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1. Introduction

A hydrothermal system is made up of hydraulic and thermal power plants that must jointly satisfy
a certain demand in electric power during a definite time interval. Thermal plants generate power
at the expense of fuel consumption (which is the object of minimization), while hydraulic plants
obtain power from the energy liberated by water that moves a turbine; there being a limited
quantity of water available during the optimization period. In prior studies [1-2], it was proven
that the problem of optimization of the fuel costs of a hydrothermal system with m thermal power
plants without transmission losses may be reduced to the study of a hydrothermal system made
up of one single thermal power plant, called the thermal equivalent. In the present paper, we
consider a simple hydrothermal system with one hydraulic power plant and m thermal power
plants without transmission losses that have been substituted by their thermal equivalent. Under
these conditions, we present the problem from the Electrical Engineering perspective to then go
on to resolve the mathematical problem thus formulated. We will call this problem: the H; — T}
Problem.

2. Hydrothermal Statement of the H; — T} Problem

The problem consists in minimizing the cost of fuel needed to satisfy a certain power demand
during the optimization interval [0, 7']. Said cost may be represented by the functional

where W is the function of thermal cost of the thermal equivalent and P(t) is the power generated
by said plant. Moreover, the following equilibrium equation of active power will have to be fulfilled

P(t) + H(t, 2(t), 2 (1)) = Py(t), Vt € [0, ]
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where P,(t) is the power demand and H (t, z(t), 2/(t)) is the power contributed to the system at
the instant ¢ by the hydraulic plant, being: z(¢) the volume that is discharged up to the instant ¢
(in what follows, simply volume) by the plant, and 2/(¢) the rate of water discharge of the plant
at the instant ¢.

Taking into account the equilibrium equation, the problem reduces to calculating the minimum
of the functional

F(z):/o U (Py(t) — H (1, 2(t), (1)) dt

If we assume that b is the volume of water that must be discharged during the entire optimization
interval, the following boundary conditions will have to be fulfilled

The classic studies dealing with hydrothermal optimization employ concrete models both for the
function of thermal cost W, as well as for the function of effective hydraulic generation H. Hence,
if the model changes, the algorithms obtained are not valid. The study of optimal conditions for
the functioning of a hydrothermal system constitutes a complicated problem which has attracted
significant interest in recent decades. Various techniques have been applied to solve the problem,
such as functional analysis techniques [3] or Ritz’s method [4]. Such a variety of the mathematical
models forces us to undertake a general study of the problem. The algorithms obtained with this
study should be extensible to a large set of hydrothermal problems.

One of the main contributions of this paper is that the method is valid for any model of power
plants, since we will try to consider the functions P;, ¥ and H as general as possible without any
restrictions, except those that are natural for problems of this type.

3. Variational Statement of the H; — 7} Problem

We will call H; — T} the problem of minimization of the functional

F(a(1)) = /O L(t, (1), 2 (t))dt

with L of the form
L(t, 2(t), 2'(t)) = W(Pult) — H(t, 2(1), 2 (1))

over the set
O,={z¢€ al[O,T] / 2(0)=0, 2(T)=0b, 2'(t) >0 N H(t, 2(t),2'(t)) < Py(t)}
So the problem involves inequality non-holonomic constraints.

Variational problems in which the derivatives of the admissible functions must be comprehended
between two curves have traditionally been dealt with by recurring to diverse techniques. Clarke
[5] deals with necessary conditions for problems in the calculus of variations that incorporate
inequality constraints of the form f(z,2’) < 0. Loewen and Rockafellar [6] consider the clas-
sic Bolza problem in the calculus of variations, incorporating endpoint and velocity constraints
through infinite penalties.



It can be seen that all these studies use very diverse techniques, but to date a simple theory has
still to be found that develops the stationary function for variational problems with the constraint
for admissible functions of the above type. Moreover, these studies do not generate algorithms
that are easily implementable and that resolve the problem we have presented.

In this paper, we have developed a much simpler theory than previous ones that solves the H; — T}
problem. The development is hence self-contained and extremely basic, and also enables the
construction of the optimal solution.

4. Construction of the Optimal Solution. Algorithm

Firstly, we demonstrate the result that we have denominated the main coordination theorem,
which will enable us to find the optimum solution.

Theorem. (The main coordination theorem)

Let
¥q(33)=/0 L.(t,q(t),q(t))dt — L. (x,q(x),q'(z)) (1)

If q € C' is a solution of the problem, then 3K such that:

i) If ¢'(t) >0 and H(t,q(t),q(t)) < Py(t) (t is not a boundary point) = ¥,(t) = K.
i) If ¢(t) =0 = ¥,(t) < K.

i) If H(t,q(t),q'(t)) = Fa(t) = ¥,(t) = K.

This theorem allows us to elaborate the optimization algorithm that leads to determination of the
optimal functioning of the hydroplant and of the whole hydrothermal system.

Algorithm

If we did not have inequality restrictions, the solution could be constructed by means of the
shooting method. We use the same framework in the present case, but the variation of the initial
condition for the derivative, which now need not make sense, is substituted by the variation of the
coordination constant K.

The problem will consist in finding for each K the function @)k which satisfies Qx = 0 and
the conditions of the main coordination theorem, and from among these functions, the one which
generates an admissible function (Qx (T') = b).

From the computational point of view, the construction of Qi can be performed with the use of
a discretized version of equation
¥, (1) =K

The exception is that at the instant when the values obtained for z and 2’ do not obey the
restrictions, we force the solution Qi to belong to the boundary until the moment when the
conditions of leaving the domain (established in the Theorem) are fulfilled.

5. Example



Finally, we present a example employing the Algorithm realized to this end with the “Mathemat-
ica” package. The program developed is very simple and easy to use.

6. Conclusions

From the Engineering perspective, one of the main contributions of this paper is that the algorithm
carried out is independent of the models used both for thermal and for hydraulic power plants, in
contrast to the majority of methods in this field, which use concrete models. What is more, we
have obtained a very simple method that enables us to find an optimal solution in the presence
of inequality constraints, and which requires very little computational effort.

From the mathematical point of view, we have also obtained notable results. The main contri-
bution of this paper is a property of the extremals in variational problems with non-holonomic
constraints. Said property permits the solution to be constructed by means of a method inspired
by the shooting method that is much simpler than those employed up until now for resolving this
type of problem.

The Algorithm presents many advantages. First of all, to run the method one does not have to
start from specially selected initial values. Moreover, it shows a rapid convergence to the optimal
solution, and due to the simplicity of the operations to be performed in this method, its realization
does not take much time.
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