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Abstract

In this paper, the new short-term problems that are faced by a generation com-
pany in a deregulated electricity market are addressed and a optimization algorithm
is proposed. Our model of the spot market explicitly represents the price of elec-
tricity as an uncertain exogenous variable. We consider a very complex problem
of hydrothermal optimization with pumped-storage plants, so the problem deals
with non-regular Lagrangian and non-holonomic inequality constraints. To obtain
a necessary minimum condition, the problem was formulated within the framework
of nonsmooth analysis using the generalized (or Clarke’s) gradient and the Nons-
mooth Maximum Principle. The optimal control problem is solved by means of an
algorithm implemented in the commercial software package Mathematica. Results
of the application of the method to a numerical example are presented.
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1 Introduction

Over the last decade, the electricity industry has experienced significant changes in
terms of deregulation and competition. In this paper, we focus on the problem that a
generation company faces when preparing its offers for the day-ahead market. Several
methods have been proposed for simulating competitive generation markets. Most of
these models [1] can be categorized into two major groups: models that represent all the
generation companies and models that focus on a particular generation company. Two
approaches can be adopted to represent spot market auctions when only one company
is considered: price modeled as an exogenous variable and price modeled as a function
of the demand supplied by the firm under study. In the former, the price of electricity
does not depend on the company’s decisions. This can be acceptable if the company is
small enough. These models can again be classified into two sub-groups, depending on
whether they use a deterministic [2] or probabilistic [3] price representation.
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In this paper, we only represent the operation of one company in detail, includ-
ing each of the company’s generation units. Our model of the spot market explicitly
represents the price of electricity as an uncertain exogenous variable. We represent gen-
eration units at a high level of detail and our model distinguishes individual generation
units and considers inter-temporal constraints such as hydro reserves. In addition, we
also consider pumped-storage hydro-plants.

The Spanish activity rules [4] have been used as a reference model for the market.
The day-ahead market in the Spanish wholesale electricity market is organized as a set
of twenty-four simultaneous hourly auctions. The simple bid format consists of a pair
of (hourly) values: quantity q[MWh] and price p[euro/MWh]. The utility company
that inspires our paper, HC, controls approximately only 7% of all the electricity that
is generated. So, we consider our company as a price-taker, and under this assumption,
the volatility of the spot market price of electricity is represented by a stochastic model.
Price forecasting techniques in power systems are relatively recent procedures [5] [6].
Although the problem of constructing the probability distribution exceeds the purpose
of this paper, we suggest the following simplified approach based on [7]. The idea is to
search for past spot market sessions that can be considered similar to the session that
the company is about to face. To identify the days, we classify the entire collection of
sessions (using clustering techniques) according to the values of an explanatory variable.
The most relevant information about the current session for our problem is the vector
of 24 prices that has resulted from the day-ahead market clearing. Once a group
of S similar days has been identified, the company can assume that the probability
distribution for the market session under study is completely defined by these past
S market sessions (probability distributions with finite support). If we now focus on a
particular auction, it is easy to understand that the S quantities and S prices decided by
the company for that hour constitute the offer curve (nondecreasing) that the company
must submit to that auction.

This paper addresses a very complex problem of hydrothermal optimization with
pumped-storage plants. In this kind of problem (see the previous paper [8]), the La-
grangian is piecewise continuous and we consider constraints for the admissible gen-
erated power. Hence, this paper considers non-regular Lagrangian and non-holonomic
inequality constraints (differential inclusions). To obtain a necessary minimum condi-
tion, the problem is formulated within the framework of nonsmooth analysis [9] using
the generalized (or Clarke’s) gradient and the Nonsmooth Maximum Principle. This
characteristic distinguishes our work from all the above.

2 Statement of the Problem

In this section the optimization problem of one company is described, the objective
function of which can be defined as its profit maximization. Let us assume that our
hydrothermal system accounts for n hydro-plants and m thermal plants: the (Hn−Tm)
problem.

