to zero too.
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Example 1. Let A ∈ R2×2 be a Hurwitz stable matrix and

V =

 ∑
i,j=1,2

gijBij :
∑
i,j=1,2

|gij | ≤ 1


where {Bij}i,j=1,2 is the canonical basis of R2×2. It is easy to see that V is the closed

ball in R2×2 centred at the zero matrix and with radius r = 1 and considering the norm
‖G‖m =

∑
i,j |gij |, G = (gij)ij ∈ R2×2. Similarly V ρ, ρ > 0, is the closed ball in R2×2

centred at the zero matrix and with radius ρ. Under these conditions we know that

rR(A, V ) = min

{
det(A)

‖A‖m
,−tr(A)

}
(3)

Example 2. Let A =

(
−2 3
−4 −1

)
∈ R2×2 and V given in example (1), then we have

rR(A, V ) = 3. This means that each solution of all systems:

ẋ =

(
−2 + g11 3 + g12
−4 + g21 −1 + g22

)
x

with
∑

i,j |gij | ≤ ρ < 3, converge to zero.

Our objetive is to solve the following

Problem 1. Given a numerical method, we want find conditions that guarantee the exis-
tence of a positive real number 0 < h∗ ≤ ∞ such that for each h, 0 < h < h∗, the numerical
solutions of all the systems (2):

ẋ = (A+M)x

converge to zero when M ∈ V ρ and 0 < ρ < rR.

2 Main results.

The region of absolute stability, <A, of numerical methods have been discussed in various
papers and books, see [2]. For example, the region of absolute stability of a s-stage Runge-
Kutta method is <A = {z ∈ C : |R(z)| ≤ 1} where

R(z) =
det(In − zA+ zeT b)

det(I − zA)
(4)

is called stability function and A ∈ Rs×s and b ∈ Rs determine its Butcher array, e =
(1, . . . , 1) ∈ Rs.
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The stability function R(z) of a Runge-Kutta method of order p is a rational and
analytic function on a neighborhood of z = 0 with Taylor expansion

R(z) =

p∑
k=0

zk

k!
+

∞∑
k=p+1

γkz
k (5)

In the case of explicit Runge-Kutta methods with s-stage, we have p ≤ s and γs+j = 0,
∀j ≥ 1. Figure (1) we can see regions for explicit Euler methods and explicit Runge-Kutta

fourth order and four-stage, here R(z) = 1+z and R(z) = 1+z+ z2

2 + z3

6 + z4

24 respectively.

a) b)

Figure 1: Regions of absolute stability, <A.
a) The region of absolute stability of explicit Euler method does not satisfy the property that ensures that

h∗ exists. (z = 0 is not an interior point of <A ∪ {0}).
b) Region of absolute stability of Runge Kutta 4th order method, for this method exists h∗. (z = 0 is an

interior point of <A ∪ {0}).

Theorem 1. Let A ∈ Rn×n be a Hurwitz stable matrix and V ⊂ Rn×n is a balanced compact
set with 0 ∈ V . Let us consider a numerical method with absolute stability region <A. If

(H) z = 0 is an interior point of <A ∪ {0} in the space C− with the induced topology

then it must exist h∗ ∈ R, h∗ > 0, such that for each step size h, 0 < h < h∗,numerical
solutions of all systems (2):

ẋ = (A+M)x

converge to zero, where M ∈ V ρ and 0 < ρ < rR.

Proof. Given ρ > 0, let F ρ = σ(A + V ρ) be the set of eigenvalues of the matrices A + M
with M ∈ V ρ and let F =

⋃
ρ<rR

F ρ. Since V is balanced we have V ρ ⊂ V ρ′ for 0 < ρ < ρ′.

Now, by continuity of G → σ(G), for each ρ > 0, F ρ is a compact set with F ρ ⊂ C− and
F ρ ⊂ F rR if ρ < rR. Then F is bounded and satisfies that F ⊂ F ⊂ C−, and so <A ∪ {0} is
a neighborhood of z = 0 in the space C−, then we can ensure that there is h > 0 such that
hF is contained entirely in <A ∪ {0}.
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Corollary 1. If F =
⋃
ρ<rR

σ(A+ V ρ) then h∗ = Sup {h/hF ⊆ <A ∪ {0}}.
Remark 1. Theorem (1) is valid for any numerical method.

Theorem 2. Consider a Runge-Kutta method with s-stages and order p ≥ 1 and with
stability funtion given by (5). Then, this method satisfies the hypothesis (H) from Theorem
(1) if:

• τm = (−1)(m+1)/2
[

1
(m+1)! − γm+1

]
> 0 if m is odd.

• τm = (−1)m/2
[
m+1

(m+2)! + γm+2 − γm+1

]
> 0 if m is even.

where m ∈ N is such that m ≥ p, γj = 1
j! if p ≤ j ≤ m and γm+1 6= 1

(m+1)! . The converse is
also true if we put τm ≥ 0 when m is even.

The proof of theorem (2) makes use of the following preliminary result:

Lemma 1. Let Em(z), m ∈ N, be the Taylor polynomial of degree m generated by f(z) = ez

at the point z = 0. Consider an explicit Runge-Kutta method with s-stages and order p,
then if R(z) is its stability function and m as in Theorem (2) we have:

1. R(z) = Em(z) + Γ(z) where Γ(z) =
∑∞

k=m+1 γkz
k.

2. If z = iy then Em(iy) = Cm(y) + iSm(y) where Cm(y) and Sm(y) are the Taylor
polynomials, of degree m, generated by cos(y) and sin(y) respectively.

3. |Em(iy)|2 − 1 = αym
′
+ o

(
ym
′
)

where m′ = m + 2 and α = 2(−1)(m+2)/2(m+1)
(m+2)! if m is

even, m′ = m+ 1 and α = 2(−1)(m+1)/2

(m+1)! if m is odd.

Proof. Statements (1) and (2) are immediate. Now, we shall prove (3). From (2) we have

|Em+2(iy)|2 − 1 = C2
m+2(y) + S2

m+2(y)− 1

where the right side of this equation is a polynomial, which until the (m + 2)th power
coincides with the Taylor polynomial of the funtion cos2(y) + sin2(y)− 1 and equals zero.
On the other hand

|Em+2(iy)|2 − 1 =C2
m+2(y) + S2

m+2(y)− 1

=

[
Cm(y) +

(−1)
m+2

2 ym+2

(m+ 2)!

]2
+

[
Sm(y) +

(−1)
m
2 ym+1

(m+ 1)!

]2
− 1

=
[
C2
m(y) + S2

m(y)− 1
]

+ 2
(−1)

m+2
2 ym+2

(m+ 2)!
+

(−1)
m
2 ym+2

(m+ 1)!
+ o

(
ym+2

)
=
[
|Em(iy)|2 − 1

]
+

2(−1)(m+2)/2(m+ 1)

(m+ 2)!
ym+2 + o

(
ym+2

)
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the last equality is obtained using that Cm(y) = 1 + ... y Sm(y) = y + .... Then, isolate the
|Em(iy)|2 − 1 term the result is obtained. A similar argument proves the statement when
m is odd.

Now, we shall prove the Theorem (2)

Proof. From Lemma (1) (1)-(2) we have

|R(iy)|2 − 1 = [Cm(y) + Γ1(y)]2 + [Sm(y) + Γ2(y)]2 − 1

where Γ(iy) = Γ1(y) + iΓ2(y), then

|R(iy)|2 − 1 =
(
C2
m(y) + S2

m(y)− 1
)

+ 2Cm(y)Γ1(y) + 2Sm(y)Γ2(y) +
(
Γ2
1(y) + Γ2

2(y)
)

If p is even, then

Γ1(y) = (−1)
(m+2)

2 γm+2y
m+2 + o

(
ym+2

)
Γ2(y) = (−1)

m
2 γp+1y

m+1 + o
(
ym+1

)
and from lemma (1)-(3) we have

|R(iy)|2 − 1 =
2(−1)

(m+2)
2 (m+ 1)

(m+ 2)!
ym+2 + 2(−1)

(m+2)
2 γm+2y

m+2

+ 2(−1)
m
2 γm+1y

m+2 + o
(
ym+2

)
= −2τmy

m+2 + o
(
ym+2

)
(6)

Therefore, for y small enough if τm > 0 then |R(iy)|2 − 1 < 0 and iy ∈ <A.

Now, we write z = x + iy where x ≤ 0. Using ak − bk = (a − b)
∑k

j=1 a
k−1−jbj−1 and

(5) we have

R(z)−R(iy) =
∞∑
k=1

γk

[
(x+ iy)k − (iy)k

]
= x

γ1 +

∞∑
k=2

k∑
j=1

γk (x+ iy)k−j (iy)j−1


where γj = 1

j! if 0 ≤ j ≤ m. Thus

R(z) = R(iy) + x

γ1 +

∞∑
k=2

k∑
j=1

γk (x+ iy)k−j (iy)j−1


Taking the real and imaginary part, we can show that

|R(z)|2 − 1 =
(
|R(iy)|2 − 1

)
+ (2γ1 + f(x, y))x
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where f(x, y) is a real function with lim
z→0

f(x, y) = 0. Hence, for z = x+ iy 6= 0, x ≤ 0, with

|z| small enough and τm > 0 we have

|Rs(z)|2 − 1 ≤
(
|Rs(iy)|2 − 1

)
< 0

then z ∈ <A.
Conversely, suppose that τm < 0 and y small enough, then from (6) we have |R(iy)|2−

1 > 0 and iy /∈ <A. In this case z = 0 is not an interior point of <A ∪ {0} in the space
C− and (H) is not satisfied. Therefore τm ≥ 0, but if m is odd then τm 6= 0, because

1
(m+1)! 6= γm+1.

Example 3. Let a explicit Runge-Kutta method with s-stages and order p:

1. If p = 1 or p = 2 with p = s then m = p = s and R(z) =
∑p

k=0
zk

k! . Therefore the
property (H) is not satisfied, because from (5) we have γp+1 = γp+2 = 0 and the result
is obtained from Theorem (2).

2. If p = 3 or p = 4 with p = s then the property (H) is satisfied, therefore h∗ exist.

3. If this method is DOPRI5, see [2], we have s = 7, p = 5 and

R(z) =
5∑

k=0

zk

k!
+

z6

600

hence, m = p = 5 and γ6 = 1
600 , then from Theorem (2) τ5 > 0 and (H) is satisfied.

4. If this method is RKF5(4), see [2], we have p = 5, s = 6, γ6 = 1
2080 and from Theorem

(2) then (H) is not satisfied.

5. If this method is DOPRI8, see [2], we have p = 8, s = 12,

R(z) =
8∑

k=0

zk

k!
+

12∑
k=9

γkz
k

where γ9 = 0.27521279901 · 10−5, γ10 = 0.24231996586959 · 10−6, then τ8 < 0 and
from Theorem (2) (H) is not satisfied.

Example 4. Let a implicit Runge-Kutta method with s-stages and order p:
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1. If this method is Lobatto IIIA we have s = 4, p = 6 and

R(z) =
1 + 2z

3 + z2

5 + z3

30 + z4

360

1− z
3 + z2

30

=
6∑

k=0

zk

k!
+

z7

5400
+

z8

64800
+ o(z8)

hence, m = p = 6, γ7 = 1
5400 and γ8 = 1

64800 then from Theorem (2) τ6 < 0 and (H)
is not satisfied.

2. If this method is Lobatto IIIC we have s = 4, p = 6 and

R(z) =
1 + z

3 + z2

30

1− 2z
3 + z2

5 −
z3

30 + z4

360

=
6∑

k=0

zk

k!
+

z7

5400
+

z8

129600
+ o(z8)

hence, m = p = 6, γ7 = 1
5400 and γ8 = 1

129600 then from Theorem (2) τ6 > 0 and (H)
is satisfied.

3. In [3] are proposed several absolutely stable implicit methods and therefore must satisfy
the condition (H), consider the method for which p = 8 y s = 6 with stability function:

R6(z) =
2580480 + 1290240z + 291840z2 + 38400z3 + 3108z4 + 146z5 + 3z6

2580480− 1290240z + 291840z2 − 38400z3 + 3108z4 − 146z5 + 3z6

qfinding its power series expansion about z = 0 we have γ9 = 2987
1083801600 and γ10 =

299
1083801600 . Hence, τp =

[
9
10! + γ10 − γ9

]
= 0 ≥ 0 as stated in the converse of the

Theorem (2).

3 Numerical examples.

Example 5. Consider the matrix A =

(
−2 3
−4 −1

)
given in Example (2), then we have

rR(A, V ) = 3.

Let Mµ =

(
1.5 + µ3 0

0 1.5

)
with − 3

√
6 < µ < 0 then ‖Mµ‖m < 3 and the matrices

A+Mµ =

(
−0.5 + µ3 3
−4 0.5

)
are Hurwitz stables.

The property (H) is sufficient for the existence of h∗, but not necessary. From Example
(3)-(4) we know that RKF5(4) does not satisfy the property (H) and in this case we shall
ensure that there is no h∗.
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Figure (2)-(a) show for each µ, −0.15 < µ < 0 the value hu such that for each h,
0 < h < hµ, the numerical solutions of the systems

ẋ = (A+Mµ)x (7)

converge to zero, these are just some of the systems from equation (2), hence h∗ ≤ hµ. We
can see that hµ → 0 when µ→ 0, therefore h∗ does not exist.

a) b)

Figure 2:
a) For RKF5(4) does not exist h∗, because hµ → 0 when µ→ 0.
b) For DOPRI5 exist h∗ ' 0.19191 and h∗ < hµ for each µ, −0.15 < µ < 0 .

Example 6. Consider the matrices A and Mµ given above.

From Example 3-3) we know that DOPRI5 satisfy the property (H), then for this method
h∗ exist and in this case we have calculated h∗ ' 0.19245.

As in Example 5 we show in Figure 2-b) for each µ, −0.15 < µ < 0, the value hu such
that for each h, 0 < h < hµ, the numerical solutions of the systems (7) converge to zero.
We can see that h∗ ≤ hµ for each µ, −0.15 < µ < 0.

In conclusion, note that hµ=0 ' 0.2909 is the lower of the hu, see Figure 3-b), then for
each h ≤ 0.2909, the numerical solutions of equation (7) with −0.15 < µ < 0 and calculated
with the method DOPRI5 converges to zero, while for each h ≤ 0.2909, we can find µ such
that the corresponding solution of equation (7) calculated with the RKF5(4) method does
not converge to zero. For example if we consider equation (8) and h = 0.25 is fixed then we
can see in Figure (3)-a) that is sufficient to take µ = −0.1 for that the numerical solution
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of equation (8) does not converge to zero:

ẋ = (A+M−0.1)x

x(0) = (1, 0) (8)

a) b)

Figure 3: The figure shows euclidean norm value of the numerical solution every time it
cuts the axis OX, that it to say every turn around the origin.
a) The numerical solution of the equation (8) calculated with RFK5(4) method and h = 0.25
does not converge to zero.
b) The numerical solution of the equation (8) calculated with DOPRI5 and h = 0.25 con-
verge to zero, note that h ≤ hµ=0, hµ=0 ' 0.2909 is the lower of the hu, see Figure 2-b).
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Abstract

The electroencephalograph (EEG) is one of the most influential tools in the diagno-
sis of epilepsy and seizures. It measures electrical discharges of neurons in the human
brain. The latter consists of many regions, all with a different electrical conductivity.
Unfortunately one cannot measure this non invasively, e.g. preoperatively. In this pa-
per, we investigate the uncertainty induced on the location of EEG current dipoles. A
Bayesian framework is used, so as to include modeling error and noise, but combined
with Polynomial Chaos expansions to represent random variables, speeding up compu-
tations. We evaluate this technique on a spherical head model with a standard clinical
27 sensor positioning.

Key words: Polynomial Chaos; Bayesian Inference; Random Partial Differential
Equation (RPDE); sensitivity analysis; EEG; inverse problem

1 Introduction

In classical physics and engineering, the systems under consideration are deterministic. A
forward problem consists of computing an output given an exact input through a known
model. In practice, exact inputs or a perfect model, accounting for all external and internal
processes, is rarely at hand. Instead, response quantities (e.g. hydrostatic pressure, electric
potential, etc.) are more easily obtained, but with noise.

An inverse problem consists of computing the input given (noisy) output if the model is
assumed to be known. Sometimes finding the model given input and output is also referred
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to as an inverse problem, but we will not consider this here. Whereas forward problems are
mostly well-posed in the sense of Hadamard, inverse problems are in general ill-posed.

For inverse problems Bayesian Inference (BI) [7] offers a rigorous foundation for in-
ference from uncertain forward models and noisy data. It is a natural procedure for in-
corporating prior information, and a quantitative assessment of uncertainty in the results.
Contrary to other methods, the output of BI is not solely a value, but a probability distri-
bution that captures all available information about the parameters. Bayesian Inference has
many benefits but a major drawback is the computational effort, see [8]. Especially when
the forward model is complex, the number of computations becomes rapidly prohibitive.
We will employ Polynomial Chaos (PC) [23] to represent uncertainties and to obtain an
efficient forward model. As BI is a general and widely applicable technique, this remains
the case when using PC. We will demonstrate PC in BI by means of a biomedical inverse
problem.

1.1 The problem under consideration: electroencephalography

The electroencephalograph (EEG) is one of the most influential tools in the diagnosis of
epilepsy and seizures, as it provides a record of ongoing electrical activity in the brain [16,
22]. The electrodes, connected to the EEG machine, measure signals produced by electrical
discharge of neurons in the related areas of the brain. The quasi-static approximation of the
Maxwell equations is justified by the very low frequencies (typically < 100 Hz) involved.
The total electric current J can be partitioned [13] into two flows: a primary (driving)
current Jp related to neural sources, and an ohmic volume (passive) current Jv that results
from the effect of the electric field in the volume: J = Jp + Jv = Jp + σE = Jp − σ∇V ,
where V is the electric potential. Since the total current is divergence free and no current
flows outside the head, we obtain

∇ · (σ(r)∇V (r)) = ∇ · Jp(r), in H (1a)

ν · σ(r)∇V (r) = 0, on ∂H (1b)

where H is the head, σ the conductivity and ν the outward unit normal on ∂H. Usually,
the head is assumed to be made up of disjoint regions (the scalp, skull, cerebrospinal fluid,
grey matter and white matter) with each a constant conductivity assigned. We will use a
spherical head model with three layers: the inner sphere (radius .87) represents the brain, the
intermediate layer (radius .92) represents the skull an the outer sphere (radius 1) corresponds
to the scalp, see Fig. 1(b).

A widely used approximation of the neural activity of patients suffering from epilepsy
[6] is the representation of the primary current as an electric dipole with dipole moment d
located at rd inside the cortex; Jp(r) = dδ(r− rd) with r the position in the head measured
from the center of the concentric spheres and δ the Dirac measure. The goal is to localize
this dipole.
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1.2 The intrinsic uncertainty of the conductivity and the sensitivity on
source localization

It is well known in literature [3, 2, 19, 5, 21] that the conductivity of the different head layers
is a key parameter in the localization of an electric dipole given an EEG measurement set
(scalp potentials at the si) during an epileptic seizure. Till now all these studies assumed
a fixed constant conductivity value in each region and quantified the influence, on scalp
potentials and source localization, of discrete perturbations. However, the conductivity is
not constant in each layer and determining the conductivity values in the human head has
been subject of research since many years [9]. The first attempts to measure it made use of
in vitro techniques. But in fact, it is impossible to fully measure σ since tissues are inho-
mogeneous [18] and anisotropic, and furthermore their properties depend on physiological
processes. The latter implies the conductivity changes over time; a perfect conductivity
determination in advance of an EEG is not valid anymore when measuring scalp potentials
during a seizure. Moreover the conductivity varies from individual to individual [14] and
can only be correctly measured invasively. All this intrinsic variability will be captured by
attributing the conductivity a probability distribution function, i.e. making it a random
variable.

(a)

d

rd

si

(b)

Figure 1: A standard 27 electrode placement (a) and a spherical head illustration (b) with
sensors si.

We make a modest simplification based on the fact that the outer and inner layer are
assumed to have similar electrical properties, meaning that σscalp = σbrain. Instead of work-
ing with the two different conductivities σskull and σbrain, we consider the conductivity ratio
X = σscull/σbrain. Based on in vivo measurements [12] we let it be uniformly distributed
with mean .026 and standard deviation of .0092.

The purpose of this paper is to investigate the influence of the intrinsic uncertainty on
the EEG source localization. It is clear that the source localization won’t be deterministic
but will be represented by a probability distribution. In Fig. 1(a) a standard 27 electrode
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placement is shown. This setup is used in the Department of Neurology at the Ghent
University Hospital for clinical practice, [4].

2 Methods

2.1 The forward model

2.1.1 The EEG lead field model

To calculate the potential at the 27 sensor locations si one needs to solve system (1) for V
and evaluate Si = V (si). Analytic solutions exist only for special cases [10]; in general the
system of equations has to be solved numerically. Instead of directly solving for the electric
potential induced by a current dipole (e.g. through BEM), one can solve for the electric lead
fields [20, 17]. Invoking this method, the sensor measurements are given by S = L(rd, X)d
and S = (Si)

27
i=1, where L ∈ R27×3 is the lead field matrix which depends only on the dipole

position, conductivity ratio, and the geometry.

2.1.2 Polynomial Chaos expansion

Consider a probability space (Ω,F ,P) where Ω is the sample space, F ⊆ 2Ω a σ-algebra and
P a measure. The Hilbert space of random variables Y : Ω → R, for which E

[
Y 2
]
< +∞

is denoted L2(Ω,F ,P). Two random variables Y1 and Y2 are orthonormal if their inner
product satisfies E [YiYj ] = δij . The space L2(Ω,F ,P) can be decomposed as follows:

Theorem (Wiener [23]) Let {ξi}i∈N be a set of orthonormal Gaussian random variables
ξi ∈ L2(Ω,F ,P). Define Γ̂p as the space of all polynomials in ξi of degree not exceeding p.
The following decomposition holds

L2(Ω,F ,P) =
⊕
p≥0

Γp, (2)

where Γp denotes the orthogonal complement of Γ̂p−1 in Γ̂p with respect to the inner product
of L2(Ω,F ,P).

The relation in (2) is called the (homogenous) Wiener Chaos decompostion and the space
Γp the (homogenous) Polynomial Chaos (PC) of order p. Since the Polynomials Chaoses
are constructed orthogonal to the normal probability measure, they are equivalent with
the multidimensional Hermite polynomials. According to (2) a random variable Y can be
represented in the form

Y (ω) = â0Γ0 +

∞∑
i1=1

âi1Γ1(ξi1(ω)) +

∞∑
i1=1

i1∑
i2=1

âi1i2Γ2(ξi1(ω), ξi2(ω)) + · · · . (3)
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In practice (3) is truncated after a finite number of terms and written conveniently as
Y (ω) =

∑n,p
i=0 aiΨi(ξ(ω)), where n, p+ 1 =

(
n+p
p

)
, ξ = (ξ1, . . . , ξn) and p is the chaos order.

When n = 1 then p = 3 is usually sufficient. Since E [Ψi(ξ)Ψj(ξ)] = δij , the expansion
coefficients are given by ai = E [YΨi(ξ)] and computed through projection or regression
[11]. What distinguishes the Hermite Chaos expansion from other possible expansions is
that the basis polynomials are Hermite polynomials in terms of Gaussian variables and
are orthogonal with respect to the weighting function that has the form of n-dimensional
independent Gaussian probability density function. The Hermite Chaos expansion proves
to be effective in solving stochastic differential equations with Gaussian inputs as well as
certain types of non-Gaussian inputs. However, for general non-Gaussian random inputs,
the optimal exponential convergence rate will not be realized. In some cases the convergence
rate is in fact severely deteriorated. In order to deal with more general random inputs the
generalized Polynomial Chaos (gPC) [24] is used. It makes use of other well known families
of orthogonal polynomials. For each type of random input variable an optimal (in the sense
of convergence rate) expansion basis can be found. This expansion is in general referred
to as the Wiener-Askey Polynomial Chaos since the basis polynomials are these from the
Askey-scheme [1] of the hypergeometric functions. The original Wiener Polynomial Chaos
corresponds to the Hermite Chaos and is a subset of the Wiener-Askey Polynomial Chaos.

2.1.3 Uncertainty propagation

We assume all input is stochastic. This means the conductivity ratio as well as the moment
and location of the dipole are modeled by random variables. As assumed in the Introduction,
the uncertainty is uniform, so we employ Legendre Chaos. The conductivity ratio is then
written as X(ξX) = .026 + .0159ξX where ξX is uniformly distributed on the interval
[−1, 1]. Likewise the position rd resp. moment d are written in terms of uniform variables
ξrd = (ξrdr , ξ

rd
θ , ξ

rd
φ ) resp. ξd = (ξdr , ξ

d
θ , ξ

d
φ ) and are confined to the inner sphere. By Doob-

Dynkin’s lemma the solution can be expressed in terms of ξ = (ξrd , ξd, ξX). A Legendre
Chaos of order p of the i-the sensor reads (with λj the j-th 7-variate Legendre polynomial)

Ŝi(ξ) = L(rd(ξrd), X(ξX)) d(ξd) =

7,p∑
j=0

Vijλj(ξ), Vij = E
[
Ŝi(ξ)λj(ξ)

]
. (4)

The coefficients Vij ∈ R were computed through a sparse grid or Smolyak integration
scheme. We have n = 7 random dimensions and consider a Legendre Chaos of order p = 5.
The effect of increasing the order of the chaos expansion may be of interest, but for our
purposes we verified that 5 suffices; 7, 5 = 791.
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2.2 The inverse model

2.2.1 Bayesian Inference

The inverse model consists of locating the dipole given a set of sensor measurements. Now
this locating isn’t deterministic but results in a probability density. The stochastic sensor
predictions Ŝ are given by (4). Sensor measurements are in fact undergoing some error –
sensor noise and model error –, so S = Ŝ(ξ)+ε, where the components of ε are i.i.d. random
variables with density φε. A typical assumption is ε being a zero mean normal variable [15],
so ε ∼ N(0, σ2

ε I27). In this case the likelihood becomes

φS|ξ(x|ξ) =
27∏
j=1

φε

(
xj − Ŝj(ξ)

)
.

We have a posterior probability density φξ|S for the model parameters (up to a normalizing
factor) defined by the product of the likelihood φS|ξ with the prior density φξ. The latter
embodies all prior knowledge on these parameters. In our case the prior is uninformative
so equal to a constant. We are interested in integrals over the posterior density, especially
marginalizing over X. This means that the forward model (needed in the likelihood) has
to be computed many times. For Monte Carlo simulations requiring 103-105 samples, the
total cost of this calculation quickly becomes prohibitive. It is therefore necessary to have
an efficient way of doing so. This is exactly why we introduced Polynomial Chaos.

state rd, d, X:

ξ

prior

φξ

model & error

S = Ŝ(ξ) + ε

likelihood

φε(S
? − S)

data

S?

posterior

φξ|S(·|S?)
marginal

Figure 2: Different components in the Bayesian procedure.

2.2.2 Splitting and reduction of the integration

If S? is a measurement data set, one computes the posterior density φξ|S(·|S?). But we
note that given rd and X we can use the EEG lead field model S = L(rd, X)d to find an
optimal d?, namely L(rd, X)†S. Using this we obtain the dipole location density φrd(ξrd |S

?)
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proportional to ∫ 1

−1

27∏
i=1

φε

(
S?i − Ŝi(ξ?)

)
d ξX .

with ξ? = (ξrd , ξ
?
d(ξrd , ξX), ξX) and ξ?d such that d? = d(ξ?d) is optimal.

The density φrd is not depictable so we proceed by splitting the radial and angular
component of rd. First, we marginalize over X and the angular part to obtain the radial
component density φ(|rd|(ξrdr )|S?) as

1

26ν

∫ 1

−1

27∏
i=1

φε

(
S?i − Ŝi(ξ)

)
d ξrdθ d ξrdϕ d ξd d ξX .

Then, secondly, we fix the radial component at its mean ξ̄rdr and compute the density of the
angular components of rd, φ(∠rd(ξ̄

rd
r , ξ

rd
θ , ξ

rd
ϕ )|S?), again approximated by

1

2ν

∫ 1

−1

27∏
i=1

φε

(
S?i − Ŝi(ξ̄

?
)
)

d ξX

with ξ̄
?

= (ξ̄rdr , ξ
rd
θ , ξ

rd
ϕ , ξ

?
d(ξ̄rdr , ξ

rd
θ , ξ

rd
ϕ , ξX), ξX).

3 Results and discussion

We will discuss our stochastic approach of locating an electric dipole - supposed to have
evoked an epileptic seizure. However, first we construct some input to work with. We
consider the stochastic position and moment vectors rd(ξrd) and d(ξd) evaluated at some
fixed stochastic input vectors, namely

rd(−.7, .2, .43) = (−.027,−.121,−.041),

d(.05,−.1, .2) = (−.365,−.265, .071),

X(.2) = .0253.

Having computed the chaos coefficients, we obtain 27 random variables Si. We do not know
its probability distribution but can regard it as function of the random variable ξ. The
sensor values S? corresponding to this fixed input variables will serve as our data. The
inverse problem consists of recovering these inputs as described in the above.

Proceeding with the marginalizing process we obtain the radial component density
φ(|rd|(ξrdr )|S?) depicted in Fig. 3. Further we compute the mean and standard deviations
of the densities; see Table 1. We find good agreement with our constructed input.

Turning to the angular components at fixed mean radius we find the level sets of the
density at error level .10 in Fig. 4. The mean value is (ξ̄θ, ξ̄φ) = (.222, .4385), which in
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Table 1: Mean radius ξ̄r and standard deviation ξ̌r at different σε.

σε .10 .15 .20 .30

ξ̄r −.7064 −.7142 −.7213 −.7267

ξ̌r .01334 .02245 .02772 .03287

−0.8 −0.75 −0.7 −0.65
0

20

40

60

ξr

φ
(ξ
r
)

Figure 3: Density φ(ξr) at degree 5 with σε = .1 (dot), σε = .15 (dash-dot), σε = .2 (dash)
and σε = .3 (full).

turn is good approximation of the true value (.2, .43). The Bayesian approach results in
a density, and here we clearly see some extra information. The oval shaped contours give
insights about correlation between the angular components of the dipole location, and this
correlation is positive. The angular components are thus dependent variables. We note
that the approach followed lacks the difficulty of choosing physiological properties of brain
tissues a priori – which we set as our goal.

Another issue which deserves attention is the error level. We performed the above
analysis with different error levels and collect the results in Table 1. When we compare
the error levels with the obtained standard deviations of the radial component prediction,
we observe no linear dependence. We fit it to a kind of rectangular hyperbolic curve and
obtain,

ξ̌r = .037
σ2.458
ε

.006 + σ2.458
ε

, 0 ≤ σε ≤ .35.
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Figure 4: Contourplot of φ(ξθ, ξφ) with σε = .1 and ξ̄r = −.7.

Inverting the relation for a predefined ξ̌r = .01 results in σε = .083. This value has to be
seen as an upper bound, since σε → 0 would imply ξ̌r → ε with ε > 0 small; there will
always be some intrinsic error, e.g. due to the truncation of the chaos expansion.

4 Conclusion

By employing a Polynomial Chaos expansion and using a Bayesian framework we account for
all errors – model, measurement and uncertainty. With this technique we get good results
and avoid the problem of blindfold guessing a patients cerebral conductivities. We proved
that in general the angular components of the dipole location are dependent variables. We
obtained an upper bound on the overall error level in model and measurements, given a
predefined accuracy on the prediction of the radial component of the dipole location.

It will be of future research not only to relate the error level with ξ̌r but to include and
relate the standard deviations of the angular densities, and more generally the covariance
matrix, as a whole to obtain a relation or bound of the form

ξ̌rd = e(σε), or ||ξ̌rd ||3 ≤ e(σε),

with ξ̌rd the correlation tensor between the components of the dipole position.
In this report only the results for one dipole location are stated, more locations and

orientations will be published in a more elaborate paper.
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Abstract

The magnetic behaviour of pure platinum nanoparticles has been studied by means
of ab-initio density-functional based numerical simulations. Both unconstrained and
fixed spin-polarised schemes have been used to calculate the total magnetisation as well
as the local atomic polarisation of five different structural motifs of Pt13 nanoparticles.
The dramatic role of the electronic temperature on the electronic density of states, and
hence of the clusters magnetic properties, has been revealed.

1 Introduction

Nanomagnetism deals with the study of magnetic behaviour of objects which are nanoscopic
at least in one dimension, including free nanoparticles (NP), nanodots, nanowires as well as
thin films. Due to the broken translation symmetry and to dimensions comparable to char-
acteristic lengths e.g., exchange length or the domain wall thickness, there are differences in
the magnetic response of nano-objects as compared to their bulk counterparts, leading to
novel physical properties [5, 7]. The enhancement of magnetisation in clusters of chemical
species that are ferromagnetic when in the bulk has been proven thanks to SternGerlach
experiments [1]. These nanoparticles can be used as magnetic nanometre devices [2] . For
their practical applications, it is worthy noting that, when the size of NP becomes too small,
the magnetic moment of the single-domain ferromagnet can fluctuate thermally, so that the
superparamagnetic limit can be achieved. On the other hand, a magnetic behaviour has
been observed quite surprisingly in NP of noble and quasi-noble metals [7]. Experimen-
tal magnetic measurements of well characterised Pt clusters, with 13±2 atoms and up to
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8 unpaired electrons, monodisperse in NaY zeolites, have confirmed their extraordinary
magnetic polarisation [3, 4].

From an atomistic point of view, the shape of the density of electronic states (DOS), due
to the reduced dimensionality, depends on the geometry of the system and can influence
drastically the magnetic behaviour of transition metal nanoparticles [5, 9, 8]. Generally
speaking, a small cluster is expected to posses a low spin state [6] due to the average energy
spacing of electronic states at the Fermi energy, the so-called Kubo gap, that scales with the
width of the valence band, which is usually of the order of few eV, and the number of atoms
in the cluster. Nonetheless, an opposite effect of the morphology is that quite symmetric
structures may show a high degeneracy of the highest occupied molecular orbital favouring
high spin states. Although the origin of ferromagnetism in non-magnetic transition metals
clusters is still under debate, tailoring their magnetic properties by simply reducing the
length of certain critical dimensions constitutes a really promising eld for investigation
[7]. Local spin density numerical simulations represent an efficient and feasible tool for
calculating magnetic properties of nano-objects, where the broadening of the DOS and the
smoothening of the discontinuities at the Fermi energy have been taken into account by
means of introducing a fictitious electronic temperature, Te [10].

In this work, platinum NP of 13 atoms with different shapes have been viewed as
paradigmatic example. Their energetic stability has been calculated as a function of their
total magnetization (TM), using both unconstrained and fixed spin-polarised frameworks.
We have demonstrated that large values of Te wrongly reproduce the DOS, affecting directly
the broadening of the d-band, as depicted in panel (D) of Fig. 1. This allows a non realistic
overlap of s and d bands, and hence of the atomic hybridisation which has a very strong effect
on the total magnetization of the cluster itself. This study may help in determination of
the structural motif of Pt clusters which favour high magnetization as found in experiments
[3, 4].

2 Magnetic properties of Pt13 clusters

In agreement with available literature [11, 12, 13] , the five most stable structures, the
Mackay icosahedron (Ih), Ino decahedron (Dh) and cuboctahedron (CO), and the two bi-
pyramidal geometries, indicated as the two best geometries, labelled as GM0 and GM2, are
depicted in panel (A) of Fig. 1.

The QuantumEspresso package [15], a density functional theory based plane wave code,
has been used employing the generalised gradient approximation (GGA) with the Perdew-
Burke-Ernzerhof (PBE) functional [16] having an energy cut-off of 45 Ryd and a charge
density cut-off of 360 Ryd. An ultrasoft pseudopotential has been included for Pt atoms
with an electronic configuration 5d96s1 and all the calculations have been done at Γ point.
In all cases, a structural optimisation has been performed using the Broyden-Fletcher-
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GoldfarbShann (BFGS) procedure. TM has been calculated for various values of Te con-
sidered, as reported in panel (C) of Fig. 1.
It has been found that 0.03 eV is a reasonable value of Te in order to get a better description
of the DOS and thus of total magnetisation. Initially, constrained spin-polarised calcula-
tions have been preformed, in which spin multiplicity was fixed to the value of (2S+1), with
the total spin S varying between 0 and 5, corresponding to a final TM between 0.00 and
10.00 µB, respectively.
For a better understanding of the role played by the fictitious Te, unconstrained spin-
polarised calculations have been performed as well. The energy cost to create a finite
system with respect to the bulk is quantified by the excess energy ∆S = Etot−Nεb

N2/3 , where
Etot is the total energy of NP and εb is the energy of one atom in the bulk and N is the
number of atoms in the cluster. The relative stability of each structure has been given
rescaling its excess energy to the value obtained for GM0, labelled as ∆best

S . The energetic
stability of each isomer has been plotted as a function of its TM for each Te.
The geometrical motifs analysed are within at least 0.5 eV/atom in energy , with GM0 and
GM2 being the most favourable structures, independently of the choice of the electronic
temperature. However, morphologies showing degeneracy in energy only at higher spins
(Te=0.54 eV) start to show a different trend at lower Te. Ih and CO isomers have been
found to have a more complicated behaviour that ends up in a small energetic crossing
between 4.0 and 6.0 µB as the electronic temperature is reduced. The energetic profile of
Dh remains constant for Te ≤ 0.08 eV as well as the relative profile of GM0 and GM2,
although for their energetic degeneracy starts to become relevant at lower TM.
In the case of unconstrained spin, structures like Ih, GM0 and GM2 present a TM between
2.00 and 6.00 µB at low Te, while they are not magnetic at all at larger Te. On the other
hand, the CO isomer posses a TM in the range of 8.0 to 10.0 µB. The energy gap has been
found to be lower by about 0.1 eV/atom, panel (C) of Fig. 1 and Ih and CO structures are
almost degenerate in energy but different in magnetisation.
Additionally, the local atomic polarisation, which is the difference between the number of
majority and minority spins per each atom, has been analysed and shown in panel (A) of
Fig. 1 (where black to white gradient represents lower to higher atomic polarisations re-
spectively). This quantity clearly reflects the effect of electronic temperature on the density
of states. At low values, for example, the Ih isomer shows a slight compression along one
of the 5-fold axes, reducing the bond length between one set of opposite vertexes and the
centre by 2.58 Å and Dh presents a slight distortion that leaves the core atom away from
the position of the centre of mass. A geometrical contraction/extension of a bond induces
a local magnetic anisotropy, due to a non-homogeneous charge transfer from s-like orbitals
and, as a consequence, a different s-d atomic overlap. These effects have been almost sup-
pressed when Te=0.54 eV, thus preventing the observation of the magnetic behaviour in
platinum clusters.
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In conclusion, high Te are not able to reproduce the broadening of the d-band or the charge
transfer providing a wrong magnetic behaviour, although the energy stability is quite in-
dependent of this parameter. It is possible that the approximation of ’superatoms’, might
not be valid in the limit of low Te for Pt13 nanostructures. And finally, our calculations
can help in understanding which structural motifs can contribute to the high magnetism
for Pt13 NP, as found in experiments.
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Abstract

Recent results have shown significant progress by applying methods from alge-
braic cryptanalysis in the presence of limited side channel leakage. Unlike most
related work, the methods assume a single leakage observation from an implemen-
tation of a block cipher. In this work we present two attacks targeting two block
ciphers, AES and KeeLoq. The attacks perform equally well as previous work un-
der the same leakage assumptions. However, as the attacks follow a brute-force
approach, their setup assumes a less knowledgeable adversary. Hence, it is shown
that equal results can be achieved with a simpler setup.

Key words: Algebraic cryptanalysis, side channel cryptanalysis, AES, KeeLoq

1 Motivation

Cryptography has become the cornerstone for building secure digital systems. A re-
maining threat to embedded cryptographic engines are side channel attacks. The at-
tacks exploit information leaked via physical side channels, including power consump-
tion [7, 8], electromagnetic emanation [10], or even the timing behavior of an implemen-
tation [6]. While their applicability is limited to cases where an adversary can sample
the corresponding leakage, the attacks usually succeed easily in those cases, unless the
implementer invested considerable effort to prevent these attacks.

Most work in side channel analysis focuses on improving the amount of information
that can be extracted from several measurements, or on countermeasures suppressing
such leakage [8]. The literature distinguishes differential attacks such as Differential
Power Analysis (DPA) that exploit the leakage of several samples, and scenarios such
as Simple Power Analysis (SPA), where the leakage of a single execution of the cryp-
tographic engine is analyzed. Recently, an increasing number of publications has an-
alyzed how to exploit a strong, well-defined leakage from a single trace, as found in
SPAs. Some successful attacks [11, 9] apply advanced cryptanalytic techniques such as
algebraic attacks to succeed.
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Works in algebraic cryptanalysis attempt to recover the secret key by describing
the cipher as a system of algebraic equations and solving these. Usually, equations are
built around a single plaintext-ciphertext pair. However, up to now algebraic attacks
have not succeeded on any relevant ciphers in use. Instead, they have been successfully
applied to toy ciphers and reduced round versions of state-of-the art block ciphers.

One problem is that no intermediate information is accessible for the attacker. This
problem can easily be overcome by assuming a side channel adversary, since side channel
adversaries get some limited information about intermediate states. While algebraic
side channel attacks, unlike classical DPA attacks, are usually not able to statistically
exploit leakage of several traces, they offer the beauty of exploiting given information
more efficiently. Hence, algebraic attacks seem like a good choice to enhance existing
SPA approaches.

Combinations of algebraic attacks and side channel attacks have achieved some
unique results. The work by Renauld et al. [11] showed that, given sufficient leakage,
even the leakage of as few as three rounds of AES is sufficient to recover the full AES
key. More importantly, this attack does not even require knowledge about the processed
plaintext or ciphertext. While in classical encryption scenarios at least the ciphertext is
assumed to be known, there are some cases, such as pseudo random number generation,
where an attacker might be interested in recovering the key even though neither input
nor output are known. A similar approach was taken in [9]. Besides targeting AES, an
attack on KeeLoq was presented. While the attack on KeeLoq relies on either known
input or output, it is, unlike the above attack, able to handle a certain amount of noise
in the leakage. Since leakage information is usually derived by sampling noisy physical
channels, being able to handle noise is of great advantage.

Our Approach

Attacks that focus on leakage from a single trace have received little attention in liter-
ature. This is mainly due to the fact that attacks usually exploit statistical methods
which profit greatly from increasing the number of samples. Classical side channel
attacks have had great successes by applying divide-and-conquer techniques to recover-
ing the key part-by-part. In this work we apply the same approach on a single leakage
trace. We analyze what an adversary can achieve with a single leakage trace and per-
forming exhaustive key search only. In other words, unlike related work we analyze the
capabilities of an adversary without applying algebraic attacks. We show that similar
results can be achieved by performing techniques used in classical side channel attacks,
namely by mere combination of divide-and-conquer techniques with brute-force key
search. The goal of the work is to motivate further research effort and to achieve better
results with more advanced methods by giving a lower bound on what an adversary is
capable of without applying such advanced methods.
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2 A Simple Side Channel Cryptanalytic Model

Classical side-channel attacks target cryptographic implementations in a special way.
We describe a very general side channel adversary. As depicted in Fig.1, the adversary
queries the cryptographic engine and receives an output m and a leakage λ. The output
is typically a ciphertext of an unknown (random) message. Given this information, the
adversary tries to recover the secret key k.

Ek

1

c

λ

adversary

Figure 1: On query 1, the adversary receives the output c of the cryptographic operation
E using key k and an unkown random input. In addition, the adversary also receives
a leakage λ, which is a function of k and c.

In most scenarios, such as DPA and timing attacks, the adversary gets several
queries to the target. However, in this work we will look at the case where only a single
trace is available, i.e. one pair 〈c, λ〉 is given to the adversary.

For many block ciphers, including the ones discussed in this paper, it does not
matter whether input or output, and plaintext or ciphertext is known. The attacks
almost remain the same. However, the amount of leakage can significantly influence
the effectiveness of an attack.

The probably most common models for power or EM side channel leakage are the
Hamming weight and the closely related Hamming distance. Both have shown to be
sufficient as an approximation for the actual leakage when used in correlation based
DPA attacks on unprotected implementations. At the same time, it is commonly agreed
that actual leakages are somewhat more complex. This is especially important when
operating in an SPA scenario, where only one observation of leakage is available. It
has been shown that some targets actually allow the detection of Hamming weights
through side channel measurements [11]. Hence, a discussion of attacks living entirely
in that model have recently attracted significant interest [11, 9].

Given the n-bit value of a number x in binary representation as x = bn−1bn−2 . . . b0 =∑n−1

i=0
bi · 2

i, the Hamming weight (HW) is defined as

HW(x) =
n−1∑
i=0

bi

and the Hamming distance (HD) between two values x and y as HD(x, y) = HW(x +
y), where + denotes binary addition, also referred to as xor-addition. These leakage
functions on parts of the intermediate state are usually observed for power and EM

@CMMSE                                 Page 459 of 1703                                 ISBN: 978-84-614-6167-7



Lower Bound for Algebraic SCA

analysis attacks. Power and EM analysis attacks have received a high attention from
the cryptographic community, as they are extremely difficult to completely prevent [8].
We will use the above adversarial model throughout the remainder of this work.

3 Lower-bound Attacks on Block Ciphers

In the following we present two SPA attacks on block ciphers, one on KeeLoq, one on
AES. Both attacks are based on the adversarial model described in Sec. 2. The attacks
are inspired by the works in [11, 9], where identical adversarial models were assumed.
We show that our attacks perform comparably well, but do not require a translation of
the cipher into algebraic equations. Instead, they follow a classical combination of the
side-channel typical approach of divide-and-conquer with a classic exhaustive search on
the partial keys. The combination of both approaches are standard methods in side
channel attacks. Yet, they have not been applied in cases where only a single leakage
trace is available. The approach has two advantages: The description of the cipher
as equations is trivial. Furthermore, changes in algebraic representation do not result
in overly complex descriptions of the cipher, which can significantly slow down the
algebraic equation solver. Changes in algebraic representation are common in modern
block ciphers, as a uniform algebraic structure can simplify cryptanalysis.

3.1 Simple Side-Channel Attack on KeeLoq

KeeLoq is an insecure block cipher that was designed in the 80’s. It is mainly used for
remote keyless entry systems, where it remains in use. The cipher as well as implemen-
tations of it have been thoroughly cryptanalyzed [1, 4, 2, 3, 5]. As shown in [3], the
commercially used hardware implementation shows a strong HD leakage. The cipher
consists of a 32-bit state and a 64-bit key. We follow the attack setup described in [9].
It assumes a hardware implementation of KeeLoq, showing a noisy HD leakage of the
state for each round of the cipher. Such a leakage has been observed from numerous
ICs that can be found in various remote keyless entry products featuring KeeLoq.

In particular, the overall leakage λ is a vector of the individual leakages of each
state si of each of the 528 rounds of the cipher. Each state leakage λi gives the HD
of the two consecutive states. Additionally, noise δi either increases or decreases the
observed HD by one with a probability of ǫ > 0:

λi = HD(si−1, si) + δi

Our attack focuses on the first 64 rounds, where one bit of the key is added to the
state per round. These observations are very important, as they exhaust the key space
entirely. Predicting a leakage in rounds 64 to 528 requires the whole 64 bit key to be
guessed. Hence, we will have to use the first 64 rounds to narrow down the number of
key candidates to a number that we can handle. The remaining leakages can then be
used to single out the correct key from this reduced number of survivors. It is important
that we do not throw away the correct key before that. Otherwise, we have to go back,
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rerun the first step with a higher number of candidates, hoping that it contains the
right key this time.

Attack Description: The followed approach is closely related to the hardware attack
described in [3]. The main difference is the replacement of the correlation by a different
error metric. We take advantage of the fact that we can directly count the accumulated
difference between the observations and the predicted leakage for each key.

One cannot possibly compute the metric for all possible key candidates, as their
number doubles with each round that is being analyzed. However, following a maximum-
likelihood approach, one can reject unlikely keys throughout the attack. As with other
pruning methods, it is important that the correct key is not discarded during the at-
tack. The chosen discarding method removes all keys that (i) show more than one bit
deviation from any state leakage or (ii) that result in a metric exceeding the maximum
number of expected errors for the correct key. We chose the error bound in such a way
that the probability of rejecting the correct key is < 3%.

However, as for the original attack on KeeLoq, if the attack fails, it can be re-
run with an increased error-bound, as one will notice the ever-increasing number of
predicted errors. Hence, the attack is inherently error-correcting.

Results: The attack has been implemented in Python 3.1 and has been performed
on a PC with 4GB memory and an Intel Core i5 processor. Depending on the error
probability ǫ, the attack succeeds in comparably little time: with an ǫ = 1% it succeeds
in under 2 seconds. However, it increases quickly to about 150 seconds at ǫ = 6% and
230 seconds at ǫ = 10%. The memory requirements also increase quickly as the number
of errors increases.

3.2 Simple Side Channel Attack on AES

AES is probably the most widely used block cipher today. Having been accepted
as NIST symmetric encryption standard, it has become adopted in a wide variety of
products. AES implements a substitution-permutation network, with a block size of
128 bit and key sizes of 128, 192 or 256 bit. AES has a state of 16 bytes, s0 to s15.
In each of the rounds, several operations are performed, i.e. AddKey, which xor-adds a
round key byte to each state byte, SubBytes, which substitutes each byte value by a
different one, by following a predefined permutation. ShiftRows rearranges the order
of the state bytes. This operation comes for free on an 8-bit platform. MixColumns

interprets 4 bytes of the state as a vector and multiplies it with a pre-defined matrix.
The output are 4 updated state bytes, where each byte depends on each of the four
input bytes.

For our attack we assume an 8-bit implementation that leaks the Hamming weight
of each byte of the intermediate AES states. This is a common assumption for power
and EM analysis attack on embedded implementations [3, 11, 9] The amount of leakage
produced by each operation varies depending on the implementation. The implementa-
tion analyzed in [11] shows several leakages for the MixColumns, including the leakage
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of intermediate results, while AddKey and SubBytes only leak once. Hence, the amount
of leakage from each operation may vary strongly. However, for maintaining simplicity
we decided to assume the following leakages: Each byte si of the AES state leaks its
Hamming weight once per round after the AddKey, the SubBytes and the MixColumns.
Hence, we get 3 bytewise Hamming weight leakages of the state per round, resulting in
3 · 16 = 48 leakages per round. Assuming a leakage from ShiftRows does not help, as
it repeats the leakage observed after the SubBytes. Since it comes for free, it usually
is not implemented as a separate operation. Hence, we assume less leakage than the
model in [9]. The presented attack assumes virtually noise-free leakages, as done in [9]
and [11].

Attack Description: The first leakage we observe in each round is the leakage after
the AddKey. Each byte si, 0 ≤ i < 15 of that state is the binary sum of a key byte ki
and a byte ri of the prior state (or the plaintext in the first round), hence si = ki + ri.
We only observe the Hamming weight of the state: λi = HW(si). The observed leakage
λi narrows down the number of possible values for a particular byte from 256 to a
value between 70 and 1, with an average remaining entropy of 5.46. The next leakage
we observe is after the SubBytes, where the state transitioned to s′i = S(si) and the
observed leakage is λ′

i = HW(s′i). We can use this leakage to narrow down the number
of surviving states one more time. These operations are not very costly, as they can be
performed on each byte individually. Hence, for each byte we store less than 70 possible
values the byte can take, given the first leakage. Then, we remove all byte candidates
that do not comply with the leakage observed after the s-box. This leaves approx. 8
candidates for each byte (remaining entropy: 3.04 bits per byte).

Things get a bit more complicated for the MixColumns operation. Each state
byte s′′i of the state after the MixColumns operation depends on 4 input bytes, i.e.
s′′i = x·s′j+(x+1)·s′k+s′l+s′m, where the indices j, k, l,m depend on the index i and +, ·
are multiplication and addition in F28 . However, 4 bytes of one column depend on the
same 4 bytes of the prior state (from the same diagonal). Hence, instead of having a list
of possible bytes, we get a list of possible 4-tuples of bytes

〈
s′′
4i, s

′′

4i+1
, s′′

4i+2
, s′′

4i+3

〉
. The

average number of surviving guesses per vector is approx. 18 (remaining entropy per
byte is 1.04), resulting in approx. 216.7 possible states per round. The experimentally
observed remaining state entropy varies between 13 to 20 bits.

Since we did not use any information entering the round (neither key ki nor the
previous state ri are assumed to be known), we can repeat the procedure for any
round we need. However, gluing together the rounds and thereby further reducing the
number of possible states is not possible, as the round key introduces full entropy at the
beginning of each round. Nevertheless, information about two subsequent states r and
s can be used to generate a list of possible round key candidates, with ki = r′′i + si. Or,
even better, three subsequent states r, s, t can produce information about 2 subsequent
round keys k, l, with ki = r′′i + si and lj = s′′j + tj . The relation between the round

keys is given by the AES key schedule. Having approx. 216.7 candidates for each state
gives a total of approx. 250 possible candidates that have to be checked. This, while
not undoable, requires special purpose equipment. Instead, one can follow the divide-
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and-conquer approach: By checking the relation between k and l byte-by-byte and
excluding state/key hypotheses as early as possible. It is preferable to check equations
first that depend only on very few independent bytes of the three states. The strategy
is as follows:

One possible state of the middle round s is checked at a time. For a given s, we
can check the equations given by the key scheduling based on possible values for bytes
of r and t. Instead of practically solving the system of equations given by the key
schedule, we go through all possible partial values for r and t trying to find matches.
This process can be done byte-by-byte, i.e., only the equation for a single byte needs to
be checked over and over again. Remember that only candidates that differ in that byte
have to be checked. In any of the initial equations, only candidates from at most three
columns appear. Hence, the initial equation needs to be checked 28 times, resulting
in approx. 1 valid match, in which case a second equation needs to be evaluated
(including additional key hypotheses). Hence the overall attack has a complexity of
approx. 216.7 · 28 = 225.4, which is easily doable on modern PCs. Remember, these
are not 225 full AES encryptions, but only evaluations of simple equations, that mostly
consist of binary additions of bytes.

Results: In our experiment we chose to attack the three consecutive rounds of indi-
vidual encryptions that feature the lowest number of necessary guesses. The average
remaining number of round candidates is approx. 215 in that case. The attack per-
formed in less than 30 minutes and recovered the correct key.

Please note that this attack possesses a unique feature. The attack neither requires
plaintext nor ciphertext input. It also does not require more than 3 rounds of leakage.
Hence, implementations that have a strong leakage, but feature strong countermeasures
in the first 3 and last 3 rounds would still be vulnerable to this attack. While similar
results were achieved in [11], we did not have to use an algebraic solver for obtaining the
same results. Hence, our attack shows better performance while being much simpler to
implement. It also requires less cryptanalytic knowledge of the attacker.

4 Conclusion

Two new simple side channel attacks have been presented. For both attacks a similar
successful attack has been presented before. However, the presented attacks are simpler
and more straightforward than prior work. Both, the attacks presented in [11] and [9]
require an algebraic solver to succeed. They furthermore require the cipher to be
described in equations that are understandable by the equation solver engine. Even
their performance does not seem to outperform the presented results.

The presented attacks are natural extensions of classical DPA approaches. They
are leakage-aware brute-force attacks and, thus, define a lower bound for attack perfor-
mance in the described leakage scenarios. More complex solving methods are usually
motivated by outperforming such straightforward approaches. We hope that the re-
sults may serve as a motivation for finding more advanced cryptanalytic approaches
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that perform significantly better in the described leakage models.
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Abstract

The crystallization of a hollow cylindrical polymer sample cooled from inside
with another cylindrical object of a smaller radius is described by means of a
free boundary problem approximation. The cooling object is considered thermally
homogeneous in space so that the applied temperature profile is constant with
respect to the azimuth, thus allowing a one-dimensional formulation of the problem,
provided initial and boundary conditions have axial symmetry. Numerical simu-
lations of the crystallization process are presented for different cooling strategies.
Analytical estimates are derived from the pseudo-steady state solution of the corres-
ponding Stefan problem and are shown to be in agreement with the simulations.
Analytical estimates are also provided for the crystallization time and the total
amount of cold required for the (technically) complete crystallization, and are also
shown to be in agreement with the simulations.

Key words: polymer crystallization, Stefan problem, axisymmetric geometry
MSC 2000: 49J20, 35R35, 35K55, 65M06, 80A22

1 Introduction

Finding the optimal cooling strategy is a core problem in polymer crystallization pro-
cesses. Results in one-dimensional (1D) geometries have been recently reported in [4, 5].
The question arises as to whether the efficiency can be improved by using higher di-
mensional geometries taking profit of the radial and lateral heat transfer in cylindrical
and rectangular samples.

In this paper our previous studies are extended to the case in which a cylindrical
cooling object of radius rc is applied to the interior of a hollow cylindrical sample of
larger radius ra > rc > 0. See Fig. 1.
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The internal cooling object is considered thermally homogeneous in space, that is,
there is no variation in the temperature with respect to the z-axis and the angular
coordinate ψ (the azimuth), so the time-dependent applied temperature profile is cons-
tant with respect z and ψ. This axial symmetry is also assumed for the rest of the data
and parameters of the problem, in particular the boundary and initial conditions, also
chosen to be independent of z and ψ.

The resulting axisymmetric geometry allows to reformulate the problem as a 1D
problem for the radial spatial variable r ∈ [rc, ra], often referred to as a 11

2D problem.

Figure 1: From a cylindrical geometry to the axisymmetric 1D formulation.

The model consists of two non-linear partial differential equations for the degree
of crystallinity y(r, t), defined as the mean volume fraction of the space occupied by
crystals, and the temperature field T (r, t), coupled by means of the rate functions of
nucleation and growth bN (T ) and bG(T ), the function of starting of nucleation κ(y) =
(1 − y)2, and the function of aggregation and saturation of nuclei β(y) = y(1 − y):

yt(r, t) = β(y(r, t))bG(T (r, t)) + v0κ(y(r, t))bN (T (r, t)), (1)

Tt(r, t) = σ

(
Trr(r, t) +

1
r
Tr(r, t)

)
+ aGβ(y(r, t))bG(T (r, t)), (2)

for (r, t) ∈ Qτ = (rc, ra) × (0, τ), where L = ra − rc is the radial length of the sample
and τ is the time at which the cooling process is stopped.

Equations (1)–(2) are solved with the following boundary and initial conditions:

T (rc, t) = uc(t), Tr(ra, t) = 0, t ∈ (0, τ), (3)
y(r, 0) = 0, T (r, 0) = T0, r ∈ (rc, ra). (4)

The cooling object is applied to the inner side of the sample rc, according to a tempe-
rature profile uc(t) ∈ [0, Tf ] during a total cooling time τ . At the outer side of the
sample ra, we consider a zero-flux condition corresponding to a thermally insulated
boundary. These boundary conditions give rise to the outward freezing of the sample;
inward cooling at ra will not be taken into account in this work.

@CMMSE                                 Page 466 of 1703                                 ISBN: 978-84-614-6167-7



R. Escobedo, L. A. Fernández

Let us stress that the part of Eq. (2) corresponding to the heat operator in polar
coordinates does not contain the term depending on the angular coordinate ψ due to
the axial symmetry of the boundary and initial data (3)-(4).

Under the widely used isokinetic assumption (see [7]), the ratio between nucleation
and growth rates is constant, so we choose the nucleation and growth rate functions
such that bG(T )/G = bN (T )/N = θ(T ), where

θ(T )
def
=

{
exp (−ηT ) if T < Tf ,
0 if T ≥ Tf .

(5)

The parameters G, v0, N, σ, aG, η and Tf are taken as positive real constants denoting
the growth factor, the initial mass, the nucleation factor, the heat diffusion coefficient,
the non-isothermal factor, the nucleation and growth exponent and the critical phase
transition temperature (from liquid to solid), respectively. Typical values are G = 5
s−1, v0 = 0.01, N = 20 s−1, σ = 0.002 m2s−1, aG = 2.5 × 103 oC, η = 0.1 (oC)−1,
T0 = 100 oC and Tf = 70 oC. In the 1D case, the length of the sample was L = 1 m.
More details of the model can be found in Refs. [2], [3] and [4].

2 Numerical simulations and PSS approximation

We have simulated numerically the crystallization process described in (1)-(5) with the
above given parameter values, in a sample of inner radius rc = 0.1 m and radial length
L = 1 m to which a constant temperature uc = 40oC is applied until the technically
complete crystallization is reached, which happens here at tcryst = 44.35 × 103 s.

Fig. 2 depicts the resulting crystallinity and temperature distributions exhibiting
the expected crystallization front. The effect of the radial geometry can be noticed
in that the temperature profile in the solid phase is no longer the straight line that
appeared in the 1D case [4].

(A) (B)
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Figure 2: Numerical simulation of the system (1)-(2) in a sample of inner radius rc =
0.1 m and radial length L = 1 m cooled with a constant temperature uc = 40oC. (A)
Degree of crystallinity y(r, t). (B) Temperature distribution T (r, t).
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A free boundary framework can be used, consisting in identifying the crystallization
band with a free boundaryR(t) separating the two phases, the solid one [rc, R(t)), where
y ≈ 1, and the liquid one (R(t), ra], where y = 0. In the liquid phase, the temperature
is considered constant and equal to the freezing value, that is, T (r, t) = Tf if r ≥ R(t).

This framework has been used successfully in the previous works in 1D geome-
tries [4], and has been established rigorously in Ref. [6]. Then, a Stefan condition can
be derived, allowing the formulation of the following one-phase Stefan problem [6]:

Tt(r, t) = σ

(
Trr(r, t) +

1
r
Tr(r, t)

)
, r ∈ [rc, R(t)), t > 0, (6)

T (r, t) = Tf , r ∈ (R(t),+∞), t > 0, (7)
T (rc, t) = uc(t), t > 0, (8)
T (R(t), t) = Tf , t > 0, (9)
Lδ

c
R′(t) = σTr(R(t), t), t > 0. (10)

Here Lδ/c = aGKδ is the ratio of the latent heat Lδ to the specific heat c, where
Kδ = [1 + δ(ln δ − 1)]/(1 − δ)2 and δ = v0N/G. According to Ref. [1], a pseudo-steady
state (PSS) exists in the limit Ste ≪ 1, where Ste is the Stefan number, the ratio of
the sensible heat c∆T = cmaxt{Tf − u(t)} to the latent heat Lδ.

Then, Tt = 0 (i.e. Trr + Tr/r = 0) and the boundary and initial conditions yield

TPSS(r, t) =

 Tf + [uc(t) − Tf ]
ln (r/RPSS(t))
ln (rc/RPSS(t))

if r ≤ RPSS(t),

Tf if RPSS(t) ≤ r,
(11)

where RPSS(t) is the solution of the following transcendental equation for λ [1, p. 144],

2λ2 ln
(
λ

rc

)
= λ2 − r2c +

4σc
Lδ

Q(t), (12)

and Q(t) is the total amount of cold injected into the sample through the internal
boundary rc along the time interval [0, t]:

Q(t)
def
=

∫ t

0

(
Tf − uc(s)

)
ds. (13)

We are now interested in estimating the crystallization time tcryst needed for the
complete crystallization of the sample, y(r, tcryst) ≈ 1, ∀r. Although the model recreates
the well known feature that full crystallization can not be reached [6], we assume here
that the state y = 1, ∀r is reached numerically; thus, when the complete crystallization
is reached, the total amount of crystallized polymer is P (tcryst) = L = ra − rc, where

P (t)
def
=

∫ ra

rc

y(r, t) dr. (14)
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Figure 3: Free boundary RPSS(t) compared to P (t)+ rc for (A) rc = 0.1 m, uc = 40oC,
(B) rc = 0.1 m, uc(t) = Tf + (1 − ea

2
1σt)Lδ/c, a1 = 1.93 × 10−2 m−1, (C) rc = 0.5 m,

uc = 40oC, in samples of radial length L = 1 m.

In our free boundary framework, our claim is that the amount of crystallized polymer
P (t) can be approximated by means of the position of the crystallization front. That is:

P (t) ≈
∫ R(t)

rc

y(r, t) dr +
∫ ra

R(t)
y(r, t) dr = R(t) − rc. (15)

Fig. 3 shows the excellent graphical agreement between the trajectory of the crys-
tallization front P (t) + rc and the free boundary RPSS(t) for three different cooling
strategies with different inner radius rc and different applied temperature uc(t).

Thus, R(tcryst) ≈ P (tcryst)+rc = ra, and expression (12) provides an approximation
of the total amount of cold required for the technically complete crystallization of the
sample defined by rc and ra, which allows also to estimate the crystallization time tcryst:

Q(tcryst) ≈
Lδ

2σc

[
r2a

(
ln

(
ra
rc

)
− 1

2

)
+
r2c
2

]
. (16)

For a constant applied temperature uc(t) ≡ uc, this yields, using Ste =
c(Tf − uc)

Lδ
:

tcryst ≈
1

2σSte

[
r2a

(
ln

(
ra
rc

)
− 1

2

)
+
r2c
2

]
. (17)

Note that, for the 1D case, we had Q1D(tcryst) ≈
Lδ

2σc
L2 and tcryst ≈

L2

2σSte
; see [6].

3 Errors estimates

We have used the following error estimates,

ξ(t) = P (t) + rc −RPSS(t), (18)
ε(r, t) = TNUM(r, t) − TPSS(r, t), (19)
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where TNUM is the numerical solution of (1)–(4), and the normalized L2-norms

ξL2 =
1
L

(
1

t2 − t1

∫ t2

t1

ξ2(t) dt
)1/2

, (20)

εT =
1

(t2 − t1)Tf

∫ t2

t1

(
1
L

∫ ra

rc

ε2(r, t) dr
)1/2

dt, (21)

and [0, t1] and [t2, tcryst] correspond to the short transient times during which the cha-
racteristic band structure is not recognizable and which are located at the beginning
and the end of the crystallization process [6].

Table 1: Error estimates and crystallization and transient times.
uc rc ξL2 εT ϵ tNUM

cryst t1 t2 %
(oC) (m) (10−4) (10−3) (10−2) (103 s) (103 s) (103 s) –

A 40 0.1 1.55 0.94 2.48 44.35 3 43 90.2
B exp. 0.1 0.5 0.61 1.18 39.47 3 38 88.67
C 40 0.5 1.44 1.5 2.97 28.5 1 27 91.22

We have also compared the numerical crystallization time tNUM
cryst with its estimated

value tPSS
cryst given by (16) for arbitrary applied temperature profiles uc(t) and by (17)

for constant applied temperatures; this is done by calculating the relative error

ϵ =
∣∣∣1 − tNUM

cryst

/
tPSS
cryst

∣∣∣ . (22)

Error estimates ξL2 , εT and ϵ have been calculated for the three cooling strategies
depiected in Fig. 3 for L = 1, where (A) rc = 0.1 m, uc = 40oC, (B) rc = 0.1 m,
uc(t) = Tf + (1 − ea

2
1σt)Lδ/c, a1 = 1.93 × 10−2 m−1, and (C) rc = 0.5 m, uc = 40oC,

and are reported in Table 1.

4 Conclusion

This work is a continuation of our previous studies about the polymer crystallization
in one-dimensional samples (see [4, 5, 6]) and shows that the same approach can be
also used in higher dimensions.

The low values of error estimates presented in Table 1 and the excellent graphical
agreement between the numerical and the pseudo-steady state approximations shown
in Fig. 3 allow us to say that the polymer crystallization process with axial symmetry
is satisfactorily described by our free boundary problem framework, during almost all
the time (90%, approx.)

Moreover, the explicit expression for the total amount of cold injected (that can
be derived from (12)) provide the key element for the resolution of the corresponding
optimal control problem, similar to those considered in [4, 5].
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Abstract

In this work we analyze the elliptic kernel’s solver of the ocean numerical global circulation
model OPA. In OPA, one of its dynamical core is rappreseted by the following Laplace’s
problem:




∂

∂x

[
α(x, y)

∂

∂x

(
∂ψ

∂t

)]
+

∂

∂y

[
β(x, y)

∂

∂y

(
∂ψ

∂t

)]
= f(x, y, t) su Ω× [t0, t1]

∂ψ

∂t
= 0 su δΩ× [t0, t1]

(0.1)
The problem’s (0.1) discretization, by finite difference, gives N linear systems Ex =
bm m = 1, ..N that are solved to determine the dynamic and the thermodynamic vari-
ables of ocean fluid from the time t0 to the time t1. The aim of this work is to analyze
the existent diagonal preconditioner of the algorithm of Preconditioned Conjugate Gra-
dient Method used by Ocean Numerical Model OPA to resolve the N linear systems. We
theoretically and numerically show a decreasing of the performance of solver in terms
of convergence rate when the domain grid resolution increases and the ratio between
the functions α and β changes. Finally, we prove the increment in performance of the
Preconditioned Conjugate Gradient Method in OPA by means of others preconditioning
techniques.

Key words: Ocean Numerical Global Circulation Model OPA , Laplace’s Problem,
Finite Difference, Preconditioned Gradient Method.

1 Introduction

The ocean models are a component of global climate models, the climate models are increas-
ingly being used to study not only the climate system but also ocean dynamics. Numerical
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ocean circulation models support oceanography and climate science by providing tools to
mechanistically interpret ocean observations, to experimentally investigate hypotheses for
ocean phenomena, to consider future scenarios such as those associated with human-induced
climate warming, and to forecast ocean conditions on weekly to decade time scales using
dynamical modeling systems.
The ocean is a forced-dissipative system, with forcing largely at the boundaries and dissipa-
tion at the molecular scale. It is contained by complex land-sea boundaries with motions also
constrained by rotation and stratification. Flow exhibits boundary currents, large-scale gyres
and jets, boundary layers, linear and nonlinear waves, and quasi-geostrophic and three dimen-
sional turbulence. Water mass tracer properties are preserved over thousands of mesoscale
eddy turnover time scales. These characteristics of the ocean circulation pose significant dif-
ficulties for simulations. Indeed, ocean climate modeling is an application of a very different
nature to those found in other areas of computational fluid dynamics (CFD). The time-scales
of interest are decades to millennia, yet simulations require resolution or parameterization of
phenomena whose time scales are minutes to hours. Furthermore, the most energetic spatial
scales are of order 10 km-100 km (mesoscale eddies), yet the problem is fundamentally global
in nature. There is no obvious place where grid resolution is unimportant, and computational
costs have strongly limited the use of novel, but often more expensive, numerical methods.
In literature there are a lots of different numerical ocean models for Climate and Oceanogra-
phy projections as Nemo [1], Hope [2], SEA [3], MOM [4] , POP [5] et al. They are all based
on the primitive equation [6] given by:

∂Uh

∂t
= −

[
(∇×U)×U +

1
2
∇(U2)

]

h

− fk×Uh − 1
ρ0
∇h(pi + ps) + DU (1.1)

∂pi

∂z
= −ρg (1.2)

∇ ·U = 0 (1.3)

∂T

∂t
= −∇ · (TU) + DT (1.4)

∂S

∂t
= −∇ · (SU) + DS (1.5)

where U is the three-dimensional velocity field, Uh is the horizontal two-dimensional velocity
field and the T , S, pi are the temperature, the salinity and the hydrostatic pressure. Finally
DU DT and DS are the diffusion phenomenas and ps is the surface pressure. The substantial
differences in the ocean models [7] are:

• The representation of diffusion phenomenas DU DT and DS and the surface pressure
ps as functions of the previous variables U ,T , S and pi to close the model.

• The choice of vertical coordinates as z-models, %-models σ-models and the choice of
horizontal grids , as A-grid B-grid, C-grid and E-grid used for the representation of the
physical quantities of dynamical core.

• The use of numerical methods, as explicit, semi-implicit or implicit time stepping
schemes, used to discretize (1.1), (1.4) e (1.5) in the primitive equations.
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In this context we study the ocean modeling framework NEMO that is composed of en-
gines nested in an environment. The engines are computational kernels that provide the
numerical solutions of ocean NEMO-OPA, sea-ice NEMO-LIM, tracers and biochemistry
equations NEMO-TOP and their related physics. The environment are: processing tools,
interfaces to the other components of the Earth System, users interface, computer dependent
functions and the documentation of the system.
In this paper we investigate one of dynamical cores of the ocean engine OPA in NEMO by
numerical point of view, that is represented by Laplace’s problem in (0.1). OPA adds the
sistem (0.1) at (1.1), (1.2), (1.3), (1.5) e (1.4) to determinate the Surface Pressure Gradient
∇hps. The choice of this study is justified by the fact that the elliptic problem is almost
always present in all ocean models to computing the potential in the fluid. The discretization
of system (0.1) gives N linear systems that are solved to determine the dynamic and the
thermodynamic variables of ocean fluid from the time t0 to the time t1 of the Ocean Model.
In this paper we observe that the computation kernel used to solve the linear systems is
the algorithm of Preconditioned Conjugate Gradient Method and study the influence of the
existent diagonal preconditioner P in terms efficiency. Our aim is to characterize numerically
the low convergence of the Ocean Numerical Model OPA. This behavior depends on the
domain grid resolution and on the relationship of the functions α and β involved in the PDE
system (0.1). Furthermore, we propose the use of a different preconditioner obtained by the
incomplete Cholesky’s decomposition of E that increases the performance of solver in terms
of speed of convergence.

2 Preliminaries on Mathematical Method

One of OPA ’s the dynamical core is described by the following Laplace’s problem [8]:





∂

∂x

[
e2

He1

∂

∂x

(
∂ψ

∂t

)]
+

∂

∂y

[
e1

He2

∂

∂y

(
∂ψ

∂t

)]
=

=
∂

∂x
(e2M̄v)− ∂

∂y
(e1M̄u) su Ω× [t0 t1]

∂ψ

∂t
= 0 su δΩ× [t0 t1]

(2.1)

The calculation of the function ∂ψ
∂t , with ψ called Volume Transport Stream function, is

needed in the OPA model to determinate the horizontal velocity field (u, v). It is introduced
in Nevier Stokes equations (1.1) using the following parameterization:

1
%0
∇hps = M̄ − 1

H

[
~k ×∇

(
∂ψ

∂t

)]
(2.2)

where ∇hps is the Surface Pressure Gradient and %0 is the average density. The terms e1, e2

e e3 in (2.1) determinate the scale factors when switching from a earth system coordinates
to system curvilinear coordinates and H is the surface that parameterizes the ocean floor.
Finally, the terms M̄ = (M̄u, M̄v) represent the contributions of the Coriolis forces, of the
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hydrostatic pressure gradient, and advection terms integrated along the z axis with direction
~k that points in center of the Earth [6].
The discretization of problem (2.1) is done through a finite difference scheme of second order
of 5 points that gives the following linear systems:

Ex = Bm m = 1, .., N (2.3)

where E is a sparse matrix, symmetric and positive definite, Bm is known term at the m-th
step. Finally N is the total number of system necessary to determine the place of prognostic
and diagnostic variables of Ocean Model from time t0 to the time t1.
The software ORCA025 [9], [10] that implements OPA at configuration of 1/4◦ uses a two-
dimensional grid of 1440×1020 points, an order of magnitude for E of O(106) points. Apply a
direct method to resolve the systems in (2.3) is impractical and also it doesn’t use the sparsity
of E where all the elements vanish except those of 5 diagonals. Infact, the sparsity index of

E is SP (E) <
n2 − 5n

n2
= 1− 5

n
with n the size of matrix E.

To solve the systems in (2.3) OPA uses the Preconditioned Conjugate Gradient Algorithm
(PCG) or Successive-Over-Relaxation (SOR) Iterative Methods. We are going to analyze the
(PCG) method because it is fast and easy method to use for a large number of ocean situations
(variable bottom topography, complex coastal geometry, variable grid spacing, islands, open
or cyclic boundaries). Furthermore it does not require the search of an optimal parameter as
in a SOR method. The PCG method [12] determines, by a finite and defined for recurrence
succession {xm} m = 0, .., K an approximation of the solution x of systems (2.3) in less
than a given accuracy ε on the residue:

‖Ex− ExK‖
‖Bn‖ < ε (2.4)

Definition 2.1 Let be E an invertible matrix in Rn×n and let be || . || a norm on a space at
finite dimension. It is defined condition number of E the following quantity:

µ(E) = ||E|| · ||E−1|| .

Remark 2.1 The relationship between the speed of convergence of the sequence xm m =
1, ..., K and condition number µ(E) is given by:

‖x− xm‖ < 2
(√

µ(E)− 1√
µ(E) + 1

)m−1

‖x− x0‖ m = 0, ..,K (2.5)

By (2.5) we observe that if the condition number µ(E) increases then the speed of convergence
of {xm} m = 0, ..., K decreases while if µ(E) goes to 1 then the speed of convergence
increaces .
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As is well known [13] , the matrix E arising from a elliptic problem by finite differences has
a high number condition so we need for the preconditioning techniques. In order to study
how the choice of preconditioner affects on the performance of the solver in OPA recall some
known results.

Remark 2.2 Let be {Em}m∈N a succession of invertible matrices3 and E a invertible matrix
belonging at Rn×n with n finite that Em → E for m → +∞ with µ(Em) ≥ µ(E). Then
µ(Em) → µ(E) per m → +∞.

Proof As µ(Em) − µ(E) = ‖Em‖‖E−1
m ‖ − ‖E‖‖E−1‖ ≥ 0 ⇐⇒ ‖E + ∆Em‖‖E−1 + ∆E−1

m ‖ −
‖E‖‖E−1‖ ≥ 0. By Minkosky’s inequality we obtain that:

‖E + ∆Em‖‖E−1 + ∆E−1
m ‖ − ‖E‖‖E−1‖ ≤

≤
(
‖E‖+ ‖∆Em‖

)(
‖E−1‖+ ‖∆E−1

m ‖
)
− ‖E‖‖E−1‖ =

(2.6)

‖E‖‖∆E−1
m ‖+ ‖∆Em‖‖E−1‖+ ‖∆Em‖‖∆E−1

m ‖ (2.7)

As Em → E then E−1
m → E−1 for m → +∞. So the (2.7) goes to 0 for m → +∞ and µ(Em) → µ(E)

for m → +∞. ¥

From Remark (2.2) we deduce that the choice of the preconditioner P must be made that
P−1E is nearly at identical matrix I to obtain a conditioning µ(P−1E) next to 1 so we have
to choose P that:

‖P−1E − I‖ ≈ 0 ⇐⇒ ‖P−1 − E−1‖ ≈ 0 (2.8)

OPA uses for linear systems (2.3) the diagonal preconditioner P . Note that if E is tridiagonal
the difference between the matrices P−1E e I is:

P−1E − I =




0 e1,2 e−1
1,1 0 ... 0

e1,2 e−1
2,2 0 e2,3 e−1

2,2 ... 0
0 e2,3 e−1

3,3 0 e3,4e
−1
3,3 0

... ... ... ... ...
0 0 ... en−1,ne−1

n,n 0




(2.9)

Using the norm of Fronebius, we get that the distance between P−1E and I is given by:

‖P−1E − I‖ =

√√√√
(

e1,2

e1,1

)2

+
( n−1∑

i=2

(
ei,i−1

ei,i

)2

+
(

ei,i+1

ei,i

)2)
+

(
en,n−1

en,n

)2

(2.10)

It follows that if the (2.10) is close to zero then µ(P−1E) is not very high so we have a good
acceleration of convergence of the PCG with the diagonal preconditioner P . The (2.10) is
close to zero if and only if the following condition (2.11) is true:
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O(ei,i) >> O(ei,j) i e j = 1, .., n j 6= i. (2.11)

and the inequality (2.11) must be stronger as the dimension n is large. In the following section
we are going to show some theoretical estimates on the speed of convergence of the Precon-
ditioned Conjugate Gradient in OPA , generally valid for all elliptic problems discretized by
finite difference, when use the diagonal preconditioner

3 Preconditioning and Convergence

The above considerations hold when we numerically solve the elliptic equations by the Pre-
conditioned Conjugate Gradient Algorithm, in particular also the Laplace problem (2.1) of
OPA. Let be consider an approximation of (2.1) using finite differences centered on a finite
grid of p× q points Ωk,h of Ω, we get the following discrete system:





δx

[
e2

He1
δx

(
∂ψ

∂t

)]
+ δy

[
e1

He2
δy

(
∂ψ

∂t

)]
= f(x, y, tm) on Ωk,h, m = 1, ..., N

∂ψ

∂t
= 0 on δΩk,h, m = 1, ..., N

(3.1)
where δ is the finite difference operator of second order approximating the first derivative.
Place the functions

e2

He1
≡ α(i, j) e

e1

He2
≡ β(i, j) with i = 1, ..., q, j = 1, ..., p and α and β

belonging C1(Ω̄) we get the following linear system:





h2

(
αi+k,j

∂ψi+k,j

∂t
− (

αi+k,j + αi−k,j

)∂ψi,j

∂t
+ αi−k,j

∂ψi−k,j

∂t

)
+

+k2

(
βi,j+h

∂ψi,j+h

∂t
− (

βi,j+h + βi,j−h

)∂ψi,j

∂t
+ βi,j−h

∂ψi,j−h

∂t

)

= (4hk)2f(i, j, tm) su Ωk,h m = 1, ..., N

∂ψi,j

∂t
= 0 su δΩk,h m = 1, ..., N

(3.2)

where k and h are the discretization steps in the x and y direction. If Ωk,h has p× q points
then incomplete matrix E has size n, with n = p× q and is given by the following:

E =




e11 e12 0 0 e1q+1 0 0 0 0
e21 e22 e23 0 0 e2q+2 0 0 0
.. .. .. .. .. .. .. .. ..

emm−q .. emm−1 emm emm+1 0 0 emm+q 0
.. .. .. .. .. .. .. .. ..
0 0 enn−q 0 0 0 0 enn−1 enn




where its element are for each m = 1, ..., n and m = (i− 1)q + j i = 1, ..., q e j = 1, ..., p :
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emm = h2
(
αi+1,j + αi−1,j

)
+ k2

(
βi,j+1 + βi,j−1

)
emm−1 = −h2αi−1,j , emm+1 = −h2αi+1,j

emm−q = −k2βi,j−1, emm+q = −k2βi,j+1

(3.3)

The following theorem give a result on distance between P−1E and I.

Theorem 3.1 If p = q and k = h, for the following upper and lower bounds hold:

√
1
2

(
αmin

αmax + βmax

)2

(n− 1) +
1
2

(
βmin

αmax + βmax

)2

(n−√n) ≤

≤ ‖P−1E − I‖ ≤
√

1
2

(
αmax

αmin + βmin

)2

(n− 1) +
1
2

(
βmax

αmin + βmin

)2

(n−√n)

(3.4)

Proof : If we apply the diagonal preconditioner P to the matrix E we get P−1E given by:




1 e12
e11

0 0 e1q+1
e11

0 0 0 0
e21
e22

1 e23
e22

0 0 e2q+2
e22

0 0 0
.. .. .. .. .. .. .. .. ..

eq+11
eq+1q+1

..
eq+1q

eq+1q+1
1 eqq+2

eqq
0 0 eq2q

eq+1q+1
0

.. .. .. .. .. .. .. .. ..
0 0 enn−q

enn
0 0 0 0 enn−1

enn
1




and

‖P−1E − I‖ =
{(

e12

e11

)2

+
(

e1q+1

e11

)2

+
q∑

m=2

[(
emm−1

emm

)2

+
(

emm+1

emm

)2

+
(

emm+q

emm

)2]
+ (3.5)

+
n−q∑

m=q+1

[(
emm−q

emm

)2

+
(

emm−1

emm

)2

+
(

emm+1

emm

)2

+
(

emm+q

emm

)2]
+ (3.6)

+
n−1∑

m=n−q+1

[(
emm−q

emm

)2

+
(

emm−1

emm

)2

+
(

emm+1

emm

)2]
+

[(
enn−q

enn

)2

+
(

enn−1

enn

)2]}1
2 (3.7)

Since the function α and β ∈ C1(Ω̄) where Ω̄ is a closed and limited domain, by the theorem of
Weistrass exist αmin, αmax, βmin and βmax belonging R that αmin ≤ α ≤ αmax and βmin ≤ β ≤ βmax,
furthermore being −4αβ < 0 then α and β have the same sign, so from the (3.3) we majorities and
minorities ‖P−1E − I‖ with the (3.4).

¥

The upper and lower bounds in (3.4) show that increasing the size of the problem, the distance
between P−1E and I increases indefinitely. So the number condition µ(P−1E) can be no
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longer close to unity as stated in corollary (2.2). The result is loss of the speed of convergence
of the PCG solver. Furthermore, by (3.4) we observe that the speed of convergence also
depends on the functions α and β of Laplace equation:

{
αmax/βmax ≈ 1

αmin/βmin ≈ 1
=⇒ (3.8)

√
1
8

(
a2 + b2

a2b2

)
n− 1

8b2

√
n− 1

8a2
≤ ‖P−1E − I‖ ≤

√
1
8
(a2 + b2)n− 1

8
b2
√

n− 1
8
a2

with a =
αmax

αmin
and b =

βmax

βmin

(3.9)

instead, still by (3.4), if:

αmax/βmin << 1 =⇒
√

1
8b2

(n−√n) ≤ ‖P−1E − I‖ ≤
√

1
2
b2(n−√n) (3.10)

βmax/αmin << 1 =⇒
√

1
8a2

(n− 1) ≤ ‖P−1E − I‖ ≤
√

1
2
a2(n− 1) (3.11)

so we have in theory a variation of the speed of the solver also when the ratio between α e β
changes. We observe from upper and lower bound determined (3.4) (3.9), (3.10) and (3.11)
that increasing the size n the best case is when αmax/βmin << 1 because ‖P−1E − I‖ is a
O(n−√n) instead the worst case is when βmax/αmin << 1 because ‖P−1E − I‖ is a O(n).
Because of the results showed by upper and lower bounds in (3.4) (3.9), (3.10) and (3.11)
in order to speed up the convergence of the PCG in Opa when we increase the resolution of
domain Ωk,h and for all chosen of functions α and β, as E is symmetric and positive definite
matrix, we replaced the preconditioner diagonal P with Cholesky’s preconditioner:

P̄ = U t · U. (3.12)

U is a upper triangular matrix with the same structure and sparsity of upper triangolar part
of E, obtained by the incomplete Cholesky decomposition algorithm ([14], [15]). Since E
is a sparsity matrix (SP (E) ≤ 1 − 5

n) then the Cholesky decomposition algorithm for the
calculation of U has time and space complexity in terms of computational cost equal to O(n).
Finally, given the sparsity of U , to solve the linear system Pz = rm ⇔ U tUz = rm, m =
0, ...K in the PCG [12] through a backward substitution and a forward substitution algorithm,
the time complexity is also a O(n).

In the next section we give same practical experiments of the obtained bounds and same
remarks on the Cholesky precondirioner.
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4 Numerical Experiments

We give same experiments by implementing PCG solvers of OPA on a Intel Pentium IV
2.3GHz with Matlab R14. To validate those theoretical observations we implements the PCG
solver with diagonal preconditioner P for a matrix E′ sparse, symmetric and positive definite,
increasing the size n of E′. We investigate the ratio between α e β function in order to estimate
the rate of convergence and accuracy of the PCG solver.
In the first experiment, we assign a tolerance on the residual res:

res =
‖E′y − b‖
‖b‖ < tol = 10−12 y ∈ Rn,

where ‖.‖ is the Euclidean norm, we gave E′, b and tol in input to the software that implements
the PCG to resolve the linear sistem E′x = b. The number of iterations called iter, needed
to get the tolerance placed on the residual, varying the size n and the ratio between α and
β, are shown in the following table (1). We have reported also in the table (1) the relative
accuracies between the solution x of the solver PCG and the real solution x′ of the linear
system

E′x = b (4.1)

n iterα<<β iterα≈β iterα>>β accα<<β accα≈β accα>>β

100 28 44 100 2, 85× 10−12 1, 39× 10−12 6, 52× 10−15

1000 237 180 1000 1, 40× 10−10 2, 78× 10−12 2, 45× 10−13

10000 250 350 7554 1, 95× 10−10 7, 82× 10−11 1, 01× 10−9

100000 2800 1642 56552 1, 69× 10−9 1, 04× 10−10 8, 65× 10−7

Table 1: the variable iter is the number of iterations that the solver, with the diagonal
precoditioner P , takes to get a tolerance of 10−12 on residual res, n is the size of matrix E′

and acc is the relative accuracies between x and x′ in Euclidean norm.

The numerical experiments confirm the theoretical observations made in (3.9), (3.10) and
(3.11). The speed of convergence of the PCG decreases increasing the size n of E′. More-
over, numerical experiments confirm that the speed of convergence also depends on the ratio
between functions α and β, in fact fixed the dimension n and the tolerance tol = 10−12,
it is greater when the magnitude of function α is less than the magnitude of function β(
αmax << βmin

)
and when they are coincident

(
α ≈ β

)
while decreases significantly when

the magnitude of function α is greater than the magnitude of function β
(
αmin >> βmax

)
as

also shown in figure (1).
Finally we show in table (2) and in figure (2) for n = 105 the results of experiments when
PCG uses the Cholesky’ preconditioner P̄ .
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Figure 1: The figure shows the trend of the relative residual res increacing the number of
iterations of the PCG with diagonal preconditioner P when (α ≈ β) (left) and (αmin >>
βmax) (right) for the dimension n = 105

n iterα<<β iterα≈β iterα>>β accα<<β accα≈β accα>>β

100 4 18 6 6, 4258× 10−15 9, 9326× 10−13 6, 7649× 10−12

1000 7 50 15 5, 7072× 10−11 1, 3237× 10−12 5, 1436× 10−11

10000 10 106 61 7, 1298× 10−11 5, 6037× 10−11 1, 8441× 10−9

100000 27 493 429 3, 1311× 10−9 1.0530× 10−10 2.3509× 10−7

Table 2: the variable iter is the number of iterations that the solver, with Cholesky’s precon-
ditioner P̄−1, takes to get a tolerance of 10−12 on residual res, n is the size of matrix E′ and
acc is the relative accuracies between x and x′ in Euclidean norm.

If we consider the case n = 105, the tables show that using the diagonal preconditioner with
the magnitude of function α greater that function β (αmin >> βmax) the number of iterations
need to get the tolerance res = 10−12 is equal to about 56% of size n of the problem while
using the Cholesky preconditioner need only a small number of iterations equal to about 0.5%
of size n. We can observe a reduction in the number of iterations of a scaling factor equal to
about 112 times.

5 Conclusions

Improve the rate of convergence and the accuracy of the numerical kernels in ocean global
mathematical models is a crucial aim of modeling framework for oceanographic research,
operational oceanography seasonal forecast and climate studies. In this paper we theoretically
and numerically show that the convergence and accuracy depend on the function α and β
of the Laplace problem and the size of the discretization resolution. These results can be
used in order to construct a new Preconditioner based on the obtained bounds. We held first
encouraging results on High Performance Computing ENEA Cresco Grid System in which we
optimize the OPA kernel with a new numerical routine.
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Figure 2: The figure shows the trend of the relative residual res increacing the number of
iterations of the PCG when (α ≈ β) (left) and (αmin >> βmax) (right) for the dimension
n = 105
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Abstract

A methodology to solve nonconvex constrained mixed-integer nonlinear pro-
gramming (MINLP) problems is presented. A MINLP problem is one where some
of the variables must have only integer values. Since in most applications of the
industrial processes, some problem variables are restricted to take discrete values
only, there are real practical problems that are modeled as nonconvex constrained
MINLP problems. An efficient deterministic method for solving nonconvex con-
strained MINLP may be obtained by using a clever extension of Branch-and-Bound
(B&B) method. When solving the relaxed nonconvex nonlinear programming sub-
problems that arise in the nodes of a tree in a B&B algorithm, using local search
methods, only convergence to local optimal solutions is guaranteed. Pruning cri-
teria cannot be used to avoid an exhaustive search in the search space. To address
this issue, we propose the use of a genetic algorithm to promote convergence to
a global optimum of the relaxed nonconvex NLP subproblem. We present some
numerical experiments with the proposed algorithm.

Key words: mixed-integer programming, branch-and-bound, genetic algorithm.
MSC 2000: 02.60.Pn

1 Introduction

A wide range of applications in the industrial processes are modeled as nonconvex con-
strained mixed-integer nonlinear programming (MINLP) problems, due to the restric-
tions imposed on some problem variables to take only integer values. In particular, one
may find applications which include gas network problems, nuclear core reloaded prob-
lems, cyclic scheduling trim-loss optimization in the paper industry, synthesis problems,
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layout problems, thermal insulation systems. Other examples of this kind of problems
appears in engineering designs, in metabolic pathway engineering or in molecular design
(see for instance [1, 2, 4, 14, 19]).

In this paper we consider a mixed-integer nonlinear program in the following form:

min f(x, y)
subject to gj(x, y) ≥ 0, j ∈ J

x ∈ X, y ∈ Y

(1)

where X = {x ∈ R
n : lx ≤ x ≤ ux} with lx, ux ∈ R

n and Y = {y ∈ Z
p : l1y ≤ y ≤ u1y}

with l1y, u
1
y ∈ Z

p. f : Rn+p → R and g : Rn+p → R
m are continuously differentiable

functions, J is the index set of inequality constraints, and x and y are the continuous
and discrete/integer variables, respectively. If the objective function f is convex and
the constraint functions gj are concave, the problem is known as convex, otherwise the
problem is a non-convex MINLP [3].

It is known that nonconvex MINLP problems are the most difficult since they
combine all the difficulties arising from the mixed-integer linear programming and non-
convex constrained nonlinear programming (NLP). Taking into account that this kind
of problems appears very frequently in industrial processes, it is fundamental to de-
velop solution techniques to efficiently solve nonconvex constrained MINLP problems
[8, 18, 22].

Therefore, the goal of this study is to analyze and propose a method for nonconvex
constrained MINLP problems. The proposed hybrid method combines two strategies:
a Branch-and-Bound (B&B) method to find integer solutions and a genetic algorithm
(GA) type method to promote convergence to global solutions of the relaxed nonconvex
NLP subproblems.

The paper is organized as follows. In Section 2, the proposed hybrid method is
presented and B&B and GA methods are briefly described. Section 3 presents nu-
merical results for 21 MINLP benchmark problems from the open literature and some
conclusions are drawn. Finally, Section 4 presents the major conclusions and future
work. The set of test problems used in this work is listed in the appendix.

2 The proposed hybrid method

To solve nonconvex constrained MINLP problems, a B&B-type method is used. Initially
developed to solve combinatorial optimization problems, the B&B strategy has evolved
to a method for solving more general problems, like for example the MINLP (1). B&B
computes lower and upper bounds on the optimal value of f over successively refined
partitions of the search space. The generated partition elements are saved in a list.
Then they are selected for further processing and partition. The partition elements
are deleted when their lower bounds are no lower than the best known upper bound
for the problem. While branching on a binary variable creates two subproblems with
that variable fixed in both problems, branching on a continuous variable in nonlinear
programming may require an infinite number of subproblems. Furthermore, the relaxed
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NLP subproblem that appears at each node of the B&B tree search may be nonconvex
and it may be difficult to solve to global optimality. Classical gradient-based or even
derivative-free local search methods may fail in solving nonconvex NLP problems. Thus,
the herein proposed methodology for solving nonconvex MINLP uses a heuristic to solve
the relaxed nonconvex NLP subproblems of the B&B tree search.

Existing methods for global optimization can be classified into two categories [15]:
stochastic methods and deterministic methods. Stochastic methods sample the ob-
jective function for a number of points, with an outcome that is random. They are
particularly suited for problems that possess no known structure that can be exploited,
and in general do not require derivative information. In these methods, a probabilis-
tic convergence guarantee can be provided. The genetic algorithm is an example of a
population-based stochastic method. On the other hand, deterministic methods exploit
analytical properties of the problem to generate a sequence of points converging to a
global solution. They typically provide a mathematical guarantee for convergence to a
minimum in a finite number of steps. The B&B method is a deterministic method.

In this paper, a new methodology to solve problem (1), based on a deterministic
method and on a stochastic population-based method is presented. It relies on a B&B
scheme and uses a genetic algorithm to promote convergence with a high probability to
a global optimum of the relaxed nonconvex NLP subproblem (that arises in each node
of the tree in the B&B algorithm). A brief description of the two strategies combined
in the herein proposed hybrid method is presented below.

2.1 Branch-and-Bound method

B&B, originally devised for MILP (Mixed Integer Linear Program), can be applied
to mixed-integer nonlinear problems too. The reader is referred to one of the first
references to nonlinear Branch-and-Bound [9] and also to MINLP problems (see [16, 17]
and the references therein included).

The B&B methodology can be explained in terms of a tree search. Initially, all
integer variables are relaxed and the resulting relaxed NLP subproblem is solved. If
all integer variables take an integer value at the solution then this solution also solves
the MINLP. Usually, some integer variables take non-integer values. In that case, a
tree search is performed in the space of the integer variables. The B&B algorithm
selects one of those integer variables which take non-integer value and branches on it.
Branching generates new NLP problems by adding simple bounds respectively to the
new relaxed NLP subproblems. After that, one of these new subproblems is selected
and solved.

The solution of each subproblem provides a lower bound for the subproblems in
the descent nodes of the tree. This process continues until the lower bound exceeds the
best known upper bound, the NLP subproblem is infeasible, or the solution provides
integer values for the integer variables. The integer solutions (at the nodes of the tree)
give upper bounds on the optimal integer solution. This process stops when there are
no more nodes to explore.
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2.2 The Genetic Algorithm

To solve the nonconvex MINLP problem the herein proposed approach combines the
B&B method (described above) and the genetic algorithm, which is used to solve each
relaxed nonconvex NLP subproblem that appears in the nodes of the B&B tree. The
relaxed NLP subproblem assumes that all variables are continuous and has the form
(according to the MINLP model (1)):

min f(z)
subject to gj(z) ≥ 0, j ∈ J

l ≤ z ≤ u

(2)

where z = (x, y), z ∈ R
m and m = n + p. Further, the lower and upper bounds

of the problem satisfy: l =
(
lx, l

i
y

)
, u =

(
ux, u

i
y

)
with i ≥ 1 an integer index and

[liy, u
i
y] ⊂ [li−1

y , ui−1
y ]. The used notation means that the index i refers to a problem

that is in a descent node of the problem i− 1.
A variety of techniques have been proposed to handle inequality constraints in

NLP problems. The most widely used techniques rely on penalty functions. Here
we are interested in a particular case, known as Lagrangian barrier function. Using
the Lagrangian approach to solve the NLP problem in the form (2), a subproblem is
formulated by combining the objective function and the nonlinear constraint functions
in the barrier function Θ as follows:

Θ(z, λ, s) = f(z)−
∑
j∈J

λj sj log(gj(z) + sj). (3)

where λj ≥ 0 represents an estimate of the Lagrange multiplier associated with the
constraint gj(z) ≥ 0 (j ∈ J) and the components sj of s are positive and are known as
shifts. The general problem (2) is solved by a sequential minimization of the function
(3) within the region defined by the simple bounds [7]. The method based on this
Lagrangian barrier Θ(z, λ, s) proceeds by fixing λ to some estimate of the optimal
Lagrange multipliers and s to some positive estimate of the initial slack variables, and
then finding a value of z that approximately minimizes Θ. This new iterate z is then
used to update λ, and then s, and the process is repeated. The vector of shifts s depends
iteratively on the value of the multiplier vector and on a classical penalty parameter.
In order to solve the problem (2), the following general algorithmic framework, as
presented in Algorithm 1, is considered [7].

When the subproblem in Step 1 of Algorithm 1 is minimized to a required accuracy
(verified in Step 2 of the algorithm), the Lagrangian multipliers are updated. This leads
to a new function Θ(z, λ, s) and a new simple bound minimization problem. These steps
are repeated until convergence to the optimal solution of (2) is achieved. A detailed
description of the algorithm is shown in [6, 7, 13].

This paper is concerned with the use of the genetic algorithm to solve the subprob-
lem that appears in Step 1 of Algorithm 1. The GA may be viewed as an evolutionary
process wherein a population of solutions evolves over a sequence of iterations. Genetic
algorithm selects individuals at random from the current population to be parents and
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Algorithm 1 (Lagrangian barrier method)

Step 0. Given initial estimates for z and initial estimates for λ and for penalty
parameter. Set ko = 0.

Step 1. Compute shifts s.
Use GA to compute z by solving
minz Θ(z, λ, s) subject to l ≤ z ≤ u.

Step 2. Test for convergence: Stop, go to Step 3 or go to Step 4.
Step 3. Update Lagrange multiplier estimates. Maintain the penalty parameter.

Increase ko and go to Step 1.
Step 4. Reduce the penalty parameter. Maintain the multiplier estimates.

Increase ko and go to Step 1.

uses this individuals to produce the children for the next generation. Over successive
iterations and using the common operations of selection, crossover, mutation and scal-
ing, the population “evolves” toward an optimal solution [13]. The basic structure of
GA can be summarized as in Algorithm 2.

Algorithm 2 (GA algorithm)

Step 0. Create a random initial population. Set ki = 1.
Step 1. Evaluate population using fitness Θ.
Step 2. While stopping criteria are not satisfied:

Select solutions for next population based on their fitness.
Perform crossover and mutation.
Accept new generation.
Evaluate population using fitness Θ. Increase ki and go to Step 2.

As far as the termination criteria are concerned, GA stops if one of the following
conditions holds: the number of iterations exceeds a maximum threshold; the CPU time
exceeds a maximum threshold (in seconds); or the cumulative change in the fitness Θ
over stall iterations is less than or equal to a function tolerance.

3 Numerical Results

The proposed method (hereafter called BBGA) was implemented in Matlab and uses
a B&B method combined with the GA method – ga function from the Optimization
Tolbox of Matlab. The ga function is called inside the B&B algorithm (to solve the
relaxed NLP in each node of the tree)and was run using the default options.

A collection of MINLP problems with inequality constraints and simple bounds is
used to analyze the practical behaviour of BBGA. A comparison between this study,
a previous work and other results in the literature is presented. The set of tested
problems is displayed in the appendix. The problems are denoted by P1, P2, P2a, P3,
· · ·, P20. For each problem the solver was run 30 times. All experiments were run on a
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HP 2230s computer with an Intel(R) Core(TM)2 Duo CPU P7370 2.00GHz processor
and 3 GB of memory.

To analyze the behaviour of the BBGA method and to perform a comparison with
other results, Table 1 lists all the problems tested in this study “Prob.”, the optimal
solutions known in the literature,“Optimal f”, and the related references, “Ref”.

Table 1: Solutions obtained from the literature.

Prob. Ref Optimal f Prob. Ref Optimal f Prob. Ref Optimal f

P1 [10] 6.83325E-13 P7 [10] -227.766 P14 [21] -32217.4
P2 [10] 8.0839E-16 P8 [10] 0.0 P15 [12] -17
P2a [10] 6.66341E-11 P9 [21] 4.5796 P16 [11] -8.5
P3 [10] -0.35239 P10 [20] 2.00 P17 [20] -5.68
P4 [10] 1.07746E-12 P11 [21] 2.1247 P18 [20] 2.00
P5 [10] -0.407462 P12 [21] 1.076543 P19 [20] 3.4455
P6 [10] -18.0587 P13 [21] 3.557473 P20 [20] 2.20

Table 2: Numerical results obtained for MINLPs with simple bounds.

Average
Prob. m p % success time (s) f eval. Best f∗ Average f∗ σ

P1 2 1 100 0.8 5779 4.930E-15 2.986E-08 2.885E-08

P2 2 1 13 1.0 7291 4.497E-10 1.86656E-08 1.754E-08
87 1.0 7293 7.659E-11 1.7296E-08 1.751E-08

P2a 4 1 17 1.3 7965 3.984E-08 2.967E-05 3.158E-05
50 1.1 7765 1.574E-08 1.010E-05 3.159E-05

P3 2 1 67 0.6 4642 -0.35239 -3.524E-01 5.106E-05

P4 2 1 13 1.0 7802 6.692E-13 1.323E-09 9.551E-10
87 1.1 8403 2.700E-11 4.383E-07 2.136E-06

P5 2 1 33 1.2 4369 -0.40746 -4.075E-01 1.997E-06
53 1.3 4492 -0.40746 -4.075E-01 4.879E-08

P6 2 1 13 1.4 5271 -18.0587 -1.806E+01 1.582E-07
83 1.6 6289 -18.0587 -1.806E+01 9.678E-04

P7 2 1 17 2.1 8161 -227.766 -2.278E+02 8.874E-04
70 2.0 7680 -227.766 -2.278E+02 2.249E-03

P8 2 1 100 0.8 5829 3.659E-10 5.127E-08 1.536E-07

The obtained results with BBGA method are presented in two separate tables.
Table 2 contains the results with the problems with simple bounds; Table 4 contains
the results from the problems with inequality constraints. In Table 2 and Table 4,
the best objective function value “Best f∗” obtained over the 30 runs is reported for
each test problem. In order to show more details concerning the quality of the obtained
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solution, the average “Average f∗” and the standard deviation “σ” of the best obtained
function values are also reported in both tables. Moreover, success rates of obtaining
the global minimum “% success”, the average numbers of CPU time “time” (in seconds)
and function evaluations “f eval.”, are shown in columns 4–6. It is also reported, in
columns 1–3, the name of the problem, the total number of variables, “m”, and the
number of integer variables, “p”.

From Table 2 it is possible to observe that the set of tested problems covers different
situations: problems with small size, problems with or without the same number of
integer/continuous variables and problems with one or more than one global minimizer.

As it can be seen, BBGA method has a success rate superior to 85% for 7 problems,
out of 9 problems. It is noteworthy that the BBGA method has a success rate equal to
100% for 4 problems. The accuracy of the achieved solutions, in terms of “Best f∗” is
very high when compared to the solutions reported in Table 1; the standard deviations
of the f values are close to zero.

Table 3 summarizes the results obtained, for this set of problems using a strategy
based on a B&B scheme and a simulated annealing heuristic pattern search – BBSAHPS
method (see [10] and the references included).

Table 3: Numerical results obtained for Problems P1 – P8 from [10].

P1 P2 P2a P3 P4 P5 P6 P7 P8

% success 46 36 87 87 19, 18 49 49 52 42
26 3 6, 6 40 43 41

Av. time (s) 0.1 0.1 0.3 0.1 0.1 0.0 0.1 0.1 0.1
0.2

Av. f eval. 991 744 1626 966 918, 842 555 610 643 656
733 1615 859, 865 562 593 573

It is possible to observe, from Table 2 and Table 3, that the computational cost in
terms of CPU time required by the proposed BBGA method, as well as the required
number of function evaluations are greater than those of BBSAHPS method. For
problem P4, BBSAHPS is able to find four global minimizers, while BBGA finds only
two global minimizers. On the other hand the successful rate of BBGA is much better
than the successful rate of BBSAHPS: BBGA method has a success rate greater than
67% (problem P2a and P3) and equal to 100% for 4 problems while BBSAHPS has a
successful rate less than 50% for three problems.

To address the solution of constrained mixed-integer nonlinear programs, a list
of well-known problems, in particular, some taken from minlplib [5, 20] is used. The
obtained results, with BBGA method, for constrained MINLP are reported in Table 4.
The dimension of these problems range between 2 and 7 avriables. The number of
inequality constraints range between 1 and 9. This set of problems provides a variety
of small MINLP problems.

As it can be seen, BBGA method has a success rate superior to 87% for 8 problems,
out of 12 problems. It is noteworthy that the BBGA method has a success rate equal to
100% for 5 problems. Some runs did not converge to the global minimum. For instance,
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Table 4: Numerical results obtained for constrained MINLPs.

Average
Prob. m p % success time (s) f eval. Best f∗ Average f∗ σ

P9 7 4 53 13.7 46678 4.5797 4.5987 2.86E-02

P10 2 1 100 2.5 10481 2.00 2.00 6.84E-05

P11 2 1 100 2.4 11527 2.1245 2.1246 2.08E-04

P12 3 1 20 3.3 13635 1.076864 1.078992 2.40E-03

P13 7 4 23 13.5 47282 3.557742 3.564265 7.63E-03

P14 5 2 100 1.3 5220 -32217.4 -32217.4 1.48E-11

P15 2 1 100 3.4 14292 -17 -17 1.80E-04

P16 2 1 97 6.0 25752 -8.5 -8.5 1.55E-04

P17 3 2 87 65.0 247055 -5.6848 -5.684E+00 1.941E-03

P18 4 2 67 3.2 12808 2.000 2.000E+00 8.920E-07

P19 2 1 100 7.8 23489 3.4455 3.446E+00 1.981E-05

P20 4 3 87 4.5 15290 2.20 2.200E+00 5.840E-05

problem P16 has 3% of the runs that have converged to a strong local minimum [11].
Exceptions are problems P12 and P13, which have a successful rate less than 50%.
With all these problems the BBGA method could successfully find the global minimum,
taking into account the integrality of some variables. The problem P17 requires a larger
CPU time when compared with the other problems. This is related with the definition
of the problem and the space of the integer variables.

The accuracy of the achieved solutions, in terms of “Best f∗”, and for almost all
problems, is very good and the consistency of our proposed method is high, since the
standard deviations of the f values are close to zero. For problem P11, if a comparison
is made in terms of “Best f∗”, from Table 1, it is possible to observe that the solution
of BBGA method is slightly better than those reported in the literature.

For problem P12 the objective value reported in Table 1 is slightly better than
the one obtained with the BBGA. On the other hand, it is possible to observe that
BBGA method needs much less functions evaluations than the algorithms used in [21].
In a general way, BBGA method needs much more function evaluations. This is due to
the use of a GA method to solve the relaxed NLP problems in each node of the B&B
tree search. P17 is the problem with the highest average time and average function
evaluations.

Although the chosen problems are small-dimensional, it is important to emphasize
that almost all the problems represent real applications of MINLPs.

@CMMSE                                 Page 491 of 1703                                 ISBN: 978-84-614-6167-7



F.P. Fernandes, M.F.P. Costa, E.M.G.P. Fernandes

4 Conclusions and future work

This paper presents a method, herein denoted by BBGA, which relies on a deterministic
method and on a stochastic population-based method to solve nonconvex constrained
MINLP problems. A Branch-and-Bound procedure is combined with a Lagrangian
barrier-function-based genetic algorithm to find the minimum of relaxed nonconvex
NLP problems.

The BBGA method was implemented using Matlab and some results are shown
for 21 test problems, from which 12 are constrained MINLP problems. This method
is able to find the global optimum of all problems with integer restrictions on some
variables. A comparison between the results from BBGA and the results from the
literature is presented. We may conclude that the performance of the BBGA method is
quite satisfactory, since the results obtained with BBGA method are competitive with
the results reported in the literature.

The reported CPU time is in general high. Thus, an improvement in the BBGA
method in order to reduce computational requirements will be carried out in the future.
Future developments will be focused, also, on solving sets of medium and large scale
problems.

Appendix: Details of test problems

The collection of 21 test problems used in this study is listed below [10, 11, 12, 20, 21].

Problem 1 (P1)

min (1.5 − x1(1 − x2))
2 + (2.25 − x1(1 − x

2

2
))2+

(2.625 − x1(1 − x
3

2
))2

x1 ∈ {−5, · · · , 5} , x2 ∈ [−4.5, 4.5]

Problem 2 (P2)

min (x1 − 1)
2
+

n
∑

i=2

i(2x
2

i
− xi−1)

2

x1 ∈ {−10, · · · , 10} , xi ∈ [−10, 10] , i = 2...n,

(P2) for n = 2;

(P2a) for n = 4

Problem 3 (P3)

min 0.25x4

1
− 0.5x2

1
+ 0.1x1 + 0.5x2

2

x1 ∈ [−10, 10] , x2 ∈ {−10, · · · , 10}

Problem 4 (P4)

min cos2 (x1) + sin2 (x2)
x1 ∈ [−5, 5] , x2 ∈ {−5, · · · , 5}

Problem 5, 6, 7

min 10mx
2

1
+ x

2

2
− (x2

1
+ x

2

2
)2 + 10−m(x2

1
+ x

2

2
)4

(P5): m = 1 and x2 ∈ [−2, 2] , x1 ∈ {−2, · · · , 2};

(P6): m = 2 and x2 ∈ [−4, 4] , x1 ∈ {−4, · · · , 4};

(P7): m = 3 and x2 ∈ [−8, 8] , x1 ∈ {−8, · · · , 8}

Problem 8 (P8)

min (x2

1
+ x2 − 11)2 + (x1 + x

2

2
− 7)2

x2 ∈ [−2, 4] , x1 ∈ {−2, · · · , 4}

Problem 9 (P9)

min (y1 − 1)2 + (y2 − 2)2 + (y3 − 1)2−

ln(y4 + 1) + (x1 − 1)2 + (x2 − 2)2+

(x3 − 3)2

s. t. y1 + y2 + y3 + x1 + x2 + x3 ≤ 5

y
2

3
+ x

2

1
+ x

2

2
+ x

2

3
≤ 5.5

y1 + x1 ≤ 1.2
y2 + x2 ≤ 1.8
y3 + x3 ≤ 2.5
y4 + x1 ≤ 1.2

y
2

2
+ x

2

2
≤ 1.64

y
2

3
+ x

2

3
≤ 4.25

y
2

2
+ x

2

3
≤ 4.64

x1 ∈ [0, 1.2] , x2 ∈ [0, 1.281] ,
x3 ∈ [0, 2.062] ,
y1, y2, y3, y4 ∈ {0, 1}

Problem 10 (P10)

min 2x + y

s. t. 1.25 − x
2 − y ≤ 0

x + y ≤ 1.6
x ∈ [0, 1.6] , y ∈ {0, 1}

Problem 11 (P11)

min −y + 2x − ln(x/2)
s. t. −x − ln(x/2) + y ≤ 0

x ∈ [0.5, 1.4] , y ∈ {0, 1}

Problem 12 (P12)

min −0.7y + 5(x1 − 0.5)2 + 0.8

s. t. −ex1−0.2 − x2 ≤ 0
x2 + 1.1y ≤ −1
x1 − 1.2y ≤ 0.2
x1 ∈ [0.2, 1] , x2 ∈ [−2.22554,−1] ,
y ∈ {0, 1}

Problem 13 (P13)
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min (y1 − 1)2 + (y2 − 1)2 + (y3 − 1)2 − ln(y4 + 1)+

(x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2

s. t. y1 + y2 + y3 + x1 + x2 + x3 ≤ 5

y
2

3
+ x

2

1
+ x

2

2
+ x

2

3
≤ 5.5

y1 + x1 ≤ 1.2
y2 + x2 ≤ 1.8
y3 + x3 ≤ 2.5
y4 + x1 ≤ 1.2

y
2

2
+ x

2

2
≤ 1.64

y
2

3
+ x

2

3
≤ 4.25

y
2

2
+ x

2

3
≤ 4.64

x1 ∈ [0, 1.2] , x2 ∈ [0, 1.8] , x3 ∈ [0, 2.5] ,
y1, y2, y3, y4 ∈ {0, 1}

Problem 14 (P14)
min 5.357854x2

1
+ 0.835689y1x3 + 37.29329y1−

40792.141
s. t. 85.334407 + 0.0056858y2x3 + 0.0006262y1x2−

0.0022053x1x3 ≤ 92
80.51249 + 0.0071317y2x3 + 0.0029955y1y2+

0.0021813x2

1
− 90 ≤ 20

9.300961 + 0.0047026x1x3 + 0.0012547y1x1+
0.0019085x1x2 − 20 ≤ 5
x1, x2, x3 ∈ [27, 45] , y1 ∈ {78, · · · , 102} ,

y2 ∈ {33, · · · , 45}

Problem 15 (P15)
min 3y − 5x

s. t. 2y2 − 2y0.5 − 2x0.5
y
2 + 11y + 8x ≤ 39

−y + x ≤ 3
2y + 3x ≤ 24
x ∈ [1, 10] , y ∈ {1, · · · , 6}

Problem 16 (P16)

min −x − y

s. t. xy − 4 ≤ 0
x ∈ [0, 4] , y ∈ {0, · · · , 8}

Problem 17 (P17)
min −0.00201x4

1
x2x

2

3

s. t. −675 + x
2

1
x2 ≤ 0

−0.419 + 0.1x2

1
x3 ≤ 0

x1, x2 ∈ {1, · · · , 200} , x3 ∈ [0.1, 0.2]

Problem 18 (P18)
min 2 + 4x2

3
+ 2x4 + 2x1 + 2x2

s. t. −x3 + 3x4 − 5 ≤ 0
2x3 − x4 − 5 ≤ 0
−2x3 + x4 ≤ 0
x3 − 3x4 ≤ 0
−6x1 + x3 ≤ 0
−5x2 + x4 ≤ 0
x1, x2 ∈ {0, 1} , x3 ∈ [0, 6] , x4 ∈ [0, 5]

Problem 19 (P19)

min 1.1
(

(2x1 − 10)2 + (x − 2 − 5)2
)

+

sin
(

(2x1 − 10)2 + (x − 2 − 5)2
)

s. t. 0.7x1 + x2 ≤ 7
2.5x1 + x2 ≤ 19
x1 ∈ [0, 10] , x2 ∈ {0, · · · , 10}

Problem 20 (P20)
min 5x2

1
+ x2 + x3 + x4

s. t. 3x1 − x2 − x3 ≤ 0
−x1 + 0.1x3 + 0.25x4 ≤ 0
2 − x2 − x3 − x4 ≤ 0
2 − x2 − x3 − 2x4 ≤ 0
x1 ∈ [0.2, 1] , x2, x3, x4 ∈ {0, 1}
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Abstract

The controlled release of drug through polymeric membranes provides a mech-
anism with a wide range of applications. A review of the pharmaceutical literature
has been carried on and two main classes of controlled drug release devices us-
ing polymeric matrices have been identified: ophthalmic therapeutic lenses that
deliver drug to the cornea and transdermal drug delivery systems (TDSS) that
release therapeutic agents to the systemic circulation or directly to target tissues.
The aim of the paper is to present mathematical models that simulate drug release
from such polymeric devices. The kinetics of the release is controlled by the diffu-
sion of drug, the binding to immobilizing sites, the degradation of the polymer and
the transference mechanisms between drug encapsulations and the matrix. Nu-
merical simulations are included and compared with laboratorial results. A good
agreement between both shows the effectiveness of the approach.

Key words: Controlled drug delivery, polymeric matrix, differential equations.

MSC 2000: 35BOJ; 35B30.

1 Introduction

Controlled drug delivery occurs when a polymer is combined with a drug in a such a way
that the release profile is predefined. Conventional forms of drug delivery were based on
tablets, eye drops, ointments and intravenous solutions. These delivery systems were
characterized by an immediate and non controlled kinetics depending essentially on the
properties of tissues to absorb drugs. In the last decades drug delivery devices have
moved from simple pills to complex controlled systems. Advances in polymer science
have led to the development of several novel drug-delivery systems which purpose is
to maintain drug concentration in the blood or in target tissues at a desired value and
during an extended period of time. The identification of accurate delivery mechanisms,
the roles of material properties and the establishment of mathematical models are
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essential for attaining the goals of providing scientific guidelines to researchers and
product manufacturers. The drug can be dispersed in devices that are made of a
single polymeric layer, multiple layers, multiple layers linked by void spaces where
drug is entrapped ([1]), and single or multiple layers with particles where drug is also
encapsulated ([2], [4], [5]). Some examples are showed in Figure 1.

Figure 1: Examples of Single and Multilayer drug delivery systems.

The behavior of the concentration of the free drug in a monolayer device, modeled
as a unidimensional platform of width ℓ , u(x, t), can be described by a coupled system
of partial differential equations





ut = (D(u, x, t)ux)x + f(u, ub), x ∈ (0, ℓ), t > 0

ub
t = (D(ub, x, t)ub

x)x + g(u, ub), x ∈ (0, ℓ), t > 0
u(x, 0) = u0, x ∈ (0, ℓ)

ub(x, 0) = ub
0, x ∈ (0, ℓ)

, (1)

where ub(x, t) represents the concentration of the bound drug, D(u, x, t) stands for the
diffusion coefficient of the drug in the polymer, f and g represent reactions terms and
u0, v0 are the initial free and bound concentrations, respectively.

The basic models presented here can be viewed as a tool kit to build more complex
models describing drug release devices. In fact they can be combined to simulate drug
delivery from existing devices making it possible to quickly investigate influences of
a large number of factors on the efficacy of drug delivery. We mention among other
factors influencing the release drug diffusion coefficient, polymer’s rate of degradation,
number and thicknesses of layers or chemical affinities. Furthermore the models can be
also used as a tool kit to help devise administration strategies and reduce the number
of pharmaceutical experiments in new devices. For example layers with dispersed drug
can be combined with layers containing particles encapsulating drug or layers linked by
void spaces where drug is encapsulated. We note that exterior enhancement factors as
heat sources, used in heat-aided TDSS ([8]), or iontophoresis ([9]) have not been took
into account.

System (1) is completed with boundary conditions. In order to simulate in vitro
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experiments or in vivo release two types of boundary conditions can be considered

{
D(u, 0, t)ux(0, t) = α(u(0, t) − uext), t > 0
−D(u, ℓ, t)ux(ℓ, t) = α(u(ℓ, t) − uext), t > 0

, (2)

or {
D(u, 0, t)ux(0, t) = 0, t > 0
−D(u, ℓ, t)ux(ℓ, t) = α(u(ℓ, t) − uext), t > 0

, (3)

where uext represents the exterior drug concentration and α stands for a transfer coef-
ficient.

Conditions (2) simulate in vitro experiments where devices are placed in a vial
and the drug is released through both extremities. Conditions (3) simulate in vivo

experiments as one of the extremities is insulated. For TDDS the impermeable layer is
a polymer film farthest from the skin; for therapeutic ophthalmic lens the impermeable
layer is a polymer film farthest from the cornea.

In Section 2 different models of drug delivery from therapeutic contact lens are
established. We begin by presenting models that simulate drug delivery from simple
layer devices: a non biodegradable layer and a biodegradable film. In order to introduce
some delay in the delivery process we present a model which describes the delivery from
a polymeric lens with dispersed drug and containing particles encapsulating drug. This
lens has been first presented in [4] and a modified version has been recently described
in [2], [3] and [7]. A delay in the delivery can be also induced by multilayer type
lens. A new model that simulates the behavior of a multilayer prototype recently
described in [1] is also proposed. Numerical simulations obtained using real data in our
models show a good agreement with laboratory experiments. Combining the platforms
described in the previous section we present in Section 3 models for Transdermal Drug
Delivery Systems. The models simulate the behavior of commercialized systems ([6]).
In Section 4 some conclusions are addressed.

2 Mathematical models for therapeutical lenses

In this section several models to simulate drug delivery from therapeutic ophthalmic
lenses are presented. In the case of monolayers lenses the models are obtained as special
cases of (1). The simplest model is a polymeric film-which can be biodegradable or non
biodegradable- with dispersed drug. To induce a delay in the delivery the release
mechanisms are modified leading to more complex systems. Two main mechanisms
are described in the literature: the inclusion in the polymeric platform of particles
encapsulating drug ([2], [3], [4], [5]) and the coupling of three layers in a sandwich
form [1]. Multilayer models are obtained by combining models of type (1),(2) or (1),(3)
completed with interface conditions between the layers. The numerical simulations
presented in this paper are obtained following a method of lines approach, where spatial
derivatives are discretized with finite differences and time integration with appropriate
multistep methods.
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A simple polymeric membrane with dispersed drug.

In the case of a non biodegradable platform, where no binding occurs, ub = 0, f =
0, g = 0, a simple diffusion model is obtained from (1). If there is chemical affinity
between the drug and the polymer, the following system (Model I) is obtained

{
ut = Duxx − k1u + k2u

b, x ∈ (0, ℓ), t > 0

ub
t = k1u − k2u

b, x ∈ (0, ℓ), t > 0
. (4)

where u represents the free drug concentration, ub the bound drug concentration and
the parameters k1 and k2 stand for binding and unbinding rates respectively. In (4)
the reaction term has been defined following [10] and [11]. Model (4) is completed with
initial conditions {

u(x, 0) = u0, ub(x, 0) = ub
0, x ∈ (0, ℓ) , (5)

and boundary conditions
{

Dux(0, t) = α(u(0, t) − uext), t > 0
−Dux(ℓ, t) = α(u(ℓ, t) − uext), t > 0

, (6)

which simulate in vitro delivery, where the drug leaves the platform through the two
extremities.

If a biodegradable platform is used and no binding is considered (Model II), the
model is obtained from (1) with ub = 0, f(u, x, t) = c0γe−γt, g = 0, giving

{
ut = (D(t)ux)x + c0γe−γt, D(t) = D2e

−β2e−γt

, x ∈ (0, ℓ), t > 0
u(x, 0) = u0, x ∈ (0, ℓ)

, (7)

where c0 represent the concentration of drug initially bound to the polymer and β, γ
are positive parameters.

System (7) is completed with boundary conditions analogous to (6).
Platform with drug and dispersed particles encapsulating drug.

As cornea tissues have a limited absorption capacity it is crucial to delay the
drug delivery process. A delay mechanism has been proposed in [2]. Here particles
encapsulating drug are dispersed in the polymeric platform that contains itself drug
(Model III). We note that this lens whether conceptually analogous to the lens presented
in [4], [5] was prepared with different polymers and techniques. Also the mathematical
models simulating the behavior of the two lenses are different.

In (1) let u represent the concentration of the drug in the platform and ub the
concentration in the particles. Then in vitro release is described by





ut = Duxx − λu + λub, x ∈ (0, ℓ), t > 0

ub
t = λu − λub, x ∈ (0, ℓ), t > 0

u(x, 0) = u0, ub(x, 0) = ub
0, x ∈ (0, ℓ)

Dux(0, t) = α(u(0, t) − uext), t > 0
−Dux(ℓ, t) = α(u(ℓ, t) − uext), t > 0

, (8)

where λ stands for the transfer coefficient between the particles and the platform and α
represents a partition coefficient. We note that this model can be obtained from (4)-(6)
with k1 = k2 = λ.
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Multi-layer models.

A second mechanism to induce delay in drug delivery from ophthalmic lenses has
been presented in [1]. The idea lies in creating sandwich type structures composed
by three polymeric layers as represented in Figure 1: two non biodegradable layers
(HEMA) coating a biodegradable PLGA film containing drug (Model IV). The behav-
ior of the drug release is modeled by the coupled diffusion-reaction system of partial
differential equations

HEMA layer





ut = (D1ux)x, D1(u) = D1ee
β1(1−u/v0), x ∈ (0, ℓ1), t > 0

u(x, 0) = 0, x ∈ (0, ℓ1)
D1ux(0, t) = α(u(0, t) − uext), t > 0
D1ux(ℓ1, t) = D2vx(ℓ1, t), t > 0

, (9)

PLGA film





vt = (D2vx)x + c0γe−γt, D2(t) = D2ee
−β2e−γt

, x ∈ (ℓ1, ℓ2), t > 0
v(x, 0) = v0, x ∈ (ℓ1, ℓ2)
v(ℓ1, t) = βu(ℓ1, t), t > 0
D2vx(ℓ2, t) = D1wx(ℓ2, t), t > 0

, (10)

HEMA layer





wt = (D1wx)x, D1(w) = D1ee
β1(1−w/v0), x ∈ (ℓ2, ℓ3), t > 0

w(x, 0) = 0, x ∈ (ℓ2, ℓ3)
w(ℓ2, t) = βv(ℓ2, t), t > 0
−D1wx(ℓ3, t) = α(w(ℓ3, t) − uext), t > 0

. (11)

In (9)-(11) u and w represent the drug concentration in the non biodegradable
layers, v represent the drug concentration in the biodegradable PLGA film, D1e and
D2e stand for the initial diffusion coefficients in HEMA and PLGA, respectively. We
note that ℓi are the thicknesses of the different layers, v0 and c0 are the free and bound
initial concentrations in PLGA, respectively. Parameters α and β are related with
the flux conditions at the boundary and at the interfaces, respectively; β1 and β2 are
positive parameters. We note that apart from initial and boundary conditions, interface
conditions are also included in (9)-(11). We assume that binding is not significant in
HEMA layers.

The authors in [1] also report experiments carried with a different type of sandwich
structure: two HEMA layers linked by a void space containing drug (Model V). The
kinetics of the release can be described by equations (9), (11) and an evolution equation
in the void space of type

{
vt = −D1ux(ℓ1, t) − D1wx(ℓ1 + ǫ, t), t > 0
v(0) = v0

. (12)

In Table I we present a synthesis of the five models previously described.
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Table I: Description of the models.
Models Definition

Model I Drug delivery from a non biodegradable film, where binding can occur
Model II Drug delivery from a biodegradable film
Model III Drug delivery from a polymeric matrix with particles encapsulating drug
Model IV Drug delivery from the lens of ”sandwich” type
Model V Delivery of drug entrapped between two polymeric layers

We present in Figure 2 the plots of the total released masses, corresponding to
models I, II, III, IV and V with boundary conditions of type (2) that simulate in vitro

results.
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Figure 2: Comparison of Models I, II, III and IV.

We considered uext = 0, α = 0.01, in all simulations and the values of the parame-
ters exhibited in Table II.

We note that if the drug is entrapped in a single non biodegradable layer where
binding can occur (model I) the release is faster than in models IV and V, but slower
than in model II. We conclude that ”sandwich platforms” - models IV and V - lead to
a slower drug release than ”non sandwich platforms” - models I, II and III.

Table II: Parameters of simulation in Figure 2.
Models Parameters

Model I D = 0.005, k1 = 0.8, k2 = 0.6, ub
0 = 0.01, u0 = 0.04, ℓ = 2

Model II D2 = 0.03, β2 = 0.001, γ = 0.01, c0 = 0.01, u0 = 0.09, ℓ = 1

Model III D = 0.005, λ = 0.05, ub
0 = 0.01, u0 = 0.04, ℓ = 2

Model IV D1e = 0.005, D2e = 0.03, β1 = 0.002, β2 = 0.001,
γ = 0.01, c0 = 0.01, v0 = 0.09, ℓ1 = ℓ2 = ℓ3 = 1

Model V D1e = 0.005, β1 = 0.002, v0 = 0.1, ℓ1 = ℓ3 = 1

In Figure 3-left- we compare the total released mass of model IV for two different
degradation coefficients, and in Figure 3-right- we illustrate the behaviour of released
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Figure 3: A comparison of released mass from model IV for two different degrada-
tion coefficients γ (with c0 = 0.3, v0 = 0.7) -left- and different free and bound initial
concentration -right- (with γ = 0.1).

mass for different free and bound initial concentration. In these simulations the fol-
lowing values were used: uext = 0, D1e = 0.001, D2e = 0.02, α = 0.01, β1 = 0.02, β2 =
0.02, ℓ1 = ℓ2 = ℓ3 = 1. From the figure in the left we conclude that the delivered mass
is an increasing function of γ. In fact as the polymer erodes the bound drug is free
to diffuse through the HEMA layers and the largest is the degradation rate the fastest
is the release. The influence of initial concentration is also illustrated in the right of
Figure 3: for each t the total released mass is a decreasing function of the initial bound
mass.

We observe that the values used for the parameters do not correspond to physical
values.
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Figure 4: Comparison of delivered numerical (M1,n) and experimental (M1,e) masses
for model III.
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Figure 5: Comparison of delivered numerical and experimental masses for model IV.

We compare now experimental results with the corresponding numerical simula-
tions obtained with models III and IV. In Figure 4 we plot the results obtained with
model III using experimental values for the parameters: ub

0 = 0.05102, u0 = 0.28, α =
0.01, λ = 0.02, and

D(t) =





0.1996 × 10−3, t ∈ [0, 420]

0.9 × 10−5, t ∈ (420, 11520]
. (13)

To represent more realistically the exterior concentration we defined uext(t) = γ1u(−ℓ, t)
with γ1 = 0.5. This plot shows a good agreement with the experimental results pre-
sented in [2].

In Figure 5 numerical simulations of model IV are compared with laboratorial
results in [1]. We consider uext = 0, D1e = 0.8554, D2e = 4.2336 × 10−7, α = 0.5, β1 =
1.5, β2 = 0.1, γ = 0.0714, c0 = 0.03475, v0 = 0.1, ℓ1 = 0.02, ℓ2 = 0.01, ℓ3 = 0.02. As
referred in [1] after 30 days the lens is still releasing drug. The qualitative behaviour
of the numerical prediction shows a good agreement after day 5. We note that the
experimental results exhibit an initial burst that is not present in the numerical solution.
This is a point deserving some attention. In fact if there was no drug at all in the HEMA
layers ([1]) this initial burst is not expectable. This argument suggests that the non
biodegradable layers are not completely drug free.

3 Transdermal Drug Delivery Systems

The aim of this section is to present a multi layer system to deliver drug through the
skin. The device contains two layers, with dispersed drug and containing particles also
containing drug, and a void membrane to be put in contact with the skin.

We begin by comparing the delivery in vitro of one single layer described by equa-
tion (8) and its behavior in vivo described by
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



ut = Duxx − λu + λub, x ∈ (0, ℓ), t > 0

ub
t = λu − λub, x ∈ (0, ℓ), t > 0

u(x, 0) = u0, ub(x, 0) = ub
0, x ∈ (0, ℓ)

Dux(0, t) = 0, t > 0
−Dux(ℓ, t) = α(u(ℓ, t) − uext), t > 0

, (14)

where u represents the free drug concentration and ub stands for the drug concentration
in particles. We recall that D is the diffusion coefficient, λ is the transfer coefficient, α
stands for the distribution coefficient and uext the exterior concentration.
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Figure 6: Comparison of the delivery masses obtained from system (8) -in vitro release-
and system (14) -in vivo release-.

In Figure 6 we compare the plots obtained from systems (8) and (14), with D =
0.005, uext = 0, α = 0.01, λ = 0.05, ℓ = 2, ub

0 = 0.01, u0 = 0.09. As expected the
delivery process is slower in vivo than in vitro, where the release occurs through both
extremities.

Let us consider now the multilayer system built from two models of type III, rep-
resented by (14), linked by an interface condition as described in





ut = Duxx − λu + λub, x ∈ (0, ℓ1), t > 0

ub
t = λu − λub, x ∈ (0, ℓ1), t > 0

u(x, 0) = u0, ub(x, 0) = ub
0, x ∈ (0, ℓ1)

Dux(0, t) = 0, t > 0
Dux(ℓ1, t) = Dvx(ℓ1, t), t > 0

vt = Dvxx − λv + λvb, x ∈ (ℓ1, ℓ2), t > 0

vb
t = λv − λvb, x ∈ (ℓ1, ℓ2), t > 0

v(x, 0) = v0, vb(x, 0) = vb
0, x ∈ (ℓ1, ℓ2)

−Dvx(ℓ2, t) = α(v(ℓ2, t) − uext), t > 0

. (15)

In (15) u represents the drug concentration in the first layer, [0, ℓ1], and v the drug
concentration in the second layer, [ℓ1, ℓ2]; ub, vb stand for the drug concentrations in

@CMMSE                                 Page 504 of 1703                                 ISBN: 978-84-614-6167-7



A mathematical kit for simulating drug delivery

the particles in each one of the layers.
The interest of these type of platforms lies in the possibility of using different initial

conditions in the two layers. This leads to a customization of the delivery which can
be tailored to a specific treatment. In Figure 7 we illustrate the effect of the use of two
different concentrations. We considered D = 0.5, uext = 0, α = 0.5, λ = 0.1, ℓ = 0.5 in
both layers. The simulations resulting from two set of values for the concentration are
compared. The first set is defined by ub

0 = 0.01, u0 = 0.09 and vb
0 = 0.1, v0 = 0.9; in

the second set ub
0 = 0.1, u0 = 0.9 and vb

0 = 0.01, v0 = 0.09.

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

M

 

 

c
1
=0.1, c

2
=1

c
1
=1, c

2
=0.1

Figure 7: Mass for two different initial concentrations, obtained from system (15),
where c1 = u0 + ub

0 and c2 = v0 + vb
0.

We note that the global concentration is the same in the two simulation. However
these concentrations are differently distributed. As expected the release is faster when
the layer closest to the skin is the most loaded.

Some commercial platforms [6] contain a membrane in contact with the skin- that
introduces a further delay in the drug release. This membrane is initially void. The
model that simulates the device can be described from models of type IV,





ut = Duxx − λu + λub, x ∈ (0, ℓ1), t > 0

ub
t = λu − λub, x ∈ (0, ℓ1), t > 0

u(x, 0) = u0, ub(x, 0) = ub
0, x ∈ (0, ℓ1)

Dux(0, t) = 0
Dux(ℓ1, t) = Dvx(ℓ1, t)

vt = Dvxx − λv + λvb, x ∈ (ℓ1, ℓ2), t > 0

vb
t = λv − λvb, x ∈ (ℓ1, ℓ2), t > 0

v(x, 0) = v0, vb(x, 0) = vb
0, x ∈ (ℓ1, ℓ2), t > 0

−Dvx(ℓ2, t) = DmCm
x (ℓ2, t), t > 0

Cm
t = DmCm

xx, x ∈ (ℓ2, ℓ3), t > 0
Cm(x, 0) = 0, x ∈ (ℓ2, ℓ3)
−DmCm

x (ℓ3, t) = α(Cm(ℓ3, t) − uext), t > 0

, (16)

where Cm represents the drug concentration in the membrane and Dm stands for its
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diffusion coefficient.

The delay effect of the initially void membrane can be observed in Figure 8 where
numerical simulations of systems (15) and (16) are plotted, with D = Dm = 0.5, uext =
0, α = 0.5, λ = 0.1, ℓ = 0.5, ub

0 = vb
0 = 0.1, u0 = v0 = 0.9.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

M

 

 

M
without membrane

M
with membrane

Figure 8: Numerical simulations of systems (15) and (16).

4 Conclusion

A mathematical kit was proposed to simulate drug delivery trough polymeric mem-
branes. Two main class of devices have been considered: ophthalmic therapeutic lenses
and Transdermal Drug Delivery Systems. The developed procedure allows researchers
to investigate influences of a large of number of factors on the efficacy of drug delivery.

As far as therapeutic lenses are concerned we conclude that the delay induced by
sandwich type structures is more efficient that the encapsulation of drug in particles.
In the case of TDDS multilayer platforms are analyzed. Namely the effect of using
different concentrations in the layers and the delay effect of a void membrane, closest
to the skin, are addressed.
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Abstract

A single phase incompressible flow problem is usually modeled by a system
of three equations:a differential equation for the velocity, an algebraic equation
linking the velocity and the pressure and a parabolic equation for the concentration
depending on the velocity. Some limitations have been pointed out in the literature
on the use of a parabolic equations to describe the the concentration evolution,
namely related with the use of Fick’s law to describe the mass flux. To avoid
the pathologic behavior of the classical diffusion equation, non Fickian corrections
have been proposed in the literature. In this paper we introduce a new model to
describe a single phase incompressible flow problem and its stability will be studied.
A numerical method that mimics the continuous model is also studied and some
numerical experiments are included.

Key words: Fikian model, Non Fickian model, Diffusion, pressure, concentra-
tion, numerical method, stability.

1 Introduction

A single phase incompressible flow problem is usually modeled by a system of three
equations: a differential equation for the pressure, an algebraic equation linking the
velocity and the pressure and a parabolic equation for the concentration depending on
the velocity (see [1], [2], [4], [5], [9] and [10]). This system can be rewritten as a system
of an elliptic equation for the pressure and a parabolic equation for the concentration
that depends on the gradient of the pressure.

Traditionally, the a diffusion process in a porous medium is described by the
parabolic equation

∂u

∂t
+∇J = q2, (1)

where u denotes the concentration, J represents the mass flux and q2 denotes the
reaction term. In (1) J can be expressed as

J = Jadv + Jdif + Jdis, (2)
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where
Jadv = uv (3)

represents the advection mass due to the the fluid velocity v,

Jdif = −Dm∇u (4)

denotes the mass flux due to molecular diffusion, beingDm the effective molecular diffu-
sion coefficient, and Jdis satisfies the so called Fick’s law Jdis = −Dd∇u and represents
the dispersive mass flux associated with random deviations of fluid velocities within
the porous space from their macroscopic value v. In the definition of Jdis, Dd denotes

the dispersive tensor Dd = �t∥v∥I + (�ℓ − �t)
1

∥v∥
vvt being �ℓ and �t the longitudinal

and transversal dispersivities.
Combining (1) with (2) we obtain the parabolic equation

∂u

∂t
+∇(uv) = ∇((DmI +Dd)∇u) + q2, (5)

where I is the identity tensor.
Some limitations have been pointed out in the literature on the use of a parabolic

equation (5) to describe the concentration evolution (see, for instance, [3], [6], [8]):
equation (5) prescribes an infinite speed of propagation for the concentration; it is
based on Fick’s law for the mass flux which establishes a linear relation between the
concentration and dispersive mass flux; the mass flux J is independent of the history of
dispersion; in the dispersive tensor the dispersivities coefficients are medium constant
and invariant with time and space (often they increase with the distance and/or with
time).

To avoid the pathologic behavior of the classical diffusion equation, hyperbolic or
non Fickian corrections have been proposed in the literature (see [6], [8]). One possible
approach is to consider that the dispersive mass flux satisfies the following differential
equation

�
∂Jdis

∂t
(x, t) + Jdis(x, t) = −Dd∇u(x, t), (6)

where � is a delay parameter ([7]). We remark that the left hand side of (6) is a first
order approximation of the left hand side of Jdis(x, t+ �) = −Dd∇u(x, t), which means
that the dispersion mass flux at the point x and time t+ � depends on the gradient of
the concentration at the same point but at a delayed time. Equation (6) leads to

Jdis(t) = −
1

�

∫ t

0
e−

t−s
� Dd∇u(s) ds, (7)

provided that Jdis(0) = 0. Combining the partition (2), where Jadv , Jdif and Jdis
are given by (3), (4) and (7), respectively, with (1) we obtain the integro-differential
equation

∂u

∂t
+∇(uv)−∇(Dm∇u) =

1

�

∫ t

0
e−

t−s
� ∇(Dd∇u)(s) ds + f (8)

which replaces (5).
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In this paper we consider the following system of equations:

−∇(A(u)∇p) = q1 in (a, b)× (0, T ], (9)

∂u

∂t
+∇(B(u,∇p)u) +∇(Dm(u,∇p)∇u)

=

∫ t

0
ker(t− s)∇(Dd(u,∇p)∇u)(s) ds + q2 in (a, b) × (0, T ],

(10)

where q1 and q2 are source terms, A, Dm and Dd are smooth enough satisfying the
following assumptions:

0 < A0 ≤ A(x, y), (x, y) ∈ ℝ × ℝ, (11)

∣B(x, y)∣ ≤ CB∣y∣, (x, y) ∈ ℝ × ℝ, (12)

0 < Dm,0 ≤ Dm(x, y), (x, y) ∈ ℝ × ℝ, (13)

0 < Dd,0 ≤ Dd(x, y) ≤ Dd,1∣y∣, (x, y) ∈ ℝ × ℝ. (14)

In (10) Ker(s) denotes a kernel that satisfies some assumptions that will be speci-

fied later but it can be in particular defined by Ker(s) =
1

�
e−

s
� . System (9), (10) is

complemented by Dirichelet boundary conditions

p(a, t) = pa(t), p(b, t) = pb(t), u(a, t) = ua(t), u(b, t) = ub(t), t×]0, T ], (15)

and initial conditions

p(x, 0) = p0(x), u(x, 0) = u0(x), x ∈ (a, b). (16)

The paper is organized as follows. In Section 2 we study the stability of the initial
boundary value problem (9), (10), (15), (16). A numerical method that mimics the
initial boundary value problem (9), (10), (15), (16) will be presented in Section 3
and its stability will be analized. In Section 4 we include some numerical experiments
illustrating the behavior of the pressure and concentration when we replace (5) by (10).

2 Stability analysis

By H1(a, b) and H1
0 (a, b) we denote the usual Sobolev spaces with the usual norm ∥.∥1.

By (., .) we represent the usual inner product defined in L2(a, b) and ∥.∥ denotes the
norm induced by such inner product. By L2(0, T ;H1(a, b)) we denote the space of func-

tions v : (0, T ) → H1(a, b) such that

∫ T

0
∥v(s)∥21 ds < ∞. We also consider the space

W(0, T ) = {v ∈ L2(0, T ;H1(a, b)) :
dv

dt
∈ L2(0, T ;L2(a, b))}, where L2(0, T ;L2(a, b)) is

the space of functions v : (0, T ) → L2(a, b) such that

∫ T

0
∥v(s)∥2 ds < ∞.
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We study in what follows the stability of the solution (u, p), u ∈ W(0, T ), p ∈
L2(0, T ;H1(a, b)), that satisfies the variational equations

(A(u(t))∇p(t),∇w) = (q1, w), ∀w ∈ H1
0 (a, b), (17)

(
du

dt
(t), w) − (B(u(t),∇p(t))u(t),∇w) + (Dm(u(t),∇p(t))∇u(t),∇w)

= −(

∫ t

0
Ker(t− s)Dd(u(s),∇p(s))∇u(s) ds,∇w) + (q2(t), w), ∀w ∈ H1

0 (a, b),

(18)
almost everywhere in (0, T ], the boundary conditions (15) and the initial conditions
(16) with p0, u0 ∈ L2(a, b).

As this section focuses in the stability analysis of initial boundary value problem
(9), (10), (15), (16) we assume that pa(t) = pb(t) = ua(t) = ub(t) = 0, t ∈]0, T ]. We
also introduce the space L2(0, T ;H1

0 (a, b)) which is obtained from L2(0, T ;H1(a, b))
replacing H1(a, b) by H1

0 (a, b). By W0(0, T ) we denote the subspace of W(0, T ) that is
obtained replacing H1(a, b) by H1

0 (a, b).

Theorem 1 Let us suppose that p0, u0 ∈ L2(a, b), A, B, Dm and Dd satisfy the con-
ditions (11), (12), (13) and (14), respectively. If the solution (u, p) of (17), (18) with
initial conditions (16) is in W0(0, T )× L2(0, T ;H1

0 (a, b)), then

∥∇p(t)∥2 ≤
(b− a)2

2A2
0

∥q1∥
2, (19)

∥u(t)∥2 +

∫ t

0
∥∇u(s)∥2 ds ≤ e−C̃t(∥u0∥

2 +

∫ t

0
eC̃sg(s) ds) (20)

where g(s) =
1

min{1, 2(Dm,0 − �2 − 
2)}

(

∥u0∥
2 +

1

2�2

∫ s

0
∥q2(�)∥

2 d�,
)

, � ∕= 0 is an

arbitrary constant, � ∕= 0, 
 ∕= 0 satisfy

Dm,0 − �2 − 
2 > 0, (21)

Ker and Cq1 are such that

∫ t

0
ker(t− s)2∥q1(s)∥

2 ds ≤ Cq1 , t ∈ (0, T ], (22)

holds, and

C̃ =
max

{

Dd,1Cq1
(b−a)2

2A2
0

1
2�2 , 2

(

�2 + (CB
(b−a)2

2A2
0

)2 1
4
2 maxt∈[0,T ] ∥q1(t)∥

2
)}

min
{

1, 2
(

Dm,0 − �2 − 
2
)} . (23)

Proof: Considering in (17) w = p(t) and using the assumption (11)) we deduce

A0∥∇p(t)∥2 ≤
1

4�2
∥q1(t)∥

2 + �2∥p(t)∥2, (24)
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where � ∕= 0 is an arbitrary constant.

As the Friedrichs-Poincaré inequality ∥p(t)∥2 ≤
(b− a)2

2
∥∇p(t)∥2 holds, from (24) we

obtain
A0

2
∥∇p(t)∥2 + (

A0

2
− �2

(b− a)2

2
)∥∇p(t)∥2 ≤

1

4�2
∥q1∥

2. (25)

Then, for � such that
A0

2
− �2

(b− a)2

2
= 0 we conclude (19).

Taking in (18) w = u(t) and using (12), (13) and (14) we deduce

1

2

d

dt
∥u(t)∥2 − CB∥∇p(t)∥∥u(t)∥∥∇u(t)∥ +Dm,0∥∇u(t)∥2

≤

∫ t

0
∣Ker(t− s)∣Dd,1∥∇p(s)∥∥∇u(s)∥ds∥∇u(t)∥ +

1

4�2
∥q2(t)∥

2 + �2∥u(t)∥2,

(26)
where � ∕= 0 is an arbitrary constant.
It can be shown that

∫ t

0
∣Ker(t− s)∣Dd,1∥∇p(s)∥∥∇u(s)∥ds∥∇u(t)∥

≤ D2
d,1

(b− a)2

2A2
0

Cq1

1

4�2

∫ t

0
∥∇u(s)∥2 ds+ �2∥∇u(t)∥2,

(27)

where � ∕= 0 is an arbitrary constant and Cq1 is fixed by (22).
Considering (19) and (27) in (26) we get

1

2

d

dt
∥u(t)∥2 − CB

(b− a)2

2A2
0

∥q1(t)∥∥u(t)∥∥∇u(t)∥ +
(

Dm,0 − �2
)

∥∇u(t)∥2

≤ Dd,1Cq1

(b− a)2

2A2
0

1

4�2

∫ t

0
∥∇u(s)∥2ds+

1

4�2
∥q2(t)∥

2 + �2∥u(t)∥2.

(28)

Furthermore, as

−CB
(b− a)2

2A2
0

∥q1(t)∥∥u(t)∥∥∇u(t)∥ ≥ −(CB
(b− a)2

2A2
0

)2
1

4
2
∥q1(t)∥

2∥u(t)∥2−
2∥∇u(t)∥2,

where 
 ∕= 0 is an arbitrary constant, from (28) we obtain

1

2

d

dt
∥u(t)∥2 +

(

Dm,0 − �2 − 
2
)

∥∇u(t)∥2 ≤
1

4�2
∥q2(t)∥

2

+Dd,1Cq1

(b− a)2

2A2
0

1

4�2

∫ t

0
∥∇u(s)∥2ds +

(

�2 + (CB
(b− a)2

2A2
0

)2
1

4
2
∥q1(t)∥

2
)

∥u(t)∥2,

that leads to

∥u(t)∥2 +

∫ t

0
∥∇u(s)∥2 ds ≤ +C̃

∫ t

0

(

∫ s

0
∥∇u(�)∥2d�+ ∥u(s)∥2

)

ds,

+
1

min{1, 2
(

Dm,0 − �2 − 
2
)

}

(

∥u0∥
2 +

1

2�2

∫ t

0
∥q2(s)∥

2 ds
) (29)
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provided that � and 
 are fixed by (21) and C̃ is defined by (23). The proof of (20) is
then concluded applying Gronwall Lemma to (29).

Theorem 1 can be easily generalized to analyze the stability of the two dimensional
or three dimensional versions of the initial boundary value problem (15), (16), (17),
(18).

Let us consider the particular non Fickian coupled diffusion model: equation (8),

∇v = q1 in (a, b) × (0, T ], (30)

where v is given by Darcy’s law

v = −
K

�(u)
∇p in (a, b)× (0, T ]. (31)

In (31) K denotes the permeability tensor and �(u) represents the viscosity. System

(9), (10) with Ker(s) =
1

�
e−

s
� , A(x, y) = 1, B(x, y) = − K

�(x)y, Dm(x, y) = Dm(const),

Dd(x, y) = Dd∣y∣, is a non Fickian version of (5), (30) and (31). The coefficient functions
satisfy the conditions (11), (12), (13) and (14) provided that K is bounded and �(x) ≥
�0.

3 The semi-discrete approximation

In this section we introduce the semi-discrete approximation for the variational problem
(9), (10) (15), (16). Let Iℎ = {xi, i = 0, . . . , N, x0 = a, xN = b, xi − xi−1 = ℎ, i =
1, . . . , N} be a uniform partition of [a, b]. By ℙℎuℎ we represent the piecewise linear
interpolator of a grid function uℎ defined in Iℎ. By Wℎ we represent the space of all
grid function defined on Iℎ and by Wℎ,0 its subspace of all grid function null on the
boundary points. The space of piecewise linear functions induced by the partition Iℎ

is denoted by Sℎ = {ℙℎuℎ, uℎ ∈ Wℎ}.

By L2(0, T ;Sℎ) we denote the subspaces of L2(0, T ;H1(a, b)) that is obtained re-
placing H1(a, b) by Sℎ. We introduce now the piecewise linear approximations for the
pressure p and for the concentration u, respectively, ℙℎpℎ ∈ L2(0, T ;Sℎ) and

ℙℎuℎ ∈ {v ∈ L2(0, T ;Sℎ) :
dv

dt
∈ L2(0, T ;Sℎ)} such that

pℎ(x0, t) = pa(t), pℎ(xN , t) = pb(t), uℎ(x0, t) = ua(t), uℎ(xN , t) = ub(t), t ∈ (0, T ], (32)

pℎ(xi, 0) = p0(xi), uℎ(xi, 0) = u0(xi), i = 1, . . . , N − 1, (33)

and
(

A(ℙℎuℎ(t))∇(ℙℎpℎ)(t),∇(ℙℎwℎ)
)

= (q1(t),ℙℎwℎ), wℎ ∈ Wℎ,0, (34)
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( ∂

∂t
(ℙℎuℎ)(t),ℙℎwℎ

)

−
(

B(ℙℎuℎ(t),∇(ℙℎpℎ)(t))ℙℎuℎ(t),∇(ℙℎwℎ)
)

+
(

Dm(ℙℎuℎ(t),∇(ℙℎpℎ)(t))∇(ℙℎuℎ)(t),∇(ℙℎwℎ)
)

= −

∫ t

0
Ker(t− s)

(

Dd(ℙℎuℎ(s),∇(ℙℎpℎ)(s))∇(ℙℎuℎ)(s),∇(ℙℎwℎ)
)

ds

+
(

q2(t),ℙℎwℎ

)

, wℎ ∈ Wℎ,0.

(35)

In the space Wℎ we consider the norm ∥cℎ∥
2
1,ℎ = ∥cℎ∥

2
ℎ + ∥∇(ℙℎcℎ)∥

2, where ∥.∥ℎ
denotes the norm induced by the inner product

(wℎ, vℎ)ℎ =
N
∑

i=1

ℎ

2

(

wℎ(xi−1)vℎ(xi−1) + wℎ(xi)vℎ(xi)
)

, wℎ, vℎ ∈ Wℎ.

Let L2(0, T ;Wℎ) be a discrete version of L2(0, T ;H1(a, b)) which is the space of grid

functions vℎ : [0, T ] → Wℎ such that

∫ T

0
∥vℎ(t)∥

2
1 dt < ∞.

We introduce now the fully discrete approximations (in space) pℎ ∈ L2(0, T ;Wℎ)

and uℎ ∈ Wℎ(0, T ) = {vℎ ∈ L2(0, T ;Wℎ) :
dvℎ

dt
∈ L2(0, T ;Wℎ)} as the grid functions

that satisfy the conditions (32), (33) and the discrete variational equations

(Aℎ(t)∇(ℙℎpℎ)(t),∇(ℙℎwℎ)) = (q1,ℎ, wℎ)ℎ, wℎ ∈ Wℎ,0, (36)
(∂uℎ

∂t
(t), wℎ

)

ℎ
−

(

Mℎ(Bℎ(t)uℎ(t)),D−xwℎ

)

ℎ,+
+

(

Dm,ℎ(t)∇(ℙℎuℎ(t)),∇(ℙℎwℎ)
)

= −

∫ t

0
Ker(t− s)

(

Dd,ℎ(s)∇(ℙℎuℎ(s)),∇(ℙℎwℎ)
)

ds+
(

q2,ℎ(t), wℎ

)

ℎ
, wℎ ∈ Wℎ,0,

(37)

where Mℎ(vℎ)(xi) =
1

2
(vi−1 + vi), i = 1, . . . , N.

In the previous equations the following notations were used: D−xwℎ(xi) =
wi − wi−1

ℎ
,

i = 1, . . . , N, wj = wℎ(xj), (vℎ, wℎ)ℎ,+ =
N
∑

j=1

ℎvjwj,

qℓ,ℎ(xi, t) =
1

ℎ

∫ xi+1/2

xi−1/2

qℓ(x, t) dx, i = 1, . . . , N − 1, ℓ = 1, 2, (38)

Aℎ(x, t) and Dm,ℎ(x, t) are x piecewise constant functions defined by

Aℎ(x, t) = A(
1

2
(uℎ(xi, t) + uℎ(xi+1, t))), (39)

Dm,ℎ(x, t) = Dm(
1

2
(uℎ(xi, t) + uℎ(xi+1, t)),D−xpℎ(xi+1, t)), (40)

for x ∈ [xi, xi+1), and the grid function Bℎ(t) is given by

Bℎ(xi, t) =

⎧

⎨

⎩

B(uℎ(x0, t),D−xpℎ(x1, t)), i = 0,
B(uℎ(xi, t),Dcpℎ(xi, t)), i = 1, . . . , N − 1,
B(uℎ(xN , t),D−xpℎ(xN , t)), i = N,

(41)
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and Dc will be defined bellow. The definition of the piecewise constant function Dd,ℎ

is analogous to the definition of Dm,ℎ.

In what follows we establish an ordinary differential system equivalent to the fully
discrete (in space) variational problem (32), (33) (36), (37). In order to do that we
introduce the following finite difference operators

Dcwℎ(xi) =
wi+1 − wi−1

2ℎ
, Dxwℎ(xi+1/2) =

wi+1 − wi

ℎ
,D1/2

x wℎ(xi) =
wi+1/2 − wi−1/2

ℎ
,

where and wj±1/2 is used as far it makes sense.

It can be shown that the approximations pℎ(t) and uℎ(t) are solutions of the discrete
problem

−D1/2
x (Aℎ(t)Dxpℎ(t)) = q1,ℎ(t) in Iℎ − {a, b}, (42)

duℎ

dt
(t) +Dc(Bℎ(t)uℎ(t))−D1/2

x (Dm,ℎ(t)Dxpℎ(t))

=

∫ t

0
Ker(t− s)D1/2

x (Dd,ℎ(s)Dxpℎ(s))ds + q2,ℎ(t) in Iℎ − {a, b}
(43)

with the conditions (32), (33).

4 Stability of concentration and pressure

We establish now the stability of the coupled variational problem (36), (37) or equiva-
lently the stability of the coupled finite difference problems (42), (43) under Dirichlet
boundary conditions, that is pa(t) = pb(t) = ua(t) = ub(t) = 0. Let C1([0, T ];Wℎ,0)

be the space of grid functions uℎ : [0, T ] → Wℎ,0 such that
duℎ

dt
: [0, T ] → Wℎ,0 is

continuous when in Wℎ,0 we consider the norm ∥.∥ℎ.

Theorem 2 If uℎ ∈ C1([0, T ];Wℎ,0) then, under the conditions of Theorem 1,

∥pℎ(t)∥1 ≤
b− a

A0
∥q1,ℎ(t)∥ℎ, t ∈ [0, T ]. (44)

and

∥uℎ(t)∥
2
ℎ +

∫ t

0
∥∇(ℙℎuℎ)(s)∣

2 ds ≤ eC̃t
(

∥uℎ(0)∥
2
ℎ +

∫ t

0
e−C̃sgℎ(s) ds

)

, t ∈ [0, T ], (45)

provided that
∫ t

0
ker(t− s)2∥q1,ℎ∥

2
ℎ ds ≤ Cq1 , t ∈ [0, T ]. (46)

In (45) gℎ(s) is given by

gℎ(s) =
1

min {1, 2(Dm,0 − �2 − �2)}

(

∥uℎ(0)∥
2
ℎ +

1

2�2

∫ s

0
∥q2,ℎ(s)∥

2
ℎ ds

)

,
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� ∕= 0 is an arbitrary constant, C̃ is defined by

C̃ =
max

{

Cq1D
2
d,1

(b−a)2

A2
0

1
4�2 ,

(

�2 +
C2

pC
2
B

4
2 maxt∈[0,T ] ∥q1,ℎ(t)∥
2
ℎ

}

min {1, 2(Dm,0 − �2 − 
2)}
(47)

and � ∕= 0, 
 ∕= 0 are such that

Dm,0 − �2 − 
2 > 0. (48)

Proof: As Friedrich’s-Poincaré inequality (b− a)2∥∇(ℙℎwℎ)∥
2 ≥ ∥wℎ∥

2
ℎ holds, the proof

of (44) follows the proof of the correspondent continuous inequality (19).
Taking in (37) wℎ replaced by uℎ(t) we easily deduce that

1

2

d

dt
∥uℎ(t)∥

2
ℎ − (Mℎ(Bℎ(t)uℎ(t)),D−xuℎ(t))ℎ,+ +Dm,0∥∇(ℙℎuℎ)(t)∥

2

≤

∫ t

0
Ker(t− s)(Dd,ℎ(s)∇(ℙℎuℎ)(s),∇(ℙℎuℎ)(t))ds+

1

4�2
∥q2,ℎ(t)∥

2
ℎ + �2∥uℎ(t)∥

2
ℎ,

(49)
where � ∕= 0 is an arbitrary constant.
As from (12) we have

∣(Mℎ(Bℎ(t)uℎ(t)),D−xuℎ(t))ℎ,+∣ ≤ 2CB∥∇(ℙℎpℎ)(t)∥∥uℎ(t)∥ℎ∥∇(ℙℎuℎ)(t)∥,

considering (44) we obtain

∣(Mℎ(Bℎ(t)uℎ(t)),D−xuℎ(t))ℎ,+∣ ≤ C2
B
(b− a)2

A2
0

1


2
∥q1,ℎ(t)∥

2
ℎ∥uℎ(t)∥

2
ℎ+
2∥∇(ℙℎuℎ)(t)∥

2,

(50)
where 
 ∕= 0 is an arbitrary constant.
As in the proof of Theorem 1, it can be shown that

∫ t

0
Ker(t− s)∣(Dd,ℎ(s)∇(ℙℎuℎ(s)),∇(ℙℎuℎ)(t))ds∣

≤ D2
d,1

(b− a)2

A2
0

Cq1

1

4�2

∫ t

0
∥∇(ℙℎuℎ)(t)∥

2 ds+ �2∥∇(ℙℎuℎ)(s)∥
2,

(51)

where � ∕= 0 is an arbitrary constant and Cq1 is fixed by (46).
Finally, using (50) and (51) in (49) we obtain

1

2

d

dt
∥uℎ(t)∥

2 +
(

Dm,0 − �2 − 
2
)

∥∇(ℙℎuℎ)(t)∥
2 ≤

1

4�2
∥q2,ℎ(t)∥

2
ℎ

+Cq1D
2
d,1

(b− a)2

A2
0

1

4�2

∫ t

0
∥∇(ℙℎuℎ)(s)∥

2ds +
(

�2 +
C2
pC

2
B

4
2
∥q1,ℎ(t)∥

2
ℎ

)

∥uℎ(t)∥
2
ℎ.

(52)
Inequality (52) implies that

∥uℎ(t)∥
2 +

∫ t

0
∥∇(ℙℎuℎ)(t)∥

2 ≤ C̃

∫ t

0

(

∫ s

0
∥∇(ℙℎuℎ)(�)∥

2d�+ ∥uℎ(s)∥
2
ℎ

)

ds

+
1

min{1, 2(Dm,0 − �2 − 
2)}

(

∥uℎ(0)∥
2
ℎ +

1

2�2
∥q2,ℎ(t)∥

2
ℎ

)

,
(53)
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where � and 
 are fixed by (48) and C̃ is given by (47). Finally, the inequality (53)
leads to (45).

Stability results similar to Theorems 1 and 2 hold when q2 depends on u. In fact
we need only to assume that ∣q2(y)∣ ≤ Cq2 ∣y∣.

5 Numerical results

In this section, as an example, we apply the proposed non Fickian model to a single
phase incompressible flow problem in a porous media with a point source and sink term.
This fluid flow process involves fully miscible displacement of one incompressible fluid
by another. In this case p is the pressure of the fluid mixture, u the volumetric concen-
tration of the injected fluid, � the porosity of the medium, K the permeability of the
medium, Dm the molecular diffusion coefficient and Dd(u,∇p) the mechanical disper-
sion Dd(u,∇p) = Dd∣v∣, where Dd denotes the dispersion coefficient and v represents
Darcy’s velocity of the fluid mixture which is given by (31). In (31) the viscosity of the

mixture �(u) is determined by the commonly used rule �(u) = �0((1− u) +M
1

4u)−4,

where M is the mobility ratio and �0 the viscosity of resident fluid. In (5) the func-
tion q2 is given by q2 = u∗q1, where u∗ is the injected concentration at sources or the
concentration u at sinks. The function q1 is the source and sink terms.

To closed the system (8), (30), (31) we assume natural boundary conditions v = 0

on {a, b} × (0, T ], Dm∇u+
1

�

∫ t

0
e−

t−s
� (Dd∇u) ds = 0 on {a, b} × (0, T ]. In order to

compare the Fickian and non Fickian models, we integrate in time the ordinary dif-
ferential system (36), (37) using the implicit Euler method with a very small step size
and discretizing the integral term using the right rectangular rule.

Let 0 = t0 < t1 < . . . < tN = T be a partition of the time interval [0, T ] with Δt =
tn+1− tn and N the number of time steps. Denote by pnℎ, v

n
ℎ and unℎ the approximations

of p, v and u, respectively, at time level tn. To compute the numerical approximations
at time level tn+1 we use the following algorithm:

Step 1: Given unℎ, solve the finite difference equation

−D1/2
x

( K

�(unℎ)
Dxp

n+1
ℎ

)

= qn+1
1

to compute pn+1
ℎ ;

Step 2: With pn+1
ℎ , compute the velocity of the convective term using the dis-

cretization in (41) and vn+1
ℎ in Dd(v

n+1
ℎ ) by

vn+1
ℎ = − K

�(un
ℎ)
D−xp

n+1
ℎ ;

Step 3: Compute un+1
ℎ using

�
un+1
ℎ − unℎ

Δt
+Dc(u

n
ℎv

n+1
ℎ )−D1/2

x (DmDxu
n
ℎ) =

Δt

�

tn+1
∑

j=1

e−
tn+1−tj

� D1/2
x (Dd(v

j
ℎ)Dxu

j
ℎ)+qn2 .
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The simulation was performed considering [a, b] = [0, 1] and the following param-
eters: T = 800, � = 1, K = 60, M = 41, �0 = 1, u∗ = 5, Dm = �10−5, Dd =
�10−3, � = 0.001, ℎ = 10−4, Δt = 0.025 The injection well cover one cell at the left
extreme of the interval [a, b] and has a constant injection rate equal to 5. The produc-
tion well also cover one cell which is located at the right extreme with the production
rate equal to −5.

In Figure 1 we plot the numerical approximation for Fickian and non Fickian
pressures and concentrations at t = 800. From the numerical experiments we observe
for the Fickian and non Fickian pressure, pF and pnF respectively, a similar behavior.
However for Fickian and non Fickian concentrations uf , unf , respectively we observe
that uF > unF near the injection point and uF < unF near the sink point.
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Abstract

We describe a C++ library for electromagnetics based on the Finite-Difference
Time-Domain method for transient analysis, and the Finite Element Method for
modal analysis. Both methods share the same core and also both methods are
optimized for CPU and GPU computing. The FEM method is applied for solving
Laplace’s equation and analyzes the relation between surface curvature and elec-
trostatic potential of a long cylindric conductor. The FDTD method is applied for
analyzing Thin Film Filters in optical wavelengths. Furthermore, the performance
of both CPU and GPU versions are analyzed as a function of the grid size simula-
tion. This approach allows to analyze a wide range of electromagnetic situations
taking advantage of the benefits of each numerical method and also of the modern
graphics processing units.

Key words: Electromagnetic analysis, Finite-Difference Time-Domain, Finite
Element Method, electrostatic potential, Thin Film Filters, Optical wavelengths,
Graphics Processing Units

MSC 2000: 78A97, 81V80, 80M50

1 Introduction

Graphics Processing Units (GPU) are of considerable importance in such areas as elec-
tromagnetics, optics, and acoustics. The architecture of the new Fermi family [1] has
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been fully designed for numerical computing and many researchers have been used
recently the GPUs in many different fields such as astronomy, soft tissue simulation,
image computing, and much more. The adaption of many computational methods is
still in progress and unfortunately, not all algorithms can be ported efficiently onto a
GPU architecture. Using a recent consumer graphics card, we accelerated the Finite
Element Method (FEM) and the Finite-Difference Time-Domain (FDTD) method for
electromagnetics. A highly optimized sequential implementation for Central Processor
Unit (CPU) was also developed in order to compare and contrast the performance be-
tween the GPU version and the CPU code. The optimization in the sequential code
is performed by programming strategies that benefits the auto-vectorization provided
by modern compilers, which are mainly focused on parallelize the main loops in the
algorithms [2]. Both implementations, CPU and GPU, requiere a previous analysis of
the operations and a rearrangement of the instructions in order to take advantage of
the CPU and GPU architectures. Due to the fact that the programming paradigm is
changed in great manner for GPU computing, we are focused on analyzing the degree
of improvement as a function of the size simulation between single CPU and GPU ap-
proaches.
On the other hand, the library implemented provides the possibility of using both FEM
and FDTD method for solving a wide range of electromagnetic experiences. Specifi-
cally, the FEM method is applied to analyze the relation between surface curvature
and electrostatic potential [3], whereas the FDTD method is used for analyzing optical
diffractive elements such as Thin Film Filters (TFF). The FEM method has been ap-
plied in many areas and nowadays is a reference in numerical methods. In this work,
it has been used for solving the Laplace’s equation in electrostatics. The aim of the
numerical analysis performed by the FEM is to compare the analytical expressions
developed in [3] for analyzing the relation between the the surface curvature of an
isolated charged conductor with uniform cross section and the resultant electrostatic
potential. An illustration showing this scheme is shown in Fig. 1a. Due to the fact
that FEM method is useful for static analysis, a well-known alternative for transient
analysis is the FDTD method [4, 5]. Specifically, it was applied at optical wavelengths
for analyzing the reflectance of High-Reflecting Coatings (HRCs’) [6]. HRC is a ba-
sic type of TFF and is composed by a stack of alternate high- and low-index films,
all one quarter wavelength thick as it has been illustrated in Fig. 1b. Light reflected
within the high-index layers not suffers any phase shift while that a change of 180 in
the low-index layers is produced. It is straightforward to see that the light produced
by reflection at successive boundaries throughout the assembly reappear at the front
surface all in phase so that they recombine constructively. Because of this behavior,
HRC’s have many applications such as photovoltaic cells and Micro-Electro-Mechanical
Systems (MEMS).
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Figure 1: (a) Long conductor with uniform cross section. (b) Scheme of a high-
reflectance coating [6].

2 Theory

This section gives a brief summary of the basis of the numerical methods implemented.
First, the theoretical basis of FEM method for solving Poisson’s equation is shown.
Second, the theory related with the FDTD method and its add-ons needed for our
specific applications are introduced.

2.1 FEM analysis of Laplace’s equation

In this section, we will apply the FEM to electroestatic problems. More specifically to
a infinite cylinder perturbed by a small cosine function,

r(θ) = a (1 + ε cos(nθ)) , (1)

where a is the radius of the cylinder, n is an integer parameter and ε is an small
number [3]. The analytical expression developed by Neipp et al in [3] relates the
curvature of an infinite conductor and the electrostatic potential.

φ(r, θ) = φ0 + b0 ln
r

a
− εb0

(a

r

)n
cos(nθ), (2)

where r and θ are the cylindrical coordinates, φ0 is the potential at the surface of
the conductor and b0 is a constant coefficient defined in [3]. Therefore, the Laplace’s
equation ∇2φ = 0 is considered. In the FEM, the two-dimensional region in which
the potential distribution solution φ(x, y) is defined, is divided into a number of finite
elements as illustrated in Fig 2. The subdivision of the solution region into elements
is done by an automatic scheme able to provide uniform and nonuniform meshes by a
few parameters related with the geometry [7]. The approximate solution of the whole
region is

φ(x, y) ≈
N∑

e=1

φe(x, y), (3)
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Figure 2: Finite element discretization for the cross section of cylindrical conductor
perturbed by a cosine term. (a)ε = 0 and a = 1. (b)ε = 0.05, n = 6, a = 1.

where N is the number of elements into which the solution region is divided. Here
the approximation of φe within an element is the polynomial approximation for the
triangular element shown in Fig. 2b,

φe(x, y) = a + bx + cy. (4)

The constants a, b and c are to be determined. The potential Ve1, Ve2 and Ve3 at nodes
1, 2 and 3 are obtained from Eq. (4) as:




φe1

φe2

φe3


 =




1 x1 y1

1 x2 y2

1 x3 y3


 =




a
b
c


 ⇒




a
b
c


 =




1 x1 y1

1 x2 y2

1 x3 y3



−1 


φe1

φe2

φe3


 . (5)

Substituting this into Eq. (4) gives

φe =
3∑

i=1

αi(x, y)φei, (6)

where,

α1 =
1

2A
[(x2y3 − x3y2) + (y2 − y3)x + (x3 − x2)y] , (7)

α2 =
1

2A
[(x3y1 − x1y3) + (y3 − y1)x + (x1 − x3)y] , (8)

α3 =
1

2A
[(x1y2 − x2y1) + (y1 − y2)x + (x2 − x1)y] , (9)
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with A being the area of the element e [7], and αi are linear interpolation functions
and are called the element shape functions.
The functional corresponding to Laplace’s equation is given by:

We =
1
2

∫
ε|∇φe|2dS, (10)

Physically, the functional We is the energy per unit length associated with the element
e. Notice that the region is homogenous, thus ε is a constant related with the electric
permittivity. From Eq. (6):

∇φe =
3∑

i=1

φei∇αi. (11)

Substituting Eq. (11) into (10) gives

We =
1
2

3∑

i=1

3∑

j=1

εφei

[∫
∇αi · ∇αjdS

]
φej . (12)

If the term in brackets is defined as C
(e)
ij , Eq. (12) can be rewritten in matrix form as

We =
1
2
εφe

tC(e)φe, (13)

where the t denotes the transpose of the matrix. All terms of C(e) are fully detailed
in [7].
The next step is to assemble all such elements in the solution region.

W =
N∑

e=1

We =
1
2
εφtCφ, (14)

where φ is a vector with n values related with the n nodes of the system, and N is
the number of elements. The matrix C is the global coefficient matrix, which is the
assemblage of individual element coefficient matrices and is fully defined in [7].
The Eq. (14) can be easily solved if the free nodes are numbered first and the fixed
nodes last

W =
1
2
ε
[

φf φp

] [
Cff Cfp

Cpf Cpp

] [
φf

φp

]
, (15)

where subscripts f and p, respectively, refer to nodes with free and fixed potentials.
For solving this system of equations the partial derivatives of W with respect to each
nodal value of the potential be zero (∂W/∂φ1 = ∂W/∂φ2 = · · · = ∂W/∂φn = 0. Since
φp is constant, we only differentiate with respect φf .

[
Cff Cfp

] [
φf

φp

]
= 0 ⇒ Cffφf = −Cfpφp. (16)

This equation can be rewritten as A · x = y where x is the unknown. Here, this equa-
tion system is solved applying the Conjugate Gradient Method (CGM) [8]. The CGM
is an iterative approach that basically uses matrix vector multiplications and inner
products (vTv). Therefore, these operators are critical because they are the main core
of the method and the objective of our optimization.
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2.2 FDTD analysis at optical wavelengths

Light propagation is described by means of Maxwell’s time-dependent curl equations:

∂D̃
∂t

=
1√
ε0µ0

(
∇×H− σẼ

)
, (17)

D̃(ω) = ε∗r(ω) · Ẽ, (18)
∂H
∂t

= − 1√
ε0µ0

∇× Ẽ− σm

µ0
H, (19)

where ε0 is the electrical permittivity in vacuum in farads per meter, εr is the medium’s
relative complex permittivity constant, that has been assumed real, µ0 is the magnetic
permeability in vacuum in henrys per meter. The flux density is denoted by D̃ and both,
D̃ and Ẽ are normalized respect to the vacuum impedance η0 =

√
µ0/ε0. The FDTD

algorithm used here is based on the Yee lattice [10]. The electrical field components E
and the magnetic field component H are defined in a bidimensional cell [4, 5, 10]. As a
result, the Maxwell’s curl equations can be discretized and solved by using the central-
difference expressions, for both the time and space derivatives. So, considering TM z

polarization and bidimensional analysis, the Eq. (17) can be reformulated as follows:

D̃z|n+1/2
i,j = D̃z|n−1/2

i,j +
∆t√
ε0µ0

[
Hy|ni+1/2,j −Hy|ni−1/2,j

∆x
−

Hx|ni,j+1/2 −Hx|ni,j+1/2

∆y

]

(20)
where ∆x and ∆y are the spatial and time resolution respectively. In order to simulate
unbounded free space, it must be included a formalism in order to avoid the interfer-
ences produced by outgoing waves reaching the grid simulation limits. For this reason
a simplified version of the Perfectly Matched Layers (PML) developed by Berenger has
been implemented in this work [11].
The PML’s are a good technique for the absorption of electromagnetic waves by means
of a nonphysical absorbing medium adjacent to the outer FDTD mesh boundary. The
basic idea of this formalism is to create a medium that is lossy and minimize the
amount of reflection between vacuum and the PML region. Related with the illu-
mination method, note that the incidence is assumed to be from air to medium. In
connection with the propagation in the FDTD region, it must be said that the source
is introduced along the connecting boundary by using a Total Field/Scattered Field
(TF/SF) algorithm [4], where the linearity of Maxwells’s equations and their decom-
position of the electromagnetic field are assumed: (E;H)Total = (E;H)inc + (E;H)scat.
Where (E;H)inc are the values of the incident field, which are assumed to be known at
all space points in the FDTD grid and also at all time steps. (E;H)scat are the values
of the scattered wave fields, which are unknown and produced by the optical device in
our particular case. This method avoids the computation of the incident wave in the
whole bidimensional grid and only two one-dimensional arrays are needed.
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3 Computational optimization

In this section the approach followed for implementing both methods in an unified
C++ library are shown. The rearrangement of the instructions and memory alignment
strategies are explained for both numerical methods, the FEM and the FDTD methods.
The implementation and the application for GPU computing is also detailed. Whole li-
brary is implemented in C++ object oriented language. This type of language provides
several characteristics such as class definition, overloading or inheritance, that benefit
the development of a complex and big project. Nevertheless, here only classes and over-
loading were considered, since advanced inheritance directives are not already allowed
in Compute Unified Device Architecture (CUDA) [12] and in some cases can reduce
the performance of the application. Fig. 3 shows the class diagram of the library devel-
oped. As can be seen the class Array is common to both numerical methods. This class
implements an one-dimensional array that can store a matrix of dimensions n×m× p
in columns priority. This approach is more convenient because it makes easier physical
memory alignment, since all data is stored in a single column vector. This class also
implements several methods related with arithmetic operations such as matrix vector
multiplication, inner products, dot product, etc. Therefore, these methods can be used
in the FEM and the FDTD.

Figure 3: Class diagram of the C++ library implemented. As can be seen the class
Array is common to FEM and FDTD simulations

3.1 Instruction rearrangement for auto-vectorization in CPU

In this work the software runs under a Unix based platform with an Intel Core i7-
950 Processor with 8MB of cache, a clock speed of 3.06 GHz and 6 GB of global
DDRAM3. The auto-vectorization provided by modern compilers (with the flags O1,
O2 and O3) are based on predict which loops can be automatically vectorized, or
converted into Streaming SIMD (Singe Instruction Multiple Data) Extensions (SSE) [2].
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This vectorization is sensitive to the layout of the loop and the data structures used,
and the dependencies among the data accesses in each iteration and across iterations.
Once the compiler has made such a determination, it can generate vectorized code for
the loop, allowing the application to use the SIMD instructions. With this approach,
applications can theoretically achieve a full 4x performance gain. Although, 2x is the
realized gain on real applications in part because of latency during I/O instructions
and general issues related with the microarchitecture [9].
Therefore, the following strategies have been followed in order to take advantage of this
capability: memory alignment, use of arrays to make data contiguous and padding for
avoiding misalignment.
Due to the fact that matrix vector multiplication A ·b = c is one of the most common
operator in FEM, the optimization of this operation would improve the performance of
the method. For that purpose the matrix A can be redefined as A =

[
a1 . . .an

]
, where

ai is the i-th column of the matrix A. Therefore, the matrix vector multiplication
instructions can be rearranged as c = b1a1 + · · ·+ bnan. This rearrangement improves
the access to contiguous data, reducing the cache misses.
Due to the fact that the maximum number of nonzero elements per rows is 7, the
global coefficient matrix C is sparse. It means that the number of zeros is greater
than the number of nonzeros. For instance, for a matrix with n = 450 the matrix is
98.97 % sparse. Clearly, it makes little sense to store these zero entries. Therefore,
the Compressed Sparse Column (CSC) format was used for storing the values of the
nonzero matrix C by columns. This scheme stores all nonzero values in a single column
vector and uses a couple of pointers for indexing these values in C. Here, the number
of nonzero elements per column was padded for reducing misalignment in memory
accesses. This padding ensures that the number of nonzero elements per column is
multiple of 4.
Regarding FDTD optimization under CPU, it must be said that the same techniques
related with FEM method can be applied. Although, in this case to solve the FDTD
equations the leapfrog algorithm is used [5]. This method is an iterative approach
for solving the electromagnetic fields along each field component, thus a double loop
is needed for compute each field as a function of space. This procedure is repeated
as time simulations are defined. Therefore, each field component can be redefined as
follows:

D̃n+1/2
z = D̃z|n+1/2

i,j =
[

d̃0
z d̃1

z · · · d̃m−1
z

]n+1/2
, (21)

where dj
z = [dz[0] dz[1] · · · dz[n− 1]]T with T denoting the hermitian transpose

matrix. If Eq. (20) is evaluated firstly by columns the performance of the method
is improved due to the fact that the cache misses are minimized and also the spatial
proximity of the data is ensured.
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3.2 GPU implementation

The Fermi architecture, released in the spring of 2010, is NVIDIAs next-generation
GPU. It is the successor of the GT200 architecture, and is the first in which NVIDIA
focussed on general-purpose computation performance. The memory hierarchy is one
of the most distinguish features of the NVIDIA GPUs. The addition of a cache hierar-
chy, consisting of a global L2 cache, as well as a per-Streaming Multiprocessors (SM)
L1 cache gives more flexibility in non-uniform memory accesses. The Fermi GTX470
features 448 Scalar Processors (SPs) organized in 14 SMs. Each SM has 32 Single Pre-
cision (SPs), 16 Double Precision (DPs), and 4 Specieal Functions Units (SFUs). Each
SM also has a block of local memory called shared memory visible to all threads within
a thread block, and a scheduling unit used to schedule warps. The basic computing
unit (called warp) consists of 32 threads. The GPU is capable of swapping warps into
and out of context without any performance overhead. This functionality provides an
important method of hiding memory and instruction latency on the GPU hardware.
To ease the mapping of data to threads, the threads identifiers may be multidimen-
sional and, since a very high number of threads run in parallel, CUDA groups threads
in blocks and grids. One of the crucial requirements to achieve a good performance on
the NVIDIA GPU is to hide the high latency of the global memory ensuring coalesced
memory accesses.
Therefore, to be concerned about the architecture of the GPU is mandatory to be
successful in GPU computing. For the FEM method the operator matrix vector mul-
tiplication has been implemented by means the CUSPARSE Library [13]. The inner
product needed for the product of two vectors is completed by means of the reduction
technique developed in [12].
Regarding FDTD implementation in the GPU it must be said that, a number of blocks
related with the number of columns is invoked by means of the kernels functions and
an array of 128×2 threads are launched per block. Each column of threads works along
one column of the simulation grid as many times as necessary to evaluate Eq. (21)
and those related with the magnetic field. Besides the potential of the CUDA kernel,
it is necessary to divide the whole computation process in several kernels focused on
compute each component of the electromagnetic field. This segmentation improves the
efficient use of the shared memory in the device and also the correct usage of the cache.
This effect is maximized in the new Fermi architecture, where each SM has 64 KB of
on-chip memory that can be configured as 48 KB of Shared memory with 16 KB of L1
cache or as 16 KB of Shared memory with 48 KB of L1 cache. Nonetheless, applications
that do not use Shared memory automatically benefit from the L1 cache, allowing high
performance CUDA programs to be built with minimum time and effort.

4 Results

Our first group of results shown in Fig. 4a-b are the comparison of the electrostatic
potential φ obtained by Eq. (2) and the FEM method. In Fig. 4b the charge density σ
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is shown and it has been obtained taking into account that σ ≈ |∇φ|. As can be seen
a good agreement between numerical an theoretical values is achieved, thus validating
our approach.
Fig. 4c-d illustrates the results for the analysis of the reflectance (∝ |E|2) for normal

incidence of alternating λ0/4 layers of high-(nH = 2.3) and low-index (nL=1.38) di-
electric materials on a transparent substrate (ns=1.52), which scheme is illustrated in
Fig. 1, as a function of the wavelength ratio λ0λ. Although, the FDTD is defined for
transient analysis, a singleton simulation in time domain can provide information that
easily can be transformed into the spectral domain. The parameters of the simulation
are: λ0 = 633 nm, ∆x = 0.32 m, ∆t = 4.74 · 10−6ns, and they were carefully chosen for
ensuring stability of the method and convergency of the solution. The Effective Medium
Theory EMT is related with the characteristic matrix of a layer detailed in [6]. Also
in this case a good agreement between the FDTD method and the matrix approach is
achieved.
The computational performance is given by means of the SpeedUp that is defined as
the ratio between the simulation times of the sequential and parallel codes. Therefore,
Fig 4e-f shows the improvments ratio of using the single CPU auto-vectorized by the
compiler and the GPU implementation. As can be seen in Fig. 4e, the benefit of using
GPU computing grows as the number of elements is increased, but there is a region
in which a single CPU with an auto-vectorized code is a better option. Regarding the
FDTD method, the SpeedUP of the GPU version is always greater than the single CPU
in all cases, because of FDTD algorithm is more suitable to take advantage of the GPU
programming model.

5 Conclusions

We have implemented an unified library for electromagnetic analysis based on the FEM
and FDTD method. The FEM method was used for compare the analytical expressions
obtained for the analysis of the surface curvature of an infinite cylinder in electrostatics,
whereas the FDTD method has been applied in optical wavelengths for analyzing the
reflectance of high-reflecting coatings. In both cases, the analytical and numerical
results are quite similar, thus validating our implementation.
Moreover, both methods have been developed following a set of rules that benefits the
auto-vectorization of modern compilers in order to take advantage of the SSE registers
in the CPU. This optimization has revealed that an improvement near of four is achieved
with this auto-vectorization in both cases. In addition, FEM and FDTD has been also
implemented in a GPU. The benefits of GPU computing in both methods are quite
different, since for FEM analysis the SpeeduUp increases with the number of elements,
whereas for FDTD computation behaves more constant and in all cases is higher than
the CPU auto-vectorized version.
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Figure 4: (a) Analytical and numerical potential for ε = 0.02 and n = 6.(b) Analytical
and numerical charge density for ε = 0.02 and n = 6. (c) and (d) reflectance of the
stack of homogeneous dielectric layers. (e) Comparison of sequential versus CPU auto-
vectorized and GPU codes for FEM method as a function of the number of triangular
elements. (f) Comparison of sequential versus CPU auto-vectorized and GPU codes
for the FDTD method as a function of the number cells considering square grids.
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Abstract

Layout methods for dense and sparse data are often seen as two separate problems
with its own particular techniques. However, they are based on the same basic concepts.
This paper studies how to integrate automatic data-layout and partition techniques for
both dense and sparse data structures. In particular, we show how to include support
for sparse matrices or graphs in Hitmap, a library for hierarchical-tiling and automatic
mapping of arrays. The paper shows that is possible to offer a unique interface to work
with both dense and sparse data structures, without losing significant performance.
Thus, the programmer can use a single and homogeneous programing style, reducing
the development effort and simplifying the use of sparse data structures in parallel
computations.

Key words: data partition, layouts, distributed computing, sparse.

1 Introduction

In parallel applications the data distribution and layout is a key issue that can determine
the performance and scalability. Regarding the type data structures, dense or sparse, the
data distribution problem is treated differently. On the one hand, there are many languages
with primitives and tools to deal with data locality and/or distribution, such as HPF [11],
OpenMP [4], or UPC [2]. On the other hand, sparse structure support are not usually
integrated in the programming languages. However, a wide range of important problems
are based in unstructured graph structures instead of dense arrays. The common approach
to manage sparse data is using a library. We can find a high number of libraries for
partitioning graphs, meshes and other sparse structures, such as Metis [10], Scotch [12], or
Jostle [13].
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There are some proposals that use an unique representation for different domains.
Chapel, a new parallel language, uses a representation of indexes-set called a domain [3].
The Chapel’s proposal aims to support domains for dense, sparse, strided, associative, and
unstructured data aggregates. However, there is not yet a full nor efficient implementation.

Another previous proposal [9] have evolved into the Trasgo system and the Hitmap
library. Hitmap is a basic tool in the back-end of the Trasgo compilation system [8]. Trasgo
proposes the use of a global-view approach, with flexible and explicit mechanisms to deal
with locality. The code generated by Trasgo uses the Hitmap library to perform a highly
efficient data distribution and aggregated communications.

In this paper, we present a new approach to hide the internal details of dense and sparse
data structure, using a common interface to deal with both types of data. Combining
the dense and sparse manipulation under a common interface has great advantages. It
simplifies programming by hiding the partition details in reusable and flexible plug-ins.
The programmer focus on the algorithm parallel implementation without thinking in terms
of the underlying data structure. Coding a parallel application follows the same basic
pattern, using the same API for the same functionalities. The implementaton of Hitmap
abstractions is focused on further native compiler optimizations. Our experimental results
show that using Hitmap simplifies programing with a negligible impact on performance.

This paper is organized as follows: Section 2 provides a brief overview of the Hitmap
library. Section 3 introduces the benchmark that illustrates our proposal and describes its
different implementations. Section 4 contains the experimental work. Finally, the paper
ends with the conclusions at Section 5.

2 Hitmap library

Hitmap is a highly-efficient library for hierarchical tiling and mapping of arrays [6, 7].
It aims to simplify parallel programming, providing functionalities to create, manipulate,
distribute, and communicate tiles and hierarchies of tiles. In this section we will present
the basic ideas of the Hitmap library needed for the further discussion.

Hitmap library supports functionalities to: (1) Generate a virtual topology structure;
(2) mapping the data to the different processor with chosen load-balancing techniques; (3)
automatically determine inactive processors at any stage of the computation; (4) identify
the neighbor processors to use in communications; and (5) build communication patterns
to be reused across algorithm iterations.

Hitmap is designed with an object-oriented approach, although it is implemented in
C language. Fig. 1 shows a class diagram of the library architecture. The classes are
implemented as C structures with associated functions. A Signature, represented by a
HitSig object, is a selection of array indexes in a one-dimensional domain. Hitmap uses a
Shape object to represents a domain of data. In the previous Hitmap version, this object

@CMMSE                                 Page 533 of 1703                                 ISBN: 978-84-614-6167-7
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Figure 1: Hitmap new architecture.

was composed by HitSig objects, and it represented a contiguous or stride subset of indexes
in a multidimensional domain. The new Hitmap version uses inheritance to integrate shape
objects that represent sparse data domains. A Tile is an array which domain is defined by
a shape. Hitmap has functionalities to dynamically declare selections of tiles to construct
tile hierarchies. A tile may be defined without allocated memory allowing to declare and
partition arrays before assigning memory to them, finally allocating only the parts mapped
to a given processing unit.

Hitmap provides programming tools to apply different data-partition and layout tech-
niques over automatically generated virtual topologies, hidding the details of the physical
processors, topology, and mapping. Both the virtual topology generation and the parti-
tion techniques are integrated in the library as plug-in modules extending abstract classes.
Programmers may include their own new techniques.

The virtual topology techniques are invoked by name with no extra parameters. They
use the internal information of the target system. The result is a HitTopology object which
can be queried and it is used as a parameter for data partition and layout. The layout plug-
in modules allow to compute a partition of a shape domain over a virtual topology. The
result of a layout plug-in is a HitLayout object that contains information about the local
part of the domain mapped to the current processor, the neighbor relations, and methods
to return or compute on the fly all the information needed to exchange data. The plug-ins
encapsulate the computations needed to deal with physical topology and data location at

@CMMSE                                 Page 534 of 1703                                 ISBN: 978-84-614-6167-7



Integrating dense and sparse data partitioning

all the mapping stages; details which are usually hardwired in the code by the programmer.
The combination of these plug-in systems allows the programmer to easily create abstract
codes which also simplifies debugging operations with any kind of data structures.

Finally, an information exchange operation can be specified creating a HitCom object.
The constructor receives a HitShape to specify the data to be moved and a HitLayout object
with the mapping and topology information. The result is a HitCom object with all the
information needed to execute the data exchange as many times as required. Moreover,
several HitCom objects can be composed in reusable communications patterns represented
by HitPattern objects. The library is built on top of the MPI communication library, for
portable communication and synchronization on different architectures. Hitmap internally
exploits several MPI techniques that increase performance.

2.1 Hitmap Sparse support

The previous version of the Hitmap library was oriented to manipulate and communicate
tiles of data with contiguous domains, or non-contiguous but regular index selections. In
this new version of the library, we have extended the Hitmap functionalities to support
sparse data structures. This allows the programmer to work with graph or sparse matrices
using a similar API, and a homogeneous programming methodology. To support the ma-
nipulation, mapping, and communication of these new data structures, we need to make
several structural changes in the library.

The first change is related to the data domains represented by the HitShape class. In the
previous version of the library, a HitShape object was composed by several HitSig objects,
to represent a multidimensional selection of indexes. We have transformed the HitShape
class into an interface, with two different implementations, one for the old dense domain
and another for the new sparse domain (see Fig. 1).

The HitSparseShape class encapsulate a sparse matrix format to represent the sparse
data domain. The first sparse matrix format that we have implemented is Compressed
Sparse Row (CSR). It is a well-known and widely used format for sparse data. CSR is
simple; it does not make any assumptions about the matrix structure and it has minimal
storage requirements [1]. There are other formats that can offer a better performance
in some particular applications. It is possible to support any of these formats with new
implementations of the proposed interface.

To illustrate how to develop new layout plug-ins that make specific partitions and
mapping techniques for sparse domains, we have implemented an example HitLayout plug-
in. We have integrated one of the graph partition techniques of the Metis library [10].
The plug-in receives a HitShape with the sparse domain, and it calls the Metis library to
compute the local part. Metis also uses the CSR format. Thus, the plug-in needs to apply a
minimal data-format transformation. With the result returned by Metis, the plug-in creates
a new HitShape with the local graph part. The resulting HitLayout object can optionally

@CMMSE                                 Page 535 of 1703                                 ISBN: 978-84-614-6167-7
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contain lists with vertices belonging to other processors. This information can be used to
find the owner of a given vertex and to exchange data between processors.

To implement simple FDM (Finite Differences Methods) applications, we have included
code to automatically compute the list of vertices in other processors which are adjacent to
the local vertices. This example plug-in can be further extended to include more neighbors
information useful for more complex FEM (Finite Elements Methods) applications.

The tiles constructor receives a HitShape object. There is a method to allocate the
memory for the associated data. The tile constructor internally checks the type of shape. For
sparse shapes we allocate memory for the vertices. Extending the current implementation
to store weight information for the edges is straightforward. We have also added macros
and functions to easily access data and iterate across the vertices values.

In some applications, a processor needs the values of neighbor vertices mapped to other
processors. The new version of the HitCom object supports a new global communication
type. It is designed to exchange the data of adjacent vertices assigned to different processors.
The HitCom object uses the internal information calculated in the layout to determine
which vertices should be sent to any other processor, and which vertices should the current
processor receive from any other processor.

Finally, other functionalities have been added to the library to facilitate the sparse data
management. For example, functions for input of sparse data, like reading the Harwell-
Boeing format or plain CSR format.

3 Neighbor-vertices synchronization benchmark

In this section we discuss the methodology followed to create a benchmark to test the
efficiency of our implementation. We select a simple problem that involves a computation
over a sparse data structure.

We extend the idea of neighbor synchronization in FDM applications on dense matri-
ces to civil engineering structural graphs, see e.g. [14]. The application performs several
iterations of a graph update operation. It traverses the graph nodes, updating each node
value with the result of a function on the neighbor nodes values. To simulate the load of
a real scientific application, we write a dummy loop, which issues 10 times a mathematical
library operation (sin). We use as benchmarks different graphs from the Pothen group of
the University of Florida Sparse Matrix Collection [5].

The codes have been run on Geopar, an Intel S7000FC4URE server, equipped with
four quad-core Intel Xeon MPE7310 processors at 1.6GHz and 32GB of RAM. The MPI
implementation used is MPICH2, compiled with a backend that exploits shared memory
for communications if available in the target system.
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3.1 C implementation

We have first developed a serial C implementation of the benchmark, to use as the reference
to measure speedups and to verify the results of the parallel versions.

Our first parallel version includes the code to compute the data distribution manually.
This highly-tuned and efficient implementation is based on Metis library to calculate the
partition of the graph, and MPI to communicate the data between processors. The Hitmap
library implementation is also based on the same tools. Thus, the comparison between
performance results of a Hitmap parallel version and the manual one will show any potential
inefficiency introduced in the design or implementation of Hitmap.

The manual parallel version has the following stages: (1) A sparse graph file is read;
(2) the data partition is calculated using the Metis library; (3) each processor initializes
the values of the local vertices using a random function; (4) a loop performs 10,000 itera-
tions of the main computation, including updating the values of each local vertex, and the
communication of the values for neighbor vertices to other processors; (6) the final result is
checked with the help of a hash function.

3.2 Hitmap implementation

Using the manual C implementation as a starting point, we have developed a Hitmap version
of the program. The Hitmap implementation uses the main computation and other sequen-
tial parts of the previous one, adapting them to work with Hitmap functions for accessing
data structures. A new layout plug-in module has been developed to apply the Metis data
partition to the Hitmap internal sparse-shape structures. Data-layout and communications
have been generated using Hitmap functionalities. In this section we discuss the Hitmap
techniques needed to automatically compute the data-layout, allocate the proper part of
the graph and communicate the neighbor vertices values.

In Fig. 2 we show the main function of the Hitmap code. The first line initializes the
Hitmap environment. Line 5 uses a function to read a graph stored in the file system,
and returns a shape object. Then, a virtual topology of processors that uses the internal
information available about the real topology is created transparently to the programmer
with a single call.

In line 8, the data-layout is generated with a single Hitmap call. The layout parameters
are: (a) the layout plug-in name, (b) the virtual topology of processors generated previously,
and (c) the shape with the domain to distribute. The result is a HitLayout object, containing
the shape assigned to the local processor and information about the neighbors.

In line 11, we obtain the shape of the local part of the graph with only the local vertices.
On the following line, we use the layout to obtain an extended shape with local vertices
plus the neighbor vertices from other processors. This is the equivalent to the shape of a
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1 // Read the global graph.

2 HitShape shape_global = hit_shapeHBRead("graph_file.rb");

3

4 // Create the topologoy object.

5 HitTopology topo = hit_topology(plug_topPlain);

6

7 // Distribute the graph among the processors.

8 HitLayout lay = hit_layout(plug_layMetis,topo,&shape_global);

9

10 // Get the shapes for the local and local extended graphs.

11 HitShape local_shape = hit_layShape(lay);

12 HitShape ext_shape = hit_layExtendedShape(lay);

13

14 // Allocate memory for the graph.

15 HitTile_double graph;

16 hit_tileDomainShapeAlloc(&graph,sizeof(double),HIT_NONHIERARCHICAL,ext_shape);

17

18 // Init the local graph.

19 init_graph(graph, shape_global);

20

21 // Create the communicator and send the initial values of the neighbor vertices.

22 HitCom com = hit_comSparseUpdate(lay, &graph, HIT_DOUBLE);

23 hit_comDo(&com);

24

25 int i;

26 // Update loop.

27 for(i=0; i<ITERATIONS; i++){

28 // Update the graph.

29 synchronization_iteration(local_shape,ext_shape,&graph);

30 // Communication.

31 hit_comDo(&com);

32 }

Figure 2: Kernel code of the Hitmap version.
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1 int vertex, edge;

2

3 // Iterate through all the vertices.

4 hit_sparseShapeVertexIterator(vertex,local_shape){

5

6 // Set new value to 0.

7 double value = 0;

8

9 hit_sparseShapeEdgeIterator(edge,ext_shape,vertex){

10

11 // Get the neighbor.

12 int neighbor = hit_sparseShapeEdgeTarget(ext_shape,edge);

13 // Add its contribution.

14 value += hit_tileElemAt(1,graph,neighbor);

15 }

16

17 // Dummy workload = 10.

18 int i;

19 for(i=0; i<WORKLOAD; i++){

20 value = sin(value+1);

21 }

22

23 int nedge = hit_sparseShapeNumberEdgesFromVertix(ext_shape,vertex);

24

25 // Update the value of the vertex.

26 hit_tileElemAt(1,graph_aux,vertex) = (value / nedge);

27 }

Figure 3: Function that serially updates the local part of the graph.
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Figure 4: Speedup in Geopar.

tile with a shadow region in a FDM solver for dense matrices. This shape is used to declare
and allocate the local tile with double elements (line 16).

In line 22, a HitCom object is created to contain the information needed to issue
the communications that will update the neighbor vertices values. Data marshaling and
unmarshaling is automatized by the communications objects when the communication is
invocated (see lines 23 and 31).

Lines 25 to 32 contain the main iteration loop to update local nodes values and reissue
communications with a single Hitmap call thar reuses the HitCom object previously defined.

Fig. 3 show the code of the function that updates the local values of the graph. It
uses two iterators defined in the library. The first one traverses the local vertices (line 4),
and the second one iterates over the edges to get their neighbor vertices (line 9). Each
neighbor-vertex value contributes to the new value of the local vertex that is set in line 20.

4 Experimental results

In this section we compare the performance obtained with the benchmark described in the
previous section. We have tested the benchmark with different graphs from the Pothen
group of the University of Florida Sparse Matrix Collection [5]. In this section, we discuss
the results from two representative cases in the group collection: The bodyy6 graph with
19366 vertices and pwt graph with 36519 vertices. Fig. 4 shows the speedup for both manual
C and Hitmap benchmark implementations. There is no significant difference between the
two implementations in terms of performance. Therefore, the abstractions introduced by
Hitmap (such as the common interface for dense and sparse data structures, or the adapta-
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tion of the partition technique in the plug-in module system), do not lead to performance
reduction comparing with the manual version.

Fig. 5 shows a comparison of the Hitmap version with the C version in terms of lines
of code. We distinguish lines devoted to sequential computation, declarations, parallelism
(data layouts and communications), and other non-essential lines (input-output, etc). Tak-
ing into account only essential lines, our results show that the use of Hitmap library leads to
a 72% reduction on the total number of code lines with respect to C version. Regarding lines
devoted specifically to parallelism, the percentage of reduction is 78.7%. We have also use
the cyclomatic complexity metric to compare the codes. The total cyclomatic complexity
of the manual version is 74 whereas the Hitmap versions has a total value of 17. The reason
for the reduction of complexity in the Hitmap version is that Hitmap greatly simplifies the
programmer effort for data distribution and communication, compared with the equivalent
code to manually calculate the information needed in the MPI routines.

5 Conclusions

This paper studies how to integrate the support for dense and sparse data structures in
an automatic data partitioning parallel library. We have add sparse structure support in
Hitmap, a highly-efficient modular library for hierarchical tiling and mapping of arrays. We
have illustrated how to use the library to implement a simple graph algorithm. We have
also measured the efficiency of the library in terms of performance comparing with a manual
implementation. The results show that the abstraction introduced by the library does not
reduce performance. We also measure the code complexity in terms of lines of code and
cyclomatic complexity. Our results show that it is possible to use a common interface for
both dense and sparse data structures with a homogeneous coding style, and reducing the
associated development cost comparing with manually coding the data structure manage-
ment, its partition, and the communication of locally mapped subdomains when needed. As
it is shown by the experimental results, this can be done without sacrificing performance.

Our ongoing work includes the integration of new partition techniques in the Hitmap
framework. For example, there are other libraries that could be used instead of the Metis
library, with different partitioning properties. We are also working on alternative imple-
mentations for the communication classes, that are currently built on top of the MPI com-
munication library, to better exploit different low-level parallel tools and models.
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Javier Fresno, Arturo González-Escribano, Diego R. Llanos

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

C Hitmap

Li
ne

s 
O

f C
od

e

Implementation

Lines Of Code

Seq. Computation
Declaration
Parallelism

Non essential

Figure 5: Comparison of the lines of code.

with the support of the European Commission - Capacities Area - Research Infrastructures
Initiative.

References

[1] Richard Barrett, Michael Berry, Tony. F. Chan, James Demmel, June M. Donato, Jack
Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der Vorst.
Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods,
2nd Edition, volume 64. SIAM, July 1995.

[2] William W. Carlson, Jesse M. Draper, David E. Culler, Kathy Yelick, Eugene Brooks,
and Karen Warren. Introduction to UPC and Language Specification, 1999.

[3] Bradford L Chamberlain, Steven J Deitz, David Iten, and Sung-Eun Choi. User-defined
distributions and layouts in chapel: philosophy and framework. In Proceedings of the
2nd USENIX conference on Hot topics in parallelism, HotPar’10, page 12, Berkeley,
CA, USA, 2010. USENIX Association.

[4] Robit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and
Ramesh Menon. Parallel programming in OpenMP. Morgan Kaufmann, 1 edition,
2001.

[5] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection.
To appear in ACM Transactions on Mathematical Software.
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Abstract

In this work we analyze the behavior of some parallel algorithms when comput-
ing the two dimensional discrete wavelet transform (2D-DWT) using both OpenMP
over a multicore platform and CUDA (Compute Unified Device Architecture) over
a GPU (Graphics Processing Unit). The proposed algorithms are based on both
regular filter-bank convolution and lifting transform. Finally we will also compare
our algorithms against other recently proposed algorithms.

Key words: CUDA, OpenMP, wavelet transform, image coding, parallel algo-

rithms

Introduction

During the last decade, several image compression schemes emerged in order to over-
come the known limitations of block-based algorithms that use the Discrete Cosine
Transform (DCT) [1], the most widely used compression technique at that moment.
Some of these alternative proposals were based on more complex techniques, like vec-
tor quantization and fractal image coding, while others simply proposed the use of a
different and more suitable mathematical transform, the Discrete Wavelet Transform
(DWT). Wavelet transforms have proven to be very powerful tools for image compres-
sion and many state-of-the-art image codecs, including the JPEG2000 image coding
standard, employ a wavelet transform in their algorithms (see for example [2, 3])

Unfortunately, despite the benefits that the wavelet transform entails, some other
problems are introduced. Wavelet-based image processing systems are typically imple-
mented by memory-intensive algorithms, with higher execution time than other trans-
forms. In the usual DWT implementation [4], the image decomposition is computed by
means of convolution filtering process and so, its complexity rises as the filter length
increases. Moreover, in the regular DWT computation, the image is transformed at
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every decomposition level first row by row and then column by column, and hence it
must be kept entirely in memory. These problems are not as noticeable in other image
transforms as in the DWT. For example, when the DCT is used for image compression,
it is applied in small block sizes, and thus a large amount of memory is not specifically
needed for the transformation process.

The lifting scheme [5, 6] is probably the best-known algorithm to calculate the
wavelet transform in a more efficient way. Since it uses less filter coefficients than the
equivalent convolution filter, it provides a faster implementation of the DWT. This
scheme also provides memory reduction through in-place computation of wavelet co-
efficients. However, if in-place computation is applied, the low-frequency coefficients
are interleaved with the wavelet coefficients, and the subsequent wavelet processing can
be non-optimal (specially in cache-based systems), requiring a more careful process.
We can overcome this problem with coefficient reordering, at the cost of increasing the
complexity of the algorithm.

Other fast wavelet transform algorithms has been proposed in order to reduce both
memory requirements and complexity, like line-based [7] and block-based [8] wavelet
transform approaches that performs wavelet transformation at image line or block level.
These approaches increases flexibility when applying wavelet transform and significantly
reduce the memory requirements. At the other hand, in [9], authors present a novel
way of computing the wavelet transform called Symmetric Mask-based Discrete Wavelet
Transform (SMDWT). This new wavelet transform is computed as a matrix convolu-
tion, using four matrix masks, one for each subband type, that are built in order to
reduce the repetitive computations found in the classical convolution approach. In this
scheme, the 2D-DWT is performed in only one pass, avoiding multiple-layer transpose
decomposition operations. One of the most interesting advantages of this method is
that the computation of each wavelet subband is completely independent.

When designing fast wavelet-based image/video encoders, one of the most com-
putational intensive tasks is the 2D-DWT, which in some cases may take up between
30% and 50% of the overall encoding time (depending of image size and the number
of decompositions levels). So, it is very important to reduce 2D-DWT computation
time to develope fast real-time image/video encoders. To do that, we will take profit of
the available hardware resources that are present in current off-the-shelf computers, in
particular multicore processing and GPU co-processing units.

In this paper, we perform optimized parallel algorithms based on the methods
introduced in [4] and [5]. The main goals of the performed optimizations are to obtain
low memory requirements as well as good computational behavior, exploiting multicore
architectures, i.e. shared memory platform. After that, we will apply the same scheme
introduced in the multicore algorithm to develop CUDA-based DWT algorithms on
GPU. Algorithms developed on Graphics Processing Units (GPU) require an efficient
use of memory to exploit the GPU architecture in an efficient way. The developed
algorithms are focused in the use of the GPU shared memory. We have also compared
the CUDA based algorithms developed with the algorithms proposed in [10], in both
computation performance and memory requirements.
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1 Discrete Wavelet Transform (DWT)

DWT is a multiresolution decomposition scheme for input signals, see detailed descrip-
tion in [4]. The original signals are firstly decomposed into two frecuency subbands,
low-frequency (low-pass) subband and high-frequency (high-pass) subband. For the
classical DWT, the forward decomposition of a signal is implemented by a low-pass dig-
ital filter H and a high-pass digital filter G. Both of digital filters are derived using the
scaling function Φ(t) and the corresponding wavelets Ψ(t). The system downsamples
the signal to half of the filtered results in decomposition process. If the four-tap and
non-recursive FIR filters with length L are considered, the transfer functions of H and
G can be represented as follows:

H(z) = h0 + h1z
−1 + h2z

−2 + h3z
−3 (1)

G(z) = g0 + g1z
−1 + g2z

−2 + g3z
−3 (2)

1.1 Lifting-based Wavelet Transform (LDWT)

One of the drawbacks of the DWT is that it doubles the memory requirements because
it is implemented as a filter. A proposal that reduces the amount of memory needed for
the computation of the 1D DWT is the lifting scheme [5]. Despite this disadvantage,
the main benefit of this scheme is the reduction in the number of operations needed
to perform the wavelet transform if compared with the usual filtering algorithm (also
known as convolution algorithm). The order of this reduction depends on the type of
wavelet transform, as shown in [11].

The lifting scheme implements the DWT decomposition as an alternative algorithm
to the classical filtering algorithm introduced in the previous section. In the filtering
algorithm, in-place processing is not possible because each input sample is required
as incoming data for the computation of its neighbor coefficients. Therefore, an extra
array is needed to store the resulting coefficients, doubling the memory requirements.
On the other hand, the lifting scheme provides in-place computation of the wavelet
coefficients and hence, it does not need extra memory to store the resulting coefficients.
In addition, the lifting scheme can be computed on an odd set of samples, while the
regular transform requires the number of input samples to be even.

The Euclidean algorithm can be used to factorize the poly-phase matrix of a DWT
filter into a sequence of alternating upper and lower triangular matrices. In 3, the
variables h(z) and g(z) denote the low-pass and high-pass inverse filters, respectively,
which can be divided into even and odd parts to form a poly-phase matrix P (z) as in
4.

g (z) = ge
(
z2
)
+ z−1go

(
z2
)
, h (z) = he

(
z2
)
+ z−1go

(
z2
)

(3)

P (z) =

(
he (z) ge (z)
ho (z) go (z)

)
(4)

Using the Euclidean algorithm, it recursively finds the greatest common divisors of
the even and odd parts of the original filters. Since h(z) and g(z) form a complementary
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Figure 1: General diagram for a wavelet decomposition using the lifting scheme.

filter pair, P (z) can be factorized into three lifting steps as below.

P (z) =
m∏
i=1

(
1 si (z)
0 1

)(
1 0

ti (z) 1

)(
k 0
0 1/k

)
(5)

where si(z) and ti(z) denote the Laurent polynomials corresponding to prediction and
update steps, respectively, and k is a nonzero constant.

The whole process consists of a first lazy transform, one or several prediction and
update steps, and coefficient normalization. In the lazy transform, the input samples
are split into two data sets, one with the even samples and the other one with the odd
ones. Thus, if we consider {Xi} = {Φn,p} the input samples at a level n, we define:

{
s0i
}
= {X2i} (6){

d0i
}
= {X2i+1} (7)

Then, in a prediction step (sometimes called dual lifting), each sample in
{
d0i
}

is re-
placed by the error committed in the prediction of that sample from the samples in{
s0i
}
:

d1i = d0i − P
({

s0i
})

(8)

while in an update step (also known as primal lifting), each sample in the set
{
s0i
}

is
updated by

{
d1i
}

as:

s1i = s0i + U
({

d1i
})

(9)

After m successive prediction and update steps, the final scaling and wavelet coefficients
are achieved as follows:

{Φn+1,p} = K0 × {smi } (10)

{Ψn+1,p} = K1 × {dmi } (11)

A special case of wavelet filter is the Daubechies 9/7 filter. This filter has been
widely used in image compression [3, 12], and it has been included in the JPEG2000
standard [2]. In this paper, all the DWT algorithms will be focused on this filter because
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Figure 2: 2D SMDWT structure.

of its goodness behavior. The coefficients of the Daubechies 9/7 decomposition filters,
h[n] and g[n] are:

h [n] = 0.026749,−0.016864,−0.078223, 0.266864, 0.602949,

0.266864,−0.078223,−0.016864, 0.026749

g [n] = 0.091272,−0.057544,−0.591272, 1.115087,

− 0.591272,−0.057544, 0.091272

while the result of the lifting-based decomposition is:

P (z) =

(
1 α

(
1 + z−1

)
0 1

)(
1 0

β (1 + z) 1

)(
1 γ

(
1 + z−1

)
0 1

)(
1 0

δ (1 + z) 1

)(
ζ 0
0 1/ζ

)
(12)

where α = −1.586134342,β = −0.052980118,γ = 0.882911075,δ = 0.443506852 and
ζ = 1.230174105.

1.2 Symmetric Mask-based Wavelet Transform (SMDWT)

In [9], authors present a novel way of computing the wavelet transform trying to re-
duce the computational complexity for the wavelet filtering process. The Symmetric
Mask-based Discrete Wavelet Transform (SMDWT) is performed as a matrix convolu-
tion, using four matrix derived from the 2D DWT of 9/7 floating point lifting-based
coefficients (see Figure 2). The 2D LDWT lifting scheme require vertical and horizon-
tal 1D LDWT calculations, and each of the 1D LDWT requires four steps: splitting,
prediction, updating, and scaling. Conversely, the four subband 2D SMDWT can be
yielded using four independent matrices of size 7× 7, 7× 9, 9× 7 and 9× 9 for the 9/7
filter.

2 Multicore Wavelet Transform

We have used the regular filter-bank convolution based on Daubechies 9/7 filter, in order
to develop the optimized parallel 2D discrete wavelet transform (DWT), proposed in
[4]. On the other hand, we have used the lifting scheme proposed by Sweldens in [5], in
order to develop the optimized parallel 2D lifting wavelet transform (LWT). As we have
previously mentioned, we require the image size memory space to store the computed
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Image Size Cores Extra memory size Image Size Cores Extra memory size
Conv. Lifting Conv. Lifting

1 520 1024 1 2568 4608
512 x 512 2 1040 2048 2048 x 2560 2 5136 9216

4 2080 4096 4 10272 18432
1 2056 4096 1 4104 8192

2048 x 2048 2 4112 8192 4096 x 4096 2 8208 16384
4 8224 16384 4 16416 32768

Table 1: Amount of extra memory size using four-tap filter (pixel size).

wavelet coefficients. In the convolution based wavelet transform, an extra memory space
to store the current image row/column is required. On the other hand, in lifting wavelet
based transform, we need the memory space to store a copy of both one row and one
column. Remark that, the SMDWT algorithm requires twice the image size space to
perform the four mask filtering.

We have used OpenMP [13] paradigm in order to develop the parallel algorithms.
The multicore platform used is an Intel Core 2 Quad Q6600 2.4 GHz, with 4 cores,
where a block of rows and a block of columns has been assigned to one process in each
core to compute the wavelet transform, therefore each process (or core) requires the
above mentioned amount of extra memory. Remark that the objective of this buffer
is to compute the wavelet transform, so we could store the final wavelet coefficients in
the same memory space occupied by the image, avoiding in this manner to double the
memory requirements. Table 1 shows the amount of extra memory in pixels (i.e. floats)
used by each algorithm depending on the number of cores used. As it can be seen, the
worst case is for the smallest image, requiring less than 2% of extra memory overhead,
being for the rest of the images less than 1%. As mentioned, the extra memory size
needed by the SMDWT algorithm is the size of the image. Note that we work with
grayscale images where a pixel is represented by a float, therefore the data shown in
Table 1 are pixels or floats.

The operating system used by the multicore platform is Ubuntu 9.04 (Jaunty Jack-
alope) for 64 bit systems. We have used the GNU compiler gcc included in gcc 4.3.3.
Compiler flags used to exploit the multicore architecture are: “-O3 -m64 -fopenmp”,
while the ones used to avoid multicore architecture are: “-O3 -m64”.

We have considered two scenarios for the parallel algorithms. In the first one,
we assign a set of consecutive rows/columns to each processor, while in the second
scenario the compiler perform the distribution of computational load. We will not
present different results for both scenarios because the computational times obtained
are quite similar.

We have tuned the algorithms to obtain the best performance on multicore archi-
tectures, taking into account that these algorithms are characterized by an intensive use
of memory. In figure 3 we show the computational times obtained for both convolution-
based and lifting wavelet transform, for different images sizes: 512× 512, 2048× 2048,
and 4096× 4096 pixels. Although the memory access bottleneck is the major obstacle
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Figure 3: Computational times for multicore fast wavelet transform algorithms.

to obtain ideal efficiencies, in Figure 3 we can observe that the computational time
decreases, except for small images, as we increase the number of processes. Note that
each core executes only one process. Working with small pictures do not achieve good
performance due to the relationship between the computational load and the memory
accesses degrading the inherent parallelism. Note that each column and/or row has
few elements, hence the work performed over each row or column stored in the buffer
is not significant. If we calculate efficiency between multicores algorithms, we obtain
an efficiency closely ideal one using 2 cores, while we obtain a good efficiency using 4
cores. Note that the memory access bottleneck get worse as the number of cores increase
because the number of entities that use the memory is greater.

Finally, we have compared our algorithms with a recent and not classical imple-
mentation of the fast DWT called “symmetric mask-based DWT” (SMDWT) [9]. We
have developed the method introduced in [9] and also, we have parallelized its reference
algorithm. In Figure 4 we present a comparison between convolution, lifting and the
SMDWT algorithm, using two and four cores. As it can be seen, our convolution and
lifting implementations are 2.5 times as fast as the SMDWT algorithm. Note that the
authors in [9] propose the SMDWT algorithm to improve the computational complexity
of the lifting scheme and also for the ability of the SMDWT algorithm to compute the
four subbands (LL, LH, HL and HH) independently.

Some applications only require computing the LL subband, in Figure 5 we present
the same comparison as the one in Figure 4, only computing the LL subband when
SMDWT algorithm is used, and computing all subbands in our algorithms. Note that
the behavior of our algorithms computing the four subbands is similar to the SMDWT
behavior only computing the LL subband.

3 CUDA GPU-based Wavelet Transform Algorithm

In the previous section, we have confirmed that our shared memory parallel algorithm for
computing the 2D DWT presents a good behavior. Moreover, we question in this section
if better performance can be achieved with other architecture. The Graphical Processor
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Figure 4: Comparison between Convolution, Lifting and SMDWT algorithms.
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Figure 5: Comparison between Convolution, Lifting and LL subband computation using
SMDWT algorithm.

Unit (GPU) architecture is based on a set of multiprocessor units called streaming
multiprocessors (SM), containing each one a set of processor cores called streaming
processors (SP). CUDA is a heterogeneous computing model that involves both the
CPU and the GPU. In the CUDA parallel programming model [14, 15], an application
consists of a sequential host program, that may execute parallel programs known as
kernels on a parallel device, i.e. a GPU. Note that the CPU could be a multicore
processor running an OpenMP model program, but in this case only one of the available
cores can call a kernel, i.e. kernel calls must be serialized, therefore we do not use both
models in an single algorithm. A kernel is an Single Program Multiple Data (SPMD)
computation that is executed using a potentially large number of parallel threads. Each
thread runs the same scalar sequential program. The programmer organizes the threads
of a kernel into a grid of thread blocks. The threads of a given block can cooperate
among themselves using a barrier synchronization. The main kind of memory units
available in GPUs are: the global memory, which has the highest latency; the constant
and the texture memory units, which are read only units and, the shared memory and
the registers, which both are on-chip memory units. The shared memory is owned by a
block while the registers are owned by a thread.

So, in order to implement a GPU-based algorithm with the same scheme that the
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one presented in Section 2, the key element is the use of shared memory to store the
buffer that contains a copy of the working data row, and the constant memory to
store the filter taps h[n] and g[n]. We call each CUDA kernel with a one-dimensional
number of blocks NBLOCKS and a one-dimensional number of threads NTHREADS.
The number of blocks (NBLOCKS) must be equal to or greater than the maximum size
of a row or a column. Each block computes a single row or a single column, the copy of
the row or column to be computed is stored in the GPU shared memory. Remark that
the available size of shared memory in a GTX 280 is 16KB.

Note that, one of the main goals, in the proposed CUDA based methods is to
minimize memory requirements, so we will store the resulting wavelet coefficients in the
image memory space. On the other hand, the methods included in the CUDA SDK
[10] use three times the image size. These methods perform two steps; in the first
step, compute and store, the convolution of rows in GPU global memory, and, in the
second step, compute and store the convolution of columns. Remark that, the memory
requirements of these methods can be easily reduced using the image memory space to
store the wavelet coefficients of the second step. Nevertheless, the memory requirements,
using this improvement, is twice the size of the image. We have developed two methods
based on the naive implementation described in the SDK (see [10, 16]), the first one
using global memory (CUDA-Mem 9/7 ), and the second one using texture memory
(CUDA-Text 9/7 ).

As proposed in [10], the behavior of these methods computed over a GPU can be
improved optimizing the memory coalescence. In order to optimize the memory coa-
lescence, separable filters must be used. Using a separable filter allows the convolution
of rows and convolution of columns to be computed separately. Based on the proper-
ties of separable filters, we have developed the method CUDA-Sep 9/7, which uses the
Daubechies 9/7 filter. The expected improvement should be based on (a) the reduction
of the times the pixels are read, (2) on coalescing access to memory, (3) high memory
throughput, and (4) the reduction of the number of idle threads (see [10]). As we have
said, the convolution is separated in two stages, 1) the rows stage and 2) the columns
stage; each stage is separated into two sub-stages, a) the first sub-stage loads the data
from global memory into shared memory, and b) the second sub-stage processes the
data and stores the results in the global memory. In the computation stage, as it can
be seen in Figure 6, each thread loops over a width of twice the filter radius plus 1
(8 in rows and 6 in columns for Daubechies 9/7 filter), multiplying each pixel by the
corresponding filter tap stored in the constant memory. Each thread in a half-warp (a
warp is composed by 32 CUDA threads) accesses to the same constant memory address
and hence there is no penalty due to constant memory bank conflicts. Also, consecutive
threads always access consecutive shared memory addresses so no shared memory bank
conflicts occur as well, see [10] for a detailed description.

In Figure 7, we compare execution times to obtain the 2D DWT using the four
proposed CUDA based algorithms. The four algorithms considered are: the algorithm
based on convolution described in Section 1 (labeled CUDA-Conv 9/7 ); the naive afore-
mentioned algorithms described in the SDK, the first one using global memory (labeled
as CUDA-Mem 9/7 ) and the second one using texture memory (labeled as CUDA-
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Figure 6: Shared Memory for separable filter 9/7
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Figure 7: 2D DWT computation over GPUs with CUDA

Text 9/7 ); and the algorithm developed to exploit the characteristics of the convolution
based on a separable filter (labeled as CUDA-Sep 9/7 ). Daubechies 9/7 filter is used
in all experiments performed. In Figure 7 we can observe that the results obtained by
the proposed algorithm CUDA-Conv 9/7 are similar to results obtained by algorithms
CUDA-Mem 9/7 and CUDA-Text 9/7, note that the memory requirement of algorithm
CUDA-Conv 9/7 is the lowest one, because the image is overwritten with wavelet coeffi-
cients. On the other hand, the best results are obtained using the algorithm CUDA-Sep
9/7, note that in this algorithm we optimize the memory coalescence using a separable
filter. We want to point out that the speed-up obtained is up to 2.7 for 4096 × 4096
image size.

In algorithm CUDA-Sep 9/7 the shared memory stores a block of pixels of one row
or a block of one column, the block data stored in shared memory will be computed
by a CUDA block. Due to each block of threads computes a block data, the number of
threads by block must be selected according the row block size and column block size.
Figure 6 shows this structure for both rows and columns. In Figure 8 we present results
varying the row block size and column block size for 4096× 4096 image size. The best
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results are obtained with the row block size equal to 16 or 32 and with the column block
size equal to 4, 8 or 16. Since shared memory is limited (16 Kbytes in GTX 280), the
smaller optimal values of row block size and column block size must be used.

4 Conclusions

We have presented both multicore-based (convolution and lifting) and CUDA-based
algorithms (convolution) that perform the two dimensional discrete wavelet transform.
We have analyzed the behavior of the proposed algorithms over a shared-memory multi-
processor and a GPU architecture. Furthermore, we have compared our multicore-based
proposals against a recent algorithm called SMDWT. The multicore-based algorithms
obtain a speed-up above 1.9 using two processors and above 2.4 and up to 3.4 using four
processors. Since the best results over a multicore platform have been obtained by the
convolution algorithm which also requires a smaller buffer size, we have developed the
corresponding GPU-based algorithm using CUDA and implemented the row/column
buffer in the GPU shared memory. The speed-up achieved by the GPU-based algo-
rithm is up to 20. We have also compared several CUDA-based algorithms, based on
both the proposed multicore-based algorithms and the CUDA SDK proposals. In con-
clusion, we would like to point out that (1) the use of a multicore platform obtains good
performance, and (2) we obtain a good speed-up in a GPU respect to the results ob-
tained in the multicore platform. The CUDA based algorithm to be chosen depends on
the parameters to optimize, which can be either the computation time or the memory
requirements.
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Abstract

The Hilbertian Babuška–Brezzi theory guarantees existence of a unique solution
for the mixed variational formulation of a wide class of linear elliptic variational
problems, as well as its numerical approximation by the corresponding Galerkin
scheme. In this work we generalize the classical theory to the framework of reflexive
Banach spaces, providing new examples of application.
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1 Motivation

The Babuška–Brezzi theory provides a satisfactory and systematic study of the ex-
istence of solution for the mixed variational formulation of many elliptic boundary
value problems (see [5, 6, 9, 4]). That kind of variational formulation leads to con-
sider the following abstract problem: suppose that E and F are real Hilbert spaces,
a : E × E −→ R, b : E × F −→ R and c : F × F −→ R are continuous bilinear forms
(in most cases c = 0) and x∗0 : E −→ R and y∗0 : F −→ R continuous linear bilinear
functionals. Can we find (x0, y0) ∈ E × F with{

x ∈ E ⇒ x∗0(x) = a(x0, x) + b(x, y0)
y ∈ F ⇒ y∗0(y) = b(x0, y) + c(y0, y)

.

Because of the strongly Hilbertian nature of the Babuška–Brezzi theory, it does not
apply to a large class of linear elliptic boundary value problems, those whose function
data belong to reflexive Banach spaces (see Example 3). For that very reason, we
consider the following generalization of the problem above: given E, F , G and H
reflexive Banach spaces, a : E × F −→ R, b : F × G −→ R , c : E × H −→ R and
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d : G × H −→ R continuous bilinear forms and y∗0 : F −→ R and w∗
0 : H −→ R

continuous linear functionals, is there exists (x0, z0) ∈ E ×G such that{
y ∈ F ⇒ y∗0(y) = a(x0, y) + b(y, z0)
w ∈ H ⇒ w∗

0(w) = c(x0, w) + d(z0, w)
? (1)

2 A reflexive Babuška–Brezzi’s theory

As a consequence of the non Hilbert Lax–Milgram’s type result appeared in [10], we
characterize the existence of a solution of the mixed variational problem (1). First a
bit of notation. We write E∗ for the dual space of a Banach space E and given real
vector spaces E and F , a bilinear form a : E × F −→ R and (x0, y0) ∈ E × F , a(·, y0)
denotes the linear functional on E

x ∈ E 7−→ a(x, y0) ∈ R

and a(x0, ·) is the analogous linear functional on F .

Theorem 1. Assume that E, F , G and H are real reflexive Banach spaces, y∗0 ∈ F ∗,
w∗
0 ∈ H∗ and that a : E × F −→ R, b : F × G −→ R , c : E × H −→ R and

d : G × H −→ R are continuous bilinear forms. Then there exists (x0, z0) ∈ E × G
solution of the mixed variational problem (1) if, and only if, there exists ρ ≥ 0 such
that the inequality

y∗0(y) + w∗
0(w) ≤ ρ(∥a(·, y) + c(·, w)∥+ ∥b(y, ·) + d(·, w)∥)

holds for any (y, w) ∈ F × H. Moreover, if these equivalent statements are satisfied
and there exists (y, w) ∈ F ×H with ∥a(·, y) + c(·, w)∥+ ∥b(y, ·) + d(·, w)∥ ̸= 0, then

min{max{∥x0∥, ∥z0∥} : (x0, z0) ∈ E ×G is a solution of problem (1)}

= sup
(y,w)∈F×H, ∥a(·,y)+c(·,w)∥+∥b(y,·)+d(·,w)∦=0

y∗0(y) + w∗
0(w)

∥a(·, y) + c(·, w)∥+ ∥b(y, ·) + d(·, w)∥
.

Although this control of the norm of the solution seems to give little explicit infor-
mation, it is the key step in order to derive an estimation of that norm in Theorem 2
below.

Let us recall that a closed subspace K of a Banach space F is said to be comple-
mented if there exists a closed subspace M of F such that each y ∈ F admits a unique
representation y = k+m, with k ∈ K and m ∈M . Equivalently, there exists a contin-
uous linear operator P : F −→ F such that P 2 = P , P (F ) = K and (I − P )(F ) =M .
We also say that K is complemented in F by means of P . Each closed subspace
of a Hilbert space is complemented and for any Banach space any finite–dimensional
subspace is complemented, as well as each cofinite–dimensional one.

Now we show how the main classical results on the mixed variational formulation
of an elliptic boundary value problem, in the setting of Hilbert spaces, follow from
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Theorem 1. Moreover, in Theorem 2 below we state a global version of Theorem 1
(deduced from it), in the sense that we obtain necessary and sufficient conditions, not
only for some fixed y∗0 ∈ F ∗ and w∗

0 ∈ H∗, but also for all continuous and linear
functionals on F and H, in order that the mixed variational problem admits a solution.
In addition we introduce the ingredient of uniqueness. For the sake of exposition, and
taking into account that the most common case is d = 0, we restrict ourselves to that
concrete situation, firstly stated in [11]. Let us note that even for that specific case,
the main result in the Babuška–Brezzi theory for Hilbert spaces (E = F and G = H
Hilbert spaces, a coercive, b = c and d = 0, see [9, Theorem 10.1] or [4, §1 Theorem
5.2]) is a straightforward consequence of the next result, since Kb is complemented in
F by means of its orthogonal projection P , and ∥I − P∥ = 1.

Theorem 2. If E, F , G and H are real reflexive Banach spaces and a : E × F −→ R,
b : F ×G −→ R and c : E ×H −→ R are continuous bilinear forms, we write

Kb := {y ∈ F : b(y, ·) = 0}

and
Kc := {x ∈ E : c(x, ·) = 0}

and in addition we suppose that Kb is complemented in F by means of a projection
P , then, for all y∗0 ∈ F ∗, w∗

0 ∈ H∗ there exists a unique (x0, z0) ∈ E × G solution of
problem (1) with d = 0 if, and only if,

x ∈ Kc and a(x, ·)|Kb
= 0 ⇒ x = 0

and there exist λ, β, γ > 0 such that

y ∈ Kb ⇒ λ∥y∥ ≤ ∥a(·, y)|Kc
∥,

z ∈ G⇒ β∥z∥ ≤ ∥b(·, z)∥

and
w ∈ H ⇒ γ∥w∥ ≤ ∥c(·, w)∥.

Furthermore, if one of these equivalent conditions is satisfied, then

∥x0∥ ≤ ∥y∗0∥
λ

+
1

γ

(
1 +

∥a∥
λ

)
∥w∗

0∥

and

∥z0∥ ≤ ∥I − P∥
β

(
1 +

∥a∥
λ

)(
∥y∗0∥+

∥a∥
γ

∥w∗
0∥
)
.

Example 3. As a model problem, consider Ω := (0, 1), h ∈ Lp(Ω) with 1 < p < ∞
and the Poisson problem with homogeneous Dirichlet boundary conditions{

−z′′ = h in Ω
z(0) = z(1) = 0

,
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which is equivalently given by
x = z′ in Ω

−x′ = h in Ω
z(0) = z(1) = 0

.

Now, as in the Babuška–Brezzi’s treatment, which is not possible here unless p = 2,
if E := W 1,p(Ω), F := W 1,q(Ω), G := Lp(Ω) and H := Lq(Ω), a : E × F −→ R,
b : F × G −→ R and c : E × H −→ R are the continuous bilinear forms given for all
x ∈ E, y ∈ F, z ∈ G and w ∈ H by

a(x, y) :=

∫
Ω
xy, b(y, z) :=

∫
Ω
y′z, c(x,w) :=

∫
Ω
x′w,

and y∗0 : F −→ R and w∗
0 : H −→ R are the continuous linear functionals defined for

each (y, w) ∈ F ×H as

y∗0(y) := 0, w∗
0(w) := −

∫
Ω
hw,

then we arrive at the following mixed variational problem: find (x0, z0) ∈ E×G solution
of problem (1). It is not difficult to check the assumptions in Theorem 2 (Kb and Kc

are one–dimensional subspace, and make use of the description of the dual spaces of
the preceding integrable and Sobolev spaces (see for instance [1])) and deduce that

max{∥x0∥W 1,p(Ω), ∥z0∥Lp(Ω)} ≤ 4∥h∥Lp(Ω).

�

It is possible to consider the corresponding discrete problem, obtain its Galerkin
scheme and derive some stability conditions that generalize the classical results in the
framework of Hilbert spaces (see [9, Theorem 10.4] or [4, §1 Theorem 5.3]). To this
is end, we note that Fortin’s lemma ([7]) also holds for reflexive spaces. A process
for generating finite–dimensional subspaces is to fix Schauder bases in the respective
reflexive spaces. This kind of biorthogonal system has been successfully used in the
numerical treatment of integral, integro–differential or differential equations (see [2, 3,
8]).
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Abstract

This paper shows the application of generalized finite difference method (GFDM)
to the problem of dynamic analysis of plates. The stability condition for a fully explicit
algorithm is given.

Key words: meshless methods, generalized finite difference method, moving least
squares, plates, stability.
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1 Introduction

The Generalized finite difference method (GFDM) is evolved from classical finite difference
method (FDM). Benito, Ureña and Gavete have made interesting contributions to the
development of this method [1, 5, 6, 7, 8].
This paper decribes how the GFDM can be applied for solving dynamic analysis problems
of plates [3, 4].
The paper is organized as follows. Section 1 is the introduction. Section 2 describes the
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explicit generalized finite difference schemes. In section 3 is studied the consistency and the
von Neumann stability. In Section 4 some applications of the GFDM for solving problems
of dynamic analysis are included. Finally, in Section 5 some conclusions are given.

2 Explicit generalized finite difference schemes

Let us consider the problems governed by the following partial differential equations (pde)

∂2U({x}, t)
∂t2

+A2∆2U({x}, t) = F1({x}, t) {x} ∈ Ω (Ω = (0, L) or (0, L)× (0, L), t > 0

(1)
with boundary conditions at the ends of the beam of length L or at the edges of plate
[0, L]× [0, L] for each particular case and initial conditions

U({x}, 0) = 0;
∂U({x}, t)

∂t
|({x},0) = F2({x}) (2)

where F1 and F2 are two known smooth functions, the constant A depends of the material
and geometry of the beam.
Firstly, we use the explicit difference formulae for the values of partial derivatives in the
space variable. The intention is to obtain explicit linear expressions for the approximation
of partial derivatives in the points of the domain.
First of all, an irregular grid or cloud of points is generated in the domain. On defining
the composition central node with a set of N points surrounding it (henceforth referred as
nodes), the star then refers to the group of established nodes in relation to a central node.
Each node in the domain have an associated star assigned [1, 5, 6, 7].
If u0 is an approximation of fourth-order for the value of the function at the central node
(U0) of the star, with coordinate {x0} and uj is an approximation of fourth-order for the
value of the function at the rest of nodes, of coordinates {xj} with j = 1, · · · , N , then,
according to the Taylor series expansion in 1-D and 2-D respectively

Uj = U0 + hj
∂U0

∂x
+
h2
j

2

∂2U0

∂x2
+
h3
j

6

∂3U0

∂x3
+
h4
j

24

∂4U0

∂x4
+ · · · (3)

Uj = U0 + hj
∂U0

∂x
+ kj

∂U0

∂y
+
h2
j

2

∂2U0

∂x2
+
k2
j

2

∂2U0

∂y2
+ hjkj

∂2U0

∂x∂y
+

+
h3
j

6

∂3U0

∂x3
+
k3
j

6

∂3U0

∂y3
+
h2
jkj

2

∂3U0

∂x2∂y
+
hjk

2
j

2

∂3U0

∂x∂y2
+
h4
j

24

∂4U0

∂x4
+
k4
j

24

∂4U0

∂y4
+

+
h3
jkj

6

∂4U0

∂x3∂y
+
h2
jk

2
j

4

∂4U0

∂x2∂y2
+
hjk

3
j

6

∂4U0

∂x∂y3
+ · · · (4)
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where hj = xj − x0 and kj = yj − y0.
If in equations 3 or 4 the terms over fourth order are ignored. It is then possible to define
the function B4(u) in 1-D or B14(u) in 2-D as in [1, 3, 8, 10, 11, 13, 14]

B4(u) =

N∑
j=1

[(u0 − uj + hj
∂u0

∂x
+
h2
j

2

∂2u0

∂x2
+
h3
j

6

∂3u0

∂x3
+
h4
j

24

∂4u0

∂x4
)w(hj)]

2 (5)

B14(u) =
N∑
j=1

[(u0 − uj + hj
∂u0

∂x
+ kj

∂u0

∂y
+
h2
j

2

∂2u0

∂x2
+
k2
j

2

∂2u0

∂y2
+ hjkj

∂2u0

∂x∂y
+

+
h3
j

6

∂3u0

∂x3
+
k3
j

6

∂3u0

∂y3
+
h2
jkj

2

∂3u0

∂x2∂y
+
hjk

2
j

2

∂3u0

∂x∂y2
+
h4
j

24

∂4u0

∂x4
+
k4
j

24

∂4u0

∂y4
+

+
h3
jkj

6

∂4u0

∂x3∂y
+
h2
jk

2
j

4

∂4u0

∂x2∂y2
+
hjk

3
j

6

∂4u0

∂x∂y3
)w(hj , kj)]

2 (6)

where w(hj) and w(hj , kj) are the denominated weighting function in 1-D or 2-D respec-
tively.
If the norms 5 or 6 are minimized with respect to the partial derivatives the following linear
equation systems are obtained

A4Du4 = b4 (7)

A14Du14 = b14 (8)

where The matrices A4 and A14 are of 5× 5 and 14× 14, respectively, and the vectors

Du4 =

{
∂u0

∂x

∂2u0

∂x2

∂3u0

∂x3

∂4u0

∂x4

}T

(9)

Du14 =

{
∂u0

∂x

∂u0

∂y

∂2u0

∂x2

∂2u0

∂y2

∂2u0

∂x∂y

∂3u0

∂x3
. . .

∂4u0

∂x∂y3

∂4u0

∂x2∂y2

}T

(10)

On solving systems 7 and 8, the following explicit difference formulae are obtained as in
[1, 5, 6, 7]. On including the explicit expressions for the values of the partial derivatives the
star equation is obtained

∆2U({x}, t)|({x0},n4t) = m0u0 +

N∑
j=1

mjuj (11)

with

m0 +

N∑
j=1

mj = 0 (12)
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Secondly, we shall use an explicit formula for the part of the equation 1 that depends on
time. This explicit formula can be used to solve the Cauchy initial value problem. This
method involves only one grid point at the advanced time level. The second derivative with
respect to time is approached by

∂2U

∂t2
|({x0},n4t) =

un+1
0 − 2un0 + un−1

0

(4t)2
(13)

If the equations 11 and 13 are substituted in equation 1 the following recursive relationship
is obtained

un+1
0 = 2un0 − un−1

0 −A2(4t)2[m0u
n
0 +

N∑
j=1

mju
n
j ] + F1({x0}, n4t) (14)

The first derivative with respect to the time is approached by the central difference formula

∂U

∂t
|({x0},0) =

u1
0 − u

−1
0

24t
= F2({x0})⇒ u−1

0 = u1
0 − 24tF2({x0}) (15)

If equation 15 is substituted in equation 14 and taking into account initials conditions (2),
the following equation is obtained

u1
0 = 4tF2({x0}) +

F1({x0}, 0)

2
(16)

The equation 16 relates the value of the function at the central node of the star, at time
n = 1, with the values F1({x0}, 0) and the initial conditions F2({x0}).

3 Convergence

According to Lax’s equivalence theorem, if the consistency condition is satisfied, stability is
the necessary and sufficient condition for convergence. In this section we study firstly the
truncation error of the equations 12, and secondly consistency and stability.

