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Abstract. This paper presents an economic dispatch algorithm in a hydrothermal system within the framework of a compet-
itive and deregulated electricity market. The optimization problem of one firm is described, whose objective function can be
defined as its profit maximization. Since next-day price forecasting is an aspect crucial, this paper proposes an efficient yet
highly accurate next-day price new forecasting method using a functional time series approach trying to exploit the daily sea-
sonal structure of the series of prices. For the optimization problem, an optimal control technique is applied and Pontryagin’s
theorem is employed.
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INTRODUCTION

During the last decade, the electricity supply industry is moving from a centralized operational approach to a compet-
itive one. This is the case for Spanish utilities since January 1st, 1998. In this paper the new short-term problems that
are faced by a generation company in a deregulated electricity market are addressed and an optimization algorithm is
proposed. Our model of the spot market explicitly represents the price of electricity as an uncertain exogenous vari-
able. We represent generation units with high level of detail and our model distinguishes individual generation units
and considers inter-temporal constraints such as hydro reserves. The methodology presented could be applied to any
deregulated system based on bids. However, the Spanish regulation [1] has been used as reference market model.

Since next-day price forecasting is an aspect crucial of the problem, Since next-day price forecasting is an aspect
crucial, this paper proposes an efficient yet highly accurate next-day price new forecasting method. Price forecasting
techniques in power systems are relatively recent procedures. In [2] the model is based on the probability density
functions of forecast prices. In [3] dynamic regression and transfer function models are proposed. In [4] electricity
prices models are reviewed and a novel classification is proposed.

Trying to exploit the seasonal daily structure of the time series of prices, in this work we model the series using a
functional approach which considers hourly prices as observations of daily functions of prices. Therefore, within this
approach, the series of prices consists of a sequence of real-valued functions defined on the interval [0,24]. We model
this functional time series with a linear autoregressive functional model (functional input – functional output) which
formulates the relationships between each daily function of prices and the functions of previous days.

So, this paper generalizes two previous papers of the authors. In [5] our model of the spot market explicitly
represents the price of electricity as a known exogenous variable, and in [6] the volatility of the spot market price
of electricity is represented by a stochastic model. We search for past spot market sessions that can be considered
similar to the session that the company is about to face using clustering techniques.

STATEMENT OF THE HYDROTHERMAL PROBLEM

In this section the optimization problem of one company is described. Let us assume that our hydrothermal system
accounts for one hydro-plant and m thermal plants (is easy to generalize to n hydro-plants as we can see in [6]). Let
Ψi : Di ⊆R−→ R (i = 1, . . . ,m) be the cost functions (Euro/h) of the m thermal plants. In general, the cost functions



of the thermal plants are second-order polynomials

Ψi(Pi(t)) = αi +βiPi(t)+ γiP2
i (t); i = 1, ...,m

where Pi(MW ) is the power generated, and we consider the thermal plants to be constrained by technical restrictions
of the type

Pimin ≤ Pi(t)≤ Pimax; i = 1, ...,m,∀t ∈ [0,T ]

[0,T ] being the optimization interval. In prior studies [7], it was proven that the problem of optimization of the fuel
cost of a hydrothermal system with m thermal plants may be reduced to the study of a hydrothermal system made up
of one single thermal plant, called the thermal equivalent. We shall denote as the equivalent minimizer of {Ψi}m

1 , the
function Ψ : D1 + · · ·+Dm → R defined by

Ψ(P(t)) = min
m

∑
i=1

Ψi(Pi(t))

with P(t) the power generated by said thermal equivalent. From the perspective of a generation company, and within
the framework of the new electricity market, transmission losses are not relevant, and will not be considered.

Let H(t,z(t), ż(t)) be the function of effective hydraulic contribution, i.e. the power contributed to the system at the
instant t by the hydro-plant, and we consider H(t,z(t), ż(t)) to be bounded by technical restrictions

Hmin ≤ H(t,z(t), ż(t))≤ Hmax,∀t ∈ [0,T ]

z(t) being the volume that is discharged up to the instant t by the plant, and ż(t) the rate of water discharge of the
plant at the instant t. If we assume that b is the volume of water that must be discharged during the entire optimization
interval [0,T ], the following boundary conditions will have to be fulfilled: z(0) = 0,z(T ) = b.

In our problem the objective function is given by revenue minus cost during the optimization interval

F(P,z) =
∫ T

0
[p(t)(P(t)+H(t,z(t), ż(t)))−Ψ(P(t))]dt

Revenue is obtained by multiplying the total production of the company by the clearing price p(t) in each hour t. The
cost is given by Ψ, the cost function of the thermal equivalent, where P(t) is the power generated by said plant. With
this statement, our objective functional in continuous time form is

max
P,z

F(P,z) = max
P,z

∫ T

0
L(t,P(t),z(t), ż(t))dt

with L(t,P(t),z(t), ż(t)) = p(t)(P(t)+H(t,z(t), ż(t)))−Ψ(P(t)), on the set

Ω =
{

z ∈ Ĉ1[0,T ]| z(0) = 0,z(T ) = b
Hmin ≤ H(t,z(t), ż(t))≤ Hmax,∀t ∈ [0,T ]

}

where Ĉ1 is the set of piecewise C1 functions.

