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Abstract: This paper studies the optimization of hydrothermal systems. We shall use
Pontryagin’s Minimum Principle as the basis for proving a necessary condition for the
stationary functions of the functional, setting out our problem in terms of optimal control
in continuous time, with the Bolza-type functional. This theorem allows us to elaborate
the optimization algorithm that leads to determination of the optimal solution of the
hydrothermal system. Finally, we present a example employing the algorithm developed
for this purpose with the "Mathematica" package.
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1 Introduction

In this paper we propose Pontryagin’s Minimum Principle (PMP) to solve the optimum scheduling
problem of hydrothermal systems. Several applications of optimal control theory (OCT) in hy-
drothermal optimization have been reported in the literature. These range from the initial studies
corresponding to El-Hawary and Christensen [1], to more recent works such as [2] or [3]. In a pre-
vious study [4], it was proven that the problem of optimization of the fuel costs of a hydrothermal
system with m thermal power plants may be reduced to the study of a hydrothermal system made
up of one single thermal power plant, called the thermal equivalent. We will call this problem: the
(H1 − T1) Problem, and in Section 2 we shall see that this problem consists in the minimization
of a functional

F (z) =

Z T

0

L(t, z(t), z0(t))dt+ S[z(T )]

within the set of piecewise C1 functions ( bC1) that satisfy z(0) = 0, z(T ) ≤ b and the constraints
0 ≤ H(t, z(t), z0(t)) ≤ Pd(t),∀t ∈ [0, T ]. Hence, the problem involves non-holonomic inequality
constraints (differential inclusions). Using classic mathematical methods (see for example [5]), we
shall focus in the present paper on the development of the applications of optimal control theory
(OCT) to the specific problem of hydrothermal optimization.
In Section 3 we shall establish a necessary condition for the stationary functions of the functional

and we shall use PMP as the basis for proving this theorem. We shall see that the treatment of
the constraints of the problem using this new approach will be very simple. The development
enables the construction, in Section 4, of the optimization algorithm that leads to determination
of the optimal solution of the hydrothermal system. Finally, in Section 5, we present a example
employing the Algorithm developed for this purpose with the “Mathematica” package.
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2 Statement of the Bolza’s Problem: Water Cost

The (H1−T1) problem (one Hydraulic plant - Thermal equivalent) consists in minimizing the cost
of fuel needed to satisfy a certain power demand during the optimization interval [0, T ]. Said cost
may be represented by Z T

0

Ψ(P (t))dt+ S[z(T )] (2.1)

where Ψ is the function of thermal cost of the thermal equivalent, P (t) is the power generated
by said plant, and S[z(T )] is the cost assigned to the water discharged. Moreover, the following
equilibrium equation of active power will have to be fulfilled

P (t) +H(t, z(t), z0(t)) = Pd(t),∀t ∈ [0, T ]

where Pd(t) is the power demand and H(t, z(t), z0(t)) is the power contributed to the system at the
instant t by the hydro-plant, z(t) being the volume that is discharged up to the instant t by the
plant, and z0(t) the rate of water discharge of the plant at the instant t. In this paper, we propose
to study the problem when the final instant T is given and the final state has an upper boundary:
z(T ) ≤ b. The following boundary conditions will have to be fulfilled z(0) = 0, z(T ) ≤ b. Taking
into account the equilibrium equation, our objective functional in the Bolza’s form is

F (z) =

Z T

0

L(t, z(t), z0(t))dt+ S[z(T )] (2.2)

with L having the form L(t, z(t), z0(t)) = Ψ(Pd(t)−H(t, z(t), z0(t))) over the set Θb

Θb = {z ∈ bC1[0, T ] | z(0) = 0, z(T ) ≤ b, 0 ≤ H(t, z(t), z0(t)) ≤ Pd(t),∀t ∈ [0, T ]}

If z satisfies Euler’s equation for the functional F we have that, ∀t ∈ [0, T ]

Lz(t, z(t), z
0(t))− d

dt
(Lz0(t, z(t), z

0(t))) = 0 (2.3)

If we divide Euler’s equation (2.3) by Lz0(t, z(t), z0(t)) < 0, ∀t, and integrating we have that

−Lz0(t, z(t), z0(t)) · exp
·
−
Z t

0

Hz(s, z(s), z
0(s))

Hz0(s, z(s), z0(s))
ds

¸
= −Lz0(0, z(0), z0(0)) = K ∈ R+ (2.4)

We shall call relation (2.4) the coordination equation, and the positive constant K will be termed
the coordination constant of the extremal. Let us now see the fundamental result (The Main
Coordination Theorem), which enables us to characterize the extremals of the problem and which
is also the basis for elaborating the optimization algorithm that leads to determination of the
optimal solution of the hydrothermal system. We shall use the above coordination equation (2.4)
in the development of the proof of the theorem.