3.1 Truncation error

As it is well known, the truncation errors for second order time derivative (TEt) is given as
follows:

∂2U(x, t)

∂t2
=
ut+4t

0 − 2ut0 + ut−4t
0

(4t)2

− (4t)2

12

∂4U(x, t1)

∂t4
+ Θ((4t)4), t < t1 < t+4t (17)
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(TEt) = −(4t)2

12

∂4U(x, t1)

∂t4
+ Θ((4t)4), t < t1 < t+4t (18)

In order to obtain the truncation error for space derivatives, Taylor’s series expansion in-
cluding higher order derivatives is used and then higher order functions B∗p [u], p = 4, 14 are
obtained. The expressions of B∗p [u], p = 4, 14 are similar to the ones given in Eq. 5 and
Eq. 6, but incorporating now higher order derivatives. If the new norms B∗p [u], p = 4, 14
are minimized with respect to the partial derivatives until the fourth order, the following
linear equation systems are obtained:

ApDup = b∗p (19)

where Ap, Dup and bp with (p = 4, 14) are as previously calculated in previous section and
b∗p can be split in two parts as follows

b∗p = bp + b∗∗p (20)

where the news terms b∗∗p correspond to the new higher order derivatives incorporated in the
Taylor’s series expansion to extend the functions from Bp[u], p = 4, 14 to B∗p [u], p = 4, 14.
Then a better approximation of the partial derivatives can be obtained using the inverse
matrix A−1

p

Dup = A−1
p bp +A−1

p b∗∗p (21)

In the Eq. 21 the expression A−1
p bp is the approximation used in the GFDM ( see [10, 14])

and then the truncation errors for spatial derivatives are given by

TExp = A−1
p b∗∗p (22)

We develop only the truncation error corresponding to p = 14 case. The other truncation
error for p = 4 case can be obtained in a similar way that the one used in p = 14 case.

B∗(u) =

N∑
j=1

[(u0 − uj + hj
∂u0

∂x
+ kj

∂u0

∂y
+

1

2
(hj

∂u0

∂x
+ kj

∂u0

∂y
)2)

+
1

3!
(hj

∂u0

∂x
+ kj

∂u0

∂y
)3) +

1

4!
(hj

∂u0

∂x
+ kj

∂u0

∂y
)4)

+
1

5!
(hj

∂u0

∂x
+ kj

∂u0

∂y
)5) +

1

6!
(hj

∂u0

∂x
+ kj

∂u0

∂y
)6) + · · · )w(hj , kj)]

2 (23)

If the Eq. 23 is minimized with respect partial derivatives up to the fourth order, the
following linear equations system is defined

ADu =

(
N∑
j=1

Ξhj

N∑
j=1

Ξkj

N∑
j=1

Ξ
h2j
2!

. . .
N∑
j=1

Ξ
h3j
3!

N∑
j=1

Ξ
h4j
4!

. . .
N∑
j=1

Ξ
h2jk

2
j

4

)T

(24)
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where

Ξ = [−U0 + Uj −
1

5!
(hj

∂u0
∂x

+ kj
∂u0
∂y

)5) − 1

6!
(hj

∂u0
∂x

+ kj
∂u0
∂y

)6) − · · · )]w2(hj , kj) (25)

with N ≥ 14, and then

TE(x,y) = −A2
2A

−1 ×

(
N∑
j=1

Υhj

N∑
j=1

Υkj

N∑
j=1

Υ
h2j
2!

. . .
N∑
j=1

Υ
h3j
3!

N∑
j=1

Υ
h4j
4!

. . .
N∑
j=1

Υ
h2jk

2
j

4

)T

(26)

where

Υ = −[
1

5!
(hj

∂u0

∂x
+ kj

∂u0

∂y
)5) +

1

6!
(hj

∂u0

∂x
+ kj

∂u0

∂y
)6) + · · · )]w2(hj , kj) (27)

and operating

TE(x,y) = A2
2[

N∑
j=1

Ψ1,j
∂5U

∂x5
+ · · ·+ Ψi,j

∂6U

∂x6
+ ....] + Θ(hj , kj) (28)

where Ψi,j(hj) are homogeneous rational functions of order two and Θ(hj , kj) is a series of
third- and higher-order functions.
The Eq. 28 is the truncation error for spatial derivatives.
Taking into account that the total truncation errors (TTE) is given by

TTE = TEt + TE(x,y) (29)

where TEt and TE(x,y) are given by Eqs. 18 and 28 respectively.

3.2 Consistency

By considering bounded derivatives in Eq. 29

lim
(4t,hj ,kj)→(0,0)

TTE → 0 (30)

Then, the truncation error condition given in Eq. 30 shows the consistency of the approxi-
mation.

3.3 Stability criterion

For the difference schemes, the von Neumann condition is sufficient as well as necessary for
stability [2]. ”Boundary conditions are neglected by the von Neumann method which ap-
plies in theory only to pure initial value problems with periodic initial data. It does however
provide necessary conditions for stability of constant coefficient problems regardless of the
type of boundary condition”.
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For the stability analysis the first idea is to make a harmonic decomposition of the approx-
imated solution at grid points and at a given time level n. Then we can write the finite
difference approximation in the nodes of the star at time n, as

un0 = ξneiν
Tx0 ; unj = ξneiν

Txj (31)

where ξ is the amplification factor,

xj = x0 + hj ; ξ = e−iw4t

ν is the column vector of the wave numbers

ν =

{
νx
νy

}
then we can write the stability condition as: ‖ξ‖ ≤ 1.
Including the equation 31 into the equation 14, cancelation of ξneiν

Tx0 , leads to

ξ = 2 +
1

ξ
− (4t)2A2(m0 +

N∑
1

mje
iνThj ) (32)

Using the equations 12 and after some calculus we obtain the quadratic equation

ξ2 − ξ[2 +A2(4t)2(

N∑
1

mj(1− cosνThj)− i
N∑
1

mj sinνThj)] + 1 = 0 (33)

Hence the values of ξ are

ξ = b±
√
b2 − 1 (34)

where

b = 1 +
A2(4t)2

2

N∑
1

mj(1− cosνThj)− i
A2(4t)2

2

N∑
1

mj sinνThj (35)

If we consider now the condition for stability, we obtain

‖b±
√
b2 − 1‖ ≤ 1 (36)

Operating with the Eqs. 35 and 36, canceling with conservative criteria, the condition for
stability of star is obtained as

4t ≤ 1

4A
√
|m0|

(37)

4 Numerical Results

In this section we present different numerical results.
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4.1 Transverse vibrations of a beam with one end fixed and other end
free

In this section, the weighting function used is

Ω(hj) =
1

(
√
h2
j )

3
(38)

The global exact error can be calculated as

Global exact error =

√∑NT
i=1 e

2
i

NT
(39)

where NT is the number of nodes in the domain and ei is the exact error in the node i.
The pde is

∂2U(x, t)

∂t2
+

1

1.8754

∂4U(x, t)

∂x4
= 0 x ∈ (0, 1), t > 0 (40)

with boundary conditions{
U(0, t) = 0
∂U(x,t)

∂x |(0,t) = ∂2U(x,t)
∂x2 |(1,t) = ∂3U(x,t)

∂x3 |(1,t) = 0,
(41)

and initial conditions

U(x, 0) = 0;
∂U(x, t)

∂t
|(x,0) = cos(1.875x)− cosh(1.875x)− 0.7340327[sin(1.875x)− sinh(1.875x)]

(42)

The exact solution is given by

U(x, t) = (cos(1.875x)− cosh(1.875x)− 0.7340327[sin(1.875x)− sinh(1.875x)]) sin t (43)

Figure 1 shows the approximated solution of the equation 40, 41 and 42 in the last time
step (n = 1000) with 4t = 0.001.

4.2 Free vibrations of a simply supported plate

In this section, the weighting function used is

Ω(hj , kj) =
1

(
√
h2
j + k2

j )3
(44)

and the global exact error can be calculated by 39
The pde is
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Figure 1: Approximated solution in last time step

Figure 2: Regular and irregular mesh

Figure 3: Three irregular meshes
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∂2U(x, y, t)

∂t2
+

1

4π4
[
∂4U(x, y, t)

∂x4
+ 2

∂4U(x, y, t)

∂x2∂2
+
∂4U(x, y, t)

∂y4
] =

15 sin t sin(2πx) sin(2πy) (x, y) ∈ (0, 1)× (0, 1), t > 0 (45)

with boundary conditions
U(x, y, t)|Γ = 0
∂2U(x,y,t)

∂y2
|(0,y,t) = ∂2U(x,y,t)

∂y2
|(1,y,t) = 0,∀y ∈ [0, 1]

∂2U(x,y,t)
∂x2 |(x,0,t) = ∂2U(x,y,t)

∂x2 |(x,1,t) = 0, ∀x ∈ [0, 1]

(46)

where Γ is the boundary of the domain [0, 1]× [0, 1], and initial conditions

U(x, y, 0) = 0;
∂U(x, y, t)

∂t
|(x,y,0) = sin(πx) sin(πy) (47)

The exact solution is given by

U(x, y, t) = sin(πx) sin(πy) sin t (48)

Table 1 shows the results of the global error, using a regular mesh of 81 nodes (fig. 10), for
several values of 4t.
Table 2 shows the results of global error with 4t = 0.001 for several irregular meshes of

4t Global error

0.01 0.08254
0.005 0.03513
0.002 0.01339
0.001 0.00212

IIC Global error

0.92 0.00224
0.83 0.00224
0.76 0.00231
0.58 0.00251

Table 1: Influence of 4t in the global error. Table 2: Influence of irregularity of mesh in the global error.

81 nodes (figures 2 and 3).
Figure 4 shows the approximated solution of the equation 45 in the last time step (n = 1000).
As new initial conditions let us assume that due to impact an initial velocity is given to a

point (x = y = 0.5) of the plate, which give the conditions

U(x, y, 0) = 0;

{
∂U(x,y,t)

∂t |(x,y,0) = 1 if x = y = 0.5
∂U(x,y,t)

∂t |(x,y,0) = 0 if (x, y) 6= (0.5, 0.5)
(49)

The exact solution is given by

U(x, y, t) = 2[sin(πx) sin(πy) sin(t)− 1

9
sin(3πx) sin(3πy) sin(9t)

+
1

25
sin(5πx) sin(5πy) sin(25t)− · · · ] (50)
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Figure 4: Approximated solution in the last time step

n Global error

100 0.01122
200 0.01858
600 0.02690
1200 0.03363

Table 3: Variation of global error versus the number of time steps

Table 3 shows the results of the global error, using a regular mesh of 81 nodes (figure 2)
and 4t = 0.001, versus the number of time steps (n).
Figures 5 shows the approximated solution of the equation 45 with the initial conditions
49 in the last time steps for the cases n = 100, n = 200, n = 600 and n = 1200 time steps
respectively.

Figure 5: Approximated solution with: n=100, n=200, n=600 and n=1200
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4.3 Forced vibrations of a simply supported plate

In this section, the weighting function used is 44 and the global error is calculated by 39
The pde is

∂2U(x, y, t)

∂t2
+

1

4π4
[
∂4U(x, y, t)

∂x4
+ 2

∂4U(x, y, t)

∂x2∂2
+
∂4U(x, y, t)

∂y4
] =

15 sin t sin(2πx) sin(2πy)) (x, y) ∈ (0, 1)× (0, 1), t > 0 (51)

with boundary conditions
U(x, y, t)|Γ = 0
∂2U(x,y,t)

∂y2
|(0,y,t) = ∂2U(x,y,t)

∂y2
|(1,y,t) = 0,∀y ∈ [0, 1]

∂2U(x,y,t)
∂x2 |(x,0,t) = ∂2U(x,y,t)

∂x2 |(x,1,t) = 0, ∀x ∈ [0, 1]

(52)

and initial conditions

U(x, y, 0) = 0;
∂U(x, y, t)

∂t
|(x,y,0) = sin(πx) sin(πy) + sin(2πx) sin(2πy) (53)

The exact solution is given by

U(x, y, t) = (sin(πx) sin(πy) + sin(2πx) sin(2πy)) sin t (54)

Table 4 shows the results of the global error, using regular mesh of 81 nodes (figure 2), for
several values of 4t. Table 5 shows the results of global error with 4t = 0.001 for several

4t Global error

0.01 0.53070
0.005 0.14640
0.002 0.07837
0.001 0.01444

IIC Global error

0.92 0.01412
0.83 0.01437
0.76 0.01442
0.58 0.01447

Table 4: Influence of 4t in the global error. Table 5: Influence of irregularity of mesh in the global error.

irregular meshes of 81 nodes (figures 2 and 3).
Figure 6 shows the approximated solution of the equation 51 in the last time step (n = 1000).

5 Conclusions

The extension of the generalized finite difference to the explicit solution of some dynamic
analysis problems has been developed.
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Figure 6: Approximated solution in the last time step

The von Neumann stability criterion has been expressed in function of the coefficients of
the star equation for irregular cloud of nodes.
As it is shown in the numerical results, a decrease in the value of the time step, always
below the stability limits, leads to a decrease of the global error.
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Abstract

Special functions appear in a enormous variety of problems in Engineering. In
spite of their importance, there is a lack of validated software for computing im-
portant members of this big community of functions, especially for large and/or
complex parameters. In this paper we review methods of computation and point
out possible failures of routines available in commercial software packages for com-
puting special functions.

Key words: Mathematical functions; Bessel, Legendre and parabolic cylinder
functions; stability analysis of recurrence relations; numerical quadrature; asymp-
totic expansions; computational algorithms; software.

1 Introduction

The so-called special functions of mathematical physics [21] play a key role in many
applications in science and technical applications. For example, Bessel or Legendre
are familiar names for everyone involved in any area of electromagnetism. This is not
surprising because these functions appear in the solution of partial differential equations
in cylindrically symmetric domains (such as optical fibers) or in the Fourier transform
of radially symmetric functions, to mention just a couple of applications. On the other
hand, Legendre functions appear in the solution of electromagnetic problems involving
spherical or spheroidal geometries. A couple of papers on the topic are [25] and [4], for
example.
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But the world of special functions doesn’t end in the area of Bessel or Legendre
functions, and there are many more functions under the term “special functions”, such
as cumulative distribution functions [11, Ch. 10], which need to be evaluated in many
problems in Engineering. The question is: how to compute these functions? Few
engineers have the time (and the will) to develop their own algorithms for computing
special functions and most people rely on the black boxes of routines provided by
commercial software (like Matlab or Mathematica) to compute them. In some cases,
these routines lack of a rigorous testing and validation and fail in providing a uniform
accuracy, specially for large parameter cases and/or complex arguments.

In this paper, we review some of the methods for computing special functions and
provide some hints about possible failures of routines included in commercial software.

2 Ideas about how to compute special functions

The methods used for the evaluation of special functions are varied, depending on the
function under consideration as well as on the efficiency and the accuracy demanded.
Usual tools for evaluating special functions are the evaluation of convergent and di-
vergent series, the computation of continued fractions, the use of Chebyshev approx-
imations, the computation of the function using integral representations (numerical
quadrature) and the numerical integration of ODEs. Usually, several of these methods
are needed in order to build an algorithm able to compute a given function for a large
range of values of parameters and argument.

2.1 Some examples: Airy functions, PCFs and toroidal functions

As a first example we consider the Airy functions [20], which are solutions of the
differential equation

y′′(z)− zy(z) = 0 . (1)

Different methods have to be used in order to build an efficient and accurate al-
gorithm for computing the Airy functions in the complex plane ([10],[9]): Maclaurin
series for small |z|, asymptotic expansions for large |z| and numerical quadrature for
intermediate values of |z|. Airy functions appear in a large number of applications in
physics and engineering (for few examples see, for instance, [24],[18]); these functions
are also useful because they can be used as approximants to differential equations with
turning point (the Airy equation being the simplest possible equation of this type).

Of course, the degree of complexity of the algorithm for computing a function in-
creases when the function depends on additional parameters, particularly for large val-
ues of the parameters. This happens, for instance, in the case of the parabolic cylinder
functions U(a, x), V (a, x) [15], where several methods (series, recurrences, quadrature
and several types of asymptotic expansions) had to be considered. Something similar
happens for the parabolic cylinder functions W (a,±x) ([12],[13]). A second example
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of the complexity of the analysis is the evaluation of toroidal functions, which are Leg-
endre functions of half-integer degrees: Pm

n−1/2(x), Qm
n−1/2(x); for a recent application

in telecom engineering see [1]. These functions depend on an argument and two pa-
rameters and, in this case, key ingredients in the algorithms [7, 8] were the study of
the stability of recurrence relations and the analysis the convergence of the associated
continued fraction [7], together with the development of an asymptotic expansion for
large orders m [14] (uniformly valid with respect to the argument).

The difficulty in the analysis of the methods in examples like these, could explain
the absence of validated software for relevant functions depending on two or more
parameters.

These examples illustrate the importance of the asymptotic analysis in the devel-
opment of efficient methods of computation. Specifically, when the function depends
on several parameters, the asymptotic expansions for large values of one or more pa-
rameters are powerful tools of computation.

2.2 Some techniques: recurrence relations and numerical quadrature

We briefly describe two important techniques for computing special functions which,
together with the evaluation of series (convergent or divergent), appear ubiquitously in
algorithms for special function evaluation.

2.2.1 Recurrence relations

In many important cases there exist recurrence relations relating different values of the
function for different values of its variables; in particular, one can usually find three
term recurrence relations ([11, Ch. 4]). In these cases, the efficient computation of
special functions uses at some stage the recurrence relations satisfied by such families
of functions. In fact, it is difficult to find a computational task which does not rely
on recursive techniques: the great advantage of having recursive relations is that they
can be implemented with ease. However, the application of recurrence relations can
be risky: each step of a recursive process generates not only its own rounding errors
but also accumulates the errors of the previous steps. An important aspect is then the
study of the numerical condition of the recurrence relations, depending on the initial
values for starting recursion. Let’s briefly explain the procedure.

We write the three-term recurrence satisfied by the function yn as

Cnyn+1 + Bnyn + Anyn−1 = 0. (2)

If a solution y
(m)
n of (2) exists that satisfies

lim
n→+∞

y(m)
n

y(D)
n

= 0

for all solutions y
(D)
n that are linearly independent of y

(m)
n , then we call y

(m)
n the min-

imal solution. The solution y
(D)
n is said to be a dominant solution of the three-term
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recurrence relation. From a computational point of view, the crucial point is the iden-
tification of the character of the function to be evaluated (either minimal or dominant)
because the stable direction of application of the recurrence relation is different for
evaluating the minimal or a dominant solution of (2).

Let N be a (possibly large) positive number. Then we have the following scheme
of recursions:

y
(D)
0 , y

(D)
1 −→ y

(D)
N well conditioned;

y
(m)
0 , y

(m)
1 −→ y

(m)
N ill conditioned;

y
(m)
0 ←− y

(m)
N , y

(m)
N+1 well conditioned.

For analyzing whether a function is minimal or not, it is needed that analytical
information is needed regarding its behavior as n → +∞; also some numerical ex-
periments can be considered for elucidating this fact (by the method of “see what
happens”).

2.2.2 Numerical quadrature

Another example where the study of numerical stability is of concern is the computa-
tion of special functions via integral representations. It is tempting, but usually wrong,
to believe that once an integral representation is given, the computational problem is
solved. One has to choose a stable quadrature rule and this choice depends on the
integral under consideration. Particularly problematic is the integration of strongly
oscillating integrals (Bessel and Airy functions, for instance); in these cases an alterna-
tive approach consists in finding non-oscillatory representations by properly deforming
the integration path in the complex plane. Let’s explain this in a simple example (so
simple that it is, in fact, computable in closed form).

Consider the numerical computation of

I(λ) =
∫ +∞

0
cos(2λt)e−t2dt.

Needless to say that it is not necessary to evaluate this integral numerically because
the exact result is known, but we take this as an illustration on how to build stable
representations starting with unstable representations. Straightforward computation
of this integral by using any quadrature rule (for instance the trapezoidal rule) is very
unstable when λ is large due to the fast oscillations of the integrand.

By symmetry of the integrand, we can write the integral as I(λ) = 1
2G(λ) where

G(λ) =
∫ ∞

−∞
e−t2+2iλt dt, λ > 0.

Now, for building a stable integral representation we shift the path of integration up-
wards in the complex t−plane to make it run through the point t = iλ, or write

−t2 + 2iλt = −(t− iλ)2 − λ2.
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This gives

G(λ) = e−λ2

∫ ∞

−∞
e−(t−iλ)2 dt

or, by writing t = iλ + s,

G(λ) = e−λ2

∫ ∞

−∞
e−s2

ds.

In this simple example we deform the original contour of integration to let it run
through the saddle point. The resulting integral has no oscillation in the integrand and
it is suited for a computation by the trapezoidal rule (which in fact is very efficient
for these type of analytic and fast decaying integrands). Of course, in this case it is
not really needed that we use a numerical approximation for the integral because it is
obvious that

G(λ) =
√

πe−λ2
.

This method for building stable integral representations by deforming the contour
of integration can be used for many special functions defined by real or contour integrals
(see [11, Ch. 5]).

3 A brief guide to what is available for computing special
functions

In [19] an overview is given of available software for special functions. We mention a
few examples and additions.

3.1 Repositories of software packages

Let’s start with two important repositories of software packages that include routines
for computing special functions: ACM Algorithms and CPC Programs.

Software associated with papers published in the Transactions on Mathematical
Software, as well as other ACM journals are included in CALGO (http://calgo.acm.org/).
The software is refereed, among other aspects, for accuracy, robustness and portabil-
ity. On the other hand, the routines are usually programmed in Fortran (Fortran 77,
Fortran 90) or C but there are also routines for Matlab and Maple. There are routines
for computing a large number of special functions.

The CPC Program Library (http://cpc.cs.qub.ac.uk) contains a large number of
programs in computational physics and chemistry, including several routines for the
computation of special functions. The programs are available for subscribers of the
journal.

Other sources are software repositories as Netlib, which contains a great number of
routines for special functions (and also contains, as a subset, the algorithms published
in ACM journals). See [19] for a comprehensive survey.
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3.2 Commercial software

The two previous software repositories contain routines (most of them programmed in
Fortran or C) which have to be compiled and linked before they can be executed. A very
popular alternative to the use of this kind of routines are the commercial interactive
systems, such as

• Matlab (http://www.mathworks.com/),

• Maple (http://www.maplesoft.com/), and

• Mathematica (http://www.wolfram.com/).

An interactive system provides a set of commands which the user can enter at the
keyboard. The response to each command can be seen immediately on the screen.

Matlab supports Bessel functions of real order and complex argument. The al-
gorithms use a routine by D.E. Amos [2] and there is a warning in the online help
system that the functions may produce inaccurate results for large order and argu-
ment. Built-in special functions for real arguments and parameters include error and
inverse error functions; gamma function; incomplete gamma and beta functions; Bessel
functions I, J, K and Y; complete elliptic integrals of first and second kind; Jacobi’s
elliptic functions; exponential integral and the psi function.

Maple and Mathematica are also examples of general-purpose commercial mathe-
matics software packages. Differently from Matlab, both are examples of Computer Al-
gebra Systems which are software programs that facilitate symbolic mathematics. The
core functionality of these packages is the manipulation of mathematical expressions
in symbolic form. The symbolic manipulations supported typically include: simplifi-
cation to the smallest possible expression or some standard form, including automatic
simplification with assumptions and simplification with constraints; change of form of
expressions: expanding products and powers, rewriting as partial fractions, constraint
satisfaction, rewriting trigonometric functions as exponentials, and so on.

4 A few examples of inexact computations with commer-
cial software

Next we give some examples of special function evaluation which give incorrect or
misleading results with Matlab, Maple or Mathematica. The examples include complex
Bessel functions, prabolic cylinder functions, conical functions and toroidal functions.

4.1 Computation of Bessel functions in Matlab and Mathematica

In [6] du Toit pointed out failures in the routines used in early versions of Matlab
(and Mathematica) for computing the Bessel functions of second kind Yν(z) for integer
orders and complex arguments. Although these particular failures seem to be corrected
in later versions of Matlab and Mathematica, still the routines give inexact answers

@CMMSE                                 Page 580 of 1703                                 ISBN: 978-84-614-6167-7



Amparo Gil, Javier Segura, Nico M. Temme

z = 10i
ν Matlab value (version 7.6.0) Correct value
57 2.0909 × 10+34i −2.6307 × 10−37 + 2.0909 × 10+34i
58 2.4021 × 10+35 − 2.2515 × 10−38i 2.4021 × 10+35 − 2.2515 × 10−38i
59 −2.8073 × 10+36i 1.8947 × 10−39 − 2.8073 × 10+36i
60 −3.3367 × 10+37 + 1.5683 × 10−40i −3.3367 × 10+37 + 1.5683 × 10−40i

z = 100i
ν Matlab value (version 7.6.0) Correct value
57 −1.3173 × 10+35 + 8.0660 × 10+18i −1.3173 × 10+35 + 2.0993 × 10−38i
58 3.6210 × 10−38 − 7.6043 × 10+34i 3.6210 × 10−38 − 7.6043 × 10+34i
59 4.3518 × 10+34 − 2.6647 × 10+18i 4.3518 × 10+34 − 6.2996 × 10−38i
60 −1.1055 × 10−37 + 2.4691 × 10+34i −1.1055 × 10−37 + 2.4691 × 10+34i

Table 1: Computation of the Bessel function of the second kind Yν(z), ν integer and z
purely imaginary in Matlab (version 7.7.0).

for certain values of argument and order (although there is no warning about this).
Table 1 shows an example of computation of Yν(z) using Matlab (version 7.6.0) for
two purely imaginary arguments (z = 10i, 100i) and four consecutive integer orders
(ν = 57, 58, 59, 60). As can be seen, a correct answer is obtained for even values of the
order ν (both for the real and imaginary parts of the function) but for odd values of
the order, the computed imaginary part of the function seems to be completely wrong.

In addition, the Bessel function Jν(ix) has a small real part (relative to the imag-
inary part) when ν is and odd integer, which is incorrect. For instance, Matlab gives
J57(10i) = 1.610810−53 + 2.630710−37i, but the real part is really zero. The Hankel
functions (H(1)

ν (z) = Jν(z) + iYν(z), H
(2)
ν (z) = Jν(z) − iYν(z)) and for odd integer ν

also have problems, and the imaginary part is incorrect; for even ν only the first Hankel
function has problems (an small real part appears which should not be there).

For the values of Table 1, it appears that Mathematica does a good job and no
problems appear. However, serious problems appear for other parameter ranges. For ex-
ample, when we try to compute H

(1)
9 (18i) by introducing the command HankelH1[9.,

18. I] we get the almost completely wrong answer −2.57604 10−8 − 1.97906 10−9 (the
correct number being 2.449910−8). Only by adding 18 zeros after the decimal point we
get a correct answer and with less zeros it is totally wrong.

These appear to be examples of errors due to some special properties that the
functions satisfy, like the fact that the real part or imaginary parts of H

(1)
ν (ix) vanish

when ν is an integer number. However, this problems are carried for other values and
also, for example, in Mathematica HankelH1[9.5, 18. I] gives an incorrect answer,
both for the real and imaginary parts.

When computing special functions one should be aware of some properties the
functions satisfy and not take for granted that an algorithm, no matter how powerful
it seems, will be necessarily able to compute the function for the whole range of pa-
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Digits Maple 12 value
20 −9.2548 × 1045

40 2.7764 × 10−54

60 −3.7019 × 10−153

80 3.0957 × 10−159

Table 2: Computation of the parabolic cylinder function U(−10, 40) using Maple 9.
The correct answer is 3.0957 × 10−159.

Digits Maple 12 value
20 1.3048 × 10+174

40 0
60 1.3048 × 10−25

80 0
100 6.5241 × 10−225

200 3.5205 × 10−358

Table 3: Computation of the parabolic cylinder function U(50, 50) using Maple 9. The
correct answer is 3.5205 × 10−358.

rameters. Caution must be taken, even if our software package gives no warning (as is
the case in the previous examples).

4.2 A Maple example: computation of parabolic cylinder functions

Parabolic cylinder functions (PCFs) ineluctably appear in electromagnetic problems
in parabolic cylinder geometries (see, for instance, [5] or [3] for a couple of problems
involving these functions). Maple allows the computation of the PCFs U(a, x) and
V (a, x), solutions of the differential equation

y′′(x)−
(

x2

4
+ a

)
y(x) = 0

by means of the commands CylinderU and CylinderV, respectively. When the
parameters a and x are large (or not so large), Maple needs a very large number of
digits in order to compute the correct values of these functions. Tables 2 and 3 show
examples of the variety of answers given by Maple in the computation of U(−10, 40)
and U(50, 50), respectively, when varying the number of digits used by Maple in the
calculations.

The problem with these Maple computation seem to be of a different nature to the
problems found in the previous section. In this case, the most probable source of error is
the method of computation. U(a, x) is a function which decays exponentially for large
x (and also for large positive a). In [26, §12.4], U(a, x) is given as a combination of two
power series, both of which are exponentially large for large x. U(a, x) is a recessive
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τ Mathematica 6 value
0.1 1.04237 × 10+155 + 1.90166 × 10+140i
1 7.90237 × 10+155 + 3.97168 × 10+141i
10 3.59416 × 10+161 + 4.33418 × 10+147i
30 −1.64285 × 10+173 − 5.94165 × 10+159i

Table 4: Computation of the conical function P 100
−1/2+iτ (100) using Mathematica 6.

These functions should be real valued.

solution of the differential equation, which is written in terms of two dominant solutions
(i.e., two solutions which are much larger for large x). From a numerical point of view,
this is an ill conditioned computation; it is not a wise decision to compute a recessive
solution from a combination of two dominant solutions, because more and more digits
will be needed as the dominant solutions become larger and the recessive solution
becomes smaller. Just as for the case of recurrence relations mentioned before, it is
crucial to identify recessive solutions. Parabolic cylinder functions also satisfy three-
term recurrence relations with respect to the parameter a, and U(a, x) is also recessive
(or minimal) with respect to this parameter when a becomes large and positive.

4.3 A Mathematica example: computation of the conical function
P m
−1/2+iτ (x) and toroidal harmonics

The conical functions Pm
−1/2+iτ (x) appear in a large number of applications in electrical

engineering (see, for instance, [23], [22]). The only existing (refereed) code for comput-
ing these functions (for m = 0, 1) is [17], although an algorithm for computing these
functions for m variable has been recently proposed in [16].

These functions, which are real valued, can be computed in Mathematica using the
command LegendreP. Table 4 shows few examples of computed values of the conical
function P 100

−1/2+iτ (100) with Mathematica 6. As can be seen, Mathematica gives a non-
zero imaginary part for these functions. This is not an effect of the large arguments
and this imaginary part appears also for lower values, and, for example computing
P 5
−1/2+i(5) with the command N[LegendreP[-1/2 + 1 I, 10, 3, 5.], 16] we get

127387. + 2.39325 10−9i. Only after adding around 18 zeros after the digital comma in
all the real parameters, we get as output 127387.2890841 + 0.10−8i. The results are
in any case correct when the imaginary part is discarded, but for this we need to be
aware of the fact that the function is real. But when a function is real, it is preferable
to consider specific algorithms for that function and not to compute the real function
in terms of complex functions.

For the case of conical functions, we could suspect that something wrong may
happen because it has a complex parameter, though it is real. However, there are cases
which are not so apparently problematic. Take for instance the case of toroidal functions
Pm

n−1/2(z), Qm
n−1/2(z), z > 1 and n and m integer numbers. Several definitions for this

functions are possible, but, in particular, it is useful to consider real representations
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for this functions, for instance by taking the branch cut in the complex plane to be the
interval (−∞, 1). These are the Legendre functions of type 3, available in Mathematica.
With this definition, both Pm

n−1/2(z) and Qm
n−1/2(z) are real functions. However, when

computing Q50
51/2(4.4) with the Mathematica command N[LegendreQ[51/2, 50, 3,

4.4], 16] (16 digits): 4.28053 1059 + 4.20431 1044i; the imaginary part is meaningless;
the situation only improves after adding 18 zeros after the decimal point in each of
the parameters. Again, the reason for this is that a real function is being computed
from complex functions and, either the imaginary part should be dropped or specific
algorithms should be considered for this function.

In Maple, this problem does not exist and Qm
n−1/2(z) is real when the branch cut is

chosen to be (−∞, 1). Similar problems, however, appear with Maple when computing
Q

m−1/2
n−1/2 (z) with m integer; in this case, Q

m−1/2
n−1/2 (z) is imaginary but a small real part

appears. For instance, with 15 digits in Maple 12, we get Q50.5
51/2(4.4) ≈ 1.87921 1039 +

3.82844248154908 1060 i, with a meaningless real part. These cases, however do not
appear to be so useful as the toroidal function cases Pm

n−1/2(z) and Qm
n−1/2(z).
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Abstract

An approximation to the detection of lane marks from video sequences is de-
scribed. Detecting and localizing this kind of marks is relevant in many applica-
tions of driving assistance. The novelty of the proposed technique is that it works
directly in video compressed domain and no pixel information is needed. The pro-
posed method applies a set of filters and removes progressively blobs obtained from
segmentation depending on their position in the scene, their size and their shape.
The major contributions are the simplicity of the technique because its operation
is based on simple statistical filters and the shape analysis based on the position
and the distribution in the scene of macroblocks belonging to segmented regions.
Finally, it must be remarked the proposed method shows encouraging results in
road traffic video sequences.

Key words: H264/AVC compressed video domain, statistical filtering, driving
assistance

1 Introduction

Detecting and localizing lanes from a road image is an important component of many
intelligent-transportation-system applications and there has been active research on
lane detection in recent years because of its relevance in the prevention of traffic acci-
dents. A wide variety of algorithms of various representations, detection and tracking
techniques have been proposed and they are usually divided in two classes: feature-
based techniques and model-based techniques. The first class algorithms localizes the
lanes by using low-level features like line edges identified with traditional edge-based
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segmentation algorithms [1], [8]. These techniques work at pixel level and usually have
problems with occlusions and noise. The second class approaches use a few parameters
to represent the lines by assuming straight lines [4] or parabolic curves [11]. These algo-
rithms try to calculate the model parameters by using probabilistic or fuzzy inference.
The model-based techniques are more robust against noise and missing date and could
not need pixel processing, but high level processing. Furthermore, it is important to
know the road curvature to distinguish objects on the sidewalk and avoid false alarms.

Some relevant works are described now. Wang et al. [11] propose a lane detec-
tion and tracking algorithm based on B-snakes without any camera parameters. This
method allows to describe a lane through a wide range of lane structures since B-splines
can form any arbitrary shape by a set of control points. Jung and Kelber [3] develop
a lane departure warning system based on a linear-parabolic lane model. They divide
the road into a near field and a far field; a linear function fits the near vision field and a
quadratic function is used to the far field. On the other side, Kim [5] presents a fast and
robust lane detection and tracking algorithm. It is based on random-sample consensus
and particle filtering to generate hypotheses in real time about the correct lines. Af-
ter that, a framework combines a likelihood-based object-recognition algorithm with a
Markov-style process to track identified lines. A recent approach is proposed by Wang
et al. [10]. They combine a self-clustering algorithm, fuzzy C-means and fuzzy rules
to process the spatial information and Canny algorithms to get good edge detection.
Their lane departure warning uses instantaneous information from the lane detection
to calculate angle relations of the boundaries.

This paper presents a technique to identify lane marks in road scenes by using an
in-car camera system where input video is coded in H264/AVC. The paper is organized
as follows. In Section 2 an introduction to H264/AVC is done. Later, in Section 3 the
proposed method is described. In Section 4 an example of the behavior of the method is
shown and Section 5 shows the experimental results. Finally, conclusions are described
in Section 6.

2 Motion compensation in H.264 Advanced Video Coding

H.264 [2], also known as MPEG-4 Part 10, is a standard for video compression devel-
oped jointly between the Motion Picture Expert Group (MPEG) and the Video Coding
Experts Group (VCEG). This standard provides mechanisms for video coding that are
optimized for a better compression efficiency and aims to meet the multimedia com-
munication applications. Richardson explains deeply in [6] the features of the H.264
compressed domain, but in this section only the motion compensation in H.264 is de-
scribed. That is because input data for the proposed method is obtained from motion
prediction and for a better comprehension of the shape analysis process the under-
standing of the macroblock and the motion vector concepts are necessary.
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2.1 Macroblocks and motion vectors

The basic unit in which an image is divided into is the macroblock. It contains the
information of a 16x16 pixels region and there are two types depending on the encoding:
Intra macroblock, in which Intra-prediction algorithms are applied directly to exploit
the spatial redundancy according to the H.264 standard, and Inter macroblock, in
which motion compensation is used to exploit temporal redundancy from a reference
macroblock (earlier, later or a combination of both).

H.264 uses block-based motion compensation, the same principle adopted by every
major coding standard since H.261. This motion compensation is done through the
redundant information between consecutive frames looking for a pattern that captures
the kind of movement between pictures. This pattern is represented as a motion
vector, which defines a distance and a direction and has two dimensions: right x and
down x. Important differences from earlier standards include the support for a range
of block sizes and the use of multiple reference frames to improve the performance of
the coding.

H.264 supports motion compensation block sizes ranging from 16x16 to 4x4 sam-
ples. Each macroblock may be split up in 4 ways: 16x16, 16x8, 8x16 or 8x8. Each of the
sub-divided regions is a macroblock partition. If the 8x8 mode is chosen, each of the
four 8x8 macroblock partitions within the macroblock may be further split in 4 ways:
8x8, 8x4, 4x8 or 4x4 (known as sub-macroblock partitions). These partitions and
sub-partitions give rise to a large number of possible combinations within each mac-
roblock (Fig. 1). This method of partitioning macroblocks into motion compensated
sub-blocks of varying size is known as tree structured motion compensation.

Figure 1: Macroblock types.

Since each macroblock and sub-macroblock partition has a motion vector associ-
ated, a macroblock has from 0 to 16 pairs of motion vectors. For example, an Intra
macroblock has not any motion vector, an Inter macroblock partitioned into two 16x8
blocks has two pairs of motion vectors and an Inter macroblock partitioned into four
8x8 blocks -each of them partitioned into 4x4 sub-macroblocks- has 16 pairs of motion
vectors (4 ∗ 4 = 16).
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3 Lane marking identification

In this section, a technique to identify lane markings in road scenes is described. A
scheme of the process is shown in Figure 2.

Figure 2: Operation scheme of the proposed method.

Initially, the objects of interest in the scene are detected using a segmentation
method based in approximate reasoning [9]. From this algorithm a set of blobs (SoB)
(Equation 1) is obtained.

SoB = {B1, B2, ..., Bn} (1)

A blob is defined as a group of connected pixels but in the context of video com-
pressed domain, a blob is defined as a group of similar macroblocks. Similarity between
macroblocks is considered when motion vectors associated to them are similar in mag-
nitude and direction. So, we can conclude each blob represents a region of the image
with similar motion characteristics. The formal representation of a blob is:

B =< FN,Size,ML > (2)

where FN is the frame number in which is located the blob, Size is the number
of motion vectors grouped in the blob and ML is the list of macroblocks belonging to
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the blob as it is shown in Equation 3:

ML = {(x1, y1), (x2, y2)..., (xN , yN )} (3)

where the components (xi, yi) represents the position in the picture of each macroblock.
As the list of the macroblocks is saved in each blob, the objects can be made up to

obtain the visual representation as viewed in Figure 3. An example of blob could be
the next: < 325, 5, {(22, 11), (23, 11), (13, 1), (14, 2), (12, 22)} >.

Figure 3: Example of segmented frame.

Once obtained the set of blobs (SoB) in a frame from the segmentation stage a
set of filters that removes progressively blobs depending of their position in the scene,
their size and their shape are applied. Finally, the remaining blobs from the input data
set will be considered the road lane markings in the scene.

3.1 Filtering of blob position and size

Now, the filters that discard blobs as lane marks depending of the position and size are
described. In addition, a mask is applied to remove spurious macroblocks of blobs that
may come from merge errors (shadows, brightness,...) of the segmentation algorithm.
First, those blobs with Size (number of macroblocks in ML) too small or too big
are discarded. Only the blobs satisfying Equation 4 are considered for the following
steps. In the tested videos it was observed that if Size was smaller than 5, significant
statistical conclusions can not be obtained and also that lines rarely were bigger than
80 elements.

(Size(B) ≥M) or (Size(B) ≤M ′) (4)

where Size(B) selects the attribute size from a Blob B.

Later, those blobs whose macroblocks in ML have same x, xi = xj∀i, j or same y,
yi = yj∀i, j are rejected because they represent vertical and horizontal lines respectively,
which knowing the camera position can not be lane markings.
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Now, we describe the only filter that does not remove a complete blob but modifies
the set of macroblocks in ML. More concretely, it tries to remove noise caused by
shadows, merge of regions, etc., and represented in the linguistic blob as a subset
of spurious macroblocks. To do this, using standardized wastes, those macroblocks
represented by pairs (xi, yi) that have a measure (expressed in absolute value) greater
than or equal to 2 are removed.

Once removed that noise, linear regression [7] is used to discard blobs representing
too horizontal or too vertical lines since they can not be considered road lane marks
because of the position of the camera. Linear regression [7] tries to fit a straight line to
a “cloud of points”. Straight line of regression of Y on X is represented by Equation 5,
where ȳ represents the arithmetic mean of the marginal variable Y , S2

x is the variance
of X and Sxy is the covariance.

y − ȳ = m(x− x̄) (5)

The straight line y = (m × x) + b is the one that better adjusts to the cloud of
points. The values of m and b are obtained using Equations 7 and 6 respectively. N
represents the number of elements in ML.

m =

∑N
i=1 xiyi −Nx̄ȳ∑N
i=1 x

2
i −Nx̄2

(6)

b = ȳ −mx̄ (7)

Once the slope m is calculated, the blobs whose set of macroblocks ML do not
take values in the range: 0.1 < |m| < 0.9 are removed.

Now, the position of the blobs in the picture is studied. Blobs on the left of
the scene and having a negative slope or blobs on the right having positive slope are
removed. This step is useful because it is well known that left side lane markers always
slope upwards from left to right, while right side lane markers slope downwards from
left to right. Then, if the resolution of the video is widthxheight we eliminate a blob
if it verifies the condition describe in Equation 8.

((max(xi) < width/2) and m < 0) or ((min(xi) > width/2) and m > 0) (8)

where max(xi) and min(xi) represent maximum and minimum of xi in ML.
Finally, blobs in upper areas of the pictures (power lines, clouds, ...) are deleted.

By means of Equation 9 blobs detected in the upper third of the scene are removed.

max(yi) ≥ (2/3) ∗ height (9)

3.2 Filtering based on shape

In this section, the shape of the blobs is determined by using a set of statistical measures.
Once selected the candidate blobs to be road lane marks, correlation of values in ML
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is studied. That is because the coefficient correlation r (Equation 10) allows to check
the linearity of the cloud points of ML. This linearity allows to recognize lane marks
because this is the shape (distribution of the macroblocks of ML in the picture) of the
blobs corresponding with these lane marks.

r =
SCr

Syy
(10)

Now, operations needed to solve Equation 10 are described (Equations 11 to 12)
where x̄ and ȳ are the arithmetic mean of xi and yi respectively.

SCr =
N∑
i=1

(yi − ((m× xi) + b))2 (11)

Syy = (

N∑
i=1

y2i )−Nȳ2 (12)

Those blobs with r less than or equals to 2/
√
N are refused. This value is a

simplification of the t-Student (Equation 13).

t =

√
N − 2

1− r2
(13)

In a first set of experiments, two additional shape filters were considered. De-
pendence between variables was studied through the testβ. In addition, this test was
corroborated with the F − Snedecor test. As no improvement of the results was ob-
tained, both tests were finally not considered in this work.

4 Example of application of filters

Now, the filtering process described in Sections 3.1 and 3.2 is detailed by means of
an example where the blobs detected in a frame are analysed. In Figure 4, the blobs
detected in the segmentation stage are shown. Each blob is identified by a number.
Let note that the same macroblock can be assigned to different blobs. That is because
H.264/AVC allows the generation of more than one motion vector for each macroblock.
For example, blob number 3 is overlapped by blob 15, and so, interpretation of data in
this figure can be confusing.

In Table 1, values that are used to apply the different filtering stages are shown.
More concretely, Nb is the number of detected blobs, N is the number of elements in
ML; columns Xi and Yi take the value TRUE if every xi, yi are equals ∀i; m is the
slope of the regression line; Mx(x) is the maximum value of xi; Mn(x) is the minimum
value of xi; Mx(y) is the maximum value of yi; r is the correlation coefficient; 2/R(N)
is the value of contrast to r; Li is the value that takes TRUE if the blob is detected
as a lane mark and takes FALSE in other case; L represents the right value for this
blob.
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Figure 4: Example of segmented frame with blobs number.

In Figure 4 it can be observed that blobs number 1 and 7 are discarded because
their size is bigger than 80 points (N column). Blobs number 3, 5, 6, 11, 12, 16, 17,
18, and 19 are not considered because have the same values of xi or yi (Xi and Yi
columns). Blobs 2, 4 and 15 are removed for having a very small slope (m column).
Blobs number 9 and 20 have positive slope and they are on a right position in the scene
(m, Mx(x),Mn(x) columns). There is no blob is detected in areas corresponding to
the sky. Comparing the correlation coefficient r with the value 2/R(N), those blobs in
which r < 2/R(N) are discarded (blobs number 14 and 21). It can be observed that in
both cases the difference is very small and the lines could be considered. Once applied
the set of filters, blobs 8, 10, and 13 are not removed and they are considered as road
lane marks. Actually, blob 8 is a wrong result.

5 Experimental results

The proposed technique was tested over a dynamic traffic video scene. The resolution
of the video was 640x480 pixels and 28 frames have been selected from a total number
of 2471. The selection criteria of this subset of frames is the exploration of different
conditions of operation. In the segmentation stage, 358 blobs have been detected. In
Table 2, experimental results are shown. As can be observed 69 of the total number
of blobs correspond with lane markings in the scene, 50 of them are detected by our
technique (72.46%). From a total number of 289 blobs not corresponding to lane marks,
the system determines that 283 are effectively not lane markings (97.92%).

In Figure 5, it can be observed the number of blobs removed in each step, and from
those blobs deleted which of them are correctly removed and those that are not.
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Table 1: Values extracted from individual blobs.
Nb N Xi Yi m Mx(x) Mn(x) Mx(y) r 2/R(N) Li L
1 171 F F
2 9 F F -610.35 13 12 17 0.0 0.6666 F F
3 10 T F F F
4 18 F F -0.0147 25 19 16 0.0547 0.4714 F F
5 6 T F F F
6 6 F T F F
7 123 F F
8 14 F F -0.8381 36 33 19 0.7903 0.5345 T F
9 28 F F 0.9244 39 37 19 0.5242 0.3779 F F
10 10 F F 0.2266 13 8 13 0.7399 0.6325 T T
11 5 F T F F
12 5 T T F F
13 29 F F 0.4532 19 11 12 0.9163 0.3714 T T
14 6 F F 0.4000 19 17 12 0.8000 0.8165 F F
15 14 F F 0.0 F F
16 7 F T F F
17 5 F T F F
18 5 F T F F
19 7 F T F F
20 5 F F 0.4999 36 35 6 0.6124 0.8944 F F
21 13 F F -0.3333 38 36 6 0.5375 0.5547 F F

Table 2: Experimental results extracted from 358 blobs.
Lane Mark No Lane Mark Total

Lane Marks Detected 50 5 55
Lane Marks not Detected 19 284 303

Total 69 289 358

6 Conclusions

A novel technique that works only with information obtained from compressed domain
is presented. The proposed algorithm can deduce if one blob corresponds with a road
lane mark or not by means of filtering process of data obtained from a segmentation
algorithm and using information about the size, the position and the shape of these
elements. Although input data for the tests is obtained from a generic algorithm not
oriented to traffic video sequences, encouraging results in this first approximation to
the problem are obtained.

As future work, the authors consider the improvement of computational efficiency
using the described filters directly in the segmentation stage and not once this phase
is finished. More precisely, it can be said that it must be studied if during the segmen-
tation process (grouping similar macroblocks to compose blobs) is possible to detect
what is a lane mark and what is not.
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Abstract

This paper considers the problem of estimating a population proportion when
there are missing values. The prediction approach is used to define a new estimator
that presents desirable efficiency properties. Simulation studies are considered to
evaluate the performance of the proposed estimator via the empirical relative bias
and the empirical relative efficiency, and favourable results are achieved.

Key words: superpopulation models, missing data, auxiliary information

1 Introduction

The use of the auxiliary population information, provided by one or several auxiliary
variables, at the estimation stage is a very usual technique with many advantages.
Powerful auxiliary information can produce a successful reduction of the bias and the
sampling error. Techniques as ratio, difference o calibration produce new estimators
that are generally more efficient than other methods which do not make use of auxiliary
information.

The auxiliary information can be also used in order to treatment of missing values.
The problem of missing data, is a common aspect in almost all investigations. Indeed,
often some sampling units does not participate in the study or refuse to answer all the
questionnaire, the interviewer is not able to contact with all sampling units, or they
are accidental loss of information caused by unknown factors. For it, some sample data
are not complete for the variables included in the study. The treatment of missing
data in survey research is not a simple job. A variety of methods have been developed
to attempt to compensate for missing data in a general purpose way that enables the
survey’s data file to be analyzed without regard for the missing data.

When some observations in the sample are missing, the simplest solution is to elim-
inate the incomplete observations and to restrict the study to complete observations
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for all variables to apply the calibration techniques with the sample of complete data.
One obvious consequence, is that the actual sample size is less than the planned one.
This can produce biases in the estimations and greater sampling variance.
Another solution is to employ some imputation techniques to replace the missing obser-
vations. see e.g Little and Rubin (1987), Rao and Toutenburg (1995), Sar̈ndal (1992)
and treating these imputed values as true observations, one may apply the indirect
methods using the standard procedures without any missing observation. Such a prac-
tice may tend to invalidate the inferences and may often have serious consequences.

Considering that the deleted observations may contain valuable information, a
third option will be to try to improve the precision of the estimators by including all
cases available for their calculation. Some authors have defined ratio estimators for
the population mean when the sample is drawn according to the procedure of simple
random sampling without replacement when some observations are missing, see, e.g.,
Tracy and Osahan (1994) and Toutenburg and Srivastava (1998, 1999, 2000). However,
there appears to be no investigation reported in the literature when the population
proportion is investigated.

Therefore, our pretension in this work, is to build some modifications of the predic-
tion estimator that employ the information in the sample for the study and auxiliary
variables, for the estimation of the population proportion, on the basis of a logistic
regression superpopulation model.

2 Proportion estimators in presence of missing values

Let U = {1, 2, ..., N} be a population of N identifiable elements. We consider the
problem of estimating the population proportion PA = N−1

∑
i∈U yi, where yi is an

attribute indicator for unit i, i.e., yi = 1 if unit i has the attribute of interest Y , and
yi = 0 otherwise. PA is the parameter of interest, which needs to be estimated. For
this purpose, a random sample s, of size n, is selected from U according to a given
sampling design. The first- and the second-order inclusion probabilities associated to
the sampling design are denoted, respectively, as πi and πij , and which are assumed to
be strictly positive. The design weight associated to the unit i is given by di = π−1

i .

The population proportion PA can be estimated by using the well-known Horvitz-
Thompson estimator, which is given by

p̂A =
1

N

∑
i∈s

diyi, (1)

Estimator (1) makes no use of auxiliary information. However, it is common to assume
that there exists an auxiliary variable which can be used at the estimation stage to
improve the estimation of the parameter of interest. For this reason, we assume an
auxiliary attributeX, whose values are known from a previous census. This assumption
is commonly used in the survey sampling context. On the other hand, a problem of

@CMMSE                                 Page 599 of 1703                                 ISBN: 978-84-614-6167-7
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missing data can occur in the sample s and the estimator (1) can not be calculated in
this situation.

Throughout this paper, we assume missing data on the sample s, which can be
divided into the disjoint sets

s1 = {i ∈ s/yi, xi are non-missing}
s2 = {i ∈ s/yi are missing, and xi are non-missing},

with s1 of size n− c and s2 of size c. We assume that c is an integer numbers verifying
0 < c < n/2.

Prediction theory for sampling surveys can be considered as a general framework for
statistical inference on the characteristics of finite populations. The general prediction
theory is based on superpopulation models, that assumes that the population under
study y = (y1, ..., yN )′ is considered to be a realization of super-population random
variables Y = (Y1, ..., YN )′ having a superpopulation model ξ. The value of the variable
of interest, associated with the i-th unit of the population is comprised of a deterministic
element ηi (known) and a random element:

Yi = m(xi) + ei (2)

i = 1, ..., N. The random vector e = (e1, ..., eN ) is assumed to have zero mean and
a positive definite covariance matrix which is diagonal (Yi are mutually independent).

The superpopulation model defines a class of distributions ξ, which supposes that
all sample values are known and they are not missing values.

A good deal of inference in survey sampling emerges from the postulation of a suit-
able distribution ξ for Y . Traditionally, parametric methods utilize regression models
to incorporate auxiliary information: m(xi) = βxi . Also one can use nonparametric
models as Breidt and Opsomer (2000). Since the variable Y is dichotomous when we
estimate a proportion, it may be more natural to consider a logistic model for the pop-
ulation, where it is assumed that .. k U.. is known. For a given xk, the model is given
by:

Pr(Yk = 1) =
exp(x′kβ)

1 + exp(x′kβ)
+ ei

and Pr(Yk) = 0) = 1− Pr(Yk = 1).
We denote by µk = E(Yk|xk, β) = Pr(Yk = 1|xk, β) and µ = 1

N

∑
µk. This model

was used by Duchesne (2003).
In our working context, we consider the problem of the prediction or population

proportion. For any given s ∈ Sd of size n we can write:

PA = fs1PAs1 + (1− fs1)PAs̃1 (3)

where fs1 =
n− c

N
, PAs1 is the proportion for units in the sample s1, and PAs̃1 is the

proportion for the units with not known values of y .
In this representation of the proportion, sample proportion PAs1 is known, and

then we attempt a post survey prediction of the proportion PAs̃1 of the unknown units.
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We denote by Eξ the expected value under the model ξ and Ed the expected value
under the design d.

Consider any predictor T of PA; it can be represented, for any given sample s as:

T = fs1PAs1 + (1− fs1)U (4)

where U is considered as predictor of PAs̃1 .
The minimum EξMSEd criterium will be considered. If T is design-model unbi-

ased, we have:

EξMSEd(T ) = EdEξ(T − µ)2 − Vξ(PA)

Hence, if we can find TB to minimize Eξ(T −µ)2 for any s ∈ Sd, and d is noninfor-
mative, then TB also has the property of minimizing EξMSEd(T ) for any given design.
We only consider the linear and model unbiased predictors.

Now, T is model-unbiased if
Eξ(U) = µs̃1 = 1

N−n+cEξ(Yi), ∀s|p(s) > 0

EξMSEd(T ) = E(Vξ(U) + Vξ(PAs̃1)− 2cov(U,PAs̃1)

and if Yi are independents cov(U,PAs̃1) = 0.
Minimize EξMSEd(T ) in T is equivalent to minimize Vξ(U) in U assuming that

Eξ(U) = µs̃1 . Hence, in this case, for a given s, the optimal model unbiased predictor
of T is (Royall, 1970)

TB = fs1PAs1 + (1− fs1)Û (5)

where Eξ(Û) = µs̃1 and Vξ(Û) ≤ Vξ(U).
The best linear unbiased predictor for U under this model is, therefore,

Û =
1

N − (n− c)

∑
s̃1

exp(x′kβ̂)

1 + exp(x′kβ̂)

being β̂ is the BLUP estimator of β under the regression logistic model.
Then we define the predictor of PA as

TB = fs1PAs1 +
1

N − (n− c)

∑
s̃1

exp(x′kβ̂)

1 + exp(x′kβ̂)
. (6)

3 Simulation study

We now compare empirically the performance of the proposed estimator with the simple
available cases estimators (P̂As1), the ratio complete cases estimator (P̂ r

As1) and the
regression complete cases estimator (P̂ reg

As1).
Estimators are evaluated by using a total of 4 simulated populations with popu-

lation size N = 1000. These populations were generated as a random sample of 1000
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units from a Bernoulli distribution with parameter PA = {0.5, 0.75}, and the attributes
of interest were thus achieved with the aforementioned population proportions. It is
known that the performance of indirect estimators depends on the relationship between
the auxiliary and interest variables. In the context of binary variables, this relationship
is measured by the Cramer’s V coefficient, which we denote as ϕ. Auxiliary attributes
were also generated by using the same distribution, but we randomly change a given
proportion of values in order to the Cramer’s V coefficient between the attribute of
interest and the auxiliary attribute takes the values 0.5 and 0.7.

For each simulation, 1000 samples, with size n = 100, were selected under SRS
to compute the empirical relative efficiency (RE) of the estimators P̂ r

As1, P̂
reg
As1 and TB

with respect to P̂As1,

RE(P̂ reg
As1) =

MSE[P̂As1]

MSE[P̂ reg
As1]

RE(P̂ reg
As1) =

MSE[P̂As1]

MSE[P̂ reg
As1]

RE(TB) =
MSE[P̂As1]

MSE[TB]
,

where MSE[·] denote the empirical mean square error.
For some values of c, we generated missing values for the attribute y, following 3

different missing mechanism: uniform response, unconfounded mechanism increasing x
and confounded mechanism increasing y.

The obtained results are shown in table 1.
As you can see in the former table, in the sense of efficiency, the proposed estimator

is better than estimator P̂ reg
As1 in 66.67% of the cases, better than estimator P̂ r

As1 in

63.89% of the cases, and better than estimator P̂As1 in 77.78 % of the cases.
Anyway, the estimator TB is better than the rest in 47.22% of the cases. P̂ r

As1 and
P̂ reg
As1 are better than the rest in 33.33% and 19.44% of the cases respectively. Finally,

P̂As1 is equal or less efficient than the rest in all cases.
Results derived from this simulation study indicate that the proposed estimator

can provide desirable estimates in the presence of missing data, as it makes a good use
of the available information at the estimation stage.

References

[1] Breidt, F.J. and Opsomer, J.D. (2000) Local polynomial regression estimators
in survey sampling. The Annals of Statistics 28,4, 1026-1053.

[2] Duchesne, P. (2003) Estimation of a Proportion with Survey Data Journal of
Statistics Education 11, 3. John Wiley, New York.

[3] Little, R. J. A. and Rubin, D. B. (1987) Statistical analysis with missing data.
John Wiley, New York.

@CMMSE                                 Page 602 of 1703                                 ISBN: 978-84-614-6167-7



A predictive estimator of the proportion with missing data

Table 1: Empirical relative eficiency (RE) of the estimators P̂ r
As1, P̂

reg
As1 and TB with

respect to P̂As1

Uniform response

V p c=10 c=20 c=30

TB P̂ reg
As1 P̂ r

As1 TB P̂ reg
As1 P̂ r

As1 TB P̂ reg
As1 P̂ r

As1

0.5 0.5 0.9108 1.0757 0.7819 1.1435 1.0702 0.7370 1.5049 1.0188 0.6580
0.75 1.3054 1.0653 0.6173 1.1583 1.1120 0.6376 0.9936 1.0759 0.5002

0.9 0.5 1.0447 1.0753 2.2055 1.3476 1.0086 1.4857 1.7790 0.9651 1.1971
0.75 1.5971 1.0855 2.2001 1.5067 1.0483 1.4011 1.4342 1.0757 1.1809

Unconfounded mechanism Increasing x

V p c=10 c=20 c=30

TB P̂ reg
As1 P̂ r

As1 TB P̂ reg
As1 P̂ r

As1 TB P̂ reg
As1 P̂ r

As1

0.5 0.5 0.8240 1.1304 0.8271 0.9204 1.0715 0.8538 1.1452 1.1841 1.1148
0.75 1.3061 1.0834 0.6661 1.2505 1.0300 0.6324 1.7188 1.0759 0.6009

0.9 0.5 0.9919 1.0634 2.3760 1.0053 1.0198 1.9860 1.3492 1.0292 3.9238
0.75 1.4383 0.9712 2.0902 1.7050 1.0160 1.3853 2.2957 1.0275 1.7039

Confounded mechanism Increasing y

V p c=10 c=20 c=30

TB P̂ reg
As1 P̂ r

As1 TB P̂ reg
As1 P̂ r

As1 TB P̂ reg
As1 traz

0.5 0.5 0.7377 1.0503 0.7610 0.8320 1.1037 0.7789 1.3416 1.1352 1.5930
0.75 1.4121 1.1159 0.6777 1.4330 1.0396 0.5454 2.8746 1.1055 0.7259

0.9 0.5 0.9790 1.0722 2.2471 1.0748 1.1266 2.1710 1.4027 1.0735 3.7032
0.75 1.5930 1.0791 2.2544 1.7032 1.0148 1.4987 2.3685 1.0415 1.6627
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Abstract

The performance of a significant number of applications in High Performance Com-
puting (HPC) is determined by the efficiency of the sparse matrix-vector and matrix-
matrix products. These computational kernels generally present poor scalability due
to the lack of memory locality exploitation. Selecting the most appropriate storage
format, which generally depends on the specific application scenario, can significantly
improve their efficiency. This paper presents an evaluation of the most common sparse
storage formats using Unified Parallel C (UPC). UPC is a Partitioned Global Address
Space (PGAS) language that provides high programmability and performance through
an efficient exploitation of data locality, especially on hierarchical architectures such
as multicore clusters. Different combinations of storage formats and data distributions
for the SparseBLAS matrix products are analyzed. Experimental results on an HP su-
percomputer using representative sparse matrices show that a suitable combination of
storage formats and parallel algorithms has a great influence on the performance of the
sparse products.

Key words: Sparse Matrices, Storage Formats, SparseBLAS, PGAS, UPC

1 Introduction

Sparse matrices are pervasive in many scientific and engineering areas, and the efficiency in
their processing is critical for the performance of many applications. Many storage formats
have been proposed to represent them. The minimization of the storage requirements is
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not the only goal of these formats, but also the computational efficiency in sparse matrices
operations. Thus, sparse numerical libraries must take into account the most suitable
combination of storage formats and algorithms, especially when it comes to their processing
in parallel on hybrid shared/distributed memory architectures.

The Partitioned Global Address Space (PGAS) programming model provides significant
productivity advantages over traditional parallel programming paradigms. In this model
all threads share a global address space, just as in the shared memory model. However,
this space is logically partitioned among threads, just as in the distributed memory model.
Thus, the data locality exploitation increases performance, whereas the shared memory
space facilitates the development of parallel codes. As a consequence, the PGAS model
has been gaining rising attention. A number of PGAS languages are now ubiquitous, being
Unified Parallel C (UPC) [1] a representative example.

UPC is an extension of ANSI C for parallel computing. In [2] El-Ghazawi and Can-
tonnet established, through an extensive evaluation of experimental results, that UPC can
potentially perform at similar levels to those of MPI. Besides, the one-sided communica-
tions present in languages such as UPC were demonstrated to be able to obtain even better
performance than the traditional two-sided communications [3]. Barton et al. [4] further
demonstrated that UPC codes can scale up to thousands of processors with the right sup-
port from the compiler and the run-time system. More up-to-date evaluations [5, 6] have
confirmed this analysis.

This paper presents an evaluation of the most suitable combinations of representative
sparse storage formats (Coordinate, Compressed Sparse Row, Block Sparse Row, Com-
pressed Sparse Column, Diagonal and Skyline) and parallel algorithms for the implementa-
tion of the SparseBLAS matrix-vector and matrix-matrix products using UPC. SparseBLAS
products are core routines for most iterative solvers and matrix factorizations and thus their
performance has a great influence on a wide variety of scientific and engineering applications.

The rest of this paper is organized as follows. Section 2 summarizes the related work.
Section 3 describes the sparse storage formats evaluated. Sections 4 and 5 outline the dif-
ferent algorithms used to perform the sparse matrix-vector and matrix-matrix products,
respectively, depending on the storage format. Section 6 presents the analysis of the exper-
imental results obtained on an HP supercomputer (Finis Terrae). Finally, conclusions are
discussed in Section 7.

2 Related Work

Due to the significant presence and impact in science and engineering of the sparse prod-
ucts, several optimization techniques have been proposed for their parallel implementation.
Williams et al. [7] provide an efficient implementation of the matrix-vector product for
multicore systems using the Compressed Sparse Row format by applying thread blocking
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together with sequential optimizations such as cache blocking, loop optimizations or soft-
ware memory prefetching. Liu et al. [8] provide another implementation for the Block
Sparse Row format using OpenMP. This work also evaluates three different types of load
balancing, determining that the non-zero scheduling presented in [9] usually obtains the
best performance. A new method for load balancing for the sparse matrix-vector product
in heterogeneous systems was presented in [10].

Regarding the sparse matrix-matrix product, Buluc and Gilbert [11] compare different
algorithms and data distributions for the multiplication of two sparse matrices. However,
this routine is not the same as the one in the SparseBLAS library [12], which multiplies
a sparse matrix by a dense one. Our paper will analyze this latter one together with the
sparse matrix-vector product.

The selection of the most suitable storage format is one of the main decisions in order
to perform efficient products, and this decision can be influenced by the size of the problem,
the sparsity pattern of the matrix, the programming language or the architecture of the
system. In [13] Luján et al. presented a performance evaluation of different storage formats
for the sparse matrix-vector product in Java. This study was complemented in [14] with
a similar evaluation using Fortran. Regarding parallel computing, Shahnaz et al. provide
in [15] and [16] a comparison of the performance of the sparse matrix-vector product with
seven different formats in a small cluster using MPI. Similar studies for GPUs are presented
in [17] and [18].

Nevertheless, none of these works take advantage of the use of PGAS languages. Bell
and Nishtala [19] deal with sparse matrices in UPC but restricted to the sparse triangular
solver and the Compressed Sparse Row format. Therefore, the novelty of our work in the
PGAS programming model area is twofold: it is the first approach to the parallel sparse
multiplications and it provides the first performance comparison among different sparse
storage formats.

3 Sparse Matrix Storage Formats

The sparse storage formats define the structure to keep the data of the sparse matrices,
and thus play an important role in achieving a good efficiency in sparse routines. This
paper studies the formats described by Dongarra in [20], each of them tailored to particular
sparsity patterns:

• Coordinate Format: It is the most intuitive, simple and flexible scheme to represent
sparse matrices. It consists of three arrays, values, rows and columns, which store
the values, row indices and column indices of the non-zero entries, respectively. In
most occasions (and always in this work) the non-zero elements of the same row are
assumed to be stored contiguously.
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• Compressed Sparse Row (CSR) Format: This format is probably the most popular
sparse representation. It explicitly stores subsequent non-zero values of the matrix
rows in array values. Array columns keeps the column indices. A third array rowPtr
stores, for each row, the index of the entry in the array columns which is the first
non-zero element of the given row. It has an additional entry with the total number
of non-zero elements in the matrix. Therefore, CSR presents a compressed view of
Coordinate as the length of rowPtr is the total number of rows plus one instead of
the total number of non-zero values.

• Block Sparse Row (BSR) Format: It is a variant of CSR, very useful for sparse matrices
where the non-zero elements are grouped in blocks. It consists of dividing the matrix in
a grid of blocks and keeping, for each block with non-zero entries, its values (including
zeros) and the information of the position of the block within the grid according to
the CSR scheme. The values are stored consecutively by blocks and, inside them, by
rows.

• Compressed Sparse Column (CSC) Format: It is similar to CSR, but storing con-
secutively in array values the non-zero elements by columns, using rows for the row
indices and columnPtr for keeping for each column the index of the entry in the array
rows which is the first non-zero element of the given column.

• Diagonal Format: Many sparse matrices in scientific computing present their non-zero
entries restricted to a small number of diagonals. In order to take advantage of this
pattern the Diagonal scheme has been defined. In this case values stores consecutively
all the elements of the diagonals with any non-zero element. Another array, distance,
represents, for each stored diagonal, its offset from the main diagonal. Diagonals
above and below the main one have positive and negative distance, respectively.

• Skyline Format: This format has been specifically designed for sparse triangular ma-
trices, which frequently arise when solving linear systems. The concrete storage of the
elements depends on whether the matrix is lower or upper triangular. The values of
all the entries from the first non-zero element to the diagonal in each row/column are
consecutively stored in values in the lower/upper case. Besides, an additional array
ptr is necessary. In lower/upper matrices, it keeps for each row/column the index
of the entry of values with the first element of this row/column. In both cases an
additional entry with the total number of non-zero elements is needed.

4 Matrix-Vector Product

This section analyzes the SparseBLAS matrix-vector product: α ∗ A ∗ x + y = y, where α
is a scalar, A a sparse matrix and x and y dense vectors.

@CMMSE                                 Page 608 of 1703                                 ISBN: 978-84-614-6167-7



J. González-Doḿınguez et al

Figure 1: Sparse matrix-vector product using a row distribution for the matrix

All PGAS languages, and thus UPC, expose a global shared address space to the user
which is logically divided among threads, so each thread is associated or presents affinity to a
part of the shared memory. Moreover, UPC also provides a private memory space per thread
for local computations. Therefore, each thread has access to both its private memory and to
the whole global space. However, the accesses to remote data will be much more expensive
than the accesses to data in local memory (private memory or shared memory with affinity
to the thread). Thus, data distributions will have a serious impact on the performance
of the parallel codes. For the parallel implementation of the matrix-vector product three
different data distributions will be considered (by rows, columns and diagonals).

Figure 1 illustrates the behavior of the sparse matrix-vector product distributing the
matrix by rows. This distribution relies on the consecutive storage by rows of the data in
the values array so it can be used in the Coordinate, CSR, BSR and Skyline (with lower
matrices) formats. Previous works have pointed out that a key aspect in the performance of
the sparse matrix-vector product is the computational load balance [7]. In order to achieve
a good load balance the matrix is distributed by blocks of rows of different size, trying to
evenly distribute the number of non-zeros per thread (in the example, six non-zero elements
per thread). In order to exploit data locality as much as possible each thread only accesses
the rows of the matrix that correspond to it. Then, by applying a sequential partial sparse
matrix-vector product with these rows and all the elements of x, each thread calculates a
partial result that corresponds with its rows of A. Thus, the distribution of y must match
the distribution of the matrix so that the partial sums can be performed without remote
accesses. Besides, in the common case that the result vector is needed completely stored
in an array in the local memory of one thread, this distribution by blocks only requires
one bulk copy of remote data per thread. This bulk copy is performed in one go with the
upc memget function which is much more efficient than copying all the elements one-by-one
(the UPC default access).

For the CSC and Skyline (with upper matrices) formats, where the data in the values

array are consecutively stored by columns, the use of this row distribution would lead to
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Figure 2: Sparse matrix-vector product using a column distribution for the matrix

several data movements, which can represent an important performance overhead. The
natural distribution for these formats is by blocks of columns with variable block sizes in
order to achieve a good computational load balance. Figure 2 shows this distribution for the
same sparse matrix used in the row example. In this case the source vector x must be always
distributed according to the size of the blocks in the matrix. In order to compute the ith

element of the result, the ith values of all partial results should be added. These additions
need reduction operations involving all UPC threads, so their performance is usually poor.

Regarding the Diagonal format, as the elements in the values array are consecutively
stored neither by rows nor by columns, none of the presented distributions is eligible. In this
case, the sparse matrix is distributed by diagonals as shown in Figure 3 and the final reduc-
tions are also mandatory. Furthermore, as the number of non-zero elements per diagonal
is unknown, the computational load might be unbalanced (in the example, seven non-zero
elements for threads 0 and 1 and five non-zero elements for threads 2 and 3). Nevertheless,
the impact of this drawback is alleviated by using a cyclic distribution which achieves a
balanced load distribution in most sparse matrices.

Figure 3: Sparse matrix-vector product using a diagonal distribution for the matrix

In UPC shared arrays can not be distributed with a variable block size. Thus, for
all storage formats the sparse matrices are explicitly distributed into the memories of the
threads using private arrays. Vectors in the matrix-vector product and dense matrices in
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Figure 4: Sparse matrix-matrix product using a row distribution for the sparse matrix

the matrix-matrix product are instead stored in shared memory.
UPC provides functionality to access memory through pointers. A pointer to shared

memory contains 3 fields: thread, block and phase. When performing pointer arithmetic
on a pointer-to-shared all three fields must be updated, making the operations slower than
with private pointer arithmetic. Thus, in all the implemented sparse products, when dealing
with shared data with affinity to the local thread, the access is performed through standard
C pointers instead of using UPC pointers to shared memory.

5 Matrix-Matrix Product

This section focuses on the SparseBLAS matrix-matrix routine: α ∗A ∗B + C = C, where
α is a scalar value, A a sparse matrix, and B and C dense matrices.

The first approach to parallelize this kernel consists of adapting the matrix-vector dis-
tributions and algorithms to this problem. For instance, Figure 4 shows the adaptation of
the row distribution for matrices with eight columns. This data distribution will be ap-
plied to the Coordinate, CSR, BSR and Skyline (with lower matrices) sparse formats. Each
thread needs the whole matrix B and the same rows of C as in A. As in the matrix-vector
product, only one bulk copy per thread is required in case all the elements of the result
matrix need to be consecutively stored in one local memory.

Nevertheless, the adaptation of the distribution by columns and diagonals employed
in the matrix-vector multiplication would eventually involve a significant number of final
reductions, leading to a very poor performance. Therefore, the approach illustrated in
Figure 5, which avoids all the reductions, has been developed for CSC, Diagonal and Skyline
(with upper matrices) formats. Each thread needs to access the whole sparse matrix but
only the same columns of B and C. The block distribution is used because it allows to
aggregate the copies of all elements of the same row of C using only one call to upc memget

per thread and row in a scenario where the output elements must be in one array in local
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Figure 5: Sparse matrix-matrix product using a column distribution for the dense matrices

memory. This approach could also be used for the other sparse formats but it has been
discarded because, in that scenario, it would lead to a greater number of copies (one bulk
copy per row and thread) than in the row distribution of A (only one bulk copy per thread).

6 Performance Evaluation

The performance evaluation of the storage formats for SparseBLAS products in UPC has
been conducted on the Finis Terrae supercomputer [21] at the Galicia Supercomputing
Center (CESGA). This system consists of 142 HP RX7640 nodes, each of them with 16
IA64 Itanium2 Montvale cores at 1.6 Ghz, 128 GB of memory and a dual 4X InfiniBand
port (16 Gbps of theoretical effective bandwidth). The cores of each node are distributed
in two cells, each of them with 4 dual-core processors, grouped in pairs that share the
memory bus (8 cores and 64 GB of shared memory per cell). As for software, the code was
compiled using Berkeley UPC 2.12.1 [22]. The intra-node and inter-node communications
are performed through shared memory and GASNet over InfiniBand, respectively.

In this evaluation four representative matrices, with different sparsity characteristics,
have been selected from the University of Florida Matrix Collection [23]. Their character-
istics are shown in Table 1. Larger versions (labeled with “large”) have been obtained by
replicating the original matrices, which preserves the sparsity and the pattern of the original
ones. The larger versions have been used in the matrix-vector product whereas the original
matrices have been used for the matrix-matrix product.

Figures 6 and 7 show the speedups of the double precision matrix-vector and matrix-
matrix products, respectively, using up to 64 threads. These results have been obtained
discarding the overhead of the initial data distribution (for many applications several consec-
utive products are performed with the same input data distributions). For clarity purposes,
results with less than 8 threads are not shown as there are no significant differences among

@CMMSE                                 Page 612 of 1703                                 ISBN: 978-84-614-6167-7
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Plot Name Dimensions Non-zeros % sparsity

nemeth26 9506x9506 760,633 0.842

nemeth26 large 85554x85554 61,630,079 0.842

TSOPF 18696x18696 4,396,289 1.258

TSOPF large 56088x56088 39,574,965 1.258

gupta3 16783x16783 4,670,105 1.658

gupta3 large 67132x67132 74,721,175 1.658

exdata 6001x6001 1,137,751 3.159

exdata large 84014x84014 222,973,345 3.159

Table 1: Overview of the sparse matrices used in the evaluation

the analyzed formats. Some storage formats are not appropriate for storing some matrices
due to the significant number of zeros that the format would require to store them, namely
gupta3 with Diagonal, and TSOPF and exdata matrices with Skyline. Thus, these combina-
tions have not been considered. In the matrix-matrix product, TSOPF and gupta3 matrices
are not multiplied by square dense matrices but by matrices with 2000 and 3000 columns,
respectively, because of memory constraints and to show the behavior of the function with
different settings.

As expected, in the matrix-vector product row-based storage formats outperform sig-
nificantly column and diagonal-based ones due to the avoidance of the final reduction op-
erations, as shown in Section 4.

The analysis of the matrix-matrix results confirms that the differences between the
two approaches presented in Section 5 is mainly due to the workload balance of the row
distribution. Thus, when the workload is balanced with the row distribution approach, as in
the case of nemeth and gupta3 matrices, the formats that use this distribution (Coordinate,
CSR, BSR and Skyline with lower matrices) are the best choice because they only need one
data copy at the end of the algorithm (see Figures 4 and 5). However, for TSOPF and
exdata matrices, workload is not completely balanced when relying on a row distribution
because there are square blocks with a high number of non-zero elements. Therefore, formats
that distribute the dense matrices by columns show higher scalability. Finally, the poor
speedups of the Diagonal format for this routine is due to the fact that the sequential
times are lower than using other formats thanks to the efficient exploitation of the cache
hierarchy provided by this format on the evaluated matrices. Nevertheless, when the data
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Figure 6: Speedups of the matrix-vector product
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Figure 7: Speedups of the matrix-matrix product

in the Diagonal format is distributed among several threads this cache efficiency decreases,
showing significantly poorer scalability.

7 Conclusions

The efficiency of the sparse products is critical for the performance of many applications. In
this paper, a PGAS language, UPC, has been used for the parallelization of these compu-
tational kernels, as it provides productivity advantages and good data locality explotation,
especially on hierarchical architectures such as multicore clusters. The parallel algorithms
proposed take into account both the most suitable storage format of the sparse matrix and
its influence on the data distributions in order to obtain a good efficiency. The performance
evaluation of the routines on a supercomputer has shown the efficiency of the algorithms
implemented, achieving speedups of up to 62 for the sparse matrix-vector product and 63 for
the sparse matrix-matrix one on 64 cores. Furthermore, it has been assessed the suitability
of the combination of different storage formats and workload distributions, depending on
the matrix sparsity pattern.

The routines implemented will be included in a UPC sparse BLAS library to extend
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the dense counterpart described in [24].
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Abstract

Due to the possibility of key exposure, forward security in digital signature schemes
has been well studied. In the identity-based setting where an entity’s public key is
that entity’s name, our aim is to allow sanitizations in digital signature schemes which
provide forward security. After introducing the notion of key-evolving chameleon hash
schemes, we present a construction that provides forward-secure collision-resistance and
uses non-interactive proofs of knowledge. The public key of the key generation center
and all private keys are updated during each time period.

Key words: identity-based cryptography, chameleon hashes, bilinear pairings, saniti-
zable signatures

MSC 2000: 68P01, 94A60

1 Introduction

Chameleon hashes are collision-resistant functions with a trapdoor for finding collisions
[11]. They are particularly useful in sanitizable signature schemes, a variant of digital
signature schemes that allow a certain degree of modification to the original message [5, 10].
The sanitizer can create collisions to modify the message using chameleon hashes [1]. An
identity-based chameleon hash based on bilinear pairings was proposed by Zhang et al.
[15] but suffers from a key exposure problem as shown by Ateniese and de Medeiros [2].
Recently, a new ID-based sanitizable signature scheme in the standard model was proposed
by Ming et al. [12]. Our contribution is to adapt the definitions and construction of work
by Chen et al. [7] to include forward security. That is, once the intended time period has
passed, honest recipients will not be able to create collisions in the chameleon hash.
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2 Preliminaries and Definitions

We write x
$←X to denote that the value x is uniformly chosen from the set X. Our

construction builds on bilinear pairings commonly used in identity-based schemes (such as
[4]).

Definition 1 (Bilinear Map) A pairing is a bilinear map e : G1 × G1 → G2 where G1

and G2 have prime order q and satisfy the following properties:

1. Bilinearity: ∀P1, P2 ∈ G1, ∀α, β ∈ Z∗q, e(αP1, βP2) = e(P1, P2)
αβ.

2. Non-Degeneracy: For any P1 ∈ G1, e(P1, P2) = 1 for all P2 ∈ G1 iff P1 = O.

3. Computability: There exists an efficient algorithm to compute e(P1, P2) from P1, P2 ∈
G1.

The security proofs of our constructions depend on the hardness of certain computa-
tional problems involving bilinear pairings. Namely, the bilinear decisional Diffie-Hellman
(BDDH) problem states that it is infeasible to distinguish tuples of the form (P, αP, βP, γP, e(P, P )αβγ)
from tuples (P, αP, βP, γP, z). Here, P is a generator of G1, α, β, γ are uniformly chosen
from Z∗q , and z is uniformly chosen from G2. The hardness of BDDH problem implies that
the bilinear computational Diffie-Hellman (BCDH) problem — given P, αP, βP, γP ∈ G1,
find e(P, P )αβγ — is hard, too.

In identity-based cryptography, the names of the parties serve as their public keys.
There is a trusted party, the key generation center (KGC), that is capable of computing the
secret key corresponding to any public key and uses this capability to give to each party
its secret key. Secret keys are bound to public keys through the master public key known
to everybody. The master public key, together with the master secret key are generated by
KGC as well as the system parameters params.

We will construct a non-interactive key-evolving identity-based chameleon hash scheme
with a similar setup to the one modeled by Steinwandt and Suárez Corona [14] in which
users update their states during every time period (including the KGC). All users, including
the adversary, are assumed to be stateful; we assume that the old state of each user is
cleanly erased and thus unrecoverable. After defining these notions, we explore the security
model in the next section. For time t, we denote the master public key by Pt and the master
secret key by St.

Definition 2 (Key-Evolving Identity-Based Chameleon Hash Scheme) A key-evolving
identity-based chameleon hash (KE-ID-CH) scheme is a 6-tuple of probabilistic polynomial-
time algorithms (S,M, E ,U ,H,F) such that

S The setup algorithm is run by the KGC which upon input security parameter 1k and
total number of time periods T generates params, S0, and P0.
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M The master key update algorithm is run by the KGC which upon input params and St−1
where t− 1 < T outputs St. Then, St−1 is erased.

E The extraction algorithm is run by the KGC which on input ID and Pt outputs DID
t ,

the secret key corresponding to ID during time period t1.

U The user key update algorithm is run by user ID which upon input params and DID
t−1

where t− 1 < T outputs DID
t . Then, DID

t−1 is erased.

H The hashing algorithm is run by the sender which on input Pt, receiving identity
ID, message m, random element r, and transaction label L outputs the hash value
h = H(Pt, ID, L,m, r).

F The forging algorithm is run by the receiving identity ID which on input (Pt, ID, L,m, r,m
′)

and DID outputs r′ such that h = H(Pt, ID, L,m, r) = H(Pt, ID, L,m
′, r′).

For algorithms E, H and F , we require that t ≤ T . Furthermore, if r is uniformly
distributed in finite space R, then the distribution of r′ is computationally indistinguishable
from uniform in R.

In the construction that we will propose, a secure pseudorandom bit generator (PRBG)
will be used in the KE-ID-CH scheme by the KGC in algorithm M and by the users in
algorithm U to update the secret keys. A PRBG is a deterministic algorithm which, given
a truly random binary sequence of length l, outputs a binary sequence of length k � l
such that no efficient algorithm can tell it apart from a sequence of uniformly random
strings of the same length. A well-known result by H̊astad et al. shows that PRBGs may
be constructed from any one-way function [9].

In terms of notation (as modeled by Bellare and Yee in [3]), we say that G = (Gk,Gn, k, T )
is a (stateful) PRBG which consists of a pair of algorithms and a pair of natural numbers.
The probabilistic key generation algorithm Gk takes no inputs and outputs an initial seed
Seed0. The deterministic next step algorithm Gn runs a maximum of T times. It takes as
input Seedt−1 and outputs (Outt, Seedt) where Outt is a k-bit block and Seedt is the seed
for the next period.

3 Security Model

A forward-secure ID-based chameleon hash must have collision resistance and indistin-
guishability as defined below.

1We assume that time period t can be extracted from Pt in the scheme.
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Definition 3 (Forward-Secure Collision Resistance) Let (S,M, E ,U ,H,F) be a KE-
ID-CH scheme and Acol a probabilistic polynomial time algorithm. Consider the following
attack scenario:

1. Run the setup algorithm S and hand params as input to Acol.

2. Starting with t = 1, the adversary Acol is successively given access to Pt for each time
period t.

3. Eventually, Acol outputs breakin and ID for time period t or t = T at which point it
receives the secret key DID

t .

4. Acol outputs (Pt′ , ID
′, L,m, r) and (Pt′ , ID

′, L,m′, r′).

We say the KE-ID-CH scheme is forward-secure collision resistant if the success proba-
bility Pr[H(Pt′ , ID

′, L,m, r) = H(Pt′ , ID
′, L,m′, r′) and t′ < t] is negligible for all probabilis-

tic polynomial time adversaries Acol.

The adversary Acol receives the system parameters and the public key of the system for
each time period in order; that is, Acol is an outsider, not a legitimate user of the system
at this point. Then, Acol selects a time to break into the secret key of a particular user
(becoming an insider in the system with the information that an honest user would have
stored) and must create a collision in the past. The identity queried during breakin need not
be the same as the one used in the forgery. The label L is used in the scheme in order to
ensure key-exposure freeness. We will briefly describe what this means and how this works
in our proposed construction after the proof of Theorem 1.

Definition 4 (Indistinguishability) Let (S,M, E ,U ,H,F) be a KE-ID-CH scheme and
Aind a probabilistic polynomial time algorithm. Consider the following attack scenario:

1. Run the setup algorithm S and hand params as input to Aind.

2. The adversary Aind is given unrestricted access to an extraction oracle OE to run
E(·, ·).

3. Eventually, Aind outputs Pt, ID, L, and m.

4. Select b
$←{0, 1} and random element r and do as follows:

(a) If b = 0, the adversary Aind is given H(Pt, ID, L,m
∗, r) for randomly chosen m∗

of the same length as m.

(b) If b = 1, the adversary Aind is given H(Pt, ID, L,m, r).

@CMMSE                                 Page 622 of 1703                                 ISBN: 978-84-614-6167-7
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5. Aind outputs bit b′.

The KE-ID-CH scheme is indistinguishable if the success probability
∣∣Pr[b = b′]− 1

2

∣∣ is
negligible for all probabilistic polynomial time adversaries Aind.

The adversary Aind receives the system parameters, the public key of the system and an
extraction oracle for each time period. After selecting the values that it wants in the hash,
a random value is chosen and either the original message is hashed or a random message
of the same length. Aind wins if it can determine whether the message it selected was the
one hashed. In Section 5, we propose a construction that achieves both forward-secure
collision resistance and indistinguishability, but first we discuss the shortcomings of the
original scheme.

4 Cryptanalysis of Collision Resistance in the Original Scheme

We recall in Figure 1 the scheme by Chen et al. [7] that we will adapt in the next section
to include forward security.

S The KGC takes as input the security parameter 1k. Then it chooses two groups G1

and G2 of prime order q, a bilinear map e : G1 ×G1 → G2, a generator P of G1,
master secret key S0 = s, and sets the public key to P0 = sP . The hash functions
in the random oracle is H1 : {0, 1}∗ → G1 (which is used to compute the public
keys of the identities).

E The KGC takes as input ID and S0 and returns the secret key DID = sQID where
QID = H1(ID) is the public key of ID.

H The sender selects a
$←Z∗q then returns r = (aP, e(a · P0, QID)) and h = aP +mH1(L).

F The receiver selects message m′ then sets a′P = aP + (m − m′)H1(L) and r′ =
(a′P, e(a′P,DID)).

Figure 1: Chen et al. ID-based chameleon hash scheme without key exposure

Given (ID, L,m, r,m′), the security of the scheme in Figure 1 relies on the difficulty
of coming up with r′ such that the hash values are equal. The first component of r′ is
a′P = aP +(m−m′)H1(L) which is easy to compute, but computing the second component
e(a′ · sP,QID) without having DID implies solving the BCDH problem. Thus, we have that

r′ = (a′P, e(a′ · sP,QID)). If a user selects u
$←G2 and returns r′′ = (a′P, u), we still have

that h = a′P + m′H1(L) = (aP + (m−m′)H1(L)) + m′H1(L) = aP + mH1(L). How can
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users other than the sender and receiver be sure that r and r′ were correctly formed? A
user that can distinguish between r′ and r′′ can solve the BDDH problem.

If solving the BDDH problem is hard, the issue is solved by attaching a non-interactive
zero knowledge (NIZK) proof that the pairing is correctly formed. NIZK protocols enable a
prover to non-interactively convince a verifier about the truth of a statement without leaking
any information except the fact that the statement is true. Authors Chen et al. address this
problem in the resulting chameleon signature scheme that they propose by having a “Deny”
protocol. However, when viewed independently from the signature scheme, it is clear that
the chameleon hash scheme in Figure 1 is secure if the BDDH problem is easy and the
BCDH problem is hard, and this is not what the authors proved. The second component
of r and r′ does not function as a trapdoor for the receiving identity as intended. As an
open problem, one could explore the possibility of constructing an ID-based chameleon hash
without key exposure that does not require a NIZK.

5 Proposed Construction

In Figure 2, we use a NIZK proof π that e(aPt, QID) is the solution to the BCDH problem
on input (aP, Pt, QID). Respectively, π′ is the NIZK proof that e(a′P, stQID) is the solution
to the BCDH problem on input (a′P, Pt, QID). These NIZK proofs may be done efficiently
as shown by Groth and Sahai [8]. Although NIZK proofs are not present in the original
scheme that we modified [7], we showed the need for them in Section 4.

The correctness of the forgery follows from the fact that h = a′P + m′H1(L) =
(aP + (m−m′)H1(L))+m′H1(L) = aP+mH1(L) and r′ = e(a′·Pt, QID) = e(a′·stP,QID) =
e(a′P, stQID). The security of the scheme follows from Theorems 1 and 2. Clearly, one can
run G repeatedly to compute the public key necessary to hash values in future time periods.

Theorem 1 If the BCDH assumption holds, then the KE-ID-CH scheme in Figure 2 is
secure in the sense of forward-secure collision resistance.

Proof Let Acol be an adversary in the KE-ID-CH scheme that can forge with non-negligible
advantage p according to Definition 3. Adversary Abcdh receives challenge (P, αP, βP, γP )
and must compute e(P, P )αβγ . Abcdh simulates the KGC and all random oracle queries
and uses Acol as a subroutine to solve the BCDH problem. To win, Acol must output
(Pt′ , ID, L,m, r) and (Pt′ , ID, L,m

′, r′) which hash to the same h with the restrictions out-
lined in Definition 3. In order to introduce the group elements from the challenge above,
Abcdh will guess when Acol will query H1 with the values used in the forgery and set
Pt′ = αP , QID = βP and H(L) = γP . We now present the details of the simulation and
how this allows Abcdh to solve the BCDH problem.
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S The KGC takes as input the security parameter 1k and T . Then it chooses two groups
G1 and G2 of prime order q, a bilinear map e : G1 × G1 → G2, a generator P of
G1, secret key s0, and sets the public key to P0 = s0P . The hash functions in
the random oracle are H1 : {0, 1}∗ → G1 and H2 : {0, 1}k → Z∗q . The KGC also
chooses a secure PRBG G = (Gk,Gn, k, T ), runs Gk to compute seed Seed0 and sets
S0 = (s0, Seed0).

M The KGC takes as input the master key St−1 = (st−1, Seedt−1), computes
Gn(Seedt−1) = (Outt, Seedt), sets st = H2(Outt)st−1 mod q and outputs St =
(st, Seedt).

E The KGC takes as input ID and St = (st, Seedt) and returns the secret key DID
t =

(stQID, Seedt) and Pt = stP to the user where QID = H1(ID) is the public key of
ID and Pt is the public key of the KGC at time t.

U The user takes as input the secret key DID
t−1 = st−1QID and Pt−1 =

st−1P , then computes Gn(Seedt−1) = (Outt, Seedt), and outputs DID
t =

(H2(Outt)st−1QID, Seedt) = (stQID, Seedt) and Pt = H2(Outt)Pt−1 =
H2(Outt)st−1P = stP .

H The sender selects a
$←Z∗q then returns r = (aP, e(a · Pt, QID)), NIZK proof π and

h = aP +mH1(L).

F The receiver selects message m′ then sets a′P = aP + (m − m′)H1(L), r′ =
(a′P, e(a′P, stQID)) and constructs NIZK proof π′.

Figure 2: Chameleon hash scheme in the forward-secure ID-based setting

PRBG Since Acol has access to the public keys, Abcdh selects t′ ∈ {1, . . . , T ′} when it will
return Pt′ = αP where T ′ is the polynomial number of time periods queried by Acol. Abcdh

selects a PRBG G = (Gk,Gn, k, T ) and creates an empty list R. First, Abcdh runs Gk and
stores Seed0. Then, Abcdh runs Gn(Seedt−1) and stores (Outt, Seedt) in R; list R is used
to compute Pt for t 6= t′. If Acol can efficiently distinguish between a faithful simulation
using G versus a simulation in which we insert αP in place of the public key Pt′ , then Acol

distinguishes between the PRBG chosen and a function that outputs uniformly at random
bits of the same length.

Random Oracle Queries Abcdh begins with empty lists R1 and R2 where it stores the
random oracle queries of H1 and H2, respectively. Acol makes a polynomial number of
queries of at most qH1 to H1 and qH2 to H2. To guess when Acol will query the values that
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it will use to create a forgery, Abcdh selects i ∈ {1, . . . , qH1} and then j ∈ {1, . . . , qH1} \ {i}
and will return βP upon the ith query xi and γP upon the jth query xj to H1.

• H1 Queries: Except for the ith and jth queries, in simulating H1 for new query x ∈
{0, 1}∗, Abcdh selects rx

$←Zq, stores (x, rx, rxP ), and returns rxP ; otherwise, Abcdh

returns the value rxP already stored in R1.

• H2 Queries: When simulating H2 for new query x∗ ∈ {0, 1}k, Abcdh selects rx∗
$←Z∗q ,

stores (x∗, rx∗), and returns rx∗ ; otherwise, Abcdh returns the value rx∗ already stored
in R2.

Collisions Let Collision be the event that during the simulation, Abcdh stores pairs (x, rx, rxP )
and (x̂, rx̂, rx̂P ) in R1 (and analogously for R2) where x 6= x̂ and rx = rx̂. Whenever the
event Collision occurs, Abcdh will restart the simulation. As Abcdh is polynomially bounded,
Collision occurs with negligible probability only, and subsequently we may assume that the
event Collision does not occur. By similar reasoning, one may assume that Acol has queried
all random oracle values which make the forgery valid; otherwise, the probability that Abcdh

selects the same values during verification is also negligible.

Break-in and Forgery Acol will request breakin for some time period t̃ > t′ and will
receive DID

t̃
of which st̃QID is computed by Abcdh using lists R and R1 and Seedt̃ comes

from G; if Pt̃ = αP and QID = βP , Abcdh restarts the simulation.

Let (Pt′ , ID, L,m, r) and (Pt′ , ID, L,m
′, r′) be the forgery returned by Acol. When Acol

uses Pt′ = αP , QID = βP and H(L) = γP to create its forgery, Abcdh can solve the
BCDH problem. Since aP + mH1(L) = a′P + m′H1(L) implies that (m − m′)H1(L) =
a′P − aP , we can compute the pairing e ((m−m′)H1(L), αQID) = e(a′P − aP, αQID) =
e(a′P, αQID)/e(aP, αQID) because e(aP, αQID) and e(a′P, αQID) are the second components
of r and r′, respectively. By raising both sides to (m −m′)−1 (computed modulus q), one
can solve for e(H1(L), αQID) = e(γP, αβP ) = e(P, P )αβγ . Abcdh’s probability of success

p

(qH1)2T ′
is non-negligible, thus proving the theorem.

Key exposure freeness In some proposed chameleon hash schemes, creating a collision
would result in exposing the recipient’s secret key (such as Krawczyk and Rabin’s scheme
[11]) and this is known as the key exposure problem. As shown in the proof, when a
collision occurs in the scheme, the pairing e(H1(L), αQID) may be computed for that label
L. However, this does not reveal αQID. Furthermore, computing e(H1(L

′), αQID) for L′ 6= L
involves solving the BCDH problem when L′ has not been used before by ID to create a
collision.
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Theorem 2 The KE-ID-CH scheme in Figure 2 is secure in the sense of indistinguisha-
bility.

In order to distinguish between h = aP +mH1(L) and h′ = aP +m′H1(L), Aind would
have to correctly guess the first component of r = (aP, e(a · stP,QID)) which is not given
and chosen uniformly at random. As this occurs with negligible probability 1/q, the scheme
has the indistinguishability property.

6 Conclusion and Open Problems

In this work, we constructed a provably secure forward-secure ID-based chameleon hash
scheme based on a construction that is free of key exposure. Chameleon hashes have often
been used in sanitizable signature schemes, but we are the first to propose a scheme in a
setting which involves forward security, as far as we know. Our forward-secure construction
is non-interactive but requires that the master public key be updated.

Naturally, one wonders if it is possible to have a forward-secure key-evolving chameleon
hash function that is non-interactive and has a fixed master public key. In many forward-
secure schemes (for example Canetti et al.’s [6] forward-secure encryption), the user updates
its internal state non-deterministically. Does this imply that the sender who is hashing needs
to interact with the receiving identity?

On another direction, an interesting problem is whether it is possible to construct an
attribute-based chameleon hash scheme with the conditions that follow. The hash would be
a function of the message, attribute authority’s public key and attributes. A user with the
appropriate threshold number of attribute secret keys should be able to compute a trapdoor
to the chameleon hash. Also, one would like to limit the interaction between each user and
the attribute authority to an initial exchange as is typically done (for example in fuzzy
ID-based encryption by Sahai and Waters [13]).
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Jakob Schelbert, Dominique Schröder, and Florian Volk. Security of sanitizable signa-
tures revisited. In Stanislaw Jarecki and Gene Tsudik, editors, Public Key Cryptography
PKC 2009, volume 5443 of Lecture Notes in Computer Science, pages 317–336. Springer
Berlin / Heidelberg, 2009.

[6] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption
scheme. In Eli Biham, editor, Advances in Cryptology EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 646–646. Springer Berlin / Heidel-
berg, 2003.

[7] Xiaofeng Chen, Fangguo Zhang, Willy Susilo, Haibo Tian, Jin Li, and Kwangjo Kim.
Identity-based chameleon hash scheme without key exposure. In Ron Steinfeld and
Philip Hawkes, editors, Information Security and Privacy, volume 6168 of Lecture Notes
in Computer Science, pages 200–215. Springer Berlin / Heidelberg, 2010.

[8] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In Nigel Smart, editor, Advances in Cryptology - EUROCRYPT 2008, volume 4965 of
Lecture Notes in Computer Science, pages 415–432. Springer Berlin / Heidelberg, 2008.

[9] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–
1396, 1999.

[10] Marek Klonowski and Anna Lauks. Extended sanitizable signatures. In Min Rhee
and Byoungcheon Lee, editors, Information Security and Cryptology ICISC 2006,
volume 4296 of Lecture Notes in Computer Science, pages 343–355. Springer Berlin /
Heidelberg, 2006.

@CMMSE                                 Page 628 of 1703                                 ISBN: 978-84-614-6167-7
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[14] Rainer Steinwandt and Adriana Suárez Corona. Identity-based non-interactive key
distribution with forward security. Designs, Codes and Cryptography, pages 1–14,
2011.

[15] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. Id-based chameleon hashes
from bilinear pairings. Cryptology ePrint Archive, Report 2003/208, 2003. http:

//eprint.iacr.org/.

@CMMSE                                 Page 629 of 1703                                 ISBN: 978-84-614-6167-7

http://eprint.iacr.org/
http://eprint.iacr.org/


Proceedings of the 11th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2011
26–30 June 2011.

A Numerical Study of Viscoelastic Strings Using a Discrete
Model
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Abstract

The vibrating string is a problem that has been considered in many areas of science
and engineering. We propose a quasimolecular simulation of a nonlinear viscoelastic
string by means of a molecular type approach. The discrete model is an array of masses
connected by Kelvin units with nearest-neighbor interactions.

Key words: Discrete nonlinear string, Nonlinear vibrations, Viscoelasticity, Discrete
mechanics

MSC 2000: AMS 65L04, 65L05, 70F10

1 Introduction

In this work we propose the simulation of a nonlinear viscoelastic string by means of a
molecular type approach [6]-[8]. The string is composed of a finite array of particles joined
by massless Kelvin units. We study the string in two dimensions for several initial and
boundary conditions. The interest of vibrations in strings has hold attention since the
seventeen century [4]. Other studies have been done in [1], [2], and [12]. We study the string,
allowing the particles to move in two dimensions; therefore the nonlinearity is introduced
in our case by the geometry of the problem.
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Figure 1: The Kelvin’s unit

2 Model formulation

The physical model of a viscoelastic string consists of N particles, P1, P2, ..., PN with masses
m1,m2, ...,mN respectively. The number of Kelvin units, M , depends on the boundary
conditions; when both ends are fixed there are M = N + 1 and M = N if the string has
only a free end. The Kelvin model is a two-element model consisting of a linear spring
element and a linear viscous dashpot connected in parallel as shown in Fig. 1. The spring
and dashpot have the following stress-strain relation.

σ1 = Gε, (1)

σ2 = ηε̇, (2)

where σ is the stress (force per unit area) applied to the Kelvin unit, ε is the strain (defor-
mation per unit length), G is the Young’s modulus and η is the viscosity coefficient. Since
both elements are connected in parallel, the total stress stress is given by

σ = σ1 + σ2. (3)

From (1)-(3) follows the equation between the stress σ and strain ε:

ε̇+
G

η
ε =

σ

η
(4)

The initial lengths of the Kelvin’s units are l1, l2, ..., lM and G1, G2, ..., GM , η1, η2, ..., ηM
are the corresponding Young’s and viscosity coefficients. Fig. 2 shows four consecutive
masses of a viscoelastic string in two dimensions. The variable at time t are:

@CMMSE                                 Page 631 of 1703                                 ISBN: 978-84-614-6167-7
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Figure 2: Small segment of a viscoelastic string

ri Coordinate of the particle Pi,
ri,j Vector ri − rj ,
ṙi Velocity of the particle Pi,
r̈i Aceleration of the particle Pi,
F∗
i Force acting on Pi due to nearest neighbor particles,

fi long range force acting on particle Pi (like gravity), and
Fi Total force acting on Pi

for i = 1, 2, ..., N.

The force F∗
i exerted on the particle Pi by the Kelvin’s units i and i+ 1 is given by:

F∗
i = − [ki(ri,i−1 − li) + ηiṙi,i−1]

ri,i−1

ri,i−1
+ [ki+1(ri,i+1 − li) + ηi+1ṙi,i+1]

ri,i+1

ri,i+1
,

where ki = liGi and ri,j =
√

(xj − xi)2 + (yj − yi)2 is the Euclidian distance between the
particles Pi and Pj . This introduces the nonlinearity in our problem since we are allow-
ing vibrations in both directions. In contrast to the usual model where the particles are
constrained to move only along the vertical axes, therefore, the total force acting upon the
particle Pi is

Fi = F∗
i + fi.

The acceleration of Pi at time t is related to the force by a discrete Newton’s Law:

Fi = mir̈i (5)

We recall that the acceleration is the second derivative respect to time, thus (5) is a non-
linear system of 2N second order differential equations. In general this system can not be
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solved analytically from initial positions and velocities, therefore it must be solved numeri-
cally.
Since the velocity, at time t of the particle Pi is ṙi we can determine the kinetic energy of
the string by

T (t) =
1

2

N∑
i=1

mi ‖ ṙi ‖2 . (6)

The potential energy V (t) is found by considering the increase of length of each Kelvin’s
unit. The i − th unit has increased or decreased its length from li to ri,i−1. Therefore, we
have done an amount of work ki(ri,i−1 − li) . Summing up for all the Kelvin’s units of the
string, we obtain the potential energy of the string, at time t:

Vk =
1

2

M∑
i=1

kir
2
i,i−1. (7)

When a long range (gravity) and viscous force are present two additional terms must
be added to (7):

M∑
i=1

miyig +

M∑
i=1

ηiṙi,i−1r
2
i,i−1.

3 Transversal vibrations of a string

We use the discrete model to analyze two viscoelastic strings. In this section we analyze
the transversal vibrations of a horizontal string with both ends are fixed.
The system (5) was solved numerically by using the fortran subroutines DDRIV2 [9]. The
relative accuracy in the all solution components was taken equal to 1E − 6.

We consider a viscoelastic string with fixed ends at the same height. The mass and
the length of the string are Lc = Mc = 1. The discrete model consists of N = 64 particles
of mass mi = Mc/N for i = 1, 2, ..., N and M = N + 1 Kelvin’s units of initial length
li = Lc/M, i = 1, 2, ...,M . The gravity is equal to zero, g = 0. We consider that the initial
position of the string is a single sine wave; the positions of the particles are given by:

ri(0) = [Li, a sin (πLi/Lc)] , i = 1, 2, ..., N, (8)

and the initial velocity is zero, ṙi = 0, for i = 1, 2, ..., N . The x-position of the i-th particle
is given by:

Li =

i∑
j=1

lj .
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The string behavior depends on the quotient α = a/Lc; when this values is small, α <
1.5E− 2, the string oscillates in this mode indefinitely and its amplitude varies periodically
in time. In this case the string practically shows a linear behavior. When α increases
the nonlinearity of the string appears; higher modes of oscillation are present in the string
evolution. In this case the energy of the system is shared with higher modes. For example,
when the Young’s coefficients are equal for the all Kelvin’s units, Gi = 1/li, and the viscosity
coefficients are ηi = 0, i = 1, 2, ..., N the evolution of the string can be seen in Fig. 3.
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Figure 3: Vertical displacement of the string at several times. Lc = 1,Mc = 1, α =
0.25, Gi = 1/li, ηi = 0, for i = 1, 2, ..., N .

The kinetic and potential energy for this string are shown in Fig. 4. Both energies are
almost periodic; initially the kinetic energy is zero and it increases as the string moves to
the middle position. After this time the kinetic energy decreases as the string moves to the
bottom position. The kinetic energy shows a similar behavior when the string moves from
the bottom to the top extreme. Both energies show high frequency oscillations of small
amplitude due mainly to the oscillations in the x-component. The total energy of the string
increases slowly after t = 100 due to the numerical method.

Fermi, Pasta and Ulam in 1955 [5], proposed a model for a nonlinear string, where
the nonlinearity was given as quadratic power of the displacement in the force term. They
analyzed the string behavior with the initial condition given by (8). They found that the
total energy of the string was concentrated at only the first modes. In our case we introduced
a nonlinearity due to the geometry, and we observe energy in the modes 1, 3, 5 and 7 and
there is not energy for higher odd modes. When the viscosity is nonzero the evolution of
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Figure 4: Kinetic, potential an total energy of the string during the first 400 units of time.

the string still shows higher modes but the high frequency oscillations disappear. Figure 5
shows the y-displacement of the viscoelastic at the same times as in Fig. 3.
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Figure 5: Vertical displacement of the viscoelastic string at several times. Lc = 1,Mc =
1, α = 0.25, ηi = 0.1, for i = 1, 2, ..., N .

The kinetic, potential and total energy lessen to zero and the speed of convergence
depends on the viscosity; bigger values of η produces faster convergence. Figure 6 shows
the energies when the viscosity coefficients ηi are equal to 0.1 for all the Kelvin’s units.
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Figure 6: Kinetic, potential an total energy of the string during the first 1200 units of time.

4 The vertical viscoelastic string

Now we consider a vertical string with the upper end fixed and the other end free. The
mass and the length of the string are Lc = Mc = 1. The discrete model of the hanging
string consists of N = 64 particles with masses mi = Mc/N for i = 1, 2, ..., N . The Kelvin’s
units have the same length, li = Lc/N for i = 1, 2, ..., N , initially. The equilibrium position
of the vertical string is obtained by solving the linear system:

Kyeq = −(TI + gMe),

where

K =


−(k1 + k2) k2

k2 −(k2 + k3) k3
. . .

. . . kN
kN −kN

 ,

T =


k1 −k2

k2 −k3
. . . −kN

kN

 ,

y M =diag(m1,m2, ...,mN ), l = (l1, l2, ..., lN ) y e = (1, 1, ..., 1)t.
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4.1 Vertical string with initial velocity

In this numerical experiment we consider ηi = 0 for i = 1, 2, ..., N , and the Young’s coef-
ficients are Gi = 1/li. The string is at equilibrium initially and the free end, particle N ,
receives an horizontal impulse of magnitude β > 0. Thus the initial conditions are:

ri(0) = (0, yeqi ) ,

ṙi(0) = (0, 0), for i = 1, 2, ..., N − 1, and

ṙN (0) = (β, 0), β = 2.5E − 3.
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Figure 7: Position of the vertical string at tk = (k − 1)∆t. (a) A-B: k = 1 − 8,∆t = 1.25,
(b)B-C: k = 9− 15,∆t = 1.25, (c) C-D: k = 16− 25,∆t = 1.75.
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Figure 8: The phase portrait of the x-component of the free end of the string.

The evolution of the vertical string and the phase portrait of the x-component of the
free end are shown in Fig. 7 and 8 respectively.
The initial impulse produces a sudden displacement to the right of the free end and then it
returns quickly near to equilibrium position, without swinging to the left, and remains there
for a little while. This behavior is shown in figure 7(a). This stage, in the phase portrait,
corresponds from point A to B along the curve in Fig. 8.
Next to the point B we observe a sudden jump to the left of the free end return again near
to the equilibrium position as is shown in Fig. 7(b). This stage corresponds from the point
B to C along the curve in Fig. 8.
Immediately after we observe a whip of the free end; it oscillates quickly from to left to the
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Figure 9: Evolution of free end (x-coordinate) of the viscoelastic string. (a) η = 0, (b)
η = 1000. N = 32, Lc = 1,Mc = 1, ki = 1, for i = 1, 2, ..., N.

right and finish again near the equilibrium position, see Fig. 7(c). This stage starts at the
point C of the curve in Fig. 8 and finish at point D. After reaching this point the free end
suddenly jump to the right and return again near the equilibrium position. Finally the free
end arrives near to its initial condition (point F of the phase portrait); zero displacement
and velocity β.
In our case the time between two consecutive whips is not constant in comparison with
Bailey [2] who shows that for a inextensible string time between two consecutive whips is
constant and it has been accurately predicted by the solution of an ordinary differential
equation

When the viscosity is nonzero the evolution of the free end is similar to the elastic case
(η = 0); the evolution of the x-component in both case is practically the same, see Fig.
9. A different behavior shows the y-component; while the amplitude of the oscillations of
the y-component, in the elastic case, does not show any tendency as the time increases,
the amplitude of y-component, in the viscoelastic case, tends to zero. Figure 10 shows this
behavior.

References

[1] S. S. Antman.,The Equations for Large Vibration Strings, The American Mathemat-
ical Montly 87(5) (1980) 359–370.

@CMMSE                                 Page 639 of 1703                                 ISBN: 978-84-614-6167-7
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Abstract

Blending algorithms aim for a solution to the problem of determining the mix-
ture of raw materials in order to obtain a cheap and feasible recipe. The mixture
has linear and quadratic constraints to establish the correctness of the final product.
The aim of the algorithm is to provide a Pareto solution consisting of minimizing
the cost and the number of raw materials involved in the mixture. Manufacturers
produce several products from a given set of raw materials. Scarcity in the avail-
ability of materials can happen. This scarcity introduces capacity constraints that
change the Pareto solution. The authors have developed branch-and-bound (B&B)
algorithms to solve this type of blending problems in which the computational com-
plexity increases with the dimension of the problem. Due to this complexity, the
authors only addressed the bi-blending problem, where two products are designed.

The bi-blending problem is more difficult than the blending problem because
apart from the fact that each product must satisfy its design constraints, it also
extends the Pareto front to two products and takes into account the availability
of materials. A final combination between all B&B solutions of product one and
product two has to be performed to remove combinations of recipes that are shown
not to be feasible. The set of left over combinations can be used as the input data for
a second execution when more accurate results are requested. The computational
cost of the combination phase will depend on the number of elements of the final
feasible set for each product.

Here, we study the computational cost of the different phases of the sequential
bi-blending algorithm and provide threaded versions for the most time consuming
ones. We have carried out experiments on an eight-core shared memory machine,
using a small-medium size problem to avoid very large execution times. Experi-
ments show that parallel computation will be a necessary tool to do an exhaustive
search for larger dimensional and n-blending problems.

Key words: Shared memory, parallel processors, multi-threaded, branch-and-
bound, global optimization.

MSC 2000: 68W10, 65Y05, 90C26, 65G20.
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1 Introduction

Finding a cheap robust recipe for a blending problem that satisfies quadratic design
requirements is a hard problem. In practice, companies are also dealing with so-called
multi-blending problems where the same raw materials are used to produce several
products. Descriptions from practical cases can, among others, be found in [1], and
[3]. This complicates the search process for feasible and optimal robust solutions if we
intend to guarantee the optimality and robustness of the final solutions.

Exhaustive search for a blending algorithm and its components are described in
[5, 6, 10], while a bi-blending approach appears in [11].

Based on previous articles, Section 1.1 describes the blending problem and Section
1.2 defines the blending problem to obtain two mixture designs (bi-blending). Section
2 describes the sequential version of the bi-blending algorithm and Section 3 describes
its parallel model. Section 4 shows the computational results and Section 5 summarizes
the conclusions and future work.

1.1 Blending problem

The blending problem we researched is described in [10] as a semi-continuous quadratic
mixture design problem (SQMDP). Here we summarize the main characteristics of this
problem.

Variables xi represent the fraction of material i in a mixture x. The set of possible
mixtures is mathematically defined by the unit simplex

S =

{
x ∈ R

n :

n∑
i=1

xi = 1.0; xi ≥ 0

}
. (1)

where n denotes the number of raw materials.
The objective is to find a recipe x that minimizes the cost of the material, f(x) =

cTx, where vector c gives the cost of the raw materials. Not only should the cost of the
material be minimised, but also the number of raw materials in the mixture x given by∑n

i=1 δi(x), where

δi(x) =

{
1 if xi > 0,
0 if xi = 0.

The semi-continuity of the variables is due to a minimum acceptable dose (md)
that the practical problems reveal, i.e. either xi = 0 or xi ≥ md. The number of
resulting sub-simplices (faces) is

n∑
t=1

(
n

t

)
= 2n − 1,

where t denotes the number of raw materials in each sub-simplex. All points x in an
initial simplex Pu, u = 1, . . . , 2n − 1, are mixtures of the same group of raw materials.
The index u represents the group of raw materials corresponding to initial simplex Pu:

u =

n∑
i=1

2i−1δi(x), ∀x ∈ Pu.
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Recipes have to satisfy certain requirements. For relatively simple blending prob-
lems, the bounds or linear inequality constraints (see [1], [3], and [16])

hi(x) ≤ 0; i = 1, . . . , l,

define the design space X ⊂ S.
In practice, however, quadratic requirements appear [6, 10]. Quadratic constraints

are written as
gi(x) = xTAix+ bTi x+ di ≤ 0; i = 1, . . . ,m,

in which Ai is a symmetric n by n matrix, bi is an n-vector and di is a scalar. Feasible
space, according to quadratic constraints, is defined as

Q = {x ∈ S : gi(x) ≤ 0; i = 1, . . . ,m}.

Moreover, the design to have an ε-robustness with respect to the quadratic re-
quirements in order to maintain the feasibility of the result when small variations in
the mixture appear. One can define robustness R(x) of a design x ∈ Q with respect to
Q as

R(x) = max{R ∈ R
+ : (x+ r) ∈ Q, ∀r ∈ R

n, ‖r‖ ≤ R}.

[6] describes tests based on so-called infeasibility spheres that identify areas where
an ε-robust solution cannot be located. [10] describes a B&B algorithm to solve SQMDP
using rejection tests based on linear, quadratic and robustness constraints.

The problem of finding the best robust recipe becomes a Global Optimization (GO)
problem for which a guaranteed optimal solution is hard to obtain, because it can have
several local optima and the feasible area may be nonconvex and even consist of several
compartments.

A threaded version of the B&B blending (SQMDP) algorithm was presented in [4],
with an Asynchronous Multiple Pool scheme [9], following a similar strategy to the one
used in a parallel Interval Global Optimization algorithm (Local-PAMIGO), which is
published in [7].

1.2 Bi-blending problem

In this paper, our focus is on parallelizing the algorithm that finds the best recipes if
one wants to design two mixture products that share raw materials. Due to capacity
constraints and availability of raw materials, a bigger dosage of other ingredients could
be needed. The recipe that looks for the best for one product is not necessarily the
best when designing both products simultaneously.

As described in [11], each product has its own demand and quality requirements
consisting of design constraints. Here we summarize the main characteristics of the
problem.

We identify an index j for each product with demand Dj . The amount of available
raw material i is given by Bi. Now, the main decision variable xi,j is the fraction of
raw material i in recipe of product j.
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Let x∗,j represent column j of matrix x of decision variables. Then we define
linear restrictions per product: x∗,j ∈ Xj ; and quadratic requirements per product:
x∗,j ∈ Qj = {y ∈ S : gi(y) ≤ 0; i = 1, . . . ,mj}.

In principle, all final products can make use of all n raw materials; x∗,j ∈ R
n, j =

1, 2. This means that xi,1 and xi,2 denote fractions of the same ingredient for products
1 and 2. The main restrictions that give the bi-blending problem the “bi” character
are the capacity constraints:

2∑
j=1

Djxi,j ≤ Bi; i = 1, . . . , n.

Therefore, the cost function of the bi-blending problem can be written as:

fbi(x∗,1, x∗,2) =

2∑
j=1

Djf(x∗,j).

Redefining the other optimization criterion on the number of distinct raw materials
having two mixtures x∗,1 and x∗,2 sharing ingredients, the function to minimize is

ω(x∗,1, x∗,2) =

n∑
i=1

δi(x∗,1) ∨ δi(x∗,2),

where ∨ denotes the bitwise or operation.
The Quadratic Bi-Blending problem (QBB) is defined as follows:

min fbi(x∗,1, x∗,2), ω(x∗,1, x∗,2)
s.t. x∗,1 ∈ X1 ∩Q1, x∗,2 ∈ X2 ∩Q2

R(x∗,j) ≥ ε; j = 1, 2∑2
j=1Djxi,j ≤ Bi; i = 1, . . . , n

2 B&B algorithm for the QBB

Solving the QBB problem in an exhaustive way (the method obtains all global solu-
tions with the established precision) requires the design of a specific Branch-and-Bound
algorithm. The concept of Branch-and-Bound is not to generate all the points, but to
partition the search region to avoid visiting those regions (partition sets) which are
known not to contain an optimal ε-robust solution. B&B methods can be charac-
terized by four rules: Branching, Selection, Bounding, and Elimination [12, 14]. A
Termination rule can be incorporated, for instance, based on the smallest sampling
precision.

In the branch-and-bound method, the search region is subsequently partitioned in
more and more refined parts (branching) over which bounds of an objective function
value and bounds on the constraint functions can be determined (bounding). A global
upper bound fU is defined as the objective function value of the best ε-robust (robust)
solution found so far. Subsets Ck with a lower bound fL

k of the objective function
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Algorithm 1 QBB algorithm

1: Set ns := 2× (2n − 1) Number of simplices
2: Set the working list Λ1 := {C1, . . . , C2n−1}
3: Set the working list Λ2 := {C2n , . . . , Cns}
4: Set the final lists Q1 := {} and Q2 := {}
5: while Λ1,Λ2 6= {} do

6: Select a simplex C = Ck from Λj Selection rule
7: Evaluate C
8: Compute fL(C) and bLi (C), i = 1, . . . , tk Bounding rule
9: if C cannot be eliminated then Rejection rule

10: if C satisfies the termination criterion then Termination rule
11: Store C in Qj

12: else

13: Divide C into Cns+1, Cns+2 Branching rule
14: C := argmin{fL(Cns+1), f

L(Cns+2)} Select the cheapest simplex
15: Store {Cns+1, Cns+2} \ C in Λj

16: ns := ns+ 2
17: Go to 7
18: end if

19: end if

20: j := (j mod 2) + 1 Alternate product
21: end while

22: return Q1 and Q2

which is larger than the upper bound can be discarded, because they cannot contain
an optimal solution.

A detailed description of Algorithm 1 can be found in [11]. Here we summarize the
important characteristics of the parallel version.

Every simplex is a region satisfying (1) and its vertices are possible recipes or
mixtures. In Algorithm 1, some of the B&B rules can be applied to each product
individually and others must be done taking into account both products. The per
product rules are:

Division: Divide the longest edge or that edge with the cheapest and the most expen-
sive vertices.

Selection: A hybrid Best-Depth search is done. The cheapest simplex, based on the
sum of the cost of its vertices, is selected and a Depth-first is done until no further
subdivision is allowed (see Algorithm 1, lines 6, 14 and 17). This is done to reduce
the memory requirement of the algorithm.

Rejection: Several tests based on linear, quadratic and robustness constraints are
applied to simplices of one product (see [10]).

Termination: Non-rejected simplices that reach the requested size α are stored in Qj

belonging to the solution area.
Bounding: Two bound values have to be calculated for each simplex:
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Cost: fL(C) is a lower bound of the cost of a simplex and it is equal to the
minimum cost of the vertices of the simplex, because the simplices are convex
and the cost function is linear.

Amount of each raw material: bLi (C) is a lower bound of the raw material i in
the simplex C. It is obtained in an analogous way than the lower bound of
the cost.

The following rules need to take into account both products:

Rejection: Several rejection tests can be applied:

Capacity test: We define

βL
i,j = Dj × min

x∈C∈Λj∪Qj

xi. (2)

as a lower bound of the demand of a material i in the current search space
of product j. Then, a simplex Ck in product j does not satisfy the Capacity
test if

Dj × bLi (Ck) + βL
i,j′ > Bi, (3)

Pareto test: If a pair of mixtures x ∈ C ∈ Λ1 ∪ Q1 and y ∈ C ∈ Λ2 ∪ Q2

has been found with f(x) + f(y) < fU
ω(x,y), the value of fU

p is updated for

p = ω(x, y), . . . , n and the pair (x, y) is stored as a valid solution. Algorithm
1 returns the Pareto vector fU and the corresponding mixtures. We define

ϕL
u,j = min {f(v) : v ∈ C ⊂ Pu,j, C ∈ Λj ∪Qj} (4)

as a vector containing the cost value of the cheapest non-rejected mixture
for initial simplex Pu,j , u = 1, . . . , 2n − 1. Then, a simplex Ck in product j
does not satisfy the Pareto test if:

fL(Ck) + ϕL
u,j′ > fU

ω(x,y); x ∈ Ck, y ∈ Pu,j′. (5)

The result of Algorithm 1 is a set of (α-guaranteed) Pareto bi-blending recipes and
lists Qj , j = 1, 2, that besides the recipes contain mixtures that have not been thrown
out. During the execution of the algorithm, lower bounds βL

i,j and ϕL
u,j are updated

based on non-rejected vertices. Therefore, a final combination of simplices must be
done in order to reject those that cannot contain a Pareto solution:

fL(C) + fL(C ′) ≤ fU
ω(x,y); x ∈ C, y ∈ C ′, (6)

or do not satisfy the Capacity constraint:

bLi (C) + bLi (C
′) ≤ Bi; i = 1, . . . , n. (7)

This is done by Algorithm 2. When j = 1, in line 1 of Algorithm 2, a simplex C ′ ∈ Q2

satisfying (6) and (7) with C is tagged as valid and it will not be processed in line 2,
when j = 2.
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Algorithm 2 Comb algorithm

1: for j = 1, 2 do

2: for all C ∈ Qj not tagged as valid do

3: if ∃C ′ ∈ Qj′ that satisfies (6) and (7) then
4: Tag C ′ as valid
5: Continue with the next C Remaining C ′ ∈ Qj′ are not visited
6: else

7: Remove C
8: end if

9: end for

10: end for

3 Parallel strategy

Algorithm 1 obtains all final simplices for both products, before executing Algorithm 2.
Therefore, the parallelization of QBB and Comb algorithms can be done independently.

The number of final simplices of the QBB algorithm will depend on several factors:
the dimension, the accuracy α of the termination rule and the feasible region of the in-
stances to solve. Preliminary experimentation shows that this number can be relatively
large. Consequently, the Comb algorithm is computational much more expensive than
QBB algorithm. Therefore, we first study the parallelization of the Comb algorithm.

The Comb algorithm uses a nested loop, and two lists Q1 and Q2. For each simplex
C ∈ Qj, a simplex C ′ ∈ Qj′ must be found that satisfies (6) and (7) to retain it on the
list. In the worst case (when the simplex can be removed), list Qj′ will be explored
completely (all nodes on the other list will be visited).

A number of threads is assigned to the inner loop to perform one iteration of the
outer loop. The following notation is needed:

• Pos(C, Qj): position of the simplex C in Qj .
• NTh: number of threads.
• Id(Th): identification of thread Th. Identification numbers are consecutive and

start at zero.

Each thread Th checks simplices C satisfying modulus (Pos(C,Qj)/NTh) = Id(Th).
To avoid contention, simplices are not deleted but tagged to be removed. Otherwise,
the list can be modified by several threads, when simplices are removed. Deletion of
nodes (tagged to be removed) is done after all simplices are checked and it is done
before performing the next iteration (j = 2).

Parallelization of the QBB algorithm is more difficult because the pending com-
putational work is not known beforehand. A study on the prediction of the pending
work in B&B Interval Global Optimization algorithms can be found in [2]. Although
authors show their experience in B&B parallel algorithms in [7, 8, 13, 15], these papers
tackle only one B&B algorithm. However, QBB uses two B&B algorithms, one for
each product, sharing βL

i,j , ϕ
L
u,j and fU

ω(x,y) (see Eqs. 2, 3, 4 and 5). The problem is
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to determine how many threads are dedicated to each product. This will be addressed
in a future study. Here, we will use just one static thread per product to show the
difficulty.

4 Experimental results

To evaluate the performance of our parallel algorithm, we have used a pair of five-
dimensional products, called UniSpec1-5 and UniSpec5b-5. Both of them are adapted
from seven-dimensional ones (UniSpec1 and UniSpec5b, respectively) taken from [10]
removing elements {ai,j ∈ A : i = 6, 7; j = 6, 7} and {bi ∈ b : i = 6, 7}. The problem
was solved with a robustness ε =

√
2/100, an accuracy α = ε, and a minimal dose

md = 0.03. The demand of each product is DT = (1, 1). The availability of raw
material one (RM1) and RM3 is restricted to 0.62 and 0.6, respectively; while the
others are not limited.

The algorithms were coded in C and run on a Dell PowerEdge R810 with one
eight-core Intel Xeon 1.87 GHz processor, 16 GB of RAM, and Linux operating system
with 2.6 kernel. POSIX Threads API was used to create and manipulate threads. The
LAPACK library is also used by the algorithm.

Table 1 provides information about the test problem described above. The following
notation has been used:

• NEvalS: Number of evaluated simplices.
• NEvalV: Number of evaluated vertices.
• QLR: Number of simplices rejected by linear infeasibility, quadratic infeasibility

or lack of robustness.
• Pareto: Number of simplices rejected by Pareto test.
• Capacity: Number of simplices rejected by Capacity test.
• |QS |: Number of simplices in final lists Qj, j = 1, 2.
• |QV |: Number of vertices associated to simplices in Qj, j = 1, 2.
• NTh: Number of created threads.
• Th1 time: The running time of Th1 in seconds.
• Th2 time: The running time of Th2 in seconds.
• Time: The running time in seconds.
• Speedup: Speedup obtained.

The speedup with regard to execution time of a parallel algorithm with p process units
is defined as S(p) = t(1)/t(p), where t(p) is the execution time when p processors are
used.

Table 1 shows the numerical results obtained from running the sequential algorithm
(BiBlendSeq), and the parallel version (BiBlendPar) for NTh = 2 in B&B phase, and
NTh = 1, 2, 4 and 8 threads in Comb phase. The data shown in Table 1 is the average
value of five executions.

BiBlendPar exhibits a good scalability and speedup when compared to BiBlend-
Seq. For the B&B phase, a slight acceleration is obtained in the execution time. A
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Table 1: Computational effort
B&B Phase

BiBlendSeq BiBlendPar
NEvalS 2,536,862 2,537,430 = = =
NEvalV 168,186 168,299 = = =
QLR 887,609 888,004 = = =
Pareto 54,050 54,050 = = =
Capacity 18,277 18,211 = = =
|QS | 308,443 308,465 = = =
|QV | 49,317 49,324 = = =
NTh – 2 2 2 2
Th1 time – 0.83 0.81 0.76 0.81
Th2 time – 7.03 7.03 6.96 7.00
Time 7.23 7.03 7.03 6.96 7.00
Speedup – 1.03 1.03 1.04 1.03

Comb. Phase

BiBlendSeq BiBlendPar
Pareto 27,284 27,284 = = =
Capacity 105,499 105,521 = = =
|QS | 175,660 175,660 = = =
|QV | 24,861 24,861 = = =
NTh – 1 2 4 8
Time 1,991.46 1,966.51 956.01 465.02 228.63
Speedup – 1.01 2.08 4.28 8.71

Total

Time 1,998.70 1,973.54 936.05 471.98 235.63
Speedup – 1.01 2.08 4.23 8.48

linear speedup is not reached due to the difference of complexity between two prod-
ucts: UniSpec1-5 has a simpler quadratic requirement compared to UniSpec5b-5. For
the Comb phase, a linear speedup is obtained compared to the sequential one. Notice
that Comb phase is able to filter out almost half of the final simplices obtained in B&B
phase.

Two solutions have been found for UniSpec1-5 & UniSpec5b-5 with a different

number of raw materials involved: (x
⋆[1]
∗,1 , x

⋆[1]
∗,2 ) and (x

⋆[2]
∗,1 , x

⋆[2]
∗,2 ). The first one uses four

raw materials (RM1, RM3, RM4 and RM5):

x⋆[1] =

( RM1 RM2 RM3 RM4 RM5

UniSpec1-5 0.428125 0.0 0.4352344 0.0 0.1366406
UniSpec5b-5 0.146875 0.0 0.1640625 0.2328125 0.4562500

)T
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Its cost value is f(x
⋆[1]
∗,1 , x

⋆[1]
∗,2 ) = 111.09 + 116.334375 = 227.424375. The second one

involves five raw materials:

x⋆[2] =

( RM1 RM2 RM3 RM4 RM5

UniSpec1-5 0.428125 0.0 0.442344 0.0 0.129531
UniSpec5b-5 0.156172 0.03 0.152852 0.212617 0.448359

)T

Its cost value is f(x
⋆[2]
∗,1 , x

⋆[2]
∗,2 ) = 111.033125 + 116.172422 = 227.205547.

5 Conclusions and future work

A parallelization of an algorithm to solve the bi-blending problem has been studied for a
small-medium size instance of the problem. This single case shows the difficulties of this
type of algorithm. Bi-blending increases the challenges of the parallelization of a B&B
algorithm for single blending because it actually runs two B&B algorithms that share
information. Additionally, in bi-blending algorithms, a combination of final simplices
has to be done after the B&B phase to discard infeasible regions. This combination
phase is computationally several orders of magnitude larger than the B&B phase. Here
we use just one thread for each product in the B&B phase and several threads for
the combination phase. Linear speedup is obtained on a shared memory machine with
eight cores.

Our intention is to experiment with larger dimensional problems for the parallel bi-
blending algorithm, trying to reduce the computational cost. Another future research
question is to develop the n-blending algorithm and its parallel version, which is the
problem of interest to the industry.
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Abstract

We suggest an approach to construction of second order finite volume schemes
for Maxwell’s equations with discontinuous dielectric permittivity. The key idea
is to use stencils that are comprised of cells with the same dielectric permittivity
for calculating derivatives used to increase the order of approximation. The idea
was implemented in Godunov scheme built with Law-Wendroff and Van Leer ap-
proaches. Results of test computations for problems with linear and curvilinear
discontinuities show second order of approximation.

Key words: Maxwell’s equations, Godunov scheme, discontinuous permittivity,
second order, finite volume

1 Introduction

Maxwell’s equations describe propagation of electromagnetic waves. For many practical
problems analytical solutions do not exist and as a result various numerical methods
were developed [1, 2]. Probably the most popular method for numerical solution of
Maxwell’s equations today is the method of finite differences. It can provide satisfactory
results for a number of problems.

One of the first works devoted to construction of finite difference schemes for nu-
merical solution of Maxwell’s equations was paper [3]. In this work Yee suggested a
scheme with second order of approximation in space and time for the case of constant
dielectric permittivity, based on staggered cartesian grids. Later on various finite dif-
ference methods were successfully applied to solution of many problems [4, 5]. The
main advantage of finite difference schemes is simplicity of constructed algorithms.

The main disadvantage of finite difference schemes is poor precision for problems
with curvilinear boundaries of computational region and subregions with different di-
electric permittivity. For this reason for problems with complicated geometry finite
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volume schemes [6] can be preferable. These schemes allow to perform approxima-
tion using unstructured meshes and in this way more precisely approximate compu-
tational region boundaries and boundaries between subregions with different dielectric
permittivity. One of the first finite volume schemes for numerical solution of Maxwell’s
equations was suggested in [7]. In this paper Shankar suggested a finite volume scheme
based on structured non-cartesian meshes. In the following many finite volume schemes
for solution of Maxwell’s equations using unstructured meshes were suggested [8, 9, 10].

One of the main problems for construction of finite volume and finite difference
schemes for Maxwell’s equations is the case of discontinuous dielectric permittivity.
For finite difference schemes in [2] various ways of smoothing dielectric permittivity
were considered. For finite volume schemes in [10] use of continuous variables was
suggested. Both approaches allowed to achieve better precision for some test cases but
not the second order of convergence.

We suggest a finite volume scheme for numerical solution of Maxwell’s equations
with discontinuous dielectric permittivity on unstructured meshes. The scheme is sec-
ond order accurate in space and time even for curvilinear discontinuities of dielectric
permittivity. Godunov scheme is used as a basis [11]. In order to achieve second or-
der accuracy in space and time approaches of Lax-Wendroff and Van Leer are used
respectively [12, 13] similar to [10]. The key difference of the scheme built is gradient
approximation that is first order accurate even for cells adjacent to dielectric permit-
tivity discontinuity. This makes proposed scheme second order accurate in space and
time. Computational results are presented that confirm second order approximation of
the scheme built for linear as well as curvilinear discontinuities.

It is important to emphasize that our results do not contradict Godunov theo-
rem since solution discontinuities are fixed, coincide with discontinuities of dielectric
permittivity and the scheme depends on this information.

2 Maxwell’s equations

The system of Maxwell’s equations in the absence of charges and currents in dimen-
sionless variables in two-dimensions can be written in conservative form as

∂

∂t
U +

∂

∂x1
F1 +

∂

∂x2
F2 = 0, (1)

where U — conservative variables vector, F1 and F2 — flux vectors. For TM case they
can be written as

U =




D3

B1

B2


 , F1 =




−H2

0
−E3


 , F2 =




H1

E3

0


 , (2)

and for TE case as

U =




D1

D2

B3


 , F1 =




0
H3

E2


 , F2 =




−H3

0
−E1


 . (3)
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In the above formulas E1, E2, E3 — electric field, H1,H2, H3 — magnetic field, D1 =
εE1, D2 = εE2, D3 = εE3 — electric induction, B1 = µH1, B2 = µH2, B3 = µH3 —
magnetic induction, ε — dielectric permittivity, µ — magnetic permeability assumed
to be zero in this paper.

In the regions with constant dielectric permittivity an equivalent non-divergent
form of initial system (1) can be written

∂

∂t
U + A1

∂

∂x1
U + A2

∂

∂x2
U = 0, (4)

where for the TM case matrices A1 and A2 are defined as

A1 =




0 0 −1
0 0 0
−1

ε 0 0


 , A2 =




0 1 0
1
ε 0 0
0 0 0


 , (5)

and for the TE case as

A1 =




0 0 0
0 0 1
0 1

ε 0


 , A2 =




0 0 −1
0 0 0
−1

ε 0 0


 . (6)

On the dielectric permittivity discontinuity a vector of continuous variables W can
be considered. Vector W is related to conservative variable vector U by the transition
matrix Φ: W = ΦU. For TM case continuous variables vector and transition matrix
can be written as

W =




E3

B1

B1


 , Φ =




1
ε 0 1
0 1 0
0 0 1


 , (7)

and for TE case as

W =




Dn

Eτ

H3


 , Φ(φ, ε) =




εcos(φ) εsin(φ) 0
−sin(φ) cos(φ) 0

0 0 1


 , (8)

where Dn - is a normal component of electric induction, Eτ - tangential component of
electric field, φ - angle defining normal to dielectric permittivity discontinuity.

3 Finite volume scheme

Consider a computational region in two-dimensional space. Assume that an unstruc-
tured mesh composed of triangles ∆ was constructed. By integrating the system of
equations (1) over the i-th mesh cell ∆i we can obtain integral conservation law

∂

∂t

∫

∆i

UdΩ +
3∑

k=1

∫

Γk

(n1F1 + n2F2) dΓ = 0, (9)
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where Γk — k-th cell edge, n = (n1, n2) — outward normal. For numerical approxima-
tion of integral equation (9) consider a finite volume scheme

Ω∆i

Un+1
i −Un

i

τ
+

3∑

k=1

sk
∆i

Fk
i = 0, (10)

where vector Un
i — denotes the value of U at the i–th cell center XB

∆i
at the time

tn = nτ , τ — time step, sk
∆i

— length of the k-th edge, Ω∆i — area of the i-th cell,
Fk

i — flux through the k-th edge approximation. For approximation of the flux through
the edge Riemann problem solution is used [11]

F = A+UL

(
XC

)
+ A−UR

(
XC

)
, (11)

where initial states are taken as interpolations UL and UR from cell centers ∆L and
∆R approximating values at the edge center at time half step tn+1/2 = nτ + τ/2 with
second order of approximation in time and space

UL(XC) = U(XB
L ) +

∂U
∂x

(XB
L )(XC −XB

L )− τ

2

(
A1

∂U
∂x1

(XB
L ) + A2

∂U
∂x2

(XB
L )

)
. (12)

In this case scheme (10) will approximate initial conservation law (9) with second order
in space and time. Approaches used to increase order of approximation in time and
space were suggested by Lax Wendroff [12] and Van Leer [13], respectively and used in
[10]. For TM case A1 and A2 are given by

A+ =
1√

εL +
√

εR




√
εR
εL

√
εRn2 −√εRn1

1√
εL

n2 n2
2 −n1n2

− 1√
εL

n1 −n1n2 n2
1


 , (13)

A− =
1√

εL +
√

εR



−

√
εL
εR

√
εLn2 −√εLn1

1√
εR

n2 −n2
2 n1n2

− 1√
εR

n1 n1n2 −n2
1


 , (14)

and for TE case by

A+ =
1√

εL +
√

εR




√
εR
εL

n2
2 −

√
εR
εL

n1n2 −√εRn2

−
√

εR
εL

n1n2

√
εR
εL

n2
1

√
εRn1

− 1√
εL

n2
1√
εL

n1 1


 , (15)

A− =
1√

εL +
√

εR




−
√

εL
εR

n2
2

√
εL
εR

n1n2 −√εLn2√
εL
εR

n1n2 −
√

εL
εR

n2
1

√
εLn1

− 1√
εR

n2
1√
εR

n1 −1


 . (16)
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To compute gradients of conservative variables U at cell barycenters with the first
order of approximation in the presence of dielectric permittivity discontinuity we will
use a three stage process.

During the first stage we will compute preliminary gradients with the first order
of approximation using values in the cell and values in neighboring cells with the same
dielectric permittivity with the help of least square method [14]

∂U
∂x

= (U1, ...,Un) XT
(
XXT

)−1
, (17)

where U1, ...,Un are values at cell barycenters used to calculate preliminary gradients,
X = {xij} = {xj

i −
∑n

k=1 xk
i }, xj

i - i-th coordinate of j-th barycenter. We specifi-
cally emphasize that if a cell is adjacent to the dielectric permittivity discontinuity the
neighboring cell on the other side of discontinuity will not be used.

During the second stage for each cell we will calculate values for each of its ver-
tices XP with second order of approximation using values and preliminary gradients
approximations at cell barycenter XB with the help of

U(XP ) = U(XB) +
∂U
∂x

(XP −XB). (18)

After obtaining in each vertex a set of interpolated values from all the adjacent cells we
partition them into groups depending on the value of dielectric permittivity in a cell
from which interpolation was carried out. For each group we will calculate arithmetic
average. As a result for each vertex for each value of dielectric permittivity present in
adjacent cells we will have a separate value U. The second version of this stage is to
carry out averaging of all the interpolated values with the help of continuous variables.
This can be accomplished by changing variables from U to W before averaging. In this
case at a vertex only one average value is obtained W.

During the third stage we will calculate final gradients in each cell using values in
adjacent vertices. If the first version of the second stage was used we will take values in
vertices corresponding to the dielectric permittivity in the cell. If the second version of
the second stage was used we will switch from continuous variables back to conservative
variables before calculation.

4 Test computations

The schemes suggested were tested using several test problems for which analytical
solutions are available. In our computations we used unstructured triangular meshes
built with the help of Gmsh software [15]. For each problem we performed calculations
using a sequence of five meshes. Every next mesh had characteristic size two times
smaller than the previous one. Time step also was two times smaller. To evaluate ap-
proximation properties of the scheme we compared computational results with analytic
solution. Error of numerical solution was calculated as deviation from analytic solution
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at time tn = nτ in the L2 norm and was calculated using

∥∥Un
(
XB

)−Uexact
(
XB, tn

)∥∥
L2

‖Uexact (XB, tn)‖L2

=

√√√√√√√√

T∑
i=1

[
3∑

k=1

(
Un

k (XBi)−Uexact
k (XBi , tn)

)2
]
· S∆i

T∑
i=1

[
3∑

k=1

(
Uexact

k (XBi , tn)
)2

]
· S∆i

,

(19)
where T — total number of cells in the computational region, Un

k

(
XBi

)
and

Uexact
k

(
XBi , tn

)
— calculated and exact values of electromagnetic fields at the cell

i barycenter respectively. We present results using first and second versions of gradu-
ate calculations for TE and TM cases respectively.

4.1 Test 1

Consider a problem of interaction of plane electromagnetic wave with a linear dielectric
boundary. Dielectric permittivity of half plane x1 > 0 is ε. Wave numbers inside and
outside of half plane β and β1 are related by the equation β1 = β

√
ε. Incident wave

propagates in the direction n0 = (cos(θ0), sin(θ0)). The solution to this problem also
includes a plane wave reflected from the dielectric border propagating in the direction
n2 = (− cos(θ0), sin(θ0)) and transmitted plane wave inside of dielectric propagating in
the direction n1 = (cos(θ1), sin(θ1)). The angle of incidence and the angle of refraction
θ0 and θ1 are related by sin(θ1)

√
ε = sin(θ0).

For the case of TM wave electric field of incident wave is Ei
z = E0e

jβ−n0·x+jωt,
electric field of reflected wave Es

z = E1e
−jβn1·x+jωt, and electric field for transmitted
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wave inside dielectric is Ed
z = E2e

−jβn2·x+jωt, where E1 and E2 are defined as

E1 =
2 cos(θ0) sin(θ1)

sin(θ0 + θ1)
, E2 =

sin(θ1 − θ0)
sin(θ0 + θ1)

. (20)

For the case of TE wave magnetic field for incident wave is H i
z = H0e

−jβn0·x+jωt, mag-
netic field for reflected wave is Hs

z = H1e
−jβn1·x+jωt, and magnetic field for transmitted

wave inside dielectric is Hd
z = H2e

−jβn2·x+jωt, where H1 and H2 are defined as

H1 =
sin(2θ0)

sin(θ0 + θ1) cos(θ0 − θ1)
, H2 =

tan(θ0 − θ1)
tan(θ0 + θ1)

(21)

The angle of incidence was chosen as π/4, incident wavelength 0.5, dielectric permit-
tivity of half plane was 2.0. Computational region was a square with side length 1.0.
Square center coordinates were (0.0, 0.0). We used meshes composed of 3634, 14446,
58488, 236880 and 958556 triangles. A mesh of 3634 triangles is shown on Fig. 1.
Distribution of Ez at time 2.5 for the case of TM wave obtained using a mesh of 58488
triangles is shown on Fig. 2. Distribution of Hz at time 2.5 for the case of TE wave
obtained using a mesh of 58488 triangles is shown on Fig. 2. Error evolution in L2

norm for different meshes for the cases of TM and TE waves is shown on Fig. 5 and Fig.
6. Values of maximum errors for different meshes for TM and TE waves are presented
in Table 1 and in Table 2. Error behavior demonstrates second order of convergence
of numerical solution to analytic solution and confirms second order of approximation
of the scheme considered for TM and TE waves for the case of linear discontinuity of
dielectric permittivity.
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Table 1:

Cells δ2 Order
3634 0.02724913 —

14446 0.00690299 1.98
58488 0.00171342 2.00

236880 0.00042076 2.01
958556 0.00010414 2.01

Table 2:

Cells δ2 Order
3634 0.02714944 —

14446 0.00698887 1.96
58488 0.00174735 1.98

236880 0.00043037 1.99
958556 0.00010677 2.00

4.2 Test 2

As a second test consider a problem of plane electromagnetic wave interaction with a
dielectric cylinder. Incident wave propagates in the direction (1,0), cylinder radius is
a, cylinder dielectric permittivity is ε. The solution to this problem includes incident
plane wave, wave reflected from the boundary of the cylinder and wave inside the
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cylinder. It can be written in polar coordinates radius ρ and angle ϕ with the help of
Bessel functions Jn and Hankel functions of the second kind H

(2)
n .

For the TM case electric field for the incident wave Ei
z, electric field for the reflected

wave Es
z and electric field inside the cylinder Ed

z can be written as a series

Ei
z = H0

∞∑
n=−∞

j−n [Jn(βρ)] ejnϕ+jωt (22)

Es
z = H0

∞∑
n=−∞

j−n J
′
n(βa)Jn(β1a)−√εJn(βa)J

′
n(β1a)

√
εJ ′n(β1a)H(2)

n (βa)− Jn(β1a)H(2)′
n (βa)

H(2)
n (βρ)ejnϕ+jωt (23)

Ed
z = H0

∞∑
n=−∞

j−n Jn(βa)H(2)′
n (βa)− J

′
n(βa)H(2)

n (βa)

Jn(β1a)H(2)′
n (βa)−√εJ ′n(β1a)H(2)

n (βa)
Jn(β1ρ)ejnϕ+jωt (24)

For the TE case magnetic field for the incident wave H i
z, magnetic field for the

reflected wave Hs
z and magnetic field inside the cylinder Hd

z can be written as a series

H i
z = H0

∞∑
n=−∞

j−n [Jn(βρ)] ejnϕ+jωt (25)

Hs
z = H0

∞∑
n=−∞

j−n J
′
n(βa)Jn(β1a)−

√
1/εJn(βa)J

′
n(β1a)√

1/εJ ′n(β1a)H(2)
n (βa)− Jn(β1a)H(2)′

n (βa)
H(2)

n (βρ)ejnϕ+jωt (26)

Hd
z = H0

∞∑
n=−∞

j−n Jn(βa)H(2)′
n (βa)− J

′
n(βa)H(2)

n (βa)

Jn(β1a)H(2)′
n (βa)−

√
1/εJ ′n(β1a)H(2)

n (βa)
Jn(β1ρ)ejnϕ+jωt (27)
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Cylinder radius was chosen as 0.1, incident wave length was 0.5, cylinder center
coordinates were (0.0, 0.0), cylinder dielectric permittivity was 2.0. Computational
region constituted a square with side length 1.0 and center coordinates (0.0, 0.0). We
used meshes composed of 3464, 14398, 59888, 240654 and 968090 triangles. A mesh
of 3464 triangles is shown on Fig. 6. Distribution of Ez at time 2.5 for the case of
TM wave obtained using a mesh of 59888 triangles is shown on Fig. 7. Distribution
of Hz at time 2.5 for the case of TE wave obtained using a mesh of 59888 triangles is
shown on Fig. 8. Error evolution in L2 norm for different meshes for the cases of TM
and TE waves is shown on Fig. 9 and Fig. 10. Values of maximum errors for different
meshes for TM and TE waves are presented in Table 3 and in Table 4. Error behavior
demonstrates second order of convergence of numerical solution to analytic solution
and confirms second order of approximation of the scheme considered for TM and TE
waves for the case of curvilinear discontinuity of dielectric permittivity.

Table 3:

Cells δ2 Order
3464 0.02225090 —

14398 0.00560872 1.99
59888 0.00128325 2.06

240654 0.00032258 2.04
968090 0.00008057 2.03
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Table 4:

Cells δ2 Order
3464 0.01954593 —

14398 0.00494726 1.98
59888 0.00114908 2.04

240654 0.00028971 2.03
968090 0.00007259 2.02

5 Conclusion

A finite volume scheme for numerical solution of Maxwell’s equations with dielectric
permittivity discontinuity was suggested. The scheme is second order accurate in space
and time. Scheme was tested using a number of problems. Test problems included
linear and curvilinear dielectric permittivity discontinuities for TE and TM cases. To
analyze rate of convergence calculations were performed using a sequence of five meshes.
Calculation results demonstrate second order of convergence and confirm second order
of approximation of the proposed scheme.

A Order of approximation of Lebedev’s scheme

Here we will prove that scheme suggested in [10] has only first order of approximation.
To accomplish this we will show that calculation of derivatives using continuous vari-
ables without choosing stencil with constant dielectric permittivity will have zero order
of approximation for some cells. As a result approximation of values at edge centers
and approximation of the resulting scheme will be first order.

Assume that derivative calculation using continuous variables suggested in [10] has
order of approximation higher than zero. Then for any continuous function and a
sequence of meshes with cell sizes tending to zero calculated derivative values should
tend to exact values. Consider a computational region in the form of a regular hexagon
with two opposite vertices lying on the x2 axis. In this region consider a sequence of
triangular meshes. As a first mesh we will choose six equilateral triangles of the regular
hexagon. Every following mesh will be obtained from the previous one by dividing
every equilateral triangle into four equilateral triangles. As a continuous function we
choose

f(x1, x2) =
{

0, x1 < 0;
x1, x1 ≥ 0 .

(28)

Consider cells that are not adjacent to the border of computational region. For cells
adjacent to the x2 axis on the left derivative with respect to x1 will tend to 1/9, and
for cells adjacent to the x2 axis on the right derivative with respect to x1 will tend to
66/81. Contradiction. The order of approximation for derivative calculation in [10] is
zero.
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Abstract

In this paper we model the functioning of reactor for the treatment of waste,
which makes use of effective microorganisms. The functioning of the system is
described by a mathematical model, whose space-independent form is then theo-
retically analysed. For the more complex model including diffusion and tranport
terms, we use simulations. The ultimate goal of the investigation is the control of
the release of the maleodorant volatile acid fats produced by the reactions.

Key words: bioreactor, interacting population models, effective microorganisms,
dynamical systems, diffusion, reaction, transport

MSC 2000: AMS codes (92D25)

1 Introduction

The starting point of this investigation is the plenary lecture given by one of the authors
(S.O.) at the CMMSE 2010 conference, [1]. Our aim here is to model the function-
ing of a biological reactor, used for sewage processing. Two bacteria populations are
present, one which is facultative anaerobic, which gets advantage from the presence of
oxygen, and the other one that tolerates only low concentrations of oxygen. Nutrients
for these populations are represented by elements like calcium, phosphorous, natrium,
potassium and magnesium. Nutrient supply is provided regularly by the waste dumped
into the reactor. The aerotolerant bacteria produce adenosin-triphosphate (ATP) due
to fermentation. During this process they generate volatile acid fats, which are then
reabsorbed by the other facultative anaerobic bacteria. These volatile fats are male-
odorant, and therefore their release needs to be controlled. The model we develop and
analyse may provide insights on how to achieve this control.
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2 The model

The mathematical model is based on the following system of partial differential equa-
tions describing an advection-reaction-diffusion system





ut = ∆u + γ11Ou + γ12Nu − γ13u,

vt = ∆v + γ21(Osat − O)u + γ22Nv − γ23v,

Nt = γ41V · ∇N − γ41u − γ42v + Nsupply,

Ot = ∆O − γ51u − γ53p · ∇O,

Ft = ∆F + γ71Nv − γ72(Osat − O)u + V · ∇F.

(1)

All the variables are functions of space x ∈ R
n, n 6 3, and time t ∈ R+. Here u(x, t)

denotes the population density of facultative anaerobic bacteria; v(x, t): is the density
of the aerotolerant bacteria; N(x, t) is the concentration of nutrients (Ca, P, Na, K,
Mg); O(x, t) is the oxygen concentration in the control system; F (x, t) represents the
fermentation level, i.e. the concentration of the volatile fat acids.

The vectors V and p, assumed to be uniform and stationary, i.e. constant vectors
in space and time, represent the tranport directions of N , F and O, respectively. All
other parameters are positive. In addition to the transport terms, the equations contain
obviously also diffusion terms.

The first equation models the evolution of the facultative anaerobic bacteria, which
have different reproduction terms, γ11Ou and γ12Nu since they reproduce both in
absence as well as in presence of oxygen. When oxygen is present, their reproduction
is enhanced. The last term in the first equation represents their mortality.

The second equation describes the aerotolerant bacteria v with a similar behavior,
but with the difference that in place of O we find the difference Osat −O, to model the
fact that if the oxygen concentration falls below a certain saturation threshold Osat,
which represents the maximum level of oxygen that can be tolerated by these bacteria,
the population thrives by feeding on the wastes produced by the u population. If instead
O > Osat, the corresponding term γ21(Osat − O)u becomes an additional mortality,
independent of the population size v. Natural mortality instead appears again as the
last term in the equation.

The first term in the third equation denotes nutrients N transport. Their temporal
evolution is further regulared by consumption by the two kinds of bacteria, and by their
regular supply Nsupply.

Oxygen dynamics comes next. It diffuses, and it is used only by the bacteria u for
respiration. It also moves within the reactor.

The anaerobic bacteria v produce energy by the fermentation process, in this way
they contribute to the growth of F . This explains the second term in the last equation,
the first one clearly accounting for diffusion. Instead the third term describes the fact
that the facultative anaerobic bacteria u, use fermentation only if the oxygen level is
below the threshold Osat; otherwise, if the oxygen suffices, they produce ATP by cellular
respiration, and therefore contribute to a decrease in the level of F . This behavior of
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the population U is highly desirable, since in ideal conditions it allows to control the
volatile acid fats.

In this model formulation however a small incongruence appears, which will be
resolved further on. A consistent interpretation of this behavior should entail a positive
sign of the term γ72(Osat − O)u, in the last equation of (1).

3 The zero-dimensional model

We analyse at first the local dynamics, ignoring therefore the space dependence in (1).
The simplified model reads then





du

dt
= γ11Ou + γ12Nu − γ13u,

dv

dt
= γ21(Osat − O)u + γ22Nv − γ23v,

dN

dt
= −γ41u − γ42v + Nsupply,

dO

dt
= −γ51u,

dF

dt
= γ71Nv − γ72(Osat − O)u.

. (2)

Looking for equilibria, we find the following region

E1 :=
{
(u, v, N, O, F ) ∈ R

5
+ : u = 0, v = 0 per ogni t > 0

}
,

which is diffeomorphic to the first octant of R
3, but this happens if and only if Nsupply

vanishes. This equilibrium is not unique, therefore, and moreover not realistic, as when
the reactor functions, in fact wastes are continuously inputted into it. If instead the
system includes nutrient supply, Nsupply 6= 0 and the following condition holds,

γ13γ22 − γ12γ23

γ11γ22
=

γ13

γ11
,

which is equivalent to

γ12γ23 = 0,

another region of equilibria exists, namely

E2 :=

{
(u, v, N, O, F ) ∈ R

5
+ : u = 0, v =

Nsupply

γ42
, N =

γ13

γ12
−

γ13

γ22
, O =

γ13

γ11

}
.

In spite of the fact that the above conditions on the parameters are very unlikely to
be verified, so that we could say that the probability of finding this equilibrium region
is almost zero, it turns out that also this set of equilibria is generally unstable, as the
Jacobian matrix possesses vanishing eigenvalues. In conclusion, this system does not
admit equilibria, when the reactor works, i.e. with a nonzero supply of nutrients.
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4 Implementation

Due to the lack of much information gathered from the analytic approach, we have then
used a numerical approach to try to better understand the behavior of (2). At first, we
use the Matlab routine ode45, with initial condition the constant vector (1, 1, 1, 1, 1),
with all parameters initially at the value 1. But this leads to some problems, as some
variables become negative. This occurs also by modifying the parameter values. We
attribute this bad behavior to the oversimplification made in (2).

So at this point we consider the full model (1) in which however we still ignore the
transport terms. With a finite difference method in one space dimension, [3], with suit-
able time stepsize so as to satisfy the von Neumann stability condition, with the same
above initial condition and parameter values, the Dirichlet boundary condition keeps
all the variables at a constant value for all times. Here the solutions are meaningful for
small time intervals, as they are nonnegative, although for longer time simulations they
still become negative. Moreover, the boundary condition does not seem to be realistic.

We then include a different initial condition and above all a Neumann boundary
condition, modeling the absence of flux toward the exterior. For the previous parameter
values however, the results are once again not realistic. Therefore we add also the
transport terms but also this modification does not change much the model’s behavior.
We impose then a restriction on the model, by setting and keeping to the value zero
the variables that eventually become negative, thus considering only the positive part
of the solutions, which is necessary from the biological viewpoint.

Finally we try to investigate the influence of each and every parameter on the
solutions behavior, to get an optimal parameter configuration. This is related in the
next Section.

5 Simulations

5.1 Parameter settings

We use the following measurement units: bacteria are counted in pure numbers:

⋆ mn for the space, where n denotes the dimension R
n, n 6 3;

⋆ h for time;

⋆ m−n for the bacteria density;

⋆
kg

mn
for the nutrient, oxygen and volatile fat acids densities.

Searching the literature for getting reasonable parameter values, [2], we estimate
the bacteria population density in the reactor between 4 · 1013 and 8 · 1013 bacteria per
m3, assuming a soil density between 1000 and 2000 kg/m3 and an average dimension of
the bacteria of around tens of micrometers. For the reproduction rate we have assumed
an average splitting rate between 0.17 and 6 fissions per hour. For their mortality we
estimate a value of about 1 ·1013 batteria per hour. The density for oxygen in air is 0.28
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Parameter Value Interpretation

γ11 0.5000 Reproduction rate of u due to oxygen

γ12 2.5000 Reproduction rate of u due to nutrients

γ13 1.0000 Mortality of u

γ21 0.0010 Reproduction rate of v due to (Osat − O)u

γ22 2.5000 Reproduction rate of v due to nutrients

γ23 1.0000 Mortality of v

γ41 0.0001 Nutrient consumption rate by u

γ42 0.0001 Nutrient consumption rate by v

γ51 0.0010 Oxygen consumption rate by u

γ53 0.1000 Oxygen transport

γ71 0.0100 F production rate by v

γ72 0.0100 F consumption rate by u

Nsupply 0.0510 Nutrient input rate

Osat 0.0500 Oxygen saturation threshold

Table 1: Parameter values used in the simulations

kg/m3. The density of the fermentation gases is assumed equal to the one of the air,
at environmental pressure and temperature, i.e. 1.2 kg/m3. The one of the nutrients
in the wastes is assumed to be around one gram per cubic meter.

In Table 1 we report all the parameter values used in the numerical simulation.
Note that the saturation value of oxygen, Osat, has been set to about 20% of the oxygen
density in air, a consistent assumption with the aerotolerant nature of the bacteria v.
The vectors p and V are set equal to 1 in the monodimensional case and equal to the
vector (1, 1) in the bidimensional case.

5.2 The monodimensional case

We consider a bioreactor length L = 15 m and we simulate the temporal evolution of
the system for one week, i.e. T = 168 hours. We also assume that the nutrients input
Nsupply occurs only once a day. The initial conditions are given by a Gaussian function,
centered at x = L/2, for all variabiles but for oxygen, which is taken to be constant,
uniformly distributed in the reactor at time t = 0. Figure 1 reports the graph of the
first two system’s variables. There are several equispaced peaks, one per day. The first
one is higher because it is still part of the transient period. The remaining ones are
slightly decreasing in time. Analog configurations arise for the remaining variables,
N and F . For the facultative anaerobic bacteria u however, these maxima slightly
decrease in time, for N they are constant, for v and F they slightly increase. Our
heavy experimental evidence shows that the frequency of such oscillations is regulated
by the parameter Nsupply, their amplitude is instead directly proportional to Osat, while
the growth is directly proportional to γ21. However, if the latter parameter becomes
larger than O(10−2), F exhibits a higher slope, Figure 2 (right). Fermentation is kept
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low also by the fact that the u population is about 10 times larger than that of the
aerotolerant bacteria.

A particular case is given by γ21 = 0: here the peaks for u, v and F are stationary.
In this way, after the transient regime of just one day, the periodic values of F attain
a very reasonable range, usable also for longer time runs. From Figure 2 (center)
oxygen decays irreversibly to zero after about a day, i.e. after the transient phase.
This appears not to be very realistic. In fact, during the waste input also some oxygen
should penetrate into the system. This suggests a possible improvement in the model
formulation, to be discussed later on in Section 6.

All these remarks hold true also for much longer simulation times. In fact we have
checked them by simulating the system evolution over a time period up to 10 weeks.

Figure 1: Model (1). Temporal evolution of u(x, t) (left), v(x, t) (right).

Figure 2: Model (1). Temporal evolution of N(x, t) (left), O(x, t) (center), F (x, t)
(right).

5.3 The bidimensional case

We now add one space dimension, leaving out at first for simplicity the diffusion and
transport terms, since ultimately we are interested in the steady state behavior and
these terms influence mainly the transient behavior. The bioreactor is now represented
by a rectangle with an area of 20 × 30 m2. We reuse the previous parameter values
and reproduce all the behaviors observed in the one dimensional case, Fig.s 3 and 4.
Obvious changes are clearly the fact that now we have circular waves, in view of the
radial simmetry of the initial conditions.

However, all the configurations here found are highly unstable. In the one-dimensional
case it is indeed very difficult to tune the parameters to find satisfactory results. In the
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Figure 3: Model (3). Bidimensional simulations: u(x, t) (left), v(x, t) (right).
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Figure 4: Model (3). Bidimensional simulations: N(x, t)(left), O(x, t) (center), F (x, t)
(right).

two-dimensional case, a bad tuning of the parameters leads to integration errors that
take over.

6 Possible model improvements

The original model has some shortcomings and inaccuracies. We now examine some
changes in the equations and investigate their influence on the system’s evolution. The
simulations are here run up to two weeks time.

6.1 The role of nutrients

First of all, it seems reasonable to substitute γ11Ou with γ11ONu, since, in absence
of nutrient, bacteria are bound to die out. The reproduction term in this way is tied
to the presence of nutrient and if the latter is absent, the first equation contains only
mortality in addition to diffusion. The first modified system is then





ut = ∆u + γ11ONu + γ12Nu − γ13u,

vt = ∆v + γ21(Osat − O)u + γ22Nv − γ23v,

Nt = γ41V · ∇N − γ41u − γ42v + Nsupply,

Ot = ∆O − γ51u − γ53p · ∇O,

Ft = ∆F + γ71Nv − γ72(Osat − O)u + V · ∇F.

(3)
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The same modification is not applied to the term γ21(Osat−O)u in the second equation
since this can be interpreted as a second nutrient source for the bacteria v. With
the same parameter values used in the original model, the fermentation level rapidly
increases, reaching unacceptable values for an optimal functioning of the reactor. We
thus diminish the reproduction rate of v due to nutrient N uptake, by slightly changing
the value of γ22 from 2.5 to 2.1. In this way, the peaks reduce sensibly, up almost to
disappearing. Consequently F drops to zero after a brief transient phase, Figure 6
(right). We will use this modification also in all subsequent changes.

Figure 5: Model (3). Temporal evolution of u(x, t) (left), v(x, t) (right).

Figure 6: Model (3). Temporal evolution of N(x, t)(left), O(x, t) (center), F (x, t)
(right).

6.2 The role of facultative anaerobic bacteria

We rewrite (3) by changing the sign of γ72(Osat − O)u, to agree with the definition
of facultative anaerobic bacteria. We need to insert a term Osupply ≈ O(10−1) in the
oxygen equation, since fermentation is too quick, to induce a periodic raise in the
bacteria that feed on fermentation products. The equilibrium value of F settles to a
level inversely proportional to the new parameter Osupply. The model thus reads





ut = ∆u + γ11ONu + γ12Nu − γ13u,

vt = ∆v + γ21(Osat − O)u + γ22Nv − γ23v,

Nt = γ41V · ∇N − γ41u − γ42v + Nsupply,

Ot = ∆O − γ51u − γ53p · ∇O + Osupply,

Ft = ∆F + γ71Nv + γ72(Osat − O)u + V · ∇F.

(4)
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The oxygen density becomes periodic, Fig. 8 (center), even though introducing Osupply

increases the number of peaks, which in this way are no longer tied to the feeding once a
day of waste material. Fermentation becomes periodic within acceptable levels, Fig. 8
(right). In the following models, except the last one, the third term in the last equation
will always have a positive sign.

Figure 7: Model (4). Temporal evolution of u(x, t) (left), v(x, t) (right).

Figure 8: Model (4). Temporal evolution of N(x, t) (left), O(x, t) (center), F (x, t)
(right).

6.3 The role of nutrient reproduction

Here we substitute γ21(Osat − O)u with γ21(Osat − O)Nv, changing its interpretation
now either as a reproduction term due to nutrients N , if O < Osat, or mortality,
if O > Osat. Thus the aerotolerant character of v becomes clearer for low oxygen
concentrations. Again with the original parameter values we find an excessive increase
of F . To avoid it, we add again Osupply. The system becomes





ut = ∆u + γ11ONu + γ12Nu − γ13u,

vt = ∆v + γ21(Osat − O)Nv + γ22Nv − γ23v,

Nt = γ41V · ∇N − γ41u − γ42v + Nsupply,

Ot = ∆O − γ51u − γ53p · ∇O + Osupply,

Ft = ∆F + γ71Nv + γ72(Osat − O)u + V · ∇F.

(5)

Further, in this way oxygen has still a periodic behavior, Fig. 10 (center), and v attains
lower values than those reached in the model (1).
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Figure 9: Model (5). Temporal evolution of u(x, t) (left), v(x, t) (right).

Figure 10: Model (5). Temporal evolution of N(x, t) (left), O(x, t) (center), F (x, t)
(right).

6.4 A generalization

We try now to generalize the previous cases. The term γ21(Osat − O)u is changed into
γ21(Osat − O)Nuv and Osupply is again used





ut = ∆u + γ11ONu + γ12Nu − γ13u,

vt = ∆v + γ21(Osat − O)Nuv + γ22Nv − γ23v,

Nt = γ41V · ∇N − γ41u − γ42v + Nsupply,

Ot = ∆O − γ51u − γ53p · ∇O + Osupply,

Ft = ∆F + γ71Nv + γ72(Osat − O)u + V · ∇F.

(6)

As in the previous case, with the values of Table 1, we find a quick decrease to zero of
v, while F stabilizes at acceptable levels, Fig. 12 (right). All other variables are almost
periodic.
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Figure 11: Model (6). Temporal evolution of u(x, t) (left), v(x, t) (right).

Figure 12: Model (6). Temporal evolution of N(x, t) (left), O(x, t) (center), F (x, t)
(right).

6.5 The role of obligated aerobic bacteria

In the last case we assume that the bacteria u are obligated aerobic instead of being
anaerobic facultative. Thus we need to set γ12 in (3) to zero. In this way reproduction
of u is tied to presence of oxygen. Next we replace γ72(Osat−O)u by γ72Ou, to indicate
consumption of F by u independently of the oxygen level. Once again we introduce the
parameter Osupply = 0.3 to guarantee the presence of the obligated aerobic bacteria.
The system becomes





ut = ∆u + γ11ONu − γ13u,

vt = ∆v + γ21(Osat − O)u + γ22Nv − γ23v,

Nt = γ41V · ∇N − γ41u − γ42v + Nsupply,

Ot = ∆O − γ51u − γ53p · ∇O + Osupply,

Ft = ∆F + γ71Nv − γ72Ou + V · ∇F.

(7)

All variables now show a periodic behavior, Fig.s 13 and 14. The height of the peaks
for F is inversely proportional to Osupply.
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Figure 13: Model (7). Temporal evolution of u(x, t) (left), v(x, t) (right).

Figure 14: Model (7). Temporal evolution of N(x, t) (left), O(x, t) (center), F (x, t)
(right).
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Abstract

Bousi∼Prolog is an extension of the standard Prolog language aiming at to
make more flexible the query answering process and to deal with vagueness apply-
ing declarative techniques. In this paper we precise a model-theoretic semantics
for a pure subset of this language, we recall both the WSLD-resolution principle
and a similarity-based unification algorithm which is the basis of its operational
mechanism and then we prove the soundness of WSLD-resolution.

Key words: Fuzzy Logic Programming, (Least) Fuzzy Herbrand Model, Fixpoint
Semantics, Weak Unification, Weak SLD-Resolution, Proximity/Similarity Rela-
tions.

1 Introduction

In recent years there has been a renewed interest in amalgamating Logic Programming
[11] with concepts coming from Fuzzy Logic [13] or akin to this field. As tokens of
this interest we mention the works on Fuzzy Logic Programming [3, 7, 12], Qualified
Logic Programming [8, 1] (which is a derivation of the van Emden’s Quantitative Logic
Programming [10]) or Similarity-Based Logic Programming [2, 9]. Bousi∼Prolog is a
representative of the last class of fuzzy logic programming languages. It replaces the
syntactic unification mechanism of the classical Selection-function driven Linear reso-
lution for Definite clauses (SLD–resolution) by a fuzzy unification algorithm based on
fuzzy binary relations on a syntactic domain. The result is an operational mechanism,
called Weak SLD-resolution, which differs in some aspects w.r.t. the one of [9], based
exclusively on similarity relations.

This work can be seen as a continuation of the investigation started in [4]. In this
paper after introducing some refinements to the model-theoretic and fix-point seman-
tics of Bousi∼Prolog defined in [4] for definite programs, we present, for the first time in
our framework, the concept of a correct answer providing a declarative description for
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the output of a program and a goal. It is noteworthy that, although the refinements in-
troduced in the declarative semantics do not dramatically alter the original definitions,
given in [4], they are important in order to establish the soundness of our proposal.
Afterwards, we recall the operational semantics of Bousi∼Prolog and we prove, among
other results, its soundness. The soundness theorem is established following a proof
strategy comparable with the one appeared in [5]. It is important to remark that, the
soundness in our framework will be proven under certain conditions. To be precise, we
only consider programs without negation and we restrict ourselves to similarity rela-
tions on syntactic domains. Finally, it is worthy to say that, along this paper we also
clarify some of the existing differences between our framework and the related proposal
introduced by [9].

2 Preliminaries.

2.1 Fuzzy relations, proximity and similarity relations

A binary fuzzy relation on a set U is a fuzzy subset on U × U (that is, a mapping
U × U −→ [0, 1]). There are some important properties that fuzzy relations may
have: i) (Reflexivity) R(x, x) = 1 for any x ∈ U ; i) (Symmetry) R(x, y) = R(y, x)
for any x, y ∈ U ; i) (Transitivity) R(x, z) ≥ R(x, y) ∧ R(y, z) for any x, y, z ∈ U ;
where the operator ‘∧’ is the minimum t-norm. A proximity relation is a binary fuzzy
relation which is reflexive and symmetric. A proximity relation is characterized by a
set Λ = {λ1, ..., λn} of approximation levels. We say that a value λ ∈ Λ is a cut value.
A special, and well-known, kind of proximity relations are similarity relations, which
are nothing but transitive proximity relations.

In classical logic programming different syntactic symbols represent distinct infor-
mation. Following [9], this restriction can be relaxed by introducing a proximity or
similarity relation R on the alphabet of a first order language. This makes possible
to treat as indistinguishable two syntactic symbols which are related by the proximity
or similarity relation R with a certain degree greater than zero. A similarity relation
R on the alphabet of a first order language can be extended to terms by structural
induction in the usual way:

1. R(x, x) = 1;
2. Let f and g be two n-ary function symbols and let t1, . . . , tn, s1, . . . , sn be terms.
R(f(t1, . . . , tn), g(s1, . . . , sn)) = R(f, g) ∧ (

∧n
i=1R(ti, si));

Otherwise, the approximation degree of two expressions is zero. The extension for
atomic formulas and compound formulas can be done in an analogous form. See [9]
for a precise characterization of this problem. The extension of a proximity relation is
more cumbersome1 and it is not addressed in this paper.

1We know that a naive approach may cause the incompleteness of the weak SLD resolution proce-
dure. Moreover, a indispensable property of an inference relation such as the cut rule is not fulfilled.
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2.2 Formulas, interpretations and truth in the context of a proximity
relation

In this section we discuss the notions of interpretation and truth for a first order theory
in the context of a proximity relation. A fuzzy Interpretation I of a first order language
L is a pair 〈D,J 〉 where D is the domain of the interpretation and J is a mapping which
assigns meaning to the symbols of L: specifically n-ary relation symbols are interpreted
as mappings Dn −→ [0, 1]. In order to evaluate open formulas we need to introduce
the notion of variable assignment. A variable assignment, ϑ, w.r.t. I = 〈DI ,J 〉, is a
mapping ϑ : V −→ DI , which can be extended to the set of the terms of L by structural
induction. Given a fuzzy interpretation I = 〈D,J 〉 and a variable assignment ϑ in I,
the valuation of a formula w.r.t. I and ϑ is2:

I(p(t1, . . . , tn))[ϑ] = p̄(t1ϑ, . . . , tnϑ), where J (p) = p̄

I(A ∧ B))[ϑ] = inf{I(A)[ϑ], I(B)[ϑ]}
I(A ← B)[ϑ] = if I(Q)[ϑ] ≤ I(A)[ϑ] then 1 else I(A)[ϑ].

I((∀x)A)[ϑ] = inf{I(A)[ϑ′] | ϑ′ x–equivalent to ϑ}

where p is a predicate symbol, and A and B are formulas. An assignment ϑ′ is x–
equivalent to ϑ when zϑ′ = zϑ for all variable z 6= x in V. When the assignment would
not be relevant, we shall omit it during the valuation of a formula. In the context
of a first order theory equipped with a proximity relation R, characterized by a set
Λ = {λ1, ..., λn} of approximation levels, it makes sense that the notion of truth be
linked to a certain approximation level λ ∈ Λ. For a fixed value λ and a formula A of
L:

A is λ-true in I iff for every assignment ϑ in I, I(A)[ϑ] ≥ λ
A is λ-false in I iff for every assignment ϑ in I, I(A)[ϑ] < λ
A is λ-valid iff A is λ-true for all interpretation I.
A is λ-unsatisfiable iff A is λ-false for all I.
A is λ-satisfiable iff there exists an I and a ϑ in I such that I(A)[ϑ] ≥ λ.

Intuitively, a cut value λ is delimiting truth degrees equal or greater than λ as true.
Since the valuation of a closed formula is completely determined by an interpretation,
independently of a variable assignment, we say that an interpretation I of L is λ-model
for A if and only if I(A) ≥ λ.

2.3 Closed conditional formulas and models

In this section we elucidate the notion of model for a set of closed conditional formulas
in the context of a similarity relation. By conditional formula we mean a formula of
the form C ≡ A ← Q, where A (called the head) is an atom, Q a formula (called the
body) and all variables are assumed universally quantified. When Q ≡ B1 ∧ . . .∧Bn is

2Note that, tiϑ is the usual notation for the application of a substitution ϑ to a expression ti. That
is, it is equivalent to ϑ(ti).
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a conjunction of atoms, the formula C is called a Horn clause or definite clause. As it is
well known, this kind of formulas play a special role in logic programming where a set
of definite clauses is called a program and a goal is any conjunctive body. A direct naive
translation to our context of the classical concept of model for a set of formulas does not
work. We need a new definition supported by the notion of what we called an annotated
set of formulas of level λ. In particular, if we are working with the set Γ ≡ {p(a)} and
the similarity defined by the entry R(a, b) = 0.8 then the intended meaning of Γ and
R is that we believe in p(a) with truth degree 1 but also, because b is similar to a, we
believe in p(b) with truth degree 0.8. That is R induces meaning into Γ and we can
reflect this fact by means of an annotated set of formulas {〈p(a), 1〉, 〈p(b), 0.8〉} (see [4]
to obtain more intuitive insides on this idea).

We want to formalize this concept, but before doing that we need some techni-
cal definitions introduced to cope with some problems that appear when conditional
formulas have non-linear atoms on their heads3. Given a non-linear atom A, the lin-
earization of A (as defined in [1]) is a process by which it is computed the structure
〈Al, Cl〉, where: Al is a linear atom built from A by replacing each one of the n multiple
occurrences of the same variable Xi by new fresh variables Yk(1 ≤ k ≤ ni); and Cl is
a set of proximity constrains Xi ∼ Yk (with 1 ≤ k ≤ ni). The operator “s ∼ t” is
asserting the proximity of two terms s and t and when interpreted, I(s ∼ t) = R(s, t),
whatever the interpretation I of L. Now, let C ≡ A← Q be a conditional formula and
Cl = {X1 ∼ Y1, . . . , Xn ∼ Yn}, lin(C) = Al ← X1 ∼ Y1 ∧ . . . ∧Xn ∼ Yn ∧ Q. For a set
Γ of conditional formulas, lin(Γ) = {lin(C) | C ∈ Γ}. The following algorithm, which
is a reformulation of the one that appears in [4] to cope with the linearization process,
gives a precise procedure for the construction of the set of annotated formulas of level
λ.

Algorithm 1

Input: A set of conditional formulas Γ and a similarity relation R with a set
of levels Λ and a cut value λ ∈ Λ.

Output: A set Γλ of annotated formulas of level λ.
Initialization: Γl := lin(Γ) and Γλ := {〈C, 1〉 | C ∈ Γl}
For each conditional formula C ≡ A← Q ∈ Γl do

Kλ(C) = {〈C′ ≡ A′ ← Q, α〉 | R(A,A′) = α ≥ λ}
For each element 〈C′, α〉 in Kλ(C) do

If 〈C′, L〉 ∈ Γλ then Γλ = (Γλ \ {〈C′, L〉}) ∪ 〈C′, L ∧ α〉
else Γλ = (Γλ ∪ {〈C′, α〉})

Return Γλ

The general idea behind this algorithm is to start annotating each formula in the
set Γl with a truth degree equal to 1. On the other hand, the rest of the formulas
generated by proximity, starting from formulas of the original set Γl, are annotated with
its corresponding approximation degree (regarding the original formula). Afterward,
if several formulas of the set generate the same approximate formula, with different

3The apparition of this problem in our framework was pointed out by R. Caballero, M. Rodŕıguez
and C. Romero in a private communication. So we want to express them our gratitude.
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approximations degrees, we take the least degree as annotation. Now we are ready to
define the core concepts of model and logical consequence of level λ for a set of closed
conditional formulas w.r.t. a similarity relation. Let Γ be a set of closed conditional
formulas of a first order language L, R be a similarity relation which is characterised
by a set Λ of approximation levels with cut value λ ∈ Λ and I be a fuzzy interpretation
of L.

1) I is λ-model for {Γ,R} iff for all annotated formula 〈A, λ′〉 ∈ Γλ, I(A) ≥ λ′;
2) A is a λ-logical consequence of {Γ,R} if and only if for each fuzzy interpretation I
of L, I is a λ-model for {Γ,R} implies that I is a λ-model for A.

3 Declarative Semantics.

In this section we recall the declarative semantics of Bousi∼Prolog. Roughly speaking,
BPL programs are sequences of (normal) clauses plus a proximity relation. However, in
the rest of the paper we restrict ourselves to definite clauses. Also observe that, since
the notion of approximation and the fuzzy unification algorithm we are going to work
with is only well-defined for similarity relations, in this and the following sections we
solely deal with this kind of relations.

3.1 Fuzzy Herbrand interpretations and models

When we use a logic programming language whose instructions are clauses and em-
ploys a refutation procedure, it is well-known that it suffices to pay attention only on
(fuzzy) Herbrand interpretations in order to determine the unsatisfiability of a set of
clauses. Herbrand interpretations are defined on a syntactic domain, called the Her-
brand universe. For a first order language L, the Herbrand universe UL for L, is the
set of all ground terms in L. Roughly speaking, in a Herbrand interpretation, constant
and function symbols are interpreted as themselves in a fixed way while n-ary relation
symbols are freely interpreted as n-ary (fuzzy) relations on UL, i.e. (fuzzy) subsets on
UnL (or equivalently, mappings from UnL into the [0, 1] interval). On the order hand,
the Herbrand base BL for L is the set of all ground atoms which can be formed by
using the predicate symbols of L jointly with the ground terms from the Herbrand uni-
verse taken as arguments. As in the classical case, it is possible to identify a Herbrand
interpretation with a fuzzy subset of the Herbrand base. That is, a fuzzy Herbrand
interpretation for L can be considered as a mapping I : BL −→ [0, 1]. The ordering ≤
in the lattice [0, 1] can be easily extended to the set of Herbrand interpretations H, as
follows: I1 v I2 iff I1(A) ≤ I2(A) for all ground atom A ∈ BL. It is important to note
that the pair 〈H,v〉 is a complete lattice.

In the following, we focus our attention on Herbrand λ-models. For this special
kind of λ-models we proved in [4] an analogous property to the model intersection
property and we defined the least Herbrand model of level λ, for a program Π and a
similarity relation R, as the mapping Mλ

Π : BL −→ [0, 1] such that,

Mλ
Π(A) = inf{I(A) | I is a λ-model for Π and R},
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for each A ∈ BL. The interpretation Mλ
Π is the natural interpretation for a program

Π and a similarity relation R, since, as it was proved in [4], for each A ∈ BL such that
Mλ

Π(A) 6= 0, A is a logical consequence of level λ for Π and R.

3.2 Fixpoint semantics

In this section we recall an alternative characterization of the least Herbrand model of
level λ for a definite program Π and a similarity relation R, using fixpoint concepts,
given in [4]. The idea is to provide a constructive vision of the meaning of a program
by defining an immediate consequences operator which allows to construct the least
Herbrand model of level λ, by means of successive applications.

Definition 3.1 (Immediate consequences operator of level λ) Let Π be a defi-
nite program and R be a similarity relation. We define the immediate consequences
operator of level λ, T λΠ , as a mapping T λΠ : H −→ H such that, for all A ∈ BL,

T λΠ (I)(A) = inf{PT λΠ(I)(A)}

where PT λΠ is a non deterministic operator such that PT λΠ(I) : BL −→ ℘([0, 1]) and it
is defined as follows: Let Πl = lin(Π),

1. For each fact H ∈ Πl, let Kλ(H) = {〈H ′, λ′〉 | R(H,H ′) = λ′ ≥ λ} be the set
of approximate atoms of level λ for H. Then PT λΠ(I)(H ′ϑ) 3 λ′, for all H ′ and
assignment ϑ.

2. For each clause C ≡ (A← Q) ∈ Πl. Let Kλ(C) = {〈C′ ≡ A′ ← Q, λ′〉 | R(A,A′) =
λ′ ≥ λ} be the set of approximate clauses of level λ for C. Then PT λΠ(I)(A′ϑ) 3
λ′ ∧ I(Qϑ), for all C′ and assignment ϑ.

In [4], we proved that the immediate consequences operator (of level λ) is monotonous
and continuous and the least fuzzy Herbrand model (of level λ) coincides with its least
fixpoint.

3.3 Correct Answer

In this section we define the concept of a correct answer, which provide a declarative
description of the desired output from a program, a similarity relation, and a goal. This
is a central concept for the later theoretical developments.

Definition 3.2 (Answer of level λ.) Let Π be a definite program, R be a proximity
relation, which is characterised by a set Λ of approximation levels with cut value λ ∈ Λ,
and G be a goal. An answer of level λ for {Π,R} and G is a pair 〈θ, β〉 where θ is any
substitution for variables of G and β an approximation degree such that λ ≤ β ≤ 1.

Definition 3.3 (Correct Answer of level λ.) Let Π be a definite program and R be
a similarity relation, which is characterised by a set Λ of approximation levels with cut
value λ ∈ Λ. Let G ≡← A1, ...,Ak be a goal and 〈θ, β〉 an answer of level λ for {Π,R}
and G. We say that 〈θ, β〉 is a correct answer of level λ of level λ for {Π,R} and G if:
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1. ∀(A1, ..., Ak)θ is a λ-logical consequence of {Π,R}.

2. Mλ
Π(∀(A1, ..., Ak)θ) ≤ β.

4 Operational Semantics.

The operational semantics of Bousi∼Prolog is an adaptation of the SLD resolution
principle, where classical unification has been replaced by a fuzzy unification algorithm.
In this section we recall the features of both the fuzzy unification algorithm and the
resolution procedure.

4.1 Weak Unification based on similarity relations.

Bousi∼Prolog uses a weak unification algorithm that, when we work with similarity
relations, coincides with the one defined by M. Sessa [9]. However, there exists some
remarkable differences between our proposal and Sessa’s proposal that we shall treat
to put in evidence along this section. In presence of similarity relations on syntactic
domains, it is possible to define an extended notion of a unifier and a more general
unifier of two expressions4.

Definition 4.1 Let R be a similarity relation, λ be a cut value and E1 and E2 be two
expressions. The substitution θ is a weak unifier of level λ for E1 and E2 w.r.t R
(or λ-unifier) if its unification degree, DegR(E1θ, E2θ), defined as DegR(E1θ, E2θ) =
R(E1θ, E2θ), is greater than λ.

Note that in Sessa’s proposal the idea of “cut value” is missed. Also in order that a
substitution θ be a weak unifier for E1 and E2 she put a strong constrain: the unifi-
cation degree of E1 and E2 w.r.t. θ must be the maximum of the unification degrees
of DegR(E1ϕ, E2ϕ) for whatever substitution ϕ. Therefore, some substitution that we
consider as a weak unifier, are disregarded by her proposal.

Definition 4.2 Let R be a similarity relation and λ be a cut value. The substitution θ
is more general than the substitution σ with level λ, denoted by θ ≤R,λ σ, if there exist
a substitution δ such that, for any variable x in the domain of θ or σ, R(xσ, xσδ) ≥ λ.

Definition 4.3 Let R be a similarity relation and E1 and E2 be two expressions. The
substitution θ is a weak most general unifier (w.m.g.u.) of E1 and E2 w.r.t R, denoted
by wmgu(E1, E2), if: (1) θ is a λ-unifier of E1 and E2; and (2) θ ≤R,λ σ, for any
λ-unifier σ of E1 and E2.

The weak unification algorithm we are using is a reformulation of the one appeared
in [9], which, in turn, is an extension of Martelli and Montanari’s unification algorithm
for syntactic unification [6]. The main difference is regarding the so called decomposi-
tion rule 5: Given the unification problem 〈{f(t1, . . . , tn)≈ g(s1, . . . , sn)} ∪ E, σ, α〉, if

4We mean by “expression” a first order term or an atomic formula.
5Here, the symbol “E1 ≈ E2” represents the potential possibility that two expressions E1 and E2 be

close.
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R(f, g) = β > λ, it is not a failure but it is equivalent to solve the new configuration
〈{t1≈s1, . . . , tn≈sn} ∪ E, σ, α ∧ β〉, where the approximation degree α has been com-
pounded with the degree β. It is important to note that, differently to [9], the resulting
approximation degree is casted by a cut value λ.

The weak unification algorithm allows us to check if a set of expressions S = {E1 ≈
E ′1, . . . , En ≈ E ′n} is weakly unifiable. The w.m.g.u. of the set S is denoted by wmgu(S).
In general, a w.m.g.u. of two expressions E1 and E2 is not unique [9]. Therefore, the
weak unification algorithm computes a representative of a w.m.g.u. class.

4.2 Weak SLD-Resolution.

Let Π be a set of Horn clauses and R a similarity relation on the alphabet of a first
order language L. Let Λ be the set of approximation levels of R. We define Weak
SLD (WSLD) resolution as a labeled transition system 〈Goals,Labels,=⇒WSLD〉, where
Goals is the set of goals of L, Labels is a set of triples 〈C, θ, α〉 (Clause, substitution,
approximation degree) and whose transition relation =⇒WSLD⊆ (Goals×Labels×Goals)
is the smallest relation that satisfies:

C = (A ←Q) << Π, σ = wmgu(A,A′) 6= fail, β = R(Aσ,A′σ)) ≥ λ

←A′,Q′ [C,σ,β]
=⇒WSLD← (Q,Q′)σ

where Q, Q′ are conjunctions of atoms, the notation “C << Π” is representing that
C is a standardized apart clause in Π, and the value λ is a cut value in Λ, which
imposes a limit to the expansion of the search space in a computation. We say that
the performed step is a step of level λ because the computed approximation degree
is greater or equal than λ. A WSLD derivation of level λ for Π ∪ {G0} and R is

a sequence of steps of level λ: G0
[C1,θ1,β1]
=⇒WSLD . . .

[Cn,θn,βn]
=⇒WSLD Gn. That is, each βi ≥ λ.

And a WSLD refutation of level λ for Π ∪ {G0} and R is a WSLD derivation of level

λ for Π ∪ {G0} and R: G0
θ,β

=⇒WSLD
∗�, where the symbol “�” stands for the empty

clause, θ = θ1θ2 . . . θn is the computed substitution and β =
∧n
i=1 βi is its approximation

degree. The output of a WSLD refutation is the pair 〈θ|̀(Var(G), β〉, which is said to
be the computed answer. Certainly, a WSLD refutation computes a family of answers,
in the sense that, if θ = {x1/t1, . . . , xn/tn} then, by definition, whatever substitution
θ′ = {x1/s1, . . . , xn/sn}, holding that R(si, ti) ≥ λ, for any 1 ≤ i ≤ n, is also a
computed substitution with approximation degree β ∧ (

∧n
1 R(si, ti)).

Observe that our definition of similarity based SLD resolution is parameterized by
a cut value λ ∈ Λ. This introduces an important conceptual distinction between our
approach an the similarity based SLD resolution presented in [9]. Moreover, we differ
in the way we obtain a family of computed answers (see [4] for details). This may have
a determinant impact in the correctness of the overall proposal.

5 Soundness of WSLD-Resolution

In this section we establish the soundness of WSLD-Resolution, but before proving the
main result of the paper we need to introduce some important intermediate lemmas.
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Lemma 5.1 Let Π be a definite program, R be a similarity relation and λ be a cut
value. Given (A ← Q) ∈ Π and A′ an atom such that R(A,A′) = α ≥ λ. If (∀Q) is a
λ-logical consequence of {Π,R} then (∀A′) is a λ-logical consequence of {Π,R}.
Proof. If ∀Q is an λ-logical consequence of {Π,R}, then for all, I, λ-model for
{Π,R}, I is a λ-model for ∀Q. That is, I(∀Q) ≥ λ and hence I(Qϑ) ≥ λ for every
assignment ϑ.

On the other hand, if (A ← Q) ∈ Π and R(A,A′) = α ≥ λ, by definition of
annotated program, Πλ, there exists an annotated clause 〈A′ ← Q, α〉 ∈ Πλ. Moreover,
by definition of λ-model for {Π,R}, I(∀(A′ ← Q)) ≥ α ≥ λ and hence I(A′ϑ← Qϑ) ≥
α ≥ λ for every assignment ϑ. Now, there are two cases by definition of valuation:

1. I(A′ϑ← Qϑ) = 1 because I(A′ϑ) ≥ I(Qϑ) ≥ λ.
2. I(A′ϑ ← Qϑ) = I(A′ϑ) because I(Qϑ) > I(A′ϑ). But, as we just mentioned,
I(A′ϑ← Qϑ) ≥ α ≥ λ and therefore I(A′ϑ) ≥ λ.

So, in both cases I(A′ϑ) ≥ λ for every assignment ϑ. That is, I(∀A′) = inf{I(A′ϑ)|ϑ
assignment } ≥ λ. Therefore (∀A′) is a λ-logical consequence of {Π,R}. �

Lemma 5.2 Let A and B be two atoms such that A ≤ B. Then, I(∀A) ≤ I(∀B).

Proof. Immediate because as A ≤ B then it implies that there exists a substitution ξ,
such that B = Aξ and moreover: I(∀A) = inf{I(Aϑ) | ϑ assignment} ≤ inf{I(Aξϑ′) |
ϑ′ assignment} = I((∀Aξ)) = I(∀B). �

Corollary 5.3 Let Π be a definite program, R be a similarity relation and λ be a cut
value. Given (A ← Q) ∈ Π and A′ an atom such that R(A,A′) = α ≥ λ. If (∀Qθ)
is a λ-logical consequence of {Π,R} then (∀A′θ) is a λ-logical consequence of {Π,R},
whatever the substitution θ is.

Proof. Immediate by Lemma 5.1 and Lemma 5.2. �

Corollary 5.4 Let Π be a program, R be a similarity relation and λ be a level of cut.
Given A ←∈ Π and A′ an atom such that R(A,A′) = α ≥ λ. Then (∀A′θ) is an
λ-logical consequence of Π for every substitution θ.

Proof. Trivial, since this is a specific case of Corollary 5.3, when the clause is a
fact. Then, if A is a program fact, the atoms A′ close to A and their instances are
λ-logical consequence of {Π,R}. �

In order to prove Lemma formally, we need to introduce the notion of position of
a expression and some notations. Positions of a expression t (also called occurrences)
are represented by sequences of natural numbers used to address subterms of t. The
concatenation of the sequences p and w is denoted by p.w. Pos(t) denotes the set of
positions of the expression t. A expression t can be see as a mapping between the set
Pos(t) and the set of symbols compounding it. If p ∈ Pos(t), t[p] denotes the symbol
of t at position p.
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Lemma 5.5 Let A and B be two atoms, R be a similarity relation, with cut level λ,
and θ be a λ-unifier for A and B with degree α. Then, there exists an atom A′ such
that, R(A,A′) = α and A′θ = Bθ (That is there exists A′ which is close to A, with
degree α which unifies syntactically with B, through the unifier θ)

Proof. [Sketch] If θ is a λ-unifier for A and B with degree α then R(Aθ,Bθ) = α ≥ λ.
Moreover, Aθ and Bθ share the same positions (i.e., Pos(Aθ) = Pos(Bθ)) and for all
position ui ∈ Pos(Aθ), R(Aθ[ui],Bθ[ui]) = αi being α =

∧n
i=1 αi. Note that, only

positions wi ∈ Pos(A) ∩ Pos(B) contribute to the computation of the degree α (for the
rest of positions w′i, R(Aθ[w′i],Bθ[w′i]) = 1).

Now, we take A and build an atom A′ of the following form: for each ui ∈ Pos(A)∩
Pos(B), we replace the symbol of A at position wi (i.e., A[wi]) by the corresponding
symbol of B (i.e., B[wi]) in A. That is, we build an atom A′ which is exactly equal than
A except that the symbols at non-variable positions (shared with B) has been replaced
with symbols of B. Therefore, R(A,A′) = α and A′θ = Bθ by construction of A′. �

Theorem 5.6 (Soundness of the WSLD–Resolution) Let Π be a definite program,
R a similarity relation, λ a cut value and G a definite goal. Then every computed an-
swer 〈θ, β〉 of level λ for {Π,R} and G is a correct answer of level λ for {Π,R} and
G.

Proof. Assume G ≡← A1, . . . ,Ak and θ1, . . . , θn be the sequence of w.m.g.u.’s in a

WSLD-refutation of level λ for {Π∪{G},R}: G [θ1,α1]
=⇒WSLD

[θ2,α2]
=⇒WSLD . . .

[θn,αn]
=⇒WSLD �, leading

to the computed answer 〈θ, α〉 where α =
∧n
i=1 αi is the approximation degree computed

in the refutation. We have to prove that: (1) I(∀(A1, . . . , Ak)θ) is λ-logical consequence
of {Π,R}; and (2) Mλ

Π(∀(A1, . . . , Ak)θ) ≤ α. The result is proven by induction on the
number of steps of the WSLD-refutation.

Base case (n = 1): First, we consider refutations of length one. This means that
G must be a goal of the form G ≡← A1 and the program Π contains a unit clause (a
fact) C1 ≡ A ← which weakly unifies with A1. That is, there exists a w.m.g.u. θ1 of A1

and A such that R(Aθ1,A1θ1) = α ≥ λ (i.e., its approximation degree is α1 = α ≥ λ).
On the other hand, it is easy to prove that A1θ1 is an instance of a clause of the
annotated program Πλ. More precisely, there exist an annotated clause 〈A′, α1〉 ∈ Πλ,
with R(A,A1) = α1 = α, such that A′ ≤ A1θ1. Therefore, by Corollary 5.4, ∀(A1θ1)
is λ-logical consequence for {Π,R} and item 1 is proved.

For proving item 2, remember that if R(A,A) = α, by definition of the immedi-
ate consequences operator of level λ (Deninition 3.1), α ∈ PT λΠ(Mλ

Π)(A′ϑ′) for ev-
ery assignment ϑ′. So, for the least Herbrand model Mλ

Π(A′ϑ′) ≤ α whatever be the
assignment ϑ′. On the other hand, if A′ ≤ A1θ1, then there exists a γ such that
A1θ1 = A′γ. Hence, for every ϑ1, Mλ

Π(A1θ1ϑ1) ≤ Mλ
Π(A′γϑ1) ≤ α. Therefore,

Mλ
Π(∀(A1θ1)) = inf{Mλ

Π(A1θ1ϑ1) | ϑ1 assignment} ≤ α .

Inductive case (n > 1): Next, assume that the theorem holds for WSLD-refutations
with n > 1 steps. Also suppose that C ≡ A ← Q ∈ Π is the input clause and Al is the
selected atom of G in the first step of the WSLD-refutation:
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← A1, . . . ,Al, . . . ,Ak
θ1,α1

=⇒WSLD← (A1, . . . ,Q, . . . ,Ak)θ1 =⇒WSLD
∗�

Now, by the induction hypothesis, we suppose that the result fulfills for computed an-
swers of refutations with length less than n. Then: (a) ∀(A1, . . . ,Q, . . . ,Ak)θ1, θ2, . . . , θn
is λ-logical consequence of {Π,R}; (b) Mλ

Π(∀(A1, . . . ,Q1, . . . ,Ak)θ1θ2 . . . θn) ≤ β =∧n
i=2 αi. For proving item 1, first note that, from (a), we can immediately infer that
∀(Qθ1θ2, . . . , θn) is λ-logical consequence of {Π,R}. On the other hand, if the first
resolution step, with the clause C and the selected atom Al, is possible, there must exist
a wmg θ1 with R(Alθ1,Aθ1) = α1 ≥ λ. In a similar way to the base case, we can claim
that there exists an annotated clause 〈A′ ← Q, α1〉 ∈ Πλ with R(A,A′) = α1 and such
that A′ ≤ A1θ1. Therefore, by the Corollary 5.3, ∀(Alθ1) is a λ-logical consequence of
{Π,R}. Moreover, by Lemma 5.2, all of the instances of Alθ are λ-logical consequences
of {Π,R}. Notably, ∀(Alθ1θ2, . . . , θn is a λ-logical consequence of {Π,R}. Finally, it
is immediate to prove that ∀((A1, . . . ,Ak)θ1θ2, . . . , θn is an λ-logical consequence of
{Π,R}.

For proving the item 2, note that, since the selected atom Al an the head A of
the input clause C weakly unify with approximation degree α1, by Lemma 5.5, there
exists an atom A′ such that R(A,A′) = α1 and A′θ1 ≤ Alθ1. Now, we can build the
ground instance: Alθ1θ2 . . . θnϑ1 = A′θ1θ2 . . . θnϑ1 being the head of an instance of an
annotated clause 〈C′ ≡ A′ ← Q, α1〉 belonging to the proximity class of C, Kλ(C) (see
Definition 3.1). Now by definition of the immediate consequences operator of level λ:
PT λΠ(Mλ

Π) 3 α1 ∧Mλ
Π((Qθ1 . . . θn)ϑ1) Consequently, for every assignment ϑ1: So,

Mλ
Π(∀(Alθ1 . . . θn)) = inf{Mλ

Π(Alθ1 . . . θnϑ1) | ϑ1 assignment} ≤
α1 ∧ inf{Mλ

Π(Qθ1 . . . θnϑ1) | ϑ1 assignment} = α1 ∧Mλ
Π(∀(Qθ1 . . . θn)).

Now, by the distributivity of the universal quantifier with respect to the conjunction:

Mλ
Π(∀(A1, . . . ,Al, . . . ,Ak)θ1 . . . θn) =∧l−1

i=1Mλ
Π(∀(Aiθ1 . . . θn) ∧Mλ

Π(∀(Alθ1 . . . θn) ∧
∧k
j=l+1Mλ

Π(∀(Ajθ1 . . . θn) ≤∧l−1
i=1Mλ

Π(∀(Ai)θ1...θn) ∧ α1 ∧Mλ
Π(∀(Q)θ1 . . . θn) ∧

∧k
j=l+1Mλ

Π(∀(Ajθ1 . . . θn) =

α1 ∧Mλ
Π(∀(A1, . . . ,Q, . . . ,Ak)θ1 . . . θn) ≤ α1 ∧ (

∧i=1
n αi) = α

�

6 Conclusions and Future Work

In this paper we revisited the declarative semantics of Bousi∼Prolog which were defined
for a pure subset and presented in [4]. We have given more accurate definitions for the
semantic concepts and thereby solved some problems that may arise when we work
with non-linear programs. Moreover, we introduce for the first time a notion of correct
answer inside our framework. Then, after recalling both the WSLD-resolution principle
and a similarity-based unification algorithm, which is the basis of the Bousi∼Prolog op-
erational mechanism for definite programs, we prove the soundness of WSLD-resolution
as well as other auxiliary results. Finally, it is worthy to say that, along this paper we
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have clarified some of the existing differences between our framework and the related
proposal introduced by [9].

As a matter of future work we want to go ahead proving the completeness theorem
for this restricted subset of Bousi∼Prolog. On the other hand, at the present time we
know that a naive extension of Sessa’s unification algorith to proximity relations does
not work, because correctness problems may arise. Therefore, it is necessary to define a
complete new algorithm able to deal with proximity relations properly and to lift some
of the current results to the new framework.
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Abstract

In the past few years, there has been an increasing interest on the benefits of ap-
plying the principles of game theory to better understand and plan the operation of
telecommunications systems. For example, game theory has been used to analyze net-
work congestion control, network routing, transmission power control, topology control,
etc. In particular, in this work we deal with access to channel resources. The scenario
is a distributed network with mobile stations (MS) competing for the channel band-
width to communicate with a centralized entity. To solve the conflicts arising from
MS trying to access simultaneously, the network relies on a protocol named the Binary
Exponential Backoff (BEB), a popular bandwidth allocation mechanism used by a large
number of wireless technologies. Our game scenario is made up of three components:
1) The decision makers are the MSs, 2) The individual action is either to “transmit”
or to “wait”, the retransmission probability is then the strategy. The resulting strategy
profile determines the amount of congestion in the network (outcome of the game), and
3) The utility function of each Ms is its own throughput (or alternatively minus its de-
lay). Clearly, the payoff of each station depends not only on its own decision, but also
depends on the actions of other adversarial stations. Although our scenario does have
a centralized entity, this entity does not have the full picture of the network conditions
created by the individual decisions of the MS. Our intention is to predict what might
or should happen when aggressive MSs competing with other MS act selfishly using a
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high retransmission probability to increase its own throughput, and what would be the
effect of using multiple power levels (MPL) during the transmissions. Our results show
that the capture effect introduced by the MPL-BEB mechanism proves effective on the
individual/global performance. Via price of anarchy, our results identify a behavior
similar to the well-know prisoners dilemma. A non-efficiency of Nash equilibrium is
observed for both schemes (BEB and MPL-BEB) under heavy traffic with a notable
outperformance of MPL-BEB.

Key words: Random access, Capture effect, Nash equilibrium, Price of anarchy.

1 Introduction

With its potential synergy in analyzing actors/players behaviors and predicting the outcome
of a conflict situation (called “game”), game theory is the ultimate tool to adopt when study-
ing decentralized systems. Under rationality of actors/players, the most common solution
concept is called the “Nash Equilibrium”. A Nash equilibrium point is a strategy profile
where no player has any incentive to deviate unilaterally. Recently, the selfish behavior of
mobile stations in NET, MAC or PHY layers has been widely analyzed using game theory.
For instance many works on power control, random access, routing games have been driven,
see [1, 2, 4, 7, 11, 12]. A performance collapse is then predicted for collision-channel systems
using aloha or binary exponential backoff algorithm (BEB), see [5, 9]. In order to overcome
the limitations of the standard BEB, we develop a stochastic game-based framework to
model and evaluate BEB while exploiting power diversity. Indeed, it has been verified that
the system’s performance can be improved when: 1) The Mobile Station (MS) use power
diversity, i.e., before starting transmission each MS picks randomly a power level among the
N available levels. This power diversity produces a “capture effect” in which even when two
or more packets collide, one of them can be decoded successfully with a certain probability
[4, 5], and 2) The value of the initial window W0 (directly related with the retransmission
probability) is optimized using team theory (in which the MSs cooperate together) [6], or
using game theory (in which the MS act selfishly) [7]. Previous works combine team theory
and power diversity for Aloha [5, 9] and for BEB [8], and use game theory with power
diversity for Aloha [9]. To the best of our knowledge, this work proposes for the first time
in the literature the implementation of power diversity in a system operating using the BEB
to increase throughput and reduce delay in a decentralized context (selfish MSs).

In the traditional BEB, although the terminals compete, they do not do so on base of a
decision-making process. The MSs do not have an individual choice of retransmission prob-
ability, they use a predefined parameters or a parameter given by a central entity. In this
case finding the retransmission probability that maximizes throughput is an optimization
problem carried out by a single decision maker: the central entity.

The rest of the paper is organized as follows. We describe the problem in Section 2.
In Section 3, we build the induced stochastic game for both standard BEB and MPL-BEB.
Later, we derive performance measures of interest in Section 5. We perform a detailed nu-
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merical investigation and present many related results in Section 6. Finally, our concluding
remarks are drawn in Section 7.

2 A MAC/PHY cross-layer design

We consider a wireless multiple access system composed of one central receiver (base sta-
tion BS) and m geographically dispersed mobile stations communicating with the BS. There
is no central control and consider that MSs communicate using BEB as a random access
method. Time is divided into multiple equal and synchronized slots. Transmission feedback
(success or collision) is received at the end of the current slot.

As mentioned before, power diversity produces a capture effect. Due to this capture
effect, even if a collision occurs the receiver is able to decode the message transmitted with
the highest power among concurrent transmissions. In fact, the unsuccessful concurrent
messages are lost and are treated as interference. In this MAC/PHY cross-layer design
an MS i contending for a message transmission, randomly chooses a power level Ti among
N available levels T = {T1, T2, ..., TN}. The power levels random selection follows the
probability vector X = [x1, x2, ..., xN ], where the j-th entry xj is the probability to select
the power level Tj . We consider a general capture model where a message transmitted by
an MS i is received successfully when and only when its Signal to Interference plus Noise
ratio (SINR) is higher than some given threshold Θth. The received power on the BS can be
related to the transmitted power by the propagation relation hi ·Ti, where hi is the channel
gain experienced by the base station on that link. Denoting by σ2 the power of the thermal
noise, the instantaneous SINR of MS i is then given by:

Θi =
hi · Ti

m∑
k=1,k 6=i

hk · Tk · 1k + σ2
, (1)

where 1k is an indicator function of the event that at the current slot, MS k transmits its
message.
We denote by As , s ≥ 2, the probability of a successful transmission among s simulta-
neous attempts, i.e., transmitted during the same slot. Let us denote by asi the proba-
bility that transmission of some tagged MS i is successful while s − 1 other MSs attempt
simultaneous transmission. It can be derived using the following events decomposition

asi =
N∑
t=2

P (At
i,s

⋂
Bt
i,s

⋂
Ct
i,s) where

- At
i,s is the event “Mobile station i attempts transmission with power level Tt”.

- Bt
i,s is the event “Other s− 1 mobile stations transmit with powers less than Tt”.

- Ct
i,s is the event “Instantaneous SINR of MS i is higher than the target SINR Θth”.
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Since all MSs are symmetric and are assumed to experience the same channel gain, i.e.,
hi = h, i = 1, . . . ,m. Then As = s.asi , it follows that

As = s
N−2∑
l=0

s−1∑
s1=0

· · ·
s−1∑

sN−l−1=0

xs11 · x
s2
2 · · ·x

sN−l

N−l · u

 TN−l
N−l−1∑
r=1

Trsr + σ2

h

−Θth

 · δ
(
s− 1−

N−l−1∑
r=1

sr

)
,

(2)
with, A0 = 0 and A1 = 1. In order to get a successful transmission, we need to take
sN−l = 1. Moreover, TN−l is the power level chosen by the MS whose transmission maybe
potentially succeed, i.e., the one corresponding to the highest power selected in the current
slot. Whereas sr denotes the number of MSs that have chosen the power level Tr in the
current slot. δ(t) is the Dirac distribution and u(t) is the Heaviside function (unit step
function) are given by the following expressions

δ(t) =

{
1, t = 1,
0, else.

and u(t) =

{
1, t ≥ 0,
0, else.

(3)

Computing the success probability is a challenging task. The difficulty of formula (2) is
to consider one single transmitting MS at the highest power level and list all the cases
where the s − 1 remaining MSs transmit at lower power levels. This corresponds exactly
to the set of partitions 1 of the positive integer k− 1 considering all possible permutations.
Generating all the partitions of an integer has been widely studied in the literature and
several algorithms have been proposed, e.g., see [10]. The computational complexity of such
algorithms is very expensive and may take long time to compute the set of all partitions
and their permutations. Fortunately, in our model the success probability depends on none
of the following: the instantaneous state of the system n; the arrival probability λ; and,
the retransmission probability q. Henceforth, the success probability vector A = (As),
s = 0 · · ·m can be computed once and reused to derive the transition matrix.

3 A stochastic game formulation

In this section we introduce the basic definitions and notation needed to build our model.
All mobile users share the same channel to transmit their respective messages. Clearly, the
payoff of MS i depends not only on its own decision of i but also depends on the actions of
other adversarial MSs. A typical conflict situation is then induced, and game theory tools
seems to be suitable to analyze these kind of situations. The primary focus of this work
is to build a non-cooperative framework for BEB, in which each MS optimizes her or his
payoff. We start by presenting the markovian model for both BEB and MPL-BEB and then
analyze the non-cooperative game.

We build a markovian model for both the standard BEB as well as for the MPL-BEB
scheme making use of power diversity. We take the case of a system consisting of a finite

1A partition of a positive integer η is a way of writing η as a sum of positive integers.
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number of m mobile stations that intend to transmit a message. Each MS i handles a
buffer sufficient to store exactly one message, thus no new message is generated by MS i
till success/drop of current message. An MS i can be in one of two distinguished states: ‘I’
(idle) or ‘T’ (transmitting). At the beginning of each slot and being in state I’, an MS i has
no message to transmit and does generate a new message with some probability λ (for lack
of simplicity we restrict to the case where λ is the same for all MSs). MSs at state ‘I’ that
generate a new message switch to state ‘T’ at the beginning of the next slot. Being at state
‘T’, the tagged MS i attempts to transmit with probability qi, until its message is successfully
transmitted. If two or more MSs at state ‘T’ attempt the channel simultaneously, then
messages collide. In the case that the messages could not be properly decoded, then the
corresponding MSs immediately return to state ‘T’. All corrupted messages get backlogged
and are retransmitted after some random time. Whereas, if exactly one mobile station
attempts a transmission from state ‘T’ (BEB) or if the SINR of the received signal is higher
than the target (MPL-BEB), then the transmission is successful, and the corresponding
mobile station jumps to state ‘I’. The determination of the above random time can be
considered as a stochastic control problem. The information structure, however, is not a
classical one: the MSs do not have knowledge of the full state information. They do not
know the number of backlogged MSs, nor do they know the number of messages involved
in a collision. Moreover, implementation of random access-based procedure such as aloha
or BEB as a centralized system is a real issue since it needs a high signaling protocol
and full information on the activity of the mobile stations and their instantaneous QoS
(Quality of Service) requirements. Then, a high amount of bandwidth should be reserved for
signaling. Furthermore, mobile users are not forced to cooperate and may present a selfish
behavior. This is why we convert this problem and study it from game theory perspective
as a non cooperative game. Now, each mobile station wishes to optimize its own objective
function. We shall then formulate a distributed model using game theory tools with all its
powerful and robust equilibrium concepts. For instance, we will be interested in studying
Nash equilibrium of the power diversity-enabled BEB. Now, at equilibrium and assuming
rationality of mobile users, no MS has incentive to deviate unilaterally. The elements of our
contention game are as follows

• We consider a set N of bufferless mobile users with cardinality |N | = m. Each MS is
labeled by an integer from 1 to m.

• Packets arrive from higher layers of each mobile station i following a Bernoulli process
with parameter λ (non-saturated regime).

• The state of the system is given by the number of MSs in state ‘T’, i.e., backlogged
messages and messages that will be transmitted for the first time.

• Mobile station i transmits its messages/packets with probability qi in every slot.

• Each mobile station has two actions (transmit or not) and its retransmission proba-
bility qi is considered to be its strategy.

• For simplicity we assume that transmissions are cost free.
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• The objective function of each MS i is denoted by Ui. It can be either individual
throughput or alternatively minus expected delay at MS i.

Let q = (q1, q2, · · · , qm) be the policy vector of retransmission probabilities for all MSs.
Under rationality, each MS i seeks to maximize its own function utility. We shall use as
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Figure 1: The state of the system is the backlog vector; the first component corresponds to the

number of message in transmission (backlogged plus first time transmissions) among the mobile

users N \ {i}, whereas the second component indicates the number of messages (either backlogged

or first time transmissions) of the tagged mobile i (either 0 or 1). In order to stay inside the state

space (for this illustrative example) we need to have 1 ≤ k ≤ m− 2 and m ≥ 2.

the state of the system (n, a) the number n of MSs in state ‘T’ among the set N \ {i}
(denoted by n and takes value in 0, 1, · · · ,m − 1) and the number a of messages (either
backlogged or first time transmission) of tagged MS i (denoted by a and takes value in
0, 1) at the beginning of a slot. For any choice of values qi ∈ (0, 1] , the state process is
a Markov chain that contains a single ergodic sub-chain (and possibly transient states as
well). Indeed, it is easy to check that, conditioning on the actual state of the system, the
future and the past are mutually independent (Markov property), see [8] for a proof of other
properties. We denote by P(n,a)(n′,b)(q) the probability that the system jumps from state

(n, a) to state (n′, b). The transition probability diagram is depicted in Figure 1. Let π̄(q)
be the corresponding vector of the steady-state probabilities where its n-th entry πn,a(q)
denotes the probability that the state of the system is (n, a). The only point where the
Markov chain P does not have a single stationary distribution is at q = (0, 0, · · · , 0), where
it has the absorbing states: (n = m− 1, a = 1). All remaining states are transient (for any
λ > 0), and the probability to end in one of the absorbing states, depends on the initial
distribution of the Markov chain. When this state is reached, then the throughput equals 0,
which means that it is a deadlock state. For λ > 0 and q = 0, the deadlock state is reached
with positive probability from any initial state other than the absorbing state. We shall
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therefore exclude the case of q = 0 and optimize only on the range ε < qi ≤ 1 ∀i = 1, · · · ,m.
Naturally, the outcome of any instance of the game is a Nash equilibrium (if it exists).

Definition 1 The strategy profile q∗ = (q∗1, q
∗
2, · · · , q∗i , · · · , q∗m) is a Nash equilibrium if no

mobile station can improve its utility by unilateral deviation, namely

Ui (q∗) ≥ Ui (q∗1, q
∗
2, · · · , qi, · · · , q∗m) , ∀i = 1, · · · ,m and ∀qi ∈ [ε, 1], ε > 0. (4)

For computation tractability and without any loss of generality, we restrict throughout
this paper to find a symmetric policy where all MSs are payoff-balanced. Assume that
there are n actual backlogged MSs/messages among the set N \ {i}, and all use the same
value q as retransmission probability. Let Qr(j, n) be the probability that j out of the n
(n = 0, 1, ...,m− 1) backlogged messages are retransmitted in the current slot. Then

Qr(j, n) =

(
n

j

)
(1− q)n−j (q)j . (5)

Similarly, let Qa(j, n) denote the probability that j unbacklogged MSs among the set N \{i}
generate new messages in the current slot. Thus

Qa(j, n) =

(
m− n− 1

j

)
(1− λ)m−n−j−1 (λ)j . (6)

4 Equilibrium analysis

Define (q−i, qi) to be a retransmission policy where each MS j ∈ N \{i} retransmits at any
slot with probability qj for all j 6= i and where tagged MS i retransmits with probability qi.
Since we restrict to symmetric policies q−i where all mobiles are balanced-payoff, then we
shall also identify it (with some abuse of notation) with the actual transmission probability
which is the same for all users in N \ {i}. Now, we shall assume that all MSs in N \ {i}
retransmit with a given probability q−i = (q, q, · · · , q) and the tagged MS i retransmits with
probability qi.

Define the set BRi(q) as the set of best response strategies of tagged mobile station i,
it can be written as BRi(q) := argmax

qi
Ui

(
q−i, qi

)
, (7)

where q denotes the policy where all MSs in N \ {i} retransmit with probability q, and the
maximization is taken with respect to qi.
Therefore, the strategy profile q∗ is a symmetric Nash equilibrium if and only if

q∗ ∈ BRi(q
∗). (8)

As mentioned in [5] and [9], the Nash equilibrium in such a game may be inefficient and may
provide bad performance. Indeed, one note that mobile stations become more and more
aggressive as the arrival probability increases which results in a dramatic decrease in the
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system’s aggregate average throughput. Moreover, the equilibrium retransmission quickly
goes to 1 when the number of mobile users increases. We note that a similar aggressive
behavior at equilibrium has been observed in [11] in the context of flow control by several
competing mobile users that share a common drop tail buffer. However in that context, the
most aggressive behavior (of transmission at maximum rate) is the “equilibrium” solution
for any arrival rate, and not just at high rates as in our case. We may thus wonder why
retransmission probabilities of 1 are not an equilibrium in our BEB game (in the case of
light traffic), see Section 6. An intuitive reason could be that if a mobile station deviates
and retransmits with probability 1 (while other continue to retransmit with the equilibrium
probability q∗ < 1), the congestion level in the system (i.e., the number of backlogged
messages) increases; This induces more retransmissions from other MSs which then results
on more collisions of messages from the deviating mobile and a degradation on its own
payoff.

5 Steady state and performance evaluation

In order to evaluate and quantify the performance of MPL-BEB taking as benchmark the
standard BEB, we introduce a Markov chain with a two-dimensional state, see Figure 1.
Transition probabilities of both schemes BEB and MPL-BEB are given in Appendix A and
Appendix B, respectively. Based on the steady state of the system, one can estimate several
performance measures. For instance, we are particularly interested to derive the average
throughput, the expected delay and the failure probability of transmitted messages. We
first discuss the procedure to obtain the steady state probabilities. Then we derive the
expressions of the performance metrics of interest functions of the steady state equations.
Denote by πn,a

(
q−i, qi

)
the steady state of the Markov chain where n is the number of

backlogged messages among the N \{i} MSs, and a is the binary number of the backlogged
messages of tagged MS i.

The steady state of the Markovian process is given by the following system
π̄
(
q−i, qi

)
= π̄

(
q−i, qi

)
P
(
q−i, qi

)
,

m−1∑
n=0

1∑
a=0

πn,a
(
q−i, qi

)
= 1,

πn,a
(
q−i, qi

)
≥ 0, n = 0, ....,m− 1 and a = 0, 1.

(9)

Using a simple iterative method, one may compute the stationary distribution from system
(9). Hence, the mean number of the bandwidth requests in the system is

B
(
q−i, qi

)
=

m−1∑
n=0

m−1∑
n′=0

P(n,0),(n′,1)πn,0(q−i, qi). (10)

Average throughput: We define the average throughput of the tagged MS i as the sample
average of the number of messages that are successfully transmitted by this MS. Using the
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rate balance equation at steady state, We can easily derive the expression of the throughput
of tagged MS i as follows :

Γi

(
q−i, qi

)
= λ

m−1∑
n=0

πn,0(q−i, qi). (11)

Mean delay: The expected delay at tagged MS i can be easily obtained using Little’s
result [13], namely

D(q−i, qi) = 1 +
Γi

(
q−i, qi

)
B
(
q−i, qi

) . (12)

Failure probability of transmitted messages: The central receiver is unable to decode
correctly the received message transmitted at the highest power level (messages transmitted
at lower power levels are systematically corrupted) due to the accumulative noise plus
interference. The failure probability encountered by a transmitted message is given by

γ (q) =


1− (1− q)m−1, BEB,

1−
m−1∑
j=0

Qr(j,m− 1)Aj+1, MPL-BEB.
(13)

Initial contention window : Let K denotes the maximum backoff stage. Since the
behavior of BEB and MPL-BEB is the same either for a failure due to a collision of the
message itself or a failure due to a lost ACK. It follows that from earlier alternative studies
(e.g., see [3]), the retransmission probability can be written as the following Bianchi’s fixed
point equation : q =

2(1− 2γ)

(1− 2γ)(W0 + 1) + γW0 (1− (2γ)K)
. (14)

Thus, one can easily estimate the initial contention window W0 function of transmission
probability q and conditional failure probability γ. Yet

W0 =
2− q

q

[
1 + γ

K−1∑
k=0

(2γ)k
] . (15)

Remark 1 It is important to highlight that, when K=0 i.e. no exponential backoff is
considered, the probability q results to be independent of γ and expression (14) becomes:

q =
2

W0 + 1
. (16)

6 Numerical investigation

In this section, we undertake the numerical investigation of the game problem for the stan-
dard scheme, and the mechanism introduced herein, MLP-BEB. Throughout this section,
we consider the average throughput as the utility function. Similar trends are obtained
when minimizing expected delay.
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Figure 2: Average throughput and mean delay for m=4 MSs and m=10 MSs, at Nash equilibrium when

taking the individual throughput as the payoff function.

MPL-BEB Vs BEB: We depict in Figures 2(a) and 2(b) the total throughput and the ex-
pected delay obtained at Nash equilibrium as function of the arrival probability. We see that
equilibrium throughput is unimodal function of arrival probability, at low load it presents
an increasing behavior until achieving a maximum throughput of Γmax ' 0.6 at λ ' 0.27
and Γmax ' 0.4 at λ ' 0.06 and Γmax ' 0.32 at λ ' 0.12 and Γmax ' 0.5 at λ ' 0.24
for respectively MPL-BEB (m=4, 10) and BEB (m=4, 10). Under delay minimization, we
obtain nearly the same profile as the one obtained when maximizing individual through-
put, which means that optimal retransmission probability that maximizes the throughput
is very close to the delay minimizer. Figures 3 show the retransmission probability (Nash
equilibrium strategy) and the initial window backoff as function of arrival probability λ.
We see that the mobile stations become more and more aggressive as the arrival probability
increases or the number of MSs increases which explains the dramatic decrease in the sys-
tem’s throughput and the respective huge delay. Moreover, the equilibrium retransmission
drastically increases to 1 at heavy load.

From Figures 2 we observe that MPL-BEB achieves higher throughput and lower delay
than BEB. For a low number of terminals (m = 4), results in Figure 3 (retransmission
probabilities) show that the use of power diversity helps to ”break” the effects of the selfish
behavior of the MS, i.e. the MS that transmits with higher power plays the role of “dominant
station” during that slot. Since the power level is chosen randomly, this role is fairly shared
by all the stations in the subsequent slots. In fact, it is observed that MSs operating in
the power diversity-enabled scheme are quite aggressive, so the capture effect produces
successful transmissions even when all MSs use a high retransmission probability (i.e., a
smaller initial contention window in figure 3). For a larger number of terminals (m = 10),
results in Figure 3 show that the degree of power diversity is not enough to suppress the
effects of the selfish behavior for large values of the arrival probability, e.g., it is more
probable that two or more stations transmits using the higher power value.
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Figure 3: Retransmission probability and initial con-
tention window (at Nash equilibrium) when maximizing
the individual throughput for m=4 MSs and m=10 MSs.
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Figure 4: Price of anarchy of both BEB and MPL-BEB,
for m=4 MSs and m=10 MSs.

Towards an efficient Nash equilibrium and anarchy removal: It has been proved
that distributed channel access methods dealt successfully with coordination, synchroniza-
tion, signaling complexity and fault-tolerance issues. Unfortunately, the related players
(mobile stations in our case) don’t care whether their decisions improve or hurt the overall
system. They only care about maximizing their own payoff. In order to measure how the
loss of efficiency generated by BEB and MPL-BEB due to selfish behavior of mobile stations,
we proceed here to analyze the Price of Anarchy (PoA). We define is as the the ratio of the
Nash throughput to the social optimum throughput. Figure 4 depicts the price of anarchy
shows that for small-sized network and under low workload, MPL-BEB achieves the social
optimum. Under average and high workload, MPL-BEB seems to keep a very good tradeoff
performance-decentralization, whereas standard BEB experiences a performance collapse.
For large-sized networks, the loss of efficiency is considerable and the global performance
tends to 0 except for low workload. From these statements, one argue that an admission
control could be a promising solution to take advantage from power diversity.

7 Concluding remarks

In this paper, we undertake a stochastic game analysis of the binary exponential backoff
mechanism making use of multiple power levels. Our analysis shows that the capture effect
improves the rate of successful transmissions. Under this scheme, since the power level is
chosen randomly and independently by each station, the MS transmitting at the highest
power level, playing the role of “dominant station”, is fairly shared by all the stations.
Our results show that for large-sized networks, the price of anarchy decreases rapidly as
a function of the arrival probability, which means a huge gap between centralized setup
and decentralized setup. In order to keep the load of the system at reasonable levels and
therefore take advantage from power diversity, an admission control seems to be a good
solution. Another possible extension is to implement jointly to the power diversity enabled
BEB a suitable pricing policy to heal the aggressive behavior of the MSs.

@CMMSE                                 Page 700 of 1703                                 ISBN: 978-84-614-6167-7



A Stochastic Game Analysis of a Multi-Power Diversity BEB Algorithm.

Acknowledgements

This work was supported in part by the Ministry of Science and Technology of Mexico
(Conacyt) under Project 000000000139822, and by the Ministry of Science and Technology
of Spain under CONSOLIDER Project CSD2006-46, and by ITAM.

References

[1] D. Bertsekas, R. Gallager, “Data Networks”. Prentice Hall, Englewood Cliffs, New Jersey, 1987.

[2] J. Goodman, A. Greenberg, N. Madras, P. March, “Stability of binary exponential backoff”.
Journal of the ACM, Volume 35(3), Pages 579-602, 1988.

[3] G. Bianchi ”Performance Analysis of the IEEE 802.11 Distributed Coordination Function”.
IEEE Journal on Selected Areas in Communications, Volume 18(3), Pages 535-548, 2000.

[4] J. H. Sarker, M. Hassan, S. Halme, “Power level selection schemes to improve throughput and
stability of Slotted Aloha under heavy load”. Computer Communication 25, 2002.

[5] E. Altman, D. Barman, A. Benslimane and R. El-Azouzi, “Slotted Aloha with priorities and
random power”. In Proceedings of IFIP Networking, Ontario, pages 610-622, 2005.

[6] A. Karouit, L. Orozco Barbosa and A. Haqiq,“Team study of the IEEE 802.16 Collision Reso-
lution Protocol”. In Proceeding of IFIP Wireless days, pages 1-6, Venezia, Italy, 2010.

[7] J. Lee, A. Tang, J. Huang, M. Chiang, and A. Calderbank,”Reverse-Engineering MAC: A
Non-Cooperative Game Model”.IEEE Journal on Selected Areas in Communications, pages
1135-1145, Volume 25(6), August 2007.

[8] A. Karouit, E. Sabir, L. Orozco Babrobsa, F. Ramirez-Mireles and A. Haqiq, “A Cross-layered
Binary Exponential Backoff Algorithm for Initial and Bandwidth Request Ranging in IEEE
802.16”. Unpublished manuscript.

[9] R. El-Azouzi, E. Sabir, T. Jiminez and E. H. Bouyakhf, “Modeling Slotted Aloha as a Stochastic
Game with Random Discrete Power Selection Algorithms”. International Journal of Computer
Systems, Networks, and Communications, 2009.

[10] G. E. Andrews, The theory of partitions, Addison-Wesley Pub. Co., Advanced Book Program
(Reading, Mass), 1976.

[11] D. Dutta, A. Goel and J. Heidemann, “Oblivious AQM and Nash equilibria”. In proceedings
of IEEE Infocom, 2003.

[12] E. Sabir, R. El-Azouzi and Y. Hayel, “Hierarchy Sustains Partial Cooperation and Induces a
Braess-like Paradox in Slotted Aloha-based Networks”. To appear in Computer Communica-
tions.

[13] R. Nelson, “Probability, stochastic process, and queueing theory”. The Mathematics of Com-
puter Performance Modelling. Springer-Verlag, third printing, 2000.

@CMMSE                                 Page 701 of 1703                                 ISBN: 978-84-614-6167-7



A.Karouit, E. Sabir, F. Ramirez-Mireles, L. Orozco Barbosa and A. Haqiq.

A Transition probabilities of standard BEB

P(n,a),(n+k,b)(q−i, qi) =

Qa(k, n)[(1− qi)(1−Qr(1, n)) + qi(1−Qr(0, n)]
+(1− qi)Qa(k + 1, n)Qr(1, n)], a = 1, b = 1
(1− λ)[Qa(k, n)(1−Qr(1, n)) +Qa(k + 1, n)Qr(1, n)], a = 0, b = 0
λ[Qa(k, n)(1−Qr(1, n)) +Qa(k + 1, n)Qr(1, n)], a = 0, b = 1
qiQa(k, n)Qr(0, n), a = 1, b = 0

 0 ≤ k ≤M − n+ 1

(1− qi)Qa(0, n))Qr(1, n) a = 1, b = 1
(1− λ)Qa(0, n))Qr(1, n) a = 0, b = 0
λQa(0, n))Qr(1, n) a = 0, b = 1

 k = −1

0 otherwise.

B Transition probabilities of MPL-BEB

P(n,a),(n+k,b)(q−i, qi) =

Qa(k, n)[(qi
n∑
j=0

Qr(j, n)(1−Aj+1) + (1− qi)
n∑
j=0

Qr(j, n)(1−Aj)]+

(1− qi)Qa(k + 1, n)
n∑
j=0

Qr(j, n)Aj + qiQa(k + 1, n)
n∑
j=0

j
j+1Qr(j, n)Aj+1, a = 1, b = 1

(1− λ)[Qa(k, n)
n∑

j=0,j 6=1

Qr(j, n)(1−Aj) +Qa(k + 1, n)
n∑
j=1

Qr(j, n)Aj ], a = 0, b = 0

λ[Qa(k, n)
n∑

j=0,j 6=1

Qr(j, n)(1−Aj) +Qa(k + 1, n)
n∑
j=1

Qr(j, n)Aj ], a = 0, b = 1

qiQa(k, n)
n∑
j=0

Qr(j, n)
Aj+1

j+1 , a = 1, b = 0



0 ≤ k ≤M − n

Qa(0, n)[(1− qi)
n∑
j=1

Qr(j, n)Aj + qi
n∑
j=1

j
j+1Qr(j, n)Aj+1], a = 1, b = 1

(1− λ)Qa(0, n)
n∑
j=1

Qr(j, n)Aj , a = 0, b = 0

λQa(0, n)
n∑
j=1

Qr(j, n)Aj , a = 0, b = 1


k = −1

0 otherwise.
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Abstract

A theoretical and computational study is undertaken for the modulational instabil-
ities of a pair of nonlinearly interacting two-dimensional waves in deep water. It has
been shown that the full dynamics of these interacting waves gives rise to localized
large-amplitude wavepackets (wave focusing). The coupled cubic nonlinear Schrödinger
(CNLS) equations are used to derive a nonlinear dispersion equation which give rise to
new class of modulational instabilities and demonstrates the dependence of obliqueness
of the interacting waves. The computations, due to nonlinear wave-wave interactions,
waves that are separately modulationally stable can give rise to the formation of large-
amplitude coherent wave packets with amplitudes several times that of the initial waves.
In the case for the original Benjamin-Feir instability, in contrast, waves disintegrate into
a wide spectrum.

Key words: water waves, coupled nonlinear Schrödinger, fast spectral algorithm

1 Introduction

Extremely large size waves (commonly known as freak, rogue or giant waves) are very
common in the open sea or ocean and they pose major hazard to mariners. As early as
1976, Peregrine [11] suggested that in the region of oceans where there is a strong current
present, freak waves can form when action is conncentrated by reflection into a caustic
region. A variable current acts analogously to filamentation instability in laser-plasma
interactions [8, 9]. Freak waves are very steep and is a nonlinear phenomena, hence they
cannot be represented and described by a linear water wave theory. Zakharov [19] has noted
that in the last stage of their evolution, their steepness becomes ‘infinite’, thereby forming
a ‘wall of water’, such as that shown in Fig. 1. However, before such an instant in time, the
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steepness is higher than one for the limiting Stokes wave and before breaking the wave crest
reaches three to four (sometimes even more) times higher than the crests of neighboring
waves. The freak wave is preceded by a deep trough appearing as a ‘hole in the sea’. On the
other hand, a characteristic life time of a freak wave is short, typically ten of wave periods
or so. For example, if the wave period is fifteen seconds, then their life time is just few
minutes. Freak wave appears almost instantly from a relatively calm sea. It is, therefore,
easy to appriciate that such peculiar features of freak waves cannot be explained by means
of a linear theory. Even the focusing of ocean waves is a preconditions for formation of such
waves.

Figure 1: A photograph of a rouge wave, depicting the enormous height of the wave and its
nonlinear character.

It is now quite common to associate appearance of freak waves with the modulation
instability of Stokes waves. This instability (known as the Benjamin–Feir instability) was
first discovered by Lighthill [7] and the detail of theory was developed independently by
Benjamin and Feir [2] and by Zakharov [15]. Zakharov showed slowly modulated weakly
nonlinear Stokes wave can be described by nonlinear Shrödinger equation (NLSE) and
that this equation is integrable [16] and is just the first term in the hierarchy of envelope
equations describing packets of surface gravity waves. The second term in this hierarchy
was calculated by Dysthe [4].

Since the pioneer work of Smith [13], many researchers attempted (both theoretically
or numerically) to explain the freak wave formation by NLSE. Among diversed results
obtained by them there is one important common observation which has been made by
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all, and that is, nonlinear development of modulational instability leads to concentration
of wave energy in a small spatial region. This marks the possibility for formation of freak
wave. Modulation instability leads to decomposition of initially homogeneous Stokes wave
into a system of envelope solitons, or more stricktly quasi-solitons [17, 18].

This state can be called “solitonic turbulence”, or “quasisolitonic turbulence”.
In this paper, we consider the problem of a single solition in a homogeneous media,

being subjected to modulational instability which eventually leads to formation of a system
of soliton. We will show that the supercritical instability leads to maximum formation of
soliton, concentrated in a small region. Moreover, in going through subcritical instability
the solitons coagulate to early stages of supercritical instability.

Moreover, we investigate the full dynamics of nonlinearly interacting deep water waves
subjected to modulational/filamentation instabilities. It is found that random perturbations
can grow to form inherently nonlinear water wave structures, the so called freak waves,
through the nonlinear interaction between two coupled water waves. The latter should be
of interest for explaining recent observations in water wave dynamics.

2 Formulation of the problem

In a pioneering work, a theory for the modulational instability of a pair of two-dimensional
nonlinearly coupled water waves in deep water, as well as the formation and dynamics of
localized freak wave packets was presented [12]. Likewise we follow suite in derivation of
CNLS equations. Thus, we use the CNLS equations derived by Onorato et al. [10], which
are valid for a system of obliquely propagating waves. As in [10] we define the x−axis as
the middle between the two directions of propagation. Thus we define wavenumbers as
kA = (kA,x, kA,y) ≡ (k, `) and kB = (kB,x, kB,y) ≡ (k,−`) with the undestanding that both
k and ` are positive. The frequencies ωj of the two carrier waves (j = A, B) are then related
to the wavevectors kj by the dispersion relation for deep water waves [6] ωj =

√
g|kj |, where

g is acceleration due to gravity. Accordingly, we may define ωA = ωB =
√
gκ, where κ is

the wavenumber norm given by κ ≡
√
k2 + `2.

Multiplying the system of two-dimensional CNLS equations given in [10] by i, we obtain

i

(
∂A

∂t
+ Cx

∂A

∂x
+ Cy

∂A

∂y

)
+ α

∂2A

∂x2
+ β

∂2A

∂y2
+ γ

∂2A

∂x∂y
− ξ |A2|A− 2ζ |B|2A = 0 , (1)

and

i

(
∂B

∂t
+ Cx

∂B

∂x
− Cy

∂B

∂y

)
+ α

∂2B

∂x2
+ β

∂2B

∂y2
− γ ∂

2B

∂x∂y
− ξ |B2|B − 2ζ |A|2B = 0, (2)

where A and B are the amplitudes of the slowly varying wave envelopes and the correspond-
ing surface elevations are given by

{ηA, ηB} = 1
2{A(r, t), B(r, t)} exp(ikx+ i`y − iωt) + c.c.
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where c.c. denotes complex conjugate. The x and y components of the group velocity are
given respectively by

Cx = ωk/2κ2 and Cy = ω`/2κ2

and the group velocity dispersion coefficients are

α = ω(2`2 − k2)/8κ4, β = ω(2k2 − `2)/8κ4 and γ = −3ω`k/4κ4.

Also, the nonlinearity coefficients (as in [10]) are given by ξ = ωκ2/2 and

ζ = ω(k5 − k3`2 − 3k`4 − 2k4κ+ 2k2`2κ+ 2`4κ)/2κ2(k − 2κ).

It is now amply confirmed that the two-dimensional CNLS equations (1) and (2) has
temporal solutions

Aeq = A0 exp[−i(ξ|A0|2 + 2ζ|B0|2)t] and Beq = B0 exp[−i(ξ|B0|2 + 2ζ|A0|2)t],

and we may use these soloutions to derive the nonlinear dispersion relation. Thus, assuming
a small linear harmonic perturbation with the wavevector K = (K,L) and the frequency
Ω, around the equilibrium solution given by

A = [A0 + εA1 +O(ε2)] exp[−i(ξ|A0|2 + 2ζ|B0|2)t]

and

B = [B0 + εB1 +O(ε2)] exp[−i(ξ|B0|2 + 2ζ|A0|2)t]

where ε� 1 is a real parameter. Substituting theses into equations (1) and (2), linearizing
in ε, then separating the real and imaginary parts, combining the resulting equations, and
Fourier transforming, we obtain the nonlinear dispersion relation

[(Ω− CxK − CyL)2 − Ω2
1] [(Ω− CxK + CyL)2 − Ω2

2] = Ω4
c , (3)

where

Ω2
1 = (αK2 + βL2 − γKL)(αK2 + βL2 + γKL+ 2ξ|A0|2),

Ω2
2 = (αK2 + βL2 + γKL)(αK2 + βL2 − γKL+ 2ξ|B0|2)

and

Ω4
c = 16 ζ2 |A0|2|B0|2 (αK2 + βL2 − γKL)(αK2 + βL2 + γKL).

For computational purposes, it is convenient to make variables dimensionless. Thus,
defining the wave steepness by κA and κB, we make the wave amplitudes dimensionless
according to A0 = A′0/κ and B0 = B′0/κ. Similarly, the wavenumbers and frequencies are
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made dimensionless in the following manner: K ′ = K/κ, L′ = L/κ, k′ = k/κ, `′ = `/κ, and
Ω′ = Ω/ω. The remaining coefficients are also made dimensionless, using the adoptation

C ′x =
Cxκ

ω
=
k′

2
, C ′y =

Cyκ

ω
=
`′

2
,

α′ =
ακ2

ω
=

2`′2 − k′2

8
, β′ =

βκ2

ω
=

2k′2 − `′2

8
,

γ′ =
γκ2

ω
= −3`′k′

4
, ξ′ =

ξ

ωk2
=

1

2
,

and

ζ ′ =
ζ

ωk2
=

(k′)5 − (k′)3(`′)2 − 3k′(`′)4 − 2(k′)4 + 2(k′)2(`′)2 + 2(`′)4

2(k′ − 2)
.

Hence, Eqs. (1) and (2) will remain the same except all the variables are now replaced with
their primed counterparts. Note that, k′ = cos θ and `′ = sin θ, where θ is the angle between
the wave directions.

We remark that, in what follows, we will drop the ‘dash’ notation for the sake of clarity.

3 Numerical Approach

The nonlinear strongly coupled system of equations (1) and (2) will be computed using a
fast numerical algorithm based on the spectral method [3, 14] which is explained below.

3.1 Fourier Spectral Method

Let S = A + B and D = A − B, and consider the following system of equations obtained
from (1) and (2)

i

(
∂S

∂t
+ Cx

∂S

∂x
+ Cy

∂D

∂y

)
+ α

∂2S

∂x2
+ β

∂2S

∂y2
+ γ

∂2D

∂x∂y
= g(S,D) (4)

i

(
∂D

∂t
+ Cx

∂D

∂x
+ Cy

∂S

∂y

)
+ α

∂2D

∂x2
+ β

∂2D

∂y2
+ γ

∂2S

∂x∂y
= g(D,S) (5)

where

g(u, v) =
1

8

[
(ξ + 2η)

(
|u+ v|2 + |u− v|2

)
u+ (ξ − 2η)

(
|u+ v|2 − |u− v|2

)
v
]

(6)

First, we reduce the above system of PDEs (4)–(5) into a system of ODEs using Fourier
transform. The Fourier transform of u(x, y) is defined by

F(u)(kx, ky) = û(kx, ky) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−i(kxx+kyy)u(x, y) dx dy, (7)
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with the corresponding inverse

F−1(û)(x, y) = u(x, y) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

ei(kxx+kyy)û(kx, ky) dkx dky. (8)

The function û(kx, ky) can be interpreted as the amplitude density of u for wavenumbers
kx, ky. Now, we take the Fourier transform of both (4) and (5) as

i
dŜt
dt
−
(
kxCx + αk2x + βk2y

)
Ŝ − ky (Cy + γkx) D̂ = ̂g(S,D), (9)

i
dD̂t

dt
−
(
kxCx + αk2x + βk2y

)
D̂ − ky (Cy + γkx) Ŝ = ̂g(D,S), (10)

Let kxCx+αk2x+βk2y = p and ky (Cy + γkx) = r. Then, the equations (9) and (10) can
be written in the matrix form as

i
d

dt

(
Ŝ

D̂

)
=

(
p r
r p

)(
Ŝ

D̂

)
+

(
̂g(S,D)

ĝ(D,S

)
(11)

Computing the eigenvalues and eigenvectors the solution to (11) can be written as(
Ŝ

D̂

)
=

1

2

(
e−iλ1t + e−iλ2t −e−iλ1t + e−iλ2t

−e−iλ1t + e−iλ2t e−iλ1t + e−iλ2t

)(
Ŝ(0)

D̂(0)

)

+
1

2

∫ t

0

 eiλ1τ
(

̂g(S,D)− ̂g(D,S)
)

eiλ2τ
(

̂g(S,D) + ̂g(D,S)
)  dτ (12)

with λ1 = kxCx + αk2x + βk2y − ky (Cy + γkx) and λ2 = kxCx + αk2x + βk2y + ky (Cy + γkx).

