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Abstract. In this paper we present an algorithm, inspired by the cyclic coordinate descent method, which allows the resolution
of hydrothermal optimization problems involving pumped-storage plants. The proof of the convergence of the succession
generated by the algorithm was based on the use of an appropriate adaptation of Zangwill’s global theorem of convergence.
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INTRODUCTION

The coordinate descent method enjoys a long history in convex differentiable minimization. Surprisingly, very little
is known about the convergence of the iterates generated by this method. Convergence typically requires restrictive
assumptions such as that the cost function has bounded level sets and is in some sense strictly convex. The problem
of minimizing a strictly convex function subject to linear constraints is considered in [1]; a convex function of the
Legendre type subject to linear constraints is considered in [2]; while in [3], the author considers the objective to be
pseudoconvex in every pair of the coordinate blocks and regular in some natural sense.

In a prior study [4], it was proven that the problem of optimization of the fuel cost of a hydrothermal system
with several thermal plants may be reduced to the study of a hydrothermal system made up of one single thermal
plant, called the thermal equivalent. A necessary minimum condition was established in [5] for the optimization
of hydrothermal problems involving one single hydraulic pumped-storage plant, thereby considering non-regular
Lagrangian and non-holonomic inequality constraints. The present paper addresses the generalization of this problem
to several hydro-plants with pumping capacity. We introduce a relaxation numerical method for its resolution. The
proof of the convergence of the succession generated by the algorithm was based on the use of an appropriate
adaptation of Zangwill’s global theorem of convergence [6]. Finally, we present the solution of a hydrothermal
optimization problem in which the potential of the proposed algorithm is evidenced.

STATEMENT OF THE PROBLEM

Let us consider a hydrothermal system comprised of n thermal plants and m hydro-plants, assuming, with no loss in
generality, that of the m hydro-plants, the first k are of the pumped-storage type (non-regular Lagrangian). The problem
consists in minimizing the cost needed to satisfy a certain power demand during the optimization interval [0,T ]. Said
cost may be represented by the functional

J(z) =
∫ T

0
L(t,z(t), ż(t))dt (1)

L(·, ·, ·) is the class C2
(

[0,T ]×R2m−
k⋃

i=1
Si

)
and L(·, ·, ż) is the class C2([0,T ]×R2m), such that

L(t,z(t), ż(t)) = Ψ(Pd(t)−H(t,z(t), ż(t)))

over the set
Θ := {z ∈ (

C1[0,T ]
)m

/ z(0) = 0 , z(T ) = b , Himin ≤ Hi(t,z(t), ż(t))≤ Himax }
where Ψ is the function of thermal equivalent cost, Pd(t) is the power demand, z = (z1, · · · ,zm) is the vector of
admissible volumes, zi(t) being the volume that is discharged up to the instant t by the i-th hydro-plant, ż =(ż1, · · · , żm)



is the vector of admissible rates, żi(t) being the rate of water discharge at the instant t by the i-th hydro-plant and
b = (b1, · · · ,bm) is the vector of admissible volumes, bi being the volume that must be discharged up to the instant T
by the i-th hydro-plant. H(t,z(t), ż(t)) is the power contributed to the system at the instant t by the set of hydro-plants,
Hi(t,z(t), ż(t)) the function of effective hydraulic contribution by the i-th hydro-plant, being

H(t,z(t), ż(t)) =
m

∑
i=1

Hi(t,z(t), ż(t))

Furthermore, Si, for every i ∈ {1, . . . ,k}, is the set of points where Lżi(t,z, ż1, . . . , żi−1, ·, żi+1, . . . , żm) presents its only
discontinuity (in żi = 0, the stoppage zone of the i-th hydro-plant). That is,

Si :=
{
(t,z, ż1, . . . , żi−1,0, żi+1, . . . , żm) ∈ [0,T ]×R2m}

We shall assume that the functions Ψ, H, Hi, zi, żi and L verify the conditions satisfied in the real problems of
hydrothermal optimization. We consider Θ equipped with the topology induced by the norm

||p||∗ := max{||p||∞, ||ṗ||∞}= max{ max
i=1,...,m

||pi||∞, max
i=1,...,m

||ṗi||∞}

MINIMUM NECESSARY CONDITION

At this point, we shall prove a result that will allow us to characterize the minimum candidates of the proposed problem.
We define the following function.