Let Ψi : Di ⊆ R
+ −→ R

+ (i = 1, . . . ,m) be the cost functions (euro/h) of the m
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thermal plants. The most usual cost function of each generator can be represented as
a quadratic function:

Ψi(Pi(t)) = αi + βiPi(t) + γiP
2
i (t); i = 1, ..., m

where Pi(MW ) is the power generated, and we consider the thermal plants to be
constrained by technical restrictions of the type

Pi min ≤ Pi(t) ≤ Pi max; i = 1, ..., m, ∀t ∈ [0, T ]

[0, T ] being the optimization interval. In prior studies [10], it was proven that the
problem with m thermal plants may be reduced to the study of a hydrothermal system
made up of one single thermal plant, called the thermal equivalent : the (Hn − T1)
problem. We shall denote as the equivalent minimizer of {Ψi}m

1 , the function Ψ :
D1 + · · · + Dm → R defined by

Ψ(P (t)) = min
m∑

i=1

Ψi(Pi(t)); Pmin ≤ P (t) ≤ Pmax

with P (t) the power generated by said thermal equivalent.
We assume that our system accounts for n hydro-plants that have a pumping

capacity. The mapping H : ΩH −→ R

H(t, z1(t), . . . , zi(t), . . . , zn(t), ż1(t), . . . , żi(t), . . . , żn(t)) = H(t, z(t), ż(t))

is called the function of effective hydraulic contribution and is the power contributed
to the system at the instant t by the set of hydro-plants, zi(t) being the volume that is
discharged up to the instant t by the i-th hydro-plant, żi(t) the rate of water discharge
at the instant t by the i-th hydro-plant, and ΩH ⊂ [0, T ] × R

n × R
n the domain of

definition of H.
We say that ż = (z1, . . . , zn) is admissible for H if zi belong to the class Ĉ1[0, T ]

(the set of piecewise C1 functions), and (t, z(t), ż(t)) ∈ ΩH , ∀t ∈ [0, T ]. The volume bi

that must be discharged up to the instant T is called the admissible volume of the i-th
hydro-plant. Let b = (b1, . . . , bn) ∈ R

n be the vector of admissible volumes. In a general
model, with hydraulic coupling between the n hydro-plants, we call Hi(t, zi(t), żi(t)) :
ΩHi = [0, T ]× R × R −→ R the function of effective hydraulic contribution by the i-th
hydro-plant, being

H(t, z(t), ż(t)) =
n∑

i=1

Hi(t, zi(t), żi(t))

Besides, we consider Hi(t, zi(t), żi(t)) to be bounded by technical constraints

Hi min ≤ Hi(t, zi(t), żi(t)) ≤ Hi max; i = 1, · · · , n, ∀t ∈ [0, T ]

Throughout the paper, no transmission losses will be considered; a crucial aspect
when addressing the optimization problem from a centralized viewpoint. From the
perspective of a generation company, and within the framework of the new electricity
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market, said losses are not relevant, since the generators currently receive payment for
all the energy they generate in power plant bars.

Let us assume that the cost function Ψ : R
+ −→ R

+ satisfies Ψ′(x) > 0, ∀x ∈ R
+,

i.e. it is strictly increasing. This constraint is absolutely natural: it reads more cost
to more generated power. Let us assume as well that Ψ′′(x) > 0, ∀x ∈ R

+, i.e. it is
strictly convex. The models traditionally employed meet this constraint.

Let us assume that the function Hi is strictly increasing with respect to the rate of
water discharge żi, i.e. ∂Hi/∂żi > 0 (more power to a higher rate of water discharge)
and that [∂Hi/∂zi]żi=0 = 0. Let us also assume that ∂2Hi/∂ż2

i < 0, i.e. Hi is concave
with respect to żi. The real models meet these three constraints. In addition, pumped-
storage plants are considered, and in this kind of problem, the derivative of Hi with
respect to żi (∂Hi/∂żi) presents discontinuity at żi = 0, which is the border between
the power generation zone (positive values of żi) and the pumping zone (negative values
of żi). In the real models, it is verified that H+

ż ≤ H−
ż . In the (Hn − T1) problem, the

objective function is given by revenue minus cost during the optimization interval [0, T ]

F (P, z) =
∫ T

0
[p(t)(P (t) + H(t, z(t), ż(t))) − Ψ(P (t))] dt

Revenue is obtained by multiplying the total production (thermal and hydraulic) of the
company by the clearing price p(t) in each hour t. Cost is given by Ψ, the cost function
of the thermal equivalent, where P (t) is the power generated by said plant. With this
statement, our objective functional in continuous time form is

max
P,z

F (P, z) = max
P,z

∫ T

0
L(t, P (t), z(t), ż(t))dt (2.1)

with L(t, P (t), z(t), ż(t)) = p(t)(P (t) + H(t, z(t), ż(t))) − Ψ(P (t)), on the set