3.2 Spatial discretization (Discrete Fourier Transform)

We discretize the spatial domain Ω = [−L/2, L/2]× [−L/2, L/2] into n×n uniformly spaced
grid points Xij = (xi, yj) with ∆x = ∆y = L/n, n even, and L the length of the rectangular
mesh Ω. Given u(Xij) = Uij , i, j = 1, 2, · · · , n, we define the 2D Discrete Fourier transform
(2DFT) of u as

ûkxky = ∆x∆y

n∑
i=1

n∑
j=1

e−i(kxxi+kyyj)Uij , kx, ky = −n
2

+ 1, · · · , n
2

(13)

and its inverse 2DFT as

Uij =
1

(2π)2

n/2∑
kx=−n/2+1

n/2∑
ky=−n/2+1

ei(kxxi+kyyj)ûkxky , i, j = 1, 2, · · · , n. (14)

In equation (13) and (14) the wavenumbers kx and ky, and the spatial indexes i and j, take
only integer values.
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3.3 Temporal discretization

We solve the initial value problem of the ODE system (11) using the classical fourth order
Runge-Kutta (RK4) method combined with the Super–Time–Stepping (STS) [1] and exact
treatment for the linear part [3].

Given tmax, we discretize the time domain [0, tmax] with equal time steps of size ∆t
with tn = n∆t, n = 0, 1, 2, · · ·, and define Sn = S(x, y; tn) and Dn = D(x, y; tn). Initializing
Ŝn = Ŝ(tn) and D̂n = D̂(tn), we compute the Fourier transforms of the nonlinear terms

F
(
g
(
F−1(Ŝn),F−1(D̂n)

))
and F

(
g
(
F−1(D̂n),F−1(Ŝn)

))
, and advanced the ODE (11)

in time with time step ∆t using the explicit RK4 for the nonlinear part, together with an
exact solution for the linear part as shown in (12). We exploit symmetry of the nonlinear
function g in developing a numerical code to solve the system of ODEs (11). To overcome
stability restriction on the stepsize ∆t, we employ Super–Time–Stepping (STS) strategy [1].

The main idea behind the STS is to demand stability restriction only at the end of
every N steps, consisting one super–step, instead of at every single step. The intermediate
steps are chosen non–uniformly from a simple formula in terms of some modified Chebychev
polynomials as

τi =
∆t

(−1 + ν) cos
(
2i−1
N

π
2

)
+ 1− ν

, i = 1, 2, · · ·N, 0 < ν < 1. (15)

As ν → 0, the duration of the superstep ∆tsup =
N∑
i=1

τi → N2 ∆t. Thus, N substeps of a

super step cover a time interval N times bigger than N explicit steps when ν → 0. For each
choice of N , the scheme is stable for large enough ν. The larger the damping factor ν, the
shorter the ∆tsup becomes, improving the accuracy at the expense of more computations.
The length of the superstep ∆tsup, which is determined by the choice of N , ν and ∆t, is
only restricted by accuracy, just like in any unconditionally stable implicit methods.

The numerical code for the above procedure is implemented in Fortran 90 and execu-
tated on a linux cluster (of 128 nodes with dual Xeon 3.2GHz processors, 1024 KB cache
4GB with Myrinet) at Embry-Riddle Aeronautical University.

3.4 Simulation setup

The initial profiles for A and B were taken as the bell-shaped functions,

A(x, y; 0) = (A0 + random(O(10−3/κ)) e−σ(x
2+y2) (16)

B(x, y; 0) = (B0 + random(O(10−3/κ)) e−σ(x
2+y2) (17)

In the simulations reported here, we used the parameter values θ0 = π/6, g = 9.81,
w = 0.56, k = 0.33, A0 = 0.1/κ, B0 = A0, 0, σ = 1, 0, L = 2 and a grid of 256× 256 nodes
in the computational domain [−1, 1]× [−1, 1] with the time stepsize ∆t = 0.01.
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For each simulation we monitor the energies QA(t) and QB(t), calculated as

QA(t) =

∫ ∞
−∞

∫ ∞
−∞
|A(x, y; t)|2 dx dy =

n∑
i=1

n∑
j=1

|Aij |2∆x∆y (18)

QB(t) =

∫ ∞
−∞

∫ ∞
−∞
|B(x, y; t)|2 dx dy =

n∑
i=1

n∑
j=1

|Bij |2∆x∆y (19)

Observing a finite energy will reveal stability of a solution. As soon as the solution
becomes unstable, the energy diverges. When the solution dissipates the energy approaches
to zero.

4 Results

We commence this section by emphasizing that the results presented in this paper represents
a very preliminary findings on dynamics of interacting nonlinear water waves. In due course,
the full account of our findings will be reported elsewhere. The main emphasis here is the
numerical methodologies for solution of equations (1) and (2).

The problem considered here comprises the dynamics of nonlinear interacting water
wave packets through solving the coupled system of equations (1) and (2). The results of
the simulation are displayed in Fig. 2 and Fig. 3. In this simulation, we have adopted
the normalization A′ = A/κ, B′ = B/κ, t′ = ωt, x′ = κx, and y′ = κy (the other scaled
parameters are as those given above), for a single value of θ = π/6. The results that are
shown in Fig. 2 are all in dimensional units, where the two interacting waves initially have
the amplitude A = B = 0.1/κ+ ran, with ran representing a random low-amplitude noise,
equal to 10−3/κ, in order to enhance instability. The results shown in Fig. 2 represent
different time steps (starting on the left-hand panel and going downwards) for t = 300/ω,
t = 600/ω, t = 900/ω then (right-hand panel) t = 1200/ω, t = 1500/ω; the last figure
on the right-hand panel is at the same time as that above it but plotted from a different
prospective reflecting the maximum growth rate in the y direction. For our simulations
we have taken typical data from ocean waves [5]. Thus, choosing the frequency to be 0.09
Hz, we have ω = 0.56 s−1, and κ = ω2/g ≈ 0.033 m−1. The waves A and B in Fig. 2,
then have the initial amplitudes |A| = |B| = 0.1/κ ≈ 3 meters. From these figures, we see
at t = 1500/ω (≈ 2680 seconds) that wave A focouses as a localized wave packets with a
maximum amplitude of ≈ 0.35/κ ≈ 10 meters. We remark for considerable period after the
initial step, waves A and B are qualitatively the same (with |A| > |B|) before the nonlinear
wave-wave interactions set in which results to wave break-up.

We next consider the case of a single wave we have set B to zero, being the same as the
standard Benjamin-Feir instability. In this case (see Fig. 3.), we do not see the formation
of well-defined wave-packets, but the instability gave rise to a wide spectrum of waves in
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Figure 2: The interaction between two waves, with equal initial amplitudes |A| = |B| =
0.1κ−1 which are propagating at an angle of θ = π/6. A low-amplitude noise equal to
10−3/κ is added to the initial amplitude in order to enhance the modulation instability.
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Figure 3: The amplitude |A| (with B = 0 initially) for time t = 300/ω, t = 900/ω (left-hand
panel) and t = 1200/ω, t = 1500/ω (right-hand panel).

different directions, in agreement with the standard linear analysis. This is in contrast with
the new instability due to the coupling of the two waves, shown in Fig. 2., which has a well-
defined maximum in the y direction, with the concentration of wave energy into localized
wavepackets.

Hence, in summary, we have presented a theoretical and computational study of the
modulational instabilities of a pair of nonlinearly interacting two-dimensional waves in deep
water. we have demonstrated that the full dynamics of these interacting waves gives rise
to localized large-amplitude wavepackets. Starting from the CNLS equations of [10] and
following [12], we have derived a nonlinear dispersion equation which give rise to new class
of modulational instabilities demonstrating the dependence of obliqueness of the interacting
waves. Furthermore, the numerical analysis of the full dynamical system reveals that even
waves that are separately modulationally stable can, when nonlinear interactions are taken
into account, give rise to novel behavior such as the formation of large-amplitude coherent
wave packets with amplitudes several times the initial waves. This behavior is quite differ-
ent from that of a single wave (the case for the original Benjamin-Feir instability) which
disintegrates into a wide spectrum of waves. These results are relevant to the nonlinear
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instability arising from colliding water waves thereby producing large-amplitude oceanic
freak waves.
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Abstract

A novel Exponential Time Differencing (ETD) Crank-Nicolson method is developed
which is stable, second order convergent, and highly efficient. In the nonsmooth data
case we employ a positivity-preserving initial damping scheme to recover the full rate
of convergence.

Key words: Exponential Time Differencing, exotic options, nonlinear Black-Scholes
equation
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1 Introduction

Various types of Exponential Time Differencing Runge-Kutta schemes (ETDRK) for nonlin-
ear parabolic equations have been proposed and investigated, though there is no complete
theoretical analysis and the focus has not been on any specific efficient version like the
one introduced in this article. This Exponential Time Differencing Crank-Nicolson (ETD-
CN) scheme utilizes an exponential time differencing Runge-Kutta approach followed by
a (1,1)–diagonal Padé approximation of matrix exponential functions. This is an exten-
sion of several previous papers on Exponential Time Differencing schemes, in particular
[2, 3, 5, 6, 8, 10, 13, 16, 17, 18].
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Consider the following nonlinear parabolic initial-boundary value problem:

ut +Au = F (t, u) in Ω, t ∈ (0, T ) , (1)

u(·, 0) = u0 in Ω,

where Ω is a bounded domain in R
d with Lipschitz continuous boundary, A represents a

uniformly elliptic operator, and F is a sufficiently smooth, nonlinear reaction term. One
should have in mind the following type of differential operator:

A := −
d

∑

j,k=1

∂

∂xj

(

aj,k(x)
∂

∂xk

)

+
d

∑

j=1

bj(x)
∂

∂xj
+ b0(x),

where the coefficients aj,k and bj are C
∞ (or sufficiently smooth) functions on Ω, aj,k = ak,j,

b0 ≥ 0, and for some c0 > 0

d
∑

j,k=1

aj,k(·)ξjξk ≥ c0|ξ|
2, on Ω, for all ξ ∈ R

d.

However, we shall use A and F based on an abstract formulation for convenience of the
development of the numerical scheme and its analysis. The initial value problem (1) is
reset to be posed in a Banach space X , as follows. Consider now A to be a linear, self-
adjoint, positive definite, closed operator with a compact inverse, defined on a dense domain
D(A) ⊂ X . The operator A could represent any of {Ah}0<h≤h0

, obtained through spatial
discretization, and X could be X = Sh, an appropriate finite dimensional subspace of L2(Ω).

We assume cf. [12, Remark 1.1, p. 324] that D is a locally closed subset of X and
F : [0,∞) × D → X is continuous. Then, it follows that for z ∈ D there are positive
numbers R,M, and T such that

SR ≡ {x ∈ D : ‖x− z‖ ≤ R} is closed,

‖F (t, x)‖ ≤ M − 1, if (t, x) ∈ [0, T ]× SR, and (2)

‖E(t)z + y − z‖ ≤ R/2, if t ∈ [0, T ] and y ∈ X with ‖y‖ ≤ T (M − 1)eωT ,

where ω is the least number such that ‖E(t)‖ ≤ eωt ∀ t ≥ 0.
We also assume that x ∈ SR implies E(t)x ∈ D, ∀ t ∈ [0, T ] and that

lim inf
h→0+

d(x+ hF (t, x);D)

h
= 0, ∀ (t, x) ∈ [0, T ] ×D.

By the Duhamel principle we know that each solution of (1) must be of the form

u(t) = E(t)u0 +

∫ t

0
E(t− s)F (s, u(s)) ds. (3)

We are assuming
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Assumption 1 Let F : [0, T ] × X → X and U be an open subset of [0, T ] × X . For every
(t, x) ∈ U there exists a neighborhood V ⊂ U and a real number LT such that

‖F (t1, x1)− F (t2, x2)‖X ≤ LT

(

|t1 − t2|+ ‖x1 − x2‖X

)

(4)

for all (ti, xi) ∈ V .

Let 0 < k ≤ k0, for some k0, and tn = nk, 0 ≤ n ≤ N . Replacing t by t + k, using
basic properties of E and by the change of variable s − t = kτ , we arrive at the following
recurrence formula for the exact solution:

u(tn+1) = e−kAu(tn) + k

∫ 1

0
e−kA(1−τ)F (tn + τk, u(tn + τk)) dτ. (5)

This is the basis for deriving ETD schemes.

There are several ways of approximating the integral representation of the exact solution
(5). Cox and Matthews [2] developed time stepping schemes by using polynomial formulae
which give a Runge-Kutta type higher order approximation. Du and Zhu [4] and Kassam and
Trefethen [10], and Nie, Zhang, and Zhao [14] pointed out some implementation difficulties.
These ETD schemes are studied in many articles, cf., [4, 5, 6, 8, 13]. Prior treatments of
ETD methods do not discretize the matrix exponentials, or else employ contour integration
techniques. In this work we focus on the development of a highly efficient scheme by
employing Padé approximations for some crucial terms. The proofs given in previous articles
omit the fully discrete case, thus leaving a gap in the convergence theory. In this section
we derive a highly efficient, fully discrete second order version of the ETD schemes and in
the next section we address the theory.

We will approximate e−kA using the (0, 1)− and (1, 1)− Padé schemes, R0,1(kA) and
R1,1(kA), respectively, as follows. Specifically, we define R0,1(kA) := (I + kA)−1 and
R1,1(kA) := (2I − kA)(2I + kA)−1, which is commonly called the ‘Crank-Nicolson,’ or CN,
scheme.

Denoting the semi-discrete approximation to u(tn) by un (note that only the time-
variable is discretized) and F (tn, un) by Fn, the simplest approximation to the integral is
to impose that F is constant for t ∈ [tn, tn+1], i.e. F ≈ Fn. This yields (from (5))

un+1 ≈ e−kAun + e−kAk

∫ 1

0
ekAτ dτ Fn

= e−kAun −A−1
(

e−kA − I
)

Fn. (6)

This semi-discrete scheme cf. [2, 13] is not useful until the matrix exponential is discretized
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. Noting that

−A−1
(

e−kA − I
)

≈ −A−1
(

(I + kA)−1 − I
)

= −A−1
(

I − (I + kA)
)

(I + kA)−1

= k (I + kA)−1

= kR0,1

(

kA
)

, (7)

we arrive at the following fully discrete first order scheme, where v now denotes the fully
discrete solution. This is the same as a standard first order linearly implicit scheme, in
particular, [2, 4, 5, 6], the interesting aspect now being that this ETD derivation leads to
an extended family of similar type of ETD schemes. on of ETD-CN. To obtain a second
order accurate RK-scheme, we employ (6) as intermediate prediction of u(tn+1), letting

an := e−kAun −A−1
(

e−kA − I
)

F (tn, un).

We then approximate the integral in (5) by

F ≈ Fn + (t− tn)
F (tn + k, an)− Fn

k
t ∈ [tn, tn+1].

Using (5), a short calculation yields the following:

un+1 = e−kAun + ke−kA

∫ 1

0
ekAτ

(

Fn + kτ
F (tn + k, an)− Fn

k

)

dτ

= an +
1

k
A−2

(

e−kA − I + kA
) (

F (tn + k, an)− F (tn, un)
)

.

The Second Order ETD Semi-discrete Scheme. Thus a second order exponential time
differencing Runge-Kutta semi-discrete type scheme is given by

un+1 = an +
1

k
A−2

(

e−kA − I + kA
)(

F (tn + k, an)− F (tn, un)
)

(8)

where
an = e−kAun −A−1(e−kA − I)F (tn, un). (9)

The computational challenge now is to efficiently compute terms like −A−1
(

e−kA− I
)

and

1
k
A−2

(

e−kA − I + kA
)

. Kassam and Trefethen [10] and Du and Zhu [4] have developed

a contour integration technique for this problem [4, 10], while Hochbruck and Osterman
[5, 6] do not deal with the problem, leaving the computation of polynomial functions of
matrix exponentials to standard software at the time of implementation. The approach we
introduce in this work deals directly with the full discretization of the underlying matrix
exponentials with an eye on efficiency. Tests show that the fully-discrete ETD-CN version
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performs with significantly less CPU time than using a standard routine for the exponential
of A.

Similar to (7), except now with R1,1(kA) instead of R0,1(kA) for e
−kA to achieve higher

spatial accuracy, we compute that

−A−1
(

e−kA − I
)

≈ −A−1
(

(2I − kA) (2I + kA)−1 − I
)

= 2k (2I + kA)−1

= kR0,1

(1

2
kA

)

, (10)

and

1

k
A−2

(

e−kA − I + kA
)

≈
1

k
A−2

(

(2I − kA) (2I + kA)−1 − I + kA
)

= k (2I + kA)−1. (11)

In the expression (9) for an we now use bn in order to distinguish between the semi-discrete
case (with e−kA) and the fully discrete predictor stage where e−kA is replaced by an ap-
propriate Padé approximation. Next, we substitute (10, 11) into (8, 9), which gives the
ETD-CN scheme:

vn+1 = bn +
1

2
kR0,1

(

1

2
kA

)

[

F (tn + k, bn)− F (tn, vn)
]

, (12)

bn = R1,1(kA)vn + kR0,1

(

1

2
kA

)

F (tn, vn). (13)

Theorem 1 If the listed assumptions are satisfied and F (t, u(t)) ∈ D(A) as well as F ∈
C2([0, T ];L1), then for the numerical solution the following error bound holds

‖u(tn)− vn‖X ≤ Ck2max
(

sup
0≤τ≤T

∥

∥

∥
F

′

(ξ, u(ξ))
∥

∥

∥

X

, sup
0≤τ≤T

∥

∥

∥
F (2)(τ, u(τ))

∥

∥

∥

X

,

‖u0‖X , ‖Au0‖X

)

+ Ck3
n−1
∑

j=0

‖AF (tj , uj)‖X + CDk2

uniformly on 0 ≤ tn ≤ T . The constant C depends on T , but is independent of n and k.

2 A Standard Example for Baseline Comparison

We consider the Brusselator in one spatial variable describing a chemical reaction with two
components as given by the following system of PDE’s:

∂u

∂t
= A+ u2v − (B + 1)u+ α

∂2u

∂x2

∂v

∂t
= Bu− u2v + α

∂2v

∂x2
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with 0 ≤ x ≤ 1, A = 1, B = 3, α = 1/50, and boundary conditions

u(0, t) = u(1, t) = 1

v(0, t) = v(1, t) = 3

and initial conditions

u(x, 0) = 1 + sin(2πx)

v(x, 0) = 3.

We integrate the problem for 0 ≤ t ≤ 10 in order to demonstrate the performance of
the scheme. Figure 1 contains a solution profile.
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Figure 1: Example 2 with h = k = 1
40 .

Table 1 shows the observed ℓ2–errors and rates for this problem. As expected the rate
of convergence is 2.

Table 2 shows an observed timing comparison between ETD-CN and the standard
Crank-Nicolson and BDF-2 schemes. Here, for the Crank-Nicolson and BDF-2 schemes we
employ a modified Newton’s method as in the previous paragraph. The data show how
significant the improvement can be when using the ETD version of the Crank-Nicolson
scheme as compared to the two standard schemes on this well-known test case. However,
if the Crank-Nicolson and BDF(2) schemes are applied in a linearly implicit manner, they
will use less CPU time but their convergence rates will seriously deteriorate. Our aim is to
keep the convergence order of all the test examples the same (second order).

3 Conclusion

We derive a new fully discrete Exponential Time Differencing Runge-Kutta method followed
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Table 1: Example 2 Numerical errors (ℓ2) and rates using ETD-CN for the Brusselator
equation.

h k = h Error ETD-CN Rates

0.1 0.1 3.0× 10−3

1.9499
0.05 0.05 7.7718 × 10−4

1.9763
0.025 0.025 1.9751 × 10−4

1.9867
0.0125 0.0125 4.9833 × 10−5

1.9974
0.00625 0.00625 1.2481 × 10−5

2.0179
0.003125 0.003125 3.0816 × 10−6

h k = h Error ETD-CN CPU Error CN CPU Error BDF-2 CPU

0.1 0.1 3.0× 10−3 0.016 3.1× 10−3 0.078 3.3× 10−3 0.062
0.05 0.05 7.77 × 10−4 0.031 7.96 × 10−4 0.297 1.0× 10−3 0.313
0.025 0.025 1.98 × 10−4 0.078 1.96 × 10−4 2.156 2.53× 10−4 2.204

0.0125 0.0125 4.98 × 10−5 0.531 4.91 × 10−5 22.078 6.34× 10−5 22.437

Table 2: Numerical errors (ℓ2) and CPU-time (sec) using ETD-CN, Crank-Nicolson, and
the second order Backward Differentiation Formula (BDF-2) for Brusselator equation.

by a (1,1)–diagonal Padé scheme to solve nonlinear parabolic partial differential equations.
Convergence of the new scheme is second order in the semilinear case. A comparison the
new scheme ETD-CN to other standard second order codes like the Crank-Nicolson and
BDF-2 schemes shows the effectiveness of the new algorithm. ETD-CN is faster due to the
fact that it does not have to solve nonlinear systems in each time step, yet it remains second
order accurate. In applications one often encounters nonsmooth initial data, which in most
well-known second order codes inflicts oscillations if not treated carefully. Between two and
four steps of initial damping suffices to restore the good numerical properties of ETD-CN.
The new scheme is comparable to other well known second order schemes in accuracy, yet
is more effective with regard to CPU time.
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Abstract

Multivariate functions play important roles in almost all branches of science and
engineering. In this sense the evaluations on multivariate functions with less effort
become important. This is the reason why High Dimensional Model Representation
(HDMR), which is a decomposition of a multivariate function to components with
ascending multivariance, has been widely used in last two decades with increasing
tendency from year to year. HDMR applications are based on the truncations,
which are kept basically at most bivariance level to avoid computational complex-
ity as long as the approximation quality becomes satisfactory, and various HDMR
varieties have been developed to this end. One of these works is Piecewise High
Dimensional Model Representation (PHDMR), which is based on splitting HDMR
geometry into appropiate segments in accordance with the structure of the target
multivariate function. In this manner PHDMR increases approximation quality
of plain HDMR and decreases computational complexity since the growth in con-
stant term dominancy results in no need to higher variate terms. PHDMR uses
nodes on coordinates such that their locations are optimised to get maximum con-
stancy in the components of the representation. In this work we present theoretical
backround and certain properties of PHDMR with some illustrative examples.

Key words: Multivariate Analysis, Node Optimization, High Dimensional Model

Representation, Approximation

1 Introduction

The difficulties in dealing with multivariate functions, in both mathematical and com-
putational sense, urged the scientists to propose High Dimensional Model Representa-
tion (HDMR) and its varieties for applying to problems in statistics, chemistry, and,
various similar areas. HDMR is a divide-and-conquer algorithm, which allows us to
additively represent multivariate functions in terms of less-variate functions ordered in
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ascending multivariance. The plain HDMR expansion for a multivariate function is
given as below

f (x1, ..., xN ) = f0 +
N∑

i1=1

fi1 (xi1) +
N∑

i1,i2=1

i1<i2

fi1,i2 (xi1 , xi2) + · · · + f12···N (x1, ..., xN ) (1)

HDMR expansion of a function with N variables have 2N components at the right
hand side, a constant term f0, N univariate terms fi(xi), (1 ≤ i ≤ N), N(N − 1)/2
bivariate terms fi1,i2(xi1 , xi2), (1 ≤ i1 ≤ i2) and so on. The determinations of the
components in this expansion is based on the multiplication with a weight function and
then multivariate integration of both sides in (1). To get the constant term, integration
is performed on all independent variables. This gives a single equation to determine
2N components and urges us to impose some conditions on the integrals of the HDMR
components. If we assume that anyone of the HDMR components except the constant
one vanishes under the integration with respect to its any argument. By doing so the
constant component can be determined as

f0 =

b1∫

a1

dx1 · · ·

bN∫

aN

dxNW (x1, ..., xN ) f (x1, ..., xN ) (2)

where the weight function denoted by W should be of a product type each factor
of which is a univariate function depending on a different independent variable. For
the univariate component determination, the multiplication with the weight function
discards the univariate weight factor whose argument is same as the argument of the
component to be determined and the integration of both sides is performed over all
independent variables except the one which appears as the argument of the component
to be determined. The same vanishing integral condition enables us to write

fi (xi) =

b1∫

a1

dx1 · · ·

bi−1∫

ai−1

dxi−1

bi+1∫

ai+1

dxi+1 · · ·

bN∫

aN

dxNW (1) (x1, ..., xi−1, xi+1, ..., xN )

×f (x1, ..., xN ) − f0, 1 ≤ i ≤ N (3)

where superscripted W contains all univariate factors of W except the one depending on
the argument of the univariate component to be determined. The higher variate terms
can also be determined in a similar way such that the both sides of (1) is integrated over
the all independent variables except the ones appearing as the arguments of the kth
variate component after multiplying both sides with the weight which contains all the
univariate factors of W except the ones depending on the arguments on the component
to be determined, and, the vanishing integration conditions are used. This procedure
allows us to determine all HDMR components uniquely. It is possible to define some
projection operators to get more concise formulation even though we do not get into
the further details of derivations.
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As can be immediately noticed the most important issue is to impose the “vanishing
integral conditions” to get uniqueness. They were first proposed by Sobol[1]. In its
original form the integration was on the unit hypercube whose one corner is located at
the origin and axes are all in positive directions and also unit weight function was used.
Those conditions were extended to all types of rectangular hyperprismatic geometries
and to the utilization of product type non-unit weight functions whose factors are
univariate functions eah of which depends on a different independent variable, by Rabitz
group[2, 3, 4]. Denoting the univariate weight functions by Wj(xj)s we can write the
“Vanishing Integral Conditions” as follows

bj∫

aj

dxjWj(xj)fi1...ik(xi1 , ..., xik) = 0, xj ∈ {xi1 , xi2 , ..., xik}, 1 ≤ j, k ≤ N (4)

Then the overall weight function of HDMR can be written as follows

W (x1, ..., xN ) ≡

N∏

i=1

Wi(xi), 1 ≤ i ≤ N (5)

where Wi(xi) is assumed to satisfy the following normalization condition

bi∫

ai

dxiWi(xi) = 1, 1 ≤ i ≤ N (6)

which facilitates the formulation by getting rid of some denominators in the resulted
expressions.

Another important property is the orthogonality of HDMR terms. Orthogonality
was first proven by Demiralp [5] and used by both Demiralp and Rabitz frequently.
Orthogonality of HDMR terms can be shown by using the following inner product on
related geometry (where H stands for the Hilbert space of the multivariate functions
square integrable over the hyperprism on which the following integrals are performed)

(f, g) ≡

b1∫

a1

dx1 · · ·

bN∫

aN

dxNW (x1, . . . , xN ) f (x1, ..., xN ) g (x1, ..., xN ) , f, g ∈ H (7)

which permits us to get the benefits of Hilbert space tools utilization. This inner
product enables us to write

(fi1i2...ik , fj1j2...jl
) = 0, (k 6= l) ∨ (i1 6= j1) ∨ · · · ∨ (ik 6= jl) (8)

If HDMR expansion is truncated at some level of multivariance then the HDMR
approximants are obtained. Only the zeroth and first order HDMR approximants are
explicitly given below

s0 (x1, . . . , xN ) = f0

s1 (x1, . . . , xN ) = s0 (x1, . . . , xN ) +
N∑

i1=1

fi1(xi1) (9)
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Higher level approximants show similar structure. The following parameters which are
called basically measurers were defined by Demiralp to measure how the approximants
represent a given multivariate function.

σ0 ≡
1

‖f‖2 ‖f0‖
2

σ1 ≡
1

‖f‖2

N∑

i=1

‖fi‖
2 + σ0

...

σN ≡
1

‖f‖2 ‖f12...N‖2 + σN−1

(10)

where σ0 is called Constancy Measurer while σ1 is named Univariance Measurer. The
general term σk is called “kth Order Additivity Measurer”. Additivity Measurers form
a well-ordered sequence and the sufficiently closedness to 1 for any additivity measurer
means that the relevant approximant is sufficient to represent the original function
satisfactorily. In other words, there is no need to add higher variable terms of HDMR
to construct an approximation. In practice, the first few terms (in fact at most bivariate
terms) are taken into consideration from the HDMR expansion, to avoid computational
complexity. Obviously the first HDMR component can not represent the function
efficienlty unless the target function is almost constant. Constant component evaluation
is the easiest part of HDMR and urges us to find an answer to the question “ Is it
possible that a given multivariate function is represented by both using the constant
term and obtaining a desired approximation quality?”. In this study we show the fact
that the answer to this question is yes and present the way to get the fruits of this
possibility. To this end we partition HDMR geometry into optimized subgeometries
and we evaluate the constant term in each subgeometry. Next section includes the
presentation of the mathematical backround of the optimization procedure. The third
section involves certain illustrative numerical implementations while the fourth (and
last) section presents the concluding remarks.

2 Two Dimensional Node Optimization in Piecewise High

Dimensional Model Representation

Dividing geometry is not a new scheme in HDMR history [6, 7, 8]. Previous works
were based on HDMR geometries which are divided into huge number of equal sub-
geometries whose sizes are sufficiently small [9, 10].

Piecewise HDMR (PHDMR), being a new variant of HDMR, is based on the uti-
lization of constant HDMR approximant in each piece of geometry with a possibly
different constant value. The determination of these constants turns into an optimiza-
tion problem, solution of which gives the optimal nodes where the HDMR geometry is
partitioned to subgeometries. Using optimal nodes we can evaluate constant terms in
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all subgeometries. In this way we avoid from high complexity of evaluating univariate
and higher variate terms. In this section we will focus on the HDMR on two indepen-
dent variables for simplicity in the presentation. However, it is almost straightforward
to extend what we obtain in this limited, lowest level multivariate, case to the higher
multivariate cases. To construct the problem for finding the optimal nodes, we assume
that there are unknown nodes on each interval defining the two dimensional space, that
is, plane. In other words we split HDMR geometry of f (x1, x2) into pieces and then in-
terpolate that function whose values are known only for the selected nodes. The nodes
on the coordinate x1 are symbolized by c1, c2, ..., cm while the ones on the coordinate
x2 are denoted by d1, d2, ..., dn. The following norm is needed to be minimized to find
the optimal nodes where a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2.

Υ =

b1∫

a1

dx1w1(x1)

b2∫

a2

dx2w2(x2) [f(x1, x2) − f0]
2 (11)

Here we take m and n number of points on the first and second coordinates respectively.
Then we differentiate Υ with respect to each node and set equal to zero to get related
equations to 5 determine c and d parameters.

∂Υ

∂ci
= 0 and

∂Υ

∂dj
= 0, i = 1...m, j = 1...n (12)

Nodes define planar subregions in the HDMR geometry. The constant HDMR compo-
nent on the kth planar subregion [ ci−1, ci+1 ] × [ dj−1, dj+1 ] , 1 ≤ i ≤ m, 1 ≤ j ≤ n
can be evaluated as below

fk
0 =

ci+1∫

ci−1

dx1

dj+1∫

dj−1

dx2
w1(x1)

ci+1∫
ci−1

dx1w1(x1)

w2(x2)
dj+1∫
dj−1

dx2w2(x2)

f(x1, x2) (13)

where k stands to give the location in an ordering of all possible subregions and therefore
it depends on i and j values. To obtain optimized nodes, (12) is used in (11) via
Leibniz’s differentiation rule of integrals. After some intermediate manipulations and
algebraic operations we reach two general expressions which contain the local constant
terms in the vicinity of the coordinates of the optimized nodes.

n+1∑

k=1

dk∫

dk−1

dx2w2(x2)f(ci, x2)
[
−2f

i+(k−1)(n+1)
0 + 2f

i+(k−1)(n+1)+1
0

]

=
n+1∑

k=1

[
−

(
f

(i+(k−1)(n+1)
0

)2
+

(
f

i+(k−1)(n+1)+1)
0

)2
]

(14)
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m+1∑

k=1

ck∫

ck−1

dx1w1(x1)f(x1, di)
[
−2f

(i−1)(m+1)+k
0 + 2f

(i−1)(m+1)+(k+m+1)
0

]

=

m+1∑

k=1

[
−

(
f

(i−1)(m+1)+k
0

)2
+

(
f

(i−1)(m+1)+(k+m+1)
0

)2
]

(15)

It is possible to obtain all ci and di values by solving the related equations with different
ways like iterative solution constructions or Gröbner basis set utilization. In this work
we use fixed point iteration, firstly we make an initial guess for the cis and djs in the
intervals [ a1, b1 ] and [ a2, b2 ] respectively. To be able to obtain the optimized nodes
within the acceptable tolerance, we need a criterion to stop the iteration process. Thus,
the optimized separation of HDMR geometry has been realized.

3 NUMERICAL IMPLEMENTATION

We can implement the optimization procedure for different kinds of functions. Here we
chose exponential and sine functions for testing and showing the efficiency of PHDMR.
We use (13) and (14) to get appropriate nodes and then evaluate the constant terms
on the planar subregions determined by the optimal nodes. Procedure code written in
MUPAD within 20-digits precision [11].

The first test function is f (x1, x2) = ex1+x2 and in the following first figure the test
function and the constant term truncation results of PHDMR on each planar subregion
are shown. Node numbers were chosen as m = n = 3, this means that there are 16
planar subregiond in Figure 1. According to the results obtained from this example,
it is possible to say that nodes tend to locate towards the high curvilinearity surface
of the given function. This is an expected behaviour for the optimal nodes, because
when curvilinearity increases at a point it is better to split the area into two parts for
calculation of the constant term, since the constant term of HDMR can be considered
as the mean of the function at the given geometry. Figure 1 also shows that 16 planar
subregions are enough for a good representation of the exponential function because all
the planar subregions overlap with the function surface.

Second test function is a sine function, f (x1, x2) = sin (x1 + x2) which forms a
difficult example because of the periodic structure and the sharp curvilinearity. At
first function tested for m = n = 3, it can be seen that the approximation quality
is not good enough on figure 2, because overlapping of the function surface and the
planar subregion is quite weak. In these situations there may be different reasons
of the weakness and different solutions can be sought to improve the approximation
quality. For example, we give the starting values for nodes at the first iteration on
two coordinate lines and these values affect the locations of optimized nodes at the
last iteration because of stopping the application of the criteria. Another reason may
be the insufficient node number. If so, increasing the number of nodes profits for a
good approximation with constant term truncations. This idea can be supported by
the observations on figure 3 where, this time, we use the same test function and more
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Figure 1: f(x1, x2) = ex1+x2 vs. Constant Terms of PHDMR on 16 subplanes

nodes (m = n = 5). Compatibility of planar subregions for surface of sine function can
be easily seen on figure 3.
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Figure 2: f(x1, x2) = sin(x1 + x2) vs. Constant Terms of PHDMR on 16 sub-planes
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Figure 3: f(x1, x2) = sin(x1 + x2) vs. Constant Terms of PHDMR on 36 sub-planes

4 Conclusions

In this work we have tried to increase the quality of approximation to get the sufficiency
of HDMR’s constant term, which enables us not to need the evaluation of higher variate
components of HDMR. For this purpose we parttion HDMR geometry amongst optimal
nodes which are found by fixed point iteration. For this work we confine ourselves to
two dimensional space for presentation simplicity in theory and for simply illustrating
implementation results on figures and we work with planar segments. We have dealt
with only with the constancy whereas univariance could also be tackled with by accept-
ing a little bit higher computational complexity. The confinement ourselves to the two
dimensional HDMR can be relaxed and the number of the variables can be increased.
The basic philosophy remains same also for those cases. However, the calculations
becomes more comprehensive as the number of independent variables increases.

According to results increasing the number of nodes provide better approximation
quality and represent more sensitive results in the areas including high curvature of
the given function. The main reason for this is due to the fact we have observed in
our illustrative implementations. The optimal nodes more intensely locate in higher
curvilinearity parts of the target function. This behaviour of the method can be math-
ematically proven although we have not attempted to do so. Nevertheless we can say
that this is very important because of its implications that the target function domain
must be more intensely divided on the areas where curvilinearity is high.
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Abstract

Organic electronics is a rapidly developing technology. Typically, the molecules in-
volved in organic electronics are made up of hundreds of atoms, prohibiting a theoretical
description by wavefunction-based ab-initio methods. Density-functional and Green’s
function type of methods scale less steeply with the number of atoms. Therefore, they
provide a suitable framework for the theory of such large systems.

In this contribution, we describe an implementation, for molecules, of Hedin’s GW
approximation. The latter is the lowest order solution of a set of coupled integral
equations for electronic Green’s and vertex functions that was found by Lars Hedin half
a century ago.

Our implementation of Hedin’s GW approximation has two distinctive features:
i) it uses sets of localized functions to describe the spatial dependence of correlation
functions, and ii) it uses spectral functions to treat their frequency dependence. Using
these features, we were able to achieve a favorable computational complexity of this
approximation. In our implementation, the number of operations grows as N3 with the
number of atoms N .

Key words: Hedin’s GW approximation, basis of dominant products, large molecules.

1 Introduction

The promising field of organic electronics deals with large molecules of several tens or even
hundreds of atoms [1]. For instance, fullerene C60 is a frequently used subunit in organic
electronics and it alone consist of 60 atoms (see figure 1).
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Figure 1: Ball and stick
model of fullerene C60

produced with XCrysDen
package [2].

Each individual molecule may be used in a device in many
different ways and there is an astronomically large number of
different promising molecules. As in many cases there is a
limited knowledge of the relevant physical parameters, and it
might be also interesting to explore the potential of candidate
molecules theoretically, before these molecules has been actu-
ally synthesised.

The geometry of large organic molecules can be reliably
predicted by density-functional theory (DFT)[3]. However,
the properties of their excited states such as the energy of
the highest occupied (HOMO) and lowest unoccupied molecu-
lar orbitals (LUMO), corresponding to adding and subtracting
one electron from the system respectively, require a descrip-
tion of electronic correlations better than that provided by
current functionals of DFT and its time-dependent counter-
part, TDDFT.

Such effects can be efficiently incorporated with the help of Hedin’s method that is
based on Green’s function. Hedin’s GW approximation for one-electron Green’s function is
computationally cheaper than wavefunction-based methods, although it remains computa-
tionally more expensive than DFT and TDDFT within linear response.

The goal of our work is to develop a practical algorithm for Hedin’s GW approximation
which is suitable for large organic molecules, allowing to access the excited states of such
molecules.

2 Theoretical framework for Hedin’s GW approximation

= + Σ
G 0G     G     0 G

Figure 2: Feynman diagram of Dyson
equation (1).

Electronic Green’s function (propagators) are use-
ful in condensed matter physics because many sim-
ple observables can be computed in terms of them.
At the same time, such Green’s functions remain
simpler than many-body wavefunction.

Hedin’s GW is a useful approximation for the
so-called self-energy Σ(r, r, ω) that enters Dyson’s
equation for an interacting electronic propagator
G(r, r′, ω)

G−1(r, r′, ω) = G−1
0 (r, r′, ω)− Σ(r, r, ω). (1)

Here, the inversions must be understood in operator sense
∫
G−1(r, r′′, ω)G(r′′, r′, ω)dr′′ =

δ(r − r′) and G0(r, r′, ω) stands for Green’s function where electron-electron interactions
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have been switched off. It is obtained from an effective one-particle Hamiltonian

(ω −H(r))G0(r, r′, ω) = δ(r − r′). (2)

In this work we use a Kohn-Sham Hamiltonian [3], although Hartree-Fock Hamiltonian
also proves to be useful at this point [4]. Hedin’s GW approximation for the self-energy
Σ(r, r, ω) reads

Σ(r, r′, t) = iG0(r, r′, t)W0(r, r′, t). (3)

Σ

W0

1 2 =
1 2

Figure 3: Feynman diagram of
self-energy (3).

It involves the non interacting electronic Green’s func-
tion G0(r, r′, t) and a screened Coulomb interaction
W0(r, r′, t). This approximation is a solution of a trun-
cated version Hedin’s equations [5, 6]. The name of this
approximation is taken from the simple form of the elec-
tronic self-energy Σ = iGW .

The screened Coulomb interaction W0 can be easily
calculated in frequency domain using the so-called RPA
approximation [7]

W0(r, r′, ω) =
[
δ(r − r′′′)− v(r, r′′)χ0(r′′, r′′′, ω)

]−1
v(r′′′, r′), (4)

where v(r, r′) ≡ |r − r′|−1 is the bare Coulomb interaction. Here and in the following we
assume integration over repeated spatial coordinates (r′′ and r′′′ in equation (4)) on the
right hand side of an equation if they do not appear on its left hand side. The screened
interaction (4) is the sum of the bare Coulomb interaction created by a point charge at r′,
plus a correction due to the redistribution of charge induced in response to the total field
[7, 6]. The non-interacting response function χ0(r, r′, t) is related to the non-interacting
Green’s function

iχ0(r, r′, t) = 2G0(r, r′, t)G0(r′, r,−t), (5)

where a factor 2 arises because of the summation over spin variable.

W0
W0

= P
v v

+21 1 2 1 2

Figure 4: Feynman diagram of screened Coulomb in-
teraction (4).

As we mentioned already, we
construct the non-interacting Green’s
function using an effective Kohn-
Sham Hamiltonian [3]

HKS = −1

2
∇2 + VKS, (6)

VKS = Vext + VHartree + Vxc, where Vxc(r) =
δExc

δn(r)
.

Exc is a functional of the electronic density that includes the effects of exchange and cor-
relation in an effective way. Its functional derivative Vxc(r) is the so-called exchange-
correlation potential and it must be subtracted from Σ(r, r′, t) to avoid including the
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exchange-correlation interaction twice in equation (3). This is accomplished with the sub-
stitution

Σ(r, r′, t)→ Σ(r, r′, t)− δ(r − r′)δ(t)Vxc(r)

in Dyson’s equation (1).

3 A basis set of localized functions

Having the equations (1,3,4,5) at hand we introduce a basis set of localized functions and
rewrite the system of equations in the basis. We start with linear combinations of atom
orbitals (LCAO) to represent the non-interacting Green’s function G0(r, r′, t)

G0(r, r′, t) =
∑
ab

G0
ab(t)f

a(r)f b(r′), (7)

where fa(r) are atom centered orbitals. The frequency (and time) dependence has been
factorized in the last equation. The treatment of the frequency (and time) dependence by
spectral functions will be explained in section 4. Inserting equation (7) into the equation
(5), we obtain

iχ0(r, r′, t) = 2
∑
abcd

G0
ab(t)G

0
cd(−t) fa(r)fd(r) f b(r′)f c(r′). (8)

Products of localized orbitals such as fa(r)fd(r) appear in the last equation. Although a
product of localized orbitals is also a localized function, such products do not form a suitable
basis because they contain many collinear functions. Several methods have been proposed
to construct more efficient basis to span the products of localized orbitals [4, 9, 10]. Here
we use a basis of dominant products [11] that is constructed individually for each atom
pair. The dominant products are identified as certain linear combinations of the original
orbital products and they are free of any collinearity within a given atom pair (with respect
to a given metric, here we have used the Coulomb metric). Moreover, the original orbital
products can be expressed as linear combinations of dominant products

fa(r)f b(r) = V ab
µ Fµ(r). (9)

The three-index coefficient V ab
µ will be referred to as the product vertex. The product

vertex is local or sparse by construction and indeed the locality of our construction is its
main characteristic.

Considering Dyson’s equation (1), we arrive at its tensor counterpart

Gab(ω) = G0
ab(ω) +Gaa′(ω)Σa′b′(ω)G0

b′b(ω), (10)
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where matrix elements of the self-energy Σab(ω) must be used

Σab(ω) =

∫∫
fa(r)Σ(r, r′, ω)f b(r′) d3rd3r′. (11)

Calculating the matrix elements of the self-energy by equation (3) and using (7) for the
non interacting Green’s function, we arrive at

Σab(ω) = i
∑
a′b′

G0
a′b′(t)

∫
fa(r)fa

′
(r)W0(r, r′, t)f b

′
(r′)f b(r′) d3rd3r′. (12)

Using the identity (9), we rewrite the latter equation as

Σab(ω) = iG0
a′b′(t)V

aa′
µ Wµν

0 (t)V b′b
ν , (13)

where the matrix elements of the screened Coulomb interaction appear

Wµν
0 (t) =

∫∫
Fµ(r)W0(r, r′, t)F ν(r′) d3rd3r′. (14)

Finally, the equation (4) gives rise to the corresponding tensor expression

Wµν
0 (ω) = (δµν′ − v

µµ′χ0
µ′ν′(ω))−1vν

′ν . (15)

The last expression can be elucidated by developing the operator [1− vχ0]−1 in a ge-
ometric series [1− vχ0]−1 = 1 + vχ0 + vχ0vχ0 + vχ0vχ0vχ0 . . . The expressions (8), (10),
(13) and (15) are tensor counterparts of Hedin’s equations in coordinate space (5), (1), (3)
and (4), correspondingly. In the next section, we will present our method for treating the
frequency (and time) dependence of these tensor equations.

4 Spectral function technique

Because of the discontinuities of the electronic Green’s functions, a direct, straightforward
and accurate computation of the response function (8) is practically impossible both in
the time domain and in the frequency domain. However, one can use an imaginary time
technique [12] or spectral function representations to recover a computationally feasible
approach. In this work, we use spectral function techniques and rewrite the time ordered
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operators as follows

G0
ab(t) = −iθ(t)

∫ ∞
0

ds ρ+
ab(s)e

−ist + iθ(−t)
∫ 0

−∞
ds ρ−ab(s)e

−ist;

χ0
µν(t) = −iθ(t)

∫ ∞
0

ds a+
µν(s)e−ist + iθ(−t)

∫ 0

−∞
ds a−µν(s)e−ist;

Wµν
0 (t) = −iθ(t)

∫ ∞
0

ds γµν+ (s)e−ist + iθ(−t)
∫ 0

−∞
ds γµν− (s)e−ist;

Σab(t) = −iθ(t)

∫ ∞
0

ds σab+ (s)e−ist + iθ(−t)
∫ 0

−∞
ds σab− (s)e−ist,

(16)

where “positive” and “negative” spectral functions define the whole spectral function by
means of Heaviside functions θ(t). For instance, the spectral function of the electronic
Green’s function reads

ρab(s) = θ(s)ρ+
ab(s) + θ(−s)ρ−ab(s).

Transforming the first of equations (16) to the frequency domain, we obtain the familiar
expression for the spectral representation of a Green’s function

G0
ab(ω) =

∫ ∞
−∞

ρab(s) ds

ω − s+ i sgn(s)ε
. (17)

Here ε is a small line-broadening constant. In practice, the choice of ε is related to the
spectral resolution ∆ω of the numerical treatment.

As first application of representations (16), we derive the spectral function of the non
interacting response aµν(s) using equation (5) as a starting point

a+
µν(s) =

∫∫
V ab
µ ρ+

bc(s1)V cd
ν ρ−da(−s2)δ(s1 + s2 − s)ds1ds2. (18)

Here, the convolution can be computed with fast Fourier methods and the (time-ordered)
response function χ0

µν(ω) can be obtained with a Cauchy transformation

χ0
µν(ω) = χ+

µν(−ω) + χ+
µν(ω), where χ+

µν(ω) =

∫ ∞
0

ds
a+
µν(s)

ω + iε− s
. (19)

The calculation of the screened interaction Wµν
0 (ω) must be done with functions, rather

than with spectral functions, because of the inversion in equation (15). The spectral function
of the screened interaction γµν(ω) can be easily recovered from the screened interaction
itself [6]. Since Im 1

ω+iε−s is a representation of Dirac δ-function when ε goes to zero, then

γµν(ω) = − 1

π
ImWµν

0 (ω).
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Deriving the spectral function σ(ω) of the self-energy, we arrive at

σab+ (s) =

∫ ∞
0

∫ ∞
0

δ(s1 + s2 − s)V aa′
µ ρ+

a′b′(s1)V b′b
ν γµν+ (s2)ds1ds2, (20)

σab− (s) = −
∫ 0

−∞

∫ 0

−∞
δ(s1 + s2 − s)V aa′

µ ρ−a′b′(s1)V b′b
ν γµν− (s2)ds1ds2.

These expressions show that the spectral function of a convolution is given by a convolution
of the corresponding spectral functions.

4.1 Discretization of frequency-dependent quantities

The spectral functions in equation (18) are merely a set of poles at (eigen)energies E

ρ+
ab(ω) =

∑
E>0

δ(ω − E)XE
a X

E
b , ρ

−
ab(ω) =

∑
E<0

δ(ω − E)XE
a X

E
b . (21)

Here the eigenvectors XE
a diagonalize the corresponding Kohn-Sham Hamiltonian

HabXE
b = ESabXE

b ,

where the Hamiltonian and the overlap matrices of atomic orbitals fa(r) enter

Hab =

∫
fa(r)H(r)f b(r)d3r, and Sab =

∫
fa(r)f b(r)d3r. (22)

In practice, we use the SIESTA package [13] that gives the orbitals fa(r), eigenvectors XE
a

and eigenvalues E for a given molecule as the output of a DFT calculation.

The use of fast Fourier techniques for convolution, for instance in equation (18), requires
that the spectral functions ρ+

bc(ω), ρ−da(ω) be known at equidistant grid points ωj = j∆ω, j =
−Nω . . . Nω, rather than at a set of energies resulting from a diagonalization procedure. The
solution for this problem (discretization of spike-like functions) is known and well tested
[14]. We define a grid of points that covers the whole range of eigen energies E. Going
through the poles E, we assign their spectral weight XE

a X
E
b to the neighboring grid points

n and n + 1 such that ωn ≤ E < ωn+1 according to the distance between the pole and

the grid points pn, ab =
ωn+1 − E

∆ω
XE
a X

E
b , pn+1, ab = 1 − pn, ab. Such a discretization keeps

both the spectral weight and the center of mass of a pole. It also reduces the number of
operations that are needed to calculate the non interacting response function χ0

µν(ω). This
is so because the number of frequencies Nω can be kept small (typically a few hundred
points) even for large molecules while the number of states Norb grows linearly with the size
of the system.
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4.2 The second window technique

The discretization of spectral weight helps to control the computational complexity for
large molecules. However, we are actually interested in the properties of low lying levels
(HOMO and LUMO and several levels below and above). At first sight one might think
that one could neglect the contributions of high energy spectral weights in the Cauchy
transformation. However, neglecting the high energy spectral weight actually results in a
wrong real part of the functions. Fortunately, the high energy spectral weight tolerates a
coarser grid [8]. Therefore, we calculate each spectral function twice: once with a higher
resolution in a low frequency range, and a second time with a lower resolution but in the
whole range. The Cauchy transformation for such a two-window representation must be
modified as follows

χ0
µν(ω + iεsmall) =

∫ λ

−λ
ds

aµν(s)

ω + iεsmall − s
+

(∫ −λ
−Λ

+

∫ Λ

λ

)
ds

aµν(s)

ω + iεlarge − s

= χsmall window
µν (ω + iεsmall) +

[
χlarge window
µν (ω + iεlarge)

]
truncated spectral function

. (23)

After the calculation of spectral functions in both windows, we truncate the spectral function
in the second window in the range 0 . . . λ, do Cauchy transform of both spectral functions
and update (by a linear interpolating procedure) the function in the first window with the
truncated function from the second window.

We use the second window technique both for the non interacting response function
χ0
µν(ω) and for the self-energy Σab(ω).

5 Non-local compression of the product basis

The basis of dominant products is optimal within a given atom pair, but unfortunately, there
is still a lot of collinearity between dominant products belonging to different pairs. This
collinearity is an indication that the size of the product basis can be strongly reduced. Even
for the molecules of modest size considered in Section 7.1 the basis set of dominant product
becomes so large that hampers the storage of the (non-interacting) response function (19)
and slows down the inversion in the calculation of the screened interaction (15). In order
to improve the situation we perform a non-local (global) contraction of the basis of domi-
nant product. We start by considering a sum-over-states expression for the non-interacting
response function in the basis of dominant products

χ0
µν(ω) = 2

∑
E,F

V EF
µ

nF − nE
ω + iε− (E − F )

V EF
ν , where V EF

µ = XE
a V

ab
µ XF

b . (24)
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The response χ0
µν(ω) is built up from vectors V EF

µ that represent electron-hole pair excita-
tions. One can use these vectors to identify important directions in the space of dominant
products. The number of electron–hole pairs EF grows as N2 with the molecular size
while the dimension of dominant product basis is O(N) by construction (due to the lo-
calization of the basis orbitals). Therefore, one has to limit the set of electron-hole pairs
EF from the beginning to keep the efficiency of the algorithm, particularly if one uses a
diagonalization-based procedure for generating the (globally) optimal basis. Because of the
inherent limitations of LCAO to represent high energy features, and the fact that we are
mainly interested in the lowest lying excitations, we choose O(N) low-energy electron-hole
pairs

{Xn
µ} ≡ subset of {V EF

µ } limited by |E − F | < Ethreshold, n = 1 . . . Nrank. (25)

After the initial selection according to the energy criterion |E − F | < Ethreshold, we define
a metric gmn

gmn = Xm
µ v

µνXn
ν , where vµν =

∫∫
Fµ(r)|r − r′|−1Fµ(r′)d3rd3r′. (26)

After diagonalizing the metric gmnξλn = λξλm, we can identify important directions (like in
the construction of the basis of dominant products [11, 15]) by building linear combinations
of the original vectors Xm

µ and by choosing only eigenvectors with eigenvalues above a
suitable threshold value

Zλµ ≡ Xm
µ ξ

λ
m/
√
λ. (27)

These linear combinations can be used to expand the original response function χ0
µν(ω) in

terms of fewer functions
χ0
µν(ω) = Zmµ χ

0
mn(ω)Znν . (28)

In order to express χ0
mn(ω) in terms of χ0

µν(ω) we multiply equation (28) with Zmµ v
µν from

both sides and notice that Zmµ v
µνZnν ≡ Zmµ Z

µ
n = δmn . Therefore, the response function can

be “compressed” by using basis vectors Zνn ≡ vµνZnν
χ0
mn(ω) = Zµmχ

0
µν(ω)Zνn. (29)

The particular choice of the Coulomb metric vµν in equation (26) simplifies the compu-
tation of the Coulomb screened interaction (15). We can rewrite the equation (15) in terms
of a Taylor series

Wµν
0 = vµν + vµµ

′
χ0
µ′ν′v

ν′ν + vµµ
′
χ0
µ′ν′v

ν′µ′′χ0
µ′′ν′′v

ν′′ν + · · · (30)

Inserting here the response function χ0
µν according to equation (28) and recalling the identity

Zmµ Z
µ
n = δmn , one arrives at

Wµν
0 = vµν + Zµmχ

0
mr

[
δrn + χ0

rn + χ0
rsχ

0
sn + · · ·

]
Zνn = (31)

= vµν + Zµmχ
RPA
mn Zνn, where χRPA

mn ≡
(
δmk − χ0

mk

)−1
χ0
kn.
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At this point it should be also be noted that the self-energy Σab
x (ω) that corresponds to

the instantaneous part of the screened interaction vµν is computed separately [6, 8] without
any non local compression.

6 Computational complexity of the algorithm

The number of mathematical operations spent in different parts of the approach presented
above can be estimated if the dimensions of the corresponding matrices are known. The
numbers that determine the complexity of the algorithm are the number of atomic orbitals
Norb, the number of dominant functions Nprod and the number of frequencies Nω. The
number of orbitals and the number of dominant products are proportional to the number of
atoms N by construction. The number of frequencies affects the run time linearly, but it is
independent of the number of atoms. The non-local basis of section 5, can be constructed
in O(N3) operations because Nrank in equation (25) can be kept proportional to number
of orbitals. In practical calculations we have found that converged results are achieved
with Nrank ∼ 5Norb. For large molecules, the number of important eigenvectors Nsubrank

after dropping small eigenvalues λ in equation (27) is approximately Norb. No part of the
algorithm scales worse than O(N3) [8]. There are several portions of the code where O(N3)
operations are needed. However, only two of them have an appreciable impact on the run
time: the computation of the response function and the computation of the self-energy.
Both of them scale as O(N2

prodNsubrankNω) and give rise to an overall O(N3) scaling of the
run time.

7 Applications to organic molecules

The methods described in the previous sections were carefully tested on several molecules.
In this paper, we present two examples: calculations of HOMO and LUMO levels of three
aromatic hydrocarbons (benzene, naphthalene and anthracene) and a calculation of the
HOMO and LUMO levels of fullerene C60.

7.1 Aromatic hydrocarbons

From the interacting Green’s function Gab(ω) we calculate the density of states (DOS)
ρ(ω) = −SabImGab(ω)/π and we then determine the positions of the HOMO and LUMO
levels from the DOS.
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Picture IP, eV EA, eV

8.82
(9.25)

-1.43
(-1.12)

7.58
(8.14)

-0.15
(-0.19)

6.87
(7.44)

0.73
(0.530)

Table 1: The ionization potentials (IP)
and electron affinities (EA) of benzene,
naphthalene and anthracene. Experi-
mental data [16] are given in brackets.

The results of this procedure for aromatic
hydrocarbons are collected in table 1. One can
see that our (LDA+G0W0) approach delivers
qualitatively correct predictions for the ioniza-
tion potentials (IP) and electron affinities (EA)
of benzene and naphthalene (donors) and an-
thracene (acceptor). On the other hand, the
LUMO of the underlying DFT calculation is
always below the vacuum level. The calcula-
tions have been done on top of DFT-SIESTA
calculations. We used pseudo potentials of
Troullier-Martins type [17] and the Perdew-
Zunger exchange-correlation functional [18]. We
found that rather extended atomic orbitals must
be used to achieve converged results in our GW
approach. The energy shift parameter [19], that
controls the spatial extension of atomic orbitals
has been set to 3 meV for benzene, and to
20 meV for naphthalene and anthracene. The spectral functions have been discretized
in two energy windows, with each window containing Nω = 64 frequency points.

7.2 Fullerene C60
Source IP, eV EA, eV

Our LDA+G0W0 7.33 2.97
Experimental [16] 7.58 2.65

Table 2: The IP and EA of fullerene
C60 calculated with our method and
corresponding experimental data.

The fullerene C60 and its derivatives are very popular
ingredients in organic semiconductors and extensive
experimental data and theoretical computations are
available for the basic fullerene. We found that our
LDA+G0W0 results are in very good agreement with
experimental data (see table 2). The computational
parameters of this calculation are the same as in sub-
section 7.1, while the energy shift parameter is chosen to be 15 meV. The number of fre-
quency points was chosen rather large Nω = 128 and the calculation has been done with 8
cores of a Nehalem machine (Intel R©E5520 2.27GHz, Cache 8M/DDR3 RAM 24GB). The
current version of the code consumed 26 hours of wall clock time.

A comparison of DOS calculated with DFT LDA Hamiltonian and with our LDA+G0W0

approach is shown in figure 5. Such a result is a typical when Hedin’s GW approach is
applied on top of a LDA calculation. GW HOMO has lower energy than DFT HOMO.
Therefore, the change density n(r) will be more localized in the GW calculation. GW
LUMO has higher energy than DFT LUMO. Therefore, the change density n(r) will be
more delocalized in the GW calculation.
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8 Conclusions
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Figure 5: DOS of fullerene C60 computed
with our LDA-G0W0 approach.

We have described our approach to Hedin’s
GW approximation for finite systems. This
approach allows to compute the interacting
Green’s function on a frequency grid. The
density of states is our output and it provides
HOMO and LUMO levels in reasonable agree-
ment with experiment. The complexity of the
approach scales with the third power of the
number of atoms, while the needed memory
scales with the second power of the number of
atoms. These features make our approach suit-
able for treating the large molecules that are
used in organic semiconductors.
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[19] J. Junquera, Ó. Paz, D. Sánchez-Portal, and E. Artacho, Phys. Rev. B 64,
235111 (2001).

[20] J. D. Talman, J. Chem. Phys. 80, 1984 (2000); J. Comput. Phys. 29, 35 (1978);
Comput. Phys. Commun. 30, 93 (1983); Comput. Phys. Commun. 180, 332 (2009).

@CMMSE                                 Page 745 of 1703                                 ISBN: 978-84-614-6167-7

http://arxiv.org/abs/1101.2065
http://arxiv.org/abs/1101.2065
http://cccbdb.nist.gov/
http://sesres.com/PhysicalProperties.asp


Proceedings of the 11th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2011
26–30 June 2011.

Algorithm for computing matrices that involve some of

their powers and an involutory matrix
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Abstract

In this paper, we deal with {K, s + 1}-potent matrices. These matrices gen-
eralize all the following classes of matrices: k-potent matrices, periodic matrices,
idempotent matrices, involutory matrices, centrosymmetric matrices, mirrorsymet-
ric matrices, circulant matrices, etc. Several applications of these classes of matri-
ces can be found in the literature. We develop an algorithm in order to compute
{K, s + 1}-potent matrices by using spectral theory. In addition, some examples
are presented in order to show the numerical performance of the method.

Key words: potent matrix, involutory matrix, algorithm
MSC 2000: AMS codes 15A24

1 Introduction

In the last years, real applications by using different classes of matrices have been devel-
oped. Specifically, the problem of multiconductor transmission lines has been studied
by means of mirror symmetric matrices in [4] and [5]. Also, circulant matrices have
been applied to solve problems in several areas such as numerical computation, solid
state-physics, image process, signal processing, coding theory, mathematical statistics,
and molecular vibration [2]. Some applications of centrosymmetric matrices have been
given in [1], for example, for solving problems in pattern recognition, antenna theory,
mechanical and electrical systems, and quantum physics. In this case, symmetric and
skew-symmetric eigenvectors have been used.

Related to the aforementioned classes of matrices, another type of matrices was
introduced in [3], namely {K, s + 1}-potent matrices. For a given involutory matrix
K ∈ C

n×n (K2 = I) and s ∈ {1, 2, 3, . . . }, we recall that a matrix A ∈ C
n×n is called

{K, s+ 1}-potent if it satisfies
KAs+1K = A
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It can be seen that {K, s+1}-potent matrices generalize all the following classes of
matrices: k-potent matrices, periodic matrices, idempotent matrices, involutory matri-
ces, centrosymmetric matrices, mirrorsymmetric matrices, circulant matrices, etc. [3].
Hence, it is interesting to know how to construct a sufficient number of this new class
of matrices. The main aim of this paper is to develop a method to construct them.

Throughout this work, K will stand for an involutory matrix and s a positive
integer. We will denote by Ωk the set of all kth roots of unity with k a positive integer,
that is, if we define ωk = e2πi/k then Ωk = {ωk, ω

2
k, . . . , ω

k
k}.

The following function will be required. Let Ns = {0, 1, 2, . . . , (s+ 1)2 − 2} and

ϕ : Ns → Ns

be the bijective function given by ϕ(j) = bj where bj is the smallest nonnegative integer
such that bj ≡ j(s+ 1) [mod ((s+ 1)2 − 1)] [3].

2 Algorithm for computing {K, s+ 1}-potent matrices

In this section an algorithm for computing {K, s+1}-potent matrices will be developed.

Given K ∈ C
n×n and s as stated before, we want to find a {K, s + 1}-potent

matrix A ∈ C
n×n. It is clear that the cases K = ±I only provide the well-known

results corresponding to As+1 = A and we are not interested in these situations.

Since K is involutory, there is a nonsingular matrix T =
[
t1 . . . tn

]
such that

K = T

[
−Ir O

O In−r

]
T−1 (1)

where the first r eigenvectors of K are associated with the eigenvalue −1. Without
loss of generality, we will assume that r ≤ n− r. Otherwise, we pick −K instead of K
obtaining the same solution. It is well-known that the eigenvalues of A are included in

the following set Λ =
{
0, w1

(s+1)2−1, . . . , w
(s+1)2−2
(s+1)2−1

, 1
}
and A is diagonalizable [3], i.e.

A = Sdiag(λ1, . . . , λn)S
−1 with S =

[
s1 . . . sn

]
and S−1 =




yT1
...
yTn




Then, denoting by Pi = siy
T
i we have A =

∑n
i=1 λiPi.

The idea of the method is based on the construction of the si’s and yi’s in terms of
the ti’s. The most representative cases are presented in the following table for different
involutory matrices Ki = TDiT

−1 for i = 1, 2, 3, 4, 5 where D1 = diag(−1, 1), D2 =
diag(−1, 1, 1),D3 = diag(−1, 1, 1, 1),D4 = diag(−1,−1, 1, 1),D5 = diag(−1,−1, 1, 1, 1).

Although we are going to construct only one {K, s+1}-potent matrix A, it is clear
that this method allows us to construct more of them (e.g., by changing adequately the
ω’s in Ω(s+1)2−1).

@CMMSE                                 Page 747 of 1703                                 ISBN: 978-84-614-6167-7
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Table 1. The most representative cases.

Construction of s′i’s s = 1 s ≥ 2

D1
s1 = s′1 = t1 + t2
s2 = s′

ϕ(1) = −t1 + t2
A = ωP1 + ωϕ(1)P2 A = ωjP1 + ωϕ(j)P2

D2

s1 = s′1 = t1 + t2
s2 = s′

ϕ(1) = −t1 + t2

s3 = t3

A = ωP1 + ωϕ(1)P2 + P3 A = ωjP1 + ωϕ(j)P2 + P3

D3

s1 = s′1 = t1 + t2
s2 = s′

ϕ(1) = −t1 + t2

s3 = t3
s4 = t4

A = ωP1 + ωϕ(1)P2 + P3 + P4 A = ωjP1 + ωϕ(j)P2 + P3 + P4

D4

s1 = s′1 = t1 + t3
s2 = s′

ϕ(1) = −t1 + t3

s3 = s′a = t2 + t4
s4 = s′

ϕ(a) = −t2 + t4

A = ω(P1 + P3)+
+ωϕ(1)(P2 + P4)

A = ωj(P1 + P3)+
+ωϕ(j)(P2 + P4)

D5

s1 = s′1 = t1 + t3
s2 = s′

ϕ(1) = −t1 + t3

s3 = s′a = t2 + t4
s4 = s′

ϕ(a) = −t2 + t4

s5 = s′b = t5

A = ω(P1 + P3)+
+ωϕ(1)(P2 + P4) + P5

A = ωj(P1 + P3)+
+ωϕ(j)(P2 + P4) + P5

where j ∈ Ns − {0}, w = w(s+1)2−1, and moreover a ∈ Ns − {0, 1, ϕ(1)} such that
ϕ(a) 6= a, and b ∈ Ns − {0} such that ϕ(b) = b.

Algorithm

Step 1 Diagonalize K as in (1).

Step 2 If r > n− r, change K to −K and rearrange adequately as in Step 1.

Step 3 For i = 1, . . . , r, compute s2i−1 = ti + ti+r and s2i = −ti + ti+r.

Step 4 For i = 2r + 1, . . . , n, set si = ti.

Step 5 Solve the linear systems Syi = ei, where ei are the canonical basis vectors
of Rn for i = 1, . . . , n.

Step 6 Compute Pi = siy
T
i for i = 1, . . . , n.

Step 7 For i = 1, . . . , r, compute Qi = ωP2i−1 + ωϕ(1)P2i.

Step 8 Compute A =
∑r

i=1Qi +
∑n

i=2r+1 Pi.

End

3 Numerical examples

In this section we present some numerical examples in order to show the performance
of our algorithm. The algorithm has been implemented by using MATLAB R2010b.
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Example 1 s = 2, n = 4, D4

K =









1.2989 −1.2069 3.5632 3.0460
1.3793 −2.7241 4.1379 4.8276

−0.2759 1.3448 −3.8276 −3.9655
0.6437 −2.1379 4.5977 5.2529









A =









−0.3820− 0.0731i 1.2435− 0.0853i −0.9103 + 0.4877i −0.9834 + 1.1582i
0.3657 + 0.5202i 0.6035− 0.4145i −1.0241− 0.3251i −1.0180 + 0.4064i

−0.2845− 0.1300i 0.4145− 0.7803i 0.0894 + 0.7884i −0.6421 + 0.9591i
0.3657 + 0.5202i −0.1036 + 0.2926i −1.0241− 0.3251i −0.3109− 0.3007i









Example 2 s = 2, n = 5, D5

K =













1.4023 0.6228 0.3946 0.2166 −0.1702
−0.0290 0.2147 −0.9323 0.2921 0.1277
−0.6180 −1.3269 −0.0580 −0.1789 0.3191
−2.3269 −1.3810 0.4294 −1.1760 0.6383
1.1779 1.0832 0.2515 0.9420 0.6170













A =













−1.1912− 0.1115i −1.3429 + 0.6127i 0.1868− 0.5649i −1.2304 + 0.3207i 0.0331− 0.0752i
0.5194 + 0.0841i 1.0709 + 0.2968i −0.0923 + 0.1573i 0.3341− 0.2811i −0.0226 + 0.1956i
0.1227− 1.0996i 0.5879− 0.9136i −0.8167 + 0.4445i 0.4375− 0.8097i 0.4258 + 0.0301i
0.1996− 0.5314i 0.3129− 1.5127i −0.2300 + 0.1792i 0.9591− 0.4493i 0.2046 + 0.0752i

−0.3164 + 0.0410i −0.0175 + 0.4035i −0.1457− 0.0957i −0.0577 + 0.2941i 0.9779− 0.1805i












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Abstract

Modern GPUs (Graphics Processing Units) are becoming more relevant in the world
of HPC (High Performance Computing) thanks to their large computing power and rel-
ative low cost, however their special architecture results in more complex programming.
To take advantage of their computing resources and develop efficient implementations
is essential to have certain knowledge about the architecture and memory hierarchy. In
this paper we use the FFT (Fast Fourier Transform) as a benchmark tool to analyze
different aspects of GPU architectures, like the influence of the memory access pattern
or the impact of the register pressure. The FFT is a good tool for performance analysis
because it is used in many real applications that require digital signal processing and
has a good balance between computational cost and memory bandwidth requirements.
The work presents a comparison of two CUDA architectures to analyze the evolution of
the memory hierarchy, studying which are the most efficient solutions for each case.

Key words: Signal processing, performance analysis, FFT, GPGPU, CUDA.

1 Introduction

The specialized hardware design of modern GPUs (Graphics Processing Units), optimized
for running graphics tasks, can perform much faster than normal CPUs (Central Processing
Units) in many general purpose parallel applications. However, from a programmabil-
ity standpoint, GPU programming is still complex as it requires special languages (like
NVIDIA’s CUDA [12] or OpenCL [8]) that often expose some limitations or hardware spe-
cific features. This restricts the flexibility of GPUs and forces the programmer to have
some knowledge about the hardware to efficiently exploit the GPU resources. GPUs ex-
pose different memory types (like global, local, shared, constant and texture memory) and
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let the user decide some advanced options like cache configuration. Due to the fast GPU
evolution, the execution parameters or the most suited algorithm may even vary from one
hardware generation to another. Even standard languages for heterogeneous computing,
like OpenCL, may require different implementations depending on the underlying hardware
to obtain a good efficiency, specially if we consider or require specific vendor extensions.

Detailed hardware specification and theoretical performance study provide information
that can be used by the programmer in the optimization of applications. Many works
were proposed about the elaboration of models for GPU performance analysis [15, 14] and
automatic performance tuning [6]. Other works study concrete GPU architectures through
micro-benchmarks [16, 2, 13]. However, empiric performance analysis of real applications
also has great interest, as it provides valuable information to the programmer. Thanks to
the study of real algorithms and applications it is possible to have a more general view of
the architecture as a whole. For example, for CPUs there are well-known benchmarks, like
the SPEC (Standard Performance Evaluation Corporation) suite. Currently, there are no
standard benchmarks for GPU computing, and usually only very specific applications that
take fully advantage of the hardware are studied.

The FFT is a very important operation for many applications, such as image and digital
signal processing, filtering and compression, partial differential equation resolution or large
number manipulation. There are several efficient proposals for CPUs like [4, 3, 9, 10]
and a few GPU FFT implementations have started to appear, like [1], [5] or NVIDIA’s
CUFFT. The FFT algorithm has a fair computational cost, as well as notable bandwidth
requirements with good flexibility in the memory access pattern and data distribution,
which makes it an adequate tool for performance analysis. In this work a CUDA based
FFT implementation is used to analyze the different memory types. This implementation
is not centered on obtaining the highest performance, but it was designed focusing on
flexibility to allow this analysis. More specifically, the FFT is used as a tool to study
several performance aspects of the memory hierarchy in two NVIDIA GPUs, the GeForce
280, based on the Tesla architecture, and the GeForce 480, based on the Fermi architecture.
Both GPUs were compared to find out the performance limiting factors and the most
appropriate implementation strategies for each architecture.

This work is structured as follows. Section 2 introduces the architecture of the GPUs
used in this work. Section 3 describes the different implementations of the FFT using
CUDA. In Section 4 the experimental results are shown. Finally, in Section 5, the main
conclusions are summarized.

2 NVIDIA CUDA GPU Architecture

NVIDIA GPUs are based on the CUDA architecture (Computer Unified Device Architec-
ture) [12], which enables the execution of general purpose code on the GPU offering great
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performance in tasks where a high degree of parallelism can be exploited. Each chip has
several independent processing clusters, which are composed by a set of SMs (Streaming
Multiprocessors). Each SM consists of many SPs (Streaming Processors), which process
instructions in a SIMD fashion (Single Instruction Multiple Data). The number of SMs and
SPs can vary for each specific model. CUDA GPUs have a specialized architecture with
several memory types and distinct properties, that will be described.

The main memory of GPUs is the global memory. It can be accessed from all the SPs in
every SM. Depending on the model it can accommodate one or more GB. It has two orders
of magnitude more latency than on-chip memory, however it is optimized to simultaneously
handle a lot of memory requests providing a considerable large aggregate bandwidth.

The fastest memory access is provided by hardware registers. GPUs have much more
registers than CPUs, for instance, in the case of the Fermi architecture there are about 2
MB of registers, while current CPUs only have a few KB.

GPUs have a small memory within each SM that is common to a group of SPs and
can be concurrently accessed by several threads. This shared memory is much faster than
global memory but it offers less effective bandwidth than registers. It can be used as a
user-managed cache to reduce the number of slow global memory accesses, to communicate
several threads within a group so they can collaborate in a given task, or simply to tem-
porally store data and reduce register pressure. Physically this memory is distributed in
banks, and if several threads within a warp try to access different locations within the same
bank, a bank conflict occurs and the access is serialized. While the Tesla architecture has
16 KB of shared memory per SM, Fermi allows the user to choose between having either 48
KB of shared memory but only 16 KB of L1 cache, or just 16 KB of shared memory and
48 KB of L1. Furthermore, the Fermi architecture has improved memory hierarchy with
the addition of general L2 cache.

GPUs commonly store the texture data in the device global memory and access it using
an spatially coherent access pattern. To render smooth graphics they sample textures using
data spatial interpolation and decompression on the flight. For this purpose, GPUs have
dedicated hardware with a texture cache. The texture memory can be read by all the SPs.

Finally, constant cache is a fast on-die memory and can be read by all the SPs, however
it cannot be modified by the GPU kernels, only by the CPU.

3 FFT benchmarks using CUDA

To analyze the performance of the different storage types in the Tesla and Fermi GPU
architectures a set of different FFT proposals were executed in CUDA. The FFT requires
a significant amount of computation, and using transforms of different sizes and distribu-
tions [7, 11] it is possible to study several influence factors separately. Our implementation
is based on the Cooley-Tukey algorithm [7], characterized by its regular structure and easy
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implementation. This algorithm performs a bit-reversal operation at the beginning of the
process, and then it operates on the data in pairs while increasing the stride in each stage.

In our FFT benchmarks each thread calculates an independent FFT and each block is
composed by Tb threads which operate on different input data in batch mode. Therefore,
we have developed a set of kernels for each signal, N = {4, 8, 16, 32}. All FFT kernels are
recursively subdivided into smaller problems until reaching the base case of N = 2. Twiddle
factors wik

N are stored in constant memory. This memory can be used to store commonly
used values or the result of precalculated formulas, thus avoiding redundant computations
or expensive global memory requests. Constant memory can store up to 64 KB of data,
being optimized for broadcast memory access, where many threads read the same location,
otherwise the requests may be serialized.

Figure 1 shows an example of the kernel used to compute the FFT for a signal of
N = 8 data. It presents a complex input signal which can be processed in either registers
or shared memory, recursively performing an in-place FFT (subkernels in lines 2, 9 and
18). Global and texture memory can also be used directly as inputs for the FFT time
kernel (line 32), however in our tests data will reside locally in the SPs before calling the
FFT. FFT time is part of a bigger function FFTy (see Figure 2), which is the main kernel
that manages the storage type and will be called by the host. In line 5 FFTy reads the
stride that will be used to access the different input signals within the batch, and in line 6
this stride is used to obtain a pointer to the problem that will be processed by the current
thread. Following, the memory to store the signal is reserved, either using shared memory
(lines 9 and 10) or registers (line 12), and then the data is copied to the current thread
from texture memory (line 16) or global memory (line 18). Next, the FFT is performed,
calling a forward FFT function (line 23) or a reverse and scale function (lines 25 and 26)
depending on the direction DIR, which is a compile-time parameter. Finally, in line 29 the
data is copied back to global memory. In line 32 the template FFTy (line 1) is instantiated
with different parameters in a table of function pointers.

Table 1 depicts some information for each kernel compiled for CUDA 1.3 and 2.0 ca-
pabilities using the verbose flag –ptxas-options=-v and allowing the compiler to take as
many registers as necessary, up to a maximum of 127 registers per thread for the Tesla
architecture and 63 registers for Fermi. If the maximum number of registers is reached, the
compiler will resort to local memory to supply enough space for the private thread data, for
example Fermi will require 16 bytes of local memory for N = 16 and 336 bytes for N = 32.
Table 1 also displays information about the total constant memory reserved by the kernel
(expressed in bytes), for example used by twiddle factors.

Our tests will be executed with Tb = 32 threads per block. The utilization with just 32
threads may seem rather low but, according to our tests, in most cases there is no significant
advantage using 64 threads per block, and with 128 a small performance drop is experienced.
Also note that the amount of shared memory in some of the tests may be too tight, thus
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Figure 1: FFT kernel for N=8 Figure 2: General kernel template

Table 1: Compiler information for the FFT kernel
Tesla (CUDA cap. 1.3) Fermi (CUDA cap. 2.0)

N Registers Const (bytes) Registers Const (bytes)
4 14 4 18 0
8 28 12 36 4
16 58 28 63 12
32 123 56 63 28

restricting the maximum block size, so a common size of 32 was used for all the executions.
Using just 32 threads it is possible to take advantage of the maximum number of registers
allowed by the architecture without resorting to local memory, and if enough resources are
available the GPU will be able to transparently execute several blocks per SM.

Following, three decisive parameters will be analyzed for an optimal CUDA implemen-
tation: Local Data SPs, storage type for input data, and access pattern of global data. The
different configurations considered in our tests are shown in Figure 3. Each test will be
assigned a three letter code according to its configuration parameters. For example, STC
will mean that the test was performed using Shared memory, reading data from Textures
with a Coalescent memory access pattern.

With respect to the register-based solution (R), a key feature of this implementation is
how the register pressure of an algorithm may affect performance. As more registers than
the maximum allowed by the compiler configuration or available in the architecture are
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Figure 3: Test configuration

required, local memory is allocated. Local memory is private in the scope of each thread
and offers quite poor performance on Tesla because at the hardware level is implemented
using normal uncached global memory, but on the Fermi architecture the access is cached.

In the shared memory implementation (S), to avoid bank conflicts the data is stored in
the shared memory using one element of padding between consecutive signals. This slightly
increases the amount of shared memory required by the test from N × Tb to (N + 1) × Tb

elements, but it is far more efficient.

Storage type for input data is also analyzed. There are two different memory spaces
accessible by all the SPs: Global (G) and Texture (T) memory. Texture memory can only
be used for reading data, but the texture cache is specially efficient if there are redundant
read operations or there is spatial coherency in the access pattern.

On the other hand, the impact of the memory access pattern and coalescence is studied
using two different data distributions. Coalescent memory access is used to group several
global memory requests in a single one, thus reducing effective bandwidth usage and also
pressure in the memory controller, that will receive less requests. In a coalescent access
pattern the tasks within a half-warp access data in the same memory segment, and in a non
coalescent access two or more tasks access different segments, so they are not performed
simultaneously. Figure 4 shows the two signal distributions used in this work. The first data
distribution (see Figure 4(a)) is a coalescent memory access pattern (C), where the data of
the input signals is stored sequentially, so each thread ti is assigned to read {xi0, xi1, . . . , xiN},
therefore the data read by the corresponding warp in each iteration is located in the same
segment. For example, the first read request of the first warp will be {xi0, x

i+1
0 , . . . , xi+32

0 }
(elements shaded in Figure 4(a)). The total amount of bytes required by the block will
be NB = Tb × N × 8 bytes per complex value, and the total number of read operations
is NB/128 bytes per transaction for aligned data. The second data distribution is a non-
coalescent pattern (N). Figure 4(b) displays this distribution in which each signal is stored
sequentially, so the accesses in the same segment are only segment size/N . For example, in
the case of Figure 4(b) (assuming N × batchx > segment size), the first read performed by
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(a) Coalescent (b) Non-coalescent

Figure 4: Memory access patterns

the first warp will be composed by the shaded elements {x00, x10, . . . , x
Tb
0 }, which in principle

will originate Tb read requests in different segments. Depending on the data alignment
and the hardware CUDA capabilities, a non-coalescent access may generate up to N × Tb

different memory requests per block. Both access patterns are important, as sometimes
applications may require complex changes in order to prevent non-coalescent data access.

4 Experimental results

All the tests were run in single precision using input signals in the range N = {4, 8, 16, 32}
and batch execution to perform several FFTs each time. The size of the batch depends on
the input size and is given by the expression b = 224/N , so as the input signal increases the
number of batch executions decreases. All the data resides on the GPU device memory at
the beginning of each test, so there are no data transfers to CPU during the benchmarks
to prevent interactions with the study of the memory hierarchy. The performance of the
experiments is measured in GFLOPS through the commonly used expression: 5Nlog2N · b ·
10−9/t, were N is the size of the input, b is the number of signals processed in batch mode
and t is the time in seconds.

Our test platform is composed by a Core 2 Duo E8400 processor running at 3.0 GHz
and 2 GB DDR3 1333 CL9 memory. Two GPUs were used for the tests, the GeForce 280
(based on the Tesla architecture) and the GeForce 480 (based on the Fermi architecture).
The software setup is Windows XP x64 operating system, using Microsoft Visual C++
2008 compiler (x64, release profile) and CUDA 3.0 SDK with the 260.99 GPU driver.

4.1 Registers vs Shared memory

The performance of the register implementation (RGC) is compared to the shared memory
version (SGC), using coalesced access to global memory. Figure 5 presents the results for
both the GeForce 480 and the GeForce 280 GPUs. First, we analyze the impact of the
two available cache configurations on the Fermi architecture (48 KB L1 + 16 KB shared

@CMMSE                                 Page 756 of 1703                                 ISBN: 978-84-614-6167-7



Performance evaluation of GPU memory hierarchy using the FFT

Figure 5: RGC vs SGC Figure 6: RGC vs RTC

memory vs 16 KB L1 + 48 KB shared memory).

Regarding the influence of the cache configuration on the Fermi architecture, for small
problems the difference using RGC is not significant, but for N = 16 the bigger L1 cache
configuration (48L1) offers a bit more performance, while SGC loses about a 12% for N = 8
and nearly a 50% for N = 16. For N = 32 this difference increases, using the 48L1 cache
configuration it is possible to improve the result in about a 33% in RGC, while losing 65%
of the performance for SGC. The big difference between cache configurations in this case
points to a limitation in the number of simultaneous blocks per SM : Each thread requires
enough shared memory to fit a whole FFT, thus more than 8 KB of shared memory are
reserved for N = 32 and only one block will be executed with 16 KB of shared memory,
so latency hiding techniques will not work as expected. The most efficient configuration
depends on the particular application, programs that were not designed to take advantage
of shared memory will probably experience performance gains with the additional L1.

Observe that nearly in all the cases (except for N = 4 in the GeForce 280 ), the per-
formance of RGC is always higher than SGC for both architectures (see Figure 5). For
example, for N = 16 RGC achieves 185 GFlops on the GeForce 480, while SGC obtains just
149 GFlops. The bandwidth of the shared memory is lower than the register bandwidth,
therefore it results in reduced performance for the SGC test. The results are quite similar
for small N , but if N increases the difference between SGC and RGC also increases. On
the GeForce 280 for N = 32 SGC barely reaches a 26% of the RGC performance, since
allocating such big portions of shared memory for a block will reduce too much the number
of simultaneous blocks per SM. Also observe how the performance improves for both archi-
tectures until N = 16 but then decreases for N = 32, about a 6% drop for the GeForce 280
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Figure 7: RGC vs RGN Figure 8: SGN vs STN

and more than a 40% for the GeForce 480. The number of operations per thread increases
with the size of the problem, therefore the GPU can make better usage of the execution
resources. However, if a thread has a big working set which does not completely fit in the
registers, its content is spilled to the next level in the GPU memory hierarchy, the slower
local memory. Additionally, when kernels require too many registers, less blocks may be si-
multaneously scheduled in the GPU. To avoid the performance degradation experienced for
N ≥ 32 due to the high register pressure, a different implementation where several threads
cooperate in the same problem would be more suited.

4.2 Global memory vs Texture memory

The second configuration parameter that will be studied is the impact of the choice be-
tween texture memory (RTC) and global memory (RGC). Only test results using register
configuration (R) are shown, as it was the best performing option according to Section 4.1.
As seen in Figure 6, the GeForce 480 experiences a small performance loss using texture
memory (under 5% for N ≤ 16 and a 25% for N = 32). According to the documentation,
the L1 data cache of Fermi has higher bandwidth than the texture cache. In contrast, for
the GeForce 280 the texture memory provides up to a 32% improvement over the global
memory version. This is the normal behavior, as on the Tesla architecture the global mem-
ory is uncached, so the texture cache can be used to reduce the number of memory fetches.
Furthermore, for the particular case of N = 32, RTC executed in the GeForce 280 is able to
outperform both RGC and RTC configurations on the GeForce 480, thanks to the greater
number of registers per thread available in Tesla.
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4.3 Coalescent memory access vs Non-coalescent

The last factor to study is the impact of the access pattern. In Figure 7 RGC and RGN test
configurations are compared. Changing the global memory access pattern to force a non-
coalescent access causes a performance drop in both architectures, albeit more noticeable
in the case of the GeForce 280, which become about seven times slower for some problem
sizes. Even with the advances in the Fermi architecture with the cached memory access,
there is a big performance impact for non-coalescent memory access and the GeForce 480
loses approximately half the performance. For example, for N = 16 RGN is more than 56%
slower than RGC, which is even lower than the GeForce 280 in the RGC test.

An interesting comparison is the impact of the coalescence when making heavy use
of shared memory and trying to minimize the performance cost of the uncoalesced access
through texture memory. In this sense, the texture cache can be exploited playing a similar
role to the L1 cache in Fermi. Figure 8 compares the performance of SGN and STN . Notice
how in this case (in contrast to Figure 6), texture cache memory improves performance for
the GeForce 480 when configured with just 16 KB of L1 at least in a 10%, because instead
of using L1 to minimize the coalescence problem it is possible to take advantage of the
texture cache for this work. For the GeForce 280 a similar behavior is observed except for
N = 32, where the dispersion of data and pressure on the texture cache is too big.

Figure 9: Best performing configurations Figure 10: Comparison of different solutions

4.4 Comparison with other state-of-the-art implementations

Figure 9 shows the performance of the best configurations for each tested GPU. Observe
that up to N = 16 the good scaling reveals that the limiting factor is not the computing
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power but the effective memory bandwidth, and the typical advantage of the newer GeForce
480 is about a 24%. For the particular case of N = 32 the limiting factor is the on-chip
memory and the opposite happens, the RTC configuration on the GeForce 280 offers a 14%
advantege over RGC in the GeForce 480, which needs to spill more data to local memory.

Finally, although the objective of this work was to define a FFT focusing on flexibility
and programmability instead of performance, observe that the resulting implementation is
very competitive for the addressed problem sizes. Figure 10 compares our RGC imple-
mentation with the Spiral 6.0 library, the Brook+ GPU version presented in [5], and the
CUFFT 4.0. As can be observed, GPU based solutions offer a clear advantage over CPU
implementations (in this case Spiral, but other solutions like the Intel IPP library [3] offer
very similar performance), resulting at least twelve times faster. Furthermore, the FFT
proposed in this work is slightly faster than the CUFFT for small signals up to 16 elements.

5 Conclusions

In order to keep scaling further, GPU memory hierarchy is becoming more complex. Cur-
rently, there are no standard benchmarks for GPU architectures, and the utilization of real
applications provides valuable information. The FFT is a very important operation part
of many applications, and in this work it was used as a tool to study the different memory
types of the Tesla and Fermi architectures. Our analysis was focused in three configuration
parameters: local data SPs, global data device memory, and access pattern. It was observed
that, when applicable, the performance of the register based solutions is better than shared
memory due to the higher register bandwidth. The use of texture cache was also studied,
resulting in better performance on Tesla but lower performance on Fermi, except when
only 16 KB of L1 were selected. It also was proved how the access pattern can have a huge
performance impact, even considering the global memory cache in the Fermi architecture.
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Abstract

The main aim of this paper is the construction of a self-consistent second order
theory about the potential of the equilibrium configuration of celestial deformable
extended bodies. The classical Clairaut method to solve this problem involves con-
vergence problems in a point of a specific layer arround the equipontial surface that
contains the referred point. To solve this problem a method based on the analytical
expansions has been developed. This new theory is applied to a particular case of
the equilibrium configurations in close binary systems

Key words: Celestial Mechanics, Perturbation Theory, Potential Theory, Com-

putational Algebra.
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1 Introduction

The main aim of this paper is the study of the equilibrium configurations of the com-
ponents of a close binary system. This equilibrium state implies that the system is
rotating like a rigid body [1],[5]. This condition is given when each component of the
system reach the hydrostatic equilibrium.

dP = ρ dΨ (1)

where P is the pressure, ρ the density and Psi the total potential.

To study a component of a close binary system it is convenient to use a coordinate
system OXY X defined as: O is the centre of mass of the component, the axe OX is
running from the centre of mass of the system, the axe OZ is parallel to angular rate
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−→ω and the axe OY is chosen in order to define a direct thrihedron OXY Z. In this
system the total potential Ψ is given by

Ψ = Ω + Vc + Vt (2)

where Ω is the self-gravitatory potential due to the primary component, Vc is the
centrifugal potential due to the rotation, and Vt is the tidal potential due to the other
component of the system [7].

To integrate these equations may be completed with an equation of state P = P (ρ)
which connect pressure and density. The hydrostatic equilibrium condition implies the
coincidence between the equipotential, the isobaric and the isopycnic surfaces. To solve
this problem, the Clairaut method [4] will be applied.

Let be (r, θ, λ) the spherical coordinates defined through x = r cos λ cos θ, y =
r sinλ cos θ, z = r sin θ, and let be (r, θ, λ) the spherical coordinates of a point in the
primary component. The potential in the referred point due to the primary component
is given by

Ω = G

∫

D

dm′

∆
(3)

where (r′, θ′, λ′) are the coordinates of an arbitrary point in the primary component,
dm′ = ρr′2 cos θ′dr′dθ′dλ′ the element of mass of that point, and C the space region
occupied by the primary component. The inverse of the distance can be written as

∆2 = r2 + r′2 − 2r r′ cosγ, where γ is the angle between the vector radius −→r , and
−→
r′ .

The inverse of the distance can be given by

1

∆
=





1
r′

∞∑
n=0

(
r
r′

)n
Pn(cos γ) r < r′

1
r

∞∑
n=0

(
r′

r

)n

Pn(cos γ) r′ < r
(4)

and from this equation

Ω =
∞∑

n=0

Unrn +
∞∑

n=0

Vnr−n (5)

where

Un = G

∫ r1

r

∫ π

2

−
π

2

∫ 2π

0
ρr′1−nPn(cos γ) cos θ′dr dθ′ dλ′

Vn = G

∫ r

0

∫ π

2

−
π

2

∫ 2π

0
ρr′n+2Pn(cos γ) cos θ′dr dθ′ dλ′ (6)

The equipotential surfaces can be parametrized as r = r(a, θ, λ) where each of these
surfaces is determinated by a value of a and the total potential is given by Ψ = Ψ(a). In
general, the radius r of the equipotential surface of the parameter a can be developed
as

r = a

(
1 +

∞∑

n=0

n∑

m=−n

fn,m(a)Yn,m(θ, λ)

)
(7)
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where fn,m(a) are called amplitude functions, and Yn,m(θ, λ) the spherical functions
[2]. For symmetry reasons, Fn,m(a) = 0 if m < 0 or n + m is even.

Classical methods [4], [5], [6] assume that the equations (6) can be rewritten accor-
ding to the Clairaut coordinates (a, θ, λ) as

Un =
G

2 − n

∫ a1

a

ρ
∂

∂a′

∫ 2π

0

∫ π

2

−
π

2

r′2−n Pn(cos γ) cos θ′ dθ′ dλ′ da′ if n 6= 2

U2 = G

∫ a1

a

ρ
∂

∂a′

∫ 2π

0

∫ π

2

−
π

2

ln r′ P2(cos γ) cos θ′ dθ′ dλ′ da′

Vn =
G

n + 3

∫ a

0
ρ

∂

∂a′

∫ 2π

0

∫ π

2

−
π

2

r′n+3 Pn(cos γ) cos θ′ dθ′ dλ′ da′ (8)

These methods assume the desideratum of Laplace [3],[9] about the convergence series.

2 Analytical method

In this section a new method to solve the proposed problem is presented; this new
method does not require the use of the Laplace conjecture. Let S the equipotential
surface that contains the point of Clairaut coordinates (a, θ, λ). The self-gravitational
potential Ω can be obtained as

Ω = G

∫ a

0

∫ π

2

−
π

2

∫ 2π

0

1

∆
dm′ + G

∫ a1

a

∫ π

2

−
π

2

∫ 2π

0

1

∆
dm′ (9)

Let us define Σ =
∞∑

n=0

∞∑
m=0

fn,m(a)Yn,m(θ, λ) and so, r = a + aΣ. Classical method

involves convergence problems in the development of 1
∆ in the region r′ ∈ [m,M ],

where m, M are the minimum and the maximum values of the set {r′(a′, θ, λ), θ ∈
[−π

2 , π
2 ], λ ∈ [0, 2π]}.

Let us define T (a, a′, cos γ) [8] as

T (a, a′, cos γ) =
1√

a2 + a′2 − 2 a a′ cos γ
(10)

the inverse of the distance 1
∆ can be approach up second orden in amplitudes by

1

∆
= T (a, a′) + Ta(a, a′)aΣ + Ta′a′Σ′ + Ta,aa

2Σ2 + 2Ta,a′ a a′ΣΣ′ + Ta′,a′a′2Σ′2 (11)

where subindex a, a′ denote partial derivative. To evaluate the partial derivatives it is
necessary to use the developments

T (a, a′, cos γ) =





1
a′

∞∑
n=0

(
a
a′

)n
Pn(cos γ) a < a′

1
a

∞∑
n=0

(
a′

a

)n

Pn(cos γ) a′ < a
(12)
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Replacing the developments of Σ and Σ′ up to second order in amplitudes, and replacing
the products of spherical functions by their developements, according to these ones, by
integration we obtain the development

Ω =
∞∑

n=0

n∑

m=0

Ωn,m(a)Yn,m(Θ, λ) (13)

3 Concluding remarks

The method presented here allows us to obtain the value of the autogravitatory po-
tential up to second order in amplitudes without using the Laplace conjecture. This
method is suitable to be extended up to third of higher order.
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rium in close binary systems, Celestial Mechanics and Dynamical Astronomy 53,
pp 311-322, 1992.
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Abstract

In this work, we present a heterogeneous solver of the Fast Multipole Method
(FMM) applied to acoustic scattering. The developed tool supports multiGPU
configurations. The GPU deals with compute-bound parts of the FMM meanwhile
the CPU tackles the memory-bound part. We have evaluated the accuracy of the
developed approach using a direct solver as a reference. Finally, the performance
of the implemented tool is measured on a workstation with 2 NVIDIA GTX 480
GPUs. Time to solution is reduced an order of magnitude compared to our opti-
mized parallel CPU solver.

Key words: Heterogeneous, GPGPU, BEM, GMRES, Fast Multipole Method,
acoustic scattering.

1 Introduction

The design of silent aircraft configurations to reduce the environmental noise [1] stim-
ulates the implementation of accurate and efficient mathematical models that simulate
the acoustical behavior of the system.

The Boundary Elements Method (BEM) [2] is low-frequency method that provides
a precise numerical formulation of acoustic scattering problems. Nevertheless, the
solution of the linear system produced by the BEM may be very expensive from a
computational viewpoint. The direct solution of the above-mentioned linear system,
with N equations and N unknowns, has a time cost O

(
N3

)
and a memory cost O

(
N2

)
.

The use of iterative solvers reduces the time cost to O
(
N2

)
per iteration (a Matrix-

Vector Product –MVP– is computed in each iteration). The computation of the whole
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system matrix may be avoided by the use of the Fast Multipole Method (FMM) [3, 4]
which yields a dramatic reduction in the iteration time without significantly affecting
the solution accuracy.

Nowadays, one of the most outstanding trends in High Performance Computing
is the spreading of heterogeneous computing. For the last years, researchers involved
in scientific and technical computing have been trying to improve the performance
of computational simulations by means of using specialized processors like graphics
processing units (GPUs). In this manner, initiatives like general-purpose computation
on graphics hardware (GPGPU [5]) are getting closer to the mainstream. Since modern
GPUs have been demonstrated to be suitable for problems with large computational
requirements that are prone to parallelism [6], acoustic scattering problems seem a good
field to put into practice GPGPU.

In this work, we present a heterogeneous acoustic scattering solver with multiGPU
support that enhances the solver proposed by the authors in [7]. BEM is used to
model numerically the physical problem. In order to iteratively solve the linear system
of equations posed by the BEM, we have chosen the Generalized Minimum Residual
(GMRES) method [8] due to its robustness for acoustic scattering [9]. In addition, we
speed up the GMRES solution by means of the FMM.

2 Physical problem and the Fast Multipole Method

In this work, we try to predict the acoustic pressure on the space surrounding a 3-D
obstacle impinged by an acoustic wave. We use the integral form of the Helmholtz
equation [2], also known as Conventional Boundary Integral Equation (CBIE), com-
bined with its normal derivative [10] to model the acoustic problem. This formulation
is commonly known as the Burton and Miller equation [10] and overcomes the non-
uniqueness difficulty [10] that appears in the CBIE at resonant frequencies. In addition
we use the BEM to discretise, over the obstacle surface S, the Burton and Miller equa-
tion into N facets. In this manner, the problem is formulated in terms of a linear
system of N equations. The size of the problem, N , is proportional to the acoustic size
of S and, therefore, it increases with the frequency squared

(
f2

)
.

In order to efficiently solve the linear system of equations posed by the BEM, we
use the GMRES method [8] in addition to the FMM that speeds up the computation
of the GMRES iterations. In the setup step, the FMM makes Ng groups from the N
facets (elements) of the problem. On the one hand, the interactions between elements
that pertain to non-neighboring groups, far interactions, are efficiently calculated by
means of the Addition Theorems and plane wave decomposition [11] performing three
operations: aggregation, translation, and disaggregation. On the other hand, the in-
teractions between elements that pertain to nearby groups, those that share at least a
border point, must be computed directly [3].
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3 Heterogeneous FMM solver with multiGPU support

Since three of the FMM steps (near interactions, aggregation, and dissagregation) are
compute bound, they are the best candidates to be performed using GPUs. On the
contrary, the remaining step (translation) is memory bound due to the translation
operator size, so it is most suitable to be performed in the CPU. We have proved
that this approach delivers a better performance than the strategy followed in [7]. To
fully exploit NVIDIA1 latest generation GPUs (Fermi), the Compute Unified Device
Architecture (CUDA) API is used to tackle the computation of the accelerated steps.

One of the most time-consuming parts of the FMM is the computation of the
near interactions. To perform this step, we have developed a kernel with a fine grain
approach. In this manner, each CUDA thread tackles the near interactions of a single
element, in a cyclic manner, until all the contributions are calculated. When compiling
the kernel with the parameter “-arch=sm 20” to match the Fermi architecture, the
nvcc compiler reports a register file usage of 63 registers per thread. Moreover, since
the memory accesses are mostly data dependent, we configure the kernel with L1 cache
preference, that is, 48 KB of L1 cache. Finally, by means of several experimental tests,
we have verified that this kernel achieves the best performance when using 1024 blocks
with 256 threads per block.

Just like the near interactions, the translation is also very expensive in terms of
runtime. Although we have decided to keep the translation in CPU, our approach
delivers a significant performance gain due to computing overlapping. The translation
is performed in CPU, whereas the calculation of the near interactions is performed in
GPU. Moreover, this step is related to the far field contributions, whereas the near
interactions are related to the near field contributions. Thus, the calculation of both
translation and near interactions is totally independent. As a consequence, both steps
may be done in parallel, at the same time, allowing an efficient use of the available
resources.

In order to tackle the aggregation, we have developed a kernel that also operates at
a fine grain level. In this case, each thread tackles the operations related to one single
direction, in a cyclic manner, until all the aggregated contributions (each direction for
every group) are computed. When compiling the kernel for devices with computing
capability 2.0, the compiler shows a register file usage of 51 registers per thread. In
this FMM step, the memory accesses are also data dependent, so L1 cache preference
configuration yields best performance. Thanks to experimentation, we have checked
that using 1024 blocks and 192 threads per block leads to best runtime in this kernel.

The last FMM step is the disaggregation which is performed in GPU. The kernel
developed to deal with this step also uses a fine grain approach, so each CUDA thread
tackles the disaggregation of a single element at a time, in a cyclic manner, until all the
far interactions are calculated. With regard to resource use, the register file usage is 42
registers per thread when compiling for Fermi type devices. Furthermore, this kernel
also benefits from the L1 cache preference. Finally, taking into account the conducted

1http://www.nvidia.com/
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tests, we have verified that this kernel yields the best performance when using 1024
blocks with 128 threads per block.

With the aim of reducing even further the runtime, we have decided to add support
for multiple GPUs, since it is useful for the solution of real problems (usually with
millions of unknowns). In order to deal with multiple GPUs, the outermost loop in
each kernel is divided into disjoint subsets of adjoining items (elements or directions),
using so many subsets as used GPUs. In this manner, each GPU tackles its part of
the workload without dependence on data stored in the rest of GPUs, avoiding costly
communications between host and devices.

4 Validation and computational results

The results shown in this work have been obtained by using a workstation with GPGPU
capabilities. This workstation consists of an Intel Core i7 930 CPU (4 cores at 2.8 GHz),
12GB of DDR3 RAM, and 2 NVIDIA GTX 480 GPUs. Each GTX 480 has 480 cores
running at 1.4GHz and 1.5 GB of GDDR5 RAM. On the software side, Intel icc 11.1
and NVIDIA nvcc 3.1 have been used to compile the source code for CPU and GPU,
respectively. Since the workstation CPU has 4 cores with Hyper-Threading, we have
used 8 threads to perform the computation that takes place in the CPU. It is also worth
noting that single-precision arithmetic is used throughout our codes.

In order to demonstrate the correctness of our heterogeneous implementation, we
have compared some results against a direct solution implementation. Since the direct
solution is prohibitive in terms of time, O(N3), and memory, O(N2), the chosen prob-
lem has a moderate size. The problem entails the analysis of a 2m diameter sphere
with an impinging plane wave at 950 Hz (N = 10 106 elements). The accuracy of the
implementation is evaluated taking into account different values for the residual error
(ε), which is defined as follows:

ε =

∥∥∥ ¯̄Kp̄− ḡ
∥∥∥

2

‖ḡ‖2

, (1)

where ‖·‖2 is de euclidean norm (norm-2), ¯̄K is the system matrix (stiffness matrix), ḡ is
the excitation vector (related to the incident pressure), and p̄ is the final iterate (solution
pressure). Both the relative error (η) and the Root Mean Square Error (RMSE) (σ)
are used to measure the difference between our heterogeneous FMM implementation
and the direct solution:

η =

∥∥p̄(d) − p̄(f)
∥∥

2∥∥p̄(d)
∥∥

2

, σ =

√√√√ 1
N

N∑

i=1

∣∣∣p̄(d)
i − p̄

(f)
i

∣∣∣
2
, (2)

where N is the number of elements or unknowns, p̄(d) is the solution pressure obtained
with the direct solution, and p̄(f) is the solution pressure obtained by using our FMM
implementation.
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Problem size Stop condition # of iterations ε η σ

N = 10 106

ε ≤ 10−2 5 7.7 · 10−3 9.6 · 10−3 1.3 · 10−2

ε ≤ 10−3 9 7.1 · 10−4 8.6 · 10−4 1.2 · 10−3

ε ≤ 10−4 13 6.3 · 10−5 7.7 · 10−5 1.1 · 10−4

ε ≤ 10−5 16 9.8 · 10−6 5.5 · 10−5 7.7 · 10−5

Table 1: Accuracy of the heterogeneous implementation of the FMM vs direct solution.

In table 1, some results related to the accuracy of the proposed solution are
shown. The achieved accuracy is enough when the target residual error is up to 10−4,
which is usually the case. If a residual error less or equal than 10−5 is required then
single-precision arithmetic seems insufficient. In such cases, double-precision arithmetic
should be more adequate.

In order to show the computational achievements, two different 3D objects (scat-
terers) have been analysed. The first object is a real size model of an aircraft (Airbus
A300 series). This scatterer has been used to obtain the distribution of the acoustic
pressure at two different frequencies, 500Hz and 1000Hz. Thus, two different triangu-
lar meshes have been generated to model the aircraft (each triangle corresponds to one
unknown of the problem). One consists of 533 176 triangles (500 Hz), and the other one
consists of 2 132 704 triangles (1000 Hz). The second object is a 2 m diameter sphere,
which has been also analysed at two different frequencies, 4 kHz and 8 kHz. Therefore,
two different meshes must be used to model the sphere, one mesh of 750 004 triangles
(4 kHz) and another one of 2 999 428 triangles (8 kHz).

A300 (N = 533 176) A300 (N = 2 132 704)

System Iteration Total Iteration Total

1CPU 54.5 5 347.0 401.3 64 201.6
1CPU + 1GPU 4.4 440.8 32.3 5 218.7
1CPU + 2GPU 3.0 304.7 23.0 3 724.1

Table 2: A300 model analysis runtime, per iteration and total (in seconds).

The tables 2 and 3 are used for comparing the runtime of a parallel CPU implemen-
tation to the runtime of the heterogeneous solver presented in here. It is remarkable
that, in all the test cases, the use of a GPU delivers an order-of-magnitud performance
gain. The best case (A300 with 2 132 704 elements) achieves a 12.3x speedup over the
CPU, whereas the worst case (sphere with 750 004 elements) results in a 11.2x speedup
over the quad-core processor. It is also worth noting the performance gains over the
CPU when using two GPUs, that vary between 14.5x and 17.5x.
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Sphere (N = 750 004) Sphere (N = 2 999 428)

System Iteration Total Iteration Total

1 CPU 87.0 1 125.8 641.5 9 634.5
1CPU + 1 GPU 6.8 100.2 50.0 815.7
1CPU + 2 GPU 5.1 77.8 37.1 615.7

Table 3: Sphere analysis runtime, per iteration and total (in seconds).

5 Conclusions

In this work, we present a heterogeneous solver based on FMM for acoustic scattering
problems. We use the CUDA API to take advantage of latest NVIDIA GPUs (Fermi).
The most outstanding result is the runtime reduction of an order of magnitude when
comparing a parallel CPU solver to the heterogeneous one presented in here. Further-
more, when using two GPUs, we achieve a speedup around 15x compared to a quad-core
CPU with Hyper-Threading (8 simultaneous threads). Thus, the solution developed
may be considered a useful engineering tool for noise control applications.
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TIN2010-14971—, and by “Cátedra Telefónica - Universidad de Oviedo”. Financial
support (grant: UNOV-10-BECDOC) given by the University of Oviedo is also ac-
knowledged. The Airbus A300 series geometry has been provided by the research
project GRD1-2001-40147 financed by the European Union.

References

[1] Advisory Council for Aeronautics Research in Europe, 2008 Addendum
to the Strategic Research Agenda, available online at: http://www.acare4europe.
org/ (2008).

[2] T.W.Wu, Boundary Element Acoustics, Advances in Boundary Elements, WIT
Press, 2000.

[3] V. Rokhlin, Diagonal Forms of Translation Operators for the Helmholtz Equation
in Three Dimensions, Applied and Computational Harmonic Analysis, vol. 1(1)
(1993) 82–93.

@CMMSE                                 Page 772 of 1703                                 ISBN: 978-84-614-6167-7
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Abstract

It is known that continental water storage and flux are not steady, regular pro-
cesses. Their variations are not uniform either in time or in space and they affect
climate, weather, land and the position of the geocenter, among other phenomena. By
using the Land Data Assimilation System (LDAS) model, we obtain a multidimensional
time series that represent the monthly variations of the geocenter position caused by
the continental water storage changes. After that, a non-linear harmonic analysis is
performed over the three one-dimensional time series in order to understand the peri-
odic behavior of the phenomenon. Finally, some conclusions are derived and we suggest
candidate causes of the changes in the geocenter variations detected.

Key words: Non-linear harmonic analysis, continental water flux, time series anal-
ysis, geocenter variations.

1 Introduction

The geocenter is defined as the center of mass of the Earth system, including the solid earth,
oceans, and atmosphere [6]. In a reference frame linked to the solid Earth and defined by
a set of mean geodetic station coordinates, the center of mass of the Earth system moves
because of mass redistribution inside the system [5].

On timescales ranging from intraseasonal to interannual, this mass redistribution mainly
results from fluid redistribution within and among atmosphere, oceans, continental water
reservoirs and ice sheets [5]. The question that needs to be answered now is to what extent
this redistribution of mass can affect the position of the geocenter. Several studies were
carried out about this issue [6, 7]. They concluded that the contribution of atmospheric
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pressure, ocean mass and continental waters produce an annual geocenter variation whose
amplitude is less than 5 millimeters (mm).

In this paper we show the results of the study of the behavior of the geocenter due
to the redistribution of the continental water. To carry out this task we have considered
the Land Data Assimilation System (LDAS) model produced by the Climate Prediction
Center (CPC) of the National Oceanic and Atmospheric Administration (NOAA). On the
other hand, the technique used for the analysis is based on the non-linear harmonic (NLH)
method developed by W. Harada and T. Fukushima [3], which allows the recursive detection
of frequencies and their associated amplitudes and phases as well as the secular mixed
Fourier terms when found in the signal.

2 Non-linear harmonic method

Let us consider a time series with N ∈ N observations, represented by {tn, dn}n=1,...,N where
dn is the measurement of the phenomenon we are interested in at epoch tn. Henceforth, in
order to facilitate subsequent calculations, given a time series, we will consider its temporal
translation {τn, dn}n=1,...,N where:

τn = tn −
t1 + tN

2
= tn − t1 −

T

2
(1)

where T = tN − t1 is the range of the time domain. The technique, which we will describe
briefly, is about fitting a time series using the least-squares method to a function of the
form:

hn =
L∑
l=1

al · ϕl (tn) (2)

where L ∈ N represents the number of basis functions {ϕl}l=1,2,...,L, and {al}l=1,2,...,L are
the linear coefficients to solve for. This set of base functions consists of:

1. Three polynomial functions which set up the trend of the series:

ϕ1 (τ) = 1 (3)

ϕ2 (τ) =
4τ

T
(4)

ϕ3 (τ) =

[
3 · (N − 1)

4 · (N + 1)

]
· ϕ2

2 (τ)− 1 (5)

2. A couple of Fourier terms for the angular frequency ωk:

ϕ2k+2 (τ) = sin (ωkτ) (6)

ϕ2k+3 (τ) = cos (ωkτ) (7)
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3. A couple of the so-called mixed secular terms for the frequency ωki :

ϕ2K+2i+2 (τ) = τ · sin (ωkiτ) (8)

ϕ2K+2i+3 (τ) = τ · cos (ωkiτ) (9)

for i = 1, 2, . . . , S. This kind of basis functions does not have to appear necessary in
the model for each frequency.

First, we assume that a trend (if necessary) and K angular frequencies ωk are al-
ready included in the functional model, the set of them being denoted as a vector ~ω(K) =
(ω1, ω2, . . . , ωK)T . Let us also consider W ′ =

{
ωkv ∈ ~ω(K)

}
v=1,...,S

, the subset of frequencies
already associated to mixed secular terms. We search additional frequencies that could be
added to the functional model by studying the Lomb periodogram of the residuals obtained
from the least squares fit of the temporary functional model.

A criterion is needed to guess which frequencies are linked to mixed secular terms and
which not, so as to construct our objective function. The procedure that allows us to
elucidate such an association is based on the Lomb periodogram and an extension of it.
The algorithm increases the number of frequencies one by one and adds them to the model.
First, we have to compute the spectrum of the Lomb periodogram, which is given by the
formula:

P (ω) =

[∑N
n=1 dn · sin (ωτn)

]2
∑N

n=1 sin2 (ωτn)
+

[∑N
n=1 dn · cos (ωτn)

]2
∑N

n=1 cos2 (ωτn)
(10)

The peak of this spectrum will point out a significant angular frequency to be included in
the model. In the next stage, when the Fourier term of the frequency is already selected as
a basis function, we compute the extended periodogram given by the equation:

Q (ω) =

[∑N
n=1 dnτn · sin (ωτn)

]2
∑N

n=1 τ
2
n sin2 (ωτn)

+

[∑N
n=1 dnτn · cos (ωτn)

]2
∑N

n=1 τ
2
n cos2 (ωτn)

(11)

If this maximum of the extended periodogram is larger than the maximum of the Lomb
periodogram, mixed secular terms will be linked to this frequency. In other case, we will
only select classic Fourier terms.

As we draw each frequency, an adjustment of the data is made by using the least-
squares method just to solve for the value of the linear coefficients {al}l=1,...,L. After each
estimation of these coefficients that we denote by ã = {ãl}l=1,...,L and before adding a new
angular frequency, we can regard the objective function of the least square problem for our
model as a function in the space of frequencies, that is:

φ (ã, ~ω) =

N∑
n=1

[
dn −

L∑
l=1

ãl · ϕl (τn, ~ω)

]2
= φ̂ (~ω)
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with ~ω ∈ RK . Therefore, our problem is reduced to a minimization problem (P1) that
depends non-linearly of the parameters, namely:

(P1) Min φ̂ (~ω)

s.t. ~ω ∈ RK (12)

To carry out this task we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
[1, 2] where we consider ~ω(K) as a seed point. Let us denote by ~ωs the solution of (P1).
Next stage deals with the adjustment of the model (2) to the data by considering ~ωs as a
vector of frequencies and by using the least squares method again. This cycle recurs until
the difference between the seed point and the solution of (P1) becomes small. After that,
we can continue extracting another frequency or we can stop the process if the weighted
root mean square of the residuals becomes smaller than a fixed level. We can also stop the
algorithm by reaching a preset number of frequencies given by the user.

3 Data

As we have already mentioned, we have used the data of the LDAS model to perform the
analysis of the variations of the geocenter due to the redistribution of continental water
mass. LDAS is forced by observed precipitation, derived from CPC daily and hourly pre-
cipitation analysis, downward solar and long-wave radiation, surface pressure, humidity,
2-m temperature and horizontal wind speed from the National Centers for Environmental
Prediction (NCEP) reanalysis. The output consists of soil temperature and soil moisture
in four layers below the ground. At the surface, it includes all components affecting energy
and water mass balance, including snow cover, depth, and albedo. The data1 represent
the monthly averaged soil water storage changes (in centimeters (cm) of equivalent water
thickness). They are provided on a 1x1 degree grid that covers the whole Earth’s surface
(although no estimate is provided over Antarctica) during the period of time ranging from
January, 1948 to December 2007.

We will consider each grid of data as a system of particles, where each one corresponds
to a 1x1 degree square and whose mass depends on its area and the amount of water in it.
The cartesian coordinates of the geocenter for this system of particles will be given by the

1Available at ftp://ftp.crs.utexas.edu/pub/ggfc/water/CPC/
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equations (see [6]):

X =
RE
ME

π
2∑

φ=−π
2

2π∑
λ=0

cosφ cosλ · L (φ, λ) ·∆s = RE · C1,1 (13)

Y =
RE
ME

π
2∑

φ=−π
2

2π∑
λ=0

cosφ sinλ · L (φ, λ) ·∆s = RE · S1,1 (14)

Z =
RE
ME

π
2∑

φ=−π
2

2π∑
λ=0

sinφ · L (φ, λ) ·∆s = RE · C1,0 (15)

In these expressions φ is the latitude (expressed in radians), λ is the East longitude (ex-
pressed in radians), ME = 5.9742× 1027 grams is the mass of the Earth, L (φ, λ) represents
the water storage (in cm of equivalent water thickness) of the region of the grid that con-
tains the point with coordinates (φ, λ), RE = 6.371 × 108 cm is the Earth’s mean radius
and ∆s is the area of the surface linked to L (φ, λ) given by the equation:

∆s = R2
E cosφ ·∆φ ·∆λ (16)

By using the equations (13)–(15) we build the scalar time series that represent the variations
of the geocenter in each cartesian coordinate due to the redistribution of continental water
mass.

4 Analysis and results

We have performed a non-linear harmonic analysis of each scalar time series, X, Y and Z
representing the cartesian coordinates of the center of mass of the continental water system.
The time domain considered goes from January 1970 to December 2007 (throughout 456
monthly observations). We extract up to 15 spectral lines for each component and we
consider a polynomial linear trend component to be included in the functional model.

After the analysis with the available routines created with MATLAB, we get the fol-
lowing results. The trend component for each coordinate is represented in Figures 1a, 1c
and 1e. Their analytical expressions are given by the equations:

TX (τn) = (0.7550± 0.0006) + (−0.0190± 0.0006) · ϕ2 (τn) (17)

TY (τn) = (0.2299± 0.0006) + (0.0056± 0.0005) · ϕ2 (τn) (18)

TZ (τn) = (1.3795± 0.0004) + (−0.0181± 0.0004) · ϕ2 (τn) (19)

where τn = tn − tc is a translation of the time domain centered on tc that corresponds to
mid-January, 1989 and ϕ2 (τn) is the basis function given at equation (4). The estimated
coefficients and uncertainties of the trend component are expressed in cm.
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Table 1: Fourier terms. Harmonic content for the variations on the X coordinate of the
geocenter. Columns refer to the extracting order, frequency (cycles per month), uncertainty
of the frequency (cycles per month), period (months) and coefficients (cm) linked to sinus
and cosinus terms, respectively.

No. f σf Π S C

1 0.083429 0.16×10−4 11.99±0.00 0.0644±0.0008 0.0086±0.0008
2 0.009690 0.43×10−4 103.20±0.46 -0.0186±0.0009 0.0162±0.0009
3 0.005511 0.43×10−4 181.44±1.40 0.0087±0.0009 -0.0047±0.0009
4 0.031854 0.48×10−4 31.39±0.05 -0.0013±0.0009 0.0014±0.0009
5 0.023275 0.84×10−4 42.97±0.15 0.0093±0.0009 0.0110±0.0009
6 0.020115 1.03×10−4 49.71±0.25 0.0110±0.0009 0.0010±0.0009
7 0.049815 0.78×10−4 20.07±0.03 0.0056±0.0009 -0.0120±0.0009
8 0.055741 0.99×10−4 17.94±0.03 -0.0109±0.0009 0.0063±0.0009
9 0.249955 1.02×10−4 4.00±0.00 0.0021±0.0008 0.0097±0.0008

10 0.027124 0.96×10−4 36.87±0.13 -0.0078±0.0009 0.0080±0.0009
11 0.039632 0.94×10−4 25.23±0.06 0.0058±0.0009 0.0080±0.0008
12 0.093058 1.04×10−4 10.75±0.01 0.0022±0.0008 0.0037±0.0008
13 0.062207 0.91×10−4 16.08±0.02 0.0013±0.0008 -0.0029±0.0008
14 0.016199 1.26×10−4 61.73±0.48 -0.0040±0.0009 -0.0073±0.0009
15 0.123874 1.14×10−4 8.07±0.01 -0.0008±0.0008 0.0001±0.0008

As far as the harmonic content is concerned, this is shown in Tables 1, 3 and 5. The
frequencies that are linked to mixed secular terms in each coordinate can be found in Tables
2, 4 and 6. Moreover, Figures 1b, 1d and 1f show the graphical of the residuals generated by
the model. In order to understand how the RMS is reduced as new parameters are added
to the model, we show the Figures 2a, 2b and 2c where this reduction is represented.

5 Conclusions

The estimated harmonic models are able to reduce the value of the RMS to 0.0168 cm, 0.0153
cm and 0.0117 cm for the X, Y and Z coordinates of the center of mass of the continental
water system. However, all models are not formed by the same number of parameters and
they not have the same harmonic content. Thus, the model for the X coordinate uses 57
parameters, whereas the model for the Y coordinate uses 51, and the Z-model includes 59
parameters. Those models are able to explain 71.92%, 82.48% and 83.05% of the variability
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Table 2: Same as Table 1 but for the mixed secular terms. It appears the extracting order,
period (months) and coefficients (mm) linked to the sinus and cosinus mixed secular term,
respectively.

No. Π SS CC

3 181.44±1.40 -1.485×10−4±7.0×10−6 4.93×10−5±8.0×10−6

4 31.39±0.05 1.074×10−4±6.6×10−6 7.58×10−5±6.9×10−6

12 10.75±0.01 4.75×10−5±6.4×10−6 -2.83×10−5±6.4×10−6

13 16.08±0.02 7.4×10−6±6.6×10−6 -6.40×10−5±6.6×10−6

15 8.07±0.01 -3.97×10−5±6.4×10−6 -3.96×10−5±6.4×10−6

Table 3: Fourier terms. Harmonic content for the variations on the Y coordinate of the
geocenter. Columns refer to the extracting order, frequency (cycles per month), uncertainty
of the frequency (cycles per month), period (months) and coefficients (cm) linked to sinus
and cosinus terms, respectively.

No. f σf Π S C

1 0.083343 0.09×10−4 12.00±0.00 -0.1061±0.0008 -0.0174±0.0008
2 0.166688 0.30×10−4 6.00±0.00 0.0272±0.0008 -0.0146±0.0008
3 0.008098 0.48×10−4 123.49±0.73 -0.0079±0.0008 0.0186±0.0008
4 0.011226 0.54×10−4 89.08±0.43 0.0136±0.0008 0.0147±0.0008
5 0.033622 0.61×10−4 29.74±0.05 -0.0098±0.0008 0.0138±0.0008
6 0.003636 0.74×10−4 275.02±5.56 0.0089±0.0008 -0.0101±0.0008
7 0.023732 0.51×10−4 42.14±0.09 -0.0048±0.0008 0.0054±0.0008
8 0.040596 0.75×10−4 24.63±0.05 0.0013±0.0008 -0.0009±0.0008
9 0.018081 0.77×10−4 55.31±0.23 0.0083±0.0008 0.0100±0.0008

10 0.013789 0.98×10−4 72.52±0.51 0.0006±0.0008 0.0115±0.0008
11 0.077288 1.11×10−4 12.94±0.02 0.0073±0.0008 0.0006±0.0008
12 0.045162 1.11×10−4 22.14±0.05 0.0089±0.0008 -0.0015±0.0008
13 0.036035 1.14×10−4 27.75±0.09 -0.0079±0.0008 -0.0024±0.0008
14 0.102659 1.43×10−4 9.74±0.01 -0.0015±0.0008 -0.0066±0.0008
15 0.050884 1.67×10−4 19.65±0.06 -0.0060±0.0008 0.0031±0.0008
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Table 4: Same as Table 3 but for the mixed secular terms. It appears the extracting order,
period (months) and coefficients (mm) linked to the sinus and cosinus mixed secular term,
respectively.

No. Π SS CC

7 42.14±0.09 8.11×10−5±5.8×10−6 -5.88×10−5±6.0×10−6

8 24.63±0.05 7.46×10−5±6.3×10−6 -6.1×10−6±6.4×10−6

Table 5: Fourier terms. Harmonic content for the variations on the Z coordinate of the
geocenter. Columns refer to the extracting order, frequency (cycles per month), uncertainty
of the frequency (cycles per month), period (months) and coefficients (cm) linked to sinus
and cosinus terms, respectively.

No. f σf Π S C

1 0.083337 0.09×10−4 12.00±0.00 -0.0534±0.0006 0.0626±0.0006
2 0.005061 0.17×10−4 197.59±0.66 -0.0019±0.0006 -0.0052±0.0006
3 0.014783 0.44×10−4 67.65±0.20 -0.0041±0.0006 0.0025±0.0006
4 0.021570 0.58×10−4 46.36±0.13 0.0081±0.0006 -0.0114±0.0006
5 0.166726 0.62×10−4 6.00±0.00 -0.0103±0.0006 -0.0040±0.0006
6 0.032726 0.51×10−4 30.56±0.05 -0.0144±0.0007 -0.0058±0.0007
7 0.030539 0.48×10−4 32.74±0.05 -0.0026±0.0006 0.0044±0.0006
8 0.055593 0.82×10−4 17.99±0.03 -0.0015±0.0006 0.0035±0.0006
9 0.042804 1.14×10−4 23.36±0.06 0.0069±0.0006 0.0022±0.0006

10 0.011200 0.98×10−4 89.29±0.78 -0.0059±0.0006 0.0059±0.0006
11 0.107123 0.95×10−4 9.34±0.01 0.0002±0.0006 -0.0008±0.0006
12 0.061892 1.23×10−4 16.16±0.03 -0.0055±0.0006 0.0008±0.0006
13 0.090079 1.02×10−4 11.10±0.01 -0.0026±0.0006 -0.0019±0.0006
14 0.026472 1.25×10−4 37.78±0.18 -0.0029±0.0006 0.0055±0.0006
15 0.068766 1.83×10−4 14.54±0.04 -0.0032±0.0006 0.0040±0.0006
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Table 6: Same as Table 5 but for the mixed secular terms. It appears the extracting order,
period (months) and coefficients (mm) linked to the sinus and cosinus mixed secular term,
respectively.

No. Π SS CC

2 197.59±0.66 2.249×10−4±5.3×10−6 1.117×10−4±4.9×10−6

3 67.65±0.20 -1.030×10−4±4.7×10−6 -3.69×10−5±4.9×10−6

7 32.74±0.05 -7.80×10−5±5.8×10−6 4.75×10−5±5.9×10−6

8 17.99±0.03 4.01×10−5±4.6×10−6 3.30×10−5±4.6×10−6

11 9.34±0.01 1.13×10−5±4.5×10−6 4.51×10−5±4.5×10−6

13 11.10±0.01 4.05×10−5±4.6×10−6 1.20×10−5±4.5×10−6

of the data for the X, Y and Z components, respectively.

As we might expect from the graphical display of the data, the trend component does
not contain a significant amount of information of the geocenter variations. This can be
understood by looking at the small estimated value of the trend coefficients and the per-
centage of variability that this component explains (1.63%, 0.32% and 2.84% for the X, Y
and Z coordinates, respectively).

In this study, a frequency that deserves special attention is that one linked to an annual
period. This signal is detected in X, Y and Z coordinates of the center of mass, and
furthermore, it always appears at first position in the harmonic content. On the other
hand, this frequency explains the largest percentage of variability (36.76%, 51.46% and
51.11% for the X, Y and Z coordinates, respectively). From Tables 1, 3 and 5 we can
observe that at annual frequency the largest contribution arises in the Y component with
an annual cycle of 1.07 mm, showing a maximum between late April and early May. The
annual cycle for the remaining coordinates is smaller, with a minimum of 0.65 mm in the
X component. Note that these results are consistent with other studies such as that one
carried out by [5]. The only substantial difference lies in the epoch of maximum influence
of the annual signal.

The semiannual period, is clearly shown in the Z and Y coordinates with amplitudes
of 0.11 mm and 0.31 mm, respectively. However, this spectral line is not detected for the
X component. The most similar fluctuations correspond to periods of 4 months (with
0.0999 mm of amplitude) and 8 months (0.0083 mm of amplitude). The reason why the
semiannual period does not appear for this coordinate is because it has an amplitude less
than 0.0083 mm (which corresponds to the amplitude of the last frequency considered in
the model for the X component). In fact, if we perform a harmonic analysis by extracting a
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larger number of frequencies or considering a vectorial analysis of (X,Y, Z), the semiannual
frequency appears as part of the harmonic content and it does with an amplitude of 0.0061
mm, approximately.

Many other frequencies associated with interannual periods also appear in the harmonic
content of the estimated models. Among them, we find a frequency close to a 2-year period
(around 23–25 months). This signal has an amplitude of 0.099mm, 0.016mm and 0.072mm
for the X, Y and Z coordinates, respectively. If we look for its origin, this frequency might
be associated with the so-called Quasi Biennial Oscillation (QBO) [4]. This phenomenon is
an atmospheric oscillation that takes place every 20–36 months or so, and among its effects
we can highlight the change of monsoon rains, which directly affects the distribution of
continental water.

Another interannual frequency that appears in the estimated models is linked to a
period of 3.5–3.8 years (42–46 months). This signal was also detected by [8], although the
estimated value of its amplitude differs from that one presented in this chapter. Its nature,
as well as the origin of the 55–68 months signal (4.5–5.5 years), is unknown but, perhaps,
it might be attributed to the climatological phenomenon ENSO which is repeated every 3
to 7 years (with an average of 5 years).

There are also fluctuations associated with long periods of time that range between
123 and 198 months. Thus, the X coordinate seems to be affected by a 15.12-year signal
whose amplitude is 0.099 mm; the Y component has a 10.3-year fluctuation of 0.2 mm
of amplitude and finally, the Z coordinate shows a period of 16.47 years whose amplitude
is 0.055 mm, approximately. These spectral lines are some of the most important signals
in the models because they explain a significant proportion of the variability of the data
and they have a remarkable amplitude if we compared them with other harmonics. The
origin of these signals is difficult to guess. It is unknown to what extent monthly data can
affect the detection of the spectral lines because the time between two consecutive months
is not always the same. If we assume that this fact affects the extraction frequency process,
we can say that this period of 10-16 years might be related to the lunar nodes period
and semi-period (18.6 and 9.3 years). Obviously, other studies are required to check this
hypothesis.

Finally, we note that other shorter periods (80–100 months) are included together with
these aforementioned spectral lines. At this moment, its origin is unknown so, in the future,
it would be interesting to study the harmonic content of some climate phenomena in order
to find similarities and answers.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Graphical results of the non-linear harmonic analysis for the geocenter variations
caused by continental water changes. (a) Raw data and trend component (straight line)
for X coordinate, (b) residuals for the X coordinate, (c) raw data and trend component
(straight line) for Y coordinate, (d) residuals for the Y coordinate, (e) raw data and trend
component (straight line) for Z coordinate, (b) residuals for the Z coordinate.
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Abstract

This work is devoted to giving a complete characterization of the orbit struc-
ture of parallel discrete dynamical systems with maxterms and minterms Boolean
functions as global functions. In this sense, first of all, we analyze what happens
with the simplest maxterm and minterm and then we extend our analysis to the
rest of maxterms and minterms. As a result, it is shown that the orbit structure
does not remain when the system is perturbed.
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1 Introduction

The work of many scientists and technicians consists of finding the future states of
processes whose present states they are observing. Certainly, the future states of many
biological, ecological, physical and even computer processes can be predicted if their
present states and the laws governing their evolution are known, provided that these
laws do not change in time. Dynamical systems are the mathematical formalization of
deterministic processes, created to deal with these kinds of challenges.

Computer processes are used very often in our modern technological society and
this claims for a mathematical modeling of them in order to obtain information about
their evolution in time. In computer processes, there are many entities an each entity
has a state at a given time (see [3, 4, 5]). Usually, in order to get a graphical idea of the
situation, any entity is represented by a vertex of a graph and two vertices are adjacent
if their states influence each other in the update of the system. The undirected graph
so built is called the dependency graph of the system.
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If we denominate this graph G = (V,E), where V = {1, 2, . . . , n} is the vertex set
and E is the edge set, then, for each vertex/entity 1 ≤ i ≤ n, it is natural to consider
that its state xi ∈ {0, 1}. That is, the entity could be activated or deactivated.

On the other hand, for every vertex/entity 1 ≤ i ≤ n and every subset W ⊂ V , we
need to consider all the vertices that interfere with them. Thus, we denote

AG(i) = {j ∈ V |{i, j} ∈ E} (1)

AG(W ) =
⋃

i∈W
AG(i) (2)

the sets of vertices that are adjacent to the vertex i and to the subset W , respectively.

The evolution or update of the system is implemented by local functions which
are the restrictions of a global function. In this context, for updating the state of any
entity, the corresponding local function acts only on the state of that entity itself and
the states of the entities related to it.

If the states of the entities are updated in a parallel manner, the system is named
a parallel dynamical system (PDS), while if they are updated in a sequential order, the
system is named sequential dynamical system (SDS) (see [2, 9]). In this work, we are
concerned with parallel dynamical systems. Actually, it can be stated the following
definition.

Definition 1. Let G = (V,E) be a graph on V = {1, 2, . . . , n}. Then the following
map

F : {0, 1}n → {0, 1}n, F (x1, x2, . . . , xi, . . . , xn) = (y1, y2, . . . , yi, . . . , yn),

where yi is the updated state of the entity/vertex i by applying a local function fi over
{i}∪AG(i), constitutes a discrete dynamical system called parallel (discrete) dynamical
system over {0, 1}n.

Another important concept for our purposes in this work is the following.

Definition 2. Let B be the set {0, 1} and n ∈ N. A Boolean function of n variables is
a function of the form

F : Bn → B,

where F (x1, x2, . . . , xn) ∈ B is obtained from x1, x2, . . . , xn ∈ B using the logical AND,
the logical OR, the logical NOT and the elements 0, 1 ∈ B.

A Boolean function describes how to determine a Boolean output from some
Boolean inputs. Thus, such functions play a fundamental role in questions as design of
circuits or computer processes. In our context, they represent the evolution operator
of the corresponding system.

Maxterms and minterms are both special cases of Boolean functions.
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Definition 3. A Boolean function of n variables, x1, x2, . . . , xn that only uses the
disjunction operator, where each of the n variables appears once in either its direct or
its complemented (logical NOT) form is called a maxterm.

In this sense, the simplest maxterm corresponds to the one that only uses the
disjunction operator, where each of the n variables appears once in its direct form, i.e.,

OR(x1, x2, . . . , xn) = x1 ∨ x2 ∨ . . . ∨ xn. (3)

Minterm is the dual of the maxterm concept. That is, instead of using the disjunc-
tion operator and complements, the conjunction operator and complements are used
in a similar way.

Definition 4. A Boolean function of n variables that only uses the conjunction opera-
tor, where each of the n variables appears once in either its direct or its complemented
form is called a minterm.

The simplest minterm corresponds to the one that only uses the conjunction oper-
ator, where each of the n variables appears once in its direct form, i.e.,

AND(x1, x2, . . . , xn) = x1 ∧ x2 ∧ . . . ∧ xn. (4)

As one can check, there exist exactly 2n maxterms of n variables, since a variable in
a maxterm expression can be in either its direct or its complemented form, and dually
2n minterms.

As is well known, see [6], any Boolean function, except F ≡ (1, 1, . . . , 1) (resp. F ≡
(0, 0, . . . , 0)), can be expressed in a canonical form as a conjunction (resp. disjunction)
of maxterms (resp. minterms). Therefore, it is natural to begin the study of the
dynamics with these basic Boolean functions.

Following [1, 10], the main goals in the study of a dynamical system are giving
a complete characterization of its orbit structure and analyzing whether or not this
structure remains when the system is perturbed slightly. Since in our particular case
of a discrete dynamical system, we have a finite state space, it is obvious that every
orbit is either periodic or eventually periodic. Therefore, every orbit is an invariant set
of the system. However, it is not so easy to determine a priori the different coexistent
periods of its orbits.

In this sense, we prove that the PDS induced by the simplest maxterm or minterm
function have only fixed points, which are described, or eventually fixed points whose
transients to arrive in the corresponding fixed point is at most as a certain number.
Moreover, we show that if other general maxterms and minterms are considered as
global functions in order to define the evolution of the systems, the dynamics can
change, giving as a result an absence of structural stability of the systems so perturbed.
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Abstract

Multiple Right Hand Sides (MRHS) is an algebraic attack which seems particularly
well-suited for block ciphers having a Feistel structure. We compare the effectivity of
this attack against DES and its lightweight variant DESL. Unlike the Data Encryption
Standard, DESL uses only a single S-box, and our experiments indicate that for an
MRHS-based attack this modification does not significantly affect the workload faced
by an adversary. As a side, our experimental results falsify a conjecture of Schoonen
about MRHS in connection with DES.

Key words: cryptography, block cipher, algebraic attack

1 Introduction

The block cipher DESL is a lightweight extension of the Data Encryption Standard [1] and
has been proposed by Leander et al. at FSE 2007 [2]. The structure of this lightweight
version is basically identical with DES, but introduces one major change: only a single S-
box is used. While this modification may seem attractive from an implementation point of
view, one faces the question of the cryptanalytic consequences of such a design choice. Here
we describe experimental results with an algebraic attack known as MRHS when applied to
DES and to DESL.

MRHS stands for Multiple Right Hand Sides and is discussed in detail by Raddum and
Semaev [4]. The technique appears to be well-suited for Feistel ciphers, including DES and
DESL. From the point of view of MRHS, our experiments do not exhibit a design weakness
of DESL. As a side, the results falsify a conjecture about MRHS when being applied to
DES, however, which might be of independent interest.
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2 Preliminaries

2.1 A lightweight variant of DES

With the structure of DESL and the Data Encryption Standard being identical up to two
modificatons, werefer to [2] for a detailed discussion of DESL. The only deviations in DESL
from the original DES are the following:

• The (key-independent) initial and final permutations in DES are omitted.

• All S-boxes are replaced with a single (new) S-box.

While the former change does not obviously affect the security against algebraic attacks,
the implications of the latter modification are less clear.

2.2 Multiple right-hand sides (MRHS)

Here we restrict to a short review of the main components of MRHS and refer to Raddum
and Semaev’s work [4] for a more elaborate discussion.

2.2.1 Basic terminology

For a column vector x = (x1 x2 . . . xy)T ∈ Fy
2, a k × y binary matrix A of rank k, and

column vectors b1, b2, . . . , bs ∈ Fk
2 consider the following type of equation:

Ax = b1, b2, . . . , bs (1)

We refer to such an equation as MRHS system of linear equations with right hand sides
b1, b2, . . . , bs. By a solution to (1) we mean a vector in Fy

2 satisfying at least one particular
linear system of equations Ax = bi. The set of all solutions to (1) is the union of the
solutions to the individual systems Ax = bi (1 ≤ i ≤ s). To work with MRHS systems of
linear equations, we juxtapose the above column vectors bi to form a matrix L and rewrite
Equation (1) as Ax = [L]. The pair (A,L) is called a symbol, and when writing equations,
the brackets around L emphasize that we are not working with an ordinary equation of
matrices. Given a system of symbols

S1 : A1x = [L1]
...

Sn : Anx = [Ln]

, (2)

a solution to such a system is a vector x ∈ Fy
2 satisfying all of the underlying n MRHS

systems of linear equations.
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2.2.2 Solving a system of symbols

There are three main components to MRHS: agreeing, gluing, and extracting equations.
Since memory is finite in any actual implementation of the algorithm, it may also happen
that we have to guess variables, and sometimes an equation symbol is used.

Agreeing The basic idea of an agreeing phase is to remove columns b in a right hand
side Li, if no one solution of Aix = b can be a solution to the system (2). To achieve this,
pairwise agreeing of symbols is employed. Namely, let Si : Aix = [Li] and Sj : Ajx = [Lj ]
be two symbols. Then we say that Si and Sj agree if for every b ∈ Li, there exists a b′ ∈ Lj

such that the linear system (
Ai

Aj

)
x =

(
b
b′

)
(3)

is consistent, and, vice versa, for each b′ ∈ Lj there exists a b ∈ Li such that (3) is consistent.
In a situation where Si and Sj do not agree, we remove those columns b from Li for which
the linear system Aix = b is inconsistent with Ajx = [Lj ]. Dually, those columns b′ from
Lj are removed, for which Ajx = b′ is inconsistent with Aix = [Li].

If two symbols Sh and Si agree, but Si and Sj disagree, columns may be deleted in
one or both of Li and Lj . After this happens, it may well happen that Sh does not agree
with either of the modified symbols, and it becomes necessary to re-agree Sh with them.
During the latter agreement, columns from Lh may have to be deleted, and so on, possibly
resulting in a chain reaction of column deletions. To ensure that a system of symbols
reaches a pairwise-agreed state, we perform the Agreeing1 Algorithm in Figure 1 (see [4,
Section 3.1]).

While the symbols in a System (2) do not pairwise agree,

1. find Si and Sj which do not agree

2. agree Si and Sj .

Figure 1: Agreeing1 Algorithm.

Gluing When a system of symbols is in a pairwise-agreed state, we may choose to apply
a different operation: The gluing of two symbols Si = (Ai, Li) and Sj = (Aj , Lj) results in
a new symbol Bx = [L] whose set of solutions is the set of common solutions to Aix = [Li]
and Ajx = [Lj ]. After having formed this new symbol, it is inserted into the system at hand
and the two symbols Si and Sj which formed (B,L) are no longer necessary and removed
from the system.
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Gluing an Li of width si with a matrix Lj of width sj may yield a matrix L with as
many as si · sj columns. In an implementation, computing certain glues might therefore
turn out to be infeasible, and one restricts to gluing only pairs of symbols where the number
of columns in the resulting symbol does not exceed a certain threshold. Once several glues
have been performed, the symbols in the resulting system will usually no longer be pairwise-
agreed, so the Algorithm in Figure 1 can be run again, initiating another round of agreeing
and gluing. The eventual goal of iterated agreeing and gluing steps is to obtain a system of
symbols which consists of a single symbol.

Extracting equations From a given symbol S : Ax = [L] we can try to extract Unique
Right Hand Side (URHS) equations, and if this is done, the resulting linear equations are
placed in a dedicated symbol S0 to which we refer as equation symbol. The equation symbol
is checked for consistency and size. The A-part of S0 has the same number of columns as
the A-parts of the other symbols, but its L-part has only one column. The symbol S0 is
not considered a proper part of the system (2) and does not take part in the Agreement1
Algorithm, nor is it removed after being glued to a symbol in the system. However, various
implementations will involve S0 in an agreement or gluing step. Further, information from
guessing variables may also be reflected by S0.

Guessing variables It may happen that all symbols in a system are pairwise-agreed,
no new URHS equations can be extracted, and no pair of symbols can be glued without
exceeding the threshold. In such a situation one can guess the (one bit) value of a variable.
Before performing a guess, the system of symbols—to which we will refer as the state—is
stored. After the guess has been made, pairwise agreeing, gluing, and equation extraction
are performed as normal. If after some steps the state, again, does not allow for any new
URHS equation to be computed or pair of symbols to be glued, the state is again saved,
and we guess the value of another variable.

A guess for a variable can be incorrect, and this manifests as follows: during the agree-
ment of two symbols, all right hand sides of at least one of the symbols get removed,
indicating that the system has no solution. When this happens, the state can be rolled
back to a previously saved state, to make a different guess. In the sequel, we denote by δ
the number of key bits we must guess before we discover the whole key through an MRHS
attack.

3 Applying MRHS to DES and DESL

Since the structure of DES and DESL is the same, the process for creating the A-parts of
MRHS symbols for DESL is the same as that for DES, which is described in [5, pp. 50–53].
The only difference is that the L-part of each symbol will not correspond to a DES S-box,
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but instead to the DESL S-box. For our experiments, we used a PC with two quad-core
Xeon E5520 2.26 GHz processors (though only one core was used), 24 GB of RAM, using
Windows 7 Server (Standard Edition). The ciphertext was 0123456789ABCDEF, and the
key was the first 56 bits of the SHA-1 hash of “Katalina” (without quotes). Under these
conditions, DES and DESL were attacked varying both the number of rounds of the cipher
and the threshold of MRHS. The results are summarized in Table 1, with the note that
the threshold listed is actually the base 2 logarithm of the actual threshold, so we always
choose a power of 2 for the number of columns each L-part is allowed to grow to. The
table lists the δ-value for DES followed by a value in parantheses specifying the difference
to DESL. For instance, with threshold 20, to attack twelve rounds of DES 41 key bits had
to be guessed, whereas in the same scenario for DESL only 40 guesses were needed.

Rounds of DES
Threshold 4 6 8 10 12 14 16

20 1 (+1) 35 (+1) 36 (+0) 36 (+0) 41 (+1) 41 (+3) 40 (+0)

21 0 (+0) 35 (+1) 39 (+0) 37 (+0) 39 (+0) 40 (+1) 39 (-3)

22 0 (+0) 32 (-1) 39 (+0) 37 (+0) 38 (+0) 40 (-3) 38 (+0)

23 0 (+0) 33 (+0) 39 (+1) 43 (-2) 46 (+0) 48 (+0) 46 (+0)

Table 1: Value of δ for DES (and difference to DESL), varying number of rounds and
threshold

It was conjectured by Schoonen in [5, Hypothesis 5.1] that, for 7 through 16 rounds
of DES, δ would always be 56 minus the (base 2 logarithm of the) threshold, but Table 1
demonstrates that this is not the case.

4 Conclusion

Our experimental results indicate that from an MRHS perspective DESL offers comparable
security as DES. On two occasions, DESL actually required three more bits to be guessed
before recovering the entire key.
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Abstract

Several papers relate the classical property-oriented and object-oriented concept
lattices and the dual concept lattices, although a negation is needed. This paper
presents a fuzzy generalization of the dual concept lattice, the dual multi-adjoint
concept lattice in which the philosophy of the multi-ajoint paradigm is applied and
where no negation on the lattices is needed.

Key words: Concept lattices, Galois connection, implication triples

1 Introduction

Wille introduced formal concept analysis (FCA) in [28] and it has become an impor-
tant and appealing research topic both from the theoretical perspective [27] and from
the applicative one. Regarding applications, we can find papers ranging from ontol-
ogy merging [23], to applications to the semantic web by using the notion of concept
similarity [9], and from processing of medical records in the clinical domain [14] to the
development of recommender systems [6].

This important tool, in knowledge representation and knowledge discovery in re-
lational information systems, has been related with another important tool, the rough
set theory, and different results presented in a formal concept analysis framework have
been applied to a rough set theory [5, 26].

Pawlak introduced rough set (RS) theory in [22] as a formal tool for modelling and
processing incomplete information in information systems. This theory was extended
by Düntsch and Gediga in [8, 11] and Yao in [29] in order to consider two different sets,
the set of objects and the set of attributes. These extensions are called property-oriented
concept lattice and object-oriented concept lattices [5].

Another interesting concept lattice framework introduced in [5] was the dual formal
concept lattice, which is building from the dual sufficient modal operator.

There exists several fuzzy extensions of the FCA and RS [3, 1, 24, 7, 25, 16, 12].
In the framework of fuzzy FCA, multi-adjoint concept lattices, were introduced [20]

@CMMSE                                 Page 797 of 1703                                 ISBN: 978-84-614-6167-7



Towards dual multi-adjoint concept lattices

as a new general approach to formal concept analysis, in which the philosophy of the
multi-adjoint paradigm is applied (see [21] for more information). With the idea of
providing a general framework in which different fuzzy approaches could be conveniently
accommodated, the authors worked in a general non-commutative environment; and
this naturally leads to the consideration of adjoint triples as the main building blocks
of a multi-adjoint concept lattice.

Recently, the philosophy of the multi-adjont paradigm is used to present a fuzzy
generalization of the property-oriented concept lattice [18]. A similar idea can be used
to obtain a fuzzy framework of the object-oriented concept lattice.

This paper presents a technical generalization of the other interesting crisp concept
lattice, the dual formal concept lattice. The multi-adjoint paradigm [21] is adapted to
this new fuzzy environment where no negations are needed, the carriers may be com-
plete lattices, different adjoint triples can be assumed, etc. Applications and practical
examples on this framework will be studied further.

The generalization proposed is very interesting since, at the moment, the intro-
duction of this kind of concept lattice has been made using a negation on the carrier.
Moreover, this environment provides a new point of view to obtain information from
databases with both incomplete information and imprecise information, which will give
more flexibility than the existing procedures.

This paper is structured as follows: a summary of formal concept analysis and
derivation operators is introduced in Section 2. Section 3 recalls the main computation
operators, the adjoint triples, and a general and flexible fuzzy concept lattice structure,
the multi-adjoint concept lattices; the “dual” of this structure that embeds the crisp
definition given in [5] is presented in Section 4. Lastly, the paper ends with diverse
conclusions and prospects for future work.

2 Formal concept analysis and derivation operators

Formal concept analysis considers a set of attributes A, a set of objects B and a crisp
relation between them R : A × B → {0, 1}, where, for each a ∈ A and b ∈ B, we have
that R(a, b) = 1, if a and b are related, or R(a, b) = 0, otherwise. We will also write
aRb when R(a, b) = 1. The triple (A,B,R) is called a formal context and the mappings
4 : 2B → 2A, 4 : 2A → 2B, are defined, for each X ⊆ B and Y ⊆ A, as:

X4 = {a ∈ A | for all b ∈ X, aRb}
= {a ∈ A | if x ∈ X, then aRb} (1)

Y 4 = {b ∈ B | for all a ∈ Y, aRb}
= {b ∈ B | if a ∈ Y, then aRb} (2)

These operators are so-called sufficient operators, although in order to distinguish about
which carriers are defined, they are also called the extent and intent mappings, respec-
tively.

Given a context (A,B,R), a concept in (A,B,R) is defined to be a pair (X,Y ),
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where X ⊆ B, Y ⊆ A, and which satisfy that X4 = Y and Y 4 = X. The element X
of the concept (X,Y ) is the extent and Y the intent.

The set of concepts in a context (A,B,R) is denoted as B(A,B,R) and it is a
complete lattice [10], with the inclusion order on the left argument or the opposite of
the inclusion order on the right argument, that is, given (X1, Y1), (X2, Y2) ∈ B(A,B,R),
we have that (X1, Y1) ≤ (X2, Y2) if X1 ⊆ X2 (or, equivalently, Y2 ⊆ Y1).

The more important characteristic of the mappings 4 : 2B → 2A and 4 : 2A → 2B,
is that they form a Galois connection.

Proposition 1 Given a formal context (A,B,R) and the mappings 4 : 2B → 2A and
4 : 2A → 2B, defined above, the pair ( 4, 4) is a Galois connection, that is, Galois

connection between P1 and P2 if and only if:

1. 4 : 2B → 2A and 4 : 2A → 2B are order-reversing.

2. X ⊆B X44, for all X ⊆ B.

3. Y ⊆A Y 44, for all Y ⊆ A.

These definitions of extent and intent operators are the classical in FCA but not the
unique derivation operators. There exist three extra definitions considered in several
frameworks: qualitative data analysis [11, 8], crisp rough set theory [30], fuzzy rough
set theory [4, 17]. Some extra motivations about these operators are also introduced
in [16, 12].

Considering the sets A, B, and a crisp relation R : A×B → {0, 1}, that is, which can
be assumed as a formal concept, the derivation operators π : 2B → 2A, N : 2B → 2A,
∇ : 2B → 2A are defined, for each X ⊆ B, as:

Xπ = {a ∈ A | there exists b ∈ X, such that aRb}
XN = {a ∈ A | for all b ∈ B, if aRb, then b ∈ X}
X∇ = {a ∈ A | there exists b ∈ Xc, such that aRcb}

where Xc is the complement of X and Rc is the complement relation of R. Analogously,
abusing of notation, we can define the mappings: π : 2A → 2B, N : 2A → 2B and
∇ : 2A → 2B.

These operators are so-called possibility, necessity and dual sufficiency operators,
respectively. They are composed in order to form Galois connections or closure opera-
tors [10, 28, 5, 11, 8] and diferent concept lattices are obtained: the property-oriented
concept lattice, object-oriented concept lattice and dual formal concept lattice [5].

Clearly, the dual sufficiency operator satisfies that: X∇ = ((Xc)4)c, for each
X ⊆ B, therefore these operators are not independent and the concept lattices given
from them are related, specifically we can obtain one from the other. Observe that we
are relating both operators using a negation, the complement operator.

Moreover, the necessity and possibility operators are related with the sufficient
operators (for details see [16]).
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3 Adjoint triples and multi-adjoint concept lattices

This section recalls the multi-adjoint concept lattice as well as its main building blocks,
the adjoint triples. These triples are a generalization of the well-known t-norm and
its residuated implication satisfying the adjoint property [13]. A triple is obtained
since we do not assume that the conjunctors verify the commutative property. This
directly provides two different ways of applying the adjoint property, depending on
which argument is fixed.

Definition 1 Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1×P2 → P3, ↙ : P3×
P2 → P1, ↖ : P3 × P1 → P2 be mappings, then (&,↙,↖) is an adjoint triple with
respect to P1, P2, P3 if:

1. & is order-preserving in both arguments.

2. ↙ and ↖ are order-preserving on the first argument and order-reversing on the
second argument.

3. x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x, where x ∈ P1, y ∈ P2 and
z ∈ P3.

The following definition presents the basic structure which allows the existence of
several adjoint triples for a given triplet of lattices.

Definition 2 A multi-adjoint frame L is a tuple

(L1, L2, P,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)

where (L1,�1) and (L2,�2) are complete lattices, (P,≤) is a poset and, for all i =
1, . . . , n, (&i,↙i,↖i) is an adjoint triple with respect to L1, L2, P .

Multi-adjoint frames are denoted (L1, L2, L,&1, . . . ,&n).

Considering a multi-adjoint frame, a multi-adjoint context is a tuple consisting of
a set of objects, a set of attributes and a fuzzy relation among them; in addition, the
multi-adjoint approach also includes a function which assigns an adjoint triple to each
object (or attribute).

Definition 3 Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, a context is a tuple
(A,B,R, σ) such that A and B are non-empty sets (usually interpreted as attributes
and objects, respectively), R is a P -fuzzy relation R : A×B → P and σ : B → {1, . . . , n}
is a mapping which associates any element in B with some particular adjoint triple in
the frame.1

1A similar theory could be developed by considering a mapping τ : A→ {1, . . . , n} which associates
any element in A with some particular adjoint triple in the frame.
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Given a multi-adjoint frame and context, the mappings ↑σ : LB2 −→ LA1 and ↓σ : LA1 −→
LB2 are defined, for all g ∈ LB2 and f ∈ LA1 , as:

g↑σ(a) = inf{R(a, b)↙σ(b) g(b) | b ∈ B} (3)

f↓
σ
(b) = inf{R(a, b)↖σ(b) f(a) | a ∈ A} (4)

which generalize the classical definitions given in (1), (2), and that can be seen as
extensions of those fuzzy given in [2, 15]. Moreover, as the classical ones, these two
arrows generate a Galois connection [20].

A multi-adjoint concept is a pair 〈g, f〉 satisfying that g ∈ LB2 , f ∈ LA1 and that
g↑σ = f and f↓

σ
= g; with (↑σ , ↓

σ
) being the Galois connection defined above. The set

of all multi-adjoint concepts is called multi-adjoint concept lattice [20].

Definition 4 The multi-adjoint concept lattice associated to a multi-adjoint frame
(L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ) is the set

M = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 and g↑σ = f, f↓
σ

= g}

in which the ordering is defined by 〈g1, f1〉 � 〈g2, f2〉 if and only if g1 �2 g2 (equiva-
lently f2 �1 f1).

The pair (M,�) is indeed a complete lattice [20]. Moreover, a representation
theorem to multi-adjoint concept lattices was proved, which generalizes the classical
one and some other fuzzy generalizations.

4 Dual multi-adjoint concept lattice

We commented above, in Section 2, that the operator ∇ can be obtained from the 4
operator, specifically X∇ = ((Xc)4)c, for all X ⊆ B. As a consequence, all properties
given to 4 can be transfer to obtain properties to ∇.

Following this fact, in this section, we aim to introduce a fuzzy extension of the
dual sufficient operator and relate it with the fuzzy definition of the sufficient operator,
in order to translate the properties from one to another. This relation could not be so
direct as in the classical case, since we are in a fuzzy environment.

First of all, we need to recall the definition and notation of dual order. Given a
set P and an order relation, ≤, on P , the dual order of ≤ is the relation ≤∂ , defined
as x1 ≤∂ x2 if and only if x2 ≤ x1, for all x1, x2 ∈ P . Usually, we will write P instead
of the partial ordered set (P,≤), P ∂ instead of (P,≤∂), and we will say that P ∂ is the
dual of P .

Now, the frame in this environment must be defined. Given two complete lattices
(L1,�1) and (L2,�2), a poset (P,≤) and adjoint triples with respect to L∂1 , L

∂
2 , P ,

(&i,↙i,↖i), for all i = 1, . . . , n, a dual multi-adjoint frame L is the tuple

(L1, L2, P,�1,�2,≤,&1,↙1,↖1, . . . ,&n,↙n,↖n)

Dual multi-adjoint frames are denoted (L1, L2, P,&1, . . . ,&n).
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The definition of context is analogous to the one given in the previous section. As-
sumed a dual multi-adjoint frame, (L1, L2, P,&1, . . . ,&n), a context is a tuple (A,B,R, σ)
such that A and B are non-empty sets (usually interpreted as attributes and objects,
respectively), R is a P -fuzzy relation R : A × B → P and σ : B → {1, . . . , n} is a
mapping which associates any element in B with some particular adjoint triple in the
frame.

From now on, we will fix a dual multi-adjoint frame, (L1, L2, P,&1, . . . ,&n) and
context, (A,B,R, σ).

Now, we will introduce the mappings which will build the dual multi-adjoint formal
concept lattice, ↑∇ : LB2 → LA1 and ↓∇ : LA1 → LB2 . Given mappings g : B → L2,
f : A → L1, we consider the “dual” mappings g∂ : B → L∂2 , f∂ : A → L∂1 , defined as g
and f but interpreted in the opposite lattice, respectively, and we apply the mappings
↑ : (L∂2)B → (L∂1)A, ↓ : (L∂1)A → (L∂2)B defined in Equations (3) and (4), that is:

(g∂)↑(a) = inf1,∂{R(a, b)↙b g∂(b) | b ∈ B}
(f∂)↓(b) = inf2,∂{R(a, b)↖b f

∂(a) | a ∈ A}

where (&i,↙i,↖i) are adjoint triples on L∂1 , L∂2 and P , and inf1,∂ , inf2,∂ are the
infimum on L∂1 and L∂2 , respectively.

Finally, the mappings ↑∇ : LB2 → LA1 and ↓∇ : LA1 → LB2 are defined as: g↑∇ =

((g∂)↑)∂ , f↓
∇

= ((f∂)↓)∂ , for all g ∈ LB2 , f ∈ LA1 . Hence, these definitions are equivalent
to:

g↑∇(a) = sup1{R(a, b)↙b g∂(b) | b ∈ B}
f↓

∇
(b) = sup2{R(a, b)↖b f

∂(a) | a ∈ A}

where sup1, sup2 are the supremum on L∂1 and L∂2 , respectively.

The pair (↑∇ , ↓
∇

) is not a Galois connection but satisfies the closure property, which
is sufficient condition to form a concept lattice. A dual concept is a pair 〈g, f〉, where
g ∈ LB2 , f ∈ LA1 and that satisfies g↑∇ = f, f↓

∇
= g.

Definition 5 Given a dual multi-adjoint frame (L1, L2, P,&1, . . . ,&n) and a context
(A,B,R, σ), a dual multi-adjoint concept lattice is the pair (M∇,≤∇), where

M∇ = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 and g↑∇ = f, f↓
∇

= g}

is the set of dual concepts, and ≤∇ is the order defined 〈g1, f1〉 ≤∇ 〈g2, f2〉 if and only
if g1 �2 g2 (or, equivalently, f2 �1 f1).

As (↑∇ , ↓
∇

) is not a Galois connection, the proof that (M∇,≤∇) is indeed a complete
lattice is not direct. In order to prove this fact, we will consider a particular multi-
adjoint concept lattice.

Specifically, the complete lattices L∂1 and L∂2 will be considered together with the
adjoint triples (&i,↙i,↖i) on L∂1 , L∂2 and P . Therefore, given g∂ ∈ (L∂2)B and f∂ ∈
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(L∂1)A, the pair 〈g∂ , f∂〉 is a multi-adjoint concept with respect to the Galois connection
(↑, ↓), if (g∂)↑ = f∂ and (f∂)↓ = g∂ , and we obtain the lattice:

M′ = {〈g∂ , f∂〉 | if 〈g∂ , f∂〉 is a multi-adjoint concept}

with order, (g∂1 , f
∂
1 ) ≤ (g∂2 , f

∂
2 ) if and only if g∂1 �∂2 g∂2 (or, equivalently, f∂2 �∂1 f∂1 ),

where:

inf{〈g∂i , f∂i 〉 | i ∈ I} = 〈inf2,∂{g∂i | i ∈ I}, (sup1,∂{f∂i | i ∈ I})↓↑〉 (5)

sup{〈g∂i , f∂i 〉 | i ∈ I} = 〈(sup2,∂{g∂i | i ∈ I})↑↓, inf1,∂{f∂i | i ∈ I}〉 (6)

such that supj,∂ and infj,∂ are the supremum and infimum on L∂j , respectively, with
j ∈ {1, 2}.

The next proposition relates the concept lattices above to dual multi-adjoint con-
cept lattices, justifying why the name of “dual multi-adjoint concept lattice” has been
considered for this new environment of concept lattices.

Proposition 2 Let (L1, L2, P,&1, . . . ,&n) be a dual multi-adjoint frame, (A,B,R, σ)
a context and (M′,≤), (M∇,≤∇) the concept lattices defined above. The pair 〈g, f〉 is a
dual concept, that is, 〈g, f〉 ∈ (M∇,≤∇), if and only if 〈g∂ , f∂〉 ∈ (M′,≤). Moreover,
given 〈g1, f1〉, 〈g2, f2〉 ∈ (M∇,≤∇) we obtain that 〈g1, f1〉 ≤∇ 〈g2, f2〉 if and only if
〈g∂2 , f∂2 〉 ≤ 〈g∂1 , f∂1 〉.

As a consequence of this result, the expressions (5) and (6) are equivalent to:

sup{〈gi, fi〉 | i ∈ I} = 〈sup2{gi | i ∈ I}, (inf1{fi | i ∈ I})↓
∇↑∇〉

inf{〈gi, fi〉 | i ∈ I} = 〈(inf2{gi | i ∈ I})↑∇↓∇ , sup1{fi | i ∈ I}〉

for each family of dual concepts 〈gi, fi〉 ∈ (M∇,≤∇), with i in an index set I and,
therefore, the pair (M∇,≤∇) is a complete lattice.

Theorem 1 Given a dual multi-adjoint frame (L1, L2, P,&1, . . . ,&n) and a context
(A,B,R, σ), the dual multi-adjoint formal concept lattice (M∇,≤∇) is a complete lat-
tice, where

inf{〈gi, fi〉 | i ∈ I} = 〈(inf2{gi | i ∈ I})↑∇↓∇ , sup1{fi | i ∈ I}〉
sup{〈gi, fi〉 | i ∈ I} = 〈sup2{gi | i ∈ I}, (inf1{fi | i ∈ I})↓

∇↑∇〉

Note that any negation operator has been used, although adjoint triples on the
dual lattices of (L1,�1) and (L2,�2) have been needed.

Moreover, considering the classical case, that is, L1 = L2 = P = {0, 1}, we obtain:
g↑∇ = g∇ and f↓

∇
= f∇, for all g and f crisp subsets of X and A, respectively.
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5 Conclusions and future work

It is very important to extract information from databases. Obtaining this knowledge
in information systems is a necessity. Two particular tools for that are formal concept
analysis and rough sets theory.

In this paper, we have generalized the classical dual concept lattices to a fuzzy
environment, where we can use different adjoint triples defined on non-linear sets and
no negation is needed.

This is very interesting because, at the moment, the introduction of this kind of
concept lattice has been made using a negation on the considered carrier. Moreover,
this environment provides a new point of view to obtain information from databases
with both incomplete information and imprecise information, which will give more
flexibility than the existence procedures. Indeed, some times could be more efficient to
compute the dual concept than the standard one.

In the future, applications and practical examples will be studied where the theory
developed in this paper can be used.

Acknowledgements

This work has been partially supported by Junta de Andalućıa grant P09-FQM-5233,
and by the EU (FEDER), and the Spanish Science and Education Ministry (MEC)
under grant TIN2009-14562-C05-03.

References
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editor, Intelligent Decision Support, pages 203–232. Kluwer Academic, Dordrecht, 2004.

[8] I. Düntsch and G. Gediga. Approximation operators in qualitative data analysis. In Theory
and Applications of Relational Structures as Knowledge Instruments, pages 214–230, 2003.

[9] A. Formica. Concept similarity in formal concept analysis: An information content ap-
proach. Knowledge-Based Systems, 21(1):80–87, 2008.

@CMMSE                                 Page 804 of 1703                                 ISBN: 978-84-614-6167-7
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Héctor Migallón1, Violeta Migallón2 and José Penadés2
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Abstract

In this paper we present new features of PyPANCG. PyPANCG is a parallel
library treated as a high-level interface for solving nonlinear systems. Using the new
features, PyPANCG is able to exploit the parallelism offered by shared memory
platforms and graphics processing units (GPUs). The new library still has two
modules, PySParNLCG and PySParNLPCG, which include new features, both
modules are backward-compatible with the earlier versions of PyPANCG. The
PySparNLCG module parallelizes the conjugate gradient method for solving mildly
nonlinear systems, and the PySParNLPCGmodule implements the preconditioning
technique based on block two-stage methods. In order to create the high-level
interfaces, we have chosen the Python language. Experimental results report the
behavior and the parallel performance of our approach on both the shared memory
platforms and the GPUs.

Key words: CUDA, OpenMP, parallel libraries, nonlinear algorithms, Python
high-level interfaces

1 Introduction

In this paper we present new features of PyPANCG (http://atc.umh.es/PyPANCG), a
Python based high-level parallel interface-library for solving mildly nonlinear systems
of the form

Ax = Φ(x), (1)

where A ∈ �n×n and Φ : �n → �n is a nonlinear diagonal mapping, i.e., the ith
component φi of φ is a function only of the ith component xi of x.
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This library, distributed as a standard Python package, provides parallel imple-
mentations of both the nonlinear conjugate gradient method (NLCG) and the nonlin-
ear preconditioned conjugate gradient method (NLPCG). PyPANCG earlier versions
could work with different tools to manage a distributed memory platform through MPI
(www-unix.mcs.anl.gov/mpi). The PyPANCG current version allows to work with
shared memory platforms through OpenMP and, using CUDA, this library is able to
work with GPUs.

This paper is structured as follows. Section 2 introduces both the nonlinear conju-
gate gradient method (NLCG) parallelized in the PySParNLCG module of PyPANCG,
and the nonlinear preconditioned conjugate gradient parallelized in the PySParNLPCG
module. In Sections 3, 4 and 5 we explain the main tools used in order to build Py-
PANCG, the involved parameters and the way to implement the nonlinearity, respec-
tively. In Section 6 some examples of using the features of PyPANCG are reported
while in Section 7 the behavior of this library is illustrated by means of numerical
experiments. Finally, concluding remarks are presented in Section 8.

2 Nonlinear methods

Consider the problem of solving the nonlinear system (1), where A ∈ �n×n is a sym-
metric positive definite matrix and Φ : �n → �n is a nonlinear function with certain
local smoothness properties. Let Ψ : �n → � be a nonlinear mapping and consider
〈x, y〉 = xT y the inner product in �n. The minimization problem of finding x ∈ �n

such that

J(x) = min
y∈�n

J(y), (2)

where J(x) = 1
2 〈Ax, x〉 − Ψ(x), is equivalent to find x ∈ �n such that F (x) = Ax −

Φ(x) = 0, where Φ(x) = Ψ′(x).
An effective approach for solving nonlinear system (1), by considering the connection
with the minimization problem (2), is the Fletcher-Reeves version [5] of the nonlinear
conjugate gradient method (NLCG), which takes the following form:

Algorithm 1 (Fletcher-Reeves Nonlinear Conjugate Gradient)
Given an initial vector x(0)

r(0) = Φ(x(0))−Ax(0)

p(0) = r(0)

For i = 0, 1, . . . , until convergence
αi =→ see below
x(i+1) = x(i) + αip

(i)

r(i+1) = r(i) − Φ(x(i)) + Φ(x(i+1))− αiAp
(i)

Convergence test

βi+1 = −〈r(i+1),r(i+1)〉
〈r(i),r(i)〉

p(i+1) = r(i+1) − βi+1p
(i)
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Note that, in Algorithm 1, αi is chosen to minimize the associated functional J in
the direction p(i). This is equivalent to solve the one dimensional zero-point problem
dJ(x(i)+αip(i))

dαi
= 0. From the definition of J it follows that

J(x(i) + αp(i)) =
1

2

〈
A(x(i) + αip

(i)), x(i) + αip
(i)
〉
−Ψ(x(i) + αip

(i)).

Then a simple differentiation with respect to αi yields

dJ(x(i) + αip
(i))

dαi
= αi

〈
Ap(i), p(i)

〉
−
〈
r(i), p(i)

〉
+
〈
Φ(x(i))− Φ(x(i) + αip

(i)), p(i)
〉
,

where r(i) = Φ(x(i))−Ax(i) is the nonlinear residual.
On the other hand, it is easy to see that the second derivative with respect to αi

takes the form

d2J(x(i) + αip
(i))

dα2
i

=
〈
Ap(i), p(i)

〉
−
〈
Φ′(x(i) + αip

(i))p(i), p(i)
〉
.

Then, using the Newton method for solving the zero-point problem for αi, we obtain

α
(k+1)
i = α

(k)
i − δ(k), where

δ(k) =
dJ(x(i) + α

(k)
i p(i))/dαi

d2J(x(i) + α
(k)
i p(i))/dα2

i

=

α
(k)
i

〈
Ap(i), p(i)

〉− 〈r(i), p(i)〉+ 〈Φ(x(i))−Φ(x(i) + α
(k)
i p(i)), p(i)

〉
〈
Ap(i), p(i)

〉− 〈Φ′(x(i) + α
(k)
i p(i))p(i), p(i)

〉 .

Note that in order to obtain δ(k), the inner products 〈Ap(i), p(i)〉 and 〈r(i), p(i)〉 can
be computed once at the first Newton iteration. Moreover Ap(i) is available from the
conjugate gradient iteration.

In order to generate efficient algorithms to solve the nonlinear system (1), we have
designed a parallel version of Algorithm 1 and a parallel nonlinear preconditioned con-
jugate gradient algorithm, based on both Algorithm 1 and a polynomial preconditioner
type based on block two-stage methods [3]; see [4] and [7] for detailed description.

Preconditioning is a technique for improving the condition number (cond) of a
matrix. Suppose that M is a symmetric, positive definite matrix that approximates
A, but is easier to invert. We can solve Ax = Φ(x) indirectly by solving M−1Ax =
M−1Φ(x). If cond(M−1A) << cond(A) we can iteratively solve M−1Ax = M−1Φ(x)
more quickly than the original problem. In this case we obtain the following nonlinear
preconditioned conjugate gradient algorithm (NLPCG).

Algorithm 2 (Nonlinear Preconditioned Conjugate Gradient)
Given an initial vector x(0)

r(0) = Φ(x(0))−Ax(0)

Solve Ms(0) = r(0)
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p(0) = s(0)

For i = 0, 1, . . . , until convergence
αi =→ see Algorithm 1
x(i+1) = x(i) + αip

(i)

r(i+1) = r(i) − Φ(x(i)) + Φ(x(i+1))− αiAp
(i)

Solve Ms(i+1) = r(i+1)

Convergence test

βi+1 = −〈s(i+1),r(i+1)〉
〈s(i),r(i)〉

p(i+1) = r(i+1) − βi+1p
(i)

Since the auxiliary system Ms = r must be solved at each conjugate gradient iteration,
this system needs to be easily solved. Moreover, in order to obtain an effective precondi-
tioner, it wants M to be a good approximation of A. One of the general preconditioning
techniques for solving linear systems is the use of the truncated series preconditioning
[1]. These preconditioners consist of considering a splitting of the matrix A as

A = P −Q (3)

and performing m steps of the iterative procedure defined by this splitting toward the
solution of As = r, choosing s(0) = 0. It is well known that the solution of the auxiliary
system Ms = r is effected by s = (I + R + R2 + . . . + Rm−1)P−1r, where R = P−1Q
and the preconditioning matrix is Mm = P (I+R+R2+ . . .+Rm−1)−1, cf. [1]. In order
to obtain the preconditioners, choosing s(0) = 0, we use m steps of the block-Jacobi
type two-stage methods toward the solution of As = r. In order to obtain the inner
splittings of these block methods, incomplete LU factorizations are considered; see e.g.,
[4].

3 Development resources

This section analyzes the basic resources used in the building process of the designed
library. The main language used for the development of the basic routines and on which
the final library will be based is Fortran. However, C language is also used in order
to develop CUDA-based routines. The desired objective is to unite the development
features offered by Python in a single platform and to approach the execution features
offered by, in this case, Fortran and CUDA.

In order to access the routines developed in Fortran from Python, the F2PY
tool (cens.ioc.ee/projects/f2py2e) has been used. These routines were developed us-
ing OpenMP extensions to run on shared memory platforms. An enhanced feature is
the least influence on the behavior of the method of both the use and handling of arrays
or vectors and the communication between Python and Fortran. However, two equiv-
alent options can still be used: the Python modules for vector management Numeric
and numarray (numarray is part of NumPy). The new features are not able to use
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main routines developed in Python. Hence, vector communications between languages
remain an important aspect to consider in order to achieve the best performance.

On the other hand, to access the CUDA-based routines developed in C language
from Python, the PyCUDA package was used. PyCUDA is a package that offers access
to Nvidia’s CUDA parallel computation API from Python in such a way that it is
not necessary to access to a set of CUDA-based routines included in a library to link
to from Python. The PyCUDA package uses CodePy, a C/C++ metaprogramming
toolkit for Python. CodePy compiles C source code and dynamically loads it into the
Python interpreter, a key aspect in the nonlinearity implementation.

4 Parameters of the methods and platform

This section deals with the parameters which have to be passed to the Python functions
which solve a sparse nonlinear system using the NLCG or NLPCG method. The only
indispensable parameters are the parameters of the system to be solved (Ax = φ(x)),
which are the size of the system, the matrix A stored in CSR (Compressed Sparse Row)
format, and the nonlinear mapping φ(x). In addition the derivative of φ(x) (φ′(x)) is
required for computing δ as seen in Section 2. There is also a set of optional parameters
to modify the NLCG and NLPCG methods. If values for the optional parameters are
not specified, default values are used. The optional parameters are (see [7] for more
information):

• The initial vector to start procedure (initial vector).

• The stopping criterion to stop procedure (global stopping error).

• The stopping criterion to stop the iterative procedure to compute α (alfa stopping error).

• The maximum number of iterations performed in the iterative procedure to com-
pute α (iter alfa).

• Way to communicate integers from Python to Fortran or C (trash int).

• Way to communicate doubles from Python to Fortran or C (trash double).

• Level of the incomplete LU factorization performed in the NLPCGmethod (level).

• Number of outer iterations in the NLPCG method (niter 2e).

• Number of inner iterations in the NLPCG method (val q).

Another important parameter, that the library can calculate, is the size of the
problem assigned to each process; this is given by the parameter block dimensions. This
parameter is an integer vector whose dimension corresponds to the number of processes
and which stores the block size assigned to each process. In the examples provided
by PyPANCG, the parameter is internally calculated, such that a load balancing is
achieved. On the other hand, this parameter has no relevance if CUDA is used, since
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in this case the shared memory multiprocessor is not used even if it is available. In this
case a single process manages the GPU computing.

The parameter For or Py selects the set of routines and the platform to be used.
In [7] we can see the options to use in a distributed memory platform: Python full,
Python, Fortran or Fortran full. The following options can be chosen with regard to
this parameter in order to use a shared memory platform or a GPU:

1. Fortran mp: The routines are codified in Fortran using OpenMP. Moreover φ and
φ′ are codified independently.

2. Fortran mp full : All of the routines are codified in Fortran using OpenMP but φ
and φ′ are not codified independently.

3. GPU : All of the routines are codified in C as CUDA kernels. Moreover φ and φ′

are codified as CUDA kernels independently.

Using OpenMP or CUDA, the nonlinear functions must be codified in Fortran or
C respectively. Using Fortran mp or Fortran mp full implies codifying the nonlinear
functions in Fortran and the compilation of the Fortran library linked to from Python.
However, the use of GPU avoids the explicit recompilation of the nonlinear functions
developed as CUDA kernels, by exploiting the CodePy features.

Finally, there are new parameters to work with the new options of the For or Py
parameter, i.e. to work using OpenMP and CUDA. The first parameter, nprocs mp,
is the number of processes used in the shared memory platform when OpenMP is
selected. The rest of the new parameters are used by CUDA. In a CUDA kernel
calling, in addition to classical function parameters, there are two parameters that
define the structure of threads that will be generated to run the CUDA kernel. Both
parameters are the number of blocks to be generated (grid) and the number of threads
in each block (block), see for example [8] to obtain detailed description. Moreover
there are two global variables in order to tune the inner products, VECTOR N and
ELEMENT N, see [4] for detailed description. Note that, both considered algorithms
intensively use inner product, which is also a special operation involving a reduction
process.

5 Encoding nonlinear functions

In a library for solving nonlinear systems it is important how to implement the non-
linearity of the problem to be solved. In [7] we show that PyPANCG can work either
at component level and at vector level. However, when OpenMP or CUDA is used,
for usability reasons and for the nature of the GPU computing, the library works at
component level. The example below shows the Fortran code for the function φ(x) used
in the examples of PyPANCG.

double precision function phi(input,trash_int,trash_double)

implicit none

@CMMSE                                 Page 811 of 1703                                 ISBN: 978-84-614-6167-7
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real*8 input,trash_double(*),sc

integer trash_int(*)

sc = trash_double(1)

phi = -sc*exp(input)

return

The C CUDA kernel code to compute the same function is:

__device__ double Fi_x(double x,double sc){

return (-sc*__expf(x))

}

We would like to note that both functions require a parameter transfer (sc) for
the computation of φ. Using Fortran and OpenMP, in order to realize this transfer
-both real values and integer values if needed- we use two vectors, one integer vector
trash int and one double precision real vector trash double. These vectors are dynamic
and thus all parameters required for the computation can be passed to functions φ and
φ′. Naturally, these functions must always be implemented in order to adapt them to
the problem to be solved. On the other hand, using CUDA the memory allocation and
the GPU-CPU communication processes can be expensive, therefore the memory used
is the strictly necessary memory. In the previous example we only communicate the
necessary double parameter.

6 Python examples using OpenMP and CUDA

The use of the modules PySparNLCG and PySParNLPCG using OpenMP or CUDA
is closely similar to earlier version presented in [7]. In order to use the library the
size of the system (nrow), the matrix A in CSR format (tcol, trow, tval), and the
nonlinear functions (φ and φ′) must be passed at the very least, and optionally, the block
size assigned to each process (block dimensions). Moreover, as we have mentioned,
additional parameters, if needed, can be passed by using the variables trash int and
trash double. The following code shows the most simple NLCG function call using
OpenMP.

1 from math import exp

2 import numpy

3 import PyPANCG

4 import PyPANCG.PySParNLCG as PySparNLCG

5 nprocs = 4

6 trash_double = numpy.zeros(((1),),float)

7 trash_double[0] = 6/(float(49)**3)

8 nrow = 125000

9 nrow,block_dimensions,bls = _

PyPANCG.MakeBlockStructure(nrow=nrow)

10 nnz,tcol,trow,tval = PyPANCG.PartialMatrixA _

(Mx=Mx,s=nrow,d=nrow)
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11 x,error,time,iter = PySParNLCG.nlcg(nrow=nrow,tcol=tcol,trow=trow,tval=tval, _

block_dimensions = block_dimensions,Fi_x=Fi_x,Fi_prime_x=Fi_prime_x, _

For_or_Py=’Fortran_mp’,trash_double = trash_double,nprocs_mp=nprocs)

The number of processes to use is established in line 5. Note that the number of
processes must be fixed before the block structure be defined in line 9. The matrix A is
obtained in line 10 following the block structure above defined. This matrix is included
in PyPANCG as an example or test. It is important to point out that in line 10 root
process computes the full matrix A, we maintain the PartialMatrixA as routine name in
order to accomplish the compatibility. In line 11, the actual call to the NLCG method
takes place, whereby we assume that Fi x (φ) and Fi prime x (φ′) were developed in
Fortran and the vector trash double is passed, in this case of a single component. Note
that OpenMP is not used in the development of Fi x (φ) and Fi prime x (φ′) because
they are implemented at component level.

The most simple NLPCG using an OpenMP function call is similar to the NLCG
example above showed. In this case, the PySParNLPCG module must be imported
instead of the PySParNLCG module in line 4, and line 11 must be modified by the
main function of the PySParNLPCG module.

4 import PyPANCG.PySParNLPCG as PySparNLPCG

11 x,error,time,iter = PySParNLPCG.nlpcg(nrow=nrow,tcol=tcol,trow=trow,tval=tval, _

block_dimensions = block_dimensions,Fi_x=Fi_x,Fi_prime_x=Fi_prime_x, _

For_or_Py=’Fortran_mp’,trash_double = trash_double,procs_mp=nprocs)

The following example shows the simplest example to call NLCG method using
CUDA.

1 from math import exp

2 import numpy

3 import PyPANCG

4 import PyPANCG.PySParNLCG as PySparNLCG

5 import PyPANCG.PySparNLCG_ModGPU as PySParNLCG_ModGPU

6 nprocs = 1

7 trash_double = numpy.zeros(((1),),float)

8 trash_double[0] = 6/(float(49)**3)

9 nrow = 125000

10 nnz,tcol,trow,tval = PyPANCG.PartialMatrixA _

(Mx=Mx,s=nrow,d=nrow)

11 x,error,time,iter = PySParNLCG.nlcg(nrow=nrow,tcol=tcol,trow=trow,tval=tval, _

Fi_x=0,Fi_prime_x=0,For_or_Py=’GPU’, _

trash_double = trash_double,nprocs_mp=nprocs)

In line 5 the PyPANCG.PySparNLCG ModGPU module is imported. This mod-
ule contains all CUDA kernels needed by the NLCG method, including Fi x (φ) and

@CMMSE                                 Page 813 of 1703                                 ISBN: 978-84-614-6167-7
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Fi prime x (φ′). Note that the encoding of the nonlinear functions must be done in that
module without any compiling process. In the NLCG method, the CPU only performs
the management of the GPU, therefore only one process is used (see line 6). The full
matrix A is computed in line 10 by the CPU. In line 11, the call to the NLCG method
to be computed in the GPU takes place. Note that the nonlinear functions Fi x (φ)
and Fi prime x (φ′) are not defined in this call because, as we have mentioned, they
are included inside CUDA kernels from PyPANCG.PySparNLCG ModGPU module.

Finally, the most simple NLPCG function call, using CUDA, is similar to the
previous example. In this case the PySParNLPCG module must be imported instead of
the PySParNLCG module in line 4. The PyPANCG.PySparNLPCG ModGPU module
containing the CUDA kernels used by the NLPCG method, is also imported in line 5.

4 import PyPANCG.PySParNLPCG as PySparNLPCG

5 import PyPANCG.PySparNLPCG_ModGPU as PySParNLPCG_ModGPU

The main function for the NLPCG method takes, in this case, the following form:

11 x,error,time,iter = PySParNLPCG.nlpcg(nrow=nrow,tcol=tcol,trow=trow,tval=tval, _

Fi_x=0,Fi_prime_x=0,For_or_Py=’GPU’, _

trash_double = trash_double,procs_mp=nprocs)

In [4] some aspects of GPU computing are pointed out in order to tune the perfor-
mance of the NLCG and NLPCG methods. Essentially this improvements are related
to the inner products computation and the number of threads by block in the CUDA
kernels. The following lines show an improvement of the NLPCG method with the use
of some parameters (grid and block) as described in [4].

11 if (nrow == 125000)

VECTOR_N = 128

ELEMENT_N = 2916

grid = (1458,1,1)

block = (256,1)

12 x,error,time,iter = PySParNLPCG.nlpcg(nrow=nrow,tcol=tcol,trow=trow,tval=tval, _

Fi_x=0,Fi_prime_x=0,For_or_Py=’GPU’, _

trash_double = trash_double,procs_mp=nprocs, _

block=block,grid=grid)

7 Numerical experiments

In order to illustrate the behavior of PyPANCG, we have tested the algorithms provided
by this library on an Intel Core 2 Quad Q6600, 2.4 GHz, with 4 GB of RAM, called
SULLI. The GPU available in SULLI is a GeForce GTX 280. The performed analysis
is based on the run-times measured on the GeForce GTX 280, and on the parallel run-
times measured on SULLI using OpenMP, when pure Fortran code (using OpenMP) or
pure C code (using CUDA) are used, compared with the times obtained by PyPANCG.

As our illustrative example we have considered a nonlinear elliptic partial differ-
ential equation, known as the Bratu problem. In this problem, heat generation from
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(a) PySParNLCG (b) PySParNLPCG

Figure 1: Efficiency using OpenMP, n = 373248.

a combustion process is balanced by heat transfer due to conduction. The three-
dimensional model problem is given as

∇2u− λeu = 0, (4)

where u is the temperature and λ is a constant known as the Frank-Kamenetskii pa-
rameter; see e.g., [2]. There are two possible steady-state solutions to this problem for
a given value of λ. One solution is close to u = 0 and it is easy to obtain. A starting
point near to the other solution is needed to converge to it. For our model case, we
consider a 3D cube domain Ω of unit length and λ = 6. To solve equation (4) using the
finite difference method, we consider a grid in Ω of d3 nodes. This discretization yields
a nonlinear system of the form Ax = Φ(x), where Φ : �n → �n is a nonlinear diagonal
mapping, i.e., the ith component Φi of Φ is a function only of the ith component of x.
The matrix A is a sparse matrix of order n = d3 and the typical number of nonzero
elements per row of this matrix is seven, with fewer in rows corresponding to boundary
points of the physical domain.

First, we analyze the efficiency for both methods using OpenMP. The NLCG
method is performed by PySParNLCGmodule and the NLPCGmethod is performed by
PySParNLPCG module. Optimal values of the parameters are used when the NLPCG
method is computed, these parameters are the level of fill-in of the incomplete LU
factorization (level), the number of outer iterations of the block two-stage method
(niter 2e), and the number of inner iterations of the block two-stage method (val q).
On the other hand, in all experiments reported here the values of global stopping error
and alfa stopping error are 10−7, and we set iter alfa parameter equal to 2. Figure
1 shows the efficiency of both methods using OpenMP and up to 4 cores available
in SULLI. The efficiency behavior of the methods is not influenced by the use of the
Python library; a pure Fortran code obtains similar efficiencies. For the NLCG method
we obtain a good efficiency with a slight decrease when the number of processes is
increased. However, as we showed in [6], the NLPCG method is a very good algorithm
but with poor scalability, even for very large systems.

In order to select OpenMP, we have two options for parameter For or Py (see
Section 4). In Figure 2 we can observe the behavior for both options. Setting For-
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(a) 125000 (b) 373248

Figure 2: PySparNLCG using OpenMP.

(a) PySParNLCG (b) PySParNLPCG

Figure 3: PyPANCG using CUDA.

tran mp full option we obtain results closer to those obtained with pure Fortran than
using Fortran mp option. Note that the development effort using Fortran mp full is
higher than using Fortran mp.

Finally, we compare the results obtained by both modules when CUDA is used.
Concretely, Figure 3 shows the results of these PyPANCG modules compared with a
pure CUDA code for several problem sizes. As it can be appreciated both implemen-
tations report similar execution times.

8 Conclusion

In this paper we have presented new features of PyPANCG, a Python library-interface
that implements both the conjugate gradient method and the preconditioned conjugate
gradient method for solving nonlinear systems. The aim of this library is to develop
high performance scientific codes for high-end computers hiding many of the underlying
low-level programming complexities from users with the use of a high-level Python
interface. The new features are designed to allow PyPANCG to be able to work on
both shared memory platforms and GPUs. We have described the use of the library
and its advantages in order to get fast development. The library has been designed for
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adapting to different stages of the design process, depending on whether the purpose is
computational performance or fast development. We have achieved both objectives at
once using the GPU as a computation platform, which is also the platform on which
the proposed algorithms have better performance.
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Abstract

Anomaly detection is an important task for remotely sensed hyperspectral data
exploitation. Its goal is to identify anomalous pixels, i.e. pixels with spectral char-
acteristics different to those of its neighboring pixels. In this paper, we explore global
versus local approaches for implementation of anomaly detection algorithms. Our intro-
spection is that global approaches exhibit more complexity in parallel implementation
due to intensive communications between the nodes of the parallel system, while local
approaches can offer improved detection capabilities and, at the same time, be more
suited for parallel implementation. Experimental results with synthetic and real images
are given to validate these remarks.

Key words: Hyperspectral imaging, anomaly detection, parallel computing.

1 Introduction

Hyperspectral imaging instruments are now able to record the visible and near-infrared
spectrum (wavelength region from 0.4 to 2.5 micrometers) of the reflected light of an area 2
to 12 kilometers wide and several kilometers long using hundreds of spectral bands [1]. The
resulting “image cube” is a stack of images in which each pixel (vector) has an associated
spectral signature or fingerprint that uniquely characterizes the underlying objects [2]. The
data volume typically comprises several GBs per flight [3].
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The array of techniques that can be applied for hyperspectral image processing is enor-
mous [4]. Anomaly detection is highly relevant in many application domains, including
detection of forest fires, pollutants in water, rare minerals in geology, or military targets
in defense and security applications. [5]. A popular algoritm for hyperspectral anomaly
detection was developed by Reed and Xiaoly (RX algorithm [6]). This algorithm follows
a global approach, i.e., it uses the full hyperspectral image in order to derive statistics.
To adapt this algorithm to real-time application scenarios in which the full hyperspectral
image may not be available, variations of this algorithm have been focused on using small
subsets of the image (e.g. those already collected by the imaging instrument [2]. In this
case, a sliding-window approach can be used to include spatial information in the analysis
[7]. Depending on the complexity and dimensionality of the input scene, the aforementioned
algorithms may be computationally expensive, a fact that limits the possibility of utilizing
those algorithms in time-critical applications [3].

In this paper, we explore global versus local approaches for the implementation of hyper-
spectral anomaly detection algorithms. Our introspection is that global approaches exhibit
more complex parallelization that requires intensive communications between the nodes of
the parallel system, while local approaches may offer improved detection capabilities and
still be more suitable for parallel implementation.

2 RX Algorithm: Local versus Global Implementations

The RX algorithm has been widely used in signal and image processing [6]. The filter
implemented by this algorithm is referred to as RX filter (RXF) and defined by the following
expression:

δRXF(x) = (x− µ)TK−1
n×n(x− µ), (1)

where x =
[
x(0), x(1), · · · , x(n)

]
is a sample, n-dimensional hyperspectral pixel (vector), µ is

the sample mean and Kn×n is the sample data covariance matrix. As we can see, the form
of δRXF is actually the well-known Mahalanobis distance [2]. It is important to note that
the images generated by the RX algorithm are generally gray scale images. In this case, the
anomalies can be categorized in terms of the probability value returned by RXF.

In this work, we consider also two variations of the original RX implementation. The
first one replaces the sample covariance matrix Kn×n by the sample correlation matrix
Rn×n. Since the covariance relies on the full image statistics, using the correlation matrix
instead allows adapting the algorithm to a real-time scenario in which not the full data set
might be available at a certain point. In this case, the correlation matrix is calculated using
only the available samples. The second variation considers a local approach to determine
whether or not the image pixels are anomalous. The idea is to place a window about each
pixel in the image and use local image statistics (i.e., µ, Kn×n andRn×n would be calculated
in the local window instead of in the full image). Our introspection is that this approach
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is more suitable for parallel implementation but it can also suffer from several problems,
including the fact that window pixel vectors are almost never statistically independent (thus
introducing conditioning problems in the calculated matrices), or the fact that outliers
(i.e., the anomalies we are looking for) can compromise the integrity of the local statistics,
particularly the covariance matrix.

3 Experiments and Discussion

In this section we inter-compare local versus global implementations of different variations
of the RX algorithm for anomaly detection, including implementations with the covariance
matrix and with the correlation matrix, and also implementations using the full hyperspec-
tral image and small windows centered around each image pixel when calculating the RX
statistics. Our experiments have been conducted with a synthetic and a real hyperspectral
image. The real hyperspectral image was colected by the HYperspectral Digital Image Col-
lection Experiment (HYDICE) described in [2]. It is an image scene with a size of 64 × 64
pixels with 15 panels in the scene and a ground-truth map indicating the position of the
panels. The real hyperspectral image was acquired by 210 spectral bands with a spectral
coverage from 0.4 to 2.5 microns. Low signal/high noise bands: 1-3 and 202-210; and water
vapor absorption bands: 101-112 and 137-153 were removed prior to experiments, so a total
of 169 bands were used. The spatial resolution is 1.56 meters and the spectral resolution
is 10 nanometers. The synthetic hyperspectral image was designed to mimic the spatial
and the spectral characteristics of the original hyperspectral image using different spectral
signatures, in this case, minerals obtained from the U.S. Geological Survey (USGS)1. It has
a size of 64× 64 pixels with 224 spectral bands. Random noise with signal-to-noise ratio of
30:1 [2] was then added to the synthetic scenes to simulate the contribution of instrumental
noise.

Fig. 1 shows the receiver operating characteristics (ROC) curve obtained after com-
paring the output provided by different implementations of the RX algorithm (using the
covariance versus the correlation matrix, and also using a global versus a local approach)
with the ground-truth available for the scene [6]. The ROC curve plots the probability of
detection versus the probability of false alarm, so that the area under the ROC curve serves
as a good indicator to evaluate the probability of detection achieved by the different imple-
mentations independently of the selection of specific threshold values. On the other hand,
Fig. 2 shows the ROC curves obtained for the real HYDICE hyperspectral image for which
ground-truth information is also available. As shown by Figs. 1 and 2, the local versions
generally offer the best detection results (area under the ROC curve). This is an important
conclusion since the local versions are embarrasingly parallel (i.e., they can scale to any
number of processors in a parallel system due to the lack of inter-processor communications

1The USGS mineral library can be downloaded from http://speclab.cr.usgs.gov.
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Figure 1: ROC curve illustrating the performance of different anomaly detection algorithms
with a synthetic hyperspectral image.

[8]). Also, the good results provided by the correlation matrix in the local implementation
allow us to circumvent the problems related with the conditioning of the matrix used in
the calculations. Further experiments will be focused on evaluating the performance of the
different approaches on parallel computing architectures.
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Figure 2: ROC curve illustrating the performance of different anomaly detection algorithms
with a real hyperspectral image.
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Abstract

Nowadays multi-core systems are being proposed as a new environment, in order to
increase performance of modern computer systems. The new challenge is to use them
efficiently during the execution of applications. In this work we focus on the exploitation
of multi-core systems in the execution of Multiple Sequence Alignment (MSA) applica-
tions. The MSA is a high computing demanding process, were the aim is to find similar
regions in biological sequences. The goal is to align as much sequences as possible in an
acceptable amount of time and with a level of quality that makes the alignment biolog-
ically meaningful. This paper presents an efficiency study of different implementations
based on T-Coffee, an application that carries out MSA. The study is focused on finding
new optimizations that may improve the average execution time on multi-core parallel
systems. In order to evaluate the efficiency and scalability of T-Coffee, memory and
total computing time have been measured on different system configurations by gradu-
ally increasing the number of input sequences. We have found that the current message
passing implementations have several issues that affect negatively the performance and
scalability of T-Coffee. Finally we present a proposal modification over the T-Coffee
parallelization, where threading functions were introduced with the aim of optimizing
the execution of T-Coffee in multi-core systems.
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1 Introduction

Traditionally, the increase of performance in computer systems has been based on the
increment of the processor clock frequency. This has a technological limit, being that
increasing the frequency causes an increment of the energy cost and the dissipated heat by
the system [hill08]. Currently, multi-cores (up to 12 cores per processor) are part of most
general purpose systems [geer05].

The current challenge is to use multi-core systems in an efficient way during the exe-
cution of applications. There is a wide range of scientific problems that can benefit from
an efficient exploitation of parallel systems, and specially of multi-core systems. One of the
scientific fields with large scale problems to be solved, is computational biology. In this
work, we focus on the exploitation of multi-core systems for solving the biological problem
of Multiple Sequence Alignment (MSA). MSA is one of the most used techniques in the
study of biological sequences of genomes. The main goal is to find coincidences between
different sequences. This allows biologists to study the differences between genomes and
study the evolution of the studied species. The current MSA implementations are few, and
they are not completely written to fully use efficiently the current multi-core architectures.
MSA implementations found in literature are MUSCLE [edgar04], MAFFT [katoh08] and
ClustalW [larkin07].

One MSA implementation currently used by the bioinformatics community is T-Coffee
[notredame00]. T-Coffee, a sequential sequence aligner, has been designed to work on
standalone systems with one processor. Although the latest implementation creates as
many sequential processes as processors cores are found in the system, the implementation
used is not the most efficient for a cluster environment. Parallel-T-Coffee [zola07] and
Clus-T-Coffee [naranjo09] are two parallel implementations based on T-Coffee, that can be
deployed over a cluster. The first one is a parallel re-implementation of T-Coffee, when the
second one, performs a different heuristic where the set of input sequences is clusterized and
processed by different parallel instances of T-Coffee. The goal of this work is to analyse the
behaviour of these implementations on different systems, in order to detect possible ways
to improve the overall process.

In order to achieve our goal, we have performed an study of both parallel implementa-
tions of T-Coffee in a set of different system configurations with different input data. Then,
the results are studied in order to determine the benefits and drawbacks of each implemen-
tation. After this study, we are proposing the implementation of a shared memory version
of T-Coffee combining threads with MPI (messaging passing interface).

This paper is organized as follows: Section 2 presents the application under study. Sec-
tion 3 presents the experimentation and results of the study. Section 4 presents a proposed
implementation with threads. Finally, Section 5 presents the main conclusions.
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Figure 1: Example of a multiple alignment of a set of sequences

2 Multiple Sequence Alignment

The Multiple Sequence Alignment problem (MSA) consists in finding which patterns have
in common at least three or more biological sequences. These sequences are formed by
a structure of proteins, or nucleic acids DNA/RNA, and they are represented as plain
ASCII characters. For example, on DNA sequences, there are four possible bases, Adenine,
Thymine, Cytosine and Guanine. These will be encoded with the characters A,T,C and
G respectively. The generated alignment will show shared subsequences from a common
ancestor and insertions, deletions or different bases representing alterations like mutations
or single nucleotide polymorphisms.

In Figure 1, we can see the output of a MSA of some sequences, the displayed sequences
are a portion of a 100 sequences output file. Matching characters are aligned on the same
column, gaps, insertions and/or deletions of characters may be performed to enforce the
alignment of the sequence. A gap is a space between two characters, a insertion is the addi-
tion of one or more characters, and a deletion is the suppression of one or more characters.
On this example, the alignment quality is represented in a different tonality color. The
color tone goes from light to dark, were the light colors are the worst values of quality and
dark ones are the bests one.

2.1 T-Coffee

T-Coffee (Tree-based Consistency Objective Function For alignment Evaluation), is the
MSA application most extensively used among biologists [notredame00]. The original stan-
dalone version of T-Coffee is a sequential implementation, although there are some paral-
lelization optimizations performed to use a multi-core system only. The other implemen-
tations presented on the next sections, use the message-passing library MPI, to parallelize
the different stages of the algorithm.

T-Coffee can be used to align Protein, DNA and RNA sequences, and it can also
combine the output generated by other MSA like Clustal, Muscle, Mafft, etc.. into one
unique alignment using another mode of operation called M-Coffee. It processes input
plain text files containing unaligned sequences, and generates another file with the resulting
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Figure 2: Steps and example of T-Coffee (TC) process. The circle represents a set of
sequences, the square a computational process or step and the rounded squares are the
name of the data structures (library) generated by the process

alignment of all the involved sequences. It tries to improve the accuracy of the results taking
into account biological information obtained from pair-wise alignments.

In T-Coffee, sequences are processed through the three following stages: The pairwise
alignment, the extension and the progressive alignment. Figure 2 illustrates the process of
these stages of T-Coffee for a example of four input sequences (A, B, C, D).

• Pairwise alignment: Construction of library, referred as Primary Library (PL), con-
taining all the pair-wise alignments from all input sequences. In our example, all
the pairs of A, B, C and D sequences are aligned. Information about N(N − 1)/2
pairs is stored in this library, where N is the number of input sequences. Alignments
are represented as a list of matching pairs of residues. Each of these correlations is
considered by T-Coffee as a restriction. A weight value from a scoring scheme is as-
signed to each restriction. The computing cost of this phase is very high because it is
necessary to obtain the pair-wise alignments for all input sequences. The alignment
of two sequences in particular has a computing complexity in space of O(L) and in
time O(L2), here L is the average length of sequences to align. Aligning N sequences
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requires N(N − 1)/2 combinations. This is equivalent to a complexity in general of
O(N2), in time of O(N2L2) and in space O(N2 + L).

• Extension: The extension is the heuristic used by T-Coffee to adjust the restrictions
group of the PL into multiple sequence alignments. The analysis in the extension
is based on taking from the PL each pair of aligned residues in two sequences and
check whether these are aligned with residue of the third sequence. The weight of the
aligned residue in the third sequence in the PL is added to the weight assigned to the
pair of residues in PL. The process in the extension is made for each pair of residues
with all the input sequences. The cost of this process is very high. The extension
is designed to generate a list of restrictions used to evaluate the construction of the
final multiple sequence alignment. The complexity is in time O(N3L2) and in space
O(N3 + L). The generated library, is called extended library (EL).

• Progressive Alignment: To obtain the progressive alignment it is necessary to generate
a distance matrix (DM) from all input sequences. The DM is built with the values
of similarity between pairs of sequences and is used to construct a guide tree. The
guide tree is build as a Directed Acyclic Graph [kwok99] and its precedences are used
to establish the order in the progressive alignment. In the example of the illustration
the order established by the guide tree indicates a first alignment of sequences A and
B, next with C and finally with D.

2.2 Parallel-T-Coffee

PTC, see [zola07], is a parallel implementation of T-Coffee using MPI. It is based in T-
Coffee version 3.79. The constraints library is distributed across the different tasks, and
performs alignment operations in parallel using dynamic scheduling techniques. As seeing
in Figure 3, PTC performs the same process as T-Coffee but parallellized across a set of
different tasks whose computation can be distributed among different nodes.

• Library Generation: In PTC the library generation is computed in a distributed form.
First the pairwise computation is distributed, then the constraints are grouped and
reweighted. Library extension is not performed as in original T-Coffee, it is postponed
and done on the fly in the progressive alignment phase. Finally, a 3d lookup table is
built from the library. Caching techniques are applied on this table.

• Progressive Alignment: Is the most difficult step to parallelize. Computations in PA
follow a tree order, thus its parallelization is reduced to a DAG (Directed acyclic
graph) scheduling problem [kwok99].
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Figure 3: Steps of Parallel-T-Coffee (PTC) process

2.3 Clus-T-Coffee

CTC is a new parallel implementation of T-Coffee developed in our group [naranjo09]. It
is based on version 7.81 of T-Coffee. It uses a divide and conquer technique. See Figure 4
for the schematics of the process. The main problem is divided in a set of small problems.
In CTC, a new phase is introduced. The clustering phase builds a set of different clusters
(groups) of sequences. The number of generated clusters and the amount of sequences
depends on a cut-off value. This value is used to determine the similarity of the sequences
to group in each cluster. As the initial task to compute the clusters, CTC needs to compute
the pair-wise alignments between all input sequences. In the following phase, each node
will receive a precomputed cluster and will run the whole T-Coffee algorithm on it, at the
end it will generate a partial alignment. Finally all partial alignments are merged on a last
invocation of T-Coffee.

3 Testing the performance of MSA

One of the basic goals of biologists researching on MSA, is to be able to align as much
sequences as possible with an acceptable quality level. Thus, we carried out a test of
performance of these implementations of T-Coffee in order to study the consumption of
memory usage and computing time of CTC and PTC, in order to find optimizations to
improve its efficiency.

In order to perform the experimentation, a set of system monitoring tools were used to
extract information about CPU and memory usage. A set of different tests were performed
on one of the clusters of the research group. This cluster had 20 nodes and one frontal, but
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Figure 4: Different steps of Clus-T-Coffee (CTC) process

in our experiments we are going to use only up to four nodes per test, all nodes were Intel
Core 2 Quad Q6600 @ 2.4GHz, they had 4 GBytes of RAM, 150 GBytes of disk and the
network speed was at 1 Gbit. The version of T-Coffee used in all tests is 8.99.

The following configurations were used:

• 4 processes in total:

– CTC and PTC executed in one node and four MPI processes per node.

– CTC and PTC executed in four nodes and one MPI process per node.

• 8 processes in total:

– CTC and PTC executed in two nodes and four MPI processes per node.

On these tests we can see the impact of the network communications, notice that we
are intentionally leaving 3 cores of the system idle on some tests.

We have generated a set of 50 input files containing from 100 to 1000 sequences. The
origin data used to generate these datasets comes from different BAliBASE sequence files.
BAliBASE [thompson99], is a benchmarking library which contains several input sequences
divided in a different set of benchmarks. There is not a fixed sequence length on these tests,
as different lengths were concatenated. BAliBASE is used to test the quality level of a set of
precomputed MSAs, its benchmarking tool gives an score of how good is an alignment. In
our study, we are only using BAliBASE sequences for generating a set of input sequences.

Table 1 shows a global summary of all the performed tests in our study. For each
test it is shown the number of MPI processes that were launched, the system configuration

@CMMSE                                 Page 829 of 1703                                 ISBN: 978-84-614-6167-7



Efficient execution of MSA in multi-core

Table 1: Relation of different tests, xn/yp where x is number of nodes and y number of
MPI processes launched

Number Processes. Test Max. Seqs.

1 TC 300
4 PTC 1n/4p 500
4 CTC 1n/4p 1000
4 PTC 4n/1p 400
4 CTC 4n/1p 700
8 PTC 2n/4p 400
8 CTC 2n/4p 200

expressed in terms of number of nodes and number of processors per node, and the maximum
number of sequences that we were able to execute for each test. Tests with a higher number
of sequences failed mainly due to complete exhaustion of all the system memory, or due to
exhaustion of the imposed time limit of 60 hours.

As can be observed in the table, the sequential implementation of T-Coffee (TC) is
able to process a maximum of 300 sequences. The parallel versions PTC and CTC are
able to increase this limit up to different values depending on the implementation. These
differences between the parallel implementations are caused by two reasons. First, on PTC’s
implementation, as seen before, memory handling of the constraints library allows a bit more
of space for processing more sequences. Second, when it runs with more than one node,
the penalty of the message passing communications is so high that it increases considerably
its processing time, causing the expiration of the time limit that we set on all tests. CTC
handling of memory and communications is different than in PTC, due to the way the
problem is divided into a subset of different parallel problems, but its limitation to process
sequences is due to some stability problems in the current implementation. Thus stability
of CTC decreases when the number of processes is increased.

A more detailed analysis of performance, while varying the number of processed se-
quences, is shown in Figure 5 and Figure 6. Relevant results found are: when CTC processes
more than 300 sequences, it starts to consume less memory than PTC. Furthermore CTC is
consuming less time than PTC to complete. This difference, as commented before, is caused
by the fact that PTC is continuously communicating to access the distributed constraints
list. On the other hand CTC only communicates at the beginning and at the end of its
execution because its parallel execution does not have any kind of data requirement from
the other siblings. In addition, we expected that with the introduction of more execution
nodes the application would have to run faster, but the results show higher computing times
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Figure 5: Memory required to process n sequences

Figure 6: Computing time required to process n sequences

@CMMSE                                 Page 831 of 1703                                 ISBN: 978-84-614-6167-7



Efficient execution of MSA in multi-core

due to communication overheads. Summarizing the results obtained by these tests, we can
state the following things:

• By comparing executions in a single node with ones done in 2 or 4 nodes, both CTC
and PTC have some communication issues, mainly because single node executions are
able to process more sequences.

• CTC consumes less memory than PTC and its performance is more predictable than
PTC.

• PTC takes more time to process than CTC, mainly due to the communications.

In order to improve the memory usage, and reduce the overhead of the current available
parallelizations we propose to optimize them using the multithreading pthreads POSIX
standard as is exposed in next section.

4 Towards a pthreads implementation

One of the main problems of T-Coffee is the memory consumption, and one approach left
to resolve is the better usage of parallelization of the whole process in a multi-core machine.
It is already possible to run T-Coffee in parallel in a single machine. The original version is
capable to launch a set of processes using the system fork call. PTC and CTC are capable of
running multiple MPI processes on the same machine. On all these parallel implementations
we are not making use of a shared memory model such as threads. At the same time the
overhead generated by the sub-process creation and by the interprocess communications
should be reduced by applying a different model, more suitable for a multi-core system.
Thus, we proposed a reorientation of the implementation of parallel versions of T-Coffee
in such a way that they rely on the best of the studied implementations by combining a
message passing technology such as MPI with a threading API such as pthreads. This
proposed implementation substitutes the usage of the fork/wait system calls currently used
in the original T-Coffee implementation with pthread create/pthread join with the goal of
reducing the overhead of such parallelization on a per node based execution. The current
prototype has been focused in the parallelization of the construction of the primary library,
the pair-wise initial step of T-Coffee.

In order to perform the transformation of the current code, a thread safety study
has been performed. In this study, we found a set of different problems that are adding
complexity to the implementation of a fully multi-threaded implementation. The main
existing problem is that code is not thread safe due to the usage of non-reentrant system
calls, which should be substituted with the corresponding reentrant ones. Moreover, the
most extended issue on the code, is the usage of static variables used as global variables.
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A. Montañola, C. Roig, P. Hernández, A. Espinosa, Y. Naranjo, C. Notredame

These variables are being used within the most important functions of T-Coffee. The
program state is being reused on subsequent system calls. In order to be able to run this
code in parallel, we have created a memory container that stores all this global data, in a
per thread context. Each separate thread has a separate memory container which its own
memory. On all affected functions, the static variables are substituted by normal ones, and
its state is recovered at the beginning of its execution, and its stored back at the end of the
function. Additionally, we have found a lot of synchronization problems due to incorrectly
referred memory locations accessed from the wrong threads. T-Coffee has its own memory
management system, mainly for debugging purposes. The memory management code has
been modified in a way that each memory allocation keeps track of its own thread caller
identification. Then the code performs checks over the memory usage in a way that it avoids
and reports illegal access to memory regions of other threads. This verification code, causes
a considerable penalty on the efficiency on all the memory allocation code.

Another problem, is how T-Coffee deals with memory. It relies on fork assuming that
all memory is freed on process termination. When this code is migrated to pthreads, this
assumption causes an uncontrolled memory leakage. To avoid this problem, we have to keep
track of all memory allocated within a thread, deallocating it after thread termination.

In order to study our implementation we have performed several tests using sequences
from the BAliBASE benchmarking data set. These tests were run on a Intel Core 2 Quad
machine, with has four cores and eight Gigabytes of physical memory. Table 2 displays the
average time in seconds consumed by these sequences, each row is a different BAliBASE
input data directory, each one, has different biological meanings. The first column shows
the average computing time of the execution of T-Coffee running in serial, the second one
shows the time consumed by the pthreads implementation, running four worker threads.
As we can see on the table, the time required by the threaded implementation is obviously
lower than the one required by the serial one, on average the threaded implementation is
2.6 times faster. These performance results encourages us to go towards a global multi-
threading implementation of T-Coffee. On these experiments we are not looking at the
number of sequences, since we are more focused on the timings and BAliBASE benchmark
has very few sequences on its input data files to perform this kind of study. In addition as we
are using BAliBASE sequences for comparing two implementations of the same algorithm,
the BAliBASE score remains identical and its not considered.

5 Conclusions

MSA (Multiple Sequence Alignment) is a high computing demanding process, in the biology
field. In this work we focussed on the analysis of performance of the application T-Coffee.
This carries out MSA and its use is very extended among the scientific community. Two
different parallel implementations of T-Coffee, using a message passing library, have been
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Table 2: Consumption of computing time, in seconds, by T-Coffe serial, and T-Coffee with
pthreads

Test Serial Threads

RV11 2.51 1.68
RV12 5.36 3.58
RV20 82.95 31.49
RV30 198.43 76.72
RV40 73.32 30.42
RV50 63.46 23.36

Total 71.01 27.88

analysed, to determine their scalability. PTC (Parallel-T-Coffee), that parallelizes the in-
ternal steps and, CTC (Clust-T-Coffee) that adds an initial step to divide the global input
sequences on different sets and, then, T-Coffee is executed in parallel for each set. With the
different tests we could verify that the parallel implementations were able to process more
sequences than the serial one. However, there are still some issues to confront, with the vol-
ume of communications, on the message passing implementations. Finally we are proposing
to introduce a multi-threading solution in one of the current T-Coffee implementations in
order to increase its efficiency, reduce the consumed memory and reduce the overhead of
using a message passing library for computation on a multi-core machine.
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Abstract

Several provers are proposed in the literature for modal logic. We give a first step on an
exhaustive comparative of the provers for modal logic K designed by the authors with
other provers well known in the literature. A comparative is complicate because each
prover has been implemented for different platforms using different programming lan-
guages and with several input formats for formulas. We designed a common framework
to facilitate a comparison among provers with some tools developed for this purpose.

Key words: therorem proving, modal logic, implementation

1 Introduction

Modal logics are very useful in many areas of computer science. These areas include knowl-
edge and belief representation, database theory and distributed systems, program verifica-
tion, cryptography and agent based systems, computational linguistics, and nonmonotonic
formalisms [7]. Moreover, the recent development Description Logics [2] has increased the
interest for modal logics. The basis of all these logics is modal logic K. For this reason,
many provers have been constructed for this logic (see for example, [1,4,8,9]). Most of these
provers are based either on tableaux or in sequent calculus [3] and use external techniques
such as backtracking, backjumping, etc. For this reason, we developed in [11] a theorem
prover for modal logic K (based on dual tableaux [12]) which is a deterministic decision
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procedure but does not use any external technique. The main intention was, at the be-
ginning, purely theoretical and we assumed a practical cost in terms of complexity. As a
consequence, we did some improvements in [5] by using modal clauses and reducing the
number of rules applied.

In this paper, we give a first step on an exhaustive comparative of our provers for modal
logic K with other provers in the literature. The first thing we notice is that a comparative is
complicate because each prover has been implemented for different platforms using different
programming languages and with several input formats for formulas. We designed a common
framework to facilitate a comparison among provers with some tools developed for this
purpose.

The provers are designed in order to check the validity of a formula in modal logic K.
We introduce now the basic notions needed. The language of logic K consists of the symbols
from the following pairwise disjoint sets:

• V = {p1, p2, p3, . . .} - an ordered countable infinite set of propositional variables in-
dexed with natural numbers

• {¬,∨} - the set of classical propositional operations of negation (¬) and disjunction
(∨)

• {�} - the set consisting of modal propositional operation called the necessity opera-
tion.

The set of K-formulas is the smallest set including the set of propositional variables and
closed with respect to all the propositional operations.

A K-model is a structure M = (U,R,m) such that:

• U is a non-empty set (of states)

• R is a binary relation on U

• m is a meaning function such that m(p) ⊆ U , for every propositional variable p ∈ V.

The relation R is referred to as the accessibility relation. The satisfaction relation is defined
as usual in modal logics. Recall that for �-formulas it is defined as:

M, s |= �ϕ if and only if for all s′ ∈ U , (s, s′) ∈ R implies M, s′ |= ϕ.

A K-formula ϕ is said to be true in a K-modelM = (U,R,m), M |= ϕ, whenever for every
w ∈ U ,M, w |= ϕ, and it is K-valid whenever it is true in all K-models. A formula ϕ is said
to be K-satisfiable whenever there exist a K-model M = (U,R,m) and w ∈ U such that
M, w |= ϕ.
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The paper is organized as follows. In Section 2, we present some modal provers for modal
logic K. In Section 3 we present the tools we have developed for doing the comparative,
which are explained in Section 4. Finally, some conclusions and prospects of future works
are presented in Section 5.

2 Provers for modal logics

There are several provers for modal logics in the literature. An exhaustive list of these
provers can be found in http://www.cs.man.ac.uk/~schmidt/tools/. We focus our at-
tention in TWB 1, developed in the Computer Science Laboratory at the Australian National
University; LWB 2, developed in the University of Bern; and in Lotrec 3, developed in the
IRIT. The goal in this paper is to obtain a comparative among these provers and the two
provers [5, 11] we have developed in Swi-Prolog.

TWB has a demo version executable via web. The format of formulas is inorder and
it uses the operators →, &, ∨, box, and dia . A limitation is the length of formulas that
it is possible to prove. A big formula is cut when you try to write it or copy-paste it from
another editor. The system informs about the total number of applied rules but a trace with
information about the rules applied is not given nor real information about the execution
time.

LWB is a project of the University of Bern for several logics. An executable version of
the prover via web is provided. The format of the formulas is similar to TWB but using
→, &, v, [], <> as operators. The prover returns information about the rules applied but
the execution time is not showed.

Lotrec is a project of IRIT and the LoTREC Web Start is available, together with an
executable Java file to be downloaded. As a difference with other provers, the formulas are
written in preorder. Probably Lotrec is the more powerful prover regarding the possibilities
of extension to other logics, operators, rules, etc. No execution time is showed and the user
needs count the number of rules applied by hand.

Our first prover is named RePMLK and it is a proof system in the style of dual tableaux
for the relational logic associated to modal logic K. It was the first implementation of a
specific relational prover for a standard modal logic [11]. This prover is itself a deterministic
decision procedure verifying validity of K-formulas, that is, it does not use any external
technique such as backtracking, backjumping, etc. RePMLK has been developed in Prolog
and the formulas are represented as Prolog predicates. Moreover, in [10] we proposed a
front-end for our theorem prover providing an user-friendly environment which could be very
useful both for research and educational applications. Our prover returns the execution time

1http://twb.rsise.anu.edu.au/
2http://www.lwb.unibe.ch/
3http://www.irit.fr/Lotrec/
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and the full trace of the rules applied in order to use the prover as a learning environment
of modal logic.

We have also implemented in Prolog the prover RLK which is also a dual tableau
system, which is itself a deterministic decision procedure verifying validity of K-formulas,
without any external technique [6]. RLK improves RePMLK by using modal clauses to
represent the formulas and by the reduction of the number of rules to be applied.

Figure 1: Translation tool

3 Tools for a comparative

First of all, we need a tool for translating formulas from each format to the other ones. We
have developed this tool using the Python programming language. In the tool, we select the
option import from the editor and the Figure 1 appears. We introduce the formula, then
we select the adequate format of the formula to be imported and push the buttom Move to

the editor. Then the formula is displayed at the top of the window. In this process, the
formula is stored in an internal tree which facilitates the posterior process of conversion to
others formats. In Figure 1, the modal formula and nec or P Q not pos P in the format
used for the Lotrec prover is displayed as � (p ∨ q)∧ ∼ ♦p when you push the buttom Move

to the editor. At this stage, we think that a random generator of modal formulas could
allow us to make a first interesting comparative. Figure 2 shows the tool developed. We
introduce the name of the file, the path, the number of formulas will be generated and three
parameters in order to prepare bigger comparatives. We can select the maximum number
of the atoms that appears in the formula and also the modal length of the formula using
the parameters maximum and minimum level of the tree of the formula. Finally, in order
to automatize the process of conversion to the rest of formats, another tool in Python has
been developed. Figure 3 shows this important tool. A file from the random generator of
formulas, or a formula can be selected and the output format can be choosen. Then, you
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Figure 2: Random generator tool

push Start translation and the result is stored in different files with the same name and
the appropriated extension: .lwb, .twb, .lot, .pl.

4 The comparative

First, we translate the following formulas from TWB 4 by using our Python tool for trans-
lation.

NT1: �p1→ p1

LWB: (box p1)->p1

TWB: [] p1 -> p1

Lotrec: imp nec P1 P1

Prolog: formulaKLogic(implication(square(p1),p1)).

NT2: �p1→ ��p1

LWB: (box p1)->(box(box p1))

TWB: [] p1 -> [] [] p1

Lotrec: imp nec P1 nec nec P1

Prolog: formulaKLogic(implication(square(p1),square(square(p1)))).

NT3: ¬�p1→ �¬�p1

LWB: (~(box p1))->(box(~(box p1)))

TWB: (~([] p1))->([](~([] p1)))

Lotrec: imp not nec P1 nec not nec P1

Prolog: formulaKLogic(implication(not(square(p1)),square(not(square(p1))))).

T1: ♦p→ ♦p

4http://twb.rsise.anu.edu.au/modal_logic_k_0
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Figure 3: Translator tool

LWB: (dia p)->(dia p)

TWB: <> p -> <> p

Lotrec: imp pos P pos P

Prolog: formulaKLogic(implication(diamond(p),diamond(p))).

T2: ♦p→ �(�¬q ∨ ♦q)

LWB: (dia p)->(box((box(~q))v(dia q)))

TWB: <> p -> [] ( [] ~ q v <> q)

Lotrec: imp pos P nec or nec not Q pos Q

Prolog: formulaKLogic(implication(diamond(p),square(or(square(not(q)),diamond(q))))).

This way, we have translated all the following formulas provided in TWB.

T3: ¬(♦p ∧�¬p)
T4: ¬(♦p ∧ ♦(♦q ∧ ¬♦q))
T5: �(a→ b)→ (�a→ �b)

T6: (�(p0 ∧ p1)↔ (�p0 ∧�p1))

T7: (¬�¬p0↔ ♦p0)

T8: (�(p0→ p1))→ (�p0→ �p1)

T9: (�p0→ ♦p0) ∧ (�p0→ ��p0) ∧ (¬p0→ �♦¬p0)→ (�p0→ p0)

Similarly, form the webpage of Lotrec 5 we obtain the following formulas:

Lot1: (�p) ∧ ((♦q) ∧ (♦(r ∨ ¬q)))
Lot2: ∼∼ ♦p ∧ ♦q ∧� (s∨ ∼ p)

Lot3: p∧ ∼ �p

Lot4: ♦p ∧� (p→ ♦q) ∧ ♦ ∼ p

5http://www.irit.fr/Lotrec/
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Lot5: ♦p ∧� (p→ ♦q) ∧� ∼ q

Lot6: �♦ ∼ p ∧ ♦� ∼ q ∧�♦� (p ∨ q)

The following table shows the result of the comparative of the number of rules applied by
our provers RePMLK , RLK and the rest of provers TWB, Lotrec, and LWB.

Modal formula TWB Lotrec LWB RePMLK RLK Output

NT1 1 5 1 2 1 Not valid
NT2 3 4 3 6 1 Not valid
NT3 3 3 5 6 1 Not valid
T1 3 4 1 1 1 Valid
T2 5 3 6 6 2 Valid
T3 3 6 4 3 1 Valid
T4 5 4 6 3 2 Valid
T5 7 9 4 7 2 Valid
T6 18 7 11 17 2 Valid
T7 8 11 9 8 1 Valid
T8 7 8 4 7 2 Valid
T9 31 37 11 14 2 Valid
Lot1 2 2 6 2 3 Not valid
Lot2 3 1 9 2 1 Not valid
Lot3 1 1 3 1 1 Not valid
Lot4 1 10 4 1 2 Not valid
Lot5 1 1 8 1 2 Not valid
Lot6 2 2 6 3 2 Not valid

Observe that we have improved the number of applied rules in practically all the cases: in
11 of 18 formulas, we use a lower number of rules, in 4 cases we use the same number of rules
of any prover and only in 3 cases we use a rule more than any prover. We have obtained
also a bank of formulas by using the random generator with different values for the number
of atoms and for the modal length of a formula. The formulas generated, its translation
to the rest of formats, together with the results of the execution of all the provers can be
found in http://www.matap.uma.es/~amora/randomcomparative.zip. Figure 4 shows a
comparative of the results obtained and a picture with the average of number of used rules
of all provers. Notice that TWB can not be used in formulas F14 and F18 because of its
length. Our provers have a good behavior and specially we have excellent results with RLK.
In 11 cases of 19, RLK applies less number of rules than the rest, in 5 cases it applies the
same number of rules than any other prover, and only in 3 cases it applies more rules than
any other prover.
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5 Conclusions and future works

We presented a first step on an exhaustive comparative of provers for modal logic K which
could be extended to other logics. We developed some tools in order to do this comparative,
such as translation tool using the Python programming language to import from a format
and convert to the rest of the formats; and a random generator of modal formulas. The
results of this first comparison show that prover RLK improves the number or rules applied
in almost all the cases.

As a future work, we consider first the extension of this comparative to greater formulas
to check how the different provers scale as the problem size increases. We are preparing
a framework for future bigger comparatives. In http://www.lwb.unibe.ch/run.html a
benchmark for modal logics is available. However, the size of the formulas is blocking the
use of some provers: TWB in the web version does not allow us to introduce some formulas
and Lotrec is deadlocked also with some big formulas. Of course, an automatic tool to
translate this benchmark to the rest of formats should be implemented.
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Abstract

Among other applications, multi-adjoint lattices have been successfully used for
modeling flexible notions of truth-degrees in the fuzzy extension of logic program-
ming called MALP (Multi-Adjoint Logic Programming). In this paper we focus in
the completion of such mathematical construct by adapting the classical notion of
Dedekind-MacNeille in order to relax this usual hypothesis on such kind of ordered
sets. On the practical side, we show too the role played by multi-adjoint lattices
into the “Fuzzy LOgic Programming Environment for Research” FLOPER that we
have developed in our research group.

Key words: Lattice, Completion, Multi-adjoint Logic Programming.
MSC 2000: Lattice, Dedekind-MacNeille Completion.

1 Introduction

In essence, the notion of multi-adjoint lattice considers a carrier set L (whose elements
verify a concrete ordering ≤) equipped with a set of connectives like implications,
conjunctions, disjunctions and other hybrid aggregators, with the particularity that
for each implication symbol there exists its adjoint conjunction used for modeling the
modus ponens inference rule in a fuzzy setting. For instance, some adjoint pairs, i.e.
conjunctors and implications, in the lattice ([0, 1],≤) are presented below, where labels
L, G and P mean respectively L̷ukasiewicz logic, Gödel intuitionistic logic and product
logic (with different capabilities for modeling pessimist, optimist and realistic scenarios,
respectively):
&P(x, y) ≜ x ∗ y ←P (x, y) ≜ min(1, x/y) Product

&G(x, y) ≜ min(x, y) ←G (x, y) ≜

{
1 if y ≤ x

x otherwise
Gödel

&L(x, y) ≜ max(0, x + y − 1) ←L (x, y) ≜ min{x− y + 1, 1} L̷ukasiewicz
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Moreover, in the MALP framework [25, 23, 24], each program has its own associ-
ated multi-adjoint lattice and each program rule (very similar to a Prolog clause1) is
“weighted” with an element of L, whereas the components in its body are linked with
connectives of the lattice. For instance, in the following propositional MALP program
(where obviously @aver refers to the classical average aggregator):

p ←P @aver(q, r) witℎ 0.9
q ← witℎ 0.8
r ← witℎ 0.6

the last two rules directly assign truth values 0.8 and 0.6 to propositional symbols q and
r, respectively, and the execution of p using the first rule, simply consists in evaluating
the expression “&P(0.9,@aver(0.8, 0.6))”, which returns the final truth degree 0.63.

Anyway, although the class of multi-adjoint lattices is wide enough to model real-
world application written with the MALP language [2], in [28, 26] we have proposed
some debugging/tracing techniques based on lattices (whose elements are strings of
characters) which do not fully accomplish with the hypothesis of complete lattice re-
quired by multi-adjoint lattices.

Motivated by this fact, in Sections 2 and 3 of this paper, we give a first step in
solving such problem, inspired by the Dedekind-MacNeille completion of an ordered set
P (also known as the normal completion of P and the completion by cuts) which was
originally proposed by M. MacNeille in 1937 (see [18]) as an extension of the famous
definitions of real numbers conceived as cuts from rational ones due to Dedekind2 in
1872 [8].

The Dedekind-MacNeille completion is directly related to the concept of the canon-
ical extension that was firstly introduced, for Boolean algebras, in [13] and that arises
from Stone’s duality theorem. Although out of the scope of this paper, in the future we
plan to analyze some canonical extensions for multi-adjoint lattices, formally introduced
in [9] (see also [10, 29], which study the completion of an n-ordered set), that have asso-
ciated monotone operators and analyze the results especially for the habitual domains
in multi-adjoint logic programming of bilattices and trilattices [20, 21, 19, 4, 5, 3, 6].

On the other hand, the last part of this paper is concerned with implementation and
practical developments achieved in our group. More exactly, in Section 4 we present
the FLOPER tool [27, 28, 26], which currently is useful for compiling (to standard
Prolog code), executing and debugging MALP programs in a safe way and it is ready
for being extended in the near future with powerful transformation and optimization
techniques designed in our research group in the recent past [14, 11]. In this paper, we
will focus in the management of multi-adjoint lattices performed by FLOPER, where
such constructs can be easily expressed by means of a set Prolog clauses. Moreover,
for a given program and goal, we will see too that different solution could be achieved
depending on the currently loaded lattice (which can be changed as much as wanted
even in a single work session).

1We assume familiarity with pure Logic Programming and its most popular language Prolog [16].
2This German mathematician was pupil of Gauss in Gotinga and nowadays is considered one of the

founders of modern algebra.
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2 Dedekind-MacNeille Completion

We start this section by giving some basic definitions before addressing the concept of
Dedekind-MacNeille completion.

Definition 2.1. Let (P,≤) be an ordered set and Q ⊂ P .

i) Q is a down-set (also called decreasing set and order ideal) if whenever x ∈ Q, y ∈
P with y ≤ x, we have y ∈ Q.

ii) Dually, Q is an up-set (also called increasing set and order filter) if whenever
x ∈ Q, y ∈ P with y ≥ x, we have y ∈ Q.

In what follows we will use the set, read as “down” Q, ↓ Q = {y ∈ P : ∃x ∈ Q / y ≤ x},
in particular, ↓ x = {y ∈ P : y ≤ x} that is called principal down-set and also principal
ideal generated by x (obviously, ↓ {x} =↓ x). The set of all down-sets of P is denoted
by O(P) which is an ordered set under the usual inclusion ordering. Similary, “up” Q,
↑ Q = {y ∈ P : ∃x ∈ Q / x ≤ y}.

If P is an ordered set and X = {↓ x : x ∈ P} (ordered by inclusion), Y = {↑ x :
x ∈ P} (ordered by reverse inclusion), then the maps ⊳ : X → Y given by ↓ x 7→↑ x
and ⊲ : Y → X given by ↑ x 7→↓ x forms a Galois connection between X and Y . This
notion appears in [22, 19], where a fuzzy generalization of the formal concept analysis
was presented. In particular, multi-adjoint concept lattices were introduced into the
MALP framework for application to formal concept analysis.

Definition 2.2. Let (P,≤), (Q,≤) be ordered sets. A map ' : P → Q is said to be

i) order-preserving (or monotone) if x ≤ y in P implies '(x) ≤ '(y) in Q.

ii) order-embedding if x ≤ y in P if and only if '(x) ≤ '(y) in Q.

ii) order-isomorphism if it is an order-embedding which maps P in Q.

Definition 2.3. Given a partially ordered set (P,≤), we define for every subset A of
P , two subsets of P as follows: Au = {x ∈ P : a ≤ x,∀a ∈ A} and Al = {x ∈ P : x ≤
a,∀a ∈ A}.

The sets Au, Al are called A upper and A lower, respectively. Au is the set of all upper
bounds3 of A and Al is the set of all lower bounds4. Moreover, Au is an up-set and Al

is a down-set.

Definition 2.4. Let (P,≤) be ordered set and Q ⊂ P . Q is join-dense (similary, meet-
dense) in P if for all a ∈ P exists A ⊂ Q such that a =

⋁
A5 (similary, a =

⋀
A).

3By definition, an element x ∈ P is an upper bound of A if a ≤ x for all a ∈ A.
4By definition, an element x ∈ P is an lower bound of A if x ≤ a for all a ∈ A.
5We also write

⋁
A for the joint or supremum of A instead of sup(A) and

⋀
A for the met or infimum

of A instead of inf(A) where these exist.
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The following proposition is elementary, but in later Theorems 2.10, 2.11 y 3.2 we find
interesting examples of isomorphisms guarantees.

Proposición 2.5. All ordered set (P,≤) is isomorphic to a subset of set (2P ,⊂).

Proof. It suffices to note that the map f : P → 2P , given by f(x) = {y ∈ P : y ≤ x} is
injective and is order-preserving. On the other hand, the image f(x) is a down-set of
ordered set (2P ,⊂).

We shall be interested in the ordered sets in which the infimum and the supremum
exist for all subsets.

Definition 2.6. Let (P,≤) be a non-empty ordered set. If inf(S) and sup(S) exist for
all S ⊂ P , then P is called a complete lattice.

It is straightforward to prove that a non-empty P is complete lattice if and only if
inf(S) exists in P for every subset S of P .

On the other hand, there are many options for the embedding of an ordered set into
a complete lattice. We examine here one such embedding that generalizes Dedekind’s
construction of ℝ by cuts of ℚ, in order to apply it to the case of multi-adjoint lattice.

Definition 2.7. Let P be an ordered set. If C is a complete lattice and ' : P → C is
an order-embedding, then we say that C is a completion of P (via ').

Since the map ' : x 7−→ ↓ x is trivially an order-embeding of P into the complete
lattice O(P) of all down-sets of P (with the inclusion order), this one is a natural
completion of P . However, it is unnecessarily large: it is sufficient to take into account
that if P is a complete lattice then P is a completion of itself (via the identity map),
whileO(P) is much larger. Another completion of an ordered set is the ideal completion.
In what follows, we consider the smallest complete lattice containing P , namely the
Dedekind-MacNeille completion.

Definition 2.8. [7] The Dedekind-MacNeille completion of an ordered set P is the set
DM(P ) = {A ⊂ P : Aul = A}.

Moreover, it is also known as the completion by cuts and the normal completion of P
(see [10]). By means of the following theorem, we can give equivalent definitions of the
above concept, in terms of principal ideals of the notion of cut.

Theorem 2.9. Let DM(P ) be the the Dedekind-MacNeille completion of P . Then,

i) DM(P ) = {A ⊂ P : △A ⊂ A}, where △A =
∩
{↓ x : x ∈ A↑}.

ii) DM(P ) = {A ⊂ P : (A,B) is a cut of P, for some B ⊂ P}.

(DM(P ),⊂) is a complete lattice and, moreover, the map ' : x 7−→↓ x is an order-
embedding of P into DM(P ). Then, it is easy to prove the following theorem.

Theorem 2.10. Let P be an ordered set and let ' : P → DM(P ) be such that '(x) =↓
x for all x ∈ P . Then, DM(P ) is a completion of P via the map '.
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DM(P ) is known as the Dedekind-MacNeille completion of an ordered set P . In
DM(P ), since inf(A) and sup(A) exist for any subset, A ⊂ DM(P ), is a complete
lattice. Moreover, this process can be readily applied to any lattice, if we define a com-
pletion of a lattice. The fundamental theorem that follows can be used to characterize
the Dedekind-MacNeille completion.

Theorem 2.11. [7] Let P be an ordered set and let ' : P → DM(P ) be the order-
embedding of P into its Dedekind-MacNeille completion given by '(x) =↓ x for all
x ∈ P . Then

i) '(P ) is both join-dense and meet-dense in DM(P ).

ii) If C is a complete lattice and P is a subset of C which is both join-dense and
meet-dense in C, then C ≈ DM(P ) via an order-isomorphism which agrees with
' on P .

3 Completion of a Quasimulti-adjoint Lattice

In this section, we analyze the specific properties of the Dedekind-MacNeille completion
in the case of the lattices used by MALP programs, starting with their formal definition.

Definition 3.1. Let (L,≤) be a lattice. A multi-adjoint lattice is (L,≤,←1,&1, . . . ,←n

,&n) such that:

i) (L,≤) is a complete lattice, namely, ∀S ⊂ L,∃ inf(S), sup(S)6.

ii) &i is increasing in both arguments, for all i, i = 1, . . . , n.

iii) ←i is increasing in the first argument and decreasing in the second, for all i.

iv) If ⟨&i,←i⟩ is an adjoint pair in (L,≤) then, for any x, y, z ∈ L, we have that:
x ≤ (y ←i z) if and only if (x&iz) ≤ y.

This last condition, called adjoint property, is the most important feature of the frame-
work. Moreover, if (L,≤,←1,&1, . . . ,←n,&n) is bounded and satisfy only ii), iii), iv),
we call quasimulti-adjoint lattice.

The following theorem guarantees that the Dedekind-MacNeille completion of a
quasimulti-joint lattice has a quasimulti-adjoint sublattice isomorphic to the initial
one. Also, in this theorem it can be viewed in detail the particular properties of the
embedding '.

Theorem 3.2. If (L,≤,←1,&1, . . . ,←n,&n) is a quasimulti-adjoint lattice, then Im(')
is a quasimulti-adjoint sublattice of the complete lattice DM(P ) (via ') that is isomor-
phic to L. Moreover, the order-embedding ' is a lattice homomorphism of lattices;
preserves all joins and meets which exist in P ; for any adjoint pair (←,&) in L, there
exists an adjoint pair (←L̄,&L̄) in Im('). Finally, for any connective in L there exists
an associated connective in L̄.

6Then, it is a bounded lattice, i.e. it has bottom and top elements, denoted by ⊥ and ⊤, respectively.
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Proof. We will prove first that the map ' : L → DM(L), given by '(x) =↓ x is an
order-embedding, homomorphism and preserves the indicated joins and meets. Indeed:

i) ' is a map since '(x) =↓ x ∈ DM(L) for all x ∈ DM(L): one has only to
consider (↓ x)↑↓ =↓ x.

ii) ' is injective: if we assume that '(x) =↓ x =↓ y = '(y), then x ∈↓ x =↓ y, so
x ≤ y. Similarly, shows that y ≤ x, and we obtain x = y by the antisymmetric
property.

iii) ' is order-preserving: if x ≤ y in L implies '(x) ≤ '(y) in DM(L), by definition
of lower bound.

iv) Also, ' is an order-embedding: if '(x) ≤ '(y), then ↓ x ⊂↓ y. Since x ∈↓ x,
x ∈↓ y and therefore x ≤ y.

iv) ' is a lattice homomorphism, i.e., '(x∧ y) = '(x)∩'(y), '(x∨ y) = '(x)∪'(y).
Certainly, we shall prove the equality of both sets. If z ∈ '(x ∧ y) it holds that
z ≤ x ∧ y and, by definition of greatest lower bound, z ≤ x, z ≤ y. Then, we
have z ∈ '(x), z ∈ '(y), that is, z ∈ '(x) ∩ '(y). Thus, we obtain, '(x ∧ y) ⊂
'(x) ∩ '(y). The reverse inclusion, '(x) ∩'(y) ⊂ '(x ∧ y), is analogous, like the
dual result '(x ∨ y) = '(x) ∪ '(y).

v) ' preserves all joins and meets wich exist in P . Let A be a subset of L and
assume that

⋁
A exists in L. We shall prove that '(

⋁
A) =

⋁
'(A), namely,

↓ (
⋁

A) =
⋁
{↓ a : a ∈ A}. It is easy to prove that ↓ (

⋁
A) is an upper bound for

{↓ a : a ∈ A}. Moreover, if B ∈ DM(L) is an upper for the set {↓ a : a ∈ A},
we have a ∈↓ a ⊂ B for all a ∈ A, and therefore A ⊂ B. On the other hand, if
↓ (

⋁
A) exists in L, ↓ (

⋁
A) = 7Aul, and so ↓ (

⋁
A) = Aul ⊂ Bul = B.

Likewise, if
⋀

A exists in L, we shall prove that '(
⋀

A) =
⋀

'(A), that is,
↓ (

⋀
A) =

⋀
{↓ a : a ∈ A}. Since,

⋀
{↓ a : a ∈ A} =

∩
{↓ a : a ∈ A}, we have the

intended result.

Furthermore, we shall show that for any adjoint pair (←,&) in L, there exists an
adjoint pair (←L̄,&L̄) in Im('), set denoted by L̄. First, let A,B,C ∈ L̄, A =
'(x), B = '(y), C = '(z) be, for x, y, z ∈ L; then, we define the conjunction &L̄

and the implication ←L̄ as
A&L̄B = '(x)&L̄'(y) := '(x&y) B ←L̄ C = '(y)←L̄ '(z) := '(y ← z)

resulting the following properties:

i) &L̄ is increasing in both arguments: we shall show that if A1 ⊂ A2, then A1&L̄B ⊂
A2&L̄B. Since A1 = '(x1), A2 = '(x2), B = '(y), with x1, x2, y ∈ L, we have
that A1&L̄B = '(x1&y) ⊂ '(x2&y) = A2&L̄B being as ' is order-preserving
and & is increasing in the first argument. Likewise, the increase in the second
component is obtained.