Definition 1. If (t,q(t),q′(t)) /∈ Si, ∀t, we define the ”i-th coordination function” of q ∈Θ in [0,T ] as

Yi
q(t) =−Lżi(t,q(t), q̇(t)) · exp

[
−

∫ t

0

Hzi(s,q(s), q̇(s))
Hżi(s,q(s), q̇(s))

ds
]

We denote by
(
Yi

q
)+ (t) and

(
Yi

q
)− (t) the expressions obtained when considering the lateral derivatives with respect

to ż. The fundamental result is the following.
Theorem 1. If q ∈ Θ is solution of the problem (1), then there exists {Ci}m

i=1 ⊂ R+ satisfying:
i) If (t,q(t), q̇(t)) ∈ Si,

(
Yi

q
)+ (t)≤Ci ≤

(
Yi

q
)− (t).

ii) If (t,q(t), q̇(t)) /∈ Si, Yi
q(t) is




≤Ci if Hi(t,q(t), q̇(t)) = Himin
= Ci if Himin < Hi(t,q(t), q̇(t)) < Himax
≥Ci if Hi(t,q(t), q̇(t)) = Himax

DEFINITION OF THE DESCENT ALGORITHM

The solution algorithm that we shall present is based on the resolution of a problem with m hydro-plants, subsequent
to solving a succession of problems with one single hydro-plant. Let q ∈ Θ. Let

Li
q(t,zi, żi) := L(q1(t), · · · ,qi−1(t),zi,qi+1(t), · · · ,qm(t), q̇1(t), · · · , żi, · · · , q̇m(t))

and the functional F i
q : Θi

q −→ R,

F i
q(zi) := F(q1, · · · ,qi−1,zi,qi+1, · · · ,qm) =

∫ T

0
Li

q(t,zi(t), żi(t))dt

Θi
q := {z∈C1[0,T ] / z(0)= 0, z(T )= bi, Himin≤Hi(t,q1(t), ..,qi−1(t),z,qi+1(t), ..,qn(t), q̇1(t), .., ż, .., q̇m(t))≤Himax}

Definition 2. We define the i-th minimizing map as the map Φi : Θ−→ Θ that satisfies for every q = (q1, . . . ,qm) ∈Θ

Φi(q1, . . . ,qi, . . . ,qm) = (q1, . . . ,q∗, . . . ,qm), where F i
q(q

∗) < F i
q(zi), ∀zi ∈Θi

q−{q∗}
We shall denote by Φ the map associated with the descent algorithm, which will be the composition of the i-th
minimizing map:

Φ := Φm ◦ · · · ◦Φ1



In every k-th iteration of the algorithm, ”the m hydro-plants will have been minimized” through the i-th minimizing
applications in the established order, thus obtaining the new, admissible element, qk,

qk = Φ(qk−1) = (φn ◦φn−1 ◦ · · · ◦φ2 ◦φ1)(qk−1)

The limit of this descending succession will be provided by the sought after minimum.
We denote by q∗i = (q1, . . . ,q∗i , . . . ,qm) and q̇∗i = (q̇1, · · · , q̇∗i , · · · , q̇m). The following proposition is verified.

Proposition 1. If q ∈ Θ, then Φi(q) = q∗i is of class C1 and there exists {Ci}m
i=1 ⊂ R+ satisfying:

i) If q̇∗i (t) is a point of discontinuity of
(
Li

q
)

żi
(t,q∗i (t), ·),

(
Yi

Φi(q)

)+
(t)≤Ci ≤

(
Yi

Φi(q)

)−
(t).

ii) If
(
Li

q
)

żi
(t,q∗i (t), ·) is continuous in q̇∗i (t), Yi

Φi(q)(t) is




≤Ci if Hi(t,q∗i (t), q̇∗i (t)) = Himin
= Ci if Himin < Hi(t,q∗i (t), q̇∗i (t)) < Himax
≥Ci if Hi(t,q∗i (t), q̇∗i (t)) = Himax

CONVERGENCE OF THE ALGORITHM

We now base the demonstration of the convergence of the proposed algorithm on a topological version of the global
convergence theorem of descent algorithms with more general hypotheses that do not affect the correctness of the
demonstration given in [6] by Zangwill. The main results obtained are summarized below.