OPTIMAL SOLUTION

The problem is formulated in the framework of Optimal Control Theory. Let us term the coordination function of
z ∈Ω the function in [0,T ], defined as follows

Yz(t) = Lż(t,P(t),z(t), ż(t)) · exp
[
−

∫ t

0

Hz(s,z(s), ż(s))
Hż(s,z(s), ż(s))

ds
]

We present the problem considering the state variables to be z(t) and P(t) and the control variables u1(t) =
H (t,z(t), ż(t)) and u2(t) = Ṗ(t). The optimal control problem is thus:

max
u1(t),u2(t)

∫ T

0
L(t,P(t),u1(t))dt with





ż = f (t,z,u1); Ṗ = u2
z(0) = 0, z(T ) = b
u1(t) ∈ {x | Hmin ≤ x≤ Hmax}



We shall use Pontryagin’s Minimum Principle (PMP) [8] as the basis for proving this theorem.
Theorem 1 (Theorem of Coordination). If (z∗,P∗) ∈ (Ĉ1,C1) is a solution of our problem, then ∃K ∈ R+ such

that:

Yz∗(t) is




≤ K if H(t,z∗(t), ż∗(t)) = Hmin
= K if Hmin < H(t,z∗(t), ż∗(t)) < Hmax
≥ K if H(t,z∗(t), ż∗(t)) = Hmax

and Ψ̇(P∗(t)) = p(t)

This theorem is the basis for elaborating the optimization algorithm that leads to determination of the optimal solution
of the hydrothermal system. The problem is thus easily broken down into the two sub-problems: Thermal and Hydro.
To obtain the optimum operating conditions of the hydro-plant, we shall use the coordination equation

Yz(t) = K,∀t ∈ [0,T ]

The problem will consist in finding for each K the function zK that satisfies zK(0) = 0 and the conditions of Theorem 1,
and from among these functions, the one that gives rise to an admissible function (zK(T ) = b). From the computational
point of view, the construction of zK can be performed using the same procedure as in the shooting method, with the
use of a discretized version of the coordination equation. The exception is that at the instant when the values obtained
for z and ż do not obey the constraints, we force the solution zK to belong to the boundary until the moment when the
conditions of leaving the domain (established in Theorem 1) are fulfilled.

To calculate the optimum power P(t) of the thermal plant, we solve the equation

p(t) = Ψ̇(P(t)) ,∀t ∈ [0,T ]

The distribution among the thermal plants is immediate by means of the definition of the thermal equivalent, imposing
the corresponding constraints for each one of the power plants.

NEXT-DAY PRICE FORECASTING USING FUNCTIONAL LINEAR MODELS

A functional linear regression model [9] is an extension of the multivariate linear regression model to the case of
infinite-dimensional or functional data. The data are a sample of pairs of random functions (X(t),Y (t)), with X the
predictor and Y the response functions. The extension of the linear regression model to functional data is then:

E(Y (t)|X) = µ(t)+
∫

X(s)β (s, t)ds

with a parameter function β and a mean response function µ(t).
The above functional model can also be extended to the case of several predictors as follows:

E(Y (t)|X) = µ(t)+
m

∑
j=1

∫
X j(s)β j(s, t)ds

where the data are now a sample of vectors of random functions (X1(t), ...,Xm(t),Y (t)), with X1, ...,Xm the predictors
and Y the response functions.

Given a functional time series, i.e. a series of regular functions {Yτ} with Yτ : Ω→ R, τ ∈ N, the above functional
framework can be used for formulating an autoregressive functional linear model for the conditional functional mean
E(Yτ(t)|Xτ) at time τ given the vector of observed functions Xτ = (Yτ−1, ...,Yτ−m).

Electricity prices show a strong daily seasonality structure that can be modeled through daily functions defined on
the interval [0,24] hours. Consequently, the series of prices can be seen as a sequence of daily functions {πτ} where
πτ : [0,24]→ R is the function of day τ in such a way that prices observed that day are observations πτ(t), t ∈ [0,24]
of the function πτ .

In this work we apply a functional autoregressive approach to the modeling and prediction of the functional time
series of prices comparing several parametric [9] and non-parametric [10] tecniques. However, this series also shows a
strong weekly seasonality. Trying to account also for this weekly structure, we finally postulate a mixed model which



combines this functional autoregressive daily model with a functional ANOVA model which incorporates the specific
effect of each week day. For the case of the linear model, the resulting mixed model has the following general form:

π̂τ = µ +dT α +
m

∑
j=1

〈
πτ− j,β j(s, ·)

〉

or equivalently:

π̂τ(t) = µ(t)+dT α(t)+
m

∑
j=1

∫
πτ− j(s)β (s, t)ds

where d = (d1, ...,d7)T with dk = 1 if the day is the kth day of the week and dl = 0 for l 6= k, and α(t) =
(α1(t), ...,α7(t))T with αk(t) is the specific mean effect of each day of the week, with s, t ∈ [0,24].
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