7By definition of least upper bound and since Aul is a down-set.
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ii) &L̄ has identity element, in particular the identity of L̄ denoted by ⊤L̄ and is the
set ⊤L̄ =↓ ⊤ = {z ∈ L : z ≤ ⊤} = L. We need to check that ⊤L̄&L̄A = A, for
all A ∈ L̄. Certainly, if A = '(x), x ∈ L, we have ⊤L̄&L̄A = L&L̄A = '(⊤&x) =
'(x) = A, because & is a conjunction in L̄ and ⊤ is the identity element of L̄.

iii) ←L̄ is increasing in the first argument and decreasing in the second argument or,
more accurately, ←L̄ is order-preserving in the consequent and order-reversing
in the antecedent. Regarding the antecedent, we need to prove that if C1 ⊂ C2,
then B ←L̄ C1 ⊃ B ←L̄ C2. Since C1 = '(z1), C2 = '(z2), B = '(y), with
z1, z2, y ∈ L, we have that B ←L̄ C1 = '(y ← z1) ⊃ '(y ← z2) = B ←L̄ C2

because ←L is an implication and ' is order-preserving. Similarly, the behavior
in the consequent is obtained.

iv) (←L̄,&L̄) is an adjoint pair: we need to check that for any A,B,C ∈ L̄, A ⊂
(B ←L̄ C) ⇔ A&L̄C ⊂ B is fulfilled. Given A,B,C ∈ L̄, A = '(x), B =
'(y), C = '(z), with x, y, z ∈ L. For the first expression, we have A ⊂ (B ←L̄

C)⇔ '(x) ⊂ '(y ← z)⇔ x ⊂ (y ← z), where we use in the last step that ' is an
order-embedding. On the other hand, using the definition of &L̄ and again the
character of order-embedding of ', A&L̄C ⊂ B ⇔ '(x&z) ⊂ '(y) ⇔ x&z ≤ y,
and we have the indeed equality in virtue of the adjoint property of pair (←,&)
in lattice L.

Finally, each connective in L defines a connective in L̄, more detailed:

a) if ∧ is a conjunction in L, there exists an associated conjunction ∧̄ in L̄. The
commutative and associative properties of ∧̄ are derived from the respective of
∧. Moreover, ∧̄ verifies claims i), ii) before that we have shown for &L̄. All is
routine and we omit it.

b) if ∨ is a disjunction in L, there exists a disjunction ∨̄ in L̄ associated. Similarly
a).

c) if @ is a aggregator in L, there exists an associated aggregator @̄ in L̄..

It is easy to prove that ' is suryective if ' preserves all joins and meets. In this case,
L is isomorphic to (complete) multi-adjoint lattice DM(P ).

4 Multi-adjoint Lattices in Practice using FLOPER

From now, we proceed with more practical aspects regarding multi-adjoint lattices and
implementation issues. The parser of our FLOPER tool [27, 28] has been implemented
by using the Prolog language. Once the application is loaded inside a Prolog interpreter,
it shows a menu which includes options for loading/compiling, parsing, listing and
saving fuzzy programs, as well as for executing/debugging fuzzy goals. Moreover, in
[27] we explain that FLOPER has been recently equipped with new options, called
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“lat” and “show”, for allowing the possibility of respectively changing and displaying
the multi-adjoint lattice associated to a given program, as we are going to explain.

When modeling a lattice to be loaded into FLOPER, all its relevant components
must be encapsulated inside a Prolog file which must necessarily contain the definitions
of a minimal set of predicates defining the set of valid elements (including special
mentions to the “top” and “bottom” ones), the full or partial ordering established
among them, as well as the repertoire of fuzzy connectives which can be used for
their subsequent manipulation. In order to simplify our explanation, assume that file
“bool.pl” refers to the simplest notion of (a binary) adjoint lattice, thus implementing
the following set of predicates:

∙ member/1 which is satisfied when being called with a parameter representing a
valid truth degree. For instance, in the Boolean case, both predicates can be sim-
ply modeled by the Prolog facts: member(0)., member(1). and members([0,1]).

∙ bot/1 and top/1 obviously answer with the top and bottom element of the lattice,
respectively. Both are implemented into “bool.pl” as bot(0). and top(1).

∙ leq/2 models the ordering relation among all the possible pairs of truth degrees,
and obviously it is only satisfied when it is invoked with two elements verifying
that the first parameter is equal or smaller than the second one. So, in our exam-
ple it suffices with including into “bool.pl” the facts: leq(0,X). and leq(X,1).

∙ Finally, if we have some fuzzy connectives of the form &label1 (conjunction), ∨label2
(disjunction) or @label3 (aggregation) with arities n1, n2 and n3 respectively,
we must provide clauses defining the connective predicates “and label1/(n1+1)”,
“or label2/(n2+1)” and “agr label3/(n3+1)”, where the extra argument of each
predicate is intended to contain the result achieved after the evaluation of the
proper connective. For instance, in the Boolean case, the following two facts
model in a very easy way the behaviour of the classical conjunction operation:
and bool(0, ,0). and bool(1,X,X).

The reader can easily check that the use of lattice “bool.pl” when working with MALP
programs whose rules have the form: “A ←bool &bool(B1, . . . , Bn) witℎ 1”, being A

and Bi typical atoms, successfully mimics the behaviour of classical Prolog programs
where clauses accomplish with the shape “A : − B1, . . . , Bn”. As a novelty in the fuzzy
setting, the outputs associated to the evaluation of goals will contain the corresponding
Prolog’s substitution (i.e., the crisp notion of computed answer obtained by means of
classical SLD-resolution) together with the maximum truth degree 1.

On the other hand, and following the Prolog style regulated by the previous guide-
lines, in file “num.lat” we have included the clauses shown in Figure 1. Here, we have
modeled the more flexible lattice which enables the possibility of working with truth
degrees in the real interval [0, 1], allowing too the possibility of using conjunction and
disjunction operators recasted from the three typical fuzzy logics proposals described
before (i.e., the L̷ukasiewicz, Gödel and product logics), as well as a useful description
for the hybrid aggregator average.
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member(X) :- number(X),0=<X,X=<1.

bot(0). top(1). leq(X,Y) :- X=<Y.

and_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).

and_godel(X,Y,Z):- pri_min(X,Y,Z).

and_prod(X,Y,Z) :- pri_prod(X,Y,Z).

or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).

or_godel(X,Y,Z) :- pri_max(X,Y,Z).

or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).

agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).

pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).

pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).

pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.

Figure 1: Multi-adjoint lattice modeling truth degrees in the real interval [0,1].

Note also that we have included definitions for auxiliary predicates, whose names always
begin with the prefix “pri ”. All of them are intended to describe primitive/arithmetic
operators (in our case +, −, ∗, /, min and max) in a Prolog style, for being ap-
propriately called from the bodies of clauses defining predicates with higher levels of
expressivity (this is the case for instance, of the three kinds of fuzzy connectives we are
considering: conjuntions, disjunctions and agreggations).

Assume that “new num.pl” contains the same Prolog code than “num.pl” with the
exception of the definition regarding the average aggregator. Now, instead of computing
the average of two truth degrees, let us consider a new version which computes the
average between the results achieved after applying to both elements the disjunctions
operators described by Gödel and L̷ukasiewicz, that is: @aver(x1, x2) = (∨G(x1, x2) +
∨L(x1, x2))/2 (where ∨G(x1, x2) = max(x1, x2) and ∨L(x1, x2) = min(1, x1, x2). The
corresponding Prolog clause modeling such definition into the “new num.pl” file is:

agr_aver(X,Y,Z) :- or_godel(X,Y,Z1),or_luka(X,Y,Z2),

pri_add(Z1,Z2,Z3), pri_div(Z3,2,Z).

And now, if with the new lattice we execute goal p w.r.t. the same program seen in Sec-
tion 1 (introduction), instead of obtaining 0.63, the new solution will be 0.81 since now
&P(0.9,@aver(0.8, 0.6)) = &P(0.9, (∨G(0.8, 0.6)+∨L(0.8, 0.6))/2) = 0.9∗(max(0.8, 0.6)+
min(1, 0.8 + 0.6))/2) = 0.9 ∗ ((0.8 + 1)/2) = 0.81.

To finish this section, in our last example we consider the partially ordered multi-
adjoint lattice of Figure 2, for which the conjunction and implication connectives based
on the Gödel intuistionistic logic conforms and adjoint pair (in the general case, the
Gödel ’s conjunctor is expressed in terms of “inf” instead of “min”).
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⊤

� �

⊥

member(bottom). member(alpha).

member(beta). member(top).

leq(bottom,X). leq(alpha,alpha). leq(alpha,top).

leq(beta,beta). leq(beta,top). leq(X,top).

and godel(X,Y,Z) :- pri inf(X,Y,Z).

pri inf(bottom,X,bottom):-!.

pri inf(alpha,X,alpha):-leq(alpha,X),!.

pri inf(beta,X,beta):-leq(beta,X),!.

pri inf(top,X,X):-!.

pri inf(X,Y,bottom).

Figure 2: Partially-ordered multi-adjoint lattice.

Conclusions and Future Work

This paper has been mainly concerned with the Dedekind-MacNeille completion, a rel-
evant and elegant mathematical concept which might help us to adapt some lattices for
being safely used into the multi-adjoint logic programming framework. In particular,
we have shown a technique which let us to “skip” in some cases the hypothesis of com-
plete lattice usually required in multi-adjoint lattices, being this hypothesis mandatory,
for instance, when describing the fix-point and model-theoretic declarative semantics
of MALP [15]. In particular, the results achieved in this paper are useful to justify the
safe use into FLOPER, according the methodology explained in the last part of this
paper, of those lattices (composed by all finite strings whose elements are formed from
an arbitrary alphabet of symbols) used in [28, 26] for documenting with declarative
traces the execution of goals at a very low computational cost.

Since many standard completions of a lattice arise for suitable choices of the sets
of up-subset and down-subset of P , in the future we plan to consider the concept of
canonical extensions (i.e., dense and compact completions) of lattices with additional
operations (introduced in [9]) and its application in the case of the quasimulti-adjoint
lattices. Lattices with additional operations emerge from linear logics([1, 12, 17]). The
results obtained can be applied for bilattices and trilattices (common MALP domains).
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Abstract

A mathematical model is proposed to study the effect of bipolar doping of

the emissive layer of organic light emitting diodes in the steady state situation.

Considering the disordered nature of organic semiconductors, the carrier transport

model takes into account the hopping nature of carrier transport, by considering

that the density of states distribution function is Gaussian. Singlet excitons dif-

fusion and energy transfer, formed from both free and trapped carriers are also

included. Carriers injection into the emissive layer is determined self-consistently,

considering the electrodes electronic characteristics.

Key words: organic light emitting diodes, charge carrier traps, device models,

carrier density, carrier mobility, excitons

MSC 2000: 85.60.Jb,72.20.Jv, 71.35.-y

1 Introduction

Doping of the emissive layer of organic light-emitting diodes (OLEDs) has been mostly
used to tune their emission colour and to increase the electroluminescence efficiency.
In the first case, the process relies on the energy transfer from the host (which, in
most cases, is the charge transporting material) to the guest molecules. In the second
case, the increase of efficiency may result from an exciton confinement or due to the
use of phosphorescent dopants in order to harvest the triplets. The presence of either
guest or dopant traps has, usually, a detrimental effect on the charge transport, via
charge localization or disorder, and leads also to an increase of the dopant emission

@CMMSE                                 Page 858 of 1703                                 ISBN: 978-84-614-6167-7



Modeling the effect of bipolar trapping dopants on the current and ...

with respect to its contribution to the photoluminescence spectrum, as a result of on-
site exciton formation promoted by that charge localization. In this study we model
the use of dopants with a wider gap than the host polymer, thereby avoiding energy
transfer from the host to the guest and promoting instead the reverse energy transfer
process [4]. In this case, any on-guest formed exciton would be transferred to the host.

This model follows the work of Chih-Chien Lee et al. [3], for single layer devices,
and includes some ideas from transport model of Refs. [2] and [7, 8], regarding the
hopping nature of the carrier transport in organic semiconductors and self-consistency
of the problem.

2 Transport model

Considering an OLED as a structure consisting of a very thin layer of luminescent
organic material (L ∼100 nm thick) sandwiched between two metallic contacts. This
configuration is usually modelled considering a one-dimensional in space formulation,
along the perpendicular direction to the layers and considering hole (electron) injection
at the left (right) where x = 0 (x = L). The carrier transport model in OLEDs consists
of Poisson, current continuity and current density drift-diffusion equations.

2.1 Poisson-Drift-Diffusion equation

Taking into account the trapped carriers, the Poisson equation can be written as

∂

∂x

(
εr
∂ψ

∂x

)
= −

q

εo
(p+ pt + pd − n− nt − nd) . (1)

Here q stands for the elementary charge, ε (x) = εr (x) εo is the dielectric constant of the
organic material and T is the temperature. ψ (x) is the electric potencial, p (x) , pt (x)
and pd (x) (n (x) , nt (x) and ntd (x)) are, respectively positive (negative) free, trapped
by host and trapped by guest carrier densities. The current continuity equations are

∂p

∂t
= −

1

q

∂Jp

∂x
−Rp, (2)

∂n

∂t
=

1

q

∂Jn

∂x
−Rn, (3)

and the drift-diffusion equations verified by the hole (electron) current density Jp (Jn)
are

Jp = −qµpp
∂ψ

∂x
− qDp

∂p

∂x
, (4)

Jn = −qµnn
∂ψ

∂x
+ qDn

∂n

∂x
. (5)

µp and µn are the hole and electron mobilities, respectively, considered to be, simulta-
neoulsly, electric field (Poole-Frenkel type) and carrier density-dependent [6],

µp,n (x) = ap,n

{
p (x)bp

n (x)bn

}
exp

(
γn,p

√
E (x)

)
, (6)
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where E = −∂ψ
∂x

and γn,p are the electric field activation constants of the mobilities. The
electric field dependence of the mobility, frequently observed in amorphous materials,
including conjugated polymers, has been explained as arising from energetic disorder
due to the interaction of charge carriers with randomly oriented permanent dipoles
[1]. Dp(Dn) is the hole (electron) diffusion coefficient, which are assumed to verify a
generalized Einstein relation [5].

2.2 Recombination

The term Rp,n (x) in the current continuity equations consists of Langevin-type recom-
bination rates

Rp =
q

ε
{(µn + µp)np+ µpp(nd + nt)} , (7)

Rn =
q

ε
{(µn + µp)np+ µnn(pd + pt)} , (8)

where the recombination of the free with trapped carriers is included, considering the
attractive Coulombic interaction between them.
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Abstract

For a class of linear delay fractional differential initial value problems, we study
the existence and the uniqueness of the solution by using the method of steps.
An analytical representation of the solution is given based on the Mittag-Leffler
functions. Also, we analyse how the solution is influenced by small perturbations
on the initial function.
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1 Introduction

In the past last decades it has been observed an increasing interest in the study of
fractional differential equations, mainly because recent investigations in science and
engineering have demonstrated that the dynamic of many systems is described more
accurately by using differential equations of non-integer order. On the other hand, in
real world systems, delay is recognized everywhere. However, fractional delay differ-
ential equations (FDDEs) is a very recent topic. Although it seems natural to model
certain processes and systems in engineering and other sciences (with memory and her-
itage properties) with this kind of equations, only in the last decade, some attention in
the scientific community has been devoted to them.

Concerning the existence of solution issues we refer to [7], [8] and [9]. In [7],
Lakshmikantham provides sufficient conditions for the existence of solutions to initial
value problems to single term nonlinear delay fractional differential equations, with
the fractional derivative in the Riemann-Liouville sense. In [9], Ye et al investigate
the existence of positive solutions for a class of single term delay fractional differential
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equation. Later, in [8], for the same class of equations, sufficient conditions for the
uniqueness of the solution are reported. Similarly to classical differential equations,
the stability issues are a very important task in the fractional setting. We believe that
one of the first results dealing with the stability analysis for delay fractional differential
equations was provided in [4], where the authors gave an analytic stability bound for a
simple class of single term equation, by using the Lambert function. Later, [10], taking
into account the usefulness of models with FDDEs in control of robotics, the authors of
that paper investigated the finite-time stability analysis of FDDEs. Remarking also the
application of such models in robotics, in [6], Krol studies the asymptotic properties
of a n-dimensional linear FDDE and proposes necessary and sufficient conditions for
asymptotic stability. In [5], the authors study the stability of a system of FDDEs with
multiple delays. In all these papers the order of the derivative lies between 0 and 1. In
these three last works, the fractional derivative is given in the Caputo sense, since it is
more convenient in applications.

In this paper, we focus on the following initial value problem for a linear fractional
differential equation with finite delay τ > 0:

Dαy(t) = ay(t− τ) + by(t) + f(t), t > 0, (1)

y(t) = φ(t), t ∈ [−τ, 0], (2)

where a and b are constants, f is a continuous function on [0, T ], T > 0, the initial
function φ is continuous on [−τ, 0], and Dα is the Caputo derivative of order α:

Dαy(t) :=RL Dα(y − T [y])(t)

where T [y] is the Taylor polynomial of degree bαc for y, centered at 0, and RLDα is
the Riemann-Liouville derivative of order α [1]. The latter is defined by RLDα :=
DdαeJdαe−α, where Jβ is the Riemann-Liouville integral operator,

Jβy(t) :=
1

Γ(β)

∫ t

0
(t− s)β−1y(s)ds

and Ddαe is the classical integer order derivative. Here we follow the usual notation, so
bαc denotes the greatest integer smaller than α and dαe is the smallest integer greater
or equal than α. Here we consider the case 0 < α < 1.

Let us denote by C = C[τ, 0] the space of continuous real functions ϕ defined on
[−τ, 0], equipped with the norm

‖ϕ‖ = max
−τ≤t≤0

|ϕ(t)|.

The paper organizes as follows: In section 2, we analyse the existence and unique-
ness of the solution by using the method of steps. Also an explicit representation of such
solution is provided by means of the Mittag-Leffler functions. In section 3 we analyse
how the solution is influenced under small perturbations on the initial function.

We end with some conclusions and a resume of some ongoing work.
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2 Existence and uniqueness of solution

In this section we investigate the existence and uniqueness of solution, by extending to
the fractional case, the method of steps [3].

Let us consider first that 0 ≤ t ≤ τ . In this case, since t − τ ∈ [−τ, 0], then
y(t− τ) = φ(t− τ), and therefore equation (1) can be rewritten as

Dαy(t) = by(t) + gτ (t), 0 < t ≤ τ,

where gτ (t) = aφ(t − τ) + f(t). Since f and φ are continuous functions, gτ is also
continuous and then this equation is solvable. Its general solution may be written as
(see, for example Theorem 5.15 of [2])

yτ (t) =

∫ t

0
(t− s)α−1Eα,α (b(t− s)α) (aφ(s− τ) + f(s)) ds+ cτEα (btα) ,

where cτ is a constant and the functions Eα,β are the so-called Mittag-Leffler functions
defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, z, β ∈ C, Re(α) > 0

Eα(z) = Eα,1

Note that taking (2) into account, the solution is uniquely determined since we
must have cτ = φ(0).

Hence in the interval [0, τ ] the solution of (1)-(2) exists and is unique. We can now
proceed analogously in the interval [τ, 2τ ]. In this interval, (1) may be rewritten as

Dαy(t) = by(t) + g2τ (t), τ < t ≤ 2τ,

where g2τ (t) = ayτ (t− τ) + f(t). If g is continuous in [τ, 2τ ], then the solution in this
interval exists, is unique and given by

y2τ (t) =

∫ t

0
(t− s)α−1Eα,α (b(t− s)α) (ayτ (s− τ) + f(s)) ds+ c2τEα (btα) .

We can then easily conclude the following theorem:

Theorem 1 Let k be the greatest positive integer such that the function

gkτ (t) = ay(k−1)τ (t− τ) + f(t) with y0τ (t) = φ(t)

is continuous.
Then the initial value problem (1)-(2) has on the interval [0, kτ ] a unique solution

that can be represented by y(t) = yiτ (t), if (i− 1)τ ≤ t ≤ iτ , where

yiτ (t) =

∫ t

0
(t− s)α−1Eα,α (b(t− s)α) giτ (s)ds+ ciτEα (btα) , t ∈ [(i− 1)τ, iτ ]

and ciτ is a constant, i = 1, . . . , k.
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3 Dependence of the solution on the initial function

Assume that y and z are the respective solutions of the initial value problems (1)-(2)
and

Dαz(t) = az(t− τ) + bz(t) + f(t), t > 0, (3)

z(t) = φ̃(t), t ∈ [−τ, 0], (4)

where φ̃ is also continuous on [−τ, 0]. Assume also that∥∥∥φ− φ̃∥∥∥ = max
−τ≤t≤0

|φ(t)− φ̃(t)| ≤ ε, (5)

for some ε > 0 small. Note that since for every t where both solutions y and z exist,
we have

y(t)− z(t) = φ(0)− φ̃(0) +
a

Γ(α)

∫ t

0
(t− s)α−1 (y(s− τ)− z(s− τ)) ds+

+
b

Γ(α)

∫ t

0
(t− s)α−1 (y(s)− z(s)) ds (6)

we can easily determine how |y(t)− z(t)| is influenced by
∥∥∥φ− φ̃∥∥∥. This dependence is

stated in the following theorem.

Theorem 2 Let y(t) and z(t) be the respective solutions of the initial value problems
(1)-(2) and (3)-(4), existing both on the interval [0, kτ ], for some k ≥ 1. Assuming
that (5) holds, we have

|y(t)− z(t)| ≤ Ake
|b|

Γ(α+1)
(kτ)α

ε, t ∈ [(k − 1)τ, kτ ], (7)

where

A0 = 1,

Ak = 1 +
|a|

Γ(α+ 1)

k−1∑
j=0

((k − j)τ)αAje
|b|

Γ(α+1)
(jτ)α

.

Proof. The proof will be done by induction on k.

Let us prove first that (7) holds for k = 1.

If t ∈ [0, τ ], taking (6) into account, we have

y(t)− z(t) = φ(0)− φ̃(0) +
a

Γ(α)

∫ t

0
(t− s)α−1

(
φ(s− τ)− φ̃(s− τ)

)
ds+

+
b

Γ(α)

∫ t

0
(t− s)α−1 (y(s)− z(s)) ds.
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Therefore,

|y(t)− z(t)| ≤ |φ(0)− φ̃(0)|+ |a|
Γ(α)

max
s∈[0,t]

|φ(s− τ)− φ̃(s− τ)|
∫ t

0
(t− s)α−1ds+

+
|b|

Γ(α)

∫ t

0
(t− s)α−1 |y(s)− z(s)| ds

≤ |φ(0)− φ̃(0)|+ |a|
Γ(α)

max
s∈[0,τ ]

|φ(s− τ)− φ̃(s− τ)|
∫ t

0
(t− s)α−1ds+

+
|b|

Γ(α)

∫ t

0
(t− s)α−1 |y(s)− z(s)| ds

≤
∥∥∥φ− φ̃∥∥∥+

|a|
Γ(α)

∥∥∥φ− φ̃∥∥∥ tα
α

+
|b|

Γ(α)

∫ t

0
(t− s)α−1 |y(s)− z(s)| ds

≤
(

1 +
|a|

Γ(α+ 1)
τα
)
ε+

|b|
Γ(α)

∫ t

0
(t− s)α−1 |y(s)− z(s)| ds

= A1ε+
|b|

Γ(α)

∫ t

0
(t− s)α−1 |y(s)− z(s)| ds.

It follows, by a Gronwall inequality, that

|y(t)− z(t)| ≤ A1e
|b|

Γ(α+1)
τα
ε, t ∈ [0, τ ],

proving that (7) holds for k = 1.

Next suppose that (7) holds for (k − 1), that is, let us assume that for t ∈ [(k −
2)τ, (k − 1)τ ], the following inequalty is satisfied:

|y(t)− z(t)| ≤ Ak−1e
|b|

Γ(α+1)
((k−1)τ)α

ε, (8)

with

Ak−1 = 1 +
|a|

Γ(α+ 1)

k−2∑
j=0

((k − 1− j)τ)αAje
|b|

Γ(α+1)
(jτ)α

.

Let us the prove that it will also be valid for k.

Whenever t ∈ [(k − 1)τ, kτ ], k ≥ 2, taking (6) into account, we have

y(t)− z(t) = φ(0)− φ̃(0) +
a

Γ(α)

∫ τ

0
(t− s)α−1

(
φ(s− τ)− φ̃(s− τ)

)
ds+

+
k−1∑
j=2

a

Γ(α)

∫ jτ

(j−1)τ
(t− s)α−1 (y(s− τ)− z(s− τ)) ds+

+
a

Γ(α)

∫ t

(k−1)τ
(t− s)α−1 (y(s− τ)− z(s− τ)) ds

+
b

Γ(α)

∫ t

0
(t− s)α−1 (y(s)− z(s)) ds.
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Hence

|y(t)− z(t)| ≤ |φ(0)− φ̃(0)|+ |a|
Γ(α)

max
s∈[0,τ ]

|φ(s− τ)− φ̃(s− τ)|
∫ τ

0
(t− s)α−1ds+

+

k−1∑
j=2

|a|
Γ(α)

max
s∈[(j−1)τ,jτ ]

|y(s− τ)− z(s− τ)|
∫ jτ

(j−1)τ
(t− s)α−1ds+

+
|a|

Γ(α)
max

s∈[(k−1)τ,kτ ]
|y(s− τ)− z(s− τ)|

∫ t

(k−1)τ
(t− s)α−1ds+

+
|b|

Γ(α)

∫ t

0
(t− s)α−1 |y(s)− z(s)| ds.

By (8),

|y(t)− z(t)| ≤ ε+
|a|

Γ(α+ 1)
ε [tα − (t− τ)α] +

+

k−1∑
j=2

|a|
Γ(α+ 1)

Aj−1εe
|b|

Γ(α+1)
((j−1)τ)α

((t− (j − 1)τ)α − (t− jτ)α) +

+
|a|

Γ(α+ 1)
Ak−1εe

|b|
Γ(α+1)

((k−1)τ)α
(t− (k − 1)τ)α +

+
|b|

Γ(α)

∫ t

0
(t− s)α−1 |y(s)− z(s)| ds.

Since (k − 1)τ ≤ t ≤ kτ ,

|y(t)− z(t)| ≤ ε+
|a|

Γ(α+ 1)
ε(kτ)α +

k−1∑
j=2

|a|
Γ(α+ 1)

Aj−1εe
|b|

Γ(α+1)
((j−1)τ)α

((k − (j − 1))τ)α +

+
|a|

Γ(α+ 1)
Ak−1εe

|b|
Γ(α+1)

((k−1)τ)α
τα +

|b|
Γ(α)

∫ t

0
(t− s)α−1 |y(s)− z(s)| ds

= ε+
|a|

Γ(α+ 1)
ε(kτ)α +

|a|
Γ(α+ 1)

k−2∑
i=1

Aiεe
|b|

Γ(α+1)
(iτ)α

((k − i)τ)α +

+
|a|

Γ(α+ 1)
Ak−1εe

|b|
Γ(α+1)

((k−1)τ)α
τα +

|b|
Γ(α)

∫ t

0
(t− s)α−1 |y(s)− z(s)| ds

=

1 +
|a|

Γ(α+ 1)

k−1∑
j=0

((k − j)τ)αAje
|b|

Γ(α+1)
(jτ)α

 ε+
|b|

Γ(α)

∫ t

0
(t− s)α−1 |y(s)− z(s)| ds

= Akε+
|b|

Γ(α)

∫ t

0
(t− s)α−1 |y(s)− z(s)| ds,

and the result follows by a Gronwall inequality.
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4 Conclusions and ongoing work

For a class of linear delay fractional initial value problems an explicit representation
of the solution is given, by means of the Mittag-Leffler functions. This is also used to
provide the existence and uniqueness results. The influence on such solution of small
perturbations of the initial function is also investigated.

Being one of our main purposes the construction of reliable numerical methods
for FDDEs, we continue our investigation on the analysis of these kind of problems
(the linear ones, for now), namely investigating some other issues on the structural
stability, as for example the dependence of the solution under small perturbations in
the order of the derivative, and on the right-hand function in (1). The smoothness of
the solution is another ongoing investigation. Finally we will provide a comparison of
several numerical schemes for this kind of problems.
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Abstract

For the numerical solution of high order boundary value problems with special
boundary conditions a general collocation method is derived and studied.
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We consider the general n-th order boundary value problem for nonlinear ordinary
differential equations

y(n) (x) = f (x,y(x)) x ∈ [a, b] (1)

where y(x) =
(
y(x), y′(x), . . . , y(q)(x)

)
, 0 ≤ q ≤ n− 1 and f : [a, b]× IRq+1 → IR. The

particular boundary conditions are the so called Bernuolli boundary conditions ([6])

y(a) = β0

y(k)(b)− y(k)(a) = βk+1 k = 0, . . . , n− 2
(2)

with βk, k = 0, . . . , n− 1 real constants.
In [5] a non constructive proof of the existence and uniqueness of solution is given,

under the hypothesis that the function satisfies Lipschitz condition in a certain domain
interval of [a, b]× IRq+1. In [6] Picard’s method is applied in connection with Newton’s
method for the numerical solution of (1)-(2). Here a family of general collocation
methods for the numerical solution of (1)-(2) is proposed.

Let Bk(x) be the Bernoulli polynomial of degree k and let us set h = b− a, Sk =
Bk(t)−Bk(0), ∆f (k)

a = f (k)(b)−f (k)(a). The boundary value problem (1)-(2) is equiv-
alent to the nonlinear Fredholm integral equation ([6])

y(x) = Pn−1[y, x] +
∫ b

a
Gn−1(x, t)f(t,y(t))dt (3)

where Gn(x, t) =
1
n!

[
(x− t)n

+ −
n∑

k=1

Sk

(
x− a

h

)
hk−1

k

(
n

k − 1

)
(b− t)n−k+1

]
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and Pn[f, x] = f(a) +
n∑

k=1

Sk

(
x− a

h

)
hk−1

k!
∆f (k−1)

a .

Pn[f, x] satisfies the Bernoulli interpolation problem ([2])

Pn[f, a] = f(a), Pn[f, b] = f(b),

∆P
(k)
n = P

(k)
n [f, b]− P

(k)
n [f, a] = f (k)(b)− f (k)(a) = ∆f

(k)
a , k = 1, . . . , n− 1.

Let y(x) be the solution of (1)-(2) and let xi, i = 1, . . . , m, be m distinct points in
[a, b]. We prove that the polynomial

yn,m(x) = Pn−1[y, x] +
m∑

i=1

pn,i(x)f (xi,yn,m(xi)) (4)

where yn,m(x) =
(
yn,m(x), y′n,m(x), . . . , y(q)

n,m(x)
)

, 0 ≤ q ≤ n− 1, and

pn,i(x) =
∫ b

a
Gn−1(x, t)li(t) dt i = 1, . . . , n− 1

is a collocation polynomial for (1)-(2) on the nodes xi.

An a-priori estimation of the global error is possible: let Qm = max
0≤s≤q

{
max

a≤x≤b

m∑

i=1

∣∣∣p(s)
ni (x)

∣∣∣
}

,

Rm(y, x) be the Lagrange interpolation remainder, and L =
q∑

k=0

Lk where Lk are the

Lipschitz constants of the function f . If LQm < 1, then

‖y − yn,m‖ ≤ R∆
1− LQm

where ‖y‖ = max
0≤s≤q

{
max
a≤t≤b

∣∣∣y(s)(t)
∣∣∣
}

, R = max
a≤x≤b

∣∣Rm(y, x)
∣∣ ,

Dn,s = max
a≤x≤b

n−1∑

k=s

|Bk−s

(
x−a

h

) |
(k − s)!(n− k)!

, ∆ = max
0≤s≤q

{
hn−s+1

(n− s + 1)!
+ hn−s−1 Dn,s

}
.

Then the the fifth-order BVPs are considered. These problems generally arise in the
mathematical modeling of viscoelastic flows and other branches of mathematical, phys-
ical and engineering sciences ([7]). In this case

y5,m(x) = P4[y, x] +
m∑

i=1

p5,i(x)f (xi, y5,m(xi))

where

4! p5,i(x) = (x4 − 2x3 + x2) [Fi2(x)−Mi2(x)]− 2x(2x2 − 3x + 1) [Fi3(x) + Mi3(x)]

+12x(x− 1) [Fi4(x)−Mi4(x)] + 24(1− x)Fi5(x)− 24xMi5(x)
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Fi1(x) =
∫ x

0
li(t) dt, Mi1(x) =

∫ 1

x
li(t) dt

Fik(x) =
∫ x

0
Fi,k−1(t)dt, Mik(x) =

∫ 1

x
Mi,k−1(t)dt k = 2, . . . , 5.

To calculate the approximate solution of problem (1)-(2) by (4) at x ∈ [a, b], we need
the values y

(k)
i = y

(k)
n,m(xi), i = 1, . . . , m, k = 0, . . . , q. These values can be calculated

by solving the following system

y
(k)
i = P

(k)
n−1[y, xi] +

m∑

j=1

p
(k)
nj (xi)f (xj ,yj) i = 1, . . . ,m, k = 0, . . . , q (5)

with yj =
(
yj,m, y′j,m, . . . , y

(q)
j,m

)
, 0 ≤ q ≤ n−1. We prove that it has a unique solution.

To calculate Fik(xj),Mik(xj), i, j = 1, . . .m, k = 1, . . . , n, it suffices to compute∫ x

a
rm,i(t)dt ,

∫ x

a
· · ·

∫ x

a︸ ︷︷ ︸
k

rm,i(t) dt · · · dt

where r0,0(t) = 1, rm,i(t) = (t−x1) · · · (t−xi−1)(t−xi+1) · · · (t−xm) i = 1, 2, . . . , m .
Following the idea of Omar and Suleiman ([8]), we propose a recursive algorithm: for
each i = 1, . . . ,m− 1, let us define the new points z

(i)
j = xj if j < i and z

(i)
j = xj+1 if

j ≥ i, j = 1, . . . , m−1. Moreover, let us define g
(i)
0,1,a(x) = x−a, and, for s = 1, . . . , m−1,

g
(i)
s,j,a(x) =

∫ x

a

∫ x

a
· · ·

∫ x

a︸ ︷︷ ︸
j − 1

(
t− z

(i)
1

)(
t− z

(i)
2

)
· · ·

(
t− z(i)

s

)
dt · · · dt . (6)

For the computation of (6) the following recurrence formula holds

g
(i)
s,j,a(x) =

(
x− z(i)

s

)
g
(i)
s−1,j,a(x)− jg

(i)
s−1,j+1,a(x) .

Numerical experiments demonstrate the practical usefulness of the proposed method.

Example 1. {
y(v)(t) = e−ty2(t) t ∈ [−1, 1]

y (0) = 1, y(k)(1)− y(k)(0) = e− 1 k = 0, . . . , 3
(7)

with solution y (t) = et . Figure (a) shows the graph of the error function e(x).

Example 2. 



y(v)(t) = −24e−5y + 48
1+t5

t ∈ [0, 1]

y (0) = 0 y(1) = lg 2

y′(1)− y′(0) = −1
2 y′′(1)− y′′(0) = 3

4

y′′′(1)− y′′′(0) = −7
4

(8)

with solution y (t) = et . The graph of e(x) is plotted in Figure (b).
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Abstract

The aim of this contribution is to introduce a symbolic technique for the computation
of the solution to a complete ordinary differential equation with constant coefficients.
The symbolic solution is computed via the variation of parameters method, and thus,
constructued over the exponential matrix of the linear system associated to the homo-
geneous equation. This matrix is also symbolically determined. The accuracy of the
symbolic solution is tested by comparing it with the exact solution of a test problem.

Key words: template, instructions Perturbation methods, symbolic computation, dif-
ferential equations

1 Introduction

Perturbation theories for differential equations containing a small parameter ε are quite old.
The small perturbation theory originated by Sir Isaac Newton has been highly developed
by many others, and an extension of this theory to the asymptotic expansion, consisting
on a power series expansion in the small parameter, was devised by Poincaré (1892). The
main point is that for the most of the differential equations, it is not possible to obtain an
exact solution. In cases where equations contain a small parameter, we can consider it as a
perturbation parameter to obtain an asymptotic expansion of the solution. In practice, the
work involved in the application of this approach to compute the solution to a differential
equation cannot be performed by hand, and algebraic processors result to be a very useful
tool.

As explained in Henrard (1989), the first symbolic processors were developed to work
with Poisson series, that is, multivariate Fourier series whose coefficients are multivariate
Laurent series, ∑

i1,...,in

∑
j1,...,jm

Cj1,...,jmi1,...,in
xi11 · · ·x

in
n

cos

sin
(j1φ1 + · · ·+ jmφm) ,
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where Cj1,...,jmi1,...,in
∈ R, i1, . . . , in, j1, . . . , jm ∈ Z, and x1, . . . , xn and φ1, . . . , φm are called

polynomial and angular variables respectively. These processors were applied to problems
in non–linear mechanics or non–linear differential equations problems, in the field of Celestial
Mechanics.

In order to achieve better accuracies in the applications of analytical theories, high
orders of the approximate solution must be computed, making necessary a continuous
maintenance and revision of the existing symbolic manipulation systems, as well as the
development of new packages adapted to the peculiarities of the problem to be treated. Re-
cently, Navarro (2008a, 2008b) developed a symbolic processor to deal with the solution to
perturbed second order differential equations. To face this problem, the algebraic processor
handles objects called quasi–polynomials, and it has resulted to be a useful tool in the com-
putation of the solution applying the asymptotic expansion method. A modificacion of this
processor has been employed to compute periodic solutions in perturbed second order dif-
ferential equations via the Poincaré–Lindstedt method in Navarro (2008a, 2008b). To that
end, the idea is to expand both the solution and the modified frequency with respect to the
small parameter, allowing to kill secular terms which appear in the recursive scheme. The
elimination of secular terms is performed through a manipulation system which works with
modified quasi–polynomials, that is, quasi–polynomials containing undetermined constants:

u(t) =
∑
ν≥0

τσ11 × · · · × τ
σQ
Q tnνeανt × (λν cos(ωνt) + µν sin(ωνt)) , (1)

where nν ∈ N, αν , ων , λν , µν ∈ R, σν ∈ Z, and τ1, . . . , τQ are real constants with unknown
value.

One year later, Navarro (2009) presented a symbolic computation package based on
the object–oriented philosophy for manipulating matrices whose elements lie on the set of
quasi–polynomials. The kernel of the symbolic processor was developed in C++, defining
a class for this new object as well as a set of functions that operate on the data structure:
addition, substraction, differentiation and integration with respect to t, substitution of an
undetermined coefficient by a series, and many others. The goal of this processor is to
provide a tool to solve a perturbed n–order differential equation of the class

x(n) + an−1x
(n−1) + · · ·+ a0x = u(t) + εf(x, ẋ, . . . , x(n−1)) , (2)

with initial conditions

x(0) = x10 , ẋ(0) = x20 , . . . , x(n−1)(0) = xn0 ,

where ε is a small real parameter, a0, a1, . . . , an−1 ∈ R, u(t) is a quasi–polynomial, and f is
such that

f(x, ẋ, . . . , x(n−1)) =
∑

0≤ν1,...,νn≤M
fν1,...,νn x

ν1 · · · (x(n−1))νn ,
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with M ∈ N, ν1, . . . , νn ∈ N and fν1,...,νn ∈ R.

As a first step, Navarro and Pérez (2010) have developed a symbolic technique for the
computation of the principal matrix of the linear system associated to an homogeneous
ordinary differential equation with constant coefficients of the form

x(n) + an−1x
(n−1) + · · ·+ a1ẋ+ a0x = 0 , (3)

where a0, a1, . . . , an−1 ∈ R, and with initial conditions

x(0) = x10 , ẋ(0) = x20 , . . . , x(n−1)(0) = xn0 ,

being x10, . . . , xn0 ∈ R. This method provides a final analytical solution which can be
completely computed in a symbolic way.

In this contribution, we detail a symbolic procedure for computing the solution to the
non–homogeneus equation

x(n) + an−1x
(n−1) + · · ·+ a0x = u(t) , (4)

where, as above, u(t) is a quasi–polynomial. In next section, we summarize the scheme
proposed in (Navarro and Pérez, 2010) to calculate the solution to (3), which is needed to
express the solution to the complete problem (4), and then, to apply a perturbation method
to face equation (2).

2 Solution to the homogeneous problem

As mentioned abbove, Navarro and Pérez (2010) have proposed a symbolic method to
compute the solution to the equation (3),

x(n) + an−1x
(n−1) + · · ·+ a1ẋ+ a0x = 0 ,

where a0, a1, . . . , an−1 ∈ R, and with initial conditions

x(0) = x10 , ẋ(0) = x20 , . . . , x(n−1)(0) = xn0 ,

being x10, . . . , xn0 ∈ R. This method provides a final analytical solution which can be
completely computed in a symbolic way. This technique can be useful for academic purposes
and it is also a necessary step to treat more involved situations as the perturbed differential
equation (2).
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2.1 Description of the method

With the aid of the substitutions x1 = x , x2 = ẋ , . . . , xn = x(n−1), equation (3) is trans-
formed into the system of differential equations given by

Ẋ(t) = AX(t) , X(0) = X0 , (5)

where A is the companion matrix,

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−a0 −a1 −a2 · · · −an−1

 , X(t) =


x1(t)
x2(t)

...
xn(t)

 , X0 =


x10
x20

...
xn0

 .

To compute the exponential of A, the matrix is splitted into B + C, where

B =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , C =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

−a0 −a1 −a2 · · · −an−1

 .

Then, we use the approximation

eA ≈ (eB/meC/m)m ,

with m ∈ N. This approach to obtain eA is of potential interest when the exponentials of
matrices B and C can be efficiently computed, and requires an−1 to be non–equal to zero.
In our case,

eB/m =


g0(m) g1(m) g2(m) · · · gn−1(m)

0 g0(m) g1(m) · · · gn−2(m)
0 0 g0(m) · · · gn−3(m)
...

...
...

. . .
...

0 0 0 · · · g0(m)

 ,

and

eC/m = I − 1

an−1

(
e−an−1/m − 1

)
C =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

ω0 ω1 ω2 · · · ωn−1

 ,

being, for any n ∈ N,

gn(m) =
1

n!mn
,
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and, for any i = 0, . . . , n− 2,

ωi =
ai
an−1

(e−an−1/m − 1) , ωn−1 = e−an−1/m .

As it is established in Moler (2003), for a general splitting A = B+C, m can be determine
from the inequality

‖eA − (eB/meC/m)m‖ ≤ 1

2m
‖[B,C]‖e‖B‖+‖C‖ . (6)

Thus, being A the companion matrix, we get that

‖eA − (eB/meC/m)m‖ ≤ 1

m
e1+‖a‖‖a‖ ,

where a = (a0, a1, . . . , an−1). Here,

‖x‖ = ‖x‖1 = |x1|+ · · ·+ |xn| ,

for any x = (x1, . . . , xn) ∈ Rn, and ‖A‖ = max‖x‖1=1 ‖Ax‖1 = maxν (|a1ν |+ · · ·+ |anν |),
for any matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 .

2.2 Adaptation to a symbolic formalism

Navarro and Pérez (2008, 2009, 2010) have proposed an adaptation of the method described
in section 2.1 in order to compute the matrix eAt instead of eA. If we do so, we obtain the
principal matrix of (5), whose elements lie on the set of quasi–polynomials, and the symbolic
processor results to be suitable to work with those matrices. The approach is to compute

eAt ' (eBt/meCt/m)m , (7)

taking into account that

eBt/m =


g0(t,m) g1(t,m) · · · gn−1(t,m)

0 g0(t,m) · · · gn−2(t,m)
...

...
. . .

...
0 0 · · · g0(t,m)

 , (8)
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and

eCt/m =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

ω0(t) ω1(t) ω2(t) · · · ωn−1(t)

 , (9)

being, for any n ∈ N,

gn(t,m) =
tn

n!mn
, (10)

and, for any i = 0, . . . , n− 2,

ωi(t) =
ai
an−1

(e−an−1t/m − 1) , ωn−1(t) = e−an−1t/m .

Thus, eAt is a matrix of quasi-polynomials that can be completely computed through
the symbolic processor developed by Navarro (2009). The procedure for the computation
of the exponential matrix is substantially simplified by using the following equation, which
avoids the symbolic multiplication of eBt/m and eCt/m,

eBt/meCt/m = eBt/m +H(t,m) , (11)

where

H(t,m) =
1

an−1
f(t,m)

 gn−1(t,m)
...

g0(t,m)

× ( a0 a1 · · · an−1
)
, (12)

and

f(t,m) = e−an−1t/m − 1 . (13)

This relation can be obtained directly from the multiplication of matrices eBt/m and eCt/m

as given in equations (8) and (9).

2.3 Symbolic expansion of the exponential matrix

As it has been stated in section 2.2, the exponential matrix eAt can be symbolically calcu-
lated through equations (7) and (11),

eAt ' (eBt/meCt/m)m = (eBt/m +H(t,m))m . (14)

This expression can be calculated symbolically. Let us express H(t,m) as

H(t,m) = λ(t,m)J(t,m) , (15)
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with

λ(t,m) =
1

an−1
f(t,m) , (16)

and

J(t,m) =

 gn−1(t,m)
...

g0(t,m)

( a0 a1 · · · an−1
)
. (17)

Thus,

(eBt/m +H(t,m))m =
m∑
k=0

λk(t,m)
(
eBt/m , J(t,m)

)m
k
, (18)

being (A ,B)mk the so-called non-commutative parenthesis, defined as

(A ,B)mk =

(
m
k

)
∑
i=1

σ(m,k)∏
j=1

(
A(1−(−1)j)/2B(1+(−1)j)/2

)cij
,

where A and B are two non-commutative n× n matrices, m, k, cij ∈ Z+ ∪ {0},

σ(m, k) =

{
2k + 1 if 2k ≤ m
2(m− k + 1) if 2k > m

,

and cij is determined by the following properties.

1.
∑σ(m,k)

j=1 cij = m ∀ i = 1, 2, . . . ,

(
m
k

)

2.
∑[σ(m,k)/2]

j=1 ci(2j) = m − k ∀ i = 1, 2, . . . ,

(
m
k

)
, being [σ(m, k)/2] the entire part of

σ(m, k)/2

3. ci2 6= 0 ∀ i = 1, 2, . . . ,

(
m
k

)

4. If cij 6= 0 and ci(j+2) 6= 0, then ci(j+1) 6= 0 ∀ i = 1, 2, . . . ,

(
m
k

)
and j = 1, 2, . . . , σ(m, k)−

2

In the following, we summarize some expressions which simplify the way in which the
matrix (eBt/m + H(t,m))m is simbolically computed. First, let us introduce the following
matrices

Sn−1(t,m) =
(
a0 a1 · · · an−1

)
F (t,m) , (19)
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and

F (t,m) =


tn−1

(n− 1)tn−2m
(n− 1)(n− 2)tn−3m2

...
(n− 1)!t0mn−1

 . (20)

Lemma 1 For any k ∈ Z such that k > 1,

(eBt/m)k =


G0,k(t,m) G1,k(t,m) · · · Gn−1,k(t,m)

0 G0,k(t,m) · · · Gn−2,k(t,m)
...

...
. . .

...
0 0 · · · G0,k(t,m)

 , (21)

with

Gν,k(t,m) = kνgν(t,m) ,

for each ν = 0, . . . , n− 1, and where gν(t,m) is given by equation (10).

Lemma 2 For any p ∈ Z such that p > 1,

(H(t,m))p =

(
f(t,m)

an−1(n− 1)!mn−1

)p
(Sn−1(t,m))p−1×

× F (t,m)
(
a0 a1 · · · an−1

)
, (22)

where Sn−1(t,m) and F (t,m) are given by equations (19) and (20).

Lemma 3 For any p, k ∈ Z such that p, k ≥ 1,

(
eBt/m

)k
(H(t,m))p =

(
f(t,m)

an−1(n− 1)!mn−1

)p
(Sn−1(t))

p−1×

× ΩF (t,m)
(
a0 a1 · · · an−1

)
,

where Sn−1(t,m) and F (t,m) are given by equations (19) and (20), and

Ω =


(k + 1)n−1 0 · · · 0

0 (k + 1)n−2 · · · 0
...

...
. . .

...
0 0 · · · 1

 .
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Lemma 4 For any p, k ∈ Z such that p, k ≥ 1,

Hp(t,m)
(
eBt/m

)k
=

(
f(t,m)

an−1(n− 1)!mn−1

)p
× (Sn−1(t))

p−1 F (t,m)A(t,m) ,

where Sn−1(t,m) and F (t,m) are given by equations (19) and (20),

A(t,m) =
(
A0(t,m) A1(t,m) · · · An−1(t,m)

)
,

Aµ(t,m) =

µ∑
ν=0

aνk
µ−νgµ−ν ,

for any µ = 0, . . . , n− 1, and gν is given by equation (10).

For the sake of simplicity, we have omitted the dependence on m and t of gν .

3 Solution to the non-homogeneous problem

The general solution to a non–homogeneous linear differential equation of order n can be
expressed as the sum of the general solution to the corresponding homogeneous, linear
differential equation and any solution to the complete equation. The symbolic manipu-
lation system calculates the solution to a non–perturbed differential equation with initial
conditions of the form (4),

x(n) + an−1x
(n−1) + · · ·+ a1ẋ+ a0x = u(t) ,

with initial conditions

x(0) = x10 , . . . , x(n−1)(0) = xn0 ,

where a0, a1, . . . , an−1 ∈ R, x10, . . . , xn0 ∈ R and

u(t) =
∑
ν≥0

tnνeανt(λν cos(ωνt) + µν sin(ωνt)) ,

being nν ∈ N, and αν , ων , λν , µν ∈ R. With the aid of the substitutions

x1 = x, x2 = ẋ , . . . , xn = x(n−1) ,

equation (4) is reduced to the system of differential equations given by

Ẋ(t) = AX(t) +B(t) , X(0) = X0 , (23)
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where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−a0 −a1 −a2 · · · −an−1

 ,

and

B(t) =


0
0
...

u(t)

 , X(t) =


x1(t)
x2(t)

...
xn(t)

 , X0 =


x10
x20

...
xn0

 .

The computation of the solution to the constant coefficients linear part requires the
calculation of the exponential of the matrix A, Φ(t) = eAt:

X(t) = Φ(t)X0 + Φ(t)

∫ t

0
exp(Aτ)B(τ) dτ . (24)

3.1 Symbolic expansion of the solution

In the following, we give a formula for the symbolic expansion of the solution to the complete
orinary differential equation. To that end, let us express the non–commutative parenthesis(
eBt/m , J(t,m)

)m
k

as

(
eBt/m , J(t,m)

)m
k

=

 p
(m,k)
r11 (t) · · · p

(m,k)
r1n (t)

...
. . .

...

p
(m,k)
rn1 (t) · · · p

(m,k)
rnn (t)

 =
(
p(m,k)rij (t)

)n
i,j=1

= P (m, k)(t) ,

where each p
(m,k)
r1n (t) is a polynomial of degree rij ≤ m(n − 1) in the indeterminate t with

coefficients from R, and m 6= 0.

Let us also express

λk(t,m) =

(
1

an−1

(
ean−1t/m − 1

))k
=

k∑
ν=0

ανe
βνt ,

being

αν =

(
1

an−1

)k (
k
ν

)
(−1)ν ,

and

βν = −an−1
m

(k − ν) .
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Thus, taking into account equation (14), the exponential matrix of A can be arranged as

eAt '


∑m

k=0 φk(t)p
(m,k)
r11 (t) · · ·

∑m
k=0 φk(t)p

(m,k)
r1n (t)

...
. . .

...∑m
k=0 φk(t)p

(m,k)
rn1 (t) · · ·

∑m
k=0 φk(t)p

(m,k)
rnn (t)

 ,

where

φk(t) =

k∑
ν=0

ανe
βνt .

In order to develop a symbolic expression of the solution to the complete differential
equation, let us express u(t) as

u(t) = eδt(Qa(t) cos(ωt) + Tb(t) sin(ωt)) ,

with a, b ∈ Z ∪ {0}, δ, ω ∈ R, and being Qa(t) and Tb(t) real polinomyals of degree a and b
respectively, in the indeterminate t.

The product e−AτB(τ) can be arranged as follows:

e−AτB(τ) =



∫ t

0

(
m∑
k=0

(
k∑
ν=0

ανe
βντ

)
p(m,k)r1n (−τ)

)
u(τ) dτ

...∫ t

0

(
m∑
k=0

(
k∑
ν=0

ανe
βντ

)
p(m,k)rnn (−τ)

)
u(τ) dτ


.

Here, the integrand of each element of the matrix above can be written in the form of a
quasi–polynomial. Hence, we arrive to the formulae∫ t

0

(
m∑
k=0

(
k∑
ν=0

ανe
βντ

)
p(m,k)rjn (−τ)

)
u(τ) dτ =

=
∑
αjn

(
ηαjnCαjn,βjn,γjn(t) + ναjnSαjn,βjn,γjn(t)

)
,

where αjn ∈ Z+ ∪ {0}, βjn, γjn ∈ R, j = 1, . . . , n, and

Cm,β,γ(t) =

∫
tmeβt cos(γt) dt , Sm,β,γ(t) =

∫
tmeβt sin(γt) dt .

These functions are computed recursively through

C0,β,γ(t) =
γ

β2 + γ2
eβ sin(γt) +

β

β2 + γ2
eβ cos(γt) ,

S0,β,γ(t) =
β

β2 + γ2
eβ sin(γt)− γ

β2 + γ2
eβ cos(γt) ,
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and, for any m ≥ 1,

Cm,β,γ(t) = tmC0,β,γ(t)−m γ

β2 + γ2
Sm−1,β,γ −m

β

β2 + γ2
Cm−1,β,γ(t) ,

Sm,β,γ(t) = tmS0,β,γ(t)−m β

β2 + γ2
Sm−1,β,γ +m

γ

β2 + γ2
Cm−1,β,γ(t) .

Therefore, equation (24) can be expressed via a quasi–polynomial and, thus, obtained
through the designed symbolic system.

3.2 Description of the program

In order to describe the algebraic processor, let us introduce the following test problem.

ẍ+ ẋ+ x = sin t ,

with initial conditions x(0) = 0, ẋ(0) = 1. This equation describes the (small) angular
position in radians x(t) of a forced damped pendulum with a periodic driving force. In
this equation, ẍ(t) represents the inertia, ẋ(t) represents the friction and sin(t) represents a
sinusoidal driving torque applied at the pivot of the pendulum. The exact solution to this
problem is given by

x(t) = − cos t+ e−t/2 cos

(√
3

2
t

)
+
√

3e−t/2 sin

(√
3

2
t

)
. (25)

The program proceeds as follows. The first window allows us introducing the definition of
variables, the order of the ODE and its coefficients and the function of the non–homogeneous
term u(t). Then, a new window visualizes the expression of the companion matrix related
to the ODE. Next, matrices B, exp(Bt/m), C and exp(Ct/m), which are used in the
calculation of the exponential matrix, are computed by using a value ofm satisfying equation
(6).

In figure 1, we compare the solution computed via the symbolic processor with the exact
solution (25) (left pannel) and a numeric solution computed through a Runge–Kutta 4th

order method with step h = 0.1 with the exact one (right pannel). From these two figures, it
is obvious that the solution symbolically computed adjunts better to the exact solution than
the described numerical solution. Nevertheless, it is not the goal of this paper to develop
a numerical tool. The symbolic tecnique we have developed provides an analytical solution
which can be used as a kernel to apply perturbation methods to computed the solution to
a perturbed differential equation depending on a small parameter.
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Figure 1: Comparison between numeric, symbolic and exact solution
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Abstract

Many of the methods of advanced mathematics and statistics are based on the
computation of integrals. Most of the standard numerical procedures of integration
and the corresponding theorems of error representation are argued on the basis of
a high degree of regularity of the function involved. However, it is clear that not
all the natural phenomena enjoy this property. One of the goals of this paper is
the study of procedures for the quadrature and representation of functions defined
through their samples, where the original “signal” is not explicitly known, but
it shows experimentally some kind of fractal complexity (for instance through the
numerical computation of fractal parameters). The methods proposed in this paper
are supported on a fractal interpolation of the function.

Key words: Fractal interpolation functions, numerical integration
MSC 2000: 28A80, 65D05, 41A10

1 Affine fractal interpolation functions

Let t0 < t1 < ... < tN be real numbers, and I = [t0, tN ] the closed interval that contains
them. Let a set of data points {(tn, xn) ∈ I × R : n = 0, 1, 2, ..., N} be given.
Let us consider an Iterated Function System wn : I × R→ I × R defined as

wn(t, x) = (Ln(t), Fn(t, x))

for n = 1, 2, . . . , N . The maps Ln and Fn are defined by the expressions
{

Ln(t) = ant + bn

Fn(t, x) = αnx + qn(t),
(1)

where
an =

tn − tn−1

tN − t0
, bn =

tN tn−1 − t0tn
tN − t0

(2)
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and qn(t) = qn1t + qn0, with

qn1 =
xn − xn−1

tN − t0
− αn

xN − x0

tN − t0
(3)

qn0 =
tNxn−1 − t0xn

tN − t0
− αn

tNx0 − t0xN

tN − t0
. (4)

The attractor of this system is the graph of a continuous function f : I → R such that
f(tn) = xn for n = 0, 1, . . . , N . The function f is called an Affine Fractal Interpolation
Function and it satisfies the fixed point equation ([1]):

f(t) = αnf ◦ L−1
n (t) + qn ◦ L−1

n (t), (5)

for t ∈ In = [tn−1, tn].The scalars αn are termed scaling factors of the system.
These approximants were discussed in the references [3], [4], [5] and [6].

2 Fractal quadrature

In this section we propose a procedure for the numerical quadrature of functions which
display some kind of fractal complexity. In specific subsections we prove the conver-
gence of the method for continuous and Hölder-continuous functions (which include the
smooth case) and a numerical example.
The method is obtained by means of a fractal interpolation of the signal. Let us denote
M0 the integral of an affine interpolant of the data on the interval I. The moment M0

can be computed using (5):

M0 =
∫

I
f(t) dt =

N∑

n=1

∫

In

(αnf ◦ L−1
n (t) + qn ◦ L−1

n (t)) dt

that is to say,

M0 =
N∑

n=1

αn

∫

In

f ◦ L−1
n (t) dt + Q0

where
Q0 =

∫

I
Q(t) dt (6)

and
Q(t) = qn ◦ L−1

n (t) if t ∈ In. (7)

With the change L−1
n (t) = t̃, bearing in mind (1),

M0 =
N∑

n=1

αnanM0 + Q0

and
M0 =

Q0

1−
N∑

n=1

αnan

.
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There are several criteria for the election of the scaling factors. They can be consulted
in the references [3], [6]. The procedures use a uniform partition ∆ : t0 < t1 < . . . < tN
and subpartitions {tj}m

j=1 of each interval In = [tn−1, tn].

2.1 Rate of convergence

With the help of previous results published in the references quoted, the next Theorems
of interpolation error can be proved.

Theorem 2.1 If x is a continuous function providing the non-aligned data {(tn, xn)}N
n=0

with a constant step h = tn − tn−1, the integral computed by the method described is
convergent to the exact value as the step h tends to zero. Let g0(t) be the polygonal
whose vertices are the data. An upper estimate of the error is given by the following
inequality: ∣∣∣∣

∫

I
x−

∫

I
f

∣∣∣∣ ≤ Tωx(h)
(

1 +
2K ′

h‖x‖∞
1− ωx(h)K ′

h

)
(8)

where ωx(h) is the modulus of continuity of x(t), T = length(I), and

K ′
h = (m− 1)1/2K−1

h

with

Kh =
( m−1∑

j=1

(
g0(

(m− j)t0 + jtN
m

)− (m− j)x0 + jxN

m

)2 )1/2

. (9)

Note: The former result states the convergence of the procedure since, for a continuous
function x on a compact interval I, ωx(h) → 0 as h → 0 ([2]). The only hypothesis
required is the continuity of the original signal.

Theorem 2.2 If x ∈ Lip β, the error in the computation of the integral is bounded by
the expression:

∣∣∣∣
∫

I
x−

∫

I
f

∣∣∣∣ ≤
kT β+1

Nβ

(
1 +

2Nβ(m− 1)1/2

KhNβ − kT β(m− 1)1/2
‖x‖∞

)

where k is the Lispchitz constant of x(t), T is the length of the interval I, N + 1 is the
number of points of the partition, (m−1) is the number of intermediate points in every
subinterval, and Kh is given by the expression (9).

Consequence: The rate of convergence of the procedure is O(N−β). It is clear that
if β is low the convergence may be slow.
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2.2 An application

Let us consider a function of Weierstrass given by the expression

x(t) = 3t2 + 2t + 0.7− 5
∞∑

k=1

sin(6k πt)
2k

in the interval I = [−1, 1]. The mapping x(t) is a Hölder-continuous function with
exponent β = ln 2/ ln 6. The integral M0 has been computed numerically using the
method described, with several steps and m = 2. The results are displayed in Table
1. For each step, the value of the integral and the fractal dimension corresponding to
the fractal function used are shown. The latter scalar was computed according to the
exact formula given in the reference [1] for an affine fractal function, in terms of the
scale factors.
The exact value of the integral is 3.4 and the fractal dimension (box-counting) is
D = 2− β = 1.61315.

N M0 |ᾱ|∞ D

64 2.80812 0.75710 1.73334
128 3.09601 0.25797 1.57493
256 3.24591 0.57978 1.76810
512 3.32242 0.31603 1.67046
1024 3.36107 0.26477 1.68908
2048 3.38050 0.21263 1.69378
4096 3.39024 0.08399 1.59499

Table 1. Results corresponding to the map x(t).
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1 Dpt. Computer Architecture and Electronics, Cra Sacramento s/n Almeria 04120 Spain,
Almeria University

2 Dpt. Computer Architecture, Málaga 29071 Spain, Málaga University

emails: glortega@ual.es, gmartin@ual.es, f.vazquez@ual.es, igarcia@ac.uma.es

Abstract

Partial Differential Equations (PDEs) are involved in the study of a wide range of
physical problems. The discretization of the differential operators in the space generates
the solution of the linear systems of equations. These linear systems of equations are
characterized by the regularity of the sparse matrices involved. Furthermore, the sparse
matrix vector product (SpMV) is the operation with higher computational cost in the
resolution of a PDE. So, in this work we have focusing on: (1) the implementation of a
SpMV GPU kernel using a regular format, and (2) the GPU implementation of the Bi-
Conjugate Gradient method which is based on the aforementioned SpMV kernel. Thus,
in both implementations the regular pattern of the matrices involved are considered.
The central question to be examined in this paper is the exploiting of these regulari-
ties in order to achieve a high performance and to reduce the memory requirements.
Therefore, by means of our approach is possible to extend the dimension of the linear
equation system to solve and can deal with matrices of larger dimension.

Key words: GPU computing, parallel computing, linear system of equations, SpMV,
BiConjugate gradient method

1 Introduction

The solution of PDEs is involved in several scientific and engineering applications. In
general, its high computational cost requires the use of High Performance Computing tech-
niques (HPC). On the other hand, the discretization of the differential operators generates
the solution of the linear systems of equations which are characterized by the regularity of
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matrices involved. In this paper, the main goal is the simultaneous exploitation of both, the
high regularity of the matrices and the massive parallelism supplied by the GPU platforms.

Our interest is focused on the solution of the Helmholtz differential equation since this
equation is considered in a wide variety of applications from different areas of Physics. To
be more specific, this equation arises in the study of physical problems involving Partial
Differential Equations (PDEs) in both space and time. Helmholtz equation is linear and is
characterized by the regularity of its matrices. Moreover, this kind of linear system equations
can be solved by using iterative methods such as the BiConjugate Gradient Method (BCG)
since it is suitable for solving complex and nonsymmetric linear systems. Nevertheless,
from a computational point of view, BCG is very expensive due to the sparse matrix vector
products (SpMV) included in the algorithm. Thus, in order to accelerate the BCG method,
the exploitation of HPC is necessary. The GPU computing has emerged as a new HPC
technique that offers massive parallelism and can be useful for accelerating this kind of
algorithms.

CUDA (Computing Unified Device Architecture) is the Application Programming In-
terface developed by NVIDIA to facilitate the programming of GPUs. Using the CUDA
interface, the GPU is considered by the programmer as a set of SIMT (Single Instruction,
Multiple Threads) multiprocessors [9]. Each kernel (parallel code) is executed as a batch
of threads organized as a grid of thread blocks whose configuration is defined by the pro-
grammer setting up specific parameters. One of these parameters is the threads block size.
The blocks in turn are divided into sets of threads called warps. Currently, the SMs are
composed by thirty-two SPs on the most extended Fermi architectures [9, 12].

An approach to facilitate the GPU programming is based on the use of basic routines
or libraries which: (1) compute the most used operations in the applications and (2) are
optimally accelerated by GPU. In this line, NVIDIA supplies a wide set of routines related
to matrix computations such as CuBLAS [10].

This work shows that BCGmethod can be efficiently accelerated if the SpMV operations
are computed on the GPU taking advantage of the regularity of the matrices related to the
PDE solution. So, the implementation onto the GPU of SpMV using a regular format
and a BCG approach based on the same format are developed and evaluated for a set
of test complex matrices in single precision. Experimental results have shown that the
implementation on GPU of both, SpMV and BCG using regular format for the storage of
matrices, outperforming the implementation on CPU.

So, our interest is centered on accelerating SpMV to improve the performance of BCG
method and the remaining vector operations. Our approach to accelerate this algorithm is
based on GPU computation, since GPU platform can be used as accelerator of the SpMV
[1, 11, 15].

Section 2 briefly reviews the regularity of the matrix form to solve PDEs. Section 3 is
devoted to introduce the specific Regular Format considered the efficient computation of

@CMMSE                                 Page 909 of 1703                                 ISBN: 978-84-614-6167-7



G.Ortega, E. M. Garzón, F. Vázquez, I. Garćıa

the SpMV operation, focusing our interest on the solution of Helmholtz equation on the
GPU architecture. Next, Section 4 evaluates the SpMV and the BCG method, both based
on the Regular Format on the NVIDIA GPU GTX 480 with a set of representative test
matrices. The results clearly show that the better performance for both, SpMV and BCG
method using Regular Format for all the test matrices. Finally, Section 5 summarizes the
main conclusions.

2 Solving PDEs. Analysis of the matrix form

The numerical solution of PDEs is based on the discretization of differential operators.
Consequently, linear system equations in R or C (depending on the kind of application)
have to been solved. In general, these linear systems are defined by a sparse matrix which
exhibits a strong regularity in both, the pattern and the values of its nonzero elements.

This kind of linear system equations can be solved by using iterative methods such as
the Conjugate Gradient (for real and positive definite systems) or the BiConjugate Gradient
Method (for complex or real nonsymmetric linear systems).

Our interest is centered on the BiConjugate Gradient Method (BCG) method because
it has a wide range of applications such as Electromagnetism [5, 14].

The BCG (proposed by Lanczos [6, 7] and discussed by Fletcher [3] and Jacobs [4]) is
a nonstationary iterative method to solve systems of linear equations Ax = b where the
matrix A ∈ CN×N can be non-symmetric. For the given system of equations, A denotes the
coefficient (sparse) matrix, b indicates the independent term and x is the vector solution.

The pseudocode for the BCG Method is given in Algorithm 1. Additionally, the com-
plexity order for the most expensive operations are shown in Algorithm 1. Let us remark
that nz denotes the number of nonzero elements of A and N the number of rows. The com-
putational cost associated to the SpMV operation is larger that the remaining operations
which are just inner products. It is noteworthy that every iteration involves the computa-
tion of SpMV operations using A and AT (lines 9 and 13 of Algorithm 1). Notice that, in
general, the SpMV operation over AT represents a penalty on the performance of the BCG
method.

3 SpMV based on Regular Format

In general, Compressed Row Storage (CRS) is the most extended format to store sparse
matrices. Let N and Nz be the number of rows of the matrix and the total number of
non-zero entries of the matrix, respectively; the data structure consists of the following
arrays: (1) A[] array of floats of dimension Nz, which stores the entries; (2) J [] array of
integers of dimension Nz, which stores their column index; and (3) start[] array of integers
of dimension N + 1, which stores the pointers to the beginning of every row in A[] and J [],
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Algorithm 1 BiConjugate Gradient Method

Require: Define EPS = Accuracy Threshold
Ensure: The value of x(i).

1: Compute r(0) = b−Ax(0) for some initial guess x(0)

2: Choose r′(0) = r(0); p′(0) = 0; p(0) = p′(0); ρ′(0) = 1
3: Calculate Δ(0) = norm2(r(0)) O(4N)
4: for i = 1, 2, ... do
5: ρ(i) = (r′(i−1), r(i−1)) O(8N)
6: β(i) = ρ(i)/ρ′(i−1)

7: p(i) = r(i−1) + β(i)p(i−1) O(8N)
8: p′(i) = r′(i−1) + β(i)p′(i−1) O(8N)
9: v(i) = Ap(i) O(8nz)

10: α(i) = ρ(i)/(p′(i), v(i)) O(8N)
11: x(i) = x(i−1) + p(i)α(i) O(8N)
12: r(i) = r(i−1) − v(i)α(i) O(8N)
13: r′(i) = r′(i−1) − α(i)(AT p′(i)) O(8nz + 8N)
14: Δ(i) = norm2(r(i)) O(4N)
15: if Δ(i) < Δ(0)EPS then
16: return x(i)

17: else
18: ρ′(i) = ρ(i)

19: end if
20: end for

both sorted by row index [2]. Moreover, other proposals to store the sparse matrices have
been developed on the literature [1, 15].

However, this work aims at presenting and evaluating an approach to increase the
performance of the SpMV operation. Bearing in mind that the matrix form of the differential
operator involved in PDEs has several regularities, our proposal is based on a specific storage
format for these regular sparse matrices. Hereinafter this kind of format is referred to as
Regular Format.

The regularity of the matrix allow us to compact it better than other formats to store
matrices. Thus, the goal of our Regular Format is to store the minimal information to define
the sparse matrix. So, the computation time of SpMV can be reduced since the number
of memory accesses to read the elements of the sparse matrix has a strong impact in its
performance.

In order to illustrate our approach we deal with the Helmholtz equation

(∇2(r) + k(r)2)E(r) = 0 (1)
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where ∇2 is the Laplace operator; E is a complex scalar function (potential) defined at
a spatial point r = (x, y, z) ∈ R3 and k is some real or complex constant. This equation
naturally appears from general conservation laws of physics and can be interpreted as a wave
equation for monochromatic waves (wave equation in the frequency domain). Equation 1
can be numerically solved by means of the appropriated transformation based on Green’s
functions and the spatial discretization [8, 13].

As consequence, a complex linear system, characterized by the regularity of its matrix,
must be solved by means of an iterative method suitable for solving complex linear systems,
such as the BCG method.

In this example, the regularities of the matrix are: (1) The matrix is symmetric; (2)
There is a maximum of seven nonzeros elements at every row; (3) The nonzeros values are
located by seven diagonals in the matrix, where one is the main diagonal, two of them are
the first lower and upper diagonals and four of them are located by ±d1-th and ±d2-th
diagonals; (4) The nonzeros of every lateral diagonal are the same values (a, b, c); (5) The
main diagonal is defined by a set of complex numbers.

Bearing in mind these characteristics (see Figure 1), the Regular Format consists of:

1. One array, A[] (complex) of dimension N (where N represents the dimension matrix).

2. Three integer values (a, b, c) are included with the purpose of storing the value of
lateral diagonals.

3. Two additional integer values d1, d2 in order to point at the location of the lateral
diagonals in the first row.

It is relevant to underline the strong reduction of memory requirements of the Regular
Format with respect to the CRS format.

Algorithm 2 illustrates the code of SpMV based on the Regular Format. The operations
of Algorithm 2 can be highly accelerated by means of the GPU computing. It is due to
the regularity of this kind of SpMV which allows to exploit the massive parallelism of the
GPU platforms. A specific kernel to compute the SpMV operation on the GPU has been
developed based on the Regular Format. In this kernel, every thread computes one element
of the output vector (u = Av). So, the loop to compute every row has been unrolled. In
this way, the parallelism of this specific SpMV kernel is very high.

In the next section, the kernel to compute the SpMV operation by means of the Regular
Format is evaluated. Also, the BCG method based on the same Regular Format is carried
out.

4 Evaluation

Our analysis is based on the run-times measured on a GeForce GTX 480 using a set of
sparse complex matrices which define partial differential equations (PDEs). These matrices
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Figure 1: Sparse matrix related to the equation of Helmholtz and the Regular Format to
storage this matrix taking advantage of its regularity.

Algorithm 2 Code for SpMV using Regular Format

Require: A, v, N , d1 and d2.
Ensure: The value of u.

1: for i = 1, 2, ..., N do
2: u(i) = v(i−1) +A(i)v(i) + v(i+1)

3: if ((i+ d1) <= N) then
4: u(i)+ = v(i+d1)

5: end if
6: if ((i− d1) > 0) then
7: u(i)+ = v(i−d1)

8: end if
9: if ((i+ d2) <= N) then

10: u(i)+ = v(i+d2)

11: end if
12: if ((i− d2) > 0) then
13: u(i)+ = v(i−d2)

14: end if
15: end for
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have a very regular structure (see Figure 1) with small imbalances in the distribution of
nonzeros per matrix row. Table 1 illustrates the set of test matrices used in this work and
the characteristic parameters related to their specific pattern: number of rows (N), the
total number of non-zero entries of the matrix (nz) and the pointers to the lateral diagonals
(d1 and d2). Let us remark that the dimension for all matrices is N x N and the elements
of all matrices are stored as two float numbers.

Table 1: Characteristics of test matrices.
Complex matrix N nz d1 d2

NN70 729000 5086618 90 8100
NN90 1331000 9292578 110 12100
NN110 2197000 15344938 130 16900
NN130 3375000 23579698 150 22500
NN150 4913000 34332858 170 28900
NN170 6859000 47940418 190 36100

In our analysis, two implementations on GPUs are evaluated: (1) the SpMV kernel
based on the Regular Format; and (2) the BCG kernel using Regular Format. The BCG
implementation on GPU is based on the acceleration of SpMV and the inner products at
every iteration of the method to improve its performance. So, the BCG kernel is based
on the SpMV Regular Format kernel. Moreover, the inner products have been accelerated
using CUBLAS Library [10].

In order to estimate the net gain provided by GPUs in the two implementations, we
have taken the SpMV implementation based on Regular Format for modern processors and
for GPUs. For the former, we have considered the sequential code for a computer based
on a state-of-the-art superscalar core, Intel Xeon Westmere, and evaluated the computing
times for the set of test matrices.

Table 2 shows the runtimes for computing the SpMV Regular Format on the GPU and
CPU platforms considered in our evaluation. Moreover, Figure 2 lists the acceleration factor
of the SpMV using Regular Format on the GPU GeForce GTX 480 against one core of Intel
Xeon Westmere. Each test consists of 1000 executions of SpMV routine to obtain accurate
timing. The languages used to design the codes are C and CUDA.

Table 2: Runtimes (seconds) for 1000 iterations of the SpMV operation using Regular
Format.

NN70 NN90 NN110 NN130 NN150 NN170

GPU 0,20 0,35 0,61 0,99 1,61 2,27

CPU 32,88 58,62 96,74 148,66 216,05 302,20
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Figure 2: Acceleration factor of the SpMV based on Regular Format on GPU GTX 480
against one core of Intel Xeon Westmere.

Results in Table 2 and Figure 2 show the improvement of the runtimes and the acceler-
ation factor for all test matrices reached by Regular Format format are very high since this
kernel takes advantage of the regularities of the matrices and exhibits a high parallelism
which can be exploit by the GPU platforms.

Table 3: Runtimes (seconds) for 1000 iterations of one resolution of the BCG method using
Regular Format.

NN70 NN90 NN110 NN130 NN150 NN170

GPU 2,47 3,84 5,90 8,71 12,59 17,49

CPU 152,80 275,99 454,78 698,02 1017,93 1422,52

Results in Table 3 and Figure 3 show the runtimes and the acceleration factor reached
by the BCG method for solving complex linear systems using Regular Format. These results
illustrate the high acceleration factor achieved by our implementation of the BCG method
on the GPU against the version on one core, for a set of test matrices. Notice that the
performance for the test matrices increases with the dimension of the problem to solve.

For the considered test matrices, the SpMV runtimes range from 0, 20s to 2, 27s on
the GPU and from 32, 88s to 302, 20s on the CPU. For the BCG kernel based on the same
format, the runtimes are between 2, 47s and 17, 49s on the GPU, and between 152, 80s and
1422, 52s on the CPU.

For the same set of matrices, the acceleration factor achieves values between 133× and
168× for the SpMV kernel based on Regular Format and between 61× and 81× for the
BCG kernel based on the same format. So, our approach clearly improves the performance
of solvers of Helmholtz equation.
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Figure 3: Acceleration factor of the BCG method using Regular Format on GPU GeForce
GTX 480 against one core of Intel Xeon Westmere.

5 Conclussions

We have developed a specific implementation on GPUs of the BCG method for solving
complex systems of linear equations related to the solution of the Helmholtz equation.
The key of our approach is the exploitation of the regularity of the matrices related to
the solver. Due to the fact that the SpMV involved in the BCG are the operations with
higher cost computational a specific kernel based on the Regular Format to accelerate it has
been developed. This kernel allow us to reduce the memory requirements and the runtimes
relevantly. The results related to the test matrices with higher dimension, show that the
GPU implementation can reduce the runtime from 1422, 52s in the CPU (one core Intel
Xeon Westmere) to 17, 49s in the GPU (GTX 480). Therefore, our GPU implementation of
the BCG method based on Regular Format allow us to extend the dimension of the linear
equation system related to the solution of a wide range of applications.
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Abstract

We present new syntax and semantics for Rfuzzy, a framework for fuzzy logic where priori-
ties between the rules encoded by the developer are set and taken into account to choose always
the one more close to the human way of thinking.

In previous works we presented three symbols, an order between them ( N <a � <a H )
and an operator ( ◦ ) to combine them for this purpose. For working with small programs this
is perfectly adequate, but when dealing with larger programs the intentions get lost due to the
assignation of identical priority weights to clauses that depend on a small amount of default
information and clauses that depend on a large amount of default information. Our goal with
this contribution is to differentiate between them by using priorities so the inference process
gets even closer to the human way of reasoning and solving problems.

Key words: fuzzy logic framework syntax semantics

1 Introduction

It was Lotfi Zadeh in 1965 who introduced fuzzy set theory [24], and its existence was justified
in his paper ”Is there a need for fuzzy logic?” [26]. We just outline here some ideas to make the
contribution as self contained as possible.

It is usual when modeling real-world problems the necessity to represent not only if an individ-
ual belongs or not to a set, but the grade in which it belongs. This grade is what Zadeh tried to model
by using a linguistic variable, a variable which can be assigned real-world adjectives1 as values. For
example, age takes the values young and old and temperature takes the values cold, warm and hot
(Fig. 1.1).

1 Please take into account that values for a linguistic variable are not always adjectives.
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Figure 1.1: Temperature is a linguistic variable and (here) takes the values cold, warm and hot.

But this linguistic variables are no more than part of the fuzzy systems which, aimed at encoding
in a computation the human way of solving problems, abstract the real-world facts into fuzzy facts
by means of the fuzzification process, infer fuzzy solutions to the real-world problems by using
fuzzy rules and defuzzify them to work in real-life scenarios.

To illustrate this description, suppose that temperature is 25 degrees and this measure is fuzzi-
fied into temperature(warm) by using the description for the linguistic variable temperature in
Fig. 1.1. This fuzzy fact is then taken into account by the fuzzy rule if temperature(warm) then
fan speed(normal) and it is concluded fan speed(normal). At last the conclusion is defuzzified by
a linguistic variable description similar to the one in Fig. 1.1, obtaining the real-world decision to
feed the fan with 5 volts2.

In [25] Zadeh called (type-1) fuzzy sets and systems those using linguistic variables and apply-
ing “crisp rules” to infer the belonging value of another linguistic variable. He did that to distinguish
them from type-2 fuzzy sets and systems, where rules can be not only satisfied or not but satisfied
up to some degree.

A good example to illustrate this kind of rules is trying to determine if a train will stop because
of its speed decrease and we should take our baggage, but without knowing if the speed reduction
is high, normal or low3. We could say that speed reduction is normal, but we are not completely
sure about it and this should be taken into account. For that purpose we measure how much we trust
our perception by means of a real number in the interval [0, 1]4, 0.6 here. This number is called the
credibility of the rule. The fuzzification process result (“speed reduction(normal) with cred 0.6”) is
then taken into account by the fuzzy rule “if train speed reduction(normal) then train stops(soon)”
to infer the conclusion “train stops(soon) with cred 0.6”, which is still not the solution expected by
the deffuzification process. We need to apply another rule to this result5, “if train stops(soon) then
take your baggage(now)” and the result here is “take your baggage(now) with cred 0.6”. Finally
the defuzzification process tries to deffuzify the last conclusion, but it is not strong enough to fire a
real-world action. So, it does not suggest us to take our baggage.

The inclusion of the credibility value increased the number of real-world problems that could

2suppose that the linguistic variable fan speed has the following description: when its value is fast we feed the fan
with 10 volts, when normal with 5 volts, when low with 2.5 volts and when stop with 0 volts.

3Suppose we are just passengers that feel something but can not measure it.
4As usually, 0 means we do not trust the rule and 1 we trust it completely. We could use here a linguistic variable

again, but we think a number between 0 and 1 makes it easy to understand.
5 This second inference step is included to highlight that we can model problems much more complex than the previous

one, solved in only three inference steps.
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be modeled and multiple fuzzy systems have been developed since then. The ones allowing the
developer to code programs under the logic programming paradigm (called fuzzy logic systems) we
know about are Flopper [19], Fuzzy Prolog [7], Rfuzzy [21] and FuzzyDL [2].

The basic difference between other paradigms and the logic programming paradigm is that it
regards a computation as automated reasoning over a corpus of knowledge instead of actions that
change the machine state in some way. Facts about the problem domain are expressed as logic
formulas, and programs are executed by applying inference rules over them until an answer to the
problem is found, or the collection of formulas is proved inconsistent. There are many reasons for
using it, but maybe the most important ones are (1) the existing similarities with the human way of
thinking and (2) the fact that since the invention of Prolog [11, 3] its use for modeling problems in
Artificial Intelligence has not stopped growing up.

The number of problems we can represent by using fuzzy logic is huge but there still some that
can not be simulated by just using it, as the one we present and try to overcome here: the existence
of rule priorities that overwrite the normal ordering of results obtained from fuzzy logic inferences.
Just suppose we want to have default values for some rules. This can not be coded in the current
multi-adjoint framework because all rules have the same priority there. We try here to overcome
this limitation.

There are many proposals on how to introduce priorities in logic programming (LP) [23, 1, 12,
13, 8, 6] but, as far as we know, there is no existing work on fuzzy logic programming, although it
seems to be rather necessary its inclusion.

2 Syntax

We will use a signature Σ of function symbols and a set of variables V to “build” the term universe
TUΣ,V (whose elements are the terms). It is the minimal set such that each variable is a term and
terms are closed under Σ-operations. In particular, constant symbols are terms. Similarly, we use
a signature Π of predicate symbols to define the term base TBΠ,Σ,V (whose elements are called
atoms). Atoms are predicates whose arguments are elements of TUΣ,V . Atoms and terms are called
ground if they do not contain variables. As usual, the Herbrand universe HU is the set of all ground
terms, and the Herbrand base HB is the set of all atoms with arguments from the Herbrand universe.
A substitution σ or ξ is (as usual) a mapping from variables from V to terms from TUΣ,V

6.
To capture different interdependencies between predicates, we will make use of a signature Ω of

many-valued connectives7 formed by conjunctions &1,&2, ...,&k, disjunctions ∨1,∨2, ...,∨l, im-
plications←1,←2, ...,←m, aggregations @1,@2, ...,@n and tuples of real numbers in the interval
[0, 1] represented by (p, v).

6Although we prefer using suffix notation ( (Term)σ ), note that it is equivalent to prefix notation ( σ(Term) ).
7In some works the term “aggregation operator” subsumes conjunctions, disjunctions and aggregations. In this work

we distinguish between them and include a new one (implications).
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While Ω denotes the set of connective symbols, Ω̂ denotes the set of their respective associated
truth functions. Instances of connective symbols and truth functions are denoted by &i and &̂i for
conjunctors, ∨i and ∨̂i for disjunctors,←i and ←̂i for implicators, @i and @̂i for aggregators and
(p, v) and ˆ(p, v) for the tuples.

Truth functions for the connectives are then defined as &̂ : [0, 1]2 → [0, 1] monotone8and non-
decreasing in both coordinates, ∨̂ : [0, 1]2 → [0, 1] monotone in both coordinates,
←̂ : [0, 1]2 → [0, 1] non-increasing in the first and non-decreasing in the second coordinate,
@̂ : [0, 1]n → [0, 1] as a function that verifies @̂(0, . . . , 0) = 0 and @̂(1, . . . , 1) = 1
and (p, v) ∈ Ω(0) are functions of arity 0 (constants) that coincide with the connectives.

Immediate examples for connectives that come to mind for conjunctors are: in Łukasiewicz
logic (F̂ (x, y) = max(0, x + y − 1)), in Gödel logic (F̂ (x, y) = min(x, y)), in product logic
(F̂ (x, y) = x · y), for disjunctors: in Łukasiewicz logic (F̂ (x, y) = min(1, x+ y)), in Gödel logic
(F̂ (x, y) = max(x, y)), in product logic (F̂ (x, y) = x · y), for implicators: in Łukasiewicz logic
(F̂ (x, y) = min(1, 1 − x + y)), in Gödel logic (F̂ (x, y) = y if x > y else 1), in product logic
(F̂ (x, y) = x · y) and for aggregation operators9: arithmetic mean, weighted sum or a monotone
function learned from data.

3 Semantics

The main idea behind our semantics is that if a rule has more priority than the other ones then the
intended truth value for an inference where this rule is involved is the one it obtains.

For this purpose we attach to the usual truth value v ∈ [0, 1] a real number p ∈ [0, 1] denoting
the (accumulated) priority, resulting in the tuple of real numbers between 0 and 1 symbolized by
(p, v) ∈ Ω(0). As it can be noted from the symbols used, the first element indicates the priority and
second one the “old” truth value. We represent the tuple by (p, v), although in some cases we use
(pv) to highlight that the variable is only one and it can take the value⊥. The union between the set
containing all possible combinations of two real numbers between 0 and 1 and {⊥} is symbolized
by KT and we define the ordering between elements from KT as follows:

Definition 3.1 (4 KT).

⊥ 4 KT ⊥
⊥ 4 KT (p, v)

(p1, v1) 4 KT (p2, v2) ↔ ( p1 < p2 ) or ( p1 = p2 and v1 ≤ v2 ) (3.1)

where < is defined as usually (note that vi and pj are just real numbers between 0 and 1). It is
obvious that the pair ( KT,4 KT) forms a complete lattice.

8 As usually, a n-ary function F̂ is called monotonic in the i-th argument ( i ≤ n ), if x ≤ x′ implies
F̂ (x1, . . . , xi−1, x, xi+1, . . . , xn) ≤ F̂ (x1, . . . , xi−1, x

′, xi+1, . . . , xn) and a function is called mono-
tonic if it is monotonic in all arguments.

9Note that the above definition of aggregation operators subsumes all kinds of minimum, maximum or mean operators.
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The structure used to give semantics to our programs is the multi-adjoint algebra, presented in
[14, 15, 16, 17, 18, 20] and somewhere else. The basic idea is that a multi-adjoint Ω−algebra can
be seen as an extension of a multi-adjoint lattice containing a number of extra operators provided
by the signature Ω, and a multi-adjoint lattice is just a lattice with more than one pair of operations
obeying the adjoint property. We start from the definition of adjoint property.

Definition 3.2 (Adjoint property). Departing from a Poset (a partially ordered set)
< P, ≤ > and introducing a pair of operations ( &, ← ), we say that the operations form
an adjoint pair if (1) & is increasing in both arguments, (2) ← is increasing in its first argument
and decreasing in the second one and (3) (the adjoint property)10 for any x, y, z ∈ P we have that
z ≤ (x← y) holds if and only if z & y ≤ x.

A lattice with only one adjoint pair is called somewhere a residuated lattice (see [5, 4]), and
when more that one pair is introduced we get to a multi-adjoint lattice.

Definition 3.3 (Multi-Adjoint Lattice). A multi-adjoint lattice L is a tuple
(L,≤, ←1, &1, ..., ←n, &n) satisfying (1) < L, ≤ > is a bounded lattice, (2) ( ←i, &i) is
an adjoint pair in < L, ≤ >, for i = 1, . . . , n and (3) > &i v = v &i > = v for all v ∈ L and
i = 1, . . . , n.

Definition 3.4 (Multi-Adjoint Algebra). Let (L,≤, ←1, &1, ..., ←n, &n) be a multi-adjoint
lattice. The implication algebra Ω defining the operators ( ←i, &i ) for i = 1, . . . , n with respect
to L is a multi-adjoint algebra.

It is usual to define a multi-adjoint logic program as a set of weighted rules
A

Fc, c←−−− F (B1, . . . , Bn) where c ∈ [0, 1] and Fc is a conjunctor &, but the semantics associated
with this syntax is not capable to manage the priority issues we want to encode. To overcome this
restriction we enrich this syntax by changing c by (p, v) ∈ KT and adding a condition COND(A)
that can be used to encode a truth value to a subset of individuals fulfilling the condition.

Definition 3.5 (Multi-Adjoint Logic Program). A multi-adjoint logic program is a set of clauses of
the form

A
(p, v), &i←−−−−−− @i(B1, . . . , Bn) if COND(A) (3.2)

where (p, v) ∈ KT, &i is a conjunctor, @i an aggregator, A and Bi, i ∈ [1..n], are atoms and
COND(A) is a first-order formula (a condition that needs to be satisfied for p to get the truth value
v) formed by the predicates in TBΠ,Σ,V , the predicates =, ≥, ≤, > and < restricted to terms from
TUΣ,V , the symbol true and the conjunction ∧ and disjunction ∨ in their usual meaning.

Definitions needed to understand the semantics are given in advance, as usually.
10 Note that the adjoint property offers us a way to evaluate inference rules because

z ≤ (x ← y) iff z & y ≤ x defines the inference rule (B,y) (A←B,z)
(A,x)
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Definition 3.6 (Valuation, Interpretation). A valuation or instantiation σ : V → HU is an assign-
ment of ground terms to variables and uniquely constitutes a mapping
σ̂ : TBΠ,Σ,V → HB that is defined in the obvious way.

A fuzzy Herbrand interpretation (or short, interpretation) of a fuzzy logic program is a mapping
I : HB → KT that assigns an element in our lattice to ground atoms. The domain of an interpre-
tation is the set of all atoms in the Herbrand Base, although for readability reasons we omit those
atoms to which the truth value ⊥ is assigned (interpretations are total functions). This mapping can
be seen as a set of pairs (A, (p, v)) such that A ∈ HB and (p, v) ∈ KT \ {⊥}.

It is possible to extend uniquely the mapping I defined on HB to the set of all ground formulas
of the language by using the unique homomorphic extension. This extension is denoted Î and the
set of all interpretations of the formulas in a program P is denoted IP.

Definition 3.7 (Interpretation Ordering, Minimum, Maximum, Infimum and Supremum). For two
interpretations I and J , we say I is less than or equal to J , written I v J , iff I(A) 4 KT J(A)
for all A ∈ HB. Two interpretations I and J are equal, written I = J , iff I v J and
J v I . For all A ∈ HB minimum is defined as min(I, J)(A) = I(A) if I(A) 4 KT J(A)

and min (I, J) (A) = J(A) if J(A) 4 KT I(A), maximum as max (I, J) (A) = I(A) if
I(A) < KT J(A) andmax (I, J) (A) = J(A) if J(A) < KT I(A), infimum (or intersection) as
(I u J)(A) := min(I(A), J(A)) and supremum (or union) as (I t J)(A) := max(I(A), J(A)).

Lemma 3.8. The pair (IP ,v) of the set of all interpretations of a given program with the interpre-
tation ordering forms a complete lattice.

Proof. This follows readily from the fact that the underlying lattice set KT forms a complete lattice
with the lattice values ordering 4 KT.

Up to now we have defined the underlying lattice we use for choosing the best interpretation
between the available ones, but we still have not defined which is the expected one. For that pur-
pose we define the model of a program, but before it we need to define a operator to combine the
knowledge grades, ◦.

Definition 3.9 (The operator ◦ ). The aim of taking into account the knowledge quality of every
single root involved in the inference process removes the possibility to use mathematical operators
in which the result remains unchanged when some input does not (i.e. min, max, etc).

Besides, the operator must be formed by a pair of functions ( ◦& , ◦← ) where the former is
used when combining the knowledge under the application of a conjunction function and the latter
when combining it under the implication function.

This is why we decided to use as operator ◦& the mean, defining

x ◦& y =
x + y

2
and z ◦← y = 2 ∗ z − y .
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Remark. From here afterwards, the application of some conjunctor &̄ (resp. implicator ←̄ ,
aggregator @̄ ) to elements (p, v) ∈ KT \ {⊥} refers to the application of the truth function &̂
(resp. ←̂ , @̂ ) to the second elements of the tuples while ◦& (resp. ◦← , ◦& ) is the one applied
to the first ones.11. When applied to the element ⊥ all of them ( &̄ , ←̄ and @̄ ) return ⊥.

Definition 3.10 (Multi-Adjoint Satisfaction). (Modified from the definition in [20]) Let P be a multi-
adjoint logic program, I ∈ IP an interpretation and A ∈ HB a ground atom. A clause Cli ∈ P of

the form { A (p, v), &i←−−−−−− @i(B1, . . . , Bn) if COND(A) } is satisfied by I iff

(p, v) 4 KT inf { Î (( A ←̄&i
@i(B1, . . . , Bn) ) ξ) |

ξ any ground instantiation and COND( A ) is satisfied } (3.3)

which, by means of the adjoint property, is equivalent to

Î ( A ) < KT sup {(p, v) &̄&i
Î(( @i(B1, . . . , Bn) ) ξ) |

ξ any ground instantiation and COND( A ) is satisfied } (3.4)

Definition 3.11 (Satisfaction, Model). Let P be a multi-adjoint logic program, I ∈ IP an interpre-
tation and A ∈ HB a ground atom. We say that a clause Cli ∈ P is satisfied by I or I is a model of
the clause Cli ( I 
 Cli ) iff for all ground atoms A ∈ HB and for all instantiations σ for which
Bσ ∈ HB (note that σ can be the empty substitution) it is true that

Î(A) < KT (p, v) &̄i @̄i( Î(B1σ), . . . , Î(Bnσ) ) if COND( A ) (3.5)

Note that eq. 3.5 is equivalent to eq. 3.4. Finally, we say that I is a model of the program P and
write I 
 P iff I 
 Cli for all clauses in our multi-adjoint logic program P.

Every program has a least model, which is usually regarded as the intended interpretation of the
program, since it is the most conservative model. The following proposition will be an important
prerequisite to define the least model semantics. It states that the infimum (or intersection) of a
non-empty set of models of a program will again be a model. The existence of a least model is then
obvious and easily defined as the intersection of all models.

Proposition 3.12 (Model intersection property). Let P be a multi-adjoint logic program and IP be
a non-empty set of interpretations. Then

I 
 P for all I ∈ IP implies
l

I∈IP

I 
 P

11 Note that this new operators &̄, ←̄ and @̄ still keep the properties exposed in Sec. 2, i.e. the first one is non-
decreasing in both coordinates, the second one is non-increasing in the first and non-decreasing in the second coordinate
and the last one verifies F̄ (0, . . . , 0) = 0 and F̄ (1, . . . , 1) = 1.
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Proof. Suppose that for all I ∈ IP it is true that I 
 P. We define J =
d
I∈IP I .

(step. 1) from the definition of model of a program (Def. 3.11) we have that I 
 P iff I 
 Cli
for all clauses in our program P, and this results in

Î(A) < KT (p, v) &̄i @̄i( Î(B1σ), . . . , Î(Bnσ) ) if COND( A )

for all atoms A ∈ HB and for all instantiations σ for which Bσ is ground.
(step. 2) from J =

d
I∈IP I and the definition of

d
as the minimum between interpretations

(Def. 3.7) we have that for all I ∈ IP it is true that for all L ∈ HB
(I u J)(L) := min(I(L), J(L)) = J(L).

(step. 3) define for some ground atom A ∈ HB and some ground instantiation σ such that
Bσ ∈ HB the variables (kv)I,σ and (kv)J,σ as follows:

Î(A) < KT (kv)I,σ = (p, v) &̄i @̄i( Î(B1σ), . . . , Î(Bnσ) ) if COND( A )

(kv)J,σ = (p, v) &̄i @̄i( Ĵ(B1σ), . . . , Ĵ(Bnσ) ) if COND( A )

from the definition of &̄i and @̄i as non decreasing functions and
Î(Biσ) < KT Ĵ(Biσ) (step. 2) it is clear that (kv)I,σ < KT (kv)J,σ.

(step. 4) from J =
d
I∈IP I and the definition of

d
as the minimum between interpretations

(Def. 3.7) we have that for some I ∈ IP and some L ∈ HB it is true that
(I u J)(L) := min(I(L), J(L)) = J(L) = I(L).

(step. 5) from (kv)I,σ < KT (kv)J,σ (step. 3) and the fact that Ĵ(A) gets its value from some
Î(A) (step. 4) we can fix for some atom A and any substitution σ the order
(1, 1) < KT Î(A) < KT Ĵ(A) < KT (kv)I,σ < KT (kv)J,σ < KT ⊥,

(step. 6) The order in step. 5 defines Ĵ(A) < KT (kv)J,σ, so

Ĵ(A) < KT (kv)J,σ = (p, v) &̄i @̄i( Ĵ(B1σ), . . . , Ĵ(Bnσ) ) if COND( A )

which proves Prop. 3.12.

Definition 3.13. Let P be a well-defined fuzzy logic program. The least model of P is defined as
lm(P) :=

l

I 
 P
I .

Definition 3.14 (TP Operator). Let P be a multi-adjoint logic program, L ∈ HB an atom and I ∈ IP
an interpretation. The immediate consequences operator TP : IP → IP is defined as follows:

TP (I)(A)
.
= sup { (p, v) &̄i @̄i( Î(B1σ), . . . , Î(Bnσ) ) if COND( A ) |

{ A (p, v), &i←−−−−−− @i(B1, . . . , Bn) if COND(A) } ∈ P } (3.6)

As it is usual in the logic programming framework, the semantics of a program P is characterized
by the post-fixpoints of TP .
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Proposition 3.15. Let P be a multi-adjoint logic program and I ∈ IP an interpretation.

I 
 P ⇔ TP (I) v I. (3.7)

Proof. “if”: Let TP (I) v I and L be some arbitrary ground atom. Define for any ground instantia-
tion σ the variable (kv)I,σ as follows:

(kv)I,σ =̇ (p, v) &̄i @̄i( Î(B1σ), . . . , Î(Bnσ) ) if COND( A ) |

{ A (p, v), &i←−−−−−− @i(B1, . . . , Bn) if COND(A) } ∈ P (3.8)

so we can say that for any ground instantiation σ

Î(A) < KT (kv)I,σ (3.9)

TP (I)(A)
.
== sup { (kv)I,σ } (3.10)

and from this and the definition of the symbols sup and < KT we can fix the order
Î(A) < KT TP (I)(A), proving that I 
 P.

“only if”: Let I 
 P and L be some arbitrary ground atom. We define for any ground
instantiation σ the variable (kv)I,σ as in Eq. 3.8. Since I 
 P, for any ground instantiation σ Eq. 3.9
has to be true. If we define our TP operator from the variable (kv)I,σ, as in Eq. 3.10, we know from
the definition of the symbols sup and < KT that Î(A) < KT TP (I)(A), so TP (I) v I .

Proposition 3.16 (TP is monotonic). Let P be a multi-adjoint logic program and Ii ∈ IP and
Ii+1 ∈ IP two interpretations. if Ii v Ii+1 ⇒ TP (Ii) v TP (Ii+1).

Proof. Suppose that Ii v Ii+1. By definition of v this implies that for all atoms L
Îi(L) 4 KT Îi+1(L). In the definition of TP operator (Def. 3.14) TP (I)(L) is related to I(L)
by means of the operations sup, &i and @i. Since all of them are non-decreasing and monotone, we
can assure that TP (Ii)(L) 4 KT TP (Ii+1)(L) and conclude TP (Ii) v TP (Ii+1)

Proposition 3.17 (TP is continuous). Let P be a multi-adjoint logic program and I0 v I1 v . . .
a countable infinite increasing sequence of interpretations. Then TP (

⊔∞
n=0 In) =

⊔∞
n=0 TP (In).

Proof. We use the following facts:
(fact. 1) Since I0 v I1 v . . . and from definition of v we have that Ii(A) 4 KT Ii+1(A)

for every ground term A ∈ HB. As
⊔

takes by definition the maximum interpretation,⊔n
i=0 Ii = In.

(fact. 2) We have that TP (I0) v TP (I1) v . . . since I0 v I1 v . . . and TP is monotonic
(Prop. 3.16). Again by using definitions of v and

⊔
we obtain

⊔n
i=0 TP (Ii) = TP (In).

TP

( ∞⊔
n=0

In

)
fact. 1

= TP (I∞)
fact. 2

=

∞⊔
n=0

TP (In)
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Theorem 3.18. Let P be a multi-adjoint logic program. Then the least fixpoint of TP exists and
is equal to TP ↑ω.

Proof. The existence of the least fixpoint of TP follows from the facts that ( IP, v ) forms
a complete lattice, TP is monotone (Proposition 3.16), and the Knaster-Tarski fixpoint theorem
[22, 10]. Its equality to TP ↑ω follows from the facts that (IP,v) forms a complete lattice, TP is
continuous (Proposition 3.17), and the Kleene fixpoint theorem [9].

Since the least fixpoint always exists, we can define a semantics based on it.

Definition 3.19. Let P be a multi-adjoint logic program. Then the least fixpoint semantics of P is
defined as lfp(P) = TP ↑ω(⊥). Here, ⊥ denotes the interpretation mapping everything to ⊥ (thus
being the least element of the lattice (IP ,v)).

Theorem 3.20. For a multi-adjoint logic program P, we have lm( P ) = lfp( P ).

Proof.

lm(P)
1
=

l

I 
 P
I

2
=

l

TP (I)vI

I
3
= TP ↑ω(⊥)

4
= lfp(P)

where (1) is by definition of least model of a program, (2) is by Prop. 3.15, (3) is by the Kleene
fixpoint theorem [9] and (4) is by definition of least fixpoint semantics.

4 Conclusions

We have presented syntax and semantics for a fuzzy logic framework in which priorities between
the different rules in a fuzzy logic program can be set and are taken into account when computing
the answer for a query. We hope this contribution fills the existing gap in fuzzy logic frameworks
and enable them to develop programs more close to the human way of thinking, where the use of
priorities is a reality.
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Abstract

This paper deals with a preliminary model developed to sketch the immune response
stimulated by the administration of OT1 activated cytotoxic T cells with Anti-CD
137 immunostimulatory monoclonal antibodies against melanoma cells. We model two
compartments: the injection point compartment where the treatment is administered
and the skin compartment where melanoma tumor cells proliferate. To model the
migration of OT1 T cells and Antibodies from the injection to the skin compartment
we use delay differential equations (DDE). We then present preliminary results showing
the immune response entitled with the use of the treatment.

1 Introduction

Melanoma represents one of the most aggressive malignant tumors and it is due to the
mutation of cells that produce the melanin (melanocytes). Many approaches in clinical and
preclinical studies are actually based on the use and stimulation of cytotoxic T lymphocytes
against melanoma cells. Immunological rejection of progressive tumors requires not only
activation and expansion of tumor specific cytotoxic T lymphocytes (CTL), but also an
efficient effector phase including migration of CTL in the tumor followed by conjugation
and killing of target cells.

Accumulating evidence suggests that tumor-infiltrating lymphocytes are rendered an-
ergic through the actions of co-inhibitory molecules expressed on the surface of tumor
and stroma cells. Successful immunotherapy requires combined strategies that are able to
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turn-off deleterious signals while enhancing CTL migration and overall killing capacity [1].
CD137, also known as 4-1BB, is a co-stimulatory protein expressed on activated T, NK, B-
lymphocytes, dendritic cells and tumor endothelium [2]. CD137 natural ligand, CD137L is
present on the surface of activated antigen presenting cells [3]. Recently, in vivo experiments
executed in B16-OVA mice models [2] revealed that the combination of in vitro Activated-
OT1 cytotoxic T cells with Anti-CD137 immunostimulatory monoclonal antibodies that
improve cytotoxicity, duplication rate and chemotaxis sensitivity of activated cytotoxic T
cells are able to prevent the melanoma formation.

To catch-up the dynamics of this biological process we sketched a two-compartments
model. We used Delay Difference Equations to model two different compartments: the
injection point compartment where both antibodies and OT1 cells are injected and the
Skin compartment where melanoma develops.

2 The Model

The experiment runs for 30 days. At day 0 B16-OVA mice receive one injection of melanoma
malignant cells. The therapeutic treatment is administered at day 3. We built a mathe-
matical model describing the biological process.

Equation 1 and 2 refer to first compartment and simulate the time evolution of both
injected activated OT1 cytotoxic T cells (E) and antibodies (Ab) where kin(t; r) is a known
function that represents the number of inoculated entities r at the scheduled injection time
t. Both the entities migrate to the skin compartment with given rates (terms −a11E and
−a11Ab) and are subject to death or natural degradation (terms −a8E and −a12Ab). Equa-
tion 3 describes the melanoma cells (C) behavior in the skin compartment. The first term
((a1 − a2 ln(C)) · C) represents a gompertizan growth whereas the second term denotes
killing of C by Activated OT1 T cells that are already in the skin compartment (Es). With
equation 4 we describe the tumor associated antigen (A) dynamics. Antigens are released
in the skin compartment by killed melanoma cells (a4 · (a3CEs)) and are subject to natural
degradation (−a5A).

Activated OT1 T cells that have migrated to the skin compartment (Es) are described
by equation 5. The term a7AsEs is used to model duplication of OT1 T cells. Anti CD-137
antibodies that reached the skin compartment (As) are able to boost OT1 T cells duplication
rates. The term a11E(t−τ) models migration of OT1 T cells from the injection point to the
skin compartment. OT1 T cells in the skin compartment are supposed to be proportional
to the number of OT1 T cells in the injection point compartment with a proportionality
constant a11 and a time delay of τ . Some antigens released by killed melanoma cells may
be captured by presenting cells such as macrophages and dendritic cells and presented to
Naive cytotoxic T cells (N). After the right chain of steps (i.e. stimulation by T helper cells)
these cells may become active and then able to kill melanoma tumor cells. This process
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is not modeled since it involves to model other entities that are not essential at this first
stage. We then estimate the number of newly activated OT1 cytotoxic T cells on the basis
of released antigens with the term a6NA. The last term (−a8Es) reproduces natural death
of OT1 T cells. Equation 6 models the behavior of Naive OT1 T cells that are already
in the skin compartment. The term h(M − N) models homeostasis. M is the number of
circulating naive T cells under safe conditions given by the leukocyte formula. The second
term (a6NA) models the cytotoxic T cells state changing from naive to activated (Es).

Antibodies that have reached the skin compartment (As) are modeled and described
by equation 7. Antibodies in the skin compartment are supposed to be proportional to
the number of antibodies in the injection point compartment (Ab) with a proportionality
constant a11 and a time delay of τ . They also disappear by stimulating OT1 cells activities
and are subject to a natural degradation (terms −a12As and −a9AsEs).

Injection point compartment

dE

dt
= kin(t, p)− a11E − a8E (1)

dAb

dt
= kin(t, k)− a11Ab− a12Ab (2)

Skin compartment

dC

dt
= (a1 − a2 ln(C)) · C − a3EsC (3)

dA

dt
= a4 · (a3CEs)− a5A (4)

dEs

dt
= a7AsEs + a11E(t− τ) + a6NA− a8Es (5)

dN

dt
= h(M −N)− a6NA (6)

dAs

dt
= a11Ab(t− τ)− a9AsEs − a12As (7)

3 Preliminary Results and Conclusions

According to in vivo data from literature, our past experience in this field [4, 5] and ex-
perimental data coming from the experiment, we were able to find a preliminary tuning of
the model able to qualitatively reproduce the time evolution of the system. In absence of
therapy there is no induced immune response and thus melanoma cells grow up to their
saturation threshold. In figure 1 we show the system behavior when the treatment is ad-
ministered. Antibodies (Ab) and activated OT1 cells (E) are injected at day three and then
migrate to the skin compartment (see fig.1 (g) and (d)). At the same time Antibodies (As)
and activated OT1 cells (Es) in the skin compartment (fig.1 (f) and (c)) growth up to their
maximum and cooperate to kill the melanoma cells (fig.1 (a)) entitling almost complete
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eradication before day 20. Note here that the number of activated OT1 cells in the skin
(Es) is also boosted by (previously) naive OT1 T cells (N) (see fig.1 (e)) that are recruited
thanks to killed melanoma cells antigens (A) (fig.1 (b)). As an initial conclusion we can
therefore say that the treatment acts in two ways: directly by activated OT1 cytotoxic
T cells that are able to kill melanoma and Antibodies that boost T cells activities, and
indirectly by promoting recruitment of naive OT1 cytotoxic T cells thanks to the releasing
of melanoma cells antigens captured by presenting cells and then presented to these.

Further improvement to the tuning as well as deeper analysis of the model are on the
way and will be presented in due course.

4 Figures
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Figure 1: System behavior entitled with the use of activated OT1 cytotoxic T cells +
AntiCD-137 monoclonal Antibodies.
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Abstract

Considering the vector optimization problem

Min
x∈X
{(f ◦A)(x) + g(x)}

where f : Y → V , g : X → V and A ∈ L(X,Y ) invertible, we attach to it, by means
of perturbation theory, new vector duals and establish duality results with respect
to properly and weakly efficient solutions via linear scalarization. By extending
the classical vector Wolfe and Mond-Weir duals we obtain different vector dual
problems.

Key words: vector optimization problem, perturbation function, conjugate func-
tion, regularity conditions, strong duality, properly efficient solutions, weakly effi-
cient solutions, Wolfe vector duals, Mond-Weir vector duals

MSC 2000: 49N15, 90C25, 90C29, 90C46

1 Introduction

We consider the optimization problem having the composition with a linear continuous
mapping in the objective function and give some duality results referring to properly
efficient solutions and weakly efficient solutions via linear scalarization. Then, for the
unconstraint vector optimization problem we introduce the Wolfe and Mond-Weir type
vector duals and obtain weak and strong duality results (see [4], [10], [11], [12]).

Consider two separated locally convex spaces X and Y and their topological dual
spaces X∗ and Y ∗, respectively, endowed with the corresponding weak∗ topologies and
denote by 〈x∗, x〉 = x∗(x) the value at x ∈ X of the linear continuous functional
x∗ ∈ X∗. A cone K ⊆ X is a nonempty set which fulfills λK ⊆ K, for all λ ≥ 0. A
cone K ⊆ X is called pointed if K ∩ (−K) = {0}. For K ⊆ X a nonempty convex
cone, K∗ = {x∗ ∈ X∗ : 〈x∗, x〉 = 0,∀x ∈ K} is the positive dual cone. In optimization
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the quasi interior of the dual cone of K, K∗0 = {x∗ ∈ K∗ : 〈x∗, x〉 > 0, for all x ∈
K \ {0}} is used. The algebraic interior of a set U ⊆ X is core(U) = {x ∈ X :for
each y ∈ X ∃δ > 0 such that x + λy ∈ U,∀λ ∈ [0, δ]}. For a subset U of X by cl(U),
lin(U), cone(U), ri(U) and dim(U) we denote its closure, linear hull, conical hull,
relative interior and dimension, respectively. If U is convex, then sqri(U) = {x ∈ U :
cone(U − x) is a closed linear subspace} denotes its strong quasi relative interior. On
Y it is considered the partial ordering 5K induced by the convex cone K ⊆ Y defined
by z 5K y ⇔ y − z ∈ K when z, y ∈ Y. We denote also z ≤K y if y − z ∈ K \ {0} and
z <K y if y − z ∈ int(K), when z, y ∈ Y. The greatest element with respect to 5K ,
which does not belong to Y, is denoted by ∞K and let Y = Y ∪ {±∞K}.

For a function f : X → Y the domain is defined by dom f = {x ∈ X : f(x) ∈ Y }.
For f : X → R the epigraph is given by epi f = {(x, r) ∈ X × R : f(x) ≤ r} and the
conjugate function f∗ : X∗ → R is defined by f∗(x∗) = sup{〈x∗, x〉−f(x) : x ∈ X}. The
function f : X → R is lower semicontinuous at x ∈ X if liminfx→x f(x) ≥ f(x). The
function f : X → Y is called proper if its domain is nonempty. Between a function and
its conjugate there is the Young-Fenchel inequality f∗(x∗) + f(x) ≥ 〈x∗, x〉, for all x ∈
X and x∗ ∈ X∗. For f : X → R a given function and an arbitrary x ∈ X such that
f(x) ∈ R, the set ∂f(x) = {x∗ ∈ X∗ : f(y) − f(x) ≥ 〈x∗, y − x〉 for all y ∈ X} is
the (convex) subdifferential of f at x and its elements are called subgradients of f at x
and the function f is subdifferential at x if ∂f(x) 6= ∅ (see [5], [6], [7], [9], [13]). The
adjoint operator of a linear continuous mapping A : X → Y is A∗ : Y ∗ → X∗ given by
〈A∗y∗, x〉 = 〈y∗, Ax〉, for any (x, y∗) ∈ X × Y ∗. For a vector function f : X → Y , f is
K−convex if f(tx+ (1− t)y) 5K tf(x) + (1− t)f(y) ∀x, y ∈ X,∀t ∈ [0, 1].

Let X and Y be two Hausdorff locally convex spaces and G : X → R a given
function and the general optimization problem

inf
x∈X

G(x). (P )

To this problem it is assigned a conjugate dual problem introduced by making use of
the perturbation approach (see [1], [2]). The perturbation function of Problem (P ),
Ψ : X × Y → R with Ψ(x, 0) = G(x), for all x ∈ X, is considered. The equivalent
problem of (P ) becomes

inf
x∈X

Ψ(x, 0) (P 0)

and the conjugate dual problem can be formulated as

sup
x∈X
{−Ψ∗(0, y∗)}, (D)

where Ψ∗ : X∗ × Y ∗ → R is the conjugate function of Ψ and X∗ and Y ∗ are the
topological dual spaces of the feasible variables X and of the perturbation variables Y ,
respectively. By v(P ), v(D) are denoted the optimal objective values of the problems
(P ) and (D). The infimal value function of Ψ is h : Y → R, h(y) = inf

x∈X
{Ψ(x, y)}

and we have that v(P ) = h(0). Problem (P ) is called stable if h(0) ∈ R and h is
subdifferentiable at 0.
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In [8] to the optimization problem

Min
x∈X
{ϕ(Ax) + ψ(x)}, (P )

where X and Y are Hausdorff locally convex spaces, ϕ : Y → R and ψ : X → R are
proper functions fulfilling domψ ∩ A−1(domϕ) 6= ∅ and A ∈ L(X,Y ) is invertible, we
attached its Fenchel dual problem

Max
y∗∈X∗

{−ϕ∗((A−1)∗(−y∗))− ψ∗(y∗)} (D)

and we established some duality theorems.

Theorem 1 Let ϕ : Y → R, ψ : X → R be proper and convex functions and A ∈
L(X,Y ) invertible such that domψ ∩A−1(domϕ) 6= ∅. If the regularity condition∣∣ ∃x′ ∈ domψ ∩A−1(domϕ) such that ψ is continuous at x′ (RC)

is fulfilled, then v(P ) = v(D) and the dual (D) has an optimal solution.

In this paper we consider the vector optimization problem

Min
x∈X

F (x) = (f ◦A)(x) + g(x) (V P )

where X, Y and V are Hausdorff locally convex spaces, K is a nontrivial pointed convex
cone in V , V is partially ordered by K, f : Y → V and g : X → V are proper functions
and A ∈ L(X,Y ) is invertible.

Definition 1 (See [2]) An element x ∈ X is called:
(i) efficient solution to (V P ) if x ∈ domF and there is no x ∈ domF such that

F (x)− F (x) ∈ K \ {0}.
(ii) weakly efficient solution to (V P ) if x ∈ domF and there is no x ∈ domF such

that F (x)− F (x) ∈ coreK.
(iii) properly efficient solution to (V P ) if x ∈ domF and there exists v∗ ∈ K∗0

such that 〈v∗, F (x)〉 ≤ 〈v∗, F (x)〉, for all x ∈ X.

It follows that:
(a) the element x ∈ domF is an efficient solution to (V P ) iff (F (x) − K) ∩

F (domF ) = {F (x)};
(b) the element x ∈ domF is a weakly efficient solution to (V P ) iff (F (x) −

core(K)) ∩ F (domF ) = ∅.
In this paper we establish connections between the vector optimization problem

(V P ) and the vector dual problems attached. In section 2 we give weak duality, strong
duality and converse duality theorems for Problem (V P ) and the vector dual problems
to (V P ) with respect to properly efficient solutions and weakly efficient solutions. In
section 3 we study the connections between properly efficient solutions for vector op-
timization problem (V P ) and efficient solutions for Wolfe and Mond-Weir vector dual
problems attached.
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2 Duality via scalarization

In this section we study the duality with respect to properly efficient solutions and
weakly efficient solutions.

2.1 Duality with respect to properly efficient solutions

In this subsection, to the vector optimization problem (V P ), we attach the vector dual
problem

Max
(v∗,y∗,v)∈B

h(v∗, y∗, v) (V D)

where

B = {(v∗, y∗, v) ∈ K∗0 × Y ∗ × V : 〈v∗, v〉 5 −(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗)}

and

h(v∗, y∗, v) = v.

In what follows some connections between the properly efficient solutions to problems
(V P ) and (V D) are given.

From Definition 1 we have that x ∈ X is a properly efficient solution to Problem
(V P ) if and only if x ∈ dom g ∩ A−1(dom f) and there exists v∗ ∈ K∗0 such that
〈v∗, (f ◦A+ g)(x)〉 5 〈v∗, (f ◦A+ g)(x)〉, for all x ∈ X.

Theorem 2 There is no x ∈ X and no (v∗, y∗, v) ∈ B such that (f ◦ A + g)(x) ≤K
h(v∗, y∗, v).

Proof. We assume by contradiction, that there exist x ∈ X and (v∗, y∗, v) ∈ B such
that

v = h(v∗, y∗, v) ≥K (f ◦A+ g)(x). (1)

Then x ∈ dom g ∩A−1(dom f), v∗ ∈ K∗0 and

〈v∗, v〉 5 −(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗). (2)

On the other hand, from (1) and v∗ ∈ K∗0 we deduce that

〈v∗, v〉 > 〈v∗, (f ◦A)(x)〉+ 〈v∗, g(x)〉. (3)

Since the functions (v∗f) : Y → R and (v∗g) : X → R are proper and convex with
dom(v∗f) = dom f and dom(v∗g) = dom g, the dual of the optimization problem

inf
x∈X
{(v∗f)(Ax) + (v∗g)(x)} (SP )

is the problem

sup
y∗∈Y ∗

{−(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗)}. (DSP )
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In view of the weak duality theorem, applied to the pair of scalar problems (SP ) −
(DSP ), we have (v∗f)(Ax) + (v∗g)(x) = −(v∗f)∗ ((A−1)∗(−y∗)) − (v∗g)∗(y∗), for all
x ∈ X and y∗ ∈ Y ∗. Then

(v∗f)(Ax) + (v∗g)(x) = −(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗), (4)

because x ∈ X, y∗ ∈ Y ∗. Consequently,

〈v∗, v〉
(3)
> 〈v∗, (f ◦A)(x)〉+ 〈v∗, g(x)〉

(4)

= −(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗),

which contradicts (2).

Theorem 3 If x ∈ X is a properly efficient solution to (V P ) and the regularity con-
dition ∣∣ ∃x′ ∈ dom g ∩A−1(dom f) such that g is continuous at x′ (RCV )

is fulfilled, then there exists an efficient solution (v∗, y∗, v) to (V D) such that (f ◦A+
g)(x) = h(v∗, y∗, v) = v.

Proof. Let x ∈ X be a properly efficient solution to (V P ); then x ∈ dom g∩A−1(dom f)
and there exists v∗ ∈ K∗0 such that 〈v∗, (f ◦A+ g)(x)〉 = inf

x∈X
{(v∗f)(Ax) + (v∗g)(x)},

hence x is a solution to Problem (SP ).

Obviously, the functions (v∗f) : Y → R and (v∗g) : X → R are proper and
convex functions with dom(v∗f) = dom f and dom(v∗g) = dom g, and the regularity
condition (RCV ) yields that (v∗g) is continuous at some x′. Then, by strong duality
theorem (Theorem 1) applied to the pair of scalar problems (SP ) − (DSP ) we have
inf
x∈X
{(v∗f)(Ax) + (v∗g)(x)} = sup

y∗∈Y ∗
{−(v∗f)∗((A−1)∗(−y∗)) − (v∗g)∗(y∗)} and (DSP )

has a solution y∗ ∈ Y ∗, i.e. we have sup
y∗∈Y ∗

{−(v∗f)∗((A−1)∗(−y∗)) − (v∗g)∗(y∗)} =

−(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗). Then

〈v∗, (f ◦A+ g)(x)〉 = inf
x∈X
{(v∗f)(Ax) + (v∗g)(x)}

= sup
y∗∈Y ∗

{−(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗)} = −(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗).

hence v := (f ◦ A + g)(x) ∈ V has the property (v∗, y∗, v) ∈ B. Moreover, the point
(v∗, y∗, v) is an efficient solution to (V D). Indeed, if (v∗, y∗, v) is not an efficient solution
to (V D), then there exists an element (v∗, y∗, v) ∈ B such that (f ◦ A+ g)(x) = v ≤K
v = h(v∗, y∗, v). But this contradicts Theorem 2 and the conclusion follows.

Theorem 4 If B is nonempty and the regularity condition (RCV ) is fulfilled, then
V \ cl((f ◦A+ g)(dom g ∩A−1(dom f)) +K) ⊆ core(h(B)).
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Proof. Let v ∈ V \ cl((f ◦ A + g)(dom g ∩ A−1(dom f)) + K). Since cl((f ◦ A +
g)(dom g ∩ A−1(dom f)) + K) ⊆ V is a convex and closed set, by Tuckey separation
Theorem (Theorem 2.1.5 from [2]), there exist v∗ ∈ V ∗ \ {0} and α ∈ R such that

〈v∗, v〉 < α < 〈v∗, v〉, for all v ∈ cl((f ◦A+ g)(dom g ∩A−1(dom f)) +K). (5)

Obviously, v∗ ∈ K∗ \ {0}.
On the other hand, from B 6= ∅, there exists (v̂∗, ŷ∗, v̂) ∈ K∗0 × Y ∗ × V such that

〈v̂∗, v̂〉 ≤ −(v̂∗f)∗((A−1)∗(−ŷ∗))− (v̂∗g)∗(ŷ∗) ≤ inf
x∈X
〈v̂∗, (f ◦A+ g)(x)〉.

If γ := α− 〈v∗, v〉, then γ > 0 and

〈sv̂∗ + (1− s)v∗, v〉 = 〈v∗, v〉+ s(〈v̂∗, v〉 − 〈v∗, v〉) = α− γ + s(〈v̂∗, v〉 − α+ γ), (6)

for all s ∈ (0, 1). Now from (5), we have

〈sv̂∗ + (1− s)v∗, v〉 > s〈v̂∗, v〉+ (1− s)α = α+ s(〈v̂∗, v〉 − α), (7)

for all v ∈ (f ◦A+ g)(dom g ∩A−1(dom f)). Let s ∈ (0, 1) such that

s(〈v̂∗, v〉 − α+ γ) < γ/2 (8)

and
s(〈v̂∗, v̂〉 − α) > −γ/2. (9)

Since v∗ = sv̂∗ + (1 − s)v∗ ∈ K∗0, from (6) and (8) we deduce that 〈v∗, v〉 < α − γ
2

and from (7) and (9) we obtain that α − γ
2 < 〈v

∗, v〉, for all v ∈ (f ◦ A + g)(dom g ∩
A−1(dom f)). The last two relations imply

〈v∗, v〉 < inf
x∈X
〈v∗, (f ◦A+ g)(x)〉. (10)

Now, in view of Theorem 1, there exists y∗ ∈ Y ∗ such that

inf
x∈X
〈v∗, (f ◦A+ g)(x)〉 = sup

y∗∈Y ∗
{−(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗)}

= −(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗).
(11)

From (10) and (11) we have that ε := 1
2

(
−(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗)− 〈v∗, v〉

)
>

0 has the property that 〈v∗, v〉+ ε < −(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗) and, for each
v ∈ V there exists δ > 0 such that 〈v∗, v+λv〉 5 〈v∗, v〉+ ε < −(v∗f)∗((A−1)∗(−y∗))−
(vg)∗(y∗), for all λ ∈ [0, δ]. Consequently, for all λ ∈ [0, δ] we have (v∗, y∗, v + λv) ∈ B
and v + λv ∈ h(B). Then, v ∈ core(h(B)).

Next follows the proof of the converse duality theorem.

Theorem 5 If the regularity condition (RCV ) is fulfilled and the set (f ◦A+g)(dom g∩
A−1(dom g))+K is closed, then for every efficient solution (v∗, y∗, v) to (V D) there ex-
ists x ∈ X a properly efficient solution to (V P ), such that (f ◦A+g)(x) = h(v∗, y∗, v) =
v.
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Proof. First we show that v ∈ (f ◦ A + g)(dom g ∩ A−1(dom f)) + K. Indeed, if
v 6∈ (f ◦ A + g)(dom g ∩ A−1(dom f)) + K, then, by Theorem 4, v ∈ core(h(B)). It
follows that for each k ∈ K \ {0} there exists λ > 0 such that vλ = v + λk ∈ h(B) and
vλ ≥K v, which contradicts the fact that (v∗, y∗, v) is an efficient solution to (V D).

Hence v ∈ (f ◦ A + g)(dom g ∩ A−1 dom(f)) + K. Then there exist x ∈ dom g ∩
A−1(dom f) and k ∈ K such that v = (f ◦A+ g)(x) +k. In view of Theorem 3 we have
that k = 0. Now we have

〈v∗, (f ◦A+ g)(x)〉 = 〈v∗, v〉
5 −(v∗f)∗((A−1)(−y∗))− (v∗g)∗(y∗) ≤ inf

x∈X
〈v∗, (f ◦A+ g)(x)〉

and hence x is a properly efficient solution to (V P ).

Remark 1 The regularity condition (RCV ) can be replaced with the weaker sufficient
condition: for all v∗ ∈ K∗0 one has that inf

x∈X
〈v∗, (f ◦ A + g)(x)〉 = sup

y∗∈Y ∗
{−(v∗f)∗

((A−1)(−y∗)) + (v∗g)∗(y∗)} and the supremum is attained. This mean, that for all
v∗ ∈ K∗0 the scalar optimization problem Min

x∈X
〈v∗, (f ◦A+ g)(x)〉 is stable.

2.2 Duality with respect to weakly efficient solutions

In this subsection we attach to the Problem (V P ) the following vector dual problem:

Max
(v∗,y∗,v)∈Bw

hw(v∗, y∗, v) (V Dw)

where

Bw = {(v∗, y∗, v) ∈ (K∗\{0})× Y ∗× V : 〈v∗, v〉 5 −(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗)}

and
hw(v∗, y∗, v) = v.

In what follows some connections between the weakly efficient solutions to problems
(V P ) and (V Dw) are given.

An element x ∈ X is a weakly efficient solution to (V P ) if and only if x ∈ dom g ∩
A−1(dom f) and ((f ◦A+ g)(x)− core(K)) ∩ (f ◦A+ g)(dom g ∩A−1(dom f)) = ∅.

Theorem 6 There is no x ∈ X and no (v∗, y∗, v) ∈ Bw such that (f ◦ A + g)(x) <K
hw(v∗, y∗, v).

Proof. We assume the contrary, that there exist x ∈ X and (v∗, y∗, v) ∈ Bw such that

v − (f ◦A+ g)(x) = hw(v∗, y∗, v)− (f ◦A+ g)(x) >K 0. (12)

Then x ∈ dom g ∩ A−1(dom f), v∗ ∈ K∗ \ {0} and 〈v∗, v〉 5 −(v∗f)∗((A−1)∗(−y∗)) −
(v∗g)∗(y∗)}. On the other hand, from (12) and v∗ ∈ K∗\{0} we deduce that 〈v∗, v〉 >
〈v∗, (f ◦A)(x)〉+〈v∗, g(x)〉. Using the same idea as in the proof of Theorem 2 we obtain
a contradiction.
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Theorem 7 If the regularity condition (RCV ) is fulfilled and x ∈ X is a weakly effi-
cient solution to (V P ), then there exists a weakly efficient solution (v∗, y∗, v) to (V Dw)
such that (f ◦A+ g)(x) = h(v∗, y∗, v) = v.

Proof. If x ∈ X is a weakly efficient solution to (V P ), then x ∈ dom g∩A−1(dom f) and
(f◦A+g)(x) is a weakly minimal element of the set (f◦A+g)(dom g∩A−1(dom f)) ⊆ V.
As (f ◦A+g)(dom g∩A−1(dom f))+K is a nonempty convex set, then using Theorem
4.1.7 from [2] there exists v∗ ∈ K∗ \ {0}, such that

〈v∗, (f ◦A+ g)(x)〉 = inf
x∈X
{(v∗f)(Ax) + (v∗g)(x)}. (13)

It follows that x is a solution to Problem (SP ). Then by strong duality theorem
(Theorem 1) applied to the pair of scalar problems (SP )− (DSP ) we have

inf
x∈X
{(v∗f)(Ax) + (v∗g)(x)} = sup

y∗∈Y ∗
{−(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗)}, (14)

and (DSP ) has a solution y∗ ∈ Y ∗, i.e. we have

sup
y∗∈Y ∗

{−(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗)} = −(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗).

(15)
Then

〈v∗, (f ◦A+ g)(x)〉 (13)= inf
x∈X
{(v∗f)(Ax) + (v∗g)(x)}

(14)
= sup

y∗∈Y ∗
{−(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗)}

(15)
= −(v∗f)∗((A−1)∗(−y∗))− (v∗g)∗(y∗).

hence v := (f ◦ A + g)(x) ∈ V has the property (v∗, y∗, v) ∈ Bw. Moreover, the point
(v∗, y∗, v) is an weakly efficient solution to (V Dw). Indeed, if (v∗, y∗, v) is not an weakly
efficient solution to (V Dw), then there exists an element (v∗, y∗, v) ∈ Bw such that
(f ◦ A + g)(x) = v <K v = h(v∗, y∗, v). But this contradicts Theorem 6 and the
conclusion follows.

For proving the converse duality theorem, the next theorem is given.

Theorem 8 If the regularity condition (RCV ) is fulfilled, then V \cl((f◦A+g)(dom g∩
A−1(dom f)) +K) ⊆ core(hw(Bw)).

Proof. Let v ∈ V \cl((f◦A+g)(dom g∩A−1(dom f))+K). The set cl((f◦A+g)(dom g∩
A−1(dom f)) +K) ⊆ V is convex and closed, then there exist v∗ ∈ K∗ \ {0} and α ∈ R
such that 〈v∗, v〉 < α < inf

x∈X
{(v∗f)(Ax) + (v∗g)(x)}. By strong duality theorem applied

to the pair of scalar problems (SP )− (DSP ), it follows that there exists y∗ ∈ Y ∗ such
that inf

x∈X
{(v∗f)(Ax) + (v∗g)(x)} = −(v∗f)((A−1)∗(−y∗))− (v∗g)(y∗).

Like in the proof of Theorem 4 one can obtain that v ∈ core(hw(Bw)).

Theorem 9 If the regularity condition (RCV ) is fulfilled and the set (f ◦A+g)(dom g∩
A−1(dom g)) +K is closed, then for every weakly efficient solution (v∗, y∗, v) to (V Dw)
one has that v is a weakly efficient solution to Problem (V P ).
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Proof. We have v ∈ (f ◦ A + g)(dom g ∩ A−1(dom g)) + K. Indeed, if v 6∈ (f ◦ A +
g)(dom g ∩A−1(dom g)) +K, by Theorem 8 we have that v ∈ core(hw(Bw)). It follows
that, for each element k ∈ int(K) there exists λ > 0 such that vλ = v + λk ∈ hw(Bw)
and vλ >K v. But this contradicts the fact that (v∗, y∗, v) is a weakly efficient solution
to (V Dw). Consequently, we must have v ∈ (f ◦ A + g)(dom g ∩ A−1(dom g)) + K. If
v is not a weakly efficient solution to (V P ) there exist x ∈ X and k ∈ K such that
(f ◦A+g)(x) 5K (f ◦A+g)(x)+k <K v. A contradiction follows if we apply Theorem
6. Obviously, v is a weakly efficient solution to Problem (V P ).

3 Wolfe and Mond-Weir type vector duals

In this section, to Problem (V P ) we attach the vector perturbation function Φ :
X × Y → V defined by Φ (x, y) = (f ◦ A)(x) + g (x+ y) for all (x, y) ∈ X × Y. The
conjugate function of Φ is the function Φ∗ : X∗ × Y ∗ → V defined by Φ∗ (x∗, y∗) =
f∗
((
A−1

)∗
(x∗ − y∗)

)
+ g∗ (y∗) for all (x∗, y∗) ∈ X∗ × Y ∗. In this manner we consider

the following three vector duals (see [3]) :

Problem (DVW ) :

Max
(v∗,y∗,u,y,r)∈BW

hW (v∗, y∗, u, y, r) (DVW )

where

BW = {(v∗, y∗, u, y, r) ∈ K∗0 × Y ∗ ×X × Y × (K \ {0}) : (0, y∗) ∈ ∂(v∗Φ)(u, y)}

and

hW (v∗, y∗, u, y, r) = Φ(u, y)− 〈y
∗, y〉
〈v∗, r〉

r.

Problem (DVM ) :

Max
(v∗,y∗,u)∈BM

hM (v∗, y∗, u) (DVM )

where

BM = {(v∗, y∗, u) ∈ K∗0 × Y ∗ ×X : (0, y∗) ∈ ∂(v∗Φ)(u, 0)}

and

hM (v∗, y∗, u) = Φ(u, 0),

Problem (DVW r):

Max
(v∗,y∗,u,y)∈BGWr

hW r(v∗, y∗, u, y) (DV r
W )

where

BW r = {(v∗, y∗, u, y) ∈ K∗0 × Y ∗ ×X × Y : (0, y∗) ∈ ∂(v∗Φ)(u, y), 〈v∗, r〉 = 1}

and

hW r(v∗, y∗, u, y) = Φ(u, y)− 〈y∗, y〉r,

with r ∈ K \ {0}.
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For v∗ ∈ K∗0, y∗ ∈ Y ∗, u ∈ X y ∈ Y one has (0, y∗) ∈ ∂(v∗Φ)(u, y) if and only
if (v∗Φ)∗(0, y∗) + (v∗Φ)(u, y) = 〈y∗, y〉. This is equivalent to (v∗f)∗((A−1)∗(−y∗)) +
(v∗g)∗(y∗) + (f ◦ A)(u) + g(u + y) = 〈y∗, y〉. Using the Young-Fenchel inequality,
the condition (0, y∗) ∈ ∂(v∗Φ)(u, y) is true if and only if y∗ ∈ ∂(v∗g)(u + y) and
(A−1)∗(−y∗) ∈ ∂(v∗f)(Au). Then, the vector duals to (V P ) follows:

Problem (DVW ) :

Max
(v∗,y∗,u,y,r)∈BW

hW (v∗, y∗, u, y, r) (DV W )

where
BW = {(v∗, y∗, u, y, r) ∈ K∗0 × Y ∗ ×X × Y × (K \ {0}) :

y∗ ∈ A∗(−∂(v∗f)(Au)) ∩ ∂(v∗g)(u+ y)}

and

hW (v∗, y∗, u, y, r) = (f ◦A)(u) + g(u+ y) +
〈y∗, y〉
〈v∗, r〉

r,

Problem (DVM ) :

Max
(v∗,u)∈BM

hM (v∗, u) (DVM )

where

BM = {(v∗, u) ∈ K∗0 ×X : 0 ∈ A∗(∂(v∗f)(Au)) + ∂(v∗g)(u))}

and

hM (v∗, u) = (f ◦A)(u) + g(u),

Problem (DVW r):

Max
(v∗,y∗,u,y)∈BWr

hW r(v∗, y∗, u, y) (DV
r
W )

where
BW r = {(v∗, y∗, u, y) ∈ K∗0 × Y ∗ ×X × Y : 〈v∗, r〉 = 1,

y∗ ∈ A∗(−∂(v∗f)(Au)) ∩ ∂(v∗g)(u+ y)}

and

hW r(v∗, y∗, u, y) = (f ◦A)(u) + g(u+ y)− 〈y∗, y〉r

with r ∈ K \ {0}.
Next we obtain the weak and strong duality statements.

Theorem 10 There are no x ∈ X and (v∗, y∗, u, y, r) ∈ BW such that (f ◦ A)(x) +
g(x) ≤K hW (v∗, y∗, u, y, r).

Theorem 11 There are no x ∈ X and (v∗, u) ∈ BM such that (f ◦ A)(x) + g(x) ≤K
hM (v∗, u).

Theorem 12 Let r ∈ K \ {0}. There are no x ∈ X and (v∗, y∗, u, y) ∈ BW r such that
(f ◦A)(x) + g(x) ≤K hW r(v∗, y∗, u, y).
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In the formulation of strong duality convexity there are needed assumptions which
guarantee the K− convexity of the vector perturbation function and the regularity
conditions given in [8] obtained by particularizing the classical ones from [2].∣∣∣∣ X and Y are Fréchet spaces, f and g are K − lower semicontinuous

and 0 ∈ sqri(dom g −A−1(dom f)),
(RCV 1)

(RCV 1′) where sqri is replaced by core, (RCV 1′′) where sqri is replaced by int,∣∣ dim(lin(dom g −A−1(f))) < +∞, 0 ∈ ri(dom g −A−1(dom f)) (RCV 2)

and ∣∣∣∣ f and g are K − lower semicontinuous and epi f∗ ◦ (A∗)−1 + epi g∗

is closed in the topology w(X∗, X)× R, for all v∗ ∈ K∗0. (RCV 3)

Theorem 13 Let r ∈ K \ {0}. Assume that f and g are K−convex vector functions
and one of the regularity conditions (RCV ), (RCV i), i ∈ {1, 2, 3} is fulfilled. If x
is a properly efficient solution to (V P ), then there exist v∗ ∈ K∗0 and y∗ ∈ Y ∗ such
that (v∗, y∗, x, 0, r) is an efficient solution to (DV W ), (v∗, x) is an efficient solution
to (DVM ), (v∗, y∗, x, 0) is an efficient solution to (DV W r) and (f ◦ A)(x) + g(x) =
hW (v∗, y∗, x, 0, r) = hM (v∗, x) = hW r(v∗, y∗, x, 0).

Remark 2 In case V = R and K = R+, by taking the functions f : Y → R and
g : X → R proper, we discover the Wolfe and Mond-Weir duality schemes for the
unconstrained scalar optimization problem (P ) mentioned above.

4 Conclusions

This study starts with a scalar problem for which we formulate the corresponding
vector problem. To this problem we attach vector duals using the method of linear
scalarization and we give duality results with respect to properly efficient solutions and
weakly efficient solutions. Moreover, we investigate the Wolfe and Mond-Weir type
vector duals for our vector optimization problem and formulate some duality results
referring to efficient and properly efficient solutions.
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Abstract

The Störmer-Cowell and the Falkner methods are usually used in the numerical
solution of initial-value problems of the special second order differential equation
y′′ = f(x, y). In this paper we compare the stability intervals and the stability
regions of the Störmer-Cowell and Falkner methods in predictor-corrector mode.
Through this analysis it is observed that Falkner methods can be considered as an
alternative to Störmer methods. The primary stability intervals for both methods
are non-empty for alternating pairs of values of the number of steps, specifically
for k = 4, 5, 8, 9, 12, 13, being the stability regions of the Falkner methods larger
than that of the Störmer methods.

Key words: absolute stability regions, Störmer-Cowell methods, Falkner meth-
ods, special second order initial-value problem

MSC 2000: 65L05, 65L20

1 Introduction

Second-order differential equations appear frequently in applied sciences. Examples of
that are the mass movement under the action of a force, problems of orbital dynamics,
or in general, any problem involving Newton’s law.

Among the general procedures for direct integration of the so-called special second-
order initial value problem (I.V.P.)

y ′′(x) = f(x, y(x)), y(x0) = y0, y ′(x0) = y ′0 , (1)

the Störmer-Cowell methods [10, 11] or the Falkner methods [5] are well-known classes
of schemes that may be used for this purpose.

Although it is possible to integrate a second-order I.V.P. by reducing it to a first-
order system and applying one of the methods available for such systems, it seems
more natural to provide numerical methods in order to integrate the problem directly.
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The advantage of this procedure lies in the fact that they are able to exploit special
information about ODES, resulting in an increase in efficiency. For instance, it is
well-known that Runge-Kutta-Nyström methods for (1) involve a real improvement
as compared to standard Runge-Kutta methods for a given number of stages ([9], p.
285), although the computational cost remains high because of the number of function
evaluations. On the other hand, a linear k-step method for first-order ODEs becomes
a 2k-step method for (1), ([9], p. 461), increasing the computational work.

The k-step Störmer method with constant stepsize h may be written in the form
(see [9], p. 413 or [10], p. 291)

yn+1 − 2yn + yn−1 = h2
k−1∑

j=0

σj 5j fn , (2)

where the yi are the numerical approximations for the true values y(xi) with xi =
x0 + ih, and fi = f(xi, yi) for i = n− (k− 1), . . . , n and 5jfn is the standard notation
for the backward differences. The coefficients σj may be easily obtained using the
method of generating functions (see [10], p. 291), being

Gσ(t) =
∞∑

j=0

σj tj =
t2

(1− t)(Log(1− t))2
.

The k-step Störmer method has order k and error constant σk (except for k = 1, which
has order 2 being the error constant σ2, (see [11], p. 71)).

The corresponding implicit formulas are named Cowell methods and read

yn+1 − 2yn + yn−1 = h2
k∑

j=0

σ∗j 5j fn+1 , (3)

where the coefficients σ∗j may be obtained by means of the generating function

Gσ∗(t) =
∞∑

j=0

σ∗j tj =
t2

(Log(1− t))2
.

The implicit k-step method has order k+1 and error constant σ∗k+1 (except when k = 2
for which we obtain the Numerov method, with order 4 and error constant σ∗4 , (see
[11], p. 71)).

The explicit Falkner method of k steps consists in two formulas that can be written
in the form [4]

yn+1 = yn + h y′n + h2
k−1∑

j=0

βj 5j fn , (4)

y′n+1 = y′n + h
k−1∑

j=0

γj 5j fn , (5)
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where the y′i are approximations to the true values of the derivative at xi. The coeffi-
cients βj and γj can be obtained using respectively the generating functions

Gβ(t) =
∞∑

j=0

βj tj =
t + (1− t) Log(1− t)
(1− t)Log2(1− t)

,

Gγ(t) =
∞∑

j=0

γj tj =
−t

(1− t)Log(1− t)
,

which may be obtained similarly as that for the Störmer or Cowell methods (see [10],
p. 291).

The implicit Falkner method of k steps consists of two formulas that may be written
as [4]

yn+1 = yn + h y′n + h2
k∑

j=0

β∗j 5j fn+1 , (6)

y′n+1 = y′n + h
k∑

j=0

γ∗j 5j fn+1 , (7)

with generating functions for the coefficients given respectively by

Gβ∗(t) =
∞∑

j=0

β∗j tj =
t + (1− t) Log(1− t)

Log2(1− t)
,

Gγ∗(t) =
∞∑

j=0

γ∗j tj =
−t

Log(1− t)
.

Note that the formulas in (5) and (7) are respectively the Adams-Bashforth and Adams-
Moulton schemes for the problem (y′)′ = f(x, y), which are used to follow the values
of the derivative.

All the above formulas are of multistep type, specifically k-step formulas, and so k
initial values must be provided in order to proceed with the methods (the Runge-Kutta
methods are commonly used to obtain the starting values). In this paper, the above
methods will be treated in predictor-corrector mode (P-C) where the predictor is used
only once.

The formulas in (2-3) may be used in predictor-corrector mode for solving the prob-
lem in (1) [12, 6] similarly as the Adams methods for first order initial-value problems.

The implicit formulas in (6-7) may also be used to produce methods for solving the
I.V.P. in (1). A well-known procedure of this type is the Wilson method [17], which is
one of the Newmark family, and is commonly used in molecular dynamics calculations.
This method uses the two-step formula in (6), given by

yn+1 = yn + h y′n +
h2

6
(
2y′′n + y′′n+1

)
(8)
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to obtain the positions, while the formula to update the velocities is the two-step
method in (7) given by

y′n+1 = y′n +
h

2
(y′′n + y′′n+1) . (9)

The application of this procedure results in an implicit system that must be solved
at each step, involving a great computational cost, but in practice, an explicit formu-
lation in predictor-corrector mode is frequently used. In this way the implicit methods
in (6-7) are adequately combined with the explicit ones in (4-5) so as to avoid having
to solve an algebraic system at each step. This P-C formulation may also be used as
an starting method, as for example in [3], where the one step implicit Falkner method
in predictor-corrector mode is used to provide the starting values in the application of
the De Vogelaere’s method. Others examples of such procedures may be found in [1],
[8] or [16].

The paper is organized as follows. In the following section we present different
implementations of the Störmer-Cowell and Falkner methods. The analysis of the ex-
plicit Falkner methods has been done in [15] and so here the analysis of the implicit
Falkner formula in P-C mode will be done. Section 3 deals with the stability analysis,
which results of vital importance in the application of the methods, and a table with
the stability intervals for both methods is presented. In Section 4 we extend the sta-
bility analysis and present the regions of absolute stability. In the final section some
conclusions put an end to the article.

2 Methods in P-C mode

In the application of P-C modes, P indicates the application of the predictor, in our
case the corresponding method given by the explicit formula, and C indicates the
application of the corrector, that is, the corresponding implicit formula. In case of
Falkner methods we need a formula to follow the derivative, and so we will use C ’ to
indicate the application of the implicit formula in (7). Finally, E refers to the evaluation
of the function f . We have considered two methods, the Störmer-Cowell in PECE mode
and the Falkner methods in PECEC ’ mode. They are summarized in what follows.

2.1 Störmer-Cowell methods in PECE mode

The usual implementation of the Störmer-Cowell method in P-C mode for solving the
problem in (1) on each step is as follows

1. Evaluate yn+1 using the formula in (2)

2. Evaluate fn+1 = f(xn+1, yn+1)

3. Evaluate yn+1 using the formula in (3)

4. Evaluate fn+1 = f(xn+1, yn+1)
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2.2 Falkner methods in PECEC ’ mode

The implementation of the Falkner methods in P-C mode for solving the problem in
(1) consists in the following steps

1. Evaluate yn+1 using the formula in (4)

2. Evaluate fn+1 = f(xn+1, yn+1)

3. Evaluate yn+1 using the formula in (6)

4. Evaluate fn+1 = f(xn+1, yn+1)

5. Evaluate y′n+1 using the formula in (7)

Note that in the above formulations, once we have obtained the latest value for
yn+1 we evaluate fn+1 = f(xn+1, yn+1), which will be used in the next step. This
evaluation is indicated by the final E for the different modes.

Obviously, many more choices could have been considered, taking methods with
different steps and therefore, with different orders. Or you might have considered
using further corrections, obtaining respectively methods of the form P (EC)nE or
P (EC)nEC ′. We have done different experiments, and in the latter case the interval
of stability changes, resulting in an interval slightly higher, but with so little difference
that the computational effort is not worth. We have considered only P-C methods with
the same number of steps in all formulas, where it is performed only a correction, as is
usually done in Adams methods in P-C mode (see [13]).

3 Stability

In the context of ordinary differential equations, the concept of stability refers to what
extent a numerical scheme is appropriate for solving an initial-value problem. Roughly
speaking, a given method can be said to be stable if small changes in the data result
in small changes in the solution obtained.

A procedure commonly used to study stability (zero-stability) consists in writing
the difference equations of the method as a one-step recurrence in a space with high
dimension and in an adequate norm to bound the finite powers of the resulting matrices.
For the different combinations of the above explicit and implicit methods to get the P-C
modes, a similar procedure to that in [15] may be considered to obtain zero-stability.
But, the zero stability is only a minimal condition for a numerical method; for second
order equations the so-called P-stability is the type of concern together with A-stability.

In order to determine whether a numerical method will produce reasonable re-
sults with a given value of h > 0, we need a notion of stability that is different from
zero-stability. The stability properties are analyzed by using the linear test equation
introduced by Lambert and Watson [14]

y′′(x) = −µ2 y(x) , with µ > 0 . (10)
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When the method described in subsection (2.1) is applied to this problem we obtain
the following recursion

Yn = AYn−1 , (11)

where Yn is the k-vector given by Yn =
(
yn+1, yn, . . . , yn−(k−2)

)T , and A is a k × k
matrix whose elements depends on H2 and the coefficients of the Störmer and Cowell
methods, being H = µh. The matrix A is called the stability matrix.

The entries of this stability matrix are given by

A1 1 = 2 + H2
k∑

j=0

(
j − 2 + H2

k−1∑

s=0

σs

)
σ∗j

A1 2 = −1 + H2
k∑

j=0

(
1−H2

k−1∑

s=0

sσs − j(j − 1)
2

)
σ∗j ,

A1 l = (−1)l−1H2
k∑

j=0

((
j

l

)
+ H2

k−1∑

s=l−1

(
s

l − 1

)
σs

)
σ∗j ,

l = 3, . . . , k .

Aj l = δj l+1 , j = 2, . . . , k l = 1, . . . , k ,

where δj l+1 is the Kronecker delta and the notations of type
(

s

l − 1

)
here and in the

sequel refer to the binomial coefficients.
As an example, in case k = 4 the equation in (11) results in

Yn =




133H4−1452H2

1440 + 2 12H2−19H4

576 − 1 19H4−12H2

720
12H2−19H4

2880
1 0 0 0
0 1 0 0
0 0 1 0


 Yn−1 .

The application of the predictor-corrector formulation of the Falkner methods de-
scribed in subsection (2.2) to the problem in (10) yields the following recursion

Y n = B Y n−1 , (12)

where Y n is the k + 1-vector given by Y n =
(
yn+1, yn, . . . , yn−(k−2), h y′n+1

)T , and B is
a (k + 1) × (k + 1) matrix whose elements depends on H2 and the coefficients of the
methods, with H = µh. The matrix B is now the corresponding stability matrix.

The entries of the stability matrix B are given by

B1 1 = 1 + H2
k∑

j=0

(
j − 1 + H2

k−1∑

s=0

βs

)
β∗j
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B1 l+1 = (−1)lH2
k∑

j=0

((
j

l + 1

)
+ H2

k−1∑

s=l

(
s

l

)
βs

)
β∗j ,

l = 1, . . . , k − 1 .

Bj l = δj l+1 , j = 2, . . . , k l = 1, . . . , k + 1 .

Bk+11 = H2
k∑

j=0

[
j − 1 + H2

k∑

s=0

(
1− s−H2

k−1∑

t=0

βt

)
β∗s

]
γ∗j

Bk+1 l+1 = (−1)lH2
k∑

j=0

[(
j

l + 1

)
−H2

k∑

t=0

((
t

l + 1

)
+ H2

k−1∑

s=l

(
s

l

)
βs

)
β∗t

]
γ∗j ,

l = 1, . . . , k − 1 .

Bk+1 k+1 = 1−H2
k∑

j=0

(
1−H2

k∑

s=0

β∗s

)
γ∗j ,

with similar comments as before for the Kronecker delta and the binomial coefficients.
For example, when k = 3 the equation in (12) reads Y n = B Y n−1 with the matrix

B given by



19(19H2−132)H2

4320 + 1 H2

10 − 19H4

432

H2(19H2−28)
1440 1− 19H2

180
1 0 0 0
0 1 0 0

2508H4−361H6−13440H2

11520
95H6−216H4+1200H2

5760
28H4−19H6−160H2

3840
19H4−180H2

480 + 1


 .

The behaviour of the numerical solution will depend on the eigenvalues of the
stability matrix M (either A or B in each case), and the stability properties of the
method will be characterized by the spectral radius ρ(M). According to the terminology
introduced by Coleman and Ixaru [2] we have:

• (0,Hs) is an interval of stability for a given method if for all H ∈ (0,Hs) it is
|ri| < 1 where the ri, i = 1, . . . , k + 1 are the eigenvalues of the stability matrix.

• (0,Hp) is an interval of periodicity for a given method if for all H ∈ (0,Hp) the
eigenvalues of the stability matrix, ri, i = 1, . . . , k + 1, satisfy

r1 = eiθ(H) , r2 = e−iθ(H) , |ri| ≤ 1 , i > 2 ,

where θ(H) is a real function.

In particular, if the interval of stability is (0,∞) the method is A-stable, and if the
interval of periodicity is (0,∞) the method is P-stable.

The practical significance of the interval of stability is that, for a given µ in (10),
there is no explosion of the error in the numerical solution when 0 < h < Hs/µ [2].
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The interval of periodicity defines the stepsize which can be used in order for the
approximation of the solution of problems with high oscillatory or periodic solution to
be of the same order as the algebraic order of the method. When 0 < h < Hp/µ the
numerical solutions defined by (11) or (12) are also periodic, as is the exact solution of
the test model (10) for all non-trivial initial-conditions on y and y′.

A crucial difference between A-stability and P-stability is that for A-stable methods
the stability matrix satisfies (M)n → 0 as n →∞ because ρ(M) < 1, but for P-stable
methods this fact is not possible because ρ(M) = 1 [7]. Therefore, A-stable methods
alleviate the initial errors whereas for P-stable methods the initial errors do not diminish
when the integration progresses in time.

For the methods presented in the previous sections up to k = 14 we have obtained
that they are not A-stable nor P-stable. There exists only one interval of periodicity
for each method, when k = 2 in case of the Störmer-Cowell method this interval is
[0,
√

12], and for k = 1 in case of the Falkner methods the interval is [0,
√

6]. Figure 1
shows the corresponding absolute values of the roots of the characteristics polynomials
and the periodicity intervals.

0 Hp= 12

0.5

1.0

1.5

2.0

0 Hp= 6

0.5

1.0

1.5

2.0

Figure 1: Absolute values of the eigenvalues |ri|, i = 1, 2 of the stability matrices for
the P-C modes: matrix A in case k = 2 (left) and matrix B in case k = 1 (right).

In Table 1 the intervals of stability are presented from k = 2 up to k = 14, where
k refers to the number of steps, for the different implementations, named after SCk
and FIk respectively, corresponding to the Störmer-Cowell and Falkner methods in the
above section. All these values have been obtained with the help of the Mathematica
program. We have considered only the primary stability intervals although for different
methods and values of k it may exist secondary stability intervals.

4 Stability regions

If in equation (10) the parameter µ is let to take complex values, then the region in
the H-complex plane within which all the eigenvalues of the stability matrix are less
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k SCk FIk

2 ∅ ∅
3 ∅ ∅
4 (0, 0.794719) (0, 1.108998)
5 (0, 1.330257) (0, 1.409664)
6 ∅ ∅
7 ∅ ∅
8 (0, 0.360863) (0, 0.480033)
9 (0, 0.660841) (0, 0.821956)
10 ∅ ∅
11 ∅ ∅
12 (0, 0.232478) (0, 0.300133)
13 (0, 0.411350) (0, 0.390144)
14 ∅ ∅

Table 1: Intervals of stability for the Störmer-Cowell and Falkner methods in P-C
modes.

than unity in absolute value is called the stability region. In case of a single differential
equation or system of differential equations with real eigenvalues the stability region
of interest reduces to the stability interval. For systems of differential equations with
complex eigenvalues, however, the stability region plays an important role.

In Fig. 2 the stability regions for the Störmer-Cowell and Falkner methods in P-C
mode when k = 4 are shown. Similarly, in cases of k = 5, 8, 9 the stability regions are
represented in the figures 3, 4, 5. For k = 12, 13 there are also stability regions, but so
small that they are of little interest.

Although the drawings are not very detailed near the origin all the stability regions
reach the origin (not including) while around it they are very narrow. Furthermore,
these regions are symmetric about the vertical axis. We note that the stability regions
for the Falkner methods are larger than those for the Störmer-Cowell methods for the
same number of steps (and hence for the same order). We also note that each pair of
alternating groups for which there are non-empty intervals of stability, for the odd values
the stability regions are larger. This makes us prefer the methods that correspond to
the values of k = 5, 9, 13 versus k = 4, 8, 12. In view of the stability regions we suggest
to choice the methods of Falkner versus the Störmer-Cowell methods. Note also that
the number of evaluations of f in the two implementations is the same, two evaluations
per step. Even more, in the Falkner methods the values of the derivative are obtained,
while in the Störmer methods a procedure must be added if we want to obtain these
values (see [12]).
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Figure 2: Stability regions for k = 4 in P-C mode: Störmer-Cowell (left) and Falkner
(right) methods.

5 Concluding remarks

In the numerical treatment of initial-value problems through a numerical method the
stepsize h has to be chosen in such a way that µh falls into the stability region of
the method. Therefore the knowledge of the stability region is helpful during the
integration. Comparisons between stability regions of the Störmer-Cowell and Falkner
methods in PC mode show that the latter are wider, suggesting that these methods
can be used as an alternative to the Störmer-Cowell methods.
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Abstract

We describe a multi-scale and adaptive algorithm for the parsimonious fit
of a surface from the elevation data contaminated by noise, collected at a
discrete set of nodes. The surface is represented as a linear combination of
anisotropic gaussian functions; the complexity of each basis function in this
representation is the same, but their parameters vary to fit the current scale.
This scale is determined only by the residual errors and not by the number of
the iteration.

The procedure is applied to the reconstruction of the shape of the cornea
from the data rendered by typical corneal topographers. The algorithm ex-
hibits a steady exponential error decay, independently of the level of aberration
of the cornea. The position and clustering of their centers, as well as the size
of the shape parameters, provides an additional spatial information about the
regions of higher irregularity.

Key words: surface reconstruction; surface modeling; corneal irregularities;
gaussian functions; radial basis functions; multi-scale methods

1 Introduction

There is an increasing need of a reliable and precise modeling of complex surfaces,
such as biological tissues, motivated both by technological and clinical applications.
This applies in particular to the human cornea. Given the significance of the shape
of the front surface of the cornea to the refraction of the eye [1] and the ability
to correct refractive errors by laser ablation of the front surface of the cornea, a
detailed wavefront error analysis of individual corneal topography data is crucial
for the clinicians as a basis for a customized treatment.
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Corneal modeling plays an essential role in diagnosing and managing corneal
diseases such as keratoconus, to assess suitability of a subject for the treatment
and prevent improper refractive surgeries [2]. Also, the great role of the reliable
visualization tools in clinical practice should not be underestimated.

The vast majority of modern corneal topographers collect the data (either
elevation, curvature, mire displacement or others) in a finite and discrete set of
points.

Typically, the data is contaminated by the error, which stems from several
sources: the natural device noise, measurement and digitalization errors, algorithm
errors (like those converting the displacement in elevation), rounding errors and
others. Hence, we face the problem of the parsimonious fit of the noisy surface
data with a minimum number of coefficients or parameters, for its clinical and
technological applications.

A standard approach follows the so-called modal paradigm, where the approx-
imation is found as a linear combination of functions from the given dictionary.
A standard functional basis for the modal reconstruction, used commonly in oph-
thalmology to express ocular wavefront error are the Zernike polynomials [3]. The
coefficients of their expansions have interpretation in terms of the basic aberrations
such as defocus, astigmatism or coma, along with higher order aberrations such as
trefoil and spherical aberrations.

However, potential limitations in this approach have been reported in the
literature [3, 4]. There is a growing concern that the Zernike fitting method itself
may be inaccurate in abnormal conditions. Furthermore, it is very difficult to
assess a priori how many terms are necessary to achieve acceptable accuracy in
the Zernike reconstruction of any given corneal shape [5]. It is known [4] that
limiting Zernike analysis to only a few orders may cause incorrect assessment of
the severity of the more advanced stages of keratoconus [1]. This information is
particularly needed in the discriminant analysis of the decease markers, or when
selecting the numerical inputs for neural network–based diagnostic software such
as corneal classification and grading utilities for condition severity.

Several alternatives to the modal least-square fit with Zernike polynomials have
been recently suggested. In this paper we describe an adaptive and multi-scale
working algorithm for the parsimonious fit of the surface data, based on residual
iteration with knot insertion, that allows to adapt the number of functions used in
the reconstruction to the conditions of each cornea.

1.1 The general setting

The input data is a 3D cloud (xk, yk, zk), k = 1, . . . , N , corresponding to the
elevation zk measured by a corneal topographer at the node P k = (xk, yk) of the
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anterior corneal surface. Taking into account the global shape of the cornea, the
first global scale should “flatten” the data by fitting it with the best-fit sphere [6]
of the form:

S(x, y) = z0 +
√
R2 − (x− x0)2 − (y − y0)2

where R and (x0, y0, z0) are its radius and the Cartesian coordinates of its center,
respectively. Best results are obtained with a weighted least square fit, using
(1 + ‖P k‖)−1 as the weight, in accordance with the typical error distribution [7].

As a result of the previous step, the residual errors ε
(1)
k = zk−S(xk, yk) contain

both the relevant information at different scales and noise. Our aim is to fit these
residuals by a function E(x, y) in such a way that an analytic expression for the
corneal height is given by

Cornea(x, y) = S(x, y) + E(x, y), (1)

In this way, S accounts for the global shape of the cornea, while E captures the
small irregularities in the surface. Function E is given by a linear combination of
n functions from a given dictionary,

E(x, y) = En(x, y) =
n∑

j=1

cj hj(x, y). (2)

We use as basis functions the gaussians of the form

h(x, y) = exp
(
−‖P −Q‖2A

)
, P = (x, y)T ,

where the superscript T denotes the matrix transpose, Q = (Qx, Qy)T is a certain
point on the plane (“center”), and A is a positive-definite matrix in R2×2. For such
a matrix the A-norm of a point (column vector) P in R2 is defined as

‖P ‖A =
√
P TAP =

√
αx x2 + αy y2 + 2αxy xy,

for A =

(
αx αxy

αxy αy

)
with αx > 0 and αxαy > α2

xy.

These anisotropic radial basis functions boil down to standard radial basis gaussian
functions (RBGF) when both eigenvalues of A coincide (in other words, when A is
a positive multiple of the identity matrix I2). The size of the eigenvalues expresses
the scale in the direction of the corresponding eigenvector.

Hence, we seek the expression of the form

Cornea(x, y) = S(x, y) +
n∑

j=1

cj e
−‖P−Q(j)‖2Aj , (3)
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where P = (x, y)T . A fitting routine should allow for an adequate selection of all
parameters, namely centers Q(j); shape matrices (or shape parameters) Aj ; scaling
factors cj ; and number of terms n in the functional representation.

We propose an iterative algorithm of reconstruction, such that in each step we
fit partially the residual error by one anisotropic RBGF (A-RBGF), and compute
the new residuals, which will become the input for the next iteration (residual
iteration with knot insertion). To preserve the maximum possible degrees of free-
dom, the centers, the shape parameters and the scaling factors will be chosen
dynamically depending on the residual data in each step.

1.2 Description of the iterative algorithm

Let Ej−1 be already computed (we take E0 ≡ 0). The input data for the j’s

iteration (j = 1, 2, . . . ) is the cloud (xk, yk, ε
(j)
k ) of nodes P k = (xk, yk)T and the

corresponding residuals ε
(j)
k , k = 1, 2, . . . , N ; recall that ε

(1)
k = zk − S(xk, yk).We

perform the following steps:

Step 1: selection of the center Q(j).

The simple criterion of maximal residual (strategy for so-called greedy approx-
imation) proved to be very satisfactory, and at a minimum cost; it correlates also
with the geometry of the A-RBGF. Hence, we choose

Q(j) = (xk0 , yk0)T where k0 = arg max
k
|ε(j)k |

and denote m(j) := ε
(j)
k0

.

Step 2: dynamical filtering.

As it was mentioned before, the altimetric data obtained from measuring de-
vices such as a keratographer are contaminated by noise whose statistical distri-
bution is difficult to estimate a priori. In order to cope with this problem we need
to filter out those data that clearly correspond to the measurement error and thus
spoil the quality of the reconstruction. For that, once the center Q(j) has been
selected, we check the number, `k, of nodes Pk lying in the largest disk, centered
at Q(j) and containing only nodes with the residues of the same sign as m(j). If
`k < 20, we consider Q(j) an outlier and exclude it from consideration at this

iteration. This can be done by simply setting ε
(j)
k0

= 0, after which we return to
Step 1. Otherwise, we proceed to the next step.

Step 3: selection of the shape parameters and scaling factor.

We determine first the influence nodes Pj(s), defined as the maximal set of
at most s nodes P k closest to Q(j) with residues of the same sign than m(j). It
is convenient to parallelize the subsequent computations for several values of s,
s = [smin, 100, 150, 200, 300], where smin = min(`k, 50), with `k defined in Step 2.
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The interpolating conditions ε
(j)
k0
hj(xk, yk) = ε

(j)
k , k ∈ Pj(s), are equivalent to

the overdetermined linear system

αx (xk − xk0)2 + 2αxy (xk − xk0)(yk − yk0)

+αy (yk − yk0)2 = log

(
ε
(j)
k0

ε
(j)
k

)
, k ∈ Pj(s)

(4)

in the 3 unknown entries of the shape matrix Aj . We solve this system in the sense
of weighted linear least squares (WLS), where the k-th equation is multiplied by
the weight ηk := (1 + ‖P k −Q(j)‖2)−1 in order to account for the bigger influence
of the neighboring nodes on Aj . This solution is obtained by standard methods,
using either the QR factorization of the collocation matrix corresponding to (4) or
its singular value decomposition, see e. g. [8].

Observe that due to the selection of the active center Q(j),

tk := log

(
ε
(j)
k0

ε
(j)
k

)
≥ 0, k ∈ Pj(s).

However, this condition does not guarantee that the computed matrix Aj will
be positive definite. This can typically fail in the periphery of the convex hull
of the nodes, where the lack of data in some direction might yield non-positive
definite Aj . Although the corresponding function hj might fit the data correctly
locally, it is not valid globally due to its exponential increase in the direction of
the eigenvector of a negative eigenvalue of Aj . In this case we force hj to be an
isotropic (a bona fide) radial basis function: Aj = αI2. In this way, (4) is reduced

to α
∥∥∥P k −Q(j)

∥∥∥2 = tk, k ∈ Pj(s), whose solution in the sense of the WLS is

α =
∑

k∈Pj(s)
θk tk, with

θk =
η2k

∥∥∥P k −Q(j)
∥∥∥2∑

t∈Pj(s)
η2t

∥∥∥P t −Q(j)
∥∥∥4

and ηk =

(
1 +

∥∥∥P k −Q(j)
∥∥∥2)−1. Observe that in this case α is positive by

construction, and we define

hj(x, y) = exp
(
−α ‖P −Q(j)‖2

)
, P = (x, y)T .

Finally, in order to compute the coefficient cj we use the simple but effective
interpolation condition cj = m(j).
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Step 4: computation of the new residuals.
With the values of cj and Aj just computed we update

ε
(j+1)
k = ε

(j)
k − cj hj(xk, yk).

As it was mentioned before, all the computations have been performed in parallel
for different values of s, and hence, different nested sets of influence nodes Pj(s).
We now keep the value of s (and the corresponding values of cj and Aj) that yields

the smallest norm of the residue vector (ε
(j+1)
k ), and discard the other values. As a

result, we find the new approximation, Ej = Ej−1 + cj hj , increment the iteration
counter j in 1 and return to Step 1. This procedure is iterated a fixed number of
times; in practice, the value n = 100 turns out to be totally satisfactory.

1.3 Multi-scale analysis and noise removal

In the real life situation of the data contaminated by errors, a very important
problem is that of the model order selection: we want to capture all the relevant
information without over-parametrizing the model and without fitting the noise.
Many solutions to this problem are described in the literature. For instance, the
choice of the number of Zernike polynomials for the modal reconstruction of the
altimetric data has been discussed in [9, 10].

The statistical methods of selection of the appropriate number n in (2) usu-
ally make assumptions about the noise. However, a priori information about the
measurement error bounds or measurement error distribution is very limited, in
particular due to industrial secrets. According to [7], the errors cannot be assumed
i.i.d. random variables, although the assumption that they are normally distributed
(with the variance proportional to the square of the distance of the node to the
center) is apparently reasonable. They are also computationally intensive, [10,11].

The functional representation (3) allows also for a multi-resolution analysis,
where bands of the values Volj := cj/

√
detAj (proportional to the volume under

the j-th gaussian component) can specify different levels of resolution. In particu-
lar, we can assume that the gaussians with small Volj correspond to the noise. This
motivates the hard thresholding approach [12], [13] to the noise removal, setting
to zero all coefficients cj for which the condition Volj < ε holds. The selection of
the parameter ε > 0 plays obviously the crucial role, and should be based either
on the statistical distribution of noise or previous experiments.

2 Experimental results

The altimetric and curvature data from in-vivo corneas used for experiments de-
scribed below were collected by the CSO topography system (CSO, Firenze, Italy),
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Figure 1: Corneal topography reconstructed with the A-RBGF algorithm. The
asterisks show the locations of the centers Q(j) in (3), while the ellipses are pro-
portional to the values of the entries of the shape matrices Aj , showing the domains
of influence of each gaussian (corresponding to the 75% of the volume under their
surfaces).

which in ideal conditions digitizes up to 24 rings with 256 equally distributed points
on each mire. All the procedures were implemented in Matlab 7 and run on stan-
dard platforms (Windows PC and Mac with average configuration). The execution
time was always below 2 seconds, which makes it suitable for the real-time recon-
struction of the corneal data.

Figure 1 shows the reconstructed corneal topography along with the centers
and the “domains of influence” of the gaussian functions used in (3). Observe how
the different scales of the functional components correspond to different scales of
the features of the surface.

For comparison, we have reconstructed the same data with the A-RBGF al-
gorithm and with the Zernike polynomials using the linear least squares, which is
the standard procedure in the clinical practice, implemented in most topographers.
The experiments illustrate that the Zernike polynomials easily capture the global
shape of the reconstructed surface, which is expressed in a typical initial fast decay
of the corresponding error. However, smaller scale details on the surface (such
as areas of localized steepening) are much less suited for this tool and produce a
typical saturation observed in the Zernike error behavior.

Another indication of a consistent behavior of the iterative algorithm proposed
here is the evolution of the parameters computed dynamically in each iteration.
While the spectral condition number of Aj remains essentially bounded, the scaling
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Figure 2: A typical evolution of the scaling factors cj , plotted agains the number
j of the function in (2).

Figure 3: Center location for the reconstruction with 20 A-RBGF of a normal
cornea (left) and a keratoconic one (right). The contours represent the level curves
of the residues of the altimetric data with respect to the best fit sphere.

factors cj steadily decrease, in concordance with a gradual reduction of the residual
errors, see Figure 2.

It also should be pointed out that relevant correlation exists with the loca-
tion and grouping of the centers Q(j): for the normal corneas the centers typically
cluster at the border of the area, where most of the oscillations occur, while for
corneas affected by keratoconus we observe how some centers match the deforma-
tion already at the first iterations, see Figure 3.

3 Conclusion

In this work, we develop an adaptive fitting method for discrete altimetric data on
scales independent of the iteration. It consists of a preliminary fit of the data with
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some global function (in our case, a sphere) and an iterative procedure that adds
terms to the analytic representation. Each term consists of a scaled anisotropic
radial basis gaussian function whose coefficients are computed dynamically. The
method comprises also both a noise reduction and a filtering procedure that dis-
cards the outliers (data clearly corresponding to measurement noise).

The numerical implementation of this algorithm in a standard personal com-
puter is very fast (execution time below 2 seconds). Experimental results for a
cornea reconstruction from keratometric measurements allow us to conclude that
this iterative method exhibits a steady exponential error decay, independently of
complexity of the cornea.

As a bonus, the position and clustering of the centers of A-RBGF, as well as
the size of the shape parameters, provides an additional spatial information about
the regions of higher irregularity.

In the case of the cornea, the iterative adaptive algorithm proposed here pro-
vides a method of obtaining a compact mathematical description of its shape at
different scales. This description can be used for global visualization of the cornea
or of its portions, as well as the input data for resampling and computation of
some other relevant values via ray tracing, numerical integration and others.
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Abstract

Finite nonassociative division algebras (i.e., finite semifields) with 243 elements
are completely classified.

1 Introduction

Finite division rings, also known as finite semifields, are nonassociative rings with
identity such that the set of nonzero elements is closed under the product (i.e., a loop
[11, 3]). In case it has no identity they are known as presemifields. These objects
have been studied in different contexts: finite geometries (they coordinatize projective
semifield planes [6]), coding theory [2, 8, 5], combinatorics and graph theory [13].

Computational methods have been considered in the study of these objects. Among
others, the classification of finite semifields of orders 16 [10, 11], 32 [16, 11] and, more
recently, orders 64 [14] and 81 [4] have been obtained with the help of computational
tools. Presently, only the cases of orders 128, 243 and 256 remain to achieve the
classification of semifield planes of order 256 or less suggested in [9].

In this paper we present a classification of semifields with 243 elements up to
isotopy. It is a computer-assited classification based on the algorithms introduced in
[14].

2 Preliminaries

In this section we collect some definitions and facts on finite semifields, presemifields
and planar functions (see, for instance [3, 11]). We restrict ourselves to the particular
case of order 243 = 35. The characteristic of a finite presemifield D with 35 elements is
3, and D is a 5−dimensional algebra over F3. If D is a semifield, then F3 can be chosen
to be contained in its associative-commutative center Z(D). Other relevant subsets of
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a finite semifield are the left, right, and middle nuclei (Nl, Nr, Nm), and the nucleus N
which have to be field extensions F3e (e ≤ 5).

Classification of presemifields is usually considered up to isotopy (since this cor-
responds to classification of the corresponding projective planes up to isomorphism):
If D1, D2 are two presemifields of order 35, an isotopy between D1 and D2 is a triple
(F, G, H) of bijective F3−linear maps D1 → D2 such that

H(ab) = F (a)G(b) , ∀a, b ∈ D1.

Any presemifield is isotopic to a finite semifield.
If B = [x1, . . . , x5] is a F3-basis of a presemifield D, then there exists a unique set

of constants AD,B = {Ai1i2i3}5
i1,i2,i3=1 ⊆ F3 such that

xi1xi2 =
5∑

i3=1

Ai1i2i3xi3 ∀i1, i2 ∈ {1, . . . , 5}

This set of constants is known as cubical array or 3-cube corresponding to D with
respect to the basis B, and it completely determines the multiplication in D. If D is a
presemifield, and σ ∈ S3 (the symmetric group on the set {1, 2, 3}), then the set

Aσ
D,B = {Aiσ(1)iσ(2)iσ(3)

}5
i1,i2,i3=1 ⊆ F3

is the 3-cube of a presemifield. Different choices of bases lead to isotopic presemifields.
Up to six projective planes can be constructed from a given finite semifield D using
the transformations of the group S3. So, the classification of finite semifields can be
reduced to the classification of the corresponding projective planes up to the action of
the group S3.

Finite semifields of order 243 can be constructed from sets of matrices with certain
properties [4][7, Proposition 3].

Proposition 1. There exists a finite semifield D of order 35 if, and only if, there exists
a set of 5 matrices (a standard basis of D) SD = {A1, . . . , A5} ⊆ GL(5, 3) (the set
of invertible matrices of size 5 over F3) such that:

1. A1 is the identity matrix I;

2.
∑5

i=1 λiAi ∈ GL(5, 3), for all non-zero tuples (λ1, . . . , λ5) ∈ F5
3, that is, (λ1, . . . , λ5) 6=

{−→0 }.

3. The first column of the matrix Ai is the column vector e↓i with a 1 in the i-th
position, and 0 everywhere else.

In such a case, the set {Bijk}d
i,j,k=1, where Bijk = (Aj)ik, is the 3-cube corresponding

to D with respect to the canonical basis of F5
3.

If we identify the elements of F3 with the natural numbers {0, 1, 2}, then we can use
the following convention to represent a semifield D of order 35. Let SD = {A1, . . . , A5}
be one of its standard bases. Since the first column of Ai has always a one in the i-th
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position and zeroes elsewhere, we can encode Ai as the natural number
∑19

j=0 aj3j ,
where 



a19 a14 a9 a4

a18 a13 a8 a3

e↓i a17 a12 a7 a2

a16 a11 a6 a1

a15 a10 a5 a0




For a concrete representation of the semifield one can identify the semifield with F5
3,

and the multiplication with x∗y =
∑5

i=1xiAiy, i.e., Ai is the matrix of left multiplication
by the element ei, where {e1, . . . , e5} is the canonical basis of F5

3. So, the elements of
the standard basis are simply coordinate matrices of the linear maps Lei : D → D,
Lei(y) = ei ∗ y.

3 The Semifield Planes of order 243: a classification

We obtained a complete classification of finite semifields of order 243 with the help of
the algorithm introduced in [14]. This algorithm searchs for standard bases of division
algebras with 243 elements, and classify them according to equivalent S3-equivalent
semifields. This is done either for partial or for complete standard bases.

Our algorithm was processed in parallel in Magerit, a cluster of 1204 nodes eServer
BladeCenter (1036 JS20 and 168 JS21, both PowerPC 64 bits). Each JS20 node has two
processors IBM PowerPC single-core 970FX (two cores) with 2.2 GHz, 4 GB of RAM
and 40 GB of local hard disk. On the other hand, each JS21 node has two processors
IBM PowerPC dual-core 970FX (four cores) with 2.2 GHz, 8 GB of RAM and 80 GB of
local hard disk. It was installed in 2006 and reached the 9th fastest in Europe and the
34th in the world (Top 500: List from November 2006). In May 2008 it was upgraded
to reach 16 TFLOPS. This powerful cluster has allowed us to fill the gap between the
commutative and the nonconmutative case.

Next we present the results obtained from our classification (Table 1). Let us
compare the number of S3-equivalence classes, semifield planes, and coordinatizing
finite semifields which were found, with those previously known [15].

Number of classes S3-action Isotopy Isomorphism
Previously known 7 19 27313
Actual number 9 23 85877

Table 1: Number of division algebras with 243 elements

As we can see two new S3-classes exist, that can not be constructed from com-
mutative semifields. And four new semifield planes of such an order appear. Next we
present standard bases of these classes (A1 is always the identity matrix) (Table 2).

4 Further work

Currently we are working on appying this methodology to other cases. Namely, semi-
fields of order 74 are being investigated.
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# A2 A3 A4 A5 # Semifield
I 129317742 43151760 25524498 2715668620 F35

II 129317638 44994959 28587138 1226007534 Albert’s twisted field
III 129317781 52757047 20739470 3274303432 Albert’s twisted field
IV 129317742 43393513 26923067 2713804376 Coulter-Matthews’
V 129317742 43215002 26537147 2719346408 Ding-Yuan’s
VI 129317742 43185096 19259172 2718371119 [15]
VII 129317742 43215002 26558192 2719382129 [15]
VIII 129317636 14673002 1139489406 3073918154 -
IX 129317636 18089998 3416237282 1030364558 -

Table 2: Standard bases of division algebras with 243 elements (VIII and IX are new
semifields)
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Abstract

Biodegradable collagen matrices have been become a promising alternative to
traditional drug delivery systems. The relevant mechanism in controlled drug re-
lease are the penetration of the collagen matrix by water, the swelling of the matrix
where drug is released by diffusion and enzymatic degradation of the matrix with
simultaneous drug release. These phenomena have been studied experimentally,
via numerical simulations and also analytically extensively in the past. However,
the adsorption processes that determine degradation later on have not been inves-
tigated in detail on the pore-scale by now. The sorption of solved particles on the
collagen matrix due to particle interaction mechanism can change the underlying
microstructure. This on the one hand can lead to a decrease of sorption sites for
the enzyme followed by a decrease of the degradation rate. On the other hand,
the physical entrapment of the active agent can be increased and therefore inhibits
the drug release. We present an averaged model treating this phenomenon using
formal two-scale asymptotic expansion in a level set framework. Thereby, we focus
on the particle interaction with the collagen matrix.
Key words: drug release, porous media, homogenization, evolving microstructure

1 Introduction

Traditional drug delivery is characterized by its immediate release which leaves ab-
sorption to be controlled by the human body. Drug concentration thereby typically
undergoes an abrupt increase followed by an abrupt decrease. Controlled release drug
delivery systems such as collagen systems make it possible to change the drug release
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profile and therefore improve the therapeutic efficacy.
The relevant mechanisms in controlled drug release are the penetration of the collagen
matrix by water, the swelling of the matrix where drug is released by diffusion and
the degradation of the matrix with simultaneous drug release. These mechanisms have
been studied separately in [10], [13] and [14]. In [13] the water diffusion, the swelling
of the matrices and the drug release by diffusion have been mathematically modeled,
implemented and verified by experiments. Furthermore, a one-dimensional mathemat-
ical model based on two coupled partial differential equations with two moving fronts
has been established in [13]. For the special case of constant diffusion coefficients even
an analytical solution has been derived. As next step the enzymatic degradation of
the polymer, which dramatically influences the drug release from the collagen matri-
ces, because the drug molecules are mechanically inhibited to release by the collagen
fibers, has been considered. A two-dimensional mathematical model which consists of
a system of coupled partial and ordinary differential equations has been developed in
[14]. This model has again been verified by experimental data, see [10]. An overall
mathematical description of the two models described above has been investigated in
[3].
When the water penetrates the collagen matrix there are several processes that are of
interest. If an enzyme is solved within the water reactions with the matrix take place to
form an enzyme-substrate complex which later on breaks up. This allows the drug that
has been physically immobilized by the collagen matrix due to physical entrapment to
be released. Furthermore, the dissolved species can sorb on the collagen matrix due
to particle interaction mechanism. This may lead to a change of the underlying mi-
crostructure, to a decrease of available sorption sites for the enzyme and therefore to a
decrease of the degradation rate and to an increased physical entrapment of the active
agent and therefore to the inhibition of drug release. Although these effects strongly
determine degradation later on, they have not been studied in detail on the pore-scale
by now, i. e. in all the models mentioned above the change in the microstructure of
the collagen matrix has not been considered explicitly. With our paper we want to
contribute exactly to this point. It is thereby reasonable to separate the study of these
phenomena not just for the sake of clearness but since the degradation occurs on a
much larger time scale than the adsorption processes.
Besides the context of drug delivery, evolving microstructures are of great interest since
they occur in variable applications such as swelling clays, concrete corrosion or disso-
lution and precipitation processes. In the literature various attempts to model this
phenomena can be found. Swelling clays have been investigated in [11], [12] using for-
mal two-scale asymptotic expansion. Applying hybrid mixture theory developments in
the context of drug release have been studied by Weinstein in [22]. A direct treatment
of a precipitation/dissolution front via level set function using formal two-scale asymp-
totic expansion can be found in [18].
As starting point of our investigations we mathematically set up a microscopic model
at the pore scale for transport processes and fluid flow within the collagen matrix.
Special attention is paid to the fact that particles that are solved in the penetrating
water underly different interaction potentials such as electrostatic and van-der-Waals
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forces. Thereby induced interaction with the porous matrix results in a change of
the underlying microstructure of the collagen matrix. This is directly incorporated by
using a level set formulation to describe the evolving microstructure. In our model,
transport is caused by diffusion, convection and, in addition, drift due to the interac-
tion potential. The number density of particles is therefore computed by a modified
convection-diffusion equation, which is also known as Nernst-Planck equation. Since
we pay special attention to the interaction effects, fluid flow is described by modified
incompressible Stokes’ equations with force density as right hand side. The aim of
the paper is to derive an equivalent macroscopic model description that accounts for
the evolving microstructure. We apply a formal upscaling procedure using two-scale
asymptotic expansion handling the evolving microstructure directly by a level set func-
tion as was first supposed in [18] in the framework of precipitation/dissolution reactions
in porous media. The evolution on the micro-scale is thereby dictated by the total inter-
action potential consisting of repulsive and attractive parts. An equivalent macroscopic
model description for fluid flow and transport in porous media is presented for which
consistency with well known standard models as well as symmetry, positive definiteness
and ellipticity, resp., for the averaged coefficient functions, namely permeability and
diffusivity can be proven.
The paper is organized as follows: In section 2.1, we state the description of the evolv-
ing microstructure. In section 2.2, a microscopic model at the pore scale for transport
processes and fluid flow within the collagen matrix will be set up mathematically. In
section 2.3, we apply a formal upscaling procedure using two-scale asymptotic expan-
sion in a level set framework. In Theorem 2.1, we state the results of the averaging
procedure, i.e. an equivalent macroscopic model description is presented. In section
2.4 and 3 we finally discuss the derived upscaled model.

2 Mathematical Model

2.1 Variable pore geometry

The mathematical model is designed here for a collagen matrix that consists of collagen
fibers which have cylindrical shape. Due to homogeneity in one space dimension it
is reasonable to restrict ourselves to a vertical cross section and therefore to a two-
dimensional domain Ω that is supposed to be an idealized porous medium. It is the
periodic composition of shifted and scaled unit cells Y =

[

−1
2 ,+

1
2

]2
consisting of one

centered spherical cross section of a collagen fiber Ys and the penetrating water phase Yl

with Ȳs ∪ Ȳl = Ȳ , Ys ∩ Yl = ∅. In order to describe the evolution of the underlying
microstructure first within a unit cell, we consider the following simplified case: We
regard the total interaction potential to be a-priori given and to be radial symmetrically
and assume that the collagen fiber can only grow or shrink uniformly due to particle
attachment/detachment. We assume furthermore that the influence of the inter-particle
interaction on the total interaction potential only plays a tangential role compared to
the particle fiber interaction potential since we want to concentrate our studies on the
effects that occur due to the interaction of the particles with the collagen fibers. These
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assumptions are for example reasonable if enough equally favorable sorption sites are
available for attachment.
The goal is now to describe the evolution of the microstructure first within a unit cell by
the change in size of the collagen fiber. The actual fiber radius R is thereby determined
as equilibrium state of the system. Therefore the effective distance reff between the
particles and the collagen fiber, which does depend on the fiber radius, is compared to
an equilibrium distance that is determined by the total interaction potential: Depending
on the distance from the collagen fiber, the total potential acting on the particle may
be repulsive or attractive. As long as the total potential is attractive, attachment takes
place whereas if the total potential is repulsive, the particles are stabilized within the
solution. Altogether an equilibrium between attachment and detachment is reached
for the equilibrium points a (primary or secondary minimum) of the total potential Φ.
This means that neither repulsion nor attraction takes place. In the equilibrium case,
the mean distance of particles to the collagen fiber is equal to this equilibrium distance
given by the total potential. In the unit cell, the mean distance reff of the particles to
the fiber can be calculated by

reff =

∫

Yl
c(y)r(y) dy
∫

Yl
c(y) dy

with r(y) = ‖y‖−R being the distance of any point y of the cell to the spherical fiber
cross section with radius R and c denoting the number density of solved particles. The
numerator in this formula then describes the weighted distance and the denominator
describes the total number of particles. We now claim that reff = a and may therefore
calculate the equilibrium fiber radius R = R(t,x) by

R =

∫

Yl
c(y)‖y‖ dy
∫

Yl
c(y) dy

− a.

for given equilibrium point a of the total potential. This enables us to determine the
distribution of pore water and (enlarged) collagen fibers within the unit cell. The
coordinate x thereby denotes for example the position of the midpoint of the unit
cell within the porous medium. The interface between water and fiber is given by
Γ(t,x) = {y ∈ Y : ‖y‖ = R(t,x)} = {y ∈ Y : ‖y‖−R(t,x) = 0} and the corresponding
level set function S(t,x,y) is defined by

S(t,x,y) := R(t,x)− ‖y‖











< 0 liquid phase

= 0 interface

> 0 solid phase.

2.2 Pore Scale Model

In this section we introduce the underlying mathematical model equations for the trans-
port of the solved particles and the water flow within the collagen matrix. Moreover,
we perform the upscaling the model equations involving the evolving microstructure
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which is described by the level set function that has been introduced above.
The separation of the pore scale and macroscopic relevant scale is characteristic for
a porous medium. Thus we define the ratio between the two length scales to be the
scale parameter ε. We introduce the ε-scaled collagen matrix Ωε which is occupied by
the idealized porous medium consisting of scaled unit cells with side length ε and fiber
boundaries Γε := ε(Ȳs ∩ Ȳl). Within this domain, the solved particles that penetrate
the collagen matrix with the pore water are modeled in an Eulerian approach by some
number density cε. Besides standard transport mechanisms, namely convection and
diffusion, we incorporate various repulsive and attractive interaction potentials Φε that
may act on the particles in our model. This results in a modified convection-diffusion
equation which is also known as Nernst-Planck equation, see [17], [6]. Furthermore, we
incorporate these processes in the framework of the evolving microstructure that has
been introduced in section 2.1 which leads to the following equation:

∂tcε + vhydr
ε · ∇cε −∇ · (∇cε + cε∇Φε) = 0 in Ωε(t), t ∈ [0, T ], (1a)

(−vhydr
ε cε +∇cε + cε∇Φε) · νε + ε∂tRε(ρs − cε) = 0 on Γε(t), t ∈ [0, T ], (1b)

cε = c0 in Ωε(0). (1c)

Hereby νε denotes the outer normal to Γε and c0 is an appropriate initial condition. In
order to determine the fluid velocity v

hydr
ε and pressure pε we solve a modified Stokes’

equations for incompressible fluid flow. On the pore level, we adopt the hydrology con-
vention here for the penetrating water instead of using Fick’s law of diffusion, opposed
to e. g. [13]. This means that we distinguish between bulk flow of the penetrating
water and the transport of the particles within the water phase. As force term on
the right hand side we take into account the drift force density. These equations are
supplemented by a no slip boundary condition at the collagen fiber:

−ε2∆vhydr
ε +∇pε = −εcε∇Φε in Ωε(t), t ∈ [0, T ], (2a)

∇ · vhydr
ε = 0 in Ωε(t), t ∈ [0, T ], (2b)

vhydr
ε = −εα∂tRενε on Γε(t), t ∈ [0, T ], (2c)

The a priori given total interaction potential Φε consists of a repulsive and an attractive
part. The repulsive part may for example arise by reason of electric repulsion and the
attractive part by van-der-Waals forces.

Remark 1. Due to the no slip boundary condition, the velocity field v
hydr
ε is perpen-

dicular to the boundary of the collagen fiber and is equal to −εα∂tRενε on the moving
boundary. The parameter α is defined to be ρl−ρs

ρl
. This can be seen considering the

conservation of mass and regarding the change in the density at the interface. Let
thereby ρl denote the constant density of the liquid being composed of the concentration
of particles and the density of the solvent and let ρs denote the density of the solid.
The term ε∂tRε(ρs − c±ε ) that occurs in the boundary condition of the Nernst-Planck
equation and can also be developed regarding the conservation of mass. Furthermore
the term ∂tRε denotes the time derivative of a shifted version of the radius R we have
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determined in section 2.1.
For the ease of presentation we do not regard the outer boundary conditions of the
macroscopic domain explicitly since they play no crucial role in the formal homogeniza-
tion process. Moreover, reasonable scalings with scale parameter ε could be motivated
by performing a non-dimensionalization procedure.
The (unscaled) system (1), (2) can be found in a more general context. It occurs when
determining ion distributions (for example around colloidal particles or in a ion chan-
nel). If the total potential is identified with the electrostatic potential and the convective
term is neglected, the system is also well known in the framework of semiconductor
devices. Analytical investigations of this system and extensions to the Navier-Stokes
equations can be found in [9], [15] and [20]. Furthermore, several contributions to av-
eraging such charged transport can be found in the literature. In rigid porous media
formal upscaling for a linearized system has been considered for example by [8]. In [2],
[8] and [11], [12], different homogenized models are furthermore developed and tested
for the satisfaction of Onsager’s reciprocity relation. Recent rigorous homogenization
results in non-deformable media can be found in [21] and [1]. Swelling clays filled by
an electrolyte are considered in [11], [12].

Considering the whole porous medium instead of one unit cell, a periodic extension
of the above derived level set function for a unit cell to the whole scaled domain Ωε

is necessary. This is done analogously to [19] with slight corrections: Assuming the
total interaction potential being given, the fiber radius R : Ω × [0, T ] →

[

0, 12
)

may
be calculated as described in section 2.1 for a unit cell. We define the integer part

xM :=

(

⌊x1+ 1

2
⌋

⌊x2+ 1

2
⌋

)

of any point x =
(

x1

x2

)

∈ Ω which is the midpoint of the shifted unit

cell containing x. Note as a remark that these midpoints are situated at the integer
grid points (i, j) ∈ N

2 ∩ Ω. Moreover we denote the relative shift from the midpoint
xM of the corresponding cell by xR := x − xM . Thus we may describe the evolution
of the microstructure in Ωε by the level set function Sε which is defined by

Sε(t,x) = R

(

t,
(x

ε

)M
)

−

∣

∣

∣

∣

∣

∣

∣

∣

(x

ε

)R
∣

∣

∣

∣

∣

∣

∣

∣

. (3)

2.3 Formal Upscaling

Our main goal is now to determine a macroscopic model description starting from sys-
tem (1), (2). Therefore we intend to identify at least formally the limit ε → 0. A
widespread used method is the method of two-scale asymptotic expansion. A mathe-
matical introduction can be found in [4], [16] or in [5], [7]. Concerning the scale sepa-
ration, besides the global variable x, a microscopic variable y is introduced. Both are
connected via the relation y = x/ε. As a consequence, the expansion of the spatial
gradient reads

∇ε = ∇x +
1

ε
∇y.

Higher order spatial derivatives may be calculated analogously applying the chain rule.
Furthermore it is assumed that all variable functions can be expanded in series of the

@CMMSE                                 Page 980 of 1703                                 ISBN: 978-84-614-6167-7



Nadja Ray, Florin A. Radu, Peter Knabner

scale parameter ε, i.e.

φε(t,x) = φ0(t,x,y)+εφ1(t,x,y)+ε2φ2(t,x,y)+ . . . , y = x/ε, φε ∈ {cε, vε,Φε}. (4)

Additionally to the standard expansions introduced above in the framework of a level
set description also the level set function Sε itself and the normal vector νε have to
be expanded due to the evolving microstructure. For a two-dimensional setting the
expansion of the normal vector can be expressed in terms of the level set function and
we obtain the following expressions, [18]:

Sε(t,x) = S0(t,x,y) + εS1(t,x,y) + ε2S2(t,x,y) + . . . , y = x/ε, (5)

νε = ν0 + εν1 +O(ε2), ν0 =
∇yS0

|∇yS0|
, ν1 = τ0

τ0 · (∇xS0 +∇yS1)

|∇yS0|
(6)

with τ 0 := ν⊥

0 denoting the orthogonal complement of ν0 in the two dimensional space.
We now state and proof our main upscaling result:

Theorem 2.1. The homogenized model of (1) - (2) consists of Darcy’s law which
describes the averaged water movement

v0 = −K(t,x)∇xp0 x ∈ Ω

∇x · v0 = −|Γ0(t,x)|∂tR0 x ∈ Ω

and is supplemented by a family of cell problem of Stokes type (7a). The transport of
the transformed macroscopic concentration u±0 is described by an averaged convection-
diffusion-equation

∂t(A(t,x)u
±

0 ) +∇x · (V (t,x)u±0 )−∇x · (D(t,x)∇xu
±

0 )

+|Γ0(t,x)|∂tR0ρs = 0 x ∈ Ω

which is supplemented by two families of cell problems (9). Furthermore, the averaged
coefficient functions are defined by (8) and (10).

Proof. We insert the expansions (4), (5) and (6) in (1), (2) and analyze the different
orders in εk, k ∈ Z:
Lowest Order Problems: The lowest order problem of the Stokes’ equation is of
order ε−1 and yields that p0 is a macroscopic variable, i.e. p0(x,y) = p0(x) since
∇yp0 = 0. The Nernst-Planck equation of order ε−2 with corresponding boundary
condition of order ε−1 reads

−∇y · (∇yc0 + c0∇yΦ0) = 0

(∇yc0 + c0∇yΦ0) · ν0 = 0.

Applying the transformation c0(x,y) = e−Φ0(x,y)u0(x,y) which is well known from the
stationary theory of semiconductor devices [9], [15] leads to the following problem

−∇y · (e−Φ0(x,y)∇yu0) = 0

e−Φ0(x,y)∇yu0 · ν0 = 0
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which is uniquely solvable up to a constant (with respect to y). Obviously every
macroscopic solution u0(x) is a solution of this problem and therefore we derive the
following form for the leading order concentration term: c0(x,y) = e−Φ0(x,y)u0(x).

Next Order Problems: The next order problem for Stokes’ equation is of order
ε0 supplemented by the incompressibility condition of order ε−1 and boundary condition
of order ε0:

−∆yv0 +∇y(p1 + c0Φ0) = −∇xp0

∇y · v0 = 0

v0 = 0

With the definition of the modified pressure p̃1 := p1 + c0Φ0 one proceeds as in [7] to
set up the following j = 1, 2 cell problems of Stokes type:

−∆ywj +∇yπj = ej in Y0(t,x), (7a)

∇y ·wj = 0 in Y0(t,x), (7b)

wj = 0 in Γ0(t,x), (7c)

wj Y-periodic, (7d)

where Y0(t,x) := {y : S0(t,x,y) < 0}, Γ0(t,x,y) := {y : S0(t,x,y) = 0}, [18]. Follow-
ing [7] the leading order velocity term can be expressed via v0(x,y) = −

∑

j wj∂xj
p0.

For the macroscopic velocity v0(x) we derive Darcy’s law, i. e. v0 :=
∫

Y0(t,x)
v0(x,y)dy=

−K∇xp0 with permeability tensor

Kij :=

∫

Y0(t,x)
wi
jdy. (8)

The supplementary compressibility condition has been derived in [18].
For the Nernst-Planck equation we consider the problem of order ε−1 with boundary
condition of order ε0. Since the boundary conditions have to be applied on Γ0(t,x)
additional terms show up due to the evolution of the pore space. An abstract derivation
of how to set up the right boundary condition can be found in [18].

v0 ·∇yc0 −∇y ·(∇yc1+∇xc0+c0∇yΦ1+c1∇yΦ0+c0∇xΦ0)−∇x ·(∇yc0+c0∇yΦ0) = 0

(−v0c0 +∇yc1 +∇xc0 + c0∇yΦ1 + c1∇yΦ0 + c0∇xΦ0) · ν0 + (∇yc0 + c0∇yΦ0) · ν1

+y · ∇x(∇yc0 + c0∇yΦ0) · ν0 + λν0 · ∇y(∇yc0 + c0∇yΦ0) · ν0 = 0

Using the transformation for c0 and an analogous transformation for c1, namely c1(x,y)=
e−Φ0(x,y)u1(x,y) leads to the following problem:

−∇y · (e−Φ0∇y(u1 + u0Φ1)) = −v0 · ∇y(e
−Φ0u0) +∇y · (e−Φ0∇xu0)

e−Φ0∇y(u1 + u0Φ1) · ν = (v0e
−Φ0u0 − e−Φ0∇xu0) · ν

Defining the modified transformed first order concentration term ũ1 := u1 + u0Φ1 and
using the incompressibility and boundary condition of Stokes’ equation leads to

−∇y · (e−Φ0∇yũ1) = ∇y · (−e−Φ0v0u0 + e−Φ0∇xu0)

e−Φ0∇yũ1 · ν = −e−Φ0∇xu0 · ν0
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We may now define two families of j = 1, 2 cell problems, one for every forcing term
on the right hand side. Using furthermore the representation of v0 in terms of the
solutions of the cell problems wj and their properties we derive

−∇y ·(e
−Φ0∇yζ

1
j )=∇y ·(e

−Φ0wj), −∇y ·(e
−Φ0∇yζ

2
j )=∇y ·(e

−Φ0ej) in Y0(t,x), (9a)

(e−Φ0∇yζ
1
j )·ν0=0, e−Φ0∇yζ

2
j ·ν0=−e−Φ0ej ·ν0 in Γ0(t,x), (9b)

ζ1j , ζ2j Y-periodic. (9c)

The modified first order term ũ1 can then be expressed by linearity in the following
way: ũ1 =

∑

j ζ
1
j (∂xj

p0)u0 + ζ2j ∂xj
u0.

Zero Order Problems: The ε0-order Nernst-Planck equation with boundary
condition of order ε1 reads with the additional term due to the evolving pore geometry
analogously to [18]

∂tc0 + v0 ·∇xc0 + v1 ·∇yc0 + v0 ·∇yc1 −∇x ·(∇xc0+∇yc1+c0∇xΦ0+c0∇yΦ1+c1∇yΦ0)

−∇y ·(∇xc1 +∇yc2 + c0∇xΦ1 + c1∇xΦ0 + c1∇yΦ1 + c2∇yΦ0 + c0∇yΦ2) = 0

(−v1c0 − v0c1 +∇xc1 +∇yc2 + c0∇xΦ1 + c1∇xΦ0 + c1∇yΦ1 + c2∇yΦ0 + c0∇yΦ2)·ν0

+ (−v0e
−Φ0u0 + e−Φ0∇y(u1 + u0Φ1) + e−Φ0∇xu0)·ν1

+ y ·∇x(−v0e
−Φ0u0 + e−Φ0∇y(u1 + u0Φ1) + e−Φ0∇xu0)·ν0

+ λν0 ·∇y(−v0e
−Φ0u0 + e−Φ0∇y(u1 + u0Φ1) + e−Φ0∇xu0)·ν0 + ∂tR0(ρs − c0) = 0

Integrating with respect to y and applying the boundary condition and the transfor-
mations for c0 and c1, resp., gives
∫

Y0(t,x)
∂t(e

−Φ0u0)dy +

∫

Y

∇x ·(v0e
−Φ0u0 − e−Φ0∇xu0 − e−Φ0∇yũ1)dy

+

∫

Γ0(t,x)
(−v0e

−Φ0u0 + e−Φ0∇y(u1 + u0Φ1) + e−Φ0∇xu0)·ν1

+ y ·∇x((−v0e
−Φ0u0 + e−Φ0∇y(u1 + u0Φ1) + e−Φ0∇xu0)·ν0)

+ λν0 ·∇y((−v0e
−Φ0u0 + e−Φ0∇y(u1 + u0Φ1) + e−Φ0∇xu0)·ν0) + ∂tR0(ρs − c0) = 0

Applying the transport theorem in order to interchange integration and spatial deriva-
tion we get
∫

Y0(t,x)
∂t(e

−Φ0u0)dy +∇x ·

∫

Y

v0e
−Φ0u0 − e−Φ0∇xu0 − e−Φ0∇yũ1dy

+

∫

Γ0(t,x)
(−v0e

−Φ0u0 + e−Φ0∇y(u1 + u0Φ1) + e−Φ0∇xu0)·ν1doy

+

∫

Γ0(t,x)
y ·∇x(−v0e

−Φ0u0 + e−Φ0∇y(u1 + u0Φ1) + e−Φ0∇xu0) · ν0doy

+

∫

Γ0(t,x)
λν0 ·∇y(−v0e

−Φ0u0 + e−Φ0∇y(u1 + u0Φ1) + e−Φ0∇xu0)·ν0 + ∂tR0(ρs − c0)doy

+

∫

Γ0(t,x)

∇xS0

|∇yS0|
(v0e

−Φ0u0 − e−Φ0∇xu0 − e−Φ0∇yũ1)doy = 0
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With the help of the representation of the normal vectors and the lemmas in [18] several
terms cancel and we get

∫

Y0(t,x)
∂t(e

−Φ0u0)dy +∇x ·

∫

Y

v0e
−Φ0u0 − e−Φ0∇xu0 − e−Φ0∇yũ1dy

+

∫

Γ0(t,x)
∂tR0(ρs − c0)doy = 0

Using the transport theorem for the time derivative and the boundary condition for
the normal velocity with appropriate scaling we get

∂t

(

∫

Y0(t,x)
e−Φ0u0dy

)

+∇x ·

∫

Y

v0e
−Φ0u0 − e−Φ0∇xu0 − e−Φ0∇yũ1dy + Γ0(t,x)∂tR0ρs=0

Here the cell problems derived above may be inserted as usual and we derive

∂t (Au0) +∇x · (V u0 −D∇xu0) + Γ0(t,x)∂tR0ρs = 0

with averaged parameter defined by

A :=

∫

Y0(t,x)
e−Φ0dy, V := −

∫

Y0(t,x)
e−Φ0

∑

j

(wj +∇yζ
1
j )∂xj

p0dy, (10a)

Dij :=

∫

Y0(t,x)
e−Φ0(∂yiζ

2
j + δij)dy. (10b)

2.4 Properties of Coefficient Functions

Theorem 2.2. The porosity defined in (10a) is strictly positive, the permeability tensor
defined in (8) is symmetric and positive definite. The diffusion tensor defined in (10b)
is symmetric, positive definite and elliptic.

Proof. The statement for the porosity is clear by definition. The statement for the
permeability tensor K can be proven directly as in [7]. To proof the statement for the
diffusion tensor the ideas in [7] and [5] can be applied with only slight modifications
since the coefficient e−Φ0 is strictly positive.

Theorem 2.3. If that there is no interaction and also no evolving microstructure, the
averaged coefficient functions A,V ,D given in (10) reduce to

A = |Y |, V =

∫

Y

v0dy = v0, and Dij =

∫

Y

(∂yiζ
2
j + δij)dy

Proof. The occurrence of no interaction results in e−Φ0 = e0 = 1. Furthermore the
solutions ζ1j of the additional family of cell problems are equal to zero. With the
relation v0 = −

∑

j wj∂xj
p0 the statement of theorem 2.3 holds.
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Remark 2. The homogenized model of theorem 2.1 is therefore consistent with the
standard model for flow and transport in porous media without interaction and evolving
microstructure. Theorem 2.3 shows that the coefficient functions reduce and obviously
also the homogenized partial differential equation reduce to the well known two-scale
description that can be found for example in [7].

3 Conclusion

Applying the formal homogenization technique that is capable of an evolving mi-
crostructure by the level set formulation to our system of partial differential equa-
tions (1), (2), we obtain Darcy’s law for a compressible fluid and a modified averaged
convection-diffusion equation. These equations are supplemented by different families
of microscopic cell problems determining averaged coefficient functions. The changes
in the microscopic geometry finally result in a change of the porosity and permeability
in the equivalent macroscopic description given in Theorem 2.1. Therefore a recoupling
of the transport processes to the fluid phase takes place. The next step is to verify this
theoretical model against experimental data.
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Abstract

In this paper we analyse price fluctuations with the aim of measuring how long
the market takes to adjust prices to weak-form efficiency, i.e., how long it takes to
become prices in a fractional Brownian motion with a Hurst exponent of 0.5. The Hurst
exponent is estimated for different time horizons using detrended fluctuation analysis-an
appropriate method for non-stationary series with trends-in order to identify at which
time scale the Hurst exponent is consistent with the efficient market hypothesis. Using
high frequency data for stock indices, exchange rates and security prices, we show that
price dynamics exhibited important deviations from efficiency for time periods that
lasted up to 10 minutes, but after this time the efficiency creating process ended and
price dynamics was consistent with a geometric Brownian motion. Additionally, the
intraday behaviour of the series corroborates that, in the opening and closing trading
hours, price dynamics is hardly consistent with efficiency, thereby allowing investors
to exploit price deviations from fundamental values. This result is consistent with the
intraday pattern of volume, volatility and transaction time durations.

Key words: Market Efficiency, Hurst, Detrenden Fluctuation Analysis.

1 Introduction

The market efficiency hypothesis [10, 11]states that asset prices adjust to fully reflect all
available information. Although the formulation of this hypothesis refers to a rapid and
unbiased price adjustment process, in practice, prices tend not to adjust to new informa-
tion instantly but after a certain amount of time. During this time investors take actions
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to exploit temporary profit opportunities arising from new information, ultimately push-
ing prices towards efficiency. In fact, the speed of adjustment to market efficiency is an
important dimension of the market efficiency hypothesis (see, e.g.,[7]). The adjustment of
asset prices to information has been widely studied at the theoretical and empirical level.
[12, 13, 8] developed models in which the incorporation of information in stock prices de-
pends on the cost of information production. [5, 3] in a rational expectation framework,
show how prices adjust in a sequence of trades to fully reveal all relevant information. In a
model populated by Bayesian traders [6] found, in a simulation study, that the market usu-
ally converges more rapidly to an equilibrium price when arbitrageurs react to one another.
Behavioural finance models have been developed by [2, 9, 14] to provide explanations for
the empirically documented under- and over-reactions of stock prices to news. Empirically,
several studies have examined market efficiency in terms of the speed with which prices
react to new information arising from specific events (see, e.g., [4]) while other empirical
studies have examined the speed of convergence of prices to efficiency in a more general
setting, without identifying any specific new event (see, e.g.,[1]). In this paper we use a
novel approach to address the problem of measuring the adjustment time of security prices
towards weak-form market efficiency, based on using detrended fluctuation analysis (DFA)
[16] for different time scales in order to identity the time horizon necessary for prices to
adjust to a fBm with a Hurst exponent of 0.5.

2 Metodology

DFA, which was proposed by [16, 17] enables identification of a quantitative parameter that
represents the correlation properties of a signal. DFA is based on analysing fluctuations
in a time series at different scales. In practice, it removes the trend from a time series in
different scales by analysing intrinsic fluctuations in the data. Fluctuations are, in effect a
measure of variability in the signal and are associated with the variance for each segment
in the series at different scales. The DFA algorithm implies six basic steps.

1. If we start with a series of equidistant time increments {x(t)}, t = 1, ..., N , we can
obtain the path (or the profile)

y(t) =

t∑
j=1

x(t). (1)

2. The entire interval [1, N ] can be divided into a series of Mν boxes of length ν, not
necessarily self-excluding. Each of such boxes receives a label (m, ν),m = 1, ...,Mν .
In our calculations, we considered a certain level of overlap between the boxes for the
purpose of increasing the number of boxes where the method is applied and, hence,
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to improve the statistics. To evaluate the magnitude of fluctuations in the box (m, ν)
and, concomitantly, eliminate the trend of order q, we consider the difference

ys(t) = y(t)− pq(t; (m, ν)), (2)

3. where pq(t; (m, ν)) represents the polynomial of order q that minimizes the sum of
ys(t)

2 when t spans all points of the considered box. To be more precise, we consider
the residue

f(m, ν) =
1

ν

Imax(m,ν)∑
j=Imin(m,ν)

y2s(j), (3)

4. where Imin(m, ν) and Imax(m, ν) are the lower and upper limit of the (m, ν) box.
When q = 0, f(m, ν) corresponds to the roughness function W (m, ν) of the (m, ν)
box. Subsequently, we consider the average

F (ν) =
[ 1

Mν

Mν∑
m=1

f(m, ν)
]1/2

, (4)

5. which expresses the average detrended roughness at length scale ν of the entire profile.
If the original series presents long-range correlations, it is expected that the values of
F (ν) follows a power law

F (ν) ∼ νH , (5)

6. where the roughness exponent H = 1− γ/2 is related to the exponent describing the
decay of the correlation function C(j) = E[y(t)y(t+ j)] ∼ j−γ .

In practice, this means the exponent can be calculated, with a linear adjustment in
the logarithmic scale of ν in function of F (ν). The fluctuation exponent can be classified
according to a dynamic band of values:

• H < 0.5: anti-correlated, anti-persistent signal.

• H = 0.5: non-correlated, white noise, no memory.

• H > 0.5: has long-range correlations.
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3 Data

Intraday data for 35 days of trading in the DJIA and SP500 markets, the EUR-USD ex-
change rate and Telefónica España shares between April and June 2011 were used to analyse
the 1- to 15-minute series, and intraday data for 46 days of EUR-USD exchange rate opera-
tions between October and December 2010 were used to calculate the mean intraday Hurst
exponent.

4 Results

It can be observed (see annex) in [Fig.1] that the series showed long-term correlations
(persistence) in the times below 5 and 4 minutes, indicating no random walk and convergence
with a fractional Brownian motion (fBm), from 5 minutes for the SP500 series and from
4 minutes for the DJIA series. Behaviour of the EUR-USD exchange rate series [Fig. 2]
was initially anti-persistent, indicating reversion to the mean, but later converged with
an fBm from minute 2. Telefónica share behaviour, reflected in [Fig.3], was initially anti-
persistent but converged with an fBm from minute 6. Behaviour of the Hurst mean of
the intraday series for a time period of 46 days is shown in [Fig. 4]. It can be observed
that the series showed anti-persistent behaviour in the initial and final periods of each day’s
trading, indicating reversion to the mean. From the mornings hours, midday and afternoon,
behaviour fluctuated to yield a Hurst exponent of around 0.5, indicating random walk in
these periods. In view of the volatility of these series in the initial and final periods, overall
behaviour, concave in form, makes sense, according, as it does, with microstructure theories
[15].

5 Final Considerations

For intraday data for market, exchange rate and share indices, we quantified quotation speed
of adjustment to an fBm using DFA. The series converged rapidly to a Hurst exponent of
0.5 as the time of the series increased. In terms of mean daily exchange rate behaviour,
indices tended to converge with an fBm in the morning hours, whereas the trading opening
and closing periods tended not to behave like an fBm. The possibility remains, therefore, of
abnormal returns that are greater than the risk assumed, Furthermore, it would seem that
share pricing tools that assume price behaviour to be like an fBm are not accurate.
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Abstract

In 1995, M.P. Schellekens introduced the theory of complexity (quasi-metric)
spaces as a part of the development of a topological foundation for the asymptotic
complexity analysis of programs and algorithms [Electron. Notes Theor. Comput.
Sci. 1 (1995), 211-232]. The applicability of this theory to the asymptotic complex-
ity analysis of Divide and Conquer algorithms was also illustrated by Schellekens
in the same reference. In particular, he gave a new formal proof, based on the
use of the Banach fixed point theorem, of the well-known fact that the asymp-
totic upper bound of the average running time of computing of Mergesort belongs
to the asymptotic complexity class of n log

2
n. Motivated by the utility of the

quasi-metric approach for the asymptotic complexity analysis based on the use of
fixed point techniques and complexity spaces, on one hand we extend Schellekens’
method in order to yield asymptotic upper bounds for a class of algorithms whose
running time of computing leads to recurrence equations different from the Divide
and Conquer ones, and, on the other hand, we improve the original Schellekens
method by introducing a new fixed point technique for providing lower asymp-
totic bounds for the running time of computing of the aforesaid algorithms. We
illustrate and validate the developed method applying our results to provide the
asymptotic complexity class (asymptotic upper and lower bounds), among others,
of the celebrated recursive algorithm that solves the problem of Hanoi Towers.

Key words: quasi-metric, complexity space, fixed point, improver, worsener,
complexity class.
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On mathematical foundations of asymptotic complexity analysis of algorithms

1 The fundamentals of asymptotic complexity analysis of

algorithms via complexity spaces

Throughout this paper the letters R
+ and N will denote the set of nonnegative real

numbers and the set of positive integer numbers, respectively.
Our basic reference for complexity analysis of algorithms is [1].
In Computer Science the complexity analysis of an algorithm is based on deter-

mining mathematically the quantity of resources needed by the algorithm in order to
solve the problem for which it has been designed. A typical resource, playing a central
role in complexity analysis, is the running time of computing. Since there are often
many algorithms to solve the same problem, one objective of the complexity analysis
is to assess which of them is faster when large inputs are considered. To this end, it is
required to compare their running time of computing. This is usually done by means
of the asymptotic analysis in which the running time of an algorithm is denoted by
a function T : N → (0,∞] in such a way that T (n) represents the time taken by the
algorithm to solve the problem under consideration when the input of the algorithm is
of size n. Of course the running time of an algorithm does not only depend on the input
size n, but it depends also on the particular input of the size n (and the distribution
of the data). Thus the running time of an algorithm is different when the algorithm
processes certain instances of input data of the same size n. As a consequence, in gen-
eral it is necessary to distinguish three possible behaviors when the running time of
an algorithm is discussed. These are the so-called best case, the worst case and the
average case. The best case and the worst case for an input of size n are defined by the
minimum and the maximum running time of computing over all inputs of the size n,
respectively. The average case for an input of size n is defined by the expected value
or average running time of computing over all inputs of the size n.

Given an algorithm, to determine exactly the function which describes its running
time of computing is in general an arduous task. However, in most situations is more
useful to know the running time of computing of an algorithm in an “approximate” way
than in an exact one. For this reason the asymptotic complexity analysis of algorithms
focus its interest in obtaining “approximate” running times of computing.

In order to recall pertinent notions from asymptotic complexity analysis, let us as-
sume that f : N → (0,∞] denotes the running time of computing of a certain algorithm.
In addition, consider that there exists a function g : N → (0,∞] such that there exist,
simultaneously, n0 ∈ N and c > 0 satisfying f(n) ≤ cg(n) for all n ∈ N with n ≥ n0 (≤
and ≥ stand for the usual orders on R

+). Then, the function g provides an asymptotic
upper bound of the running time of the studied algorithm. Thus, if we do not know
the exact expression of the function f , then the function g gives an “approximate”
information of the running time of the algorithm in the sense that the algorithm takes
a time to solve the problem bounded above by g. Following the standard notation,
when g is an asymptotic upper bound of f we write f ∈ O(g).

Sometimes in the analysis of the complexity of an algorithm is useful to assess an
asymptotic lower bound of the running time of computing. In this case the Ω-notation
plays a central role. Thus the statement f ∈ Ω(g) means that there exist n0 ∈ N and
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c > 0 such that cg(n) ≤ f(n) for all n ∈ N with n ≥ n0. Of course, and similarly to
the O-notation case, when the time taken by the algorithm to solve the problem f is
unknown, the function g yields an “approximate” information of the running time of
the algorithm in the sense that the algorithm takes a time to solve the problem bounded
below by g.

It is clear that the best situation, when the complexity of an algorithm is discussed,
matches up with the case in which we can find a function g : N → (0,∞] in such a way
that the running time f holds the condition f ∈ O(g) ∩ Ω(g), denoted by f ∈ Θ(g),
because, in this case, we obtain a “tight ”asymptotic bound of f and, thus, a total
asymptotic information about the time taken by the algorithm to solve the problem
under consideration. From now on, we will say that f belongs to the asymptotic
complexity class of g whenever f ∈ Θ(g).

Hence, from an asymptotic complexity analysis viewpoint, to determine the running
time of an algorithm consists of obtaining its asymptotic complexity class.

In 1995, M.P. Schellekens introduced a new mathematical framework, known as
complexity spaces, as a part of the development of a topological foundation for the
asymptotic complexity analysis of algorithms ([6]). This approach is based on the
notion of quasi-metric space.

Following [4], a quasi-metric on a non-empty set X is a function d : X ×X → R
+

such that for all x, y, z ∈ X : (i) d(x, y) = d(y, x) = 0 ⇔ x = y; (ii) d(x, y) ≤
d(x, z) + d(z, y).

Of course a metric on a non-empty set X is a quasi-metric d on X satisfying, in
addition, the following condition for all x, y ∈ X: (iii) d(x, y) = d(y, x).

A quasi-metric space is a pair (X, d) such that X is a non-empty set and d is a
quasi-metric on X.

Each quasi-metric d on X generates a T0-topology T (d) on X which has as a base
the family of open d-balls {Bd(x, ε) : x ∈ X, ε > 0}, where Bd(x, ε) = {y ∈ X :
d(x, y) < ε} for all x ∈ X and ε > 0.

Given a quasi-metric d on X, the function ds defined on X × X by ds(x, y) =
max (d(x, y), d(y, x)) is a metric on X.

A quasi-metric space (X, d) is called bicomplete if the metric space (X, ds) is com-
plete.

The complexity (quasi-metric) space is the pair (C, dC), where

C = {f : N → (0,∞] :

∞∑
n=1

2−n 1

f(n)
< ∞}

and dC is the bicomplete quasi-metric on C defined by

dC(f, g) =
∞∑
n=1

2−n max

(
1

g(n)
−

1

f(n)
, 0

)
.

(We adopt the convention that 1
∞

= 0.)
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According to [6], since every reasonable algorithm, from a computability viewpoint,
must hold the “convergence condition”

∑
∞

n=1 2
−n 1

f(n) < ∞, it is possible to associate
each algorithm with a function of C in such a way that such a function represents, as
a function of the size of the input data, its running time of computing. Because of
this, the elements of C are called complexity functions. Moreover, given two functions
f, g ∈ C, the numerical value dC(f, g) (the complexity distance from f to g) can be
interpreted as the relative progress made in lowering the complexity by replacing any
program P with complexity function f by any program Q with complexity function g.
Therefore, if f 6= g, the condition dC(f, g) = 0 can be read as the program P is at least
as efficient as the program Q (indeed, note that dC(f, g) = 0 ⇔ f(n) ≤ g(n) for all
n ∈ N). In fact, the condition dC(f, g) = 0 implies that f ∈ O(g).

Notice that the asymmetry of the complexity distance dC plays a central role in
order to provide information about the increase of complexity whenever a program is
replaced by another one. A metric will be able to yield information on the increase but
it, however, will not reveal which program is more efficient.

The applicability of the theory of complexity spaces to the asymptotic complexity
analysis of algorithms was illustrated by Schellekens in [6]. In particular, he gave,
among other things, a new proof of the well-known fact that that the function f ∈ C,
given by f(1) = c > 0 and f(n) = n log2 n for all n ∈ N with n > 1, is an asymptotic
upper bound of the average running time of computing of Mergesort. To this end, he
introduced a method, based on the below quasi-metric version of Banach’s fixed point
theorem, to analyze the running time of computing of the general class of Divide and
Conquer algorithms (observe that Mergesort is a Divide and Conquer algorithm).

Theorem 1. Let f be a mapping from a bicomplete quasi-metric space (X, d) into itself
such that there exists s ∈ [0, 1) satisfying

d(f(x), f(y)) ≤ sd(x, y), (1)

for all x, y ∈ X. Then f has a unique fixed point.

Let us recall that a mapping f from a quasi-metric space (X, d) into itself holding
inequality (1) is said to be contractive with contractive constant s.

Next we provide a general view of the aforenamed method with the aim of moti-
vating our subsequent work.

A Divide and Conquer algorithm solves a problem of size n (n ∈ N) splitting it
into a subproblems of size n

b
, for some constants a, b with a, b ∈ N and a, b > 1, and

solving them separately by the same algorithm. After obtaining the solution of the
subproblems, the algorithm combines all subproblem solutions to give a global solution
to the original problem. The recursive structure of a Divide and Conquer algorithm
leads to a recurrence equation for the running time of computing. In many cases the
running time of a Divide and Conquer algorithm is the solution to a recurrence equation
of the form

T (n) =

{
c if n = 1
aT (n

b
) + h(n) if n ∈ Nb

, (2)
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where Nb = {bk : k ∈ N}, c > 0 denotes the complexity on the base case (i.e. the
problem size is small enough and the solution takes constant time), h(n) represents the
time taken by the algorithm in order to divide the original problem into a subproblems
and to combine all subproblems solutions into a unique one (h ∈ C with h(n) < ∞ for
all n ∈ N).

Notice that for Divide and Conquer algorithms, it is typically sufficient to obtain
the complexity on inputs of size n with n ranges over the set Nb ([1]).

Mergesort is a typical and well-known example of a Divide and Conquer algorithm
whose running time of computing satisfies the recurrence equation (2) (see [1] for a
fuller description).

In order to compute the running time of computing of a Divide and Conquer
algorithm satisfying the recurrence equation (2), it is necessary to show that such a re-
currence equation has a unique solution and, later, to obtain the asymptotic complexity
class of such a solution. The method introduced by Schellekens allows to show that
the equation (2) has a unique solution, and provides an upper asymptotic complexity
bound of the solution in the following way:

Denote by Cb,c the subset of C given by

Cb,c = {f ∈ C : f(1) = c and f(n) = ∞ for all n ∈ N\Nb with n > 1}.

Since the quasi-metric space (C, dC) is bicomplete ([5]) and the set Cb,c is closed in
(C, ds

C
), we have that the quasi-metric space (Cb,c, dC |Cb,c) is bicomplete.

Next we associate a functional ΦT : Cb,c → Cb,c with the recurrence equation (2) of
a Divide and Conquer algorithm given as follows:

ΦT (f)(n) =




c if n = 1
∞ if n ∈ N\Nb and n > 1
af(n

b
) + h(n) otherwise

. (3)

Of course a complexity function in Cb,c is a solution to the recurrence equation (2) if
and only if it is a fixed point of the functional ΦT . Then, Schellekens proved ([6]) that

dC |Cb,c(ΦT (f),ΦT (g)) ≤
1

a
dC |Cb,c(f, g) (4)

for all f, g ∈ Cb,c. So, by Theorem 1, the functional ΦT : Cb,c → Cb,c has a unique fixed
point and, thus, the recurrence equation (2) has a unique solution.

In order to obtain the upper asymptotic complexity bound of the solution to the
recurrence equation (2), Schellekens introduced a special class of functionals known as
improvers.

Let C ⊆ C. A functional Φ : C → C is called an improver with respect to a function
f ∈ C provided that Φn(f) ≤ Φn−1(f) for all n ∈ N. Of course Φ0(f) = f . Observe that
an improver is a functional which corresponds to a transformation on programs in such
a way that the iterative applications of the transformation yield, from a complexity
point of view, an improved program at each step of the iteration. Note that under the
assumption that the functional Φ is monotone, to show that Φ is an improver with
respect to f ∈ C is equivalent to verify that Φ(f) ≤ f .

Taking into account the exposed facts, Schellekens stated the following result ([6]).
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Theorem 2. A Divide and Conquer recurrence of the form (2) has a unique solution
fT in Cb,c. Moreover, if the functional ΦT associated with (2) is an improver with
respect to some function g ∈ Cb,c, then the solution to the recurrence equation satisfies
that fT ∈ O(g).

He also obtained an asymptotic upper bound of the running time of computing
of Mergesort in order to illustrate the usefulness of Theorem 2. In the particular
case of Mergesort (average case), the running time of computing satisfies the following
particular case of recurrence equation (2):

T (n) =

{
c if n = 1
2T (n2 ) +

n
2 if n ∈ N2

. (5)

It is clear that Theorem 2 shows that the recurrence equation (5) has a unique
solution fM

T in C2,c. In addition, Schellekens proved that the functional ΦT induced
by the recurrence equation (5) is an improver with respect to a complexity function
gk ∈ C2,c (with k > 0, gk(1) = c and gk(n) = kn log2(n) for all n ∈ N2) if and only
if k ≥ 1

2 . Therefore, by Theorem 2, we conclude that fM
T ∈ O(g 1

2
), i.e. Theorem 2

provides a formal proof, based on fixed point techniques, of the well-known fact that
the running time of computing (average case) fM

T of Mergesort is in O(n log2 n), i.e.
that the complexity function g 1

2
, or equivalently O(n log2 n), gives an asymptotic upper

bound of fM
T . Furthermore, in [6] it is pointed out that an asymptotic lower bound of

the running time of Mergesort (average case) belongs to Ω(n log2 n) (following standard
arguments which are not based on the use of fixed point techniques). So Mergesort
running time (average case) belongs to the complexity class Θ(n log2 n).

Of course, Schellekens’ method, without meaning to compete with the standard
and classical techniques to analyze the complexity of algorithms, has the advantage of
allowing to apply similar ideas to those presented by D.S. Scott ([7], [8]) in modelling the
meaning of recursive denotational specifications of algorithms via fixed point techniques
in such a way that the notion of “iterative approximations”, typical of the topological
Scott framework, is captured trough the concept of improver functional.

2 Extending the applicability of complexity spaces: new

algorithms and recurrence equations

In spite of it seems natural that the complexity analysis of Divide and Conquer algo-
rithms always leads up to Divide and Conquer recurrence equations of type (2), this is
not the case. Sometimes this kind of recursive algorithms yields recurrence equations
that differ from (2). A well-known example of this sort of situations is provided by
Quicksort (worst case) ([2]). Although the recurrence equations associated to the run-
ning time of computing of Mergesort and Quicksort do not belong to the same class,
it is clear that the main relationship between both algorithms is given by the fact that
them belong to the Divide and Conquer algorithms class and, thus, they are recursive
algorithms.
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Of course, the class of recursive algorithms is wider than the Divide and Conquer.
An illustrative example of recursive algorithm, which does not belong to the Divide
and Conquer family, is provided by Hanoi. Hanoi solves the Towers of Hanoi puzzle
(see [2] and [3]).

The fact that the class of recursive algorithms is wider than the Divide and Conquer
inspires to wonder two questions. On one hand, whether one can obtain a family of
recurrence equations in such a way that the complexity analysis of those algorithms
whose running time of computing is a solution either to recurrence equations associated
with Quicksort and Hanoi (see Subsection 3.3) or to a Divide and Conquer one can be
carried out from it. On the other hand, whether such a complexity analysis can be
done via an extension of the fixed point technique of Schellekens.

Clearly, the recurrence equations that yield the running time of computing of the
above aforesaid algorithms can be considered as particular cases of the following general
one:

T (n) =

{
c if n = 1
aT (n− 1) + h(n) if n ≥ 2

, (6)

where c > 0, a ≥ 1 and h ∈ C such that h(n) < ∞ for all n ∈ N.

In particular, an easy modification of T in the recurrence equation (2) allows us to
reduce this equation to one of type (6).

As well as the exposed advantage, the relevance of the family of recurrence equa-
tions of type (6) is intensified by the fact that the running time of certain non-recursive
algorithms also matches up with the solution to a recurrence equation that can be re-
trieved as a particular case of the general recurrence equation (6). A good example is
provided by Largetwo. This algorithm finds the two largest entries in one-dimensional
array of size n ∈ N with n > 1 (for a deeper discussion we refer the reader to [2]).

In what follows our purpose is to demonstrate that the Schellekens fixed point tech-
nique can be used satisfactorily to discuss the complexity of those algorithms whose
running time of computing yields with a recurrence equation of type (6). In particular,
the aforesaid recurrence equation has a unique solution and, in addition, we obtain the
complexity class (asymptotic upper and lower bounds) of such a solution. Similarly to
Schellekens’ approach, our technique to obtain the asymptotic upper bound is based on
the use of the improver functional induced by the recurrence equation. Nevertheless,
we introduce a new kind of functionals, that we have called “worsener” functionals,
with the aim of obtaining the asymptotic lower bound of the solution to the recurrence
equation. In order to provide the complexity class of an algorithm whose running time
satisfies a recurrence equation of type (6) we prove that it is enough to search among all
complexity functions for which the functional associated to the recurrence equation is
simultaneously an improver and a worsener. Finally, in order, on one hand, to validate
our new results and, on the other hand, to show the potential applicability of the devel-
oped theory to complexity analysis in Computer Science, we shall discuss the running
time of Quicksort (worst case), Hanoi and Largetwo (average case), respectively.
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3 The new fixed point technique in complexity analysis

Is this section we provide the new fixed point technique to show the existence and
uniqueness of the solution to the recurrence equations of type (6) and the announced
mathematical method to obtain the complexity class of those algorithms whose running
time satisfies the recurrence equation under study.

3.1 The existence and uniqueness of solution

Consider the subset Cc of C given by

Cc = {f ∈ C : f(1) = c}.

Define the functional ΨT : Cc→ Cc by

ΨT (f)(n) =

{
c if n = 1
af(n− 1) + h(n) if n ≥ 2

(7)

for all f ∈ Cc. It is clear that a complexity function in Cc is a solution to the recurrence
equation (6) if and only if it is a fixed point of the functional ΨT .

The next result supplies the bicompleteness of the pair (Cc, dC |Cc).

Proposition 3. The subset Cc is closed in (C, ds
C
).

Since the metric space (C, ds
C
) is complete and, by the preceding proposition, the

subset Cc is closed in (C, ds
C
) we immediately obtain the following consequence.

Corollary 4. The quasi-metric space (Cc, dC |Cc) is bicomplete.

Theorem 5. The functional ΨT is a contraction from (Cc, dC |Cc) into itself with con-
tractive constant 1

2a .

From the above theorem we can immediately gather that a recurrence equation of
the form (6) has a unique solution fT in Cc which matches up with the running time
of computing of the algorithm under study considered in each case.

3.2 The complexity class of the solution

Next we provide a method (Theorem 7 below) to describe the complexity of those
algorithms whose running time of computing satisfies a recurrence equation of type
(6). To this end we need the below auxiliary result.

Lemma 6. Let C be a subset of C such that the quasi-metric space (C, dC |C) is bi-
complete and let Ψ : C → C be a contraction with fixed point f ∈ C and contractive
constant s. Then the following statements hold:

1) If there exists g ∈ C with dC |C(Ψ(g), g) = 0, then dC |C(f, g) = 0.

2) If there exists g ∈ C with dC |C(g,Ψ(g)) = 0, then dC |C(g, f) = 0.
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Note that if a complexity function f represents the running time of computing of
an algorithm under study, the fact that there exists a complexity function g satisfying
the condition dC |C(Ψ(g), g) = 0 (dC |C(g,Ψ(g)) = 0) in the preceding lemma provides
an asymptotic upper (lower) bound of the aforesaid running time, since dC |C(f, g) = 0
(dC |C(g, f) = 0) implies that f ∈ O(g) (f ∈ Ω(g)).

In the light of Lemma 6 we observe that in order to get an asymptotic upper bound
of the running time of computing of an algorithm whose running time matches up with
the fixed point of a contraction Ψ : C → C (C ⊆ C), it is enough to check if such
a mapping satisfies the condition Ψ(g) ≤ g for any complexity function even if Ψ is
not monotone, i.e. it is unnecessary to check if Ψ is an improver with respect to a
complexity function. Motivated by this reason, in the remainder of this paper, given
C ⊆ C and a contraction Ψ : C → C we will say that Ψ is contractive improver (cont-
improver for short) with respect to a complexity function g ∈ C whenever Ψ(g) ≤ g.
Notice that an improver in our sense is an improver in the original sense of Schellekens.
Moreover, the computational meaning of improver functionals remains valid for the
cont-improver ones. Indeed, if Ψ is a cont-improver with respect to the complexity
function g then Ψn(g) ≤ Ψn−1(g) for all n ∈ N, since

dC |C(Ψ
n(g),Ψn−1(g)) ≤

1

(2a)n−1
dC |C(Ψ(g), g) = 0

for all n ∈ N.
Inspired by statement 2) in Lemma 6 we introduce a new kind of functionals that

we call worseners. Let C ⊆ C, a contraction Ψ : C → C is said to be a worsener with
respect to a function f ∈ C provided that f ≤ Ψ(f).

Observe that if Ψ is a worsener with respect to f ∈ C, then

dC |C(Ψ
n−1(f),Ψn(f) ≤

1

(2a)n−1
dC |C(f,Ψ(f)) = 0

for all n ∈ N. It follows that the computational meaning of a worsener functional is
dual to the meaning of a cont-improver functional. In fact, a worsener is a functional
which corresponds to a transformation on programs in such a way that the iterative
applications of the transformation yield a worsened, from a complexity point of view,
program at each step of the iteration.

In the next result we obtain the announced method to provide the complexity class
of an algorithm whose running time of computing satisfies a recurrence equation of type
(6).

Theorem 7. Let fT ∈ Cc be the (unique) solution to a recurrence equation of type (6).
Then the following facts hold:

1) If the functional ΨT associated to (6), and given by (7), is a cont-improver with
respect to some function g ∈ Cc, then fT ∈ O(g).

2) If the functional ΨT associated to (6), and given by (7), is a worsener with respect
to some function g ∈ Cc, then fT ∈ Ω(g).
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Note that the solution to a recurrence equation of type (6) satisfies that fT ∈
O(g)∩Ω(h) whenever ΨT is a cont-improver and a worsener with respect to g ∈ Cc and
h ∈ Cc, respectively. Consequently, Theorem 7 yields the complexity class of algorithms
whose running time of computing satisfies a recurrence equation of type (6) when there
exist l ∈ Cc, r, t > 0 and n0 ∈ N such that g(n) = rl(n) and h = tl(n) for all n > n0

and, besides, ΨT is a cont-improver and a worsener with respect to g and h respectively,
because, in such a case, fT ∈ Θ(l).

3.3 Analyzing the running time computing of some algorithms

We end the paper showing that the developed method is useful to analyze the asymp-
totic complexity of Divide and Conquer algorithms, recursive algorithms and even non-
recursive algorithms. To this aim we validate our results retrieving as an immediate
consequence of Theorem 7 the well-known asymptotic complexity class of Quicksort
(worst case), Hanoi and Largetwo (average case).

Quicksort: The running time of computing of Quicksort (worst case) is the solu-
tion to the recurrence equation

T (n) =

{
c if n = 1
T (n− 1) + jn if n ≥ 2

, (8)

where c, j > 0. It is clear that the preceding recurrence equation can be retrieved from
(6) as a particular case when we fix a = 1 and h(n) = jn for all n ∈ N. Then, taking

ΨT (f)(n) =

{
c if n = 1
f(n− 1) + jn if n ≥ 2

(9)

for all f ∈ Cc, Theorem 5 guarantees the existence and uniqueness of the solution (in
Cc), which matches up with the running time of computing of Quicksort (worst case),
to the above recurrence equation. Denote such a solution by f

Q
T . It is not hard to

see that ΨT is a cont-improver with respect to the complexity function hr ∈ Cc (i.e.
ΨT (hr) ≤ hr) if and only if r ≥ max{3j

5 ,
c
4 + j

2}, where the complexity function hr is
given by hr(1) = c and hr(n) = rn2 for n ≥ 2.

Hence we obtain, by statement 1) in Theorem 7, that the running time of Quicksort
(worst case) holds fQ

T ∈ O(hmax{ 3j
5
, c
4
+ j

2
}
).

In addition, it is not hard to see that ΨT is a worsener with respect to the complexity
function hs (i.e. hs ≤ ΨT (hs)) if and only if s ≤ min{ j

2 ,
c
4 + j

2}, whence we deduce, by

statement 2) in Theorem 7, that fQ
T ∈ Ω(hmin{d, 2c+d

3
}
).

Therefore we obtain that fH
T ∈ O(hmax{ 3j

5
, c
4
+ j

2
}
) ∩ Ω(hmin{ j

2
, c
4
+ j

2
}
). Hence f

Q
T ∈

Θ(n2), which is in accordance with the Quicksort (worst case) complexity class that
can be found in the computational literature ([1], [2]).

Hanoi: The running time of computing of Hanoi is the solution, under the uniform
cost criterion assumption, to the recurrence equation
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T (n) =

{
c if n = 1
2T (n− 1) + d if n ≥ 2

, (10)

where c, d > 0. It is clear that the preceding recurrence equation can be retrieved from
(6) as a particular case when we fix a = 2 and h(n) = d for all n ∈ N. Then, taking

ΨT (f)(n) =

{
c if n = 1
2f(n− 1) + d if n ≥ 2

(11)

for all f ∈ Cc, Theorem 5 guarantees the existence and uniqueness of the solution (in Cc),
which matches up with the running time of computing of Hanoi, to the above recurrence
equation. Next we denote such a solution by fH

T . It is not hard to see that ΨT is a
cont-improver with respect to the complexity function hr ∈ Cc (i.e. ΨT (hr) ≤ hr) if
and only if r ≥ max{d, 2c+d

3 }, where the complexity function hr is given by hr(1) = c

and hr(n) = r(2n − 1) for n ≥ 2.
So, by statement 1) in Theorem 7, we deduce that the running time of Hanoi

satisfies fH
T ∈ O(hmax{d, 2c+d

3
}
).

Furthermore, it is easily seen that ΨT is a worsener with respect to the complexity
function hs (i.e. hs ≤ ΨT (hs)) if and only if s ≤ min{d, 2c+d

3 }, whence we deduce, by
statement 2) in Theorem 7, that fH

T ∈ Ω(hmin{d, 2c+d
3

}
).

Therefore we deduce hat fH
T ∈ O(hmax{d, 2c+d

3
}
) ∩ Ω(hmin{d, 2c+d

3
}
). Thus fH

T ∈

Θ(2n), which is in accordance with the Hanoi complexity class that can be found in
the computational literature ([2]).

Largetwo: The running time of computing of Largetwo (average case) is the
solution to the recurrence equation

T (n) =

{
c if n = 1
T (n− 1) + 2− 1

n
if n ≥ 2

, (12)

where c > 0. It is clear that the preceding recurrence equation can be retrieved from
(6) as a particular case when we fix a = 1 and h(n) = 2− 1

n
for all n ∈ N. Then, taking

ΨT (f)(n) =

{
c if n = 1
f(n− 1) + 2− 1

n
if n ≥ 2

(13)

for all f ∈ Cc, Theorem 5 guarantees the existence and uniqueness of the solution (in
Cc), which matches up with the running time of computing of Largetwo (average case),
to the above recurrence equation. Let us denote such a solution by fL

T . It is not hard
to see that ΨT is a cont-improver with respect to the complexity function hr ∈ Cc (i.e.
ΨT (hr) ≤ hr) if and only if r ≥ max{ 5

6+3 log2(
2
3
)
, 2c+3
2+2d}, where the complexity function

hr is given by hr(1) = c and hr(n) = r (2 (n− 1)− log2 n+ d) for n ≥ 2.
So we deduce, by statement 1) in Theorem 7, that the running time of Largetwo

(average case) satisfies fL
T ∈ O(hmax{ 5

6+3 log2(
2
3 )

, 2c+3
2+2d

}
).

Moreover, a straightforward computation shows that ΨT is a worsener with respect
to the complexity function hs (i.e. hs ≤ ΨT (hs)) if and only if s ≤ min{1, 2c+3

2+2d}, whence

we deduce, by statement 2) in Theorem 7, that fL
T ∈ Ω(hmin{1, 2c+3

2+2d
}
).
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Therefore we obtain hat fL
T ∈ O(hmax{ 5

6+3 log2(
2
3 )

, 2c+3
2+2d

}
) ∩ Ω(hmin{1, 2c+3

2+2d
}
). Thus

fL
T ∈ Θ(n log2 n), which is in accordance with the Largetwo (average case) complexity
class that can be found in the computational literature ([2]).
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Abstract

The recently developed functional, which includes van der Waals interactions in
a full ab initio treatment of non-local correlation energy, has been shown to be very
computationally demanding. This limits its use for small and medium systems. An
implementation based on a suitable factorization and on the use of fast Fourier trans-
forms, generalizing the use of the new functional to large systems. We present accurate
results in small systems in order to validate the implementation, comparing the compu-
tational costs with the direct evaluation of the functional. We use this implementation
to study properties in clathrate hydrates, where van der Waals interactions are crucial
for stability.

