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Abstract. In this paper we present a new method for solving systems of ordinary nonlinear differential equations with initial
conditions. The method is based on transforming the problem to an optimal control problem. We then solve it with a technique
based on the use of an integral form of the Euler equation combined with the shooting method and the cyclic coordinate descent
method.
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INTRODUCTION

For hundreds of years, ordinary differential equations (ODEs) have been used to model continuous systems in all
scientific and engineering disciplines. Many mathematicians have studied the nature of these equations and many
well-developed solution techniques exist. The mathematical formulation most frequently used is that of an initial
value problem (IVP) for a first-order system of ordinary nonlinear differential equations:

{
x′i(t) = fi(t,x1(t), ...,xn(t))
xi(a) = yi

(1)

with i = 1, ...n. The numerical solution of ODEs is a well-studied problem in numerical analysis and there are many
books on the subject [1]. The numerical methods most frequently employed fall into the following categories: Taylor
methods, Runge-Kutta methods, Multistep methods, Extrapolation methods and Adaptive techniques. In this paper we
present a new method for solving (1) based on transforming the IVP to an optimal control problem (OCP).

This basic idea has also been developed in [2], though these authors use iterative dynamic programming (IDP) to
solve the OCP and obtain a piecewise-constant optimal control function. We, however, propose a new methodology
for solving the OCP, which has already been proven successful within the framework of Hydrothermal Optimization
[3]. Our method uses a variety of mathematical techniques, well-known for the case of functions, though now adapted
to the case of functionals, which are efficiently combined to afford a novel contribution. The technique is based on the
use of an integral form of the Euler equation, combined with an adapted version of the shooting method and the cyclic
coordinate descent method. We shall compare the error between our approach, classical methods and [2].

STATEMENT

Let us define the function F : [a,b]×Rn×Rn → R:

F(t,x1(t), ...,xn(t),x′1(t), ...,x
′
n(t)) =

n

∑
i=1

[
x′i(t)− fi(t,x1(t), ...,xn(t))

]2 (2)

Next, we define the following minimization problem:

Minimize: E(x1, ...,xn,x′1, ...,x
′
n) =

∫ b

a
F(t,x1(t), ...,xn(t),x′1(t), ...,x

′
n(t))dt

subject to: x1(a) = y1;x2(a) = y2; ...;xn(a) = yn

(3)

where E(x1, ...,xn,x′1, ...,x
′
n) is called the error functional. If the optimal solution of (3) is zero, since the function

F is continuous and non-negative, then F ≡ 0. Thus, the first-order system (2) will hold for all t, and the solution



of (1) is obtained. We now formulate problem (3) as an OCP. We denote x(t)= (x1(t), ...,xn(t)), y = (y1, ...,yn), and
u(t)= (u1(t), ...,un(t)). We consider the state variables to be x(t) and the control variables to be x′(t). The OCP is
thus:

min
u(t)

E(x,u) =
∫ b

a
F(t,x(t),u(t))dt

s. t. x′(t)= u(t)
x(a) = y

(4)

OPTIMAL CONTROL ALGORITHM

In this section the standard Lagrange type problem (4) is formulated within the framework of Optimal Control [4].
The classical approach involves using Pontryagin’s Minimum Principle (PMP), which results in a two-point boundary
value problem (TPBVP).

Let H be the Hamiltonian function associated with the problem

H(t,x,u,λ ) = F (t,x,u)+λ ·u (5)

where λ = (λ1(t), ...,λn(t)) is the costate vector. In order for u to be optimal, a nontrivial function λ must necessarily
exist, such that for almost every t ∈ [a,b], i = 1, ...n

x′i = Hλi(t,x,u,λ1, ...,λi−1, ·,λi+1, ...,λn) (6)

−λ ′i = Hxi(t,x1, ...,xi−1, ·,xi+1, ...,xn,u,λ ) (7)
H(t,x,u,λ ) = min

v(t)
H(t,x,v,λ ) (8)

x(a) = y; λ (b) = 0 (9)