Proposition 2. Let L in the conditions of the problem (1). If {qn}n∈N converges uniformly to q in (Θ, || ||∗), then:
i) If (t,q(t), q̇(t)) /∈ Si, {Yi

qn}n∈N converges pointwise to Yi
q, ∀i = 1, . . .m.

ii) If (t,q(t), q̇(t)) ∈ Si, then ∃{qnk}k∈N ⊂ {qn}n∈N and {qns}s∈N ⊂ {qn}n∈N such that
{(
Yi

qnk

)+
}

k∈N
converges pointwise to

(
Yi

q
)+

, and/or
{(
Yi

qns

)−}

s∈N
converges pointwise to

(
Yi

q
)−

Proposition 3. If {qn}n∈N and {Φ(qn)}n∈N converge in (Θ, || ||∗), then

{Φ(qn)}n∈N converges to Φ( lim
n→∞

(qn))

Proposition 4. Let U := Θ∩Ĉ2. Then ∃M ∈ R such that, being UM := {z ∈ U / ||z̈||∞ < M}, it is verified that:
i) Φ(UM)⊆ UM .
ii) UM is relatively sequentially compact in (Θ, || ||∗).
iii) Φ : (Θ, || ||∗)−→ (Θ, || ||∗) is sequentially continuous.
iv) F : (Θ, || ||∗)−→ (R, | |) is sequentially continuous satisfying Φ(x) 6= x =⇒ F(Φ(x)) < F(x).
Theorem 2. For every q0 ∈ Θ∩ Ĉ2, the sequence generated by the algorithm {qn = Φ(qn−1)}n∈N possesses a

subsequence that converges in (Θ, || ||∗) and the limit is a fixed point of Φ. Moreover, any convergent subsequence of
{qn}n∈N will converge at a fixed point on Φ.

EXAMPLE

A program that resolves the optimization problem was written using the Mathematica package and was then applied to
one example of a hydrothermal system made up of 8 thermal plants and 5 hydro-plants of variable head, two of which
have pumping capacity. For the thermal plants, the cost function Ψi that was used is a quadratic model:

Ψi(x) = αi +βix+ γix2

Furthermore, we consider Kirchmayer’s model for the transmission losses: li(x) = bii · x2, where bii is termed the loss
coefficient. We use a variable head model, and the i-th hydro-plant’s active power generation Phi (in the generation
zone) is given by

Phi(t,zi(t), żi(t)) = Ai(t)żi(t)−Biżi(t)[zi(t)−Coupi(t)]; żi(t)≥ 0,

where Ai(t) and Bi are the coefficients

Ai(t) =
1
Gi

Byi(S0i + t · ii); Bi =
Byi

Gi
,



and Coupi(t) represents the hydraulic coupling between plants. For the pumped-storage plants, Phi is defined piecewise,
taking in the pumping zone:

Phi(t,zi(t), żi(t)) = Mi · [Ai(t)żi(t)−Biżi(t)zi(t)] ; żi(t) < 0,

where M is the efficiency of the hydro-plant in the pumping zone. We consider that the transmission losses for the
hydro-plants are also expressed by Kirchmayer’s model (where bll is the loss coefficient). Hence, the function of
effective hydraulic generation is

Hi(t,zi(t), żi(t)) := Phi(t,zi(t), żi(t))−blliP2
hi(t,zi(t), żi(t)), ∀żi(t).

We consider a short-term hydrothermal scheduling (24 hours) with an optimization interval [0,24] and we consider
a discretization of 48 subintervals. The vector Cn = (C1, . . . ,Cm) was considered as the stopping criterion for the
algorithm in each iteration, the components of which are the coordination constants associated with the different
hydro-plants, the tolerance being defined as: Tol(n) =

∥∥Cn−Cn−1
∥∥. For our example, for the case of the 5 hydro-

plants, the tolerance was less than 10−9 in 10 iterations, and the time required by the program was 194 s on a personal
computer (Pentium IV/2GHz). We can see how the method presents a rapid convergence. To verify this statement,
another test was conducted considering the same 8 thermal plants from the above example and 10 hydro-plants. In this
case, the method requires 20 iterations to achieve the established tolerance. Fig. 1 presents the obtained results.

Fig. 1. Convergence with 5 hydro-plants and 10 hydro-plants.

CONCLUSIONS

In this paper we present an algorithm, inspired by the cyclic coordinate descent method, that will allow the solution
of hydrothermal optimization problems involving hydraulic pumped-storage plants. We prove the convergence of the
succession generated by the algorithm under weak assumptions.
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