Key words: DFT, van der Waals, clathrate hydrate

1 Introduction

In the last decades, one of the main aims in the density functional theory (DFT) has been
to include the long range correlation contributions of the van der Waals interactions. Even
though these interactions are much smaller than those responsible for the chemical bonds,
they are important in many systems and processes, such as soft matter, molecular ad-
sorption in surfaces and solids, biological reactions, etc [18]. Local and semi-local (DFT)
approximations [21, 33] cannot describe the asymptotic behavior of the non-local dispersion
correlation. These approximations have been found useful for finding binding distances in
some cases, but its dependence on the specific parametrization of the different functionals
compromises the method. The more extended solution to take into account these interac-
tions in an ab initio framework was to add an interatomic potential, ensuring the correct
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asymptotic behavior [9, 10]. These corrective terms depend on parameters which are fixed
from experimental or high-quality quantum chemistry data. The results are good in many
systems, but two objections can be given about its use: they are not ab initio and they are
system dependent. The second one implies a lack of ful transferability, which is crucial in
some cases.

Dion et al. [6] developed the first functional for general purposes with full ab initio
treatment of the non local correlation energy. Other functionals were proposed for layered
system in the 1990’s [17, 1, 8, 12, 7, 26]. The first applications were post-GGA perturba-
tions, using the density obtained in the general gradients approximation (GGA) as input to
evaluate the new functional. It was not able to do molecular dynamics simulations, because
Hellmann-Feymann forces were not calculated. Both limitations were resolved by the self-
consistent version [28]. Other parametrizations [31, 30] and a new version of the vdW-DF
functional has been recently reported [15]. The authors divide the correlation contribution
in two terms and the general expression for exchange-correlation energy is,

EXC [n(r)] = EX [n(r)] + EC [n(r)] = EGGAX [n(r)] + E0
C [n(r)] + EnlC [n(r)] (1)

where the brackets mean a functional dependence on the electron density, n(r). The ex-
change energy, EX , is described in the semi-local GGA. The local part of the correlation
energy, E0

C , is described in the local density approximation (LDA), and the non-local part
(nl) EnlC is given by

EnlC [n(r)] =
1
2

∫∫
d3r1 d

3r2 n(r1)n(r2)φ(q1, q2, r12) (2)

where q1 and q2 are values of an universal function q0[n(r), |∇n(r)|] evaluated in r1 and r2.
r12 = |r1 − r2|.

Although the vdW-DF functional represents a big advance and it has been applied to
many small systems [5, 23, 11, 4, 29], its use requires a very large computational resources.
The direct evaluation of the double spatial integral of the Eq. 2 scales as O(N2), with the
number N of integration points. This means a prohibitive demand for systems where van
der Waals forces are important, that are typically large. The implementation explained here
reduces the scaling to O(NlogN) operations and it allows using the vdW-DF functional in
large systems.

2 Efficient Implementation

The kernel φ has a universal and precise form [6, 13]. It obeys that EnlC is zero for any
system with constant density, where the correlation energy is fully considered in E0

C , and it
has the correct dependence for long separations r−6.
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The integrand of Eq. 2 would be a convolution if q1 and q2 were fixed values and
independent of r. This would be very useful because Fourier methods can be used to
evaluate it. We can write the kernel φ as an expansion,

φ(q1, q2, r12) '
∑
αβ

φ(qα, qβ, r12)pα(q1)pβ(q2) (3)

where qα and qβ are fixed values, chosen to ensure a good interpolation of φ. pα(q1) and
pβ(q2) are the interpolation functions, which depend on the interpolation scheme and on
the qα and qβ values, respectively. In other words, Eq. 3 is the linear interpolation of the
three-dimensional function φ, in its two first variables,qα and qβ, being the interpolation
coefficients still functions of the third variable, r12. The shape of the function ( shown in
Fig. 1 of [6]) drives to a logarithmic mesh of points, qα. This interpolation of φ is done up
to the point where the original function, q0(n, |∇n|), reaches a value qc. Above this cutoff,
a saturated value is defined as

qsat0 (n,∇n) = h[q0(n, |∇n|), qc]

h(x, xc) = xc

[
1− exp

(
−

mc∑
m=1

(x/xc)m

m

)]
(4)

h(x, xc) =
{ ' x when x < xc

→ xc when x→∞
where h(x, xc) is a soft function. mc and qc are determined to balance accuracy and com-
putational time.

Although we are using φ as a three variable function, because is useful for interpolation,
indeed it can be expressed as a function of two variables, d1 = q1r12 and d2 = q2r12 [6].
φ has a logarithmic divergence when d1, d2 → 0. Instead of using this, we interpolate a
modified φ [25]. This leads to a change in EnlC , which is corrected using a local density
approximation, that can be calculated as in reference [2].

After substitution of the interpolated φ in Eq. 2, we get,

Enlc =
1
2

∑
αβ

∫∫
d3r1 d

3r2 θα(r1) θβ(r2) φαβ(r12)

=
1
2

∑
αβ

∫
d3k θα(k) θβ(k) φαβ(k) (5)

where

θα(r1) = n(r1)pα
[
qsat0 (n(r1), |∇n(r1)|)

]
and θβ(r2) = n(r2)pβ

[
qsat0 (n(r2), |∇n(r2)|)

]
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θα(k) is the Fourier transform of θα(r), and φαβ(k) is the Fourier transform of φαβ(r) ≡
φ(qα, qβ, r), which can be calculated in a fine radial mesh of k points for convenient inter-
polation.

In order to evaluate atomic forces, the full energy functional has to be minimized self-
consistently. The method to handle the gradient dependence is based again in the technique
reported in Ref. [2], and details can be found in Ref. [25]. This non-local potential, vnli , is
a functional of the density in every point ri of the mesh, which is added to the semi-local
terms in vXCi and to the rest of the effective potential.

Table 1 shows the algorithm. The main computational effort is done to calculate Nα

transforms and Nα inverse transforms. The scaling of the fast Fourier transforms (FFT)
and of the method is O(N logN). The method uses any electronic density defined in a
uniform real-space grid ri as input and returns exchange-correlation energy and potential
in the same grid. The method does not depend on the basis set, and can be implemented
in any electronic structure code which uses basis functions.

do, for each point i of the real-space mesh
find ni and ∇ni
find qi = q(ni,∇ni)
find θαi = nipα(qi) ∀α

end do
calculate Fourier Transform θαi → θαk ∀α
do, for each point k of the reciprocal-space mesh

find uαk =
∑

β φαβ(k)θβk ∀α
end do
calculate Inverse Fourier Transform uαk → uαi ∀α
do, for each point i of the real-space mesh

find ni, ∇ni and qi
find θαi, ∂θαi/∂ni and ∂θαi/∂∇ni ∀α
find vi

end do

Table 1: Algorithmic for one self-consistent step of the implementation.

3 Results

This method was first tested in some of the systems studied originally with the non-local
functional [6, 23, 29]. Fig. 1 a shows the interaction energy of a dimer of argon. We
find a very good agreement between the direct evaluation of Eq. 2 [6] (dashed line) and
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Figure 1: Interaction energy as function of separation of argon dimer (a) and benzene dimer
in sandwich geometry (b). a) The solid and dashed lines represent the original calculation
[6] using GGA and direct evaluation of de Eq. 2, respectively. Squares and circles show the
results using our implementation. The black circle is the experimental equilibrium distance.
b) Symbols represent direct evaluation of EnlXC from several authors [23, 14] and lines our
calculations.

implementation explained above (circles). It is well known that the vdW-DF functional
overestimates the experimental bond distances [29, 6, 23] (black circle [19]). Fig. 1 b shows
the interaction energy of a dimer of benzene in a sandwich geometry, where the positions
of atoms of different molecules differ only in the z coordinate. The symbols represent
calculations by direct evaluation of EnlXC of different authors [14, 23] and the lines have
been obtained with our implementation. Again, a good agreement is found. The small
discrepancies may be due to the different basis-sets. The results from Ref. [23] (purple
circles) were obtained with the non-selfconsistent version. We think that this is the reason
why it shows smaller binding energies, especially when the dimer atoms are close. In both
figures we include results obtained with the GGA, to show the qualitative and quantitative
differences in the interaction energy.

This method was used in a study of double wall carbon nanotubes (DWNT) of different
geometries [25] with a number of atoms from 60 to 168. Table 2 shows the computational
times of calculating the exchange-correlation energy of two systems: a dimer of argon and a
DWNT (8,2)(16,4) with 168 atoms. The relative differences between using GGA or vdW-DF
are large for the dimer of argon but they are small for large systems.

Graphite is the paradigmatic example of a van der Waals solid. It is a layered material
in which carbon atoms are arranged in a covalently bonded hexagonal lattice. The layers
are stacked in different geometries and bonded by weak van der Waals forces. Its unit
cell, in the AB stacking, has four carbon atoms. Table 3 shows the lattice parameter of a
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System Atoms CPU time GGA-XC CPU time vdW-XC vdW/GGA

Ar2 2 0.75 s (44%) 7.5 s (89%) 40%

DWNT 168 11.9 s (0.6%) 109 s (5.2%) 4%

Table 2: Comparison of the computational cost of two systems: a dimer of argon and a
double wall carbon nanotube (8,2)(16,4). In parenthesis the percentage over the total time
for one self-consistent step.

vdW-DF* vdW-DF Experimento [32]

a (Å) 2.476 2.485 2.459

c (Å) 3.590 3.565 3.336

Eexf (meV/at) -53 -48 -52 ± 5

Table 3: Lattice parameters and exfoliation energy of graphite. * Results obtained by direct
evaluation of Eq. 2 [34].

monolayer, the interlayer equilibrium distance and the exfoliation energy. We labeled the
data obtained by direct evaluation with “vdW-DF*” [34]. The small discrepancies with our
calculations are again attributed to the different basis sets. To illustrate how important is a
good description of the basis-sets, we include Table 4. It was found essential to correct the
basis set superposition error (BSSE) [3], especially when we are interested in interaction or
adsorption energies. This error has been also corrected in Fig. 1.

The clathrate hydrates are crystalline water solid phases, in which small molecular gases
and hydrocarbons are trapped in cavities formed by hydrogen-bonded water molecules.

TZP TZP-optim TZP bsse

a (Å) 2.485 2.485 2.485

c (Å) 3.425 3.445 3.565

Eexf -67 -70 -48

Table 4: Lattice parameters and exfoliation energy of graphite using different basis-sets.
In the last column BSSE has been corrected. TZP-optim basis was optimized in graphite
system with simplex [22].
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Fig. 2 shows the different cavities for two structures (I and H). In these systems, three

512 62

512

512 68

43 56 63

Structure H

Structure I
2·512 + 6·51262

3·512 + 2·435663 + 51268 

Figure 2: Structure I is formed by two 512 cages and six 51262 cages for a total of 46 H2O
molecules per unit cell. Structure H is formed by three 512 cages , two 435663 cages and
one 51268 cage, and 34 H2O molecules per unit cell. The dots indicate the oxygen atom
positions. Hydrogen atoms are not shown. The cages are not scaled with respect to each
other.

different interactions are combined: covalent interaction, responsible of the molecular bonds,
hydrogen bonds, which keep the crystal structure, and van der Waals interactions, which
dominate the adsorption energy of the guest molecules [24]. The adsorption energy is defined
as the difference between the total energy of the clathrate, with the molecules inside, and
that of the the empty clathrate plus the isolated molecules. Table 4 shows adsorption energy
for methane and dioxide of carbon using GGA and vdW-DF. Although our definition of
adsorption energy is useful to find the energy that the system gains, it cannot be directly
interpreted in terms of stability. The structures without any guest molecules inside are not
stable at any given temperature and pressure, and so we have to compare this energy gain
with that of the stable phase of water (ice Ih). Taking this into account the structure is
stabilized by van der Waals forces, when the number of guest molecules is higher than two
[24]. This results were obtained with SIESTA ( which uses numerical atomic orbitals as
basis functions [27, 20]) and confirmed by plane waves calculations [16].

Fig. 3 shows rotational energies of methane in the 51262 cavity (where the super-index
indicates the faces with the shapes that are represent by the base number). The CH4

rotates almost freely (Ebarrier <20 meV) inside all the cavities. Rotation of CO2 shows
higher energy barriers for all cavities (up to ∼600 meV in 512). This large difference can
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Guest Functional Structure I Structure H
512 51262 512 435663 51268

CH4 GGA 0.09 -0.07 0.07 0.05 -0.12
CH4 vdW -0.52 -0.59 -0.53 -0.54 -0.48
CO2 GGA 0.35 0.10 0.29 0.22 0.01
CO2 vdW -0.41 -0.56 -0.41 -0.43 -0.38

Table 5: Adsorption energies (in eV per molecule) for single CH4 and CO2 molecules in one
of the different cavities of clathrate structures I and H. Partially reproduced from [24].
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Figure 3: Rotation energy of CH4 in 51262 of structure I of clathrate hydrate.

be explained by the almost isotropic electronic density that methane shows, which interacts
with an almost spherical cavity. However, this spherical potential is not dense in the sense
that it comes from the position of the atoms of the water molecules. For this reason, CO2

molecules with a cylindrical electronic density, show some easy direction orientations. Fig.
4 shows the rotation energy of CH4 in the largest cavity of structure H. This cavity can
hold up to five molecules. We see that the rotation is almost free when one molecule is in
the cavity, but barriers increase with the number of molecules inside the cavity. When this
number is higher than three, the interaction between molecules becomes very important and
the adsorption energy decreases. This adsorption energy is exothermic up to the maximum
occupation.

@CMMSE                                 Page 1015 of 1703                                 ISBN: 978-84-614-6167-7
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Figure 4: Rotation energy of CH4 in the biggest cavity (51268) of structure H of clathrate
hydrate as function of numbers of molecules(one, two, three molecules in a), b), c) respec-
tively). Energy is given respect the relaxed energy.

4 Conclusions

We present a methodology for an accurate and efficient implementation of the vdW-DF
functional. We show that it gives the same results as a direct evaluation of EnlXC with a small
overhead in computational time for large systems, compared with popular GGA’s. It can be
concluded that any system suitable to be studied with local and semi-local approximations
can be also studied using vdW-DF. Clathrate hydrates are stabilized by van der Waals
forces. The movement and interactions of adsorbed molecules inside the cavities depend
mainly on these interactions as well.
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Abstract

The technology of vehicular ad-hoc networks (VANETs) allows vehicles com-
municate with road-side infrastructure or with nearby vehicles, supporting a wide
range of promising vehicular communication applications and services. It relies
on the periodic transmission of packets, called beaconing, as single-hop link-layer
broadcast to nearby vehicles or road-side units. However, due to the inherent
broadcast nature of the wireless channels, beaconing is easily exposed to security
attacks, such as spoofing, manipulation, or replaying. In this paper, we propose
a new scheme for securing beaconing based on the mechanism of identity-based
signature. Our scheme has a number of crucial advantages. It mitigates the re-
quirement of the public key infrastructure (PKI), but without degrading security
strength. Consequently, it surpasses existing PKI-based solutions in terms of both
the communication and computation overhead associated with certificates. We also
show how the scheme can be extended to implement a forward-secure key exchange
scheme in VANETs.

Key words: Vehicular ad-hoc networks, VANETs, Security, Efficiency

1 Introduction

The technology of vehicular ad-hoc networks (VANETs) allows vehicles communicate
with road-side infrastructure or with nearby vehicles. IEEE 802.11p will standard-
ize the physical and medium access control layers for VANETs. Higher layer is also
being standardized and draft standards have been released in the IEEE 1609 set of
standards. The VANETs are expected to support a wide range of promising vehicu-
lar communication applications and services, relying on the periodic transmission of
packets as single-hop link-layer broadcast to nearby vehicles or road-side units [5, 10].
Those packets, called beaconing, contain information like the current location, heading
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Payload (m) Location (x, y, z) Time (t) Signature (R, s) Certificate (pk)

32 11 8 56 125

Figure 1: IEEE 1609.2 Message Format for Secure Beaconing

and speed of the sending vehicle, by which every vehicle is aware of neighboring vehi-
cles within a certain range. The beaconing is also essential for geographic routing and
message dissemination in VANET. However, due to the inherent broadcast nature of
the wireless channels, beaconing is easily exposed to security attacks, such as spoofing,
manipulation, or replaying. Securing beaconing is therefore one of major challenges to
the widespread deployment of VANET technology.

A simple approach to address this problem is to use symmetric-based technique for
the becon packet authentication, as in [1, 2, 3, 4]. However, it requires time synchro-
nization and allows only delayed beacon verification after key disclosure by the sender.
This approach is not applicable to dynamic and time-critical vehicular networks. An al-
ternative and promising approach is to use signature based asymmetric cryptographic
mechanism like ECDSA as specified in the IEEE 1609.2 standard draft [7]. In this
approach, the underlying strategy is to let vehicles to equip with asymmetric crypto-
graphic key pairs (VK, SK) and certificates issued by a trusted certification authority.
Then, all beacons get signed using the vehicle’s signature key (SK) and receivers ver-
ify them using the verification key VK. Signature and certificate containing VK are
attached to the beacon, as shown in Figure 1, requiring additional 181 octets payload
(56 octets for the signature and 125 octets for the certificate). This approach not only
imposes the public-key infrastructure (PKI) requirement, but also causes a significant
overhead of communication bandwidth and processing power associated with signature
and certificate. The fact that the problem is much worse in case vehicle density is high
limits the use of existing PKI-based schemes [7, 8, 9].

In this paper, we propose an efficient scheme for securing beaconing in VANETs
that is based on the mechanism of identity-based signature. The main advantages of
our scheme are as follows: It mitigates the requirement of the public key infrastructure,
but without degrading security strength in the PKI-based approach. That is, it fully
provides the security properties of message authentication, resistance to replay attacks
and non-repudiation needed for securing transmitted beacons without using certificates.
It significantly reduces the communication overhead associated with certificates, as well
as computation cost for signing and verifying beacons. We also show how the scheme
can be extended to implement a forward-secure key exchange scheme in VANETs. The
rest of this paper is structured as follows. We first describe the communication model
we consider and the goals of protocol design in Section 2. We describe our our solution
for certificateless secure beaconing in Section 3. The security analysis and performance
are discussed in Section 4. We further discuss about the support for forward-secure key
exchange in Section 5. Finally we conclude in Section 6.
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2 Model and Assumptions

2.1 Network Model

The Model. The network model we consider includes road-side units (RSUs) and
on-boad units (OBUs). RSUs are fixed units distributed in the network. RSUs are
connected to each other through a high-speed backbone network connecting to the
internet. RSUs transmit periodic broadcast packets to nearby vehicles or road-side
units, OBUs are embedded in vehicles and can function while moving. By using OBUs,
vehicles can communicate with the RSUs or other OBUs. Each OBU is equipped
with a global positioning service receiver. The communication between RSUs and
OBUs is based on the dedicated short-range communications (DSRC) identified as IEEE
802.11p. All units that expect to use the secure VANET application services must be
registered with a Trusted Authority (TA), by which the communication entities obtain
cryptographic keys associated with their long-term identities. We assume that the TA
is fully trusted by all communication entities in VANET settings. We also assume that
each entity is equipped with a tamper-resistant hardware security module to store its
security-related materials.

Attacker. We assume that attackers have following abilities. They observe and
intercept any transmitted packet they want in VANETs, as usual. From the intercepted
packets, they are able to replay the session at some later point in time. They also are
capable of adding or in some other way altering transmitted packets on the channel. We
assume that attackers are computationally bounded and hence cannot break standard
cryptographic algorithms

2.2 Design Goals

The protocol for securing such vehicular communication should have the following prop-
erties.

Correctness. The protocol should be correctly verifiable.

Efficiency. The number of operations, the number of message exchanges and the total
number of transmitted bits required to execute the protocol should be minimized.

Security. The primary threats against vehicular communication is that an attacker
might forge messages or replay the messages sent some time before in order to
disrupt the traffic. To prevent the threats, the protocol must fulfill the fundamen-
tal security attributes: unforgeability, resistance to replay attacks, message in-
tegrity, and non-repudiation. The security attributes mentioned above are briefly
described below.

– Message Authentication: It is computationally infeasible for an attacker to mas-
querade an honest sender in creating a valid message that can be accepted by the
protocol. It represents that the recipient is able to verify that the contents of the
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message sent by the sender have not been tampered with and altered. This prop-
erty addresses the unauthorized alteration of message, such as such as insertion,
deletion, and substitution.

– Resistance to Replay Attacks: A replay attack is a form of network attack in which
a valid message transmitted by an honest sender is maliciously or fraudulently
repeated or delayed to the same or a different recipient. The property of resistance
to replay attacks assures that an attacker, obtaining a valid message previously
transmitted by an honest sender, is not able to maliciously retransmit it to the
same or a different recipient.

– Non-repudiation: The communication entities are not able to fraudulently deny
the transmission or the content of their previous messages. That is, the recipient
has the ability to prove to a third party that the sender has sent the message.
Thus when disputes arise the third party can determine which entity was the true
source of the message.

3 Our Scheme: Certificateless Secure Beaconing

We use the Schnorr’s signature scheme as the underlying cryptographic primitive in
our construction. Let G be an additive cyclic group of prime order q, and let P be a
generator of G. Recall that a Schnorr signature of a messagem under public key X ∈ G
is a pair (R, s) ∈ G× Zq such that sP = R + eX ∈ G, where e is the hashed value on
R||m. The Schnorr’s signature scheme generates short signatures and is efficient.

The scheme consists of three phases: system setup, broadcasting signed message
and message verification phases. In the system setup, the TA generates system parame-
ters and a master secret key. The TA is also responsible for issuing a public and private
key pair for all communication entities, RSUs and OBUs. The key pair is coupled with
the identity information of each communication party and TA’s master key, using the
Schnorr signature scheme. Note that the identity information can be any string includ-
ing entity’s unique serial number, its physical location information and so on. This
setup phase is performed before providing any of the VANET services or applications.
In broadcasting signed messages, a message sender with a pair of public and private
keys constructs a signature σ on a message m of arbitrary length and broadcasts them
with the sender’s credential cred. Upon arriving the message, the receiver verifies the
message and its signature using the sender’s credential. More details are given below.

3.1 System Setup

Let G be an additive cyclic group of prime order q, and let P be a generator of G. Let l
be a security parameter. TA generates system-wide parameters as follows. TA chooses a
random value x ∈ Zq as the system master key and sets X = xP as a system parameter.
It also chooses two secure cryptographic hash functions H0,H1 : {0, 1}∗ → Z∗

q . Then,
TA publishes (G, q, P,X,H0,H1) as system-wide parameters and keeps the master key
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x secretly. We assume that communication parties in VANETs, OBUs and RSUs, are
preloaded with the public parameters.

For each communication party with a unique identity information id, TA generates
a pair (Y, k) of public and private keys as follows:

1) Select a random value y ∈ Zq.

2) Compute Y = yP, k = (y + e · x) mod q, where e = H0(id||Y ||Texp) and Texp is
the expiration time of the key pair.

3) The pair (Y, k, Texp) is assigned to each party.

3.2 Broadcasting Signed Messages

Let m be a message of arbitrary length to be signed. The sender S performs the
following for generating a signature on m.

1) Select a random value r ∈ Zq.

2) Compute R = rP and s = r+e1·k, where e1 = H1(R||m||Tcur) and Tcur represents
the sender’s current timestamp.

4) Set σ = (R, s) as the signature of m.

5) Broadcast the packet (m,σ, cred), where the sender’s credentials cred includes the
tuple of (id, Y, Texp, Tcur).

Sender → ∗ : m||σ||cred

3.3 Messages Verification

On receiving the broadcast packet (m||σ||cred), the packet receiver performs the fol-
lowing.

1) Check if Tcur and Texp are valid. If not, reject the packet.

2) Compute v1 = sP and v2 = R + e1(Y + e0X), where e0 = H0(id||Y ||Texp) and
e1 = H1(R||m||Tcur).

3) Accept the message if and only if v1 = v2.

Correctness. Note that the correctness of the protocol follows because of the relation
sP = R+ e1(Y + e0X) = H1(R||m||Tcur)(yP +H0(id||Y ||Texp).
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4 Analysis

4.1 Security

We now show that our new construction, denoted as CL-SB, satisfies the required
security properties described in Section 2.2. The security of the CL-SB relies on the
discrete logarithm assumption.

Message Authentication. It is not difficult to see that the above CL-SB provides
the property of message authentication. This is due to the fact that only legitimate
entities who possess the private key corresponding to its identity can create a signature
on the transmitted message using its own private key. More specifically, let us consider
that an attacker tries to masquerade an honest sender, RSU or OBU, and to send an
arbitrary m′ to neighboring receivers for fraudulent purpose. In order to do this, the
challenge of the attacker is to derive a valid signature value (R′, s′) of the message m′,
where R′ = r′P, s′ = r′ + e1k

′, e1 = H1(R
′||m′||Tcur) and r′ is a random value chosen

by the attacker. It however is exactly an instance of underlying primitive, Schonrr
signature scheme that is proven to the discrete logarithm problem in the random oracle
model in [13]. That is, we can say that the CL-SB is secure against unauthorized
insertion, deletion and substitution attack.

Resistance to Replay Attacks. With regards to the security property against
replay attacks, an attacker might intercept a valid message previously transmitted by
an honest sender, but is not able to maliciously retransmit it the same or different
recipients. This is due to the fact that in CL-SB protocol a timestamp is cryptograph-
ically combined with a message for detecting message replay. Note that from the use
of timestamp the protocol not only enables to avoid the replay attacks but also has
the significant advantage of fewer messages, and no requirement to maintain pairwise
long-term information, such as sequence numbers or random numbers.

Non-reputation. TAs mentioned before, non-repudiation is necessary to prevent
legitimate entities from denying the transmission of their messages. The property
of non-repudiation in CL-SB is achieved by requiring all transmitted messages to be
cryptographically combined with its sender’s private key. That is, the fact that the
entity’s private key is known only to itself guarantees the property of non-repudiation,
as in any other signature-based schemes.

4.2 Performance

The metrics used to evaluate the performance of CL-SB are the computational and the
communication costs required for secure beaconing. Here we compare our construction,
CL-SB, with the ECDSA based scheme (denoted as ECDSA-SB) in IEEE 1609.2 with
regards to computational and protocol overhead for secure beacons. Unlike ECDSA-
SB, CL-SB does not assume the use of public-key infrastructure, by which it achieves
greater efficiency and easy implementation.

For each scheme we show the computational cost of signing, the computational
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Scheme Sign Veriy |sig| |cert(pk)|
ECDSA-SB [7] 1 exp + 1 inv 4 exp + 2 inv 56 125
CL-SB 1 exp 3 exp 40 20

Table 1: Comparison of secure beaconing schemes

cost of verifying of a beacon, the size of signature payload and the size of certificate
payload required for sending a single secure beacon. For computational cost we only
consider the most expensive operations, point multiplication over an elliptic curve and
multiplicative inverse operation in Zq. All sizes are in octets. We denote by “exp” the
point scalar multiplication over an elliptic curve and by “inv” the multiplicative inverse
operation.

The signing in CL-SB requires one point scalar multiplication, while one point
scalar multiplication and one inverse operation in ECDSA-SB. The verification in CL-
SB requires only three point multiplication operations, while four point multiplication
operations and two inverse operations in ECDSA-SB. Our signatures are 40 octets
(320bits), while 56 octets (448bits) in ECDSA-SB. Note that the CL-SB does not
require the certificate of public key, by which the additional payload for public key is
only 20 octets (160bits) which is significantly shorter than in ECDSA-SB.

5 Supporting Forward Secure Key Exchange

We can easily extend the CLSB protocol to protect transmitted messages by supporting
the security service of forward-secure key exchange. For simplicity of notation, let us
denote A be a communication initiator and B be a corresponding responder in VANET.
The protocol works as follows.

round 1 A→ B : R′
A||σA||YA||teA ||tcA

A chooses two random values a, a′ and computes RA = aP , R′
A = a′P ,

sA = a+H(RA||R′
A||tcA) · kA, where tcA is a A’s current timestamp. A sets

σA = (RA, sA) as the signature of the keying material R′
A. Then, A sends

the tuple (R′
A, σA, YA, teA , tcA) to B, where teA is the expiration time of A’s

credentials.

round 2 B → A : R′
B||σB||YB||teB ||tcB

Similarly, B chooses two random value b, b′ and computes RB = bP , R′
B =

b′P σB = b + H(RB||R′
B||TcurB ) · kB, where and TcurB is a B’s current

timestamp. B sets σB = (RB, sB) as the signature of the keying material
R′

B. B then sends the tuple (R′
B, σB, YB, teB , tcB ) to A. From the packet

(R′
B||σB||YB||teB ||tcB ), A checks if tcB and teB is valid. Then, A computes

vB = sBP , v
′
B = RB + H1(RB||R′

B||tcurB )(YB + H0(idB||YB||teB ) · X). A
accepts R′

B and computes SA = a′(R′
B) = a′b′P to obtain the shared secret

key KA, if and only if vB = v′B. The shared secret key is computed by
KA = kdf(R′

A, R
′
B, SA).
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Similarly, B first checks if tcA and teA is valid. Then, B accepts the value R′
A

and computes the shared secret KB = kdf(R′
A, R

′
B, SB), if and only if vA =

v′A, where vA = sAP , v
′
A = RA +H1(RA||R′

A||tcurA)(YA +H0(idA||YA||teA) ·
X) and SB = b′(R′

A) = a′b′P , as done in A.

6 Concluding Remarks

In this paper, we proposed a new scheme for securing beaconing that is based on
the mechanism of identity-based signature. The main advantages of our scheme are as
follows: It guarantees security properties of integrity and authentication on transmitted
beacons by all beacons get signed using the vehicle’s private key and receivers verify
them using publicly available information. Unlike the ECDSA based scheme in IEEE
1609.2 it does not assume the use of public-key infrastructure, by which it achieves
greater efficiency and easy implementation. We also showed how the scheme can be
extended to implement a forward-secure key exchange scheme in VANETs.
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Abstract

The accurate valuation of American options is a difficult problem due to the
possibility of early exercise and the performance of a numerical algorithm for solv-
ing the American problem is strongly dependent on its capability to accurately
locate the optimal exercise boundary. This paper provides some new insights on
the performances of three finite difference algorithms for approximating the Amer-
ican option price under the Black-Scholes model. The algorithms we consider are
the Han and Wu method, the operator splitting technique of Ikonen and Toiva-
nen and the optimal compact approximation of Tangman, Gopaul and Bhuruth
and these methods are implemented in the Mathematica environment. Our choice
of software is motivated by Mathematica’s capability for supporting functional
programming and dynamic interactivity which allows the development of sophisti-
cated codes. Price comparisons over various benchmark problems are carried out
and it is shown that the optimal compact approximation produces option prices
with higher accuracy and there is not much loss in accuracy when coarser grids
are chosen whereas the Han and Wu and Ikonen and Toivanen methods are more
sensitive to the grid size chosen. Mathematica codes are provided for all the three
methods.

Key words: American Options, Partial Differential Equations, Free Boundary
Value Problem, Linear Complementarity Problem, Mathematica

MSC 2000: 35A35; 65M70; 62P05

1 Introduction

American options are among the most traded derivatives in financial markets as they
can be optimally exercised at any time up to maturity date. Closed form solutions for
American options do not exist and various numerical and analytical techniques have
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been proposed for obtaining approximate prices. Analytical approaches to approximat-
ing the exact solutions usually yield formulae which are difficult to use in practice which
explains the popularity of numerical methods for the valuation problem. One numerical
approach which computes the entire price function consists of formulating the valua-
tion problem either as a free-boundary value problem or as a linear complementarity
problem (LCP).

For the linear complementarity problem, the PSOR method [4] is known to con-
verge slowly. Another technique for the solution of the LCP is to add a penalty term
to the Black-Scholes variational inequality [5, 9] but this technique usually requires
the solutions of nonlinear systems. A more efficient technique which avoids the so-
lution of linear complementarity problems is the algorithm proposed by Ikonen and
Toivanen [10]. This technique uses an operator splitting (OS) method to decouple the
Black-Scholes operator and the constraint for the option value.

The Han and Wu (HW) [7] algorithm is based on transforming the Black-Scholes [2]
equation into a heat equation on an infinite domain and then computing the numerical
solution on a bounded domain with exact artificial boundary conditions at one end
of this truncated domain. At the other end of the domain, the free boundary is lo-
cated using a simple numerical technique based on properties of the solution to a heat
equation.

A different method for the accurate location of the free boundary was proposed
in [13]. This algorithm computes the difference between the American and European
option prices by using an optimal compact approximation (OCA) on a non uniform
grid for the finite difference discretization of the heat equation. The location of the
free boundary is determined using the smooth pasting condition. Since the American
and European option prices both satisfy the Black-Scholes equation in the continuation
region, the discontinuity at the strike price in the payoff function is removed and this
enhances the accuracy of the computed solutions.

Our experience with the American option pricing problem has shown that the
above three methods (HW, OS and OCA) are among the most efficient for the pricing
of American options. We implement these methods in Mathematica and we compare
their accuracy against both finite difference algorithms and analytical approximation
methods. An outline is as follows. In §2 we recall the American option pricing problem
and in §3 we describe the three numerical algorithms. Price comparisons are given in
§4 and the Mathematica codes are given in the Appendix.

2 The American Option Valuation Problem

We consider a financial market consisting of a risky asset with price process {St}t≥0

and constant volatility σ > 0 in a risk neutral economy with fixed rate of return r > 0.
Under the risk neutral measure Q, the dynamics of the Black-Scholes model is given by

dSt

St
= (r − δ)dt + σdWt,

where δ denotes the continuous dividend yield and Wt is standard Brownian motion.
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Let V (S, t) be the price of a European option with strike price K and maturity
date T . Then V is the solution of the Black-Scholes equation

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0, (1)

with terminal condition V (S, T ) = (S −K)+ = max(S − K, 0) for a call option and
V (S, T ) = (K − S)+ for a put option. The price V (S, t) of a European call can be
explicitly calculated and is given by

V (S, t) = SΦ(d1)−Ke−r(T−t)Φ(d2),

where

d2 =
log (S/K) +

(
r − σ2/2

)
(T − t)

σ
√

T − t
, d1 = d2 + σ

√
T − t,

and φ is the distribution function of the standard normal distribution Z ∼ N(0, 1).
The formula for European puts can be obtained using the put-call parity [1, p.123].

The possibility for early exercise means that the American call option price, V (S, t)
satisfies the constraint V (S, t) ≥ (S−K)+. The contact point, Sf (t), which varies with
t is a point where V (S, t) > (S−K)+ for S < Sf (t) and V (S, t) = (S−K) for S ≥ Sf (t).
Let

LSV =
1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV, (2)

Then the free boundary value formulation for computing the American call price re-
quires the solution of [11]

∂V

∂t
(S, t) + LSV (S, t) = 0, 0 < S < Sf (t), 0 ≤ t ≤ T, (3)

V (S, T ) = (S −K)+, 0 ≤ S ≤ Sf (T ),
V (Sf (t), t) = (Sf (t)−K)+, 0 ≤ t ≤ T,

∂V

∂S
(Sf (t), t) = 1, 0 ≤ t ≤ T, (4)

V (S, t) → 0, as S → 0, 0 ≤ t ≤ T.

The condition (4) is known as the smooth pasting condition and we find that the free
boundary divides the strip (0, ∞)×[0, T ] into two regions, the continuation region R1 =
(0, Sf (t))× [0, T ] in which the Black-Scholes equation (1) holds and R2 = [Sf (t), ∞)×
[0, T ] which represents the exercise region in which rK < δS. Thus

∂V

∂t
+ LSV < 0. (5)

This leads to the LCP formulation for the American call option given by
∂V

∂t
+ LSV ≤ 0, S > 0, 0 ≤ t ≤ T,

V (S, T ) = (S −K)+, S > 0,

V (S, t) ≥ (S −K)+,[
∂V

∂t
+ LSV = 0

]
∨ [

V (S, t) = (S −K)+
]
.
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3 Finite Difference Algorithms

We provide brief descriptions of the Han-Wu, Ikonen-Toivanen and Tangman-Gopaul-
Bhuruth algorithms. For full details on the numerical techniques, the reader is referred
to the original papers [7, 10, 13]. The Appendix lists the Mathematica codes for the
three numerical schemes.

3.1 The Han-Wu Algorithm

The Han-Wu algorithm transforms the Black-Scholes equation into a heat equation on
an infinite domain. This problem is localized to a finite computational domain and at
one end of this domain, an artificial boundary condition is accurately determined. At
the other end of the domain, the free boundary is located using a scheme based on
properties of the Black-Scholes equation.

We consider the transformations given by τ = 2(T − t)/σ2, k = 2r/σ2, δ∗ = 2δ/σ2,
τ∗ = σ2T/2, k′ = r∗ − δ∗, S = Kex, S∗f (τ) = Sf (T − 2τ/σ2), S∗f (τ) = Kexf (τ) and
V ∗(S, τ) = V (S, T − 2τ/σ2). Then letting

V ∗(S, τ) = Keαx+βτu(x, τ), (6)

the problem (3) is transformed to

∂u

∂τ
=

∂2u

∂x2
, −∞ < x < xf (τ), 0 ≤ τ ≤ τ∗, (7)

u(x, 0) = g(x, 0), −∞ < x ≤ xf (0),
u(xf (τ), τ) = g(xf (τ), τ), −∞ < x ≤ xf (τ), 0 ≤ τ ≤ τ∗,

αu(xf (τ), τ) +
∂u

∂x
(xf (τ), τ) = e(1−α)xf (τ)−βτ , 0 ≤ τ ≤ τ∗, (8)

u(x, τ) → 0 as x → −∞,

where g(x, τ) = e−αx−βτ (ex − 1)+ is the transformed payoff.
The technique for locating the free-boundary and the derivation of the artificial

boundary condition are the two main steps in the algorithm. For a < 0, let Γa given by
Γa = {(x, τ)|x = a, 0 ≤ τ ≤ τ∗} be the artificial boundary condition. Then the exact
boundary condition on Γa is given by

∂u(a, τ)
∂x

=
1√
π

∫ τ

0

∂u(a, λ)
∂λ

dλ√
τ − λ

. (9)

On a finite domain, condition (8) is replaced by the artificial boundary condition (9)
and the problem solved using the Crank-Nicolson discretisation [7, p. 2090].

3.2 The Optimal Compact Approximation

The singularity at the strike price of the payoff function decreases the accuracy of the
computed American option price. In the continuation region, both the European and
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American option prices satisfy the Black-Scholes equation and this means that the
singularity at the strike price can be removed by considering the difference between
the American option price and the European price. This technique is known as the
singularity separating method and was developed in [13]. The OCA method uses an
optimal compact scheme for the heat equation [12, p.24].

Let uA denote the transformed American call option price given by (6) and let uE

be the transformed European call price. Since both uA and uE satisfy the heat equation
in (7), the difference uD = uA − uE also satisfies the same equation. Then uD is the
solution of

∂uD

∂τ
=

∂2uD

∂x2
, −∞ < x < xf (τ), 0 ≤ τ ≤ τ∗

uD(x, 0) = 0, −∞ < x < xf (0),
uD(xf (τ), τ) = g(xf (τ), τ)− uE(xf (τ), τ), 0 ≤ τ ≤ τ∗

uD(x, τ) → 0 as x → −∞.

The problem is localized to a finite domain and the use of a non-uniform grid in the
OCA algorithm allows choosing a fine grid on the part of the computational domain
where the unknown free boundary is located and a coarse grid is chosen on the part
extended to incorporate the far field boundary conditions. The algorithm also avoids
the implementation of artificial boundary conditions as in the Han and Wu algorithm
and instead uses the smooth pasting condition for locating the free boundary. For
further details, we refer to [13].

3.3 The Operator Splitting Method

Ikonen and Toivanen [10] proposed an operator splitting technique for solving the linear
complementarity problem. The Black-Scholes inequality (5) for the American problem
is transformed to

∂V

∂t
+ LSV + λ = 0,

where λ ≥ 0 is a penalty term.
The problem is localised on a finite domain (0, Smax) and central difference approx-

imations are used to discretise the Black-Scholes operator LSV in (2) on a uniform mesh
with spacing ∆S where Smax = N∆S. Letting A denote the resulting discretisation
matrix and ζ = T − t, we obtain the semidiscrete equation

∂V

∂ζ
= AV + λ, 0 ≤ t ≤ T.

Let T = M∆ζ, V j =
[
V j

1 , V j
2 , . . . , V j

N−1

]
where V j

i = V (i∆S, j∆ζ) and let λj be the
value of λ at time level j∆ζ. Then the Crank-Nicolson scheme for the solution of the
LCP can be written in the form

(
I − 1

2
∆ζA

)
V j+1 =

(
I +

1
2
∆ζA

)
V j + ∆ζλj .
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In addition we have the constraints
[
V j

i − (Si −K)
]
· λj

i = 0, V j
i ≥ Si −K, λj

i ≥ 0.

The Operator Splitting method solves for the pair
(
V j+1, λj+1

)
in two fractional steps.

The first step solves for V̂ j+1 from
(

I − 1
2
∆ζA

)
V̂ j+1 =

(
I +

1
2
∆ζA

)
V j + ∆ζλj .

Then letting V 0
i = (Si − K)+ and denoting by V 0 the vector with components V 0

i

for i = 1, 2, . . . , N − 1, the second step computes V j+1 and λj+1 using the two-step
formula

V j+1 = max(V 0, V̂ j+1 + ∆τλj),

λj+1 = λj +
1

∆τ
(V̂ j+1 − V j+1).

4 Price Comparisons

We compare American option prices computed by different methods that have appeared
in the literature. The prices computed by the three finite difference algorithms consid-
ered in this paper are compared against both analytical approximation methods and
partial differential equations-based methods. All computations have been performed
using Mathematica 7 on a Core i7 laptop with 8GB RAM and speed 3.20 GHz.

We first carry out a comparison against the Gauss-Laguerre (GL) method of
Frontczak and Schobel [6] which is based on modified Mellin transforms and the lower
and upper bound approximation (LUBA) of Broadie and Detemple [3]. Details on spe-
cific implementation issues including tuning parameters to obtain the computed results
can be found in the original papers of the authors.

The example considered concerns the valuation of an American call option with
a maturity of six months (T = 0.5). The other parameters are chosen as K = 100,
r = 0.03, δ = 0.07 and σ = 0.2. Computations for the Han-Wu (HW), operator splitting
(OS) and optimal compact approximation (OCA) are performed using m = 400 in the
space direction and n = 400 in the time direction. For the Han-Wu algorithm, the heat
equation is localized to the domain [xmin, xmax] where xmin = −1 and xmax = 1. For
the operator splitting method, we have chosen Smax = 200 and for the OCA method,
we choose Smin = 10 and Smax = 200. We then construct a non-uniform grid on log
price and these details can be found in the commented Mathematica codes.

The prices given by the different methods are shown in Table 1. It is observed that
the prices computed by OCA and LUBA for the different asset prices are practically
the same as the ’True’ values given in the American option pricing literature. The HW
and OS produce prices which are less accurate than OCA whereas the semi-analytical
GL method is not as accurate as the other methods.
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(T, r, δ, σ, K) = (0.5, 0.03, 0.07, 0.2, 100)
Asset Price(S) True Value GL LUBA HW OS OCA

80 0.2194 0.2185 0.2195 0.2193 0.2193 0.2194
90 1.3864 1.3851 1.3862 1.3858 1.3858 1.3864
100 4.7825 4.7835 4.7821 4.7816 4.7817 4.7825
110 11.0978 11.1120 11.0976 11.0969 11.0971 11.0977
120 20.0004 20.0000 20.0000 20.0005 20.0000 20.0005

Table 1: American call option prices.

Our second numerical example is designed to study the effect on accuracy on the
computed prices by HW, OS and OCA when we vary the number of grid nodes. For
this example, we choose the same values as in the first example for the parameters xmax,
xmin and Smax. Comparing the computed prices when the spot price S equals the strike
price K = 100, we see from Table 2 that the number of grid points has an influence
on the accuracy of the HW and OS computed prices. OCA does not produce changes
in computed prices when coarser grids are chosen. Table 3 gives further numerical
evidence on this important property of OCA.

(T, r, δ, σ, K) = (0.5, 0.03, 0.07, 0.2, 100)
Asset True HW OS OCA

Price(S) Value 300× 300 200× 400 300× 300 200× 400 300× 300 200× 400
80 0.2194 0.2193 0.2193 0.2192 0.2193 0.2193 0.2193
90 1.3864 1.3854 1.3859 1.3853 1.3858 1.3863 1.3863
100 4.7825 4.7808 4.7815 4.7809 4.7818 4.7825 4.7825
110 11.0978 11.0963 11.0968 11.0966 11.0973 11.0976 11.0976
120 20.0004 20.0000 20.0005 20.0000 20.0000 20.0006 20.0005

Table 2: American call option prices for different grid size m× n.

(T, r, δ, σ, K) = (0.5, 0.03, 0.07, 0.2, 100)
Asset True m× n

Price(S) Value 200× 200 200× 100 150× 300
80 0.2194 0.2193 0.2193 0.2193
90 1.3864 1.3862 1.3862 1.3862
100 4.7825 4.7823 4.7823 4.7822
110 11.0978 11.0975 11.0975 11.0974
120 20.0004 20.0008 20.0008 20.0010

Table 3: Accuracy of OCA computed American call option prices.

In our third numerical example, we compare option prices computed by HW, OS
and OCA with those computed by the finite difference moving boundary method of
Muthuraman (MBM) [8], the front fixing method (FF) of Wu and Kwok [14] and the
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penalty method (PM) of Nielsen, Skavhaug and Tveito [9]. The problem we consider
is a three year American put with r = 0.08, σ = 0.2 and δ = 0. The results for MBM
are for a grid size of m = 500 and n = 100, for both FF and PM the grid is of size
m = 1000 and n = 1000 and for HW, OS and OCA we use m = 600 and n = 600 with
Smax = 300, xmin = −1.2 and xmax = 1.2.

(T, r, δ, σ, K) = (3, 0.08, 0, 0.2, 100)
Asset True

Price(S) Value MBM FF PM HW OS OCA
80 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000
90 11.6974 11.6889 11.9029 11.7207 11.6974 11.6972 11.6975
100 6.9320 6.9203 7.2527 6.9573 6.9320 6.9319 6.9321
110 4.1550 4.1427 4.4841 4.1760 4.1548 4.1548 4.1550
120 2.5102 2.4996 2.7760 2.5259 2.5101 2.5101 2.5102

Table 4: American put prices.

Clearly, we can see from Table 4 that HW, OS and OCA are highly accurate
for American put options. Among these three methods, OCA is more accurate. For
the selected grid size, the MBM, FF and PM all give option prices that are not even
accurate to 2 decimal places with the ’True’ values for S > 80. Moreover, it is well
known that penalty methods generally requires the solution of non-linear systems of
equations which can prove costly.

5 Conclusion

American options do not admit closed form solutions and numerical methods or semi-
analytical methods are necessary for computing approximations to put and call options.
This paper studied three finite difference algorithms for solving the American option
pricing problem. Prices given by the three methods were compared against prices
obtained by both analytical approximation and other finite difference methods. The
results indicate that the HW, OS and OCA algorithms perform better in terms of ac-
curacy in comparison to the other finite difference methods that we considered. Among
these three methods, we demonstrated that OCA produces more accurate option prices.
The merit of this scheme which uses a singularity separating framework lies in the choice
of a non-uniform grid which can be chosen to be coarse on the far boundary and the
results showed that coarser grid nodes does bring significant decrease in accuracy of
the computed American option prices.
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A Mathematica Codes for Call Options

We provide the Mathematica codes used to produce the numerical results for call op-
tions. Only simple modifications are necessary for producing the results for put options.
Figure 1 gives the Mathematica code for the Han and Wu algorithm and Figure 2 gives
the code for the operator splitting method. For the optimal compact approximation,
the Mathematica codes for producing the tridiagonal matrix and the computation of
the European price are given in Figure 3. Finally, Figure 4 lists the Mathematica code
for pricing call options using OCA.

HanCall@T_, K_, S1_, Σ_, r_, ∆_, n_, m_, xmin_, xmax_D := Module@8err, k, fb<,

H*Transformation*L

tmax = 0.5 Σ^2 T; k = 2 r � Σ^2; k∆ = 2 Hr - ∆L � Σ^2; Ρ = dt � dx^2;

Θ = Sqrt@ΡD; divisor = 4 Θ + Sqrt@ΠD H1 + 2 Θ^2L;

alph = 0.5 Hk∆ - 1L; bet = 0.25 Hk∆ - 1L^2 + k;

H*Grid Specification*L

dt = tmax � m; dx = Abs@xmax - xminD � n; vett = Range@0, tmax, dtD;

vetx = Range@xmin, xmax, dxD; vets = K Exp@vetxD;

H*Initial condition*L

payoff = Map@Max@Exp@0.5 Hk∆ + 1L vetx@@ðDDD - Exp@0.5 Hk∆ - 1L vetx@@ðDDD, 0D &,

Range@n + 1DD;

H*Calculation of Artificial Boundary Condition*L

wold = payoff; Φ = wold@@1DD; s = ConstantArray@0, n + 1D;

s@@1DD = 1 + Ρ - Ρ Θ^2 Sqrt@ΠD � divisor;

Allknown = Θ wold@@1DD + Sqrt@ΠD wold@@1DD � 4;

H*Transform the tridiagonal system into a bidiagonal system and locate the

free boundary condition*L

news@i_D := Module@8<, s@@iDD = 1 + Ρ - Ρ^2 � H4 s@@i - 1DDLD;

Map@news, Range@2, n + 1DD; hancall@j_D := Module@8<,

g = Exp@bet vett@@jDDD payoff;

b = ConstantArray@0, n + 1D; y = ConstantArray@0, n + 1D;

w = ConstantArray@0, n + 1D;

b@@1DD = 0.5 Ρ Hwold@@1DD + wold@@3DDL + H1 - ΡL wold@@2DD + 2 Ρ Allknown � divisor;

y@@1DD = b@@1DD; w@@2DD = Hy@@1DD + 0.5 Ρ g@@3DDL � s@@1DD; i = 1; wold1 = w@@2DD;

gold1 = g@@2DD;

byw@i_D := Module@8<, b@@iDD = 0.5 Ρ Hwold@@iDD + wold@@i + 2DDL

+ H1 - ΡL wold@@i + 1DD;

y@@iDD = b@@iDD + 0.5 Ρ y@@i - 1DD � s@@i - 1DD;

w@@i + 1DD = Hy@@iDD + 0.5 Ρ g@@i + 2DDL � s@@iDD; z = i;D �; Hw@@iDD >= g@@iDDL;

Map@byw, Range@2, nDD; i = z;

H*Set call option values above the free boundary condition as payoff*L

w@@i + 1 ;; n + 1DD = g@@i + 1 ;; n + 1DD;

H*Compute remaining option values*L

neww@i_D := Module@8<, w@@i + 1DD = Hy@@iDD + 0.5 Ρ w@@i + 2DDL � s@@iDDD;

Map@neww, Range@i - 1, 1, -1DD;

w@@1DD = 4 HAllknown + 0.5 Θ^2 Sqrt@ΠD w@@2DDL � divisor;

Φold = 8Φ, w@@1DD<; Φ = Φold �� Flatten; Allknown =

Θ Hwold@@1DD - Total@HΦ@@2 ;; jDD - Φ@@1 ;; j - 1DDL � HSqrt@j - Range@1, j - 1DD

+ Sqrt@j - Range@2, jDDLD L + Sqrt@ΠD wold@@1DD � 4;

v = K Exp@-alph vetx - bet vett@@jDDD w; wold = wD;

Map@hancall@ðD &, Range@2, m + 1DD;

H*Interpolate the values of S1*L

Interpolation@Map@8vets@@ðDD, v@@ðDD< &, Range@Length@vetsDDDD@S1DD;

Figure 1: Han and Wu Mathematica code for pricing call options.
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OpSpAmerCall@T_: 0.5, K_: 100, S1_: 80, Σ_: 0.2, r_: 0.03, ∆_: 0.07,

n_: 400, m_: 400, smin_: 0, smax_: 200, Θ_: 0.5D := Module@8x, t, Α, Β, Γ<,

H*Discretising the domain*L

dx = Hsmax - sminL � n; dt = T � m;

x@i_D := smin + i dx; X = Map@x, Range@0, nDD; t@j_D := j dt;

H*Initial condition for a call option*L

U0 = Map@Max@x@ðD - K, 0D &, Range@0, nDD;

H*Implementing the left and right boundary conditions*L

ul = 0; ur = smax - K;

H*Transformations*L

Α = 0.5 Σ^2 X^2 � dx^2 - Hr - ∆L X � H2 dxL; Β = -Σ^2 X^2 � Hdx^2L - r;

Γ = 0.5 Σ^2 X^2 � Hdx^2L + Hr - ∆L X � H2 dxL;

H*Use vectorization to create the coeffcient matrix*L

Λ = ConstantArray@0, n - 1D; iden = SparseArray@8Band@81, 1<D -> 1<, 8n - 1, n - 1<D;

a1 = Drop@Drop@Α, 2D, -1D; a2 = Drop@Drop@Β, 1D, -1D; a3 = Drop@Drop@Γ, 1D, -2D;

A1 = SparseArray@8Band@82, 1<D -> a1, Band@81, 1<D -> a2, Band@81, 2<D -> a3<, 8n - 1, n - 1<D;

B = H1 � dtL iden + H1 - ΘL A1; A = H-1 � dtL iden + Θ A1; uold = U0;

H*Implementation of the Operator splitting method with Crank-Nicolson*L

OSCNAC@j_D := Module@8<, rhs = -HB.uold@@2 ;; nDD - ΛL;

rhs@@1DD = rhs@@1DD - Θ Α@@2DD ul - H1 - ΘL Α@@2DD ul;

rhs@@n - 1DD = rhs@@n - 1DD - Θ Γ@@nDD ur - H1 - ΘL Γ@@nDD ur;

uprime = LinearSolve@A, rhsD �� Chop; u = ConstantArray@0, nD;

u@@2 ;; nDD = Map@ Max@uprime@@ð - 1DD + dt Λ@@ð - 1DD, U0@@ðDDD &, Range@2, nDD;

Λ1 = Λ + H1 � dtL Huprime - u@@2 ;; nDDL; Λ = Λ1; uold@@2 ;; nDD = u@@2 ;; nDD; j + 1D;

H*Evaluation of the option price vectors*L

Nest@OSCNAC@ðD &, 1, mD;

H*Evaluation of the option price when the stock price=S1*L

Interpolation@

Map@8X@@ðDD, Flatten@8ul, u@@2 ;; nDD, ur<D@@ðDD< &, Range@Length@XDDDD@S1DD;

Figure 2: Operator Splitting Mathematica code for call options.

In[2]:= H*Define a function FunCoeff to obtain the

tridiagonal linear system with optimal discretization*L

FuncCoeff@X_, dt_, n_D := Module@8<, xL1 = X@@2 ;; nDD - X@@1 ;; n - 1DD;

xC1 = X@@3 ;; n + 1DD - X@@1 ;; n - 1DD; xR1 = X@@3 ;; n + 1DD - X@@2 ;; nDD;

bj1 = H1 � 3L HxL1^2 + xL1 xR1 + xR1^2L; DΑ1 = 1 � 3 - 2 bj1 � H3 xC1 xL1L;

DxxΑ1 = 2 � HxC1 xL1L; DΒ1 = 1 � 3 - H2 bj1 � H3 xC1LL H-1 � xR1 - 1 � xL1L;

DxxΒ1 = H2 � xC1L H-1 � xR1 - 1 � xL1L; DΓ1 = 1 � 3 - 2 bj1 � H3 xC1 xR1L;

DxxΓ1 = 2 � HxC1 xR1L; Α1 = DΑ1 � dt - H1 � 2 - bj1 � H12 dtLL DxxΑ1;

Β1 = DΒ1 � dt - H1 � 2 - bj1 � H12 dtLL DxxΒ1; Γ1 = DΓ1 � dt - H1 � 2 - bj1 � H12 dtLL DxxΓ1;

ΑR1 = DΑ1 � dt + H1 � 2 + bj1 � H12 dtLL DxxΑ1; ΒR1 = DΒ1 � dt + H1 � 2 + bj1 � H12 dtLL DxxΒ1;

ΓR1 = DΓ1 � dt + H1 � 2 + bj1 � H12 dtLL DxxΓ1; 8Α1, Β1, Γ1, ΑR1, ΒR1, ΓR1<D;

H*Define a function bscallsmith to obtain Black-Scholes analytical solution*L

bscallsmith@S_, T_, r_, ∆_, Σ_, K_D :=

Module@8d1, d2<, d1 = HLog@HS + $MachineEpsilonL � KD + Hr - ∆ + 0.5 Σ^2L TL �

HΣ Sqrt@T + $MachineEpsilonDL;

d2 = d1 - Σ Sqrt@TD; N1 = H1 - 0.5 Erfc@d1 � Sqrt@2DDL; N2 = H1 - 0.5 Erfc@d2 � Sqrt@2DDL;

S N1 Exp@-∆ TD - K Exp@-r TD N2D;

Figure 3: Mathematica functions for constructing OCA tridiagonal matrix and com-
putation of European option price.
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OHCCALL@S1_, m_, n_, T_, Σ_, r_, ∆_, smax_, K_D := Module@8err, smin, k, fb, Α, Β, Γ<,

H*Transformations*L

tmax = 0.5 Σ^2 T; k = 2 r � Σ^2; k∆ = 2 Hr - ∆L � Σ^2;

alph = 0.5 Hk∆ - 1L; bet = 0.25 Hk∆ - 1L^2 + k; smin = 10; ds = Hsmax - sminL � n;

H*Construction of the non-uniform grid and the computation of the non-uniform

log transformed x-coordinate*L

vets = Range@smin, smax, dsD;

vetx = Log@vets � KD; dt = tmax � m; vett = Range@0, tmax, dtD;

wold = ConstantArray@0, n + 1D;

H*Use Gauss Elimination to transform the tridiagonal system to a bidiagonal one*L

8Α, Β, Γ, ΑR, ΒR, ΓR< = FuncCoeff@vetx, dt, nD;

c = ConstantArray@0, n - 1D;

newcΒ@i_D := Module@8<, c@@iDD = Α@@iDD � Β@@i - 1DD; newΒ = Β@@iDD - c@@iDD Γ@@i - 1DD;

Β@@iDD = newΒ;D; Map@newcΒ, Range@2, n - 1DD; fb = ConstantArray@0, m + 1D; fb@@1DD = 1;

v = ConstantArray@0, n + 1D; w = ConstantArray@0, n + 1D;

b = ConstantArray@0, n - 1D; y = ConstantArray@0, n - 1D;

H*Implementation of the optimal high order compact scheme*L

Yan@j_D := Module@8<,

H*At each time step,we compute the difference between the transformed payoff and

the transformed European option*L

HEurExact = H1 � KL Exp@alph vetx + bet vett@@jDDD

bscallsmith@vets, vett@@jDD � H0.5 Σ^2L, r, ∆, Σ, KD; g1 = Exp@bet vett@@jDDD

Map@Max@Exp@Halph + 1L vetx@@ðDDD - Exp@alph vetx@@ðDDD, 0D &, Range@n + 1DD;

g = g1 - HEurExact;

H*locate the free-boundary,compute the Delta for two more nodes and

extrapolate to obtain an accurate free boundary location*L

b@@1DD = ΑR@@1DD wold@@1DD + ΒR@@1DD wold@@2DD + ΓR@@1DD wold@@3DD; y@@1DD = b@@1DD;

by@i_D :=

Module@8<, b@@iDD = ΑR@@iDD wold@@iDD + ΒR@@iDD wold@@i + 1DD + ΓR@@iDD wold@@i + 2DD;

y@@iDD = b@@iDD - c@@iDD y@@i - 1DDD; Map@by, Range@2, n - 1DD;

w@@nDD = Hy@@n - 1DD - Γ@@n - 1DD g@@n + 1DDL � Β@@n - 1DD; i = n; err = g@@iDD - w@@iDD;

neww@err2_D := Module@8<, z1 = i - 1; i = z1; w@@iDD =

Hy@@i - 1DD - Γ@@i - 1DD g@@i + 1DDL � Β@@i - 1DD; g@@iDD - w@@iDDD;

NestWhile@neww, err, ð > 0 &D; i = i; w@@i + 1DD = g@@i + 1DD;

wk@k_D := Module@8<, w@@kDD = Hy@@k - 1DD - Γ@@k - 1DD w@@k + 1DDL � Β@@k - 1DDD;

Map@wk@ðD &, Range@i - 1, i - 2, -1DD;

H*Grid Remanipulation*L

interpoS = vets@@i - 1 ;; iDD;

val = K Exp@-alph * vetx@@i - 2 ;; i + 1DD - bet * vett@@jDDD *

Hw@@i - 2 ;; i + 1DD + HEurExact@@i - 2 ;; i + 1DDL;

interpoV = Hval@@3 ;; 4DD - val@@1 ;; 2DDL � H2 Hvets@@iDD - vets@@i - 1DDLL;

Off@InterpolatingFunction::dmvalD;

fb@@jDD = Interpolation@Map@8interpoV@@ðDD, interpoS@@ðDD< &, Range@Length@interpoSDDD,

InterpolationOrder ® 1D@1D;

xf = Log@fb@@jDD � KD; sf = fb@@jDD; Select@vetx, ð < xf &D;

i = Length@Select@vetx, ð < xf &DD;

H*reconstruct the optimal compact linear equation based on the new grid

node xf at the critical asset price*L

8Α11, Β11, Γ11, ΑR11, ΒR11, ΓR11< =

FuncCoeff@Append@vetx@@i - 1 ;; iDD, xfD, dt, 2D �� Flatten;

wold@@i + 1DD = Exp@bet vett@@j - 1DDD Max@Exp@Halph + 1L xfD - Exp@alph xfD, 0D -

H1 � KL Exp@alph xf + bet vett@@j - 1DDD

bscallsmith@sf, vett@@j - 1DD � H0.5 Σ^2L, r, ∆, Σ, KD; w@@i + 1DD = Exp@bet vett@@jDDD

Max@Exp@Halph + 1L xfD - Exp@alph xfD, 0D - H1 � KL Exp@alph xf + bet vett@@jDDD

bscallsmith@sf, vett@@jDD � H0.5 Σ^2L, r, ∆, Σ, KD;

b@@i - 1DD = ΑR11 wold@@i - 1DD + ΒR11 wold@@iDD + ΓR11 wold@@i + 1DD;

cc = Α11 � Β@@i - 2DD; Β2 = Β11 - cc Γ@@i - 2DD; Β11 = Β2;

b1 = b@@i - 1DD - cc y@@i - 2DD; b@@i - 1 DD = b1; y@@i - 1DD = b@@i - 1DD;

w@@iDD = Hy@@i - 1DD - Γ11 w@@i + 1DDL � Β11; w@@i + 1 ;; n + 1DD = g@@i + 1 ;; n + 1DD;

wnew@i_D := Module@8<, z = i; w@@i + 1DD = Hy@@iDD - Γ@@iDD w@@i + 2DDL � Β@@iDDD;

Map@wnew, Range@i - 2, 1, -1DD; v = K Exp@-alph vetx - bet vett@@jDDD Hw + HEurExactL;

wold = w;D; Map@Yan, Range@2, m + 1DD;

Interpolation@Map@8vets@@ðDD, v@@ðDD< &, Range@Length@vetsDDDD@S1DD;

Figure 4: OCA Mathematica code for call options.
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Abstract

In this study, we conducted the parallelization of a digital image to remove
impulsive noise with multi-core interface using Open Multi-Processing (OpenMP)
and the Graphics Processing Unit (GPU) programming model using Compute Uni-
fied Device Architecture (CUDA). Many sequential algorithms to remove noise in
digital images, have either an excessive computational cost or are too large when
the purpose is real-time processing. We did an analysis of performance using large
images in order to identify the amount of pixels to be allocate in Multi-core and
GPUs, so that both have work to do. Performance was evaluated in terms of execu-
tion time and we did a comparison of the implementation parallelized in multi-core,
GPUs and a combination of both. The observed time shows that both devices must
have tasks to do, leaving the most of the work to the GPU.

Key words: noise removal, peer group filter, parallel algorithm, graphical pro-
cessing unit (GPU), open multi-processing (OpenMP).

1 Introduction

Image denoising is still an open problem in the field of image processing, because
damaged images can affect the performance and accuracy of some processes. Also,
images can be very large and/or require a real-time processing.
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Noise removal and the correct perception of a desired color are of paramount im-
portance in emerging applications related to biomedical science, earth science, cultural
heritage preservation, video communications, image postprocessing, robotic inspection
and surveillance. Impulsive noise is commonly found, caused by the malfunction of sen-
sors and other hardware during the process of image formation, storage or transmission,
[12]. This type of noise affects some individual pixels, changing its original value. The
most usual model of impulsive noise is the Salt and Pepper noise (or fixed value noise),
which considers that the new, wrong, pixel value is an extreme value within the signal
range. This is the noise type we consider in this paper.

Many algorithms to reduce impulsive noise in images (known as filters) have been
introduced in other papers. Among many others we can cite [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12]. Those filters are based on the concept of peer group. A peer
group is a set of neighboring pixels of a central one, xi, beeing similar to it according
to an appropriate metric value (this is, the nearest neighbours) [12] [9]. This type of
filters have recently shown good results in quality but they do not seem appropiate for
real-time processing [1], [8], [9], [10], [12], [13].

In this paper, we introduce a parallel version of peer group based filters in order
to keep their good quality results while trying to improve its performance, so to make
them usable in real-time processing. We have tested this parallel algorithms developing
programs for Graphical Processing Units (GPU) and multi-cores and we did an analysis
of the best distribution of pixels in these two devices to take advantage of the hardware.

Graphical processing units are currently a very popular platform for developing
parallel applications, considering their availability, price and speed. Therefore, we
judge very convenient to develop parallel filter implementations for GPUs. Our imple-
mentations are programmed in C, using the CUDA library (Compute Unified Device
Architecture), [15].

The paper is organized as follows: Section 2 explains parallel version of the algo-
rithm. Section 3 discusses how the parallel algorithm was implemented for the GPUs
and Multi-core. The results of the experimental study are shown in Section 4 and
finally Section 5 concludes the paper.

2 Parallel denoising algorithm

Now we will describe our parallel denoising algorithm. Our algorithm uses the peer
group of a central pixel xi in a window W according to [12] but using a fuzzy metric
instead. The fuzzy distance between the vectors xi and xj of the color image is given
by the following function:

M(xi, xj) =
3∏

l=1

min {xi(l), xj(l)}+ k

max {xi(l), xj(l)}+ k
. (1)

where (xi (1), xi (2), xi (3)) is the color vector for the pixel xi in RGB and xj are the
neighbor pixel of xi. In [6], it was shown that k = 1024 is an appropriate setting to
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maintain the image quality, and this was therefore the value that we use in the present
study. The function to get the peer group is,

P(xi, d) = {xj ∈ W : M(xi, xj) ≥ d} (2)

where 0 <= d <= 1 is the distance threshold. The peer group associated with the
central pixel of W is a set formed by the central pixel xi and its neighbors belonging
to W , whose distance from xi exceeds d.

The algorithm performs two main steps: in the first one (detection) the pixels are
labeled as either corrupted or uncorrupted. In the second step (filtering) corrupted
pixels are corrected. Therefore, the detection and filtering step are described for a
single pixel xi:

• Detection: xi is declared as corrupted if #P(xi, d) < (m + 1), where m is the
voting threshold and #A the cardinality of set A.

• Filtering: given a pixel xi previosly marked as corrupted, we replace it by the
arithmetic mean of its neighbor pixels in its windowW : the well-known arithmetic
mean filter (AMF) [1], [2]. This is, the new value for xik (color component k of

xi) is
∑

xjk

(#W−1) for all xj ∈ W with j 6= i.

We decomposed the algorithm into two phases –detection and filtering– not only
to follow the separation of concerns principle, but also because we use the AMF to
replace corrupted pixels. Given that AMF considers only uncorrupted pixels for the
mean computation, the filter phase cannot start until the detection phase is done. In
consequence, to ensure this synchronization requirement, in our parallel implementation
on GPUs we have developed two kernels –a detecting kernel and a filtering kernel– so
that the filtering kernel is not launched until the detecting kernel has finished and in
multi-core, are two separate functions.

In the implementation on GPU, we use texture to access data from the GPU.

3 Comments on the GPU and multi-core implementation

In the previous section we described the detection and filtering steps of the algorithm.
We have done three implementations. The first was in multi-core using OpenMP and
the second with CUDA on GPUs. Figure 1 shows an example of these two imple-
mentations. The third is a combination of multi-core and GPUs. Figure 2 shows the
distribution of an image using the cores and GPUs.

For the distrubution of the pixels of an image in the first implementation, we divided
the number of pixels by the number of cores (less than or equal to those available). In
the second implementation, the image was divided by a number less than or equal to the
GPUs available. In the third implementation, the pixels are distributed in multi-core
and GPU running on each of the cores and GPUs specified. The flowchart, Figure 3,
shows the elimination of noise with these three implementations.
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Multicore GPUs

a b

Figure 1: a)Distributed image in 4 cores b) Distributed image on 2 GPU

GPUs

Multi-core

Figure 2: Distributed image on 4 GPUs and 8 cores.

Table 1: Parallelizing image with multi-core. Time in seconds
core

image size 1 2 4 8 16
96x64 0.0037 0.0020 0.0012 0.0009 0.0010
192x128 0.0148 0.0076 0.0040 0.0024 0.0024
384x256 0.0601 0.0306 0.0156 0.0087 0.0083
768x512 0.2381 0.1185 0.0604 0.0318 0.0274
1536x1024 0.9367 0.4687 0.2348 0.1256 0.0986
3072x2048 3.7023 1.8814 0.9554 0.5049 0.3817
6144x4096 14.7825 7.4480 3.7615 2.0435 1.4790

4 Experimental Study

This section presents the results of practical experiments conducted on a Mac OS X
(Intel Quad-Core Xeon 2 x 2.26 GHz, 8GB of RAM) with four NVIDIA GPU (GeForce
GT 120, 512MB of memory) and CUDA toolkit (version 1.1, gcc 4.0). We used the
Caps image (Figure 4) from a Kodak image database ([14]).

The first test that we did was to distribute the image only in cores. Table 1 shows
the results. As we can see, the shortest time is presented when the image is divided
among the 16 cores available, except with small-sized images (96x64 pixels) which have
an optimal allocation with 8 cores.

The next test consists of distribute a image among the available GPUs. As shown

@CMMSE                                 Page 1044 of 1703                                 ISBN: 978-84-614-6167-7
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Start

n_core>0

n_gpu>0

Image,imasize,n_core,n_gpu,
core_dist,m,d

pix_gpu=imasize/n_gpu

pix_cpu=imasize/n_core

pix_cpu=(imasize*core_dist)n_core
pix_gpu=(imasize-pix_cpu)/n_gpu

Transfer pix_gpu to the gpu and/or 
pix_cpu to the cores

Detection step

Filtering step

Filtered Image

End

No

No

Yes

Yes

Figure 3: Flowchart describing the algorithm for remove noise image.

in Figure 5, to parallelizing an image smaller than 1536x1024 it works better with
only one GPU. The times obtained in one GPU are similar to the ones got by the
parallelizing through 16 cores, but if the size of the image increases, then the time
difference increases. Distributing a image smaller than 3072x2048 into 4 GPUs smaller
, leads to a greater time than dividing the distribution on two GPUs. With this, we
see that with a large image, the optimal distribution is obtained by using four GPUs,
but not for small images (smaller than 3072x1048).

In the last test conducted, we have distributed the image in both CPU and GPU.
Figure 5 shows the results obtained when the image is distributed into 4 GPUs and in
all the cores, for different image sizes.

In both cases the behavior is similar. The best time is shown when more load is
assigned to the GPU leaving less on the cores. Table 3 shows the performance of time
using the available cores and 4 GPUs, and making the comparison using only the 4
GPUs without cores, for a distribution of 1/8 of the image in cores and 7/8 in GPU.
As can be seen in the results, the parallelization performed using the harwdare of cores
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Figure 4: Caps Image

Table 2: Parallelizing image with GPU. Time in seconds
GPU

image size 1 2 4
96x64 0.0009 0.0357 0.1058
192x128 0.0022 0.0363 0.1061
384x256 0.0071 0.0391 0.1074
768x512 0.0267 0.0483 0.1117
1536x1024 0.1047 0.0858 0.1306
3072x2048 0.3415 0.2357 0.2019
6144x4096 1.0681 0.8144 0.4734
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Figure 5: a)Caps 3072x2048 b) Caps 6144x4096

and GPUs gives better results than the parallelization performed only in 4 GPUs.

5 Concluding remarks

The availability of inexpensive parallel processing hardware provided by graphical pro-
cessing units is a clear reason to develop and test programs to solve problems that
could benefit from it. The image denoising is a problem that fits well in a parallel
scenario because images may be large, the processing is costly, and the image pixels,
to an extent, can be handled simultaneously.

Therefore, in this paper we have adapted a denoising algorithm based on the peer
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Table 3: Time in seconds for the image parallelized 1/8 in multicore and 7/8 in 4 GPUs.
core 3072x2048 6144x4096
0 0.4734 0.2019
1 0.4625 1.8448
2 0.2338 0.9331
3 0.1568 0.6251
4 0.1201 0.4747
5 0.1053 0.3877
6 0.0911 0.3479
7 0.0926 0.3560
8 0.0851 0.3241
9 0.1942 0.3423
10 0.0888 0.3605
11 0.0973 0.3396
12 0.0900 0.3566
13 0.1023 0.3726
14 0.0979 0.3877
15 0.1035 0.3692
16 0.0980 0.3916

group concept that uses a fuzzy metric with a parallel setting option. We have im-
plemented it to be run on a GPU using the CUDA library and using OpenMP in
multi-core.

We conducted experiments to adjust our algorithm, to compare it with the sequen-
tial version of the same algorithm, and to compare the quality of the resulting images
with other algorithms. We conclude that parallel implemetations of denoising filters on
GPUs and multi-core are very advisable, and they open the door to use such algorithms
for real-time processing.

For future works, we plan to implement this parallel algorithm to detect edges in
an image.
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Abstract

In this paper we propose a new study concerning the stability of variational
discrete systems. We analyze the connections between the exponential stability
of a variational discrete system and the stabilizability of an associated control
system. Using constructive methods and computational arguments, we deduce
that the stabilizability and the ℓp input-output stability of the associated control
system are necessary and sufficient conditions for the exponential stability of the
initial variational system.

Key words: variational discrete system, cocycle, stability, control system, sta-
bilizability
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1 Introduction

In the last decades, a significant progress was made in the study of the control problems
for dynamical systems arising in engineering, fluid mechanics, population dynamics, bi-
ology, aerospace and the investigation methods were extended from functional methods
and spectral approaches to computational analysis and discrete-time techniques (see
[1]–[19] and the references therein). A leading topic was the stabilization problem for
control systems, which was treated from various perspectives for a large variety of sys-
tems: autonomous, non-autonomous, variational, discrete, with distributed parameters
and so forth (see [2], [5], [7]–[16], [18] and the references therein). Moreover, it has
been shown that (complete) stabilizability is interrelated with the exact controllability
(see [5], [7], [13], [16], [18]). The analysis of the connections between the asymptotic
properties of dynamical systems and the stable properties of some associated control
systems provided important information with applications in robustness problems (see
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[2], [15], [17], [19]). In [2], employing a new technique, relying in the properties of the
evolutions semigroup on function spaces, the authors pointed out that for differential
systems described by evolution families the exponential stability may be expressed in
terms of the stabilizability and detectability of the associated control system. Then,
it is natural to study whether this phenomenon occurs also for variational systems
and to investigate which is the most general structure of the system, such that these
techniques can be implemented. A first attempt in this sense was obtained in [13] for
skew-product semiflows, working with integral control systems. The second main step
was made in [15] where we have considered the case of difference equations and we
have deduced their behavior using input-output techniques in terms of abstract Ba-
nach sequence spaces. It worth mentioning that the control properties of difference
equations has recently begun to be understood in infinite dimensional spaces (see [3],
[6], [16], [18] and the references therein) and therefore their study is of great interest in
identifying and clarifying natural phenomena which are modeled in the discrete-time
setting. An interesting case in this framework is represented by the variational discrete
systems (see [19]). On the one hand this generalizes the case of difference equations
and on the other hand leads to a dynamic variational modeling. In the stability theory
this aspect is very useful because a variational system is exponentially stable if and
only if its discrete-time counterpart is exponentially stable (see [19] and the references
therein).

The aim of this paper is to treat a new case of the above described problem and to
obtain several interesting connections between stabilizability and exponential stability
in the general case of variational discrete systems in infinite-dimensional spaces. Mainly,
we consider the variational discrete system

(A) x(θ)(n+ 1) = A(σ(θ, n))x(θ)(n), θ ∈ Θ, n ∈ N

where σ is a discrete flow on a metric space Θ (see Definition 2.1 below) and {A(θ)} is
a family of bounded linear operators on a Banach space X. We associate the discrete
control system

(A,B) x(θ)(n+ 1) = A(σ(θ, n))x(θ)(n) +B(σ(θ, n))u(n), θ ∈ Θ, n ∈ N

where U is a Banach space and {B(θ)} ⊂ B(U,X). In what follows we will analyze
for the first time the connections between the exponential stability of the system (A)
and the stabilizability of the control system (A,B). Our starting point is a recent
characterization of the uniform exponential stability of variational discrete systems
(see [19]). Throughout this paper we develop a constructive investigation relying on
input-output techniques, using direct and computational arguments. Our study will
show that the exponential stability of the system (A) is equivalent with two properties
of the system (A,B): stabilizability and an ℓp input-output stability property.

2 Stability of variational discrete system-preliminaries

Let X be a real or complex Banach space and let L(X) be the Banach algebra of all
bounded linear operators on X. Throughout this paper the norm on X and on L(X)
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will be denoted by || · ||. Let Id denote the identity operator on X.

Let Z denote the set of the integers, let N denote the set of all non-negative integers
and let N∗ = N\{0}. We denote by S(N, X) the linear space of all sequences s : N → X.
For every p ∈ [1,∞) let

ℓp(N, X) = {s ∈ S(N, X) :

∞∑
k=0

||s(k)||p <∞}

which is a Banach space with respect to the norm ||s||p = (
∑∞

k=0 ||s(k)||p)
1/p. We

consider the space

ℓ∞(N, X) = {s ∈ S(N, X) : sup
n∈N

||s(n)|| <∞}

which is a Banach space with respect to the norm ||s||∞ = supn∈N ||s(n)||.

Let (Θ, d) be a metric space.

Definition 2.1 A mapping σ : Θ×Z → Θ is called a discrete flow on Θ if σ(θ, 0) = θ
and σ(θ,m+ n) = σ(σ(θ,m), n), for all (θ,m, n) ∈ Θ× Z2.

Let {A(θ)}θ∈Θ ⊂ L(X). We consider the variational discrete system

(A) x(θ)(n+ 1) = A(σ(θ, n))x(θ)(n), ∀(θ, n) ∈ Θ× N,

where x : Θ → S(N, X) and X is the state space.

The discrete cocycle associated with the system (A) is defined by

ΦA : Θ× N → L(X), ΦA(θ, n) =

{
A(σ(θ, n− 1)) . . . A(θ) , n ∈ N∗

Id , n = 0
.

Remark 2.1 The discrete cocycle satisfies ΦA(θ,m+n) = ΦA(σ(θ, n),m)ΦA(θ, n), for
all (θ,m, n) ∈ Θ × N2 (the evolution property). This shows that the discrete cocycle
associated with (A) ensures the propagator property.

Definition 2.2 The system (A) is said to be uniformly exponentially stable if there
are K, ν > 0 such that ||ΦA(θ, n)|| ≤ Ke−νn, for all (θ, n) ∈ Θ× N.

We associate with the system (A) the input-output system (SA) = {Sθ}θ∈Θ, where
for every θ ∈ Θ

(Sθ)

{
xθ(n+ 1) = A(σ(θ, n))xθ(n) + s(n) , n ∈ N
xθ(0) = 0

with s ∈ S(N, X).
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Remark 2.2 For every (θ, s) ∈ Θ× S(N, X), the solution of (Sθ) has the form:

xθ,s(n) =

n∑
k=1

ΦA(σ(θ, k), n− k)s(k − 1), ∀n ∈ N∗.

The input-output stability of the associated control systems provides valuable in-
formation concerning the behavior of the initial system as well as facilitates the analysis
in the presence of perturbations (see e.g. [14], [19]). A concept of input-output stability
strongly related with the exponential stability is given by:

Definition 2.3 Let p ∈ [1,∞]. The system (SA) is said to be completely (ℓp(N, X),
ℓp(N, X))-stable if the following properties hold:

(i) for every s ∈ ℓp(N, X) and every θ ∈ Θ the solution xθ,s ∈ ℓp(N, X);

(ii) there is L > 0 such that ||xθ,s||p ≤ L||s||p, for all (θ, s) ∈ Θ× ℓp(N, X).

For the following characterization of the stability of a system (A) in terms of the
complete (ℓp(N, X), ℓp(N, X))-stability of the associated control system (SA) we refer
to [19], Corollary 3.15.

Theorem 2.1 Let p ∈ [1,∞]. The system (A) is uniformly exponentially stable if and
only if the system (SA) is completely (ℓp(N, X), ℓp(N, X))-stable.

According to the above result, in stability problems, it makes sense to work with
a family of associated input-output operators. Precisely, for every θ ∈ Θ we consider
the family of input-output linear operators

Γθ : S(N, X) → S(N, X), Γθ(s) = xθ,s.

Then, the solvability of the system (SA) may be rewritten in a classical form of
input-output stability with respect to this family of linear operators.

Definition 2.4 Let p ∈ [1,∞]. The family {Γθ}θ∈Θ is said to be completely (ℓp(N, X),
ℓp(N, X))-stable if the following properties hold:

(i) for every s ∈ ℓp(N, X) and every θ ∈ Θ we have that Γθ(s) ∈ ℓp(N, X);

(ii) there is L > 0 such that ||Γθ(s)||p ≤ L||s||p, for all (θ, s) ∈ Θ× ℓp(N, X).

Remark 2.3 Let p ∈ [1,∞]. The system (SA) is completely (ℓp(N, X), ℓp(N, X))-
stable if and only if the family {Γθ}θ∈Θ is completely (ℓp(N, X), ℓp(N, X))-stable.

Remark 2.4 According to the condition (i) in Definition 2.4, if the family {Γθ} is
completely (ℓp(N, X), ℓq(N, X))-stable, then the operators Γθ : ℓp(N, X) → ℓp(N, X)
are correctly defined and an easy computation shows that each operator is closed, so
this is bounded. The second condition from Definition 2.4 shows that the boundedness
holds in a uniform way with respect to θ ∈ Θ, i.e. supθ∈Θ ||Γθ|| <∞.
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Corollary 2.1 Let p ∈ [1,∞]. The system (A) is uniformly exponentially stable if and
only if the family {Γθ}θ∈Θ is completely (ℓp(N, X), ℓp(N, X))-stable.

Proof. This follows from Theorem 2.1 and Remark 2.3. �

3 Stabilizability of variational discrete systems

Notations. If Y,Z are two Banach spaces we denote by L(Y,Z) the Banach space of
all bounded linear operators T : Y → Z. If Y = Z we denote L(Y, Y ) =: L(Y ). If (Θ, d)
is a metric space we consider ℓ∞(Θ,L(Y, Z)) := {R : Θ → L(Y, Z) | supθ∈Θ ||R(θ)|| <
∞}, which is a Banach space with respect to the norm

|||R||| := sup
θ∈Θ

||R(θ)||.

Remark 3.1 If Y, Z, U are Banach spaces, B ∈ ℓ∞(Θ,L(Y, Z)) and F ∈ ℓ∞(Θ,L(Z,U))
then the mapping

BF : Θ → L(Y,U), (BF )(θ) = B(θ)F (θ)

has the property that BF ∈ ℓ∞(Θ,L(Y, U)).

Let (Θ, d) be a metric space and let σ : Θ × Z → Θ be a discrete flow on Θ. Let
X be a Banach space and let {A(θ)}θ∈Θ ⊂ L(X). We consider the variational discrete
time system

(A) x(θ)(n+ 1) = A(σ(θ, n))x(θ)(n), (θ, n) ∈ Θ× N.

For every D ∈ ℓ∞(Θ,L(X)) we consider the perturbed system

(A+D) x(θ)(n+ 1) = [A(σ(θ, n)) +D(σ(θ, n))]x(θ)(n), (θ, n) ∈ Θ× N.

Remark 3.2 If ΦA is the discrete cocycle associated to the system (A) and ΦA+D is
the discrete cocycle associated to the system (A+D), then the following perturbation
formula holds:

ΦA+D(θ, n) = ΦA(θ, n) +

n∑
k=1

ΦA(σ(θ, k), n− k)D(σ(θ, k − 1))ΦA+D(θ, k − 1)

for all (θ, n) ∈ Θ× N∗.

Let U be a Banach space and let B ∈ ℓ∞(Θ,L(U,X)). We consider the discrete
control system (A,B) = (SA,B

θ )θ∈Θ, where for every θ ∈ Θ

(SA,B
θ )

{
xθ(n+ 1) = A(σ(θ, n))xθ(n) +B(σ(θ, n))u(n) , n ∈ N
xθ(0) = 0

with u ∈ S(N, U).
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Definition 3.1 The system (A,B) is said to be stabilizable if there is a feedback map-
ping F ∈ ℓ∞(Θ, L(X,U)) such that the perturbed system (A + BF ) is uniformly
exponentially stable.

Remark 3.3 If the system (A) is uniformly exponentially stable, then the system
(A,B) is stabilizable (with the trivial feedback F ≡ 0).

The main question is whether the converse implication holds. A first answer is
given by:

Example 3.1 Let X be a Banach space, let (Θ, d) be a metric space and let σ be a
discrete flow on Θ. If Id denotes the identity operator on X, then let A(θ) = Id, for all
θ ∈ Θ. Let U = X and let B(θ) = Id, for all θ ∈ Θ. If δ ∈ (0, 1) and F (θ) = −δId, for
all θ ∈ Θ, then we have that

||A(θ) + (BF )(θ)|| = 1− δ < 1, ∀θ ∈ Θ.

This implies that the perturbed system (A+BF ) is uniformly exponentially stable, so
the system (A,B) is stabilizable. For all that, it is obvious that the system (A) is not
uniformly exponentially stable.

Then the central question is under what conditions a stabilizable system (A,B)
corresponds to a uniformly exponentially stable system (A). The aim of our study is
to answer this question. But, first, we need to point out several technical aspects.

Starting from the considerations presented in the previous section, for every θ ∈ Θ
we define the linear operator

Γθ : S(N, X) → S(N, X), (Γθs)(n) =


n∑

k=1

ΦA(σ(θ, k), n− k)s(k − 1) , n ∈ N∗

0 , n = 0
.

Remark 3.4 Let p ∈ [1,∞]. According to Corollary 2.1 we have that the system
(A) is uniformly exponentially stable if and only if the family {Γθ}θ∈Θ is completely
(ℓp(N, X), ℓp(N, X))-stable.

For every θ ∈ Θ we define the linear operator

Bθ : S(N, U) → S(N, X), (Bθs)(n) = B(σ(θ, n))s(n)

which is in fact a multiplication operator over the flow σ.

An natural concept of stability for families of operators (motivated by our previous
investigations) is given by:
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Definition 3.2 Let p ∈ [1,∞] and let V1, V2 be two Banach spaces. A family of linear
operators {Dθ : S(N, V1) → S(N, V2)}θ∈Θ is said to be completely (ℓp(N, V1), ℓp(N, V2))-
stable if the following conditions hold:

(i) for every (θ, s) ∈ Θ× ℓp(N, V1) we have that Dθ(s) ∈ ℓp(N, V2);

(ii) there is α > 0 such that

||Dθ(s)||ℓp(N,V2) ≤ α ||s||ℓp(N,V1), ∀(θ, s) ∈ Θ× ℓp(N, V1).

Remark 3.5 We have seen in the previous section that the operators {Γθ} may be
regarded as a completely ℓp-stable family in certain conditions (see Corollary 2.1).

Remark 3.6 If p ∈ [1,∞], then the family {Bθ}θ is completely (ℓp(N, U), ℓp(N, X))-
stable. Indeed, this follows by observing that

||(Bθs)(n)|| ≤ ||B(σ(θ, n))|| ||s(n)|| ≤ |||B||| ||s(n)||, ∀n ∈ N

which implies that

||Bθs||p ≤ |||B||| ||s||p, ∀(θ, s) ∈ Θ× ℓp(N, U).

In what follows, we associate with the control system (A,B) the family of input-
output operators {Iθ}θ∈Θ defined by

Iθ : S(N, U) → S(N, X), Iθ := ΓθBθ.

Now, we may formulate the main result of this paper:

Theorem 3.1 Let p ∈ [1,∞]. A variational discrete system (A) is uniformly exponen-
tially stable if and only if the associated control system (A,B) is stabilizable and the
family of input-output operators {Iθ}θ∈Θ is completely (ℓp(N, U), ℓp(N, X))-stable.

Proof. Necessity. If the system (A) is uniformly exponentially stable then the system
(A,B) is stabilizable with the null feedback F = 0. In addition, from Corollary 2.1 we
have that the family {Γθ}θ∈Θ is completely (ℓp(N, X), ℓp(N, X))-stable. Using Remark
3.6 we deduce that the family {Iθ}θ∈Θ is completely (ℓp(N, U), ℓp(N, X))-stable.

Sufficiency. If the system (A,B) is stabilizable there is F ∈ ℓ∞(Θ, L(X,U)) such that
the system (A + BF ) is uniformly exponentially stable. For every θ ∈ Θ we consider
the linear operator

Qθ : S(N, X) → S(N, X), (Qθs)(n) =


n∑

k=1

ΦA+BF (σ(θ, k), n− k)s(k − 1), n ∈ N∗

0, n = 0.

Since the system (A + BF ) is uniformly exponentially stable, according to Corollary
2.1 we have that the family {Qθ}θ∈Θ is completely (ℓp(N, X), ℓp(N, X))-stable.
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For every θ ∈ Θ we define the linear operator

Fθ : S(N, X) → S(N, U), (Fθs)(n) = F (σ(θ, n))s(n).

From
||(Fθs)(n)|| ≤ |||F ||| ||s(n)||, ∀n ∈ N, ∀(θ, s) ∈ Θ× S(N, U)

we deduce that
||Fθs||p ≤ |||F ||| ||s||p, ∀(θ, s) ∈ Θ× ℓp(N, U),

which shows that the family {Fθ}θ∈Θ is completely (ℓp(N, X), ℓp(N, U))-stable. Then,
using the hypothesis we obtain that the family {IθFθQθ}θ∈Θ is completely (ℓp(N, X),
ℓp(N, X))-stable.

In addition, for every (θ, s) ∈ Θ× S(N, X) we have that

(IθFθQθs)(n) =

n∑
k=1

ΦA(σ(θ, k), n− k)(BθFθQθs)(k − 1) =

=

n∑
k=1

ΦA(σ(θ, k), n− k)B(σ(θ, k − 1))F (σ(θ, k − 1))(Qθs)(k − 1), ∀n ∈ N∗.

Since (Qθs)(0) = 0, we successively deduce that for every n ∈ N, n ≥ 2, we have:

(IθFθQθs)(n) =
n∑

k=2

ΦA(σ(θ, k), n− k)B(σ(θ, k − 1))F (σ(θ, k − 1))(Qθs)(k − 1) =

=
n−1∑
j=1

ΦA(σ(θ, j + 1), n− j − 1)B(σ(θ, j))F (σ(θ, j))(Qθs)(j) =

=

n−1∑
j=1

j∑
i=1

ΦA(σ(θ, j + 1), n− j − 1)B(σ(θ, j))F (σ(θ, j))ΦA+BF (σ(θ, i), j − i)s(i− 1) =

=
n−1∑
i=1

n−1∑
j=i

ΦA(σ(θ, j + 1), n− j − 1)B(σ(θ, j))F (σ(θ, j))ΦA+BF (σ(θ, i), j − i)s(i− 1) =

=
n−1∑
i=1

n−i∑
k=1

ΦA(σ(θ, k + i), n− i− k)B(σ(θ, i+ k − 1))F (σ(θ, i+ k − 1))·

·ΦA+BF (σ(θ, i), k − 1)s(i− 1) =

=

n−1∑
i=1

n−i∑
k=1

ΦA(σ(σ(θ, i), k), n− i− k)B(σ(σ(θ, i), k − 1))F (σ(σ(θ, i), k − 1))·

·ΦA+BF (σ(θ, i), k − 1)s(i− 1).

Using Remark 3.2 we have that

(IθFθQθs)(n) =

n−1∑
i=1

[ΦA+BF (σ(θ, i), n− i)s(i− 1)− ΦA(σ(θ, i), n− i)s(i− 1)] =
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=

n∑
i=1

ΦA+BF (σ(θ, i), n−i)s(i−1)−
n∑

i=1

ΦA(σ(θ, i), n−i)s(i−1) = (Qθs)(n)−(Γθs)(n).

This implies that

(Γθs)(n) = (Qθs)(n)− (IθFθQθs)(n), ∀n ≥ 2. (3.1)

Since (Γθs)(0) = 0 and (Qθs)(0) = (IθFθQθs)(0) = 0 we have that relation (3.1) holds
also for n = 0. Moreover, for n = 1 we have that (Γθs)(1) = s(0), (Qθs)(1) = s(0) and
(IθFθQθs)(1) = 0, so relation (3.1) holds for n = 1. Then we may conclude that

(Γθs)(n) = (Qθs)(n)− (IθFθQθs)(n), ∀n ∈ N

which implies that

Γθ(s) = Qθ(s)− IθFθQθ(s), ∀(θ, s) ∈ Θ× S(N, X). (3.2)

Since the families {Qθ}θ∈Θ and {IθFθQθ}θ∈Θ are completely (ℓp(N, X), ℓp(N, X))-
stable, from relation (3.2) it follows that the family {Γθ}θ∈Θ is completely (ℓp(N, X),
ℓp(N, X))-stable. Then, using Remark 3.4 we obtain that the system (A) is uniformly
exponentially stable. �

Remark 3.7 A direct computation shows that, for every θ ∈ Θ and u ∈ S(U), xθ =
Iθu satisfies the system (SA,B

θ ), which reveals the fact that the complete stability of
the family {Iθ}θ∈Θ represents in fact an input-output stability condition with respect
to the system (A,B).

Thus, to conclude our investigation, the above theorem shows that a variational
discrete system is exponentially stable if and only if the associated control system is
stabilizable and satisfies an ℓp input-output stability condition.
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Abstract

The problem of computing with certainty all the real roots of a function can
be solved in an efficient way if the functions satisfy certain functional equations.
First, it is well known that if a sequence of functions {yn(x)}n∈N satisfies a second
order difference equation Anyn+1(x) + Bnyn(x) + Cnyn−1(x) = 0 it is possible to
compute the roots of some solutions yn(x) by solving an exact of approximated
eigenvalue problem. Second, for solutions of first order linear difference-differential
systems a second order global fixed point method can be obtained from the ap-
proximate integration of an associated Riccati equation; this method provides an
scheme for computing with certainty all the zeros in any real interval [2]. More
recently, fixed point methods with order of convergence four were developed for
solutions of second order ODEs y′′(x) +B(x)y′(x) +A(x)y(x) = 0 [3]. We present
several examples of application of the methods and compare their performance.
Improvements and extensions of the methods are discussed. In particular, we pro-
vide examples showing the validity of the ODE method for computing zeros in the
complex plane. Some preliminary examples of a software package based on this
methods, currently under construction, will be shown.

Key words: non-linear equations, ODEs, fixed point methods.

Introduction

The study of methods for solving non-linear equations is an important and active field in
applied mathematics because of the importance of these topics in approximation theory,
the theory of differential equations, and in many fields of physics and engineering.

In particular, some notable non-linear equations appear ubiquitously in many appli-
cations. Examples are the non-linear equations defining the nodes of gaussian quadra-
ture (zeros of orthogonal polynomials) or the problem of computing zeros of Bessel
functions or related functions.
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A satisfactory solution of the problem is found when a method can be designed
for computing with certainty all the zeros in a given interval (not losing any zero) and
when the method is fast. A very fast method of a high order is of little practical utility
if convergence is too local or if it is not clear that the scheme will compute all the zeros.

In many important cases, the function whose zeros are sought satisfy certain func-
tional relations. Many (special) functions satisfy second order difference equations (also
called three-term recurrence relations)

yn+1(x) + βn(x)yn(x) + αn(x)yn−1(x) = 0 (TTRR), (1)

or first order difference-differential linear systems

y′n(x) = an(x)yn(x) + dn(x)yn−1(x)
y′n−1(x) = bn(x)yn−1(x) + en(x)yn(x)

(DDE), (2)

or second order ODEs

y′′n(x) +Bn(x)y′n(x) +An(x)yn(x) = 0 (ODE), (3)

or all of them simultaneously.
Next we outline the basic ingredients of three satisfactory methods (in the sense

described before) for functions satisfying each of these type of relations.

1 TTRR method (matrix eigenvalue)

Consider recurrence relations of the form

anyn+1(x) + bnyn(x) + cnyn−1(x) = g(x)yn(x), n = 0, 1, . . . ,

Considering the first N relations:

JNYN (x) + aN−1yN (x)eN + c0y−1(x)e1 = g(x)YN (x),

e1 = (1, 0, . . . , 0)T , eN = (0, . . . , 0, 1)T , YN (x) = (y0(x), . . . , yN−1(x))T

JN =



b0 a0 0 . . 0
c1 b1 a1 0 . 0
0 c2 b2 a2 . 0
. . . . . 0
. . . . . aN−2

0 0 0 . cN−1 bN−1

 . (4)

If for x = x0 aN−1yN (x0) = c0y−1(x0) = 0 we have the equation for an eigenvalue
problem with eigenvalue g(x0).

This holds when x0 is a zero of yN (x) (or of y−1(x)) and, for any reason, c0y−1(x) =
0 (or aN−1yN (x) = 0). In the case of polynomial solutions c0y−1(x) = 0 and this gives
a method for computing the nodes of gaussian quadrature (the roots of the polynomial
yN ); the nodes are exactly the eigenvalues for the case of orthogonal polynomials.
This is known as Golub-Welsch algorithm [1]. For minimal solutions of the recurrence,
we have aN−1yN (x) ≈ 0, and the eigenvalue method is an approximate method for
computing the zeros of y−1.
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2 DDE method

Now, consider solutions of (2). A satisfactory method for computing the zeros of yn(x)
(and similarly for yn−1(x)), can be constructed from the approximate integration of an
associated Riccati equation.

Defining

H(x) = sign(dn(x))(en(x)/dn(x))1/2 yn(x)
yn−1(x)

(5)

and considering a change of variable z(x) =
∫ √

d(x)e(x)dx one can check that the
following Riccati equation is satisfied:

Ḣ(z) = 1 +H(z)2 − 2η(z)H(z) (6)

where η(z) is a (simple) function of the coefficients in (2).
A second order global method can be obtained from the approximate integration

of (6) by neglecting the term with η(z). The resulting equation has tangent functions
as solutions and inverting this leads to the iteration

zn+1 = T (zn), T (z) = z − arctan(H(z)) (7)

This iteration has global convergence properties. In addition, in intervals where
η(z) does not change sign, an scheme to compute all the zeros in succession is made
available. For instance, if η(z) < 0 and z(1) < z(2) are two consecutive zeros of yn(z).
then the starting value z0 = z(1) + π/2 provides convergence to z(2).

Variants of this method with order of convergence three can also be constructed
under certain monotonicity conditions.

3 ODE method (Sturm method)

Consider now solutions of homogeneous second order ODEs in normal form

y′′(x) +A(x)y(x) = 0. (8)

For equations with first derivative term we can transform to normal form by a suitable
change of function.

Now, take h(x) = y(x)/y′(x), which satisfies h′(x) = 1 + A(x)h(x)2. Integrating
under the assumption that A(x) is approximately constant and inverting we obtain an
iteration

xn+1 = g(xn), g(x) = x− 1√
A(x)

arctan
(√

A(x)h(x)
)

(9)

This iteration has fourth order of convergence and has very good global convergence
properties (a rare property for high order methods). Furthermore, in intervals where
A(x) is monotonic a marching scheme to compute all the zeros becomes available. That
scheme can be understood as a consequence of the classical Sturm comparison theorems
for second order ODEs.
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4 Comparisons between methods

The three methods will be compared in different situations. The eigenvalue method
is a good option for the case of classical orthogonal polynomials, but it is of more re-
stricted applicability than the other two methods. As we will see, the ODE method is
the fastest not only because it is of order four but also because of its good non-local
properties, although in some cases it requires a pre-processing of the equation and an
appropriate selection of a change of variable. Many examples of application can be
considered. Hypergeometric functions (Gauss and Kummer) are a large set of func-
tions, with important sub-cases (orthogonal polynomials, Bessel functions, Legendre
functions) for which the methods hold, but the methods are not limited to this set.

5 Perspectives

Finally, we will show some examples of application of the ODE method to the com-
putation of zeros in the complex plane. It appears that the behavior in C is also very
good [4]; complex oscillation theory will be required in order to understand these good
properties.
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Abstract

DESL is a lightweight block cipher which is very similar to DES, but unlike DES
uses only a single S-box. This work demonstrates that, as is the case for DES, the round
functions of DESL generate the alternating group.

Key words: cryptography, block cipher, permutation group

1 Introduction

In the proceedings of the 14th International Workshop on Fast Software Encryption FSE 2007
[7] Leander et al. propose a lightweight cipher which is very similar to the Data Encryp-
tion Standard DES [3]. The proposed cipher introduces one radical change, however: all
substitution boxes in the DES are replaced with a single new S-box. As detailed by Le-
ander et al., this DES Lightweight extension (DESL) has very attractive features in terms
of implementability on low-cost platforms. The obvious cryptanalytic question is if these
features might have been paid for with a loss of security. In other words, is the security
of DESL comparable to that of the original DES? In this contribution we show that the
round functions of DESL generate the same permutation group as the round functions of
DES, namely the alternating group on 264 points. Our proof strategy is the same as taken
by Wernsdorf for DES [9], the core part being to establish 3-transitivity for the group in
question. It is not surprising that the replacement of DES’s S-boxes in DESL necessitates
modifications of Wernsdorf’s proof, and one might be tempted to hope that facing only one
S-box (instead of several as in DES) simplifies the analysis. For the S-box in question this
did not really seem to be the case.

To keep our presentation reasonably self-contained, the next section presents the rele-
vant details on the block cipher DESL.
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2 Preliminaries

With the exception of two modifications, DESL is identical to the Data Encryption Stan-
dard; in particular, plaintexts and ciphertexts are elements of {0, 1}64 and the key can be
taken for an element of {0, 1}56. The first difference between DES and DESL is not relevant
for the group-theoretic property we explore: unlike for DES, there is no initial permutation
and no final permutation of the data processed in the cipher. The implications of the sec-
ond modification is less obvious: DESL replaces all eight S-boxes in DES with a single new
S-box.

2.1 Description of DESL

Figure 1 illustrates the basic data flow in DESL, and we refer to the DES specification [3]
and Leander et al.’s paper [7] for a detailed specification. For our purposes it is enough to
be aware of the following:

• There are 16 rounds, each round i implementing a permutation πi ∈ S264 which
depends on a round key Ki ∈ {0, 1}48. The latter is derived from the secret key
K ∈ {0, 1}56 through a suitable key schedule.

• Each of the 16 rounds involves a round-key dependent function F ′Ki
(Ri) = P ◦S◦

⊕
◦E

where

– E : {0, 1}32 −→ {0, 1}48 is an injective map specified in [3].

–
⊕

: {0, 1}48 −→ {0, 1}48, x 7−→ x⊕Ki adds (xor) the round key Ki to the input

– S : {0, 1}48 −→ {0, 1}32 splits the input (a1, . . . , a48) ∈ {0, 1}48 into 6-bit blocks
and for j = 1, . . . , 8 substitutes (a6j−5, . . . , a6j) ∈ {0, 1}6 with the corresponding
4-bit value obtained from Table 1.

14 5 7 2 11 8 1 15 0 10 9 4 6 13 12 3
5 0 8 15 14 3 2 12 11 7 6 9 13 4 1 10
4 9 2 14 8 7 13 0 10 12 15 1 5 11 3 6
9 6 15 5 3 8 4 11 7 1 12 2 0 14 10 13

Table 1: The substitution function S : {0, 1}6 −→ {0, 1}4 of DESL is given by this S-box
from [7]; (a1, . . . , a6) ∈ {0, 1}6 is mapped to the 4-bit binary representation of the table
entry in row no. a1a6 and column no. a2a3a4a5 (both interpreted as binary representation
of a number in {0, . . . , 3} resp. {0, . . . , 15}).

– P ∈ S232 is a permutation on 32-bit strings as specificed in [3].
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• In each round, the 64-bit input is split into a left half Li ∈ {0, 1}32 and a right half
Ri ∈ {0, 1}32. Then the value L′i := F ′Ki

(Ri)⊕Li is computed, where ⊕ is addition in
{0, 1}48. The output of round 1, . . . , 15 is (Ri, L

′
i). In the last round there is no swap,

i. e., the value (L′16, R16) is output.





……

Plaintext (64 bit)

Ciphertext (64 bit)

K1



K16

K15

PS   E

PS   E

PS   E

Figure 1: DESL overview

For our discussion we make use of an observation about DES by Davio et al. [4] which
has also been exploited in [9]. Namely, we rewrite DESL as shown in Figure 2, i. e., by
applying P−1 respectively P before the first round respectively after the last round, we
combine E and P into a single function EP such that P no longer has to be applied after
the application of the S-box. The composition of and E and P is given in Table 2.

3 The group generated by DESL’s round functions

In this section we show the main ideas needed for the proof that the round functions of
DESL generate the same group as the round functions of DES. The complete proof will
be given in the full version of this paper. The main part of the argument is to establish
3-transitivity of the group generated by DESL’s round functions.

@CMMSE                                 Page 1065 of 1703                                 ISBN: 978-84-614-6167-7



On the group generated by the round functions of DESL

25 16 7 20 21 29
21 29 12 28 17 1
17 1 15 23 26 5
26 5 18 31 10 2
10 2 8 24 14 32
14 32 27 3 9 19
9 19 13 30 6 22
6 22 11 4 25 16

Table 2: The function EP : {0, 1}32 −→ {0, 1}48, mapping (a1, . . . , a32) to
aEP (1), . . . , aEP (32) where EP (j) is the j-th entry in the table, reading from left to right,
top to bottom; e. g., EP (7) = 21.

3.1 Some notation

DESL’s S-box sends 6-bit strings to 4-bit strings as detailed in Table 1, and the 6-bit inputs
to the S-box are obtained by dividing a 48 bit value into eight 6-bit blocks. To refer to
the latter, for a ∈ {0, 1}48 we set [a]j := (ai)

6j
i=6j−5 (j = 1, . . . , 8). Analogously, for

a ∈ {0, 1}32, we write [a]j := (ai)
4j
i=4j−3 (j = 1, . . . , 8) for the selection of 4-bit blocks. It

will be clear from the context when we are dealing with 48-bit respecticely 32-bit values.

For ease of readability of the proof, it turns out to be convenient to represent bitstrings
by the decimal number they represent in binary; the length of the bitstring will always
be clear from the context. Accordingly, we write A264 and S264 for the alternating and
symmetric group respectively on {0, 1}64. Given a set of permutations Π, we write 〈Π〉
for the group generated by them. Specifically we are interested in the group G generated
by the round functions FK of DESL, where K ranges over all possible values in {0, 1}48—
as in Wernsdorf’s analysis of DES in [9], we ignore any restrictions imposed by the key
schedule and allow to choose the round keys freely. Using the description and notation
from Section 2.1, for a given round key K ∈ {0, 1}48 we can represent FK ∈ S264 as

FK : {0, 1}32 × {0, 1}32 −→ {0, 1}32 × {0, 1}32
(a, b) 7−→

(
b, ([a]i ⊕ S([K]i ⊕ [EP (b)]i))

8
i=1

) .

Our goal is to establish that the group G =
〈
{FK ∈ S264 |K ∈ {0, 1}48}

〉
is nothing else but

A264 .

3.2 Establishing 3-transitivity of G

Verifying transitivity of G is straightforward, and the work of Even and Goldreich [5] ensures
that G is contained in the alternating group. In other words, we have
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



……

Plaintext (64 bit)

Ciphertext (64 bit)

K1



K16

K15

S   EP

S   EP

S   EP

P-1P-1

P P

Figure 2: Equivalent description of DESL with the permutation P being applied before the
expansion function E.

Lemma 1 The round functions of DESL generate a subgroup of A264 that acts transitively
on {0, 1}64.

In a first step of the proof one establishes transitivity of G0 := {g ∈ G| g(0) = 0} on
{0, 1}64\{(0, . . . , 0)} and transitivity of G0,d := {g ∈ G|g(0) = 0 and g(d) = d} on {0, 1}64\
{(0, . . . , 0), d} where d := (δ31,i)

64
i=1 has a single non-zero entry at the 31-st position. From

[10, Theorem 9.1] we immediately obtain the following.

Lemma 2 If G0 is transitive on {0, 1}64 \ {(0, . . . , 0)} and G0,d is transitive on {0, 1}64 \
{(0, . . . , 0), d}, then G is 3-transitive on {0, 1}64.

Once it has been established that G is a 3-transitive subgroup of A264 , it is not particularly
difficult to verify that G is actually equal to the alternating group on 264 points, using
results from [1, 2, 8]:

Theorem 1 The round functions of DESL generate the alternating group, i.e., G = A264.
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4 Conclusion

Unlike DES, the DES Lightweight extension (DESL) uses a single S-box. It turns out
that nevertheless the round functions of DESL generate the same permutation group as the
round functions of DES, namely the alternating group on 264 points. So from this particular
point of view DESL has no disadvantage compared to DES.
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Abstract

Many short peptides are involved in important biological processes in the cell.
Recent investigations have focused on the use of artificial peptides as antimicro-
bial drugs and antibiotics that differentially target bacterial and eucariotic cells.
Because the number of possible peptide sequences is very large, functional peptide
design necessitates automated synthesis and screening of a large number of peptide
sequences. Protein structure prediction methods can aid in this design process by
providing structure function relationships for the interaction of the peptide with
the membrane. Here we demonstrate our de-novo peptide structure prediction
method using massively parallel simulations in a biophysical forcefield to sample
a sizable fraction of the peptides conformational space. By Performing simula-
tions with the free-energy forcefield PFF02 on our volunteer computing network
POEM@HOME, we were able to select the native conformation as the global min-
imum of the protein free energy for peptides of β, coiled and extended topologies.
Our prediction protocol may be extended for high-throughput screening of large
peptide databases for their structural features and by that enable the rapid proto-
typing of peptides for novel peptide design. Key words: protein structure, structure

prediction, distributed computing, BOINC, volunteer computing

1 Introduction

The last effective new antibiotic drug was found in the 1970s and the resistance of bacte-
ria has been proliferating ever since. For this reason much life-science research is focused
on the development of novel antibiotics. In this context antimicrobial peptides[1, 2] are
a promising new system to complement current antibiotics. Because there are plenty
naturally occurring amino acids and functional peptides typically contain at least 10
amino acids, the number of possible sequences that must be screened either experimen-
tally or in-silico is rather large. To contribute to the development of structure-function
relationships, we therefore require a fast and accurate structure prediction method,
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which is the basis of all subsequent analysis of peptide function In this paper we present
a high-throughput peptide prediction protocol and validate it by predicting the struc-
tures of four experimentally known peptide structures with three different fold motifs
to experimental resolution. The calculations have been performed on the distributed
volunteer grid POEM@HOME using about 200 parallel simulations for each peptide.

2 Methods

To predict the structure of each peptide, we start with a completely extended confor-
mation, which is subsequently relaxed in the free-energy forcefield in multiple parallel
simulations. As previously demonstrated for a set of 32 medium-size proteins[3], the
lowest energy conformation is then used as the predictive model.

2.1 Forcefield

PFF02 is an all atom free-energy forcefield, which stabilizes the native protein confor-
mation in the global free-energy minimum.[3, 4, 5] It comprises five terms for Lennard-
Jones, Electrostatic, angle-dependent hydrogen bonding and implicit solvation interac-
tions. Furthermore a semi-empirical torsional potential is included.

2.2 Simulation Protocol

Our Monte Carlo simulations sample only the angular degrees of freedom, that is the
main-chain and side-chain dihedral angles. New conformations are generated by either
randomly perturbing randomly selected angles using angle-changes drawn from a gaus-
sian distribution with a width of ten degrees around the original angle, or selecting
angles from a distribution that reflects the dihedral angle distribution of the naturally
occurring amino acids in the Ramachandran plot. This distribution is defined by cir-
cles comprising the beta sheet region centered at (-125,135) and the right-handed helix
region at (-70,-35) both with a radius of 45. Angles are selected equidistributed within
these circles.

2.3 POEM@HOME

POEM@HOME is a distributed volunteer computing platform for protein simulation
using the BOINC[6] framework. From the website boinc.fzk.de volunteers download
the client and continuously receive protein structures simulated on their PCs. Since
its start in August 2008, POEM@HOME was well received and is now running with a
combined computing power of 30 TFlop/s on average.

Upon submitting a protein sequence to the POEM@HOME server, we generate an
extended conformation by chaining the amino acids together using idealized bond-
lengths and bond-angles from template amino-acids. We then generate 10.000 parallel
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work-units, each of which perform a simulated annealing simulation using a geomet-
ric temperature annealing in 1.5M Monte-Carlo steps. The final conformations of the
simulations are sorted by energy and monitored for convergence. When a sufficient
number of conformations have returned, the best energy structure is chosen as the final
prediction. The prediction protocol is illustrated in Fig. 1.

3 Results

To show the validity of our approach, we chose proteins of three different fold motifs
for prediction. 1N0A[7] and 1K43[8] with a beta-hairpin fold, 1FUV[9] with a more
random coil-like fold and an extended peptide 1N9V[10] (the four letter codes corre-
spond to RCSB pdb ids). Fig. 2 (a) shows 1N9A. As seen in the figure the stretched
out global-fold is identified by PFF02 with an all-atom RMSD of 2.6 Å. Among the
results one conformation with a RMSD of 1.4 Å could be generated (see Fig. 2b)); the
energy of this conformation was found unfavorable however.

The beta-conformation of 1N0A could be reproduced with a RMSD of 1.2 Å. Only
a few structures of better RMSD were actually discovered as seen in Fig. 2 d). The
only difference observed is a slight tilt in one of the beta-bridges in the native struc-
ture, which could not be reproduced in the model (Fig. 2 c)). In contrast 1K43 is a
bit longer beta-sheet than 1N0A and could be predicted with a RMSD of 2.4 Å(Fig. 3
a)). In comparison to the experimental structure our prediction extended the sheets a
bit longer. The best sampled structure presents an RMSD of 1.8 Å(Fig. 3 b )). The
relatively high RMSD for a beta-sheet structure could therefore derive from the fact,
that we did not sample the low energy regions completely. The coiled fold of 1FUV
could be predicted to a RMSD of 1.8 Å. The loop region deviates the most, as seen
in Fig. 3c). The best discovered RMSD structures were only marginally nearer to the
experimental structure than the chosen one. The best RMSD structure shows a RMSD
of 1.75 Å(Fig. 3 d)).

4 Conclusion

We have implemented a free-energy-based peptide structure prediction protocol and
applied it to for peptides of very different structure. We could show that it is possible
to reliably predict the native conformation of peptides de-novo in a short time using the
volunteer distributed computing resource POEM@HOME. Not only were we able to
predict peptides in beta-conformations, but also those that feature only collapsed folds.
Furthermore, it was possible to predict an extended peptide conformation. Further
tests for a larger set of peptides are presently in progress. The protocol can be easily
automated and made available to external users via that interface. The conformations
generated may be subsequently used in further analysis to establish structure function
relationships that correlate physiochemical properties of the peptide structure with
their biological activity.
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5 Figures

Figure 1: Prediction Algorithm used in this paper. After sequence input, multiple
runs are generated from an extended structure and run on the POEM@HOME vol-
unteer PCs. Returning annealed structures are sorted by energy. The best energy
conformation is chosen as the prediction.
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Figure 2: a) Result of the folding simulations of the peptide 1N9V (overlay). The
predicted extended conformation could be clearly identified as the best energy struc-
ture and corresponds well to the experimental structure. b) RMSD-Energy Plot of all
simulations of 1N9V. The chosen prediction has an all-atom RMSD of 2.6 Å. (circle)
c) Comparison of the predicted structure of 1N0A with the experimental structure.
Especially the loop region is well predicted. d) RMSD vs. Energy plot of all simulated
conformations for 1N0A. The best energy conformation is also one of the structures
with the smallest RMSD to the experimental structure.(circle)
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Figure 3: a) Result of the folding simulations of the peptide 1K43. The predicted
structure matches the beta-sheet fold of the experimental structure. b) RMSD-Energy
Plot of all simulations of 1K43. The chosen prediction has an all-atom RMSD of 2.5
Å(circle). c) Comparison of the predicted structure of 1FUV with the experimental
structure. The collapsed fold of 1FUV was identified as native. d) RMSD vs. Energy
plot of all simulated conformations for 1FUV. Only a few structures of better RMSD
than the chosen one (circle) were identified.

@CMMSE                                 Page 1075 of 1703                                 ISBN: 978-84-614-6167-7



T. Strunk, M. Wolf, W. Wenzel

Acknowledgements

We thank all of our POEM@HOME volunteers for their continuous support. Further-
more we thank the Carl-Zeiss Foundation for funding on the project Absolute Quality
Control of Protein Structures.

References

[1] K. A. Brogden, Nat Rev Micro 3, 238 (2005).

[2] M. R. Yeaman and N. Y. Yount, Pharmacological Reviews 55, 27 (2003).

[3] A. Verma and W. Wenzel, BMC structural biology 12 (2007).

[4] S. M. Gopal and W. Wenzel, Angewandte Chemie 118, 7890 (2006).

[5] A. Verma and W. Wenzel, Biophysical journal 96, 3483 (2009).

[6] D. P. Anderson, in 5th IEEE/ACM International Workshop on Grid Computing
(PUBLISHER, ADDRESS, 2004), p. 4–10.

[7] T. Blandl, A. G. Cochran, and N. J. Skelton, Protein Science 12, 237 (2003).

[8] M. T. Pastor et al., Proceedings of the National Academy of Sciences 99, 614
(2002).

[9] N. Assa-Munt, X. Jia, P. Laakkonen, and E. Ruoslahti, Biochemistry 40, 2373
(2001).

[10] G. A. Spyroulias et al., European Journal of Biochemistry 270, 2163 (2003).

@CMMSE                                 Page 1076 of 1703                                 ISBN: 978-84-614-6167-7



Proceedings of the 11th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2011
26–30 June 2011.

First attempts at modelling sleep

Ilaria Stura1, Caterina Guiot2, Lorenzo Priano2,3 and Ezio Venturino1

1 Dipartimento di Matematica “Giuseppe Peano”, Università di Torino,
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Abstract

Sleep is a dynamic process involving different “families” of neurons promoting
REM (Rapid Eyes Movements) and NREM (not REM) sleep, which are modu-
lated by circadian and homeostatic needs. NREM sleep is characterized by the
occurrence of peculiar transient EEG events, that are expression of synchronous
cortical neuron discharges (transient synchronized EEG patterns or briefly TSEP).
Our study aims at disclosing and quantifying its hidden dynamics by simulating
the TSEP time series. The latter are obtained by adding the simulation of the
neuronal spike activity to a Lotka-Volterra model reproducing the REM-nonREM
alternation. The frequencies of the neuronal spike activity are randomized around
N (up to 4) central values, which propagate to the cortex according to a given
refractory period. The refractory period, as well as the system of thresholds ac-
counting for the circadian and homeostatic control, are assumed on euristic bases.
The Recurrence Plots of the simulated TSEP time series show a close resemblance
with the real ones obtained by elaborating the EEG signals from human sleep
registrations.

Key words: Dynamical system, Lotka-Volterra model, recurrence plot, REM
sleep, NREM sleep

MSC 2000: AMS codes (92C20, 92C30, 92C50, 92B25, 92D25)

1 Introduction

Sleep is a complex process that can not be simply described as sequences of EEG
rhythms detected during polysomnographic recordings. Even if sleep macrostructure,
according to Rechtschaffen and Kales (R K) criteria [9], is characterized by a chain
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of regular and predictable events (cyclic alternation of NREM and REM sleep, 90-120
minute intervals among REM sleep periods, stage 2 sleep preceding REM sleep, preva-
lence of REM sleep and stage 2 during the second half of normal sleep), the process
does not repeat itself exactly the same each night. Circadian and homeostatic pro-
cesses induce sleep during nighttime, but several factors may positively or negatively
interfere with sleep induction and maintenance (mental state, acute or chronic disease,
pain, muscle efforts, drugs, external environment). In this perspective sleep may be
considered a dynamic process which has to finely modulate itself in order to obtain the
required neurophysiological states at certain times, according to circadian and homeo-
static needs, and despite external or internal interfering stimuli. This means that the
neurophysiological structures involved in this process should not exhibit a rigidly pre-
determined behaviour but have to maintain the maximum adaptability. In other words
sleep induction and maintenance imply a quote of variability inside fundamentally pre-
determined neurophysiological processes, so that perturbations below a threshold can
be amortized and sleep macrostructure preserved.
Actually, this macrostructure of sleep may be considered the result of finer graduations
of transient EEG activities (microstructure of sleep). Among these EEG activities,
peculiar transient synchronized EEG patterns (TSEP) are supposed to be the expres-
sion of EEG synchronizing mechanisms accompanying the dynamic organization and
stabilization of NREM sleep, ensuring flexible adaptation against perturbations. TSEP
include: a) high voltage, low frequency component of K-complexes; b) transient delta
bursts; c) high voltage, low frequency components of the Cycling Alternating Pattern
(CAP) described by Terzano et al [2, 4, 12]. During normal sleep K-complexes, delta
bursts and CAP progressively are grouping in recurring clusters, until steady slow wave
sleep (SWS), expression of maximal EEG synchrony and deep sleep, is reached.

As it usumally occurs in biological systems, such series are normally non-stationary,
requiring non-linear dynamics techniques, as for instance the use of the Recurrence Plot
(RP) and the Recurrence Quantitative Analysis (RQA). Recurrence plots (introduced
by Eckmann et al. (1987)) can visualize the recurrence of states in a phase space.
Usually, a phase space does not have a low enough (two or three) dimension so as
to be visually displayed. Higher-dimensional phase spaces can only be visualized by
projection onto their two or three-dimensional sub-spaces. However, Eckmann’s tool
enables us to investigate the m-dimensional phase space trajectory by a two-dimensional
representation of its recurrences. Such recurrence of a state at time i and at a different
time j is pictured within a two-dimensional squared matrix containing black and white
dots, where the black dots denote a recurrence; colour-coded dots may also be used.
Here both axes represent time. Such model is called a recurrence plot (RP), Fig. 1.

Such an RP can be mathematically expressed as

R(i, j) = H(ǫ − ‖x(i) − x(j)‖), x ∈ R
m, i, j = 1, . . . N

where N is the number of the state x(i) considered, H is the Heaviside function and ǫ
the thresold distance.

If only a time series is available, the phase space can be reconstructed by using a
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Figure 1: Recurrence Plots of a series of TSEP

time delay embedding

x(i) = (u(i), u(i + τ), . . . , u(i + (m − 1)τ)

where u(i) is the time series, m the embedding dimension and τ the time delay.
The above techniques have already been proposed to analyze EEG signals [1, 10,

7, 13, 6] in both the wake and the sleep states, and have been used to evaluate sleep
microstructure, i.e. TSEP time series [8].

Our study aimes at developing a model-based description of TSEP series, which
is able to reproduce attractor-driven, hidden periodicity or, conversely, chaotic oscil-
lation patterns in the series of these transient EEG phenomena related to sleep stage
transitions and sleep maintenance.

The paper relates our experience in trying to construct a suitable model that pro-
vides an adequate simulation of what happens during the wake/sleep cycles. It is
organized as follows. At first we present a model based on a dynamical system. In
Section 3 we introduce a very simple model, and outline its shortcomings. In Section 4
a more refined model is presented, its results shown and discussed.

2 A model based on differential equations

We tried at first to create a very general model via dynamical systems. Since the REM
phase is well characterized by a predator-prey model, we tried to study a system of
four ordinary differential equations in which the neuronal populations R (REM ON),
I (REM OFF), D (NREM) and N (neutral neurons) were competing with each other.
In particular neutral neurons (N) are recruited by the other populations, so that they
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can be regarded as prey and the other neuronal populations act like predators. The
system is obtained by extending the classical Lotka-Volterra predator-prey system of
population theory already used in such context, [3, 5, 11]. It reads





Ṅ = eN − lND − sNR

Ḋ = kDN − hDR

Ṙ = aRD − bRI + gRN

İ = −mI + cRI

(1)

where a, b, c, e, g, h, l, k, m, s represent biological parameters, suitably chosen so that
solutions oscillate and provide five peaks of REM sleep during the 8 sleeping hours,
Fig. 2. Their values are a = 0.0019, b = 0.0019, c = 0.0019, h = 0.0020, k = 0.0010,
m = 0.0019, e = 0.0022, l = 0.0013, s = 0.0011, g = 0.0006.

Figure 2: Typical simulation of the dynamic system (1)

The equilibrium points of (1) are the origin P1 = (0, 0, 0, 0) and the points

P2 =

(
he

ks
, 0,

e

s
, 0

)
, P3 =

(
he

hgl − ks
,

−ghe

a(hgl − ks)
,

ke

hgl − ks
, 0

)
,

P4 =

(
hm

ck
,
ec − sm

cl
,
m

c
,
aD + gN

b

)
.

Note that P3 is always infeasible, since its second component has always opposite sign
with respect to the other ones. Instead P4 is feasible only if ec > sm.
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To study their stability we need the system’s Jacobian

J =

∥∥∥∥∥∥∥∥

e − lD − sR −lN −sN 0
kD kN − hR −hD 0
gR aR aD − bI + gN −bR
0 0 cI −m + cR

∥∥∥∥∥∥∥∥

From this, now the eigenvalues at each feasible equilibrium could be determined. In view
however of the fact that this model does not adequately represent the alternance of REM
and deep sleep, which is our first goal, we do not provide its full analysis. In fact, we just
limit ourselves to observe that for the chosen parameters, all the feasible equilibria are
locally unstable. This can be remarked, by observing that the characteristic equation
relative to each of the points P1, P2, P4, when its coefficients are numerically evaluated
with the parameter values given above, has at least one variation in the sign of the
coefficients. Descartes rule tells then that at least one root with positive real part exists,
i.e. one eigenvalue with positive real part. This is enough to establish instability. In
fact, we have for P1 the characteristic equation

Z4 − 0.3 · 10−4Z3 + 4.18 · 10−6Z2 = 0

for P2

Z4 − 0.0043Z3 + 1.82 · 10−5Z2 + 1.0882 · 10−7Z = 0

and for P4

Z4 + 4.3368 · 10−19Z3 + 2.0430 · 10−5Z2 + 3.0609 · 10−8Z + 5.8681 · 10−11 = 0.

Thus the system cannot settle to any of these equilibria, and it must then oscillate.

We plan eventually to reexamine a system of this type modelling the behavior of
neuronal populations. But for the time being, since this model goes beyond our original
intentions, we have chosen to follow another approach, more suitable for our purposes.

3 Simple method

The model that we introduce now is composed only by a number N of frequencies and
a barrier. In this model, the onset of TSEP are the moment at which a signal (one
of the random frequencies) overshoots a constant barrier. The other constraint is that
there is a biological time τ denoting the refractory period. This is the minimum time
that needs to elapse between two consecutive signals.

The output of the model is the TSEP, i.e. the set of instants in which the signals
overshoot the barrier. The output has been compared with some experimental data.
We encountered a few problems, namely

• finding the correct number of frequencies;

• finding the correct value of τ ;
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• understanding the form of the barrier.

In the implementation of the model, we used some euristics. For τ , we took the value
12.8 ms. The barrier is taken as a constant value. To understand what was the best
N for the model, we used a trial and error procedure. A program was written for the
implementation of the model. In it, the number of frequencies is required in input.

By running the program several times, we were then able to compare the timing of
the steps of the signals (without distinguishing what was the prevailing rate) with real
data obtained from hypnogram of healthy patients. But in this way the data do not
match at all, see Fig.s 3b, 4b, 5b.

We then tried to select a single frequency, but also in this case the desired result
could not be obtained, see Fig.s 3c, 4c, 5c.

Thus this model proves to be too simplistic: the TSEP are too close together and
there is no variability in the data. Experimentally, in fact, during the eight hours of
sleep there are times when they are very close together and others in which they are
more widespread. Since the variability is also due to the presence of REM sleep, in
competition with NREM sleep (where one experiences the TSEP), a more complex
model taking REM into account is needed.

Figure 3: Model with two frequencies: a) the frequencies with the constant barrier, b)
comparison between real data and the series created by the passages of all frequencies,
c) comparison between real data and the series created by the passages of one single
frequency.
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Figure 4: Model with three frequencies: a) the frequencies with the constant barrier, b)
comparison between real data and the series created by the passages of all frequencies,
c) comparison between real data and the series created by the passages of one single
frequency.
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Figure 5: Model with four frequencies: a) the frequencies with the constant barrier, b)
comparison between real data and the series created by the passages of all frequencies,
c) comparison between real data and the series created by the passages of one single
frequency.
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4 A more refined model

Figure 6: Some implementations of the advanced model.

This model takes into account only 8 hours of sleep. The functions involved are:

• The frequency of NREM sleep, implemented in the same way as in the previous
model

• REM ON and REM OFF, according to previous studies, [5], are here modeled as
solutions of Lotka-Volterra predator-prey type equations. They can be seen as a
signal, the prey, (REM ON) that takes over and grows (at the expense of NREM)
until being caught and overtaken by the predator signal (REM OFF) that “turns
off” and makes NREM prevail.

• Homeostatic threshold on REM: used to indicate that the “need of sleep” changes
overnight. In fact REM sleep is less important at the beginning (the body needs
most of NREM, i.e. deep and restful sleep), but as time flows becomes predomi-
nant.

• Homeostatic threshold on NREM: in a specular way as for the REM ON barrier,
this will indicate how much difficult is to fall in deep sleep as time flows. This is
performed mathematically modulating the passing of the TSEP.

• The time τ : in [9, 1], it was shown that the time τ is not constant but variable
(2 to 120 sec); in the code it is assumed as a function of time as the result of the
modulation of the signals produced by cells population.

4.1 Model implementation

As we did for the parameters of the Lotka-Volterra equations in Section 3, For the REM
ON and REM OFF we chose values so that the solutions exhibit five peaks during a
typical eight hours sleep, as in reality experimentally verified.
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Similarly, to express the barrier of REM ON, we chose suitable the formula s2 =
7 − 1.5 · 10−4t, to model the fact that the importance of REM increase gradually over
time. The line of NREM s3 = 0.6+10−5t renders more difficult the switching of signals
as the hours of sleep increase, see Fig. 6.

The choice of all these functions has been fixed in all the subsequent implementa-
tions of the program. In this next phase we focused on the shape that the function of
τ must take, see Fig. 7. We established the fact that it is not a constant. After several
tests, we focused on a combination of sines and exponentials that oscillate following
the REM sleep behavior. The function of τ is then represented by

τ = a + sin t + eb sin t · | sin
t + c

d
|

where the coefficients a = 3, b = 4.8, c = 3600 and d = 1800 are chosen to normalize
the function interval of eight hours of sleep.

This mathematical model reflects the trend of pseudo TSEP and their cluster-
ing (NREM) and adequately models the result of complex interactions of activities of
specific neuronal populations:

• generators of REM sleep (pontine location);

• subcortical neuronal groups that lead, build and maintain the NREM (location
of the thalamus, reticular substance, midbrain)

Figure 7: The refractory period τ exhibits large fluctuations in time as euristically
assumed by our model
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5 Conclusions

Our model-based description of the TSEP series is able to reproduce attractor-driven,
pseudoperiodic and conversely, chaotic oscillation patterns in the series of these tran-
sient EEG phenomena related to sleep stage transitions and sleep maintenance. It is
based upon the concept that TSEP is the resultant of interactions among several neu-
ronal pools activities (inhibitory or excitatory), whose final output is a signal to cortex
(generation of TSEP).

Although euristically obtained, the model is an adequate descriptor of the balance
between homeostatic needs for NREM sleep and REM sleep pressure, supported by
different cortical neuronal populations interactions. Nevertheless it presents some issues
regarding the temporal limits of sleep onset and sleep ending. Here a further issue
would be the integration of the circadian component into this framework. Moreover, it
is still necessary to verify, by means of non-linear analysis techniques, the qualitative
and quantitative correspondence between the real dynamic system and the dynamic
system created by the model. As a matter of fact there is close resemblance between
the recurrence plot obtained by the simulated TSAP time series, Fig. 8a, and the one
of a real human subject, Fig. 8b.

Ideas for further developments in future studies are represented by the inclusion of
the circadian component, as mentioned, and a refinement of the general pattern of the
four neuronal populations, encompassing even the advanced model.

Figure 8: Left: recurrence plot obtained by the simulated TSAP time series; Right:
recurrence plot of a real human subject.
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Abstract

The present contribution aims at studying the effects of confinement in the
quantum energy levels of H2 by means of Single Wall Carbon Nanotubes (SWCNTs).
3- and 5-dimensional Cartesian coordinate-based models are employed for the full
exact description of rotational, vibrational and translational motion of the H2

molecule. The Time Dependent Schrödinger Equation (TDSE) is solved using a
parallel computational code (GridTDSE) for wave packet propagations.

Key words: Carbon nanotubes, Cartesian coordinates, wave-packet propaga-

tions, ro-vibrational spectroscopy

1 Introduction

For the past ten years, the effect of nanoconfinement has generated an increasing inter-
est both at experimental and theoretical levels. Research on Carbon nanotubes (CNTs)
has developed rapidly since their discovery by Iijima in 1991 [1], due to their variety of
unique mechanical (flexibility, resistance), physical (electronic conductivity, optic ab-
sorption) and chemical (catalytic behavior) properties. Amongst the most fascinating
properties of CNTs is their capacity for encapsulating molecules and confining them in
nearly unidimensional structures. In this sense, CNT structures stand as an appealing
and efficient material for hydrogen storage [2]. Consequently, several studies consid-
ering the effect of CNT nanoconfinement on molecular and reactive hydrogen systems
are presently being developed.

The present contribution aims at exploring how does CNT-confinement affect
chemical-physical properties of a H2 molecular system through the use of “Cartesian

coordinate-based” time propagation of wave packets. The accurate simulation of the
whole system, involving the large number of atoms in the CNT, with a fully quantum
formalism is numerically unfeasible. On the other hand, classical formalisms are unable
to predict quantum-nature confinement effects on such small-sized systems. An alter-
native with a reasonable computational cost is to restrict the Quantum formalism to
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the description of H2, modeling the interaction with the nanotube through the use of a
semi-empirical potential. Despite this simplification, one has to deal still with a multi-
dimensional (> 3) system. Not only this, but the presence of the nanotube breaks the
symmetry of the confined system, reducing considerably the suitability of curvilinear
coordinates, commonly used in standard quantum dynamics methods.

At this point, the development of a Cartesian coordinates-based code has clear
advantages. On the one hand, computational advantages such as the simplicity of the
algorithms and the absence of singularities in the Hamiltonian result in a straightfor-
ward extrapolation to other molecular confined-systems. The only modifications in
the code should be at the level of the potential operator, which is diagonal, without
involving new cross-derivatives in the Laplacian operator. On the other hand, the iden-
tification of the variables involved in the confinement mechanism is straightforward in
a time-dependent cartesian picture. The balancing entry on this method consist of the
larger number of dimensions that it usually involves (3N − 3, with N the number of
atoms), compared with the usual 3N −6 of standard curvilinear coordinates. However,
in the present case very simple symmetry impositions can help us to work on a reason-
able 5-dimensional phase-space, with the additional advantage of an exact treatment
of trans-vibro-rotational couplings (Coriolis coupling effect is treated in exact manner,
in contrast to the second-order perturbation theory of usual standard approaches [3]).

The cost of such a heavy computational charge can only be assumed by the paral-
lelization of the work over large clusters of computers, following a strategy that increases
the memory storage capability and reduces the time of the calculations. The efficiency
of the code relies basically on a minimum transfer of information between processors.
Such is the strategy of the GridTDSE computational code [4], which has been exten-
sively and successfully used to study molecular bonding as well as reactive systems. We
extend its use here to nanoconfined molecular systems.

2 Methodology

GridTDSE code employs Grid methods for direct integration of the Time Dependent
Schrödinger Equation (TDSE), which can be written in mass-weighted cartesian coor-
dinates:

−
~

2

2
∇2Ψ(~x, t) + V Ψ(~x, t) = i~

∂Ψ(~x, t)

∂t
, (1)

In Grid methods, the wavefunction Ψ(~x, t) at any time t is discretized over the whole
phase space. The accuracy of the calculations relies on the density of the grid of points
considered. The action of the Hamiltonian operator over the wave packet turns into
a matrix-vector multiplication, which can be calculated with the adequate computa-
tional algorithms for linear systems (i.e. the Portable Extensible Toolkit for Scientific
Computation (PETSc), which is a variety of MPI-based libraries especially efficient for
carrying out parallel vector-vector and matrix-vector operations). The matrix-vector
multiplication becomes the most cumbersome task of the program. Although the ki-
netic part of the Hamiltonian is non-diagonal, computational charge is lightened by
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using a Variable Order Finite Difference method (VOFD) [5], which increases the spar-
sity of the Hamiltonian matrix and reduces the allocated memory. We can additionally
increase the sparsity by considering an energy cut-off for the process, excluding grid
points with a potential energy above it.

The propagation in time of the wavefunction Ψ(t) = e−iĤt/~Ψ(t = 0) is extracted
by Second Order Difference method (SOD) [5]. Once obtained the wavefunction at any
time of the process, all molecular properties, such as power spectra and eigenfunctions,
can be readily obtained by Fourier transforming the corresponding time-correlation
function. The code might be used as well at a Time Independent scheme to diagonalize
the Hamiltonian matrix by means of a Lanczos algorithm, giving more accurate results
for the eigenenergies at the same computational effort, although dynamical information
would be lost in this scheme.

3 Formulation

The implementation of GridTDSE to study the dynamics of H2 embedded in a CNT can
be achieved by means of a 5-dimensional cartesian system, provided that we consider
the CNT as an infinite-length rigid structure. Assigning ~ρ and ~R to the intramolecular
H2 vector and the position of the center of mass (c.m.) of H2, respectively, three
coordinates will be devoted to internal rotation-vibration (ρx,ρy,ρz) and two to c.o.m.
translation (Rx,Ry). Here we have made use of the fact that the variation of the
potential function along the CNT axis (here z) is negligible. The global Hamiltonian
that describes simultaneously the rotation, vibration and translation of H2 inside the
CNT involves a two-term potential function:

V (~R, ~ρ) = VMorse(ρ) + U(~R, ~ρ). (2)

The first term accounts for the H-H covalent bond, and is modeled employing a
Morse potential [6] with the same parameters as in [7]. The second term describes the
atom-atom interaction of each hydrogen with the constituents of the rigid nanotube,
and consists of a sum of C-H Lennard-Jones potential functions:

U(~R, ~ρ) =

NC∑
i=1

2∑
j=1

4ǫ

[(
σ

rCi−Hj

)12

−

(
σ

rCi−Hj

)6
]

. (3)

where rCi−Hj
is the Ci-Hj distance obtained from ~R and ~ρ. Despite the manifold of

different (σ,ǫ) parameters for the C-H interaction present in the bibliography [8, 9, 10],
we recall that the scope of the present work is to elucidate a general qualitative picture
of the effects of nanoconfinement on H2 molecules. Therefore, we will not be here very
concerned about this choice and we will carry out the calculations taking the values
σ = 2.82 A and ǫ = 0.605 kcal/mol that we already employed in [7].

In previous contributions [8, 11], it was shown that, as a general feature, the vari-
ation of the CNT radius resulted in two different types of confining potentials U(~R, ~ρ).
Narrow-type CNTs exhibit parabolic potentials with the minimum at the center of the
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nanotube, while for wider nanotubes the potential minimum is displaced towards the
CNT’s walls resulting in a ring structure. Due to the different qualitative picture ex-
pected in both structures, we have performed our calculations choosing one CNT of
each type: CNT with chiral indexes (n = 8,m = 0) for the parabolic type and a wider
(n = 10,m = 0) CNT for the ring type.

In a 5-dimensional calculation, the identification of the global translational, rota-
tional and vibrational levels is not straightforward. This task can be enlightened by the
previous interpretation of a 3-dimensional model, where the c.o.m. of H2 is constrained
at the position of minimum potential energy inside the nanotube. This approximation
is especially suitable for the (8,0)-CNT, where this minimum is localized along the axis
of the nanotube. Additionally, as a first benchmark for evaluating the effect of the nan-
otube we have included a simple 3-dimensional model of unconfined (gas phase) H2.
Despite its apparent simplicity, the absence of analytical solutions of the TDSE when
a Coriolis coupling term is included is still originating work on the subject [3]. The
main approach in the literature is to approximate solutions by the use of second-order
perturbation theory. But most of these methods fail to reproduce the exact solutions
for strong Coriolis couplings (large-J values). By means of the cartesian GridTDSE
method we overcome this limitation treating exactly the Coriolis term, and accurate
ro-vibrational energies are obtained with a Lanczos method.

4 Results and Discussion

We start by showing in figure 1 the results of a time-independent Lanczos calculation
for the simplified 3-dimensional model in a CNT confinement of chiral indexes (8,0).
Comparing to the unconfined energy levels, the primary effect of confinement is to
shift the energy levels of the vibrational ground state (ν = 0) by 105 cm−1, while the
displacement is 128 cm−1 for the first excited vibrational state (ν = 1). This effect
can be explained considering that for ν = 1 the vibrational amplitude is higher and
consequently the hydrogen atoms get closer to the nanotube’s walls, enhancing CNT
confinement. Concerning the rotational spectrum, we note as a general pattern that the
(2J +1)-degeneracy of the unconfined H2 system (blue broken lines) is broken in (J +1)
different lines (red dotted lines). The splitting arises from the cylindrical symmetry
imposed by the nanotube, keeping always the same energy for rotational states (J ,M)
with the same absolute value M (projection on Z of the total angular momentum).
On the other hand, we note a very similar pattern in the distribution of the rotational
levels from ν = 0 to ν = 1, with smaller gaps for higher ν values as expected from
theory (the momentum of inertia gets bigger and this influences EJ = J(J + 1)/(2I)
). One remarkable fact is that J-manifolds become broader on the excited vibrational
state (i.e., 75 cm−1 for ν = 0 while 100 cm−1 for ν = 1).

In figure 2 we show comparative results of both 3-dimensional (upper figure) and
5-dimensional (lower figure) wave packet propagations, again for the (8,0) CNT. We
note that both figures are aligned at the zero point energy (ZPE) in order to better
illustrate changes in rotational energies. In the upper figure, we propagate a 3-D
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Gaussian wave-packet under a SOD scheme, positioning the initial internuclear vector
on several orientations relative to the SWCNT. Taking an initial arbitrary orientation
(here called XY Z−) we can extract most of the eigenvalues of the confined system.
On the other hand, repeating the calculations for specific axis-oriented initial wave-
functions provides useful insight into the nature of the eigenfunctions. In the figure
we note for instance that the minimum energy at each J-manifold corresponds to a Z-
oriented (i.e. nanotube axis) initial internuclear vector ~ρ. On the other hand, due to the
cylindrical symmetry, both X and Y orientations yield the same result -for simplicity
only X-orientation is displayed-, with a J − 2n (n = 0, . . .) pattern. We can therefore
assign Z-oriented states to M = 0 states, while X- and Y -oriented states are linear
combinations of eigenstates with the same M -parity. The effect of confinement in this
CNT can be viewed then as a perturbation of the corresponding spherical harmonics.

The energy spectrum of the 5-dimensional model is displayed in the lower figure.
The ground state energy is in this case 273 cm−1 higher than the corresponding energy
for 3-D. This difference is mainly due to the zero-point translational energy that was
hindered in the 3-dimensional model. In the 5D case, translational and rotational
energies are of the same order, and couplings between both motions are more efficient.
Consequently, the time-independent energy spectrum obtained by a Lanczos method
is considerably more dense and the identification of the type of motion in each case
is much more difficult than in the 3-dimensional case. However, if we extract the
translationally-excited states from the spectrum by time-propagating a wave-packet
initially localized at the potential minimum (the center of the nanotube), the structure
and nature of each eigenvalue is much more clear. The figure resembles then a lot the
3D pattern above, and the (2J + 1) degeneracy of the unconfined molecule is again
broken. The M -manifold for each specific J value is slightly wider in the 5D case
than in the 3D one. The energies of most Z-oriented (M = 0) states do not change
significantly from 3D to 5D, while the biggest difference is obtained for (M = J) states.
This can be explained by the fact that high-M states are linear combinations of states
oriented on X and Y , which are the axes of the translational coordinates Rx and Ry

included in 5D. Not all the lines, however, can be derived from a simple 3-dimensional
model. Looking carefully at the J = 3 ensemble, we note the presence of a new line
at 3177 cm−1 oriented along X-axis, while there are two new Z-oriented lines at 3370
and 3419 cm−1. These are the result of a strong rotation-translation coupling. In order
to confirm that these lines correspond to J = 3 we have filtered out other J values by
introducing angular momentum projection operators PJ in the initial wavefunction, as
described in [4], although the results have not been included here.

Results for the ring type potential created by the (10,0)-nanotube will be presented
at the CMMSE 2011 Conference.

@CMMSE                                 Page 1093 of 1703                                 ISBN: 978-84-614-6167-7



Hydrogen confined in SWCNTs: Anisotropy effects

2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600
J=

0

J=
1

J=
2

J=
4

J=
3

J=
0

J=
4

J=
3

J=
2

J=
1

6400 6500 6600 6700 6800 6900 7000 7100 7200 7300 7400 7500 7600 7700

E (cm
-1

)

ν=0

ν=1

Figure 1: Comparative ro-vibrational energies (ν = 0 up, ν = 1 down) obtained from
a 3-dimensional center-of-mass-fixed model (~R = ~R0) using Lanczos techniques for
isolated H2 (broken line) and H2 confined in a (8,0)-nanotube. Specific-J values are
labeled in the isolated case.
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Abstract

Large-scale nanoparticle assemblies may appear in different structures, depend-
ing on the fabrication method, the parameters and the constraints controlling the
self-assembly processes. Consequently, the emergent aggregates may have different
physical or chemical properties, closely related with their structure at mesoscopic
and global scale. We briefly discuss mathematical methodology to systematically
explore structures of nanoparticle assemblies by suitable mapping onto graphs
(nanoparticle networks), and present some results of the numerical modeling of
the assembly processes with competing attractive–repulsive forces. In particular,
we study binary colloidal aggregation, where two types of particles are binding
via molecular recognition, and the aggregation of three types of charged particles
with different particle sizes. We show how different structures emerge when certain
parameters of the self-assembly processes are varied.

Key words: nanoparticle networks, binary colloidal aggregation, charged colloids

1 Introduction

Macroscopic assemblies of nano-particles as bulk nanostructured materials or thin films
[1] may exhibit a variety of different structures and with them related collective proper-
ties [2]. These are dependent on the assembly processes [3, 4] and the variations of the
relevant parameters of the assembly, which affect the interactions among the constitu-
tive nanoparticles [5]. Therefore, the structure of the nanoparticle assembly is of key
importance in bottom-up fabrication of the functional nano-material. Two segments
along that line, the self-assembly process itself, and the inter-dependences between
the emergent spatial arrangement of the nanoparticles with the physical (chemical)
properties of the material, require theoretical modelling and numerical analysis [6].
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Figure 1: Examples of nanoparticle networks: (left) 3-dimensional arrangement with
a scale-free graph structure [6]; (right) Regular 2-dimensional structure obtained in
bio-recognition assembly (see below) with equal particle sizes and low coverage.

For the quantitative analysis of complex structures emerging in different assembly
processes we have recently introduced a methodology based on mapping of the assem-
blies onto mathematical graphs (nanoparticle networks) and using the graph theory
methods, see Refs. [7, 8, 9, 10]. Two examples of such nanoparticle networks in two-
and three-dimensions are shown in Fig. 1. Nodes of these graphs are the nanoparti-
cles, while the links indicate association of the nanoparticle pairs with a certain type
of interaction. Gold nanoparticles can be ligated by bio-compatible DNA parts [3], or
functionalized in another way to promote interaction in a given direction [11], which
then affects the assembly process. In the case of charged colloidal particles, as in the
case of PMN ceramics Pb(Mg1/3Nb2/3)O3 synthesis, ζ-potential can be manipulated
by changing the pH of the solvent [13].

The spatial arrangements of nanoparticles of the type in Fig. 1(left) are shown
to affect the processes of magnetization reversal [6, 10], which are important in the
memory materials (see Fig. 2). Whereas, the planar arrangements of the metallic
nanoparticles, as in Fig. 1(right), are relevant for the single-electron tunneling processes
in nano-electronics [7, 9]. Both experiments and simulations in [7, 8, 9] show that the
current–voltage I−−V characteristics strongly depend on the spatial inhomogeneity of
the conducting NP films. Specifically, favorable nonlinearity is obtained in the case of
stronger inhomogeneity, where the links with large topological betweenness occur. Here
in section 2 we will show how several such 2-dimensional structures of the nanoparticles
can arise from the self-assembly process which exploits bio-recognition binding and
varied parameters. We focus on the binary colloids, where the neutral particles of two
different sizes are involved. In section 3 we will also discuss the particle-size effects in
the assembly processes of charged colloidal particles in 3-dimensions [13].
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Figure 2: (left) Hysteresis loop in the magnetization-reversal on a scale-free graph, as
function of the average node connectivity M [6]. (right) Current-voltage characteristics
for single-electron tunneling conduction in nanoparticle films of different geometry.

2 Binary Colloidal Aggregation with Competing Forces

By attaching the biologically compatible strands of the DNA to two different nanopar-
ticles two types of particles, A and B, can be recognized. In addition to carrying
different DNA strands, the type A and type B particles in this work are assumed to
be of different size, with the radius RA = 2.5RB. The bio-recognition binding can be
represented by an attractive Lennard-Jones potential, with the parameters related with
the binding strength (number of DNA base-pairs), the lengths of the attached DNA
ligands and the particle radii [9]:

VA−B(r) = 4ǫ

(
σ12

(r −RA −RB)12
−

σ6

(r −RA −RB)6

)
. (1)

In contrast to A–B interactions, the repulsive potentials apply for the particles of the
same type, VX−X(r) = 4ǫ′ σ′12

(r−2RX)12
with own parameters ǫ′ and σ′12.

Particle diffusion in 2-dimensional plane is simulated by solving the sets of the
Langevin equations with these attractive and repulsive pair potentials and in the pres-
ence of an external random noise:

νiṙi = −∇ri

∑
j

Vi−j(|ri − rj |) + Fi,T , (2)

where ri is the position of ith particle and νi ≡ 6πηRi represents the kinetic coefficient
different for each particle type, and η is the fluid viscosity coefficient. The stochastic
force Fi,T originating from the integration over the fluid degrees of freedom, is given by
the distribution with the moments 〈Fi,T (t)〉 = 0 and 〈Fi,T (t)Fj,T (t′)〉 = 6kBTνiδi,jδt,t′ .

Details of the numerical implementation can be found in [9]. Here we focus on
the structures that emerge after long evolution time (lowest energy) of the assembly
in different conditions. The results shown in Fig. 3 correspond to increased particle
density, while the relative concentrations of the particle types are kept equal. In the low
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Figure 3: Emergent binary aggregates for equal concentrations and varying density.

particle density, the situation interesting for bio-sensors, a large particle appears to be
isolated by six small particles. In the situations with equal concentrations, very small
isolated clusters can form, as in Fig. 3 top left, where also the binding links are shown.
When the density is increased, but the relative concentrations kept equal, worm-like
structures appear and start joining with each other, cf. top right Fig 3. For even larger
densities, areas of regular arrangements may occur with voids of different sizes between
them, bottom panels in Fig 3. The large particles are cross-linked via small particles,
forming a triangular pattern. Whereas, the constraint of equal concentrations prevails
small particles to order at a comparable scale. Note that in the case of equal sizes of the
particles, the constraint of equal concentrations leads to square lattice arrangements
even at very low densities, as in the example shown in Fig. 1 right.
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3 Size Effects in the Aggregation of Charged Colloids

As an interesting example of the aggregation of charged colloids, we consider three types
of charged colloidal particles, PbO–lead oxide, MHC–magnesium hydroxy carbonate,
and Nb2O5–niobium oxide, in the relative concentrations and the conditions relevant
for the Pb(Mg1/3Nb2/3)O3 ceramic synthesis from the aqueous suspension [12, 13]. It
has been found [12] that the PMN in pure perovskite phase can be synthesized when
pH of the solvent is changed to pH=12.5, compared with the standard pH=11.4, where
a disturbing admixture of the pyrochlore phase occurs. With the numerical model of of
the system in [13] it has been shown that at pH=12.5 the polarity of the corresponding
interactions change such that direct contacts between PbO and Nb2O5 particles, and
thus the interactions leading to the pyrochlore phase, are prevented. The crucial role
in this aggregation process is due to MHC particles [13]. Here we further explore
the course of the aggregation at pH=12.5 with the steric effects of the MHC particles
when they are prepared in different sizes. In particular, twice smaller and twice larger
MCH particles compared with the other two types are considered with the Monte Carlo
simulations in 3-dimensions. Snapshots of the emergent clusters are shown in Fig. 4
(MHC are shown by dark/blue color).

Figure 4: 3-dimensional clusters of ternary aggregates of charged colloidal particles in
the model of PMN ceramics assembly at pH=12.5: Case where MHC particles are twice
smaller (left) and twice larger (right) compared with PbO and Nb2O5 particles.

In addition to the hard-core and the van der Waals potentials, for the colloids of a
given size and the type (Hamaker constant), of the key importance are the electrostatic
interactions between pairs of charged particles [13]:

U el
ij = πεrε0 ·

aiaj

ai + aj

[
(ψi + ψj)

2 ln
(
1 + e−κh

)
+ (ψi − ψj)

2 ln
(
1 − e−κh

)]
, (3)

where h = rij − (ai +aj) is the surface-to-surface distance between the particles, εrε0 is
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the dielectric permittivity of the medium(the constant for water εr = 78.5 is used). ψi is
the electrostatic surface potential of the particle i, and κ is the inverse Debye screening

length κ =
√

2NAe2I
ε0εrkT

. Details of the numerical model and the implementation are given

in [13]. In view of the above expressions, the steric effects due to different particle sizes
is more complex, compared to the case of neutral colloids. We focus on certain features
of the aggregation processes when size of the MHC particles is varied.
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Figure 5: Energy of the assembly (right) and the fraction of “desired” and “non-desired”
contacts (left) versus simulation time in the charged particle aggregation corresponding
to PMN ceramic synthesis at pH=12.5, when the size of MHC particle size is varied.

In Fig. 5 we show how the number of contacts between different particle types
evolves in time and the energy of the assembly. Two curves in each plot are for the
situations of smaller/larger MHC particles. As mentioned above, clusters formed at
pH=12.5 mostly involve MHC particles preventing direct contact PbO−−Nb2O5. Thus
“desired” contacts are PbO − −MHC and MHC − −Nb2O5, while all other contact
pairs might lead to unwanted chemical reactions or deteriorate the sample quality. Due
to fixed concentrations of the three types of particles, the steric effect of smaller/larger
MHC particles in preventing such contacts are different. For instance, for the case with
smaller MHC particles a small fraction of unwanted contacts remains when the clusters
are formed, while the bigger MHC are much more effective, cf. Fig. 5 left. However,
from the point of view of the energy, this situation is just the opposite. In this case a
large number of particles PbO and Nb2O5 remain outside the clusters (cf. Fig. 4).
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[13] G. Trefalt, B. Tadić, M. Kosec, Formation of Colloidal Assemblies in Sus-

pensions for Pb(Mg1/3Nb2/3)O3 Synthesis: Monte Carlo Simulation Study, Soft
Matter (2011) DOI:10.1039/C1SM05228D.

@CMMSE                                 Page 1103 of 1703                                 ISBN: 978-84-614-6167-7



Proceedings of the 11th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2011
26–30 June 2011.

Symmetric Iterative Splitting Method for
Non-Autonomous Systems
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Abstract

The iterative splitting methods have been extensively applied to solve com-
plicated systems of differential equations. In this process we split the complex
problem into several sub-problems, each of which can be solved sequentially. In
this paper, we develop a symmetric iterative splitting scheme based on the magnus
expansion for solving non-autonomous problems. We also study its convergence
properties by using the concepts of stability, consistency, and order. Several nu-
merical examples are illustrated to confirm the theoretical results by comparing
frequently used methods.

Key words: Iterative scheme, non autonomous system, convergency analysis,
magnus series

1 Introduction

The aim of the present paper is to develop and analyze a splitting method for non-
autonomous evaluation equation of the form

d

dt
u(t) = A(t)u(t), t ≥ 0 (1)

u(0) = u0 ∈ X (2)

on some Banach space X. For solving such non-autonomous system , it is often the case
that A(t) = T + V (t), where only the potential operator V (t) is time-dependent and T
is the differential operator see [5, 6, 7, 8, 9].

Operator splitting is a widely used procedure in the numerical solution of large
systems of partial differential equations. One of the operator splitting methods other
than the classical Trotter, Strang splitting is iterative splitting scheme which is based
on first splitting the complex problem into simpler differential equations. Then each
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sub-equation is combined with the iterative schemes, each of which is efficiently solved
with suitable integrators [1, 2, 3, 4].

Some splitting methods have already been used to find numerical solution of the dif-
ferent special non-autonomous system, particularly Hamiltonian ones [15, 17]. It is im-
portant to construct such numerical schemes for Hamiltonian dynamics or Schrödinger
equations that preserve some important qualitative properties and geometric structure
of that solution. In this study, we focus on developing the symmetric iterative scheme.
We embed the Magnus expansion [15, 16] which is a popular geometric, an attractive
and widely applied method of solving explicitly time-dependent problems, in the solu-
tions of the time dependent split subsystem of the iterative scheme. We consider the
time independent split subsystem as an abstract Cauchy problem. Our main focus will
be two fold: First, we develop the iterative splitting for non-autonomous problem. Sec-
ond, its convergence properties are analyzed using the concepts of stability, consistency,
and order.

The paper is outlined as follows: In Section 2, the basic idea behind the Magnus
method is summarized. In Section 3, the algorithm of the symmetric iterative scheme
is presented and its convergence properties are studied. In the last section, several
numerical examples are illustrated to confirm our theoretical results and efficiency of
the new scheme.

2 Exponential splitting method based on the Magnus ex-
pansion

The Magnus integrator was introduced as a tool to solve non-autonomous linear differ-
ential equations for linear operators of the form

du

dt
= A(t)u(t) , (3)

with solution

u(t) = exp(Ω(t))u(0) . (4)

This can be expressed as:

u(t) = T
(

exp(
∫ t

0
A(s) ds

)
u(0) , (5)

where the time-ordering operator T is given in [18].
The Magnus expansion is defined as:

Ω(t) =
∞∑

n=1

Ωn(t) , (6)
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where the first few terms are [15]:

Ω1(t) =
∫ t

0
dt1A1

Ω2(t) =
1
2

∫ t

0
dt1

∫ t1

0
dt2[A1, A2]

Ω3(t) =
1
6

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3([A1, [A2, A3] + [[A1, A2], A3])

· · · · · · etc. (7)

where An = A(tn). In practice, it is more useful to define the nth order Magnus
operator

Ω[n](t) = Ω(t) + O(tn+1) (8)

such that
u(t) = exp

[
Ω[n](t)

]
u(0) + O(tn+1). (9)

Thus the second-order Magnus operator is

Ω[2](t) =
∫ t

0
dt1A(t1)

= e
t(A(t))+(A(0))

2 + O(t3). (10)

3 Symmetric Iterative Splitting Method and its Conver-
gence Analysis

3.1 Derivation of the Algorithm for Iterative Splitting

Let us consider initial value problem (IVP ) given in (1) with the initial condition (2)
on the time interval [0, tend] where tend ∈ R. We assume for A(t) a two-term splitting

T + V (t).

Let us divide the integration interval [0, tend] in n equal parts by the points t0, t1, ...., tn,
where the length of each interval is h = tj+1−tj = tend/n, j = 0, 1..n. The approximated
solution and exact solution at time t = tn are U(tn) and u(tn), respectively.

Our technique are close to that used in [11]. We apply second order iterative process
described as below on each subinterval [tj , tj+1],

u̇1 = Tu1 + V (t)U(tj) u1(tj) = U(tj) (11)
u̇2 = Tu1 + V (t)u2 u2(tj) = U(tj) (12)

where u2(tj) = U(tj) denotes the numerical approximation to the true solution u(tj)
at the time t = tj and U(t0) = u0. The formal solution of the sub equations given in
(11) and (12) on the time interval [t, t + h] can be written by

ui(t + h) = Φi(t + h, t) U(t) +
∫ t+h

t
Φi (t + h, s)Fi(s) ds, i = 1, 2
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where F1 = V (t)U(t) and F2 = Tu1(t + h). Φ1 is the fundamental set of solution for
sub-equation (11) given by

Φ1(t, s) = e(t−s)T .

Φ2 is the fundamental set of solution for sub equation (12) given by

Φ2(t, s) = e
h
2
[V (t+h)+V (t)−V (s+h)−V (s)]

which is the second order approximation of the magnus series given in equation (10).
Next we use the trapezoidal rule to approximate the integral

∫ t+h

t
Φi Fi ds =

h

2
[Fi(t + h) + Φi(t + h, t)Fi(t)] + O(h3) (13)

Note that Φi(t + h, t + h) = I. After combining approximation (13) with the iterative
schemes (11), (12) and rearranging expressions, we get the first order approximation

u1(tn + h) = eTh[U(tn) +
h

2
V (tn)U(tn)] +

h

2
V (tn + h)U(tn) (14)

and the second order approximation,

u2(tn + h) = e
h
2
[V (tn+h)+V (tn)][U(tn) +

h

2
Tu1(tn)] +

h

2
Tu1(tn + h) (15)

where Un+1 = u2(tn +h). Repeat this procedure for next interval until the desired time
tend is reached.

Proposition 3.1: New iterative scheme preserve the time-symmetry property.
Proof 3.1: The time- symmetry preservation can be easily seen by interchanging

tn+1, U(tn+1), h by tn, U(tn),−h,respectively.

3.2 Convergency Analysis

In the present section, we analyze the convergence behavior of the symmetric iterative
scheme derived in the previous section. We assume that T is unbounded and V (t) is
bounded operator. We define a operator norm as ‖.‖X←X in a (complex) Banach space
(X, ‖.‖X←X)
In our proofs, we will use the following assumptions:

Hypothesis 1 : Suppose that closed linear operator A(t) : D → X where D
is dense subset of X and that A(t) is uniformly sectorial for 0 ≤ t ≤ tend. Then,
there exist constants a ∈ R, 0 < ϕ < π/2,and M1 ≥ 1 such that Sϕ(a) = {λ ∈ C :|
arg(a− λ) |≤ ϕ} ∪ {a},

‖(λI −A(t))−1‖X←X ≤ M1

| (a− λ) | for any λ ∈ C \ Sϕ(a). (16)
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Then for fixed 0 ≤ s ≤ tend, the analytic semigroup etA(s)satisfy ‖ etA(s) ‖≤ Meωt for
some constants ω < 0 and M ≥ 1. Our general references on semigroups are [12, 13].

Hypothesis 2 : Let D(T ) = D(A(t)). We note that T is linear closed operator
and that generates a strongly continuous semigroup etT on X. By semi group property,
we assume ‖ eTt ‖≤ 1.

Hypothesis 3 : We assume that V (t) is bounded linear operator on X. Then we
get eΩV (t) ≤ e‖V (t)‖ where ΩV (t) ≈ Ω2(t) with the help of the equation (10). As the
convergence of Magnus expansion is guaranteed if ‖ Ω(t) ‖< π. The details can be
found in [14]. There exists inverse of the fundamental set of solution of eΩV (t) if we
have Tr(V (t)) = 0.

Lemma 4.1 : Let T be an infinitesimal generator of a C0 semigroup S(t), t ≥ 0.
Let tend > 0. If for any V (t)U ∈ D(T ) satisfying V (t)U, TV (t)U ∈ C1([0, tend]; X)
then the solution of problem satisfies u(t) ∈ D(A2(t)) for 0 ≤ t ≤ tend whenever
u0 ∈ D(A2(t)), and we have

sup
0≤t≤tend

‖T iu(t)‖ ≤ Ei(tend), i = 0, 1, 2 (17)

where Ei depends on the specific choice of tend, T, V (t)U and u0. For the detailed proof
see [10].

Hypothesis 4 : We assume that there are non-negative constants C̃, R with

sup
0≤t≤tend

‖V (t)‖ ≤ C̃

‖u‖ ≤ R on 0 ≤ t ≤ tend

Under these conditions, the following convergence analysis is obtained for the pro-
posed symmetric iterative scheme.

Proposition 4.1 : The symmetric iterative splitting is first order if we consider
only one iteration given in (11) with the error bound

‖u(h)− U(h)‖ ≤ Kh2 (18)

Here K only depends on C̃, R, E1(tend).

Proposition 4.2 : The symmetric iterative splitting is the second order if we
consider two iterations given in (12) with the error bound

‖u(h)− U(h)‖ ≤ K̃h3 (19)

Here K̃ only depends on C̃, R, E1(tend).
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Proposition 4.3 : The symmetric second order iterative splitting scheme is stable
on [0, tend] with the bound

‖ Un ‖≤ etendC̃‖u0‖+ he2hC̃E1(tend)(
1− etendC̃

1− ehC̃
).

Proposition 4.4 : The global error of iterative splitting is bounded by

‖Un(h)− un(h)‖ ≤ Gh2

Here G only depends on tend, ‖ u0 ‖, R and C̃.

Proof : Directly from telescoping identity.

4 Numerical Examples

4.1 1. Mathieu equation

We first consider the Mathieu equation,

q′′ + (ω2 − ε cos(t))q = 0 (20)
(21)

By redefining the variables as q(t) = q1(t) and q̇(t) = q2(t), and u(t) = (q1(t), q2(t)),then
the time dependent oscillator corresponds to

A(t) =
(

0 1
−(ω2 − ε cos t) 0

)
=

(
0 1
−ω2 0

)
+

(
0 0

ε cos t 0

)
≡ T + V (t),

We take as initial condition q(0) = 1.75 and q̇(0) = 0, integrate up to t = 10 and
measure the average error for different time steps.

h Iterative Splitting/Order Lie Trother/Order
0.1 0.0610 0.1015
0.01 0.0066 (0.9658) 0.0105 (0.9853)
0.001 6.6819e-004 (0.9946) 0.0011 (0.9798)

Table 1: Comparison of errors for several h on [0, 10] interval with various methods
where ω = 0.6 and ε = 0.3. The expected order is 1
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Another comparison is for the second order methods,

h 2nd order Iterative Splitting/ order Strang Splitting/ order SWS/ order
0.1 9.8067e-004 0.0011 0.0062
0.01 8.3542e-006 (2.0696) 1.0839e-005 (2.0064) 6.3187e-005 (1.9918)
0.001 8.2197e-008 (2.0070) 1.0801e-007 (2.7672) 6.3309e-007 (1.9992)

Table 2: Comparison of errors for different h on [0, 10] interval with several methods
where ω = 0.6 and ε = 0.3. Accepted exact solution is fourth order magnus expansion.
The expected order is 2

The numerically observed order in the discrete L∞ norm is approximately 1 in
table 1 which is supported by proposition 4.1. In addition, proposition 4.2 predicts
order 2. This number is in perfect agreement with table 2. We also observed in table
2 that second order proposed iterative splitting scheme is more efficient than not only
Strang splitting but also symmetrically weighted splitting.

4.2 Schrödinger Equation

Another experiment is time dependent schrodinger equation as following form,

i~
∂ψ(x, t)

∂t
= Ĥψ(x, t)

where ψ(x, t) denotes the probability amplitude for the particle to be found at position
x at time t and Ĥ is the Hamiltonian operator for a single particle in a potential.

In our study we choose one-dimensional harmonic oscillator in the finite time in-
terval t ∈ [0, tend] has the form

i
∂ψ(x, t)

∂t
=

(− 1
2

∂2

∂x
+

ω2(t)(x2 − 1)
2

)
ψ(x, t) (22)

ψ0(x) = 4

√
1
π

exp
(− 1

2
x2

)

with ω2(t) = 4− 3e−t.
We take into account the system as following form,

(
u̇
v̇

)
=

(
0 A(t, x)

−A(t, x) 0

)(
u
v

)

where ψ(x, t) = u(x, t)+ iv(x, t),then consider the splitting methods with ODE system
split in the form,T corresponds to spatial derivative ∂2ψ(x, t)/∂x2, we use the second
order center difference scheme in order to approximate it, thus we get 2N×2N system.

(
u̇
v̇

)
=

(
0 T
−T 0

)(
u
v

)
+

(
0 V (t, x)

−V (t, x) 0

)(
u
v

)
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Figure 1: The probability of density,|Ψ(x, t)|2, for the equation in (22).

For exhibited figure, we suppose that the system is defined in the interval x ∈
[−10, 10], which is split into M = 100 parts of length ∆x = 0.2. We integrate the
system using proposed method with the time-step size ∆t = 0.03 up to final time t = 3.

5 Conclusions and Discussions

We have developed the new symmetric iterative splitting scheme for non-autonomous
systems with the help of the Magnus expansion. This new scheme is applicable for ob-
taining the numerical solution of the non-autonomous systems for example Schrödinger
equation in quantum mechanics since it preserves the time symmetry. We also investi-
gated the convergence properties of the new scheme by using the semigroup approaches.
We confirm the theoretical results on a test problem. The method also provides the
higher order accuracy in approximate solution with increasing number of iteration steps.
Finally numerical experiments reveal that our proposed method is efficient and easily
adapted to numerically solve for such problems.
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Abstract

In this talk, we review several computational methods which are used in the study of
charge transport through molecular devices. These methods are either implemented as
new software within existing quantum chemistry codes, or based on models which use re-
sults of quantum chemical calculations as input for their key parameters. In particular,
we describe our implementation of the NEGF method within the Amsterdam density
functional theory (ADF) code, which enables us to perform transport calculations for
large molecules. Furthermore, we describe calculations on phenomena where vibrational
excitations of molecules influence the charge transport. Finally, we comment on meth-
ods we developed for analysing transport in the weak-coupling limit which is relevant
for large class of experiments. Key words: Density functional theory, non-equilibrium

Green’s function methods

1 Introduction

Molecular electronics is a rapidly developing field with great promise for future application.
This promise rests upon two considerations: first, the size of molecules defines a minimum
device size for logic applications, and this minimum comes within reach if molecules could
be ‘wired up’ in a controled fashion. The second consideration is the versatility in the
behaviour of the ‘active element’, as there exist very many different molecules with many
different properties, which enables us to vary the structure and chemical composition of
the molecules in order to have the device exhibit a particular behaviour. For example,
the sensitivity of the molecular electronic or nuclear structure on incident light or ambient
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temperature enables them to be used as sensors. For a review of the different phenomena
and transport mechanisms, see [1]. These phenomena and behaviours may be studied using
a variety of theoretical methods, a few of which will be described in this talk, along with
examples and results.

Developments in the realization of devices in which charge transport through single
molecules can be studied, have caused a rapid expansion and extension of these methods to
include the effects of electron-nuclear coupling and correlations, e.g. the exchange correlation
responsible for the Kondo effect. Another interesting development in this field is the large
body of quantum chemistry and band structure software which has proven very useful in
the study of quantum states in molecular and bulk solid systems. The challenge in the
field has been and still is to combine theoretical concepts and computational quantum
chemistry into tools which have predictive power. There is however in the field of single-
molecule electronics an inherent limitation to this predictive power in that the details of
the molecule-contact interface are usually not known: standard nanometer probes, such as
STM or AFM are not capable of providing this information, as the molecules are usually
trapped inside a nano-meter wide gap of metal contacts, preventing a tip from giving us the
desired information. Even if the probe itself is used as a contact, which is the case in STM
transport, the details of where and how the molecule is attached to the substrate remain
unknown. As a consequence, we should sometimes be satisfied with predicting trends rather
than reliable a priori predictions for the value of, say, a current at a specified voltage.

2 Coomputational methods

2.1 Nonequilibrium Green’s functions

We first review the implementation and the results of a NEGF method which was pro-
grammed within the Band module of the Amsterdam Density Functional (ADF) commercial
quantum chemistry code. In the NEGF method, the current is calculated from a Green’s
function which is calculated as G(E) = 1/(E − H − Σ), where H is the DFT Hamilto-
nian and Σ is the so-called self-energy, which is non-hermitian and which accounts for the
addition to and removal from electrons of the system. These self-energies contain all the
information from the (bulk) contacts. This information is encoded in the Green’s function
of these contacts, and is calculated in our code from a tight-binding representation of the
Hamiltonian, which we fit to the DFT Hamiltonian obtained from a periodic calculation.
The Hamiltonian H is restricted to the molecule plus a few layers of contact-metal, and this
structure is called the ‘extended molecule’.[2]

Some special features of our implementation which distinguish it from the existing ones
are

• The possibility to vary the periodicity of the calculation. Band allows for periodicity in
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0, 1, 2, or 3 dimensions. Therefore we perform a bulk electronic structure calculation
for the contacts, and in the device calculation, involving a molecule, the periodicity
is turned off. The same basis set is used in all these calculations.

• The fact that the device calculation is non-periodic allows us to study the effect of a
back-gate potential which is not compliant with a periodic unit cell.

• We have included a delicate scheme for fine-tuning the offset between the chemical
potential in the bulk contact and the zero-potential level at the molecule.

The code furthermore allows for various LDA and GGA exchange correlation potentials to
be used.

In figure 1, the results of a calculation for a porphyrin molecule sandwiched in between
two gold electrodes are shown. The picture showing the structure also shows the states
corresponding to the HOMO orbital on the molecule. The transmission is shown for this
junction in figure 1b.

An example of a trend observed is the dependence of the levels on the distance between
the electrodes, which can be varied in a break junction setup. This is currently under
investigation.

2.2 Rate equations and vibrational modes

The NEGF/DFT method performs quite well in the case where the orbitals through which
the transport takes place are far (in chemical potential) from the chemical potential of the
bulk source and drain contact (off-resonant transport), or in the strong coupling limit. In
the latter case, the charge on the molecule remains more or less constant and is in general a
fractional number of electron charges. In the weak coupling limit, the charge fluctuates, as
in that case the charging energy exceeds the coupling energy, which restricts the charge on
the molecule to integer values. The standard method for analysing transport in the weak
coupling regime is the method of rate equations. This method gives insight in the average
occupation on the molecule and in the average current flowing through it. However, it does
not predict the line broadenings associated with the transition between one charge state
and the next due to quantum fluctuations. Thermal linebroadening of the lineshapes is
accounted for, however.

For electron transport, the rate equation method is very straightforward and leads to
qualitatively correct results. Richer behaviour is however observed if transitions between
different vibrationally excited states of the molecule are included into the picture. The
electronic and vibrational excitations are related through the electron-phonon coupling. In
the weak coupling limit, the electron-nuclear coupling is responsible for the occurrence of so-
called Frank-Condon factors in the transition rates between the ‘vibronic’ states (a vibronic

@CMMSE                                 Page 1115 of 1703                                 ISBN: 978-84-614-6167-7



Computational Methods for Single Molecule Charge Transport

state denotes the combined electronic and vibrational state of the molecule). In a three-
terminal device in the weak coupling limit, where the potential inside the molecule can be
shifted up and down by tuning a gate voltage, these factors give rise to vibrational excitation
lines that are sometimes visible in the differential conductance (dI/dV) as a function of bias
and gate voltage (the bias voltage is the difference between the source-and drain potential).

The vibrations that are observed in this way are normal modes of the molecule. How-
ever, we do not observe them for every normal mode – a crucial factor for the visibility of a
particular mode is the size of the Frank-Condon factor: a large Frank-Condon factor, some-
times, but not always, corresponding to a large electron-phonon coupling, is necessary. We
calculate the Frank-Condon factors for the molecule suspended between the gold contacts
and use them in a system of rate equations for which we find the stationary solutions. In
this way we are able to obtain a good match with the experimentally observed vibrational
spectra. Analysis in this fashion allows us to unambiguously identify a particular type of
molecule in the experiment – it is a molecular-transport version of the vibrational finger-
printing technique. In figure 2, the results for a particular example are shown. The current
passing through an oligo-phenylene-5 (OPV5) molecule was measured as a function of bias
and gate voltage, giving rise to a ‘Coulomb diamond’, a lozenge-shaped region where the
current is suppressed as a result of the fact that there is no discrete level which can be occu-
pied on the molecule and which aligns in energy with the occupied states in the source and
with unoccupied states of the drain. In the conducting region just outside of the diamond,
we see many lines, corresponding to vibrational modes that are occupied provided the bias
is high enough. From these lines the vibrational frequencies can be determined. These
frequencies are compared with the ones calculated to show up as visible lines – see figure 2.
Note that the molecule has many more vibrations than showing up in the experiment – ony
the modes with a significant Frank-Condon factor show up in the transport measurements.
An interesting aspect of the comparison in figure 2 is that the calculation in which the
molecule is attached to the gold contacts, gives much better agreement with the data than
the calculation where that was not the case.

Rate equation techniques can also be used for studying electroluminescence – this is the
phenomen where electrons travelling through a molecule, weakly coupled to the electrodes,
have two possible orbitals they can occupy on their way. If an electron decays from the
higher one of these two the lower, a photon may be emitted. The two electronic orbitals
involved both have their own vibrational spectrum, and the optical spectrum of the emited
photons carries information about these spectra. Again, we have obtained good agreement
with experimental data; see Ref. [5]

@CMMSE                                 Page 1116 of 1703                                 ISBN: 978-84-614-6167-7



J. M. Thijssen, C. J. O. Verzijl, F. Mirjani, and J. S. Seldenthuis

3 Weak and intermediate coupling

In the intermediate coupling limit and at low temperatures, the rate equation method is
inadequate. A better method for calculating current/voltage characteristics is to use many-
body nonequilibrium Green’s function techniques. We have developed such a technique [6]
which starts with a series of DFT ground calculations for different charge and spin states,
and derives a spectrum of the molecule with Coulomb interaction parameters between all
possible levels. The number of chemical potentials and interaction parameters of the final
model is precisely equal to the number of ground state DFT calculations possible for the
molecule when the number of electrons and their total spins is varied. For a model system,
this method yields very good agreement with density matrix renormalisation group (DMRG)
methods applied to interacting spinless and spin-1/2 Hubbard chains. For these model, we
used an L(S)DA parametrization presented in refs. [7, 8] and as LDA parametrization based
on a Bethe Ansatz solution. We show these results in figure 3 for spinless fermions, which
provides a nice system for comparison, as DMRG can be applied to them with realistic
computer resources.

The method we use is based on the assumption that the weakly coupled system can
be viewed as a system composed of orbitals at chemical potentials εi with for each of these
orbitals an intra-Coulomb interaction between spin-up and -down electrons, and an inter-
Coulomb interaction between two different levels. Whether this is a correct representation is
somewhat debatable. For example, a system consisting of two quantum dots in series, does
not allow for such a description in terms of two levels with Coulomb interactions. How well
the eigenvalues of the orbital model with Coulomb interactions represents the original system
depends on the values of the hopping parameter and Coulomb interactions in the original
model. The picture of molecular orbitals and Coulomb interaction inside and between them
is however successful, and widely used in chemistry when interpreting the behaviour of
electrons. A further refinement of the method would need more information than ground
state energies can give us. In some cases it is possible to obtaine extra information by
inspecting the DFT eigenvalues. Consider for example a molecule which consists of two
symmetric moieties which are separated by a tunneling barrier. In that case, there is a
bonding and an anti-bonding state. The difference in energy between these the Kohn-Sham
eigenvalues of these bonding and anti-bonding states enable us to find the electron hopping
integral between the two moieties. In that case, the calculation can be redone using a more
involved analysis. Our preliminary results in this direction are encouraging.

Of course, the method becomes really useful when it can be implemented in an ab initio
context. We are currently exploring ways for doing that within constrained DFT (C-DFT).
In this technique, part of the system has a fixed charge and spin, and for the Hilbert space
with that restriction imposed, a DFT calculation is carried out. The hope is that these
extensions will enable us to bridge the gap between the weak strong coupling regime.
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4 Conclusion and outlook

The field of molecular electronics is promising for future technology, but poses major the-
oretical challenges. It is our aim to be able to predict the current-voltage characteristics
of a molecular junction. Apart from uncertainties related to the molecule-contact inter-
face, which can only be overcome when the experiments allow for better characterization
or when larger series of well reproducible data are supplied, these challenges lie in dealing
with the complexity of the problem of charge transport through a molecule. The transition
between the weak and strong coupling regime is a major such difficulty, and the inclusion
of the coupling between electronic states and vibrational modes is another one. The strong-
coupling regime so far is the most successfully treated case. We have developed a new NEGF
implementation within the commercial ADF-Band code. We have successfully addressed
the problem of theoretically describing vibrational excitations of molecular junctions in the
weakly coupled regime. In that case, our methods can be used for ‘fingerprinting’, i.e. un-
ambiguously identifying a molecule present in the junction. We are in the process of dealing
with the intermediate coupling regime, which turns out particularly challenging. Inclusion
of vibrational modes into the intermediate coupling regime is a further goal which we shall
pursue in the next few years.
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(a)

(b)

Figure 1: (a) The geometry of a gold-porphyrin-gold junction, with a HOMO state visualised
which has a weight on the molecule as wall as in the contact. (b) Transmission T (E) for
the junction shown in (a). The energy integral over the transmission gives the current in
units of the conductance quantum.
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Figure 2: Comparison of the experimental vibrational spectrum of OPV5 (a) with results of
rate equations based on vibrational frequencies and Frank-Condon factors calculated using
the Amsterdam Density Functional (ADF) quantum chemistry code(b). The experimental
plot shows the differential conductance dI/dV as a function of the gate and bias voltage.[4]
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Figure 3: Linear conductance of a chain consisting of seven interacting quantum dots for
weak (squares) and strong (circles) interaction. The inter-dot hopping parameter is t = 0.8,
the coupling to the left and right lead is tL,R = 0.5, and there is an inter-dot Coulomb
interaction U indicated in the graphs in units of the inter-dot hopping parameter. The
transport is calculated using DMRG (b) (a highly accurate numerical method; graph is
taken from ref. [9]) and the method developed in ref. [6] (a).
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us:Theoreti
al Analysis and Run Time ComplexityEnri
o Thomae1 and Christopher Wolf1
1 Horst Görtz Institute for IT-se
urity, Ruhr-University of Bo
hum, Germanyemails: enri
o.thomae�ruhr-uni-bo
hum.de, 
hris�Christopher-Wolf.deAbstra
tSolving Multivariate Quadrati
 equations is an established tool in 
ryptanal-ysis. In this arti
le, we thoroughly investigate one possible algorithm, named Mu-tantXL. It is a derivate of the eXtended Linearization (XL), using spe
ial treatmentof so 
alled Mutants. Due to the work of Chen, Diem, Moh, and Yang the 
om-plexity analysis of XL is well understood.This paper deals with the question of determining the e�e
t of mutants and a
hievesa tight 
omplexity analysis of MutantXL. We do so by 
al
ulating the number ofadditional linearly independent equations obtained by mutants. Using the hybrid-strategy, i.e. guessing an optimal number of variables beforehand, we show forimportant parameter sets (1 ≤ m = n ≤ 30) that MutantXL solves at the samedegree of regularity as its 
ompetitors F4 and F5 for many instan
es. But we also
on�rm re
ent results of ePrint 2011/164 that MutantXL is a redundant versionof F4, i.e. we show that MutantXL never solves below the degree of regularity ofF4. Thereby we 
lose an important gap in understanding MutantXL.Key words: Multivariate Cryptography, eXtended Linearization, MutantXL,XL, Cryptanalysis1 Introdu
tionSolving general systems of multivariate nonlinear equations is known to beNP-
omplete[GJ79℄ and also hard on average. The se
urity of many 
ryptosystems relies dire
tly orindire
tly on this problem. Usually, 
omputing the Gröbner basis of the 
orrespondingideal is the best 
hoi
e to solve these kind of equations. The best known and also moste�
ient algorithms for this task are F4 and F5 [Fau99, Fau02℄. Note that F5 is anoptimized version of F4 and hen
e faster in pra
ti
al appli
ations.We investigate another algorithm 
alled �eXtended Linearization� (XL) to solve MQ-systems. XL was �rst mentioned in the 
ontext of 
ryptography by Courtois et al. in[CKPS00℄. It 
ould be seen as a generalisation of the �relinearization� te
hnique used
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Theoreti
al Analysis and Run Time Complexity of MutantXLby Kipnis and Shamir to atta
k HFE at Crypto 1999 [KS99℄. Unfortunately the initialpapers did not provide a deep analysis of the method and many 
laims showed to beoverly ambiguous. At least sin
e Courtois and Pieprzyk 
laimed to have broken AES[CP02℄ using an XL variant 
alled XSL and were disproved by Cid and Leurent [CL05℄only a few years later, the 
ommunity of 
ryptographers be
ame in
reasingly reservedagainst this method. But thanks to Moh [Moh00℄, Diem [Die04℄, Yang and Chen [YC04℄and others, the MutantXL prede
essor XL is understood quit well today.In se
tion 2 we give a short overview of their results. In se
tion 3 we will extendthe analysis to one of the most promising variants of XL, 
alled MutantXL. Aftertheoreti
ally determining the solving degree of MutantXL, a 
omparison to HybridF4show that more often than not, it solves at the same degree of regularity for solving thesame problem instan
e.1.1 NotationWe now give some notations and de�nitions we will use in the reminder of this arti
le.
p(k)(x1, . . . , xn) :=

∑

1≤i≤j≤n

γ
(k)
ij xixj +

∑

1≤i≤n

β
(k)
i xi + α(k). (1)for α(k), β

(k)
i , γ

(k)
ij ∈ F, 1 ≤ i ≤ j ≤ n, and 1 ≤ k ≤ m. We denote the 
oe�
ients as
onstant (α(k)), linear (β(k)

i ), and quadrati
 (γ(k)ij ), respe
tively. In addition, equation
p(k) = 0 with p(k) de�ned by (1) are 
alled inhomogeneous. Equations with the linearand 
onstant terms being zero (i.e. α(k) = β

(k)
i = 0) are 
alled homogeneous andsimplify to

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj . (2)Note that we 
an write ea
h inhomogeneous polynomial p(k) in n variable as a ho-mogeneous polynomial p̃(k) in (n + 1) variables. As we will see later, this synta
ti
altransformation will not redu
e the e�
ien
y of XL or MutantXL for solving the originalequation p(k).Let P : Fn

q → F
m
q be an MQ system of the form

p(1)(x1, . . . , xn) = 0

p(2)(x1, . . . , xn) = 0... (3)
p(m)(x1, . . . , xn) = 0.Let π(k) be the 
oe�
ient ve
tor of p(k)(x1, . . . , xn) in lexi
ographi
 order, i.e.

π(k) = (γ
(k)
11

, γ
(k)
12

, . . . , γ
(k)
1n , γ

(k)
22

, γ
(k)
23

, . . . , γ(k)nn , β
(k)
1

, . . . , β(k)
n , α(k)).
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Enri
o Thomae, Christopher WolfLet Π be the 
orresponding 
oe�
ient matrix
Π :=







π(1)...
π(m)






.The naive algorithm is to solve (3) by linearization, i.e. to substitute every monomialin p(k) by a new variable and to solve the obtained linear system of equations Π withGaussian elimination. This will lead to the 
orre
t solution if we have m ≈ n(n+1)

2
+ nlinearly independent equations, i.e. if the dimension of the ve
tor spa
e generated by

{π(k)|1 ≤ k ≤ m} is 
lose to the number of monomials. Here �
lose� means that we 
an�nd a univariate equation derived from the original polynomials. Ifm is not large enoughwe obtain a (exponential) number of parasiti
 solutions. The XL algorithm avoids thisby produ
ing more linearly independent equations through multiplying all equationsby all monomials of some degree D. Obviously, these equations are algebrai
ally de-pendent. In addition, this produ
es new monomials, too, but at some degree D thenumber of linearly independent equations I will almost be as large as the number ofmonomials T and we 
an solve the system by Gaussian elimination. We 
all this degree
D the saturation degree of this system P . Note that speaking of the number of linearlyindependent equations always means the dimension of the ve
tor spa
e generated by a
ertain set of 
oe�
ient ve
tors π(k).To introdu
e the XL algorithm formally, we need the following de�nitions.De�nition 1. Let Pinh := {p(k) | 1 ≤ k ≤ m} be the set of inhomogeneous quadrati
polynomials p as de�ned in (1) and Phom := {p(k)| 1 ≤ k ≤ m} the set of homogeneousquadrati
 polynomials p de�ned in (2). We de�ne the set of all monomials of degree
D ∈ N by MonD := {

D
∏

j=1

xij | 1 ≤ i1 ≤ i2 ≤ . . . ≤ iD ≤ n} and Mon0 := {1}.Multiplying Pinh by all monomials of degree D is des
ribed by the setBlowinhD := {ab | a ∈ MonD and b ∈ Pinh}.The set BlowhomD is de�ned analogous. Now we 
an write formally what we use as XLalgorithm of degree D. XLinhD :=

D
⋃

i=0

Blowinhi .For ease of explanation, we mostly use homogeneous equation systems Phom. This isjusti�ed as ea
h inhomogeneous system 
an be transfered into a homogeneous systemby introdu
ing one new variable. In parti
ular the number of linearly independentequations produ
ed by BlowhomD equals XLinhD if we repla
e n by n + 1. We now de�nethe XL algorithm for a given system Phom.
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Theoreti
al Analysis and Run Time Complexity of MutantXLDe�nition 2 (XL algorithm). First we generate BlowhomD and 
he
k if the numberof linearly independent equations I is equal to the number of produ
ed monomials Tsubtra
ted by (D + 2). In this 
ase we linearise the system and solve it by Gaussianelimination.Noti
e, if (T − I) ≤ (D + 2) we 
an 
hoose the order of the monomials su
h that weobtain a univariate equation after linearization. This equation 
an be solved e.g. byBerlekamp's algorithm. Using this value in equations with more monomials, we 
ansu

essively solve the whole system P .If (T − I) > (D + 2) we set D := D + 1 and try again.Note, if the system is stru
tured as the publi
 key of HFE, XL may still �nd a univariatepolynomial as we now have linear dependen
ies in the 
olumns or monomials, not onlyin the rows/equations. Hen
e, the rank needed on the row-side to solve the matrixequation in Π will drop a

ordingly.2 Analysis of XLThe 
ru
ial point when using XL is to determine the number I of linearly independentequations produ
ed by BlowhomD . This allows us to 
al
ulate the smallest D (saturationdegree) su
h that (T − I) ≤ (D + 2) holds and therefore determine the 
omplexity ofthe overall algorithm. Moh [Moh00℄ was the �rst to prove (4) for systems of equationsful�lling some spe
ial property. For the spe
ial 
ase of two equations this propertymeans that they are 
o-prime. As we investigate random systems of equations, this istrue with overwhelming probability (
f. the proof of Lemma 1). So we 
laim that mostof the random systems of equations ful�ll this property and thus formula (4) hold. This
onje
ture is also 
on�rmed by various experiments for D between 0 and 5 over F2 byCourtois and Patarin [CP03℄ and over larger �elds by Thomae and Wolf [TW10℄. Diem[Die04℄ showed that (4) holds if themaximal rank 
onje
ture�also known as Frï¿½bergs's
onje
ture�holds for generi
 systems. For a ground �eld Fq and D+2 < q, the formulasare independent of the ground �eld. If D + 2 ≥ q we have to take the �eld equations
xq − x into a

ount and formulas be
ome more expensive. For example if q = 2 thenumber of monomials of degree D de
reases from (

n+D−1

D

) to (n
D

) and besides of thetrivial dependen
y fg = gf there is an additional dependen
y due to f2 = f for f, gquadrati
 polynomials (see Yang and Chen [YC04℄ or Rønjom and Raddum [RR08℄ formore details). We will only 
onsider the 
ase (D + 2) < q in the following. Analyzingthe 
ase (D + 2) ≥ q is analogous but uses a slightly di�erent formula (4).We 
an write down the number I of linearly independent equations for most systems(see [Moh00℄) by the following equation.
D = 2k : IBlowhom

D
,n :=

k
∑

i=0

(−1)i
(

m

i+ 1

)(

n+ 2(k − i)− 1

2(k − i)

)

, (4)
D = 2k + 1 : IBlowhom

D
,n :=

k
∑

i=0

(−1)i
(

m

i+ 1

)(

n+ 2(k − i)

2(k − i) + 1

)

.
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Enri
o Thomae, Christopher WolfNote that IXLinh
D

,n = IBlowhom
D

,n+1 holds, i.e. moving from inhomogeneous equations tohomogenized equations does not a�e
t the running time of XL.The number of monomials T is (n+D+1

D+2

) and thus we are now able to 
al
ulate D su
hthat (T − I) ≤ (D + 2) holds and XL su

eed.In table 1 we give the number of linearly independent equations I produ
ed by BlowhomDfor some spe
i�
 values of D, always assuming D + 2 < q (
f. [Moh00, Die04, YC04,CP03℄).Table 1: Number of linearly independent equations produ
ed by BlowhomD , i.e. XL withdegree D,m equations in P , and n variables. They have been derived both theoreti
allyand empiri
ally.
D Number of linearly independent equations0 m1 mn2 m

(

n+1

2

)

−
(

m
2

)3 m
(

n+2

3

)

−
(

m
2

)

n4 m
(

n+3

4

)

−
(

m
2

)(

n+1

2

)

+
(

m
3

)5 m
(

n+4

5

)

−
(

m
2

)(

n+2

3

)

+
(

m
3

)

n3 Analysis of MutantXLOne of the most e�
ient variants of XL is 
alled MutantXL [MMD+08℄. It is 
laimed tobe as fast as F4 in some 
ases. This was derived from experiments on HFE [BDMM09℄.We will now give a theoreti
al analysis of MutantXL and 
on�rm that it indeed solvesat the degree of regularity as F4 in many 
ases.Let I be the number of linearly independent equations produ
ed by XLinhD and T =
(

n+D+2

D+2

) the number of degree ≤ (D + 2) monomials. If (T − I) > (D + 2) it is highlyunlikely that XL �nds a univariate polynomial and thus solves the system. As outlinedabove, XL will 
ontinue with D := D + 1. MutantXL is a step in between. Instead ofdoing a full extension from D to D + 1 it uses equations that would be produ
ed byXLinhD+k with k > 0 as long as they do not introdu
e new monomials. To this aim weuse only polynomials of degree < D + 2 that are produ
ed in the Gaussian eliminationstep of XLinhD . These polynomials are 
alled mutants. For example multiplying thesepolynomials by all monomials of Mon1 leads to new equations without generating newmonomials. However, this strategy is only useful for inhomogeneous equations. In thehomogeneous 
ase all monomials have same degree and thus mutants simply never o

ur.Note that this is not true for homogenised systems of equations. Here, the mutants areonly hidden by the homogenization variable. Hen
e, as long as the initial system isinhomogeneous, it is not a 
ontradi
tion to speak of mutants and to use (4) for thehomogenized system, too.
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Theoreti
al Analysis and Run Time Complexity of MutantXLDe�nition 3. Let f =
m
∑

i=1

gjih
(i) with h(i) ∈ Pinh and gji some polynomial of degree

≤ D be a representation of f . This representation is not unique. The set J denotes allrepresentations (j1, . . . , jm). The level (lev) of this representation j ∈ J is de�ned by
lev

(

m
∑

i=1

gjih
(i)

)

:= max{deg (gjih(i)) | 1 ≤ i ≤ m
}

.The level (Lev) of g is de�ned by the minimum level of all its representations.
Lev (g) := min{lev( m

∑

i=1

gjih
(i)

)

| j ∈ J}We 
all g a mutant if deg(g) < Lev(g).The 
ru
ial question as always is how many equations produ
ed by mutants are linearlyindependent to the old ones. We give two upper bounds on this number. We showedexperimentally that the smaller bound is tight. We will also give some theoreti
alexplanation on that. To 
on
lude we 
ompare MutantXL to F4 and show that it solvesat the degree of regularity more often than not, but never below.Remark 1. Our algorithm does not pro
eed degree-wise. We �rst 
al
ulate the satura-tion degree D that solves the random system and than 
al
ulate XLinhD . To implementMutantXL in this s
enario in a smart way, we will introdu
e the term of trivial mutants.Using XLinhD all equations produ
ed by Blowinhd with d < D are not useful for sear
hingmutants, as their multiples of total degree less than (D + 2) are already 
ontained inXLinhD and thus are trivially linearly dependent. We 
all mutants trivial if equations ofBlowinhd with d < D sum up to equations of degree less than (d+2). Let g =
∑

i

aifi be atrivial mutant with ai ∈ Fq, fi ∈ Blowinhd and deg(g) < (d+ 2). For every x ∈ MonD−dwe obtain xg =
∑

i

aixfi for xfi ∈ BlowinhD and deg(xg) < D+2, i.e. xg is a mutant ofBlowinhD . Thus we 
an redu
e the 
omputational workload if we only 
onsider mutantsprodu
ed by BlowinhD , i.e. if we only 
onsider non-trivial mutants or more pre
isely onlyuse the Mutant strategy in the �nal step of XL.Let DBlowinh
D

,n := IXLinh
D

,n− IXLinh
D−1

,n denote the di�eren
e of the dimensions of the ve
torspa
es generated by XLinhD and XLinhD−1
. A

ording remark 1 all non-trivial mutants arepart of the set of BlowinhD . To avoid hiding the upper bounds behind formalism, we startwith the 
ase |MonD+2| ≤ DBlowinh

D
,n ≤ |MonD+2|+ |MonD+1| illustrated in �gure 1.We 
an 
al
ulate DBlowinh

D
,n using (4) by

DBlowinh
D

,n = IXLinh
D

,n − IXLinh
D−1

,n = IBlowhom
D

,n+1 − IBlowhom
D−1

,n+1 . (5)A �rst trivial upper bound on the bene�t of MutantXL is the dimension of the ve
torspa
e spanned by all new equations produ
ed by mutants. In the 
ase k = 1 (see �gure 1)this amounts to n(DBlowinh
D

,n − |MonD+2|) or nm̃ using the notation of �gure 1, as we
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︸ ︷︷ ︸

(

n+D+1

D+1

)

︷
︸
︸
︷

m̃

Figure 1: Coe�
ient Matrix Π of BlowinhD after Gaussian elimination. Here m̃ indi
atesthe number of mutants for the 
orresponding system P .multiply all m̃ Mutants by all n Monomials of degree one. Experiments for 2 ≤ n ≤ 7and n ≤ m ≤ 9 over F28 show that this trivial bound is far above the 
orre
t numberof new linearly independent equations. Still, it serves as a useful point of referen
e toguide further development of the theory.The se
ond upper bound uses that all nm̃ equations produ
ed by mutants are impli
itequations of XLinhD+1
. Exa
tly IXLinh

D+1
,n − IXLinh

D
,n of them are linearly independent toXLinhD . But they all 
ontain monomials of MonD+3. Equations produ
ed by mutantshave maximal degree D + 2 and thus �rst all |MonD+3| monomials have to be redu
ed.Therefore IXLinh

D+1
,n − IXLinh

D
,n − |MonD+3| is an upper bound on the number of linearlyindependent equations produ
ed by mutants. Note that this bound was tight in allour experiments for 2 ≤ n ≤ 7 and n ≤ m ≤ 9. Note, Experiments with larger n,mwere not possible due to the high 
omputational 
omplexity of XL. However, in lemma1 we give theoreti
al justi�
ation why this bound is tight with overwhelming probability.To generalise the above example let k ∈ N :

k−1
∑

j=0

|MonD+2−j| ≤ DBlowinh
D

,n ≤

k
∑

j=0

|MonD+2−j| . (6)The following two upper bounds hold.Corollary 1. The maximal number of equations produ
ed by non-trivial mutants isgiven by
k−1
∑

i=1

(

n+ i− 1

i

)

|MonD+2−i|+

(

n+ k − 1

k

)

(

DBlowinh
D

,n −

k−1
∑

i=0

|MonD+2−i|

)

.
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Theoreti
al Analysis and Run Time Complexity of MutantXLCorollary 2. A nontrivial upper bound on the number of linearly independent equationsprodu
ed by mutants is given by
k
∑

i=1

(

IXLinh
D+i

,n − IXLinh
D+i−1

,n − |MonD+2+i|
)

= IXLinh
D+k

,n − IXLinh
D

,n −

k
∑

j=1

|MonD+2+j| .In �gure 2 we 
al
ulated k for all values of random systems of quadrati
 equations with
n ∈ [1, 30] variables and m ∈

[

n, n(n+1)

2

] equations. The restri
tion on n and m is onlyin order to draw a pi
ture. Note that for large �nite �elds the values we 
hose are ofmost pra
ti
al interest.The rows of �gure 2 denote n, the 
olumns denote m and the 
olor denote the value of
k, whereby bla
k stands for k = 1 and grey stands for k = 0. For numeri
al values of ksee table 4. In a nutshell, MutantXL has an advantage over plain XL whenever k > 0,i.e. in the bla
k areas of �gure 2. In parti
ular k = 1 means that MutantXL saturatesat one degree less than XL.We want to add that Mohamed et al. 
on�rmed our analysis on ePrint [MM11℄. They
orre
ted a typo in the formula of 
orollary 2 in one of our previous versions. However,for k ≤ 1 this typo did not 
hange the 
orre
tness of the formula above. While wealready showed graphi
ally and numeri
ally that k > 1 does not appear in pra
ti
e, wewill investigate the question a bit deeper now and give a pre
ise mathemati
al 
riterionwhen this 
laim will hold. Note that the following 
laim only hold for �elds Fq with
(D + 2) < q as otherwise (4) is not longer 
orre
t.

1 100 200 300 400 465

1

10

20

30

1 100 200 300 400 465

1

10

20

30Figure 2: Visualization of mutation variable k for n = 1 . . . 30. Bla
k: k = 1, gray:
k = 0. Y-Axis is number of variables n, x-axis the number of equations m.
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laim that k ≤ 1 always holds.Proof. First, the following 
onstraint have to be ful�lled, as the problem would be solvedwith k = 0 otherwise.
(

n+D + 2

D + 2

)

− IXLinh
D

,n > D + 2 (7)To show that k ≤ 1 hold, we have to proof the following equation.
DBlowinh

D
,n ≤

(

n+D + 1

D + 2

)

+

(

n+D

D + 1

)

.Using (5) this is equivalent to
IBlowhom

D
,n+1 ≤

(

n+D + 1

D + 2

)

+

(

n+D

D + 1

)

+ IBlowhom
D−1

,n+1 .The 
onstraint of equation (7) give us the following.
IBlowhom

D
,n+1 <

(

n+D + 2

D + 2

)

−D − 2

=

(

n+D + 1

D + 2

)

+

(

n+D

D + 1

)

+

(

n+D

D

)

−D − 2The 
laim follows if (n+D
D

)

−D − 2 ≤ IBlowhom
D−1

,n+1 hold. Unfortunately we only 
ouldproof this numeri
ally and thus leave it as a 
laim. Still�for any pra
ti
al 
hoi
e of
D,n, the 
laim holds.We 
ome ba
k to the example in �gure 1 to derive a lower bound. With B1 we denotethe bound given by 
orollary 1 and B2 the bound given by 
orollary 2.Lemma 1. If D is even and k = 1 then the number of new linearly independent equa-tions produ
ed by mutants is min{B1, B2} with probability 1− negl(n,D).Proof. As shown in [TW10℄, we know that new linearly dependent equations are pro-du
ed blo
k-wise, i.e. if we multiply two quadrati
 polynomials f and g by all monomialsof degree two, in general all equations are linearly independent besides one, as fg = gfholds. For m equations there are (m

2

) pairs and thus (m
2

) dependen
ies. Multiplying byall monomials of degree three only multiplies every dependen
y by every variable andthus we obtain (m
2

)

n dependen
ies. New dependen
ies are introdu
ed by multiplyingall equations by all monomials of degree four, as for three quadrati
 polynomials f , gand h the equation fgh = fhg = ghf hold. Thus new linearly dependent equationsare only produ
ed by pro
eeding from odd to even degree D. Multiplying the mutantswith degree one monomials we impli
itly use equations of the set BlowinhD+1
. As a 
onse-quen
e, for even D no new linear dependen
ies are introdu
ed. This is also in line withour experiments.The only way left to produ
e linearly dependen
ies is by generating the same equationin the multipli
ation step, i.e. if g1 and g2 are mutants and xig1 = xjg2 holds. This is
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Theoreti
al Analysis and Run Time Complexity of MutantXLimplies xj | g1 and xi | g2. The mutant g1 =∑
i

aihi with ai ∈ Fq and hi ∈ Mon≤D−1 
anbe seen as a random dense equation. Hen
e the probability of xj being a fa
tor of g1 isgiven by
(

1

q

)(n−1+D−1

D−1
)and thus is negligible in D,n.We denote by m the number of quadrati
 equations, n the number of variables with

n = m and r the number of guessed variables (hybrid strategy), i.e. ñ = m − r. Firstwe 
ompare the degree of regularity dreg [BFSY05℄ with the saturation degree D�ormore pre
isely the 
omparable degree (D + 2). The degree of regularity in F4 is thesmallest degree su
h that the dimension of the ideal produ
ed by F4 is equal to thenumber of monomials of degree dreg :
(

n+dreg−1

dreg

). This is similar to the saturationdegree for XL where the number of 
olumns T and the number of linearly independentequation I mat
h. Note that we assumed that lemma 1 holds also for odd D and thatMutantXL needs D + 2 = 2m in 
ase m = n, i.e. if we do not guess some variables.As this is exponential and the 
orresponding values are both be
omes really large andnot very instru
tive, we only indi
ated the 
orresponding entries in table 3 with �-� for�pra
ti
ally not solvable�.As Bettale et al. we use ω = 2 to 
al
ulate the linear part of the algorithm for their hy-brid approa
h and our analysis of MutantXL. We obtain the same results as in [BFP09,table 4℄ form = 20 and guessing one or two variables over F28 , see table 5 for the 
orre
tvalue of k. The values in the tables are rounded Log2 
omplexities. The exa
t valuefor m = 20, r = 1 and F28 is 66.73 respe
tively 67.79 for r = 2. Note that MutantXLhas the same optimal 
omplexity for every m, i.e. if we guess the 
orre
t number ofvariables.The 
omplexity of MutantXL is determined by the Gaussian elimination step on all
m
(

n+D
D

) equations produ
ed by XL and the number of mutants�if any. This is 
aptured
m\r 0 1 2 3 55 6 3 3 2 210 11 6 5 4 315 16 8 7 6 420 21 11 9 8 625 26 13 11 10 830 31 16 14 12 10Table 2: Degree of Regularity dreg forF4

m\r 0 1 2 3 55 32 4 3 2 210 - 9 5 4 315 - 14 7 6 420 - 19 10 8 625 - 24 12 10 830 - 29 15 13 10Table 3: Degree (D + 2) of MutantXLfor k ≤ 1.
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m\r 0 1 2 3 55 0 1 0 0 010 0 1 1 1 015 0 1 1 1 120 0 1 1 1 125 0 1 1 1 130 0 1 1 1 1Table 4: k obtained for MutantXL by (6).

m\r 0 1 2 3 55 20 21 27 32 4010 41 38 42 46 5715 62 51 55 59 6720 83 67 68 72 7925 103 79 80 84 9130 123 95 96 96 104Table 5: Complexity of F5 over F28

m\r 0 1 2 3 55 41 21 23 29 4010 - 42 37 41 4915 - 62 50 54 6020 - 83 66 66 7325 - 103 78 78 8530 - 123 94 94 97Table 6: Complexity of MutantXL over F28 .by max{0, (n+D+2

D+2

)

− I −D − 2
}. Thus the 
omplexity of table 6 is given by

(

m

(

n− r +D

D

)

+max{0,(n− r +D + 2

D + 2

)

− I −D − 2

})ω

· (28)r.4 Con
lusionIn this paper, we have 
lari�ed solving Multivariate Quadrati
 equations using Mutan-tXL from a theoreti
al point of view. To this aim, we have revised some priorly knownresults in Se
tion 2. From there, we were able to give an upper bound on the numberof mutants and also the number of linearly independent equations produ
ed by themin 
orr. 1+2. We showed tightness of the se
ond bound (for k ≤ 1) experimentally andin some 
ase also using analyti
al methods. However, all pra
ti
ally relevant 
ases are
overed by our analysis, so from a 
ryptographi
 point of 
ase, we are done. Finally,we have shown that MutantXL 
an 
ompete with F4 in terms of the saturation degree.This is not 
lear from an algorithmi
al point of view, e.g. the memory requirement forMutantXL should be larger as for F4 as MutantXL to not redu
e the basis during theintermediate steps.A
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Abstract

Shot boundary detection is the first step to be performed on any Content-based
Video Retrieval system. The performance of such techniques must be evaluated from
a computational point of view since this is a very high demanding task and thus opti-
mization strategies must be seeked. This paper proposes scalable and portable imple-
mentations that grant low response times over two alternative parallel architectures: a
shared-memory symmetric multiprocessor and a Beowulf cluster. Two alternative par-
allel programing paradigms have been evaluated, shared-memory and message passing,
implementing several strategies for video segmentation and data access and analyzing
load balancing issues.

1 Introduction

Automatic techniques for extracting relevant information from raw data must be sought
in order to efficiently access multimedia databases. Content-based Multimedia Retrieval
(CBMR) systems provide a very useful help to users whose aim is to introduce a query in
the system and to retrieve the most similar items in the data sets [6, 7, 10].

When dealing with video data, the first step is to perform a temporal video segmenta-
tion in order to isolate the minimum units with semantic meaning: shots. Shot boundary
detection (SBD) has two main challenges: to accurately delimit the start and the end of
video shots and to process video contents in a more efficient way. It is the unavoidable
first step to proceed with new data in a Content-based Video Retrieval process. Depend-
ing on the working domain, these techniques can be classified in non-compressed [12] and
compressed video shot segmentation [1]. This paper is focused on non-compressed video
segmentation since it is an interesting testbench for primitives to be also used in a retrieval
stage, as in [9].
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Figure 1: Cut detection algorithm filtering flashes.

Video segmentation is a very high demanding process, so from a computational point
of view, efficient and scalable implementations must be sought to grant low response times
even when the size of data to be processed noticeably grows up. This paper presents an
exhaustive analysis of a typical SBD algorithm, performing experimental tests over suit-
able architectures, adequate paradigms and efficient implementations. The results allow to
extract relevant conclusions about the set of parameters that achieve the best results for
the most suitable architecture from the point of view of both performance and scalability.
Thus, this work compares the performance achieved by two alternative parallel implemen-
tations of a shot boundary detection algorithm using two different parallel programming
paradigms: shared-memory communication and distributed memory processing using the
message passing paradigm. Taking into account the software solutions, two different parallel
architectures are considered to compare both implementations: a shared-memory symmet-
ric multiprocessor (SMP) and a distributed system. Distributed solutions on clusters offer
a good cost/performance ratio to solve this problem, given their excellent scalability, fault
tolerance and flexibility attributes [3, 2].

2 Shot boundary detection algorithm

The basic idea of shot boundary detection algorithms is to compute differences between
consecutive frames or groups of frames. Existing techniques typically differ in the way
these differences are computed. Figure 1 depicts a scheme of the whole process. Di denotes
the difference between frame i and the previous one. In the present case, computed Di

difference values are based on several shape and color features, although other possibilities
can also be considered [8, 5, 12]. At this point, it must be noticed that the extraction of
difference values does not affect the posed parallelization strategy.

A candidate for cut is detected when difference Di values are higher than a dynamically
computed threshold Th [9]. In this way the threshold Th is updated for each processed
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Table 1: Execution time and maximum speedup under Amdahl’s law for different Zernike
polynomials compared with the quantified histogram.

Video Dec. Seg. Total Serial Parallel
Method size time time time frac. frac. S∞

5000 62.80 293.20 356 17.64 82.36 5.67
zer3 10000 125.84 586.16 712 17.67 82.33 5.66

20000 252.34 1172.66 1425 17.71 82.29 5.65
5000 62.88 587.12 650 9.67 90.33 10.34

zer5 10000 125.70 1174.30 1300 9.67 90.33 10.34
20000 252.74 2350.26 2603 9.71 90.29 10.30
5000 63.00 2124.00 2187 2.88 97.12 34.71

zer10 10000 125.84 4249.16 4375 2.88 97.12 34.77
20000 254.11 8503.89 8758 2.90 97.10 34.47

frame. One of the typical artifacts present in videos is the appearance of flashes that distort
normal analysis of video signals, because there is no change in the video content but abrupt
changes appear in signal intensity. In order to filter out flashes, a second threshold Tflash

has been implemented, following the model of Zhang et al. [13]. Finally, once comparisons
are performed, the threshold Th is recalculated depending on the variance of the sliding
window, so that if it varies too much from frame i to next frame i + 1, as it is the case
when, for example, very fast camera movements occur, the value can not be adapted to
the new video signal content. Implemented features have been Zernike invariants as shape
primitive [11]. Working with video data coded in MPEG implies a first decoding stage on
compressed data followed by a second stage where video shot extraction is performed on
non-compressed frames with the algorithm described above.

Decoding and segmentation time values are presented in Table 1. It can be observed
how the increment of the polynomial degree greatly increases the execution time of the
segmentation stage, reaching almost 2 hours and a half for the largest video size (20000
frames) in the case of zer10. Analyzing the execution time involved in each stage, it can
be noticed that the shot boundary stage involves much larger computational load than the
decoding stage when video size grows even when low order polynomials are considered. This
fact justifies the need to search for efficient and scalable solutions to face the shot boundary
detection stage. Following Amdahl’s law it can be computed the maximum achievable
speedup when it is only considered a parallelization of the segmentation stage. However,
Gustafson noticed that serial and parallel sections of a program are also dependent on the
program size. The bigger is the size of the problem to solve, the greater is the maximum
achievable speedup [4]. On the other hand, the different parallel designs proposed have
a serial section that overlaps in some way with the parallel section of the problem (the
segmentation stage). This overlap is bigger when the number of system nodes increases.
This is why the maximum achievable speedup will be higher not only because of the bigger
problem size but also because of the system size. All these aspects ensure good scalability
properties to the design.

Table 1 shows how maximum speedup is quite sensible to the polynomial degree se-
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lected. This is due to the fact that serial fraction (i.e. decoding time) remains constant,
while parallel fraction (i.e. segmentation time) grows with the polynomial degree. The
decoding stage must be solved sequentially, due to the data dependencies existing among
the video frames. Values in Table 1 show the benefits of using a parallel implementation,
specially when using high order polynomials. Upon observing the operations involved in
the extraction stage, it can be deduced that all processed frames have data dependencies,
but only those belonging to shot boundaries are critical to compute the exact points where
shots begin and end. This means that an approach based on data decomposition could be
feasible if the boundary is fully inside the frame slice assigned to one of the p threads or
processes. Therefore, shot extraction stage could be fully parallelized.

The sequential version of this algorithm requires the displacement of a symmetric mask
window with W coefficients to detect the presence of a shot boundary in the frame where
the mask is placed. It implies that the assignment of frame slices to threads must be done
taking into account the extra frames needed to compute mask operations within the slice’s
first and last frames. Due to this, there will be two small windows overlapping among
consecutive slices

3 Scalable implementations
As mentioned before, in this paper we deal with two different parallel architectures (SMP
and Cluster) and with two different parallel programming paradigms. The first solution
proposed is based on the shared-memory paradigm. It has been implemented using Lin-
uxThreads. This solution is only implemented for the SMP architecture. The distributed
implementation has been programmed using MPI libraries as communication primitives be-
tween master and slave processes. The main advantage of these implementations is that
they can also be used on SMP architectures, so it has been tested on both architectures.

Two alternative approaches have been developed: distributed and centralized decoding.
They differ in the decoding stage as well as in the way data are accessed. In the case of the
cluster architecture, since input data are stored in one of the cluster nodes, one solution
could be to share the video file among the network nodes via NFS, AFS or any other network
file system, but this choice has been discarded because of the overhead introduced by the
simultaneous access of the processing nodes to the selected video file. The most suitable
solution is a farm based structure where the master distributes the workload among the
slave processes and collects the partial results processed in each slave to obtain the video
shots. In this case two alternatives are also proposed: static and dynamic data distribution.
These strategies can be tested also in the SMP computer.

Distributed decoding approach (DDA). In this approach, each thread is in charge
of data access, video decoding and shot detection tasks, so there is no need of a master
thread. At the beginning each thread has to perform a positioning stage and once they
have reached their previously assigned starting place, they can begin to compute the shot
detection algorithm. Taking into account that this algorithm is based on an adaptive
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threshold computed over a sliding window, each thread must begin its shot detection process
some frames before the corresponding place and has to end some frames after it as well.
Finally each thread generates an ordered list of detected cuts including the exact first and
last frame numbers of each shot.

Centralized decoding approach (CDA). In this approach a master thread1 is in
charge of decoding chunks of video data and passing them right after to the worker threads
using shared-memory. In this case the idea was to process independently both decoding
and segmentation stages since the former has a problematic parallelization and, above all,
because decoding time is much lower than segmentation time. This solution avoids the bot-
tleneck that appears when multiple threads are performing simultaneous positioning over
the same video data, as it happened with DDA.

Static data distribution (SDD). The master process does an initial and homogeneous
data distribution among the slave processes. Data package size is obtained dividing the
total number of frames in the video by the number of available processors. Process structure
in this case is very simple. The master begins a decoding loop, sending a complete data
package to each slave. Slave processes will send the results back to the master after finishing
the segmentation stage. The master gathers these partial results and stores them.

Dynamic balanced data distribution (DDD). As previously stated, the workload
distribution done by SDD approach among the available nodes is homogeneous. This is
an optimum distribution to work in a dedicated (without any additional task running)
and homogeneous cluster. However, when the available nodes in the system have different
computing capabilities (due to a hardware heterogeneity or to the simultaneous execution
of different tasks), this distribution produces a serious workload imbalance. It implements
a dynamic, global and centralized load balancing algorithm. It divides the video into a
certain number of work packages. The number of packages, all with the same fixed size,
is greater than the number of available nodes in the system. The master sends one work
package to each available node and waits for the answers. As soon as slaves finish their
assigned work they ask for new work packages, that the master will send while there are
not assigned pending ones. This approach allows the most powerful nodes to process a
higher number of work packages, obtaining a quite similar response time for all nodes,
regardless their hardware and current workload. This advantage has a more remarkable
impact in very dynamic systems where the local workload of the nodes can vary drastically
along the execution of the application.

In comparison with SDD approach, DDD implementation increases the communica-
tion overhead since more messages are exchanged. However, it is a quite reduced increase
due to the fact that because messages are quite big, the amount of information they carry is
always the same, and communication is limited by the available bandwidth on top of other

1From now on there will be no difference on the use of the terms thread and process.
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factors. For all these reasons, it would be an optimum solution to choose in running time
between SDD and DDD approaches based on both system’s dynamism and heterogeneity.

Several advantages of this implementation can be pointed out, such as that it reduces
the memory problems that appear in the previous implementation (SDD approach), it
favors dynamic load balancing among the processing nodes, specially in heterogeneous and
non-dedicated systems and minimizes slaves waiting time. On the other hand, this solution
results in a more complex implementation.

4 Experimental results

4.1 Experimental setup

Experiments performed on the shared-memory symmetric multiprocessor, SMP, have been
tested on a SGI Prism 350 machine, with 16 Intel Itanium processors and 32GB DDRAM
main memory and 800 GB from 5 Fibre Channel SGI TP9300 hard disks. This is a CC-
NUMA based symmetric multiprocessor in which all processors access the main memory
through a high-speed bus The cluster setup, Cluster, is made up of 1036 eServer Blade-
Center JS20 nodes linked together using a Myrinet network for data communication. In
our case, regular tests have been performed using up to 64 nodes due to administration
issues. Each of the JS20 nodes has 2 IBM Power 970 2.2 GHz processors and 4 GB of main
memory.

Tests have consisted on running the optimized video segmentation with polynomials up
to 10th order using videos of different length as input, ranged from 10000 to 80000 frames,
and using different number of threads and cluster nodes. In SMP several setups with 1, 2,
4, 8 and 16 processors have been tested. In DDA approach, all processors run the same
code. In CDA strategy, each slave process is assigned to one of the available processors,
plus one processor dedicated to run the master code. The only exception is the setup with
the maximum number of processing nodes, 16, running the master and one slave in one of
them and 15 slaves processes in the rest of them.

Planned tests allow comparing both architectures, SMP vs. Cluster, both program-
ming paradigms, shared-memory vs. message-passing, and one of the implemented strate-
gies CDA vs. DDA only in the SMP architecture since DDA structure does not fit
well in the Cluster architecture. The other strategy, SDD vs. DDD, has been tested in
both architectures. The main goals of the experiments are: (1) to validate the viability
of a parallel solution for the video segmentation application on different architectures and
with several parallel programming paradigms; (2) to compare the performance of two al-
ternative architectures, based on shared-memory and on distributed memory, in order to
evaluate which one offers the best figures in this application; (3) to compare two parallel
computation paradigms, like shared-memory vs. message passing programming and differ-
ent implementation strategies based on data access and data process; (4) to test dynamic
data distribution strategy with load balancing mechanisms.
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Figure 2: Response time with LinuxThreads on SMP: CDA vs. DDA.

4.2 Comparison among different strategies

4.2.1 Comparison between CDA and DDA in the SMP

Figure 2 presents the evolution of response times for both implementations when the num-
ber of processors is increased and several data sizes are considered. Results shown in these
figures have been achieved with packages of 157 frames, a value that allows several com-
munication operations among the different processors involved in the experiments. In these
cases, figures obtained improve the ones presented as both video and package sizes are in-
creased. All figures show a great reduction of the response times, so it can be deduced that
parallel implementations are a good solution to cut down the application response time.

A more detailed analysis of the results achieved by each implementation shows that
response time of CDA is in all cases at least twice better than DDA as can be seen in
Fig. 2. Very similar speedup curves are obtained in both cases although response times
are quite different. It must be also emphasized that speedup is almost independent of the
input data size increment, so it can be concluded that communication overhead is negligible
with respect to processing time.

4.2.2 Comparison between SDD and DDD

Performance achieved by both solutions has been tested in both architectures. Results
presented correspond to SMP-Threads-DDA and Cluster-MPI-CDA cases, checking
the parallel architecture and the programming paradigm.

SMP
As in the previous case, Figure 3 presents the evolution of the response time for both
implementations in SMP. Package size for DDD is also fixed to 157 frames, while in SDD
the greatest package size is fixed by the test with the maximum number of nodes (15 in
DDD). Again, all figures show a great reduction of response times and the speedups are
very close to the ideal one, with SDD version slightly outperforming DDD approach. Table
2 collects experimental results varying the package size in DDD for a video size of 80000
frames. With the exception of the setup with 15 processors, the total execution time is
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Figure 3: DDA Response time with LinuxThreads on SMP: SDD vs. DDD.

Table 2: Execution time (s) for DDD compared with SDD (80000 frames).
Packet size

Method No. of processors 5000 2500 1250 625 313 157

2 44616 44734 44812 45093 45625 46561
DDD 4 22789 22744 22818 22941 23407 23955

8 11585 11591 11663 11723 11866 12173
15 11434 8690 7324 6684 6601 6591
2 With max. package size per thread (40000): 45168

SDD 4 With max. package size per thread (20000): 22687
8 With max. package size per thread (10000): 11559
16 With max. package size per thread (5000): 5918

Table 3: Task load distribution when DDD introduces load balancing mechanisms.
Initial load Processor #
(# of tasks) [1-4] [5-8] [9-12] [13-16]

0 8 8 8 8
1 5 9 9 9
2 4 10 9 9
3 3 10 10 9
4 2 10 10 10

reduced while increasing package size, although SDD version still beats DDD with its
maximum package size. DDD achieves worse results with 15 processing nodes because the
distribution of the workload always involves the processing of the last package in only one
of the nodes while the rest are idle, a fact that increases the total execution time.

Some of the available processors have been overloaded in order to run load balancing
tests. SMP has been chosen to perform these tests, although the results obtained can
be fully extrapolated since this study does not depend on a particular architecture. Here
is presented the performance of the system dealing with 20000 frames and 157 frames
per package. Table 3 shows the number of packages processed by each node of the SMP
architecture when 4 of these processors are executing a limited number of additional tasks, in
a range from 0 (no overload at all) to 4 (maximum overload). As it is shown in these values,
the workload is distributed among the unloaded processors (from node 5 to 16) depending
on the number of packages to distribute from an initial workload of 128 packages. Figure 4
shows the response time and efficiency degradation achieved by SDD and DDD overloading
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Figure 5: CDA Response time with MPI on Cluster: SDD vs. DDD.

four nodes in SMP as described in Table 3. As it can be noticed in both figures, load
balancing improves the performance of the whole system offering good levels of efficiency
in the system although there are several nodes dedicated to attend other jobs. However,
if the system is homogeneous and not having any external workload, SDD will achieve
better performance because there is no load balancing overhead. As mentioned above,
these experiments can be generalized to other architectures like homogeneous clusters with
imbalanced nodes or heterogenous clusters.

Cluster

Figure 5 presents the evolution of response time for both implementations in Cluster.
Again, both approaches reach a very important reduction in the response times, obtaining
the best values with the largest video sizes and the worst with the smallest ones. For
instance, in DDD, the increment of the speedup as video size grows can be considered
spectacular, reaching the minimum with 10000 frames, surpassing 0.8 with 20000 frames
and gaining the maximum with 80000 frames (Fig. 6).

This study has been completed measuring communication times on both implementa-
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Figure 6: CDA Speedup of the MPI versions on Cluster comparing SDD and DDD.
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Figure 7: CDA Response time percentage dedicated to communication operations of the
MPI versions on Cluster comparing SDD and DDD.

tions. Figure 7 shows the percentage of total execution time devoted to communication
data. Communication time only depends on video size, remaining almost constant for all
setup tested in each size. On the other hand, Figure 7 shows that the behavior is very simi-
lar for all sizes tested. The increment of communication time does not cause the percentage
increase shown in Figure 7. This increase is due to a reduction on the processor workload
when more processors are involved in the setup.

4.3 Comparison shared-memory vs. message passing

This section presents the results comparing both programming paradigms, shared-memory
and message passing, contrasting the branches SMP-Threads-CDA-DDD and SMP-
MPI-CDA-DDD. Figure 8 presents the evolution of speedup for both programming
paradigms in SMP.

All figures show very outstanding speedup curves. It must be noticed that when the
video size is greater than 20000 frames, LinuxThreads version improves the results pro-
vided by MPI. Figure 8(b) clearly shows the degradation that appears when the processor
dedicated to run the master process in the MPI version is shared with an additional 16th
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Figure 9: Speedup on both architectures using the same programming paradigm (MPI)
and the same strategy for distributing the load among the available processors (CDA).

slave process, overloading the corresponding SMP processor. This means that the load
associated to master tasks is not negligible, on the contrary, running the main thread of the
LinuxThreads version in one of the available processors and sharing this processor with
one of the launched threads does not diminish speedup figures, as Figure 8(a) shows.

4.4 Comparison between parallel architectures: SMP vs. cluster

Finally, this section presents a comparison between both architectures using the same pro-
gramming paradigm and the same implemented approach: SMP-MPI-CDA-DDD vs.
Cluster-MPI-CDA-DDD. Figure 9 presents the evolution of the speedup for both ar-
chitectures in MPI-CDA-DDD. Better response times in Cluster can be achieved since
the number of available processors is greater than in SMP, but both architectures can
be compared using speedup figures. Again, all figures show a great reduction of response
times and very outstanding speedup curves. When the number of slaves in the cluster is
increased, the slope increment of the curve is clearly sharper in Cluster than in SMP,
proving a better scalability in the Cluster than in SMP. A final remark must be made
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about Figure 9(a): the above mentioned degradation appearing in SMP performance, also
shown in Figure 8(b), is due to the overload of the processor that shares one slave and the
master processes.

5 Conclusions and future work
This paper has presented a very exhaustive study among different parallel architectures and
parallel programming paradigms of a video shot segmentation algorithm used in a Content-
based Multimedia Retrieval System. Programmed implementations attempt to cover all
possible parallel programming aspects, just as the different studied paradigms: two Lin-
uxThreads implementations and two MPI versions, tested on a shared-memory symmetric
multiprocessor and on a cluster. There are important conclusions that can be extracted
from these experiments. Considering the strategy for accessing and segmenting video data,
it can be stated that DDA has a much simpler implementation since there is one single
process involved. Apart from that, CDA is clearly better from the point of view of per-
formance and shows a slightly better scalability. Simultaneous access of the threads to the
same video data for decoding purposes gives rise to a bottleneck in the I/O subsystem that
surpass the penalty introduced when using a single thread dedicated only to decode the
video.

The comparison of both distribution strategies, SDD vs. DDD, when there are no
problems with memory accesses, turns out that differences are almost negligible and the
simplest one should be chosen (SDD). But when video size grows or when dealing with
heterogeneous clusters, DDD approach is better to introduce load balancing solutions as it
has being experimentally shown.

Analyzing both programming paradigms, the performance obtained is very similar in
SMP with both implementations. LinuxThreads is simpler than MPI from the program-
mer’s point of view, but message passing enjoys portability as an unquestionable advantage
over threads, since the same code can be executed in both architectures.

From the experiments it can be deduced that all implementations and architectures
tested offer excellent results from a performance point of view, with strong reductions
of execution times. Speedup values are almost linear and quite close to the theoretical
maximums in all experiments. Shared memory architectures obtain better results with a
small number of processors because each one is more powerful than the processing nodes
available in the cluster, but are less scalable than clusters.

Beowulf clusters with quite powerful networks, like Myrinet in this case, achieve ex-
cellent scalability results. Communication time values remain almost constant when the
number of processing nodes is increased, and therefore, the speedup achieved by the paral-
lel system keeps stable when the problem size grows and the number of processing nodes is
simultaneously increased.

Future work will include the integration of these systems in a grid infrastructure. An-
other issue to be considered will be the implementation of the scalable SBD system in other
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available many-core architectures, such GPGPUs.
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Abstract

For linear and nonlinear Shrödinger’s equation we propose adaptive non-reflecting
boundary conditions based on the analysis of the equation solution near the bound-
ary of the domain. Conservative two-layer finite-difference scheme with two-steps
at iteration process is constructed for arbitrary boundary conditions. The efficiency
of such scheme is shown for the linear and nonlinear Shrödinger equation.

Key words: conservation laws, finite-difference schemes, adaptive non-reflecting
boundary conditions, nonlinear Shrödinger equation, two-steps iterative method.
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1 Introduction

As it is well-known, one of modern computer simulation problems is a construction
of the non-reflecting boundary conditions for equations describing the various physial-
chemical process. In particular, developing the such conditions for the wave equation
and Shrödinger equation which describes the propagation of electromagnetic waves and
energy levels of atoms and molecules is actual at present time (for example [1]-[8]).

In past few years for 1D linear Shrödinger equation have been offered both the
exact non-reflecting boundary conditions and the various conditions, which realization
leads to appearance of the reflected wave. It should be stressed that for realization
of the exact non-reflecting boundary conditions for linear Shrödinger equation the in-
formation about its solution on all previous time interval is required. Obviously, it
is unacceptable at the numerical solution of the problem. Inaccurate (approximated)
non-reflecting boundary conditions don’t demand full information about the solution in
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time. However, their application leads to occurrence of the reflected wave. In the case of
linear propagation of light wave the presence of the reflected wave with amplitude about
3% − 5% from amplitude of a falling wave can not destroy the solution. At nonlinear
propagation of optical beam or pulse the reflected wave with such amplitude leads to
essential distortion of the solution because of cross-modulation of falling and reflected
waves. Hence, the reflected wave transforms the intensity distribution of falling wave.
Therefore, developing the the non-reflecting boundary conditions, possessing small am-
plitude of the reflected wave (for example, the amplitude is about 0.1% from amplitude
of falling wave) and their realization in simple way for computer simulation represents
an actual problem essentially in multi-dimensional case.

2 State of problem

The process of laser pulse propagation in a medium with Kerr nonlinearity is described
by nonlinear Shrödinger’s equation with respect to complex function A(z, x, y):

∂A

∂z
+ ıDx

∂2A

∂A2
+ ıDy

∂2A

∂y2
+ ıγ|A|2A = 0, z > 0, 0 < x < Lx, 0 < y < Ly. (1)

The artificial non-reflecting adaptive boundary conditions [8] at the left and right
boundaries {ΩL,ΩR} define as:

(

∂A

∂z
∓ 2DxΩ

∂A

∂x
+ iDxΩ

2A+ ıγ|A|2A

)

x=0,Lx

= 0, Ω = {ΩxL,ΩxR} ,

(

∂A

∂z
∓ 2DyΩ

∂A

∂y
+ iDyΩ

2A+ ıγ|A|2A

)

y=0,Ly

= 0, Ω = {ΩyL,ΩyR} . (2)

For the problem (1) there are some invariants (conservative laws). The first invari-
ant can be written in the following manner:

I1(z) =

Lx
∫

0

Ly
∫

0

|A|2dxdy − 2Dx

Lz
∫

0

Ly
∫

0

Im

[

A∗
∂A

∂x
−A

∂A∗

∂x

]
∣

∣

∣

∣

Lx

0

dydη −

− 2Dy

Lz
∫

0

Lx
∫

0

Im

[

A∗
∂A

∂y
−A

∂A∗

∂y

]
∣

∣

∣

∣

Ly

0

dxdη = const. (3)
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The other invariant looks like:

I3(z) =

Lx
∫

0

Ly
∫

0

[

γ

2
|A|4 −Dx

∣

∣

∣

∣

∂A

∂x

∣

∣

∣

∣

2

−Dy

∣

∣

∣

∣

∂A

∂y

∣

∣

∣

∣

2
]

dxdy + 2Dx

Lz
∫

0

Ly
∫

0

Re

[

∂A

∂x

∂A∗

∂η

∣

∣

∣

∣

Lx

0

]

dydη+

+2Dy

Lz
∫

0

Lx
∫

0

Re

[

∂A

∂y

∂A∗

∂η

∣

∣

∣

∣

Ly

0

]

dxdη = const.

(4)

These invariants are used for construction of finite-difference scheme.

3 Construction of conservative finite-difference schemes

To construct a conservative finite-difference scheme for the problem (1), (2) we intro-
duce in the domain Ω = (0, Lz)× (0, Lx)× (0, Ly) the grid ω = ωz × ωx × ωy:

ωz = {zk = khz, k = 0, 1, ..., Nz , hz = Lz/Nz},

ωx = {xm = mhx,m = 0, 1, ..., Nx, hx = Lx/Nx},

ωy = {xn = nhy, n = 0, 1, ..., Ny , hy = Ly/Ny}.

Let us define the grid functions U and introduce the following index-free notation

U = Um,n = U(zk, xm, yn), Û = U(zk+1, xm, yn),

0.5
U = 0.5(Û + U),

0.5

|U |2 = 0.5(|Û |2 + |U |2).

The second order derivatives in corresponding coordinates are approximated in the
following way:

Λx̄xU =
Uh(zk, xm + hx, yn)− 2Uh(zk, xm, yn) + Uh(zk, xm − hx, yn)

hx
2 ,

ΛȳyU =
Uh(zk, xm, yn + hy)− 2Uh(zk, xm, yn) + Uh(zk, xm, yn − hy)

hy
2 .

Using these notations we write in the internal nodes of mesh the conservative finite-
difference scheme with the following iterative method:

s+1

Û −U

hz
+ ıDxΛx̄x

s+1
0.5
U + ıDyΛȳy

s
0.5
U + ıγ

s
0.5

|U |2
s
0.5
U = 0,

s+2

Û −U

hz
+ ıDxΛx̄x

s+1
0.5
U + ıDyΛȳy

s+2
0.5
U + ıγ

s+1
0.5

|U |2
s+1
0.5
U = 0. (5)
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To write the approximation of the boundary conditions (2) let us introduce the
additional notations

s+1
Uz̄,k =

s+1

Ûk −Uk

hz
,

s+1

0.5
Ux,m =

s+1

0.5
Um+1 −

s+1

0.5
Um

hx
.

Using them we write the following finite-difference equation corresponding to the left
boundary condition for differential equation:

s+1
Uz̄,0 = 2DΩxL

s+1

0.5
Ux,0−iDΩ2

xL

s+1

0.5
U0 −iγ|

s

0.5
U0 |

2

s

0.5
U0, n = 0, 1, ..., Ny .

The similar condition is written at the right boundary of the domain:

s+1
Uz̄,Nx

= −2DΩxR

s+1

0.5
Ux̄,Nx

−iDΩ2
xR

s+1

0.5
UNx

−iγ|

s

0.5
UNx

|2
s

0.5
UNx

, n = 0, 1, ..., Ny .

It should be stressed that for brevity we write the finite-difference equations only in x
direction.

Coefficients ΩL and ΩR is found out numerically. Their values calculate in following
way:

ΩxL = −
ψ1 − ψ0

hx
, ΩxR = −

ψNx
− ψNx−1

hx
, n = 0, 1, ..., Ny ,

ΩyL = −
ψ1 − ψ0

hy
, ΩyR = −

ψNy
− ψNy−1

hy
, m = 0, 1, ..., Nx.

Above the phase ψ of the complex function U defines by values of its real UR and image
UL parts and can be calculated as follows: ψ = 0 if the inequality U2

R + U2
I < 10−δ is

valid. Let us underline that the value of δ should be coordinated with data accuracy
and calculation accuracy.

The value of the phase ψ for other relations between real and image parts of the
complex amplitude is calculated as

for |UR| < 10−δ , ψ =
π

2
if UI > 0, or ψ =

3π

2
if UI < 0; (6)

for UR > 0, ψ = arctg

∣

∣

∣

∣

UI

UR

∣

∣

∣

∣

if UI ≥ 0, or ψ = 2π − arctg

∣

∣

∣

∣

UI

UR

∣

∣

∣

∣

if UI < 0;

for UR < 0, ψ = π − arctg

∣

∣

∣

∣

UI

UR

∣

∣

∣

∣

if UI ≥ 0, or ψ = π + arctg

∣

∣

∣

∣

UI

UR

∣

∣

∣

∣

if UI < 0;

It is very important for application that it is necessary to change above the calcu-
lation of phase for the case UR > 0 and UI ≥ 0 to eliminate an influence of round-off
errors. We add to the phase 2π: ψ ⇒ ψ + 2π. Other values of the phase remain the
same. Addition of the phase per 2π does not influence on the correctness of calculations.
Nevertheless, it allows to eliminate influence of a round-off error.
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4 Computer simulation

As example of efficiency of the developing approach we present below the result of
computer simulation for a linear (γ = 0) propagation of input Gaussian laser beam:

A|z=0(x, y) = e−(x−θxLx)
2
−(y−θyLy)

2

, 0 ≤ x ≤ Lx , 0 ≤ y ≤ Ly, θx, θy ∈ [0, 1].

for Dx = Dy = 0.25.
To estimate the error that is caused by artificial boundary conditions we introduce

the following norm
ξ =

∥

∥U2
L − U2

∥

∥

c
= max

z,x,y∈ω

∣

∣U2
L − U2

∣

∣ ,

where UL is also a numerical solution of the Schrödinger equation with zero-value
boundary conditions which are valid for domain with increased sizes. Values of both
two invariants (3), (4) and error ξ are presented in Table. From the Table we can see
that the artificial boundary conditions leads to appearance of error (about 0.05) for
the case of symmetric position of the beam center with respect of angular point of the
domain boundary.

The intensity distribution at the section z = 1 is shown in Figure for other dis-
placement of beam center with respect to the boundary. It is well clear from Figure
that the reflected wave is absent.

In the report we discuss the approximation of boundary conditions at angular point
of the domain boundary. We consider also the proposed artificial non-reflecting bound-
ary conditions for nonlinear propagation of laser beam. Essentially, that in this case
we develop the two-steps iterative method (see (5)) which allows to realize conservative
finite-difference schemes for arbitrary boundary conditions.

Table 1. Values of invariants and norm of error for the 2D problem solution.

θx = θy = 0.9 z = 0 z = 1

I1 1.5315 1.5276
I3 -0.7150 -0.7325
ξ 0.0000 0.0543
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Figure 1: Intensity distribution of laser beam at longitudinal section z=1
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Abstract

In this paper, a novel integration scheme which uses just a single node will
be introduced. To achieve this aim, some weight functions are generated in the
integrand of the target integral using the features of fluctuation free integration
scheme. Also, a portion of numerical results will be given through graphics to show
the efficiency of our approach.

Key words: Fluctuationlessness Theorem, Quadrature, Numerical Integration,

Weight Function, Matrix Representations, Orthonormal Basis Sets.

1 Fluctuationlessness Approximation and A Novel Inte-

gration Scheme

Fluctuationlessness theorem[1, 2, 3, 4, 5, 6, 7, 8] which was conjectured and proven
by M. Demiralp recently, represents an equality between two specific and widely used
matrices. The first one of these matrices is the matrix representation of the operator x̂
whose task is to multiply its argument by the universal independent variable x. That
is why it may be called “universal matrix” by our group and some others. And the
second adverted one is the matrix representation of the f̂ operator which multiplies its
argument by the continous function f . The discoursed equality by the way is valid if
the space to be worked on is an infinite dimensional space. Then, we should dictate an
approximation instead of equality between these two matrices, meaning that if we are
working on a subspace instead of original space itself. In other terms, we may state
that these two matrices are equal to each other when the fluctuation terms are ignored.
As a result of what we have predescribed briefly here, the approximation we mentioned
above can be written as follows

M
(n)
bf

≈ f
(
M

(n)
bx

)
(1)
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where M
(n)
bf

and M
(n)
bx

are the matrix representations of the operators f̂ and x̂ re-

spectively on the n dimensional subspace which can be denoted as Hn of the infinite
dimensional Hilbert space H. The elements of these two matrices are calculated through
an inner product defined on Hn, meaning that the functions entering this inner product
are square integrable and continous. So the inner product can be expressed as follows

(f, g) =

∫ 1

0
dxw(x)f(x)g(x) (2)

The w(x) function appearing in (2) is called the “Weight function” which takes positive
real or zero values only at a finite number of points which reside in the unit interval
[ 0, 1 ]. The reason of the selection this unit interval is its convertability meaning that
any finite interval can be affine transformed into the interval [ 0, 1 ]. The other important
feature of w(x) which should not be forgotten is the normalization condition which can
be represented as

∫ 1

0
dxw(x) = 1 (3)

With the help of the inner product definition in (2), the entries of the matrix represen-
tation of x̂ operator and the f̂ operator respectively are calculated as

M
(n)
bx

≡




X11 X12 · · · X1n

X21 X22 · · · X2n

...
...