3 The Main Coordination Theorem

We shall use PMP as the basis for proving this theorem, setting out our problem in terms of optimal
control in continuous time, with the Bolza-type functional. In this paper we generalize a previous
study [6] and we present the problem considering the state variable to be z(t) and the control
variable u(t) = H (t, z(t), z0(t)). Moreover, as Hz0 > 0, the equation u(t) − H (t, z(t), z0(t)) = 0
allows the state equation z0 = f(t, z, u) to be explicitly defined.
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The optimal control problem is thus:

min
u(t)

Z T

0

L(t, z(t), u(t))dt+ S[z(T )] with

 z0 = f(t, z, u)
z(0) = 0, z(T ) ≤ b
u(t) ∈ Ω(t) = {x | 0 ≤ x ≤ Pd(t)}

with L(t, z(t), u(t)) = Ψ(Pd(t)− u(t)). We shall see that with this approach we shall arrive at the
coordination equation (2.4). It can be seen that from the relations u(t)−H (t, z(t), z0(t)) = 0 and
z0 = f(t, z, u), we easily obtain fz = − Hz

Hz0
; fu =

1
Hz0
. We define the following function.

Definition 1. Let us term the coordination function of q ∈ Θb the function in [0, T ], defined
as follows

Yq(t) = −Lz0(t, q(t), q0(t)) · exp
·
−
Z t

0

Hz(s, q(s), q
0(s))

Hz0(s, q(s), q0(s))
ds

¸
Theorem 1. The Main Coordination Theorem.
If q ∈ bC1 is a solution of problem (H1 − T1), then ∃K such that
i) If 0 < H(t, q(t), q0(t)) < Pd(t) =⇒ Yq(t) = K.
ii) If H(t, q(t), q0(t)) = Pd(t) =⇒ Yq(t) ≥ K.
iii) If H(t, q(t), q0(t)) = 0 =⇒ Yq(t) ≤ K.
and

K ≥ ∂S[q(T )]

∂z
· −Yq(T )
Lz0(T, q(T ), q0(T ))

(3.1)

4 Construction of the Optimal Solution

From the computational point of view, the construction of the optimal solution can be performed
with the next procedure:
i) For each K we construct qK , where qK satisfies the conditions i), ii) and iii) of theorem 1

and the initial condition qK(0) = 0.
In general, the construction of q0K cannot be carried out all at once over all the interval [0, T ].

The construction must necessarily be carried out by constructing and successively concatenating
the extremal arcs (0 < H(t, qK(t), q

0
K(t)) < Pd(t)) and boundary arcs (H(t, qK(t), q0K(t)) = Pd(t) or

H(t, qK(t), q
0
K(t)) = 0) until completing the interval [0, T ]. This is relatively simple to implement,

with the use of a discretized version of the equations.
ii) Varying the coordination constantK, we would search for the extremal that fulfils the second

boundary condition z(T ) ≤ b and (3.1).
Firstly, we search for the value of K whose associated extremal satisfies qK(T ) = b. The

procedure is similar to the shooting method used to resolve second-order differential equations
with boundary conditions. Effectively, we may consider the function ϕ(K) := qK(T ) and calculate
the root of ϕ(K) − b = 0, which may be realized approximately using elemental procedures like
the secant method.
If the relation (3.1) is fulfilled then qK(t) is the optimal solution and all the available water, b,

is consumed. If the encountered K does not verify (3.1), the value of K that fulfills the equality
in (3.1) is the optimal solution, and the optimal final volume in this case is qK(T ) < b.

5 Application to a Hydrothermal Problem

Let us now see a hydrothermal problem whose solution may be constructed in a simple way
taking into account the above theorem 1. A program that resolves the optimization problem was
elaborated using the Mathematica package and was then applied to one example of hydrothermal
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system made up of 8 thermal plants and one hydraulic plant of variable head. We consider the
functional (2.1).
For the fuel cost model of the equivalent thermal plant Ψ, we use the quadratic model

Ψ(P (t)) = αeq + βeqP (t) + γeqP (t)
2

We use a variable head model and the hydro-plant’s active power generation Ph is function of z(t)
and z0(t). Hence the function Ph is defined as

Ph(t, z(t), z
0(t)) := A(t) · z0(t)−B · z(t) · z0(t)

We consider that the transmission losses for the hydro-plant are expressed by Kirchmayer’s model,
where bll is the loss coefficient. So, the function of effective hydraulic generation is

H(t, z(t), z0(t)) := Ph(t, z(t), z
0(t))− bllP

2
h (t, z(t), z

0(t))

Furthermore, we shall consider a linear model for the associated water cost

S[z(T )] = ν · z(T )
where ν is a water conversion factor, which accounts for the unit conversion from (m3) to ($).
In this example we present two cases: (a) ν = 0.00375($/m3) and (b) ν = 0.00475($/m3). The
optimal power for the hydro-plant, Ph(t), for both cases is shown in the next figure.
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