From (7), there exists a piecewise C1 function λi that satisfies:

λ ′i =−Hxi =−Fxi (10)

From (10), it follows that

λi(t) = Ki−
∫ t

a
Fxi(s,x,u)ds (11)

with Ki = λi(a). From (8), it follows that ui(t) minimizes H(t,x,u1, ...,ui−1, ·,ui+1, ...,un,λ ), for each t. Hence we
have

Fui +λi(t) = 0 (12)

From (11) and (12), we have

Ki =−Fx′i +
∫ t

a
Fxi(s,x,u)ds (13)

Thus, for each i (assuming the rest of the variables are fixed), the problem consists in finding the Ki and the function
xi(t) that satisfy (13) and (9). From the computational point of view, the construction can be performed using the same
procedure as the simple shooting method [5], employing a discretized version of Equation (13). Therefore, the method
which we have developed to obtain the solution is based on the use of an integral form of the Euler equation, combined
with the simple shooting method.

To solve the variational problem (3) (with i = 1, ...n), we propose an algorithm of its numerical resolution using
a particular strategy related to the cyclic coordinate descent (CCD) method [6]. The classic CCD method minimizes
a function of n variables cyclically with respect to the coordinate variables. With our method, the problem could be
solved like a sequence of problems whose error functional converges to zero.



NUMERICAL EXAMPLE

The method presented in this paper allows us to solve a wide range of nth order ordinary nonlinear differential
equations with initial conditions. Let us consider the following IVP:

y′′+ t2y = 0; y(0) = 0;y′(0) = 0.1 (14)

an example likewise presented in [2]. Let

x1(t) = y(t); x2(t) = y′(t) (15)

Then (14) transforms into a first-order system:




x′1(t) = x2(t)
x′2(t) =−t2x1(t)
x1(0) = 0;x2(0) = 0.01

(16)

Applying the above development, problem (14) changes to the following form:

min
u1(t),u2(t)

E(x1,x2,u1,u2) =
∫ b

0

[
(u1(t)− x2(t))2 +(u2(t)+ t2x1(t))2

]
dt

s. t. x′1(t) = u1; x′2(t) = u2
x1(0) = 0; x2(0) = 0.01

(17)

We consider b = 1, and a discretization of 1000 subintervals. In 12 iterations, our method gives the approximate
optimal solution presented in Figure 1.

Fig. 1. Optimal solution.

We now compare our solution y(t) with that obtained using IDP in [2] and with that obtained using the NDSolve
instruction in the commercial software package, Mathematica. Said software incorporates a variety of classical
methods, which we have employed using their default parameters. Instead of the classical global error, we consider
the error functional E.

Table 1. Value of the error functional.

E

Our solution 3.1 10−17

IDP 1.2 10−3

Euler 4.9 10−3

Midpoint 6.4 10−5

Runge-Kutta 8.1 10−14

Predictor-corrector Adams 1.5 10−11



It can be seen from Table 1 that the error functional obtained by our method is lower than that obtained by classical
methods. This result follows from the fact that the aim of the classical methods is to minimize the global error.
Nonetheless, the global error obtained by means of our method is reasonably satisfactory (in the order of 2.4 10−5),
having obtained y(1) = 0.0950929 versus y(1) = 0.095069 using Runge-Kutta, not to mention, y(1) = 0.0881 obtained
using IDP.

CONCLUSIONS

In this paper we have presented a new optimal control technique for solving ordinary differential equations. Our
method substantially improves a previous approach that uses iterative dynamic programming to solve the associated
optimal control problem. We consider the error functional instead of the classical global error, and the error functional
obtained by our method is lower than that obtained by classical methods. The global error, which is the one normally
considered, is not always really important, especially in problems of variational origin. Finally, it is worth noting that
our method may be applicable to initial value problems of a very general nature, as well as to boundary value problems.
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