. . .
...

Xn1 Xn2 · · · Xnn


 ; Xjk ≡ (uj , x̂uk) , 1 ≤ j, k ≤ n (4)

and

M
(n)
bf

≡




F11 F12 · · · F1n

F21 F22 · · · F2n

...
...

. . .
...

Fn1 Fn2 · · · Fnn


 ; Fjk ≡

(
uj , f̂uk

)
, 1 ≤ j, k ≤ n (5)

where the ui’s (i = 1, 2, ..., n) are the orthonormal basis functions[1, 2, 3] spanning Hn

which the very first element of this set, meaning u1, is the constant function 1. Also,

one can easily observe that the matrix M
(n)
bx

has a symmetric structure guaranteeing
its all eigenvalues, which can be proven to be distinct and located inside the interval
[ 0, 1 ], are real.

The approximation in (1) and its components standing in the formulations (2), (4)
and (5) can be used to approximate the exact result of a definite integral. A definite
integral of the continous function f(x) over the unit interval can be formulated in the
most general case as follows

I ≡

∫ 1

0
dxf(x) (6)

@CMMSE                                 Page 1158 of 1703                                 ISBN: 978-84-614-6167-7
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Our purpose is to evaluate this integral numerically and in a desired precision using
a quadrature structure which will be called fluctuation free integration. Generally,
the entries of the matrix representations of the x̂ and f̂ operators which reside at the
intersection of ith row jth column can be obtained by premultiplying corresponding

matrix with e
(n)
i

T
and postmultiplying with e

(n)
j whose formulations are given as follows

e
(n)
i

T
M

(n)
bf

e
(n)
j =

∫ 1

0
dxui(x)xuj(x), 1 ≤ i, j ≤ n

e
(n)
i

T
M

(n)
bx

e
(n)
j =

∫ 1

0
dxui(x)f(x)uj(x), 1 ≤ i, j ≤ n (7)

where the e
(n)
j is the n dimensional jth unit vector whose only nonzero element, that

is 1, resides at the jth position. By using these entities in (7) and the reality that
u1(x) is 1, we can write down the following formulation using the fluctuationlessness
approximation[1, 2, 3].

I ≡

∫ 1

0
dxu1(x)f(x)u1(x) =

(
u1, f̂u1

)
= (u1, f (x̂)u1) ≈ e

(n)
1

T
f

(
M

(n)
bx

)
e

(n)
1 (8)

Since the M
(n)
bx

matrix is symmetric, we can represent its spectral decomposition as
follows

M
(n)
bx

=

n∑

i=1

λiξiξ
T
i (9)

where the λi’s are the eigenvalues and the ξi’s are the corresponding eigenvectors. Using
the spectral decomposition of the matrix representation of x̂ operator in equation (9),
we can obtain the image of this matrix under the integrand function, f(x), as follows

f
(
M

(n)
bx

)
=

n∑

i=1

f(λi)ξiξ
T
i (10)

If we embed this equality into the right hand side of the formulae in (8), we can derive
a quadrature-like formulae to approximate the given definite integral in (6).

I ≈

n∑

i=1

f (λi)

(
e

(n)
i

T
ξi

)2

(11)

The expression obtained in (11) is called fluctuation free integration formula[1, 2, 3] for
univariate functions.

2 Single-Node Fluctuation Free Integration Using Sub-

space Construction

Consider the definite integral for the univariate function f(x) in (6). If we apply the
fluctuation free integration scheme using n nodes to this integral we get
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I ≈ w1f(x1) + · · · + wnf(xn) (12)

where wi’s refer the squares of the first elements of the eigenvectors, ξi’s, and xi’s
implies the eigenvalues, λi’s, appearing in the spectral decomposition in (9). If we could
handle just one single node instead of the multi-node case above, the approximation to
the target integral in (6) and the accompanying conditions, also called the “moment
conditions” for the fluctuation free integration (or Gauss quadrature[9]) would have
been expressed by the formulations

I ≈ w1f(x1) (13)

and

w1 =

∫ 1

0
dxw(x) = µ0, w1x1 =

∫ 1

0
dxw(x)x = µ1 (14)

respectively. At that point we need to construct a weight function which takes zero
values only at a finite number of points and can take only positive values at the rest of
the interval and satisfies the moment conditions in (14). For this purpose, if we do a
little manipulation in (6) we can obtain the new-shaped integral

I =

∫ 1

0
dxs(x)

{
f(x)

s(x)

}
(15)

which satisfies the following homogenous condition which comes from the moment con-
ditions in (14) when s(x) is replaced by w(x).

∫ 1

0
dxs(x)(x − x1) = 0 (16)

We can construct a subspace using the homogenous condition (16) but the important
property that we desire is to produce positive functions to utilize as a weight function
existing in this subspace.

To achieve this goal, we start dealing to produce s(x) by engaging its Taylor ex-
pansion. For symmetry reasons, this expansion will be held at the vicinity of 1/2, that
is the center point of the unit interval [ 0, 1 ]. So, the expansion can be expressed as

s(x) =

∞∑

j=0

sj

(
x −

1

2

)j

(17)

where the sj’s come from the Taylor expansion of the relevant function. By the way,
the homogenous condition can be decomposed as

∫ 1

0
dxs(x)

(
x −

1

2

)
−

(
x1 −

1

2

)∫ 1

0
dxs(x) = 0 (18)

to embed the Taylor expansion in (17) in a more convenient way. If the integrals
encountered in the expression reached by arranging the terms of (18) are evaluated
analytically the following equation is obtained.
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∞∑

j=0

sj

[
1 − (−1)j

(j + 2)2j+2
−

(
x1 −

1

2

)
1 + (−1)j

(j + 1)2j+1

]
= 0 (19)

Using this equality we can separate the first term of the summation, so we can express
s0 in terms of the other sj ’s as follows

s0 = −

∞∑

j=1

sj

[
1 + (−1)j

(j + 1)2j+1
−

1

x1 −
1
2

1 − (−1)j

(j + 2)2j+2

]
(20)

With the help of the properties discovered above, s(x) function can be reexpressed as
follows

s(x) = s0 +
∞∑

j=1

sj

(
x −

1

2

)j

=
∞∑

j=1

sjpj(x, x1) (21)

where the pj coefficients[4, 5] are indicated evidently

pj(x, x1) =

(
x −

1

2

)j

+
1(

x1 −
1
2

) 1 − (−1)j

(j + 2)2j+2
−

1 + (−1)j

(j + 1)2j+1
; j = 1, 2, . . . (22)

Since the number of pj’s are infinite, there is no way to investigate the positivity on
the unit interval [ 0, 1 ] for all of them. For this reason we will handle the very first of
them, also the one which has the simplest to calculate structure, p1. If we substitute 1
for j in (22),

p1(x, x1) =

(
x −

1

2

)
+

1(
x1 −

1
2

) 1

12
(23)

is obtained. This is a polynomial of first degree and has the dependency to x1[4, 5].
Since this polynomial will be considered as a weight function on the unit interval, it
must satisfy the normalization condition under integration

∫ 1

0
dxw1(x, x1) = 1 (24)

With the existence of the condition (24), the weight function[4, 5] which will be utilized
is committed as

w1(x, x1) = 12

(
x1 −

1

2

)
p1(x, x1) = 1 + 12

(
x1 −

1

2

)(
x −

1

2

)
(25)

Using the weight function obtained in (25), we can realize an approximation to the
target integral in (6) except the x1 points that makes p1 as zero. This fact entails a
lack of continuity of the integrand in (15) as it can be easily noticed. By the way, we
can say that the values of p1 must be less then 0 and greater than 1 for all x1’s in
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an appropriate open interval. With a simple inequality analysis for the root of p1, the
interval from which x1 values should be chosen is determined as

1

3
< x1 <

2

3
(26)

which dictates us a restriction that the x1 points should be taken from the middle one
third of the unit interval. If the x1 value is considered using the inequality in (26) the
approximation to the integral in (6) can be realized as follows

I ≈
1

w1(x1)
f(x1) (27)

Although this approximation formula is valid for only x1 values residing in the interval
(1/3, 2/3), it is possible to make this interval broader using an appropriate transforma-
tion. For example, if the transformation x → 1 − xk+1 is applied to the process above
from the beginning, the value space of the node x1 can be extended to the interval
(e−2, 1− e−2) while k goes to infinity[4, 5]. The details of this circumstance will not be
given here, since this fact is out of the scope of our paper.

3 The Generation and The Utilization of Non-Polynomial

Weight Functions

In the previous section, we have dealt with the weight function which has the poly-
nomial nature. Beyond this situation, generating a weight function of non-polynomial
structure is also possible. The only thing we need is to specify the main structure of the
weight function and decide the x1 values according to that new structure constructed
by using the homogenous condition in (16). Then, with the help of the x1 value ob-
tained, we can approximate to the target integral by using the formulae in (27). So,
we consider the structure of the weight function as

s(x, τ) = eτ(x− 1

2
) (28)

where τ is a real constant multiplied with the factor (x − 1/2) for symmetry reasons.
If this weight function is embedded into the homogenous condition in (16)

(
x1 −

1

2

)∫ 1

0
dxs(x, τ) −

∫ 1

0
dxs(x, τ)

(
x −

1

2

)
= 0 (29)

By evaluating the above integrals analytically and making some reorganizations

x1 =
1

2
−

1

τ
+

1

2
coth

τ

2
(30)

is obtained. We can produce more weight functions and nodes by changing the structure
of the weight function s.
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Figure 1: Exact and approximation results for the integral of eαx function using poly-
nomial weight

4 Numerical Implementations

In this section, we will give some graphics reflecting the numerical calculations[10]
and accuracy for the integral values of the elementary functions such as eαx, e−αx and
sin (αx) for different positive and real α values obtained by our method. One can
easily verify from the structures of the functions above that α value is the parameter
which determines the curvature of the exponential functions and oscillation for the
trigonometric functions.

In Figure 1, the approximate values evaluated using single node fluctuation free
integration and the exact result for the integral of eαx on the unit interval are plotted for
different x1 values to be seen together. It is obvious that the best approximation to the
exact value of the integral is obtained by using the greatest x1. But on the other hand, if
we look at Figure 2 which has been plotted for e−αx with the same α and x1 values, one
can easily notice that the best approximation is provided by taking x1 as its smallest
value. These results are encountered because of the monotonicity of the functions under
consideration. Thus, it can be noticed that, the x1 values which are closer to the right
bound of the interval express the integral value of monotonously increasing functions.
On the other hand, the x1 values which are closer to the left border of the interval
works better to approximate the integral of monotonously decreasing functions using
polynomial weight function structure.

In Figure 3, Figure 4 and Figure 5 we realized the calculations for an exponential
function having less curvature, again an exponential function with high curvature and
a trigonometric function with the help of the exponentially structured weight function,
respectively. It can be noticed from the Figure 3 that, using exponential weight function
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Figure 2: Exact and approximation results for the integral of e−αx function using
polynomial weight

resulted better approximations for the exponential integrands according to the values
shown in Figure 1. If the curvature level of the exponential function, meaning α,
increases we can overcome this situation by increasing the curvature of the weight
function, meaning τ . In this manner, we can produce more precise approximations. Of
course the exponentially structured weight function is not a cure-for-all phenomena for
single node fluctuation free integration. This fact can be seen in Figure 5 evidently. For
example, to approximate a trigonometric function, we can derive a convenient formula
using a trigonometric type weight function. Although we mentioned about this case,
the implementations will be discussed and possible pitfalls will be mentioned during
the presentation.

5 Concluded Remarks

The outcomes of what we have encountered during the development of the theory
and the calculations can be itemized as follows.

• If the function under consideration is flat, meaning almost constant, then choosing
the node x1 in the vicinity of 1

2 gives better approximation.

• If the function is monotonously increasing, then choosing x1 close to the right
border of the interval will increase the approximation quality.

• If the integrand of the target integral has a monotonous decreasing structure then
working with the nodal points which are close to the left border of the interval
will cause better approximations.
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Figure 3: Exact and approximation results for the integral of eαx function using expo-
nential weight
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Figure 4: Exact and approximation results for the integral of eαx function using expo-
nential weight
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Figure 5: Exact and approximation results for the integral of sin (αx) function using
exponential weight

• If the analytic structure of the function is already known, we can compare the
results and find the best approximation. To find the best nodal location is a
function dependent issue since it changes from function to function.

• If the s(x) function is structured according to the function to be integrated then
the approximation for the target integral will be more precise.
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Süha Tuna, Metin Demiralp
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Abstract

The present paper reflects a problem which is rooted in a mathematical model
corresponding to some particular portfolio problems. The studied problem belongs
to the class of bilevel optimization problems, in which the objective function of
the lower level problem is a cost-time type vector function. The problem restraints
contain the condition that the variable have boolean values. Based on the par-
ticularities of the problem we solve it by solving two pseudo-boolean optimization
problems: the first problem being knapsack type; the second one has an objective
function which is a cost-time type vector function and has knapsack type restraints.

Key words: bilevel optimization problem, portfolio optimization
MSC 2000: 90C29, 90C90, 90B50, 91B06

1 Introduction

Nowadays, many economic problems can be solved by using mathematical tools. In
this way, financial optimization became one of the most interesting areas in investment
processes. The literature on financial optimization models is rooted in the work of
Markowitz [12]. His main contribution was the introduction of the concept of efficient
or optimal portfolio, that would provide the maximum expected return for a certain
level of risk each investor is willing to take. Since the publishing of Markowitz’s work, a
lot of effort has been made to apply this approach to a larger scale of real life situations
and to make investment decision more measurable.

We mention that a financial investment is represented by any capital investment in
order to gain a profit. Whenever an investor decides to invest, he/she thinks in terms
of ”is it worth it?” and ”when should I stop?”. The answer to the first question can
be different for each investor: how much the maximum return will be, in how much
time the invested amount will be recovered, etc.. The answer to the second question
is related to the goals of each investor. This means that the investor has to establish
each time both realistic and achievable goals. The time associated with each goal is
one of the factors that affects the investment strategy. By grouping the goals based on
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time periods, three types of investment can be determined: short-term investment (less
than one year), medium-term investment (one to five years) and long-term investment
(five years and beyond).

Since investment can be seen as a link between present and future, time represents
an important factor in the investment process (time is immanent for any investment).
In addition, the risk (seen as a result of the uncertainties) is inherent for any invest-
ment. Therefore, time periods and uncertainties play important roles in the investment
process. From a mathematical perspective, multilevel programming models must be
applied in order to emphasize both these aspects and resolve the investment problems.

The present paper proposes an approach to resolve a concrete economic problem
faced by an investor (a company), regarding it’s decision on a medium-term investment.
An economic problem has been formulated and the author proposes a method for solving
this concrete problem.

2 Our Particular Portfolio Problem

The main objective of a firm S, which owns n branches S1,...,Sn, is to obtain a largest
return by investing in different stock portfolios available on the capital market. We
mention that the stocks enclosed in a portfolio have the same quotation on the market.
We define as different stock portfolios each portfolio available on the capital market
that has a different market quotation in time. For some stock portfolios, the quotation
has an ascending trend. For other stock portfolios the price increases or decreases
frequently and significantly, even if the long-term trend is known as being ascending,
descending or constant.

Let P1, ..., Pm, m > n, be the stock portfolios in which the firm S will invest. For
each stock portfolio Pi, i ∈ {1, . . . ,m}, the firm S has historical data based on which
it can predict the expected return for a certain level of risk undertaken for a period of
time T . It can also predict the expected return for a certain level of risk undertaken
for shorter periods of time, subdivisions Th, h ∈ {1, . . . s}, of T .

The firm S can make transactions with the stock portfolios in two different ways:
directly, through its n branches, and indirectly, through p companies, m − n ≤ p ≤
(m−n)s, denoted by C1,... Cp, within a group of companies, denoted by C, specialized
in financial investment services.

The problem that firm S needs to solve is how to choose n stock portfolios in
which to invest directly (one portfolio through each branch) so that it maximizes its
return, while the biggest risk for which it obtains the maximum return shall not exceed
a defined value e. We mention that the firm’s return is equal to the sum of direct
return, achieved through the investment made through its branches, and indirectly
return, achieved through investment made by specialized investment companies. In the
second case, the company engaged by the firm to invest on its behalf will get its own
return from the transactions made and, based on an agreed share will yield a part of
the return to the firm.

Let aij be the expected return that the firm S could obtain if they trade the stock
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portfolio Pi, i ∈ {1, . . . ,m} through its branch Sj , j ∈ {1, . . . , n}. Let rij be the risk
taken by the firm S, through its branch Sj , in the above case.

The investment company C must invest in all stock portfolios that were not chosen
by the firm S to invest directly. The investment company considers the medium period
of time T divided in s subperiods T1,..., Ts. It is known the expected return cikh that
the company Ck, k ∈ {1, . . . , p} can obtain if it will trade the stock portfolio Pi, in
the subperiod of time Th, h ∈ {1, . . . , s}; also, it is known the risk dikh taken by the
company Ck, if it will trade the stock portfolio Pi, in the subperiod of time Th. Let
qik% be the share (percentage) that the firm S gains from the total return obtained by
the company Ck, if it will trade on market the stock portfolio Pi.

The decision on what company Ck will trade the stock portfolio Pi will be made
by the management of the investment company C, and not by the firm S.

The main objective of the investment company C is to obtain a biggest net return,
the condition being that each stock portfolio, that was not chosen by the firm S, must
be traded at least once. The same stock portfolio can be traded in several of the s
subperiods of time but only once in the same subperiod.

The return of the investment company C is obtained by summing up the net returns
obtained from the transactions made by each company Ck, k ∈ {1, . . . , p}. The return
of one company Ck is obtained by summing up the returns obtained in each subperiod
of time Th, h ∈ {1, . . . , s} and decreasing the share agreed to be yielded to firm S.
The management of the investment company C requires that the biggest risk taken
for the stock portfolios traded in a period of time Th, h ∈ {1, . . . , s}, shall not exceed
a defined value eh, shall be as small as possible and impacts the smallest number of
stock portfolios. They also request that each company Ck must trade at least one stock
portfolio in at least one subperiod of time.

The mathematical model for our portfolio problem is a bilevel type problem.

3 Brief Background of Bilevel Programming Problems

Nowadays, multilevel programming, and subsequently bilevel programming, has become
an important area in optimization. These types of problems are strongly motivated by
real world applications in economics, medicine, engineering etc.

In mathematical terms, the bilevel programming problem is an optimization prob-
lem where a subset of the variables is constrained to be an optimal solution of a given
optimization problem parameterized by the remaining variables.

Let be Ω ⊆ Rn ×Rm and let f : Ω→ R, g : Ω→ R be given functions. We set

Ω1 = {x ∈ Rn | ∃ y ∈ Rm such that (x, y) ∈ Ω},

and, for each x ∈ Ω1, we denote by

Ωx = {y ∈ Rm | (x, y) ∈ Ω}.
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We can mathematically formulate the bilevel programming problem as:

(BP )


f(x, y) → max
such that
(x, y) ∈ Ω,
y ∈ S(x),

(1)

where S(x) denotes the set of optimal solutions of the mathematical programming
problem parameterized in x, i.e.,

S(x) = argmax{g(x, y) | y ∈ Ωx}. (2)

The original formulation for the bilevel programming problem appeared in 1973,
in a paper authored by J. Bracken and J. McGill ([2]). But, the bilevel programming
problem has its origins in the work of H.F. von Stackelberg ([14] or [13]). He used for the
first time an hierarchical model to describe real market situations. This model reflects
that there can be market situations when different decision makers are not able to make
their decisions independently, being forced to act according to a certain hierarchy. The
simple case of such a situation is the one when there are only two decision makers on
the market: the leader (upper level) and the follower (lower level) and, more over, the
lower level actions depend on upper level decisions.

Although the bilevel programming problem was first introduced by J. Bracken and
J. McGill, it was W. Candler and R. Norton ([4]) that first used, in 1977, the term of
optimization problem on more levels and, subsequently, bilevel optimization problem,
for this type of optimization problems.

References [16], [6], [5] are useful paper studies concerning bilevel programming.
In [17] one can find a detailed bibliography of works in the field of bilevel and mul-
tilevel programming problems. Also, reference [1] provides general aspects of bilevel
optimization problems (the real objective functions are replaced with multiobjective
functions).

In time, multilevel optimization problems were used for modeling many types of
concrete problems, of which we recall: the network design problem ([3]), optimal pricing
problem ([11]), the optimal signal setting problem ([10]) and train set organization ([8]).

Among other works in the field of bi and multilevel programming we cite: L. Vi-
cente, G. Savard and J. Júdice [18], who studied the linear bilevel programming prob-
lems, D. Duca and L. Lupşa [7], who studied transport bilevel problems, and St. Kosuch,
P. Le Bodic, J. Leung and A. Lisser [9], who treated the stochastic aspect.

4 The Mathematical Model for our Portfolio Problem

Let us denote by

I = {1, . . . ,m}, J = {1, . . . , n}, K = {1, . . . , p}, H = {1, . . . , s}.

Let us denote by xij , i ∈ I, j ∈ J the binary variable having the significance
xij = 1, if the firm S trades, through its branch Sj the stock portfolio Pi, and xij = 0,
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otherwise. Let us denote by yikh, i ∈ I, k ∈ K, h ∈ H, the binary variable having the
significance yikh = 1, if the company Ck trades the stock portfolio Pi in the subperiod
of time Th, and yikh = 0, otherwise.

Any direct investment of the firm S will be expressed by a matrix X = [xij ] ∈
{0, 1}m×n, and any indirect investment of the firm S will be expressed by a matrix
Y = [yikh] ∈ {0, 1}m×p×s. Therefore, an investment of the firm S will be a pair
(X,Y ), where X represents a direct investment of the firm and Y represents an indirect
investment of the firm.

The return of the firm S is given by the function f : {0, 1}m×n×{0, 1}m×p×s → R,

f(X,Y ) =
∑
i∈I

∑
j∈J

aijxij +
∑
i∈I

∑
k∈K

(qik
∑
h∈H

cikhyikh), (3)

for all (X = [xij ], Y = [yikh]) ∈ {0, 1}m×n × {0, 1}m×p×s.
The biggest risk taken by a direct investment X = [xij ] is equal to:

max{rijxij | i ∈ I, j ∈ J}.

Therefore, the condition that the risk taken by the firm S shall not exceed the defined
value e enforces the restraint

max{rijxij | i ∈ I, j ∈ J} ≤ e. (4)

The condition that each branch must trade one stock portfolio enforces the following
restraint ∑

i∈I
xij = 1, for each j ∈ J, (5)

and the condition that the firm S must invest in all m stock portfolios on the market
either directly or through the investment company C, enforces the following restraint∑

j∈J
xij +

∑
k∈K

sgn(
∑
h∈H

yikh) ≥ 1, for each i ∈ I. (6)

The biggest risk of the investment company C, taken in the subperiod of time
Th, h ∈ H, is equal to

max{dikhyikh | i ∈ I, k ∈ K}.

Therefore, the condition that the risk taken by the company C, shall not exceed the
defined value eh, in the subperiod of time Th, enforces the restraint

max{dikhsgnyikh | i ∈ I, k ∈ K} ≤ eh, for each h ∈ H. (7)

In terms of the investment company C, the return is given by the function g1 :
{0, 1}m×p×s → R,

g1(Y ) =
∑
i∈I

∑
k∈K

(1− qik)(
∑
h∈H

cikhyikh), (8)

for all Y = [yikh] ∈ {0, 1}m×p×s.
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The function g2 : {0, 1}m×p×s → R,

g2(Y ) = max{dikhsgnyikh | i ∈ I, k ∈ K,h ∈ H}, (9)

for all Y = [yikh] ∈ {0, 1}m×p×s, gives us the maximum risk that the investment
company C is willing to take. Thus, the vector function g = (g1, g2) is the objective
function of the investment company C.

Due to the fact that each company Ck trades at least once a stock portfolio and
in the same subperiod of time only one company from the group must trade one stock
portfolio. Therefore, the following restraints are imposed:∑

i∈I

∑
h∈H

yikh ≥ 1, for each k ∈ K, (10)

∑
k∈K

yikh ≤ 1, for each h ∈ H, i ∈ I. (11)

Let us denote

Λ = {X = [xij ] ∈ {0, 1}m×n|
∑
i∈I

xij = 1, ∀ j ∈ J,
∑
j∈J

xij ≤ 1, ∀ i ∈ I}. (12)

The set Λ represents the set of all possible direct investments of the firm S. Indeed,
for each portfolio Pi, the firm S can invest in it by at most one of its branches. So,∑

i∈I xij ≤ 1,∀ i ∈ I. On the other hand, each branch of the firm S must choose only
one portfolio to invest in it. So,

∑
i∈I xij = 1,∀ j ∈ J .

For the mathematical model of our portfolio problem we will use the max-min-p
points, presented in the paper [15].

4.1 Max-min-p points

Let A ⊆ Nn be a non empty set and ϕ = (ϕ1, ϕ2) : Nn → N2 a given function,
where ϕ2 is of time type, i.e. there is a vector τ = (τ1, . . . , τn) ∈ Nn, such that
ϕ2(x) = max{τj · sgnxj |j ∈ {1, . . . , n}}, for all x ∈ Nn.

As the set TM = {τj | j ∈ J} is a finite set, we can number its elements. If
cardTM = q, and we denote by zi, i ∈ {1, ..., q}, its elements, then

TM = {z1, ..., zq}. (13)

Let be
Lk = {i ∈ {1, . . . n} | τi = zk}, for every k ∈ {1, ..., q}, (14)

Let A ⊆ Nn a finite set.
A point a0 ∈ A is said to be a max−min−p point of A with respect to the function

ϕ2 if for every a ∈ A, a 6= a0, the following conditions are satisfied:

H1:
ϕ1(a

0) ≥ ϕ1(a); (15)
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H2: If

ϕ1(a
0) = ϕ1(a), (16)

then

ϕ2(a
0) ≤ ϕ2(a); (17)

H3: If

ϕ1(a
0) = ϕ1(a) and ϕ2(a

0) = ϕ2(a) = zs, (18)

then or ∑
i∈Lk

a0i =
∑
i∈Lk

ai for all k ∈ {s, ..., p}. (19)

or there is a natural number r ∈ {s, ..., p} such that∑
i∈Lk

a0i =
∑
i∈Lk

ai for all k ∈ {s, ..., r − 1}

and∑
i∈Lr

a0i <
∑
i∈Lr

ai.

(20)

We will denote the set of all points of A which are max-min-p points by

arg −max−min−p{ϕ2(x)|x ∈ A}.

Recalling our problem, for each X ∈ Λ, we set

UX =

{
Y ∈ {0, 1}m×p×s|sgn

(∑
i∈I

∑
h∈H

yikh

)
= 1, ∀ k ∈ K,

sgn

(∑
k∈K

sgn(
∑
h∈H

yikh)

)
= 1−

∑
j∈J

xij , ∀i ∈ I,

∑
k∈K

yikh ≤ 1, ∀h ∈ H, i ∈ I

}
.

(21)

The set UX is the set of all possible investment solutions for the investment com-
pany C, not taking into consideration the portfolios already chosen by the firm S to
invest directly. If the investment company Ck chooses to invest in the stock portfolio Pi

from the short listed ones, in the subperiod of time Th, the value of yikh is 1, otherwise
is 0. Y X ∈ UX is a possible max-min-p point, condition being that each company of
the group C must invest in only one portfolio that is still available on the market and
has not been previously chosen by firm S.

For each X ∈ Λ, let us denote by U∗X the set

U∗X = arg −max−min−p {ϕ2(Y )|Y ∈ A0(X)},
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where

A0(X) = {Y ∈ UX | max{dikhsgn (yikh)|i ∈ I, k ∈ K} ≤ rh, ∀h ∈ H}

and the function ϕ2 : UX → R is given by

ϕ2(Y ) = max{dikhsgn(yikh) | i ∈ I, k ∈ K,h ∈ H}, ∀Y ∈ A0(X).

Recalling our problem, the objective function of the firm S is to maximize its final
return: a direct return gained through investment made by its own branches and an
indirect return gained through investment made by the company specialized in invest-
ments. By using these notations, the mathematical model for our portfolio problem
is

(EBCT )


f(X,Y ) → max
X = [xij ] ∈ Λ,
max{rijxij | i ∈ I, j ∈ J} ≤ e,
Y ∈ U∗X .

We will call the problem (EBCT ) - assignment bilevel cost-time type problem or E
bilevel cost-time type problem.

5 A Method for Solving (EBCT) Problems

The particularity of the restraints allows us to give a finite algorithm for solving the
(EBCT) problem. The base is that if X ∈ Λ, then there are exactly n lines i1, . . . , in
so that ∑

j∈J
xit,j = 1, ∀ t ∈ J and

∑
j∈J

xij = 0, ∀ i ∈ I \ {it|t ∈ J}.

In economic terms, there are exactly n stock portfolios so that for each portfolio there
is one branch of the firm S to invest in it and, this branch will not invest in the other
m− n portfolios available.

If, in the problem (P2X), we consider X as a parameter, there is the possibility to
split the set Λ in a finite number, less or equal to Cn

m of subsets. For this purpose we
introduce the set:

V = {v = (v1, ..., vm) ∈ {0, 1}m | v1 + . . .+ vm = n}.

For each v = (v1, ..., vm) ∈ V , we set

W v = {i ∈ I|vi = 1},

Λv = {X = [xij ] ∈ Λ |
∑
j∈J

xij = vi, ∀ i ∈ I},

and

Uv = {Y = [yikh] ∈ {0, 1}m×p×s |
∑

k∈K
∑

h∈H yikh ≥ 1,∀i ∈ I \W v,∑
i∈I\W v

∑
h∈H yikh ≥ 1,∀k ∈ K,

∑
k∈K yikh = 1,∀i ∈ I \W v, h ∈ H,

yikh = 0, ∀i ∈W v, k ∈ K,h ∈ H}.

@CMMSE                                 Page 1175 of 1703                                 ISBN: 978-84-614-6167-7



Oana Ruxandra Tuns (Bode)

Then
Λv′
⋂

Λv′′ = ∅, ∀ v′, v′′ ∈ V, v′ 6= v′′ and
⋃
v∈V

Λv = Λ.

In what follows, for every v ∈ V , we consider the problems

(P v
1 )



fv1 (X) =
∑
i∈W v

∑
j∈J

aijxij → max

X = [xij ] ∈ Λv,

max{rijxij | i ∈ I, j ∈ J} ≤ e,

and

(P v
3 )



gv(Y ) =


∑

i∈I\W v

∑
k∈K

(1− qik)(
∑
h∈H

cikhyikh)

max{dikhyikh | i ∈ I, k ∈ K, h ∈ H}

 → lex−max−min

Y = [yikh] ∈ Uv,

max{dikhyikh | i ∈ I, k ∈ K} ≤ eh, ∀h ∈ H.

We denote by X v the set of optimal solutions of the problem (P v
3 ) and by F v

1 the
corresponding value of it. By Vv, we denote the set of the lex-max-min solutions of the
problem (P v

3 ) and by (Gv
1, G

v
2) the corresponding vector value of it.

Theorem 1. If (X0, Y 0) is an optimal solution of the problem (EBCT), then there
is v0 = (v01, . . . , v

0
m) ∈ V so that X0 is an optimal solution of the problem (Pv0

1 ) and
Y 0 is an lexicographic max-min solution of the problem (Pv0

3 ).
The proof of the theorem is not difficult. We have to take v0i =

∑
j∈J x

0
ij , for each

i ∈ I.
Now, let be F : V → R,

F (v) = F v
1 + max

 ∑
i∈I\W v

∑
k∈K

qik(
∑
h∈H

cikhyikh) | y ∈ Yv


and let us consider the problem.

(EBV T )

{
find v0 ∈ V such that
F (v0) = max{F (v) | v ∈ V, X v 6= ∅, Yv 6= ∅}.

Theorem 2. If the function g is injective and v0 is an optimal solution of the
problem (EBVT), then (X0, Y 0) is an optimal solution of the problem (EBCT) for
each X0 ∈ X v0 , Y 0 ∈ Yv0 .

Theorem 1, Theorem 2 and the results of the paper [15] allow us to reduce the
solving of the problem (EBCT) by solving Cn

m couples of classical E-type problems.
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Example 1. Let be m = 4, n = 2, p = 2, s = 1, e = 3, e1 = e2 = 3,

A =


1 2
0 3
2 1
1 2

 , C =


2 3
1 1
2 3
3 1

 , R =


3 5
1 2
6 4
1 3

 , D =


3 2
1 2
2 2
4 4

 .
The set V is

V = {v1 = (1, 1, 0, 0), v2 = (1, 0, 1, 0), v3 = (1, 0, 0, 1), v4 = (0, 1, 1, 0),

v5 = (0, 1, 0, 1), v6 = (0, 0, 1, 1)}.

It is easy to see that v1, v2 and v4 can not generate admissible solutions for the problem
(Pv

3), whereas v2, v4 and v6 can not generate admissible solutions for the problem (Pv
1).

Solving the problems (Pv
1), (Pv

3), v ∈ V , we obtain

max{F (v)|v ∈ V } = 9 = F (v5).

As the function g is injective, the optimal solution of the problem (EBCT) from this
example is

(X0 =


0 0
1 0
0 0
0 1

 , Y 0 =


0 1
0 0
1 0
0 0

),

in view of the Theorem 2.
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Abstract

The simulation of large crowds of autonomous agents with realistic behavior
requires an efficient use of the increasing number of cores existing in current multi-
core processors, in order to achieve scalable simulations. In this paper, we propose
an implementation of a distributed action server for crowd simulation based on
the RCU synchronization method. In this way, distributed architectures for crowd
simulations can also fully exploit the inherent parallelism in multi-core processors,
increasing their throughput and scalability. We have compared the proposed im-
plementation with a parallel implementation based on Mutex, a traditional locking
synchronization method for solving race conditions among threads in parallel appli-
cations. The performance evaluation results show that the use of RCU significantly
increases the system throughput, supporting a higher number of agents while pro-
viding the same latency levels. The reason for that behavior is the bottleneck that
the sequential access to the data structures locked by a Mutex represents for a
parallel application. Since the RCU method allows read accesses in parallel with
write accesses to these data structures, it significantly reduces these bottlenecks.
Also, these results represent the first evaluation of the RCU method in a real and
complex parallel application with large data structures, since the RCU method
has only been evaluated using small benchmarks until now.

Key words: distributed crowd simulation, multi-core programming

1 Introduction

The increasing number of cores existing in current multi-core processors provides these
systems with computing capabilities that can be exploited by distributed applications.
The current technology trend of integrating more cores in a single processor has gener-
ated an interest for researchers in developing software capable of efficiently exploiting
the computational capabilities of these systems. One of the distributed applications
that can benefit from multi-core processors is crowd simulation. Crowd simulation can
be considered as a special case of Virtual Environments where the avatars are intelligent
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agents instead of user-driven entities. Each of these agent-based entities can have its
own goals, knowledge and behavior [16]. In recent years, crowd simulation has become
an essential tool for many virtual environment applications in education, training, and
entertainment [18, 1, 12]. These applications require both rendering visually plausible
images of the virtual world and managing the behavior of complex autonomous agents.
The sum of these requirements results in a computational cost that exponentially in-
creases with the numbers of agents in the system, requiring a scalable design that can
support huge amounts of agents (of different orders of magnitude) by simply adding
more hardware.

Different distributed schemes have been presented last years for improving the
scalability of crowd simulations [13, 20]. In previous works we proposed a distributed
system architecture for crowd simulation that can take advantage of the underlying
distributed computer system [9, 23, 22]. That architecture consists of a distributed
system where some of the computing nodes contain a distributed Action Server con-
trolling the simulation. The rest of the computers host a set of agents implemented as
threads of a single process. That architecture was shown efficiently enough to support
simulations up to tens of thousands of complex agents with plausible graphic quality.
However, this distributed scheme can be still improved by fully exploiting the potential
of new multicore architectures, thus increasing the system throughput.

Several researchers have already studied the capabilities of multi-core architectures
for crowd simulations. In this sense, an approach has been presented for PLAYSTA-
TION3 that distributes the load among the PS3-Cell elements[15]. Another work uses
graphics hardware to simulate crowds of thousands individuals using models designed
for gaseous phenomena [2]. Other authors started to use GPU in an animation context
(particle engine) [14, 8], and there are also some proposals for running simple stochastic
agent simulations on GPUs [10, 13]. However, these proposals are far from displaying
complex behaviors at interactive rates. Finally, other proposals provide different inter-
active and complex crowd systems [17, 21], but they are not scalable with the number
of agents.

In this paper, we show that the distributed architecture previously proposed for
large scale crowd simulations [23] can also benefit from multi-core processors. Con-
cretely, we propose an efficient parallel implementation of a distributed Action Server
for crowd simulation. This implementation is based on RCU, a concurrently-readable
synchronization method that allows to significantly improve the scalability of the Ac-
tion Server with the number of cores and threads. We have compared the proposed
implementation with a parallel implementation based on Mutex, a traditional locking
synchronization method for solving race conditions among threads in parallel appli-
cations. The performance evaluation results show that the use of RCU significantly
increases the system throughput, supporting a higher number of agents while providing
the same latency levels. Also, these results represent the first evaluation of the RCU
method in a real and complex parallel application with large data structures, since the
RCU method has only been evaluated using small benchmarks until now.

The rest of the paper is organized as follows: Section 2 describes the parallel
implementations proposed for the distributed Action Server for Crowd Simulation.
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Section 3 shows the performance evaluation of the parallel implementations. Finally,
Section 4 shows some concluding remarks and future work to be done.

2 Parallel implementations of the Action Server

As multicore processors become mainstream, multithreaded applications will become
more common, increasing the need for efficient programming models. Efficiently pro-
gramming a multicore processor is relatively easy when the program input is a static
structure without data dependencies that can be partitioned among the execution
threads. The OpenMP API for example, permits the parallelization of a program
by means of directives, partitioning the workload among different execution threads.
However, problems arise if dynamic data structures are not safely managed in a mul-
tithreaded program. Furthermore, an efficient thread coordination of concurrent ac-
cesses to shared data structures is needed in order to obtain a good speed-up with the
number of cores. Traditional locking methods requires expensive atomic operations,
such as compare-and-swap (CAS), even when locks are uncontended. Locking is also
susceptible to priority inversion, convoying, deadlock, and blocking due to thread fail-
ures. Therefore, many researchers recommend avoiding a locking-based synchronization
methods. Some proposals use non-blocking (or lock-free) synchronization methods in
multithreaded applications, obtaining good results [19, 11]. Other works have stud-
ied the impact of replacing a locking-based synchronization by Software Transactional
Memory (STM) in a multi-player game server [24, 5]. Nevertheless, these studies reveal
that regardless the granularity of memory transactions used in STM, the performance
obtained with STM is even worse than the one obtained with a locking-based synchro-
nization method.

A major challenge for lockless synchronization methods is handling the read/reclaim
races that arise in dynamic data structures. Figure 1 illustrates this problem: thread
T1 removes node N from a list while thread T2 is referencing it. N ’s memory must be
reclaimed to allow reuse, because otherwise memory exhaustion could block all threads.
However, such reuse is unsafe while T2 continues referencing N. For languages like
C, where memory must be explicitly reclaimed (e.g. via free()),programmers must
combine a memory reclamation scheme with their lockless data structures to resolve
these races.

This section describes two parallel implementations of an Action Server for crowd
simulation [23]. The first implementation is based onMutex, the thread synchronization
method provided by the POSIX threads API. This locking method is used to protect
the dynamic data structures shared among the threads during the simulation, but
it can severely limit the parallelism achieved with the number of cores, significantly
reducing the corresponding speed-up. For that reason, another implementation based
on a lock-free data structure, the Read-Copy Update (RCU ) method [11], is proposed.
RCU is a concurrently-readable synchronization method that can be used to improve
the scalability of the Action Server with the number of cores and threads.

The Action Server (AS) is the key module of a distributed architecture for crowd
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Figure 1: Read/reclaim race among threads that access a shared dynamic data struc-
ture.

simulations [23]. An Action Server [23] can be viewed as a partial world manager, since
it controls and properly modifies the information in a region of the whole simulation
space. Thus, it can be considered as the system core. Each AS process contains three
basic elements: the Interface module, the Crowd AS Control (CASC) module and the
Semantic Data Base (SDB). Figure 2 illustrates a detailed scheme of an AS.

Figure 2: Internal structure of the initial Action Server.

The main module is the Crowd AS Control (CASC) module, which is responsible
for executing the crowd actions. This module contains a configurable number of threads
for executing actions (action execution threads in Figure 2). For an action execution
thread (AE thread), all messages sent to or received from other ASs and CPs are
exchanged asynchronously (the details are hidden by the Interface module, see below).
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This means that the AE threads only may have to wait when accessing shared data
structures. Thus, experimental tests have shown that having more AE threads than
cores allows each AS to take advantage of several cores.

Most action requests from agents are executed from start to end by the AE thread,
that extracts the requests from the corresponding input queue and process them. These
requests consist of collision tests, in order to check if the new position computed by
each agent when it moves coincides with the position of other agent or object. The
Interface module hides all the details of the message exchanges. This module provides
the Crowd AS Control module with the abstraction of asynchronous messages. Two
separate input queues exist, one for messages coming from local CPs (action requests)
and the other one for messages coming from adjacent ASs (responses to requests issued
because of local border actions or requests for remote border actions from adjacent
ASs). Having two separate input queues is an efficient way of giving a higher priority
to messages from adjacent ASs. The reason for improving the priority of these messages
is that the border actions are the ones whose processing takes longer, and we should
reduce as much as possible their response time to provide realistic interactive effects.

2.1 Mutex-based implementation of the AS

Messages are processed as soon as they arrive in the mutex-based implementation of
the AS. For that reason, the Interface module in the CASC contains one IO thread
dedicated to getting incoming messages from each TCP socket. There are no input
threads associated with sockets connecting one AS to their adjacent CPs, because CPs
only send messages to their local AS. In the same way, there is one IO thread and one
output queue per TCP socket, so that messages are sent as soon as the corresponding
TCP socket is ready for writing. All IO queues are implemented using the queue data
structure provided by C++ standard template library. Each queue is protected using
one Mutex per queue. In this way, each Mutex synchronizes the concurrent accesses of
IO threads and AE threads.

The Mutex-based implementation of the AS also uses a grid-based data structure to
perform the collision check procedure within the CASC module, this data structure is
denoted as collision grid. Figure 3 illustrates the implementation details of the Mutex-
based collision grid. The top part of the figure shows the geometric space partitioned
using a grid with 16 grid cells. Four agents, represented as numbered circles, are
allocated within the grid at given positions. The bottom part of Figure 3 shows that
the collision grid is implemented as a linear array. Each element of this array contains
a mutex and a pointer to a dynamic data structure, implemented as a linked list, that
contains the agents positions. The mutex avoids the corruption of the dynamic data
structure when reader and writer threads concurrently access it during the collision
check. Each thread performs the collision check for an agent. In order to achieve this
goal, the thread computes the mapping of the agent’s position into the collision grid
by means of the hashing method. The mutex located at the position returned by the
hashing method is locked, and the dynamic data structure is queried in case of a read
access, or updated in case of a write access. This implementation uses an array of
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mutexes instead of a single mutex for the collision grid, in order to provides a certain
level of concurrency among threads.

Figure 3: Diagram of the CPU collision checking using Mutex.

2.2 RCU-based implementation of the Action Server

RCU is a synchronization mechanism that was added to the Linux kernel during the
development of version 2.5. Recently, it has been released for user-space access [3].
However, the benefits provided by RCU have not been checked in real and complex
problems with large data structures. The idea behind RCU is to split data structures
updates into removal and reclamation phases. The removal phase removes references to
data items within a data structure (possibly by replacing them with references to new
versions of these data items), and it can concurrently run with reader threads (readers).
These concurrent executions are safe, because the semantics of modern CPUs guarantee
that readers will see either the old or the new version of the data structure, rather than a
partially updated reference. The reclamation phase performs the work of claiming (e.g.,
freeing) the data items removed from the data structure during the removal phase. Since
claiming data items can disrupt any reader that is concurrently referencing these data
items, the reclamation phase must not start until readers no longer hold references to
these data items. Splitting the update into removal and reclamation phases permits the
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updater thread to perform the removal phase immediately, and defer the reclamation
phase until all active readers during the removal phase have finished their task (in
order to do so, the updater thread can either block himself or register a callback that
is invoked after the completion of the readers). Only the readers that are active during
the removal phase need to be considered, because any reader starting after the removal
phase will be unable to gain a reference to the removed data items.

Different reclamation schemes can be used to implement RCU. We have imple-
mented a RCU version using the Quiescent State Based Reclamation (QSBR) scheme,
because it provides concurrent reads with the lowest overhead [6]. However, the appli-
cation should be modified in order to explicitly manage reclamations [3]. QSBR uses
the concept of a grace period. A grace period is a time interval [a,b] such that, after
time b, all nodes removed before time a may safely be reclaimed. QSBR uses quiescent
states to detect grace periods. A quiescent state for thread T is a state in which T
holds no references to shared nodes. Hence, a grace period for QSBR is any interval
of time during which all threads pass through at least one quiescent state. Figure 4 il-
lustrates the relationship between quiescent states and grace periods in QSBR. Thread
T1 goes through quiescent states at times t1 and t5 , T2 at times t2 and t4 , and T3
at time t3 . Hence, a grace period is any time interval containing either [t1, t3] or [t3,
t5] .

Figure 4: Illustration of QSBR. Black boxes represent quiescent states.

Figure 5 shows an example of the management of a linked-list in a multithreaded
environment by using RCU API calls [11]. The figure shows the changes suffered by
a linked list containing three elements (A, B and C) while an updater thread deletes
element B. This element is deleted using the RCU API call list del rcu(). This function
removes a list element, but it allows some concurrent readers to continue seeing the
removed element. Looking at Figure 5, it can be seen that after execute list del rcu(),
the element B has been removed from the list. Since readers do not synchronize directly
with updaters, readers might be concurrently scanning this list. These concurrent
readers might or might not see the element that has been recently removed, depending
on timing. However, readers that were delayed (e.g., due to interrupts) just after
fetching a pointer to the recently removed element might see the old version of the list
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Figure 5: Deletion of one element in a RCU linked-list.

for quite some time after the removal. Therefore, during the grace period there are
two versions of the list, one with element B and one without it. For that reason, the
freeing of element B is postponed. Readers are not allowed to maintain references to
element B after exiting from their RCU read-side critical sections. Therefore, when
all readers have exited their critical sections, then no more readers can be referencing
element B, as indicated by the grey filling color and dashed frame of element B in the
Updater column in Figure 5. When no more readers hold references to element B, then
the synchronize rcu() function is completed. At this point, the list is back to a single
version and element B may safely be freed.

The CPU implementation based on mutex described in Figures 2 and 3, has been
adapted in order to support lock-free data structures along with the RCU synchroniza-
tion method. In this sense, the IO queues in the interface module have been imple-
mented as FIFO lockless linked lists. In the same way, the linear array representing the
collision grid is modified, removing the mutex from each element of the collision grid.
As a consequence, lock-free linked lists containing the agents positions are obtained.
Read and update accesses to all lockless linked lists are performed by threads through
a user-space RCU API [3]. The QSBR version of RCU implemented by this API allows
the definition of quiescent states in order to safely update the linked lists contained in
the interface module and in the collision grid.

3 Performance Evaluation

This section shows the performance evaluation of the implementations described in the
previous section. We have performed different measurements on different real systems
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using these implementations. Like other distributed systems, the most important per-
formance measurements in DVE systems are latency and throughput [4]. Since we
are focusing on the system scalability, we have performed simulations with different
number of agents and we have measured the response time provided to the agents. In
this way, we can study the maximum number of agents that the system can support
while providing a response time below a given threshold value. In order to define an
acceptable behavior for the system, we have considered 250 ms. as the threshold value,
since it is considered as the limit for providing realistic effects to users in DVEs [7].

We have performed crowd simulations with wandering agents, because all their
actions (movement requests) should be verified by an AS. Each simulation consists of
the crowd moving within the virtual world following k-length random paths. For all
the populations tested, the average response time has become stable within the first
minute of execution time. Therefore, we have used one minute simulations for all the
configurations tested.

The computer platform used in the experiments has been a cluster of computers,
where one machine hosts the Action Server and up to 16 machines host 16 clients
processes (i.e. one client per machine). The machine hosting the server is a 16 core
machine integrating 8 AMD Opteron processors (2 cores @ 1 GHz per processor), with
32.5 GB of RAM and the operating system was Linux 2.6.18-92. We have used the
POSIX API in order to obtain different configurations with an increasing number of
cores. This API allows to set the affinity of the execution threads, limiting the cores
set in which the threads are executed. Four configurations containing 2, 4, 8 and 16
cores were used in order to check the scalability with the number of cores of the parallel
implementations. The machines hosting the clients are based on AMD Opteron (2 x
1.56 Ghz processors) with 3.84GB of RAM, executing Linux 2.6.9-1 operating system.
The interconnection network in the cluster was a Gigabit Ethernet network.

Figure 6 shows the response times provided by the implementation based on Mutex
(Mutex implementation) . On the X-axis, this figure shows the number of thousands
of agents in the system when the Action Server uses 16 cores. The Y-axis shows
both the average and the maximum response times provided to the agents during
the simulation. Each point in this figure has been computed as the average value of
thirty different simulations. The label ”AVG RT” corresponds to the plot showing
the average response time, while the label ”MAX RT.” corresponds to the maximum
response time provided to an agent. Figure 6 shows that the average maximum number
of agents supported by the Mutex-based implementation is 7500 (for a simulation with
7500 agents the average response time does no exceed the maximum allowable time of
250 ms.). Regarding the maximum response time, the number of agents supported is
around 7000. On the other hand, Figure 7 shows that the average maximum number of
agents supported by the RCU-based implementation is 24000. Regarding the maximum
response time, the number of agents supported is around 23500. Comparing Figures 6
and 7, it can be clearly seen the significantly higher number of agents supported by the
RCU-based implementation when using 16 cores. In addition, it can be see the steeper
slope of the plots for the Mutex-based implementation within the range of 7500 agents
up to 9000 agents. The reason for this behavior is the higher overhead introduced by the

@CMMSE                                 Page 1188 of 1703                                 ISBN: 978-84-614-6167-7



Increasing the parallelism of Crowd Simulations on Multi-core Processors

Mutex synchronization method with respect to the RCU method. Although they are
not shown here due to space limitations, we obtained similar results fro configurations
with lower number of cores.

Figure 6: Server response time for the Mu-
tex implementation using 16 cores

Figure 7: Server response time for the RCU
implementation using 16 cores

Figure 8 shows the maximum throughput (the maximum number of agents sup-
ported by the simulation system while not exceeding an average server response time
of 250 ms.) provided by the considered implementations when the number of available
cores is increased. It can be seen that the number of supported agents does not signifi-
cantly increases for the Mutex-based implementation with the number of cores, ranging
from 4000 agents when using 2 cores to 7500 agents when using 16 cores. The reason
for that behavior is the bottleneck that the sequential access to the data structures
locked by a Mutex represents for a parallel application. Since the RCU allows read
accesses in parallel with write accesses to these data structures, it significantly reduces
these bottlenecks, providing a plot with a significantly higher slope than the Mutex-
based implementation. Thus, the number of supported agents ranges from 4000 when
using 2 cores to 24000 when using 16 cores. These results show the benefits that the
RCU method can provide to parallel applications with respect to traditional locking
synchronization methods like Mutex.

4 Conclusions

In this paper, we have proposed an implementation of a distributed action server for
crowd simulation based on the RCU synchronization method. We have compared the
proposed implementation with a parallel implementation based on Mutex, a traditional
locking synchronization method for solving race conditions among threads in parallel
applications. The performance evaluation results show that the use of RCU signifi-
cantly increases the system throughput with respect to the implementation based on
Mutex, supporting a higher number of agents while providing the same latency lev-
els. The reason for that behavior is the bottleneck that the sequential access to the
data structures locked by a Mutex represents for a parallel application. Since the RCU
method allows read accesses in parallel with write accesses to these data structures, it
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Figure 8: Throughput of the Mutex and RCU implementations of the AS.

significantly reduces these bottlenecks. Also, these results represent the first evaluation
of the RCU method in a real and complex parallel application with large data struc-
tures, since the RCU method has only been evaluated using small benchmarks until
now.
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Abstract

We consider the nonlinear inverse problem of reconstructing the heat conductivity of
a cooling fin, modeled by a 2-dimensional steady-state equation with Robin boundary
conditions. The Metropolis Hastings Markov Chain Monte Carlo algorithm is studied
and implemented, as well as the notion of priors. By analyzing the results using certain
trial conductivities, we formulate several distinct priors to aid in obtaining the solution.
These priors are associated with different identifiable parts of the reconstruction, such
as areas with vanishing, constant, or varying slopes. Although more research is required
for some non-constant conductivities, we believe that using several priors simultaneously
could help in solving the problem. Key words: Inverse Problems, Heat Diffusion, Monte

Carlo, Prior.

1 Introduction

In this problem, we attempt to reconstruct the conductivity K in a steady state heat equa-
tion of the cooling fin on a CPU. The heat is dissipated both by conduction along the fin
and by convection with the air, which gives rise to our equation (with H for convection, K
for conductivity, δ for thickness and u for temperature):

uxx + uyy =
2H

Kδ
u (1)

The CPU is connected to the cooling fin along the bottom half of the left edge of the fin.
We use the Robin Boundary Conditions (detailed in [1]):

Kunormal = Hu (2)
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Our data in this problem is the set of boundary points of the solution to (1), which we
compute using a standard finite difference scheme for an n×m mesh (here 10×10 or 20×20).
We denote the correct value of K by Kcorrect and the data by d. In order to reconstruct
Kcorrect, we will take a guess K ′, solve the forward problem using K ′ and compare those
boundary points to d by implementing the Metropolis-Hastings Markov Chain Monte Carlo
algorithm (or MHMCMC). Priors will need to be established to aid in the reconstruction,
as comparing the boundary points alone is insufficient.

2 MHMCMC

Markov Chains produce a probability distribution of possible solutions (in this case conduc-
tivities) that are most likely given the observed data (the probablility of reaching the next
step in the chain is entirely determined by the current step). The algorithm is as follows
([2]). Given Kn, Kn+1 can be found using the following:

1. Generate a candidate state K ′ from Kn with some distribution g(K ′|Kn). We can
pick any g(K ′|Kn) so long as it satisfies

(a) g(K ′|Kn) = 0⇒ g(Kn|K ′) = 0

(b) g(K ′|Kn) is the transition matrix of Markov Chain on the state space containing
Kn,K

′.

2. With probability

α(K ′|Kn) ≡ min
{

1,
P r(K ′|d)g(Kn|K ′)
Pr(Kn|d)g(K ′|Kn)

}
(3)

set Kn+1 = K ′, otherwise set Kn+1 = Kn (ie. accept or reject K ′). Proceed to the
next iteration.

Using the probability distributions of our example, (3) becomes

α(K ′|Kn) ≡ min
{

1, e
−1

2σ2

∑n,m
i,j=1

[
(dij−d′ij)

2−(dij−dnij )
2
]}

(4)

(where d′ and dn denote the set of measured boundary points using K ′ and Kn respectively,
and σ = 0.1)
To simplify (4), collect the constants and seperate the terms relating to K ′ and Kn:

−1

2σ2

n,m∑
i,j=1

[(
dij − d′ij

)2 − (dij − dnij)2] (5)
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=
−1

2

n,m∑
i,j=1

[(
dij − d′ij

σ

)2

−
(
dij − dnij

σ

)2
]

(6)

=
−1

2

[
D′ −Dn

]
= fn − f ′ (7)

Now, (4) reads

α(K ′|Kn) ≡ min
{

1, efn−f
′
}

(8)

We now examine the means by which we generate a guess K ′. If the problem consists
of reconstructing a constant conductivity, we can implement a uniform change, for every
iteration we take a random number ω between −0.005 and 0.005 and add it to every entry
in Kn to obtain K ′ (we initialize K0 to a matrix of 1s). The algorithm is highly efficient,
and the reconstructed value will consistently converge to that of the solution to within ω.
In order to approximate a nonconstant Kcorrect, the obvious choice is a pointwise change,
at each iteration we add ω to a random entry of Kn, thus genrating K ′. Unfortunately,
systematic errors occur at the boundary points of our reconstruction (they tend to rarely
change from their initial position).
In order to sidestep this, we use a gridwise change; change a square of the mesh (chosen
at random as well) by adding ω to the four corners of said square. While this fixes the
boundary problem, another major issue which arises from a non-uniform change is that the
reconstruction will be marred with “spikes”, which we must iron out.

3 The Smoothness Prior

To aid in ironing out the wrinkles in the reconstruction we use “priors”. Priors generally
require some knowledge of the quantity we wish to find, and will add a term to (8). Naturally,
the more unassuming the prior, the more applicable the algorithm. This applicability will
be tested as often as possible throughout these tests. The first prior compares the sum of
the differences between adjacent points of Kcorrect to those of K ′ (keping the spikes in
check), and is given by

T ′ =

n∑
j=1

m∑
i=2

(
K ′(i, j)−K ′(i− 1, j)

)2
+

m∑
i=1

n∑
j=2

(
K ′(i, j)−K ′(i, j − 1)

)2
(9)

Tn =

n∑
j=1

m∑
i=2

(Kn(i, j)−Kn(i− 1, j))2 +

m∑
i=1

n∑
j=2

(Kn(i, j)−Kn(i, j − 1))2 (10)

and modifying (8), we obtain
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αc(K
′|Kn) ≡ min

{
1, efn−f

′−λ(T ′−Tn)
}

(11)

So the guess is most likely if Kn and K ′ are similarily smooth (ie, T ′ ≈ Tn), if an iteration
gives a K ′ that is noticeably less smooth than the last accepted iteration, we are less likely
to accept it.
As an initial test for the smoothness prior developed above, we attempt the gridwise change
on a constant conductivity (Kcorrect = 1.68, using λ = 100). While we can still see
the problem at the boundary points, they are limited to being a noticeable nuisance as
oppposed to adamantly ruining an otherwise accurate reconstruction (whose mean comes
to within ≈ 5ω of 1.68). The next step is therefore to test the algorithm on a non-constant
conductivity.

3.1 Results of the Smoothness Prior on the Tilted Plane and Gaussian
Well

As a simple nonconstant trial, we look at a tilted plane with constant slope, given by

Kcorrect(i, j) =
i+ j

20
+ 1; (12)

Once again, we take K0 to be a matrix of all 1s and λ = 100. The boundary points again
have trouble increasing from 1 to the desired values, and in so doing lower the mean value
of the reconstruction; though we still consistentily get to within about 5ω of the solution
(in 100000 iterations).

Figure 1: The 10 × 10 tilted plane we wish to reconstruct, and a reconstruction using the
smoothness prior.

We now attempt to reconstruct a more complicated conductivity: a Gaussian well.
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The Gaussian well is the first real challenge that the algorithm will face, and will be the
main focus of the rest of the paper as it contains different regions which require different
priors. It is given by the following equation

Kcorrect(i, j) =

m∑
i=1

n∑
j=1

(
2

1 + 50e−
[(x(i)−2)2+(y(j)−2)2]

0.2

)
(13)

This conductivity represents a much more significant challenge, with both flat regions, and
regions with steep slopes. After several trials, the optimal λs were found to be between 1
and 10, though obataining a specific value for which the reconstruction is best is impossible
due to the high innaccuracy of the algorithm when faced with this well. There is an evident

Figure 2: The 10× 10 Gaussian well we wish to reconstruct, and a reconstruction using the
smoothness prior.

need, at this point, for much more precision. We turn once again to priors, this time
developing one that will look at the slopes of the reconstruction.

4 The Slope Prior

One of the main concerns in implementing a new prior is the generality mentioned earlier.
In theory, one could use a prior that only accepts Gaussian wells of the form we have here,
but that code would not be very versatile. We therefore try to keep our slope prior as
general as possible. In keeping with this, we look at the ratios of adjacent slopes, both in
the x and y directions, as follows:

S′x(i, j) = K ′(i+ 1, j)−K ′(i, j) (14)

S′y(i, j) = K ′(i, j + 1)−K ′(i, j) (15)
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and define

P ′x =

n∑
j=1

m−3∑
i=1

∣∣∣∣ S′x(i, j) + ε0
S′x(i+ 1, j) + ε0

− S′x(i+ 1, j) + ε0
S′x(i+ 2, j) + ε0

∣∣∣∣ (16)

P ′y =

n−3∑
j=1

m∑
i=1

∣∣∣∣ S′y(i, j) + ε0

S′y(i, j + 1) + ε0
−
S′y(i, j + 1) + ε0

S′y(i, j + 2) + ε0

∣∣∣∣ (17)

(where ε0 is 0.00005)
The generality of these prior terms comes from the fact that they go to 0 so long as the
conductivity doesn’t change its mind. It is equally “happy” with a constant slope as it is
with slopes that, say, double, at each grid point. It should be noted that the formulas above
break down for regions where we have very small slopes adjacent to large ones, where one
ratio goes to 0 while the other grows very large. Nevertheless, we now set

αs(K
′|Kn) ≡ min

{
1, efn−f

′−µ(P ′x+P ′y)
}

(18)

With this new prior, we define

α = max {αc, αs} (19)

and use that in the acceptance step of the MHMCMC algorithm.

4.1 Results of the Smoothness and Slope Priors

Again, as a first test of the algorithm, we test it on the tilted plane. The reconstructions
reach the same precision in 100000 iterations as we had with only the smoothness prior, so
we have not yet implemented anything that is too problem-specific to the Gaussian well.

The initial result of the test on the well is arguably substantially better, but still rather
imprecise. In an attempt to see more clearly, we make the mesh finer (20×20). In addition,
we set K0 to be a matrix of all 2s. The results of the combined slope and smoothness priors
are below.

As we can see, a substantial improvement has been made over the attempt in section (3.1).
We now consistently obtain somewhat of a bowl shape. In comparing the solution we wish
to achieve and the reconstruction we have, one notices that the major problem areas are the
outer regions, where the conductivity is nearly constant. As previously stated, equations
(16) and (17) break down when the slopes are vanishing, so it is reasonable to assume that
with this alone, the reconstruction will not improve as substantially as we need it to. As
before, we implement another prior to aid us.
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Figure 3: Results on the 10×10 and 20×20 Gaussian wells with parameters: λ = 5, µ = 10
and λ = 10, µ = 7.5, respectively.

5 Smoothness, Flatness, and Slope Priors

To help reconstruct the outermost regions of the well, we need a prior that will go to 0
for regions that have vanishing slope. The most obvious choice is therefore to use what we
computed for the smoothness prior

T ′ =
n∑
j=1

m∑
i=2

(
K ′(i, j)−K ′(i− 1, j)

)2
+

m∑
i=1

n∑
j=2

(
K ′(i, j)−K ′(i, j − 1)

)2
(20)

and set

αf (K ′|Kn) ≡ min
{

1, efn−f
′−W (T ′)

}
(21)

using

α = max {αc, αs, αf} (22)

in the MHMCMC algorithm. Again, the worry that adding a new prior would undermine
the generality of the algorithm can be eased by noting that we are simply accounting for a
problematic case not treated by the slope prior, though we still test this prior on the tilted
plane.

5.1 Results of the Combined Priors

The 20× 20 tilted plane is given by

Kcorrect(i, j) =
i+ j

40
+ 1 (23)
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Running the MHMCMC algorithm with all three priors yields fairly accurate reconstruc-
tions, that miss the solution by ≈ 6ω. One should again note the presence of the familiar
(though no less troublesome) boundary points.

Figure 4: The 20× 20 tilted plane, and a reconstruction using all three priors.

We now try once again to reconstruct the Gaussian well. The results of the added prior are
apparent, and regions with vanishing slope are treated much more accurately than before.
Perhaps the most successful reconstruction thus far is the following (though many more
possible combinations of λ, µ and W must be explored).

Figure 5: Results on the 20× 20 Gaussian well using all three priors, at 10 and 40 million
interations.

An obvious flaw in these reconstructions happens to be the width of the well, the algorithm
is still capable of reconstructing the center of the well, and its depth, but it is often much
narrower than in the actual solution. It would seem the algorithm has trouble starting to
drop off from the vanishing slope region into the varying one. This exposes an inherent
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problem with the patchwork we have taken thus far: getting the seams to match up nicely.

6 Conclusion

As we have seen, reconstructions of the heat conductivity greatly benefit from added priors.
There is certainly much work left to be done, and a very careful analysis of the seams
at which the various priors trade off is in order. However, we believe that in testing the
algorithm against other complex nonconstant conductivities, which is the next step we plan
to take, it is possible to complete the aforementioned analysis of the seams and reconstruct
complex quantities via this patchwork method.
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By methods of celestial mechanics we have developed and refined the 

previously constructed a mathematical model of non-uniformity of the axial 

rotation of the Earth taking into account the secondary terms in the expansion of 

the luni-solar gravitational tidal torque and amended to the effect of perturbations 

from zonal tides. 

The results of numerical simulation and the expansion of the rotational 

motion of the Earth's on components in accordance with the constructed model 

are given. The basic features of the model and examples of the construction of 

forecasts compared with observations and measurements of the International 

Earth Rotation Service (IERS) have been obtained. 

 

Recently, high-precision measurements of tidal oscillations of the axial 

rotation of the deformable Earth. It is known [1-7] that in the tidal variations of 

the Earth rotation are observed the main components of tides (annual, semi-

annual, monthly, fortnightly) and many different combination of harmonics of 

short-period tides. To study the variations in the rate of axial rotation of the Earth 
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it is introduced change (variation) of duration of the day - (lenght of the day 

changes) - )(td  [1, 6] 

0)()( DtDtd −= ;   0
0

)(
)( D

tr
rtD ⋅= . 

 

 

Here )(tr  is the  velocity of axial rotation of the Earth; 

5
0 10292115.7 −×=r rad/s; 0D  is the duration of standard day (in the scientific 

literature is taken as the value of the standard unit of time of day, consisting of 

86400 seconds for the atomic time scale TAI); D(t) – duration of the day, 

meaning the duration in seconds TAI, corresponding to the rotation of the Earth 

on 360 , or to increasing time of 24 hours in UT1. 

The value of  r(t) can be derived from the published values of the l.o.d.(t) 

and has the form 

[ ] 00).(..1)( rDtdoltr +≅ .  

 

We use the classical dynamical equations of the Euler-Liouville problem 

with variable inertia tensor [5-7], which are represented in a certain form 

 

.
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<<==

=+===×+

δδδ

δ

 

 

(1) 

 

Here ω  is the angular velocity vector in the linked-Earth coordinate system 

(reference system) whose axes approximately coincide with the principal central 

axes of inertia *J  of ''frozen'' figure of the Earth, taking into account ''the 

equatorial bulge'' [5, 6].  
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Chosen coordinate system )( 321 xxxx =α  rotates together with the Earth, 

and the axis 3x  indicates the direction closest to the direction of the instantaneous 

axis of proper rotation of the Earth, and the axis 1x  determines the position of 

longitude so that the longitude of the Greenwich meridian was approximately 

equal to zero. This coordinate system is derived from a non-rotating geocentric 

reference system by a spatial rotation, which takes into account the motion of the 

Earth's axis in space, and at its own rotation (the coordinate system qualitatively 

and quantitatively consistent with the ITRF). It is believed that small variations in 

the inertia tensor Jδ  may contain various harmonic components caused by the 

gravitational perturbing influence of the regular diurnal tides from the Sun and the 

Moon, and possibly others (annual, semi-annual, monthly, fortnightly, etc.). 

Additional perturbing terms are obtained by differentiating the angular 

momentum of a deformable Earth. They attributed to the vector KM  very 

complex structure, which is included additively in M . Vectors LS ,M are the 

gravitational tidal disturbing moments from the Sun and Moon, respectively [6]. 

For example, the expression of components S
rM  have the following structure: 

 

( )[ ] ( ){ }rpprrpqrqppqqp
S
r JJJAABBM γγδγγδγγδγγδδω −+−++−+= 22**2

03 , (2) 

 

where 0ω  is a frequency of orbital motion; pγ , qγ , rγ  are direction cosines of 

the radius-vector of the Sun in connected reference frame; *A , *B , *C  are 

effective principal moments of inertia  taking into account the deformation of the 

''frozen'' Earth. They can be calculated with reasonable accuracy. Coefficients 

Aδ , Bδ , pqJδ , qrJδ , prJδ  due to diurnal and semidiurnal tidal gravitational 

influence of the Moon and Sun. They are not amenable to direct measurement. 

For them, can be obtained indirect estimates based on measurements of the 
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characteristics of the process.  

             In order to improve the accuracy of interpolation and prediction of Earth's 

rotation irregularity at short time intervals seems appropriate to take into account 

the expansion of the lunisolar gravitational tidal time following the third harmonic 

in the expression θθ sincos : 

 

( )
.1;

3

4
4.0

;3coscos,sincos
1

00

<<≤≤

++=
− db

db

π

ννψθθθ 
 

(3) 

 

Here θ  is an angle of nutation, ψ  is an angle of precession, ν  is a thrue 

anomaly of orbit.  

An analysis of observations and measurements IERS amplitudes of these 

terms of higher degree of smallness and components due to perturbations of zonal 

tides, are of the same order. Thus, to refine the basic model of the Earth's rotation 

irregularity is also necessary to consider amendments to the tidal perturbations 

with small amplitudes. For this, a rezidium )(td∆  is a oscillating change of the 

length of day ).(.. tdol , caused by the tidal perturbations of the inertia tensor of 

the deformable Earth. 

          Averaging over the fast variable ϕ  (ϕ  is an angle of own rotation of the 

Earth) of expressions of the components of moumentums LS
rM ,  [5 - 7] let us to 

determine coefficients  LS
r
,

1χ , LS
r
,

2χ  by corresponding terms in (2), which have 

form 
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They are periodic functions of main frequencies jϑ  of luni-solar tidal influences, 

as well as other tidal factors. For example 
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Coefficients LS
r
,

1χ , LS
r
,

2χ  contain constant components (with coefficients LS
ib ,
0 ), 

appropriate base model, as well as variables that caused by other tidal factors. The 

coefficients LS
ijb , , LS

ij
,β  in expressions of LS

r
,

1χ , LS
r
,

2χ  of type (5) to be 

determined on the basis of observational data. In the above expression  an 

argument τ  means the time measured in years. 

By integrating the third equation of system (1) for the component of the 

axial rotation of the Earth r(t), we get (taking into account the changing of the 

tidal coefficients) the structure of variations of length of day: 
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Here 11 =ν , 22 =ν , 28.133 =ν , 68.264 =ν , 35 =ν , 406 =ν  are 

frequencies, caused by lunar-solar perturbations; jϑ  are frequencies of the lunar-

solar tidal influences and other factors that determine variations of variations of 

the inertia tensor (assuming that the set of frequencies jϑ  can be empirically 

adjusted during the numerical simulation); iα  are the phases of the oscillations; 

unknown ija  are values to be calculated using the method of least squares from 

measurements of IERS. These factors are uniquely related to the unknown 

coefficients contained in the expression of gravitational tidal torque (2) taking 

into account the representations of the type (5). 

           We present graphical results of the expansion of the rotational motion of 

the Earth on the components ( )τ1d , ( )τ2d , ( )τd∆  in accordance with the 

constructed model. Fig. 1 shows the interpolation of the basic model ( )τ1d  

(reviewed in [5 - 7]) in 2008 compared with observations and measurements IERS 

(Here and in the graphs τ  is a time measured in days, contrasting line - 

theoretical curve, the usual line - observation data). The discrepancy between the 

basic model and observational data can be represented as two terms, due to the 

presence of unaccounted frequencies in the expansion of the gravitational tidal 

moment - ( )τ2d  and disturbances of the zonal tidal potential of the Earth - 

( )τd∆ , described by models (8), (9), respectively. Interpolation of these 

processes are shown in Figures 1 and 2 in comparison with carrying out the 

splitting observations IERS. Standard deviations of the main 9-parametric and 

extended models respectively:  

 

.107.0;106.1 44
1

−− ×=×= σσ   
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Fig. 1. An interpolation of variations of length of day in 2008, made with the 

basic model )(1 τd  compared with observational data, ICRE (upper graph) and 

interpolation of component )(2 τd  in comparison with the oscillations )(2 τd , 

extracted from observational data IERS (bottom graph). 
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Fig. 2 Interpolation of rezidiuma ( )τd∆  (smooth line) in comparison with the 

oscillations of residuum ( )τd∆ , extracted from observational data IERS (zigzag 

line). 

 

 

Fig. 3. Forecast of variations of the length of day for the year 2009, executed by 

the basic model )(1 τd  compared with observational data, IERS (upper graph) and 

the forecast component )(2 τd  in comparison with the oscillations )(2 τd , 

extracted from observational data IERS (lower graph).  
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Fig. 4 Forecast of rezidium ( )τd∆  (smooth line) for the year 2009 in comparison 

with the oscillations of rezidium ( )τd∆ , extracted from observational data IERS 

(zigzag line). 

Forecast for 2009, made as a result of interpolation, the model constructed 

in the previous time intervals is presented in Fig. 3, 4. It corresponds qualitatively 

to the observational data and can be used for the analysis of geophysical processes 

of global character. 

          Analysis of the results of numerical simulation that forecasts constituents 

( )τ2d , ( )τd1∆ , ( )τd2∆ , clarifying the basic model ( )τ1d , are different 

depending on the length of the projected interval reliability and accuracy 

characteristics. Therefore, to improve the forecast accuracy is required to assess 

the need to incorporate those or other terms of the model (depending on the length 

of the interval prediction) and to choose their optimal interpolation ranges. In 

particular, the reliability of forecasts of high-frequency components  of the 

components ( )τ1d  and  ( )τ2d  unlike from ( )τd1∆  and ( )τd2∆  decreases 

markedly with an increase in the projected range and affect the results. In the case 

@CMMSE                                 Page 1225 of 1703                                 ISBN: 978-84-614-6167-7



AXIAL ROTATION OF THE EARTH 
 

of short-prediction standard deviations in Fig. 1-4 projections of uneven rotation 

of the earth according to the basic 9-parametric model ( )τ1d  and developed 

extended ( )τ... dol  model 15-day interval are, respectively: 

 

4 4
1 2.9 10 ; 2.8 10 .σ σ− −= × = ×   

 

Based on the above calculations we can conclude about the feasibility of 

using the extended model (6) in predicting short-and medium-sized intervals of 

time - within a few months. 

This work was supported by the Russian Foundation for Basic Research 

(10-02-00595). 
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Abstract 

Linear or non-linear ordinary differential equations reproduce 

the behaviour of many physical events in science and 

engineering. The object of this work is to present an alternative 

solution to these equations based on the network method. The 

electrical model of the equations is composed of a principal 

network, which implements a balance between the addends of 

the differential equations, and auxiliary networks to implement 

the derivative terms. Non-lineal terms of the differential 

equations are implemented by a controlled source, a kind of 

device whose operation is quite intuitive. To illustrate the 

reliability and power of the method applications are shown. 

 

Key words: Non-linear differential equation, electrical analogy, 

network method 

 

1. Introduction 

The study of the analogy between different processes governed by the same 

mathematical model (a set of differential equations) is an important goal since it 

relates phenomena mathematically equivalent. The use of electrical analogy to 

describe physical processes – even though it has been used in many areas of 

Science [1,2], especially in heat conduction [3] – remains under-exploited from 

the point of view of obtaining solutions to non-lineal problems, particularly. 
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Instead, its use has been relegated to that of an academic subject: description of 

the physical process in terms of electrical circuits, this is, as an alternative way of 

describing a problem [4]. In such exercises, once the electrical model is designed, 

it is forgotten and the solution is reached using classical analytical or numerical 

methods.  
 

The electric analogy proposed, based on the network simulation method [5], has 

been demonstrated to be an efficient numerical method that provides reliable 

solutions for many kinds of problems in fields such as magnetohydrodynamic 

flow [6], Burger equation modelling [7], transport through membranes [8], heat 

transfer [9] and fluid flow and solute transport [10] among others. One of the 

main advantages of using this method is that, if the models are correctly designed, 

their simulation in suitable software provides (almost) the exact solution of the 

problem due to the powerful mathematics algorithms implemented in the circuit 

simulation codes.  
 

In this work, we study the solution of lineal and non-lineal ordinary differential 

equations, such as those of harmonic and anharmonic oscillators and harmonic 

oscillators with damping. No restrictions are assumed as regards the order and 

degree of the equation as well or the kind of non-linearity involved. 
 

The proposed analogy is based on the following [5]. On the one hand, the addends 

of the differential equation are considered as currents (branches in the main 

circuit) that enter (or leave) the only node of this main circuit, according to their 

sign; the unknown variable of the equation is the voltage at that node. The first 

derivative term (dy/dt), one of the branches of the main circuit, is simply the 

current flowing through a capacitor according to the constitutive equation 

ic=C(dVc/dt). The successive derivatives are obtained by auxiliary circuits 

formed by a capacitor whose capacitance is the coefficients of the term and a 

special kind of device, named controlled source, contained in the libraries of the 

software. Once obtained, these derivative terms are transported to the main circuit 

and, again, implemented by controlled current-sources that balance other terms in 

the common node according to their sign. The terms of the differential equation 

that depend on the unknown variable and/or its powers (integer or fractional), 

which must be balanced at the node of the main circuit, are also implemented by 

controlled current sources. Finally, the independent term (or constant) is 

implemented by a constant current source.  

 

The model is completed by fixing the initial voltages at the capacitors which are 

defined by the initial conditions. Once the model is designed no mathematical 

manipulation is needed; the code Pspice [11] does this work with its powerful 

computational algorithms.  
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To show the proposed procedure, a detailed explanation of the design of network 

models is made and illustrative problems are presented. 

2. Mathematical and network models 

The differential equations to be solved contain derivative terms of any order 

and any degree, as well as terms which are arbitrary functions of the dependent 

variables and an independent term. Both derivative terms and terms which 

function of the dependent variable can be the power of real numbers. The only 

restriction is that the equations must contain one dependent and one 

independent variable. So, the terms that form the equations are proportional to 

the following expressions: 

y´,  y´´, y´´´ … , (y´)
q
, (y´´)

q
, (y´´)

q
…, y

q
 and ao 

where y´=dy/dt, y´´ = d
2
y/dt

2
…, q is a real number and ao a constant. 

Examples of differential equations that can be solved by the method are: 

y´´ - c1(y´)
2
 - c2 y = 0 

y´´´ + c1(y´´)
2
 - c2y

1/2
 - ao = 0 

y´ + c1 sin
2
(y) – c2y + ao = 0 

(y´´´)
1/3

 + c1(y´´)
2
 - c2 y = 0 

with c1 and c2 constants. Initial conditions must be added to complete the 

mathematical model. 

2.1  Auxiliary circuits 

Before describing the design of the network main loop for a given problem, let 

us first look at the design of the auxiliary networks that implement the 

derivative terms of any order and any degree. Pspice, or any bother code for 

circuit simulation, contains a group of ideal controlled sources capable of 

assuming any kind of non-linearity; these, suitably connected with capacitors, 

provide the auxiliary circuits that implement any derivative term.  

 

Four differrent sources can be used, Figure 1: E is a voltage source whose 

output is defined (by programming) as an arbitrary function of the voltage at 

any node (or voltages of any nodes) of the network, while H is a voltage 

source whose output is proportional to the current of a time-independent 

voltage source. The other two current-sources, G and F, have similar 

meanings.  

 

Now, if we call Vj the voltage at node j, the auxiliary network of Figure 2 (a) 

formed by a capacitor (of capacitance Ca=a1) and a voltage-controlled voltage-

source (whose output voltage is vE1 = Vj, the same as the input voltage) is able to 
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provide the value a1(dVj/dt) since the current through Ca is defined as iCa = 

Ca(dVj/dt) = a1(dVj/dt). A new auxiliary loop, formed by the current-controlled 

voltage-source H1 and the resistor R1 (of resistance a1), provides the first 

derivative of Vj. 

 
E       G           H                      F 

Figure 1  Controlled sources: E: voltage-controlled voltage-source,  

G: voltage-controlled current-source H: current-controlled voltage-source, and  

F: current-controlled current-source 

The output of H1 is a voltage whose value is the input current iVzero,1, i.e. the 

current of the ammeter Vzero,1 which, in turn, is the current of the capacitor Ca; 

consequently, the voltage through R1 is (1/a1)a1(dVj/dt)=dVj/dt, the first derivative 

function of Vj. Resistor R,1 is included to satisfy the continuity criteria required 

by Pspice. Also, the use of Vzero as ammeter is prescribed by the requirements of 

Pspice: the input current of the controlled sources of type H must be specified as a 

current coming from a constant voltage source. 

      

 

           

Figure 2  Auxiliary networks to implement the first derivative (a),  

the second derivative (b) and the third derivative (c) 
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In the same way, the second derivative of Vj, a2(d
2
Vj/dt

2
), is provided by the 

auxiliary network of Figure 2 (b). The output of the current-controlled voltage-

source Hb, vHb = i(Vzero,1) = a1(dVj/dt), defines the current through the capacitor 

Cb (of capacitance a2/a1) as iCb = Cb(a1d
2
Vj/dt

2
) = a2(d

2
Vj/dt

2
). In addition, H2 and 

R2 (of resistance a2/a1) provide the second derivative of Vj (the voltage through 

the resistor R2. The following derivative terms are implemented in the same way; 

Figure 2 (c) shows the network of the third derivative term. Quantities between 

brackets always denote the control variables that determine the input of the 

sources. 

2.2  Main circuit loop 

The main network is now formed by as many branches in parallel as terms of 

the differential equations. Each branch, in turn, drives a current (whose value 

is that of the term) that comes in or out of the common node, according to the 

sign of the term in the equation. The term related to the first derivative term, if 

it exists, is implemented by a capacitor, while the rest of the derivative terms 

are implemented by voltage-controlled current-sources that read from their 

respective auxiliary circuits.  

 

When the derivative term has a degree different from unity (a real number), it 

is possible to define by programming the control function that provides the 

output current of the source. The rest of the terms of the differential equation 

are also implemented by voltage-controlled current-sources defined, also, by 

programming their output currents.  

 

Any kind of non-linearity, such as arbitrary dependencies on the dependent 

variable is defined by software. Finally, the independent term is simply 

implemented by a constant source. A resistor of very high value that does not 

influence the solution is also located in parallel in the main circuit to satisfy 

the continuity requirements imposed by Pspice.  

 

Whatever be the initial conditions, they are implemented in the model by 

giving initial voltages at the capacitors. The solution y(t) is read at the only 

node of the main circuit (as a consequence of the balance between the currents 

of the branches, Kirchhoff´s law) when the differential equation contains the 

term dy/dt, or in a node of the auxiliary circuit when the term does not exist – 

this will become clearer in the applications. As an example, Figure 3 shows 

the network model of the non-lineal equation  

y´´ + 0.1y´ + 20sin(y) = 0 

under the initial condition 
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t=0, y=3, y´= 5 

The main network contains three branches according to the three terms. The 

voltage at the common node (node ‘A’) is the solution y(t) of the equation. The 

first branch, with a capacitor of capacitance C1 =0.1, drives the current C1(dy/dt) 

= 0.1y´. This current, read as iVzero,a in the ammeter Vzero,a, controls the current-

controlled voltage-source H1 whose output is a voltage of value 0.1y´; this leads 

that the current in the capacitor C2 (of capacitance C2 = 10) to have the value 

Cb(d(0.1y´)/dt) = y´´. This current converts itself in a voltage of the same value at 

the node C of the auxiliary circuit formed by H2 and the resistor R1 of value unity.  

 

Now, we are ready to design the main loop, one of the branches of which (formed 

by C1 and Vzero,a) has already been defined. The second branch, the voltage-

controlled current-source G1 controlled by VC = V(R1), drives the current iG1 = y´´, 

while the third branch, a voltage-controlled current-source controlled by VA = y, 

drives the current yG2 = 10sin(y). The initial condition is implemented by an 

initial voltage of 3 V at C1 and 5 V at C2.  

 

Figure 3  Network model of the differential equation y´ + 0.1y´´ + 20sin(y) = 0. 

a): main loop, b): auxiliary circuits 

It is important to mention that this is not the only way to design the network 

model of the above equation. For example, we may implement the branch of the 

term y´´ by a current-controlled current-source that directly reads the iVzero,b and 

provides an output current of this value; this substitution deletes the auxiliary 

circuit formed by H2 and R1. However we have preferred to implement the 

currents of the branches of the main loop –  the first derivative – by the same kind 

of device (a current source device, type G).   
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Using the programming rules of Pspice, the text file of the model – written to help 

readers – is the following (A is the node 10, B the node 20 and C the node 30):  

 

C1 10 10a 0.1 IC=3 

Vnulaa 0 10a 0 

G1 10 0 VALUE = {V(30,0)} 

G2 10 0 VALUE = {20*sin(V(10,0))} 

Rinf2 10 0 1E10 

H1 0 20 Vnulaa 1 

Rinf1 20 0 1E10 

C2 20 20a 1 IC=5 

Vnulab 0 20a 0 

H2 0 30 Vnulab 1 

R1 30 0 1 

.TRAN 0 2.5 UIC  

.PROBE 

.END 

 

This text file requires very few programming rules. The last sentences, .TRAN 

0 2.5 UIC and .PROBE, are used to specify the simulated time window [0-

2.5s] – UIC means ‘using initial conditions’ – and the start up of Pspice graph 

ambient once the simulation has finished. Figures 4, provided by Pspice, 

shows the functions y(t), y´(t) and y´´(t). The units of the vertical axis, volts 

(V) or Amperes (A), must be converted into those related with the physical 

significances of the related functions. 

 

Figure 4  Numerical solution in Pspice output.  y(t)=V(10); y´(t)=V(20a); y´´(t)=V(30a) 
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3. Applications 

3.1. The skydiver equation  

This equation applies to a person who jumps from an airplane to enjoy the 

sensation of free fall before opening a parachute. The net force acting on the 

person is his weight plus the drag force caused by the friction of air which is 

proportional to the square of the velocity. Assuming that y increases downwards, 

the momentum equation can be written in the form 

d
2
y/dt

2
 = g – ao(dy/dt)

2
 

with g the gravitational acceleration and ao a constant that depends on the mass of 

the person, on the density of the air, on the front cross-sectional area and on the 

drag coefficient (ao=0.003). The simulation in Pspice, with the initial conditions 

t=0, y=y´=0, provides the solution for the location, velocity and acceleration of 

the skydiver; Figure 5 shows these unknowns in the output graph ambient of 

Pspice . The transient period lasts 20 s approximately and the final steady velocity 

is 57.15 m/s. Computing time in a PC is of the order of 0.1 s. 

 

Figure 5  Numerical solution of the skydiver equation. Location: V(node A) or V(20); 

Velocity: V(node C) or V(30); Acceleration: V(node E) or V(40) 

3.2. The anharmonic oscillator (pendulum equation) 

The nonlinear differential equation  

d
2
y/dt

2
 = – ao sin y   

is that of a pendulum called anharmonic oscillator. This equation does not have an 

analytical solution that can be expressed by a finite number of terms. Note that the 

main loop only contains two branches corresponding to the two terms of the 
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differential equations. Figure 6 (a) shows the solution y(t) for the initial condition 

t=0, y=0, y´=1 with ao = 10
3
. The anharmonic effect is better appreciated 

comparing the Fast Fourier Transform of y(t) and a pure harmonic sine function 

of the same frequency; this comparison, which is also provided by Pspice, is 

shown in Figure 6 (b). In this detailed figure, the bandwidth of y(t) is appreciably 

larger than that of the sine function. 

a) 

b) 

Figure 6  Numerical solution of the anharmonic oscillator. a) y(t): V(10) and pure 

harmonic function: V(50); b) FFT comparison of y(t) with a pure harmonic function 

3.3. The damped oscillator  

The equation  

d
2
y/dt

2
 = –  y –  (dy/dt)   

where  and  are constants applied to a damped oscillator which moves not large 

enough with relatively small velocities to prevent turbulence in the surrounding 
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fluid. This is an oscillator in which the force producing the oscillation obeys 

Hooke’s law and in which the oscillating body experiences fluid friction 

proportional to the first power of the speed. The solution y(t) for  = 4 and 400 

and =0.5, and initial conditions t=0, y=y´=1, is depicted in Figure 7 (a) and (b), 

respectively. 

a) 

b) 

Figure 7  Numerical solution of the damping oscillator.  

a): =400, =0.5; b): =4, =0.5   

4. Conclusions 

The applications proposed in this work demonstrate that the method based on the 

electrical analogy and the code Pspice to numerically solve ordinary differential 

equations is easy to understand for first year students of technical and scientific 

degree courses since it uses simple rules. This analogy allows us to implement the 
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successive linear derivative terms of the ordinary equations by means of auxiliary 

networks simply formed by capacitors and controlled sources; the latter 

implements the successive derivatives as well as the non-linear terms of the 

equation. With the proposed method, the user does not need to know the 

numerical algorithms required to solve the equations or any other mathematical 

manipulation since this work is made by the code Pspice; in addition, the design 

of the circuit, whatever the order and degree of the equations, is relatively 

straightforward thanks to the very few rules required, since the model only 

implements three types of electric devices: capacitors, resistors and controlled 

sources specified by software.  
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Abstract 

This paper presents a design for a neutron activation process 
used for samples of fluorspar concentrate, in which the duration 
of the first cycle is different from the rest, and subsequent 
activation cycles take place once radioactive decay has partially 
reduced the radioactive concentration of the element of interest. 
We have called this type of cycle "asymmetrical." 
This method is compared with the conventional procedure, in 
which the activation and reading cycles are of equal duration, 
and the advantages of the new procedure are examined. 
 
Keywords: neutron activation, cyclic, symmetrical, 
asymmetrical 
 

1 Introduction 

Nuclear activation analysis is considered as a method for qualitative 
determination of elements based on the measurement of characteristic radiation 
from radionuclides formed directly or indirectly by neutron irradiation of the 
material [1]. A normal activation measurement is subdivided into two phases: 
(1) the irradiation of a suitable sample, (2) the counting of the induced activity. 
In order to carry out a neutron activation analysis, one must have a sample, a 
neutron source, a gamma ray detector, and a deep understanding of the 
reactions that take place when the material is exposed to neutrons. 

The different neutron activation methods are classified according to when the 
gamma rays are detected:  
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 Prompt Gamma-Ray Neutron Activation Analysis (PGNAA), in which 
the measurement is taken during radiation, or  

 Delayed Gamma-Ray Neutron Activation Analysis (DGNAA), in 
which the measurements are taken based on the radioactive element's 
decay emissions.  

In general, DGNAA is used in the majority of applications [2-6]. In this case, 
during the sample's activation phase an element was exposed to neutrons for a 
period of time t, which produced a new element. If this product is radioactive, 
its concentration increases over time according to the exponential function 
                . This function is shown in Figure 1a. In the equation 
  

      

    
, where      is the half-life of the product of the reaction, and k is a 

parameter that depends on several factors, among them the concentration in the 
sample of the element that produced the radioactive reaction, the type and 
intensity of the neutron source, the cross-section of the reaction of interest, or 
the spatial arrangement of the components. When τ reaches a large enough 
value, e-λτ 0, the concentration of the radioactive product stabilizes, in a state 
called "saturation". 

 
Figure 1. Radioactive activation and decay in one activation cycle. (Note that the y-axis expresses 
    

 
 and 

    

 
). 

Later on, after the total activation time τ, the sample is removed from the 
neutron source either right away, or else after a short delay due to the time 
needed to transfer the sample. The spectrum of the gamma rays emitted during 
the decay of the nuclear reaction are recorded over a period of time called 
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"counting time." The spectrum indicates the intensity of the gamma ray 
radiation recorded at any given moment. The spectrum is analyzed based on 
two factors: on the one had the magnitude of the energy emitted indicates the 
nature of the radioactive product, and on the other, the intensity of the radiation 
for a given energy reading (expressed in counts per second “cps”) indicates the 
concentration of the radioactive element that was produced. The concentration 
of the radioactive product decays with time, expressed by the equation 
                            (Figure 1b). 

The detector records cumulative gamma ray spectra over a given period of 
time. For any given energy interval, this cumulative reading is equal to the 
value of the integral of the above function during this period. (Area A of Figure 
1). 

This research team has experimentally demonstrated the viability of using a 
single-cycle neutron activation method for analyzing the fluorite content in a 
sample of fluorspar concentrate [7-8]. When the sample is irradiated with 
neutrons from an isotopic Americium-Beryllium neutron source, hundreds of 
nuclear reactions are produced. The spectrum of the gamma rays emitted by the 
radiation's products is recorded throughout the counting time with a NaI(Tl) 
detector. The most important reaction in this study is 19F(n,α)N16.  16N is a 
radioactive element which is only brought into existence by nuclear reactions, 
and whose most important characteristics are: 

 a half-life,     , of 7.13 s [9],  
 the emission of high-energy gamma rays of around 7,000keV, which do 

not interfere with the energy emitted by other radioactive elements 
produced in the sample during neutron bombardment, [10], 

 a highly effective cross-section or probability of occurrence in the 
energy range of the isotopic source used (between 3 and 10MeV),  

The team demonstrated that the fluorine (F) present in the sample came only 
from fluorite, and that all the 16N that was produced came solely from the 
above reaction, which means that there is a direct relationship between the 
fluorite grade in the mineral concentrate and the 16N found by the detector 
during the decay phase at an energy interval of around 7,000 keV. The name of 
this reading is    

         , which refers to the area recorded by the detector in 
the energy interval corresponding to 16N, during an activation and counting 
process equal to T, with just one activation. It was found that for a given total 
experiment time T, the maximum value of    

         occurs when the 
activation and counting times are equal to    .  

While a very high correlation coefficient was found between a fluorspar 
sample's fluorite content and the area of    

         , the amount of 16N 
produced during irradiation in an activation cycle is scant, which means that 
the number of counts recorded by the detector is low in this energy interval. In 
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hopes of improving the results' resolution, we are trying to increase the 
intensity of the counts recorded by the detector, by using the neutron source 
itself.  
Because of this, we decided to try increasing the area's value by using the 
cyclic activation technique. The principle of the cyclic process has been 
described by various authors [11-12]. In this method, the sample is first 
irradiated for a short period of time, and then, after a short delay from the end 
of irradiation, the radiation emitted by the sample is counted, after which the 
sample is irradiated again and the entire process is repeated for a number of 
cycles n [13]. 

 
Figure 2.  Symmetrical cyclic activation. 

In this case, if in the first activation 70% of the concentration of 16N at 
saturation is reached (Figure 2), then the amount of 16N present at the outset of 
the second activation cycle will be around 2%, as shown in Figure 2. This 
moment marks the beginning of a new activation phase, in which new 16N from 
the second activation begins to form. At the end of the second activation, the 
amount of the 16N left over from the first activation is around 6% of saturation, 
such that the second decay begins with a concentration of around 76% of 
saturation. The amount of 16N from the second activation is essentially the 
same as the amount present at the end of the first activation, and the third and 
subsequent cycles are likewise similar to the second. This type of cycle has 
been referred to as "symmetrical cyclic activation." 
For each total process duration T, the following parameters specific to the 
cyclic activation were defined: activation time and counting time for each 
phase in a cycle, along with the number of cycles n. In addition, optimum 
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values were chosen in order to maximize the detector response. Here the 
detector response is referred to as   

        
   . 

Based on this work, the optimum number of cycles, nop, was determined for 
various experimental times, in order to maximize the detector response for 
radiation from 16N [14]. Furthermore, it was concluded that the activation and 
counting times in each cycle should be equal, and should have a value of 

     
 

   
. 

 

Figure 3.  Relationship between experiment time T, number of cycles n with respect to       

         
, 

following M. A. Rey-Ronco [14]. 

The results of these trials are shown in Figure 3. The optimum number of 
cycles for an experimental time of T=200s is eight, and the duration of each 
phase is       

 

   
 

   

   
      . 
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The maximum area for this situation is given by substituting T=200 in the 
following equation, which corresponds to the line in Figure 3: 

      
         

                 [ 1 ] 

Which gives us       
         

        . 

2 Analysis of the asymmetrical cyclic process  

The next step is to examine another type of cycle, which we have called 
"asymmetrical," and analyze whether it is better at detecting fluorite than the 
symmetrical cycle. This process consists of a first activation cycle up to the 
concentration of 16N (B1), followed by a decay cycle down to a concentration 
of 16N (B2), which is still significantly higher, and then repeating the activation 
and decay cycles within the limits of B1 and B2, as can be seen in Figure 4. The 
goal is to increase the number of cycles and record higher values for the area 
under the decay curve, while disregarding the tail of the curve. The number of 
cycles, the activation time and the counting time should be optimized in order 
to obtain the maximum area   

            for experiment time T. It can then be 
determined whether there is indeed an improvement over the symmetrical 
cyclic activation   

        
   . 

 
Figure 4. Representation of the activation-decay cycles in the asymmetrical model. The grey 

sections represent the area of   
         

      
        

    
 

 
 for experiment time T=100s. 

Figure 4 shows the variation in the concentration of a radioactive element over 
time during an asymmetrical cyclic activation process, as defined above. 

According to the initial hypotheses: 
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                     [ 2 ] 

             [ 3 ] 

                [ 4 ] 

                  [ 5 ] 

In Figure 4 the parameter B1 represents the maximum concentration of 16N, and 
the area marked   

         
    in grey represents the measurement or detector 

response of gamma rays for the total experiment time T and for n cycles. Based 
on Figure 4, it is clear that: 

         [ 6 ] 

The area of each activation and counting cycle is expressed as: 

Which can be reduced to: 

  
        

      
 

 
                            [ 8 ] 

By making   
         

      
        

    
 

 
  in the above expression, the 

parameters λ and k can be avoided, as they are constant factors that depend on 
each individual sample, or on the decay characteristics of 16N, or on the 
instruments being used, and they have no bearing on the maximization of the 
area: 

  
         

                                 [ 9 ] 

2.1 Maximization of the area function   
         

    

In order to optimize the asymmetrical cyclic activation process, one must 
determine the number of cycles, n, and the times ta, tx, and tl for a given 
experiment time T which will maximize the function    

         
   . 

2.1.1 Finding a relationship between variables 

By substituting expressions [2], [4] y [5] for the terms in Equation [6], we get: 

                                                             [ 10 ] 

From which we can deduce that:  

  
                                 

  

 

       

  

 
[ 7 ] 
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[ 11 ] 

And, 

   
        

                  

             
 

 
 

[ 12 ] 

Substituting the values from Equation [11] in Expression [9] and simplifying 
results in the following expression: 

  
         

      
                     

               
 [ 13 ] 

Furthermore, it holds that: 

               [ 14 ] 

Whereby, if we substitute [12] in [13], we are left with: 

            
        

                  

             
 

 
 

[ 15 ] 

2.1.2 Procedure using an algorithm 

An algorithm created using Matlab was used to determine, for a given 
experiment time T and a number of cycles n, the value of    

         
   , and 

the parameters          , corresponding to the number of cycles that would 
maximize    

         
   . Figure 5 shows the flow chart for this algorithm. 

Below is an example of the results of this algorithm for the total experiment 
time T=200s and n=7 (Table 1). 

Table 1. Example of the results of the algorithm 

T [s] n   
         

    

200 7 4.159974 

It was found that for smaller n values,   
         

     is lower. This effect was 
observed for all experiment times. As n increases,   

         
    increases until 

reaching an asymptote for n  ∞. 
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Figure 5. Flow chart. 

Subsequently, the results for    
                for T=200 were adjusted to the 

following curve: 

  
                           [ 16 ] 

where k1 and k2 are the adjustment coefficients. k1 is the value of the 
asymptote, and represents the maximum value that could be obtained with 
asymmetrical cyclic activation. 
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Figure 6.  curves for the experiment times 50 to 600s.  

The results of the above example are as follows (with 95% confidence bounds): 
k1= 4.646 (4.623, 4.669) 

k2= 0.3225 (0.3152, 0.3298) 
Goodness of fit: 

SSE: 0.01992 
R_square:0.999 

Adjusted R-square: 0.9989 
RMSE: 0.03326 

This curve is shown in Figure 6, alongside the curves for the experiment times 
50 to 600s.  

3 Comparison of the symmetrical and asymmetrical cycle 

processes  

This section compares the maximum decay area of the symmetrical activation 
method,        

         
   with that of the asymmetrical method,       

         
   , as 

well as the two methods' activation parameters.  Figure 6 shows the number of 
cycles needed for the asymmetrical cycle to surpass the symmetrical cycle, a 
cross-over point that we have called     . This value was calculated with the 
equation: 

     
 

  
   n    

               

  
  [ 17 ] 
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These values are shown in Table 2. This means that, for example, for 
experiment time T=300, the maximum area that could be obtained by the 
asymmetrical method is 6.98, compared to 5.9479 for the symmetrical method, 
which constitutes at 17.4% improvement. Nine cycles are needed for the 
asymmetrical method to surpass the symmetrical method, with tl=16.71, 
ta=16.43 and tx=1. 

Table 2. Results 

T [s] 
Symmetrical cycle Asymmetrical cycle  % 

improvement        
         

    τ n       
         

    tl ta tx      
50 0.9729 12.5 2 1.075 12.47 11.3 2.558 2 10.5 
100 1.9679 12.5 4 2.28 16.72 16.04 1.82 3 15.9 
150 2.9629 12.5 6 3.468 14.93 14.66 2.149 5 17.0 
200 3.9579 12.5 8 4.646 16.61 16.43 1.859 6 17.4 
250 4.9529 12.5 10 5.816 15.65 15.36 2.017 8 17.4 
300 5.9479 12.5 12 6.98 16.71 16.43 1.838 9 17.4 
350 6.9429 12.5 14 8.353 16.02 15.63 1.948 11 20.3 
400 7.9379 13.33 15 9.69 15.5 15.12 2.039 13 22.1 
450 8.9329 13.24 17 11.1 16.04 15.97 1.96 14 24.3 
500 9.9279 13.16 19 12.61 16.61 16.6 1.866 15 27.0 
550 10.9229 13.1 21 14.24 16.12 16.12 1.949 17 30.4 
600 11.9179 13.04 23 16.01 15.16 14.74 2.098 20 34.3 

Figure 7 shows the variation of       
         

   and        
         

    with experiment 
time. It can be seen how the improvement increases alongside experiment time. 
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Figure 7. Comparison between        

         
   and       

         
    for different T. 

4 Results and discussion 

This paper discusses a new step forward in neutron activation processes for 
determining fluorite grade in samples of fluorspar concentrate. 
This new procedure can be used to more precisely determine fluorite grades, 
though a neutron activation process with a 1Ci Americium-Beryllium source, 
which has been shown to be inadequate for single-cycle activation processes. 

Better results can be obtained through the use of cyclic activation. For total 
experiment times of up to 200s, both symmetrical cyclic activation and the 
method proposed in this paper provide similar results, though the latter is a 
slight improvement over the former. However, for longer experiment times, for 
example around 600s, the asymmetrical method constitutes almost a 35% 
improvement over the conventional method. The asymmetrical process's 
improvement with respect to the symmetrical process tends to increase 
alongside the total experiment time. 

Any system that is set up for symmetrical cyclic activation can easily 
accommodate the asymmetrical method by simply modifying the software used 
for transferring the samples. 
Unlike the symmetrical method, the asymmetrical method's activation and 
counting times are not equal, although the difference between them is never 
greater than one second.  
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The total duration of an activation-counting cycle is considerably higher in the 
asymmetrical process than in the symmetrical process. 

The number of cycles      in the asymmetrical process is less than or equal to 
that of the symmetrical process. 

Time tx (the extra activation time in the first cycle of the asymmetrical process) 
is around two seconds, regardless of the experiment time. 
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Abstract 

The stable difference scheme of multidimensional fractional 
Schrödinger differential equation is presented. Stability 
estimates for the difference scheme of the fractional Schrödinger 
equation is obtained. A procedure of modified Gauss elimination 
method is used for solving this difference scheme in the case of 
one dimensional fractional Schrödinger differential equation 
with dependent coefficients and Neumann condition. 
 
Key words: difference scheme, fractional Schrödinger 

differential equation 
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1. Introduction 

It is known that various problems in quantum mechanics and other areas of 
physics lead to partial fractional differential equations. Methods of solutions of 
problems for fractional differential equations have been studied by many 
researchers (see [1]-[5], [11] and [15]). This type of equations can be solved by 
classical methods. However these classical methods can be used only in the case 
when the differential equation has constant coefficients. It is well known that the 
most useful method for solving partial differential equations with dependent 
coefficients in t  and in space variables is finite difference method. 
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The role played by stability inequalities in the study of Schrödinger equation is 
well-known (see [6]-[8] and [13]). In the present paper, the mixed boundary value 
problem for the multidimensional fractional Schrödinger equation 
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+= DDt  is the standard Riemann-Lioville’s derivative of order ½ and n
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denotes the unit normal vector to the boundary Ω∂ . Ω  is the unit open cube in m-
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given smooth functions and  .0)( >≥ axar  

The difference scheme of the problem is presented. The stability estimates for the 
solution of this difference scheme is established. A procedure of modified Gauss 
elimination method is used for solving this difference scheme in the case of one-
dimensional fractional Schrödinger differential equation with Neumann condition 
and dependent coefficient in space variable.   
   

2. The Difference Scheme and Stability Estimates  

The discretization of problem (1)  is carried out in two steps. In the first step, let 
us define the grid sets 

Ωh = x = x r = h1r1 , . . . ,hm rm , r = r1 , . . . , rm ,
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0 ≤ rj ≤ 2 j, hj2 j = 1, j = 1, . . . ,m, ,
 

 

Ωh = Ωh ∩ Ω, Sh = Ωh ∩ S.
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respectively. To the differential operator A  generated by problem (1), we assign 
the difference operator x

hA  by the formula 
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for all  .hSx∈  Here, n

hD  is the approximation of the operator 
n
r
∂
∂
. It is known 

that x

hA  is a self-adjoint positive definite operator in ).(2 hL Ω  With the help of  

,x

hA  we arrive at the initial value problem 
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In the second step, we replace problem (3) by the following first order of accuracy 
difference scheme. 
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 Theorem 2.1.  Let  τ   and  h   be sufficiently small numbers. Then, the solution 

of difference scheme (4) satisfy the following estimate:  
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Here 1M  does not depend on τ , h  and .1, 2kf h

k ≤≤   

The proof of Theorem 2.1 is based on the self-adjointness, positive definiteness 
and symmetry properties of the operator xA  defined by formula (2) and the 
following theorem on coercivity inequality for the solution of the elliptic problem 
in .2hL   

 Theorem 2.2.  For the solutions of the elliptic difference problem 
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the following coercivity inequality holds (see [20]): 
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3. �umerical Results 

For the numerical result, the mixed problem 
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for one-dimensional Schrödinger differential equation is considered. Applying 
difference scheme (4), we obtain the following difference scheme  
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A Un+1 + B Un + C Un−1 = Dϕn , 1 ≤ n ≤ M − 1,

U1 − U0 = 0, UM − UM−1 = 0,
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for .12,12 +≤≤+≤≤ 2j2i  

,)sin(
3

4
2)cos( 2

2
222 ππ

π
ππϕ kn

k
knkkn

k

n tx
t

txtitx +









+++=  

for .11,1 −≤≤≤≤ Mn2k  

To solve this difference equation we have applied a procedure of modified Gauss 
elimination method. Hence, we seek a solution of the matrix equation in the 
following form  

,)(,0,1,2,,1, 1
111 MMMnnnn IUMnUU βαβα −
+++ −=⋅⋅⋅−=+=             (7) 

 where  )1,,1( −⋅⋅⋅= Mjjα   are  )1()1( +×+ 22   square matrices and  

)1,,1( −⋅⋅⋅= Mjjβ   are  1)1( ×+2   column matrices which are defined by the 

following formulas 

( ) ,1
1 ACB nn

−
+ +−= αα                                          (8) 

( ) ( ) .1,,3,2,1,
1

1 −⋅⋅⋅=−+= −
+ MnCDCB nnnn βϕαβ                  (9) 

 Now, we need to find  1α   and  1β  . We can find them from  1110 βα += UU   in 

the following form  

α1 =

1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0

0 0 0 . . . 0 1
2+1×2+1

, β1 =

0

0

. . .

0

0
2+1×1

.   #   

 

 Thus, using formulas (7), (8) and (9) we can compute  ,nU    .11 −≤≤ Mn   

In order to get the solution of (7) we use  MATLAB programs. The numerical 

solutions are recorded for different values of  M2 ,   and  k

nu   represents the 

numerical solution of the difference scheme at  ).,( nk xt   For their comparison, the 

errors are computed by 
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E = max
1≤k≤2

1≤n≤M

ut k,x n − un
k .

 

Table 1 and Table 2 give the error analysis between the exact solution and the 
solution derived by difference scheme for different values of 2 and M. 

Table 1: Comparison of the errors of the first order of accuracy difference scheme 
with Neumann condition for  ,15== M2    30== M2   and  60== M2  .  

 

Method  15== M2  30== M2  60== M2  

2

ME  0.1203 0.0596  0.0297  

 

Table 2: Comparison of the errors of the first order of accuracy difference scheme 
with Neumann condition for ,80,10 == M2  80,20 == M2   and 

80,40 == M2 . 

Method  10=2  

80=M  

20=2  

80=M  

40=2  

80=M  

2

ME  0.1036  0.0457  0.0240  

 

Now, the exact solution for problem (5) and the numerical solution obtained by 
using first order of accuracy difference scheme (6) for  80== M2  are shown 

in figures (1) and (2) respectively as an example. 
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Figure 1: Exact solution of problem (5) for N=M=80. 

 
Figure 2: Approximate solution of problem (5) for N=M=80. 
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Abstract 

The double gate MOSFET (Double Gate Metal Oxide 
Semiconductor Field Effect Transistor) devices have recently 
been of great interest; particularly for the investigation of sub- 
50nm field effect transistor [1, 2]. 
The quantum effects are dominant [3]. The analyse of their 
electrical performances versus the technological parameters is so 
important. 
We present in this work, an efficient numerical model of 
DGMOS based on a quantum mechanical description of the 
carriers’ concentration [4, 5]. It focuses on an accurate and self 
consistent treatment of quantum mechanical effects and provides 
a self-consistent solution of the Schrödinger and Poisson 
equations. 
Moreover, physical phenomena such as carrier quantization 
(confinement carrier) or quasi- ballistic transport are considered 
[5], since Double Gate structure will be precisely used to design 
very integrated DGMOS (nanometric channel and ultra thin 
silicon films).   
Time-independent, effective mass Schrödinger equation has 
been self-consistely solved with Poisson equation in fully-
depleted (100) oriented silicon of DGMOS device with 
symmetrical gate and n channel type. 
The computation of the potential and the carrier concentration 
has been conducted using a self numerical program based on a 
finite difference scheme with a uniform mesh. The numerical 
method considered to solve the PDE equation considered is 
Newton- Raphson one. 
In this work, Double Gate architecture considered is presented 
on figure 1 with a channel length between 5 and 25nm. 
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The drain current in dependence on the bias voltages, canal 
length as well as the work function has been carefully 
investigated (figures 2 and 3).  Figure 2 represent IDS (VGS) 
characteristics for different channel lengths. It can be observed 
that when channel length (LG) decrease, drain current (IDS) 
increase; as well as lead to a decrease of the threshold voltage 
dramatically. In order to have an acceptable threshold voltage, 
we study the influence of the gate work function (figure 3) and 
conclude that for a nanometric length of channel, and in order 
to optimise the threshold voltage, the solution is to choose a 
gate metal with a high value of work function. 
 
In order to validate the obtained results, we  compare our model 
with Sentaurus numerical simulation (ISE-TCAD software). We 
have considered a DG MOSFET with the following parameters: 
doping level NA =10

10
cm

-3
; doping source/drain N

+
=10

20
cm

-3
; 

silicon thickness TSi= 1.5 nm, oxide thickness TOX=1.5 nm   ; 
channel length LG = 10 nm; source/drain length LSD= 5 nm 
(figure 4).  
The comparison between the modelled and simulated 
characteristics gives good agreement for VGS down to 0.4 V. 
these devices are operated at VGS lower than 0.4 V (linear 
regime), and  therefore , the model is valid for the regimes of 
practical interest.   
 
 
Key words: DG MOSFET, Self-consistent, Schrödinger 
equation, Poisson equation, quantum effects 
 
 
 
 
 
 
 

 
    

Figure 2: Structure and Mesh of double gate MOS transistor 
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Figure 2: Influence of the channel length on the current drain 
 

 
 

 
 

Figure 3: Influence of the gate work function on the current 
drain for different gate voltages 
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Figure4: Comparison of the output characteristics between 

simulation program and ISE-TCAD 
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Abstract 

State of-the-art density functional theory calculations of large 

systems such as fullerenes containing several hundred atoms 

and mordenite type zeolite clusters models containing more 

than 400 atoms will be presented. The calculations have been 

performed using the linear combination of Gaussian-type 

orbitals density functional theory (LCGTO-DFT) approach as 

implemented in the deMon2k code. For the calculations all-

electron basis sets in combination with local and generalized 

gradient approximations were employed. All fullerenes 

structures were fully optimized without symmetry constrains. 

For the mordenite models, in order to constrain the structure 

of the cluster to that of the solid, the coordinates of the 

terminal hydrogen atoms, positioned along the Si-O bonds 

have been fixed during the optimization procedure whereas 

and all other atomic coordinates have been relaxed.  For both 

cluster models applications, the analysis of the obtained 

structure and of the calculated relevant energy properties will 

presented and discussed. The obtained results are compared 

with available experimental and theoretical data. These studies 

demonstrate the capability of DFT calculations for energy and 

structure computations of large cluster structures.   
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1 Introduction 

 
1.1Fullerenes 
 
Fullerenes are carbon clusters formed by the closing of a graphitic sheet with the 
needed curvature supplied by intersecting, among a given number of graphitic 
hexagons, of twelve pentagons [1,2]. These carbon aggregates have been 
experimentally known for more than twenty years [3] and, consequently, a large 
number of works, experimental as well as theoretical has focused on this subject. 
One main reason for the large interest in the study of fullerenes is certainly to be 
found in their particularly appealing geometrical form. The best known fullerene 
is the so-called buckminsterfullerene that contains sixty carbon atoms (C60) and it 
is composed of twelve pentagonal carbon rings located around the vertices of an 
icosahedron and twenty hexagonal carbon rings at the centers of icosahedral faces 
[3]. Larger fullerenes that have an icosahedral symmetry can be constructed, as 
well. These clusters, known as giant fullerenes, can be thought of as cut-out 
pieces of graphene plane that are folded into final shape (icosahedron). This kind 
of procedure generates twelve pentagonal carbon rings situated around vertices of 
an icosahedron, while all other carbon rings are hexagonal. Giant or large 
fullerenes have been the subject of different theoretical studies in the last years. 
These studies were focused either to understand if the shape of these clusters is 
spherical or faceted, to calculate their response properties or to test new 
algorithms developed for the investigation of large systems. So far, all previous 
first-principle type theoretical studies of large fullerenes have been performed at 
the Hartree-Fock level of theory using symmetry restrictions and relative small 
basis sets or analytic density-functional theory. Recently we presented the first all-
electron density functional theory based study on the large fullerenes C180, C240, 
C320 and C540 [4]. The originality of our work is that the structures of these 
clusters were for the first time in the literature fully optimized without any 
symmetry constrain. This work provides important insights about the structural 
changes, the evolution of the bond length and the binding energy with increasing 
the fullerene size. 
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1.1Mordenites Models 
 
Diffusion, adsorption and reactivity of molecules within micro- or mesoporous 
materials are specifically related with the physico-chemical properties of the 
material structures. The interactions of the host molecules with the material  
surfaces depend on the volume, shape and topology of the cavities, which generate 
particular organisations of these molecules [5]. The inter-relationship between the 
porous materials and the host molecules has been referred to as “confinement” 
and attributed a large role in the selectivity and catalytic activity of zeolite 
materials, in particular, in acid-catalysed reactions [6-8]. Computer modelling 
based on ab-initio techniques have been used in the recent years to provide a 
better understanding of the physico-chemical processes involved in the 
protonation of reactants. They lead to somewhat different conclusions, according 
to the methods applied and the reactions studied. Mordenites are natural and 
synthetic zeolites with Si/Al ratios of 4.3-6.0 in the former case and 5.0 to 12.0 in 
the latter. Synthetic mordenites are used for acidic catalysis. Mordenites catalysts 
are synthesized in the Na-form followed by a mild treatment with NH4Cl which 
leads to H-exchanged forms. The mordenite structure can be described as 
composed of edge-sharing five-membered (5-m) rings of tetrahedra forming 
chains along the c crystallographic axis. Their architectures comprise mono-
directional large accessible 12-m ring channels of TO4 tetrahedra where T stands 
for either Si or Al and small 8-m ring channels, which are interconnected through 
8-m ring tubes. The topological symmetry of mordenites is orthorhombic with 
space group Cmcm having in the unit cell four symmetrically independent 
tetrahedral sites, usually called T1, T2, T3 and T4, being T1 and T2 sites 
connecting four different rings while the T3 and T4 sites constitute the 4-m rings 
of the zeolite framework. A lot of work has been performed over the years to 
solve several problems about the real symmetry of the solid due to the presence of 
Al tetrahedra and extra-framework cations, framework defects, etc... . Having 
different Si/Al ratios, natural and synthetic zeolites have thus different Al 
distribution patterns and slightly different T-O bond lengths. Our strategy, in this 
study, i.e. the determination of the structure and intrinsic properties of the catalyst, 
has been to use clusters containing 120 tetrahedra, sufficiently large to enclose the 
main 12m-rings and the side pocket 8m-rings. These models include thus 2 unit-
cells along a and b whereas the 2xc dimension has been cut at the middle of the 
second 12m-ring channel. In our study the original models have been cut from a 
solid with the adequate Al distribution and terminated with hydrogens. Exhaustive 
studies of nitriles adsorption in mordenite zeolites led to the conclusion that small 
nitriles, such as acetonitrile, are able to penetrate into small cavities and are more  
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strongly interacting with their Br?nsted sites. Results obtained with modern 
computational methods demonstrate that the concept of confinement is now 
widely invoked but not yet clearly quantified, differing with the level of accuracy 
and approximation. Such a complicated study necessitates first to set up an 
accurate and also efficient methodology and answer the fundamental questions: (i) 
is the BrØnsted acid strength different in small and large cavities and what is the 
role of the local site geometry on this property?; (ii)  
how dependent on the cavity size are the stabilization of the guest molecule 
through long range dispersion and electrostatic polarization due to the solid 
framework? Recently, we have focused our attention on these  questions, strting 
with the study of the structure and the intrinsic properties of mordenite (MOR) 
cationic sites, in particular sodium binding energies and acid strengths. For this 
purpose we proposed firstly a new methodological approach [9], based on very 
large model clusters, which can be eventually embedded in a classical 
environment, as an alternative to the periodic representation of a zeolitic solid, 
when the experimental Si/Al ratio is not very large, i.e. when the solid contains an 
Al distribution which can hardly be represented as periodic. More recently we 
performed an ab-initio DFT based study on the interaction of single guest CO and 
CH3CN molecules with hydroxyls located in the main channels and in the side-
pockets [10]. Since zeolite micropores induce substantial van der Waals 
interactions with guest molecules, our results are analyzed with respect to these 
long-range effects and in relation with the most recent experimental conclusions. 
  

1 Computational Details 

 
All calculations were performed using the density functional theory (DFT) 
deMon2k program [11]. The exchange-correlation potential was numerically 
integrated on an adaptive grid [12]. The grid accuracy was set to 10-5 in all 
calculations. The Coulomb energy was calculated by the variational fitting 
procedure proposed by Dunlap, Connolly and Sabin [13,14]. The structure 
optimizations were performed in the local density approximation (LDA) with the 
exchange-correlation functional of Vosko, Wilk and Nusair (VWN) [15]. DFT 
optimized double zeta plus valence polarization (DZVP) all-electron basis sets 
optimized for local functionals [16] were employed. For the structure optimization 
a quasi-Newton method in internal redundant coordinates with analytic energy 
gradients was used [17]. The geometry optimizations were performed using the 
parallel version of the deMon2k code [18]. The convergence was based on the 
Cartesian gradient and displacement vectors with a threshold of 10-4  and 10-3 a.u., 
respectively. The binding energies were calculated with the functional proposed  

@CMMSE                                 Page 1272 of 1703                                 ISBN: 978-84-614-6167-7



                                            LARGE SCALE CALCULATIONS WITH deMONK2K  
 
by Perdew, Burke and Ernzerhof functional (PBEPBE) [19]. For the geometry 
optimization of the studied structures the parallel version of the deMon2k code 
[20,21] was used. The calculations were performed on 8 or 6 Intel Xeon CPUs 
with 2.4 Ghz. These nodes were connected by a Myrinet network. 

1Results and Discussion 

 
1.1Large fullerenes 
 
In Figure 1 the all-electron optimized structures of C180, C240, C320 and C540  are 
depicted.  As it can be seen from this figure our first-principle based calculations 
predict that the optimized structures of the largest fullerenes, C240, C320 and C540 
are faceted. Moreover, even for the smallest carbon cluster here studied, C180, 
there is clear evidence that the faceted shape is preferred over a spherical shape if 
first-principle all-electron optimization without any symmetry restriction is 
performed (see Fig. 1).  
 
 

 
 
 
Figure 1: Optimized structures of the large fullerenes C180, C240, C320 and C540 . 
 
In order to gain more insight into the structural changes of these systems as the 
number of carbon atoms increases we performed a detailed analysis of the bond 
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length evolution which has shown two important facts. First the number of 
different lengths increases and, second, the longest bond shortness with the 
increasing of the number of carbon atoms. With the aim to guide future desirable 
experiments on large fullerenes and to gain more informations about their stability 
we have also explored the behaviour of the binding energy of the studied 
fullerenes with the increase of the cluster size. The results of the obtained binding 
energy show that this property increases monotonically as the number of carbon 
atoms increases meaning that the large fullerenes here studied from C180 to C540 
became more and more stable. 
 
 
 3.2 Mordenite type zeolite models 
 
Figure 2 illustrated the structure of the mordenite models we have investigated.   
The four tetrahedral sites present in this zeolite (T1, T2, T3 and T4) are indicated 
by arrows (see Fig. 2).  
 

 
 
Figure 1: Mordenite model containing 120  tetrahedra. Atom legend: H atoms are 
in white, Si atoms are in gray, O atoms are in red. The four tetrahedral sites 
present in this zeolite (T1, T2, T3 and T4) are indicated by arrows. 
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From the analysis of the obtained results on the study of the mordenite models, the 
following conclusions can be drawn: (i) a good agreement with experimental bond 
length and bond angle data reported for synthetic Na-mordenites has been 
obtained; (ii) the binding energies the binding energies of the Na cation follows 
the same ordering as the populations of Al T sites, as derived from X-Ray 
measurements on synthetic Na-mordenites; (iii) the compensation cation at the T1 
site is found more stable in the side pocket than in the main channel; (iv) the 
calculated proton affinities at T1, T3 and T4 sites are equivalent, indicating that 
these BrØnsted sites have similar acid strengths. In order to evaluate any 
difference in local acidity, the presence of the associated base (CO, CH3CN, NH3, 
etc...) has to be taken into account. Our recent work shows that, at zero coverage 
(1 molecule of CO or CH3CN per site, per cavity), the host - guest energetic 
interactions do not depend on the cavity volumes, leading to similar adsorption 
energies for main channel and side-pocket sites. This unexpected result is in 
agreement with recent experimental studies which show that confinement is more 
related with higher concentration of host molecules in small rather than large 
cavities at high pressure. 
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Abstract 

The aim of the present paper is the analysis of the factors that 
have influence over the lead time of batches of metallic 
components of aerospace engines. The approach used in this 
article employs Cox models, which are a well-recognised 
statistical technique for exploring the relationship between a 
time variable, in this case the lead time, usually called survival 
variable, and several explanatory variables (covariates). A 
model that estimates the lead time of different components has 
been developed using some sample batches, and its validity is 
checked with a different sample of similar components. 
 
Key words: aerospace industry; Cox model; lead time; supply 
chain management; survival analysis. 
 

1. Introduction 

Due to the continuous and rapid changes in the aerospace industry, companies are 
constantly seeking better ways to manage complexity, cut costs, and boost 
productivity. This market is controlled by a small number of prime contractors 
and a large and increasing number of small and medium-sized specialized 

@CMMSE                                 Page 1277 of 1703                                 ISBN: 978-84-614-6167-7



LEAD TIMES OF METALLIC COMPONENTS IN THE AEROSPACE INDUSTRY 
 

companies which work as sub-contractors for one or more of the prime 
contractors. 
 
In recent years some techniques such as lean manufacturing and six sigma [1] 
have become widespread among the companies in the field of aerospace, both in 
Europe and the United States. One of the key points of this strategy is that 
materials and work-in-progress are delivered just before they are needed, and 
finished goods are produced just before being sent to customers. This means a 
high degree of control over the production system; this relies on accurate 
reporting of stock levels, which is handled using computers. It has the advantage 
of reducing the space required to hold stock, and the costs of financing it, but 
increases the costs due to the risk of lack of goods for manufacturing. 
 
In other words when an engine or an aircraft is on the assembly line and for some 
reason there is not enough of one of the components in stock, the assembly line 
must be stopped and not only is that operation of the assembly line affected, but 
also all the operations of the line upstream and downstream, including mechanical 
tests and inspections, implying a cost much higher than the cost of a security 
stock of the component that is missing. 
 
The aim of the present article is the analysis of the manufacturing times required 
for different metallic components of aerospace engines in order to define which 
factors are the most important for batches being delivered on time. The analysis 
has been performed using a Cox model. The purpose of the model is to assess the 
importance of different manufacturing parameters in the total lead time. The 
validation of the model obtained was performed with data belonging to another 
sample of batches. The model obtained is considered as a worthy tool for the 
adjustment and revision of manufacturing schedules. 
 
Although up to now many different parametric models and Artificial Intelligence 
techniques have been applied to the estimation of the price of aerospace 
components or even to the simulation of the behaviour of the supply chain 
management [2], as far as the authors know this is the first time that a survival 
analysis by a Cox model has been applied to the study of the lead times of 
metallic components in the aerospace industry.  
 

2. Problem statement 

For the present study 524 batches of aerospace engine pieces were considered. 
The total manufacturing cost of the batches studied was 5.5 M€. This is the total 
added value without including the raw material. These batches were studied from 
the beginning of their manufacture up to their delivery to the customer. In the 
present research the event time of interest is the lead time. The lead time is the 
period of time between the initiation of any process of production and the 
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completion of that process. In non-continuous manufacturing processes where 
machines do not work 24 hours a day, 7 days a week, and manufacturing queues 
are frequent due to bottlenecks, the lead time is not simply the sum of the times of 
all the manufacturing operations. In this article the lead time will be represented 
by letter t  where it  represents the lead time of the i-th batch. The list of variables 
that from an expert point of view have certain influence over the lead time are 
called covariates. A list of all the covariates with their meanings is included in 
Table 1. 
 

Table 1. Covariates of the study. 
Code Description

BASI Batch size (units)

CNCM CNC machine (time in minutes)

GRMA Grinding machine (time in minutes)

HETR Heat treatments (time in minutes)

HOLA Horizontal lathe (time in minutes)

ISNU Individual serial number (yes / no)

ISTT Inspection tests time (time in minutes)

MAFC Manufacturing's forecasted cost (in €)

MIMA Milling machine (time in minutes)

RMAC Raw material cost (in €)

SUTR Surface treatments (time in minutes)

VELA Vertical lathe (time in minutes)

 
The variables CNCM, GRMA, HOLA, MIMA and VELA represent the amount 
of time in minutes that each piece of the batch spends in the manufacturing 
operations performed by the kind of machine specified (i.e., CNC machine, 
grinding machine, heat treatments oven, etc.). In those batches where a piece 
undergoes more than one operation with the same kind of machine (i.e., lathe, 
grinding machine, etc.) their times are added. When a piece does not require the 
use of any of the machine categories, the value of the correspondent variable is 
zero. The variables HETR and SUTR represent the amount of time that is spent 
on operations of heat and surface treatments. As pieces are not usually treated 
individually, in this case the time considered is the total amount of time that is 
required for processing the batch in either surface or heat treatments divided by 
the number of loads that have been necessary for its process. The variable ISTT 
represents the number of minutes that are necessary for the inspection of each 
piece. If there is not only a final inspection but also intermediate inspections, all 
times are added. While for each manufacturing operation, times are strictly 
controlled by electronic clocks, inspection times are manually controlled by an 
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inspector. The accuracy of this variable is lower than the accuracy of the rest of 
variables of the model but it has been taken into account on the advice of experts 
because in certain circumstances inspection times may affect the lead time of the 
components. There are two variables that represent different kinds of costs: 
MAFC and RMAC. MAFC is the manufacturing's forecasted cost expressed in 
euros. This variable is not always linearly related to the selling price. The raw 
material cost is the price of the raw material necessary for the manufacturing of 
each piece but does not include any of the non-recurrent costs of the product such 
as fixtures or tools. The variable BASI represents the batch size. The variable 
ISNU is a categorical binary variable that indicates if the pieces of the batch must 
be marked with an individual serial number or not. This variable has been 
introduced in the model mainly to distinguish between those pieces that are 
considered critical for safety reasons and are serialized, and those ones that are 
not. 

3. Mathematical models 

3.1. Batch lead time analysis through a Cox survival model 

Survival analysis examines and simulates the time it takes for events to occur [3]. 
In the present article the survival time means the time that a batch took, from the 
beginning of its manufacture to the moment it was finished and ready to be 
dispatched to the customer. There are well known methods for estimating 
unconditional survival distributions. The most interesting survival modelling 
examines the relationship between survival and some predictors, usually termed 
covariates [4] in the survival-analysis literature. The Cox regression model is a 
standard tool in survival analysis for studying the dependence of a hazard rate on 
covariates and time. 
 
A parametric model based on the exponential distribution may be written as [5] 

ikkiii xxxth ⋅++⋅+⋅+= βββα ...)(log 2211  (1) 
)...( 2211)( ikkii xxx

i eth ⋅++⋅+⋅+= βββα  (2) 

That is, as a linear model for the log-hazard or as a multiplicative model for the 
hazard. Here, i  represents a subscript for observation while each one of the ijx  

terms represents the covariates. The constant α  in this model is a kind of baseline 
log-hazard, since 

α=)(log thi  (or αethi =)( ) (3) 

when all the ijx  are equal to zero. 

 
The Cox model leaves the baseline hazard function unspecified: 

)(log)( 0 tht =α  (4) 

ikkiii xxxtth ⋅++⋅+⋅+= βββα ...)()(log 2211  (5) 
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or, again equivalently, 

)...(
0

2211)()( ikkii xxx
i ethth ⋅++⋅+⋅⋅= βββ  (6) 

This model is semi-parametric because while the baseline hazard can take any 
form, the covariates enter in the model linearly. Consequently, the Cox model is a 
proportional-hazards model [6]. Remarkably, even though the baseline hazard is 
unspecified, the Cox model can still be estimated by the method of partial 
likelihood, developed by Cox [7] in the same paper in which he introduced the 
Cox model. Although the resulting estimates are not as efficient as maximum-
likelihood estimates for a correctly specified parametric hazard regression model, 
not having to make arbitrary, and possibly incorrect, assumptions about the form 
of the baseline hazard is a compensating virtue of Cox’s specification. Having fit 
the model, it is possible to extract an estimate of the baseline hazard. 
 

3.2. Schoenfeld residuals for model diagnostics 

In order to determine whether a fitted Cox regression model properly describes 
the data used for its calculus, three kinds of diagnostics can be considered: 
violation of the assumption of proportional hazards, influential data and 
nonlinearity in the relationship between the log-hazard and the covariates. All 
these diagnostics can be performed using residuals [8]. 
 
There are several graphical methods available for assessing how good the fit of a 
proportional hazards model is. As it is well known, in the proportional hazards 
model, the usual concept of residuals is not applicable [9]. In the present article, 
the Schoenfeld residuals will be employed [10]. The Schoenfeld residual is 
defined as the covariate value for the process that failed minus its expected value. 
This residuals method was proposed by Schoenfeld [11] and modified by 
Grambsch and Thernau [12]. The original Schoenfeld residuals are defined for 
each batch and each covariate, and are based on the first derivate of the log-
likelihood function: 


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∂
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A Schoenfeld residual for the j-th covariate of the i-th batch with the observed 
lead time it  is: 
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where b̂  is the maximum partial likelihood estimator of b . The Schoenfeld 
residuals are defined only at uncensored survival times. For censored 

observations, they are set as missing. Since b̂  is the solution of Eq. (7), the sum 
of the Schoenfeld residuals has a mean equal to zero. It can also be shown that 
these residuals are not correlated with one other. 
 
Grambsch and Thernau [12] suggested that Schoenfeld residuals be weighted by 
the inverse of the estimated covariance matrix of )',...,( 1 piii RRR = denoted by 

)(ˆ
iRV . The weighted Schoenfeld residuals are better diagnostics of the power, 

and are used more often than the non-weighted residuals in assessing the 
proportional hazards assumption. To simplify the computations, Grambsch and 
Therneau [12] proposed the following approximation: 

[ ] )ˆ(ˆ)(ˆ 1
bVrRV i ≈

−
 (10) 

where r  is the number of events or the number of observed uncensored 

manufacturing times and )ˆ(ˆ bV  is the estimated covariance matrix of b̂ . With this 
approximation, the weighted Schoenfeld residuals can approximated by: 

ii RbVrR ⋅⋅= )ˆ(ˆ*  (11) 

The graph of deviance and Schoenfeld residuals against manufacturing times are 
used to check the adequacy of the proportional hazards model. Since the 
Schoenfeld residuals are, in principle, independent of time, the presence of certain 
patterns in the graph may indicate departures from the proportional hazards 
assumption. 
 

4. The lead time estimation model 

The lead times of all the batches considered for the present study were all 
comprised between 20 and 200 days with an average value of 81.70 days. A Cox 
proportional hazards model was calculated (model Cox524). It was fitted with the 
covariates detailed in Table 1. The results of the Cox proportional hazards 
regression model are listed in Table 2. The meanings of the columns of Table 2 
are as follows: 

• coef: the coefficient of each parameter for the adjusted Cox model. 
• exp(coef): the value that results from using the coefficient as the exponent 

of number e . It represents risks variation. 
• se(coef): the standard deviation of each coefficient. 
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• z: the ratio of each regression coefficient to its standard error, a Wald 
statistic which is asymptotically standard normal under the hypothesis that 
the corresponding iβ  is zero. 

• p: is the p-value of each covariate. 
• exp(-coef): the value that results from using the coefficient multiplied 

by 1− as the exponent of number e . 
 
The parameter exp(coef) in Table 2 represents the changes in the lead time of the 
batches when there is a change of one unit in the value of the covariate. Thus for 
example, for variable BASI, holding the other covariates constant, an additional 
unit in the batch increases the hazard of delay by 0.02%. This means that although 
a batch with more pieces is more likely to be delayed, the increase in the 
likelihood of this is not significant. 
 
Another example of the interpretation of parameter exp(coef) in Table 2 is that 
keeping constant the other covariates, an additional minute of time in a vertical 
lathe (VELA) reduces the hazard of delay by a factor of 0.9444 on average, that 
is, by 5.56%. Similarly, one minute less increases the hazard of delay by 

0589.1
944.0

1 = . Although this is the exact meaning from a mathematical point of 

view, a more sensible interpretation of the meaning which takes into account the 
framework in which the survival analysis theory is being applied, lead us to 
conclude that as vertical lathes are not machines frequently used for the 
manufacturing of the analysed components, those pieces that need them are more 
likely to be finished on time (less average lead time) because the likelihood of 
finding bottlenecks in this operation during manufacturing is minimum. The 
interpretation that a reduction of one minute in the machining time increases the 
risk of delay does not make sense, as it could lead to the conclusion that a 
reduction of the machining time of a batch not only does not help to improve lead 
times but also increases the likelihood of a batch delay. This statement is not true, 
and the result must be interpreted simply as it has been mentioned above: those 
pieces that need more lathe machining are less likely to suffer from delays. 
 
For the rest of the variables that represent machining times (CNCM, GRMA, 
HETR, HOLA, MIMA, SUTR), the time spent on heat treatments is the one that 
has a greater influence over the likelihood of delay. The other two variables of a 
higher impact over the lead times are the time spent on operations performed by 
grinding machines (GRMA) and the time necessary for the surface treatments of 
the piece (SUTR). 
 
The information obtained from the analysis of the results of variable ISTT 
informs us that the inspection time is a variable with little influence over the delay 
risk. This result seems to be related to a lack of bottlenecks in the inspection area 
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together with a higher flexibility in the shift schedules. As each inspector has a 
basic set of inspection tools, if necessary some of them can change their working 
hours in order to reinforce the personnel available during certain shifts, and even 
work over the weekends. 
 

Table 2. Parameters coef, exp(coef), se(coef), z, p and exp(-coef)  of the Cox524 model. 
Variable coef exp(coef) se(coef) z p exp(-coef) 

BASI 0.0002 1.0002 0.3833 2.3081 0.0088 0.9998 

CNCM 0.0339 1.0345 0.0690 2.4793 0.0109 0.9667 

GRMA 0.0901 1.0943 1.2881 2.7647 0.0148 0.9138 

HETR 0.0113 1.1200 0.0343 2.7975 0.0196 0.9888 

HOLA 0.0316 1.0321 0.0523 2.4027 0.0279 0.9689 

ISNU -0.1458 0.8643 1.0935 2.7475 0.0376 1.1570 

ISTT 0.0023 1.0023 0.6573 2.3115 0.0654 0.9977 

MAFC -0.0536 0.9478 1.1109 1.6107 0.0758 1.0551 

MIMA 0.0522 1.0536 1.0935 2.4867 0.0826 0.9491 

RMAC -0.0092 0.9124 0.8533 1.3579 0.0977 1.009

SUTR 0.0881 1.0921 0.0523 2.5639 0.1074 0.9157 

VELA -0.5721 0.9444 0.0357 1.0996 0.1106 1.7720 

 
Finally, the results obtained for the variables that represent the manufacturing's 
forecasted cost (MAFC) and the raw material cost (RMAC) suggest that the most 
expensive pieces (a higher cost of the raw material and more minutes of 
machining) have a lower likelihood of suffering from delays. This fact seems to 
be linked with the fact that in a factory which does not use finite capacity 
scheduling for the production planning, the planning of the most expensive goods 
is controlled in more detail than the planning of those with low value. 
 
As it was explained before, the column marked z  in the output records the ratio 
of each regression coefficient to its standard error, a Wald statistic which is 
asymptotically standard normal under the hypothesis that the corresponding iβ  is 
zero [13]. In addition, low p-values mean covariates statistically significant. 
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Table 3. Results of the likelihood ratio test, Wald test and score (log rank) test of the Cox524 
model. 

    p-value 

Likelihood ratio test 32.6342 0.00004

Wald test 31.3453 0.00003

Score (log rank) test 32.8787 0.00002
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Fig. 1. (a) Relative importance of the covariates in the Cox model, and (b) deviance residuals from 
the fitted Cox proportional hazards model on the data. 
 
Table 3 shows the results of the likelihood ratio test, Wald test and score (log 
rank) test of the Cox524 model. The likelihood ratio, Wald, and score chi-square 
statistics are asymptotically equivalent tests of the omnibus null hypothesis where 
all the iβ are zero. The p-value for all three overall tests is all significant, 
indicating that the model is significant. Therefore, this model allows one to 
determine the relative importance of the covariates over the lead time. This 
relative importance is shown in Fig. 1 (a). 
 
The Schoenfeld residual will be calculated with a suitable transformation of time 
based on the Kaplan-Meier estimates of the survival function [14]. Fig. 1 (b) 
shows the scaled Schoenfeld residuals against transformed time. As it can be 
observed residuals are distributed symmetrically around zero and do not present 
any pattern. Larger positive values of t are associated in general with larger t 
values, but in general the value of the deviance residuals does not seem to be 
associated with the value of t. Therefore, the deviance residuals suggest that the 
proportional hazards model provides a reasonable fitting to the data. 
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5. Model validation 

In order to validate the built Cox model, another sample of 110 batches from  a 
different factory and from a different period of time but of the same kind of 
components was studied by means of a Cox model. The validation of the model 
Cox524 was carried out in two ways, using methodologies previously applied by 
other researchers [15]:  

• A new Cox model (Cox110) was performed for these batches. The value 
of all the parameters of the covariates was obtained. The importance in the 
classification of the covariates was calculated and compared with the 
classification obtained for the previous Cox model (Cox524). The results 
are presented in Fig. 2. 

• The previous Cox model (Cox524) was applied to the data and the 
differences in the results are shown in Fig. 2. 

 
A comparison of the importance of variables in Fig. 2 shows that in general, for 
different sample sizes, the main variables that have an influence over the lead 
time were the same, most of them having the same position in relative 
importance. 
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Fig. 2. Relative importance of the covariates in Cox model 524 and 110. 

 
Although the results shown in Fig. 3 demonstrate that both models accurately 
represent the real lead times of the sample of 110 batches, the calculation of the 
mean absolute percentage error (MAPE) using the formula: 
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where tA represents the actual value of the parameter and tF  is the forecasted 

value, shows that while the MAPE value for the Cox524 model is 0.1294 the 
same parameter for the Cox110 model is 0.0482. This demonstrates that the 
results of the model specifically trained for the batches of the sample are better. 
These results lead us to the conclusion that the model Cox524 achieves good 
predictive results and can be used in the future with different batches in order to 
predict the time necessary for its manufacturing (see Fig. 3). 
 

 
Fig. 3. Real lead times and forecasted values using Cox110 and Cox 524 for the sample of 110 
batches. 

6. Summary and conclusions 

As a conclusion of this research it can be stated that the analysis using a survival 
Cox model is of great interest in order to determine which parameters have an 
influence over the final lead time of a batch, taking into account its manufacturing 
characteristics and raw material. The use of two samples, from the same kind of 
component and belonging to different factories and different times, allows the 
researchers to affirm that these results are valid and that the covariates and their 
patterns of relationship are maintained through time regardless of the amount and 
type of the rest of batches that are being manufactured at any given moment. 
  
Further researches were performed and the results compared with the planned 
lead times that would presumably have been applied to the batches studied. The 
results obtained were coherent but in order to avoid making this paper longer are 
not exposed here. Finally, it must be remarked that a predictive model has been 
developed. This model can be used as a complementary tool by controllers and 
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production managers in order to either generate production schedules or predict 
the lead time of a certain component. 
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Abstract 

AbFS is a symmetric distributed file system that makes it possible to share 
the inexpensive devices attached to the commodity computers of a cluster. 
The implementation of AbFS metadata management avoids the problems 
posed by hash-based and table-based approaches by combining hashing, 
tables, hierarchical structures and caches. The approach mixes attributes and 
namespace in the same structure. Along with the description of the proposed 
implementation for metadata management, this work provides experimental 
results to evaluate its performance. These results show that the 
implementation proposed offers good performance and scalability. 

 
 
Key words: File system, metadata, storage system, metadata 
management scalability. 
 
 

Introduction 

The availability of interconnected computers, with multicore and multithreaded 
architectures and local storage, to build high performance platforms makes it 
possible to take advantage of this high amount of distributed storage devices 
through distributed file systems, such as PVFS [1], Lustre [2] and Ceph [3]. 
Following this researching line, we have developed AbFS (Abierto File System), 
a distributed file system that allows inexpensive DAS (Direct Attachment 
Storage) of the commodity computers (PCs or servers) of a cluster to be shared by 
all of these computers. This distributed file system offers a single-disk image of 
these DAS resources.  
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There are cluster networks (system area networks) with similar performance to 
the dedicated networks of commercial storage systems (Store Area Networks or 
SANs). Both networks can reach a throughput of several Gbps, such as Fibre 
Channel (http://www.fibrechannel.org/roadmaps) or 10 Gigabit Ethernet, and ten 
of Gbps, such as Infiniband (http://www.infinibandta.org/). Moreover, there are 
network technologies, such as Infiniband, that are used as both system area and 
store area network. Thus, a system, such as AbFS, which aggregates inexpensive 
commodity DAS of a cluster through a system area network, could potentially 
provide a cost-effective high-performance storage service compared to SAN file 
systems (shared disk file systems), such as IBM GPFS [4], RedHat GFS [5], SGI 
CXFS, PolyServe, Oracle OCFS. Every computer in the platform can be client, 
data server and metadata server (and metadata storage) at the same time, so AbFS 
is a symmetric file system. Moreover, AbFS can export SAN storage as other 
distributed file systems, such as Sun Lustre [2], do. 

To reach high throughput, even with hundreds of nodes, the file system has to 
provide high performance and scalability not only for data requests but also for 
metadata requests. Metadata requests could account for more than 50% of all the 
requests produced in the file system operation ([6], [7]), making performance of 
metadata accesses of critical importance. With this figures, a centralized metadata 
management cannot scale, especially in big systems.  

Metadata management provides namespace, file attributes and data block 
addresses but also synchronizes concurrent updates, enforces access control and 
maintains consistency between user data and file metadata.  

This work presents the implementation of the metadata management in AbFS 
and the evaluation of its performance. This implementation has been done at 
kernel level and avoids the problems reported in previous works about hash-based 
or table-based metadata distribution ([8], [9]). Moreover, it does not use a 
database to store metadata, as, for example, PVFS does. The performance 
evaluation tests show experimental results obtained in the framework of a 
complete file system prototype.  

The remainder of this paper is organized as follows: Section II deals with the 
AbFS metadata implementation and includes comparisons with other 
implementations; Section III presents the experimental results obtained for the 
first prototype of AbFS; and Section IV summarizes the conclusions of the paper 
and future work. 

Metadata management implementation 

Although AbFS offers a symmetrical server model, it can be configured so 
that there are client nodes that do not share their resources (Fig. 1). 

A block is the logic unit in AbFS. All the components of the file system 
(inodes, files, etc.) are composed of blocks of 4 KB. A block is identified by 64 
bits: 12 bits to identify the volume and 52 bits to identify the block within the 
volume. A volume is a partition in a disk. 
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AbFS uses three structures to manage metadata: the volume table, the 
delegation table, and the inode structure (which mixes inode table hierarchy and 
dentry list hierarchy). Fig. 2 shows a delegation table of 32,767 entries, and the 
inode subtables of the inode structure. Each inode in an inode structure occupies 
512 bytes. Volume and delegation tables are replicated in each client.  

A metadata server can have several volumes (Fig. 1). The volume table 
contains the relation between volumes and the corresponding metadata servers.  

 

 

AbFS AbFS AbFS AbFS 

Network 

Shared File System 

 
Fig. 1. AbFS system 

 

 
Fig. 2. Delegation table and inode subtables 
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A number of inode identifies a file or directory in AbFS. Some bits of this 
number are used to distribute files (directories are treated like files) among 
volumes and metadata servers. A hash function generates this inode number. The 
inode number is composed of (Fig.3): N bits (delegation bits) identify an entry in 
the delegation table (hash table, N is 15 bits in Fig. 2), the rest of bits (3-N2 bits) 
are used to identify the inode in this input. N is a maximum value, the delegation 
can use less bits if the number of volumes is low; i.e. an extendible hashing [10] is 
used to allow low cost delegation table resizing. The size of the delegation table 
will depend on the system size (number of volumes). In Fig. 2 there are 16 
volumes and 32 K entries in the delegation table. GPFS [4] and the metadata 
management of [9] use extendible hashing to manage very large directories. 

 

Delegation N b LSB index (32 – N) b 

Fig. 3. Inode number. 
 

Each entry in the delegation table points to a volume and an inode subtable in 
this volume (i.e. to the first block of the inode subtable). Each volume has several 
subtables. The number of subtables of a volume (i.e. the number of delegation 
table entries of a volume) depends on the volume size. AbFS assigns randomly 
the delegation entries among the volumes taking into account their sizes. AbFS 
assumes that a node with higher storage capacity is generally correlated with 
higher performance servers in heterogeneous clusters. The hash/table-based 
metadata implementation of [11] distributes files among metadata servers and that 
of [12] distributes subdirectories among metadata servers. AbFS distributes files 
among volumes instead of among metadata servers.  

When a new volume is added some inodes migrate to other volume to balance 
metadata management, but the delegation table avoids the redistribution of all the 
inodes, as the tables used in [11] and [12] do when a server is added. Some entries 
of the delegation table are assigned to the new volumes, so just the inodes of these 
entries have to migrate. When a volume is removed, in order to restore balance, 
the system assigns its entries in the delegation table to other volumes and moves 
the inodes of the removed volume to these new assigned volumes.  

Only when the inode number of a file or a directory is unknown, i. e. a lookup 
operation is executed, the hash function obtains the inode number of the 
file/directory from the inode number of its parent directory and the file/directory 
name (Fig. 2). In [11] and [12] the file pathname is the hash input. AbFS does not 
use the file pathname as hash input and maintains the inode number of a directory 
unchanged; so, when a directory is renamed, data redistribution is avoided. When 
a directory is renamed, the new entry in the inode block for this directory will 
point to the first inode while there are references to the original inode.   

In order to obtain a quick access, the inodes in a subtable are indexed in a 
structure with up to three levels. For additional improvements, which can be 
useful for a large amount of files, AbFS can use more than one level of hash to 
locate the inode subtable. 
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In traditional file system dentries and inodes are store separately on disk, 
although, frequently, a request to access a dentry is followed by a request to 
access its attribute. To increase performance AbFS mixes inodes and dentries in 
the same structure. The directory partitioning implementation in [9] also mixes 
dentries and inodes in the same structure. 

Test Results 

The results have been obtained with twelve nodes, each one with 2 Quad-Core 
Intel Xeon E5450 of 3 GHz ~16GB RAM, connected through IPoIB stack using 
the Mellanox MT25418 Infiniband switch.  

The metadata performance of AbFS was measured by using mdtest, a 
benchmarking tool that measures the performance of most common metadata 
operations like directory and file creation and the “stat” operation. The mdtest 
tool uses MPI to coordinate and synchronize processes between nodes. 

Fig. 3 shows directory and file creation performance with 12 nodes, 6 nodes of 
them are (store and metadata) servers, and all the 12 nodes can be clients. The 
“stat” performance for the same configuration can be seen in Fig. 4. As it can be 
seen in both Figs. 3 and 4, performance scales linearly until the 12 clients are 
used, i.e., until there are 12 processes. With more processes performance does not 
scale. This can be observed more clearly in Fig. 5 and 6, where it is shown the 
performance for directory and file creation (Fig. 5) and directory and file “stat” 
(Fig. 6) with 12 nodes, which 6 of them working as servers and the other 6 as 
clients. The degradation occurs whenever there is more than one process per node 
contending for resources.  

AbFS metadata performance clearly outperforms the performance figures of 
Lustre (1.6 to 2.0) ([13], [14]), PVFS [15] and Ceph [3] found in the bibliography. 
Tests in [14] were run in 70 client nodes, each one with 4 Quad-Core AMD 
Opteron 8380 ~16GB RAM and a metadata server Sun Fire X4540  with 2 Quad-
Core AMD Opteron 2356 ~64GB RAM. The maximum directory and file creation 
performance reached with Lustre 2.0 using mdtest is of 7,517.27 ops./sec and 
900.76 ops./sec respectively. The maximum directory and file “stat” performance 
is of 25,778.78 ops./sec and 25,016.13 ops./sec respectively. This Lustre version 
does not distribute metadata management as AbFS does, so the use of just one 
metadata server limits its performance. The forthcoming Lustre 3 will distribute 
metadata management among several metadata servers. 

Conclusion 

This work presents the performance results for the implementation of metadata 
management in AbFS. The tests with 12 nodes, 6 servers and 12 clients, show 
high performance figures for metadata management operations: more than 65,000 
ops./sec. for directory creation, more than 90,000 ops./sec. for file creation, more 
than 5,500,000 ops./sec. for directory stat, and more than 5,800,000 ops./sec. for 
file “stat”. We are planning to test AbFS performance with a larger number of 
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nodes and to compare it with other distributed file systems, such as Ceph and 
Lustre, in the same platform. 
 

 

 
 

Fig. 3. Create performance (operations per second) for directories and files with 
12 nodes: 6 servers, 12 clients 

 

 
 

Fig. 4. “Stat” performance (operations per second) for directories and files with 
12 nodes: 6 servers, 12 clients 
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Fig. 5. Create performance (operations per second) for directories and files with 
12 nodes: 6 servers plus 6 clients 

 

 
 

Fig. 6. “Stat” performance (operations per second) for directories and files with 
12 nodes: 6 servers plus 6 clients 
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Extended Abstract 

Midrange and high-end systems use I/O systems based on Storage Area Network 
(SAN) to achieve high performance I/O. Nevertheless, due to the increased 
deployment of clusters, the use of the disks in the cluster nodes to improve the 
performance/cost ratio has been proposed as an adequate approach for storage 
requirements that could avoid the cost of a SAN. AbFS is a DAS-based (Direct 
Attachment Storage) distributed file system that allows taking advantage of the 
commodity disks that already exist as an integral part of each node in a typical 
low-cost cluster. 

AbFS uses client caches to improve client data and metadata read/write 
performance. There are applications that clearly do not benefit from client caches; 
the Google File System ([1]), for example, does not use client cache because it 
offers little benefit to most of its working set. But there are also applications that 
can benefit from client caches, some of them because the accesses to files exhibit 
temporal and/or spatial locality. Moreover, many large-scale applications, such as 
satellite image processing, engineering simulations, bioinformatics, etc., need to 
process with several parallel programs lots of data that they must load from or 
store in files ([2], [3], [4]). These programs communicate through these files. The 
execution time of some of them will improve if the input file data are in the local 
file system cache. They can be executed one after another or in parallel, each one 
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in a different core of a processor. Additionally, client cache can increase parallel 
program performance in multicore processors without changing the code or 
adding extra synchronization and communication among the cores because, for 
instance, (a) client cache can be used as a buffer that combines writes from 
different cores or from the same core before sending them to the servers or (b) file 
accesses from a core could also bring to client cache the data that other cores are 
going to read (by using read-ahead or pre-fetching). Multicore processing nodes is 
going mainstream, so it is important that applications be able to make effective 
use of the source of parallelism that these processors have.  

AbFS uses device buffer cache in Linux to implement data client cache 
creating a virtual device. It also uses the Linux metadata caches, inode cache and 
dentry cache, to implement metadata caches. Thus, no additional structure or 
layers are needed to implement caches. The data cache takes advantages of the 
read-ahead implemented in VFS (Virtual File System), which stores data in the 
device buffer cache. 

 

 

Nº State Event Comment 
Next 
state 

1 (C) Int. lookup or dir-create Shared inode (S) 

2 (C) Int. file create Node gains inode ownership (E) 

3 (C) 
Int. lookup or file opening of a file already 

opened for writing in other node 
Node does not gain inode 

ownership 
(I) 

4 (S) 
Ext. invalidation, or int. lookup or file 

opening of a file and other node has the 
ownership 

Node does not gain inode 
ownership 

(I) 

5 (S) Int. file opening for writing (1st node) Node gains inode ownership (E) 

6 (E) Int. close file for writing 
Inode shared and writing to 

server 
(S) 

7 (E) Server denies ownership Exception (I) 

8 (I) Int. lookup or open shared file for reading Inode shared (S) 

9 (I) Int. file opening for writing (1st time) Node gains inode ownership (E) 
 

Fig. 1. Resume of the owner-based cache coherent protocol in a client (int.= 
internal event, ext.=external event) 
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Moreover, client caches improve performance because they reduce network 
accesses to the servers and consequently server bottleneck. Client caches in AbFS 
reduce both the bottleneck of the servers and the bottleneck of their own caches 
also when one node has opened a file for writing (this node is the so-called owner 
node). This is so because when other clients write in this file their writes are 
combined in the owner’s cache and because other clients will read the file from 
the owner’s cache instead of from the servers. In this situation, the cache is 
similar in performance to a home-based cooperative cache ([5]). Notice that while 
other network file systems, such as NFS, just use client-server communications, 
AbFS can also use client-client and server-server communications.  

Fig. 1 resumes the cache coherent protocol in a client. Although the blocks of 
device buffer caches are of 4 KB, the block in the cache coherent protocol is a file 
(inode). An inode in a client or server cache can be in one of these states: 

(C)lear: the inode does not exist in cache (it may exist in disk). It is the initial 
state of all inodes 

(E)xclusive: the data and metadata of this inode are valid just here, in the 
cache of the owner node. The other nodes do not have valid copies of them. The 
owner node is the first node that opens the inode for writing. 

(S)hared: the data and metadata of the inode are valid here and they may be 
valid in the cache of other nodes.  

(I)nvalid: the data and metadata of the inode are invalid.  
Fig. 2 shows the advantage of using data client cache. The read and write time 

are reduced in 97% approximately when client cache is used. The performance 

 

 
 

Fig. 2. Cache performance. wr_no_cache and rd_no_cache are writes and reads 
respectively without client cache. wr_cache and rd_cache are write hits and read 

hits respectively in client cache  
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increases more than with another cache that we implemented in PVFS from 
scratch [6]. 
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Abstract 

In this work we present an analysis of non-slanted reflection 
gratings by using exact solutions of the second order differential 
equation, derived from Maxwell equations, in terms of Mathieu 
functions. The results obtained by using this method will be 
compared to those obtained by using the well known Kogelnik’s 
Coupled Wave Theory which predicts with great accuracy the 
response of the efficiency of the zeros and first order for volume 
phase gratings, for both reflection and transmission gratings. 
. 
Key words: diffraction grating, Mathieu equation, volume 
holograms 
 

1. Introduction 

The study of the interaction of electromagnetic radiation with diffractive elements 
has received much attention in the literature [1-7]. In particular, several 
theoretical models have been proposed to accurately describe the behaviour of 
diffraction gratings of different kind. The attention posed on these structures is in 
part due to the fact that a sinusoidal diffraction grating is the simplest periodic 
structure that can be recorded on a photosensitive material. Therefore the basic 
problem in volume holography theory is to describe accurately the properties of 
this kind of structures. A usual way to calculate the efficiencies of the different 
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orders that propagate in the volume grating is to solve Maxwell equations for the 
case of an incident plane wave on a medium where the relative dielectric 
permittivity varies. Although the idea seems clear and precise, in the literature 
there are a great number of models that allow solving the problem.  
One of the most predictive and popular theories to calculate the efficiency of the 
orders that propagate inside a diffraction grating is the Kogelnik’s Coupled Wave 
Theory [1]. This theory has the advantage over other theories in that, in spite of 
being mathematically simple, it predicts very accurately the response of the 
efficiency of the zero and first order for volume phase gratings. Nonetheless, the 
accuracy decreases when either the thickness is low or when over-modulated 
patterns (high refractive index modulations) are recorded in the hologram. In 
these cases, the coupled wave theory (CW) allowing for more than two orders or 
the rigorous coupled wave theory (RCW) [4-5] which doesn’t disregard second 
derivatives in the coupled wave equations as does CW, are needed.  
Although exact predictions can be obtained by using the RCW it is still interesting 
to work with analytical expressions in order to calculate the efficiency of the 
different orders that propagate inside the hologram. Analytical expressions give a 
deeper understanding of the physical processes than numerical solutions do. In 
addition, by direct inspection of the analytical expressions a clearer interpretation 
of how the different parameters influence in the efficiency of the different orders 
is got. In this work the efficiencies of the zero and first order are obtained by 
solving the second order differential equation, from Maxwell equations, applied to 
a non-slanted reflection in terms of Mathieu functions. The results obtained by 
using this method will be compared to those obtained by Kogelnik’s coupled 
wave theory showing good agreement.  

2. Theory 

Consider a plane electromagnetic wave incident onto a periodic non-magnetic 
medium, which dielectric constant varies in form:  

 )cos(10 Kzrrr εεε +=   (1)  
The treatment is done only for TE polarization, but can be extended to TM 
polarization. In this case the function E (z) for the electric field inside the medium 
verifies the following differential equation:  

 
( )[ ] 0)cos( 2

10
2

02

2

=−++ EKKzk
dz

Ed
xrr εε

 (2) 
Where: 

 λ
π2

0 =k
  (3) 

Being λ the wavelength in vacuum.  
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If θ1 is the angle of incidence and θ2 is the angle between the wave vector and the 
normal to the substrate of refractive index n2, then the following parameters can 
be defined:  

 ( ) ( ) 2211 sin/sin/ θωθω cncnK x ==  (4) 

 ( ) 111 cos/ θω cnq =  (5) 

 ( ) 222 cos/ θω cnq =  (6) 
  

 
Figure 1.- Nonslanted reflection grating  
 
The electric field in the first medium can be expressed as the superposition of an 
incident wave and a reflected wave of the form:  

 )exp()exp()( 11 zjqrzjqzE s
I −+=  (7)  

While in the second medium only the transmitted wave exist: 

 )exp()( 1zjqtzE s
II =   (8)  

Now suppose that f(z) is a solution of the differential equation with a unit 
amplitude transmitted wave:  

 )exp()( 1zjqzE II =   (9)  
with initial conditions:  

 1)0( =E   (10)  

x 

z 

n1 n2 

θ1 

θ2 
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2)0( jq

dz
dE

=
  (11)  

The boundary conditions in z = d imply:  

 )exp()exp()( 11 djqrdjqdE s −+=   (12)  

 
)exp()exp()( 1111 djqrjqdjqjqd

dz
dE

s −−=
  (13)  

Given the linearity of Maxwell's equations we have: 

 )exp()exp()( 11 djqrdjqdft ss −+=   (14)  

 
)exp()exp()( 1111 djqrjqdjqjqd

dz
dft ss −−=

  (15)  
From equations (14) and (15) we can obtain the amplitudes of the reflected and 
transmitted waves based on the solution f(z) with initial conditions (10) and (11):  

 
)()(

)exp(2

1

11

dfqd
dz
dfj

djqqts

+−
=

  (16)   

 

)2exp(
)()(

)()(

1

1

1

djq
dfjqd

dz
df

dfjqd
dz
df

rs

+

−
=

  (17)  
It is now necessary to obtain a solution of the differential equation with initial 
conditions (10) and (11).  
In this case the differential equation can be solved in terms of Mathieu functions. 
If we call  

 
2

0
2

0
2 )(4

K
kK

a rx ε+−
=

  (18)  
and  

 
2

1
2

02

K
k

q rε−
=

  (19)  
The function f(z), solution of the differential equation (2) with initial conditions 
(10-11) has the form:  

))0,,()0,,()0,,((

))0,,()0,,(2)(2/,,(

))0,,()0,,()0,,((

))0,,()0,,(2)(2/,,(
)(

2

2

qacmqasmqacmpK
qasmpKqasmjqKzqacm

qacmqasmqacmpK
qacmpKqacmjqKzqasm

zf

−
⋅−−

+

+
−

⋅−
=

 

And its derivative:  
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)0,,()0,,(2)0,,()0,,(2

))0,,()0,,(2)(2/,,(

)0,,()0,,(2)0,,()0,,(2

))0,,()0,,(2)(2/,,(
)(

2

2'

qacmqasmpqasmqacmp
qacmpKqasmjqKzqasmp

qacmqasmpqasmqacmp
qasmpKqasmjqKzqacmp

zf

−
⋅−

+

+
−

⋅+−
=

 

Where cm (a, q, z) is the even Mathieu function sm (a, q, z) the odd Mathieu 
function, cmp (a, q, z) and smp (a, q, z) the corresponding derivatives.  

3. Results and discussion 

 
To validate the theoretical model previously developed we will now conduct a 
comparison between the results obtained using the model (classical differential 
theory, TDC) with those obtained by the coupled wave theory of Kogelnik (TK). 
A simulation for a non-slanted reflection grating with a grating period of 0.22 μm 
is presented, the average refractive index was supposed to be n0 = 1.63 and an 
index modulation of 0,015, the incident wavelength was assumed to be of 633 nm.  
Figure 2 shows the diffraction efficiency as a function of the angle for a grating of 
thickness d = 22 μm. As shown in the figure the degree of agreement between the 
two theories is quite good indicating the validity of the model.  

 
Figure 2.- Comparison of Kogelnik’s Coupled Wave Theory with the method proposed in this 
work. Dotted line: Kogelnik’s Theory; Continuous line: method of this work.  
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4. Conclusions 

A solution of the second order differential equation obtained from Maxwell 
equations for TE describing a non-slanted reflection grating in terms of Mathieu 
functions is presented. The model is rigorous in the sense that no approximations 
are made. The results obtained by this method were compared to those obtained 
by using Koglenik’s coupled wave theory showing a good agreement between 
both simulations, and thus validating the model proposed.  
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Abstract 

A new multi-step method for the solution of linear and nonlinear 
ordinary differential equations (ODEs) is developed based on 
the Bézier curves. The method is extended to solve system of 
ODEs. A general relation is also derived for m-th order multi-
step formula. It is shown that the method is convergent and 
stable using conventional convergence and stability analyses. 
Using various examples, performance of the presented technique 
in terms of accuracy and stability is investigated. It is shown that 
the method provide the same order of accuracy as the well-
known Adams-Moulton technique for very small step sizes. 
However, for relatively large values of the step size, results 
revealed that the presented method provide more accurate 
predictions at the same computational cost in comparison with 
Adams-Moulton. Furthermore, from stability point of view, it is 
also demonstrated that initiation of instability behavior occurs at 
smaller step sizes for Adams-Moulton method in comparison 
with the presented multi-step method.  
 
Key words: multi-Step Method, Bézier Curves, Bernstein basis 
polynomials, nonlinear ordinary differential equations. 

1. Introduction 

Bernstein polynomials and B-splines are useful piecewise polynomials to 
represent a great variety of functions. They can be differentiated and integrated 
without difficulty and construct spline curves to approximate functions with 
desired accuracy. There has been widespread interest in the use of these 
polynomials to obtain solutions for various types of differential equations [1-6]. 
For instance, N.Caglar and H.Caglar [1] applied third-degree B-splines to singular 
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boundary value problems. In this paper, a spline method for solving singular 
boundary value problems is outlined based on the collocation approach [1]. Jator 
and Sinkala [2] applied B-splines together with collocation method to obtain 
solution for linear boundary value problems. In this research, solution of the 
boundary value problems for d-th order linear boundary value problem by a B-
spline collocation method using k-th order B-splines [2]. Khalifa, Raslan, and 
Alzubaidi [3] developed a collocation method using cubic B-splines finite element 
for the numerical solution of modified regularized long wave (MRLV) equation.   
H.Caglar, Ozer, and N.Caglar [4] applied B-splines to one dimensional heat 
equation. In this study, the boundary value problem for the one-dimensional heat 
equation with a nonlocal initial condition is examined by using the third degree B-
splines functions [4]. A.Zerarka and B.Nine [5] developed a non-variational 
Galerkin-B-spline method to obtain solution for circular thin flexible plates within 
the context of Von Ka`rma`n equations. Main result shows that the low orders of 
approximation have been sufficient to build the solutions from the basis functions 
in a high quality [5]. Bhatti and Brackenb [6] introduced an algorithm for 
approximating solutions to differential equations in a modified new Bernstein 
polynomials basis. The algorithm expands the desired solution in terms of a set of 
continuous polynomials over a closed interval and then makes use of the Galerkin 
method to determine the expansion coefficients to construct a solution [6]. 
In all of these studies, the desired solution is considered as a set of piecewise or 
continuous polynomials over a closed interval followed by using general idea of 
weighted residual methods such as Galerkin or collocation to determine the 
expansion coefficients. On the other hand, multi-step methods convert the 
ordinary differential equation to equivalent integral equation. Then, the integral 
equation is approximated by interpolating curves that composed from some 
previous point. Among well-known multi-step methods, one can refer to the 
Adam–Moulton method in which the Newton backward difference method is used 
to approximate this integral equation. However, the same as other multi-step 
techniques for solution of differential equations the Adams-Moulton also suffers 
from instability when the step sizes are large. 
In this paper, a new multi-step technique is developed to obtain solutions for 
linear and nonlinear ordinary differential equations based on the Bézier curves. 
The presented method shows better stability behavior in comparison with Adams-
Moulton method as it postpones initiation of instability to higher values of step 
size. This leads to significant reduction of computational time. Furthermore, 
presentation of a general multi-step relation for m-th order formula can be 
considered as the other advantage of the method. Results revealed that while the 
method offers similar order of accuracy with Adams-Moulton technique for very 
small step sizes, the method is more stable and accurate for relatively larger 
values of step size.    
   
2. Bézier curves 
Bézier curves were widely publicized in 1962 by French engineer Pierre Bézier, 
who used the curves mainly to design various parts of automobile bodies. 
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Simultaneously, Paul de Casteljau also presented de Casteljau’s algorithm, which 
is a numerically stable method to evaluate Bézier curves in 1959. The nth-degree 
Bézier curve for (n+1) given points P0,P1,…Pn can be written as:  

    ,    (1) 
in which the points Pi are called control points for the Bézier curves and Bi,n are 
known as Bernstein basis polynomials of degree n defined as: 

 
(2) 

For example, Fig 1 shows cubic Bernstein basis polynomials for n=3.  
 

 
Fig 1. Cubic Bernstein basis polynomial 

 
The location of control points in the Cartesian coordinate system can be shown as:  

 
(3) 

Using (3), one can rewrite (1) in the parametric form of:   

 
(4.1) 

 
(4.2) 

 
 Bézier curves are widely used in computer graphics and computer-aided design 
mainly to provide smooth curves. It should be noted that similar to the least-
square curves, Bézier curves are not really interpolating curves, as they do not 
normally pass through all of the control points. However, they have the important 
property of staying within the polygon determined by the given points as shown 
in Fig 2. More details of Bézier curves and their properties can be found 
elsewhere [7-9]. 
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3. Technique 
Consider a general linear or nonlinear first order ordinary differential equation as: 

 
(5) 

The integral form of (5) can be expressed as: 

 
(6) 

In multistep techniques, numerical solution is obtained by using a discretized 
version of (6) as: 

 
(7) 

 Various multistep methods use different ways to approximate the integral term in 
(7). For instance, Adam–Moulton method employs an approximation of f(x,y)  in 
(7) by using the Newton backward difference method to obtain a multistep 
formulation.  
In the present study, Bezier curves of any order are used to approximate f(x,y). To 
approximate f(x,y) by mth-degree Bézier curves, control points should be defined 
as: 

 

(8) 

Where h is the step size. Using (4), one can write the new parametric form of mth-
degree Bézier curves as: 

 

(9.1) 
 

 
(9.2) 

 

Fig 2. Comparing Newton interpolation with B´ezier curves and Convex hull 
t  
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Finally, after approximation of the integral term in (7) for the presented study, the 
new form of (7) can be obtained as: 

 
(10) 

Using the general formula (10) together with various orders of Bézier curves in 
(9) leads to different multistep formulas. For example, assuming quadratic Bézier 
curve leads to three-step formula. Results for various multistep formulas related to 
degree of Bézier curves; i.e. 1, 2, 3 to m, are as follow: 
Two-step formula: 

 
(11) 

Three-step formula: 

 
(12) 

Four-step formula: 

 
(13) 

And the general m+1-step formula: 

 
(14) 

 
4. Stability and convergence analyses 
A multi-step formula such as m+1-step can be written in general form as: 

 (15) 
Associated with (15) are also two characteristics polynomials of the multi-step 
method as:  

 (16) 

 (17) 
It should be noted that (14) is an explicit formula and therefore, bm+1
 

=0. 

Definition 1 [10]. The multi-step formula in general form of (15) is stable if all 
roots of p(z) lie in the disk |z|<1 and if each root of modulus one is simple. 
From (14) and (15), it can be concluded that for the m+1-step formula    

 (18) 

Solution to (18) for different z leads to:          

 (19) 

Where are roots of (18). Then with regard to Definition 1, the m+1-step 
formula (14) is stable. 
Definition 2 [10]. The multi-step formula (15) is consistent if p(1)=0 and 
p'(1)=q(1)  
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Considering (18) to determine p'(1) and q(1), one can easily conclude for the 
m+1-step formula (14) that 

 
(20) 

Therefore, in order for m+1-step formula (14) to be consistent, the value of q(1) 
must be equal to one. Using general m+1-step formula (14) in conjunction with 
(15), one can determine coefficients of q(z) in (17) as:    

 
(21) 

Substitution of (21) in (17) one can derive q(1) as:  

 

(22) 

After some mathematical simplification, equation (22) can be rewritten as:  

 
(23) 

Where  

 
(24) 

It can easily be found that the last parameter in (24) is zero for i=0…m-1. 
However, for i=m the value of ci in (24) becomes one. Therefore, considering 
(22) and (24) results in:  

 
(25) 

 
Consequently, based on (20), (25), and Definition 2, it can be concluded that the 
general m+1-step formula (14) is consistent. 
 
Theorem 1 [10]. For the multi-step formula (15) to be convergent, it is necessary 
and sufficient that the formula (15) to be stable and consistent. 
 
Since it was proved that the general m+1-step formula (14) is both stable and 
consistent, it can be concluded that the formula (14) is also convergent.  
 
5. Results and discussion 
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In this section, efficiency of the presented multi-step method in terms of accuracy, 
convergence and computational cost is studied by various numerical examples. 
The predictions of the present work are compared and validated with analytical 
solutions where available. Furthermore, results of the well-known Adams-
Moulton multi-step method are also included in the figures mainly to compare 
stability of the presented method.  
In all examples, three figures are presented for three different levels of the step 
size h. These step sized are carefully selected to show three different stages. At 
the first stage, both presented and Adams-Moulton numeric methods are stable 
and accurate while in the second stage instability initiates in the Adams-Moulton 
technique and finally presented method shows unstable behavior at the third stage, 
too. Furthermore, in order to examine accuracy of the method, error percentage 
for both numeric techniques is reported at a sample point in all figures in which 
errors in brackets are related to Adams-Moulton while values in parenthesis are 
related to error of the present work. 
Four-step formula (13) for presented numeric method is used to find predictions 
of this method in all examples. In order to present comparison between presented 
and the Adams-Moulton numeric methods, the four-step formula of the Adams-
Moulton [9] is also used to obtain predictions in all examples. 
In using these two methods, a special procedure must be employed to start the 
methods since initially only y0 is known. Of course, a Runge-Kutta method is 
ideal for obtaining y1,y2,y3

 

. In this research, Ode45, that is a single-step solver for 
the solution of ordinary differential equations in MATLAB software, is used. 
Ode45 is based on an explicit fourth or fifth order Runge-Kutta formula, the 
Dormand-Prince pair [11]. 

 5.1. Example 1 
The first example is a linear ordinary differential equation:   

 (26) 
With the exact solution as:  

 
(27) 

 
Figs 3.a-c show predictions of the four-step formula (13) for various step sizes h. 
Included in the figures are also exact solution (27) and Adams-Moulton 
technique. It can be concluded from Fig 3.a that for small step size of h=0.01 both 
numeric methods are accurate and stable. As the step size increases to h=0.15 
instability behavior can be seen for the Adams-Moulton method predictions while 
the presented method is still stable, see Fig 3.b. Finally, initiation of the instability 
can be observed for the presented method for higher step size of h=0.6 in Fig 3.c. 
Furthermore, error percentage for both numeric methods is reported at x=5.4 in all 
figures which also reveal for small step size of h=0.01 error percent in sample 
point has very small value of 0.019% for both methods. When the step size 
increases to h=0.15 error percentage in the sample point for the Adams-Moulton 
grow rapidly to 9.23% while this value for the presented method reaches to 
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0.15%. For higher step size of h=0.6, the error percentage in the sample point for 
the Adams-Moulton reaches to 75.48% while for the presented approach becomes 
13%.      

  

 
(a) (b) 

 
(c) 

Fig 3. Results for Example 1. (a) h=0.1 ,(b) h =0.15,(c) h =0.6 
5.2. Example 2 
Second example is a nonlinear ordinary differential equation: 

  (28) 
With exact solution of:  

 
(29) 

Results of the presented method, Adams-Moulton and exact solution (29) for (30) 
are shown in Figs 4.a-c for various step size h. Fig 4.a depicts predictions for 
relatively small step size of h=1 which indicates good stability and agreement 
with exact solution for both numeric techniques. After increasing the step size to 
h=1.5, initiation of instability can be observed for the Adams-Moulton method 
predictions while the presented method is still stable, see Fig 4.b. Finally, Fig 4.c 
shows that the unstable behavior for predictions of the presented method also 
initiates at greater step size of h=2.4.  
 Again, error percentage for both numeric methods is reported at a sample point of 
x=12 for all cases in Figs 4.a-c. For instance, in Fig 4.a with h=1error percentage 
in the sample point is 0.28% and 0.04% for Adams-Moulton and presented 
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method, respectively. Error percentage increases to 2.92% and 0.06% for Adams-
Moulton and presented method, respectively by increasing the step size to h=1.5. 
Finally, when the step size reaches to h=2.4 in Fig 4.c, the error percentage in the 
same sample point grows rapidly to 32.17% for the Adams-Moulton method 
while for the presented approach becomes 3.56%.      

 
 
 

 

(a) (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
Fig 4. Results for Example 2. (a) h=1 ,(b) h=1.5 ,(c) h=2.4 

 
5.3 Example 3 
The next example is also a nonlinear ordinary differential equation: 

 (30) 
Results of the presented method, Adams-Moulton and MATLAB Ode45 for (30) 
for various step sizes h are shown in Figs 5.a-c. Again, for small step size of 
h=0.1 both numeric methods are accurate and stable as shown in Fig 5.a. For 
larger step size of h=0.5 instability behavior initiates for Adams-Moulton results 
while the presented method is still stable, see Fig 5.b. Finally, when the step size 
reaches to h=1.4 instability occurs in the results of the presented method, see 
Fig5.c.  Furthermore, error percentage for both numeric techniques is reported at 
x=14 in Figs 5.a-b which reveal that in small step size of h=0.1 error percentage 
of the Adams-Moulton (0.02%) in the sample point is less than presented method 
(0.05%). However, for h=0.5 error percentage in the same sample point for the 
Adams-Moulton method (15.65%) is about ten times of the presented method 
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(1.70%). It should be noted that for h=1.4 error is not reported in Fig 5.c as the 
Adams-Moulton method becomes seriously unstable. It is also worth mentioning 
that exact solution for (30) is not available and therefore, results are compared 
with the results obtained by ODE45 in MATLAB and all error percentage are 
determined based on MATLAB predictions. 
 

  
(a) (b) 

 
(c) 

Fig 5. Results for Example 3. (a) h=0.1 ,(b) h=0.5 ,(c) h=1.4 
 
5.4 Example 4 
The final example is a system of two coupled nonlinear first-order differential 
equations: 

 

(31) 

Figs 6.a-c, show results of the presented, Adams-Moulton and MATLAB Ode45 
for system of equations (31) with different step size h. Fig 6.a shows results for 
small step size of h=0.1 where both methods are accurate and stable. Fig 6.b 
presents predictions for higher step size of h=0.25 where instability can be 
observed in Adams-Moulton predictions while the presented method is still stable. 
Finally, instability also occurs in the results of the presented method when the 
step size reaches to h=0.7, see Fig 6.c. Furthermore, error percentages for both 
numeric techniques are reported at x=14 for y1 and y2 in Figs 6.a-b. As shown in 
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Fig 6.a, in small step size of h=0.1 error percentage of the Adams-Moulton in the 
sample point is 0.003%  for both y1 and y2 while for the presented method is 
0.016% and 0.02% for y1 and y2, respectively. It is noticeable that for h=0.1 error 
percentage of Adams-Moulton method for both y1 and y2 is less than presented 
method. However, in the case of h=0.25 error percentage in the same sample 
point for the Adams-Moulton method is 0.61% and 0.96% for y1 and y2, while for 
the presented method is 0.04% and 0.05% for y1 and y2, respectively. It should be 
noted that accumulated error in the Adams-Moulton method increases to 60.18 % 
and 98.9% for y1 and y2 for h=0.7 while error percentage of the presented method 
is 2.18% and 1.28% for y1 and y2 in Fig 6.c. Moreover, since exact solution for 
(31) is not available, results are compared with the results obtained by ODE45 
command in MATLAB and error percentage is determined based on the 
MATLAB predictions.  

  

(a) (b) 

 
(c) 

Fig 6. Results for Example 4. (a) h=0.1 ,(b) h=0.25 ,(c) h=0.7 
 
6. Conclusion  
A new multi-step method is presented for the solution of single or system of linear 
and nonlinear ODEs based on the Bézier curves. The presented method shows 
better stability behavior in comparison with the well-known Adams-Moulton 
method, which yields to significant reduction of computational cost. The other 
advantage of the method is presentation of a general multi-step relation for m-th 
order formula. It is shown that the method is convergent and stable using 
conventional convergence and stability analyses. Both accuracy and stability of 
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the method are studied using several linear and nonlinear examples. Results of the 
presented method together with Adams-Moulton for various linear and nonlinear 
ODEs are presented for three different step sizes. For very small step sizes, both 
methods show similar order of accuracy. As the step size increases, initiation of 
instability can be observed in Adams-Moulton predictions while results of 
presented method are still stable. Finally, instable behavior initiates in the results 
of the presented method for relatively high step sizes.  
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Abstract 

Wall shear rates and pressure developed in circulatory system 

play an important role on the development of some clinical 

problems such as atherosclerosis and thrombosis. In the present 

work, blood flow behaviour was numerically studied in 

simplified domains and several relevant local properties were 

determined. The stenosis degree was varied in the distinct 

studied channels and blood rheology was described by three 

different models – constant viscosity, power-law model and 

Carreau model.  Pressure attains maximum values in the wall of 

the atheroma and shear rates achieved maximum values in the 

top of the atheroma.  It was also observed that, with the studied 

flows, the predictions for velocity and shear rate using non-

Newtonian models were very similar.  This observation can be 

explained by the magnitude of the obtained shear rates. 

 

Key words: atheroma, velocity, shear rate, pressure, CFD 
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VELOCITY, PRESSURE AND SHEAR RATE DISTRIBUTIONS IN STENOSED CHANNELS 

 

1. Introduction 

Arthrosclerosis means literally “arteries hardening”, however it is a generic term 

that refers to three patterns of vascular diseases which have the hardening and loss 

of elasticity of the arteries walls as a common factor [1].  The dominant pattern is 

atherosclerosis, characterized by the formation of atheromas - fibrous plaques that 

generally exhibit a centre rich in lipids. 

 

The initial lesion of an atheroma formation can trigger due to the turbulence of the 

flow. Most of the times, the formation of an atheroma is accomplished by a 

thrombus formation. It is thought that the location of higher pressures and 

velocities promote the endothelium lesion and hence the formation of a thrombus, 

which normally conduce to a thromboembolism due to the high speeds and 

pressures [1]. 

2. Numerical Simulations 

The governative equations for the isothermal laminar incompressible blood flow 

were solved by the finite-element software POLYFLOW
®
.  Since experimental 

study of blood flow in the circulatory system is not an easy task, the numerical 

results can be useful in order to understand the blood behaviour in stenosed 

arteries/vessels. 

 

In the calculations, blood was considered both Newtonian and non-Newtonian 

fluid, its rheology being described, in the second case, by the power-law and 

Carreau models which can be mathematically expressed, respectively, by: 

 

 1nK   , (1) 

 

    
 1 / 2

2

0 1
n

    


 
    
 

 (2) 

 

where  is the apparent viscosity, K the consistency index, n the flow index 

behaviour,   the shear rate, 0 the viscosity for lower shear rates,  the viscosity 

for higher shear rates and  the natural time. For blood, the values of all these 

rheological parameters were presented in Tab.1. 
 

Table 1: Rheological properties of blood [2]. 

Rheological model (Pas) K (Pas
n
) n (-)  (s)  (Pas)  (Pas) 

Newtonian 0.00345 - - - - - 

Power-law model - 0.035 0.6 - - - 

Carreau model - - 0.3568 3.313 0.00345 0.056 
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The simulations were carried out in 3D geometries representing cylindrical 

stenosed channels, the atheroma being constructed resorting to a semi-sphere, Fig. 

1. 

 

 

Figure 1: Representation of the computational domain and used mesh. 

 

Three channels presenting different stenosis degrees were studied. All the 

channels had the same length (L = 30 mm) and radius (R = 3 mm) and the radius 

of the atheroma varied as presented in Tab. 2.  Stenosis degree was defined as the 

ratio between the diameter of the channel and the radius of the atheroma (2R/Ra).  

 
Table 2: Geometrical properties of the studied channels. 

Channel Stenosis degree (%) Atheroma radius (mm) 

C1 20 1.2 

C2 30 1.8 

C3 50 3.0 

 

The discretization of the geometrical domain was made using an unstructured 

non-uniform mesh (Fig. 1) and the size of the elements was fixed after a grid 

independence test in which the size of the elements is successively reduced and 

the velocity results, obtained with the different meshes, were compared. The 

results were considered to be independent when a difference below 1% was 

achieved [3, 4]. 

 

The boundary conditions were established in order to reproduce the experimental 

work developed by Johnston et al. [2] to study the rheology of blood in arteries.  

2R

Ra

Outlet

Inlet

L

Line 1

Line 2
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In the inlet (x = 0), a constant flow rate - Mv = 1.27 10
-7

 m
3
s

-1
 - was imposed and 

non-slip at the walls was admitted. 

 

The equations solved were the conservation of mass and momentum equations for 

laminar incompressible blood flow.  Since this is a non-linear problem, it was 

necessary to use an iterative method to solve the referred equations. In order to 

evaluate the convergence of this process, a test based on the relative error in the 

velocity field was performed. For the velocity field, the modification on each 

node between two consecutive iterations is compared to the value of the velocity 

at the current iteration. In the present work, the convergence value was set to 10
-4

, 

since this value is appropriate for the studied problem [4-8]. 

 

In order to verify the reliability and exactness of the computational fluid dynamics 

(CFD) calculations, two tests were performed: one involving local properties and 

other with global properties of the flow. First, velocity profiles were compared 

with the analytical solution for the fully developed flow of a power-law fluid in a 

cylindrical duct [9]: 

 

 

 1
3 1

( ) 1

   
   

   

n n
n r

v r u
n R

 (3) 

 

where u is the average velocity and is given by: 

 

 
2

vM
u

R
 . (4) 

 

In Fig. 2 it is possible to observe the good agreement between the numerical 

velocities and Eq. (3) for both Newtonian (n = 1) and power-law fluid (n = 0.6) 

(mean deviation of 0.28 % and 1.27% for the Newtonian and power-law fluid, 

respectively).  As expected, the maximum deviations were observed near the wall, 

since the velocities in this region were close to zero. 
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Figure 2: Velocity profiles for fully developed flow in the region before the atheroma in 

channel C3 for different rheological models.  (●) Newtonian; (○) Power-law model; (―) 

Eq.(3) with n = 1; (- - -)Eq.(3) with n = 0.6. 

 

To estimate the pressure drop, it is usual to use correlations between Fanning 

friction factor, f, and Reynolds number, Re.  However, when the viscosity of fluid 

is not constant and difficult to predict, Reynolds number in the relation fRe can be 

replaced by a generalized Reynolds number, Reg, the referred relation being: 

 

 
1Re Reg gf a a f    (5) 

 

for fully developed laminar flows. In Eq. (5) a is a constant dependent of the 

geometry and f is given by:  

 

 22

HPD
f

L u


  (6) 

 

with P the pressure drop in a channel with length L,  the density of the fluid 

and DH the hydraulic diameter (DH = 2R for a cylindrical duct). 

 

The use of Reg instead of Re allows the calculation of a single friction curve for 

both Newtonian and non-Newtonian fluids.  For flows of power-law fluids in 

ducts with constant arbitrary section, the following expression for Reg have been 

proposed by Delpace and Leuliet [10]: 

 

 
     

2

1
Re

24 24

n n

H
g n

n

u D

K n n


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




 
 (7) 

 

 being a geometrical parameter that assumes the value 8 for cylindrical ducts. 
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Substituting Eqs. (7) and (6) in Eq. (5), constant a can be expressed as function of 

rheological and geometrical parameters as follows: 

 

 
     

1

12 24 24

n

H

n
n n

D P
a

u KL n n  








 
. (8) 

 

In order to calculate the constant a for the studied channels, the pressure drop in 

small cylinders of 1 mm length were used and constant a was estimated resorting 

to Eq. (8).  In the region before the atheroma the average values of a were 16.053 

and 15.931 for Newtonian (n = 1 and K =  = 0.00345 Pas) and power-law fluid 

(n = 0.6 and K = 0.035 Pas
0.6

), respectively.  Comparing these results with the one 

predicted analytically (16) it is possible to conclude, once again, that the 

numerical model used in the present work describes well the studied flow, since 

the mean deviations were 0.329% and 0.767% for the Newtonian and power-law 

fluid, respectively. 

3. Results and Discussion 

In the present work, velocity, pressure and shear rate profiles in stenosed channels 

were analyzed in order to understand the blood flow when this pathology appears. 

 

In Fig. 3 it is possible to observe that the atheroma leads to a distortion of the 

velocity profile developed in a cylindrical duct. 

 
(a) 

 

(b) 

 

(c) 

 

Figure 3: Velocity profiles (ms
-1

) in the plane z = 0 (see Fig. 1) for channel C1 fluid and 

distinct rheological models.  (a) Newtonian; (b) Power-law model; (c) Carreau model. 
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The influence of the non-Newtonian behaviour of blood is very small in the 

velocities developed in the studied channels, since the profiles present very 

similar aspect and the values of velocity were also very close when considering 

the different constitutive equations (Fig. 3).  However, a lower difference was 

verified between the velocities obtained for the two non-Newtonian models for 

the three channels. 

 

Quantitatively, the effect of the atheroma can be evaluated by the increase of the 

maximum velocity obtained for the stenosed channels compared to the one 

predicted analytically for a flow of a power-law fluid in a cylindrical duct, which 

can be determined by (Eq. (3) with r = 0): 

 

 
3 1

1
max

n
v u

n





. (9) 

 

From the values reported in Tab. 3 it is possible to observe that the influence of 

the atheroma increases with the increase of the stenosis degree, as expected.  In 

the referred table, the values of vmax were the ones obtained numerically and I 

represents the increase of vmax due to the presence of the atheroma (vmax for the 

channel without atheroma was calculated by Eq. (9)). 

 
Table 3: Increase of maximum velocity due to the presence of the atheroma. 

 C1 C2 C3 

 vmax (ms-1) I (%) vmax (ms-1) I (%) vmax (ms-1) I (%) 

Newtonian 0.0097 7.977 0.0108 20.2216 0.0151 68.0876 

Power-law 0.0086 9.4080 0.0096 22.1299 0.0136 73.017 

 

As observed for the velocity profiles, the shear rate distribution in the different 

channels and for the different rheological models were qualitatively the same.  In 

Fig. 4 it is possible to observe that shear rate achieve its maximum in the top of 

the atheroma. 

 

 

Figure 4: Shear rate in the wall of the channel C3 and Carreau model. 
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Two lines were considered in a more detailed analysis of shear rate - Lines 1 and 

2 represented in Fig.1.  This way it was possible to study the impact of the 

atheroma and rheological properties of the blood in the shear rate along the wall 

of the channels. 

 

Like observed in the velocity field, the results obtained for the non-Newtonian 

models where very close (Figs. 5(a) and 6 (a)).  The proximity of these results can 

be explained by the linear behaviour between shear rate and viscosity predicted by 

the referred models in the range in which this study was performed. 

 

  

(a) (b) 

Figure 5: Shear rate along Line 2 (Fig. 1). (a) Channel C3 and different rheological 

models. (b) Carreau model and distinct channels. 

 

In Fig. 5(a) the behaviour of the shear rate along Line 2 (Fig. 1) can be clearly 

observed.  Shear rate remains constant in the beginning of the channel for about 4 

mm before the atheroma and then decrease until a value close to 0 s
-1

 in the base 

of the atheroma.  Along the wall of the atheroma, shear rate exhibit a parabolic 

profile the maximum being reached in the top of the atheroma.  As expected, the 

maximum shear rate increase with the increase of stenosis degree, Fig. 5(b). 

 

The impact of the existence of the atheroma along Line 2 is also felt in Line 1 

(Fig. 1), as can be observed in Fig. 6. 
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(a) (b) 

Figure 6: Shear rate along Line 1 (Fig. 1).  (a) Channel C3 for the different rheological 

models.  (b) Carreau model and distinct channels. 

 

Like it was observed for the velocity and shear rate profiles, the pressure fields 

were qualitatively the same for the distinct channels and rheological models, Fig 

7.  

 

 

Figure 7: Pressure distribution (Pa) in the plane z = 0 for channel C3 and Carreau model. 

 

The pressure profile along Line 2 (Fig. 1) is dependent of the used rheological 

model and the pressure drop along the atheroma is much lower when the 

Newtonian behaviour is considered (Fig. 8(a)). 

 

  

(a) (b) 

Figure 8: Pressure along Line 2 (Fig. 1).  (a) Channel C2 and distinct rheological models.  

(b) Power-law model and distinct channels. 
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In Figs. 8(a) and (b) it can also be observed that the pressure reaches a maximum 

in the wall of the atheroma. 

 

In the opposite side of the base of the atheroma, Line 1 (Fig.1), the presence of 

this obstruction is also felt, as can be observed in Fig. 9.  Since the influence of 

the atheroma is much lower along the referred line, the pressure for Newtonian 

fluid exhibits almost a linear behaviour, as the one existent in a cylindrical duct. 

 

  

(a) (b) 

Figure 9: Pressure along Line 1 (Fig. 1).  (a) Channel C2 and distinct rheological models.  

(b) Power-law model and distinct channels. 

4. Concluding Remarks 

In the present work, the influence of rheological properties of blood and stenosis 

degree in the properties of the laminar blood flow in stenosed channels has been 

studied using the commercial finite element code POLYFLOW
®
. The governative 

equations were solved using different constitutive models – Newtonian fluid, 

power-law model and Carreau model. Additionally, different computational 

domains were also analysed. 

 

The impact of the different rheological models in the velocity profiles were 

analysed and it was observed that velocities obtained for the Newtonain fluid 

were slightly different from the ones predicted when the blood was considered a 

non-Newtonian fluid, this tendency being also observed for the shear rate. 

Concerning the pressure profiles, different results were obtained for the distinct 

constitutive equations. 

 

The analysis of pressure and shear rate developed in the wall of the channels 

shown that he maximum shear rates were achieved in the top of the atheroma and 

pressure reaches a maximum in the wall of the atheroma. 
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When the walls of the atheromas are submitted to large pressures, it is possible to 

generate an endothelium disruption and consequently lead to the formation of a 

new thrombus. The numerical results revealed that pressure achieves a maximum 

in the walls of the atheromas, fact that can explain the referred clinical problem. 
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Abstract 

Degradable materials find a wide variety of applications in the 
biomedical field. Degradation, which takes place at molecular 
scale, propagates through the space/time scales and affects the   
global characteristics of the degradable device, such as drug 
release and the overall mechanical behavior.  In this work, a 
bottom-up multiscale analysis is used to model the degradation 
mechanism taking place in poly(lactic acid) (PLA) matrices. The 
macroscale model is based on diffusion-reaction equations for 
hydrolytic polymer degradation whereas the microscale model is 
based on atomistic simulations to predict the water diffusion as a 
function of the polymer matrix degradation and swelling degree. 
The proposed multiscale analysis is capable to predict the time 
evolution time of several properties of the degradable matrix. 
 
Key words: biomaterials, drug delivery, hydrolytic degradation, 
multi-scale modeling. 

 

[1] Introduction 

Biodegradable polymeric materials offer tremendous potential for the 
development of implantable devices and systems for treating disease. Currently, 
biodegradable polymers are used in diverse applications ranging from drug 
delivery devices [1], absorbable sutures [2], orthopedic implants [3], scaffolds for 
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tissue engineered constructs [4], medicated and biodegradable stents [5-7]. If 
applications involve either negligible or well-known design requirements, the 
design of these classes of implants are greatly facilitated. However, if the 
requirements are more complex, as in implants with complex geometries or  under 
conditions that influence the course of degradation and erosion, the design process 
is usually hindered by the lack of rational models of biodegradable material 
behavior [5]. Thus, device designers must rely on a combination of intuition and 
trial-and-error approaches that are time consuming and often fail due to two major 
reasons: (i) the lack of models able to describe the evolution of the material as it 
degrades and erodes, and (ii) the difficulty to collect reliable experimental data 
quantifying and characterizing this behaviour.  
Theoretical models to predict polymer degradation and erosion would seem to be 
important tools for a number of different applications. If drug elution is to be part 
of the therapy, drug delivery profiles should be programmable at the design stage. 
For load bearing implants, mechanical properties and structural integrity of the 
implant as well as their evolution should be accounted for. Because the implant is 
ultimately absorbed, structural breakdown and loss of function must be predicted 
and carefully designed. 
 
The prevailing mechanism of biological degradation for synthetic biodegradable 
aliphatic polyesters (the most commonly employed biodegradable polymers in the 
medical such as polyglycolic acid and polylactic acid [8]) is scission of the 
hydrolytically unstable backbone chain by passive hydrolysis. Erosion is the 
process of dissolution or wearing away of degradation byproducts, resulting in 
mass loss from the polymer bulk. Two main modes of erosion can be 
systematized from widely established empirical evidence [9]. If degradation is 
fast, the diffusing water is absorbed quickly by hydrolysis and is hindered from 
penetrating deep into the polymer bulk. In this case, degradation and consequently 
erosion are restricted to the surface of the polymer, a phenomenon referred to as 
heterogeneous or surface erosion [10]. On the other hand, if degradation is slower 
than the rate of diffusion of water through the polymer, the reaction takes place 
through its entire swollen bulk, a behavior which has been termed homogeneous 
or bulk erosion [10]. Nevertheless, surface or bulk erosion modes are two 
extremes and the erosion of a polymer usually shows characteristics of both.  
 
The authors have introduced a general class of mixture models to study water 
uptake, degradation, erosion, and drug release from degradable polymeric 
matrices [11]. The model is comprehensive starting from individual polymer 
scission reaction all the way up to the macro-scale diffusion, allows for the 
systematic characterization of the mass loss during the erosion process, and 
unifies both bulk and surface extremes of the erosion mode spectrum. The model 
unifies the behaviors of surface and bulk erosion and the nondimensionalization 
of the governing equations allowed the identification of the Thiele modulus, the 
ratio between characteristic timescales of diffusion and reaction, which is a key 
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parameter in conferring the shift between bulk or surface erosion behavior to the 
solution of the equations. This approach would have immediate direct impact in 
the design of biodegradable implants if these phenomenologically derived general 
constitutive behaviors were specifically characterized in regard to particular 
polymeric systems of interest. One possible strategy would be to perform an 
unprecedented series of experiments with the goal of characterizing the diffusivity 
of each constituent (water, drug, monomers, oligomers, etc) in a changing media 
(as the network degrades and erodes). To overcome this unfeasible plan, we have 
developed a coupling between the macroscale of the biodegradable polymer bulk, 
which is governed by the reaction diffusion system, and the microscale of 
chemical reactions and molecular diffusion, which characterizes locally the 
diffusion of constituents in the polymer bulk accordingly to its changing 
microstructure with the aid of atomistic simulations. Atomistic or molecular 
dynamics simulations cannot yet provide further insight into the rates of reactions 
taking place, but on the other hand, have been able to characterize the diffusion 
coefficient of molecules in a polymeric network with success (cf. [12-15]). With 
these new tools, we can provide a well defined data for  the macroscale behavior 
of the polymeric matrix in terms of  local diffusivities of mixture constituents.  
   

[2] Microscale model 

To study how water transport properties of PLA matrices change during the 
degradation process, we generate several atomistic models of PLA, with 
increasing level of water content (modeling the swelling process) and with 
decreasing chain length (resulting from the hydrolysis process). We consider a 
total of 30 different molecular models of PLA matrices, characterized by different 
degree of polymerization (monodisperse systems with 600, 300, 150, 75, 30 and 1 
monomers per chain, respectively) and different degree of swelling (with 2%, 
20%, 40%, 60% and 80% of water). Additionally, we study a system containing 
pure water for validating reasons. In order to obtain water and polymer diffusivity 
by means of an atomistic model of the polymer matrix, we select an ensemble of 
M (water or polymer) molecules in the model and we compute their mean square 
displacement MSD(t). Manipulating Einstein’s formula one easily obtain that for 
sufficiently large times log(6D)+log(t) = log(MSD(t)). Then, the realm of normal 
diffusion (also known as Fickian diffusion) is reached when log(MSD(t)) is a 
linear function of time with unit slope. The validity of this fundamental property 
is equivalent to say that the application of Fick’s law is correct. 

[3] Macroscale model 

We describe a polydisperse polymeric network as a collection of different linear 
chains of repeating units. Each chain is characterized by its degree of 
polymerization, defined as the number of repeating units. Diffusion driven by 
negative density gradients is the driving force for mass transport. An open system 
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is considered as water can penetrates into the polymer matrix from the outside 
aqueous environment and polymeric mass is lost to the exterior. As a result of 
that, we look at the polymer bulk as a mixture of water and polymer chains 
characterize by the partial density of water and each polymer fraction. The mass 
balances for each individual constituent yield the system of reaction-diffusion 
equations constituting the mathematical model. For the present model, hydrolysis 
is the mechanism that drives polymer degradation. The system of equations (for 
which we remand to [11]) is capable to address the following phenomena: (i) 
following in vivo implantation or in vitro submersion, water uptake occurs into 
the initially dry and non-degraded polymeric network through the mechanism of 
diffusion; (ii) as water becomes readily available in the vicinity of the chemical 
bonds, the likelihood of hydrolytic scission increases, leading to an overall 
molecular weight reduction; (iii) smaller chains are progressively produced, 
which are more eager to dissolve and diffuse through the network leading to 
polymer erosion; and finally, (iv) drug release from the polymeric matrix, whose 
material properties change due to degradation and erosion. Constitutive 
relationships for the diffusivities of each constituent and for the reaction rates 
must be specified. The mechanisms of diffusion and reaction are the only physical 
mechanisms that need constitutive specification and once known, the model is 
closed and can be solved. Diffusion depends on the nature of the constituent in 
question and on the local characteristics of the mixture on which is diffusing. a 
simplified characterization of such models will be provided by  atomistic 
simulations of molecular diffusion. Because of  the considerable computational 
cost of this multiscale approach, we limit ourselves to consider a static coupling 
strategy to feed the macroscale model with data provided by microscale 
sumulations. One advantage of the static coupling strategy consists in the fact that 
different calls to the microscale model are independent and thus can be performed 
in parallel on CPU or GPU clusters. By this way, the computational time needed 
for the miscroscale simulations is considerably reduced [16]. 

[4] References 

1. LANGER, R., DRUG DELIVERY AND TARGETING. NATURE, 1998. 392(6679): 
P. 5-10. 

2. LAUFMAN, H. AND T. RUBEL, SYNTHETIC ABSORABLE SUTURES. SURG 

GYNECOL OBSTET, 1977. 145(4): P. 597-608. 
3. PIETRZAK, W.S., D.R. SARVER, AND M.L. VERSTYNEN, BIOABSORBABLE 

POLYMER SCIENCE FOR THE PRACTICING SURGEON. JOURNAL OF 

CRANIOFACIAL SURGERY, 1997. 8(2): P. 87-91. 
4. AGRAWAL, C.M. AND R.B. RAY, BIODEGRADABLE POLYMERIC SCAFFOLDS 

FOR MUSCULOSKELETAL TISSUE ENGINEERING. JOURNAL OF BIOMEDICAL 

MATERIALS RESEARCH, 2001. 55(2): P. 141-150. 
5. SOARES, J.S., BIOABSORBABLE POLYMERIC DRUG-ELUTING 

ENDOVASCULAR STENTS A CLINICAL REVIEW. MINERVA BIOTECNOLOGICA, 
2009. 21(4): P. 217-230. 

@CMMSE                                 Page 1334 of 1703                                 ISBN: 978-84-614-6167-7



COMPUTATIONAL MODELING OF POLYMER BIODEGRADATION 
 

6. FORMAGGIA L. ET AL., MODELING EROSION CONTROLLED DRUG RELEASE 

AND TRANSPORT PHENOMENA IN THE ARTERIAL TISSUE, MATH. MOD. 
METH. APPL. SCI. 2010. 20(10): PP. 1759-1786. 

7. ZUNINO P. , ET AL., NUMERICAL SIMULATION OF DRUG ELUTING CORONARY 

STENTS: MECHANICS, FLUID DYNAMICS AND DRUG RELEASE, COMPUT. 
METHODS APPL. MECH. ENGRG., 2009. 198(45-46): PP. 3633-3644 

8. HAYASHI, T., BIODEGRADABLE POLYMERS FOR BIOMEDICAL USES. 
PROGRESS IN POLYMER SCIENCE, 1994. 19(4): P. 663-702. 

9. VON BURKERSRODA, F., L. SCHEDL, AND A. GOPFERICH, WHY 

DEGRADABLE POLYMERS UNDERGO SURFACE EROSION OR BULK EROSION. 
BIOMATERIALS, 2002. 23(21): P. 4221-4231. 

10. TAMADA, J.A. AND R. LANGER, EROSION KINETICS OF HYDROLYTICALLY 

DEGRADABLE POLYMERS. PROCEEDINGS OF THE NATIONAL ACADEMY OF 

SCIENCES OF THE UNITED STATES OF AMERICA, 1993. 90(2): P. 552-556. 
11. SOARES, J.S. AND P. ZUNINO, A MIXTURE MODEL FOR WATER UPTAKE, 

DEGRADATION, EROSION AND DRUG RELEASE FROM POLYDISPERSE 

POLYMERIC NETWORKS. BIOMATERIALS, 2010. 31(11): P. 3032-3042. 
12.  HOFMANN, D., ET AL., MOLECULAR SIMULATION OF SMALL MOLECULE 

DIFFUSION AND SOLUTION IN DENSE AMORPHOUS POLYSILOXANES AND 

POLYIMIDES. COMPUTATIONAL AND THEORETICAL POLYMER SCIENCE, 
2000. 10(5): P. 419-436. 

13.  TOCCI, E., ET AL., A MOLECULAR SIMULATION STUDY ON GAS DIFFUSION IN 

A DENSE POLY(ETHER-ETHER-KETONE) MEMBRANE. POLYMER, 2001. 42(2): 
P. 521-533. 

14.  GAUTIERI, A., ET AL., COMPUTER-AIDED MOLECULAR MODELING AND 

EXPERIMENTAL VALIDATION OF WATER PERMEABILITY PROPERTIES 

BIOSYNTHETIC MATERIALS. JOURNAL OF COMPUTATIONAL AND 

THEORETICAL NANOSCIENCE, 2010. 7: P. 1-7. 
15.  IONITA, M., ET AL., DIFFUSION OF SMALL MOLECULES IN BIOARTIFICIAL 

MEMBRANES FOR CLINICAL USE: MOLECULAR MODELLING AND 

LABORATORY INVESTIGATION. DESALINATION, 2006. 200(1-3): P. 157-159. 
16.  ZUNINO P. ET AL., MULTISCALE COMPUTATIONAL ANALYSIS OF 

DEGRADABLE POLYMERS MODELLING OF PHYSIOLOGCAL FLOWS, D. 
AMBROSI, A. QUARTERONI, G. ROZZA (EDITORS) SPRINGER SERIES IN 

MODELING, SIMULATION AND APPLICATIONS (MS&A) TO APPEAR, 2011 
 

 

@CMMSE                                 Page 1335 of 1703                                 ISBN: 978-84-614-6167-7



Proceedings of the 11th International Conference 
on Computational and Mathematical Methods 
in Science and Engineering, CMMSE2011 
Benidorm, Spain, 26-30 June 2011  
 

Surface Integral Modelling of Plasmonic  
and High Permittivity Nanostructures 

 

Benjamin Gallinet, Andreas M. Kern  
and Olivier J. F. Martin 

Nanophotonics and Metrology Laboratory, Swiss Federal Institute of 
Technology Lausanne (EPFL), Switzerland 

www.nanophotonics.ch 
 

emails: benjamin.gallinet@epfl.ch, olivier.martin@epfl.ch 
 

Abstract 

A surface integral formulation for modelling the optical 
properties of plasmonic and high permittivity nanostructures is 
presented. Applications include the engineering of fluorescence 
or Raman scattering enhancement, photonic crystals, plasmonic 
nanostructures and metamaterials. 
 
Key words: surface integral equations, method of moments, 
plasmons, nanoantenna, Fano resonances 

 
Among the wide variety of computational methods for electromagnetic scattering, 
the surface integral equation (SIE) method combines the advantages of finite 
elements (flexible discretization, accuracy of the model) with those of integral 
methods (excitation field and open boundary conditions explicitly included in the 
equations). The SIE method is widely used in microwave studies but rarely in 
optics. We have developed a SIE formulation based on method of moments for 
the simulations of three-dimensional plasmonic and high permittivity 
nanostructures [1,2]. The occurring integrals and their singularity can be solved 
quasi-analytically, enabling the accurate determination of rapidly varying fields, 
even arbitrarily close to a scatterer. 
 
As the surface of an object scales with only the second power of its lateral 
dimension, this approach bears advantages for especially large problems but also 
for rounded or irregular objects as surface discretization techniques proves 
extremely flexible. This allows for the investigation of the effect of fabrication 
accuracy and material inhomogeneity on the optical response of the 
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nanostructures. For certain applications, such as plasmon-enhanced fluorescence 
or Raman scattering, choosing a realistic simulation geometry closely resembling 
the actual nanostructure is imperative. For instance, the optical response of two 
plasmonic nanoantennae, one with an idealized geometry and the other 
realistically shaped, has been investigated using the SIE method (Figure 1). While 
the far-field shows a similar response for both geometries, the near-field 
properties of the two structures are distinctly different [3]. In another application, 
the electric field enhancement in a random array of vertically aligned, multi-
walled silver-coated carbon nanotubes has been studied in the context of surface-
enhanced Raman scattering (SERS) [4], revealing different types of “hot-spot” 
associated with the metal inhomogeneities.

 
Figure 1: (a) Comparison between (top) an idealized plasmonic nanoantenna and 

(bottom) a realistic nanoantenna derived from a SEM image [3]. 
 

The SIE method has further been developed for periodic nanostructures [5]. This 
requires the evaluation of the periodic Green’s function that can be efficiently 
performed with Ewald’s method, and the explicit implementation of periodic 
boundary conditions at the edges of the unit cell. A large variety of geometries 
can be simulated this way (Figure 2), including photonic crystals, metamaterials, 
double periodic structures on subtrates or plasmonic nanostructures [5,6]. 
 
Both the optical near-field and far-field response of these systems can be 
calculated accurately. This fact becomes of particular importance in the study of 
experimentally relevant nanophotonic systems, such as those that exhibit 
asymmetric Fano resonances, which are characterized by a very strong field 
enhancement in the vicinity of the nanostructure and sharp variations of the 
optical spectrum in the far-field. Fano resonances are currently the subject of 
considerable research efforts in photonics and plasmonics [7]. We have recently 
derived an electromagnetic theory of Fano resonances in plasmonic 
nanostructures and metamaterials [8]. The influence of electromagnetic 
interactions onto the resonance line shape is revealed by our analytical theory and 
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verified by numerical calculations with the SIE method for a broad variety of 
plasmonic nanostructures. 
 
 

Figure 2: Applications of surface integral method for periodic nanostructures 
include photonic crystals, plasmonics and metamaterials. 
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Abstract 

Along this paper we are going to highlight some aspects about 

two different methods to obtain some geometric parameters of 

surfaces measured with laser scanner, by calculating such 

parameters using the plane adjust and the inertia moment 

assignation. The possible different shapes of such point clouds 

have its own response to the geometric parameters, so we can 

distinguish between shapes using those parameters.  

 

Key words: automatic, extraction, laser scanner, geometry, 

method, plane, inertia, moment 

 

1. Introduction 

Actually, in the process of 3D modelling of buildings, the longest task is to 

determine and create the break lines of each shape. Usually, within the software 

suite of the laser scanner there is a tool which implements some algorithms and 

techniques to obtain such lines, however, the quality of those automatic process 

usually is not as good as required, so finally it has to be done manually by expert 

technicians. Furthermore, the laser scanner point clouds have its own accidental 

errors and accumulate the errors from the registration process, so usually, we 

cannot create a line perfectly straight to define a corner using those automatic 
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(1) 

tools.  The final users prefer to “draw” the corner break line themselves, so we 

will classify which points are break lines and give them an attribute (for example 

a RGB color) in order to distinguish from the non break line points. This way, the 

user will notice fast and easy which ones are the candidate points and it will 

facilitate their task a lot. Actually there are some interesting papers about object 

recognition techniques
1
, for different kinds of objects like feet [1] or the same 

way than us, “simple” surfaces [2] and [3]. The main difference between these 

techniques and our technique is the mathematical principle in which is based on. 

2. Process 

We start from a text file, which has 7 columns (X, Y, Z, Intensity, Red, Green, 

Blue)
2
 of each point measured and registered, but the order within this file is 

chaotic because they are grouped based on its source scan station and it makes 

that these points are consecutively stored in the file. So we have to reorder them. 

To put the points in order and optimize the processing time we will rearrange the 

point clouds in cubes, sequentially, to make closer points between them be stored 

in closer rows, so the search algorithms which are needed find the points faster 

and reduces the computational charge. There are also other available methods, 

like the octree-based 3D-grid used in [4]. 

2.1 Adjusting planes 

To adjust a plane firstly we create the matrix equation system for n points where 

the (a
-1

, b
-1

, c
-1

) is the perpendicular vector for the near points within the cube. 

These sets are all the points contained into a cube. Sequentially the algorithm 

searches inside the cube and tries to adjust a plane using Least Squares (1), 

storing the parameters of the calculated plane and also the statistics. 
 

  (   )      
 

Once the matrix equation system is solved we get the parameters which define the 

plane (a, b, c), and also we can get the variance estimator after the plane 

adjustment. 

2.2 Calculating the inertia moments 

The second way consists in obtaining the matrix of the inertia moments (2) for 

each point based on the neighbour points. In first place we will obtain the location 

of the mass centre and the inertia matrix. Then, we will diagonalize it, obtaining 

the eigenvalues and eigenvectors. The eigenvalues are the solutions to the third 

degree equation (3). The three solutions λ1, λ2, λ3 are (4). 

                                                 
1
 We can get a global overview of such techniques in the R. J. Campbell and P. J. Flynn paper [5]. 

2
 These Received intensity and RGB colors are provided by the laser scanner, which usually has 

calibration errors and therefore, we cannot use them in the break line discrimination process. 
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(2) 

(3) 

(4) 
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Where a, b, c and d in (3) are obtained from I, and   is any of the eigenvalues. 
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Those three values (λ1, λ2, λ3) after the diagonalization represent the inertia 

moments in the main axis directions, in a diagonal matrix with null cross 

moments. This diagonal is also ordered from highest to lowest moment, so we 

store these moments as another descriptor parameter for the geometry of the point 

cloud. 

3. Conclusions 

To determine if the point belongs to a plane wall or a corner we can use two 

strategies. The first one is to compare the laser scanner precision and the variance 

estimator after the plane adjustment in Least Squares. Establishing a threshold 

value to determine if the plane does not fit enough to the point set (the variance is 

bigger than the expected) and therefore the point cloud belongs to a corner. For a 

set of 49 points and a laser scanner with 6mm of precision if we are measuring a 

wall (plane) we expect σ values smaller than 0.0007mm. 

The second one is analyzing the dimensions of the neighbour set points, 

projecting its components on the eigenvector axis, obtaining coordinate 

increments (dx, dy, dz) in the particular system defined by the eigenvectors 
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(5) 

calculated. Once determined the spatial extension of our data set we make the 

inertia moments independent of the size of the point cloud, by normalizing the 

module of the moment using the dimensions and the number of points in the 

sample (5). 

        
   

          
 

 

Experimental tests point out it is not recommended to calculate these parameters 

with samples smaller than 5x5cm in X and Y because the reliability declines. 

As a result of the nature of the inertia moment we will use the minimum moment 

(the perpendicular to the plane one) to determine, if it is bigger than the expected, 

that this points set belongs to a corner, if this value is small then it will be a plane. 

Future investigation branches are use moments of superior order to recognize 

more complicated geometries. 
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Abstract 

In this paper the extension of the generalized finite difference (GFD) method 
to the solution of anisotropic elliptical and parabolic partial differential 
equations is given in the case of considering two space dimensions. The 
explicit finite difference formulae and the criterion of stability for the 
anisotropic parabolic equations are given. This has been expressed in 
function of the coefficients of the star equation for irregular clouds of nodes. 
 Various anisotropic cases of simulation of cardiac tissue, including elliptic 
and parabolic equations have been solved and the results show the accuracy 
of the method. 

 
Key words: generalized finite difference, anisotropic, 
simulation, tissue 
MSC2000: AMS Codes (optional) 
 

1. Introduction 

 

@CMMSE                                 Page 1344 of 1703                                 ISBN: 978-84-614-6167-7

mailto:lucia.gavete@urjc.es
mailto:franvipa@hotmail.com
mailto:lu.gavete@upm.es
mailto:francisco.urena@uclm.es
mailto:jbenito@ind.uned.es


SOLVING ANISOTROPIC ELLIPTIC AND PARABOLIC  EQUATIONS  BY A MESHLESS  METHOD 
 

An evolution of the method of finite differences has been the development of 

generalized finite difference (GFD) method that can be applied to irregular grids 

or clouds of points. Lizska and Orkisz [1,2] proposed a generalized finite 

difference method on irregular grids. Their solution was obtained using moving 

least squares (MLS) approximation.  

Benito, Ureña and Gavete have made interesting contributions to the development 

of this method. The paper [3] shows explicit formulae for Generalized Finite 

Difference Method (GFDM) using irregular grids and the influence of parameters 

that define them. In the paper [4] a procedure is given that can easily assure the 

quality of numerical results by obtaining the residual at each point. Also, in [4], 

the GFD method is compared with another meshless method the, so-called, 

element free Galerkin method (EFG). The possibility of employing the GFD 

method over adaptive clouds of points progressively increasing the number of 

nodes is studied in [5,6]. In [7] the extension of the generalized finite difference 

method to the explicit solution of parabolic and hyperbolic equations is given.  

In this paper the GFDM is applied for modelling electrical anisotropy of 
cardiac tissues. Two different anisotropic equations elliptic and parabolic are 
solved and the results have been compared with analytical solutions. Section 2 
introduces the GFDM. In section 3 a case of anisotropic elliptic equation is 
solved. In Section 4 is studied the stability for the anisotropic parabolic equation. 
In Section 5 a case of anisotropic parabolic equation is solved to illustrate the 
application of the numerical explicit generalized finite difference scheme. Finally, 
in Section 6 some conclusions are given. 
 

2. The Generalized Finite Difference Method  

The intention is to obtain explicit linear expressions for the approximation of 

partial derivatives in the points of the domain to be introduced in a partial 

differential equation defined as: 

 L2[U] = f  in   (1)     

with the boundary conditions: 

 L1[U] = g in   (2)  

where   R
2
  with boundary , L2  and  L1 are linear partial differential second 

and first order operators respectively, f and g are two known functions. 

Firstly, an irregular cloud of points is generated in  . On defining the central 
node with a set of nodes surrounding that node, the star then refers to a group of 
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established nodes in relation to a central node. Each node in the domain is 
assigned an associated star.  
As star selection criterium we follow the denominated cross criterium: for 
example, in 2-D case the area around the central nodal point, 0, is divided into 
four sectors corresponding to quadrants of the cartesian coordinates system 
originating at the central node (see Fig. 1).  Each of its semi axes is assigned to 
one of these quadrants.  In each sector two or more nodes are selected, the closest 
to the origin. If this is not possible, e.g., at the boundary, missing nodes can be 
supplemented to provide the total number of nodes necessary in each star.  

y

x

  

Figure 1.  The four quadrants criterium, using 2 nodes in each quadrant. 

If U0 is the value of the function at the central node of the star and Ui are the 

function values at the rest of nodes, with i = 1,..., N, then, according to the Taylor 

series expansion in 2-D  

 

2 2 2
2 20 0 0 0 0

i 0 i i i i i i2 2

U U U U U1
U U h k h k 2h k ..

x y 2 x y x y

     
       

      
 

 (3)                              

where (x0, y0)  are the coordinates of the central node, (xi, yi) are the coordinates 
of the i

th
 node in the star, and hi = xi –x0, ki = yi – y0. 

If in equation (3) are ignored the terms over the second order, an approximation 
of second order for the Ui function is obtained. This is indicated as ui. It is then 
possible to define the function B5(u) as  

    

2
22

0 0 0i
0 i i i 2N

5 i i2 22
i 1 0 0i

i i2

u u uh
u u h k

x y 2 x
B u w h ,k

u uk
h k

2 y x y



    
     

    
   
   

     

  (4) 

where w(hi ,ki) are the weighting functions. 
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If the norm (4) is minimized with respect to the partial derivatives, the following 
linear equation system is obtained: 
 A5 Du5 = b5  (5) 

The matrix  A5  is of  5x5, and the vector  Du5  is given, by: 

 

T
2 2 2

0 0 0 0 0

2 2

u u u u u
, , , ,

x y x y x y

     
  

      
u5

D

 

 (6) 

From the previously obtained matrix equation (5) and by the fact that the matrix 
of coefficients A5 is symmetrical, it is possible to use the Cholesky method to 
solve the system. The aim is to obtain the decomposition in upper and lower 
triangular matrices: 

 A5 = L5 L5
T 

   (7)           

The coefficients of the matrix L5 , are denoted by  l(i,j) . 

On solving the system (5), the following explicit difference formulae are obtained 

   
 

   
N N 5

0 i j ji

i 1 j 1 i 1

1
k u M k,i c u M k,i d (k 1,...,5)

l k,k   

  
     

  
  uD

   

(8)  

                     
 

   ij

i 1
1

k j

1
M i, j 1 l i,k M k, j

l i, i






      with  j < i  (i, j =1…,5) 

                   
 
1

M i, j
l i, i

                                           with  j < i  (i, j =1…,5) 

                   M i, j 0                                                 with  j < i  (i, j =1…,5) 

with ij the Kronecker delta function, and 

2 2N
j j2 2 2 2 2

i ji j1 j j2 j j3 j4 j5 j j

j 1

h k
c d ,d h w ,d k w ,d w ,d w ,d h k w

2 2

       

where 

 
  

22

i iw w h ,k
 

 (9)  

On including the explicit expressions for the values of the partial derivatives (8) 

in the equations (1) and (2), the star equation is obtained:  

 

N

2 0 0 j j 0

j 1

L (u) m u m u f


   
 

 (10)  
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If the partial differential equations coefficients are constant and f = 0, then: 

 

N N

0 i i i 0

i 1 i 10

1
u m u , m m

m  

  
 

 (11)  

The application of the above procedure to each one of the nodes of the mesh, 
gives us a system of linear equations. On solving this system of equations we are 
provided with approximated values of the function in the nodes of the domain. 
 
 
 

3. Numerical results anisotropic elliptic equation 

 
A dominant operator in the monodomain and  bidomain equations is the 
anisotropic Laplacian operator. To test the GFD method, solutions to the 
following anisotropic Laplace equation 
 

 

2 2 2

2 2

U U U
0

x x y y

  
    
     

(12) 

 
were considered with  anisotropic conductivity tensor, on an annular domain with 
interior radius 5 mm and exterior radius 10 mm. An analytic solution to this 
equation on an infinite domain can be derived [8]. For the purpose of testing, 
according [8] the solution was modified by the addition of constants to represent 
approximately physiological ranges of transmembrane potentials in a cardiac 
tissue. The solution was 
 
 
                                                        (13)                                        
 
 
 
 

being k a constant  and , / 2,    the conductivities of the anisotropic tensor. Two 

different cases were considered corresponding both to conductivities of 0.5 and 
0.1 in the fiber and cross-fiber directions respectively. The difference between the 
two cases is the fiber angle considered: first case with a fiber angle of 45º, and 
second case with a fiber angle of 60º. In each case we calculate two different 
models with 160 and 576 nodes.  
The iso-potentials of the analytic solutions within the annular region for the two 
anisotropic cases (45º and 60º) with 576 nodes are shown in Fig. 2 and 3. 
Neumann homogeneous boundary conditions have been used. 

1 0.3y0.3x

2

2

1 2

U(x, y) 5e e cos( 0.3y) k

( / 2)
   ,   

2


  

  
   

 
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       Figure 2: Iso-potentials for the 45º case.                             Figure 3: Iso-potentials for the 60º case. 

 
 
The global relative error was calculated at all the internal points using 
                                                                                                                                                                                                                                                                                      

(14) 
 

 

where f can be u, u/x,u/y, the superscripts (e) and (n) refer to the exact and 

numerical solutions, respectively, and NN is the total number of nodes. In the 

following figures 4 and 5 are shown the errors obtained for the first derivatives 

with the models of 160 and 576 nodes. 

 

   

0

0,5

1

1,5

2

2,5

160 576

number of nodes

%
 e

rr
o

r

x-derivative
y-derivative

0

0,5

1

1,5

2

2,5

160 576

number of nodes

%
 e

rr
o

r

x-derivative
y-derivative

0

0,5

1

1,5

2

2,5

160 576

number of nodes

%
 e

rr
o

r

x-derivative
y-derivative

0

0,5

1

1,5

2

2,5

160 576

number of nodes

%
 e

rr
o

r

x-derivative
y-derivative

 
             Figure 4: % Error for the 45º case.                                Figure 5: % Error for the 60º case. 
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4. Anisotropic parabolic equation 

 
The equation considered in this case is: 

 

2 2 2

2 2

U U U U

t x x y y

   
    

    
  (15)  

with initial condition 

 
   U x,0 f x

 
 (16)   

and boundary conditions 

  U g x, t in 
 

               (17)  

being    f x , g x, t   two known functions and x x, y . 

The first derivative of U with respect to time is approached using the explicit 
method by the forward difference formula 

 
n 1 n

0 0u uU

t t

 


 
 (18) 

and the spatial derivatives  

 
2 2 2N N N

n n n n n n

0 0 j j 0 0 j j 0 0 j j2 2
j 1 j 1 j 1

U U U
a u a u ; b u b u ; c u c u

x x y y  

  
        

   
   (19) 

Substituting (18) and (19) into (15), we obtain 

 
n 1 n N

n n0 0
0 0 j j

j 1

u u
m u m u

t






  


  (20) 

where 

0 0 0 0 j j j jm a b c ;m a b c           

with 

  
N

0 j

j 1

m m


  (21) 

The equation (20) can be written as 

 

 
N

n 1 n n

0 0 0 i i

i 1

u u 1 m t t m u



 
     

 


 

 (22)  
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The expression (22) relates the value of the function at the central node of the star, 

in time 1n , with the values of the functions in the nodes of the star, for a time 

n , multiplied by specific coefficients. This then indicates that by way of the so-

called "explicit method", the value of the function in a time 1n  is a weighting 

sum of the values of the function in the star for a time n . 

For the stability analysis a harmonic decomposition is made of the approximate 
solution at grid points at a given time level. Then, by following the von Neumann 
idea for stability analysis, we can write that the finite difference approximation in 
the central node at time n, may be expressed as 

 
Ti xn n 0

0u e


   (23)  

and the finite difference approximation in the other nodes of the star 

  
Ti xn n 0

ju e


   (24)  

where   is the column vector of the wave number, x
 
is the vector of coordinates 

of central node of star and jx  is the vector of coordinates of the other nodes of 

star, being: 

  
j 0 jx x h   (25)  

then 
jh  are the relative coordinates between the nodes of star and the central 

node.  

On the other hand,   is called the amplification factor and it is in general a 

complex constant. If this amplification factor has a modulus greater than unity 

 1  the method is unstable. 

Substituting (23) and (24) into (22), we obtain 

 
           

N TT T i xi x i x k jn 1 n nk 0 k 0
0 j

j 1

e e (1 tm ) t m e
 



       (26) 

Using (21), cancellation of  
Ti xn 0e


  ,leads to 

  
N Ti h j

0 j

j 1

1 tm t m e




      (27)     

The complex ξ, is 

 
N N

T T

j j j j

j 1 j 1

1 t m (1 cos( h )) t m sin( h )
 

         (28) 
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The real part of complex ξ 

 

N
T

j j

j 1

TN
j2

j

j 1

TN
0j2

j

j 1

1 1 t m (1 cos( h )) 1

h
0 2 t m sin 2

2

1 1
0 t 0 t

mh
m sin

2







     

 
     

 

       
 
  
 







 (29) 

The imaginary part of complex ξ 

 

N
T

j j

j 1

N
T

j j

j 1 0

0 t m sin( h ) 1

1
0 t m sin( h ) 1 0 t

m





    

       





 (30) 

If we consider now the condition for stability 

 
2

1   (31) 

 

2 2
N N

T T

j j j j

j 1 j 1

2
N

T

j j

j 1

N N
T T

j j j j

j 1 j 1

2 TN N
jT 2

j j j

j 1 j 1

1 t m (1 cos( h )) t m sin( h ) 1

t m sin( h )

t m (1 cos( h )) 2 t m (1 cos( h ))

h 1
0 t m sin( h ) 2 m sin

2 2

 



 

 

   
           

   

 
    

 

 
      
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 


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 

 
2
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0

1
0 t m m 0 t

m



       

 (32) 
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The stability of a linear difference scheme comes very close to insuring that 

computations with the proposed scheme are practical. More precisely, what we 

are assured is that the stable linear generalized finite difference equations have a 

unique solution and that the growth of roundoff errors is bounded. In this case, the 

scheme has convergent approximate solutions. 

 

5. Numerical results anisotropic parabolic equation 

 
A dominant operator in the monodomain and  bidomain equations is the 
anisotropic coefficients parabolic operator. To test the GFD method, solutions to 
the following anisotropic parabolic equation: 
 

 

2 2 2

2 2

U U U U

t x x y y

   
    

      

 (33) 

were considered with anisotropic conductivity tensor, on an irregular domain as 
given in Fig. 6. An analytic solution to this equation is given in this paper. The 
analytical solution is 
 
 

                                                                                                                                                              
(34) 

 
 
 
 

being , / 2,    the conductivities of the anisotropic tensor.  

We consider the case of the irregular model with 289 nodes given in Fig. 6, 
corresponding to anisotropic material with conductivities of 0.5 and 0.1 in the 
fiber and cross-fiber directions respectively with a fiber angle of 45º. Dirichlet 
boundary conditions have been used. The iso-potentials of the analytic solutions 
within the domain after 1000 time steps are shown also in Fig. 6. 
 In Fig. 7  we can see the % error of the function u according with formula (14) 
versus the number of time steps. The time step has been taken according with the 
stability condition given previously in (32). 
  

2A t

4

2 2 2

U(x, y, t) e sen ( x x y y)
2

A (2 ) ( 2 )

 


       

               
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Figure 6: Iso-potentials of u for the model with a fiber angle of 45º after 1000 time steps. 
 
 

 
Figure 7: % Error of the function u versus the number of time steps (1000 time steps). 
 
 

6. Conclusions 

The dominant operators in the monodomain and bidomain equations are the 
corresponding to Laplace and Parabolic equations with anisotropic conductivity 
tensor. In this paper we have presented a generalized finite difference method for 
solving elliptic and parabolic equations in anisotropic medium. A new case of 
analytical solution for homogeneous parabolic anisotropic equation has been 
presented. Anisotropic elliptic and parabolic equations have been solved. For 
parabolic equations an explicit generalized finite difference method has been 
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applied. The results obtained show the high accuracy and flexibility of the 
method. 
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The huge variety and complexity of problems that arise in nanoscience lead to a 
plethora of computational methods being employed to model these problems.  At 
the most fundamental level, microscopic solutions to the time-independent and 

time-dependent Schrödinger equation are employed to get an idea of the 
dynamics of electrons and nuclei, although the large number of atoms in 
nanosystems generally precludes a full quantum mechanical treatment.  At 
the continuum level, microscopic features are averaged away and 
computational fluid dynamics and electrodynamics are used to describe 
macroscopic fields interacting with various nanostructures.  Sometimes it 
suffices for one level of theory to simply feed into another, e.g. quantum 
mechanics can be used to estimate potentials of interaction that are 
employed in larger scale classical molecular dynamics simulations.   However 
it is also the case that there can be problems that are fundamentally 
multiscale in character, requiring some parts of the system to be treated at 
one level of theory and other parts at a different level.  In this talk I give 
examples of all these scenarios that I draw on from my own research on 
nanoconfined chemistry and nanophotonics. These examples show the 
challenging character of modeling nanoscience problems and also illustrate 
some of the fascinating physical phenomena that can emerge. 
 As a first example, I discuss how nanoscale confinement can lead to 
interesting chemical and transport effects using numerical solution of the 
time-dependent and time-independent Schrödinger equations [1-3].  The 
gas-phase chemical reaction D + H2   HD + H  is perhaps the simplest of all 
chemical reactions and plays a fundamental role chemical rate theory.  What 
happens if the reactants are confined to move within a carbon nanotube 
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(CNT)?  Employing a quantum based potential model for the D-H2 system,  
and an empirical model for carbon-hydrogen interactions, the time-
dependent Schrödinger equation was solved to obtain reaction probabilities.  
A mixture of discrete grids and basis functions are used to represent the 
wave function, and a symplectic integrator adapted for solving the time-
dependent Schrödinger equation is employed. It is found that confinement 
can significantly enhance reaction probabilities and lower energetic 
thresholds, thus suggesting that CNTs can act as nanocatalysts [1].  It is also 
the case that CNTs and nanoporous carbon structures in general might allow 
one to separate isotopes of molecular hydrogen [2, 3].   The heavier mass of 
D2 relative to H2 leads to a much higher density of states associated with D2 
confined to CNTs than H2.  By determining the allowed quantum mechanical 
energy levels using a Lanczos iterative solution of the relevant time-
independent Schrödinger equation, partition functions are constructed that 
allow estimates of both equilibrium and kinetic properties, affirming the 
possible utility of CNTs as vehicles for isotope separation.  The effect, 
however, is significant only at relatively low (< 100K) temperatures. 
 In my second example,  I consider light interacting with thin silver 
films that have periodic arrays of slits etched in them [3].  This work involves 
numerically solving the time-dependent form of Maxwell’s equations with a 
system defined by materials with various frequency-dependent, complex 
dielectric constants. It is averaging over many quantum mechanical energy 
levels that lead to the dielectric constant.  (In practice, empirically inferred 
bulk dielectric constant values are frequently used.) The base simulation 
method employed is the finite-difference time-domain (FDTD) method, 
which involves representing the electric and magnetic fields on interwoven 
grids and a leapfrog discrete time propagation.  Nanostructures such as the 
silver slit arrays are relevant to chemical sensing and a figure of merit (FOM) 
relevant to the performance of such a sensor is the near field electric field 
intensity.  The general problem is to vary a variety of parameters 
characterizing the system (e.g., film thickness, nature of substrate, slit width) 
and find those values that maximize the FOM.  Since the FDTD calculations 
can be very time consuming,   the Gaussian process model  was used, wherein 
a “small” number of evaluations of the expensive “function” (an FDTD 
simulation) is used to construct a cheap surrogate function (a Gaussian 
stochastic process) and the FOM was optimized.  The role of surface plasmon 
excitations, which manifest themselves as evanescent surface waves in the 
simulations, is discussed. 
 My third and final example concerns light interactions with hybrid 
systems composed of metallic nanostructures and semiconductor quantum 
dots (QDs) such as those that can be synthesized from Cadmium and 
Selenium. QDs are large (nanometer scale) relative to molecules, but have 
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discrete electronic energy levels 
that can be adjusted depending 
on how they are synthesized.  
The interaction of QDs with, 
say, metal nanoparticles  
(MNPs) while the system is 
exposed to light can lead to a 
variety of fascinating 
phenomena.   There are several 
ways of describing such 
problems [5, 6].  At the simplest 
level, the QD is assumed to be 
absorbing the light of one 
frequency and then emitting 
(fluorescing) it at another  
frequency.  The ordinary FDTD 
method can be used for such a 
calculation, with the QD being 
replaced by a radiating dipole.  
This approach is used to study a 
QD placed near a small array of 
gold bipyramidal MNPs [5].  In 
particular, the QD can excite 
“dark” plasmons, i.e. surface 
plasmons that cannot be excited 
with ordinary light.  It is also possible for QDs to have the opposite effect, i.e. 
to lead to a transparency or a spectral region where the MNP system does 
not absorb or scatter light [6].  For this to occur it is necessary to allow the 
QD to absorb light energy, something that the simple dipole model does not 
include.  This is accomplished by describing the region of space occupied by 
the QD as a polarizable medium and again carrying out ordinary FDTD 
calculations.  Figure 1 illustrates a result when a QD is placed between two 
ellipsoidal silver nanoparticles.  Of course a more correct description of the 
QD is as a microscopic object satisfying quantum mechanical equations of 
motion and interacting with the electromagnetic fields.  One way of 
accomplishing this is to combine Maxwell’s equations with the quantum 
mechanical equation of motion for the density matrix.  This approach leads to 
the Maxwell-Bloch equations, wherein the density matrix equation involves a 
time-dependent, semiclassical dipole-electric field coupling term, with the 
electric field coming from Maxwell’s equations. Maxwell’s equations, in turn, 
have an additional current density term arising from the density matrix.  The 
Maxwell-Bloch equations are implemented within the FDTD framework and 

 
Figure 1. Schematic picture of a quantum 
dot placed between two silver MNPs and the 
calculated extinction cross section as a 
function of photon energy. The MNPs are 
40nm long and 10nm wide, and the QD is 
taken to be spherical with a diameter of 4nm. 
Unconnected light green symbols correspond 
to the extinction in the absence of the 
quantum dot, dark black symbols correspond 
to the full system, and the red curve is the 
result of a two-oscillator analytical model 
developed in [6] to analyze the numerical 

results. 
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the QD-induced transparency is shown to also occur in the low-field limit, 
validating the previous calculations.  However, as the field strength is 
increased into the strong field (Rabi flopping) regime, the transparency effect 
is quenched [7]. 
 
 
 
 
 
 
 
 
Use of the Center for Nanoscale Materials was supported by the U. S. Department 
of Energy, Office of Science, Office of Basic Energy Sciences, under Contract 
No. DE-AC02-06CH11357. 
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Abstract 

A predicting approach of long-term storage capacity for 

autonomous PV installations has been developed using the 

rescaled range analysis. The method consists mainly in 

establishing a mathematical law between the        ratio and 

the time period  . The method has been tested over one year for 

a PV system located in Tahifet at the huge desert of Algeria. 

Data used are converted solar energy which are not stationary. 

The experimental results show that even if the condition of 

stationarity is not satisfied, the rescaled range is well described 

by a power function of the time, this is possible by introducing a 

new exponent E. Using the power law the PV storage capacity is 

predicted for periods ranging from 1 to 5 years.      

 

Key words: solar irradiation, photovoltaic storage, fractal, 

Hurst, rescaled range analysis, prediction 

 

1.   Introduction 

The use of solar energy especially the photovoltaic one is of great interest to many 

applications, but the discontinuous supply of energy is in general not tolerable. In 

fact, a fundamental characteristic of a photovoltaic system is that power is 

produced only while sunlight is available.  

 

For systems in which the photovoltaic is the sole generation source, it is necessary 

to employ energy storage systems to provide a reliable energy source to 

consumers. In any photovoltaic system that includes batteries, the batteries 
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become a central component of the overall system which significantly affect the 

cost, maintenance requirements, reliability, and design of the photovoltaic system.  

 

Because of large impact of the storage system in a stand-alone photovoltaic 

system, the storage sizing is one of the important questions investigated to 

improve the efficiency of the operation of photovoltaic systems and reduce their 

costs. 

 

Several approaches have been established in order to find the best way for sizing 

the storage capacity for autonomous PV systems [1-3]. In this paper a new 

approach for predicting the long-term photovoltaic storage is presented. The 

approach is based on the statistical method: the rescaled range analysis (R/S 

analysis). 

  

2.  Rescaled range analysis and Hurst exponent 

R/S analysis was established by Hurst in 1951 and the same was further 

developed by Mandelbrot and Van Ness (1968). Hurst was a hydrologist and 

worked on the Nile River Dam project for about 40 years during the early years of 

the last century. He spent a lifetime studying the Nile and the problems related to 

water storage. He invented a new statistical method - the rescaled range analysis 

(R/S analysis) - which he described in detail in an interesting book [4].  

 

He tried to find out the ideal features for reservoir design. An ideal reservoir 

should discharge certain amount of water every year and should never overflow. 

However, the inflow of the reservoir varies due to changes in the climatic 

conditions. If the inflow of the reservoir is too low then releasing fixed amount of 

water will make reservoir dry. Thus, he was confounded with the problem of 

fixing the water discharge policy, such that the reservoir will never be emptied 

nor it will overflow [5]. In developing such a model, Hurst studied the inflow of 

water from rainfall. He measured how reservoir level rises and falls around its 

average and recorded range of the variations. 

 

The description of the rescaled range statistic given in the following borrows 

heavily from Jens Feder's book Fractals [6]. 

 

In any given year, t, the ideal reservoir will accept the influx      from the Lake 

(Lake Albert taken as an example by Hurst), and a volume per year (discharge), 

    , will be released from the reservoir. The average influx over the time period 

of  years is: 
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Let      be the accumulated departure of the influx      from the mean     : 

 

                   

 

   

              

 

The difference between the maximum and the minimum accumulated influx   

over the time period  is the range     . This range represents the storage 

capacity required to maintain the mean discharge throughout the period. Thus, for 

an ideal reservoir,   represents the difference between the maximum and 

minimum amounts of water contained in the reservoir. The expression of   is: 

 

        
     

          
     

       

 

This is illustrated in figure 1 where the range   for the lake Albert is calculated 

for the first 30 years. 

 

 

 
 
Fig. 1. Lake Albert accumulated departures from the mean discharge      for the first 30 

years. The range is indicated by R. [6] 

 

(1) 

(2) 

(3) 
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Clearly, we note that the range R depends on the time period  considered and it 

increases with increasing . 
 

In order to compare observed ranges of various phenomena, Hurst used the 

rescaled range     which is a dimensionless ratio, it is obtained by dividing the 

range      by the standard deviation      defined by: 

 

   
 

 
             
 

   

 

 

For large  the mean value of        ratio is a power function of  : 
 

             

 
where a is a constant and H is the Hurst exponent. H can be estimated as the slop 

of the log/log plot of         vs. τ by using least-squares estimation:  

 

                          
 

The Hurst exponent taking values from 0 to 1 allows the measure of the time 

series persistence. When H = 1/2 the process does not possess long memory (has 

independent increments), a value 1/2 < H < 1 means that the process is persistent 

(positive dependent), 0 < H < 1/2 means antipersistency (negative dependent) of 

the process.  

 

3. Application of the R/S analysis to sizing and predicting a PV 

storage 

3.1.  Application to sizing  

The storage sizing method proposed in this paper is based on the R/S analysis 

described above. In this method the PV storage (batteries) is assimilated to the 

water reservoir studied by Hurst. Hence, the determination of the ideal PV storage 

capacity size requires the estimation of the energy deficit which represents the 

difference between solar radiation input and energy demand on long-term period. 

 

For a given day, d, the PV installation will accept a global irradiation I(d), the PV 

generator will then convert this energy in Eg(d) according to equation below: 

 

(4) 

(5) 

(6) 
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In this relation, S is the PV generator area, (d) is the daily efficiency of the PV 

generator. 

 

The energy supplied by the installation to the load is assumed to be the mean 

converted energy       for the studied period . It is expressed as: 

 

      
 

 
      

 

   

 

 

The accumulated difference between the converted energy and the energy demand 

for  days is expressed as: 

 

                     

 

   

 

 

The difference between the maximum and the minimum accumulated energy 

       is the range R() which can be identified to the maximum size of PV 

energy storage. 

 

        
     

          
     

       

 

3.2. Application to predicting  

According to the Hurst empirical law equation (Eq.5) we can take the logarithm 

of both the sides of the equation, we then obtain: 

 

                        
 

Using the least-squares estimation to fit Eq. (11) we obtain the estimation values 

of H and a. Knowing these parameters, one can predict the possible future value 

of the adjusted range        for any period n.  

 

To estimate the range      the adjusted range must be multiplied by the standard 

deviation     . This later is taken to be equal to the greatest value of S over the 

period  . 

 

 

(8) 

(9) 

(10) 

(11) 

(7) 

@CMMSE                                 Page 1364 of 1703                                 ISBN: 978-84-614-6167-7



A NEW PREDICTING METHOD FOR LONG-TERM PV STORAGE USING RRA 

 

4. Implementation 

4.1. Data description  

The data used to implement this method are daily global irradiation I(d) recorded 

during the year 1992 on a tilted surface (10°) in Tahifet located in the south of 

Algeria (latitude = 22° 53’ n rth,   n itude = 6° east and altitude = 1400m).  

 

The PV system used in our experimentation is a stand-alone 720 Wc photovoltaic 

power installation operating during the studied year at Tahifet. The PV generator 

is composed of 16 monocrystalline silicon modules with a total area of 6m². 

 

Figure 2 shows the annual evolution of the monthly mean of daily converted 

energy Eg, This later is calculated according to Eq.(7). 

 

 

Fig. 2. Monthly mean of daily converted energy. 

 

4.2. R/S analysis 

The converted energy series (                    , (N =366) is divided into m 

consecutive non-overlapping subseries of length      :              

                       , k = 1, 2, …, m.  The values of  in our study 

range from 10 to N/2. 

 

For each subseries the mean:   
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and the standard deviation: 

 

      
 

 
                       

 
 

   

 

 

are calculated. Then the energy deficit resulted from accumulating the difference 

between the converted energy and the mean which represents the load 

consumption is determined: 

 

       
                        

 

   

            

 

and the range,     , for the subseries is calculated 

 

        
     

       
    

     
       

 

 

We finally obtain the rescaled range        by averaging           over the m 

subseries: 

 

       
 

 
            

 

   

 

 

5. Results and discussion 

The assessment of our PV storage sizing is carried out using experimental data 

resulting from monitoring the PV system with a data acquisition. Thus, for values 

of  ranging from 10 to N/2, where N is the series size, the accumulated energy 

       which must be stored in the battery is first computed according to Eq.(14). 

The resulting curve for the first 366 days is shown in figure 3. 

 

(13) 

(14) 

(15) 

(16) 
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Fig. 3. Accumulated storage        for the first 366 days. The range is indicated by R. 

 

Then, for each  the range is estimated for the different subseries. The mean 

values of    for some periods  are given in Table 1. 

 

 R(kWh) 
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Table 1. The range R for different values of  
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One can clearly note that the range depends on the time period , R increases with 

increasing . 

In order to perform the prediction of the PV storage the         versus  plot is 

developed, this is shown in Figure 4. It is apparent from the figure that Most of 

        points seems to lie along straight line, the rescaled range, is then a power 

function of  . 
 

A trend line is fitted amongst the      versus           plot and the equation of 

the trend line is computed. The slope coefficient of the equation gives the 

estimation of H which is found equal to 0.97, the value of a parameter is then 

0.28. 

 

According to the R/S analysis theory the slope of regression line is identified to 

the Hurst exponent which is an index of the long memory of the time series. For 

self-affine time series H is also an index of their roughness which is the role of the 

fractal dimension.  

 

For a curve, fractal dimension is between 1 and 2, it approaches 2 if it is 

extremely irregular and tends towards 1 if it is more regular. Since the Hurst 

exponent H is related to the fractal dimension D by the relation:      , we 

deduced that low values of H means the curve is smooth and the high values 

indicate the irregularity of the curve.  

 

Observing the converted energy series used in our study, we found that the 

corresponding curve is irregular, consequently, the corresponding fractal 

dimension must be high and the Hurst exponent low.  

 

To confirm this, the fractal dimension is calculated for these data using a method 

we already developed [7-8], we found D=1.80, as a result H=0.2. This later is 

very far from the slope of the R/S plot regression line obtained (0.97). This is can 

be explained by the non-stationarity of the studied series, since the stationarity of 

the series is an essential prerequisite for the rescaled range analysis. It is then 

obvious that the slope of the fitted line found is different from the Hurst 

parameter. 

 

Let's recall that the purpose of this work is the PV storage prediction and not the 

Hurst exponent estimation. Therefore, and to avoid any confusion the slope of the 

line we found is noted E instead of H. 

 

Hence, the rescaled range, R/S, for the solar energy converted series studied is 

described by the following relation: 
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Table 2 illustrates some predicted values of the adjusted range       for different 

time periods n (1 to 5 years) and the corresponding range R which is identified to 

the maximum size of the PV storage. Note that the medium life duration of PV 

batteries is 5 years.  

 

 
 

Fig. 4. Log R/S versus Log () Plots 

 

 

 

n (years) R/S R(kWh) 

1 

2 

3 

4 

5 

89.19 

174.48 

258.44 

341.55 

424.26 

58.87 

115,16 

170.57 

225.42 

280.01 

Table 2. Predicted values of the R/S and the corresponding R for a period ranging from 1 

to 5 years 
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6. Conclusion 

In this paper, a method for predicting a photovoltaic storage at long-term is 

presented. It was shown that the rescaled range analysis applied to the solar 

converted energy data provides an alternative way to size and predict the PV 

storage. Results presented here confirm that although the data studied are non-

stationary the rescaled range is well described by a power function of the time. A 

new exponent E different from the Hurst exponent has been introduced. Results 

presented here confirm that the PV storage can be predicted using the power law. 

The method is still under investigation and further experimentation is needed to 

validate the preliminary results presented in this paper.  
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Abstract 

We propose a universal protocol that possesses all necessary 
security requirements, such that eligibility, secrecy, anonymity, 
individual and global verifiability and can be applied for e-
exam, e-pollster, e-auction, e-tender and e-vote, as well. Our 
solution employs blind signature and secret sharing schemes, 
digital envelope technique and provides receipt on a bullten 
board.  
 
Key words: e-vote, e-auction, e-exam, e-pollster, e-tender 
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1. Introduction 

Nowadays more and more people use computers to manage their everyday life. 
We submit our tax report, we give our opinion to on-line questions. There are 
students, who attend to on-line courses, hence receive lessons, tests via Internet. 
 
There are several electronic systems that require people to fill out a simple or 
sometimes rather complex questioner and later all the answers are evaluated. We 
assume that these questioners might contain multiple choice tests and write in 
questions, as well. In case of write in questions human correctors are needed for 
evaluation. We will call these systems e-assessment systems. E-assessment 
systems bring up serious security issues. Security requirements for different 
assessment systems are sometimes similar. We propose a universal protocol that 
possesses all necessary security requirements and can be applied for e-exam, e-
pollster, e-auction, e-tender and e-vote, as well. 
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2. Security requirements  

 
Considering e-assessment systems in general security issues should be considered 
carefully. There are certain requirements that any kind of e-assessment system 
should possess, such that eligibility, individual and global verifiability. Most of 
them require anonymity of participants, or secrecy of answers. 
 
One of the most important requirements is anonymity. In case of e-assessment 
systems anonymity of individuals not only protects them from unpleasantness, but 
makes the final result more authentic. There are situations, when anonymity after 
the evaluation phase should be revoked. Anonymity revocation is necessary for e-
exam, e-auction and e-tender systems. In case of e-pollster the company that 
ordered the survey might be interested in the list of respondents in order to check 
the pollster company, whether it really asked the individuals, but answers should 
not be linked to them. 
 
Another important requirement is in e-assessment schemes that only eligible 
individuals are allowed to participate. The systems should possess anonymity and 
eligibility at the same time. Hence after verifying eligibility of a participant, he is 
anonymous during the whole process, but we should know that each anonymous 
participant is eligible and does not frame another person. 
 
Individual and global verifiability for an e-assessment system is also essential. A 
participant is able to verify that his opinion is counted properly in the final result. 
Global verifiability means that any observer can verify that the assessment is 
processed well. 
 
Necessary requirements are data integrity of questions, answers and the final 
result and secrecy of partial results in case of e-vote, e-tender systems, questions 
and answers should be secret for e-exams. 
 
In all cases the protocol should protect against framing attacks, when a participant 
answers the questions instead of another one. 

3. Our solution 

 
The proposed scheme meets the security requirements listed above, applying 
several cryptographic tools. Anonymity of participants is provided by blind 
signatures [1] and a trusted anonymous server that exchanges IP addresses of 
senders. Our system gives the possibility of anonymity revocation with the help of 
servers that securely share the corresponding secret key. 
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We employ digital envelope technique to provide confidentiality of answers. We 
apply secret sharing technique to store secret decryption key for the envelope. 
Electronic bulletin board is applied for individual and global verifiability and also 
for announcing the final result. 
 
E-voting, e-auction schemes in the literature [2,3] usually assume that voters or 
bidders have certificates. Our goal is to provide a design that can be implemented 
easily and respondents do not have to possess certificates  
 
The proposed scheme consists of four stages: registration, operational, 
processing, announcement stages. During registration stage Registry verifies 
eligibility of an individual, if a participant is eligible, than receives a pseudonym. 
In the operational stage an individual answers the questions or sends the next bid, 
this can happen several times. All the messages that are sent by individuals are 
time-stamped. Always the last message before the deadline is counted. In the 
processing stage evaluation of answers happens either automatically or by a 
corrector. After evaluation the final result is made public in the announcement 
stage and in case of e-exam, e-auction and e-tender schemes anonymity is 
revoked. 
 
The proposed scheme is a generalization of a system that is implemented in frame 
of project GOP-1.1.2-07/1-2008-0001. The first author is supported by TÁMOP 
4.2.1-08/1-2008-003 project. The project is implemented through the New 
Hungary Development Plan co-financed by the European Social Fund, and the 
European Regional Development Fund and also by the Hungarian National 
Foundation for Scientific Research Grant No. K75566. The authors are partially 
supported by the project GOP-1.1.2-07/1-2008-0001. 
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Abstract 

Future Internet is characterized by its capacity to support the 
mobility of the entities connected to the network. Mobility 
offers, from the services and user experience point of view, the 
capacity for extending and adapting the network to changes of 
location and infrastructure, and also offers, from the network 
point of view, the increase of the fault tolerance capacity, 
connectivity, dependability and scalability. The mobility support 
for the current Internet has presented limitations mainly caused 
by the role of IP address as both node ID for session 
determination in the application/transport layer, and Locator in 
the network layer. For that reason, the proposals for the Future 
Internet are focused on the ID/Locator split architectures. The 
presented work is focused on analyze the security challenges for 
one of these new architectures (HIMALIS), since ID/Locator 
management messages are potentially dangerous and present 
several vulnerabilities. This analysis also considers the 
particularities from the Internet of Things, since it is a pillar of 
the Future Internet. Finally, this works proposes a secure and 
scalable mobility management scheme considering the 
requirements and constrains from the Internet of Things, the 
proposed scheme is based on Return Routability and ECC-based 
asymmetric cryptography, in order to support scalable inter-
domain authentication and secure location update and binding 
transfer for the mobility process avoiding the identity attack. 
 
Key words: Security; mobility; Authentication protocol; 
ID/Locator Split; Internet of Things. 
 

@CMMSE                                 Page 1374 of 1703                                 ISBN: 978-84-614-6167-7



MOBILITY MANAGEMENT SCHEME FOR AVOIDING THE IDENTITY ATTACK IN HIMALIS 

1. Introduction 

There has been a tremendous increase of the use of Internet, from the 360 million 
of users in 2000 to 1.6 billion of Internet users and 4 billion of mobile users with 
over 570 million Internet-enabled handheld devices, and this is only the 
beginning, since it is estimated that the extension of the Internet to smart things, 
will reach by 2020 between 50 to 100 billion devices connected to Internet, such 
as described by Sundmaeker [1], defining the so-called Internet of Things, 
described by Atzori [2]. 
 
This grows leads to serious problems for scalability, manageability, 
addressing/identity, and robustness. In addition, the openness and ubiquity 
features of the current Internet present problems to offer a suitable support for 
security, privacy, and secure mobility. Therefore new redesign of the Internet 
architecture and definition of new protocols are required to solve the mentioned 
problems for the Future Internet of Things. For this purpose, several projects from 
industrial and international collaboration are being carried out to define the Future 
Internet architecture which solves the limitations of the current Internet 
architecture [3]. The architecture considered under this paper takes into account 
the possibility of that one of the edge network is based on Internet of Things, i.e. 
an IP-Based Wireless Sensor Networks, such as the defined by 6LoWPAN [4] 
under the frame of the Internet Engineering Task Force (IETF). 6LoWPAN 
extends Wireless Sensor Networks (WSN) to Internet, adding to IEEE 802.15.4 a 
layer to support IPv6.  
 
An architecture for the Future Internet of Things needs to support security, 
mobility and interoperability for the heterogeneity of the network providing a 
scalable universal integration among the different technologies from the current 
deployments and solutions, such as sensors, RFID tags and legacy technologies in 
a common domain. In addition, other issues need to be considered such as a 
resolution infrastructure which supports distributed look-up and discovery for 
resources and services, context-awareness, reliability, energy management, self-
management, self-configuration and self-healing properties [5], 
 
This paper focuses on satisfying the security and mobility requirements. For that 
purpose, this presents a novel scheme to support authentication and allows to 
extend the trust domain for mobile devices. Previously to this work, it was 
proposed a suitable security stack based on Elliptic Curve, which has been 
optimized for embedded IoT devices [6]. Over the mentioned stack has been 
defined a scalable mechanism to extend the trust domain to entities and devices 
which are changing its position in the network.  
 
Mobility support for small and smart devices is one of the most important issues 
in the Future Internet of Things, since it is utilized for realizing many 
applications. In addition, mobile communication increases the fault tolerance 
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capacity of the network, increases the connectivity between nodes and clusters, 
allows to extend and adapt network to changes of their location and environment 
infrastructure. The mentioned features are requirements to satisfy the 
dependability and scalability of the Future Internet [7]. The mobility support in 
the proposed architecture is based on ID/Locator split, since the main currently 
limitations to support mobility are caused by the role of IP address as both ID for 
session determination in the application/transport layer, and Locator in the 
network layer [7]. For that reason, in order to solve the mentioned mobility 
problem, it is considered split between ID and Locator, for the Future Internet 
architecture. This issue is being extensively discussed in the Internet Engineering 
Task Force (IETF) and ITU-T, in order to design efficient solutions for mobility, 
multi-homing, routing, security as well as for integrating heterogeneous network 
layer protocols. The mobility supports has been already addressed for the Future 
Internet in [7] and [8]. These approaches do not consider any security issues for 
the mobility management, and several vulnerabilities have been found for the 
management of the location, for example a malicious host might be able to 
establish false updates of the location, thereby preventing some packets from 
reaching their intended destination, diverting some traffic to the intruder, or 
flooding third parties with unwanted traffic. 
 
For that reason, this paper presents the security analysis, and extends the 
mentioned proposal with a novel secure and scalable mobility management 
scheme, where the requirements and constrains from the Internet of Things are 
being considered, in order to support edge networks based on IP-based Wireless 
Sensor Networks (6LoWPAN). 
 
Finally, for the validation of the proposed mobility and authentication scheme, 
this has been verified with the tools OFMC, and ATSE from the Automated 
Validation of Internet Security Protocols and Applications (AVISPA) framework, 
which is described deeply in [9], and the visual tool Security Protocol Animator 
for AVISPA (SPAN).  

2. Future Internet Architecture  

The architecture considered, over which is evaluated and defined our scheme is 
based on a ID/Locator split. This defines two different values for IDs and 
Locators. Thereby, this allows to the network layer changes its Locator when the 
device move i.e. changes its position in the network without requires the upper 
layers change the ID. Thereby, this ensures that the established communication 
sessions associate with the ID are not interrupted because mobility, see [7]. The 
basic entities for the ID/Locator management, such as, for example, found also in 
the Mobile Oriented for Future Internet Architecture (MOFI) in [8], where a 
mapping agent exists between Name, Device ID and Locator. The reference 
architecture considered for this work is the HIMALIS (Heterogeneity Inclusion 
and Mobility Adaptation through Locator ID Separation) architecture.  
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The diagram of the architecture is shown in the Fig. 1.  
 

 
Fig. 1. Future Internet architecture (HIMALIS). 
 
The components are: 

2.1 Signalling Control Network 

1) Domain Name Registries (DNR) and Hostname Registries (HNR): 
These offer a mapping between the hostname and domain name to the 
Device ID (ID), such as presented in the Fig. 1. 

- Domain name represents "whose it is", are usually denoted by 
Uniform Resource Locator (URL) such as the used for the WEB, 
e.g. lab.cs.um.es. The location of the domain manager is carried out 
by the DNR, which locates to the HNR where is managed the 
domain.  
- Device name/Hostname represents "who it is", are usually 
denoted by variable-length string e.g. Uniform Resource Name 
(URN), or a human readable and remembered names such as a 
Network Access Identifier (NAI), e.g. sensor1@lab.cs.um.es, 
which represents a sensor1 inside the domain presented previously.  
- Device ID/Host ID represents "what it is", ID is used as control 
information in communication protocols and packet headers to 
identify sessions, packets and a communication end points usually 
for sensors a globally unique ID of 128-bits, it can be based on the 
identifiers defined such as Overlay Routable Cryptographic Hash 
Identifiers (ORCHID), or Host Identity Protocol (HIP) for 
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improving the security. For example HIP uses a public key and its 
hash value as ID.  

2) ID registries (IDR): This offers a mapping between the Device ID (ID) 
and Locator (LOC), which is used to represent the location of an object in 
the network, it is usually used the IPv6 address e.g. HIP uses IPv6 address 
as Locators. The mapping relation is presented in the Fig. 1. 
3) Mapping local level Device ID/Link ID (Gateway): This translates 
between the Device ID and Local ID (LID), which is used to identify a 
link connection / interface. LID is needed for data packet delivery between 
gateway and the end node of the edge network, when the end device is not 
supporting a global Locator, such as for example IEEE 802.15.4 networks 
without 6LoWPAN support, where Local ID is defined by short 16-bits 
address in network layer, or another kind of local identification. In these 
cases the Locator can be addressed to the GW. 

2.2 Global Transit Network /Core IPv6 Backbone 

This is a collection of networks which interconnect to the public organizations, 
research centres, and end users through Internet Service Providers around the 
entire world. This is composed by routers, backbones, servers and agents of some 
of the entities mentioned from the signalling control network. 

2.3 Edge networks 

The edge networks provide network access to the end systems such as hosts and 
clients. Example of these networks can be any of the current industrial networks 
such as Control Area Network (CAN), vehicular network and hospitals. These 
networks are connected to the Global Transit Network through one or more 
gateways such as IPv4 to IPv6 translators for networks which are not adapted, 
IPv6 gateways and 6LoWPAN Border Routers.  

3. Analysis of Vulnerabilities and Threats 

This section describes some of the major threats found in the management of the 
mobility and architectures presented in the Section 2. In order to understand the 
vulnerabilities, it is initially described how the original mobility management over 
the architecture from the Fig. 1. is carried out.  
 
The messages defined are considering the guidelines defined in [7], but it has 
been extended since originally are not in this level of detail presented. The 
messages are: 
 
1, 2- Router Solicitation (RS) and Router Advertisement (RA) in order to join to 
the gateway from the Neighbour Discovery protocol. 
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3- ID Update (IDU). MN requests to the F-GW that it updates its ID with the new 
locator to the other parts of the architecture such as Home IDR (H-IDR), Home 
Gateway (H-GW) and Corresponding Gateway (C-GW). 
4- Location Update. F-GW sends this message to its IDR (F-IDR), in order to 
carry out the related operations to update the MN ID with its new locator. 
5, 6, 7- Device ID Lookup of the IDR for the MN previously to the movement. 
8, 9- Home Registration, F-IDR contacts with H-IDR to update its mapping table 
with the new locator and transfer the binding. Message 9 carries out the mapping 
table update. 
10, 11- Location Update confirmation to the F-IDR and the F-GW. 
12- ID Update ACK (IDA), F-GW confirms to MN, that the update of its ID with 
the new locator is being processed. 
13- Binding Request. At the same time, when are sent the ACKs from 10, 11 and 
12, H-IDR continues with the process. This message requests to the H-GW to 
transfer the binding to the gateway in the foreign network (F-GW). 
14- De-Registration: H-GW removes from its table of nodes to the MN, since it 
has left its network. 
15- Transfer the binding. H-GW transfers the messages pending to be delivered 
and other information to the F-GW. 
16, 17- Location Update. H-GW sends this messages to the corresponding 
gateway (C-GW) and (C-IDR) to inform about the new locator. 
18, 19- Location Update ACK, C-GW and C-IDR confirm to H-GW the location 
update. 

 
Fig. 2. Attack with a false IDU, when MN is an intruder. 
 
The main security vulnerabilities appear with the management of the messages 
which make changes in the mapping tables from the different architecture entities, 

@CMMSE                                 Page 1379 of 1703                                 ISBN: 978-84-614-6167-7



MOBILITY MANAGEMENT SCHEME FOR AVOIDING THE IDENTITY ATTACK IN HIMALIS 

such as Location Update, ID Update, and Home Registration. The goal of an 
intruder could be to corrupt the Correspondent Node's (CN) binding cache to 
provoke wrong delivery of packets, which can cause Denial-of-Service (DoS) and 
compromises the privacy and integrity of the communications. The intruder could 
also exploit features of the mentioned messages for manage location to exhaust 
the resources of the parties from the architecture, etc. These vulnerabilities need 
to be solved to ensure the safe status of the network and satisfy the security 
requirements from the applications. Specifically, the attacks considered is versus 
the identity property, since Locator is volatile, the unique real property from a 
device is its ID. Therefore, the most obvious danger in the mobility management 
is the steals of the Device ID. For example, an intruder could claim the Locator of 
a victim node with a determined Device ID, and then steal traffic destined to the 
victim node. This follows the similar conception of address stealing from MIPv6. 
 
The basic approach to steal Device ID in the presented architecture, where the 
location management messages are not authenticated, is with the ID Update (IDU) 
message, which starts to the process. This attack is presented in the Fig. 2., where 
in the message 3 the intruder sends a spoofed IDU to the gateway identifying 
itself with a stolen Device ID. This vulnerability is presented since MN 
authenticity is not verified. Therefore, this attack is proposed to be solved 
authenticating the MN with its H-GW through its IDR, in order to verify the 
veracity of the indicated Device ID, which is indicated in the IDU message. The 
solution to this is presented with the proposed scheme. 
 
A second approach to steal the Device ID, could be based on false Location 
Update message, which are originally sent between F-GW and C-GW (see 
message 16 in Fig. 2). An intruder could sham to be a GW, which is able to 
inform to another gateway (victim GW) about a new Locator for the Device ID 
stolen to a victim node. This attack is based on the communication between 
gateways, sending a false Location Update with the information of the node 
which is being its Device ID stolen. This vulnerability arises because the GW, 
which receives the false Location Update, does not check the authenticity of the 
indicated new mapping Device ID/Locator with the H-IDR. The solution 
proposed to solve this attack lays in that C-GW (victim GW) checks the received 
Device ID/Locator mapping by the F-GW, in the Location Update, with the 
defined in the H-IDR from the original owner of the Device ID. This real Locator 
for the indicated Device ID is recovered through the "Locator discovery" 
functionality, which offers the architecture through the IDR, HNR and DNR 
entities, for Locator, and Device ID/Device name respectively. “Locator 
Discovery” technique is used in proposed secure and scalable mobility 
management scheme presented, and it is feasible to make it secure with the 
protocol presented in the Section 4, and analyzed with AVISPA tool. 
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4. Secure and Scalable Mobility Management Scheme 

Our proposal is a scheme to allow the authentication of the mobile nodes in the 
visited networks, in order to reach a secure mobility management of the mobile 
nodes in the architecture, and the trust extension for the optimization of the 
binding transfer avoiding Triangular Routing, and make this more scalable. 
 
The main goals pursued by the proposed scheme are: 

1- Verify that a visited domain can be trusted. 
2- Authenticate to the Mobile Node. 
3- Extend the trust domain to the visited domain. 

These goals are reached with a scheme based on: 
1- Lightweight cryptographic suite based on ECC. 
2- DoS countermeasure and nodes authentication with Return Routability. 
3- Trust extension based on Diffie-Hellman, and a technique to establish 

keys similar to the tickets used in Kerberos, where a new session key is 
sent encrypted with a key which is only by the end node (client) and 
provider. 

 
This can find a wide range of solutions for key exchange and security for the 
Internet domain, but they are not designed to consider the resource constrained 
networks of smart things, which will build the Future Internet of Things. We have 
collected the most relevant features of them, and adapted to the architecture 
considered in the Section 2, and the 6LoWPAN mobility management 
requirements. 
 
The security protocols make an effort to reduce the cryptographic cost of the 
required public-key-based key exchanges and signatures with ECC; this reduction 
is highly desirable for IoT domain. Some of the protocols, which already have 
defined its version based on ECC, are Transport Layer Security (TLS) in 
RFC5246, Internet Key Exchange (IKE) and IKEv2 in RFC 5903, and Host 
Identity Protocol (HIP) Diet Exchange (DEX), described by Moskowitz in [10]. 
In addition, ECC cryptographic primitives have been optimized for 6LoWPAN 
devices, and in particular for the operations used in the proposed protocol. 
 
The proposed protocol includes a Return Routability mechanism such as Denial-
of-Service attacks countermeasure, since this mechanism delay the establishment 
of the Binding Update Confirmation and establishment of the new tunnels (trust 
extension) until that the Home Gateway (H-GW) and Mobile Node (MN) are 
verified. This Return Routability countermeasure is used in protocols such as 
MIPv6, DTLS, IKEv2, HIP, and Diet HIP. The effectiveness of this 
countermeasure depends on the routing topology defined in the global transit 
network; in our solution the messages used for Return Routability are the same as 
required for the confirmation of the update, therefore it is not really meaning a 
significant overload. 
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Additionally, the protocol proposed provides end-to-end security, which is 
required to make scalable the integration of the Internet of Things in the Future 
Internet, support the secure individual communication and authentication in 
machine to machine communications (M2M), which are defined and considered 
within the Internet of Things domain. For that reason, we also define the trust 
extension with two new tunnels to allow the trustable communication, on the one 
hand, between the Mobile Node and the visited gateway (F-GW), and on the other 
hand, between the previous gateway (H-GW) and the new gateway (F-GW), to 
avoid the inefficient route through the IDRs. Thereby, this allows a safe and direct 
communication for the communications during the “roaming” of the mobile node.  
 
Finally, the establishment and authentication of the Mobile Node through the 
visited gateway (F-GW) is carried out with a technique, similar to the defined in 
Kerberos, where the H-GW sends a key encrypted end-to-end, which is forwarded 
by intermediate nodes which cannot understand it. See message 8 in the Fig. 3.   
 
Previously to describe the protocol proposed and presented in the Fig. 3, the 
secure elements (shared keys) considered and established during the process are: 

- SK0: is the shared key between the MN and the Home GW (GWA), 
which was established in the bootstrapping phase. 
- SK1: is the new shared key established between the Home GW (GWA) 
and the new visited GW (GWB), which is established with Diffie-
Hellman, through the trust chain defined via the IDRs. 
- SK2: is the new shared key established between the Mobile Node and the 
new visited GW (GWB), which is established with a technique based on 
Kerberos, since ESK2 is SK2 only deciphered with SK0 by the MN. 
- TunA, TunB and TunC: are the safe channels (tunnels) defined among 
the IDRs and the GWs; they build the denominated trust chain. They were 
also established in the bootstrapping phase.  

 
The messages exchanged are: 
1- MN to GWB - IDU.{S}_SK0. This sends the IDU message with the fields 

related with new Locator, Device ID, etc. and the signature (S) based on SK0 
for authentication with the GWA (which follows the role of Home Agent in 
other mobility protocols) 

2- Generation of the Part B of SK1 (PB), for the Diffie-Hellman Key exchange.  
3- GWB to IDRB - {PB.IDU.Sciphered}_TunA  

IDRB to IDRA - {PB.IDU.Sciphered}_TunB 
IDRA to GWA - {PB.IDU.Sciphered}_TunC 
This is the exchange of PB to the GWA, where Sciphered is S ciphered with 
SK0, i.e. {S}_SK0.  

4- Verification of the authenticity of the MN by the GWA by way of the 
signature S. 

5- Generation of the Part A of SK1 (PA), for the Diffie-Hellman Key exchange.  
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6- Return Routability Process 
This sends the new timestamp (T1), PA, SK2 and ESK2, through the trust 
chain (TunA, TunB and TunC). 
GWA to IDRA - {T1.PA.SK2.ESK2}_TunC 
IDRA to IDRB - {T1.PA.SK2.ESK2}_TunB 
IDRB to GWB - {T1.PA.SK2.ESK2}_TunA 
This also sends the same message directly.  
GWA to GWB - {T1.PA.SK2.ESK2}_SK1.  

7- GWB verifies with the messages from step 6 the MN authenticity, and 
establish the new tunnel with SK1 between GWA and GWB, which is used to 
transfer the binding, pending messages and future packets. 

8- GWB to MN - {{T1}_SK2.ESK2}. GWB sends the SK2 encapsulated with 
ESK2 (Kerberos technique which has permitted to send SK2 encrypted end-
to-end, being forwarded by the intermediate nodes of the trust chain which 
cannot understand it).  In addition, the timestamp T1 is sent encrypted using 
SK2 in order to avoid reply attack. Finally The MN verifies with this message 
that the GWA has authenticated to it, and establish the new tunnel with GWA 
based on SK2. 

 
Fig. 3. Kernel of the secure mobility management scheme. 
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5. Evaluation and Validation 

The MN intruder attack is solved with the authentication of the MN with its H-
GW through its IDR, in order to verify the veracity of the indicated Device ID 
indicated in the IDU message. This verification is carried out with the protocol 
presented in the Section 4, where the extension of the Return Routability (RR) 
process for the presented architecture, allows the verification of the MN is 
trustworthy by the F-GW. In this approach, the vulnerabilities found in other 
previous applications of RR such as in MIPv6, where the communication between 
Home Agent and Correspondent Node is vulnerable, are not found in our 
proposal, since the message sent by the alternative path is encrypted with the 
exchanged key through the safe path, converting this initially unsafe path, also in 
trustable. 
 
Finally, the proposed scheme and the MN and GW intruder attacks have been 
validated with the AVISPA tool, it has been validated on the one hand the basic 
protocol, and on the other hand, the basic protocol together with sessions where 
the GW is an intruder, and the MN is an intruder. The security issues considered 
are: 

1- Secrecy of the keys: SK0, TunA, TunB, and TunC. 
2- Authentication of the MN with the GWA through the signature (S), 

based on SK0. 
3- Finally, it has been verified the well forming of the new trust links 

between the MN and the new GW (SK2) and the previous and new 
gateway (SK1). 

 
The results are presented in the Table 1: 
 

Version Tool Description Result 

Basic session OFMC Visited Nodes: 50 nodes 
Depth: 10 plies 

SAFE 

Basic session ATSE Analyzed: 214 states 
Reachable: 55 states 

SAFE & goal as 
specified 

Basic session + 
MN Intruder 

OFMC Visited Nodes:23246 nodes 
Depth: 15 plies 

SAFE 

Basic session + 
MN Intruder 

ATSE Analyzed: 2022179 states 
Reachable: 120601 states 

SAFE & goal as 
specified 

Basic session + 
GW Intruder 

OFMC VisitedNodes: 80573 nodes 
Depth: 15 plies 

SAFE 

Basic session + 
GW Intruder 

ATSE Analyzed: 504369 states 
Reachable: 66219 states 

SAFE & goal as 
specified 

Table I.  AVISPA Tool Results 
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6. Conclusions and Future Works 

The scheme presented in this paper, proposes a solution to solve the threats and 
vulnerabilities found in the HIMALIS architecture. The scheme proposed offers a 
safe and scalable scheme to support mobility, and extend the trust in the 
architecture with the determination of shared keys between entities which require 
a direct exchange of information. This is based on Diffie-Hellman key exchange, 
Return Routability, and other techniques such as the tickets from Kerberos to 
establish a key between different domains. 
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Abstract 

The adiabatic potential energy curves, the spectroscopic 
constants (Re, De, Te, ωe, ωeχe and Be) and the permanent and 

transition dipole moments of the 
1

lowest electronic states of 
the CsFr molecule dissociating into Cs (6s, 6p, 5d, 7s) and Fr 
(7s, 7p, 6d, 8s, 8p, 7d) have been performed. We have used an 
ab initio approach based on pseudopotential, parameterized l-
dependent polarization potentials and full configuration 
interaction calculations. Our spectroscopic constants of the 
ground state are in good agreement with the available theoretical 
works.  
 
 
Key words: Pseudopotential, Potential energy, Spectroscopic 
constants, Dipole moments. 
 
MSC2000: AMS Codes (optional) 

1. Introduction 

The new development of cold and ultra-cold atomic trapping techniques has 
increased the interest in experimental and theoretical investigation on 
homonuclear and heteronuclear alkali molecular systems [1]. Such an important 
theoretical and experimental effort is motivated by the possible applications such 
as controlling of ultracold chemical reactions [2-4], ultracold molecular collision 
dynamics [5-8], quantum computing [9, 10] and experimental preparation of few-
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body quantum effects [11] (such as Efimov states) where the aim is to prepare 
molecules in definite quantum states with respect to the center of mass, electronic, 
rotational and vibrational motions [12]. In fact, it is suspected that the long-range 
dipole-dipole interaction will introduce new important physical phenomena. 
Furthermore, the growing development of the laser cooling and optical trapping 
technique demands an accurate knowledge of the spectroscopic proprieties of the 
alkali dimers.  
Several theoretical studies of the electronic structure for some of these systems 
have been performed in our group for LiCs [13], NaCs [14] and LiNa [15, 16]. 
Other authors were also interested in studying alkali dimers such as CsLi [17], 
KCs [17] and NaCs [17-20] and NaK [21]. Recently, an extensive ab initio study 
on heteronuclear mixed alkali pairs LiNa, LiK, LiRb, LiCs, NaK, NaRb, NaCs, 
KRb, KCs and RbCs has been performed by Aymar and Dulieu [19, 22] in order 
to produce accurate potential energy and permanent dipole moment for the ground 
state and lower triplet states. Aymar et al. [23] have investigated the possibility of 
creating cold CsFr molecule through the photoassociation of cold atoms. In this 
study we have calculated the adiabatic potential energy curves of the first 10 
electronic states of 

1
Σ

+
 symmetry dissociating into Fr (7s, 7p, 6d, 8s, 8p, 7d) and 

Cs (6s, 6p, 5d, 7s) for a dense and large grid of internuclear distances ranging 
from 6.6 to 85 a. u . Their spectroscopic constants have been extracted and 
compared with the theoretical works when available.  

This paper is organized as follows. In section 2, we present a brief summary 
of the ab initio approach. Section 3 is devoted to the presentation of our results. 
Finally, we summarize our conclusion in section 4. 
 

2. Method of calculations 

Cs atom is treated through a one electron non-empirical pseudopotential 

proposed by Barthelat and Durand. [24-25]. The Fr ionic core is described 

through a semi-local l-dependent pseudopotential (PP) [26-27] taken from the 

recent work of Aymar et al. [23]. In addition, Core-polarization and core-valence 

interactions are considered using l-dependent core-polarization potentials 

following the formalism of Foucrault et al. [28]. For Cs atom, we use a 6s/4p/4d 

Gaussian basis set taken from Ref. 29; while for the Fr atom we used a 9s/9p/9d 

Gaussian basis set [23]. These authors have used two basis sets (named A and B), 

two dipole polarizabilities 
M

d and two sets of cutoff radii ( l ) parameters 

introduced in the effective core-polarization potential for Fr.  In our calculation 

we have chosen to use the basis A as it gives better agreement with the 

experimental atomic limits for the Francium atom. The used core dipole 

polarizability for Cs
+
 and Fr

+
 ions are, respectively, 15.117 and 20.380 3

0a . The 

cutoff radii for the lowest one-electron valence s, p and d orbitals are, 
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respectively, 2.690, 1.850 and 2.810 a. u. for Cs [29] and 3.16372, 3.045 and 

3.1343 a. u. for Fr [23]. In order to test the quality of the used basis sets, we have 

performed a one-electron SCF atomic calculation for Cs and Fr atoms. A good 

agreement between our theoretical atomic energy levels and the experimental 

ones is observed. Such accuracy will be transmitted to the molecular calculations. 

Having only two valence electrons, the CsFr diatomic alkali molecule is studied 

by full CI calculations. The CI calculation is performed using the CIPCI 

algorithm of the Laboratoire de Physique et Chimie Quantique of Toulouse. The 

potential energy curves of the CsFr molecule are performed for a large and dense 

grid of interatomic distances varying from 6.6 to 85 a. u.  

3.  Results 

The first ten 
1


+
 potential energy curves of CsFr dissociating into Cs (6s, 

6p, 5d, 7s) and Fr(7s, 7p, 6d, 8s, 8p, 7d) have been calculated for a large and 
dense grid of intermolecular distance ranging from 6.6 to 85 a. u. They are 
displayed in Fig.1 and the spectroscopic constants (Re, De, Te, ωe, ωexe and Be) of 
the first eight states are presented in table 1 and compared with the available 
theoretical studies.  

 
 

 

        State Re (Å) De (cm
-1

) Te (cm
-1

) ωe (cm
-1

) ωe xe (cm
-1

) Be (cm
-1

) Ref. 

         X 
1
∑

+ 
4.523                                        
4.523 

3537 
3553

 
 
            

37.33 0.098 0.0098 This work 
[23] 

 
         2 

1
∑

+ 
  5.238       4971 10116 28.71 0.041 

 
0.0073 This work 

 
         3 

1
∑

+ 
  5.735       3813 13087 21.82 0.031 

 
0.0061 This work 

        4 
1
∑

+
   5.677      1651 16438 17.98 0.049 

 
0.0062 This work 

         5 
1
∑

+
   5.582      2010 17906 19.64 0.048 0.0064 This work 

 
         6 

1
∑

+
 

       1
st 

min 
        2

nd
 min 

 
5.047 
9.375

 

 
     3672 
     2237 

 
18404 
19839 

 
38.61 

 

 
0.101 

 

 
0.0079 

 

 
Thiswork 

 
       (7) 

1
∑

+
 

      1
st
  min 

        2
nd

 min 

 
5.232 
9.391 

 
     2309 
     1790 

 
20916 
21435 

 
25.66 

 

 
0.071 

 

 
0.0073 

 

 
This work 

 
    8 

1
∑

+ 

    1
st
 min 

       2
nd

 min 

 
5.058 
11.947 

 
     3147 
     2991 

 
22347 
22503 

 
26.64 

 

 
0.056 

 

 
0.0079 

 

 
This work 

 

Table 1: Spectroscopic constants of the 1 states of CsFr molecule 
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Figure 1 presents the potential energy curves of the first ten 
1


+
 states. An 

important general behaviour is observed for the higher excited states. It 
corresponds to the existence of undulations, which leads to double and, 
sometimes, to triple wells. We observe the existence of avoided crossings, which 
can be explained by the ionic interaction between Cs

+
Fr

- 
and Cs

-
Fr

+
 arrangements. 

This phenomenon can be observed distinctly in the the permanent dipole moment 
[31]. We remark that the dipole moment of these states, one after the other, 
behaves as a +R function and then drops to zero at particular distances 
corresponding to the avoided crossings between the two neighbour electronic 
states. If these curves are combined, they produce piecewise the whole R function 
due to the ionic character of these states. The discontinuities between the 
consecutive parts are due to the avoided crossings. The dipole moment of CsFr 
reveals an electron transfer yielding a Cs

+
Fr

-
 instead of Cs

-
Fr

+
 ionic character as it 

is expected and as observed for all other mixed alkali pairs where the electron is 
transferred towards the lighter species. For the 7

1
Σ

+
, 9

1
Σ

+
 and 10

1
Σ

+
 states the 

same linear behaviour is observed but with a -R function [31]. This is related to 
the second ionic character of these states related to Cs

-
Fr

+
 arrangement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Adiabatic potential energy curves of the ten lowest 
1

 states of CsFr. 
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4. Conclusion  

The adiabatic potential energy curves of the lowest electronic states of 
1
Σ

+ 

symmetry and their spectroscopic constants for the CsFr molecule dissociating 
into Fr(7s, 7p, 6d, 8s, 8p, 7d) and Cs (6s, 6p, 5d, 7s) have been performed using 
ab initio approach based on the pseudopotentials technique, parameterized l-
dependent polarization potentials and full configuration interaction calculations. 
A good agreement between our spectroscopic constants Re and De for the ground 
state and those of the theoretical work of Aymar et al. [23] is observed. The 
spectroscopic properties of the higher excited 

1
Σ

+
 states are reported here for the 

first time. A complete study of this molecule including adiabatic and diabatic 
potential energy and dipole function for all symmetries is in progress and will be 
published in details [31]. 
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Abstract 

Challenges in large-scale future mobile social networks (MSNs) 
are congestion mitigation and robust message-passing. As the 
scale of a social community increases, a mobile network based 
on the community forms a scale-free network (SFN). In a SFN 
with proximity or density based routing, a hub of high 
betweenness centrality is frequently utilized in forwarding 
messages of other nodes. Thus, traffic congestion occurs in the 
vicinity of a hub. Furthermore, a hub failure critically affects 
network-wide performance. With the enhancement of an ant 
colony algorithm, we develop a hub detour routing scheme for 
future MSNs. Our scheme autonomously distributes loads and 
minimizes the impact of a specific node in message-passing. 
Mathematical analyses describe the properties of our scheme. In 
addition, simulation results exhibit autonomous and robust 
behaviors of our scheme compared with a conventional ant 
colony routing scheme. 
 
Key words: mobile social network, scale-free network, hub, 
routing, ant colony algorithm 
 

1. Introduction 

A mobile social network (MSN) [1] is an emerging networking structure boosted 
by increases in hands-on communication devices such as smart phones and tablet 
PCs. In this network, mobile users with the same interest form a social 
community on a social network service (SNS) such as Foursquare [2], Gowalla 
[3], or MyCubee [4]. A conventional online social network (OSN) [5] (e.g. Bebo 
[6], MySpace [7], or Facebook [8]) is based on wired connections with little 
mobility. In an OSN, the roles of users in message-passing are insignificant 
because communications between users are from data stored in servers of service
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 Base StationAccess PointDesktop PCSmart PhoneTablet PCLink
 

 
Figure 1: An example of a future heterogeneous multi-hop MSN architecture. 

 
providers. On the other hand, the users in a MSN distinctively characterize 
communications with contents in their mobile devices. Currently, data transfers 
rely on one-hop communications via cellular networks, wireless networks, and 
direct communications by Bluetooth between mobile devices. However, we 
expect that MSNs will be based on heterogeneous multi-hop networks 
incorporating ad-hoc networks of mobile devices in the near future as shown in 
Figure 1. Because this framework can save the resources of cellular and wireless 
networks occupied by smart phone and tablet PC users, it has an advantage in 
mitigation of data explosion [9]. 
 
According to [10], as the size of a social network increases, the network is 
characterized as a scale-free network (SFN). In a SFN, there exists a hub, which 
has relatively many connections with other nodes and plays a significant role to 
forward the packets of other nodes. The works of [11] and [12] report that routes 
determined by greedy routing based on node density are heuristically the shortest 
paths. That is, in a SFN with proximity or density based routing, a hub is most 
frequently chosen for relaying messages of other nodes. Thus, a hub encounters 
traffic congestion. Further, a hub is exposed to malicious attacks so that it has risk 
to become a means to propagate viruses or worms to an entire network. 
 
MSNs are constructed in a decentralized manner. Previously, an ant colony 
algorithm is proposed to design autonomous routing for distributed ad-hoc 
networks [13]. Because it requires no centralized controller, it is suitable for a 
dynamic network topology. However, a traditional ant colony algorithm greedily 
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finds the shortest paths so that it dominantly utilizes a specific node, which limits 
achievable total network throughput. In this paper, we propose an enhanced ant 
colony algorithm which achieves an autonomous traffic control for MSNs or 
SFNs in a distributed manner. The contributions of our work are as follows: we 
provide a new pheromone assignment function which can control the amount of 
pheromones in a specific node or hub; we mathematically analyze the property of 
our scheme; we observe the behaviors of our scheme and compare it with a 
conventional ant colony routing scheme through simulations. 
 

2. Related Work  

Many ant colony based routing schemes such as AntHocNet [14], ARA [15], 
DAR (Distributed Ant Routing) [16], or HOPNET [17] have been proposed for 
wireless ad hoc networks. In these schemes, each link has a pheromone trail by 
ants (packets) and routing paths are established through links of high pheromone 
concentration. Because these schemes explore paths in a stochastic manner with 
no centralized controller, these can support mobility and minimize routing control 
overheads. However, these schemes focus on relatively small-scale networks so 
that these have limitations for applying into large-scale MSNs or SFNs. 
Conventional ant colony routing schemes consist of pheromone concentration and 
evaporation. After successful packet delivery, the value of pheromone increases. 
To reflect the dynamic nature of a network, the value of pheromone decreases by 
a constant amount through the evaporation process as time goes on. In these 
procedures, the shortest paths are heuristically found and these paths are 
frequently utilized. That is, there is little consideration for load balancing of 
traffic loads. When a network size grows, there exists a hub which has many 
connections with other nodes, especially in MSNs or SFNs. As reported in [18], 
the frequent usage of a hub generates a congested hot spot or vulnerable region. 
 
On the other hand, a MSN is a relatively new concept of network architecture. 
Thus, recent trends in this area are extending works in wireless ad networks, delay 
tolerant networks (DTNs), pocket switched networks (PSNs), and other 
opportunistic networks. In [19] for PSNs, a routing decision is based on two 
social metrics such as centrality and community by using real human mobility 
traces. Whereas in [20], a routing metric considers ego-centric centrality and 
social similarity. Similar to density based routing, messages are forwarded to the 
node with higher centrality. For DTNs, [21] proposes an agenda based routing 
protocol. A majority of DTN applications [22][23] are based on epidemic routing 
schemes, which significantly degrade performance in high dense networks. In 
these approaches, there is no reflection for the features of SFNs in MSNs so that it 
is required to incorporate a hub based networking structure for protocol design. 
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3. Hub Detour Routing 

We propose a hub detour routing scheme (HDR) for MSNs or SFNs by 
inspiration of an ant colony algorithm. In the initial phase, a packet as an ant 
moves to its destination by randomly selecting a path. After a packet passes 
through a node, the node increases its pheromone value. As this operation is 
iteratively cumulated by other packets in nodes, a stable and efficient path for 
each destination is established. Distinctively from previous works, our scheme 
allows no dominant usage of a specific node in a natural manner. In order to 
determine a pheromone of each node, let us consider a system model of a MSN 

with a connected graph ),( EVG =  where V  and E  are the set of vertices 

(nodes) and the set of directed edges (links), respectively. We assume that each 

node v  contains multiple pheromones )(tPvd  corresponding to destinations 

Dd ∈  at time t . To control the amount of pheromone in each node, we design 
the pheromone function as follows: 

)()()1(
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)( ∑
∞

=

−
−∆+=+

l

lvd

tKP

vd tttPetP vd δ ,   

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

≠

=
=−

l

l

l
tt

tt
tt

0

1
)(δ ,     (1) 

where K  is the degree
1
 of node and ∆  is the amount of a pheromone increase. 

K  can be replaced by the number of source-destination pairs recorded by 

transmitted packets. Additionally, we define the set T ={0, 1, 2, 3,L} and the 

set TL ⊂ . For all Lt l ∈ , lt satisfies 1+
< ll tt  where ∈l {0, 1, 2, 3,L}. For 

pheromone evaporation, we set an exponential function 
)(tKPvde

−
 as an 

evaporation rate, which is enable to accelerate pheromone concentration speed 

until 1)( =tKPvd , and then to accelerate pheromone evaporation speed with 

respect to node degree of node. By doing so, we can prevent excessive pheromone 
accumulation in a node. For pheromone concentration, after a successful packet 
transmission, a node increases its pheromone value by ∆ . Otherwise, a 
pheromone value is only affected by the evaporation procedure. Based on this 
process, a node v  forwards a packet to a neighbor node which has the highest 
pheromone, 

 )(maxarg )()()( tP dvnvNvn ∈
,                    (2) 

among one-hop neighbor nodes )()( vNvn ∈  of a node v . Here, a node v  

records a destination d  of a packet so that it seperately manipulates pheromone 

)(tPvd
 corresponding to each destination. If there exists no mapping pheromone 

to a destination, a node v  randomly selects a forwarding node )(vn . Algorithm 

1 describes a pseudo code of HDR. 
 
                                                 
1
 The degree of node represents the number of one-hop neighbors. This value can be 

replaced by the number of source-destination pairs recorded through transmitted packets 
to reflect implicit hubs.   
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Algorithm 1 

SendHelloMessage 
 
   //Initial Setup 
   For All Nodes 
    Set pheromone 0 
   End For 
 
   //One-hop broadcast of a hello message in the air  
   Advertise pheromone 
 
Packet Routing pseudo code 
 
HubDetourRouting 
   If queue>0 then 
     If (Neighbor Nodes for Destination) then 
       ForwardingNode = GetHighestPheromone(Neighbor Nodes) by (2)  
     Else 
       Forwarding Node = Random(Neighbor Nodes) 
     End If      
     Send a packet to ForwardingNode 
     delta = 1 
   Else 
     delta = 0 
   Enf If 
    
// Pheromone update by (1) 
 
  Result = Calculate_pheromone(Node) 
  Set pheromone Result 

 
To decide ∆  for stable routing, we evaluate the pheromone convergence speed 

with respect to ∆  as shown in Figure 2(a). We adopt (3) as an error estimation 
metric, R . 

)()1( tPtPR vdvd −+= ,                    (3) 

For 10 ≤∆< , we observe that just four iterations are sufficient to acheive ε<R . 
This property contributes to rapidly establishing a stable routing path in a 
dynamic network. 
 

Assume that TL =  and 0)0( =vdP . Let )()( tKPtQ vdvd =  for some constant 

K. Then, ∆+=+⇔∆+=+
−−

KtQetQtPetP vd

tQ

vdvd

tKP

vd
vdvd )()1()()1(

)()(
. 
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Suppose that 1>∆K . 
 

Lemma 1. )2()1()1( vdvdvd QtQQ ≤+≤  for all Tt ∈ . 

Proof.  Since 0)0()0( == vdvd KPQ  and 0)(
)(

≥
−

tQe vd

tQvd , 

)1()()1(
)(

vdvd

tQ

vd QKKtQetQ vd =∆≥∆+=+
−

. Since xexf x−
=)(  is a 

decreasing function when 1>x ,  

)2()1()()1(
)1()(

vdvd

Q

vd

tQ
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. 

Thus, )2()1()1( vdvdvd QtQQ ≤+≤  for all Tt ∈ . 

 

Lemma 2. )12( +tQvd  is increasing and )22( +tQvd  is decreasing for any 

Tt ∈ . 
Proof.  From Lemma 1, 

)1()1()2()2()12(
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Since )2()4( vdvd QQ ≤ , )5()3( vdvd QQ ≤ . 

Continuing the same process, we can easily obtain the fact that 

L≤≤≤≤ )7()5()3()1( vdvdvdvd QQQQ  and 

L≥≥≥≥ )8()6()4()2( vdvdvdvd QQQQ . 

Therefore, )12( +tQvd  is increasing and )22( +tQvd  is decreasing for any 

Tt ∈ . 
 

Lemma 3. Suppose ∆+=
−

Kxexg
x)( . Then there exists a unique fixed point ω  

satisfying ωω =))((gg .  

Proof.  Let  ))(()( xggxxh −= . 

0)())(()( )()(
<∆−=∆+∆−∆=∆
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By the intermediate value theorem [24], there exists ]
1

,[
e

KK +∆∆∈ω  

satisfying 0))(()( =−= ωωω ggh . 

Observe ))()((1)('))(('1)(' )()( xxxgxg
xeeexgexgxggxh

−−−−
−−−=−= .  
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Since 1
1

<−<−
−− xx

xee
e

, 1))()(( )()(
<−−

−−−− xxxgxg
xeeexge .  

That is, 0)(' >xh  or )(xh  is an increasing function. 

Hence, there exists an unique fixed point ω  satisfying ωω =))((gg .  

 

Theorem 1. )(tPvd  is convergent where 
K

1
>∆ . 

Proof.  From Lemma 1 , Lemma 2, and the monotone convergence theorem [25], 

)12( +tQvd  and )2( tQvd  is convergent. Let β→+ )12( tQvd  and 

α→)2( tQvd . Since ∆+=+
−

KtQetQ vd

tQ

vd
vd )2()12(

)2(
, ∆+=

− Ke αβ
α

. For 

the same reason, ∆+=
− Ke βα

β
. Let the function ∆+=

− Kxexg x)( . Then 

αβ =)(g  and βα =)(g . From Lemma 3, βα = . Thus, )(tQvd  is 

convergent when 1>∆K . Hence, )(tPvd  is convergent when 
K

1
>∆ . 

 

In Figure 2(b), we confirm that )(tPvd  is convergent under various packet arrival 

rates λ , which is relevant to Theorem 1. Because )(tPvd  exists in the range of 

e
tPvd

1
)( +∆≤≤∆ , the lower bound of )(tPvd  increases as ∆  increases. When 

packets arrive a node, the pheromone value of the node increases. However, the 

value does not exceed the pheromone value at 00.1=λ . This property helps 
manipute the utilization of a node; it prevents the excessive impact of a specific 
node to an entire network. 
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            (a) Effect of ∆             (b) Effect of packet arrival rate 
 
Figure 2: Dynamic convergence behaviors of pheromone values. 
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       (a) Node degree distribution          (b) Network traffic state 
 
Figure 3: Network scenario and comparison for load balancing performance. 
 

4. Simulations 

To observe the behaviors of HDR, we conduct simulations. For the simulations, 
we generate a scale-free network of 1000 nodes based on Barabási-Albert (BA) 
model [26]. Figure 3(a) represents distribution probability with respect to degree 

of node K  in the network. We observe that the node degree distribution follows 
the power law distribution similarly to other SFNs. We compare HDR with ARA 

[15]. We set ∆  as 0.6. For the evaporation rate of ARA, we assign 0.5 as in [13]. 
 
In the simulations, HDR autonomously constructs paths which can diversify loads 
detouring a hub. This characteristic increases the achievable throughput in a 
network. In order to measure traffic congestion in the network, we use the order 
parameter [27] as follows: 

t

Q

S

C
S

t ∆

>∆<
=

∞→

lim)(η ,                      (4) 

 

where C  is the node capacity, S  is the number of source nodes generating 

packets at each time step, )()( tQttQQ −∆+=∆ , and ><L  represents the 

average over time windows of width t∆ . In Figure 3(b), the maximum overall 

capacity of HDR is 4.13=cR  whereas that of ARA is 7.8=cR . Here, cR  is 

the critical value at which η  starts to increase from zero due the accumulated 

packets in the system. That is, 
cR  is the maximum generating rate under which 

the network is the stable system
2
. For 

cRR < , the system is in the free-flow state, 

                                                 
2
 In the stable system, the expected lengths of all queues in the network remain bounded 

over all the time [28]. 
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where all packets are serviced. While in 
cRR ≥ , there are non-serviced packets 

in the system due to serious traffic congestion. Therofore, we confirm that HDR 
achieves more network throughput capacity than ARA. According to the amount 
of pheromone in a node with respect to the degree of node as shown in Figure 4(a) 
and 4(b), HDR maintatins almost even amount of pheromone regardless of the 
degree of node in both lightly- and heavily-loaded situations. In ARA, the amount 
of pheromones in nodes with high degree (Degree of Node ≥ 100) tremendously 
increases from lightly-loaded situation to heaviliy-loaded situation. This causes 
the dominance of specific paths consisting of hubs (high degree nodes). 
Futhermore, as shown in Figure 5(a) and 5(b), all nodes of HDR and ARA 
maintain low queue lengths in the lightly-loaded network. However, the queue 
lengths of high degree nodes of ARA in the heavily-loaded situation significantly 
increases whereas those in HDR consistently achieve low queue lengths. 
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      (a) Lightly-loaded case (R=10)     (b) Heavily-loaded case (R=20) 
 
Figure 4: Amount of pheromone with respect to degree of node.  
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Figure 5: Queue length with respect to degree of node. 

@CMMSE                                 Page 1400 of 1703                                 ISBN: 978-84-614-6167-7



HUB DETOUR ROUTING IN FUTURE MOBILE SOCIAL NETWORKS 
 

5. Conclusions 

In this paper, we propose a hub detour routing scheme for future MSNs. Our 
scheme overcomes the limitations of traditional ant colony algorithms, where a 
specific node is dominantly utilized in message forwarding. With an advanced 
pheromone assignment function, our scheme achieves autonomous load balancing 
and robustness provision in scale-free MSNs. Mathematical analyses and 
simulations provide the implications of our scheme. 
 
In future work, we will consider the impacts of various networking infrastructure 
combinations. Furthermore, we can investigate information propagation behaviors 
of our model and develop scaling laws of pheromone distribution in a more 
sophisticated manner. It is also possible to apply our work to different network 
structures such as machine-to-machine (M2M) communications, sensor networks, 
and other future Internet networking architectures. 
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Abstract 

First-principle density functional theory methods with localized 

atomic orbital basis sets have proven very reliable for electronic, 

optical and magnetical property calculations. However, for large 

systems with hundreds or even thousands of atoms the 

computational demand of the usually employed coupled-

perturbed Kohn-Sham (CPKS) method represents a severe 

obstacle. In this presentation a non-iterative alternative to the 

CPKS methodology in the framework of auxiliary density 

functional theory is described. This so-called auxiliary density 

perturbation theory (ADPT) approach yields CPKS results with 

a fraction of the computational demand.  
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1. Introduction 

This long abstract gives a brief introduction into auxiliary density functional 

theory (ADFT) [1] and auxiliary density perturbation theory (ADPT) [2] as 

implemented in the linear combination of Gaussian-type orbital (LCGTO) density 

functional theory (DFT) program deMon2k [3]. With the development of ADFT 

first-principle calculations on systems with hundreds of atoms have become 

feasible. Today, geometry optimizations and transition state searches [4] can be 

performed for systems containing several hundred atoms [5,6,7] and the thousand-

atom barrier has been broken [8], thanks mainly to the development of ADFT. 

Born-Oppenheimer Molecular Dynamics (BOMD) simulations [9,10,11] have 

now become ''routine'' (though sometimes costly) for systems with a hundred or 

so atoms for simulation times of tens or even hundreds of picoseconds. For a 

more detailed overview on ADFT we refer to the following review [12]. Besides 

structure optimizations and BOMD simulations molecular property calculations 

for large systems are also of outermost importance in Chemistry, Material Science 

and Biophysics. Whereas density expectation values, like the below depicted iso-

density map and molecular electrostatic potential for insulin, are directly 

accessible from ADFT, response properties are less obvious to calculate. 

 

 
 

 

Insulin iso-density plot (left) and molecular electrostatic potential plot on top of 

the iso-density surface (right). 

 

The usually applied coupled perturbed Kohn-Sham (CPKS) methodology is 

computationally rather demanding due to its iterative nature and, therefore, not 

well suited for large systems. Recently, a non-iterative alternative to CPKS was 

developed in the framework of ADFT. Different to previous non-variational ad 

hoc expansions of molecular integrals in perturbation theory [13] this so-called 
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auxiliary density perturbation theory [2] is fully variational and, therefore, yields 

CPKS results. In ADPT the response density matrix is obtained non-iteratively by 

solving an inhomogeneous equation system with the dimension of the number of 

auxiliary functions used to expand the approximated density. Thus, it can be 

applied efficiently to large molecules. So far ADPT has been successfully applied 

to the calculation of static and dynamic polarizabilities [2,14,15], Fukui functions 

[16,17] and nuclear magnetic shielding constants [18]. The development of ADPT 

hyperpolarizabilities, second analytic derivatives and excited state calculations are 

currently under way in our laboratory. In the following the working equations for 

ADFT and ADPT are presented.     

  

2. Auxiliary Density Functional Theory 

The auxiliary density functional theory energy expression is given as: 

 

 

Here μ and ν denote contracted atomic Gaussian-type orbitals,  and  primitive 

Hermite Gaussian auxiliary functions and ║the two-electron Coulomb operator. 

This energy expression results from the variational fitting of the Coulomb 

potential [19,20] and the use of this fitted density for the calculation of the 

exchange-correlation energy [1,21]. The here appearing linear scaling auxiliary 

density is given by: 

 

The ADFT energy expression is variational. As a result the derivatives of this 

energy expression with respect to the density matrix elements, keeping the fitting 

coefficients constants, define the corresponding ADFT Kohn-Sham matrix 

elements: 

 

 
 

For the partial derivative of the (local) exchange-correlation energy functional 

follows: 
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As in standard Kohn-Sham methods the functional derivative defines the 

exchange-correlation potential, however, now calculated with the approximated 

density: 

 

 
 

Due to the variational nature of the approximated density the partial derivatives 

with respect to the density matrix elements can be found as: 

 

 
 

Because the variational fitting yields for the fitting coefficients, 

 

 
 

the above derivative of the fitting coefficients is given by: 

 

 
 

Thus, we find for the partial derivative of the exchange-correlation energy 

functional: 

 

 
 

In order to simplify notation we now introduce exchange-correlation fitting 

coefficients defined as: 

 

 
 

With these exchange-correlation fitting coefficients we find for the ADFT Kohn-

Sham matrix elements: 
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This shows immediately that the Kohn-Sham matrix elements in ADFT are 

independent from density matrix elements. As a result, only the approximated 

density (and the corresponding density derivatives in case of gradient corrected 

functional) are numerically calculated on a grid. Because these quantities scale 

linear the associated grid work is considerably reduced. Besides the efficient 

calculation of the three-center ERIs the simplified grid work is the main reason 

for the computational efficiency of the ADFT approach. In fact, the calculation of 

the Kohn-Sham potential is in ADFT identical to orbital free DFT approaches 

with the auxiliary function density as basic variable. Of course, Kohn-Sham 

orbitals are still used in ADFT for the calculation of the kinetic energy 

contribution and the orbital density which is the seed for the auxiliary density via 

the variational Coulomb fitting. Thus, ADFT might be seen as a combination of 

the basic ideas from the conventional Kohn-Sham methodology with the ones 

from orbital free DFT. As the above derivation of the Kohn-Sham matrix as a 

partial derivative of the ADFT energy expression demonstrates analytic energy 

derivatives can be formulated straightforward in ADFT. This is a major difference 

to other approaches that use a least-square fitting technique for the approximate 

calculation of the exchange-correlation energy and potential. Of course, this holds 

for analytic gradients, too. For higher energy derivatives perturbed density matrix 

elements are needed. Their efficient calculation in the framework of ADFT is 

described in the next section. 

 

3. Auxiliary Density Perturbation Theory 

Auxiliary density perturbation theory (ADPT) is derived from McWeeny’s self-

consistent Hartree-Fock perturbation (SCP) theory [22] employing ADFT. For 

simplicity of the presentation we assume perturbation independent basis and 

auxiliary functions. The (closed-shell) perturbed density matrix elements are then 

given by: 

 

 

. 

 

Here λ is the perturbation parameter and the perturbed Kohn-Sham matrix in 

molecular orbital representation given by: 

 

 
 

The analytic form of  contains in the ADFT framework only perturbed fitting 

coefficients: 
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The perturbed exchange-correlation fitting coefficients can be expressed as: 

 

 
 

The newly introduced  denotes the exchange-correlation kernel of the 

corresponding energy functional calculated with the approximated density. Thus, 

the perturbed exchange-correlation fitting coefficients can be directly calculated 

from the perturbed Coulomb fitting coefficients . They are obtained by the 

solution of the following equation system [2]: 

 

 
 

with 

 

 
 

 
 

 
 

 
 

Because the dimension of the above equation system is given by the number of 

auxiliary functions in the calculation a direct, non-iterative, solution is possible, 

even for large systems. Once the perturbed fitting coefficients are calculated the 

perturbed Kohn-Sham matrix and, thus, the perturbed density matrix can be 

obtained. Thus, ADPT yields the same solution as the corresponding CPKS 

calculation without employing an iterative procedure. In my presentation I will 

give an overview about our recent developments in ADPT and will discuss first-

principle ADPT calculations of polarizabilities and hyperpolarizabilites, nuclear 

magnetic shielding tensors and photoabsorption spectra including molecules with 

more than 1,000 atoms. 
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Abstract 

Kinetics of vacancy-mediated atomic ordering processes in nano-layered L10 and 
triple-defect B2 ordered intermetallics was the subject of extensive atomistic 
simulations. The two groups of systems differ substantially in their vacancy 
thermodynamics: very low and very high vacancy concentration is observed in 
L10 and triple-defect B2 intermetallics, respectively. Special attention was 
focused on the analysis of an effect of free surfaces on superstructure stability and 
defect concentration in the examined materials.  
Two models of L10-ordered FePt intermetallic: Ising-type model with two-body 
interactions and a model with many-body interactions based on Analytic Bond-
Order Potentials (ABOP) were simulated by the Quasi-Kinetic Monte Carlo (q-
KMC) technique implemented with the vacancy mechanism of atomic migration. 
For the ABOP model the method was combined with Molecular Statics (MS). 
Simulation of “order-order” kinetics in [001]-oriented FePt nanolayers initially 
perfectly ordered in the c-variant L10 and modelled with two-body interactions 
revealed a tendency for superstructure transformation from c-variant (monoatomic 
planes parallel to the (001) free surface) to a- and b-variants (monoatomic planes 
perpendicular to the (001) free surface) (Fig.1) [1]. The transformation showed 
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complex kinetics which, except for uniform (bulk-like) disordering, involved 
three processes: (i) nucleation of a- and b-variant L10 domains at the surface 
being initially a single atomic Fe layer, (ii) slow fluctuating growth of the 
nucleated a- and b-variant L10 domains inward the layer and (iii) relaxation of the 
microstructure of the surface domains. In sufficiently thin layers, a percolation of 
the a- or b-variant superstructure domain nucleated at the surface through the 
layered sample was observed. 
 

 
 
Fig.1. Scheme of an initial stage of L10 c-variant/a(b)-variant transformation in a 
FePt layer (atoms residing on two nn crystallographic planes are represented by 
small and big circles) [1]. 
 
MC simulations of ABOP-based model of the same L10 FePt layers revealed 
strong attraction of vacancies by free surfaces. Complex atomic ordering kinetics 
was observed. Initially fast partial disordering of an internal part of a layer was 
followed by surface disordering with no L10 c-variant to a(b)-variant 
transformation. The transformation, however, was observed in additional Monte 
Carlo/Static Relaxation simulations performed with the direct exchange algorithm 
[2,3]. 
The configurational energy of (001)-oriented FePt layers L10-ordered in c- and 
a(b)-variants was calculated with (i) an Ising-type model, (ii) an ABOP model and 
(iii) a DFT-based model. In all cases, a- and b-variants of L10 resulted in being 
energetically stable. It was shown, however, that the models differed in the c-
variant/a(b)-variant antiphase-domain boundary (APB) energy, whose height 
suppressed the c-variant to a(b)-variant transformation in the case of ABOP 
energetics. 
Remarkably, the transformation was experimentally observed in FePt epitaxially 
deposited multilayers [4]. 
 
Triple-defect formation in B2-ordered NiAl intermetallic compound results from 
a strong asymmetry between the formation energies of Ni- and Al-antisite defects. 
Chemical disordering in the system is strictly correlated with vacancy formation, 
which is the reason for the very high vacancy concentration. As a consequence, 
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Kinetic Monte Carlo (KMC) simulation of ordering occurring in the system and 
controlled by atomic migration via the vacancy mechanism must involve 
complete vacancy thermodynamics – i.e. the simulated system must contain an 
equilibrium concentration of vacancies. NiAl was modelled with an Ising-type 
Hamiltonian and the temperature-dependent equilibrium concentration of 
vacancies was determined by means of Semi Grand Canonical Monte Carlo 
(SGCMC) simulations [5], which assured consistency of the entire approach. The 
SGCMC simulations led to the evaluation of nearest-neighbour (nn) pair-
interaction energies generating the triple-defect behavior of the system. The 
system generated and modelled in the same way as in the SGCMC was then 
simulated by KMC for “order-order” kinetics. The procedure required in addition 
the determination of saddle-point energies assigned to particular atomic jumps to 
nn vacancies. Their values were estimated in relation to the nn pair-interaction 
energies with reference to MS simulations performed for NiAl with embedded 
atom method (EAM) energetics.  
The procedure was comparatively applied to bulk and nano-layered B2 AB 
systems. In both cases, the KMC simulations were started from a configuration 
with no antisite defects and vacancies (whose number resulted from SGCMC) 
distributed at random. The results elucidated the role of triple-defect formation as 
the atomistic-scale origin of the experimentally observed (surprising) low rate of 
“order-order” kinetics in bulk NiAl. The simulated “order-order” kinetics showed 
two stages: (i) extremely fast generation of triple defects – i.e. creation af A-
antisite defects and related shift of almost all  B-vacancies to A-sublattice; the 
process, which, however, did not lead the system to thermodynamic equilibrium, 
(ii) extremely slow continuation of the process towards thermodynamic 
equilibrium – i.e. equilibrium concentration and configuration of antiside defects 
and vacancies (Fig.2).  
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Fig.2. KMC simulated “order-order” kinetics in B2-ordering triple-defect binary 

AB system: A is a Bragg-Williams-type long-range order parameter [6]. 
 
 
It was shown that the slow rate of the stage (ii) was due to extremely low 
efficiency of disordering jumps of A-atoms, which were reversed with very high 
probability resulting from numerous vacancies residing on A-sublattice. It is 
claimed that only the stage (ii) of “order-order” kinetics is observed 
experimentally. 
In nano-layers, an additional effect of vacancy segregation on free surfaces and its 
influence on ordering kinetics was modelled and compared with the related 
Molecular Dynamics results [7].  
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Abstract 

The tourism is a non-chimney industry that attracts 
governments’ attentions around the world. Both high-tech 
industry and tourism are the star industries for the 21st century. 
Global trend also affects local tourism in Taiwan, which is 
developing and flourishing. To attract the tourists, many local 
governments in Taiwan hold various festivals, as many as one 
hundred festivals per year. The most famous one in Taiwan is 
the Yanshuei Beehive Firecrackers in Yanshuei District, Tainan 
City. However, due to Yanshuei’s remote location and 
insufficient local marketing resource, the festival is never 
sufficiently marketed. By adopting analytic hierarchy process 
(AHP), this research aims to discover the critical factors that 
affect tourism of Yanshuei. This study includes four factors: 
people, partnership, place, and programming. The study shows 
that, the factors can be ranked by importance: people, place, 
partnership, and programming. The most important index for the 
people factor is “service”, “local government” for partner factor, 
“media” for place, and “tourist guide” for programming factor. 
 
Key words: place marketing, tourism marketing, analytic 
hierarchy process 
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1. Introduction 

After the oil crises, production reduced and price level increased globally; 
economics of cities in various western countries declined, as well as industrial and 
consumer demands. As a result, public is looking forward government’s 
interference in the free market to increase the competitiveness for local economic 
growth. Unlike traditional government policy plans, place marketing utilizes the 
marketing discipline for local development to create unique identity and cultural 
service [5]. In the late 80s, various state and county governments in the United 
States faced problems such as high debt level, low employment, and fiscal deficit. 
As response, the United States government adopted the place marketing as a 
solution to those problems. Place marketing involves both social and economic 
activities, and the development strategy is usually executed by local authorities to 
attract investment, tourists, and residents [3]. Holding festivals is an important 
method, which boosts popularity, attracts tourists’ spending, and contributes to 
economic developments [6].  
 

Under such “glocalization” trend, Taiwan’s place tourism industry in each 
region also facilitates various festivals in attracting the tourists. Among those 
festivals, the most famous one is the Yanshuei Beehive Firecrackers in Yanshuei 
District, Tainan City. Every year in the lantern festival, millions of tourists are 
attracted by this festival. Yanshuei possesses abundant cultural and historical 
heritages, as well as various tasty foods and interesting points. However, most 
tourists’ impresses are limited to the beehive firecrackers only, and the tourism 
marketing is not done properly. To solve the problem, this study adopts the 
analytic hierarchy process (AHP) to discover the critical factors for tourism in 
Yanshuei District. The result may be local authorities’ base for planning their 
strategy for place tourism marketing. 

 

2. Research Methods 

Analytic hierarchy process (AHP) is a decision making method proposed by [7]. 
It aims to support the decision making under uncertainty with multiple criteria, 
and acquire alternative selection or resource weight allocation [2,9]. AHP 
systematically dissects the problem and creates the hierarchy for the problem. 
Pairwise comparisons are adopted to acquire relative importance between factors, 
and alternatives are ranked as basis for selecting optimal solution [8]. Its 
advantages include flexibility, logical, and easy to understand, therefore it is 
widely used [4]. This study adopts following methods: 
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2.1 Structuring Hierarchy 

First step of AHP is to structure the hierarchy. This study aims to identify the 
critical tourism marketing factors for Yanshuei District, and utilizes the 8P 
marketing mix proposed by [1]. The marketing mix includes Product, Price, Place, 
Promotion, People, Programming, Partnership and Packaging. Brainstorming 
method is also used to construct the three hierarchies: goal hierarchy, factor 
hierarchy, and index hierarchy. Hierarchies are shown in fig 1. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig 1 Hierarchy framework of the study 

 

2.2 Pairwise comparisons matrix 

Firstly, pairwise comparisons are executed for each criterion with evaluation scale. 
A 1, A 2, ..., An is a set of criteria. To quantitatively judge the relative importance 
of paired factor (Ai, Aj), this study adopts a nine-point scale, where 1 is for “equal 
importance”, 3 is for “slightly superior important”, 5 is for “some superiority”, 7 
is for “considerable superiority”, and 9 is for “outright superiority”. Moreover, the 
comparison matrix n×n is shown in equation (1): 
 

 Critical Factors of Place Tourism Marketing 

People Place    Programming 

S
erv

ice 
 
 

P
ro

fessio
n

al 
C

o
m

p
eten

ce 

Partnership 

V
erb

al A
b

ility
 
 

T
rav

el A
g

en
cy

 
 
 

R
esid

en
t 

 

L
o

cal G
o

v
ern

m
en

t 
 
 

N
etw

o
rk

 
 
 

M
ed

ia 

D
M

 
 

N
ew

s P
ap

er 
 
 

T
rav

el G
u

id
e 

 

P
ack

ag
e T

o
u

r 
 

T
o

u
rism

 
E

n
v

iro
n

m
en

t 
 

 

In
tern

et 

@CMMSE                                 Page 1417 of 1703                                 ISBN: 978-84-614-6167-7



APPLYING AHP FOR THE CRITICAL FACTORS OF LOCAL TOURISM MARKETING 

 























==

1
11

1
1

1

][

2

2

12

112

L

LOMM

L

L

nIn

n

n

ij

aa

a
a

aa

aA                          (1)

          

where nji ,,2,1, K= . 

 
After completing the pairwise comparisons matrix, the eigenvalue, which is 

often used in numeric analysis, is adopted to acquire the eigenvector W for 
pairwise comparisons matrix. It is also called the priory vector and the largest 

eigenvalue maxλ . In practice, after multiplying the vectors and geometric mean is 

taken and standardized, the W is acquired as shown in equation(2). Calculation of 
largest eigenvalue is shown in equation (3)-(4). 
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2.3 Consistence Test 

After the comparisons, the consistence need to be checked for verify its credibility. 
The consistency ratio (CR) is shown in equation (6). C.I. stands for consistency 
index, and R.I. stands for random index. Calculation of CI is shown in equation 
(5), and RI can be referred in table 1. The overall deviation is acceptable if 

CR≦0.1 and it meets the consistence criteria. If it doesn’t, the relationship needs 

to be calculated again. 
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Table 1: Random Index 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

R.I 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59 

 
 

3. Model Application and Discussion 

This study applies analytic hierarchy process in place tourism industry, and aims 
to identify the critical factors to place marketing. Yanshuei district in Taiwan is 
used as a case study. In addition, to understand tourists’ familiarity about 
interesting points in Yanshuei, as well as to evaluate local authorities’ competence 
in marketing, the questionnaire comprises of two parts. Part one includes seven 
famous items in Yanshuei: Yanshuei Beehive Firecrackers, Moon Port, Anes 
Sugar Refinery, Bridge Street, Octagon, Populace Temple, and Yanshuei Wu 
Temple. Part two addresses the analytic hierarchy questions as shown in fig 1. 

 

3.1 Part I Analysis 

For this study, 250 copies of questionnaire were issued to tourists in Yanshuei, 
213 copies (85.2%) were filled and returned, and 198 copies (79.2%) were valid. 
For part one, 97% of tourists are familiar with Yanshuei Beehive Firecrackers 
while 3% are not; 44% of tourists are familiar with Moon Port while 56% are not; 
47% of tourists are familiar with Anes Sugar Refinery while 53% are not; 50% of 
tourists are familiar with Bridge Street while 50% are not; 85% of tourists are 
familiar with Octagon while 15% are nor; 35% of tourists are familiar with 
Populace Temple while 65% are not; 94% of tourists are familiar with Yanshuei 
Wu Temple while 6% are not. Yanshuei Beehive Firecrackers is the most famous 
festival, and its primary location is in Yanshuei Wu Temple, therefore tourists are 
familiar with these two items the most. Statistics above shows that most tourists 
have little knowledge about other locations in Yanshuei, and still need local 
authorities’ efforts on marketing. 

 

3.2 Part II Analysis 

This study adopts research method in chapter 2 to construct pairwise comparisons 
matrix for each hierarchy. By using Excel and geometric mean method, weight of 
each hierarchy, the largest eigenvalue, and consistency ratio are acquired. 
Furthermore, overall AHP validity is also calculated. Table 2-6 shows the 
pairwise comparisons matrix and result for each hierarchy. 
 

Table 2 shows the second part of the study. This part includes four factors: 
people, partnership, place, and programming; their weights are 0.2919, 0.2713, 
0.2810 and 0.1555 respectively. According to statistics above, the most important 
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factor is people, second for place, third for partnership, and the programming is 
the least important. 

 
Table 2: factors for pairwise comparisons matrix 

 
 

Table 3 is the matrix under people factor. This hierarchy includes three 
indexes: verbal ability, service, and professional competence; their weights are 
0.2464, 0.3939 and 0.3597 respectively. The most important index is service, then 
professional competence, and then verbal ability. 

 
Table 3: pairwise comparisons matrix for the people factor 

 
Table 4 is the matrix under partnership factor. This hierarchy includes three 

indexes: travel agency, resident, and local government; their weights are 0.2753, 
0.3255, and 0.3992 respectively. The most important index is local government, 
then residents, and then travel agency. 

 
 

Table 4: pairwise comparisons matrix for the partnership factor 

 People Partnership Place Programming Weight Rank 

People 1.0000 1.0000 1.2222 1.7143 0.2919 1 

Partnership 1.0000 1.0000 1.0000 1.5714 0.2716 3 

Place 0.8182 1.0000 1.0000 2.2000 0.2810 2 

Programming 0.5833 0.6364 0.4545 1.0000 0.1555 4 

CR=0.0084  CI=0.0076  maxλ =4.0228 

 Verbal 
Ability 

Service Professional 
Competence 

Weight Rank 

Verbal Ability 1.0000 0.5714 0.7500 0.2464 3 

Service 1.7500 1.0000 1.0000 0.3939 1 

Professional 
Competence 

1.3333 1.0000 1.0000 0.3597 2 

CR=0.0071  CI=0.0041  maxλ =3.0082  

 Travel 
Guide 

Package 
Tour 

Tourism 
Environment 

Weight Rank 

Travel Guide 1.0000  1.0000  1.2222  0.3559 1 

Package Tour 1.0000  1.0000  1.0000  0.3328 2 

Tourism 
Environment 

0.8182  1.0000  1.0000  0.3113 3 

CR=0.0039  CI=0.0022  maxλ =3.0045  
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Table 5 is the matrix under place factor. This hierarchy includes four indexes: 
internet, DM, media and newspaper; their weights are 0.1913, 0.1889, 0.3614, and 
0.2366. The most important index is media, then newspaper, internet and DM 
respectively. 

 
Table 5: pairwise comparisons matrix for the place factor 

 
 
Table 6 is the matrix under programming factor. This hierarchy includes four 

indexes: travel guide, package tour, and tourism environment; their weights are 
0.3559, 0.3328 and 0.3113 respectively. The most important index is tour guide, 
then package tour, and then tourism environment. 

 
Table 6: pairwise comparisons matrix for the programming factor 

 
 

According to data above, both CI and CR are less than 0.1, therefore the 
sample is consistent. 

 

4. Conclusions 

To boost economic activities, in recent years the governments globally strive to 
develop tourism industry, and the place marketing is the best tool for local 
development. Therefore, it’s very important to execute the marketing 
management professionally. This study uses Yanshuei District in Taiwan as a case 
study, and the result shows that most people know Yanshuei only for its Yanshuei 

 Internet  DM Media  News paper weight Rank 

Internet  1.0000  0.7778  0.6667  0.7500  0.1913 3 

DM 1.2857  1.0000  0.6667  0.6667  0.1889 4 

Media 1.5000  1.5000  1.0000  2.2000  0.3614 1 

News paper 1.3333  1.5000  0.4545  1.0000  0.2366 2 

CR=0.0296  CI=0.0267  maxλ =4.0800 

 Travel Agency  Resident Local 
Government 

Weight Rank 

Travel Agency 1.0000 0.7778 0.7500 0.2753 3 

Resident 1.2857 1.0000 0.7500 0.3255 2 

Local 
Government 

1.3333 1.3333 1.0000 0.3992 1 

CR=0.0071  CI=0.0041  maxλ =3.0082  
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Beehive Firecrackers, and have little knowledge about other locations there. It can 
be concluded that place marketing is not properly done there. Moreover, this 
study adopts analytic hierarchy process to identify critical factor for marketing 
Yanshuei district, and constructed four factors and 13 indexes. The study result 
shows that under people factor, service is the most critical index, therefore it can 
be concluded that tourists value the service of staff there the most. Under 
partnership factor, local government is the most critical index; therefore the 
tourism policy by local government is very important. Under place factor, the 
most important index is the media. Therefore it can be concluded that media is an 
important impression tool to improve local tourism. Under the programming 
factor, travel guide is the most important index, and it can be concluded that 
tourists value the comprehensive tour information very much. 
 

The study result above can be referred by local governments as their basis for 
tourism marketing decision making. Comprehensive marketing plan will greatly 
improve the place marketing. 
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Abstract 

 
In this work, we present a numerical solution of a system of 
partial differential equations (PDE)  witch correspond to the 
carrier transport in a semiconductor active device submitted to 
an electromagnetic wave environment. This is investigated by 
coupling a full wave solution of Maxwell’s equations to the 
active device model . This later corresponds to the Drift-
Diffusion Model (DDM), which represent the Poisson equation 
and the carrier transport ones. The proposed active device is a 
MOS (Metal Oxide Semiconductor) transistor. Various 
simulations are carried out with MATLAB simulator. 
The numerical model is based on a finite-difference (FD) 
approximation of drift-diffusion model (DDM), The 
discretization uses a first and second order Finite Difference 
scheme with up winding based on the characteristic variables in 
space domain. Backward Euler’s scheme is used to accomplish 
time -domain integration. Gummel’s method is used to handle 
iteratively of the full equations system. 
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The electromagnetic wave effect on the MOS transistor is 
investigated by coupling a full wave solution of Maxwell’s 
equations using three-dimensional (3-D) FDTD scheme. 
 Active device results of the proposed study are in good 
agreement with those obtained using ISE-TCAD software. 
 Return loss characteristic of the MOS transistor is presented for 
several frequency points. Further, we present the electric field 
distribution in the computational domain.   
Key words: PDE, Drift-diffusion model, Maxwell’s equations, 
FTDT method, Backward Euler-implicit scheme. 
 
MSC2000: AMS Codes (optional)   

Nomenclature 
 

q  : Electronic charge. 

in  : Intrinsic carrier concentration. 
n  : Electron density. 
p  : Hole density. 
V : Electrostatic potential. 

TU  : Thermal voltage. 

nJ : Electron current density. 

pJ : Hole current density. 

pn  ,  : Electron and hole mobility. 

pn DD ,  : Electron and hole diffusion coefficient. 
  : Dielectric relaxation time.  

pn  ,  : Carrier lifetimes of electron and hole. 
t : Time step. 

 H : Space step. 
  : Dielectric constant. 

DL : Debye Length. 
E : Electric field. 
H : Magnetic field. 

1. Introduction 

Electromagnetic propagation effects become more and more important for the 
study of high-frequency circuits based on a semiconductor devices.   
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At high-frequency, many effects must be considered for the study of microwave-
circuits: most notably signal reflections due to interconnecting line 
discontinuities, dispersion, and crosstalk phenomena. 
 
In this paper, we propose a numerical solution for the analysis of electromagnetic 
effects on a MOS (Metal Oxide Semiconductor) transistor. 
In a microwave circuits, the active device is typically very small in size compared 
to a wavelength, and it can be modeled by its equivalent current source with a 
very high degree of accuracy [1].   
FDTD algorithm is formulated by directly “finite-differencing” Maxwell’s 
equations. The basic theory and applications of the FDTD method are well 
described and can be found in [2]. 
With the advancement of computers, FDTD method has become a very popular 
tool for analysis of various electromagnetic problems, such as including active 
device in FDTD algorithm.     
Transient simulation is described by the modeling and the simulation of the two-
dimensional (2-D) MOS transistor, which achieved by solving various 
combinations of Poisson and continuity equations conventionally. These later are 
loosely coupled through successive updates of the three variables V (electrostatic 
potential), n (electron concentration) and p (hole concentration). 
The discretization of the equation’s system obtained uses a first and second order 
FD scheme with upwinding based on the characteristic variables in space domain. 
Of course, one of the most important techniques used in the computer modeling of 
physical systems is the finite-difference (FD) method which represents an 
essential part of modern theoretical physics. It’s able to generate solutions for 
systems that are far too intricate to be solved analytically. Backward Euler’s 
scheme is used to accomplish time -domain integration. 
The implicit matrix systems obtained is solved using an efficient and accurate 
algorithm based on the well-known Gummel’s iterations. The three 
semiconductor device equations are solved in a decoupled manner. Starting by the 
initial solution, Poisson’s equation will be solved at all grid point to update the 
electrostatic potential, followed by drift-diffusion equations to compute electrons 
and holes concentration, repeating the procedure until convergence. 
 
Therefore, this paper presents a three- dimensional (3-D) FDTD method was 
originally introduced as a technique for the numerical analysis of full-wave 
problem [3]. We have to modify the FDTD update equations when it is employed 
to a simple device element such as MOS transistor. In this approach, the active 
device is treated as current source that interact with Maxwell’s equations, exactly 
with Ampere’s law [1]. The Berenger perfectly matched layer (PML) absorbing-
boundary condition (ABC) is located to the computational domain to avoid 
nonphysical reflections. Return loss characteristic of the MOS transistor is 
extracted, through fast Fourier transform (FFT) analysis, from the transient 
response predicted by time-domain analysis.  
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2. Active device model  

 
The semiconductor model used is usually obtained by applying approximations 
and simplification to the Boltzmann transport equation (BTE). These assumptions 
can result in a number of different transport models such as the drift diffusion 
model (DDM) [4]. This model formulates the problem using three dependent 
variables v, n, and p.  
Poisson’s equation relates the electrostatic potential to the space charge density: 
 

2 ( ( ) ( ) ( ))qV p x n x Dop x


                                                                                     (1) 

The charge conservation equations formulated for electrons and holes, 
respectively are: 
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The term Dop accounts for the net ionized impurity concentration, and rSRH 
represents the Shockley-Read-Hall recombination, which is a general 
recombination process using traps in the forbidden band gap of the 
semiconductor.  
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Current densities are expressed here through de “drift-diffusion” approximation 
by: 
 

n.q.DV.q.n.μJ nnn 


                                                                                         (5) 
 

p.q.DV.q.p.μJ ppp 


                                                                                         
(6) 

 

3. Numerical simulation  

The discretization uses a first and second order of (1) in 2-D-finite difference 
mesh, leads to have  
 

t t t t t t tq.hV (i 1,j) V (i 1,j) V (i,j 1) V (i,j 1) 2.V (i,j) n (i,j) p (i,j) Dop(i,j)
ε
            

               

(7) 
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The Euler implicit method seeks to approximate the derivatives in (2) and (3) with 
regard to the discrete solutions points defined by spatial and temporal cells [5, 6]. 
The electron and hole continuity equations may be discretized in implicit form as 
follows   
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The expression of a1-10 can be found in [7].  
In this approximation, each time step is represented by t and each spatial step by i 
and j.  
h and Δt  are limited respectively by the Debye length and the dielectric 
relaxation time. 
The corresponding Matrix systems of (7), (8) and (9) can be written respectively 
as: 
 

tt YVA .                                                                                                             (10) 
 

tt nnB 1.                                                                                                            (11) 
 

tt ppC 1.                                                                                                           (12) 
 
A, B and C are square matrix corresponding to equations (7), (8) and (9) 
respectively.  
In order to derive the iteration procedure, at each time step, we relate Gummel’s 
method to successive over-relaxation (SOR) method. This is well known to 
converge quadratically. 
The equations (1), (2) and (3) are discretized and solved in a decoupled manner. 
Poisson equation is solved at all grid points, followed by electron continuity 
equation, and then by hole’s continuity equation, each equation has been solved 
using SOR method [8, 9]. 
The whole numerical procedure to calculate the final solution at each time step 
use Gummel’s iterations between the discretized form of equations (10), (11) and 
(12) [10]. 
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4. Electromagnetic model 

The electromagnetic wave propagation can be completely characterized by 
solving Maxwell’s equations that govern the propagation of electric field E and 
magnetic field H in the computational domain [11]. These equations are first-
order linear, the field vectors at any point in the space at any time can be 
described by Maxwell’s curl equations. 

dt
HdE





                                                                                              
(13)  

 

media Device
dEH J J
dt

   
                                                                                  

(14) 

 
Here, mediaJ  account for the contribution of the current flowing along the 

distributed media and DeviceJ  is an impressed current density through which the 
MOS transistor will be incorporated. Such a contribution comes from the time 
domain solution of the related device model’s equations [12, 13]. 
A schematic of the coupling between the solvers is given in figure. 1, the active 
device is assumed to coincide with an E field component. The current along the 
element and the rate of change of the E field across the element determine the 
values of H field components surrounding the E field. 
 

 
 

Fig.1. Discretization cell for the FDTD algorithm by incorporating lumped element  
 
The explicit FDTD algorithm is obtained using the centered difference 
approximation on both the time and space first-order partial differentiations of all 
the components of E and H.  
Using the central difference approximation in both the special and time first-order 
partial derivatives, we can express (13) and (14) as: 
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(20) 

 
  Where Δx , Δy and Δz are spatial discretization. 
 

2. Results and discussions 

 
The considered active device is a MOS (Metal Oxide Semiconductor) transistor 
with a 0.55 µm channel length. 
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Initially the device is biased to Vds=1 V and Vgs=0.8 V, and the DC distributions 
are obtained by solving the active device model only. The potential was obtained 
by the self- consistent solution of the Poisson, electron and hole continuity 
equations. The state of the MOS transistor under DC steady-state is represented 
by the distribution of the electrostatic potential, electron density and current 
density. 
 
Figure 2 represents the norm of residual error for the variations in potential vector 
[14]. The proposed algorithm provides a good convergence; here each iteration 
takes approximately 0.025 s.       
 
Figure 3.a shows the potential distribution of the device. Figure 3.b shows the 
computed electrons density profile of the proposed device in logarithmic scale. It 
can be seen that electrons has been attracted at the interface oxide-semiconductor.  
The figure clearly shows the onset of the pinch-off effect which indicates the lack 
of channel region near the drain junction. 
 
The static I-V characteristics for the MOS transistor are finally presented in figure 
4.a. The drain current   was obtained using drift-diffusion model, and demonstrate 
a good agreement with those obtained using ISE-TCAD software (Sentaurus). To 
calculate I-V characteristics, we take the current density matrix for a given bias, 
and then integrate it over the surface at the drain contact. 
Figure 4.b shows drain current variation versus time for the bias (Vds=1V, 
Vgs=0.8 V), the obtained result has been calculated by solving the tree implicit 
equations (7), (8) and (9) in a decoupled manner in the time and space. The 
stability of drain current appears above 80 ps and take the same value which 
obtained in steady-state simulation. 
Notice when the channel is clearly formed, It is significant to indicate that Euler’s 
method gives precisely the same results obtained in Stationary simulation. 
Figure 5.a shows the distribution of electric field beneath the structure at 400 time 
steps. Figure 5.b represent return loss coefficient of the active device versus 
frequency. The S11-parameter has been extracted in bandwidth (100MHz to 50 
GHz) using FFT (Fast Fourier Transform) of the temporal response of the 
considered component.  
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Figure 2. Potential error in logarithmic scale 
 

  
                      (a)                                                                        (b) 

 
Figure 3. The Calculated steady-state results: (a) Potential distribution. (b) Electron density 

distribution.     
 

  
                                    (a)                                                                      (b) 

Figure 4. Calculated drain current characteristics: (a) Output characteristic. (b) Transient drain 
current.  
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                               (a)                                                                            (b) 

Fig.5. Electromagnetic simulations: (a) spatial distribution electric field component. (b) Return 
loss coefficient 

 

3. Conclusion 

 
The semiconductor equations of the proposed device consist of a set of nonlinear 
second-order partial differential equations. The descretization of the 
semiconductor equations is established using backward Euler scheme; the implicit 
system obtained is solved using the well known Gummel’s scheme related with an 
efficient successive over-relaxation (SOR) method.  
Static and transient results for active device is calculated and compared with those 
obtained using ISE-TCAD software (Sentaurus). 
This work presented an efficient time-domain full-wave simulator for modeling 
and simulation of MOS transistor used for mm-wave applications. 
The coupling of the drift-diffusion model with Maxwell’s equations is done via 
the extended 3-D FDTD formalism. Next the MOS transistor model is 
implemented in a FDTD grid for the simulation of a simple strip line. Return lose 
parameter has been extracted from the FDTD algorithm by using FFT method. 
The modeling results are qualitatively in agreement with theoretical concepts 
which confirm the validity of the proposed algorithm. 
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Abstract 

A mathematical model is presented for the propagation of structural waves on an 
infinitely long, periodically supported Euler beam and Timoshenko beam. The behaviour 
of railway platforms and the noise transmitted by the rail and the platform depend 
strongly on the dynamics of the rail. Usually, the rails rest on periodically located 
supports.The writing of dynamic equilibrium and the summation of all the force’s 
moments lead to a system of partial differential equations for a Timoshenko beam, this 
differential equation of bending motion ,including the action of the external force. To 
analyze the vibrations according to the frequency, we carried out a Fourier transform. 
The work starts by calculate the Green function for a Euler beam and a Timoshenko 
beam without support by using the direct integration. The beam motion can be described 
by applying the superposition principle which states that the response from all sleepers 
points and from the external point force add up linearly to give the total response. The 
periodicity of supports is described by Bloch’s theorem. The model developed gives the 
choice of different support types: mass support, spring support, mass/spring 
systems…The homogeneous system thus obtained represents a linear differential 
equation which governs rail response. It is initially solved in the homogeneous case and it 
admits a no null solution if its determinant is null. This permits the establishment of the 
dispersion equation to Bloch waves and wave bands. The Bloch waves and dispersion 
curves contain all the physics of the dynamic problem. The solution determines the Bloch 
propagation constant.  Its real part permit to analyse the attenuation introduced by the 
structure and its imaginary parts, which represent the Bloch wave number, permit to 
analyse the free modes of vibration. The two types of support models are considered for 
this, Timoshenko and Euler beams. A comparison of these two cases is performed. A 
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parametric analysis for the two models is realized for the Green function.The influence of 
the periodic supports of the railway track on the vertical bending waves is analyzed. The 
supports induce passing/stopping band frequency behaviour on the waves. The stopping 
bands are not equally spaced, but increase with increasing frequency.  
 

Key words: Partial differential equation, Bloch theorem, Green function, analytical 
method. 
 

1. Introduction 

Many components of engineering structures are constructed in a spatially  periodic 
structure consists fundamentally of a number of identical structural components "periodic 
elements “which are joined together end-to-end and or Side-by-side to form the whole 
structure. A railway line on equi -spaced sleepers is the oldest example.  
Vibration analyses of these structures are frequently required, and extensive studies of 
their free harmonic motions have been made over the past 25 years. Brillouin’s classic 
work [l] on wave propagation in periodic structures has laid the foundation for much of 
the thinking in these studies. 
The response has usually been analyzed by using the propagation constant [2],[3],[4],[5], 
[ 6] which describes the spatial relation between two bays that is to say, the response is 
calculated in a single bay and its phase relation with the other bays. Early investigations 
were primarily concerned with the pass bands and stop bands of a periodic structure, and 
the propagation constant was used to display these characteristics. In 1980, Mace [4-5] 
analyzed an infinite periodic plate reinforced by unidirectional stiffeners and excited by 
line or point harmonic forces. After Fourier-transforming the applied force and stiffener 
reactions, he found the transform of the structural response. (Munjal and Heckl, 1982) 
modeled the rail as an Euler beam on periodic mass supports and analyzed the 
propagation of vertical bending waves with a transfer matrix method. The track is 
modeled as a infinitely long beam (Timoshenko) supported by discrete support systems 
[7]. The rail is modeled as an Euler beam with flexible supports in the work of Nordborg 
[8]. Mead studies [9], [10], [11] of wave propagation on more general periodic 
engineering structures have provided valuable insight into multiple coupling of waves. 
Belotserkovskiy [12], the beam deflection is governed within the segment by Euler-
Bernoulli partial differential equation. The Fourier transform is used to solve the 
problem. 
The vibration motion of a periodically supported beam consists of numerous reflections 
combined with flexural nearfield due to the presence of elastic supports or stiffeners. 
In this paper, the mathematical model is presented to predict the propagation of structural 
waves on an infinitely long periodically supported structures. This periodic system 
consists of a number of identical elements, coupled together in identical ways to form the 
whole system. The rail idealizes these periodic structures. The supports of the beam 
represent pad/sleeper/ballast system of the railway track; they are spaced regularly.  
In this paper, we present the influence of the periodic supports of the railway track on the 
vertical bending wave propagation. The two types of models are considered for the 
Timoshenko beam and Euler one. A comparison of these two cases is performed. A 
parametric analysis for the two models is realized for the Green function.The supports 
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induce passing/stopping band frequency behaviour on the waves. The stopping bands are 
not equally spaced, but increase with increasing frequency.  
 

  

2. Response to harmonic load on the infinite unsupported beam  

 Euler beam 

Let a thin beam with an inertia section   moment  and which is subjected to a 
moving vertical moving load . The vertical beam displacement is the 
solution of the dynamic beam equation (eq. 1). Euler model is considered: 

  

                                                           (1) 

                                   
Where  is the mass of the beam by unit of length and  the Young’s modulus.  
 
If the harmonic concentrated force is applied at the point xo, in the Fourier space, 
the movement equation becomes:   
 

                                     (2) 

Where  is the Fourier transform of .      
   
The Green function associated to this equation is the response to a unit force 
applied at the point xo.  It is the solution of the equation:   
       

       with                           (3)                        

 
The Green function   can be now determined by direct integration; it is 
thus the solution of the equation (3) and represents the vertical vibration at the 
point o  of the beam rail subjected to a harmonic.   
 

 In any point  (in any point other than the excitation point) the system 

is free and :   
 

                                                     (4) 

 At the point ., the discontinuity is assumed by the third derivative 
of . The function and its two first derived are continuous at . 
If we  integrate the equation (2) on both sides of   And if we take into 
account the continuity of the function   at , we obtain : 
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                                                     (5)  

                  

 At        the function is limited:   

The Green function is then expressed by a combination of elementary solutions of 
the equation (3).  Taking into account the condition (at infinity), it can be written:  
  

                                 (6)    
                                                                          

                                (7) 
 
The coefficients are evaluated from the Green function and its first 
derived which must satisfy: 
 

                                                 (8)               

 
The solution of this problem is exposed by Heckl (Maria A. Heckl, 2001) in the 
more general case of the Timoshenko beams. We obtain in the case of the Euler 
beam.   

                                  (9)       

 

 Timoshenko beam 
 
The model of Timoshenko beam is considered for the thick beams; it is valid in a 
large band of frequency. It takes into account shearing and rotational inertia.  It is 
adapted better in the case of the rail. The writing of dynamic equilibrium and the 
summation of all the force’s moments lead to the system of the following 
equations.   

 

                                  (10)  

                                                                                                                                           

                          (11)     

                                                                                                        
Where: 
 : is the rotation of the right section starting from its initial position.   

 : the vertical component of the displacement 

the radius of section gyration.    

   : the flexion Stiffness. 

    : Linear density. 
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The solutions given by this system of equations lead to the following expressions. 
They characterize the propagative waves and the waves of the nearfield. 
  
  

                          (12)                                                                                     

                         (13)                                                                                       

Where:  

      : Compression wave number.       : Shearing Wave number. 

    : Flexion wave number for Euler beam.                   

 : Propagative waves.  

: Waves at nearfield. 
 
Then, the differential equation of the movement of the Timoshenko beam is:   
 

          (14)                                     

                                                           
 
To analyze the vibrations according to the frequency, we carried out a Fourier 
transform.  
 

                            (15)        

 
                                                                            
The Green function associated to the equation (14) is the response of a load 

applied at ; it is the general solution of the equation:   
 

             (16)                

                                                                   

 The function is supposed to continue at    

 In any point  , , the system is free.   

 

                          (17) 

 

 We determine the conditions which must   check derivatives at xo, 

by carrying out successive integrations of the equation (16).  
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                                       (18)                                

                                                                       

 The Green function is then expressed by a linear combination of the 
elementary solutions. 
 

          For                    (19) 
                                      

       For                    (20)                                           
 
By imposing these conditions, we can determine the Green function  
 

                             (21) 

                                                                                                    

with:               ,                                                   (22)    

                                                                 
 Corresponds to the propagative waves. 

 Corresponds to the waves at nearfield.  

 
 

3.         The free motion of the periodically supported beam: Bloch 
waves 

 

 Euler beam 
 
We consider a beam periodically supported with N supports placed between 

and . The period is given by the regular spacing . The rigidity of the  N 

ième 
discrete elastic support, corresponding to the deformation of the system 

(elastic support, mass support...), is   , the force transmitted by the discrete 

support is:  
 

                                                         (23)  
                                                                                                                                         

 It is considered that all the discrete supports are characterized by the same 
rigidity . The global response of the structure can be described by applying 
the superposition principle, which consists of the linear summation of all the 
answers due to the various supports. Then, the displacement with the position  is 
given by:   
 

                                              (24)    
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 Where   is given by the equation (9) for the Euler beam and by equation 
(21) for the Timoshenko one. 
  The relation (9) is thus valid for any point . 
 

                                 (25)   
                                                                                                           
The application of the Floquet theorem gives the relation between two adjacent 
supports :  
 

                          (26)                                                                                                                                                            
 
With:                                                                                                    (27)     
                                                                                                                 
 is the Bloch constant propagation. It is  generally complex.  is the wave  

attenuation and k is the Bloch wave number [1].  
By substituting the expression of the Green function   given by the equation (9) in 
the equation (25) and by multiplying this equation by  , changing the index of 
summation  by  gives the following equation which defines the relation 
between  and the displacement  .                       
 

                      (28)                                   

                           
            

                    (29)                                                                         

              
  

 In the following, only the waves not attenuated will be considered, which means 
that the sum equation (27) and equation (28) can be evaluated by usual formulas 
of the geometrical series.   
For the Euler model, we can have:   
 

=0                             (30)                                                                                                                       

                                                                                                                                
(31)                                                                                                                                                                       

 
This is a second degree polynomial for  . The solution  produces the values 
of the wave number   which is between 0 and π . It is a function of  which 
depends on the radial frequency equation (3). It leads therefore to the. 
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 Timoshenko beam 
 

In order to establish the dispersion equation, we use the suitable Green function 
and the same reasoning is carried out in the case of to the Timoshenko beam. 
  

=0                                             (32)                                                  

 
Then, the dispersion equation is:   

  

                  
(33)                                                                 

4.        Results and discussions 

 

Numerical data: 
 
Rail : 
 
Modulus of elasticity:                                      E=2.10

11
N/m

2 

Shear Stiffness:                                                 G=0.77. 10
11

N/m
2
 

Mass per unit volume                                         
Flexural Rigidity for Timoshenko beam      E.I=6.4. 10

6
 Nm

2 

Flexural Rigidity for Euler beam                  E.I=4.8 10
6
 Nm

2 

Mass per unit length                                            M=60 Kg/m  
  
Track: 
 
Sleeper mass                                                       M=162 Kg/m   
Rail pad stiffness                                                  S= 3.10

8
 N/m 

Sleeper spacing                                                      l=0.6 m 
 
The waves numbers obtained with the two models are comparable at low 
frequencies, their differences is significant at 0.5 kHz figure 1. With high 
frequency, the Timoshenko model gives a more significant propagation with the 
waves numbers than the Euler model   
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Figure 2  : Receptance G (x,x0) function frequency for tow models 
 
Some computed results show how the receptance of the infinite periodic beam 
varies with frequency. This receptance evolution function of the frequency is 
shown figure 2.This evolution is identical for the two models. 
 
The evolution of G(x, x0) according to x-x0 is given figure.3 for the frequency 
f=800 Hz. The nearfield effect is appreciable in the vicinity of the excitation 
point.  At one meter the amplitude vibration remains constant. 
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Figure 3: Evolution of G (x, x0) function x-x0 for f=800 Hz for tow models 
 

The propagation constant  is evaluated by the dispersion equation 30 and 

equation 32 respectively for the Euler model and the Timoshenko one. It is shown 
as a function of frequency. The analysis is carried out for the two types of 
supports considered: a mass periodic support and a rigid periodic support.                                                                                                                                  
The attenuation spectrum shows bands of zero attenuation (passing bands) 
alternating with bands of positive attenuation (stopping bands). 
The solution corresponding to the near fields is null (figure 1).  
The other solution shows the alternation of the bands.  This phenomenon of alternation 

was also observed by Heckl (Maria A.  Heckl, 2001) [13] for the compression waves 
and torsion ones.   

The curves obtained show that the flexion waves are not clearly separate.  These 
curves highlight the behavior passing/stopping bands.   
The width of the passing band increases with increasing frequency, facilitating the 
propagation of the waves not attenuated.  
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Figure 4:  Vertical flexion wave for the Euler beam for an elastic support 

a) Attenuation spectrum, b) Bloch wave number spectrum 
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For the mass support, at the frequency 0 , we have a passing band; this 
particular value causes problems of indetermination.  Some authors (D.J Mead, 
1986)   recommend that this zone can be considered as an attenuation band. 
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Figure 5:  Vertical flexion wave for the Euler beam for a mass support 

a)attenuation spectrum , b) Bloch wave number spectrum 
 
For the Timoshenko beam on periodic supports, we can observe that the width of 
passing bands is smaller than  the Euler beam figure 4.  
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          a- Bloch wave number spectrum                               b- Attenuation spectrum 
 

Figure 6:  Vertical flexion wave for the Timoshenko beam for a mass support: 
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The stopping bands are not equally spaced, but increase with increasing frequency 
figure 6 
 

5.       Conclusion 

 
We have presented an analytically approach to determine the dynamic response of 
the beam rail modeled by an Euler beam and Timoshenko one. These latter are 
infinitely long beams periodically supported. This approach is based on the Green 
functions, the Bloch theorem, and the superposition principle. 
 The established analytical model reflects the physics of the problem: infinite 
beam, by the use of the Green functions.  It permits to describe the vibration of 
the structure under the influence of a unit force.  These Green's functions are 
analyzed. 
Furthermore, the Bloch theorem enabled us to analyze the free vibrations of the 
structure and to clarify the passing/stopping bands of Bloch waves.   
In the case of vertical flexion wave, the dispersion relation spectrum showed a 
clear passing/stopping band behavior. 
Two support types have been examined in detail: mass and elastic support.  
More complex supports can be easily incorporated into the model. 
This work will also permit to evaluate the dynamic response of an infinite 
structure on periodic supports under a moving load.   
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Abstract 

Spaceborne Synthetic Aperture Radar is well adapted for ocean 
pollution detection independently from daily or weather 
conditions. As it is sensitive to surface roughness, the presence 
of oil film on the sea surface decreases its backscattering 
resulting as dark feature patches in SAR images. In this paper, a 
new method for slicks detection is presented. We propose the 
combination of a statistical similarity measure and derivative 
morphological profile to isolate dark spots which are candidates 
to be oil slicks in SAR images. The first level of detection 
process is based on the measure of similarity between a local 
probability density function (pdf) of clean water and the local 
pdf of the zone to be inspected. The local distribution is 
estimated in the neighbourhood of each pixel and compared to a 
reference distribution using the Kullback-Leibler KL distance 
between distributions. Once spots highlighted, the second level 
of the process improve the detection by texture features 
extraction using the Derivative Morphological Profile. The 
algorithm has been applied to Envisat ASAR image. It yields 
accurate segmentation results, even for thin slicks, with a limited 
number of false alarms 
 
Key words: Statistical similarity measure, Derivative 
Morphological Profile, SAR image analysis, Oil slicks 
detection, Water pollution. 
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1. Introduction 

Oil spills cause substantial damage to the marine environment and thus demands 
for necessary prevention measures. The major source of the total ocean oil 
pollution is caused by operational tanker oil discharges (45%) while ship 
accidents and oil platform accidents contribute to only 5% and 2% respectively 
[1]. The mapping, monitoring and statistical analysis of illicit ship discharges is 
thus an important component to provide reliable information to political decision 
makers as well as to ensure compliance with the marine protection legislation. 
 
For this investigation, Synthetic Aperture Radar SAR images are widely used to 
monitor and therefore to detect oil pollution since they provide regularly images 
both day and night, even when clouds are present. As it is sensitive to surface 
roughness (see figure 1), the presence of oil film on the sea surface decreases its 
roughness and induce specular backscattering resulting as dark spots in SAR 
images [1,2]. However, dark areas may be also caused by other phenomena, like 
locally low winds, currents or natural sea slicks called "lookalikes" [2,3]. A 
typical example of SAR images is showed by figure 2 which presents the Prestige 
wreck occurred in November 2002 near the Spanish coast. An ENVISAT ASAR 
image was acquired on November 17, which is four days after the accident and 
two days before it sunk [3]. Wreckage can be seen as strong backscatters on the 
bottom left of the extracted image. The slick by itself is easy to detect. 
Nevertheless, some dark areas due to atmospheric perturbation often induce false 
alarms. 
 
Generally, the detection process of the oil spill from SAR images consists of 
several successive steps: (i) detection of dark spots; (ii) spots characterization; 
and (iii) spots identification. The dark spot detection locates all spots which can 
possibly be oil slicks in the image. For each slick, a set of backscatter, textural, 
and geometrical features are extracted and are, then, classified into possible oil 
slicks and look-alikes [2]. 
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(a) 

(b) (c) 
Figure 1: Principle of marine SAR image acquisition. (a). Bragg backscatter, (b). 

Volumic backscatter due to surface roughness, (c ). Specular backscatter 
 

Fig. 2. Envisat ASAR image. The rectangular area characterizes 
the ROI that defines normal sea state taken as a reference. 

@CMMSE                                 Page 1449 of 1703                                 ISBN: 978-84-614-6167-7



Using statistical similarity measure and mathematical morphology 
 

In this paper, we are interested by the first step of this process in which the main 
objective is to isolate the dark patches visible in the SAR image. For this task, 
many techniques have been proposed in the literature. Among the most widely 
used, the approach based on adaptive thresholding, Fuzzy segmentation, textural 
analysis [1-3]. The detection results depend on the features extracted from the 
original image and the classification process used. In this context, we propose a 
new method in a semi-supervised mode that consists in three following steps. In 
the first step, we use a Kullback-Leibler Distance KLD [4] as similarity measure 
between a local probability density function (lpdf) of clean water and the local 
lpdf of the zone to be analysed. This step is described in Section 2. Once spots are 
highlighted, we focussed our interest, in the second level of detection process, to 
features extraction about spots geometric. In this context, we exploit the local 
geometrical information of each pixel using the derivative morphological profile 
(DMP) obtained with a granulometric approach [5], this presented in Section 3. 
Finally, all features extracted from the original image are integrated into a 
classifier process in order to discriminate between clean water and oil spill pixels 
and thus extract oils signatures. We chose a supervised classifier which is based 
on the dispersion of the data through the variance-covariance matrix extracted 
from the training data. This task is achieved by the likelihood classifier [6] 
described in Section 4. The first results obtained on Envisat ASAR image of 
Prestige tanker are presented and discussed in Section 5. Finally, in section 6, 
conclusions on the developed approach are presented in order to show the 
contribution of SAR images data in oil spills detections. 

2.   SIMILARITY MEASURE 

Slick detection is performed by comparing the local pdf estimated within a sliding 
window and a reference pdf defined by an expert over a region of interest (ROI) 
characterizing a normal sea state. 

2.1. Local pdf estimation 

Let's consider a set of n samples { }nxxx ...,, 21  taken from a sliding window 

characterizing a random variable X . The lpdf )(xfX of X  is estimated through a 
non parametric approach by using a cumulant-based approximation. These 
cumulants allowed an efficient description of lpdf shape, for example, third order 

3k  is linked to the symmetry (i.e. skewness), while the fourth 4k  to the flatness 

(i.e. kurtosis). The density is then estimated through a series expansion. Actually, 
the cumulant generating function is used for such estimation. The cumulant 
generating function (.)Xk  of a random variable X  is defined by: 

 ∑==
n

n

nXX n
wkwMwk

!
)(ln)( ;  (1) 
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With )(⋅M  being the moment generating function: 
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For the case of the four first order cumulants, the following expressions hold [7] : 

 

4
1;

2
1;2;

2
2;1;3;4;4;

3
1;1;2;3;3;

2
1;2;2;

1;1;

61234

23

XXXXXXXX

XXXXX

XXX

XX

k

k

k

k

µµµµµµµ

µµµµ

µµ

µ

−+−−=

+−=

−=

=

 (3) 

Where iX ,µ  are the means at order i  . 

Let us assume that the density to be approximated is not too far from a Gaussian 
pdf (denoted as Xg  to underline the fact that it has the same mean and variance as 

X ). The difference between (.)Xk  and (.)
Xgk , gives a link between )(wkX  and 

(.)
Xgk  through the difference of the cumulants 

nXgnX kk
;; − . By inversion, the 

density may be expressed by a formal Taylor-like series: 
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Since a Gaussian density is used, it comes:  
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with )(xHr  known as the Chebyshev-Hermite polynomial of order r  [8]. When 
choosing a Gaussian law so that its first and second cumulants agree with those of 
X , the number of terms of the series expansion is greatly reduced. This is the so-
called Edgeworth series expansion. Its expression, when truncated to order 6, is 
the following: 
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Figure 3 shows an example of such an approximation of a histogram taken from 
an Envisat ASAR image, in a heterogeneous area where an oil slick is mixed up to 
clean water. 
 

 

Fig. 3. Estimation of a histogram from a cumulant-based 

2.2. Locals pdfs comparison 

Let XP  and YP  be two probability of the random variables X and Y . The KL 

divergence from Y to X, in the case where these two laws have the densities Xf  
and Yf  , is given by: 
 

 dxxf
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When the Edgeworth series expansion of the two pdfs Xf  and Yf  (equation 6) is 
introduced into the Kullback-Leibler divergence, it yields an approximation of the 
Kullback-Leibler divergence by Edgeworth series, truncated at a given order. In 
[7], such approximation has been given up to order 4, where Xg ( resp. Yg ) is a 

Gaussian density of same mean and variance as Xf (resp. Yf ). Then: 
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where the coefficients  βα  , , , , , , , , 6432321 ccccaaa  are given in [8]. 

Since KL  is not symmetric, the Kullback-Leibler distance EdgeworthKLD  is, 

finally, defined by the following expression: 
 
 )/()/()/( XYKYXKYXKLD EdgeworthEdgeworthEdgeworth +=  (9) 

 

2.3. Reference local pdf selection 

The similarity measure is obtained by the comparison of the local pdf, estimated 
within a sliding window, and a reference pdf defined by an expert over a region of 
interest (ROI) characterizing a no-polluted sea surface. The KL distance is 
computed in a local window of increasing size. Smaller window size is 
appropriated to small slick detection but with the drawback of mixing up with 
many false alarms. On the contrary, larger window size ensures the detection but 
with the drawback to miss detect smaller slicks and slicks border smoothing. The 
rectangular area of figure 2 characterizes the ROI that defines normal sea state 
taken as a reference; Figure 4 presents a similarity measure between local pdf 
taken from a 15×15 sliding window and the pdf of a normal sea surface taken 
from the ROI shown on figure 2 through a KL evaluation of equation (9). The 
KLD  vanishes only when the two pdfs ( Xf  and Yf ) are identical, then normal 
sea surfaces appear as black surfaces in similarity measure image. 
 

Fig. 4. The image presents similarity measure between local lpdf (taken from a 
15×15 sliding window) and the lpdf of a normal sea surface (taken from the ROI 
shown on fig. 2) through a KL evaluation of eq. (9). 
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The visual analysing of this result shows an efficiency detection of slicks even for 
the small ones, but it yields some false alarms which are mainly due to the normal 
sea surface roughness [9]. To reduce them, we need further features about local 
contrast. We exploit, then, the morphological granulometry approach. 

3. MORPHOLOGICAL FEATURE EXTRACTION 

Granulometry is popular and powerful tool derived from the mathematical 
morphology theory. It has recently been introduced in remote sensing image 
processing for urban areas classification [5]. Besides the spectral signature, the 
incorporation of spatial information, achieved using Derivative Morphological 
Profile “DMP” in the classification process, improves well the classification 
results [5]. In this context, we propose to integrate this structural information in 
order to reduce the false alarms. 

3.1. Derivative Morphological Profile DMP 

The classical opening granulometry is obtained by applying morphological 
opening operations with structuring elements ( SE s) of increasing size. The 
consequence is a progressive simplification of the image with a gradual 
disappearance of the features that are brighter than their immediate 
neighbourhood. Each structure is removed when it becomes smaller than the SE. 
Noting I  as the original image and Sγ  the morphological opening by 

reconstruction using a structuring elements SE , the morphological profile 
)(iMPγ  at the scale i  is defined for each pixel by: 

 
.,...,1],[)(

,)0(

)( pi      IiMP

IMP

iES ==

=

γγ

γ
 (10) 

Let's note, here, that the scale designates the size of the structuring element. 
 
Granulometric curves are often interpreted by computing their discrete derivative. 
After each morphological filter, the difference with the result of the previous scale 
is computed. For each pixel this result in the differential morphological profile 

γDMP , which is also known as the “pattern spectrum” [5], is given by: 

 
 .,...,1         ),()1()( piiMPiMPiDMP =−−= γγγ  (11) 

 
A structure is removed when the size of the SE  reaches its characteristic size. 
Corresponding pixels are then assigned the gray-level value of the surrounding 
darker region. For all these pixels, this generates a large value on the DMP, a 
value representing the local contrast between the removed structure and its 
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surrounding region. Furthermore, the index of the iteration where the structure is 
removed provides an estimation of the size of the structure. Opening operations 
affect only structures that are brighter than their immediate neighborhood. Other 
structures are left unchanged and thus lead to a flat DMP , with a null value. 
 
Similarly, a granulometry by closing is obtained using morphological closing 
operations, with the same set of structuring elements. In the same way, a 
derivative profile )(iDMPΦ  is obtained. Noting sΦ  the morphological closing by 

reconstruction, it is given by : 
 

 .,...,1         ),1()()( piiMPiMPiDMP =−−= ΦΦΦ  (12) 
 
By duality to the opening operation, the closing-based profile provides 
information regarding the structures that are darker than their immediate 
surrounding and does not affect structures that are brighter than their 
surroundings. 
 
Finally, in order to exploit the complementarity of both the bright and the dark 
structures of the image, the two DMPs  are concatenated as follows [5]: 

 
.,...,1for        ),(             

,...,1for           ),()(

piiDMP
piiDMPiDMP
−−=−=

==

Φ

γ  (13) 

Figure 5 presents two examples of DMP obtained from a normal sea surface water 
and slicks regions from the original image. One typical example is presented for 
each region. On each profile, the left part of scales )0( <i  corresponds to the 
granulometries by closing, and the right part )0( >i  to the granulometries by 
opening. In this case, the used structuring elements were increased successively 
3x3, 5x5, 7x7, 9x9, 11x11, 13x13 and 15x15 in order to follow the image texture. 
It is noted that for each region, the DMP of most pixels has one side tendency 
either the “opening” side for objects brighter than their immediate surroundings or 
the “closing” side for objects darker than their immediate surroundings. Hence, 
for each pixel, the DMP provides a vector of 14-dimensional of attributes where 
each one characterizes a pixel by its local contrast given by DMP intensity and 
structure size presented by ES size. However, the most of these attributes are 
localised in one side of the graphs, a lot of redundancy can be seen. The 
information from all the features may not necessary. Thus, the DMP dimensional 
can be reduced by selecting the most significant ones. 
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(a) (b) 
Fig. 5. Examples of typical differential morphological profiles (DMP(i)) obtained for 

various pixels type. (a) Oil pixel, (b) clean water pixel 

3.2. Features selection based on sorting DMP indexes 

In order to reduce the DMP vector dimensionality we propose to select the most 
discriminative ones without sacrificing the accuracy of the detection results. As 
previously stated, when the size of the structuring element reaches the size of one 
given structure, the structure is removed. This induces a noticeable change of the 
intensity values of the corresponding pixel and, as a consequence, a peak in the 
DMP. The intensity of this peak gives information of the local contrast of the 
pixel and the position { })(maxarg iDMPi , of the greatest value within the DMP, is 

an estimate of the characteristic size of the structure to which the pixel belongs.  
 
However, for capillary waves which caused textured area in SAR image, the 
different structures in the image do not have perfectly sharp edges. Consequently, 
as it is shown by figure 6, the DMP is not constituted of a single peak with a one-
sample-wide support. Furthermore, the intensity of these peaks remains an 
information which can be used to discriminate between oil and clean water pixels. 
In this work, we are interested to characterize only the local contrast of sea SAR 
image given by the intensity of the DMP. Thus, we propose then a simple method 
by sorting the DMP indexes in descending order and extract only the first n ones. 
The goal is to find stepwise the " n indexes" which gives good classification 
accuracies without much computation time. 
 
3.  CLASSIFICATION 
In the last step of slicks detection, all selected features extracted from the original 
image are integrated into a classifier process in order to discriminate between 
clean water and oil slicks pixels. For this task, we have used a Maximum 
likelihood classifier which is considered to be the most common supervised 
classification method used with remote sensed images data [6].  
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Besides its simplicity, this method gives satisfactory classification results. Its 
principle is derived from the probability theory and the Bayes’ theorem, and is 
based on the search for the likelihood measurement between the pixel to classify 
and the data samples represented by their statistical parameters (mean, variance-
covariance matrix) which are extracted from the training data. Generally, the 
maximum likelihood classification assumes that the statistics for each class in 
each feature are normally distributed and calculates the probability that a given 
pixel belongs to a specific class. Each pixel is assigned to the class that has the 
highest probability. This is achieved by calculating the following discriminant 
functions ig  for each pixel x  [6]: 

 ).(.)(
2

1
ln

2

1
)(ln)(

1

ii
T

iiii mxmxCpxg −−−−= ∑∑ −
 (14) 

with ij all   for   xgxg   if   Cx jii ≠>∈ )()(  

where: 
i =class ( class oilCi class waterCi =→==→= 21 2,1 ) 
x =N-dimensional data representing pixel intensity and its extracted 
features (KLD,DMP(1…n)), 

)( iCp =probability that class iC  occurs in the image, 

∑i
=determinant of the covariance matrix of the data in class iC , 

∑−1

i
=its inverse matrix, 

im =mean vector of class iC .  

The validation of the classification process is evaluated according to two criteria: 
visual inspection of oil signatures and some statistics parameters computed from 
the confusion matrix, also called error matrix. The diagonal elements of this 
matrix express a pixel count of correctly classified pixels, while the non-diagonal 
elements represent the number of pixels that have been incorrectly classified. The 
reader should note that, because of the lack of ground truth map, this matrix is 
computed from control database. 
 
Generally, the classification quality is evaluated by the statistic parameter 
OA (Overall accuracy) which designates the percentage of correctly classified 
pixels. In our application, in addition to OA , the classification is evaluated by the 
use of confusion matrix in term of the designated target O  (oil slicks). In this 
case, the probability detection Pd is assimilated to the precision of oil signatures 
detection which corresponds to the oil pixels correctly classified. Therefore, the 
probability of false alarms reported in normal seawater W noted faP becomes 

equivalent to the commission error to detect the no-polluted seawater [3].  
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Let's define Mc  the confusion matrix constituted of ),( jiMc  elements. These 
statistic parameters are given by following equations. 
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Where O and W  designate respectively oil and Water classes and c represents the 
confusion matrix size. 

4- RESULTS AND DISCUSSION 

The proposed approach was applied to ENVISAT ASAR test image showed by 
figure 2. For each pixel x  of this image, we constitute a vector of dimension 16 
composed by its SAR intensity )(xI , its similarity measure )(xKLD  and its 
corresponding sorted features )(xDMP . Different feature combinations were 
tested in order to select the best one. Figure 6.a shows the detection result using 
the first feature only, which is the KLD measure (slicks are presented in black 
colour). The main dark patches are efficiently detected, in particular, the 
extensions of the spills to the north-west. This result is coherent with the 
probability detection Pd which is found to close to 95,49% (Table 1) . However, 
it yields some false alarms as it is noted by the probability of false alarms 
( )05,4=Pfa . Besides the KLD feature, the integration of the sorted DMP 
information improves the classification results in terms of OA , Pd and Pfa  as 
illustrated in Table 1. It could be seen that the Pfa  decreases from 4,05% 
obtained with ASAR and KLD feature classification to 2,55% which corresponds 
to the use of ASAR, KLD and all DMP features. A flattening performance is 
observed from the seventh feature. It corresponds to the sixth max of DMP. The 
visual comparison of figures 6.b and 6.c confirms that the six first DMP peaks are 
sufficient to detect slicks with the same accuracy as the full DMP features. 
Furthermore, the suppression of the non-discriminative features (from the 7th to 
14th feature of DMP ) reduces the computation time without scarifying the quality 
of the slicks detection (Fig. 6.b and Fig. 6.c).  
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(a) (b) 

(c ) 
Fig. 6. Detection results. (a) Detection results using only KLD feature. (b) 
Detection results using ASAR with KLD and all DMP features. (c) Detection 
results using ASAR with KLD and reduced DMP features. 

 

Number of features Pd (%) Pfa (%) OA (%)

1 95,49 4,05 95,91 
2 95,68 3,89 96,21 
3 95,77 3,80 96,26 
4 96,14 3,48 96,35 
5 96,49 3,17 96,42 
6 96,76 2,93 96,47 
7 96,96 2,76 96,54 

Table 1: Statistic classification evaluation of ASAR image for different features 
integration 
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5- CONCLUSION 

In this paper, a new oil-slick detection approach was proposed using the 
combination of Kullback-Leibler (KL) distance and the Derivative Morphological 
Profile. Similarity measure was used for image inspection in order to highlights 
spots suspected to be an oil slick and is considered as the first extracted feature. 
Further features characterizing a local contrast of the original image are deduced 
using the derivative morphological profile and sorted in order to reduce DMP 
dimension. Finally, a supervised classifier is applied to extract slicks signatures.  
Applying to ASAR image, the first results show a good detection of different 
slicks shapes with reducing false alarms. Furthermore, the proposed approach is 
strategic to detect oil slicks as it can be applied on large images, and efficient 
since the detection is similar to than classical tools. Actually, deeper validation 
has to be made by: 

• Reduce human supervision by considering automatic selection of 
reference ROI used in KLD measure and choose an unsupervised 
classifier; 

• Considering synergetic data derived from the same sensor (like ASAR for 
wind only) or any other sensor in the classifier process. Integrate such 
meteo-oceanic information may significantly reduce false alarms from 
classical look alikes. 
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Abstract 

The solution of an on-line optimisation problem generally 
necessitates the calculus of derivative information. This 
information is needed in order to satisfy first and second order 
optimality conditions. There are several methods available for 
calculating these derivatives. In this paper methods and 
techniques for the estimation of the derivative information, to be 
used within the well-known ISOPE (Integrated System 
Optimization and Parameter Estimation) algorithm are 
investigated. Methods of Finite Difference Approximation, Dual 
Control Optimization, Broydon’s method, Dynamic Model 
Identification Method, with a Nonlinear model, together with a 
novel neural networks scheme are presented and applied, under 
simulation, to a cascade Continuous Stirred Tank Reactor 
(CSTR) system. The results are then discussed and compared to 
identify the most suitable method among those used. 
 
Key words: On-line optimization, model-based, process 
derivatives, ISOPE algorithm, ANN. 
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1. Introduction 

The requirement for processes to operate at their optimum operating condition is 
becoming increasingly prevalent. One such model-based algorithm that has been 
developed and which can achieve optimum process operation in spite of model-
reality mismatch is the Integrated System Optimisation and Parameter Estimation 
(ISOPE) algorithm [1]. One requirement of the ISOPE algorithm, in order to 

@CMMSE                                 Page 1462 of 1703                                 ISBN: 978-84-614-6167-7



TECHNIQUES FOR PROCESS OPTIMISATION 
 

satisfy the necessary optimality conditions, is the need for estimates of real 
process derivatives. These derivatives are estimated on-line at each iteration of the 
algorithm.  The finite difference method originally used by Roberts [1] to estimate 
these derivatives has proven not to be efficient in the case of large, slow and noisy 
processes [2]. Alternative methods have therefore been developed. The dynamic 
model identification technique, which is based on the identification of a dynamic 
model, was incorporated within the ISOPE algorithm by Zhang and Roberts [3]. 
Although this technique proved to be fast enough, it encountered some difficulties 
such as: the huge amount of data needed and the poor, inaccurate, model it 
produces at the beginning of the identification. After that, an algorithm with dual 
control effect was proposed [4]. In this algorithm the current control signal is 
generated to satisfy the main control goal and at the same time provide sufficient 
information for future identification action. The main advantage of this algorithm 
is that it does not need excessive set-point changes to estimate the process 
derivatives. However, this method encountered the same type of problems as the 
previous ones. Broydon's approximation method based on the well-known 
Broydon’s family of formulas which are mainly oriented to the approximation of 
derivatives was also implemented [5]. Lately, a nonlinear version of the dynamic 
model identification was applied and implemented [2]. In this paper, a review of 
all these techniques together with a method based on artificial neural networks is 
presented. Simulations are carried out on a cascade CSTR system and a 
comparison is made to show the advantages and disadvantages of each method. 

2. The Optimization Problem and the ISOPE algorithm 

The ISOPE algorithm (or modified two steps) was proposed by Roberts [1] to 
solve the general optimisation problem of finding the optimum operating point of 
a system while it is moving one one point to another. It uses an adaptive steady-
state model of the process, in which the parameters are updated periodically by 
comparing model outputs with those of the real process.   

The general form of the algorithm is: 

1. Apply the current input kv% to the real process and obtain steady-state 

measurement*ky% . Then use the mathematical model to determine the model 

parameters kα%  to minimise the comparison index given by: 

( , )

,

( )

( ) 0
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H
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G u
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          (2-1) 
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where                                                

* 2
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       and w%  is a weighting vector. 

2. Solve the modified model-based optimisation problem given by: 
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       In order to obtain the new candidate 1ku +% . Where 

1* TT
y y y Q

v v
λ

α α

−  ∂ ∂ ∂ ∂     = −       ∂ ∂ ∂ ∂        

% % %

% %% %
         (2-4) 

λ is called a modifier and is obtained following consideration that the necessary 
optimality conditions, of the system optimisation problem, have to be satisfied 
([1]; [6]; [7]). 

However, the new control 1ku +%  is not directly applied to the system. Instead, the 
following relaxation scheme is used: 

1 1+ (= )k k k kKv v u v+ + −% % % %          (2-5) 

where K is a relaxation gain matrix and is a tuning parameter. 

These steps are repeated until convergence is reached. Convergence occurs when 
no further improvement is observed. In other words, when the new control is no 
longer a better candidate than the previous one. 

From  the  previous  cited  relations, it  can  be  seen  that the requirement of the 

ISOPE algorithm to measure  derivatives of  real process  outputs *y v ∂ ∂ % %  

imposes  a  practical limitation to the  technique. These process derivatives are 
calculated online, usually by applying small perturbations on the set-points and 
measure the resulting changes on the outputs. This process is repeated at each 
iteration of the algorithm. Various techniques exist and have been developed and 
applied for the purpose of estimating these derivatives. The Finite differences 
technique was originally suggested with the modified two step method [1]. 
Dynamic model identification (DMI) was then applied by Zhang and Roberts [3]. 
An algorithm for dual control effect was also suggested and implemented [4], and 
most recently DMI with a nonlinear model was proposed and implemented on a 
two CSTR system [2]. In this work, a method based on Artificial Neural Networks 
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(ANN) to estimate the real process derivatives and predict future control actions is 
presented. In this method, a neural network model of the real system is created, 
trained and adapted to the behaviour of the system. This model, imitates the 
behaviour of the real system within its limits. After that, this steady-state model is 
used to estimate the real system output derivatives with respect to the set-points in 
order to compute the parameterλ . All these technique are implemented and tested 
under simulation on a two CSTR system. 

3. Estimation techniques 

3.1. Finite Difference Approximation Method (FDAM) 

This is the most straightforward method for calculating derivatives. It is simply: 

 

( ) ( )k k
k

y v y vy
D

v

δ
δ

+ −∂= ≈
∂

         (3-1) 

 
where δ is a small perturbation signal applied to the system in practice in order to 
estimate the derivative matrix and  y and v are the output and manipulated (set-
point) variables respectively. 
This method can give sufficient accuracy of the derivatives in acceptable time 
spam, in the case of small and noise-free processes which have reasonably rapid 
dynamics. However, it has shown to be inefficient for large and slow processes 
because of the huge amount of time taken for the estimation, and also because of 
the inaccuracy of the measurements for noise-contaminated processes.  

3.2. Method for Dual control optimization 

The algorithm assumes the existence of a collection of n+1 points niii vvv −− ,,, 1
K  

such that all vectors 

     kii
def

ik vvv −−=∆           (3-2) 

are linearly independent, i.e. 

.0)][det( 21 ≠∆∆∆= Tinii
def

i vvvS L         (3-3) 

Directional derivatives  )
* ;( iki

j SvDF  of   the jth plant output  
jF*
  at   a   point  iv   

and   in   a direction ,kii
def

ik vvs −−=  can be computed as: 

 

)()();( **
i

j
Tikiki

j vFssvDF ∇=         (3-4) 

for each k = 1, …, n, j = 1,…, m. Therefore 
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j = 1, …, m. If the points kiv −  are close enough to ,iv  then for every j = 1, …, m, 
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This formulation assures generation of consecutive set points iv  in such a way 
that the efficient estimation of the plant output derivatives using (3-6) can be 
applied. 

3.3. Broydon’s method 

One way to avoid calculating derivatives is the so-called Broydon family of 
algorithms [5]. These kind of algorithms assure to give an estimation of the output 
derivatives with respect to the set-points when used within the ISOPE algorithm, 
following the updating scheme: 

 

1 1 1 1
1

1 1

( *( )*( ) )

( ) *( )

T
k k k k k k k

k k T
k k k k

y y BR u u u u
BR BR

u u u u
− − − −

−
− −

− − − −= +
− −

       (3-7) 

Where BRk and BRk-1 are respectively the present and previous estimates of the 
output derivative matrix, yk and yk-1 are the present and previous values of the 
measured outputs, while uk and uk-1 are the present and previous values of the 
manipulated variables respectively. Equation (3-7) is called the Broydon update. 
In practice, The BR matrix is updated periodically using previous and present 
measurements of the output and manipulated variables and needs to be initialised 
at the start up.  

3.4. Dynamic model identification method (DMI)  

This method is based on the identification of a dynamic model that is used to 
approximate the real process locally at each working point for the purpose of 
estimating steady-state derivatives. It was first introduced into the field of 
optimization by [8], where it was shown to be an efficient method for 
identification, especially in the case of slow processes. 
The key feature of the method is to approximate the real process by a dynamic 
model during the transient using real process information. In this case the waiting 
time for steady state to estimate the derivatives is avoided; these derivatives are 
calculated directly from the steady-state model derived from the identified 
dynamic model. In many cases a linear structure is assumed [9], [10], but this is 
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not always the case as general non-linear forms can also be used [8] and is 
described below. 
 
It is assumed that the process is stable and can be approximated by a non-linear 
lumped model [8], [9]. The process model to be identified considers n different 
inputs uT= [u1, u2, ..., un] and m different outputs yT= [y1, y2, ..., ym]. A generalized 
second order Hammerstein model of the following form is used: 

1 1 2
1 00 10 1 11 1

1 1 2 1
1
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1( )  m

lv lv lv mB q b q b qµ µ µ
− − −= + +K       (3-10) 

 

are polynomials of order m in the backward shift operator q-1, and T denotes 
Transpose. More details on the method can be found in [2]. 

3.5 The Neural Network scheme 

3.5.1 The technique 

The technique is based on training a neural network to learn from the physical 
process itself. Once the training is finished, a steady-state neural network model, 
which imitates the static behaviour of the dynamical system, is obtained. This 
model is used, within the ISOPE algorithm, to find the system outputs to any 
given set-point even if these were not included in the training set. In this case, 
accurate system outputs are available to the ISOPE algorithm and prohibitive 
waiting times are avoided. These data points are used to calculate system output 
derivatives with respect to the set-points (Figure 1).  
 
It has to be mentioned, that during training, switches k2 and k3 are closed, k4 is 
open and k1 is in position 1. This enables the algorithm to collect input/output data 
candidates required for the training in order to generate the identification neural 
network model. The states of these switches are reversed otherwise. 
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3.5.2 Identification 

The identification problem consists of setting up a suitably parameterised model 
and adjusting its parameters to optimise a performance index based on the error 
between the plant and the identification model outputs. Every neural network 
model is composed of a series of weight vectors, which form, what are known as, 
weight matrices. These matrices are updated each time the network is trained for 
another input/ output data sample until no further improvement is obtained. 
Hence, the identification procedure consists in adjusting the parameters of the 
neural network in the model based on the error between the plant and the 
identification model outputs. Generally, the training of the network is performed 
once only. This takes place at the beginning of the optimisation procedure. Once a 
performance goal is reached, training stops, and the model and   its parameters are 
saved to be used in the optimisation procedure.  In case the system parameters 
change, the neural network model has to be retrained. In this case, a suitable time 
is given to the algorithm to perform identification and produce a new model. Once 
training is finished, the model parameters are updated, saved, and passed to the 
optimisation routine (Figure 1).  

4. Simulations and Results: 

In order to assess and compare the performance of all the techniques presented in 
this paper, a set of simulations were carried out on a two Continuous Stirred Tank 
Reactors (CSTR) connected in cascade ([9], [10], [11]). An exothermic 
autocatalytic reaction takes place in the reactors with interaction taking place in 
the units in both directions due to a recycle of 50% of the product stream into the 
first reactor (Figure 2).  

The reaction is: 

    2
k

k
A B B

+

−

+ ⇔             (4-1) 

Figure 1: The neural network scheme 
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The manipulated variables which are the set-points of the temperature controllers 
in both reactors are: 

21( , )TTv T= . The product concentrations associated with the 

second tank are outputs: 2 2( , )Ty Ca Cb= . 
The objective function for all the simulations using this system was chosen to be 
linear of the measured variable 2bC  and reflects the desire of maximising the 
amount of component B in tank 2. Thus the form of the objective function is as 
follow: 
    2( , ) bH y v C= −          (4-2) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The simulations were carried out using a MATLAB/ Simulink platform, where a 
Simulink model of the process was created to enable periodical calls to the ISOPE 
algorithm (with the integrated identification technique) saved in an M-file. The 
starting point which is the initial steady-state condition  was  chosen  to be: 
T1(0)=307 K and T2(0)=302 K  which  yields  the  following   steady  state 
outputs: Ca2=0.0141[kmol/m3] and  Cb2=0.0586[kmol/m3].      
In the simulations, the identification of the dynamic model was carried out during 
the transient, once found the updated model was used in the model-based 
optimization routine to produce the new process set-points.  
The final converged results of the simulations for the various techniques are 
shown in Table 1 and figures 3 to 7. Table 2 gives the final objective function 
value and number of set-point changes taken to converge, obtained using all 
techniques mentioned above. While the figures show the trajectories taken by the 
outputs and manipulated variables for the FDAM, Broydon’s, Dual Control 
method, DMI with a nonlinear model and the neural network scheme respectively.  
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2 
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Figure 2 : The two CSTR system 
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We notice that all the methods converge to the correct process optimum point 
given by 1T =312 K  and 2T =310.2K , with the optimum objective function value 
of -0.0725.  This is to be expected, as all techniques satisfy the necessary system 
optimality conditions. From table 1 it is shown that the method using the neural 
network scheme converges faster than the other methods used in the simulations 
and gives a more accurate approximation of the derivatives. It is also seen from 
the same table, that the method using finite differences to estimate the derivatives 
takes much more time to converge (in terms of number of set-points changes), 
while it needs only a few iterations. This is in total agreement with what was 
stated in the introduction, as in the original method using finite differences needs 
(n+1) times the number of iterations for the estimation (n is the number of set-
points); which could be prohibitive for large systems with a big number of  inputs 
and outputs and also for slow processes. 
From Figures 3 to 9, it is seen how the changes in the set-points affect the 
measured outputs and how they derive their values from the initial steady-state  
condition  given  by Ca2(0)=0.041361 [kmol/m3], Cb2(0)=0.058638 [kmol/m3] to  
the  final desired solution (Ca2=0.0275 [kmol/m3], Cb2=0.0725 [kmol/m3]). 
 

Table1: ISOPE algorithm with the different estimation techniques 
 

  

FDAM 

Broydon’s 
method 

Dual 
control 
method 

Nonlinear 
dynamic 
model 

Neural 
Network 
scheme 

Function value -0.0725 -0.0725 -0.0725 -0.0725 -0.0725 

Number of Set-

point changes 

22 12 14 10 07 

  

5. Discussion and Conclusion 

Techniques for estimating real process derivatives to be used within the ISOPE 
algorithm have been presented, and applied on a cascade process consisting of 
two Continuous Stirred Tank Reactors.  
All methods, due to the satisfaction of optimality conditions, do achieve the real 
process optimum provided they can be implemented in a stable manner after a 
suitable choice of relaxation gains.  
In the case of high order, slow and noisy processes, the FDAM, is not, as is well 
documented, a good choice. Each time a process derivative is requested, a set-
point perturbation needs to be applied and a measurement time needs to be given 
to allow the process to settle before the derivatives are measured. Additional 
difficulties are observed when noise is present on the output measurement. This 
set-point perturbation, and the subsequent measurement time, is where the 
majority of time is spent in the algorithm so this is a major consideration in 
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assessing the algorithm. As can be seen from the simulation on the CSTR’s 
system (Table 1), the FDAM, approaches twice the number of set-point changes 
of the various after methods and would seem not to be the perfect choice of 
algorithm. 
The dual control method takes 14 set-point changes (Table 1) to achieve the 
optimum in the CSTR’s simulation. This is still more than the after methods but 
the ability of the algorithm to estimate the derivatives without any excess in the 
set-point changes makes it a good choice. In this example, the most suitable 
method is the neural network scheme as only 07 set-point changes are needed in 
order to converge to the right optimum point. However, the huge amount of data 
needed for training the network is its major drawback. 
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Figure (3): FDAM method. 
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Figure (4): Broydon’s method. 

@CMMSE                                 Page 1471 of 1703                                 ISBN: 978-84-614-6167-7



TECHNIQUES FOR PROCESS OPTIMISATION 
 

0 2 4 6 8 10

x 10
4

0.02

0.04

0.06

C
a2

 (
km

ol
/m

3
)

Time (s)

0 2 4 6 8 10

x 10
4

0.04

0.06

0.08
C

b2
 (k

m
ol

/m
3)

Time (s)

0 2 4 6 8 10

x 10
4

300

305

310

315

T
1 

(K
)

Time (s)

0 2 4 6 8 10

x 10
4

300

305

310

315

T
2 

(K
)

Time (s)  
Figure (5): Dual control method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (6): DMI with nonlinear model method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (7): Neural network method. 
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Abstract 

In this interdisciplinary study, the proposed neural network 
method solves in an efficient way, how to build prediction 
models in engineering, in which the coefficients can explain the 
variable with more influence over the variable to forecast. 
Obtaining a good prediction and as simple as possible, i.e. with 
the least number of forecast variables. The systems has been 
applied to predict amount of wood for production of paper pulp. 

 
Key words: Artificial neural networks, predictive model, 
linear regression model, wood volume   
 

1. Introduction 

The importance of paper and paper products in modern life is obvious; there is not 
a manufactured product,  that is so important in any area of human activity. The 
paper provides the means to save, store and disseminate information, it is also the 
packaging material widely used. The applications and uses of paper and paper 
products are virtually unlimited and are continually developing new specialty 
products. Increasingly, they are adopting new technologies and methodologies, so 
that industry can remain competitive in the markets. The fibrous material from 
which to obtain the paper is called pulp. Making pasta is to transform the fibrous 
raw materials into fibers, so that after a series of operations can be transformed 
into paper. The fibrous material from which to obtain the paper is called pulp. 
Manufacture of pulp, aims to transform the fibrous materials, fibers so that after a 
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series of operations can be transformed into paper, cardboard, textiles, synthetic 
fibers, etc. The current paper pulp mainly used wood as raw material. In the 
manufacture of paper pulp, wood chips are boiled with appropriate chemicals in 
aqueous solution at elevated temperature and pressure. One of the two main 
methods is the Kraft process; this has come to occupy a dominant position due to 
its advantages in the chemical recovery and pulp strength. The Kraft process uses 
eucalyptus as raw material, using the boiling of wood chips in a solution (NaOH) 
and (NaS). Although until recently, the process is oriented towards conifers, 
however, there is now an increasingly marked tendency to use broad-leaved 
species, especially eucalyptus. Kraft pulps produce a one kind of paper very good 
and strong [2]. 
 
In this example uses a data file that is felling eucalyptus in Asturias, northern 
Spain region. The data that will work for each tree, are the diameter of "normal" 
in cm tree diameter at a height above ground of 1.30 meters (diameter as 
measured by the convenience), the total height of tree in meters (to the apex of the 
highest branch), age (in this case is data that is obtained because we know the age 
at which trees were planted, because eucalyptus is difficult, if not impossible, to 
count the rings growth) and finally the estimated volumes of tree bark and bark in 
dm3 and the percentage of bark . In this case, as the target is for paper pulp, the 
difference is important because the tree bark (which is a significant proportion of 
the tree) is removed from the process. In pulp factories, the bark is used as fuel for 
energy production, a subject very fashionable at present, as source of renewable 
energy. Thus, in the manufacturing process, the goal is to obtain a pulp of given 
characteristics, a low energy consuming and getting the best performance. This 
study aims to predict both figures: the amount of wood that can be extracted for 
obtaining paper pulp, and the percentage of bark is collected and will be used as 
an energy source for the same process. 
 
The example of application is considered in order to compare results using two 
forecasting methods: the general regression model and neural networks. In this 
part, the data set deals with the problem, to forecast the volume of wood. To build 
predictive models in engineering obtaining a good prediction with the least 
number of forecast variables; and in which the coefficients can explain the 
variable with more influence over the variable to forecast, but when among the 
input variables, exist some correlation (collinearity among forecast variables), in 
this kind of problems are really difficult to detect the importance of input 
variables from the coefficients of the general regression model, and neural 
networks have some advantages over regression model [1]. The method used is 
explained below and neural networks solve in an efficient way.  

2. Proposed method using neural networks 

This method should be applied when the importance of a variable changes from 
one to another to vary the range of the variable to be predicted. To search for a 
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predictive model, in these cases, implement a set of functions or hyper planes, that 
approximate the response variable by a function for each one of the subintervals, 
which has divided the range of the output variable. That is, it divides the range of 
the variable to predict contiguous and disjoint intervals and each interval 
obtained, it is implemented a network that more accurately predicted. The method 
is as follows: 

 
- Normalization of the input and output variables into the interval [-1, 1] 

neural networks (NN) inputs and outputs (z) and ẑ  were normalized to lie 
in the range [-1,1] using the corresponding maximum and minimum 
values to preserve the interpretation of the weights and prevent numerical 
overflows. 

 
- Neural network with n inputs and one output. The training algorithm 

considered is the backpropagation, and the activation function as sigmoid 
function. The neural network has been implemented with only one hidden 
layer, in this way; it is possible to study the weights in the neural network 
for the input layer [3,4]. 

 
- For this, first, the influence of independent variables X1, X2, ... Xn are 

studied over the range of the dependent variable Y, using the method 
called bisection method (BM) [1]. This method involves dividing the 
original pattern set into two subsets of patterns (values of the output 
variable Y above zero or positive (0,1] and values below zero or negative 
[-1,0)) and studying if the model (the weights) that the network 
implements, it is different or has changed for both subsets obtained. If the 
weights for the input variables have changed, for the two output intervals, 
then it will be necessary to define two functions (two neural networks one 
for each subset) for each one of the two output ranges obtained, for the 
variable Y, the process continues iteratively for each subset, each one 
divide again into two new subsets, until no changes occur in the weights of 
input variables over the output variable. For each one classes obtained, 
one neural network is trained and the value of the weights and error 
threshold are observed. 

 
- Study of the highest absolute weights for the variables in each training 

neural network, and detect the most important variables [1]. 
 

- Verified by sensitivity analysis that the most important input variables for 
each subset obtained matches with those obtained in the previous step, that 
have been performed with neural networks and BM. 

 
- Finally, for a new input pattern to know which is the network, of the first 

classification obtained by bisection method, that it must be use for the best 
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approximation. Now, it is necessary to use radial basis function (RBF) by 
cluster grouping, and to detect which of the networks obtained in the first 
part, it must be used to obtain the best prediction. The radial basis network 
is not able, in this case, give more accurate output, but it is possible to 
decide the cluster or class which it belongs. Radial basis neural networks 
detected by the algorithm k-means cluster potential, that exists within the 
data set, this allows us to detect, for a new input, which is the network to 
use. RBF neural networks provide a powerful alternative to multilayer 
perceptron to classify a pattern set. In this article, we propose to use radial 
basis neural networks in order to find the classification when a new input 
pattern appears. 

 
So, it is possible to divide the problem in sub-problems, and to get a different 
function for different ranges of the variable to forecast. Each function is defined 
from the weights in each subset and subnet obtained, and which let us a lower 
error rate and also indicates the range of principal input variables; and it will be 
compared with the study of regression model to verify that the variables, which 
have been chosen to define predictive models, are right. 

2.1.  Predictive models 

The multivariate regression model fits the data, taking into account which 
variables could participate in the model, and the suitable way to find the 
individual effects of forecasting variables over the variable to forecast, based on 
the extras squares addition principle [5,6]. The statistical provide estimates of the 
coefficients of regression model with its standard error of the estimate, a value of 
significance or better yet, a confidence interval, if the significance is small, the 
interval does not contain the value zero, it must be considered as an indication 
that this variable is interesting in the model. If it contains at zero (not significant) 
may be preferable remove the variable to simplify the model, but if the rest of the 
coefficients change to remove it, this is a confounding variable. Finding such 
variables is one of the objectives of the regression. The correlation matrix helps 
us to identify linear correlations between pairs of variables. Finding correlations 
between independent variables is a bad sign; the correlation between independent 
variables shows that one of the two variables should leave the model [7,8].  

3. Experimental Set Up 

Estimating the volume of wood for area forest, for production of paper pulp, is the 
example of application which is showed by comparisons the results between the 
linear regression model and the neural networks [9], in this example, it is 
estimated the volume of wood of a tree and volume of tree bark. The Data set file, 
are data from eucalyptus obtained from a region in the north of Spain. 
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The main aim is to detect relationships between all the variables that are in our 
study, and also this work seeks to estimate the wood volume for production of 
paper pulp, using a set of data that can be easily obtained such as: diameter, 
thickness bark, grow of diameter, height and age. Volume parameter is one of the 
most important parameters in forest research when dealing with some forest 
inventories. Usually, some trees are periodically cut in order to obtain such 
parameters using cubical proofs for each tree and for a given environment. This 
way, a repository is constructed to be able to compute the volume of wood for a 
given area or forests and for a given tree specie, in different natural environments. 
The method more usual to estimate volume of wood is the tree volume tables or 
tree volume equations. A very common equation used to estimating volume is:  
 

b cV d hη= ⋅ Where b is next to 2 and c is close 1.     (1) 
 
Where V denotes volume without bark, h denotes height, d denotes diameter, the 
factor “η” reflects more or less, as the tree is separated from the cylindrical shape. 

Neural networks is a mapping 1 2 3( , , ,... ) : n
nf x x x x ℜ →ℜ  

Where 1 ( )x diameter cm= , 2 ( )x height m= , 3 ( )x thickness bark cm= , 

4x years= 5   x percentage of bark= ,to forecast 3 ( )y volume of wood dm= . 
 
Firstly, the most important variables are extracted, and finally the solution is a 
predictive model. In a first step is necessary to normalize the pattern set in the 
range [-1, 1] and then apply the bisection method. Next you must carry out the 
study of the weights in each one of the subsets obtained. The weights show us 
how in this case, the data set can be divided in three different subsets by BM. 
Now, in each one of the sets of patterns obtained, the most important variable in 
each one of the subsets are showed by the weights using the algorithm for 
extraction [1] and the importance of the variables should be confirmed with the 
sensitivity analysis. 
 
Table 1. The most important input variables: weights and sensitivity analysis over 

each output interval for volume of wood. 

 Classes NN Weights hidden Sensitivity Analysis Active performance  
Diameter 1 1.05 47.36 MSE = 0.060 

Height 1 1.17 52.63 NMSE = 0.110 
     

Diameter 2 1.1 56.11 MSE = 0.019 
Height 2 0.86 43.88 NMSE= 0.062 

     
Diameter 3 0.70 41.16 MSE = 0.027 

Height 3 0.83 58.83 NMSE = 0.086 
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In table 1, is showed the outputs of the three trained networks, for the three 
subsets obtained in the first phase BM, and in each class, the same results in the 
weights and sensitivity analysis, about the most important input variable, are 
reached. 
 
Finally, a radial basis function neural network has been implemented; the method 
computes clusters for classification wood volume in a eucalyptus forest. It was 
performed an initial study using 150 patterns in training set and five input 
variables. All centers are stable in three points which show the three main 
clusters, and where the net has been possible to detect the three types of tree (see 
table 2). Several matrixes have been computed; where columns are input forecast 
variables and rows are centers (neurons). Main centers of RBF approximate real 
clusters in the three forest areas, following table 2 shows the real clustering. 
Radial basis function neural network has classified, for each one of the tree tested. 
 

Table 2. Clusters obtained using RBF. 
Variable  Zone species X1: Diameter X2: Height 

Height   1 10.34 12.71 
Diameter  2 16.42 20.01 
Height   3 25.01 27.97 

 
The hyperspace is divided into different regions or clusters starting from 16. 
Later, the number of clusters has been decreased till the minimum number of 
possible clusters is reached in order to solve the problem minimizing the mean 
squared error. The number of hidden neurons must be greater than the number of 
input variables to perform a correct learning in RBF [10,11]. 
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Figure 1. Clusters (three) obtained by RBF. 
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The Bisection method implemented, has divided the dataset in three subsets, 
indicating a change in the importance of input variable over the forecast variable. 
Now when the set is divided in three subsets and the weights are observed in each 
obtained subset or class, it is possible detect that the most important variable is 
changing in each class. The diameter appears as the most important variable in the 
second class; but in the first and third the most important variable has changed; 
now the principal variable is the height instead of the diameter. This information 
is detected in similar way by radial basis function which divided the information 
in three clusters. The set of eucalyptus trees have been classified into three 
classes, and for each one of the classes is possible to determine the input variable 
contributes most to the amount of paper pulp that can be obtained and predicted 
by a regression equation (the wood without crust can be obtained and the amount 
of bark tree). 
The process carried out found three functions, which predict the volume of wood. 
After it should be check the results obtained by linear regression models, 
examining the likelihood ratios in the model, as well as, possible correlations 
between input variables. In this way, it is possible to compare the results obtained 
through the networks and regression model and the prediction error which is 
obtained with both models. The importance of input variables in the network is 
the same that in the regression model, as shown below. 
 
Finally for this example of application, only two input variables are used to define 
the regression model, which confirms the information obtained from weights of 
the neural network, the sensitivity analysis and with the information provided by 
experts.  
 
For each one of the three subsets obtained have been defined three regression 
models. They can predict more accurately, because different features have been 
detected on the input variable over the output variable in each subset obtained. 
 
Formulating three regression models, one for each one sets of patterns, based 
upon 150 data points divided in three datasets by BM. For forecast the volume of 
the wood, in which height and diameter explained 65% and 23% respectively of 
the experimental results (ADJR2 =88%) in the third class, in the same way in the 
second class and in the first class. The results and the prediction equations for 
each class are showed in table 4. The most important forecasting variable in the 
first class and in the third class to predict the variable volume is the variable 
height but in the middle class the most important input variable is the variable 
diameter. In this example it is possible observe that, the selection of the most 
important input variable changes, along the output range of the variable volume to 
predict. Three clusters have been obtained for the data set in the same way that the 
neural networks had obtained (see table 1 and 4) 
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Table 4. Regression estimated for each subset. 
  R2 Function 

Ht: 65%  
Dn: 23% V = -872.036 + 19.9774Ht + 36.3232Dn 

  
Ht: 19%  
Dn: 45% V = -169.558 + 6.08779Ht +13.5922Dn 

  
Ht: 60%  
Dn: 12% V = -97.1849 + 4.55486Ht +8.94644Dn 

Where Ht: is the height and Dn: Diameter of the tree and V: Volume of wood  
 
The problem under study is prediction of volume of wood for production of paper 
pulp, and it is compared to other methods such as the formula (1) and the 
statistical regression analysis in order to estimate the amount of wood using 
typical tree variables: diameter and height. The neural network gives less 
estimated MSE than the standard formula (1) and regression analysis, see Table 5. 
 

Table 5. Mean square error for three predictions. 

 
Error 
Equation (1) 

Error 
NN 

Error 
L. Reg. 

MSE 0.05 0.003 0.01 
 

4. Conclusions  

To build predictive models in engineering, in which the coefficients can explain 
the variable with more influence over the variable to forecast, and to obtain a 
good prediction and as simple as possible, i.e. with the least number of forecast 
variables, be used the methods explained in this paper and where the proposed 
neural network method solves in an efficient way.  
 
The implemented method is effective when the importance or characteristics of 
forecasting variables could change depending on the range of forecast variable, 
and therefore, it is necessary first apply the bisection method and divide the set in 
subsets, working with a neural network with only one hidden layer, and allowing 
the study of the weights in each subset obtained. As result of application of 
bisection process the proposed method showed a suitable learning rate. The 
importance of adding variables in a prediction model can be detected from the 
weights of training neural network, and also can explain which variable has the 
higher effect (importance) under the forecast variable. Once the first section, 
division, knowledge acquisition and variables identification, is finished, a control 
system is needed in order to choose the neural network to predict a new input 
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pattern. Therefore, it is implemented a radial basis neural network to decide the 
output interval and the network that should be activated.  
 
The proposed method and the output of the net have a lower mean squared error 
than other prediction methods. Two problems are solved in the developed method: 
the suitable way to find the individual effects of forecasting variables over the 
variable to forecast, and the way to find a set of forecasting variables that should 
be included in a predictive model. 
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Abstract 

Videogrammetry is a technology to measure the three-
dimensional coordinates of points on an object surface. These 
coordinates are determined by measurements in two or more 
video images taken from different positions. In this work we are 
going to capture a video of an object with the following 
requirements: the video camera location is fixed and the object 
is turning around 360º very slowly (on a swivel base). 
Thousands of images are obtained and transferred to the 
computer. At this point we propose a model to involve the 
geometry of the swivel base on which the object is located and 
the position of the video camera. To check this model out, 
several points on the images are measured and the parameters 
which define the geometry are calculated using a least-square 
system. With the model proposed one can calculate in an easy 
way the 3D points on an object surface using a conventional 
video camera.  We have developed a software package to test 
the proposed model. 
Key words: Videogrammetry, Least-squares, Photogrammetry, 
Scanner 
 

1.  Introduction 

Photogrammetry, on which is based Videogrammetry, is the science of obtaining 
reliable measurements from photographs [1]. The main purpose of the 
photogrametry is to obtain the 3D coordinates of the object which is 
photographed. For that, it is necessary to obtain two photographs of the object 
from two different positions. These two photographs are called ‘photogrammetric 
pair’ and the 3D object coordinates can be determined from them.  
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VIDEOGRAMETRY GEOMETRY MODEL 
 

 

Videogrammetry is based on photogrammetry but it uses a video sequence instead 
of a pair of photographs. It would be very useful if we could take a video around 
the object, because we would have thousands of images which would cover the 
whole object. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Video around the object 
 
 
As in photogrametry the relation between the object and each one of these 
pictures can be established using the collinearity condition.  
 
The collinearity condition relates a point on the object surface (XYZ) with the 
image of this point in the photograph (xy) and the projection centres of the camera 
(X0Y0Z0). The nine terms m11...m33 correspond to the rotation matrix M(ω,φ,k) 
which relates the object reference system with the image (photograph) reference 
system. [2]. 
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Equation 1. Collinearity condition 
 
As the reader can suppose, it might be difficult to make a video around an object 
and to find out the rotation matrix and the projection centre for each photograph 
in an easy and fast way. 
 
In this paper we want to present a model which takes into account all these 
variables around all the available photographs at the same time. This model must 
relate thousands of rotation matrices and projection centres in a single model to be 
solved using least-squares adjustment [3]. 

 
Object 

X 

Y 

Z 

X0Y0Z0 

XYZ 
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2. Instrumentation 

 

2.1    Video camera 
To take the video we have used a conventional digital video camera. The model 
DCR-TRV30E has been used to obtain all the video takings. 
 
The video file is stored using a video format called mini DV [4]. This video 
camera stores the video in a magnetic tape using mini DV. Later, this video is 
transferred to the computer using an iDVconnection through a FireWire port. 
 

2.2    Swivel base 
The movement is relative; therefore it would be the same to rotate the object and 
to fix the video camera position instead of moving the video camera around the 
object. At this point, it is necessary to design swivel base on which the object is 
located. This base should rotate softly and without strong changes in speed. The 
video camera will be located in a fixed and stable tripod. 
 
The designed swivel base is showed in fig 2. The base is made of two connected 
platforms using pillars. The swivel base rotates with a non constant speed (the 
engine speed depends on the variation of the frequency of the electricity). The 
speed is approximately 0.12 rad / seg., A complete turn takes around 53 seconds. 
Keeping in mind that the video system uses 25 frames per second, a whole turn 
will represent 1 325 photographs/images approximately. The platform speed has 
been determined in order to obtain a displacement between 0.5 and 1 pixel 
between consecutive photographs. 
 
The objects used to get the 3D model are located on the bottom platform of this 
platform, then the video capture is carry out. 
 

 
 

Fig. 2. The swivel base 
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3. Proposed model 

Since the platform rotates through the Z axis and due to the apparent movement, 
the camera describes a circular trajectory. This trajectory has a constant height 
with the distance to the taking axis as the radio. Fig. 3 shows in a simplified way 
the trajectory of the camera according to the terrestrial coordinates system [5].   
 
The coordinate system of the camera (in the terrestrial coordinate system) at a 
time of the video capture sequence is: 
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where: 
 
 Z0: Constant height of the projection centre. 
 w: Angular speed of platform rotation. 
 ti: Time i of the trajectory (t0: initial time). 
 w0 = w t0: Initial angle of the trajectory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Camera trajectory 
 

4. Calculating the model 

4.1 Control point coordinates 
The first step to try to adjust the proposed model is to obtain the control point 
pixel coordinates. These control points are located on the swivel base where the 
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object to model is placed (fig. 4). To indentify accurately the control points we 
have designed a barcode. 
The pixel coordinates are identified on some images (6 or 8 images which cover 
360º). This operation is the only one the user has to carry out manually. 
 

 
 
 

 
Fig. 4. Control points 

 

4.2  Adjusting the model with the parametrized terrestrial 
coordinate system. 
If we knew all the X0Y0Z0 coordinates of the projection centres and the control 
point coordinates in each frame of the video capture, then we would be able to 
apply the collinearity condition and to adjust it using a lest-squares adjustment 
[6]. 
The problem is obvious: we cannot measure each image coordinate of the control 
points and each projection centre because we are talking about more than 1 300 
different spatial positions. 
To simplify the problem we are going to model the platform shape, the camera 
trajectory, the engine speed, etc., that way we will be able to adjust the system 
using few variables.  
 
The platform can be modelled with the following variables. 
 

Variable Description 

  Inferior platform (A) 

RA Platform radio. 

αA Angle between two sequential support points. 

δAx X displacement of the platform centre. 

δAy Y displacement of the platform centre. 

δAz Z displacement of the platform centre. 

μAx Inclination of the platform in X direction. 

μAy Inclination of the platform in Y direction. 

 Superior platform (B) 

RB Platform radio. 

αB Angle between two sequential support points. 

δBx X displacement of the platform centre. 

δBy Y displacement of the platform centre. 

δBz Z displacement of the platform centre. 

μBx Inclination of the platform in X direction. 

μBy Inclination of the platform in Y direction. 

θB Angle between  the first control point in platform A and platform B. 

 
Table 1. Platform model 
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To model the camera trajectory (X0Y0Z0) and being able to adjust our whole 
model we will use the follow variables:   
Variable Description 

f Focal distance of the camera. 

d Distance between the platform centre and the taking point. 

nFrameXT Image frame number that establishes the origin of the X axe. 

AC0 Differential angle so that the image nFrameXT points out to the direction of the X 
axis. 

W,  θ,  K Angles of the rotation matrix on the X, Y, Z axes. 

AK0 Initial rotation on the Z axis. 

XC, YC, ZC Terrestrial coordinates of the projection centres corresponding to each frame. 

Φ Angle on the plane XY starting from the image nFrameXT of the corresponding 
image. 

Xi, Yi Image coordinates of all the control points measured in the images. 

nFrames Number of total images (frames) of the video. 

 
Table 2. Camera trajectory parameters 

 
Next step is to put together the variables shown in table 1 and table 2 inside the 
collinearity condition and to apply a least-squares adjustment. 
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M = RT (w, φ, k) 
f = focal distance 
x, y = Pixel coordinates in the image. 
X, Y, Z = Terrestrial coordinates in the object. 
X0, Y0, Z0 = Projection terrestrial coordinates of the projection centre.   
 
The values are compensated using approximate values. We obtain all the variables 
that define the projective conditions (collinearity), the geometry of the platform 
and the trajectory of the video camera.  
As a result it is obtained in an accurate way the projection centres and the angles 
of inclination (photogrammetry external orientation) that define the trajectory of 
the camera.     
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5.  Conclusions 

The mathematical model showed so far allows us to define in an accurate way the 
geometry of a videogrammetry system made of a swivel base and a video camera. 
 
The user does not have to either calculate each projection centre or control point 
coordinates. This model simplifies a complex videogrammetry system as if it 
were just a photogrammetry pair. 
 
Once we know this whole model, the geometry object is obtained in two phases 
[7]. In a first step, the extraction of the object in each image of the video is 
obtained. The image borders are detected by using several techniques as image 
matching, space domain filters and the detection of image discontinuities.  
    
In a simple way we can obtain, in an automatic way, the three-dimensional model 
of small objects, using a conventional device (video camera). 
 
To test the proposed mathematical model, we have developed a software package 
[8]. With this software a user can obtain 3D models easily. These models are 
much more accurate that the ones obtained by traditional techniques and the 
hardware needed is much cheaper than using laser instrumentation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Developed software for adjusting the model 
 

@CMMSE                                 Page 1489 of 1703                                 ISBN: 978-84-614-6167-7



VIDEOGRAMETRY GEOMETRY MODEL 
 

 

6. References: 

[1] KRAUS, K. (1997). Photogrammetry - Volume I - fundamentals and 
standard processes, Dümmler. 

[2] SANJIB. K. Fundamentals of Computational Photogrammetry. Concept 
Publishing Company (2005). 

[3] BASELGA, S., GARCÍA-ASENJO, L. Global robust estimation and its 
application to GPS positioning. Computers and mathematics with 
applications 56 (2008). 

[4] HOLUB, P. DV technology overview and video camera test [on line]. 
CESNET technical report number 12/2001.   
http://www.cesnet.cz/doc/techzpravy/2001/12/ 

[5] LUHMAN, T., AT AL. Close Range Photogrammetry: Principles, 
Techniques and Applications. Wiley (2007). 

[6] HERRAEZ, J., ET AL. Epipolar Frames in a line for videogrammetry. 
Advances in Signal Processing, Robotics and Communications. WSES 
Press. (2001) 60-63. 

[7] MARTINEZ-LLARIO, J. ET AL. Three-diemensional scanner software using 
a video camera. Advances in Engineering Software. 37-7. (2006) 484-
489.  

[8] MARTINEZ-LLARIO, J. Modelado fotogramétrico de objetos mediante 
secuencias de vídeo con imposición de condiciones de borde. UPV. 84-
688-2317-1. (2004). 

@CMMSE                                 Page 1490 of 1703                                 ISBN: 978-84-614-6167-7



Proceedings of the 11th International Conference 
on Computational and Mathematical Methods 
in Science and Engineering, CMMSE2011 
Benidorm, Spain, 26-30 June 2011  

 

Comparing different solvers for the advection equation in 
the CHIMERE model. 

 

Pedro Molina
1
, Luis Gavete

1
, Marta García Vivanco

2
, 

Inmaculada Palomino
2
, M. Lucía Gavete

3
, Francisco 

Ureña
4
, Juan José Benito

5
 

1 Universidad Politécnica de Madrid, Spain 
2 C.I.E.M.A.T., Madrid, Spain 

3 Universidad Rey Juan Carlos, Madrid, Spain 
4 Universidad de Castilla-la Mancha, Ciudad Real, Spain 

5 U.N.E.D., Madrid, Spain 
 

emails: p.molina@upm.es, lu.gavete@upm.es, m.garcia@ciemat.es, 
inma.palomino@ciemat.es,  lucia.gavete@urjc.es 
francisco.urena@uclm.es, jbenito@ind.uned.es  

 
Abstract 

In this paper we compare in the CHIMERE eulerian chemistry 
transport model four different finite volume algorithms for 
solving the advection equation using splitting technique. The 
numerical results are compared with a set of observation sites in 
the area of Spain and some conclusions are obtained.  
 
Key words: advection equation, finite volume, conservative 
scheme, Chimère 
MSC2000: AMS Codes (optional) 
 

1. Introduction 

Air pollution modeling is based on the assumption of no reciprocal effect of the 
chemical species on flow fields (wind velocity, turbulent diffusivity, temperature). 
After having pre-processed the flow fields by meteorological computations or 
parametrizations, the reaction-advection-diffusion PDE (Partial Differential 
Equation), that is, the mass continuity equation, is solved to estimate the 
concentrations of chemical species 
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( ) ( )f
uf k f P L

t

∂ + ∇ = ∇ ∇ + −
∂

.                                 (1) 

In this equation, characteristic of the Eulerian approach, f  is a vector containing 
the concentrations of all model species for every grid box, u is the three 
dimensional wind vector, k  the tensor of eddy diffusivity and P  and L  represent 
production and loss terms due to chemical reactions, emissions and deposition.  
 
A class of conservative schemes for the advection equation has been so far 
proposed following the pioneering work of Godunov [1]. Rather than the 
piecewise constant interpolation in the original Godunov scheme, a linear 
interpolation function, MUSCL [2,3], and a parabolic polynomial, PPM [4,15], 
has been used. Other conservative schemes including a rational method has been 
used to solve the advection equation [5] 
 
Our main goal of this research is to compare four different finite volume 
algorithms including a conservative rational method for the transport module 
included in the European scale Eulerian chemistry transport model CHIMERE. 
The results of the different methods are compared with a set of observation sites 
in the area of the Iberian Peninsula in Spain. Section 2 introduces the four 
advectives solvers that have been evaluated.  In section 3 we introduce the 
European-scale chemistry-transport model (CHIMERE). The comparison of 
observed and modeled data is given in Section 4, and finally some conclusions are 
given in Section 5.      
 

2. Modeling of linear advection 

For simplicity of presentation we start with the scalar advection problem in one 
space dimension. We note f as the concentration of one typical atmospheric 
pollutant. The advection in one space dimension of this pollutant, during the 
interval [ ]0,T  is given by the following linear hyperbolic equation, called also 

transport equation, to which we add an initial concentration; the overall Cauchy 
problem is consequently the following one. 
 
Given a field of initial concentration ( ) 0,0f x f= , a velocity wind u  and a time  

0T > , we want to calculate ( , )f x t  such that 

( ) ( ) [ ]
( ) ( ) ( )0

0    , 0,

,0     ,

uff
x t T

x x

f x f x x t

∂∂ + = ∀ ∈ ×∂ ∂
 = ∀ ∈

ℝ

ℝ

   (2) 
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In the following sections it will be showed the four different finite volume 
methods to solving it. 
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a partition of [ ]0,L  and ( )1,n nt t n+  ∈  ℕ  a regular 

partition of [ ]0,T . We define steps of time and space respectively written 

1n nt t t+∆ = −  and 1 1

2 2

i
i i

x x x
+ −
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 
. 

 

By integrating (2) on 1,n n

i t t + Ω =   , we obtain the integral form of the 

conservation law 

1
1 1

2 2

n n n n

i i i
i i
g g xρ ρ+

+ −

 
= − − ∆ 

 
                                    (3) 

where we define the exact flux by 

( )
1

1 1

2 2

,

n

n

t

n

i i
t

g uf x t dt

+

+ +

 
=  

 
∫                                     (4) 

and the average values of the exact solution, at the time  nt , on each cell by 

( )
1

2

1

2

,

i

i

x

n n

i

x

t
F x t dx

x
ρ

+

−

∆=
∆ ∫                                            (5) 

where F is the approximation of the function. 
 
Four different approximations iF  are used in this paper corresponding to constant, 

linear, quadratic and rational approximations of iF  over each one of the central 
cells. By using time-splitting the method can be easily extended to solve 
advection equation in two and three dimensions. For example in two dimensions 
the time splitting is equivalent to do the transport of particles to the direction (Ox) 
and then according to the other direction (Oy). 

2.1  The Upwind Method 

The Godunov Method, or Upwind Method use a constant function ia  which is 

expressed in a generic mesh element with boundaries 1

2
i
x

−
, and 1

2
i
x

+
, and taking 

into account the velocity, u , the following constant approximation is used 
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( )
( ) 1 1

1 2 2

      if   0
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  if 0    
i i

i i
i i

F x a u
x x x

F x a u − +
−

= >  
∈  = <  

                                        (6) 

where 
ia  is the value of the function in the initial moment where this value is 

known 

( )1 2 1 2
n

i i i iF x f a− −= =                                                                     (7) 

2.2  VanLeer Method 

The VanLeer method better known as MUSCL or Monotocnic Upstream-
Centered Scheme for Conservation Laws, using a minmod technique, use a linear 
function that is expressed in a generic mesh element with boundaries 1 2ix − , and 

1 2ix + , and considering the velocity 0u < as 

( ) ( )1 2 1 2 1 2  for  ,i i i i i iF x a b x x x x x− − + = + − ∈                                            (8)   

where ia , and ib  are the coefficients of the interpolation function. ia  is calculated 

by the initial condition of each cell by  

( )
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                                                                (9) 

To calculate the slope term of the interpolation function, 
ib , we need to define a 

slope-limiter to assume a good relation between the interpolation function with 
the original function as the behavior of its monotonicity. A good choice of slope 
is given by minmod [4]. 

2.3  Piecewise Parabolic Method (PPM) 

The Piecewise Parabolic Method use a parabolic function, is expressed in a 
generic mesh element with boundaries 1 2ix − , and 1 2ix + , and considering the 

velocity 0u < as 

( ) ( ) 1 2 1 21    for    ,i i i i i i i i iF x a b X c X X x x x− + = + + − ∈             (10) 

where     
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1
i i

i

X x x
x

−= −
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,  ,  and i i ia b c  are the coefficients of the interpolation function which are obtained 

by using the constraint conditions, where the constraint conditions are given in 
each cell by 
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where 1 2 1 2i i ix x x+ −∆ = − . Then the coefficients ,  and i i ia b c are given by  

( )
( ) ( )
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                                         (12) 

It is well-known that any high order interpolation tends to create spurious 
oscillations in numerical solutions. As a remedy for this, slope modifications were 
introduced in the PPM schemes. In this paper, we adopted the method of Colella 
and Woodward [4] for computing the interface values as, 

( ) ( )1 2 1 1

1 1

2 6
n n n n n

i i i i if f fρ ρ δ δ+ + −= + − −                                               (13) 

with n

ifδ  being the average slope in cell 1 2 1 2,i ix x− +    as follows 

( ) ( )( ) ( )
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1 1 2 1 1
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i i i i i i i
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δ α ρ ρ α ρ ρ ρ ρ
δ

δ α ρ ρ α ρ ρ ρ ρ
+ − +

+ − +

 − + − >= 
− + − <

                  (14) 

 
where ( )1 1 4i i ifδ ρ ρ+ −= − .  

 
The positives 1α and 2α are parameters that control the average slope and affect 
the dispersion errors of the numerical solutions. For the piecewise parabolic 
method used in Chimère 1 2 1α α= = . To insurance good properties for the 
reconstruction we must to insure the parabolic monotonicity built on each cell. 
Then a second corrector algorithm is used to assume the monotonicity. 
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2.4   The Rational Method (RM) 

Normally the interpolation function is based on polynomials. The main 
disadvantage of the polynomial interpolation is that can be unstable on the most 
common grid – equidistant grid. The rational interpolation consists of the 
representation of a given function as the quotient of two polynomials. The rational 
interpolation is an alternative for the polynomial interpolation. Its advantages are 
the high accuracy and absence of the problems which are typical for polynomial 
interpolation, such as the typical oscillations. However new difficulties can appear 
in the rational interpolation due to the existence of the poles.  
 
The rational interpolation function F  is expressed in each cell mesh element with 
boundaries 1

2
i
x

−
 and  1

2
i
x

+
 and considering the velocity 0u <  as  

         ( )
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where ia , ib ,  and iβ  are the coefficients of the rational interpolation function  
which are obtained by using the constraint conditions, where the constraint 

conditions are given in 1 1

2 2

,
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 
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Then by solving the three equations (16), we obtain the coefficients of the rational 
interpolation function 
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This last expression is corrected according with Xiao and Peng [6], to avoid 
division by zero as follows 
 

(18) 
 
 
 

For computing the interface values we use (13) and (14) with 1 2 3α α= = . 

3.  Model Description 

CHIMERE is based on the mass continuity equation for the concentrations of 
chemical species in every box of a given grid: 

( ) ( )f
uf k f P L

t

∂ + ∇ = ∇ ∇ + −
∂

                                                                        (19) 

In this equation, characteristic for the Eulerian approach, f  is a vector containing 
the concentrations of all model species for every grid box, u  is the three 
dimensional wind vector, k  the tensor of eddy diffusivity and P and L represent 
production and loss terms due to chemical reactions, emissions and deposition. 
  
In order to calculate the production and loss terms due to the chemical reactions it 
is necessary to solve a stiff system of ordinary differential equations, that is 
defined by the atmospheric chemical reactions. The numerical method for the 
temporal solution of the stiff system of partial differential equations is adapted 
from the second-order TWO-STEP algorithm originally proposed by [7] for gas 
phase chemistry only. It is based on the application of a Gauss-Seidel iteration 
scheme to the 2-step implicit backward differentiation (BDF2) formula:  

( )1 1 14 1 2
 

3 3 3
n n n nf f f t R f+ − += − + ∆                                                                     (20) 

with f n being the vector of chemical concentrations at time tn , ∆t the time step 
leading from time tn to tn+1 and R(f) = P(f) - L(f)  the temporal evolution of the 
concentrations due to chemical production and emissions (P) and chemical loss 
and deposition (L). Note that L is a diagonal matrix here. After rearranging and 
introducing the production and loss terms this equation reads 

( ) ( )
1

1 1 1 12 4 1 2
  

3 3 3 3
n n n n nf I t L f f f t P f

−
+ + − +   = + ∆ − + ∆   

   
                              (21) 

The implicit nonlinear system obtained in this scheme can be solved pertinently 
with a Gauss-Seidel method [7]. 
 
In order to solve the partial differential equation (19) CHIMERE splits additively 
in subprocesses for which simpler PDEs exists. Then by using splitting we solve 
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the advection equation with the four different advective solvers. For modelling the 
diffusion CHIMERE takes into account only the vertical diffusion that is 
parameterized with an eddy diffusion approach. Horizontal diffusion is neglected 
as it is commonly done in mesoscale models. We can find a more complete 
description and evaluation of the Chimère model designed for seasonal 
simulations and real time forecasts without the use of super-computers in [8], 
where details about the implementation and evaluations of the modeling are 
given. 

4. Numerical results  

Simulations were carried out using the regional V2008 version of the CHIMERE 
model for 2008. This version calculates the concentration of 44 gaseous species 
and both inorganic and organic aerosols of primary and secondary origin, 
including primary particulate matter, mineral dust, sulfate, nitrate, ammonium, 
secondary organic species and water. The effect of the different numerical 
resolution scheme on model estimates was analyzed for a domain centred on the 
Iberian Peninsula in Spain (SP in Figure 1) [9]. A finer domain at a horizontal 
resolution of 0.1 degree covering the Iberian Peninsula was nested to a coarser 
European scale domain (EUR in Figure 1), ranging from 10.5W to 22.5E and 
from 35N to 57.5 N and a 0.2 degree horizontal resolution. A one-way nesting 
procedure was used: coarse-grid simulations forced the fine-grid ones at the 
boundaries without feedback.  
 

 
Fig.1. Location of the two domains simulated with the CHIMERE model 

 

Boundary conditions for the coarsest domain were provided from monthly 2006  
climatology from LMDz-INCA model [10] for gases concentrations and from 
monthly 2004 GOCART model [11] for particulate species. 
 
Accurate emissions data in each time step are not available, then emissions for all 
the simulations were derived from the annual totals of the EMEP database for 
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2007 [12]. Original EMEP emissions were spatially disaggregated taking into 
account land use information (Global Land Cover Facility, GLCF, 
http://change.gsfc.nasa.gov/create.html) in order to get higher resolution emission 
data. For each SNAP activity sector, the total NMVOC emission was split into 
emissions of 227 real individual NMVOC, according to the AEAT speciation 
[13]. These species were then aggregated into the CHIMERE model ones.  
 
The WRF model was used to obtain the meteorological input fields. The complete 
description of WRF model can be found at http://www.wrf-model.org/index.php. 
The simulations were carried out also for two domains, with respective horizontal 
resolutions of 19 Km and 10 Km. Both WRF simulations were forced by the 
National Centres for Environmental Prediction model (GFS) analyses.  
 
The CHIMERE model was used with a time step of 3.3 minutes for the four 
methods. 
 
The quality of model predictions obtained with the four algorithms for the 
transport module was analyzed by comparing model results to observations at the 
monitoring sites. Figure 2 shows the location of the NO2, SO2 and O3, monitoring 
stations located inside the domain. Figures 3,4 and 5   present NO2, O3, SO2 time 
series showing the concentration obtained with the four methods and the values 
registered at one of the monitoring sites (01016001 for O3, 07010001 for NO2, 
and 07032999 for SO2 , Figure 2) for the period between June, 19th and June, 
23th in 2008, as an example of the model performance. 
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        Fig. 2. Location of the monitoring sites recording  NO2, SO2, and O3 in Spain in 2008. 
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Fig. 3:  Observed and simulated  NO2 concentration  at 0701001 station. 
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Fig. 4:  Observed and simulated  O3 concentration at 01016001 station. 

 

In order to evaluate the performance of the CHIMERE model estimates using the 
four different models some statistics were calculated. Table 1 presents the metrics 
used and their definition. Parameters such as mean bias (BMB), mean normalized 
bias (BMNB), mean normalized absolute error (EMNAE), root mean square error 
(ERMSE) and root mean normalized square error (ERMNSE) were estimated for 
NO2, SO2, and O3. 
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Fig. 5:  Observed and simulated  SO2 concentration  at 07032999 station. 

 
Regarding ozone, only statistics for moderate-to-high ozone concentration cases 
(more important for human health protection) were considered by selecting 
predicted-observed value pairs when hourly observations were equal to or greater 
than the cutoff of 80 µgm-3. For NO2 and SO2 a cutoff value of 10µgm-3 was used. 
It was taken into account 79, 103 and 76 air quality sites to estimate the statistics 
of O3, NO2, and SO2 respectively. 
 

Table 1.  Definition of the metrics used in the evaluation of the CHIMERE model 
performance 
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In table 2 we show the mean observed and simulated concentration of all 
pollutants at 15 monitoring stations. Statistical results for all the pollutants are 
presented in Table 3. Mean normalized bias and mean normalized absolute error 
for ozone present values inside the range proposed by Tesche et al.[14]  to decide 
on the suitability of a model.  
 
 
 

NO2 SO2 O3

Station Observed Upwind Vanleer PPM RM Observed Upwind Vanleer PPM RM Observed Upwind Vanleer RM PPM
7032999 2.976 6.939 6.949 6.912 6.84 101.38 116.4 116.4 116.4 116 0.7108 1.019 1.013 0.999 0.9673

12099001 6.5259 8.034 8.291 8.422 8.41 94.346 103.2 103.4 103.5 103.3 8.5632 0.733 0.729 0.737 0.7371
18189999 5.944 6.424 6.492 6.557 6.63 106.91 95.53 95.33 95.15 94.89 0.8286 0.382 0.38 0.38 0.3816
20016001 5.1868 7.215 7.025 6.887 7.02 67.498 93.95 93.42 93.2 92.51 4.3772 2.445 2.363 2.309 2.3845
28102001 5.4289 7.312 7.303 7.315 7.3 109.35 104.5 104.4 104.2 104 7.7727 0.628 0.629 0.634 0.6356
33036999 2.8702 4.957 5.05 5.073 4.97 65.891 87.95 87.11 86.58 86.46 1.1098 1.38 1.42 1.427 1.4156
11026001 3.8092 9.062 8.974 8.923 8.8 49.75 76.38 75.97 75.76 75.64 6.2433 1.658 1.744 1.794 1.7938
19061999 1.0195 4.882 4.853 4.837 4.75 95.187 94.83 94.97 94.97 94.82 0.7669 0.284 0.285 0.286 0.2846
33031029 14.112 11.42 11.35 11.3 11.5 31.98 72.23 71.34 70.77 70.13 5.5268 6.042 6.016 5.976 6.1256
27033001 2.6536 4.928 4.902 4.901 4.9 64.054 75.67 75.08 74.82 74.66 3.4286 1.726 1.77 1.819 1.8044
34023003 12.518 6.95 7.057 7.125 7.13 76.104 90.85 90.45 90.13 89.83 1.2976 0.336 0.358 0.373 0.375
25224999 1.5325 6.289 6.232 6.185 6.11 98.524 107.4 107.3 107.3 107.1 1.2632 1.042 1.027 1.017 1.0102
28016001 3.9411 6.652 6.694 6.7 6.64 110.83 102.8 102.9 102.7 102.5 6.0515 0.567 0.57 0.57 0.5643
12080007 5.3061 4.549 4.543 4.558 4.54 99.429 107.5 107.4 107.3 107 3.5015 1.016 1.039 1.047 1.0446
28102001 5.4289 7.312 7.303 7.315 7.3 109.35 104.5 104.4 104.2 104 7.7727 0.628 0.629 0.634 0.6356

Table 2. Mean Concentration for observed and simulated pollutant with the four different algorithms. 

 
 
 
 
 

 

O3 BMB BMNB EMNAE ERMSE ERMNSE

Upwind 2.7877 0.0410 12.80% 16.9465 16.67%
Van Leer 2.5866 0.0388 12.79% 17.0191 16.62%
PPM 2.4010 0.0369 12.80% 17.0699 16.65%
RM 2.2114 0.0351 12.78% 17.0651 16.62%

NO2

Upwind -8.9937 -0.2790 59.07% 19.8850 72.60%
Van Leer -8.8774 -0.2861 58.62% 19.7926 71.39%
PPM -8.8055 -0.2741 59.48% 19.9736 73.63%
RM -8.6074 -0.2623 60.29% 20.1179 75.63%

SO2

Upwind -16.6580 -0.7207 76.37% 29.1502 8058.00%
Van Leer -16.5552 -0.7047 76.25% 29.1315 80.54%
PPM -16.4932 -0.7013 76.26% 29.1343 80.61%
RM -16.3555 -0.6941 76.37% 29.1522 80.81%

Table 3. Statistics for all the pollutants evaluation
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5. Conclusions  

In this paper we have compared the concentration of some pollutants predicted by 
the CHIMERE Eulerian chemistry transport model using four different methods 
to solve the advection equation.   
 
The simulated concentrations for all the pollutants have been compared with a set 
of observation registered at some monitoring sites in Spain. There are some EPA 
guidelines to evaluate the accuracy of ozone model predictions (Tesche et 
al.[14]). The mean normalized absolute error, included in these guidelines, 
present, for ozone, values inside the ranges proposed inside the suggested EPA 
range (30-35%), (see Table 3), in order to consider an acceptable model 
performance. For the other pollutants, errors present higher values, as it 
commonly found when evaluating air quality model performance with EMEP 
database. The disagreement between model and observations for these pollutants 
is more related to accuracy of the input information, such as emissions, 
meteorology or land use data. For the time increment used the four advection 
solvers give similar results, using the 10 km resolution.  
 
If the four advection solvers give similar results, it can be due to the very smooth 
functions used for emissions and also due to the very high horizontal resolution 
(0.1 degree). As conclusion it appears that the type of algorithm used for the 
advection problem is not so determinant, at least for this type of resolution. As it 
is important to decreases the execution time it is sufficient to use the upwind 
method which is the faster one. 
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Abstract 

Numerical uniqueness conditions proposed by Tran-Cong for 

the solution of elastostatic problem formulated in terms of 

Boussinesq potential functions, as a particular case of 

Papkovich-Neuber representation, are discussed and alternative 

first class conditions which are more easily to implement are 

presented. Mathematical model is set up by two harmonic 

equations, uncoupled in the domain but strongly coupled at the 

boundary. Two applications to a hollow cylinder are studied, 

one related to a zero displacement field and one related to load 

conditions that give rise to a non-zero displacement field. 

Numerical solution is obtained by network method. 

 

Key words: Boussinesq potentials, elastostatic, uniqueness 

 

1. Background 

In linear elasticity, the equilibrium equation in terms of displacements, in 

absence of body forces, is named Navier equation [1]: 

 

                    (1) 

 

where u is the displacements field, λ the Lamé’s constant and μ the shear 

@CMMSE                                 Page 1505 of 1703                                 ISBN: 978-84-614-6167-7

mailto:josea.moreno@upct.es


NUMERICAL UNIQUENESS IN BOUSSINESQ’S SOLUTION 

 

modulus. 

Equation (1) admits the general Papkovich-Neuber (PN hereinafter) 

displacement representations [2, 3] in the form 

 

           
   

      
                   (2) 

 

where   is a harmonic vector potential, 0 a harmonic scalar potential, R the 

position vector and  the Poisson’s ratio. Equation (2) is a general solution of 

(1) and has proved to be complete for the general case [4]. 

 

Under certain conditions, the number of potential functions of the general PN 

solution can be reduced without lack of completeness. Eubanks and Sternberg [5] 

studied the necessary conditions to delete either the scalar potential function or 

one of the rectangular components of the vector potential function. In addition, 

they considered the derived PN solution with the scalar and z-component of the 

vector potential for the axisymmetric case (Boussinesq potentials,          ), 

demonstrating that, when the meridional half-plane of the revolution solid is a 

simply connected domain, its completeness is guaranteed. Without a study of 

completeness, Boussinesq proposed his potentials 39 years before [6]. 

 

Stippes [7] was the first author that dealt with the subject of numerical 

uniqueness, always referring to the derived PN solution coming from delete the 

scalar potential. This researcher noted that Eubanks and Sternberg [5] did not 

make any reference to this subject, despite that in the demonstration of the 

completeness was implicit the uniqueness condition. In a footnote he wrote about 

the importance of the uniqueness conditions for the numerical solution, but with 

arguments only valid for the case of delete the scalar potential. Twenty five years 

later Tran-Cong [8] comes back to the question and, basing on the study of a null 

displacement field problem, he proved the necessity of additional conditions for 

derived PN solutions different to those studied by Stippes. In particular, he 

studied the case of delete the z-component of the vector function when the 

problem is z-convex and the Boussinesq solution. Tran-Cong [8] did not apply his 

conclusions to particular problems, as we do here. 

 

In this work the Tran-Cong uniqueness conditions for the Boussinesq solution are 

discussed and a new alternative, more easily implemented in a numerical solution 

scheme, are proposed. Finally, two applications are numerically solved using the 

Boussinesq formulation where the potential function are assuming as primary 

unknowns: the first for a domain in which the displacement field is zero 

anywhere, and the second for a domain whose boundary supports an arbitrary 

load distribution that give rises to a non-zero displacement field. The numerical 

solution is obtained by EPSNET_10 [9], a specific software developed by the 
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network simulation research group of the UPCT [10] for elasticity applications. 

The network method [11] is a general proposed numerical tool whose efficiency, 

accurate and reliability has been demonstrated in many other fields of science and 

engineering. Network models are run in PSpice [12].  

2. Governing equations and boundary conditions 

For torsion-free axisymmetric problems in cylindrical coordinates, the 

displacement field for the Boussinesq solution reduce the equation (2) to  

 

      
   

  
  

 

      
 

   

  
 (3a) 

 

      
   

  
 

    

      
   

 

      
 

   

  
 (3b) 

 

where the     

  
  , and ur= ur(r,z) and uz= uz(r,z). The corresponding 

governing equations are 

 
    

    
 

 

   

  
 

    

      (4b) 
 

    

    
 

 

   

  
 

    

      (4c) 

 

For the general case of mixed boundary conditions, these are can be written as 
 

     
      (5a) 

        
      (5b) 

 

Su denotes the boundary surface points where the displacement,   
   is 

prescribed, while St refers to points where the traction values,   
   are imposed. 

ij is the stress field and nj the outer normal vector on St. Note that S = St + Su 

represents the complete boundary surface, Figure 1. 
 

 

 

Figure 1  Scheme of the boundary conditions: tractions and displacements 
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The expressions that relate stress and potential functions, required for 

implementing the boundary condition (5b), are obtained from the strain-

displacement equations and Hook’s Law for the axisymmetric case [1]. Using 

equation (4) to simplify, these expressions are: 
 

     
    

     
    

   

 

      
 

   

  

 

      
 (6a) 

     
    

     
    

   

 

      
 

   

  

 

 
 (6b) 

     
    

    
  

    

    

 

      
 

   

  

    

      
 (6c) 

 

These equations can also be used as post-processing equations to derive the 

quantities r, z and rz once the potential fields are solved. In short, the 

mathematical model for the Boussinesq solution is formed by equations (4) 

and (5) plus the expresions of displacements and stress in terms of the 

potential functions, equations (3) on Su, and (6) on St, respectively. 

 

According to Tran Cong [8], the Boussinesq solution (the numerical solution 

of the unknown potentials) is unique only with some additional conditions. 

These are discussed in the next section. 

3. Uniqueness of the Boussinesq solution 

For the following calculus, it is convenient to express the Boussinesq solution as 
 

               (7) 
 

where         . The new harmonic potential,       and      , are 

related with those of equation (2) by means of the expressions  
 

       ,        ,        .  
 

According to Tran-Cong [8], for a zero displacement field (   ), Boussinesq 

solution satisfies the equation 
 

               (8) 
 

Applying the rotational to this equation and taking into account the properties of 

this operator, it results              , so that       . Also, applying 

the divergence operator and using the above result and the expressions       

and      , it is deduced that        . In short, in order to the Boussinesq 

solution represents a zero displacement field, the non-zero component of the 

vector potential must be constant,  
 

      (9) 
 

This result substituted in equation (8) yields 
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    (10) 

 

From the two first addends of equation (10) it is obtained              ; 

this implies       . Substituting this result in the first addend, the condition 

referred to the scalar potential φ that makes the Boussinesq solution to represent a 

zero displacement field is derived: φ is a plane parallel to the radial axis,  
 

              (11) 
 

The arbitrary constants    y   , define univocally the required potentials for a 

zero displacement field and, by extention, for any other displacement field 

represented by the Boussinesq solution. Figure 2 represents the equations (9) and 

(11); two planes defined by two constants, k1 and k2, since the slope of the   

plane is determined by the expresion             . 

 

 

Figure 2  The Boussinesq solution for a null displacement field 

 

Uniqueness conditions proposed by Tran-Cong [8] are: 
 

 
       

   

  
 
 

   
   (12) 

 

with   an arbitrary point of the domain, and    and    two constants, also 

arbitrarily chosen. Equation (12) is a way of fixing the constants k1 and k2, and 

makes unique the solutions (9) and (11):             and           . 

 

A more simplified alternative to the above uniqueness condition (12) (in the form 

of Dirichlet condition) is proposed in this work: 
 

        
 

       
    (13) 

 

In these equations   and   are two arbitrary points of the domain, while   
  and   

  

are two arbitrarily constants. In this case, the constants k1 and k2 also define 

univocally the solutions (9) and (11):      
 ,      

    
        . 
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About the notation of the potential functions, it is evident that the conditions (12) 

and (13) can be applied to the Boussinesq solution defined by both equations (3) 

and (7).  

4. Applications 

Application 1. Straight pipe with zero displacement field 

The grid, 20x20, refers to the 2-D cross section of the pipe, Figure 3 (left). Rigid 

body movement is restricted by the vertical displacement upper boundary 

condition. Values of the geometry parameters are R1 = 50 mm, R2 =150 mm, H 

= 100 mm, while elastic constants are E (Young modulus) = 210 GPa and  

(Poisson ratio) = 0.3. Additional constants are 
 

    in the cell (1,1), red 

circle in the Figure 3 (right), and 
 

    in the cell (20,1), red diamond. 

Figures 4 and 5 show the displacement field and potential solutions 

respectively  

 

 

Figure 3  Physical model (left). Simple boundary conditions for a null displacement in a 

hollow cylinder; additional uniqueness conditions are shown in red color (right)  

 

Figure 4  Solution of the displacement field by ESPNET_10  
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Figure 5  Potential solutions: Scalar potencial (up),vector potential (down) 

Application 2. Straight pipe under arbitrary loads 

The new boundary conditions referred to load and displacement are shown in 

Figure 5 (left). Geometric and elastic parameters of the material, grid and 
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additional conditions are de same of Application 1. Figure 6 shows the 

displacement field of the pipe cross section while Figure 7 depicts the potential 

solutions whose forms depends on the values of additional constants. These 

harmonic functions are smooth surfaces which curved slightly at its boundaries. 

 

 

Figure 5  Physical model (left). General boundary conditions in a hollow cylinder; 

additional uniqueness conditions are shown in red color (right)  

 

 

Figure 6  Solution of the displacement field by ESPNET_10 
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Figure 7  Potential solutions: Scalar potential (up),vector potential (down) 

Finally, Figures 8 and 9 shown the contour map of the different kind of stress 

provide directly by code EPSNET_10 using the Equation (6a-c) and the Hooke 

Law for the circumferential stress component. 
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Figure 8  Stress solution:     (left),     (rigth) 

 

 

 

Figure 9  Stress solution:     (left),     (rigth) 

5. Conclusions 

Alternative first class (Dirichlet) conditions to those proposed by Tran-Cong for 

the Boussinesq elasticity axisymmetric problem have been proposed and 

successfully applied to a hollow cylinder under a set of loads that results in a non-

zero displacement field as well as for a zero displacement field (no load). These 

new conditions are more easily implemented in the numerical scheme. The form 

of the two Boussinesq potential functions in the case of zero displacement field 

for both Tran-Cong conditions and ours, are the same and define two planes: one 

horizontal for the z-component of the vector function and one parallel to the radial 

axis for the scalar function. The parameters that define the planes depend on the 

value of the numerical condition required to satisfy the uniqueness requirements.  
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Abstract 

Solutions derived from the general form of Papkovich-Neuber 

representation, used as the governing equations of axisymmetric 

problems in which the unknowns are the potential functions, are 

numerically solve by network method. The use of each derived 

potentials, Boussinesq and Timpe, as well as the complete 

Papkovich-Neuber, leads to the same displacement and stress 

fields, being the potential functions clearly different in each 

solution.  

 

Key words: Papkovich-Neuber representation, numerical 

simulation, linear elasticity, axisymmetric, network method 

 

1. Introduction 

The use of general solutions in the elasticity theory, based in stress and 

displacement functions, has been demonstrated to be a useful tool for the 

analytical study of the elastic problem. This technique allows reduce or even 

eliminate the strong coupling of the original differential equations of Navier or 

Beltrami, although the required boundary conditions are generally more complex. 

There are many cases in which the presence of symmetries, or the existence of 

infinite domains, lead to a simplification of the general solutions. This has solved 

the solution of problems of theoretical and practical interest, even in the presence 
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of singularities (Kelvin and Boussinesq problems). One of the most famous 

general solutions is due to Papkovich [1] and Neuber [2] (PN hereinafter), in 

which the displacement field is defined by four harmonic potential functions, 

grouped in a scalar potential plus a vector potential. The completeness of this 

solution has been demonstrated by Mindlin [3]. Eubanks and Sternberg [4] 

studied the uniqueness of the PN general solution in 3D rectangular coordinates 

domains, obtaining the conditions for which the solution could be reduced to only 

three harmonic potentials, maintaining the completeness. 

 

For the axisymmetric case, the circumferential component of the vector potential 

disappears in the PN representation, reducing the general solution to only three 

harmonic potentials. In this case Boussinesq [5] proposed a general solution set 

up by two harmonic functions. Eubanks and Sternberg [4] noted that the 

Boussinesq solution refers to the PN representation in cylindrical coordinates, 

where the vector potential has been reduced to its axial component. These authors, 

demonstrated that the Boussinesq solution is valid (or complete) whenever the 

meridional half plane is simply connected. Another general solution for the 

axisymmetric case in terms of two harmonic potentials is proposed by Timpe [6] 

and, as the case of Boussinesq, it can be understood as a solution coming from the 

PN representation by reduction of the vector potential to the only radial 

component. The test for the completeness for Timpe solution can be carried out in 

a similar way that Eubanks and Sternberg made for the Boussinesq solution: 

meridional half plane must be, again, simply connected. 

 

However, as regards the use of general solutions for the numerical approaches of 

elastostatic problems, in contrast with those based on stress functions (as Airy 

function [7]), displacement potentials have been scarcely applied as primary 

unknowns of the mathematical model.  

 

In this work a same axisymmetric problem (cylinder under symmetric load) is 

numerically solved both in terms of two harmonic potentials (Boussinesq and 

Timpe solutions) and in terms of the complete set of three harmonic potentials 

(PN solution). For each case, the resulting unknown functions are markedly 

different each other, while the stress and displacement fields, coming from theses 

values, are the same.  

 

All the simulations were carried out in EPSNET_10 [8], a specific software based 

on the network method [9], developed by the research group ‘simulation by 

networks’ of the Technical University of Cartagena. This code contains suitable 

subroutines to transport output data to Matlab for an optimal representation of all 

variables of the problem: Potential functions, displacement and stress fields. 

Network models are run in the circuit simulation code PSpice [10]. 
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2. Papkovich-Neuber representation for axisymmetric problems. 

Governing equations and boundary conditions 

The equilibrium equation in terms of displacements, in the absence of body 

forces, is the Navier equation [7] 

 

                    (1) 
 

where u is the displacements field, λ the Lamé’s constant and μ the shear 

modulus. This equation admits the general Papkovich-Neuber displacement 

representations [1,2] 
 

           
   

      
   (2a) 

              (2b) 
 

where   is the vector potential, 0 the scalar potential, R the position vector 

and  the Poisson ratio. As mention before, equation (2a) is a general solution 

of (1) and has proved to be complete for the general case [3]. 

2.1 Papkovich-Neuber solution  

For cylindrical coordinates, with              , the components (ur, u, uz) 

of the equation (2a) can be written as 
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The functions  and 0 in equation (2b) reduce to scalar and vector harmonic 

functions, which lead to the following four equations 
 

 

    

   
 

 

 

   

  
 

 

  
    

    
    

   
  

    

   
 

 

 

   

  
 

 

  
    

   
 

    

   
 

  

  
 

 

  
   

  
  

    

   
 

 

 

   

  
 

 

  
    

    
    

   
 

  

  
 

 

  
   

  
  

    

   
 

 

 

   

  
 

 

  
    

    
    

   
   

  
 

  
 

 (4) 

 

For torsion-free axisymmetric problems the equation     

  
   is satisfied, and 

ur and uz depend on the variables r and z. This eliminates the second component 

of the potential vector, equation (3a). Thus, the Papkovich-Neuber´s solution for 

axisymmetric problems has the form 
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To complete the mathematical model, boundary equations are required. For the 

mixed boundary conditions, these are 
 

     
       (7a) 

        
       (7b) 

 

Su denotes boundary surface points where the displacement,   
   is prescribed, 

while St refers to points where the traction values,   
   are imposed. ij is the 

stress field and nj the outer normal vector on St. Note that S = St + Su 

represents the complete boundary of the middle section, Figure 2. 

 

 
Figure 1. Axissymetric body 

The expressions that relate stress and potential functions, required for 

implementing the boundary condition (7b), are obtained from the strain-

displacement equations and Hook’s Law for the axisymmetric case [7]. Using 

equation (6) to simplify, these expressions are: 
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 (8c) 

 

These formulas can also be used as post-processing equations to derive the 
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quantities rr, zz and rz once the potential fields are known. In short, the 

mathematical model for the Papkovich-Neuber´s solution is formed by 

equations (6) and (7) plus the expresions of displacements and stress in terms 

of the potential functions, equations (5) on Su, and (8) on St, respectively. 

2.2 Boussinesq’s and Timpe´s solutions 

Now, we will consider two known solutions that emerge from the Papkovich-

Neuber representation. These result by dropping    or   , Boussinesq’s and 

Timpe’s solution, respectively. The first, r = 0, is setting by equations 
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Timpe’s solution, z = 0, leads to the governing equations:  
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3. The network model 
It is designed from the finite differential equations derived from Boussinesq´s 

or Timpe´s solutions, equations (10) and (13), respectively. Using the 

nomenclature of Figure 2, these equations are (15) and (16), respectively. 
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 (16) 

 

Following the steps of the design [9], the four first addends of equations (15) and 

(16) are implemented by simple resistors while the last addends between brackets 

(coupled terms) are implemented by controlled current sources. 

 

To extend the model to the whole domain, NxNy networks must be electrically 

connected each other along axes x and y, Figure 3. Finally, displacement 

boundary conditions are directly implemented by means of constant voltage 

generators, while traction conditions are implemented by controlled voltage 

sources. 

 

 
Figure 2  Nomenclature of the nodes. Note that there is one figure for the scalar 

potential (0) and another for the i-component of the vector potential (i) 
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Figure 3  Network model of the volume element 

4. The code EPSNET_10 ( UPCT)  

This program, developed in a window ambience of MATLAB as programming 

tool makes the following: i) implements routines for data input, ii) designs the 

network model, iii) starts up PSpice for the numerical solution of the model and, 

iv) accesses to MATLAB for the post processing of output data. In its educational 

version, EPSNET_10 can be applied for solving 2-D problems in rectangular and 

axisymmetric coordinates. The types of analysis and formulation, as well as the 

list of quantities that can be drawn are listed in Table 1. 

 
Type of analysis Quantities to be graphed 

Navier Plane Stress 

Navier Plane Strain 

Navier Axisymmetric 

Potential Axisymmetric Phi0, PhiR 

Potential Axisymmetric Phi0, PhiZ 

Potential Axisymmetric Phi0, PhiR, PhiZ 

Potential Plane Stress Phi0, PhiX 

Potential Plane Stress Phi0, PhiY 

Potential Plane Stress Phi0, PhiX, PhiY 

Potential Plane Strain Phi0, PhiX 

Potential Plane Strain Phi0, PhiY 

Potential Plane Strain Phi0, PhiX, PhiY 

DISPLACEMENT SURFACES 

Deformed Shape 

X/R Component 

Y/Z Component 

STRESS SURFACES 

X/R Normal component 

Y/Z Normal component 

· 

STRESS CONTOUR 

· 

· 

POTENTIAL SURFACES 

Table 1  Analysis and formulation options (left) and quantities to be drawn (rigth)  

provided by EPSNET_10 

5. Applications 

The physical model is a solid cylinder with the restricted displacement and load 

distribution depicted in Figure 4 (left). The grid, 20x20, refers to the 2-D section, 

Figure 4 (right). Values of the geometry and elastic parameters are R = 100 mm, 

H = 100 mm, E (Young modulus) = 210 GPa and  (Poisson ratio) = 0.3. 

Additional conditions are: i) PN representation, 0=r=0 in the cell (20,20), 

r=0 in the cell (1,20); ii) Timpe representation, 0=0 in the cell (1,20); iii) 

Boussinesq representation, 0=0 in the cell (1,1). 
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Figure 4  Physical model (left). Mesh grid (right) 

On the one hand, Figure 5 shows the von Mises stress and the deformed section of 

the solid cylinder for the three solutions studied. Both stress and displacements 

are quite similar as expected. On the other hand, Figures 6, 7 and 8 show the 

spatial representation of the potential functions relatives to the Timpe, Boussinesq 

and PN solutions, respectively. The perspective of these figures has been changed 

for a better representation of the spatial surfaces. It is interesting to see that the 

unknown potential functions are quite different for each solution; however, these 

provide the same elastic solution trough the equations (14), (11) and (8), for 

Timpe, Boussinesq and PN potential, respectively. In addition, it is worthy to note 

that the potential solutions are always strongly dependent on the additional 

conditions, but always providing the same elastic solution. 

 

Figure 5  Von Mises stress on the deformed shape. Timpe solution (left), Boussinesq 

solution (center) and PN solution (right) 
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Figure 6  Timpe’s solution:    (up) and    (down) 
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Figure 7  Boussinesq’s solution:    (up) and    (down) 
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Figure 8  PN’s solution:    (up),    (center) and    (down) 
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6. Conclusions 

The axisymmetric elastic problem formulated by harmonic potential functions has 

been numerically solved using as the unknown variables the primary potentials: 

   and    for Timpe’s,    and    for Boussinesq’s and   ,    and    for 

Papkovich-Neuber’s representation. Simulations are carried out by the program 

EPSNET_10 whose numerical scheme is based in the network simulation method. 

The proposed application for the three cases (a solid cylinder under particular 

displacement and load boundary conditions) provides the same elastic solution for 

the three representations, as expected, while potential results are strongly different 

for each formulation. 
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Abstract 

An invertible discrete Zernike transform, DZT is proposed and 
implemented. Three types of non-redundant samplings, random, 
hybrid (perturbed deterministic) and deterministic (spiral) are 
shown to provide completeness of the resulting sampled Zernike 
polynomial expansion. When completeness is guaranteed, then 
we can obtain an orthonormal basis, and hence the inversion 
only requires transposition of the matrix formed by the basis 
vectors (modes). These types of nonredundant sampling patterns 
are also shown to guarantee completeness of the basis formed by 
the sampled partial derivatives of Zernike polynomials, 
commonly used to reconstruct the wavefront from its slopes 
(wavefront sensing). In the ideal noise-free case, this enables 
one to recover double the number of modes J than sampling 
points I (critical sampling J ¼ 2I). With real data, noise 
amplification makes the optimal number of modes lower I < J 
<2I. Our computer simulations show that optimized 
nonredundant sampling provides a significant improvement of 
wavefront reconstructions, with the number of modes recovered 
about 2.5 higher than with standard sampling patterns. 
Key words: Aberration expansions; Wavefront sensing  
 

1. Introduction 

Zernike polynomials (ZPs) are continuous functions that form an orthogonal 
complete basis on a circle of unit radius. This property makes them extremely 
useful in many areas of science and technology, especially in Optics.  They are 
extensively applied in optical design and testing, wavefront sensing, adaptive 
optics, wavefront shaping, interferometry, surface metrology (profilometry, 
topography) or atmospheric optics among others. In addition to these applications, 
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Complete modal representation with DZP 

ZPs are particularly useful in optical computing, modeling, simulations, inverse 
problems, etc.   
However, the continuous orthogonal basis becomes incomplete and non-
orthogonal when the continuous circle is discretized by commonly used sampling 
grids (square, hexagonal, polar, etc.) The lack of these two essential properties 
(completeness and orthogonality) strongly limits the assumed theoretical 
advantages of a modal representation by ZPs in real applications. On the other 
hand, an important set of applications (wavefront sensing, ray tracing) deal with 
the measurement or computation of wavefront slopes. In that case, the basis 
functions are partial derivatives of ZPs. Again discrete versions can only be used 
in practice. The degree of discretization depends on the device and on the 
application, ranging for a number of samples below fifty to more than a million. 
Most typical values are between one and a few hundreds. Until recently, physical 
sampling grids where built in monolithic block and could be hardly modified. 
This also affected to the computational schemes which tended to mimic physical 
implementations. Nowadays, spatial light modulators or laser ray tracing systems 
permit a high flexibility so that the sampling patterns can be modified almost in 
real time.    
In this work we overview our research [1][2], including novel unpublished latest 
results, on non redundant sampling patterns which allow to keep the most 
fundamental property of continuous ZPs that is completeness of the 
representation.  
 

2. Methods  

Completeness is demonstrated empirically, through computer simulations, both 
for basis: ZPs and their gradients (two partial derivatives). Completeness is a 
necessary condition to guarantee critical sampling, which means that the number 
of samples equals the number of modes. In the case of wavefronts this means that 
the number of points in the grid I equals the number of recovered modes J: J = I. 
In the case of gradient, since one has two measurements at each point it means 
that  J =2 I.  This possibility was not explored before. Furthermore, the lack of 
completeness and orthogonality was the reason way most implementations 
(including numerical ray tracing and numerical simulations) considered a strong 
oversampling with J << I, which involves a great expense of resources.    
Once completeness in the discrete domain is achieved it is possible to work with 
critical sampling which in turns warrantee the reversibility of the modal 
representation (Zernike transform); that is I (or 2 I) samples can be recovered 
from the J modes and vice versa. However this only happens in the ideal noise-
free case. The computation of the Zernike representation involves the inversion of 
a typically large matrix. The inversion is ill-posed due to the lack of 
orthogonality. This means that noise (if present) is amplified unless the basis is 
orthogonal. We have studied the effects of noise amplification by realistic 
numerical simulations, finding the optimal number of modes which provides the 
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best reconstruction for different noise levels (signal-to-noise-ratios). In addition, 
we explored different strategies to improve orthogonality. One possible solution is 
to apply the QR matrix factorization (Q is orthogonal) which permits to find 
orthogonal modes in the discrete domain. All processes are invertible and well-
conditioned, as far as one operates between discrete domains. The ill-posed 
problem now appears when one tries to interpolate in order to recover the 
continuous wavefront from discrete samples. A significant improvement towards 
orthogonality can also be obtained by using a quadratic increase of sampling 
density towards the periphery. Figure 1 shows a non-redundant spiral with such 
inhomogeneous density of samples, which provided a high performance in our 
simulations. 

 
Fig. 1. Spiral sampling pattern (I= 91 samples) with quadratic increase of density towards 
periphery. 

3. Results  

As an illustrative example, Figure 2 shows the results of a realistic computer 
simulation of wavefront sensing of ocular aberrations, in which we compared 
different non-redundant sampling patterns with one standard hexagonal 
(redundant). The number of sampling points was always 91, and the 
measurements signal-to-noise ratio was 30. The horizontal axis represents the 
number J of Zernike modes reconstructed and the vertical axis shows the 
reconstruction error (RMS) of the wavefront. The optimal number of modes Jopt 
is the value for the minimum error. For J > Jopt noise amplification increases the 
reconstruction error. The worst result corresponds to standard sampling patterns 
(hexagonal) Jopt  < 60 <  I, whereas the best result corresponds to the 
inhomogeneous spiral of Fig. 1 where Jopt  > 120 > I exceeds the number of 
sampling points even in presence of noise (typical experimental values). As a 
result the reconstruction is improved with a significantly lower RMS error. 
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Fig. 2. Summary of results of a comparative study of wavefront sensing with different 
sampling patterns 

 

4.  Conclusion 

In conclusion, a set of new families of non-redundant patterns, especially 
inhomogeneous spirals, is proposed to sample the circle, as they permit to keep 
completeness, and improve orthogonality of the resulting discrete Zernike 
polynomials. This opens many possibilities in different applications since one can 
increase (by a factor of 2 typically) the number of modes recovered, which 
provides a better reconstruction. This could provide important savings in 
experimental devices, or actuators in adaptive optics setups. In the field of optical 
design and computing, the invertibility of the transform can play an essential role 
in optimization procedures or iterative processes. Within the discrete domain (that 
is when the estimation of the continuous signal is not necessary), then it is 
possible to guarantee orthogonality, thus totally avoiding noise amplification, 
which guarantee critical sampling and full recovery of the samples.    
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Abstract 

We present electronic structure computations on cyclic 
structures based on icosahedral carborane CB11H12

 radicals as 
building units, where the dot “” represents an unpaired electron. 
The building units may be directly connected through covalent 
cage C-B bonds or using acetylene bridge units, resulting in 
tricyclic structures. The combination to a total spin S in the 
cyclic structures allows a corresponding range of magnetic 
modifications. We also report low-lying excited state energies 
using a broken-symmetry approach combining Hartree-Fock and 
Density Functional Theory. 
 
Key words: Schrödinger equation, boron clusters, polyradical, 
broken-symmetry solution, computational chemistry, molecular 
architecture 
MSC2000: 81V55, 81V70, 92E10 
 

1. Introduction 

The synthesis of stable radical structures – a molecule with one unpaired electron, 
total spin S = 1/2 – containing boron dates back to the 1920s [1], when the radical 
anion  [BPh3]

 was detected.  A few decades later, using electron spin resonance 
(ESR) experiments, it was shown that the unpaired electron is mainly located at 
boron [2]. One of the most interesting features of boron chemistry is the formation 
of very stable polyhedral clusters, such as the well-known icosahedral dianion 
closo-B12H12

2 [3] (from now on simply B12H12
2). Along the next five decades  

after its synthesis, we have witnessed an explosion of synthetic achievements 
using derivatives of this icosahedral cage leading to a very rich variety of crystal 
structures and molecular architectures. There are plenty of derivatives from 
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B12H12
2 and a comprehensive literature citation is not possible here; thus, one can 

find derivatives by substitution of (i) cage atoms – heteroboranes – (ii) exo 
hydrogens atoms, (iii) addition of transition-metal atoms [4], and even (iv) the 
construction of linear finite 1D chains connected through covalent bonds [5,6]. 
 
Our case in point here is precisely the existence of stable radicals with formula 
[closo-(CnB12n)Me12]

(n1), with n = 0 and n = 1 for icosahedral anionic borane [7] 
and neutral carborane [8] radicals, respectively. These radicals have been 
characterized, among other means, by X-ray crystallography. More recently, even 
two such carborane radicals (and their corresponding anions) have been connected 
through acetylene and ethylene bridges, leading to the dianion, radical anion and 
biradical species [9], as shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
FIG. 1. Icosahedral carborane molecule [CB11Me12]

 connected through (a) 
acetylene and (b) ethylene bridges. The dot inside the cage refers to an unpaired 
electron. Each non-connected vertex corresponds to a B-H moiety. 
 
In a recent work, the electronic structure of the dimer structure - dianion, radical 
anion and biradical - from Fig. 1a was studied using high-level quantum chemical 
computations [10], with methyl groups being substituted by hydrogen atoms. The 
conclusion was that the groundstate biradical is of singlet nature – total spin S = 0 
– with the triplet state – total spin S = 1 – only (adiabatically) 0.005 eV higher in 
energy, very close to kB·T at room temperature. This energy difference lies within 
the microwave region of the electromagnetic spectrum and therefore, one could in 
principle populate the triplet state using photons of this energy. Extension to 
longer polyradical 1D chains has also been studied recently, using the same 
building units [11]. For the particular case of the trimer triradical shown in Figure 
2, it was found that the high-spin state – S = 3/2 – has lower energy than the low-
spin state – S = 1/2 – with an energy difference of ΔE ~ 0.013 eV, within the far-
IR region of the electromagnetic spectrum. Care should be taken for the energy 
difference for longer polyradical chains since the size of the system prevents from 
performing high-level quantum chemical ab initio computations, such as CASPT2 
– second order perturbation theory applied to a multiconfigurational wave 
function. For instance, in the trimer structure from Figure 2, we used the broken-

(a) (b)

C CCC

Me11 Me11

C C
H

HCMe11

C
Me11

 




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symmetry (BS) method with an unrestricted hybrid Hartree-Fock / Density 
functional Theory model chemistry.  
 
 
 
 
 
 
 
 
FIG. 2. Structure of one of the four trimer triradicals that can be built using two 
orientations of the carborane cage – see Fig. 5 from Ref [11] – with the carbon 
atom on the right (A) or left (B) of the cage. This trimer corresponds to A-CC-A-
CC-A. The other three trimers are A-CC-B-CC-A, A-CC-B-CC-B, and B-CC-B-
CC-A. Each non-connected vertex corresponds to a B-H moiety (C-H moiety for 
the non-connected vertex labeled with “C” on the top most right). The dot inside 
the cage refers to an unpaired electron. 
 
DFT and hybrid Hartree-Fock/DFT methodologies fail in the proper description 
of singlet biradicals, such as those derived from Figure 1. We previously showed 
in carborane monomers biradicals how a standard DFT representation is 
approximately valid in computing triplet states but is totally inadequate for spin 
contaminated singlet biradicals [12]. Therefore, for low-lying spin states one 
usually turns to so-called BS DFT or spin correction for DFT computations 
[13,14], calibrated with high-level CASPT2 computations [15]. The basis of this 
method is described in Refs. [13,14] and in Section 2 below. 
 

2. Three-fold cyclic structures derived from CB11H12
 

We now turn to cyclic structures with one unpaired electron per cage, using as 
building unit the carborane radical CB11H12

. The simplest such structure is a 
triangle of CB11H12

 radicals connected directly through C-B covalent bonds. 
Given the fact that experimentally, one needs bridge units for connecting the 
carborane cages [9], we will also take into account the structure with acetylene 
bridges. Both such triangular structures are displayed in Figure 3. There are many 
different ways of connecting the CB11H12

 radical to form a triangle; we have 
chosen the most symmetrical one for simplicity reasons, with a Ĉ3 axis 
perpendicular to both structures – Figure 3. The dot inside each cage represents 
again an unpaired electron. 
 
 
 
 

C CCC CCC   
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FIG. 3. Three-fold cyclic structures built by joining three CB11H12

 radicals with 
(a) direct C-B covalent bond  (1), and (b) direct C-B bond and an acetylene 
bridge  (2). The small circle inside every cage represents an unpaired electron. 
 
 
The three unpaired electrons from the cyclic structures of Figure 3 can couple to a 
high-spin state with total spin S = 3/2 or to a low-spin state with S = ½. Again, 
DFT methods can reproduce high-spin state energies fairly well. However, for the 
low-spin state we should rely again onto BS DFT methods. As in the case of the 
linear structure from Figure 2, we used the BS DFT method to determine the 
high-spin and low-spin states of the three-fold cyclic structures, without and with 
acetylene bridge connections. The results are gathered in Table 1. For simplicity 
the three-fold cyclic structureswithout and with acetylene bridges are labelled as 
(1) and (2) respectively. The energy difference between the quartet and doublet 
states  ΔEDQ  is calculated using the spin-projected formula within the broken-
symmetry formalism [11]: 
 

, 1/ 2 3/ 2 , 1/ 2 3/ 2
1/ 2 3/ 2 2 2

, 1/ 2

12·( )

ˆ1 15 4·

unr S unr S
DQ

unr S

E E E E
E E E

b S
 



 
    

 
.  (1) 

 
This equation is determined as follows. Let us suppose that we have a three-
electron wave function which has a doublet and a quartet component: 
 
 
 
 
 

(a) (b)
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2/32/12/1,   baSunr ,       (2) 

 
with 122  ba . Now, the expectation value of the square of spin for this wave 
function is 
 

22
2/1,

2
2/1, 4

15

4

3ˆ baS SunrSunr   ,      (3) 

 
and the corresponding energy expectation value  
 

2/32/3
2

2/12/1
2

2/1,2/1,,
ˆˆˆ   HbHaHE SunrSunrSunr . (4) 

 
We know that DFT reproduces fairly well the energy of high-spin states, in this 
case 3/ 2 , and we can calculate the expectation value of the square of spin for the 

wave function from Eq.(2), , 1/ 2unr S . Therefore,  by using the BS formalism, 

Eq.(1) follows immediately by combining Eq.(3) and Eq.(4). 
 
 
TABLE 1. Energies (in atomic units), <Ŝ2> expectation values, and energy 
differences ΔEDQ (eV)  Equation (1)  between high-spin (quartet) and low-spin 
(doublet) states for the three-fold cyclic structures (1) and (2) - Figure 3a and 
Figure 3b respectively. We used the UB3LYP/6-31G* method for high-spin states 
and broken-symmetry UB3LYP/6-31G* method for the low-spin states. See Refs. 
[11, +elíseo] for more details. BS = broken-symmetry. ΔE computed with Eq.(1). 
 

Structure, Spin Energy (au) <Ŝ2> ΔE (eV)
(1), S = 3/2 -952.829852 3.7612 ---
(1), BS -952.829762 1.7555 0.0037
Structure, Spin Energy (au) <Ŝ2> ΔE (eV)
(2), S = 3/2 -1181.351576 3.7581 ---
(2), BS -1181.350845 1.7493 0.0298

 
 
Table 1 gathers the energy difference between high-spin and low-spin states using 
the BS approximation, Eq.(1). The geometries for every system were optimized 
by using analytical gradients of the energy versus nuclear displacements. Spin 
densities for the different spin states of trimers (1) and (2) are displayed in Figure 
4 and Figure 5 respectively. 
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FIG. 4. Spin density for trimer (1). High-spin state with S = 3/2: (a)  top view, (b)  
side view. Low-spin state with S = ½ using a broken-symmetry solution: (c)  top 
view, (d) side view. Spin density isovalue |s| = 0.002. UB3LYP/6-31G* 
computations. 
 
 
 
 
 
 
 
 
 
 
 

(a) (b)

(c) (d)
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FIG. 5. Spin density for trimer (2). High-spin state with S = 3/2: (a)  top view, (b)  
side view showing the π spin density along CC triple bonds. Low-spin state with 
S = ½ using a broken-symmetry solution: (c)  top view, (d)  side view showing 
the π spin density along CC triple bonds. Spin density isovalue |s| = 0.001. 
UB3LYP/6-31G* computations. 
 
 
 
 
 
 
 

(a) (b)

(c) (d)
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As shown in Figure 4, the spin density is mainly located in the carborane cages. 
For the low-spin state, two cages display a positive spin density and the remaining 
cage a negative spin density as it should be for an S = ½ system and three 
electrons. When the cages are connected with an acetylene bridge unit {–CC–} - 
Figure 5 - the low-spin state is described as positive spin density in one cage and 
mixture of positive and negative spin densities in the other two cages. The two 
connecting {–CC–} units to the cage with positive spin density display also 
positive π spin density; the ramining bridge unit connecting the other two cages 
has negative π spin density. As for the high-spin state, the picture is very similar 
with all regions having positive spin-density with small regions of negative spin 
density near the carbon atoms. 
 
The energy differences gathered in Table 1 give an idea of the photon energies 
that would be necessary in order to populate low-spin states, corresponding to the 
far-IR region of the electromagnetic spectrum. 
 
 

3. Conclusions 

 
When the number of “active” electrons, namely, electrons taken into account 
explicitly in the electronic structure calculations, exceeds one dozen, the low-
lying excited states, particularly low-spin states in polyradicals, must be 
approximated. Post Hartree-Fock methodologies, like CASPT2 [15] and methods 
within Valence-Bond (VB) theory have restrictions [16] due to computational 
demand. One then has to rely to approaches such as broken-symmetry methods, 
based on hybrid Hartree-Fock / DFT functionals [14]. The question  then is to 
what extent the later methodology would allow for an estimation of an energy gap 
of an infinite 1D chain – Figure 2 – or cycle – Figure 3. Energy spectra in a 1D 
Heisenberg chain may be predictable with the Bethe ansatz [17]. Another question 
is whether the cycles from Figure 3 can be synthesized. Indeed, as mentioned 
above, 1D finite chains have been synthesized, using the CB11(Me)11 unit as 
building block, and connecting it through acetylene and ethylene bridges [9]. The 
main goal of this research line is the prediction of energy spectra for real systems 
derived from radical units CB11H12

 connected in different dimensions. This 
radical unit can be considered as a model system for a one-electron site in the 
lattice models that physicists use for derivation of model Hamiltonians [18,19]. A 
few steps fowards have been taken for the particular case of heteroborane cages 
and more effort is needed. Density-matrix renormalization group (DMRG) 
methods [20] are promising tools for tackling the challenging problems that we 
have put foward here in the particular case of polyradical architectures. 
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Abstract 

This article compares different classification techniques for 
distinguishing between construction materials using information 
captured by a terrestrial laser scanner from an historical 
building. This information consists of data on colour and 
reflected signal intensity. 

Of the three techniques used (k-means, classification trees and 
multilayer perceptron neural networks), the classification trees 
produced the best results when both classification capacity and 
ease of interpretation were considered. 

 

Key words: terrestrial laser scanner, segmentation algorithms, 
signal intensity 

 

1. Introduction  

Terrestrial laser scanners (TLS) are frequently used to geometrically document 
historical buildings. These devices rapidly capture clouds of points that are 
defined by coordinates in a reference system. They also provide information on 
colour and on the intensity of the wave reflected at each point. This kind of 
information can be used to automatically detect data on specific elements in the 
measured object, in a mathematical process called segmentation [2], [4]. 

Our aim was to test and compare different classification techniques, both 
supervised and non-supervised, used to segment a point cloud obtained using a 
TLS.  Also studied was the discriminatory capacity of colour versus reflected 
signal intensity.   
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CLASSIFICATION ALGORITHMS FOR TLS SEGMENTATION 
 

2. Materials and methods 

2.1 Data collection 

The equipment used for this segmentation problem was a Riegl LMS-Z390i 3-D 
time-of-flight laser scanner. This scanner emits an infrared pulse and measures 
distances in a range of 1.5 to 400 m, with a nominal accuracy of 6 mm to 50 m in 
normal conditions. 

It also provides, for each point in the measured object, colour values measured 
according to the RGB (red, green and blue) scale and values for reflected wave 
intensity. For our research, these values were captured and recorded for the facade 
of an historic building with five types of materials: stone, metal, glass, cement and 
vegetation.  

 

2.2 Classification algorithms 

2.2.1 Cluster analysis 

The k -means  algorithm [7], one of the simplest non-supervised algorithms for 
resolving a clustering problem, is based on an iterative partitioning process. It 

divides a collection of n   vectors into c  groups (clusters  iG  ,  1,...,i c ) and 

locates centroids for each cluster by minimizing an inequality (or distance) 
function formulated as follows [1]: 

2

1

( )
j i

c

j i

i G

J d
x

x k  

where  ik   is the cluster centroid  i ;  ( )j id x k   is the distance between the  i -th 

centroid ( ik  ) and the  j -th element in the dataset. 

 

2.2.2 Classification trees  

Decision trees are one of the most widely used supervised learning models, are 
they are simple classification models that are graphic and easily understood.   

Decision trees are constructed recursively using an induction process and 
following a top-down strategy that starts with general concepts and ends with 
particular examples. This is known as Top-Down Induction on Decision Trees 
(TDIDT) [8].  

A crucial issue is dividing each classification tree node, done by defining a 
function [5] that compares the heterogeneity or impurity of the parent node with 
the sum of the impurities of the offspring nodes generated by means of a division 
D: 

1

( , ) ( ) ( )
l

r r

r

D t I t I t p  

@CMMSE                                 Page 1544 of 1703                                 ISBN: 978-84-614-6167-7



CLASSIFICATION ALGORITHMS FOR TLS SEGMENTATION 
 

where ( )I t   represents the impurity measure for the node t , l  the number of 

offspring for the same node and rp the proportion for the node majority class r . 

 

2.2.3 Multilayer perceptron neural networks  

Neural network models were developed from biological neural models in the 
1940s, based on work by a psychiatrist and a mathematician, McCulloch and 
Pitts, respectively. [6].  

In the classification problem, the network implements a function   

: R Rd c
f X Y , where c represents the number of classes. The function 

implemented by the multilayer perceptron (MLP) is as follows: 

0 0

1

( , ) ( )
h

T

j j j

j

f c w cx w x  

where 0( ) ( )T

j j jx w x w  is the activation function for the hidden layer units,  

R d

jw   is the vector of parameters for the units and 0 Rjw   is the threshold 

value. The function    may be sigmoid, logistic or hyperbolic tangent. The 

algorithm typically used to train the MLP is the back-propagation algorithm [3]. 

 

3.  Results 

The data captured by the TLS formed a sample 
1

,
n

i i i
yx  with n = 4775, with ix  

as the vector of RGB values and I (reflected intensity) and with iy  as the value (1 

to 5) representing the type of material. 

The fit for each technique was measured using the error rate: 

( )

1

1
1

i i

m

y g

i

TE
m

x
 

where m represents the size of the test set (in this case, 10% of the entire sample) 
and where g(xi) is the value of the class obtained for each vector xi  of data. 

Table 1 shows the error rates for each method, including or excluding reflected 
signal intensity. The classification trees, as well as having a low error rate, have 
the advantage that they show the class definition process as a graph.    
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Table 1. Error rates (ER) for each technique including and excluding reflected signal 

intensity (RSI). 

Technique ER including RSI ER excluding RSI 

k-MEANS 32% 28% 

CART 2% 1% 

MLP 1% 0.5% 

 

4. Conclusions 

Of the classification techniques used to segment the point cloud captured by the 
TLS, the non-supervised technique shows a high error rate. Of the supervised 
techniques, the error rate for the MLP was half that obtained with the 
classification trees. The latter also have the advantage that they allow graphs to be 
constructed that facilitate interpretation of the classification criteria used.   

Including the reflected signal intensity reduces error by 50% for the supervised 
techniques, indicating that this variable is important for segmentation purposes. 

References 

[1] S. ALBAYRAK AND F. AMASYALI, Fuzzy c-means clustering on medical 
diagnostic systems, International XII. Turkish Symposium on Artificial 
Intelligence and Neural Networks, 2003, Turkey. 

[2] J. ARMESTO, B. RIVEIRO-RODRÍGUEZ, D. GONZÁLEZ-AGUILERA, M.T. 
RIVAS-BREA, Terrestrial laser scanning intensity data applied to damage 
detection for historical Buildings, Journal of Archaeological Science 37 
(2010) 3037-3047.  

[3] R. BATTITI, First and second-order methods for learning: between 
steepest descent and Newton´s method. Neural computation, 4 (1992) 
141-166. 

[4] J. M. BIOSCA AND J.L. LERMA, Unsupervised robust planar segmentation 
of terrestrial laser scanner point clouds based on fuzzy clustering 
methods, Photogrammetry and Remote Sensing 63 (2008), 84-98. 

[5] V. CHERKASSKY AND F. MULIER, Learning from data: concepts, theory 
and method, John  Wiley & Sons, Inc, 1998. 

[6] W. S. MACCULLOCH AND W.S. PITTS, A logical calculus of the ideas 
inmanent in nervous activity, Bulletin of Mathematical Biophysics 5 
(1943), 115-133. 

[7] J.B. MACQUEEN, Some Methods for Classification and Analysis of 
Multivariate Observations, Proceedings of 5th Berkeley Symposium on 
Mathematical Statistics and Probability, Berkeley, University of 
California Press 1 (1967), 281-297. 

[8] J.R. QUINLAN, Induction on Decision Trees. Machine Learning 1 (1986), 
81-106. 

@CMMSE                                 Page 1546 of 1703                                 ISBN: 978-84-614-6167-7



Proceedings of the 11th International Conference 
on Computational and Mathematical Methods 
in Science and Engineering, CMMSE2011 
Benidorm, Spain, 26-30 June 2011  
 

Computational Fluid Dynamics  
in Root Canal Procedures 

M. Patrício1, J. M. Santos2, P. Oliveira3 and F. Patrício4 

1 CMUC - School of Technology and Management  
of the Polytechnic Institute of Leiria  

2 Dentistry, Faculty of Medicine, University of Coimbra 
3 CMUC - Department of Mathematics, University of Coimbra  

4 CMUC 
 

email: miguel.patricio@estg.ipleiria.pt, jmmdossantos@gmail.com, 
poliveir@mat.uc.pt, mfsp@mat.uc.pt 

 
Abstract 

Success of root canal treatment is dependent upon the effective 
removal of microorganisms and their by-products. This is 
usually achieved by mechanical instrumentation and irrigation 
of the canal with an antiseptic solution. However, the efficacy of 
this method is difficult to measure, due to the small scales 
involved. The computational simulation of irrigation provides 
useful tools for the study of this phenomenon. 
 
In this work we resort to computational fluid dynamics to 
determine the velocity of the irrigant over the root canal, for 
different needle tip shapes. A stagnation curve will be computed 
for each case. An algorithm is proposed to evaluate particle 
removal from the canal. 
Key words: computational fluid dynamics, flow rate, irrigation, 
needle. 
 

1. Introduction 

The aim of endodontic and restorative dentistry is the conservation of natural 
tooth structure. In the past, it was quite usual to extract teeth with extensive 
structural and biologic compromise. Nowadays, with the scientific progression in 
the field of dentistry and increasing conservative demands by the population, it is 
sought to preserve severely destroyed and previously infected teeth. One common 
course of treatment to accomplish this purpose is root canal therapy, which 
consists in removing the pulp tissue, debris and microorganisms harboured inside 
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the canal space. Operative protocol for this procedure involves coronal access to 
the pulp chamber followed by removal of the damaged pulp tissue, shaping the 
canal with mechanical instruments and cleaning with irrigating solutions. As a 
consequence of the action of shaping instruments in the canal walls, dentin chips 
are produced and accumulated along the root canal, mainly in the apical area. To 
achieve success these debris must be removed, together with tissue remnants and 
microorganisms. Tooth disinfection and the flushing of the debris are usually 
accomplished by irrigating the canal with an antiseptic solution. However, it has 
been indicated that standard procedure is not effective in removing all dentin 
chips and bacteria, compromising the objectives of the treatment and jeopardizing 
the outcome, cf. [5]. Moreover, the efficacy of the procedure is paramount for the 
long-term success of the treatment and depends upon numerous factors such as 
the system of delivery, the geometry of the canal, the size, position and shape of 
the needle or the flow velocity, cf. for example [1, 6]. In particular, the flow 
velocity should be weighted carefully, as high velocities may cause the irrigant to 
extrude towards the periapical area, which may lead to tissue damage. At the 
same time it should be high enough to promote debris and bacteria removal. 
 
In this paper we aim to look at how different needle geometries influence irrigant 
flow on a root canal, as well as assert how much of the bacteria present in the 
canal are successfully flushed out. It is difficult to perform in vivo measurements 
in root canals, due to their microscopic size. An alternative approach, which we 
adopt, is provided by computational fluid dynamics (CFD), cf. [2, 3] for example. 
This allows for the numerical simulation of irrigation in root canals in real 
physical conditions. On the other hand, it provides sufficient information for 
tracking the bacteria by means of an algorithm that we propose. 
  
Section 2 is devoted to properly formulating the setting of the problem and 
establishes the related mathematical model. The latter is expressed by the Navier-
Stokes equations, defined over an appropriate domain and completed with 
boundary conditions. Both the geometries of the root canal and needle are 
included in the model. Different needle types will be considered, allowing for a 
discussion of their merits. 
 
In section 3 it is discussed how CFD may be employed in order to compute the 
fluid velocity field in a root canal. In particular, the existence of a stagnation 
curve for each needle is addressed. The motion of particles of negligible weight is 
tracked, as a function of time. The flushing region of the computational domain is 
determined for each needle. This corresponds to the portion of the domain where 
the irrigation procedure ensures that the particles initially present in the root canal 
are successfully flushed out.  
 
Finally a brief conclusion is drawn up in section 4. The performances of the 
needles are compared and future work is proposed. 
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2. Problem formulation 

Several models that represent root canals may be found in the literature. These 
models differ in shape, dimensions or other features such as the possibility of 
inclusion of an apical region, cf. for example [1, 3, 4].  Also, there is a discussion 
on the types of needles that are used for fluid delivery, see [2].  
 

 
a)                                          b)                                          c) 

 
Figure 1  

a) Root canal. The darker shaded rectangle represents the region where the needle 
is to be inserted; b) CE-SSO needle (the arrows represent the direction of the 
flow); c) BOE needle.  

 
In this paper, it is assumed that the root canal is shaped such that its 2D section is 
the outer polygon with endpoints A, B, C, D represented in Figure 1a). The 
existence of an apical region is neglected. Besides the root canal, it is important to 
model the needle which will deliver the irrigation fluid. Two problems are 
considered in the present work: the simulation of flows associated with a close-
end single side-opening needle (CE-SSO) and with a bevelled open-ended needle 
(BOE). The first of these needles is represented in Figure 1b) by a polygon of 
endpoints A’, B’, C’, D’. The line segment LU is its side opening. As for the 
BOE needle, the endpoints of the respective polygon are L, B’, C’, D’, see Figure 
1c). The segment LB’ is open. The horizontal and vertical coordinates for each 
point Q=(Qx, Qy) in the model geometries are displayed in Table 1. 
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Table 1: Relevant coordinates in model geometries. 
 

Point 
Q 

A B C D A’ B’ C’ D’ L U 

Qx -1.61E-4 1.61E-4 -7,85E-4 7.85E-4 -1.61E-4 1.61E-4 -1.61E-4 1.61E-4 -1.61E-4 -1.61E-4 

Qy 0 0 1.8E-2 1.8E-2 3E-3 3E-3 1.8E-2 1.8E-2 4E-3 5E-3 

 
In both problems we are considering that the fluid is delivered by the 
corresponding needle into the root canal such that at the inlet, which is the line 
segment C’D’, the vertical component of the velocity is a linear function of time: 
uy (x, y, t)= -u0t, t in [t0, tf]. Both line segments CC’ and D’D are outlets through 
which the fluid is flushed out. The pressure is prescribed to be equal to p0 at these 
outlets. The remaining boundaries are assumed to be solid walls at which a no-slip 
condition is imposed. We assume that initially the root canal is filled with the 
injection fluid. In our models, the walls of the needles have small thickness and 
are not part of the computational domains Ω1 and Ω2, related to the CE-SSO 
needle and the BOE needle respectively.  
 
Mathematically, the physical behaviour of the fluid may be modelled by the 
Navier-Stokes equations for incompressible flow. These equations relate the fluid 
velocity vector field u=(ux, uy) and the pressure p over the computational domains 
Ωi: 
              

         FuuIuu
u

+∇+∇+−⋅∇=∇⋅+
∂
∂

)])(([)( T

t
µρρρ , 

 
                         (2.1) 

         0u =⋅∇ ,                          (2.2) 
for i=1, 2, the latter equation being the continuity equation. Here, F, � and � 
represent the volume force, the dynamic viscosity and the density, respectively. 
Equations (2.1)-(2.2) are completed with appropriate boundary conditions: 
 

ux(x, y, t)=0; uy(x, y, t)= -u0t,  for (x, y) � �� i,  t �  [t0, tf],       (2.3) 

ux(x, y, t)=0; uy(x, y, t)=0,  for (x, y) � ��w, t �  [t0, tf],       (2.4) 

p (x, y, t)= p0,    for (x, y) � ��o, t �  [t0, tf].       (2.5) 

 
Here, � i,��w and��o represent the inlet, wall and outlet portions of the boundary of 
the domain, respectively. Moreover, the velocity is set to be equal to zero in the 
initial time instant: 
 

ux(x, y, 0)=0; uy(x, y, 0)=0,  for (x, y) � �Ωi,        (2.6) 

 
The values used for the parameters included in the models are displayed in Table 
2. 
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Table 2: Relevant parameters. 

 
Parameter t0 tf u0 η ρ p0 
Value 0 0.05 43 0.001        998       0 

3. Fluid velocity and stagnation curve 

The velocity that an irrigant will attain along the root canal is critical to the 
cleaning efficacy of the irrigation protocol and this is determinant for the success 
of the endodontic treatment. In this section we aim to compute the velocity vector 
fields for the problems associated with the CE-SSO needle and the BOE needle. 
 
The values for both the horizontal and vertical components of the velocity are not 
easy to predict or measure in real physical situations. For each of our models it is 
assumed that equations (2.1) - (2.6) accurately describe the behaviour of the 
irrigant fluid. As a closed form solution for these equations is rather difficult to 
obtain we resort to a CFD approach. This involves the discretisation of the 
computational domain in a fine mesh, allowing for the retrieval of a numerical 
approximation to the solution of the problem. Here we take, for the case of each 
needle, a triangular mesh with maximum element size 4E-5, such that about 1E6 
elements were considered. For that purpose, linear finite elements in space are 
used, coupled with the M.O.L. approach. The time dependent solver BDF – 
variable step variable methods in the time domain t �  [t0, tf] with relative 
tolerance 1E-2 and absolute tolerance 1E-3 is employed.  
 
Figure 2a) depicts the velocity field magnitude for t=tf, over a portion of the root 
canal, when the needle is the CE-SSO. Also, the velocity field magnitude along 
x=0 is plotted in Figure 2b) as a function of y and for several time instants. 
Likewise, corresponding results for the BOE needle are displayed in Figure 3. 
 

  

a)                                                                                  b) 
Figure 2 CE-SSO needle: 

a) a) Magnitude of the velocity field for t=tf; b) Magnitude of the velocity field,  
b) along x=0, computed at different time instants. 
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It can be observed in Figure 2a) that the magnitude of the velocity of the irrigant 
is larger in a region near the opening of the needle, as expected. The fluid velocity 
attains a high magnitude along the corresponding side of the root canal. Note the 
fluid circulation below the needle and onto the opposite side of the root canal 
which is displayed in the figure. This is also important to ensure disinfection and 
debriment throughout. 
 
As the velocity of the fluid at the inlet grows with time, the velocity magnitude 
along the root canal and the needle also grows globally. This is illustrated in 
Figure 2b). Note that the upper side of the needle outlet is located at y=5E-3. This 
offers an explanation for the fact that the velocity magnitude, whichever the time 
instant, drops suddenly for values of y shortly smaller than that value. Also, there 
is a peak of the velocity magnitude when y is slightly inferior to 3E-3, which is 
caused by circulation of irrigant fluid bellow the needle. 
 

 

 

 

a)                                                                                  b) 
Figure 3 BOE needle: 

a) a) Magnitude of the velocity field for t=tf; b) Magnitude of the velocity 
field, along x=0, computed at different time instants. 

 

The results displayed in Figure 3, corresponding to the BOE needle, are similar to 
those of the CE-SSO needle. The peak of the velocity magnitude corresponding to 
the fluid circulation bellow the needle end is now attained for a greater value of y, 
as the needle is not closed-ended at the bottom. It is also smaller in value, 
illustrating that the CE-SSO needle is capable of irrigating further in the direction 
of the apical region. For both needles, it is observed that the velocity magnitude 
declines sharply, after reaching its peak, as y decreases from 3E-3 to zero. This 
holds true not only for x=0, but rather for all values of x, suggesting the existence 
of a stagnation curve, which we define as the furthest set of points located under 
the needle lower end at which the fluid attains a predefined critical velocity 
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magnitude vc. It is assumed that below this velocity the penetration of fresh 
irrigant is no longer relevant. In this paper we take vc=0.1. We plot the stagnations 
curves for both needles and for t=tf in Figure 4.  

 

Figure 4: Stagnation curves. 

 

The stagnation curve for the CE-SSO needle lies clearly below that of the BOE 
needle. This illustrates the fact that the former allows for a broader irrigation. 
Observe that the notion of stagnation plane that has been reported in the literature 
translates in our analysis into the horizontal line tangent to the lowest point of the 
stagnation curve, cf. [4]. 

4. Tracing particles 

The magnitude of the velocity of the irrigant fluid provides an insight to the 
effectiveness of the irrigation procedure. More information can be obtained by 
ascertaining the flushing region of the root canal. For the problems related to each 
needle, this may be defined as the portion of the root canal over which the 
particles that are initially present are flushed out.  
 
In this section we focus only on particles with negligible mass that are assumed to 
be dragged by the fluid, offering no resistance. Note that the velocity vector field 
has been determined, for the case of each needle, as a discrete function of both the 
spatial coordinates and time. By resorting to an appropriate fitting method, a good 
approximation to the velocity vector of any particle present in the fluid, at a given 
time instant, is available. An algorithm may be set up to track the path that will be 
followed by a particle P which is located at the point of coordinates (x0, y0) �  Ωi, 
of the computational domain, in the initial time instant t=t0. The algorithm 
consists of an iterative procedure which at the nth step determines the coordinates 
(xn, yn) of the particle in the time instant tn=t0+� t×n. Here, � t is a prescribed time 
step. We denote by (ux

n, uy
n) the corresponding velocity of the particle when t= tn. 

The final goal of the algorithm is to determine whether P is flushed out, which is 
the same as to say that yn>ymax, for some value of n, where ymax=1.8E-2 is the 
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maximum height of the root canal. As an output, the Boolean variable Pout 
assumes the value 1 in the case in which P is successfully flushed out and 0 
otherwise. The algorithm reads: 
 

Algorithm 
Set n = 0. Given t0, tf, (x

0, y0) �  Ωi, ymax, Δt. 
 

1- While (xn, yn) �  Ωi  and  (t0+� t×n)<tf, 
a) Compute 

(ux
n, uy

n)  
and 

   xn+1 = xn + Δt ux
n, 

yn+1 = yn + Δt uy
n. 

b) Increment n: 
  n := n+1. 

End while. 
2- If yn > ymax, Pout=1. Otherwise Pout=0. 

 

 
a)                                                                                  b) 

Figure 5 
a) Particles flushed out using the CE-SSO needle; b) Particles flushed out 
using the BOE needle.              

 

This algorithm may be applied to illustrate the behaviour of the particles when the 
fluid is delivered using either needle (i=1, 2). For that purpose, a rectangular mesh 
of points is considered over the root canal, the mesh width being hx=2.5E-5 and 
hy=2.5E-4 in the x-direction and the y-direction, respectively. Particles are 
considered to be located at each of these mesh points at the initial time instant 
t=t0. The application of the algorithm allows determining which of these particles 

@CMMSE                                 Page 1554 of 1703                                 ISBN: 978-84-614-6167-7



Computational Fluid Dynamics in Root Canal Procedures 

are flushed out of the canal after the irrigation procedure, at t=tf. The results are 
plotted in Figure 5. There, each particle is represented by a circle. Those which 
are successfully flushed out are depicted as a blue filled circle. Note that if the 
delivery of the fluid were to be continued, more particles would be flushed out, 
namely some of those below the needle. 
 
As can be observed, the CE-SSO needle is more effective in flushing out the 
particles that are, in the figure, to the left of the needle opening. The BOE needle, 
on the other hand, flushes out more particles on the opposite side. This is 
consistent with the results plotted in Figures 2 and 3. Note that this is a 2D 
analysis of a 3D phenomenon, but in any case seems to indicate that better 
irrigation results might be obtained if the needle is rotated during the procedure of 
delivery, which is in fact advocated in practice by some clinicians. 

5. Conclusions and future work 

The present study evaluates how the flow patterns of irrigant delivered by two 
types of needles differ. The CE-SSO needle achieves a greater penetration depth 
in the sense that its stagnation curve lies further away from the lowest end of the 
needle. On the other hand, while this needle achieves better results at flushing out 
particles located between the needle and the wall facing its outlet, it is 
outperformed by the BOE needle in the region between the needle and the 
opposite wall. This finding underlines the importance of rotating the needle for 
adequate irrigant replacement.  
 
In the future the analysis may be extended to 3D, include the apical region, more 
needle types and different flow rates, as well as account for the shear stress on the 
root canal walls. The algorithm should be improved to take into account the 
interactions of the particles with the walls. 
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Abstract 

 
The climatic changes observed from the beginning of the third 
millennium till to-day, have made necessary the weather 
forecast in real time. Appropriate meteorological previsions are 
then crucial to prevent the populations against possible 
disasters. Thanks to remote sensing tools like satellite or radar, 
these phenomena can be easily observed in space and time. In 
the case of radar observations, precipitation fields are detected 
with a good resolution and the motion of clouds can be 
followed at any time. The goal of this work is the detection and 
extraction of velocity fields of precipitation from radar images 
by solving the equation of optical flow. Two artificial ‘cube’ 
and ’taxi ‘sequence of images and, series of PPI filtered images 
512 x 512 pixels were tested. The motion of rainy cells was 
analyzed by using global motion model parameters. Applying 
the differential method of 'Horn & Schunck a cell isolated from 
a rainy radar image allowed us to detect the overall sense of 
moving objects. 
  
Key words: Velocity fields, Rainy clouds, Optical Flow, Radar image,  

Horn & Schunck 
 
 

1. Introduction 

The study and analysis of cloud progress has been the subject of several scientific 
works in recent years. To account for these phenomena, most meteorological 
networks are now equipped with automatic measurement systems and remote 
sensing tools [1]. In particular, different geostationary satellites intended to 
meteorological observations, orbit the Earth in the equatorial plane for about 
thirty years. Radars, Lidars and Sodars are other remote sensing systems used to 
collect meteorological data characterising the air motions and cloud formations in 
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the atmosphere [2-3]. Many meteorological stations are equipped with classical 
radars. For a great part, these radars are pulsed, non Doppler and especially 
designed to detect rainy clouds. Their antenna usually scans a circular earth 
surface of about two hundred km of radius and the resulting PPI (Plan Position 
Indicator) images of precipitation fields are collected at time intervals tuneable 
from five to fifteen minutes. In comparison with meteorological satellites, the 
classical radars operate at smaller scale. However, they can advantageously 
observe the cloud motions in real-time and more efficiently account for the cloud 
changes over the time. The radar equipment represents rain cells with: position, 
shape, intensity, dimensions and displacement. The data radar can be used to 
detect other severs atmospheric phenomena’s such as hail storms and tornados.  
Motion estimation from an image sequence is used in several applications. In 
robotics, it can identify and anticipate changes in the position of objects. In video 
compression, it allows the fullest possible understanding where the temporal 
redundancy of the sequence and information describing an image using the 
surrounding images. In meteorology, it allows the detection and forecasting of 
rainy clouds including those which are dangerous and predicting their motion.  

The movement, in a sequence of images is visible through changes in spatial 
distribution of a photometric variable between two successive images, such as 
luminance, brightness, or reflectivity which is the variable used in weather 
images. With the use of non-linear algorithms, signal processing and modern 
mathematics have been opened to the study of such a random phenomenon. So 
there are several large families of methods for motion estimation according to the 
different choices (differential methods, frequency, methods based on the phase or 
the energy,…) 

In this study, we are interested to solving the optical flow equation by using 
global method of Horn & Schunck in the detection and extraction of the velocity 
of rain fields observed in radar images. Thus, first a formulation of the optical 
flow equation is given. After that, an application of the method on images from 
the databank is illustrated. Finally, the results are discussed and interpreted. 

 

2. Optical flow equation 

 
Optical flow is a method that is based on the calculation of apparent motion in 2D 
images. It is therefore possible to estimate the motion of a point by superposing 
two consecutive images using the method of optical flow [4-5]. The optical flow 
uses the assumption of conservation of brightness I(x,y). It is represented by the 
following equation: 
 

), )((),(I tttpVpItp δδ ++=      (1) 
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With v(p) =v(u, v) : velocity vector at point p at time t. u and v are respectively 
the velocity along x and y. 
 
Since the movement does not vary too much from one image to another, 
employing differential equations needed: 
 

)o(+dt  +dy   +dx +t)y,I(x,=dt)+tdy,+ydx,+I(x ε
δ
δ

δ
δ

δ
δ

t

I

t

I

t

I    (2) 

 
With ε contains higher order terms of Taylor expansion of first order and goes to 
0 when dt tends to 0. Considering that the quantities dx, dy and dt is sufficiently 
small and that equation (2) is satisfied, then: 
 

0=I+t),t)V(p,I(p tii∇        (3) 
 
Ix, Iy, It : spatio-temporal derivative of intensity at point p (x, y) at time t.              
∇ I =[ I x   Iy]

 
: Gradient Space   

Several methods have been used to solve the equation of optical flow. Differential 
methods belong to the techniques commonly used for calculating the optical flow 
in image sequences. Their gains lie in reducing the complexity of calculations 
commonly used in matching methods while increasing the range of measurable 
displacements. They can be classified into global methods such as the technique 
of Horn and Schunck and Local as the Lucas-Kanade approach and that based on 
Gabor filters. 
 
In other studies we have experienced global method of Lukas and Kanade and 
that based on Gabor filter to determine the velocity fields of moving rain cells [6]. 
In this study we will apply the method of global differential Horne and Schunck 
with rain clouds seen on weather radar images. 
 

3.        Horn & Schunck Algorithm  
 

It is considered among one of the first methods of calculating optical flow. It was 
developed in 1981 by researchers G. Horn and B. Schunck[7]. 
His calculation program is designed to avoid transparency effects and shadowing. 
These are costly in terms of computation. For this, Horn et al assume that the 
image is 2D[8]. Subsequently, they assume that the luminance is uniformly 
distributed over the surface. In this case, the brightness of a point of the image 
corresponds to a point of the scanned object. They also assume that the luminance 
varies little from one image to another. 
In this method, we introduce a constraint named constraint or smoothing term 
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regulation α which postulates that the desired velocity field is regular. The motion 
estimation is then done by minimizing a cost function E which is on the whole 
domain of the image (global approach), with: 
 

)t),I(p(t)],(pI+t),t)V(p,I(p[( 2
i

2
itii ∇+∇= ∑ αE    (4) 

 
The minimization is solved numerically using an iterative Gauss-Seidel type, 
which deducts the vector components u and v. This amounts to solve the Euler-
Lagrange equivalent. The result is given iteratively by: 
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nn vu ,  : Main values  of un and vn respectively  

4. RESULTS AND INTERPRETATION 

 
• This algorithm was tested on three image sequences: 

The artificial sequence 'cube' consisting of a cube placed on a turntable, 
the image size is 256 × 240 pixels. 

• The artificial sequence ‘taxi’: is a shot of a street intersection, and is 
composed of three cars and a pedestrian in motion. The two vehicles move 
down in the opposite direction. The taxi to the center turns into the corner, 
the image size is 256 × 190 pixels. 

• A real sequence of radar images 512x 512 pixels with 64 levels of 
reflectivity taken on August 4th, 1996 from 16:45 until to 17h 15. These 
images are collected by non-coherent radars every 5 minutes installed at 
the meteorological stations of Bordeaux (France). In order to view the 
evolution of the clouds movements, we have presented on Fig.1 a small 
portion of the radar images were the clouds are concentrated 

 
All images used in this application were reduced according to their size in order to 
see the movement. 
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Figure 1: Sequence of Radar images taken in Bordeaux 

                                    (04/08/1996-16h54:17h15) 
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After several tests on the parameterization constants involved in the computation 
of optical flow for the three sequences used, best results were obtained under the 
following conditions: 

• Cube: K = 3, 60 iterations, alpha=50: Figure 2 shows velocity vectors 
corresponding to the rotation of the plate and that of the cube below it. 

• Taxi: K = 3, 60 iterations, alpha=20: Figure 3 shows three moving objects 
that are both vehicles of low gray moving in opposite directions and the 
white taxi in the center that turns the corner. The movement of the 
pedestrian is not detected given its small size. 

• Image radar: K = 2, 10 iterations and alpha=20: In Figure 4 appears 
vectors speeds almost headed north-east which indicates the direction of 
the overall development of the precipitation. We also note that the 
estimated motion is null in the center of the big cells and increases 
gradually in the vicinity of the contour, which seems logical because the 
cloud changes little in 5 minutes and that mainly the edges of the cell that 
are most subject to the constraint of deformation given the time gap 
reduced. The movement of small rain cell is not detected. Outside the rain 
cell the estimated field is practically null 

 
 On setting the parameters for obtaining good results, there is a tradeoff between 
alpha and the number of iterations since the greater the number of iteration is big 
plus there are better movement area boundaries but instead was removed small 
displacements as in the case of pedestrian movement was not detected in the 
sequence 'Taxi' (Figure 3). On the other hand, whenever alpha increases the result 
is noisy month to achieve optimum value from which the result begins to deform 

           
               (a) : Image ‘Cube’                                    (b) : Estimated motion                                
                                      

Fig.2 : Optical flow estimate for the sequence ‘cube’ 
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                    (a): Image ‘Taxi’                                  (b) : Estimated motion                                 
 

Fig.3 : Optical flow estimate for the sequence ‘taxi’ 

 
5.    Conclusion 
 
We have seen in this study the global method of Horn and Schunck and the 
influence of parameters choices on the results. In all three cases: taxi,cube and 
radar images, the estimated optical flow shows the main objects that are moving 
in the sequences. We also deduce that a higher number of iteration eliminates the 
small movements and retain the main movements. Applying this method to the 
radar cells gave us motion fields for the edge pixels those move or those change 
intensity value. Also, setting the parameters estimation depends mainly on the 
size, shape and evolution of the cell. Thus, the application of this method to 
weather radar images allowed us to detect the global direction of movement of the 
storm. 
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Fig.4 : Motion estimation for the sequence of radar images. 
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Abstract 

In this paper, we propose an impulsive biological pest control of 
the sugarcane borer (Diatraea saccharalis) by its egg parasitoid 
Trichogramma galloi based on a mathematical model in which 
the sugarcane borer is represented by the egg e larval stages, and 
the parasitoid is considered in term of the parasitized eggs. By 
using the Floquet theory and the small amplitude perturbation 
method, we show that there exists an asymptotically stable pest-
eradication periodic solution when some conditions hold. The 
numerical simulations show that the impulsive release of 
parasitoids provides reliable strategies of the biological pest 
control of the sugarcane borer. 
 
Key words: mathematical modelling, biological control, 
sugarcane borer, egg parasitoid 
MSC2000: AMS 92D25, 34H05, 49N90 
 

1. Introduction 

One of challenges of the improvements in the farming and harvesting of cane is 
the biological pest control. Biological control is defined as the reduction of pest 
populations by using their natural enemies: predators, parasitoids and pathogens 
[3]. Parasitoids are species which develop within or on the host and ultimately kill 
it. Thus, parasitoids are commonly reared in laboratories and periodically released 
in high-density populations as biological control agents of crop pests [4].  

The sugarcane borer Diatraea sacharalis is reported to be the most important 
sugarcane pest in south-east region of Brazil [1]. The sugarcane borer builds 
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internal galleries in the sugarcane plants causing direct damages that result in 
apical bud death, weight loss and atrophy. Indirect damages occur when there is 
contamination by yeasts that cause red rot in the stalks, either causing 
contamination or inverting the sugar, increasing yield loss in both sugar and 
alcohol [2]. 

Cotesia flavipes is important wasp parasitoid of the sugarcane borer larvae in 
Brazil [1]. In spite of the biological control of Diatraea saccharalis by Cotesia 
flavipes is considered successful in Brazil, there are some areas where Cotesia 
flavipes has not the good control. The using of the egg parasitoid Trichogramma 
galloi is considered an interesting option in this case [5]. 

Mathematical modeling is an important tool used in studying agricultural 
problems. Thus, a good strategy of biological pest control, based on mathematical 
modeling, can increase the ethanol production. The application of host-parasitoid 
models for biological control were reviewed in [6].  

In [7] was proposed a mathematical model of interaction between the sugarcane 
borer (Diatraea saccharalis) and its egg parasitoid Trichogramma galloi which 
consist of three differential equations: 
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   (1) 

were 1x  is the egg density of the sugarcane borer, 2x  is the density of eggs 
parasitized by Trichogramma galloi and 3x  is the larvae density of the sugarcane 
borer; r  is the net reproduction rate; K is the carrying capacity the environment; 

1m , 2m  and 3m are mortality rates of the egg, parasitized egg and larvae 
populations; 1n  is the fraction of the eggs from which the larvae emerge at time t; 

2n  is the fraction of the parasitized eggs from which the adult parasitoids emerge 
at time t; 3n  is the fraction of the larvae population which moults into pupal stage 
at time t;   is the rate of parasitism. 

Recently, many authors have investigated the different population models 
concerning the impulsive pest control [8]–[13]. The impulsive pest control 
strategies based on prey-predator models were presented in [8], [11], [13]. The 
host-parasitoid model with impulsive control was considered in [10]. Impulsive 
strategies of a pest management for SI epidemic models were proposed in [9], 
[12]. 

In this paper, we suggest an impulsive differential equations [14] to model the 
process of the biological pest control of the sugarcane borer. So we develop (1) 
introducing a periodic releasing the parasitoids at fixed times 
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where p  is the release amount of the parasitized eggs at 
   ,...,,2,1,0,,   ZZnnt  is the period of the impulsive effect. 

.3,2,1),(lim)(),()( 


 itxtxtxtxx i
tt

iiii  That is, we can use releasing 

parasitized eggs to eradicate pests or keep the pest population below the economic 
damage level.  
  

2. Preliminary 

In this section, we will give some definitions, notations and some lemmas which 
will be useful for our main results.  

Let  0:),,0[ 33   xRxRR . Denote Tffff ),,( 321 , the map defined 
by the right hand side of the first three equations of the system (2). Let 

   RRRVV 3
0 : , continuous on 3])1(,(  Rnn  , 

),(),(lim
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xnVytV
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
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





exist and V is locally Lipscitzian in x. 

 
Definition 2.1. 0VV  , then for 3])1(,(),(  Rnnxt  , the upper right 
derivative of V(t,x) with respect to the impulsive differential system (2) is defined 
as 

)],()),(,([1suplim),(
0

xtVxthfxhtV
h

xtVD
h




 . 

 
The solution of system (2), denoted by 3:)(  RRtx  , is continuously 

differentiable on 3])1(,(  Rnn  . Obviously, the global existence and 
uniqueness of solution of system (2) is guaranteed by the smoothness properties 
of f, for details see [14]. 

We will use a basic comparison results from impulsive differential equations. 
Lemma 2.1 [14]. Let 0VV  , assume that 

@CMMSE                                 Page 1568 of 1703                                 ISBN: 978-84-614-6167-7



IMPULSIVE  BIOLOGICAL PEST CONTROL OF THE SUGARCANE BORER 
 












,))),(,(())(,(
,)),,(,(),(




nttxtVtxtV
ntxtVtgxtVD

n

      (3) 

where   RRRg 3:  is continuous on  Rnn ])1(,(   and  RRn :  is 
nondecreasing. Let R(t) be the maximal solution of the scalar impulsive 
differential equation 
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existing on ),0[  . Then 00 ),0( uxV   implies that 0),())(,(  ttRtxtV , where 
x(t) is any solution of (2), similar results can be obtained when all the directions 
of the inequalities in the lemma are reversed and n  is nonincreasing. Note that if 
we have some smoothness conditions of g to guarantee the existence and 
uniqueness of solutions for (4), then R(t) is exactly the unique solution of (4). 

Next, we consider the following sub-system of system (2) 



















 0)0(

,)(

,

202

2

2222
2

xx
ntptx

ntxnxm
dt

dx





      (5) 

 
Lemma 2.2. System (5) has a unique positive periodic solution )(~

2 tx  with period 
  and for every solution )(2 tx  of (5) 0)(~)( 22  txtx  as t , where  








 Znnnt
e

petx nm

ntnm

],)1(,(,
1

)(~
)(

))((

2 22

22






    (6) 

)(2 221
)0(~

nme
px






         (7) 

Proof. Integrating and solving the first equation of (5) between pulses, we get 
])1(,(,)()( ))((

22
22  


 nntenxtx ntnm .    (8) 

After each successive pulse, we can deduce the following map of system (8) 
])1(,(,)())1(( )(

22
22  


 nntpenxnx nm    (9) 

Equation (9) has a unique fixed point 
)(

*
2 221 nme

px



 , it corresponds to the 

unique positive periodic solution )(~
2 tx  of system (5), the initial value 

)(2 221
)0(~

nme
px






 . The fixed point *

2x  of map (9) implies that there is a 
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corresponding cycle of period   in )(2 tx , that is 








 Znnnt
e

petx nm

ntnm

],)1(,(,
1

)(~
)(

))((

2 22

22






. From (9) we obtain 

,
1

)1()0()( )(

)(
)(

22 22

22
22




 nm

nmn
nmn

e
epexnx









  

thus, *
22 )( xnx   as t , so )(~

2 tx  is globally asymptotically stable. From 
(6) and (8) we have  ))((

222
22))0(~)0(()( ntnmexxtx   . 

Consequently, )(~)( 22 txtx   as t , that is 0)(~)( 22  txtx  as t .□ 
Therefore, system (2) has a pest-eradication periodic solution )0),(~,0( 2 tx , where 

)(~
2 tx is defined by (6). 
To study the stability of the pest-eradication periodic solution of (2) we present 

the Floquet theory for a linear  periodic impulsive equation 















 ZkttxBtxtx

RttxtA
td
xd

kk

k

,),()()(

,,)(




     (10) 

Then we introduce the following conditions: 
),()()( 1

nnCRPCAH   and )()()( RttAtA  , where ),( nnCRPC   is the  
set of all piecewise continuous matrix functions which is left continuous at  

kt  , and nnC   is the set of all nn  matrices. 
)(,0)det(,)( 12 

  ZkBECBH kkk
nn

k  . 
)( 3H  There exist a Zh , such that )(,   ZkBB khkkhk  . 

Let )(t  be the fundamental matrix of (10), then there exists a unique 
nonsingular matrix nnCM   such that 

Mtt )()(   .        (11) 
By equality (11) there correspondents to the fundamental matrix )(t  the 
constant matrix M which is called monodromy matrix of (10). All monodromy 
matrices of (10) are similar and have the same eigenvalues. The eigenvalues 

n ...,,, 21  of the monodromy matrices are called the Floquet multipliers of (12).  
 
Lemma 2.3 [14]. (Floquet theory) Let conditions )( 31 HH  hold. Then the linear 
 periodic impulsive system (10) is 

a) stable if and only if all multipliers i  (i = 1,2, …, n) of equation (10) 
satisfy the inequality 1i . 

b) asymptotically stable if and only if all multipliers i  (i = 1,2, …, n) of 
equation (10) satisfy the inequality 1i . 
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c) unstable if 1i  for some i = 1,2, …, n. 
 

3. Stability of the pest-eradication periodic solution 

In this section, we study the stability of the pest-eradication periodic solution 
)0),(~,0( 2 tx  of the system (2). Next, we present an important result, concerning a 

condition that guarantees the local stability of this solution.  
 
Theorem 3.1. The pest-eradication periodic solution )0),(~,0( 2 tx  of the system (2) 
is locally asymptotically stable provided that inequality 



))(( 2211 nmnmrp 
       (12) 

holds. 
 
Proof. The local stability of a periodic solution )0),(~,0( 2 tx  of system (2) may be 
determined by considering the behavior of small-amplitude perturbations 

))(),(),(( 321 tytyty  of the solution. 
Define 

)()(),()(~)(),()( 3322211 tytxtytxtxtytx  ,   (13) 
where )(),(),( 321 tytyty  are small perturbations. 
Linearizing the system (2), we have the following linear  periodic impulsive 
system  
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  (14) 

Let )(t  be the fundamental matrix of (14). Then )(t  must satisfy the following 
equation 
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0

0~
00~

)(

331

222

211

t
nmn

nmx
xnmr

td
td
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
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
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   (15) 
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and initial condition 
It  )(           

where I  is the identity matrix.  
The solution of (16) is 
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t

t

, (16) 

there is no need to calculate the exact form of (*) as it is not required in the 
analysis that follows. The resetting impulsive condition of (14) become: 
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Hence, if absolute values of all eigenvalues of 

)()(
100
010
001

 

















M       (18) 

are less than one, the   periodic solution is locally stable. Then the eigenvalues of 
M are the following 

1))((exp
1))((exp

)))(~(exp(

333

222

211
0

1





 







nm
nm

dssxnmr
t

      (19) 

From (19) one can see that 11   if and only if condition (12) holds true. 
According to Lemma (2.3), the pest-eradication periodic solution )0),(~,0( 2 tx  is 
locally asymptotically stable. □  
 

4.  Numerical simulations of the impulsive biological control 

For numerical simulations of interactions between the sugarcane borer and its 
parasitoid were used the following values of model coefficients: 1.01 n , 

1.02 n , 02439.03 n , 03566.01 m , 03566.02 m , 00256.03 m , 
25000K . These values were obtained based on data published about the use of 

the egg parasitoid Trichogramma galloi against the sugarcane borer Diatraea 
saccharalisthese [1], [5], [7]. Fig. 1 shows the population oscillations for 
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1908.0r  and 0001723.0  without control. One can see from this figure that 
the sugarcane borer larvae density 3x  takes on values more than the pest density 
threshold level 5002Ex  numbers/ha [1]. Densities above this level cause 
economic damages the sugarcane crops. In this case, it is necessary to apply the 
biological control. 
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Fig.1. Evolution of the egg (a), parasitized egg (b), larvae populations (c) and 

phase portraits (d) of system (2) without control 
 

From Theorem 3.1, we have shown that the pest-eradication periodic solution 
)0),(~,0( 2 tx  of the system (2) is locally asymptotically stable if the condition (12) 

holds: 



))(( 2211
min

nmnmrpp 
      (20) 

Choosing 70  days from (20) we derive that when 
3027min  pp parasitoids/ha the pest-eradication periodic solution of the host – 

parasitoid system is asymptotically stable. Dynamical behaviour of the system 
with impulsive control 3500p  parasitoids/ha is shown in Fig. 2. We can 
conclude that this control strategy is seemed successful because the larvae 
population of the sugarcane borer goes to extinction. But the aim of the biological 
control is not to eliminate all larvae population. The aim of the biological control 
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of the sugarcane borer is to keep the larvae population at an acceptable low level 
(below the economic injury level) that indicates the pest densities at which 
applied biological control is economically justified. It is known that the economic 
injury level is 5002Ex  numbers/ha [1].  
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Fig. 2. Evolution of the egg (a), parasitized egg (b), larvae populations (c) and 

phase portraits (d) of system (2) for 3500p  parasitoids/ha 
 

Choosing the release amount 1500p  parasitoids/ha, we can control the larvae 
population below the economic injury level (see Fig. 3). It is obvious that the cost 
of the control strategy 1500p  is less than the cost of 3500p .  

Applying the control strategy 1000p , we can see that the number of larvae 
individuals exceed Ex  at some time (see Fig. 4). For this control the system 
experiences chaotic behavior which is showed in Fig. 4 (d).  

 

7.  Conclusion 

In this paper, we suggest a system of impulsive differential equations to model the 
process of the biological control of the sugarcane borer by periodically releasing 
of parasitoids. By using the Floquet theory and small amplitude perturbation 
method, we have proved that for any fixed period   there exists a locally 
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asymptotically stable pest-eradication periodic solution )0),(~,0( 2 tx  of the system 
(2) if the number of the parasitoids in periodic releases is greater than some 
critical value minp . 

When the stability of the pest-eradication periodic solution is lost, the 
numerical results show that the system (2) has rich dynamics, including chaotic 
behavior. 
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Fig. 3. Evolution of the egg (a), parasitized egg (b), larvae populations (c) and 

phase portraits (d) of system (2) for 1500p  parasitoids/ha 
 
If we choose the biological control strategy by periodical releases of the 

constant amount of parasitoids, the results of Theorem 3.1 can help in design of 
the control strategy by informing decisions on the timing of parasitoid releases. In 
this case, from (12) we have: 

))(( 2211
max nmnmr

p





       (21) 

From (21) we can conclude that there exists a locally asymptotically stable pest-
eradication periodic solution )0),(~,0( 2 tx  of the system (2) if the impulsive period 
is less than some critical value max . 
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Fig. 4. Evolution of the egg (a), parasitized egg (b), larvae populations (c) and 

phase portraits (d) of system (2) for 1000p  parasitoids/ha 
 
Thus, the results of the present study show that the impulsive release of 

parasitoids provides reliable strategies of the biological pest control of the 
sugarcane borer. 
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Abstract 

Solving systems of nonlinear equations is a problem of 
particular importance since they emerge through the 
mathematical modeling of real problems that arise naturally in 
many branches of engineering and in the physical sciences. The 
problem can be naturally reformulated as a global optimization 
problem. In this paper, we show that a metaheuristic, called 
Directed Tabu Search (DTS) [16], is able to converge to the 
solutions of a set of problems for which the fsolve function of 
MATLAB® failed to converge. We also show the effect of the 
dimension of the problem in the performance of the DTS. 
 
Key words: nonlinear equations, metaheuristic, tabu search 
 

1   Introduction 

The numerical solution of some problems in engineering, chemistry, physics, 
medicine and economic areas, aims at determining the roots of a nonlinear 
system of equations. The modeling of these problems can lead to simple and 
almost linear systems, but mostly large, complex and difficult to solve systems 
of nonlinear equations arise. In this paper we consider solving the nonlinear 
system of equations 

                                                    0xF                                                    (1) 

where  

       nnF : ,     niuxlxul iii
n ,...,1,:,  , 

      Tn xfxfxF ,...,1  

and the functions  

  nixf i ,...,1,   
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are continuously differentiable, using a metaheuristic. Probably the most famous 
techniques are based on Newton’s method [2,6,8,12,24,29]. They require 
analytical or numerical first derivative information. Newton’s method is the most 
widely used algorithm for solving nonlinear systems of equations. It is 
computationally expensive, in particular if n  is large, since a system of linear 
equations is required to be solved at each iteration. The Quasi-Newton methods 
use less expensive iterations than Newton, but their convergence properties are 
not very different. In general, Quasi-Newton methods avoid either the necessity 
of computing derivatives, or the necessity of solving a full linear system per 
iteration or both tasks [25]. In [13], a new technique for solving systems of 
nonlinear equations reshaping the system as a multiobjective optimization 
problem in proposed. The authors applied a technique of evolutionary 
computation to solve the problem obtained after the change. In [14], the authors 
propose techniques for computing all the multiple solutions in nonlinear systems. 
Another technique to solve systems of nonlinear equations is presented in [18], 
where a heuristic continuous global optimization GRASP is applied. A genetic 
algorithm is proposed in [4]. 

The problem of solving a nonlinear system of equations can be naturally 
formulated as a global optimization problem. Problem (1) is equivalent, in the 
sense that it has the same solution, to finding the globally smallest value of the 
l2-norm error function, related to solving the system of equations (1), defined by 

                                             
2

min xFx
nx




.                                      (2) 

Here, the global minimum, and not just a local minimum, of the objective 

function  x , in the set  , is to be found. The classical local search methods, 

like Newton-type methods, have some disadvantages, when compared to global 
search methods. In particular  

i) the final solution is heavily dependent on the the starting point of the 
iterative process;  

ii) they can be trapped in local minima;   
iii) they require differentiable properties of all the equations of nonlinear 

system. 
We use the Example 1 below to show this local trap behavior. 
Example 1: Consider the following system of nonlinear equations 

                       
 
  .0)3cos()2sin(,

0)53cos()32sin(,

21212212

21211211





xxxxxxxf

xxxxxxxf
 

Figure 1 shows the graphical representation of the l2-norm error function  x . 

The multi-modal nature of  x  makes the process of detecting a global 

minimum a difficult one. Nine different starting points were used to solve 
Example 1 by fsolve from MATLAB®.  In this MATLAB function, the default 
trust-region dogleg algorithm with no analytical Jacobian is used. Although all 
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the nine starting points are in the neighborhood of the solution, the method 
converges to the required solution only twice.  

 

Figure 1. Graphical representation of  x  for Example 1. 

 
Table 1 shows the results obtained from MATLAB. The first column in the 

table presents the tested starting points, )0(x , as well as the value of the output 
parameter “exitflag” of MATLAB. The value “1” means that the method 
converged to a root where the first-order optimality  measure is less than a pre-
specified tolerance, and “-2” means that it converged to a point which is not a 
root where the sum-of-squares of the function values is greater than or equal to a 
pre-specified tolerance. 

 
Table 1. Solutions obtained by fsolve from MATLAB for different starting points. 

Starting point 
)0(x   

/“exitflag” 

 21, ff  at solution  n. of iterations n. of function  
evaluations 

(0, 0)   /   “1” (-0.41e-12, -0.24e-12) 5 18 
(1, 1)   /   “1” (0.36e-8, 0.23e-8) 6 21 
(0, 1)   /  “-2” (-0.03, 0.94) 27 60 
(2, 2)   /  “-2” (0.11, 0.88) 31 70 
(-1, 1)   /  “-2” (-0.55, 0.65) 55 130 
(1, -1)   /  “-2” (0.01, -0.04) 24 57 
(-1, -1)  /  “-2” (-0.52, 0.10) 31 74 
(2, -2)   /  “-2” (-0.16, -0.57) 32 71 
(-2, -2)  /  “-2” (-0.17, -1.53) 34 77 

 
Thus, to be able to converge to a global solution, a global search strategy is 

required. The most important global search techniques invoke exploration and 
exploitation search procedures aiming at: 

i) diversifying the search in all the search space; 
ii) intensifying the search in promising areas of the search space. 
A well-known class of global search techniques, the metaheuristics, use 

random procedures that invoke artificial intelligence tools and simulate nature 
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behaviors. The word “metaheuristics” is used to describe all heuristics methods 
that are able to achieve a good quality solution in a reasonable time. Due to their 
random features, metaheuristics have, in general, slow convergence since they 
may fail to detect promising search directions in the neighborhood of a global 
minimum.  

There are two classes of metaheuristics. A population-based heuristic defines 
and maintains throughout the iterative process a set of solutions. The most 
known population-based heuristic is the Genetic Algorithm [10]. A point-to-
point heuristic defines just one solution at the end of each iteration which will be 
used to start the next iteration. Simulated Annealing (SA) [15] and Tabu Search 
[9] are two examples of point-to-point methods.  

The Tabu Search (TS) is a metaheuristic developed primary for solving 
combinatorial problems [9]. The TS introduced by Cvijović and Klinowski [5] 
for continuous optimization guides the local search out of local optima and has 
the ability to explore new regions. It is an iterative procedure that maintains a list 
of the movements most recently made, avoiding in subsequent iterations the 
execution of movements that lead to solutions already known to have been 
visited. Usually, the slow convergence of TS is overcame by incorporating a 
classical local search strategy into the main algorithm. In general, this type of 
hybridization occurs in the final stage of the iterative process when the solution 
is in the vicinity of the global solution. An example of such method is presented 
in [16]. The therein proposed method, called Directed Tabu Search (DTS), uses 
strategies, like the Nelder-Mead method [28] and the Adaptive Pattern Search 
[15], to direct a tabu search.  

This paper aims at assessing the performance of a tabu search method when 

solving a system of nonlinear equation (1), using the function  x  as a measure 

of the progress of the algorithm towards the solution. According to the 
formulation (2), this means that the fitness of each trial solution x is assessed by 

evaluating the function  at x. And a solution x~ is better than x if 

   xx  ~ . In this paper, and due to the reported success when solving global 

optimization problems of the form (2), the DTS variant of the tabu search is 
extended to be able to solve nonlinear systems of equations. In particular, we 
aim at analyzing the behavior of the extended version of the DTS method when 
solving some difficult problems that are not solved by Newton-type methods. 

The organization of the paper is as follows. Section 2 describes the Directed 
Tabu Search method and the Section 3 reports the computational experiments. 
Finally, we summarize our conclusions in Section 4. 
  

2   The Metaheuristic Tabu Search  

2.1  Basic Tabu Search 
TS is an iterative process which operates in the following way. The algorithm 
starts with a randomly generated initial solution, x, and by applying pre-defined 
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moves in its neighborhood it generates a set Y of solutions. The objective 
function to be minimized is evaluated at all solutions in Y, and the best of all, y, 
becomes the current solution, x←y (even if it is worse than x). Accepting uphill 
moves, the algorithm avoids to get trapped in a local mínimum. The previous 
procedure is repeated until a given stopping condition is reached. Further, the 
algorithm also stops when the solution does not improve for Nmax iterations. To 
avoid cycling, since a point already visited may be generated again, a set of 
points already visited are stored in a list, called Tabu List (TL). The solutions in 
Y that belong to the TL are eliminated. This TS structure is called short-term 
memory TS. The use of this type of flexible memory is of great advantage in 
contrast to the rigid structures of large memory, like those present in Branch-
and-Bound methods, or the lack of memory that exists in the Simulated 
Annealing method [3]. To improve performance, long-term memory TS 
structures have been proposed to record important attributes like elite and 
frequently visited solutions. The Directed Tabu Search [16] implemented in this 
paper for solving nonlinear systems of equations contains long-term memory 
structures. This is important since the method is able to keep diversity, like 
population-based methods.  

 
 2.2  Directed Tabu Search 
The Directed Tabu Search method of Hedar and Fukushima [16] uses direct 
search methods  in order to stabilize the search especially in the vicinity of a 
local minimum. Two variants of the DTS are therein proposed: one is based on 
the Nelder-Mead (NM) method, as a local search, inside the exploration step of 
the algorithm, and the other uses the Adaptive Pattern Search (APS) strategy in 
the exploration step. Furthermore, the Kelley´s modification of the NM method 
[19] is still used in the therein called intensification search in the final stage of 
the process. We note that the DTS method can be classified as a multi-start 
method. The multi-start methods are designed to build powerful search 
procedures and guided by a global exploration and local search. These multi-start 
methods have been successfully applied either in nonlinear global optimization 
problems or in combinatorial optimization. 

The DTS method is based on three procedures: exploration, diversification 
and intensification search procedures. The structure of the DTS is shown below 
in Algorithm 1. 
Algorithm 1  (DTS method) 
Step 1  Randomly generate an initial solution  

Step 2  Exploration search procedure 
    Step 2.1  Neighborhood search 
    Step 2.2  Local search 
    Step 2.3  Solution update 
    Step 2.4  If  improvement criteria are reached, repeat from Step 2.1 

Step 3  Diversification search procedure 
Step 4  If  stopping criteria are not reached, repeat from Step 2 
Step 5  Intensification search procedure 
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The main loop (outer cycle) of the DTS method, consisting of the exploration 

and diversification search procedures, begins with an initial solution. A brief 
description of the procedures follows. Other mathematical details can be found 
in [16].  
 

2.2.1 Exploration Search 

The exploration search aims to explore the solution space. It uses direct search 
methods as neighborhood search and local search strategies to generate trial 
points. These may be based on either the simplex method of NM or on the APS 
strategy. Here, we use the APS variant. This variant of the DTS mainly focuses 
its strategy on the definition of an approximate descent direction (ADD), v, for 
the fitness  , as proposed in [15]. Thus, based on a set of n trial points, yi, 
i=1,…,n, using the standard pattern directions, in the neighborhood of the current 
solution x, the descent direction is computed as follows: 
 
  
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n
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Briefly, pattern directions are constructed parallel to the coordinate axes, and a 
set of points are generated in the neighborhood of the current solution x, along 
these directions with appropriate step length.  

Moreover, anti-cycling is prevented not only with the standard Tabu List but 
also with the inclusion of novel Tabu Regions (TR). The DTS method 
implements four new TS memory elements.  
 The multi-ranked Tabu List (r-TL) is a set of some visited solutions that are 

ranked and saved according to two features separately, namely: i) ranked in 
ascending order according to their recency,  ii) ranked in ascending order 
according to their   values.  

 Further, two types of regions, around each solution saved in the r-TL are 
defined: 
o the Tabu Region (TR) in which no new trial point is allowed to be 

generated,   
o the Semi-Tabu Region (STR), which is a surrounding region around TR, 

with a radius from its center greater than the radius of the TR, that aims 
to allow the generation of neighboring trial points when the trial solution 
lies inside STR.  

 Finally, the other memory element is the Visited Region List (VRL) that 
contains information concerned with the centers of the visited regions and the 
frequency of visiting these regions. This information is crucial to explore the 
space outside these visited regions.  
These new long-term memory structures are very important since they allow 

the method in the diversification search and intensification search procedures to 
behave as an intelligent search technique. 
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The exploration search procedure is repeatedly applied in order to generate n 
trial solutions using search strategies in the neighborhood of the current solution. 
If a better move between these raised solutions is found, the current solution is 
updated and the algorithm continues to the next iteration of this inner cycle 
(exploration search procedure). Otherwise, the current solution is still better than 
all the raised solutions in the neighborhood, and the local search strategy 
generates new local trial points and the current solution is updated with the best 
trial point generated. The multi-ranked Tabu List is updated and if a new region 
is reached, the Visited Regions List is updated with information about this 
region. When the number of iterations in the inner cycle exceeds a pre-specified 
value or improvement has not been obtained in some consecutive iterations (the 
improvement criteria in Step 2.4 of Algorithm 1), the diversification search 
procedure is applied to locate a new starting point, from which the exploration 
search procedure is repeated. 
 

2.2.2 Diversification Search 

A diversification procedure aims to generate a new initial trial point outside the 
visited regions. The information stored in the VRL is used to direct the search 
towards new regions. The VRL serves as a diversification tool in the search, with 
the aim of diversifying the search for areas that have not been visited in the 
solution space. 
 
2.2.3 Intensification Search 

When one of the best obtained trial solutions is sufficiently close to a global 
minimum, or its value has not been changed for Nmax iterations (stopping 
criteria in the Step 4 of Algorithm 1), then the intensification search procedure is 
applied at the final stage to refine the best solution visited so far. In this case, a 
local direct search method, the Kelley´s modification of the Nelder-Mead 
method [19] and [20], is used. A solution still closer to the global minimum is 
then obtained.  
  
3     Computational Experiments 
 
We selected, and coded in MATLAB®, 99 test problems from the literature and 
solved them using fsolve from MATLAB, the extended version of the DTS 
method [16], and a SA version for comparative purposes. The problems in our 
database are referred to as P1, P2, …, P99. They represent systems of nonlinear 
equations of different sizes and complexity. The results of the numerical 
experiments were obtained in a personal computer with an AMD Turion 2.20 
GHz processor and 3 GB of memory. Due to the stochastic nature of DTS and 
SA algorithms, each problem was run 30 times and the best of the 30 solutions, 
as well as the average of the 30 obtained solutions were registered. The DTS 
algorithm starts with an initial solution, which is randomly generated inside the 
range [l,u]. Although not all problems defined in the literature have a registered 
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[l,u], we selected a specific range for each problem, as shown in Table 4 in the 
Appendix. The lower and upper limits are the same for all the components of the 
solution. The parameters defined for the stopping criteria of the algorithm are 
Nmax = 10 n  and   = 10-8 (in Step 4 of Algorithm 1), where the condition that 
defines the closeness of the best solution to the global minimum is the following 

 )( kx .  

The goal of this paper is twofold:   
i) to evaluate the effectiveness of the extended DTS to solve systems of 

nonlinear equations that are not solved by Newton´s method;     
ii) to analyze the effect of the dimension of the problem in the performance 

of the extended DTS algorithm. 
 

Table 2. Comparison of  fsolve, DTS and SA 

  fsolve  DTS   SA  

 n Ψ(x) nfe nit Ψavg a-nfe Ψmin Ψavg a-nfe Ψmin 

P6 2 0.0025 57 20 0.5747 327 0.019 0.6677 265 0.0715 

P9 2 6.9989 49 20 3.2664 242 1.8e-04 4.1994 243 2.9e-05 

P25 10 13.830 1001 90 0.1227 5101 0.0142 0.4112 1014 0.0049 

P26 3 0.6642 106 30 0.4195 482 9.5e-06 0.2428 303 1.3e-05 

P27 3 0.1008 109 30 0.0563 667 0.0011 0.0669 339 0.0015 

P44 33 2.1965 1170 47 1.5666 75246 0.6737 3.5248 3302 0.7079 

P45 33 0.3983 3306 104 5.7368 48664 3.5176 6.1427 3302 4.2613 

P50 2 0.2476 47 20 0.24 247 0.2476 0.2476 240 0.2476 

P52 5 0.0022 261 50 4.0e-02 1556 5.0e-04 8.2e-02 507 2.0e-04 

P53 6 2.8074 427 60 0.0015 1958 0.0001 0.0019 604 0.0001 

P55 6 138.42 385 60 4.6e+06 3634 122.84 8.0e+06 631 129.65 

P56 8 0.4919 609 80 1.1e+01 4355 0.4286 1.1439 802 0.4308 

P62 6 0.0467 379 60 5.4e+10 4512 45.353 5.1e+11 616 44.31 

P63 6 0.0062 427 60 0.0020 2030 5.4e-05 0.0177 602 0.0002 

P64 8 3.2592 657 80 0.4907 3216 5.1e-05 3.1581 887 0.0003 

P70 10 25.782 981 100 53.5830 5870 9.0034 47.1696 1002 9.0034 

P72 51 2.7307 1989 50 1.9574 151108 1.1470 2.0317 5102 1.4808 

P77 2 4.5632 45 20 0.8533 243 0.7377 1.0068 211 0.7377 

P80 3 0.0630 124 30 2.0e-05 516 5.2e-06 0.1139 325 3.9e-06 

P84 3 0.0005 124 30 3.1e-08 482 1.4e-09 5.0e-08 144 1.2e-09 

P88 10 0.7460 66 5 8.6e-03 4773 1.4e-03 8.8e-03 1002 7.7e-04 

P96 2 2.8098 47 20 0.1040 258 1.7e-05 0.4617 265 1.8e-05 

P99 2    0.0600 252 4.0e-06 9.6e-02 292 1.1e-05 

 
To resume the main achievements of our numerical experiments, we show in 

Table 2 the results of the 23 problems (from the database of 99 problems) that 
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were selected because fsolve was not able to converge to the required solution 
with a tolerance of   = 10-8 and within 10 n iterations (“exitflag” is “-2” for P44 
and P72 and is “0” for all the others). Here, we use the initial approximation 
provided in the literature. Problem P99 of our list is the Example 1 described in 
Section 1.  

The characteristics of the selected problems are listed in the Appendix of the 
paper (Table 4). Moreover, the results of a selection of other problems from our 
database with varied dimensions are shown in Table 3.  
 

Table 3. Comparison based on problems with varied dimensions 

  fsolve DTS  SA  

 n Ψ(x) nfe nit Ψavg a-nfe Ψmin Ψavg a-nfe Ψmin 

P14 2 2.8e-08 19 6 0.0092 251 4.4e-06 4.6e-05 287 2.3e-06 

 10 3.7e-08 55 4 0.93 4918 0.0023 0.8545 1022 0.0031 

 30 8.6e-14 155 4 5.8 50073 1.9910 5.2442 3002 1.3550 

P15 2 0 15 4 4.9e-05 246 5.6e-07 3.5e-05 258 1.6e-06 

 10 7.2e-07 101 10 0.7422 4731 4.7e-05 20.1567 1040 2.7e-05 

 30 4.1e-08 311 10 2.220 39478 0.0023 1.0e+07 3257 26.4957 

P16 2 3.5e-07 9 2 4.1e-05 250 8.8e-06 3.2e-05 232 3.8e-06 

 10 3.1e-08 33 2 0.006 4915 0.0006 0.005 1002 0.0009 

 30 5.1e-05 62 1 0.25 44379 0.1201 0.2868 3002 0.0934 

P17 2 3.5e-07 9 2 3.0e-05 249 3.7e-06 1.6e-05 246 1.9e-06 

 10 3.7e-07 33 2 4.8e-04 3978 8.3e-05 0.0003 1002 7.3e-05 

 30 6e-07 93 2 0.015 36010 0.0012 0.0045 3002 0.0009 

P18 2 5e-09 15 4 2.6e-02 252 1.4e-06 3.8e-05 223 1.1e-06 

 10 1.1e-09 55 4 1.00 5067 0.6301 1.0404 1002 0.9375 

 30 4.2e-14 186 5 1.2 40639 1.0569 1.322 3002 1.0568 

P19 2 2.6e-08 18 5 4.3e-05 259 6.8e-06 7.9e-05 212 1.0e-05 

 10 1.5e-08 66 5 1.6 5108 1.7e-05 1.6027 1002 0.0073 

 30 5e-12 217 6 1.9 50845 0.0026 1.753 3002 1.753 

P21 4 8.1e-15 41 8 4.4e-04 962 1.7e-04 6.7e-04 426 6.8e-05 

 52 1.7e-14 424 7 2.8884 156373 0.5985 6.8724 5202 3.4877 

P22 2 0.0001 6 1 8.4128 296 0.0722 18023.3 314 0.0793 

 50 0.0005 102 1 6.5e+07 98182 1.1e+04 3.3e+05 5002 7.5e+03 

P26 3 0.6642 106 30 0.4195 482 9.5e-06 0.2428 303 1.3e-05 

 33 2.1965 1170 47 1.5666 75146 0.6737 3.5248 3302 0.7079 

 
Tables 2 and 3 summarize the numerical results, where n represents the 

dimension (number of variables = number of functions in the system), Ψ(x) is the 
value of the l2-norm error function at the found solution, nfe is the number of 
function evaluations and nit the number of iterations, all provided by MATLAB; 
Ψavg represents the average of the obtained solutions over the 30 runs, a-nfe 
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gives the average number of function evaluations computed over the 30 runs 
(rounded to the nearest integer) and Ψmin is the best solution obtained during the 
30 runs. The best solutions found in these comparisons are printed in “bold”. We 
compare Ψ(x) of fsolve with Ψmin of  DTS and SA.  

4    Conclusions 

In this paper we show that nonlinear systems of equations can be effectively 
solved by implementing a global optimization method to a fitness function, 
which represents the l2-norm error function related to the solving of the system 
of equations. The application of an extended version of the metaheuristic 
Directed Tabu Search, proposed in [16], for solving complex and difficult 
nonlinear systems of equations has been analyzed and tested. From Table 2, we 
may conclude that DTS is mostly able to converge to the solutions of the 
selected systems that are not solved by a Newton-type method. However, the 
results of Table 3 are not so promising. As expected, when a Newton-type 
method converges, the accuracy of the found solution is higher than that 
obtained by a metaheuristic. Furthermore, the performance of both tested 
metaheuristics (DTS and SA) is greatly affected by the dimension of the 
problem. This suggest that a combination of global- and local-type search 
procedures, carried out in separate iterations, depending on the need for an 
exploration of the search space or an exploitation of a promising region in the 
search space, will improve performance. For the local-type iteration, a derivative 
local search method seems crucial, as long as analytical or numerical derivatives 
could be used. This issue will be addressed in the near future.  
 
Appendix – Problems used in numerical experiments 
 

Table 4. Characteristics of the problems 
 n [l,u] reference Problem name in cited paper 

P6 2 [-10,10] [27]  P3-Powell badly scaled function 
P9 2 [-10,15] [27] P2-Freudenstein and Roth function 

P14 2,10,30 [-10,10] [27]  P26-Trignometric function 
P15 2,10,30 [-10,10] [27]  P27-Brown almost-linear function 
P16 2,10,30 [-10,10] [27]  P28-Discrete boundary value function 
P17 2,10,30 [-10,10] [27]  P29-Discrete integral equation function 
P18 2,10,30 [-10,10] [27]  P30-Broyden tridiagonal function 
P19 2,10,30 [-10,10] [27]  P31-Broyden banded function 
P21 4,52 [-5,5] [8]  D2-Augmented Rosenbrock 
P22 2,50 [0,370] [8]  D3-Powell badly scaled 

P25 10 [10,50] [8] 
D6-Shifted and augmented trigonometric 

function with an Euclidian sphere 

P26/P44 3/33 [-10,10] [8]  
D7-Diagonal of three variables premultiplied 

by a quasi-orthogonal matrix 

P27/P45 3/33 [-10,10] [8] 
D8-Diagonal of three variables premultiplied 

by an orthogonal matrix, combined with 
inverse trigonometric function 

P50 2 [-10,10] [18]  pp. 2004 

P52 5 [-20,20] [26]  
Combustion of propane chemical equilibrium 

equations 
P53 6 [-3,3] [27]  14-Wood function 
P55 6 [-10,10] [29]  Semicoductor boundary condition 
P56 8 [-10,30] [1]  2.3-The human heart dipole 
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Table 4. Characteristics of the problems (cont.) 
 n [l,u] reference Problem name in cited paper 

P62 6 [0,60] [17]  Problem 2 
P63 6 [-10,10] [23]  Example 2 
P64 8 [-10,15] [7] Equation 3.1 
P70 10 [-100,100] [30] Example 4.1-Nonlinear resistive circuit 

P72 51 [-5,5] [8]  
D7-Diagonal of three variables premultiplied 

by a quasi-orthogonal matrix 
P77 2 [0,3.5] [4]  Example 1 
P80 3 [0,4] [27]  5-Beale function 
P84 3 [0,1] [22]  Example 6.2 
P88 10 [-10,10] [21]  Example 2-The Beam problem 
P96 2 [-10,10] [12]  pp. 498 (Problem N4) 
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Abstract 

H.264/MPEG-4 part 10 is the latest standard for video 

compression and promises a significant advance compared with 

the commercial standards currently most in use. H.264/AVC 

aims at providing good video quality with lower bit rate than the 

previous coding standards such as MPEG-2 or MPEG-4. This 

improvement in performance occurs at the expense of increasing 

computing needs. Recently, the progress of GPUs has attracted a 

lot of attention. The hardware design includes multiple cores, 

bigger memory sizes and high bandwidth memory, which offer 

practical and acceptable solutions for speeding both graphic and 

non-graphic applications. In this paper we present an 

implementation of the H.264/AVC full-pixel Motion Estimation, 

which is able to reduce the execution time up to 98.12% on 

average and it reduces the energy consumption by a factor of 

9.83 compared with the reference implementation, while there is 

a negligible drop in rate distortion for the encoded video. 

 

Key words: Heterogeneous computing, Hardware accelerators, 

H.264/AVC, Motion Estimation, Inter Prediction 
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1. Introduction 

H.264/AVC is a block-oriented motion-compensation-based codec standard that 

outperforms other previously existing video codecs. It aims at providing good video 

quality with lower bit rate than previous codecs, at the cost of an increased encoder [1]. 

By adopting new coding techniques, H.264/AVC can generate a high coding efficiency. 

However, real time encoding is very difficult to achieve due to its high computational 

complexity. Moreover, these techniques improve the coding gain but produce a high 

computational cost and large system memory bandwidth requirements. Therefore, it is 

necessary to reduce the encoding time as much as possible. 

 In this sense, in the past few years new heterogeneous architectures have been 

introduced in high-performance computing [2]. Examples of such architectures include 

Graphics Processing Units (GPUs). GPUs are accelerator devices with hundreds of 

similar processing cores which are designed and organized with the goal of achieving 

higher performance. Although GPUs can be used for general purposes, they come 

primarily from multimedia and computer or console gaming.  

 The GPU uses an unusual programming model, so effective programming is not 

an easy task. Fortunately, the main GPU manufacturers have developed their own tools 

for transparent programming. For example, CUDA (Compute Unified Device 

Architecture)[3], which is a powerful GPU architecture that enables dramatic increases in 

computing performance by harnessing the power of the GPU. CUDA abstracts both 

SIMD and task parallelism into thousands of simultaneous threads. These modifications 

largely improve the flexibility and programmability of GPUs. 

 This paper proposes an implementation of the H.264/AVC full-pixel Motion 

Estimation (ME) algorithm in a GPU as a coprocessor to assist the CPU. The proposed 

method parallelizes the inter prediction in H.264/AVC, which is the most time consuming 

task. Our ME algorithm is optimized for CUDA architecture by using a large number of 

threads that can execute on GPU in parallel and can make an efficient use of the available 

resources. Starting with the smaller MacroBlocks (MBs) sub-partitions, the proposed 

algorithm is able to build the entire tree structured motion compensation algorithm from 

bottom to top, and also, it reaches a 53x speedup on average and it consumes less energy 

than the baseline algorithm running on a CPU. 

 The rest of the paper is organized as follows: Section 2 contains a brief overview 

of H.264/AVC and GPU programming. In Section 3 some related proposals are 

presented. Section 4 describes the approach presented in this paper. In Section 5 the 

proposal presented is evaluated. Finally, conclusions are given in Section 6. 

2. Background 

H.264 [4] or MPEG-4 part 10 Advanced Video Coding (AVC) [5] is a compression video 

standard developed jointly by the ITU-T Video Coding Experts Group (ITU-T VCEG) 

and the ISO/IEC Moving Picture Experts Group (MPEG). H.264/AVC promises a 

significant advance in terms of quality and distortion compared with the commercial 

standards most in use such as MPEG-2 or MPEG-4 [1]. H.264/AVC can be used thus in a 

variety of applications such as DVD, video-streaming or HDTV. 

 For the inter frame coding, the H.264/AVC standard adopts many video coding 

techniques, such as multiple reference frame, weighted prediction, de-blocking filter, 

variable block size and quarter sample accurate motion compensation, among others. In 
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particular, the process of variable block size ME can search for the optimal matching 

block and it is able to eliminate the temporal redundancy between adjacent frames. This 

procedure is known as the tree structure motion compensation algorithm. 

 In a nutshell, the inter prediction in H.264/AVC supports motion compensation 

block sizes ranging from 16x16, 16x8, 8x16 to 8x8; where each of the sub-divided 

regions is a MB partition. If the 8x8 mode is chosen, each of the four 8x8 block partitions 

within the MB may be further split in 4 ways: 8x8, 8x4, 4x8 or 4x4, which are known as 

sub-MB partitions. Moreover, H.264/AVC also allows intra predicted modes, and a 

skipped mode in inter frames for referring to the 16x16 mode where no motion and 

residual information is encoded. Therefore, H.264/AVC allows not only the use of the 

MBs in which the images are decomposed, but also allows the use of smaller partitions 

from dividing the MBs in different ways. Fig. 1.a shows the different block sizes in 

which an MB can be divided, and Fig. 1.b shows the MB sub-partitions in which  8x8 

partitions can be further divided. 
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Fig.  1 H.264/AVC block sizes, a) MB partitions, b) 8x8 sub-partitions. 

 
 For each of these different MB sizes, the ME procedure is carried out, and a 

separate motion vector is required for each partition/sub-partition. Encoding a motion 

vector (MV) for each partition can take a significant number of bits, especially if small 

partition sizes are chosen. Moreover, MVs neighboring partitions are often highly 

correlated, so each MV is predicted from vectors of nearby previously coded partitions. 

Candidate MBs include the left MB, above MB, and above-right MB against the current 

MB. The predicted MV of the current MB is computed as the median of the candidate 

MVs. The Motion Vector prediction (MVp) depends on the motion compensation 

partition size and on the availability of nearby vectors. This MVp, which is generated 

from the neighboring MB, is added to the current MV. 

 On the other hand, modern graphics cards now incorporate a processor chip, 

which is commonly referred to as Graphics Processing Unit, or GPU. Today, GPUs are 

SIMD processors which are capable of performing arbitrary programmable operations. 

Recent GPUs are able to achieve 177 GB/s of memory transfer rate and 2 TFLOPS 

working in simple precision. GPUs have recently moved from being exclusively used in 

graphics applications to being used in what is now called General Purpose Computing on 

GPU (GPGPU) [6]. 

 The main feature of these devices is a large number of processing elements 

integrated into a single chip at the expense of a significant reduction in cache memory. 

For instance, the architecture of the NVIDIA ® GPUs consists of a set of SIMD 

multiprocessors called Stream Multiprocessors (SM). Each SM has 8, 32 or 48 processing 

elements called cores and a set of resources shared by all cores: 32 bits registers, local 

shared memory, a cache for texture GPU memory and a cache for constant GPU memory. 

Each multiprocessor executes some thread blocks in time slots and a concrete thread 

block is always executed by the same multiprocessor. 

 GPU architecture offers a new challenge for engineering since the programming 

model must be adapted to the available hardware in order to obtain good performance and 
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exploit the full potential of the GPU. This problem has been solved by GPU 

manufacturers, such as NVIDIA or AMD-ATI, by proposing new languages or even 

extensions for the most commonly-used high-level programming languages. 

 In this respect, NVIDIA proposes the CUDA [3] parallel computing architecture, 

which is a software platform for programming massively parallel high-performance 

computing applications on their company powerful GPUs. CUDA development tools 

work alongside a conventional C/C++ compiler, so programmers can mix GPU code with 

general purpose code for the host CPU. At this point, the programmers do not write 

explicitly threaded code, a hardware thread manager handles threading automatically, 

which is an important feature of CUDA. 

 Thus, the inter prediction algorithm proposed in the H.264/AVC encoding 

algorithm fits well in the GPU philosophy, and offers a new challenge for the GPUs. The 

main issue is how to efficiently distribute all the computations over the GPU. 

3. Related work 

This section gathers relevant work focused on video processing using GPU-based 

frameworks. In the framework of video processing using GPU, one of the pioneer 

approaches was developed by Kelly and Kokaram in 2004 [7]. In this work, the authors 

propose using computer graphics hardware for fast image interpolation. Basically, the 

authors implemented the well-known full search block matching ME algorithm by using 

the OPENGL API. The results show a Speedup up to four times faster. However, the ME 

algorithm is only a part of the current video coding standards. In 2006, Ho et al in [8] 

presented a ME algorithm for the H.264/AVC using GPUs based on block-by-block basis 

providing a mechanism which is able to adjust the arithmetic intensity to maximize the 

performance on different GPUs. In 2007, Lee et al. in [9] showed a multi-pass and frame 

parallel algorithms to accelerate the H.264/AVC ME using a GPU. They unroll and 

rearrange the multiple nested loops involved in the ME algorithm by using the multi-pass 

method over the GPU. In 2008, Chen and Hang in [10] proposed an implementation of 

the H.264/AVC ME algorithm using CUDA. The algorithm is based on an efficient 

block-level parallel algorithm for the variable block size ME in H.264/AVC. They 

decompose the H.264/AVC ME algorithm into 5 steps so that they can achieve highly 

parallel computation. However, they do not show any results about Rate-Distortion (RD) 

performance.  

 At this point, this paper presents improvements made to the previously proposed 

algorithm [11] showing results in terms of time and RD distortion as well as including a 

GPU energy consumption  analysis of the presented approach. 
 

4. Inter Prediction GPU-based Implementation 

In this section, we describe our H.264/AVC full-pixel ME GPU-based implementation. 

As mentioned before, it is the most time consuming task. We made some previous 

analysis in order to obtain this conclusion. As example, the full-pixel ME can take 

89.29% of the total time in average, considering 18 VGA (640x480 pixels) sequences 

encoded with different QPs and 32 as search range. 

 Reference full-pixel ME sequentially obtains the Sum of Absolute Differences 

(SAD) cost for all positions checked inside the search area for all possible partitions/sub-
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partitions defined by the standard, for each MB in a frame. Our main idea is to generate 

all the motion information at the beginning of each frame, dividing full-pixel ME into 

three tasks: the first one obtains the SAD costs exclusively for the 4x4 sub-partitions, the 

second one obtains the motion information for the other higher partitions/sub-partitions 

by using the data generated by the first task, and the third one performs a reduction to 

obtain the best match, that is, the MV with the lowest SAD cost. The ME is performed 

into three GPU kernels, the first GPU kernel performs the first task, the second GPU 

kernel performs the second task and a partial reduction of the generated data and the third 

GPU kernel performs the final reduction. 

 In order to work with a GPU as a coprocessor, the required data must be 

explicitly transferred into its DRAM memory. Thus, at the beginning of the encoding 

process some data are transferred from main memory associated to the CPU to GPU 

DRAM memory. The data that does not change during the encoding process (frame sizes, 

search area dimensions, search area distribution) are moved into the GPU constant 

memory at the beginning of the encoding process. On the other hand, at the beginning of 

coding each frame, the frame itself and the reference frame are transferred to the GPU 

DRAM memory. 

4.1 Kernel 1 

The goal of the first kernel is to obtain the required 4x4 SAD costs.  Fig. 2.a shows the 

search area distribution defined by the reference H.264/AVC encoder for a given MB, it 

contains (2 x Search range)2 positions. The search area distribution follows a spiral 

pattern, position 0 corresponding to the center of the search area, MV (0,0). 
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Fig.  2 Search area distribution, a) spiral pattern, b) custom pattern. 

 
 In this search area distribution, consecutive positions do not correspond to 

adjacent memory positions and locality cannot be exploited. Notice that pixels of the 

search area are accessed several times because each one is used to calculate more than 

one 4x4 block SAD cost. Therefore, to exploit locality and benefit of GPU texture 

memory cache or multiprocessors shared memory a new search area distribution is 
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defined. Fig. 2.b shows the new search area distribution where position 0 corresponds to 

the top-left corner of the search area and the positions are distributed by rows. 

 In the reference implementation one independent search area is defined per any 

of the partitions/sub-partitions available for the full-pixel ME predicted as explained in 

Section 2. But our implementation, uses the motion data from 4x4 sub-partitions  to build 

the other partitions/sub-partitions motion data. So, we define a common search area for 

all partitions/sub-partitions, and the predictors for this search area are the half of the 

16x16 MV of the MB sited in the same position in the previous frame. 

 One thread per position inside the search area is generated and 256 threads are 

grouped into a GPU thread block, computing N complete search area rows in the same 

thread block, where N depends on the dimensions of the search area. The SAD 

calculation is carried out in 4x4 blocks, and therefore each MB is divided into sixteen 4x4 

blocks for each search area position. Each GPU thread calculates the 16 4x4 SAD costs 

of its associated position. These sixteen SAD costs are the basic data to build the 

structured motion tree in the next step.  

 The GPU used have a 16 KB local shared memory per multiprocessor, which is 

the fastest memory available in the GPU. It is known that an access to shared memory 

without bank conflicts is as fast as a register access. Therefore, we decided to use this 

kind of memory. As a consequence, of the new search area distribution, the required  

search area portion for a concrete thread block is contiguous. Hence, at the beginning of 

this kernel all threads cooperate to copy in shared memory the MB and the portion of  

search area assigned.  

 On the other hand, when using the same data type as reference software 

(unsigned short, i.e. 2 bytes ) for MB and search area data, bank conflicts occur because 

of accessing to two contiguous position implies multiple access to the same bank at the 

same time, and the accesses must be serialized. We consider changing the memory data 

type, up-casting from unsigned short to integer since shared memory banks are organized 

in words of 4 bytes. 

 With this implementation, the GPU occupancy factor is 50% due to the register 

usage is very high (21 registers). New thread block sizes such as 192 or 384 can improve 

this index to 75%, but we decided to maintain 256 threads as the thread block size since, 

from experience, it gives the best performance, and allows  applying the last 

improvement. 

4.2 Kernel 2 

The main purpose of the second kernel is to build the structured motion tree, obtaining in 

this way the SAD costs for all partitions/sub-partitions. This kernel also makes a first 

reduction of the generated data. As input, this kernel takes the motion information of 16 

4x4 blocks of a MB for 64 positions. It generates the motion information for all 

partition/sub-partitions combinations, and reduces the amount of information, obtaining 

the best MV for each partition/sub-partition of the 64 positions. For this purpose, 64 GPU 

threads are grouped into a thread block, each of them building the SAD costs of a 

concrete position for all partitions/sub-partitions. Intermediate results are stored in local 

shared memory.  

 Fig. 3 shows how to build the motion information for all partitions/sub-partitions 

from the 4x4 SAD costs generated in the first kernel for a concrete position Pst. In order 
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to obtain the motion information for the 4x8 and 8x4 sub-partitions it is only necessary to 

add 2 4x4 SAD costs, for the 8x8 partitions it is only necessary to add 2 4x8 SAD and so 

on. Also, in order to obtain conflict-free accesses to shared memory, intermediate results 

for all partitions/sub-partitions are stored in the local shared memory, and are grouped 

using a structure composed of an unsigned short with the SAD cost and an unsigned short 

indicating its associated position (4 bytes). 
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Fig.  3 Building the SAD partitions/sub-partitions. 

 

 To perform the reductions from local shared memory we propose an algorithm in 

6 steps. We define a structure composed by 8 * 64 elements which is filled in with the 

motion information and later the data is reduced. For the 4x4 sub-partition 2 iterations are 

needed; 4x8 and 8x4 sub-partitions are performed in 1 iteration per each; 8x8, 8x16 and 

16x8 partitions are performed together in 1 iteration; and finally, 16x16 partition is 

performed in the last iteration. Considering that 64 positions require 8*64*4 bytes of 

local shared memory and 21 registers per thread, results in a 38% GPU occupancy. 

 Local shared memory usage is 100% in all iterations except in the last one, in 

which it is 12.5%. But in this case, it is possible to allocate an extra row in the data 

structure (9*64 elements) to include the last iteration in the previous one, thus 

maintaining GPU usage. So, the new implementation is performed in just 5 iterations. 
 Once the SAD costs for every partition/sub-partition are generated, this 

information is used to compute the final cost. This calculation adds a penalization for 

large MVs. Penalization is computed using the following equation: 

 

   (1) 

 
Where newSAD_cost is the penalized SAD cost, SAD_cost is the old SAD cost without 

penalization, vector_bits is the MV length associated to each position, and k is a constant 

which depends on the QP parameter used to encode the sequence (k is defined by the JM 

reference software). 

 The summing of costs for new partitions/sub-partitions has to be performed 

before adding the penalty but experimental results show that it is better to calculate the 

penalization in advance, update the shared memory with the penalized SAD costs, reduce 

the amount of information and recalculate the SAD cost from texture memory, although 

this means more GPU texture memory accesses to calculate the new partition/sub-

partition SAD costs. 

 Fig. 4 shows a generic binary reduction in which each thread involved in the 

reduction process (t0 to tm-1) performs a reduction for each of the 8 rows in local shared 
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memory (b0 to bN-1). Note that m is equal to half of the remaining positions in any of the 

six iterations needed to reduce from 64 positions to 1. In order to complete the reduction 

process, six iterations are needed, starting with 64 (2
6
) SAD costs per sub-partition and 

finishing with one SAD cost per sub-partition, where the SAD-matrix size is reduced by 

half in each iteration. The reductions are performed with SAD-matrix sizes of 64, 32, 16, 

8, 4, and 2 using T strides, such that T=S/2, to obtain the best SAD cost per block. These 

strides are chosen to avoid local shared memory bank conflicts. The code for the six 

iterations is unrolled to avoid unnecessary loop climbs. Intermediate results are allocated 

to local shared memory. 
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Fig.  4 Binary reduction scheme. 

 

 In the first iteration of the reduction 64 threads perform 4 comparisons each, in 

the second one 64 threads perform 2 comparisons, and in the third one 64 threads perform 

1 comparison. After that, in the fourth, fifth and sixth iteration, 32, 16 and 8 threads 

perform 1 comparison respectively, because there are less comparisons remaining as 

available threads. Hence, the number of used threads is constant and equal to the 

maximum (64), until the number of comparisons is lower than the number of threads. 

4.3 Kernel 3 

Last kernel follows the same reduction procedure carried out in kernel 2 but using 

different data, so no more explanation is needed. This kernel obtains the best SAD cost 

for each one of the MB partitions/sub-partitions of each MB in a frame. 

5.  Performance Evaluation 

In this section, we evaluate the behaviour of our parallel implementation of the 

H.264/AVC encoder. Firstly, we describe the parameters used in the H.264/AVC encoder 

configuration and then ran the parallel code considering several video sequences. 

5.1 System 

In order to show the performance of the H.264/AVC ME implementation proposed in this 

paper, it was implemented in the H.264/AVC JM 15.1 reference software encoder [12]. 

The parameters used in the H.264/AVC encoder configuration file were those included in 

the baseline profile of the mentioned reference software. Only six parameters were 

changed in the configuration file: The number of reference frames was set to 1 in order to 

keep the complexity as low as possible because higher values imply excessive time 
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consumption; RD-Optimization was disabled for the same reason as the 

NumberReferenceFrames parameter; The GOP pattern was fixed to I(11)P; The tests 

were carried out with popular sequences in VGA format (640 x 480), and therefore the 

SourceWidth and SourceHeight parameters were changed accordingly; The parameter 

FramesToBeEncoded was adjusted according to the sequence, in order to encode the full 

sequence; The Quantization Parameter (QP) called QPISlice and QPPSlice was varied 

among 28, 32, 36 and 40 according to [13]. 

 The host machine used was an Intel® Core™ 2 Quad CPU Q9300 running at 

2.50 GHz with 4GB of DDR2 memory. It included a GPU NVIDIA GTX285, with 

NVIDIA driver and CUDA support (190.18). The operating system was Linux Ubuntu 

10.4 x64 with GCC 4.4. 

5.2 Metrics 

We show results of execution time, quality of the resulting encoded video sequence and 

energy consumption for the whole system. For applications such as the H.264/AVC 

encoder, it is very important to reduce their response time. Therefore, most of the 

optimizations are aimed at reducing the execution time. However, as a consequence of 

some of the implementations developed to increase the H.264/AVC encoder 

performance, such as the redistribution of the search area and data reductions, the 

resulting H.264/AVC bit stream was changed. The bit stream changes affect the quality 

and size of the output video sequence; hence it is necessary to study these metrics. Note 

that the changes in the bit streams do not modify the format of the encoded video 

sequence and the output video sequence can be decoded normally by any H.264/AVC 

decoder. 

 On the other hand, current GPUs suffer from higher power consumption 

requirements. Consequently, power and energy consumption become essential metrics in 

this kind of studies. Due to lack of space, we have not included in this paper the metrics 

description. However, a deeply description of them is available in [14]. 

5.3 Results 

Table 1 shows the Speedup, and its associated Time reduction (TR), focusing on the 

parallelized process of the ME (full-pixel ME) on the GPU compared with the 

H.264/AVC JM 15.1 reference software encoder, depending on the sequence encoded. 

The results show significant improvements, obtaining a Speedup up to 71x and 53.13x in 

average, which means a time reduction up to 98.59% and 98.12 in average. Also, Table 1 

shows the results in terms of ∆PSNR and ∆Bitrate for the full encoder process. This 

should provide a good analysis of the performance of the proposed encoder for all 

different kinds of video content. Compared with the reference encoder, the proposed 

approach has a PSNR drop of, at most, 0.152 dB for a given bitrate, and a bitrate increase 

of, at most, 5.07% for a given PSNR in VGA format. This drop in RD performance is 

negligible if the computational savings are taken into account (the encoding time is a key 

feature in the design of real-time H.264/AVC encoders). 

 Only Tempete sequence was chosen for testing the energy consumption of the 

implementations because the results respect to this metric are independent of the 

sequence, so we do not consider necessary to show results for more sequences. 
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Table 1 Time and RD performance of the proposed GPU-based algorithm. 
Sequence,  

Number of frames and QPs 

Time Reduction (mean) from H.264/AVC 15.1 

reference encoder 

TR% Speedup ΔBitrate ΔPSNR 

Canoe 220 (28,32,36,40) 98.42 63.37 4.46 0.152 
Fun fair 260 (28,32,36,40) 98.06 51.64 3.44 0.116 

Harp 220 (28,32,36,40) 98.05 51.36 3.74 0.117 

Mobile 260 (28,32,36,40) 98.30 58.86 3.76 0.149 
Parade 220 (28,32,36,40) 98.33 59.79 2.95 0.108 

Sgi-ant 220 (28,32,36,40) 97.02 33.52 1.52 0.052 

Softfootball 220 (28,32,36,40) 98.59 71.00 3.57 0.114 
Tempete 260 (28,32,36,40) 98.27 57.91 3.97 0.139 

Waterfall 260 (28,32,36,40) 98.01 50.31 5.07 0.147 

mean   98.12 53.13 3.61 0.121 

 
 Fig. 5 shows the power consumption obtained for coding one GOP (12 frames) 

using the reference H.264/AVC encoder and for coding GPU implementation presented 

in this paper. Compared with the reference encoder, the GPU implementation consumes 

more power but for a shorter period of time. The reference encoder consumes 127.89 

Watts in 64.26 seconds, but for the GPU implementation the time is shorter, 5 seconds. In 

the figure, 11 consumption peaks can be seen for the GPU implementation (1 GOP is 

composed of 1 intra frame and 11 P frames where the GPU code is executed). Each GPU 

peak can be further divided into two components; the first one corresponds to the CPU-

GPU memory transfer, consuming around 225 Watts, and the execution of the GPU 

kernels consuming around 200 Watts. Note that the power consumption for CPU code in 

the GPU implementation is around 150 Watt, which is higher than for the reference 

execution because the GPU is always active, waiting for new kernels. 
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Fig.  5 Detailed power consumption comparison for coding a GOP. 

 
 Table 2 shows the average power, the time consumed and the energy consumed 

when coding one GOP for the reference H.264/AVC encoder and for the GPU 

implementation. The energy consumption for the GPU implementation is 9.83 times 

better than for the reference implementation. 

 Despite the improvement, GPU usage is not efficient either from the performance 

point of view, in terms of throughput, nor from the power consumption perspective, if we 
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consider watts per work performed. GPU is working only about 16% (0.801s) of the total 

time, so the resources usage can be improved a lot. 

 
Table 2 One sequence energy consumption for coding a GOP. 
Implementation Power (Watt) Time (seconds) Energy (Jules) 

Reference 127.89 64.26 8,218.21 

GPU version 167.28 5.00 836.40 

 
 As our computing platform has four cores, four sequences can be simultaneously 

coded, sharing GPU resources and using different CPU cores. Thus, GPU usage can be 

increased and consequently total throughput will also increase. 

 Table 3 shows the average power, the time consumed and the energy consumed 

in coding one GOP of four instances of Tempete sequence for the reference H.264/AVC 

encoder and for the GPU implementation. The energy consumption for the GPU 

implementation is 8.49 times better than for the reference implementation. 

 
Table 3 Four sequences and four CPUs energy consumption. 
Implementation Power (Watt) Time (seconds) Energy  (Jules) 

Reference 158.34 69.68 11,033.33 

GPU version 212.46 6.12 1,300.26 

 
 Finally, with the execution of the four instances of Tempete sequence, the GPU is 

working 0.782s, 0.782s, 0.801s and 0.777s for each of them, which means a 51% (3.142s) 

of the total time, raising the GPU throughput while maintains the energy efficiency of the 

proposed algorithm. 

6. Conclusions 

This paper presents in detail an implementation of the H.264/AVC full-pixel ME in a 

GPU-based platform. This paper evaluates performance in terms of time, but also in 

terms of energy consumption and GPU throughput, which are very important GPU-

platform features. 

 In this way, the proposed implementation was tested using a large and varied set 

of video sequences with the aim of evaluating their performance. As a result, the encoder 

performed very well with all of them, achieving a reduction in computational time of up 

to 98.12% for the H.264/AVC full-pixel ME procedure with negligible rate distortion 

loss, and the energy consumption was up to 9.83 times better than for the reference 

implementation. 

 Finally, coding four sequence simultaneously using 4 CPU cores allows 

improving the system resources utilization while maintains the energy efficiency of the 

proposed algorithm. 
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Abstract 

This paper presents an analytical method to study the dynamic 
behavior of stress field in a finite length functionally graded 
(FG) thick hollow cylinder under thermal loading. The 
thermomechanical properties are assumed to vary continuously 
through the radial direction as a nonlinear power function. Using 
Laplace transform and series solution, the thermoelastic Navier 
equations as well as heat conduction equation are analytically 
solved. The solution of displacement field in FG cylinder is 
obtained in the Laplace domain. The fast Laplace inverse 
transform (FLIT) method is employed to transfer the results 
from Laplace domain to time domain. The effects of thermal 
loading on dynamic characteristics of FG thick hollow cylinder 
are investigated in various points across thickness of cylinder for 
various grading patterns of FGMs. Good agreement can be seen 
between presented predictions with other result in open 
literature. 
 
Key words: Thermal Stresses, Functionally Graded Materials, 
Finite Length Hollow Cylinder, Wave Propagation Analysis, 
Analytical Method. 
 

1.       Introduction 

The applications of functionally graded materials (FGMs) are increasing because 
of their capability to control the thermomechanical stresses in structures under 
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thermal and mechanical loadings. FGMs are new kind of composite materials 
whose thermomechanical properties vary continuously along certain directions. In 
the recent years, a number of analytical solutions have been obtained by some 
researchers to determine the stress distribution in structures especially in 
cylindrical pressure vessels. 

Jabbari et al. (2006 and 2009) studied the thermoelasticity analysis in steady-state 
conditions for infinite and finite length functionally graded hollow cylinders 
subjected to thermomechanical loading. They used the Bessel functions in their 
method for obtaining the general solution of cylinder. Shao et al. (2007) 
developed an analytical method based on series solution for analysis of transient 
thermomechanical stresses in a FG thick hollow circular cylinder with infinite 
length. The inertia term in equation of motion was not considered by them and 
they considered pseudo dynamic conditions for their problem. Hosseini et al. 
(2007) studied the vibration and dynamic analysis of functionally graded thick 
hollow cylinders with axisymmetry and plane strain conditions. The mean 
velocity of radial stress wave propagation, natural frequency, and dynamic 
behavior of FG cylinder were presented in their work using Galerkin finite 
element with linear functionally graded elements and Newmark’s method. 
Shariyat et al. (2009) investigated stress wave propagation characteristics in FG 
thick hollow cylinders with temperature-dependent material properties subjected 
to dynamic thermomechanical loading. They used a second-order point-
collocation method to analyze nonlinear transient thermal stresses and elastic 
wave propagation in FG cylinders. Safari-Kahnaki et al. (2010 and 2011) studied 
the thermal stress field and radial stress wave propagation in FG thick hollow 
cylinder with infinite and finite length under thermal shock loading. They did not 
solved heat conduction equation in their studies and took temperature loading as a 
simple form which was modeled as suddenly rising of uniform temperature of 
cylinder body. 

This paper presents an effective analytical method to study the thermoelastic 
stress field in a functionally graded thick hollow cylinder with finite length 
induced by axisymmetric thermal loading. The governing equations of the 
problem are considered based on transient thermoelasticity conditions 
(considering inertia term in equations of motion). All equations are transferred to 
the Laplace domain and analytically solved using series solution technique. To 
study the time history of two-dimensional thermoelastic stresses, the stress field in 
FG cylinder is obtained in time domain using the Fast Laplace Inverse Transform 
(FLIT) method. The effects of various grading patterns of FGMs on distribution 
of thermal stresses are graphically shown for several points across thickness of 
FG cylinder. 
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2.         Mathematical Equations  

A functionally graded thick hollow cylinder with inner and outer radii a and b and 
finite length l  is considered. The axisymmetry and plane strain conditions are 
assumed for the problem. Consequently, strain-displacement relations can be 
written as 

( ) ( )
dr

tzrdu
tzrr

,,
,, =ε ,  ( ) ( )

r

tzru
tzr

,,
,, =θε , 

( ) ( ), ,
, ,z

dw r z t
r z t

dz
ε = ,  ( ) ( ) ( ), , , ,

, ,zr

dw r z t du r z t
r z t

dr dz
ε = + . 

(1) 

where ( )tzru ,,  and ( )tzrw ,,  are radial and axial displacements and ( )tzrr ,,ε , 

( )tzr ,,θε , ( )tzrz ,,ε , and ( )tzrzr ,,ε  are radial, hoop, axial, and shear strains, 

respectively. Subscripts r ,θ  and z  denote radial, circumferential, and axial 
directions, respectively and Also, the terms r , z and t  show radius, length, and 
time. 
The dynamic thermo-elastic stresses are given by 
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where ( )tzrr ,,σ , ( )tzr ,,θσ , ( )tzrz ,,σ , and ( )tzrzr ,,σ  are radial, hoop, axial, and 

shear stresses, respectively. Also, the terms ν , ( )rE , ( )rα , and ( )tzrT ,,  are 

Poisson’s ratio, elastic modulus, thermal expansion coefficient, and temperature 
of FG cylinder, respectively. The heat conduction equation and equations of 
motion considering the inertia terms for finite length cylinder become 
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whereλ  and k  are thermal conductivity coefficient and thermal diffusivity of FG 
cylinder and ρ  is the mass density. As it is mentioned in introduction section, in 
preceding researches in this field, the pseudo dynamic thermo-elastic problem 
(considering equation of motion without inertia terms) was solved by analytical 
method. 
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For considered finite length FG cylinder with simply-supported ends, the thermal 
and mechanical boundary conditions can be expressed as, 

( ) ( ), , sin( )
z

T a z t H t
l

π
=

 
 ( ), , 0T a z t =  

(4) 
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where ( )tH  is the Heaviside step function. 

Furthermore, the initial conditions are considered as follows 
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For the sake of simplicity, some dimensionless parameters can be introduced as 
(Shao 2007) 
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where 0λ , 0k , VC , 0α , 0T , 0E  and 0ρ  are reference values of thermal 
conductivity coefficient, thermal diffusivity, stress wave propagation speed, 
thermal expansion coefficient, temperature, elastic modulus and density, 
respectively. 

The heat conduction equation and governing equations of motion can be written 
in dimensionless form using defined dimensionless parameters as 
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The boundary conditions at the inner and outer surfaces can be expressed as 
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3.     Solution Procedure 

One solution for the problem that satisfies both Eq. (3) and boundary conditions 
(4) can be considered as 
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Substituting Eqs. (9) into Eq. (7) together with boundary conditions (8), leads to: 
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Applying the Laplace transform with initial conditions (5) to Eqs. (10) and (11), 
the following equations are derived: 
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The term £ is the Laplace transform operator. According to the series method for 
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then the solution of Eqs. (12) can be expressed as Taylor’s series at 1=ξ  as: 
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Substituting Eqs. (15) into Eq. (12) and employing series properties in 
mathematics, one can obtain the following recurrence relations 
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From Eqs. (16), all coefficients in Eqs. (15) can be obtained as follows  

0 1 1 2( ) ( ) ( )k k kA s A s A s= Χ + Χ  

(17) )()()()()()( 541302110 ssDsDsBsBsB kkkkkk Ψ+Ψ+Ψ+Ψ+Ψ=
 
)()()()()()( 541302110 ssDsDsBsBsD kkkkkk Ω+Ω+Ω+Ω+Ω= . 

where ( )sΧ , ( )sΨ and ( )sΩ  can be derived from the corresponding recurrence 

expressions (16) and 0A , 1A , 0B , 1B , 0D  and 1D  are unknown constants, which 

can be determined by using the boundary conditions (13). 

To determine the temperature, radial and axial displacements in time domain, the 
present work uses the fast Laplace inverse transform (FLIT) method (Durbin 
1974).  

4.     Numerical Results and Discussion 

Consider a FG hollow cylinder with finite length l  and inner radius a and outer 
radius b. The thermomechanical properties of FG cylinder are considered to vary 
through the radial direction. The distribution of thermomechanical properties is 
modeled by a nonlinear power function in terms of volume fraction as follows 
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( )m m c c c m c mp p V p V p p p V= + = + −
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β









−
−

=
ab

ar
Vm  (18) 

and p  is the effective thermomechanical property of FGM, mV  and cV  are 

volume fractions of metal and ceramic, and subscripts c  and m  stand for ceramic 

and metal, respectively. The term β  is a non-negative volume fraction exponent 
that governs the distribution of the constituent materials through the thickness of 
FG cylinder. 

In order to study the validity of the presented method, the results have been 
compared with the results obtained by YING and WANG (2010) for isotropic 

thick hollow cylinder assumingβ  to be zero. Figures 1a-d show the comparison 
of the obtained results using presented analytical method and method used by 
YING and WANG (2010). 
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Fig. 1 Time histories of dynamic stresses for isotropic hollow cylinder at middle point of thickness, (a) radial 

stress rσ , (b) hoop stress θσ ,  (c) axial stress zσ , (d) shear stress zrσ  
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To study the effects of thermal loading on dynamic behavior of short FG cylinder, 
the bounding surfaces of the cylinder is assumed to be traction free and supposed 
that the FG cylinder is subjected to the thermal loading as Eq. (13) at inner and 
outer surfaces. The results are obtained for a ceramic-metal functionally graded 
finite length cylinder with alumina and aluminum as the ceramic and metal 
constituents, respectively. The material properties given in Table 1 are used in 
computing the numerical results. 

Table 1. Thermo-mechanical properties of FG cylinder (OOTAO 2009) 

Material 
E 

(GPa) 

ρ  
(kg/m

3
) 

α  (1/K) λ  
(W/m.K) 

ν  k ( m2/s) 

Alumina(Inner Surface) 343 3880  6100.8 −×  36  33.0  6109.11 −×  
Aluminum Alloy(Outer 

Surface)  
70  2688  

6106.23 −×  222  33.0  
6106.90 −×  

Effect of gradient parameter β  on the dynamic response of radial stress at middle 
point of thickness and 2LZ =  is shown in Fig. 2. The amplitude of variation and 

the peak values of radial stresses are increasing when the value of β  is increased. 
Increasing gradient parameterβ  enables us to have a hollow cylinder with more 
ceramic volume fraction. It can be concluded from Fig. 2 when the value of β  is 
increased, the radial stress wave propagation speed is also increased. The stress 

wave propagation speed vC  in a pure ceramic cylinder is larger than speed in a 

pure metal cylinder because the elasticity modulus of the alumina is greater than 
the aluminum elasticity modulus. This phenomenon can be concluded from Fig. 2. 
When the distance between two peak points in each diagram is decreased, it 
means that the wave propagation velocity is decreased. Figure 3 depicts the 

effects of gradient parameter β  on time history of hoop stress at the inner surface 
of FG cylinder for 2LZ = , respectively. We can see that by increasing the value 

of gradient parameterβ , the peak values of hoop stresses are decreased. Also the 
effects of gradient parameterβ on dynamic responses of axial stress at various 
points on thickness of FG cylinder for 3LZ =  are illustrated in Fig. 4. To assess 

the dynamic behavior of shear stress in finite length FG cylinder, the time 
histories of shear stress are drawn in Fig. 5. Figure 5 shows that the amplitude of 
variation in shear stress diagrams are increased when the values of gradient 

parameterβ are decreased. It means that the shear stresses converge to big values 
when the FG cylinder converges to full metal cylinder. 

5.        Concluding Remarks 

In this article, an analytical method based on Laplace transform and series 
solution is developed to study the two-dimensional thermoelastic stresses in a 
finite length functionally graded thick hollow cylinder under thermal loading at  
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Fig. 2 Time history of radial stress rσ at middle point of 

thickness and 2LZ = for various β  

Fig. 3 Time history of hoop stress θσ  at inner surface 

for 2LZ = and various β  
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Fig. 4 Time history of axial stress zσ for 2LZ = and 

various β at outer surface 

Fig. 5 Time history of shear stress zrσ at middle point of 

thickness for 2LZ = and various β  

boundaries. The cylinder is considered with simply-supported ends and 
traction free on bounding surfaces. Thermomechanical properties of the 
FG cylinder are assumed to be temperature independent and vary 
continuously and smoothly through the radial direction as a nonlinear 
power function in terms of volume fraction. The dynamic behaviors of 
thermoelastic stresses are obtained for various grading patterns FGMs in 
some points across the thickness of FG cylinder. The main results of this 
article can be outlined as follows: 

− By increasing the value of gradient parameter, the radial stress wave 
propagation speed increases, also, the peak values of hoop and axial 
stresses decrease, but the peak values of radial and shear stresses increase. 
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− From engineering perspective, the presented data and results furnish a 
ground for optimum design of FG cylinder. For example in the studied 
case of paper, the values of dynamic stresses are calculated in various 
conditions, which can be used for practical design of FG pressure vessels. 

− The presented analytical method has a high capability to use in wave 
propagation analysis of FG structures.  
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Abstract 
 

The reliability of computational models of physical processes has received much 
attention and involves issues such as the validity of the mathematical models 
being used, the error in any data that the models need, and the accuracy of the 
numerical schemes being used.  These issues are considered in the context of 
elastic and hyperelastic deformation, when finite element approximations are 
applied.  Goal oriented techniques using specific quantities of interest (QoI) are 
used for estimating discretisation and modelling errors. 
 
The computational modelling of the rapid large inflation of hyperelastic circular 
sheets modelled as axisymmetric membranes is treated, with the aim of estimating 
engineering QoI and their errors.  Fine (involving inertia terms) and coarse (quasi-
static) models of the inflation are considered.  The techniques are applied to 
thermoforming processes where sheets are inflated into moulds to form thin-
walled structures.   
 
The case of a penetrant diffusing into a polymer body, where the diffusion is non-
Fickian and induces a steep travelling wave, is then considered and references to 
finite element results are given. 
 
Key words: elasticity, viscoelasticity, hyperelasticity, non-Fickian diffusion, 
finite element modelling, goal oriented methods, thermoforming 

 
1. Introduction 
 
The process of computational modelling for problems of continuum mechanics 
consists of two main phases.  The mathematical model of the physics (reality) has 
first to be defined, after which a numerical approximation of the model has to be 
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derived and solved to give a numerical solution in terms of quantities of interest 
(QoI).  As each of these phases introduces error, in addition to any error in the 
data of the problem, the reliability of the process is acknowledged to be of great 
importance.  The process of assessment of the error in the mathematical model, 
modelling error, is called validation, whilst that of the error in the numerical 
approximation is verification.  Reliability is directly related to validation and 
verification (V & V) and is increasingly being studied; see e.g. Babuška et al. [1] 
and Babuška et al. [2]. 
 
In this short review paper we consider computational modelling of problems of 
elasticity, hyperelasticity and viscoelasticity using finite element methods.  
Thinking first of verification we present various a priori error analyses and a 
posteriori error estimators, with references to papers where these have been 
derived.  These are followed by brief descriptions of a number of applications, 
with numerical results for the QoI.  The validation of the models in the context of 
some of these applications is then addressed using goal oriented techniques as 
proposed by Oden and Prudhomme [3] and applied by Shaw et al. in [4]. 
 
In order to lead up to computational models for these, in the next section we 
proceed first with a framework for describing deformation and defining our  
notation, and then progress to hyperelastic (large) deformation.  We then discuss 
problems of viscoelasticity and finally of non-Fickian diffusion. 
 
 
2. Mathematical models, weak formulations and finite element methods 
 
2.1  Solid Mechanics Framework (Small Displacement Case) 
 
Let  be a compressible solid body with mass density ρ which in its undeformed 

state occupies the open bounded domain  with 

polygonal/polyhedral boundary   A point in    U  is denoted by 

 
3

1
,i i

x


x  when n=3. The boundary ∂Ω is partitioned into disjoint subsets ΓD 

and ΓN such that ,D N D N      U and meas   0D  .  Suppose 

that, for time   0 0, , ,t I T T    the body   is acted upon by body 

forces     
3

1
, ,i i

x t t


f f x  for x and surface tractions 

    
3

1
, ,i i
t g t


g x x for Nx . The displacement at a point x under the action 

of the forces f and g is    
3

1
, , ,i i

u x t t I


  u x , and with a small 

displacement assumption , x u x so that we do not need to distinguish 
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between the deformed and undeformed domains in most terms.  Let 

    
3 3

1 1, ,
,ij iji j i j
t 

 
 σ x denote the stress resulting from the deformation.                                                    

 
Applying Newton’s second law of motion, relating force to the rate of change of 
linear momentum, to this configuration we obtain the momentum equations 

       

1 2 3 in 

,, , , ,

, ,

i ij j iu t t f t

i I

  

 

x x x x&&

                               

(1) 

and these together with the boundary and initial conditions 

 
  0 in ,i Du t I  x                                                   

(2)  

 
   in ˆ , ,ij j i Nn g t I   x

                                          
(3)  

 
   00, , ,i iu u x x x                                           (4) 

 
   10, , ,i iu u x x x&                                            (5) 

define the dynamic deformation problem, where  
1

ˆ ˆ
n

i i
n


n  is the unit outward 

normal to ,N  the Einstein convention has been used, and , .j jv v / x    

 
If the inertia terms can be neglected in the deformation and assuming that 

0 0,t  u  we obtain the quasistatic problem, where 1 2 3, , , ,i j   

 
     in , , , ,ij j it f t I  x x                                (6) 

 
  0  in , ,i Du I  x t                                             (7) 

 
   in ˆ , , ,ij j i Nn g t I   x                                      (8) 

 
In order to complete the definitions of the dynamic and quasistatic problems it is 
necessary to have a constitutive relationship connecting the stress to the 
displacement and its derivatives.  The constitutive relationship reflects the 

behaviour of the material of the body  . 
 
2.2 Linear elasticity and weak formulation 
 
In the case of small displacement gradients the strain is described by the 

infinitesimal strain tensor     
1,

n

ij i j



ε u u  as 

 

 
1

1 2 3
2

, , , , .
ji

ij

j i

uu
i j

x x


 
      

u                       (9) 
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For an isotropic linear elastic material Hooke’s law connects stress to strain (i.e. 
to the derivatives of the displacement) and we have  

 
 . ,ij ij ij     u u                                           (10) 

where 
ij  is the Kronecker delta, and  and   are the Lamé coefficients of the 

material.  More generally the relation for a linear elastic material can be written in 
the form 

 σ Dε.                                                                   (11) 

We note that elasticity is a time independent phenomenon, so that the 
mathematical model for linear elasticity is based on equations (6), (7), (8) and 

(10) with  ,tu x depending only on quantities at time t. 

 
In order to obtain a weak form from these equations we introduce  the usual 

Sobolev spaces   0 1, , ,...,rH r   and for  1 2, ,..., r

nV V V H  we define the 

space V, such that  

 
   

1 2

1 0 on 

...

: .

n

n

D

V V V V

H

   

    v v
                       (12) 

Multiplying (6) by a test function ,Vv  and integrating by parts over   we 
obtain 

 
       , , ,

N
ij ij d 

 
   u v f v g v                (13) 

where the (.,.) are inner products.  Applying Hooke’s law (10) we obtain the weak 

form of the isotropic linear elasticity problem: find Vu  such that  
 

where                            

   

     

  1 2 3

, ,

, . . ,

, , , , .

N

ij ij

i i i i

a L V

a d

L f v g v d i j

  


 

  

    

    



 

u v v v

v w v w v w

v
      (14) 

 

In order to apply the finite element method to problem (14), we first partition   

into a set of elements  
1
,

EN
h

i i
  where h h

i i   U  and ,h    each with 

diameter ih  and define
1 E

i
i N

h max h
 

 We construct finite dimensional spaces 

h

iV  span   
1

  for 1,
NN

i ii
V i n


   x

 
 with each i ℙ r ,a piecewise 
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polynomial of degree r over the partition, where the  i x are basis functions 

associated with the NN  nodes of the partition.  Finally we define 

1 2 ...h h h h

nV V V V V      

The finite element problem is: find 
hV

h
u such that 

 
   , .h

h h h ha L V  u v v v      (15) 

There is a vast literature associated with the derivation of a priori estimates for 

the error  h h e u u of the form 

 ,h  
e   ,

,
,

r

r
h
 


u       (16)                                                                                     

where 
,q 

is the norm on  ;qH   see e.g. Ciarlet [5], Oden and Reddy [6] and 

Whiteman [7]. In (16) the function  ,r   depends on the regularity of the 

solution uof (14) and    is a constant that depends on   but is independent of 

uand the mesh.  Estimates of this type provide rates of convergence of 

 to hu u with decreasing mesh size .h  
 
Similarly many a posteriori error estimators, (i.e. calculable error estimators 

involving the calculated solution hu ) and based for example on residuals  R v of 

the type 

 
     

1

, ,
EN

h h h h

i

R L a


 v u u v           (17) 

have now been derived, see e.g. Oden and Ainsworth [8] and Babuska et al [2], 

and again the performance of these depends on the regularity of .u The process of 
verification is made possible by the use of estimates of the type of (16) and (17). 
 
2.3 Large Deformation Elasticity and Application to Thermoforming 
Processes 
 
Motivated by the problem of the large deformation of a thin polymer sheet that 
will be considered later, we now describe the large elastic deformation under the 

action of applied pressure loading for the case of an elastic sheet, ℬ, using a 

Lagrangian description.  Again x denotes a point in the body which in the 

deformation undergoes a displacement u  so that    x x u w.In the large 

deformation case u and the displacement gradient are no longer small so that care 
is needed to distinguish between the undeformed and the deformed states.  An 
outcome of this in the description of the deformation is to introduce the nominal 

stress   1det ,  F F σ where   1 2 3, , ,i jw / x j   F  is the deformation 

gradient and, as before, σ is the Cauchy stress.  
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The equations of equilibrium of a body undergoing large elastic deformation, 
corresponding to (6) for small deformation, can for the three-dimensional case be 
written as 

 
3

1

1 2 3, , .
ij

i

j j

f i
x


  


      (18) 

The problem that we shall consider involves the large deformation of a thin sheet, 

with mid-surface , which is clamped on the boundary  of   and which in its 

undeformed state has thickness 0.h   The sheet occupies the region 

                       ℬ     1 2 3 1 2 3 0 2, , : , , .
T

x x x x x x h /   x                     (19) 

 

Now 
3 0x   on the mid-surface , which deforms as 

   1 2 1 1 2 2 30, , , , ,x x x u x u u    and, assuming that normals to   remain 

normal, we obtain a two-dimensional description of the sheet with  .u u x   

The sheet is modelled as a membrane, thus being unable to support bending so 

that 0. ,σ n  where n  is the unit normal to the deformed mid-surface .  

 
In this context of a membrane approximation to the general three-dimensional 
case, the two-dimensional equations for the problem, when there is a pressure 
loading P and assuming that the body forces f are zero, lead to the weak form of 

(18): find Vu  such that 

                       1 20; , ; ; ; ,a V a a Pa    u v v u v u v u v                    (20) 

where  

    1 0 : ,Ta h d


   u;v v     (21) 

  2

1 2

; . ,a d
x x

  
   

  


w w
v w v     (22) 

and now the space 1 2V V V    is such that  

    
2

1 0 on : .V H    v v                          (23) 

The finite element method is applied to obtain an approximation  to hu u the 

solution of (20) for the case of incremental loading of the sheet.  As we have a 
Lagrangean description of the deformation, the spatial mesh is defined on the 

reference configuration 2 ¡  and, for each load increment 
jP , the nonlinear 

system 

    1 2 0; ; ,h

h h j h h ha P a V   u v u v v    (24) 
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is solved for h

h Vu  using Newton’s method, where 
1 2

h h hV V V V    and the 

1 2, ,h

iV i   are spaces of piecewise polynomial functions defined over the 

partition of  , see e.g. Karamanou et al. [8]. 
 

For the problem (20), noting that  a u;v is a semilinear form (i.e. linear in 

arguments to the right of the semi-colon), we suppose that we wish to 

approximate the quantity of interest     with , , .h

h hJ V J V u u u u  

 

If     and  . ; . . ; .a J  are Gateaux derivatives of    and . ; . . ; .a J  respectively 

then, if ,h h e u u  

      
1

0
;h h h hJ J J s ds  u u u e e      (25) 

and 

 
     

 
1

0

;

; , .

h h

h h h

a a a

a s ds

  

 

u ; z u; z u z

u + e e z
     (26) 

If we now consider the (dual) linear problem find hVz  such that 

    
1 1

0 0
; , ; ,h

h h h h h h ha s ds J s ds V     u + e v z u e v v                             

(27) 
then we have a representation of the error as 

      .h hJ J a  u u u ;z       (28) 

 

But z depends on u so that (27) cannot be solved as it stands and some form of 
approximation has to be adopted.  One strategy for this is to apply the left hand 
rule for the integration giving 

    ˆ; , ; , ,h

h h h h ha J V   u v z u v v %     (29) 

where ˆ ,h hV V%  giving the estimate 

      ˆ, .h hJ J a  u u u z      (30) 

This “machinery” for estimating the discretisation error will be referenced for a 
problem of free inflation of a thin polymer sheet in a later section. 
 
We have so far treated only discretisation error.  In order to consider modelling 
error we introduce the concept of fine and coarse problems in the context of the 
deformation of the sheet.  For example the problem (20) which is quasi-static 
could be taken as a coarse problem and the fine problem could be similar, but 
with the inclusion of inertia terms in (18).  In many practical situations it is not 
clear whether inertia terms are important to the modelling.  Suppose therefore that 
the fine problem has the weak form 
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   0 ,A v V  U;v       (31) 

where the semilinear form  . ; .A  contains the    1 2 and . ; . . ; .a a of (20) and 

the inertia terms.  The dual approximating problem corresponding to (29) is now 

    ˆ; , ; ,h

h h h h hA J V   u v z u v v %     (32) 

where the 
hu  is the solution of the coarse problem and now hV V% is an 

appropriate finite dimensional space.  We now have the estimate 

     ˆ
jh hJ J A  U u u z  

for the combined modelling and discretisation errors.  More details of these goal 
oriented techniques can be found in Shaw et al. [4]. 
 
The large hyperelastic deformation of thin polymeric sheets into moulds as in 
thermoforming processes has been considered in [8] and [14].  The sheets are 
clamped at the edges and are acted on by pressure.  The deformation has two 
stages; the first is free inflation prior to contact with mould, the second is inflation 
after part of the sheet has made contact with the mould.  Considering first the free 
inflation phase, the goal oriented techniques of this section have been applied to 
the deformation of a circular sheet, modelled as described taking (20) without 
inertia terms as the coarse model and (31), including inertia terms, as the fine 
model.  Estimates of both the discretisation error for the finite element 
approximation of the coarse model and of the combined modelling and 
discretisation errors for the fine model have been obtained; see [4], and these 
demonstrate that the method is robust for this free inflation problem under the 
given conditions. 
 
The second phase of the inflation has in recent years been modelled extensively 
under the assumptions that the deformation is quasistatic and that perfect sticking 
of the sheet to the mould takes place on contact, see e.g. Karamanou et al. [8] and 
Warby et al. [14].  To our knowledge no error estimates have been obtained for 
this case. 
 
 
2.4 Viscoelasticity 
 
The formation and use of non-metallic materials has been one of the great 
advances of science, engineering, medicine and manufacturing of recent years.  A 
feature of the deformation of polymeric solid materials is that when they are 
subjected to sustained loading, in addition to an elastic response, they can exhibit 
time dependent creep.  For example a polymer test specimen subjected to an 
instantaneously applied and sustained tensile loading will undergo an initial 
elastic (solid) deformation, followed over time by creep during which the 
specimen will continue to stretch.  Creep is a viscous fluid effect and, due to the 
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dual elastic and viscous responses, materials that exhibit this type of behaviour 
are said to be viscoelastic.  If the loading is removed from the solid it will 
experience an instantaneous elastic recovery followed by a reverse time 
dependent recovery in which the solid returns to its original state.  For this reason 
viscoelastic solids are said to possess memory.   
 
Returning again to the case of small displacements and small strains, we recall 

that in the case of linear elasticity the constitutive relation was σ Dε as in (11).  

Turning now to viscoelastic deformation of the body  , and assuming this to be 

both quasistatic and small, the deformation  ,tu x is governed by (6) – (8) for 

 ,t Ix and the strain ε is as in (9).  For linear elasticity the constitutive 

relation was Hooke’s law (11), but in the case of linear viscoelasticity where the 
materials possess memory, i.e. the current stress depends on the history of the 
deformation, it is necessary to introduce time dependence and to augment 
Hooke’s law with a memory term.  In this way the stress can now be expressed as 
a linear functional of the strain, so that 

                  
0

, , , , ,
t

t t t s u s ds
s




  

D

x D x ε u x x ε x                         (33) 

where   
1, , ,

n

ijkl i j k l
D


D x  is a fourth order tensor of relaxation functions with 

components which are assumed to be  1C I  functions of t.  At 0t  it is assumed 

that 0.ε  

 
In order to define a weak formulation of this quasistatic problem we need a test 
space of admissible functions on I and for this we proceed in two stages.  We 
first multiply by a space only test function and integrate over  and then extend 
the test space and integrate over I.  Multiplication of (6) by a (space only) 
function ,Vv see (12), produces (13) for any ,t I which on use of (31) leads to 

the problem: find  ;L I Vu such that 

        
0

, ; , ; , ,
t

a t L t b t s s ds V   u v v u v v%%%  (34) 

where 

        0, ,ijkl kl ija D d 


 w v w v%      (35) 

        ; ; ,
ijkl

kl ij

D
b t s t s d

s
 




  

w v w v%    (36) 

for all  and , :V L I V  w v % ¡ is a time dependent linear form as in (14).  As 

(34) contains no time derivative we seek the solution  ;L I Vu by solving the 

“fully weak” problem: find  ;L I Vu such that       
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      1, ; ,a L v v L I V  u v     (37) 

where                          

            
0 0 0

, , , ; , ,
T T t

a a t t dt b t s u s v t dsdt   u v u v %%  

                           (38) 

      
0

; .
t

L L t v t dt v          (39) 

In order to apply the finite element method to (37) we first split the prismatic 

domain I into M time slabs   1 1
 where ,

M

i i i i i i
I I t t 

    and partition 

each of these into iM elements 
ij and define for each i the space  

    where  is linear on  for each 1, ,...
n

i ij iH V C v j M     v  

and hence the space-time finite element spaces , ,r hV where 

                    1 2 3, ; : ; , ,
i

r h

I i iV L I V v I H i    v P               (40) 

Functions in ,r hV are continuous in space but usually discontinuous in time. 
Many a priori error estimates have been derived for this type of finite element 
discretisation and take the form 

     
 ;h L I V

 u U   
  

 
2

1 1
2

1;
;

,
r r

h k rL I L
L I V

k
T hD

t



 



 
  
 
 

u
u             (41) 

where hU denotes the finite element approximation,  (T) is a stability constant, 

the  ’s are positive constants and h and k are maximum values of the space and 
time mesh lengths respectively.  Note that the right hand side of (39) contains, as 
might be expected, a space and a time term.  Further details can be found in Shaw 
and Whiteman [9] and [10] and Riviére et al. [11].   

 
As viscoelastic materials display characteristics of both elastic solids and viscous 
fluids, many models involving combinations of springs and dashpots have been 
proposed, for example the Maxwell solid model, see e.g. Ferry [12].  For these 
cases the stress relaxation functions are represented using Prony series of 
decaying exponential functions so that the stress in (33) can be expressed in terms 
of internal variables of the model, for example internal stresses.  These internal 
variables each satisfy ordinary differential equations in time; it is by integrating 
these ODE’s that (33) can be obtained.  Thus an alternative approach to the above 
history integral formulation of the linear viscoelastic problem is to solve a 
coupled system of PDE’s consisting at each time step of an elastic problem of the 
type as in (14), but with internal variables contained in the right  hand side, 
together with a system of ordinary differential equations in time for the internal 
variables; see e.g. Shaw et al. [13] where finite element models and error 
estimates are presented. 
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The formulation using internal variables has been extended to the case of finite 
viscoelastic deformation of a thin sheet, motivated by the large elastic 
deformation model described above using the nominal stress.  Thus in this case 
we have a finite elasticity equation of the type (20) but now involving additional 
internal variable terms on the right hand side, which is solved coupled to a system 
of now nonlinear ODE’s for the internal variables, see Karamanou [8]. 
 
2.5 Non-Fickian Diffusion 
 
We finally consider the case of a penetrant diffusing into a polymer body  , over 
the time interval I.  Thomas and Windle [16] demonstrated that this type of 
diffusion is non-Fickian, and that the diffusing penetrant induces differential 
stress with the result that a steep travelling wave front develops. 
 
Cohen et al. [17] proposed a model for this diffusion in which the (scalar) 

function   ,u tx, the concentration of penetrant, and a scalar analogue  t x, of 

the stress satisfy the coupled system 

                                2 2 in ,u t u t f t t I   x, x, x, x,&                   (42) 

                                      in ,t u t u t I    x, x, x,&                             (43) 

                                                0 on ,Du t I  x,                                               

(44) 

                                        on ˆ. ,Nu t t g I    x, x, n                              

(45) 

                                                       0 ,ou ux, x                                                 

(46) 

                                                      0 ,o x, x                                                 

(47) 

where 1  is the relaxation time of the material and , ,o of u  are given functions 

and constants. 
 

If it is assumed that o is zero, then solving the ODE (43) for  and substitution 

into (42) produces at time t the nonlinear parabolic Volterra equation 

                  
  

 2 2 .

t

s
t u d

o
u t u t f t e u s ds

     
x,

x, x, x, x,&                   (48) 

Thus the non-Fickian diffusion problem can be considered either in the context of 
(42) – (47) or via (48). 
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Bauermeister and Shaw [18] have considered this problem extensively using (42) 
– (47) using Galerkin finite element methods in space together with Crank-
Nicolson schemes in time, and produced a priori error estimates together with 
convincing demonstrations of the presence of the travelling wave front in their 
numerical results. 
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Abstract 

Biodegradable implants show great potential in many areas of 
medicine, and have already demonstrated success in simple 
applications such as sutures. For more complex devices, there 
are considerable challenges associated with the use of 
biodegradable materials. Here, we summarize previous efforts at 
implementing biodegradable technology to several areas of 
medicine, discuss the specific challenges involved, and present 
our recent modeling frameworks that can benefit this field. 
 
 

1. Introduction 

Over the last 50 years, biodegradable materials have found a wide variety of 
applications in the medical field ranging from biodegradable sutures, pins and 
screws for orthopaedic surgery, implants for local drug delivery, tissue 
engineering scaffolds, and biodegradable endovascular and urethral stents. The 
ability to predict the evolution of biodegradable polymers over the course of 
degradation would enhance the biodegradable implant design process and our 
main research objective is to endow biomedical implant designers with models 
that describe the response and evolution of the biodegradable polymers as they 
soften, degrade, and erode during the service life of the implant. Currently, the 
complex and challenging design process is largely based on a combination of 
intuition and guesswork accompanied with resource-expensive trial-and-error 
approaches that do not allow for systematic optimization and often fail [1]. 
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2. Biodegradable Stents, Drug Delivery Implants, and Tissue 
Engineering Scaffolds 

Biodegradable stents offer the potential to improve long-term patency rates by 
providing support just long enough for the artery to heal. The underlying 
hypothesis is that the need for mechanical support provided by employing a stent 
is temporary and limited to the intervention and shortly thereafter. While there are 
no conclusive data, it is generally thought that support should be provided for at 
least six months – beyond that, no utility or advantage for permanent stents has 
been demonstrated [2]. On the other hand, the advantages of biodegradable stents 
include: (i) if a stent degrades and is absorbed by the body, it will not be an 
obstacle for future treatments and will not be a permanent potential nidus for 
infection; (ii) the gradual softening of the material would not only permit a 
smooth transfer of the load from the stent to the healing artery, but also would 
contravene the permanent imposition of extremely high stresses on the stented 
artery; and finally (iii) a polymeric stent is a reservoir of an appreciable size for 
the incorporation of drugs, and polymer degradation and erosion may enhance 
drug release kinetics [3]. 
 
Drug delivery therapies have been enormously impacted by polymer-based 
systems [4]. The techniques employed today differ in concept but all share one 
particular feature, the mechanism of diffusion of certain species, the drug, through 
a matrix, usually polymeric in nature. In one approach, the drug is physically 
entrapped in an injectable or implantable capsule of solid polymer. Early forms of 
these systems involved non-degradable polymers in membrane-controlled 
diffusion such as silicone rubber, which released low molecular weight drug for 
extremely long times. Physically embedding drug in polymers at concentrations 
high enough to create a series of interconnecting pores through which the drug 
can afterward slowly diffuse from the matrix system was another early alternative. 
The next step in drug delivery implant technology was the employment of 
biodegradable polymers as carriers, where the combination of diffusion through 
pores as well as polymeric matrix degradation and erosion allowed better 
controllable release rates [5]. 
 
Tissue engineering scaffolds is another emerging medical where the application of 
biodegradable polymers has been touted for great success [6], and is currently 
hampered by the lack of rational tools to describe and predict the evolution of the 
response of the scaffolding material. Biodegradable scaffold properties influence 
all stages of tissue engineering and stringent requirements are placed at design 
stage. A tissue engineer needs to control degradation, erosion, and absorption of 
the polymeric matrix, not only in vitro during the cell seeding phase as cells 
proliferate and secrete extracellular matrix, but also in vivo as host tissue grows 
and remodels around and into the transplant. 
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3. Polymer Degradation and Erosion 

Polymer degradation is the irreversible chain scission process that breaks down 
polymeric chains down to oligomers and finally monomers and results in a 
decrease of molecular weight. The prevailing mechanism of biological 
degradation of synthetic biodegradable aliphatic polyesters (the most common 
class of polymers employed in the medical field, such as polylactic acid and 
polyglycolic acid) is scission of the hydrolytically unstable backbone chain by 
passive hydrolysis, i.e. when in an aqueous environment, their ester linkages are 
cleaved with absorbed water. Extensive degradation leads to erosion, which is the 
process of dissolution and washing away of a polymeric matrix and results in 
material loss from the polymeric bulk. Lost material can either be monomers, 
oligomers, parts of the polymer backbone, or even parts of the polymer bulk [7-9]. 
Water uptake and hydrolytic scission compete in the process of erosion and 
modulate the behavior of the polymeric matrix: (i) if degradation is fast, the 
diffusing water is absorbed quickly by hydrolysis and hindered from penetrating 
deep into the polymer bulk, and consequently, degradation and erosion are 
confined to the surface of the matrix in a highly heterogeneous process referred to 
as surface erosion; on the other hand, (ii) if degradation is considerably slower 
than water uptake (as in common aliphatic polyesters), the polymer degrades and 
erodes through its entire swollen bulk in a process which is termed as 
homogeneous or bulk erosion [10]. 
 

4. Mechanical Modeling of Biodegradable Polymers 

We have proposed a thermodynamically consistent constitutive model to describe 
the evolution of mechanical response of polymers which undergo strain-induced 
degradation. We introduce a degradation parameter that quantifies the local extent 
of scission and affects directly the material properties, lessening the ability of the 
material to store energy. In such way, material properties appearing in the 
constitutive specification of the material are material functions of degradation 
instead of simply being material constants, and naturally confer a sound physical 
interpretation to the internal variable of the material [11]. Furthermore, a kinetic 
equation governing the evolution of the degradation parameter results from the 
maximization of the rate of dissipation with the Clausius-Duhem inequality as a 
restriction for allowable processes [12]. We have studied the behavior of this class 
of materials either in simplified geometries [13], as well as with real stent 
geometries [14], and performed preliminary in vitro experiments to investigate the 
influence of applied loads on degradation [15]. 
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5. Multiscale Modeling of Polymer Degradation and Erosion 

We have introduced a general class of multiscale mixture models suitable to 
describe water-dependent degradation, both bulk and surface erosion modes in a 
unified sense, and in conjunction with drug release [16]. The multiscale model is 
borne within the framework of mixture theory by treating the polymer system as a 
mixture of a finite number of constituents describing the polydisperse polymeric 
system, each representing chains of an average size, and two additional 
constituents, water and drug. Hydrolytic scission of individual chains occurs at 
the molecular level and is described with a kinetic model, whereas constituents 
diffuse individually accordingly to Fick’s 1st law at the bulk level – such analysis 
confers a multiscale aspect to the resulting reaction-diffusion system. A shift 
between two different types of behavior, each identified to surface of bulk 
erosion, is observed with the variation of a single non-dimensional parameter 
relating time scales of reaction (degradation) and of diffusion (water uptake and 
erosion). Mass loss follows a sigmoid decrease in bulk eroding polymers, whereas 
decreases linearly when an erosion front develops in surface eroding polymers. 
Drug release from biodegradable matrices is a process that is intrinsically coupled 
to degradation and erosion: drug release is mostly diffusion-controlled for slowly 
degrading polymers, whereas with unstable surface eroding matrices, drug release 
is dramatically enhanced in an erosion-controlled process. 
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Abstract 

We study, from first-principles calculations, the structural and electronic 
properties of several low lying energy equilibrium structures of isoelectronic 
SinM clusters (M = Sc−, Ti) for n=14-18. The main result is that those clusters 
with n = 16 are more stable than their neighbours, in agreement with recent 
time of flight mass spectra and photoelectron spectroscopy experiments. As a 
second step we consider the nearly spherical endohedral M@Si16 cage-like 

clusters (M = Sc−, Ti) with D4d symmetry as the basis unit to study the 

formation of [Ti@Si16]n, and [Sc@Si16K]n aggregates and how their properties 

evolves with increasing size (n ≤ 9). We identify especially stable linear, 

planar, and three-dimensional patterns, which can serve as seeds to grow low-
dimensional infinite systems. Calculations of BCC, FCC, and Single Cubic 
crystal meta-stable phases, having the Ti@Si16 superatom as basic unit, as 
well as cubic NaCl and CsCl structures of bulk Sc@Si16K are performed. 
Moreover, the structure and cohesive energy of a few periodic linear chains 
and wires have been optimized. [Ti@Si16]2n ([Ti@Si16]3n) nanowires formed 
by stacking Ti@Si16 dimers (triangular trimers) along the vertical axis, and 
rotated 90º (60º) each other have been characterized. Finally, preliminary 
results for the H2 adsorption on [Ti@Si16]2n and [Ti@Si16]3n finite wires are 
presented. 
 
 

Key words:  superatoms; cluster-assembled materials;nanoparticles;clusters; 
nanocrystals 

 

@CMMSE                                 Page 1632 of 1703                                 ISBN: 978-84-614-6167-7

mailto:begonia@ubu.es
mailto:balbas@fta.uva.es


NEW SILICON MATERIALS 
 

 

1. Introduction 

Interest in the study of aggregates built from small atomic clusters is motivated by 
their potential use as building blocks for new functional materials and devices at 
the nanoscale [1]. To achieve this goal, it is important to investigate how the 
system geometry depends on the interparticle coupling and how it affects the 
physical properties of the systems. Chemically stable building blocks should have 
a closed electron configuration with a large energy gap between the highest 
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital 
(LUMO). The other important factor determining the cluster stability is the atomic 
geometry. Thus, the cooperative effects between electronic and geometrical 
factors can provide a guiding principle for designing stable building-block 
clusters. 
 
The construction of new optoelectronic materials, via the assembly of molecules 
of the type Sc@Si16Y where Y is an alkali atom, was suggested by Nakajima and 
co-workers [2], assuming that the large HOMO-LUMO gap of the ionic 

superatom can be maintained in the range of ∼2 eV when the supermolecule is 

formed, and a solid phase can eventually be grown from them. On the other hand, 
Reis et al. [3] have shown the possible survival under room conditions of a 
metastable crystal with hcp structure formed from the Frank-Kasper isomer (Td 

symmetry) of M@Si16 (M = Ti, Zr, or Hf). Gueorguiev et al. [4] have studied 

finite [M@Si12]n nanowires with a hexagonal cross section for 7n and M = Fe, 
Ni, Co, Ti, V, and Cu, finding that the HOMO-LUMO gap decreases gradually 
toward metallic behavior. Pentagonal and hexagonal core-shell silicon nanowires 
with various core compositions, including 3d transition metal atoms, have been 
investigated by Berkdemir and Gülseren [5] who also revealed a metallic behavior 
in all the cases, being the most favorable cross section hexagonal or pentagonal 
depending on the encapsulated atom. Leitsmann et al. [6] have investigated the 
influence of substitutional and interstitial transition metal doping on the electronic 
and magnetic properties of silicon nanocrystals. 
 
Kumar and co-workers [7] have shown that adsorption of atomic hydrogen on 
cage-like doped silicon clusters lead to additional stabilization of these cage-like 
structures. However, to the best of our knowledge, the adsorption of molecular H2 
on these silicon systems, which could be interesting for hydrogen storage 
porpoises, has not been considered previously.  
 
In a recent work [8] we have reported the geometrical and electronic structure of 

several low lying energy isomers of M@Sin clusters (M = Sc−, Ti, V
+
) in the 

range n = 14–18. We have obtained good agreement with the experimental results 
obtained by Nakajima and coworkers [9] for the endohedral character, extra 
stability, HOMO- LUMO gap, and electron affinity of M@Si16 clusters. As a first 
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step to explore bulk phases of materials composed of neutral M@Si16X entities, 
we have also studied [10] the equilibrium structures and electronic properties of 
aggregates, finite and infinite (periodic) wires of [Ti@Si16]n and [Sc@Si16K]n 
systems formed by assembling M@Si16 units with D4d symmetry. In this work, we 
will review same of those results, report new calculations of some bulk phases, 
and study the adsorption of H2 in some of these aggregates and wires. 
 
In section 2 is described our computational approach. In section 3 we review the 
results for Ti@Si16 and Sc@Si16K, and in section 4 the results for aggregates 
[Ti@Si16]n and [Sc@Si16K]n. In section 5 are shown some calculated meta-stable 
structures of periodic crystals and nanowires formed by these silicon doped 
aggregates as cell units. Preliminary results for the adsorption of H2 are presented 
in section 6. Finally, in section 7 we summarize the results. 
 

2. Computational procedure 

We have used the density functional theory (DFT) code SIESTA [11] within the 
generalized gradient approximation as parameterized by Perdew et al. [9] for 
exchange-correlation effects. Specifically, we have used norm conserving scalar 
relativistic pseudopotentials [12] in their fully nonlocal form, generated from the 
atomic valence configuration 3s

2
3p

2
 for Si (with core radii 1.9 a. u. for s and p 

orbitals), and the semi-core valence configuration 4s
2
3p

6
3d

n
 for Sc (n = 1) and Ti 

(n = 2). For K is used the valence configuration 4s
1
 with core radius 3.64 a.u. for 

all s, p, and d valence orbitals. For the present calculations is taken a double-ζ 
basis s, p (for Si, K,) and s, p, d (for M), with single polarization d (for Si, K) and 
p (for M). The grid fineness is controlled by the energy cut off of the plane waves 
that can be represented in it without aliasing (120 Ry for aggregates and 150 Ry 
for wires and bulk in this work). The equilibrium geometries result from 
unconstrained conjugate-gradient structural relaxation using the DFT forces. We 
try out several initial structures for each cluster (typically more than 20) until the 
force on each atom was smaller than 0.010 eV/Å. The integration in k-space for 
the bulk calculations was performed using a 4 × 4 × 4 Monkhorst pack grid. For 
wires in the z direction we use a 1×1×12 Monkhorst pack grid, and similarly for 
wires grown in the x or y directions. 
 

3. Ti@Si16 and Sc@Si16K superatoms. 

We have determined [8] from first-principle calculations the geometrical and 
electronic structure of several low-lying energy isomers of M@Sin clusters (M ) 
Sc-, Ti) with n = 14-18, obtaining a good agreement with the experimental results 
of Nakajima and co-workers [2, 9]. In Figure 1 is shown their structure of a few 
low lying energy isomers. The ground state geometry of these 68 valence electron 
clusters is a distorted Frank- Kasper C3v structure. However, for the ground state 
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of [M@Si16]n aggregates, the favoured geometry contains the isomers with D4d 
symmetry, which was called fullerene-like (f-like) by Kumar and co-workers [14]. 
This fact has important consequences for our study.  
 

 
Figure 1. Structure and symmetry of several low-lying energy isomers of M@Si16 clusters: FK* = 
distorted Frank-Kasper; FK = Frank- Kasper; Penta = pentagonal; F-like = fullerene-like. The 
total energy difference, in eV, with respect to the lowest-energy configuration, as well as the 
HOMO-LUMO gap (eV), and ordinal number of the isomer are shown.  
 

In reference [8] we provided an interpretation of the electronic structure and 
orbital projected density of states (PDOS) of M@Si16 clusters in the context of the 
spherical shell model perturbed by the crystalline field of the underlying ionic 
geometry. The covalent bonding in M@Si16 clusters results from the hybridization 
of the Si empty-cage states and the valence states of the endohedral atom having 
equal angular momentum l, which is of d type for the HOMO of the low lying 
energy isomers. This picture has been confirmed by the recent angle-dependent 
photoelectron spectroscopy experiments of Lau and co-workers [15]. 

4.  [Ti@Si16]n and [Sc@Si16K]n aggregates. 

In this section is presented a selection of [Ti@Si16]n and [Sc@Si16K]n isomers 
resulting from the optimization of a large set of initial arrangements. Firstly, we 
have investigated systematically the n = 2 configurations to select those that can 
serve as seeds in the construction of larger aggregates following well-defined 
patterns. As a second step, we studied n = 3-9 aggregates constructed according 
to these patterns, particularly certain types of configurations that can be used to 
grow infinite wires and nanotubes. The binding energy of a [M@Si16X]n 
aggregate is defined as the difference in the aggregate energy between it and that 
of n identical M@Si16X separated units: Eb(n) = n E(M@Si16X) - 
E([M@Si16X]n). Several [Ti@Si16]n configurations are shown in Figure 2, 
together with the corresponding binding energies, HOMO-LUMO gaps, electric 
dipole moments, and the types of bonding between the two D4d cages. 
 
Although the ground state of Ti@Si16 (Sc@Si16K) has the Frank-Kasper Td 
structure (C5v structure with the K atom on the pentagonal face), the [Ti@Si16]2  
([Sc@Si16K]2) dimer is preferably formed with two f-like D4d units. That D4d cage 
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is composed of two square faces and eight pentagons and contains only two types 
of non-equivalent Si atoms: those that are in the vertices of the square faces (Si1) 
and those that are not (Si2). The most favourable configurations for both dimer 
results from two Si1-Si1 bonds and three Si2-Si2 bonds between the Si atoms of 
opposite pentagonal faces of two D4d M@Si16 cages. The K atom is not involved 
directly in the bonding. That dimer configuration, called here PTP-2 arc 2 (PTP = 
pentagon to pentagon), is used to grow planar aggregates having arc geometry or 
ring geometry. Nearly degenerate [Sc@Si16K]n ring isomers result differing in the 
K bonding site, which lead to very different dipole moments. By stacking these 
ring units along the vertical axis could be grown meta-stable nanotubes with 
response to an external electrical field varying over a broad range of values. 

 
 
Figure 2. Several low-lying energy isomers of [Ti@Si16]n aggregates formed from Ti@Si16 units 
with D4d symmetry.  Binding Energies (Eb), HOMO-LUMO Gaps, and Electric Dipole Moments 
are shown. 
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For n =3, the arc 3 trimer configuration arising from PTP-2 bonding is more 
favourable than the star 3 one provided by the STS-e type of bonding, with the M 
atoms forming an equilateral triangle. However, the stacking of these regular star 
3 trimer units along the vertical axis, with a rotation of 60° between consecutive 
units, yields very stable [M@Si16X]3m aggregates, particularly those doped with 
Ti. For n = 4,  the bonding of two PTP-2 arc 2 dimers by four STS-e Si1-Si1 
bonds leads to a specular double arc 2 form that is the first isomer for [Ti@Si16]4 

and the second isomer for [Sc@Si16K]4  aggregates. These ∼ring and arc 4 

configurations have comparable binding energies for n = 4. 
 
The first isomer quoted for n = 5 aggregates is an irregular PTP-2 ring 5 for 
[Ti@Si16]5 and a PTP-2 arc 5 configuration for [Sc@Si16K]5. The more 
favourable isomer of n = 6 aggregates with Ti dopant is a 3D structure formed by 
the stacking of two star 3 structures with a rotation of 60° between both units. For 
[Ti@Si16]7, the arc structure converges to the ring one. Several planar ring and arc 
structures are reported for [Sc@Si16K]7. Nearly degenerate planar ring isomers of 
[Sc@Si16K]n (n = 6-9) aggregates show dramatic change in their dipolar moments 
when the K atoms undergo slight changes in their bonding sites. The vertical 
stacking of two star 4 structures rotated 45° is the first isomer of [Ti@Si16]8. 
[Ti@Si16]9 structure, formed by the vertical stacking of three star 3 isomers, 
rotated 60° consecutively, having high binding energy, points to interesting 
nanowires. 
  

5. Crystals and wires from Silicon-Doped Aggregates as Cell Units  

We have calculated several crystal phases having the Ti@Si16 superatom as basic 
unit. For the BCC case, we obtained that the FK isomer, with Td symmetry, 
reaches a bulk meta stable minimum with 0.96 eV cohesive energy for 9.75 Å 
lattice constant, whereas the f-like D4d isomer leads to a deeper minimum with 

∼5.72 eV cohesive energy for ∼8.75 Å lattice constant. The orientation of the 

cluster in the cell has a controllable effect. For the Single Cubic (SC)  and FCC 
phases, the cohesive energy is smaller than for the BCC one. Similar calculations 
have been performed for SC, BCC, FCC, NaCl, and CsCl crystals taking the 
Sc@Si16K supermolecule as the basic unit cell. Both the FK and f-like isomers for 
the Sc@Si16 component of the supermolecule were considered. In all these cases, 
we obtained local minima, being the NaCl meta-stable bulk phase with the f-like 
isomer of Sc@Si16 the one with the largest cohesive energy (5.58 eV).  
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Figure 3. Cohesive energy (Ecoh) per unit cell and lattice constant (l ) for infinite wires formed 
from single cubic unit cells composed of [the Ti@Si16]n aggregates showed Figure 2, which are 
specified in the first column. The grown direction, given in the second column as x , y, or z, 
correspond to left–right, down–up, and perpendicular to the plane of the figure, respectively. 
 

 
Figure 3 shows the cohesive energy per unit cell and the lattice constant of infinite 
wires composed of some of the [Ti@Si16]n aggregates. The n > 4 aggregates with 
ring structure which can lead to nanotubes. To compare the [Ti@Si16]n wires 
formed from PTP- 2 arc-n isomers with those formed from STS-e ring-n isomers 
we take the cohesive energy per cell unit and D4d unit. Thus, we have obtained 
0.91 eV, 0.90 eV, and 0.86 eV for arc-n wires with n = 2, 3, and 4, respectively, 
whereas for STS-e we have obtained 1.43 eV and 1.42 eV for star3 and ring4 
wires, respectively. These results indicate that (i) although arc3 and arc4 
aggregates are more stable than star3 and ring4 ones, respectively, STS-e wires 
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(star3 and ring4) have more cohesive energy per D4d superatom than the PTP-2 
arc-n wires, and (ii) the binding energy per superatom decreases with the size of 
the aggregate in the unit cell. From the Ti-4.4, rig4 aggregate can be grown a 
planar sheet resulting a very stable structure with 1.75 eV per D4d superatom unit, 
which is larger than for the Ti-4.4 ring4 wire.  
 
Moreover, [Ti@Si16]2n and [Ti@Si16]3n periodic nanowires formed by stacking 
STS-e dimers and Ti-3.3 trimers along the vertical axis and rotated 90 and 60 
each other have recently been obtained. The geometry of the corresponding cell 
units is shown in Figure 4.  
 
 

 
Figure 4. Geometries of the cell units of [Ti@Si16]2n and [Ti@Si16]3n periodic nanowires. Two 
views are given: top and upper. 

 

6. H2 adsorption by [Ti@Si16]n aggregates and wires. 

We have studied the adsorption de H2 on the aggregates (Ti@Si16)n (n = 4, 6) 
formed by stacking two STE-e dimer and two Ti-3.3 trimer which are twisted 90° 
and 60°, respectively. Moreover, we will present preliminary results on the 
adsorption of H2 on [Ti@Si16]2n  and [Ti@Si16]3n  nanowires.  
For the [Ti@Si16]2 unit the H2 molecule binds preferably  on top of the square face 
between the two Ti@Si16 units, with binding energy 0.12 eV. The question is: 
how many H2 molecules can be adsorbed per [Ti@Si16]2 unit ? 
 

7. Summary and Outlook 

In conclusion, we have optimized several [Ti@Si16]n and [Sc@Si16K]n, structures 

for 9n  with D4d symmetry for the M@Si16 unit. Particularly interesting 

aggregates, to explore wires obtained from them, are: (i) planar rings for 6n , 
which can be grown into nanotubes; (ii) 1D aggregates formed by stacking dimers 
with a mutually orthogonal M-M axis; (iii) aggregates formed by stacking the 
star3 trimer, rotated 60° with respect to each other; and (iv) aggregates formed by 
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stacking star4 n = 4 aggregates along the vertical axis that are rotated 45° with 
respect to each other. In all these cases are found nearly degenerate isomers 
whose electric moments depend dramatically on M dopant and K bonding sites.  
 
The BCC crystal from f-like Ti@Si16 superatom has larger cohesive energy than 
other crystals with the FK Ti@Si16 superatom in the unit cell. For the Sc@Si16K 
superatom, the NaCl bulk phase with the f-like isomer is the one with the largest 
cohesive energy. A planar sheet from that star4 isomer of Ti@Si16 results 
particularly stable. Moreover, we have characterized interesting [Ti@Si16]2n and 
[Ti@Si16]3n  nanowires formed by stacked along the vertical axis and twisted 90 
and 60 degrees, respectively. 
 
The study of adsorption of H2 in some of this aggregates and nanowires is in 
progress, particularly the number of H2 molecules (saturation) which can be 
adsorbed in a unit cell with a reasonable binding energy (larger than 0.15 eV per 
H2)  
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Abstract 

In this report we proposed two finite-difference schemes for 2D 
problem of femtosecond laser pulse interaction with 
semiconductor. The first finite-difference scheme is a 
conservative one, which is based on the integral-interpolation 
method at its construction. Another one is additive finite-
difference scheme, constructed on the base of split-step method. 
We compare results of computer simulation which are obtained 
by using both finite-difference schemes. We demonstrate that the 
split-step method is ineffective for computation of the laser pulse 
interaction with semiconductor at the strong changing of solution 
during small time interval. 
 
Key words: femtosecond pulse, semiconductor, laser pulse, 
finite-difference schemes, conservative scheme. 
MSC2000: 
 

1. Introduction 

The interaction of laser pulse with semiconductor is a problem of interest during many 
years. In the past few years this interest is firstly caused by the possibility to investigate 
the motion of free-charged particles in semiconductor due to action of the THz radiation 
[1-6]. Secondly, this interest has appeared due to an opportunity of creation of the all-
optical bistable device with femtosecond time of switching at action of femtosecond laser 
pulse on semiconductor. In both cases the nonlinear response of semiconductor take place. 
To provide a computer simulation of such kind of problems it is necessary to develop a 
finite-difference scheme which possesses very good properties: high accuracy of 
computation, stability and asymptotic stability and conservatism.  
 
At the present time there are two approaches for developing the finite-difference schemes: 
conservative finite-difference scheme and ones on the base of split-step method. Hence, it 
is very important to compare the efficiency of application of both approaches to 
construction of the fintite-difference scheme for computer simulation of the laser pulse 
interaction with semiconductor in the 2D problem. It should be noted that we have 
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FINITE-DIFFERENCE SCHEMES 
proposed early the conservative finite-difference schemes for the 1D problem. Previous 
results have demonstrated many advantages of developed finite-difference schemes.  

 

2. Problem Statement  

As it is known, an interaction of high-intensive femtosecond laser pulse or the THz 
pulse with semiconductor is accompanied by various nonlinear effects [7-9]. For 
example, there are modes of oscillating the semiconductor characteristics and 

phenomenon of optical bistability. This process is described by the following set of 
two-dimensional differential equations: 
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In the set of equations (1) – (2) the following variables are introduced: x, y- 
dimensionless spatial coordinates, t - time, n - concentration of free electrons in 
conductivity zone of semiconductor, N – concentration of ionized donors. Function 
φ- dimensionless electric field potential, I – intensity of laser radiation propagating 
along the x axis. Coefficients of electrons diffusion Dx, Dy and coefficients of 

electrons mobility yx  ,  are non-negative constants. Parameter γ depends, in 

particular, on the maximal achieving concentration of free charge carriers, n0 - 
equilibrium value of free electrons concentration and ionized donors one, τp 
characterizes a recombination time. Functions G and R, describe generation and 
recombination of semiconductor free charges particles correspondingly. Light 

energy absorption coefficient ),,(  Nn  can be approximated by different ways. 

For example, in present work we consider the following approximations 
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The boundary and initial conditions (2) correspond to absence of an external 
electric field and current through the semiconductor surface. It is supposed, that at 
the initial moment of time the semiconductor is electrically neutral. 
It is necessary to notice that for construction and for testing the finite - difference 

schemes for a problem (1) - (2) we take 00  . So, we didn't consider change of 

laser pulse intensity along axis х. In this case the function of free electrons 
generation takes in the following way: 
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The function q(x,y,t) describes the optical radiation intensity profile with maximal 
value q0. Thus, we consider the generation of free charge carriers by the Gaussian 
laser beam in both spatial directions. The centre of beam coincides with centre of 
spatial domain. Such approach allows estimating the accuracy of computer 
simulation results obtained on the base of various finite- difference schemes. 
Because the problem (1) has the symmetric solution on both spatial coordinates 
then the solution of the finite-difference scheme must be also symmetric for 

00   In this case we can also estimate the efficiency of computer simulation 

results for 2D case by comparing them with the corresponding results for 1D case 
(approximation of optical thin layer) problems [10], [11]. 
 

3. Construction of finite-difference schemes 

To construct the finite-difference scheme we introduce in the domain 

     tyx LtLyLxG  000
 

the uniform time and space grids tyx   , where 







 

x

x
xxix N

L
hNiihx ,,0, , 










y

y
yyyjy N

L
hNjjhy ,,0, , 







 

t

t
tkt N

L
Nkkt  ,,0, . 

We use the following notations for any grid function fh defined on Ω: 
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Below we omit the subscript h on mesh functions. Nevertheless, we preserve the 

above-introduced notations. The first and the second differential derivatives are 

defined as usual and notated as follows: .,,,,,, tyyyyxxxx fffffff
 

At the finite-difference schemes construction we should achieve, that the 
difference analogs of conservation laws for the problem (1-2) are valid [12]. As it 
is well known, for system of equations (1) – (2) the law of charge preservation 
takes place. Thus for our problem the following conservation law (invariant) takes 
place [13]: 
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So, for the problem (1) - (2) a property of finite-difference scheme conservatism 
consists in the preservation of invariant Q(t). 
 
Scheme 1. 
 
On the base of integro-interpolation method [12] we have constructed conservative 
finite - difference scheme for problem (1) - (2) (see as well [14]). To solve the 
obtained set of nonlinear difference equations we used iterative process, which is 
constructed by taking into account of increasing the computation accuracy and 
validity of the conservatism property at iterations: 
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The finite-difference scheme (4) approximates the initial set of differential 

equations with the accuracy
 

)( 222  yx hhO . The boundary conditions are 

approximated with the first order in spatial coordinates. It is caused by necessity of 
the realization of conservatism property. 
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As the initial approximation for the iterative process, we take the values of 

functions obtained on the previous time layer: ,ˆ
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and the termination 

criterion is given by the inequality 
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where  f  is one of the functions n, N, φ. This inequality must be valid for all 
functions simultaneously. 
 
For solution of the written set of the equations it is possible to use various 
methods. In particular, for solution of the Poisson equation concerning the electric 
field potential and Helmholtz equation (in the case of Dx=Dу) concerning the free 
electrons concentration it is suitable to use the Fast Fourier Transform (FFT) 
method because it allows to find the solution with high accuracy. This method also 
can be used for computation of the first and second difference derivatives entering 
into the equations (4). It is important for increasing the computational accuracy 
because in some cases the solution of the problem (4) – (5) can lose the symmetry 
at computation of the difference derivatives at their usual definition. At computer 
simulation in the given paper we used FFT from Intel MKL [15]. 
 
Scheme 2. 
 
At the construction of finite-difference scheme for the problem (1) - (2) it is also 
possible to use the method of total approximation [12], [16]: 
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Thus, the computation is made in two stages – at first one we compute values of n~  

at a semi-layer k+0.5 of time. Then by means of found values we compute n̂  on 
time layer k+1. Obviously, written equations are nonlinear ones. Hence it is 
necessary to construct the iteration process which looks as follows: 
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For the solution of the equations concerning the free electrons concentration we 
used tridiagonal algorithm or 1D FFT method. Derivatives entering into the right 
side of these equations were computed by using the FFT method. 
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4. Computer simulation results. 
 
Analyzing the computer simulation results for various sets of parameters for the 
problem (1) – (2) it is possible to assert that the conservative finite-difference 
scheme 1 constructed above is an effective tool for solving this problem. This 
finite-difference scheme allows to investigate the various nonlinear processes 
occurring in the semiconductor under the action of high-intensity laser pulse: 
formation of domain with high concentration of ionized donors (optical bistability 
mode) (fig. 1), or the mode of free electron concentration oscillation (fig. 2). It is 
necessary to stress that using the conservative finite-difference scheme in a 
combination with FFT method allows to make a computation with high accuracy.  
 
As it follows from Fig. 1, Fig. 2 the solution keeps symmetry of the concentration 
distribution even for calculation with enough large mesh steps and during long 
time interval. It is also necessary to note there is the high accuracy of the invariant 
Q(t) preservation – Q(100)=3.181042

-10
 for the case corresponding Fig. 1 and 

Q(1000)= 3.972298
-13

 for the case corresponding Fig. 2. Thus, it is possible to 
conclude that this finite-difference scheme also will be effective for the 
computation of evolution of semiconductor characteristics with taking into account 
of nonlinear dependence of electrons mobility coefficient and of the absorption 
coefficient from light induced electric field. 
 
With respect to the finite-difference scheme 2 it is necessary to notice that for the 
problem (1) – (2) its application field is limited only by computation of smooth mode 
of changing the semiconductor characteristics when the distribution of free electrons 
concentration and ionized donors concentration are the functions like Gaussian ones 
(Fig. 3). For other modes of optical radiation interaction with semiconductor the 
computation provided on this finite-difference scheme interrupted because of the 
accumulation of rounding error. Reducing the grids steps does not result in 
substantial improvement of the situation. 
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Fig. 1. Calculations by scheme 1. Distributions of free electrons concentration n 
(a), ionized donors concentration N (b), electric field potential φ (c) realized at 

time moment t=100 for the absorption coefficient ,  
grids steps 

32 10,10   уx hh  and parameters values 

.1,1,01.0,10,10,1,8 00

33   qnDD pуxуx 

 
a) 

 
b) 

 
c) 
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Fig. 2. Calculations by scheme 1. Distributions of free electrons concentration n 
realized at time moments t=500 (a), 600 (b), 700 (c) for the absorption coefficient 

,n  
grids steps 22 10,10   уx hh  and parameters values 

.1,1,01.0,10,10,0,3,553.2 00

33   qnDD pуxуx 
 

 
a) 

 
b) 

 
c) 
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Fig. 3. Calculations by scheme 2. Distributions of free electrons concentration n 
(a), ionized donors concentration N (b) realized at time moment t=10 for the 

absorption coefficient ,  
grids steps 32 10,10   уx hh  and parameters 

values .1,1,1.0,10,10,1,1 00

34   qnDD pуxуx 
 

 
a) 

 
b) 
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Abstract 

This paper proposes a dynamic lot-sizing problem with 
asymmetric deteriorating commodity (DLSPADC). DLSPADC 
is proved to be an NP-hard problem. Of the property of the 
DLSPADC optimal solution, the demand may be split, and the 
possible split point may be a real number value. Under such 
circumstances, the number of the possible replenishment 
planning of each period is enormous. As a result, to more 
efficiently solve the problem, the possible partition points of 
the optimal replenishment policy have to be lessened. To solve 
the DLSPADC problem, this paper discovers several properties 
and theorem. Ant colony optimization (ACO) is developed 
from the theorem and 0-1 binary code to solve the problem. 
The modified ACO algorithms of history literature were tested. 
The results show the ACO algorithms with pheromone 
intensity bounds do not perform as well in DLSPADC 
problems. 
Keyword: dynamic lot-sizing problem, modified ant colony 

optimization, asymmetric deteriorating commodity 
MSC2000: 68W15 

 
1.  Introduction 
Globalization is the dominant force driving the market today. It allows 
upstream industries and downstream industries to locate in different 
geographical regions. To survive in this competitive environment, the supply 
chain has now become part of the operational model. Under vendor managed 
inventory (VMI), which makes good use of the supply chain, the supplier is 
responsible for managing the buyer’s inventory, which shortens the leading 
time for imbibing the demand information on the supplier’s side. This paper 
proposes a dynamic lot-sizing problem based on the VMI supply chain. 

Since Wagner and Whitin [25] first used dynamic programming to solve a 
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one-stage dynamic lot-sizing problem, lot-sizing problems have been important 
topics. Multistage lot-sizing problems have also been discussed ([28], [6]). 
Also, Lee et al. [17] used dynamic programming to solve a two-stage dynamic 
lot-sizing problem with transport cost. Jaruphongsa et al., [15] further used 
dynamic programming to solve a two-stage dynamic lot-sizing problem with 
delivery time window while transport costs were also under consideration. 
However, since the serviceable amount of deteriorating commodities such as 
perishable foods, electronic parts, drugs and bloods decrease with time, 
lot-sizing problems taking deterioration into account are often discussed in 
continual time-varying situations. Gupta and Gerchak [7] studied a lot-sizing 
problem for a deteriorating commodity when the demand is constant. In this 
problem, deteriorating commodities are considered for exponential remaining 
lifetimes. Hyun Kim and Hong [10] studied a lot-sizing problem with 
deteriorating production process and rework when the demand is constant. 
Abad [1] studied a lot-sizing problem with an exponential deterioration rate. In 
this problem, backordering is allowed. Literatures on other lot-sizing problems 
under continual time-varying models with deteriorating commodities are: 
Warrier and Shah [26], Hwang and Shinn [11], Jalan and Chaudhuri [16], 
Misra [18], Sarker et al. [20], Papachristos and Skouri [19], Balkhi [2], and 
Teng et al. [23]. Next, this paper introduces the lot-sizing problems considering 
deterioration in a discrete time-varying scenario. Smith [21] proposed a 
one-stage dynamic lot-sizing problem in which the commodity deteriorates 
after a constant period. The goal was to find the maximum profit by deciding 
the replenishment schedule and selling prices. Friedman and Hoch [5] 
proposed a one-stage dynamic lot-sizing problem with non-increasing 
deterioration rate. Hsu [12] proposed a one-stage dynamic lot-sizing problem 
considering perishable inventory. He proposed dynamic programming to solve 
this problem, which assumed that supply is unlimited and backordering is not 
allowed. Hsu [13] further explored a one-stage dynamic lot-sizing problem for 
perishable commodity when backordering is allowed. In these related 
literatures, the assumptions of the dynamic lot-sizing problem were the supply 
is unlimited and that only the deterioration of serviceable commodity is 
considered. In reality, because of resources constraints and seasonal variations, 
the supply of material is limited and cannot be controlled. In addition, both the 
raw material and the commodity deteriorate; yet, the raw material may be 
processed into a serviceable commodity (for example, by adding preservatives 
to foods). This means the deterioration rates for the raw material and the 
commodity differ, therefore it is called asymmetric deterioration. Such 
industries include fishing, agriculture, recycling of secondary materials. Also, 
such issues are similar to lot-sizing problems with inventory limits. Bitran and 
Yanasse [3] probe into the computational complexity and properties of the 
capacitated lot size problem under a particular cost structure. Gutiérrez et al. [9] 
proposed new properties for non-backlogging lot-sizing problems whose 
productivity is constants. They assume the replenishment amount is a 
non-negative integral. Different from the problems in this paper, the bound of 
inventory limit is not amassed. This paper proposes a dynamic lot-sizing 
problem for a similar industry.  

The remaining sections of the paper are as follows. Section 2 formulates 
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the DLSPADC, and discusses the character and complexity of the problem. 
Section 3 introduces the DLSPACD solution procedure of the algorithm based 
on ant optimization. Section 4 compares the performance of each algorithm. 
Section 5 provides a summary and some closing remarks. 
 
2. Modeling for a supply chain 
The dynamic lot-sizing problem in this paper is a replenishment planning 
problem that takes the asymmetric deteriorating commodity into account. In 
this model, the final customer demand and the supplied material quantity are 
deterministic. The DLSPADC mainly involves deciding the replenishment 
period (that is, if during period t, supply is being provided to downstream 
businesses, then t is called a replenishment period) and replenishment amount 
for a simple supply chain where there are a manufacturer and a wholesaler, as 
shown in figure 1. 

 
Figure 1. Graphical representation of the proposed problem 

 
2.1 Assumptions and problem formula 
Let t and T represent the period index and the planning horizon respectively, 
for t = 1,…, T. The symbols that make the problem are defined as figure 2. 

The proposed problem involves finding the optimal replenishment policy 
in each replenishment cycle length (i.e., the length of the planning horizon). In 
a deterministic problem, the focus would be to explore the replenishment 
planning when the time is in the frozen period of the time fences; that is, when 
the quantity of material and demand are deterministic. This paper solves a 
dynamic lot-sizing problem. In this problem, the demand td and procurement 

quantity of material tb are both deterministic. 

This section constructs the proposed dynamic lot-sizing problem. The 
main assumptions are as follows: 
(1) 2 1t th h≤ , for t = 1, 2, …, T. 

(2) 1 1, 1t tK K +≥ , 2 2, 1t tp p +≥ , 1 1, 1t tp p +≥ , 1ts ≥ 1th , for t = 1, 2,…, T. 

(3) No deterioration cost. 
(4) Calculate serviceable materials at the beginning of the period. 
(5) td and tb are deterministic and uncontrollable, for t = 1, 2,…, T. 

(6) Backordering is not allowed at the manufacturer, but is allowed at the 
wholesaler. 

(7) 2α ≥ 1α . 

(8) td is a non-negative integer. 

(9)The supply chain adopts the VMI policy; in other words, the manufacturer 
decides the inventory level at the wholesaler. 
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Figure 2. The notations of DLSPADC 

The objective is to minimize the total cost of adopting the VMI policy. 
The total cost include the manufacturer’s cost, cost of providing replenishment 
for the wholesaler, and wholesaler’s cost, as shown in equation (1). The 
formulation of the DLSPADC model is as follows: 
Minimize 

( )tTC y = ( ) ( )2 2 2 1 1 1 1 1 1
1

( )
T

t t t t t t t t t t t t
t

p b h I K y p y h I s Iδ + −

=

⎡ ⎤+ + + + +⎣ ⎦∑   (1) 

Subject to: 

( )2 2, 1 21t t t ty I b Iα −= − + −    1, 2,...,t T=                  (2) 

( )( ) ( )1 1, 1 1, 1 11t t t t td I I y Iα
+ −

− −= − − + −    1, 2,...,t T=        (3) 

2,0 1,0 0I I= =    1, 2,...,t T=                          (4) 

ty , 2tI 0≥   1, 2,...,t T=                          (5) 

where ( )xδ =1 if 0x > and 0 otherwise. (x)+ = max{x, 0}. (x)– = – min{x, 0}. 
Equation (2) and (3) are the inventory balance constraints at the manufacturer 
and at the wholesaler respectively. Equation (4) shows the assumption of this 
paper where the inventory levels at the manufacturer and at the wholesaler are 
set at the level of the beginning of the initial period. Equation (5) is a 
non-negative integer constraint. 

Note that ty and 2tI are non-negative numbers, which means ty is set to be 

equal to or less than (1 – 2α ) 2, 1tI − + tb . 

2.2 The property and theorem of the problem 

Note that when j < i, this paper defines
j

vv i
x

=∑ = 0. Moreover, the 

replenishment quantity must satisfy the constraint in supply quantity; that 
is, Vy ≤ 2(1 )α− 2, 1VI − + Vb . 

Property 1.1. There exists an optimal solution under 2α > 1α  so: 
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( )1, 1 2 2, 11 0t t t t tI y I b yα− −⎡ ⎤− + − =⎣ ⎦ , for 1,2,...,t T= . 

 
Proof. Suppose that 1, 1jI − >0, jy >0, 2 2, 1(1 ) j j jI b yα −− + − >0, there then exists 

a previous replenishment period i which makes 1, 1jI − >0. Here, on the condition 

the quantity of supply is not affected (i.e. the value of 1, jI  remains the same), 

Q can be added to the replenishment amount in period j, which 
makes 1, 1jI − equal to 0. When jy equals 2 2, 1(1 ) j jI bα −− + , 1, 1jI − cannot be equal to 

0.  □ 

In figure 3 (a), the 1, jI is point e, no matter in the replenishment planning 

{a1, b1, c1, d1, e} before the adjustment, or in the replenishment planning {a2, b2, 
c2, d2, e} after the adjustment. Thus, the satisfaction of the demands is 
unaffected, and the holding cost can be lessened. In figure 3 (b), because 2, jI is 

equal to 0, iy  cannot be adjusted to make 1, 1jI − equals to 0. Property 1.1 shows 

there exists an optimal solution so when 1, 1tI − >0, then ty ∈ {0, 

(1 – 2α ) 2, 1tI − + tb }. This shows the properties of the proposed problem. The 

above shows the properties of the proposed problem. The way to solve this 
problem is through deciding the replenishment period and the partition points.  
Property 1.2. There exists an optimal solution under 2α = 1α  so: 

1, 1 0t tI y− = , for 1,2,...,t T= . 

Proof. The proving method is similar to Property 1.1. The only difference 
is the reduced amount of 1, 1jI − resulted from 2α = 1α  must be equal to the 

increased amount of 2, 1jI − . Under such a circumstance, the replenishment 

amount Q must be able to be increased in period j to make 1, 1jI − equal to 0. 

 
Figure 3. Illustration of Property 1.1: (a) When 1, 1jI − can be adjusted to 0; (b) 

When 1, 1jI − cannot be adjusted to 0 

Lemma 1. There exists an optimal solution so the demands in those periods, 
excluding the first and the last period, cannot be split when the demand in a 
sequence of periods is possibly met by a replenishment period.  
Proof. Within a particular time span in a replenishment period during which the 
demand can be met, this program can be considered without a supply constraint 
in replenishment planning. Under such circumstances, the basic ideas in 
Wagner and Whitin’s [25] theorem 2 can be used to produce the result of 
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Lemma 1 in this paper.  □ 
Theorem 1. There exists an ideal solution so in replenishment period j, the 
value of jy must satisfy: 

( ) ( ) ( )

( ) ( )

1

2 2, 1
1

2

1 1

min 1 , ,

, , ,

i

j j j i i i i v
v i

i T

i i v i i v
v i v i

y I b d u d u d

d u d d u d

α
+

−
= +

+

= + = +

⎧ ⎧ ⎧⎪= − + − − +⎨ ⎨ ⎨
⎩⎪ ⎩⎩

⎫⎫⎫ ⎪− + − + ⎬⎬⎬
⎭ ⎪⎭⎭

∑

∑ ∑K

,              (6) 

where id represents the demand in period i; period i is where the position of the 

split point of the previous replenishment period is found; iu represents the 

amount of the previous replenishment period that satisfies the demand of 
period i. 
Proof. Based on the results of Lemma 1 and Property 1.1. 
Therefore, Theorem 1 shows the replenishment amount for a certain demand 
within a feasible supply range should not be split in its consideration (i.e. 

ty ∈{0, 2

1

l
jj l

d
=∑ | 1 21 l l T≤ ≤ ≤ }).  

3.  Implementing the ACO approach 
Ant colony optimization (ACO) was first introduced in Dorigo’s [4] doctoral 
thesis. It is a meta-heuristic technique that mimics the behavior of real ants. 
Ants communicate and optimize the path between the nest and the food source 
through pheromone. An artificial ant builds a solution through probability 
function, whose generation hinges on the pheromone information. When the 
ant completes forming a solution, the amount of pheromone trail on the path 
would affect the solution quality, that is, the better the solution, the more 
pheromone trail is left on the path. This paper develops the ACO algorithms in 
binary code to solve the proposed DLSPADC. 
3.1  Solution construction 
The 0-1 binary-coded system (Wong and Chen, 2010) is applied to this 
problem. In performing the ACO algorithm, the ant finds the optimal 
replenishment period and the partition point in demand by deciding whether 
the bit on the code is 0 or 1. In solving the DLSPADC, there are two phases in 
the ant’s construction of a solution. The first phase decides the replenishment 
period, whereas the second phase decides the partition point in demand given 
the already determined replenishment period. The partition point must be 
feasible (i.e., satisfy the constraint in supply). The transition probability is the 
main function used by the ant in its decision-making. An ant completes a tour 
by deciding the value of all bits through the pheromone trail, and prefers 
choosing the bits with the greater pheromone trail to form the solution. 

The transition probability of the ant in phase 1 is as follows: 

( )
( )

( ) ( )
1

1
1 0

demands have not been satisfied

0 otherwise

t
P t t t

τ
τ τ
⎧
⎪= +⎨
⎪
⎩

,              (7) 

where 1( )P t  is the probability of the ant choosing 1 in period t (i.e., the 

probability of period t being a replenishment period). ( )j tτ is the amount of 
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pheromone trail in the position j during period t, j∈{0, 1}. 
The transition probability of the ant in phase 2 is as follows: 

( ) ( ) ( )
( ) ( ) ( )1 2 1 2

12

, ,
1

,
, ,

,t t

tk k
ts d i s s d i s

d i

d i
P d i d i N

d i
τ
τ′ ′

′′ ′′

′
′ ′′ ′′= ∈

′′ ′′∑∑% %% %                (8) 

where 1 2

2

( , )
( , )

t

k
ts d i s

P d i′
′% % is the probability of ant k choosing the partition point in 

demand ( ),td i′ during the current replenishment period 2s  when the partition 

point in the previous replenishment period is 1s  and the chosen partition point 

is ( , )td i′% % . 1( , )td iτ ′ is the amount of pheromone trail in the element i of the 

demand td ′  in the sub-vector. 1 2( , )t

k
s d i s

N ′% % is set of the feasible applicable partition 

point of demand of ant k in the current replenishment period 2s when the 

previous replenishment period is 1s and the partition point is ( , )td i′% % . 

The procedure of an ant constructing a solution is as follows. 
Step 1. Rt is determined through equation (7). 
Step 2. Let t = 1. 
Step 3. If Rt = 1, then perform the decision of the partition point (to step 3.1). 
      Step 3.1. With the concept of equation (6), determine 1 2( , )t

k
s d i s

N
′% % , for 2s = t. 

Here, if the limit of the feasible partition point is a demand 
split, than the generation of a sub-vector is needed. 

      Step 3.2. Use equation (8) to determine the partition point of the current 
replenishment period 2s . 

Step 4. If t = T, end. Otherwise, next step. 
Step 5. t = t + 1 and go to the step 3. 
3.3  Update of pheromone trails 
In the ACO algorithm, the pheromone information is crucial for the ant to find 
the optimal solution. Traditional ACO is applied to DLSPADC, and ant k sets 
pheromone in the path of a completed tour in vector R as follows: 

1if
( )

0 otherwise

k
k

kj

Q j T
ftτ

⎧ ∈⎪Δ = ⎨
⎪⎩

                              (9) 

where Q is an adjustable parameter. kf is the objective function value of ant k. 
1kT is the path of a completed tour by ant k in vector R. The traditional 

pheromone placement method is used in the ACO algorithm of Hiroyasu et al. 
[14].Update the amount of pheromone trail ( )j tτ , as shown in equation (10): 

( ) ( ) ( )j j jt t tτ ρτ τ= + Δ                                  (10) 

where ρ is a parameter between 0 and 1.
1

( ) ( )
U k

j jk
t tτ τ

=
Δ = Δ∑ . 

Besides, ant k sets pheromone in the path of a completed tour in vector E 
as the following equation: 

2if ( , )
( , )

0 otherwise

k
tk

kt

Q d i T
fd iτ

⎧ ′ ∈⎪′Δ = ⎨
⎪⎩

                           (11) 
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where 2kT is the path of a completed tour by ant k in vector E. 
Update the amount of pheromone trail 1( , )td iτ ′ as follows: 

( , ) ( , ) ( , )t t td i d i d iτ ρτ τ′ ′ ′= + Δ                                   (12) 

where
1

( , ) ( , )
U k

t tk
d i d iτ τ

=
′ ′Δ = Δ∑ . 

Through the modified pheromone placement method, this paper tries to 
make the solution quality more influential on the pheromone amount placed. In 
the modified method, ant k sets pheromone in the path of a completed tour in 
vector R as follows: 

( ){ }( )

1

1

10

if 0 and

1
( ) if 0 and

log max 10,

0 otherwise

k
k

k

k k
j k

kk

Q f f j T
f

Qt f f j T
ff f

ϑ

ϑ
ϑ

τ

⎧ − ≥ ∈⎪
⎪
⎪

Δ = − < ∈⎨
−⎪

⎪
⎪
⎩

     (13) 

where Q is an adjustable parameter. kf is the objective function value of ant 

k. fϑ is the objective function value of the current best solution. 1kT is the path of 

a completed tour by ant k in vector R. 
Ant k sets pheromone in the path of a completed tour in vector E as the 

following equation: 

( ){ }( )

2

2

10

if 0 and ( , )

1
( , ) if 0 and ( , )

log max 10,

0 otherwise

k
k t

k

k k
t k t

kk

Q f f d i T
f

Qd i f f d i T
ff f

ϑ

ϑ
ϑ

τ

⎧ ′− ≥ ∈⎪
⎪
⎪′ ′Δ = − < ∈⎨

−⎪
⎪
⎪
⎩

(14) 

where 2kT is the path of a completed tour by ant k in vector E. 
Property 2. There exists an optimal solution so when the partition point of the 
demand in the previous replenishment period S falls in the last period of the 
planning horizon, the amount of the replenishment period V must satisfy: 

( ) ( )( ) ( ){ }2 2, 1 2 2min 1 , 1
T V

V t t Ty I b d uα α − −
−= − + − − , 

where 2u  is the amount of the previous replenishment period S that satisfies 

term T. 
Proof. Following Theorem 1, when the demand partition point of the previous 
replenishment period S falls in the last period of the planning horizon and there 
are demands remaining unsatisfied, the partition point of replenishment period 
V should either satisfy the remaining demands or be the maximum of the 
workable partition point. Otherwise, it equals a violation of Theorem 1.  
 
3.4  Mutation operator 
The mutation in this algorithm mainly changes the Rt chosen by the ant; that is, 
the replenishment period would be changed. This paper uses the two-point 
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mutation method.  
3.5  Procedure of the algorithms 
This paper decides the partition point and the replenishment period through the 
ACO algorithm to solve the DLSPADC. The algorithm performance of the 
paper is shown through the comparison with the ACO algorithm of history 
literature. The details of each algorithm are as follows:  
(1) Touring ant colony optimization (TACO) [14] is traditional ACO algorithm 

without visibility.  
(2) ACO+MO+MP is the ACO algorithm with mutation operator and modified 

pheromone trail placement.  
In these algorithms, there are three phases in an ant’s construction of 

solution. The first phase is deciding the Rt. In the second phase, if the condition 
of mutation is being met, then Rt undergoes mutation operator. A dynamic 
mutation rate is being applied in the mutation process; that is, the original 
mutation rateφ is being multiplied by a function. This function value decreases 

as the number of iterations increases. In the third phase,
tdE ′ is determined.  

The procedure of TACO is shown in figure 4(a). The method proposed by 
Hiroyasu et al. [14] is used to better understand whether the mutation operator 
and the modified pheromone placement can efficiently strengthen the solution 
quality. The procedure of ACO+MO+MP is shown in figure 4(b). As shown in 
the figure, this algorithm has a mutation operator while TACO does not, and 
the pheromone placements are different as well.  

 
Figure 4. Pseudo-code for (a) the TACO; (b) the ACO+MO+MP 

4.   Numerical analysis 
It is shown in this paper that the computational complexity theory of 
DLSPADC is an NP-hard problem. Thus, to lower the computational cost, this 
paper adopts the heuristic algorithm to solve the problems. The best algorithm 
for DLSPADC problems is found through the comparisons of TACO and 
ACO+MO+MP. 
4.1  Parameter test 
ACO+MO+MP differs from TACO in that it has a mutation operator and the 
modified pheromone trails placement. During the execution of the algorithm, 
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the mutation rate decreases as the iteration increases. Whether the different 
initial mutation rate is sensitive to the solution quality is also an issue. Further, 
trail persistence ρ is another important parameter. Therefore, the influence of 
the parameters on the solution quality is first discussed. In the experiment, the 
DLSPADC parameters are: 2th = 0.05, 1th = 0.2, 1tK = 20, 2tp = 1, 1tp = 0.6, 

and 1ts = 0.8, for t = 1, 2,…, 30. 2α = 0.2 and 1α = 0.1. tb  stands for the 

discrete uniform distribution between 19 and 21, and td  between 2 and 4. The 

two levels of parameter ρ  are 0.6 and 0.85, and 0.1 and 0.4 forφ . The other 
parameters of the algorithm are: Q = 1, U = 70, and M = 400. The results of 
30 runs of each level in table 1 show that parameters ρ  and φ  are not 
significant to the solution quality. This means in the policy of dynamic 
mutation rate, different starting mutation rates are not sensitive to the solution 
quality. 

Table 1. Analysis of parameters ρ  and φ  
Factor Level F-ratio P-value 
ρ  0.6 0.6 0.85 0.85 0.214 0.645 

φ  0.1 0.4 0.1 0.4 1.074 0.302 

Avg. 925.682 924.851 925.236 924.679   

ρ × φ  0.042 0.838 

4.2  Algorithm comparison 
The DLSPADC parameters are: 2th = 0.05, 1th = 0.2, 1tK = 100, 2tp = 1, 1tp = 

0.6, 1ts = 0.8, 2α = 0.2, 1α = 0.1, and tb =20. td  is the discrete uniform 

distribution between 2 and 4. The algorithm parameters are: ρ = 
0.85,φ =0.4,Q = 1, U = 70, and M = 800. Table 2 shows the test results of each 
algorithm with a higher fixed cost. The results are surprising in that 
ACO+MO+MP has the best performance. 

Table 2. The test results of each algorithm with higher fixed cost 
T  TACO ACO+MO+MP 

Min 3179.7460 3121.8736 
Avg. 3218.7845 3140.4370 

80 
 
 Max 3269.2726 3190.5560 

Min 4089.7652 4083.3551 
Avg. 4162.4637 4142.5192 

100 
 
 Max 4231.2016 4204.4172 

5.  Conclusions 
Advancing IT technology globalizes businesses and brings opportunities for 
multi-national cooperation. Thus, the policymaker stresses much more than 
ever the timely replenishment with proper amounts from the upstream 
businesses in the supply chains to the downstream businesses. Vender managed 
inventory is an important and commonly used strategy to shorten the lead time 
in the supply chain. This paper proposes a dynamic lot-sizing problem with 
asymmetric deteriorating commodity in the VMI supply chain. The problem is 
divided into a deterministic model. In the deterministic model, the properties 
and theorem of the problem are discussed. The DLSPADC performance of the 
two ACO-based algorithms is compared. In the comparison of TACO and 
ACO+MO+MP, ACO+MO+MP has the better performance. This paper 
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suggests two directions for future researches. First, discover more properties of 
DLSPADC to minimize the decision points or consider the DLSPADC from 
multiple manufacturers. Second, Lee et al. [17] proposed a two-stage dynamic 
lot-sizing problem with transport, but the deterioration rate of the commodity 
was not considered. Thus, future research may include the transport cost of the 
proposed problem. 
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Abstract 

A two dimensional finite element model (FEM for short) of the 
cornea is implemented. Various patterns of corneal geometry 
and decomposition of corneal tissue are simulated to obtain the 
resulting curvatures. In addition, LASIK incisions are calculated 
on models of normal and keratoconus affected corneas to 
observe the occurring deformations. 
  
Key words: template, instructions 
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1. Introduction 

Good understanding of the mechanics of the human cornea is essential for the 
correction of refractive errors by means of surgery as well as for the recognition 
and treatment of diseases like e.g. keratoconus. In order to investigate the corneal 
behavior and to try to predict the outcome of operations and diseases researchers 
have created a great number of eye models in the recent two decades. 
 
It is commonly accepted that the finite element method (FEM) is the best way to 
analyze the mechanics of the human eye. Simulations have been carried out not 
only for the cornea, but also for other parts of the eye such as the lens. For the 
sake of simplicity the first FEM-models of the cornea contained several 
assumptions and abstractions. Using two-dimensional models, just implementing 
a linear elastic material model and including only the cornea into the model can 
be an appropriate approximation for several purposes.  However, the more 
realistic the model is the more authentic are the results of the analysis. Therefore, 
scientists went over to designing 3D models, employing hyperelastic and 
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2D FEM CORNEA SIMULATION 
 

anisotropic material behavior and modeling the cornea in conjunction with the 
limbus and the sclera. 
 
The aims of the simulations have been to investigate amongst others the 
astigmatic change in shape of the cornea after making incisions which were 
representative for various types of operations such as e.g. cataract surgery [8] or 
arcuate keratotomy [16]. Also the resulting corneal curvature after LASIK surgery 
has been examined, for example by Cabrera Fernández et al. [6] and Argento, 
Cosentino, Darchuk and Elvira [2]. Other authors focused their work on the 
emergence of keratoconus. Pandolfi and Manganiello [18] as well as Carvalho et 
al. [7] modeled the formation of keratoconic ectasia by locally changing the 
mechanical properties of the corneal tissue. In both works anisotropic material 
behavior of the corneal tissue was implemented in 3D models of the cornea. 
Lanchares Sancho [15] additionally included the limbus and the sclera in her 
model. This listing of studies is not all-encompassing, but intends to give a short 
overview. 
 
This paper aims to be a first step to drive forward the investigation of the 
keratoconus disease in its initial stage. Detecting subclinical keratoconus or 
keratoconus in early stages is of great interest because it allows us to start 
treatment of the disease in its early stages. Furthermore, detection of keratoconus 
is important and valuable information when it comes to consider a refractive 
surgery. In this case it is also interesting to predict what would happen to a cornea 
with initial keratoconus if a surgery would be performed. Although keratoconus in 
an advanced stage can be certainty recognized, it is still complicated to diagnose 
the disease in very early stages when patients do not yet suffer from any 
symptoms. Moreover, there are no clear threshold criteria to distinguish between 
normal eyes and eyes with subclinical keratoconus [4] being nowadays a relevant 
case study. Against this background, this work is a preliminary step which intends 
to improve the understanding of the biomechanical mechanisms of the process of 
formation of keratoconus and other cornea deformations.  
 
On taking this step in this work a 2D-FEM model of the cornea is presented in 
order to investigate both the natural and the post-LASIK deformation of the 
cornea. For this, among other things, a study of different boundary conditions at 
the limbus is done to investigate how they affect to the mechanical behavior of the 
cornea. Furthermore, the influence of the initial form of the cornea on the 
outcome of the simulations is also considered, since there are distinct 
approximations of the corneal surface in literature. 
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2. Two dimensional FEM model of the cornea. 

   
Material characteristics. 
 
For the simulations of the cornea the finite element analysis software 
Abaqus/CAE Student Edition 6.9-2 (Dassault Systèmes Simulia Corp.) was used 
in which an isotropic hyperelastic material model of the stroma was implemented. 
Although the true the stroma is anisotropic, the assumption of isotropy was made 
to simplify the modeling process in this initial step we present here. The 
implementation of the relastic material model was done by using the Odgen strain 
energy potential [9]. In order to enable Abaqus to calculate the coefficients test 
data had to be provided. For this the stress-strain function of Cabrera Fernández et 
al. [6] has been used. Furthermore, the assumption of almost incompressibility 
was made and several material characteristics have been used to simulate different 
stages of deterioration. 
 
Geometry of the mocel. 
 
 The model of the cornea here  implemented for the simulations is, of course a 
great simplification of the real human cornea. However, it should serve to have a 
first glance on the emergence of keratoconus and the impact of refractive surgery. 
Although these procedures in reality are three-dimensional, their fundamental 
mechanisms can be analyzed in 2D as well.  
 
On the other hand, since the cornea is the element of interest in this work, only the 
cornea and limbus are included in the model. This implies that a set of numerical 
experiments has to be performed to choose the boundary conditions on the limbus 
in such manner that they have the same influence on the cornea as it would have 
the sclera (if the whole 3D eye is considered). This matter will be discussed in 
section 3.4. 
 
Furthermore, it had to be considered which layers of the cornea should be 
integrated into the model. In an initial study a model containing the three biggest 
layers, which are epithelium, stroma and endothelium, was implemented. A linear 
elastic behavior with Young’s modulus 0.02 MPa and Poisson’s ratio 0.49 was 
assigned to epithelium and endothelium. However, as compared with a model 
which only comprised the stroma, there was nearly no change in the mechanical 
behavior. The difference in the elevation of the corneal apex when applying the 
intraocular pressure has been checked to be of the order of magnitude of 1 μm. 
This is equal to only 0.136% of the total displacement. Therefore, to perform the 
final simulations here we consider here models containing only the stroma. This 
approach is common in literature, too. 
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The physiological conditions of the cornea result from applying the intraocular 
pressure to its interior surface. The in vivo shape of the anterior corneal surface is 
described for example by Lanchares [15]. In order to obtain this shape after the 
application of the pressure in a first step, the initial stress-free ex vivo form (less 
“curved” than the real one)  has to be chosen in such a way that the application of 
intraocular pressure leads to a realistic in-vivo form. By carrying out a complex 
iterative analysis process the ex vivo shape could be determined exactly. In this 
work the ex vivo form of the model which corresponds to an in vivo shape which 
is very similar to the one mentioned by Lanchares was obtained by means of a 
trial-and-error process. The boundary conditions applied hereby were those of 
constraining the limbus in displacement Figure 3.1 depicts the two states of the 
model. 
 

 

 
Figure 2.1: top: Model in the ex vivo state; 

bottom: Model in the in vivo state 
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Figure 3.3: Cornea anterior surface of the model  

compared to the Lanchares model [15]. 
 

Figure 2.2 shows the ex-vivo form of anterior surface of the cornea in our model 
and a comparison between the in-vivo forms of Lanchares [15] and the one 
produced by our model, being apparent that both are almost indistinguishable. 
 
Boundary conditions. 
 
The finite element model contains the cornea and the limbus which are fastened 
together by a TIE-constraint. This type of constraint fuses together surfaces of 
two distinct regions of a model even though they have different meshes on the 
connected surfaces [10]. The sclera, however, is not included in the model. 
Hence, before applying the intraocular pressure, the model has to be fixed in a 
certain way by applying boundary conditions to the surface of the limbus. Ideally, 
the boundary conditions should have the same influence on the limbus and the 
cornea as it would have the sclera in a complete model of the eyeball. 
 
The sclera is much stiffer than the cornea. The limbus forms the part between 
these two elements in which the stiffness increases. In order to account of this 
mechanical property five consecutive partitions with distinct stiffness were 
defined on the limbus as depicted in figure 2.3. In the absence of concrete data 
about the rigidity of the sclera the following linear elastic material behavior was 
chosen: Poisson’s ratio is 0.49 for all the layers, while distinct values of Young’s 
modulus were assigned to the layers. Each of these regions has a length of 0.040 
mm and a width of 0.620 mm. 
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Figure 2.3: Picture detail of the model showing the partitions with distinct stiffness on 
the limbus: The value increases from the cornea to the sclera. 

 
Up to now, many researchers have either decided to fix the border of their models 
(containing limbus and cornea or only the cornea) by constraining the 
displacement of the nodes on the boarder to zero. Or they avoided the problem of 
choosing adequate boundary conditions on the limbus by modeling the whole 
ocular globe. The latter way is clearly the better one, but of course much more 
complicated. 
 
In this work several approaches regarding the boundary conditions on the limbus 
were realized, compared and implemented in the simulations. Firstly, the limbus 
was fixed by prohibiting displacement of the surface nodes as mentioned above. 
This is the simplest possible type of boundary conditions and it was used for the 
trial-and-error-process to adjust the pressure-free ex vivo shape of the model. The 
reason for choosing this type of boundary conditions for the adjustment is that 
authors like Lanchares [15] or Pandolfi and Manganiello [18] had already proven 
their suitability for this purpose.  
 
As an alternative type of boundary conditions we also considered the possibility 
of giving the limbus movement more degrees of freedom in order to account for 
the fact that the sclera, although being much more rigid than the limbus and the 
cornea, does have certain flexibility and is also “inflated” by the intraocular 
pressure, too. That means that the sclera has also an ex vivo and an in vivo state as 
well, even though the difference between them might be very small. Thus, to 
connect the limbus to mechanical spring elements in the simulations to give it 
more degrees of freedom were implemented. Figure 2.4 illustrates this concept. 
Since this approach was completely new, some reasonable assumptions had to be 
made for the definition of the springs. For the implementation of the springs the 
instances of the limbus in the model were connected to the ground by connectors 
of the type cartesian with linear elastic properties.  
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Figure 2.4: Connection of the limbus to the sclera modeled by spring elements 

 
The connectors have two degrees of freedom which means that their ends 
connected to the limbus can move in all directions in the plane of the 2D 
simulation. Two uncoupled spring stiffness coefficients for different behavior in 
perpendicular directions were defined. For this the coefficient in the direction 
tangential to the stroma (and to the not modeled sclera) was considered to be 5 
times bigger than the coefficient in the radial direction which is perpendicular to 
the stroma because the sclera mechanically is a thin shell whose in-plane stiffness 
is supposed to be significantly bigger than its outof-plane stiffness. Various 
models with 1, 3 and 5 springs on each instance of the limbus were created. 
 
After defining the boundary conditions, one shoul apply (“load”) the intraocular 
pressure for the simulations.  Its value is assumed to be 15 mmHg, which is equal 
to 0.002 MPa. As the intraocular pressure normally ranges from 10 to 21 mmHg 
[15], this value is a good average and is commonly used for simulations in 
literature, too. Before carrying out the simulations of stroma degradation and 
LASIK, some initial analyses were realized to investigate the influences of 
variations of various parameters on the designed model. 
 
• Spring(s) vs. fixed limbus: Connecting the limbus to springs instead of 
constraining all the nodes on its radial surface in displacement gives the limbus 
and the cornea the possibility to rotate. Thus, the in vivo shape of the cornea is a 
little bit more bellied at its sides and shows more displacement along the optical 
axis. This effect is most pronounced with only 1 spring on each instance of the 
limbus. The difference between 3 and 5 springs is very small. In both cases the in 
vivo shape is something in between the cases of a fixed limbus and 1 spring (see 
figure 2.5). 
 

@CMMSE                                 Page 1670 of 1703                                 ISBN: 978-84-614-6167-7



2D FEM CORNEA SIMULATION 
 

 
Figure 2.5: Influence of various boundary conditions on the in vivo state of the model 

(The effects on the posterior surface of the model are very similar.) 
 

• Spring coefficients: Varying the radial coefficient(s) of the spring(s) has no 
influence on the in vivo state of the cornea. An alteration of the coefficient(s) for 
the tangential direction influences the displacement along the optical axis. 
 
• Value of the intraocular pressure: For all types of boundary conditions on the 
limbus the resulting form of the in vivo cornea remains fairly similar. Even if the 
intraocular pressure is doubled to 30 mmHg there is no difference in this trend. 
 
• Epithelium and endothelium: There is no significant difference in the corneal 
behavior if the epithelium and the endothelium are removed. Of course, the 
stroma is the most important element. 
• Ex vivo geometry: As it could be expected, small changes in the initial form only 
lead to similar small changes of the deformed corneal shape, too. There are no 
“surprises”. In order to analyze the order of magnitude of the influence of the 
above mentioned alterations of several parameters of the model a comparison of 
the values of the displacement of the corneal apex was performed. In the first part 
the thickness of the model was altered. In the second part the boundary conditions 
on the limbus were varied. The value of the thickness alteration was assumed to 
5% because the thickness assumptions in literature vary in approximately this 
range. See for example [15] and [18]. What has bveen observed is that the effects 
of changes of the boundary conditions are significantly bigger than the effects of 
changes of the stromal-thickness. Therefore, the boundary conditions should be 
chosen carefully depending on the modeled situation. 
 

3. Simulation of stroma degradation. 

In this work the stroma degradation was modeled as a local loss of stiffness in 
certain regions of the stroma. For this, the position and the size of the affected 
region and additionally the grade of deterioration of the stromal tissue was altered 
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in various simulations to examine the dependency of the cornea deformations on 
these parameters. 

 

 
Figure 3.1: Different positions of the degradation regions on the model  

used in distinct simulations (size of the regions: medium) 
 

The protrusion of keratoconus type deformations usually emerges outside of the 
corneal center. Therefore, two distinct positions of the degradation region on the 
side of the stroma were selected for the analyses. These positions are depicted in 
figure 3.1. As can be seen the degradation regions were modeled by elliptic 
partitions. 
 
To account for various grades of deterioration of the affected material three 
different material types has been considered, corresponding to stiffness which are 
equal to 50%, 20% and 10% of the surrounding healthy stroma, respectively. 
In order to simulate the formation of keratoconus like deformations in the most 
realistic way various steps were included in the numerical experiments. The aim 
was to establish the in vivo state of the healthy cornea model at first. 
Subsequently, the deterioration of the stroma in the affected region was realized, 
just like it happens in nature as well. To do this in Abaqus for every distinct 
simulation of stroma degradation an elliptic hole was created in the stroma 
corresponding to the dimensions of the desired region of deteriorated tissue. In 
addition, two new elliptic parts of the same dimensions were generated. The 
material properties of the healthy tissue were assigned to one of them, the other 
part got the properties of the deteriorated tissue. 
 
One instance of both parts was inserted into the assembly of the model at the position of 
the hole in the stroma so that they were lying one on top of the other. Of course, during 
the simulation never both of these two instances were activated at the same time, but it 
was switched between them. Each of the two instances was tied to the stroma by using a 
TIE-constraint. To define the sequence of the simulation properly actually four steps 
were needed: 
 
• Initial Step: The boundary conditions on the limbus instances are defined. 
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• Step 1: The elliptic part with the deteriorated material is excluded from the analysis and 
then the intraocular pressure is applied. The result of this step is the in vivo state of the 
healthy cornea. 
 
• Step 2: The elliptic healthy part is removed, too. 
 
• Step 3: The elliptic deteriorated part is added again. This gives the final result of the 
analysis. 
 
The result of this simulation procedure for a model with a big degradation region which 
has a 10% deterioration is shown in figure 3.2. It can be seen that a slight protrusion of 
both the anterior and the posterior surface of the stroma is formed under the influence of 
the intraocular pressure. 

 

 
Figure 3.2: Simulation of a big degradation region with a 10% deterioration; 

top: Healthy cornea in the in vivo state;  
bottom: Deteriorated cornea in the in vivo state (color: von Mises stress) 

 
An alternative to this complex procedure is to define just one single degradation partition 
on the stroma right at the beginning and to apply the intraocular pressure directly to the 
final assembly. This is not what happens in patients wiht keratoconus type deformations, 
however, it leads to a very similar result of the analysis. It turned out that the difference 
in displacement between the results of the two distinct ways of simulating is only of the 
order of magnitude of 10^−5 mm even in the worst case of a big degradation region and a 
deterioration. Thus, it can be concluded that it is not worthy to implement the more 
complex simulation procedure. 
 
 

@CMMSE                                 Page 1673 of 1703                                 ISBN: 978-84-614-6167-7



2D FEM CORNEA SIMULATION 
 

4. Simulation of lASIK surgery. 

 
For the investigation of the effects of a LASIK surgery on the cornea various 
simulations of surgical correction of myopia were carried out. Tissue has to be 
ablated in the center of the cornea for this purpose. Several values of the ablation 
depth, t0, has been considered, corresponding to levels of myopia of −2 D, −4 D, 
−6 D, −8 D and −10 D, respectively. The diameter of ablation and the refractive 
index were assumed to be  6 mm and 1.377.  In the simulations actually not the 
operation itself (creating the flap, ablating the tissue and repositioning the flap) 
but the changes on the corneal tissue which are caused by the LASIK operation 
were modeled. In other words, the transformation of the cornea froma pre-surgery 
state into the post-surgery state was simulated by realizing a change in its 
geometry (thickness). For this it was assumed that the ablation of a layer with the 
thickness t0, which in reality is carried out on the tissue under the flap, would 
result in a post-surgery cornea whose total thickness has decreased by t0. This 
assumption consequently indicates the form of the residual anterior corneal 
surface. For a realistic simulation of LASIK surgery with Abaqus the following 
proceeding was carried out. On the basic model of the healthy ex vivo cornea an 
additional partition was defined (see figure 4.1). This partition had the same 
material characteristics as the rest of the cornea and represented the material 
which had to be removed later on during the surgery. Similar to the course of 
action in the stroma degradation simulations, several steps of simulation were 
defined for the LASIK surgery as well. This served to initially establish the in 
vivo state of the complete cornea before realizing the ablation under physiological 
conditions. After removing part of its structure the cornea deformed again and 
ended up in its final post-LASIK state.  
 

 
Figure 3.12: Partition for the ablation of corneal tissue in a simulation  

of LASIK surgery (refractive correction: 10 D) 
 
The distinct steps of the simulation are: 
• Initial Step: The boundary conditions on the limbus instances are defined. 
 
• Step 1: The intraocular pressure is applied to the entire model. The result of this 
step is the in vivo state of the cornea. 
 
• Step 2: The predefined partition representing the tissue to be ablated is excluded 
from the simulation. This causes further deformation and leads to the final result. 
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As described above, the partition which determined the ablation area and thus also 
the residual new surface of the cornea was defined already on the un-deformed ex 
vivo shape. There is no other way to do this in Abaqus. It was decided to use an 
ellipse for this purpose whose parameters were adapted to the depth of ablation t0 
in each distinct case. However, in order to define the ellipse properly several 
restrictions were needed. Firstly, two points which had to be included in the 
ellipse were already given: the central apex point, which is positioned in the 
distance t0 under the former corneal apex, and the intersection point of the former 
anterior corneal surface with the 3 mm radius of the ablation region (S = 6 mm). 
Secondly, mirror symmetry of the partition with respect to the vertical axis was 
demanded. Yet, one more condition was still missing. Therefore, two different 
approaches were made to overcome this problem. One approach was to choose 
arbitrarily just any ellipse which fulfilled the given conditions. The other 
approach was to demand that the transition from the ablation region to the rest of 
the anterior corneal surface should be smooth, that means that the first derivatives 
of the curves should be equal at the intersection point. By means of this additional 
restriction the corresponding ellipse was perfectly defined, its semi-axes could be 
calculated and the partition line could be constructed in Abaqus. 
 
After carrying out the first LASIK simulations it was concentrated on the 
correction level of 10 D using the two distinct forms of the ablation because it 
became apparent that the disorder induced into the stromal structure by a LASIK 
surgery had to be relatively big to provoke the emergence of keratoconus like 
deformations, if this should be possible to do with the model at all. 
 
The already mentioned distinct possibilities to design the simulation process are 
generally valid for the simulations of LASIK, too. That is, the difference between 
carrying out all the three steps of the analysis mentioned above in order to realize 
the ablation on the in vivo cornea and, on the other hand, realizing the ablation 
already on the ex vivo cornea before applying the intraocular pressure is 
negligible. Therefore, it can be recommended for further investigations to follow 
the simpler way of designing the simulation procedure by cutting the model 
already in its ex vivo state before applying the intraocular pressure. 
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Abstract

Many physical or biological phenomena deal with the dynamics of interacting
particles (of inert matter or living being). These classes of phenomena are well
described in physics using a kinetic approach based on Boltzmann equation and
in biology with a generalized kinetic theory (kinetic theory for active particles).
In general, the analytical solutions of the related models are missing thus become
extremely relevant the development of numerical approaches. The particle method
are a class of numerical methods used to find a numerical solution of Boltzmann
equations. The MWF-method for kinetic equations was firstly proposed by S.
Motta and J. Wick in 1992 and recently generalized for the equations system case.

The aim of this talk is to overview the method and its applications in biology,
physics and astronomy.

Key words: Numerical Methods, Particles, Linear Collision Kernel
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1 Introduction

Both analytical and numerical methods are frequently proposed to approximate solu-
tions of the Boltzmann equation, and more in general kinetic equations [1, 2]. In the
last three decades, particle methods represented a class of numerical methods widely
used for Vlasov equation [3, 4]. Deterministic particle methods use particles as quadra-
ture nodes for computing an approximate solution of the collision integral. In classical
deterministic particles methods, particles are kept fixed in the velocity space and the
evolution is reflected in changing their weights in time.
A new approach was presented by Motta and Wick in the MWF-method [5] and a new
formulation, oriented to implementation purpose, was presented by Motta [6, 7]. The
basic idea of the method consists in rewriting the collision kernel as divergence of a flux
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and formally transform the kinetic equation with collision into a system of a collision-
less kinetic equation (Vlasov equation) and the divergence equation for the flux with
appropriate boundary conditions. At each time step the flux is computed at a finite set
of particle points which are the quadrature points. Then the collision induced velocity
vector is computed and added to the Vlasov equation which is solved numerically with
an upwind scheme. For this reason the method is referred as the MWF-method (Motta-
Wick Flux method). When the density function is approximated with a finite set of
points with equal weight (moving particles) using Dirac-δ functions, and these points
are chosen as quadrature nodes, then the Vlasov equation can be used to compute the
particle motion and, consequently, the evolution of the density distribution. In this
form, the method belongs to the class of the meshfree methods [8], which have been
widely used mostly in fluid-dynamics and solid mechanics. The method was tested in
different simple scenarios: for semiconductor kernels in 2D and 3D [9, 10]. Comparison
with other particle methods was presented by Wick [11].
The MWF-method was recently extented to kinetic equation system [12] to provide
a numerical tool for scenarios, like those occurring in biology, were many equations
may be required [13]. A formal convergence proof of the method for the homogeneous
one-dimensional case is published in [14].

2 The Method

Let x = (x1, x2, x3) ∈ Ωx ⊂ R3 be a typical point in space, v = (v1, v2, x3) ∈ Ωv ⊂ R3

a typical point in velocity, t ≥ 0 a typical time and Ω = Ωx × Ωv. The function space
M(Ω) defined as

M(Ω) =
{

f(x, v, t) : Ω× [0,∞) → R+,

∫

Ω
f(x, v, t) dx dv = 1

}
, (1)

and equipped with the Chebichev norm

‖f‖∞ = sup
(x,v)∈Ω

|f(x, v, t)|,

is a normed space. Assume f ∈ M(Ω) is a solution of the following first-order, semi-
linear partial differential kinetic equation

∂tf + div(x,v)(f (u, F )) = Q(f), (2)

where
u(v) : Ωv → R, F (x, t) : Ωx × [0,∞] → R,

and the inhomogeneity Q(f) : M(Ω) → L1(Ωv) is a collisional operator which describes
short range interactions and satisfies the conservation hypothesis

∫

Ωv

Q(f) dv = 0. (3)
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We associate to the equation (2) an initial condition f0(x, v) ∈M(Ω) such that

f(x, v, 0) = f0(x, v).

The latter choice and the conservation property (3) guarantees that the solution f
belongs to the space M(Ω) for all times. Then f(·, t) can be interpreted as the density
of the probability measure µ(t).
The MWF method consists in rewriting the equation (2) in a conservation law in
divergence form redefining the collisions as a flux. To do that one rewrites the collision
term Q(f) as divergence of a flux ψ(v, t) = (ψ1(v, t), ψ2(v, t), ψ3(v, t)) : Ωv×[0,∞) → R3

divvψ = −Q(f), (4)
ψ · nΩv = 0, v ∈ Ωv. (5)

with ψi(v, t) : Ωv× [0,∞) → R, i = 1, 2, 3, and formally transform the problem in a col-
lisionless one. Moreover the boundary condition guarantees the conservative property
of the system.

The definition of ψ is not unique. Indeed if ψ satisfies (4), for every vector field χ,
the vector field

ϕ = ψ +∇× χ,

will satisfy (4) as well. This is a trivial consequence of the fact that ∇ · (∇× χ) = 0.
Nevertheless, the results obtained using the MWF method do not depend on the choice
of a particular gauge in definition (4). The associated ”velocity vector” g is given
according to ∫

B
f g dv =

∫

B
ψ dv, (6)

for all Borel sets B ⊂ Ωv. In particular, if we consider

Ii
[αi,βi]

= {v ∈ Ωv : αi ≤ vi ≤ βi}, i = 1, 2, 3,

we obtain ∫

Ii
[αi,βi]

ψi dv = −
∫

Ii
[αi,βi]

(∫ vi

αi

Q(f) dv′i
)
dv.

The left hand side of (6) can be evaluated by using a suitable integration formula in
each interval Ii

[αi,βi]
. Taking the above considerations into account, the equation defined

in (2) thus reads
∂tf + div(x,v)(f (u, F )) + divvψ = 0, (7)

or
∂tf + div(x,v)(f (u, F + g)) = 0. (8)

The last equation is formally identical to a Vaslov equation. Since the element of g is
added to the given vector field, only the computation of g is needed.
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3 The Algorithm

The MW-method can be summarized as follows:

1. Construct the initial distribution;

2. Identify the particles belonging to each spatial subdomain;

3. For each spatial subdomain:

a) compute the quantity

Ψi = −
∫

Ii
[αi,βi]

(∫ vi

αi

Q(f) dv′i
)

dv;

b) compute the induced force field g on the particles;

4. Compute the force F acting on the particles;

5. Compute the new particles positions in the phase space with

xn+1 = xn + vn∆t (9)
vn+1 = vn + (Fn + gn)∆t (10)

and, if time is less than tfinal, go back to STEP 2, else stop.

It is worth precising that STEP 1 and 4 can be performed using different strategies and
algorithm which are well note in the literature [15].

Acknowledgements

CB was partially supported by the FIRB project-RBID08PP3J-Metodi matematici e
relativi strumenti per la modellizzazione e la simulazione della formazione di tumori,
competizione con il sistema immunitario, e conseguenti suggerimenti terapeutici.

References

[1] C. Ringhofer, Dissipative discretization methods for approximations to the Boltz-
mann equation, Math. Models Methods Appl. Sci., 12 (2001) 133-148.

[2] C. Ringhofer, An entropy-based finite difference method for the energy transport
system, Math. Models Methods Appl. Sci., 11 (2001) 769–795.

[3] H. Neunzert and J. Struckmeier, Particle methods for Boltzmann equation,
Acta Numerica 4 (1995) 417-457.

[4] P.A. Raviart, An Analysis of Particle Methods, in Numerical Methods
in Fluid Dinamic (edited by F. Brezzi), Springer Lecture Notes in Math., 1127
(1985) 243–324.

@CMMSE                                 Page 1681 of 1703                                 ISBN: 978-84-614-6167-7



Carlo Bianca, Santo Motta

[5] S. Motta, J. Wick, A new numerical methods for kinetic equations in several
dimensions, Computing, 46 (1991) 223–232.

[6] S. Motta, A new formulation and gauge invariance of the MW-CRF method for
kinetic equations, Mathematical and Computer Modelling, 36 (2002) 403–410.

[7] S. Motta, Energy conservation property of the MW-CRF deterministic particle
method, Applied Mathematics Letters, 16 (2003) 287–292.

[8] T. Belytschko, J. S. Chen, Meshfree and particle methods, John Wiley and
Sons Ltd, (2007).

[9] C. Barone, S. Motta, The CRF-Method for semiconductors’ intravalley colli-
sion kernels: I - The 2D case, Le Matematiche, XLVII (I) (1992) 163–175.

[10] C. Barone, S. Motta, The CRF-method for semiconductors’ intravalley colli-
sion kernels: II - The 3D case, Le Matematiche, XLVIII (I) (1993) 109-122.

[11] J. Wick, Numerical approaches to the kinetic semiconductor equation, Computing,
52 (1994) 39–49.

[12] C. Bianca, F. Pappalardo, and S. Motta, The MWF method for kinetic
equations system, Comp. & Math. Appl, 57 (2009) 831–840.

[13] C. Bianca, N. Bellomo, Towards a Mathematical Theory of Complex Biological
Systems, World Scientific Publishing, (2011).

[14] C. Bianca, S. Motta, The MWF method: a convergence theorem for homoge-
nous one-dimensional case, Comp. & Math. Appl, 58 (2009) 579–588.

[15] R. W. Hockney, J. W. Eastwood, Computer Simulations Using Particles,
Adam Hilger, (1988 ).

@CMMSE                                 Page 1682 of 1703                                 ISBN: 978-84-614-6167-7



Proceedings of the 11th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2011
26–30 June 2011.

Numerical analysis of a mixed kinetic-diffusion surfactant
model for the Henry isotherm
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Abstract

This paper deals with the numerical analysis of surfactants behavior at the air-
water interface, taking into account the mixed kinetic-diffusion model evolving to
the Henry isotherm. The existence and uniqueness of a weak solution is recalled.
Then, fully discrete approximations are obtained by using a finite element method
and the backward Euler scheme. Error estimates are stated from which, under
adequate additional regularity conditions, the linear convergence of the algorithm
is deduced. Finally, a numerical simulation is presented in order to demonstrate
the behavior of the solution for a commercially available surfactant.

Key words: Mixed kinetic-diffusion model, surface tension, surfactant, finite
element approximation, numerical simulations.

1 Introduction

The study of surfactant adsorption dynamics at the air-water interface has been re-
vealed as a determinant issue for its application in areas such as biochemistry, medicine,
agrochemistry, metallurgy, food processing and so on (see [1, 2, 8, 10, 13]).

The process consists in the incorporation of surfactant molecules to the new formed
surface in a surfactant solution, reducing drastically its surface tension, and it is mathe-
matically modeled by the partial differential equation of diffusion in one spatial dimen-
sion, considering either infinite or finite diffusion length, coupled with the corresponding
adsorption model by means of a suitable boundary condition at the subsurface, the un-
knowns being both bulk and surface concentration. The work of Ward and Tordai
(see [13]) pioneered a mathematical research concerned in achieving analytical solu-
tions for the diffusion controlled model considering infinite diffusion length and then
obtaining approximations for long and short times (see [7, 11]). Regarding the finite
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diffusion length and the nonlinear isotherms, numerical methods have been used to
approximate their solutions (see, for instance, [9]) but, to our knowledge, their nume-
rical analysis is nowadays an open problem. In this paper, we deal with the numeri-
cal analysis of the diffusion problem with finite diffusion length for the linear mixed
kinetic-diffusion model, evolving into the so-called Henry isotherm at equilibrium (the
diffusion-controlled model for this isotherm has been recently studied in [4]).

The outline of this paper is as follows. In Section 2, we briefly describe the mathe-
matical model and we introduce the variational formulation of the problem, for which
an existence and uniqueness result is recalled. Fully discrete approximations are in-
troduced in Section 3 by using a finite element method and the implicit Euler scheme
for the spatial and time discretizations, respectively. An error estimate result is stated
from which the linear convergence is deduced under suitable regularity assumptions.
Finally, in Section 4 a numerical example is shown to demonstrate the behavior of the
solution for a commercially available surfactant.

2 Statement of the problem. Mathematical model and
variational formulation

In order to introduce the whole dynamic process, it is important to take into account
the boundary called subsurface (see [1, 2]), which is located a few molecular diameters
below the air-water interface and splits the domain where only diffusion takes place
and the region in which only adsorption-desorption occurs.

Let us denote by x the distance from the interface and c(x, t) the concentration of
surfactant at point x ∈ [0, l] and time t ∈ [0, T ]. The boundary x = 0 of the spatial
interval corresponds to the location of the subsurface. Denoting by Γ(t) the time-
dependent surface concentration and taking into account the Fick’s law, we consider
the diffusion partial differential equation:

∂c

∂t
(x, t)−D

∂2c

∂x2
(x, t) = 0, x ∈ (0, l), t > 0, (1)

together with the boundary conditions (see [1, 10]):

D
∂c

∂x
(0, t) =

dΓ
dt

(t), t > 0, (2)

c(l, t) = cb, t > 0, (3)

and the initial conditions:

c(x, 0) = c0(x), x ∈ (0, l), (4)

Γ(0) = Γ0. (5)

In equations (1)-(3), D is the diffusion coefficient and the positive constant cb is the
bulk concentration. Besides, c0(x) is a function defined in [0, l] and being equal to cb
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on x = l. We remark that the surface concentration, Γ, actually becomes an unknown
of the system and then an additional condition must be given in order to close the
problem. Hereafter, we consider the simplest linear kinetic expression modeling the
mass transfer between the surface and subsurface at low concentrations, which leads to
the following ordinary differential equation (see [1, 12]):

dΓ
dt

(t) = ka
H c(0, t)− kd

H Γ(t), (6)

where ka
H and kd

H are the adsorption and desorption constants, respectively. At equilib-
rium or steady-state, dΓ/dt = 0 and, from equation (6), the classical Henry isotherm
is recovered.

Moreover, assuming regularity, the previous ODE together with the initial condition
(5) can be straightforwardly integrated and boundary condition (2) reads

D
∂c

∂x
(0, t) = ka

H c(0, t)− φ(t, c(0, ·)), (7)

where

φ(t, ζ) = kd
H Γ0 e−kd

H t + kd
H ka

H e−kd
H t

∫ t

0
ekd

Hτζ(τ)d τ. (8)

We are now concerned in analyzing problem (1), (3) and (4), together with the
new boundary condition (7). Moreover, for the sake of clarity in the presentation, and
in order to simplify the presentation of the next section, we assume that cb equals zero
and so a homogeneous boundary condition is imposed on the right end of the spatial
interval.

Multiplying equation (1) by a smooth function z defined in [0, l] such that z(l) = 0,
integrating in (0, l) and using the integration by parts formula and equation (7), we
obtain, for a.e. t ∈ [0, T ],

∫ l

0

∂c

∂t
(x, t)z(x)dx +

∫ l

0
D

∂c

∂x
(x, t)

∂z

∂x
(x)dx + ka

H c(0, t) z(0) = φ(t, c(0, ·)) z(0).

Let V be the Hilbert space

V = {v ∈ H1(0, l); v(l) = 0},

endowed with the inner product

((v, w)) =
∫ l

0

∂v

∂x

∂w

∂x
dx,

and the associated norm ‖v‖V = ((v, v))1/2. We denote by γ0 : H1(0, l) → R the trace
operator on x = 0. Furthermore, we recall the inner product in H = L2(0, l) given by

(v, w)H =
∫ l

0
v(x) w(x)dx,
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with associated norm ‖v‖H = (v, v)1/2
H . Moreover, we consider the Hilbert space V =

L2(0, T ; V ) with dual space V ′ = L2(0, T ; V ′) together with

W2(0, T ; V ) = {v ∈ L2(0, T ; V ); v̇ ∈ L2(0, T ; V ′)},

where we denote the time derivative by a dot above. We now state the weak formulation
of problem (1), (3), (4) and (7).

Problem P. For a given c0 ∈ H, find a function c ∈ W2(0, T ;V ) such that

〈ċ(t), v〉V ′×V + D ((c(t), v)) + ka
H γ0(c(t)) γ0(v) = φ(t, γ0(c)) γ0(v),

for a.e. t ∈ (0, T ), ∀v ∈ V, (9)
c(0) = c0. (10)

The existence and the uniqueness of solution to Problem P is given in the next theorem.
Its proof is based on classical results for linear parabolic equations and fixed-point
techniques (see [5] for details).

Theorem 2.1 Let ka
H , kd

H and D be positive constants. If c0 ∈ H then there exists a
unique solution c ∈ W2(0, T ;V ) to Problem P.

3 Fully discrete approximations: numerical analysis

In this section, we now consider a fully discrete approximation of problem (9)-(10),
taking into account a finite-dimensional space V h ⊂ V to approximate the space V,
obtained, for instance, by using a finite element method. Here, h > 0 denotes the
spatial discretization parameter. Besides, we consider a partition of the time interval
[0, T ], denoted by 0 = t0 < t1 < · · · < tN = T . In this case, we use a uniform partition
of the time interval [0, T ] with step size k = T/N and nodes tn = nk for n = 0, 1, . . . , N .
For a continuous function z(t), we use the notation zn = z(tn) and, for the sequence
{zn}N

n=0, we denote by δzn = (zn − zn−1)/k its corresponding divided differences.
Therefore, using the backward Euler scheme, the fully discrete approximations are

considered as follows.
Problem Phk. Find chk = {chk

n }N
n=0 ⊂ V h such that

chk
0 = ch

0 , (11)

and, for n = 1, . . . , N and for all vh ∈ V h,

(δchk
n , vh)H + D ((chk

n , vh)) + ka
H γ0(chk

n ) γ0(vh) = φhk
n−1 γ0(vh), (12)

where ch
0 ∈ V h is an appropriate approximation of the initial condition c0 and

φhk
n−1 = kd

H Γ0 e−kd
H tn + kd

H ka
H k

n−1∑

j=0

ekd
H(tj−tn)γ0(chk

j ). (13)
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Under the assumptions of Theorem 2.1 and using Lax-Milgram theorem, we easily
deduce the existence of a unique discrete solution to Problem Phk.

In the sequel, we present some error estimates for the difference cn− chk
n assuming

the following additional regularity:

c ∈ C([0, T ]; V ) ∩ C1([0, T ]; H). (14)

Applying a discrete version of Gronwall’s inequality (see [6]), after some tedious
algebraic manipulations (see [5] for details) we have the following result which states
some a priori error estimates on the approximate solutions.

Theorem 3.1 Under the assumptions of Theorem 2.1 and assuming that regularity
condition (14) holds, there exists a positive constant β > 0, independent of the dis-
cretization parameters h and k, such that the following error estimates are satisfied for
all {vh

n}N
n=1 ⊂ V h,

max
0≤n≤N

‖cn − chk
n ‖2

H + k
N∑

j=0

[
D‖cj − chk

j ‖2
V + α|γ0(cj − chk

j )|2
]

≤ β
[
‖c0 − ch

0‖2 + max
1≤n≤N

{‖ċn − δcn‖2
H + ‖cn − vh

n‖2
V + I2

n}

+
N−1∑

j=1

1
k
‖cj − vh

j − (cj+1 − vh
j+1)‖2

H

]
, (15)

where δcn = (cn − cn−1)/k and the integration error In is given by

In = ka
Hkd

H e−kd
H tn

∣∣∣
∫ tn

0
ekd

Hτγ0(c(τ)) dτ −
n−1∑

j=0

k ekd
H tjγ0(c(tj))

∣∣∣.

Estimates (15) are the basis for the convergence analysis. From now on and in order
to approximate the space V , we consider the finite element space V h defined in the
following form:

V h = {vh ∈ C([0, l]) ; vh
|[ai−1,ai]

∈ P1([ai−1, ai]), for i = 1, . . . ,M,

vh(l) = 0}, (16)

where the spatial discretization of the interval [0, l] is given by 0 = a0 < a1 < . . . <
aM = l and h = l/M . Moreover, P1([ai−1, ai]) denotes the set of polynomials of degree
less or equal to one in the interval [ai−1, ai], i = 1, . . . ,M , and let us assume further
regularity conditions on the solution to the continuous problem:

c ∈ C([0, T ]; H2(0, l)), ċ ∈ L2(0, T ; V ), c̈ ∈ C([0, T ];H). (17)

Corollary 3.2 Under the assumptions of Theorem 3.1 and the additional regularity
conditions (17), the linear convergence of the algorithm is obtained; i.e. there exists a
positive constant β > 0, independent of h and k, such that

max
0≤n≤N

‖cn − chk
n ‖H ≤ β (h + k).
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4 Numerical results

In this section, we first describe the numerical scheme implemented in MATLAB in
order to obtain the numerical approximations of Problem Phk and then, we present
some numerical results to exhibit its behavior in the simulation of a commercially
available surfactant.

Considering the finite element space defined in (16), for n = 1, 2, . . . , N and given
chk
n−1 ∈ V h, the discrete concentration at time t = tn of surfactant, chk

n , is then obtained
from equation (12) solving the problem:

(chk
n , vh)H + D k ((chk

n , vh)) + ka
H k γ0(chk

n ) γ0(vh)
= (chk

n−1, v
h)H + k φhk

n−1 γ0(vh), ∀vh ∈ V h,

where value φhk
n−1 is given in (13). This leads to a linear system which is solved by

using classical Cholesky’s method. This numerical scheme was implemented on a 3.2
Ghz PC using MATLAB, and a typical 1D run (h = k = 0.01) took about 0.6 seconds
of CPU time.

4.1 Simulation of hexanol

As an example, we consider a dilute solution of the commercial alcohol hexanol, using
the data from references [1] and [12], namely:

cb = 3.44mol/m3, D = 7.16× 10−10m2/s, ka
H = 1.73× 10−4 m/s,

kd
H = 157 s−1, l = 10−6 m, T = 0.5 s, Γ0 = 0 mol/m2.

Moreover, the initial condition c0 is defined as c0(x) = cb for all x ∈ [0, 10−6].
Using the discretization parameters h = 10−8 and k = 10−4, the concentration at

final time and the evolution in time of the subsurface concentration are shown in Fig.
1.
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Figure 1: Concentration at final time (left) and evolution in time of the subsurface
concentration.
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Finally, the surface equation of state, relating the surface tension σ with the surface
concentration Γ, is given by

σ(t) = σ0 − nR T Γ(t),

where σ0 = 0.072N/m denotes here the surface tension of pure water, T = 293.71 K is
the temperature, R = 8.31 J/(Kmol) represents the gas constant and n is a constant
which is equal to one for a non-ionic surfactant. In Fig. 2 the evolution in time
of the surface tension obtained with our algorithm is shown (left) and also the one
obtained modeling the whole problem with Comsol Multiphysics (right), stating the
agreement of both results. Finally, we remark that these numerical calculations are in
good agreement with the experimental dynamic surface tensions of the hexanol solution
reported in Fig. 6 of [12].
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Figure 2: Comparison between the surface tension obtained with our algorithm (left)
and COMSOL (right), semi-log scale.

References

[1] C.H. Chang and E. I. Franses, Adsorption dynamics of surfactants at the
air/water interface: a critical review of mathematical models, data and mechanisms,
Colloids and Surfaces 100 (1995) 1–45.

[2] J. Eastoe and J. S. Dalton, Dynamic surface tension and adsorption mecha-
nisms of surfactants at the air/water interface, Adv. in Colloid Interface Sci. 85
(2000) 103–144.

[3] I. Egry, E. Ricci, R. Novakovic and S. Ozawa, Surface tension of liquid metals
and alloys Recent developments, Adv. Colloid Interface Sci. 159 (2010) 198-212.
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Abstract 

QNANO: computational platform enabling steps toward 
predictive calculations of electronic and optical properties of 
million atom semiconductor and graphene nanostructures is 
reviewed. 
 
Key words: semiconductor nanostructures, graphene, 
computational nanoscience 
 

1. Introduction 

The size of semiconductor and carbon-based nanostructures such as self-
assembled quantum dots, nanowires, nanocrystals and graphene nanostructures  
involving millions of atoms precludes calculation of their electronic properties 
using ab-initio methods, such as, e.g., GW-BSE approach. We discuss here one of 
the approximate methods, VFF-tb-CI, implemented in QNANO computational 
platform. QNANO combines six steps steps [1] (a) determination of all atomic 
constituents , (b) calculation of equilibrium position of atoms using valence force 
field model (VFF) (c) ab-initio calculation of electronic structure for strained bulk 
materials and determination of appropriate effective mass, k*p, or tight-binding 
Hamiltonian , (d) calculation of quasi-electron and quasi-hole states (equivalent to 
the GW step) using a linear combination of sp3d5s* atomic orbitals approach in a 
tight binding approximation (tb), (e)  inclusion of the effect of final state 
interactions by defining an effective Hamiltonian of interacting excited quasi-
particles, solved using the configuration interaction method (CI), and (f) 
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calculation of electronic and/or optical properties.  This methodology has been 
applied to strained InAs/GaAs and InAs/InP quantum dots, CdTe quantum dots 
containing magnetic ions, CdSe and PbSe nanocrystals and graphene 
nanostructures.   

2. Self-assembled quantum dots and nanocrystals  

For strained quantum dots the problem is a multi-scale problem, with strain 
extending over micrometers and electronic states confined to nanometers. The 
VFF calculations have to be carried for up to 109 atoms using the Keating model 
with material parameters derived from bulk elastic constants cij. The tb parameters 
for unstrained InAs and GaAs are obtained by fitting of the tb bulk band edges 
and effective masses to those obtained in experiment or by ab-initio calculations, 
with the valence band offset (VBO) built into the parameter set. The dependence 
of band edges on lattice deformation computed using DFT [2] is used to find 
strain corrections to tb parameters. The Coulomb matrix elements for CI are 
obtained with tb wave functions involving ~108 orbitals, with onsite and nearest-
neighbor terms computed by approximating the tb basis with Slater orbitals. The 
interactions are screened by a distance-dependent dielectric function and, 
typically ~104 configurations are used as a basis for multiexciton complexes.  
 The method is illustrated by computing the electronic and optical 
properties of a lens-shaped and disk-shaped InAs/GaAs[1],As/InP[2]self– 
assembled quantum dots and CdSe nanocrystals[3]. 

3. Graphene nanostructures 

Using a combination of ab-initio and tb-HF-CI methods we determine  electronic, 
magnetic and optical properties of gate controlled graphene quantum dots[4]. The 
dependence of the energy gap on shape, size and edge for graphene quantum dots 
with up to a million atoms is predicted. We show that triangular graphene 
quantum dots with zigzag edges combine magnetism with optical transitions 
simultaneously in the THz, visible and UV spectral ranges, determined by strong 
electron-electron and excitonic interactions. The relationship between optical 
properties and finite magnetic moment and charge density controlled by an 
external gate is discussed[4]. 
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Nano-sized metal clusters represent a form of matter that has yet to be fully 
explored.  They have been shown to exhibit size-related properties that differ 
significantly from both small clusters and the bulk.  A close relationship exists 
between the properties of metal nanoclusters and their geometries but it is 
currently difficult to elucidate this connection by experimental techniques alone.  
In this regard, quantum chemical calculations can give detailed insight into the 
nature of these species.  Density functional theory has become an increasingly 
important tool for these quantum chemical calculations since the effects of 
electron correlation, which are typically large for strongly correlated systems such 
as metals, can be included at a moderate computational cost and relativistic 
effects can be efficiently included via an effective core (or pseudo) potential.  
Relativistic effects are very significant for gold, resulting in a large contraction of 
the 6s orbital and a small 6s/5d energy gap, and gold exhibits a wide range of 
bonding quite distinct from any other metal. [1]  Properties of bare gold clusters 
have been studied intensively by both experimental and theoretical methods and 
the global minimum structures of neutral gold clusters are now well established 
up to about Au20.  Larger clusters such as Au42, Au55 and Au72 have also been 
examined and found to exhibit a wide variety of compact and cage-like structures. 
 
Nanowires are nanoclusters of very large extension along one direction only and, 
as they are generally not equilibrium states, they typically require support.  
Supported gold nanowires are an essential component of interconnections in 
electronic nanodevices, which could find application in sensors, waveguides, 
photonics, and piezoelectronics. Single-strand gold nanowires have been observed 
and multi-shell helical gold nanowires were observed in the experimental study of 
Kondo and Takayanagi. [2]  These helical gold nanowires consist of at least one 
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coaxial tube of gold atoms and there may be a central strand of gold atoms.  The 
central strand of gold atoms has a linear structure while the coaxial tube of gold 
atoms has a helical structure, which can be pictured as a triangular gold sheet, 
which has been folded cylindrically onto itself.  For the simplest of the helical 
gold nanowires there is one coaxial cylindrical tube with seven gold atoms for 
each atom of the central strand and this is therefore termed a 7-1 structure.  We 
have recently shown that, for Au24, Au32 and Au40 (which have 3, 4, and 5 gold 
atoms in the central strand) these structures are stable as free helical gold 
nanowires. [3]  To better understand the nature of these species, we extend our 
relativistic density functional theory study to include Au48, Au56 and Au64, and we 
perform a detailed density of states analysis.  We partition these species into 
fragments and then analyze the charge transfer and the electronic polarization 
among these fragments using the charge decomposition analysis scheme.  We also 
analyze the fragment orbital contributions to the HOMO and LUMO to gain a 
better understanding of the reactivity of these free helical gold nanowires.   
 
Density of states (relative intensity) as a function of the energy: 
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Abstract

We present a new QM/MM methodology [1] that combines the SIESTA approach to
density-functional theory (DFT) with an AMBER force field. We apply our QM/MM
methodology to the atomistic simulation of the immobilization of human oncostatin
M (OSM) on a graphite surface. The stable immobilization of an individual protein,
with controlled orientation, on a surface is a promising technique to build bioelectronic
devices. However, the lack of a basic understanding about how proteins bind a surface
at the atomistic level makes challenging the development of technological applications.
Therefore, simulations are often very interesting to investigate the protein-surface bind-
ing. In our simulations, OSM is immobilized by binding it to a gold cluster previously
pinned on the graphite substrate. The region close to the protein-cluster binding site
is treated with DFT, while the rest is modelled with a classical force field. We address
the nature of the interaction between the protein and the gold clusters pinned on the
graphite support.
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In the summ er of 2010, an unprecedente d heat wave of record duration 
and intensity was observed over European  Russia. The heat wave took hundred 
thousands of lives, led to fires that dest royed hundreds of villages and about one 
million hectares of forest, and  cost the Russian econom y hundred m illions of 
dollars. 

It is believed that d aily temperature anomalies vary randomly with time. 
However, the spectral analysis of a l ong-time series of daily air tem perature 
anomalies revealed pronounced components with a lunar year period of 355 days, 
a lunar evection half -period of 206 days, a lunar qua rter year period of  87 days, 
and a lunar sidereal month period of 27 days (See Figure 12.3 [1]). 

The tides influence cloud amount. The amplitude and phase of lunar tides  
affect the cloud cover at an observation site. In  clear skies, th e atmosphere is 
heated by solar radiation during the long da ytime in summer but is cooled due to 
escaping infrared radiation during the long  nighttime in w inter. As a  result, in 
clear skies the daily m ean air temperature ( T) in summ er exhibits positiv e 
anomalies, while its ne gative anomalies are observed in winter. In cloudy skies, 
the air tem perature anomalies have opposite signs. In the spring and autum n T 
does not depend on the cloud am ount because the day is ap proximately equal in 
length to the night. In this way, the inter action of the lunar gravitation al effects 
with the atmospheric radiation conditions  creates oscillations of T with luna r 
periods and amplitudes depending on the physical and geographical conditions of 
the site. 

In Moscow the am plitude of the "solar" 365-day oscillations of 
temperature of T is about 15°, and the ba sic 355-day "lunar" oscillation of T is 
about 5°. The "solar" tem peratures oscillations interfere with the "lunar" 
temperature oscillations to form beats of T. A beat is characterized by a periodic 
variation in the am plitude of the resulting oscillati on. When the phases of the 
interfering oscillations coincide, their partial amplitudes add together so that the 
resulting amplitude of T becom es maximal (15°+5°=20°). As a result, hot 
summers and cold winters are observed dur ing these periods. Then the phases of  
the oscillations gradually diverge, and the amplitude of the resulting oscillation of 
T decreases to become m inimal at a phase difference of 180°, when the 
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amplitudes of the interfering oscillations are subtracted (15°–5°=10°). As a result, 
cool summers and warm winters are observed in these cases. 

The beat frequency is equal to the ha lf-difference between the frequencies 
of the interfering oscillations. Th e interference of 365-day and 355-day 
oscillations gives rise to a period beat of 35.2 years, which is known in 
climatology as the Brückner cycle.  

The addition of the " solar" semiannual period of oscillations of air 
temperature and its 206-day "lunar" period generates beats of T with a pe riod of 
4.4 years. As a result, the 35-year cycle of the annual oscilla tion amplitude of T 
becomes hidden so that the extrem a of T seem to vary ran domly (there appear 
"clones" like the extrema in 1936 and 1938 and in 2002 and 2010). 

The sequence of hot summ er seasons over E uropean Russia in 1901, 
1936/1938, 1972, and 2002/2010 is associated prim arily with the 35-year beats of 
air temperature. In 2010 th eir influence was supplem ented with the effects of 
some eclipse cycles: a 19-year doubled Metonic cycle (analogous to that in 1972), 
an 8-year octaeteris subcycle (peat and forest fires also occ urred over European 
Russia in August and September, 2002), a 29-year inex cycle (the 1981 summer 
was hot and dry), and other less significant lunar cycles. 

Clearly, the 2010 heat wave over Europ ean Russia resulted from  beats of 
not only temperature but also all the othe r hydrometeorological characteristics, 
i.e., pressure, wind, h umidity, etc. These conditions  correspond to nearly  
stationary blocking highs persisting for a long time. What are the forces that cause 
them to persist? There are strong reasons to believe that these are the anom alous 
gravitational forces produced by slow vari ations in the relative positions of the 
Moon, Earth, and Sun, by the rotation of th eir major axes (apses), by the m otion 
of the nodes of their orbits, and by variations in their orbital parameters [1,2]. The 
variations in the m utual configurations in the Ea rth–Moon–Sun system generate 
gravitational perturbations that slow ly propagate in near-Ear th space and induce 
atmospheric baric waves (blocking antic yclones and depressions), which m ove 
over the Earth's surface together with the g ravitational perturbations. Blocking 
highs cause anomalous frosts in winter and anomalous heat waves in summer. 

Heat waves over European Russia we re observed during the summ ers of 
1972, 2002, and 2010. One year earlier (i n 1971, 2001, and 2009, respectively) a 
summer heat wave occurred in W estern Siberia, and a si milar phenomenon was 
observed in Western Europe during th e summers of 1973 a nd 2003. These facts 
suggest that the summ er locations of the centers of nearly stationary blocking 
highs move from east to west at a velocity of about 40° per year. Therefore, a heat 
wave can be expected in W estern Europe during the summer of 2011. The 
anomalously cold December of 2010 in  Western Europe agrees w ith this 
prediction, since a cold wint er in the air tem perature beats is followed by a hot 
summer. Over European Russia, th ere will be a depression with cool and wet  
weather in the summer of 2011. 
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It is well known that m any geophysical processes vary on inter-annual to 
decadal timescales. These variations are usually attributed to terrestrial causes that 
include: the Earth's core-mantle coupling; the effects of internal driven stochastic 
oscillations in the clim atic system; the effects of the global conveyer belt upon 
ocean surface temperatures etc. However, we contend that the empirical evidences 
and facts demand that this generally accepted assumption should be revised and  
modified. 

We find that the observed changes in the specific mass of the Antarctic and 
Greenland ice sheets closel y correspond to the specific m ass variations that are 
needed to explain the "decadal-lon g" fluctuations in LOD (Sidorenko v, 2009). 
Since the mass of the Antarctic and Gr eenland ice sheets depend on long-term  
climate variations, it is reasonab le to assume that the de cadal fluctuations in the 
Earth's rotation may also corre late with the v ariations in the m ajor climatic 
indices. Following this line of reasoni ng, we have found that the atmospheric 
circulation regimes and the ten-year running mean of the Northern Hemisphere air 
temperature anomalies are well correlated with the changes in the Earth’s rotation 
rate. In addition, Stanislav Perov a nd Nikolay Sidorenkov (2009), have found a  
significant correlation between f luctuations in the Earth ’s rotational rate and 
activity of the India monsoon through Rupa Kumar’s data (2004). This correlation 
is supported by the relationship that Ia n Wilson has found between the deviation 
of the Earth's LOD from its long– term trend and the Pacific Decadal Oscillation 
(PDO). Wilson finds that whenever there is a large deviation in the Earth' s LOD 
from its long--term  trend, the PDO index trans itions to its  positive ph ase. It is  
important to note that the observed  changes in  the LOD precede thos e in the 
anomalies of the precipitation in Indi a monsoon and in the PDO by about eight 
years. 

Ian Wilson has found that the tim es when Solar/Lunar tides had their 
greatest impact upon the Earth are closely synchronized with the times of greatest 
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asymmetry in the Solar Inertial Motion (S IM). Over the last 800 years, the Earth 
has experience exceptionally strong tidal forces in following sequence of years: 
1247, 1433, 1610, 1787 and 1974 (Keeling and Whor f, 1997). Wilson shows that 
these exceptionally strong tidal forces closely correspond in tim e to the first peak 
in the asymmetry of the SIM that occurs just after a period low asymmetry. These 
first peaks in asymmetry in the SIM occur in following sequence of years 1251, 
1432, 1611, 1791, and 1971, closely correspond the years of peak tidal force. 

Thus, there appear to be periodic a lignments between th e lunar apsides, 
syzygies and lunar nodes that occur at almost exactly the same times that the SIM 
becomes most asymmetric for the first time after a period of low asymmetry in the 
SIM. It means that p recession and s tretching of the Lunar orbit (i.e. the factors 
that control the long-term variation of the lunar tides that are experienced here on 
Earth) are almost perfectly synchronized with the SIM. 

If the Solar system  just consisted of Jupiter and the Sun, the barycentre of 
the Solar System would move in an almost circular orbit located just above the 
surface of the Sun (i.e. about 1.08 solar radi i), called the sub-Jupiter point. Hence, 
the actual motion of the barycentre about the centre of the S un (or equivalently 
the Sun about the barycentre) can b e considered as a com bination of the smooth 
symmetrical motion produced by Jupiter, combined with an additional, of ten 
asymmetric motion, caused by the other thr ee Jovan planets (principally, Saturn 
and Neptune). The distance of the centre-of-mass from the Sub-Jupiter point is an 
excellent indicator of the level of asymmetry of the Sun’s orbital motion, at any 
given time. 

A.I.Khlystov et al., (1995) showed that the Earth and the other planets move  
in ellipses with the Sun at one foci, while at the same time they (effectively) share 
in the motion of the Sun around barycenter of the solar system  (Figure 7). From 
the above results two important conclusions follows: 

1) The m ovement of each planet is  transferred to the Sun,  and then b ack 
from it to all of the other planets. In other words, the Sun acts as a re-transmitter 
of gravitational motion over all of the solar system. 

2) Activization of sim ilar physical processes shou ld take p lace 
simultaneously on all bodies in the solar system. 

Support for the last conclusion comes from the investigation of link between 
the most severe droughts on the Eart h and powerful dust storm s on Mars 
(Khlystov, 1995). 

Ian Wilson et al. (2008) presented eviden ce that claimed that changes in the 
Sun's equatorial rotation rate are synchr onized with changes in the Sun' s orbital 
motion about the barycentre of the Solar System . This pa per showed that the 
recent maximum asymmetries in the Solar motion about the barycentre have 
occurred in the years 1865, 1900, 1934, 197 0 and 2007. These years closely 
match the points of inflection in the Earth's LOD. 
Furthermore one-three years after these years in the European part of Russia very 
high hot weather in the summer was observed.  This high hot weather in the 
summer occur in the years 1901, 1936 and 1938, 1972, and 2010, closely 
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correspond the years of m aximum asymmetries in the Solar m otion about the 
barycentre. 

In addition, Ian W ilson (Sidorenkov and W ilson 2009) shows that, fro m 
1700 to 2000 A.D., on every occasion where the Sun has experienced a maximum 
in the asymmetry of its motion about the centre-of- mass of the Solar System, the 
Earth has also experien ced a significant de viation in its rotation ra te (i.e. LOD) 
from that expected from the long-term trends. 

The long-term trends in Earth’s rotati on is attributed the action of tidal 
friction and the Barkin ’s mechanism of th e displacements of the Earth’s lay ers 
(Barkin, 2000). 

Thus decadal variation s of many ge odynamic, climatic and even weather 
processes are synchronized with a phenomenon that is linked to the changes in the 
solar motion about the barycentre of the Solar System. 

Thus from the empirical data, we argue that there is compelling evidence to 
support the idea that these correlations ar e due to the shared m otion of the Sun 
and Earth about the barycentre of the Sola r System. We show that asymmetries in 
this shared motion lead  to the de cadal fluctuations in the  climatologically and 
geophysical processes, including long term changes in the Earth’s rotation rate. 

 
 

References 

1. D'Arrigo, R., Villalba, R ., and Wiles, G. (2001), ``Tree-ring estimates of 
Pacific decadal climate variability'', Clim. Dyn., 18, pp. 219--224. 

2. Khlystov A.I., V.P.Dolgachyev, and L.M.Domozhilova (1995). Trudy of 
the Sternberg Astronomical Institute, Moscow, vol. 64, part 1, 91-102. 

3. Keeling C.D. and Whorf T.P. ( 1997). Possible forcing of global 
temperature by the oceanic tid es. Proc. Natl. Acad. Sci. USA Vol. 94, pp. 
8321–8328. 

4. Rupa Kumar K, Pant G.B., Beig G., Srinivasan G. (2004). Climate Change 
Science: A Scoping S tudy for In dia Sponsored by the British  High 
Commission in India. Indian Institute of Tropical Meteorology, Pune. 

5. Perov S.P., Sidorenkov N.S.(2009). M.A. Petrosyanz and problems of the 
meteorology and climatology. All Russian Conference. Moscow State 
University. Moscow. MAKC Press, 2009. P.67. 

6. Sidorenkov, N.S. (2009), The interac tion between Earth’s rotation and 
geophysical processes. W ILEY-VCH Verlag Gm bH & Co. KGaA, 
Weinheim, 2009. 317 pp. 

7. Wilson, I. R. G., Carter, B. D., and White, I. A., (2008), ``Does a Spin-
Orbit Coupling Between the Sun and the Jovian Pl anets Govern the Solar 
Cycle?'', Publications of the Astronomical Society of Australia, 25, pp. 85-
-93. 

8. N.S. Sidorenkov, Ian W ilson. The decadal  fluctuations in the Earth’s 
rotation and in the climate characteristics. In: Proceedings of the "Journees 

@CMMSE                                 Page 1701 of 1703                                 ISBN: 978-84-614-6167-7



ASSIMETRIES IN SOLAR MOTION  
 

2008 Systemes de reference spatio-temporels", M. Soffel and N. Capitaine 
(eds.), Lohrmann-Observatorium and Observatoire de Paris. 2009, pp. 
174-177. 

9. Barkin Yu. V. A mechanism of variations of the Earth rotation at different 

timescales. //In Polar Motion: Historical and Scientific Problems. ASP 

Conference Series. - V. 208. - 2000. S. Dick, D. McCarthy and B. Luzum 

eds. – P. 373-379. 

@CMMSE                                 Page 1702 of 1703                                 ISBN: 978-84-614-6167-7



Proceedings of the 11th International Conference 
on Computational and Mathematical Methods 
in Science and Engineering, CMMSE2011 
Benidorm, Spain, 26-30 June 2011  

 

 

High-throughput peptide structure prediction with 
distributed volunteer computing networks 

 
T. Strunk, M. Wolf, W. Wenzel 

 Institute of Nanotechnology 
Karlsruhe Institute of Technology 

PO Box 3640, 76021 Karlsruhe, Germany 
 
 

Abstract 

 
 
Many short peptides are involved in important biological processed in the cell. 
Recent investigations have focused on the use of artificial peptides as 
antimicrobial drugs and antibiotics that differentially target bacterial and 
eucariotic cells. Because the number of possible peptide sequences is very large 
functional peptide design necessitates automated synthesis and screening of 
number of peptide sequences. Protein structure prediction methods can aid in this 
design process by providing structure function relationships for the interaction of 
the peptide with the membrane. 
Here we show the applicability of our novel de-novo peptide prediction method, 
which allowed  prediction of the structure of 10 peptides with a resultion of  2.4 
Angström all-atom RMSD to the respective experimental structure. We employ 
massively parallel simulated annealing simulations to sample a sizable fraction of 
the peptide’s conformational space on our volunteer computing network 
POEM@HOME. Using our free-energy function PFF02, we were able to select 
the native conformation as the global minimum of the protein free energy for 
peptides of both helical and sheet topologies. Our prediction protocol could allow 
the automated screening of large peptide databases for their structural features and 
by that enable the rapid prototyping of peptides for novel peptide design. 
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