Ω =

⎧⎨
⎩z ∈

(
Ĉ1[0, T ]

)n |
zi(0) = 0, zi(T ) = bi

Hi min ≤ Hi(t, zi(t), żi(t)) ≤ Hi max, ∀t ∈ [0, T ]
∀i = 1, . . . , n

⎫⎬
⎭ (2.2)

3 The (H1 − T1) Problem

We begin the development in this section by presenting the simple problem with one
pumped-storage hydro-plant (i = 1). In the (H1 −T1) problem, we have z = z and our
objective functional is

F (P, z) =
∫ T

0
L(t, P (t), z(t), ż(t))dt

with L(t, P (t), z(t), ż(t)) = p(t)(P (t) + H(t, z(t), ż(t))) − Ψ(P (t)) on the set

Ω =
{

z ∈ Ĉ1[0, T ] | z(0) = 0, z(T ) = b
Hmin ≤ H(t, z(t), ż(t)) ≤ Hmax, ∀t ∈ [0, T ]

}
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where L(·, ·, ·, ·) and Lz(·, ·, ·, ·) are the class C0 and Lż(t, P, z, ·) is piecewise continuous
(Lż(t, P, z, ·) is discontinuous in ż = 0). The problem involves non-holonomic inequal-
ity constraints (differential inclusions) and the previous assumptions guarantee that:
Lżż(t, P, z, ż) < 0; Lż(t, P, z, ż) > 0. We also assume that

H(t, b, ż(t)) ≤ H(t, z(t), ż(t)) ≤ H(t, 0, ż(t)), ∀z ∈ Ω

These suppositions are fulfilled in all real hydrothermal problems, and bearing in mind
the weak influence of z(t), (H(t, b, ż) � H(t, z, ż) � H(t, 0, ż)), it is reasonable to
substitute the restriction: Hmin ≤ H(t, z(t), ż(t)) ≤ Hmax by others of the type: Hmin ≤
H(t, b, ż); H(t, 0, ż) ≤ Hmax. Thus, it is reasonable to substitute Ω by

Ω∗ =
{

z ∈ Ĉ1[0, T ] | z(0) = 0, z(T ) = b
Hmin ≤ H(t, b, ż); H(t, 0, ż) ≤ Hmax, ∀t ∈ [0, T ]

}
The solution to the problem in Ω∗ will be very close to that obtained with the set Ω, the
advantage being that the mathematical treatment of sets of type Ω∗ is much simpler
than of those of type Ω. We shall focus in the present paper on the development of
the applications of Optimal Control Theory (OCT) and nonsmooth analysis to this
problem. Let us term as the coordination function of z ∈ Ω∗ the function in [0, T ],
defined by:

Yz(t) = Lż(t, P (t), z(t), ż(t)) −
∫ t

0
Lz(s, P (s), z(s), ż(s))ds

denoting by Y
+
z (t) and Y

−
z (t) the expressions obtained when considering the lateral

derivatives of L with respect to ż. Let us now see the fundamental result, which is the
basis for elaborating the optimization algorithm. We present the problem considering
the state variables to be z(t) and P (t) and the control variables u1(t) = ż(t) and
u2(t) = Ṗ (t). The optimal control problem is thus:

max
u1(t),u2(t)

∫ T

0
L(t, P (t), z(t), u1(t))dt; with

{
ż = u1; Ṗ = u2

z(0) = 0, z(T ) = b

u1(t) ∈ Θ = {x | Hmin ≤ H(t, b, x);H(t, 0, x) ≤ Hmax} ; u2(t) ∈ (−∞,∞)

We shall use the nonsmooth version of Pontryagin’s Minimum Principle (PMP) [9] as
the basis for proving this theorem.

Theorem 1 (Theorem of Coordination). If (z∗, P ∗) ∈ (Ĉ1, C1) is a solution
of our problem, then ∃K ∈ R

+ such that:

i) If ż∗(t) = 0 =⇒ Y
+
z∗(t) ≤ K ≤ Y

−
z∗(t)

ii) If ż∗(t) �= 0 =⇒ Yz∗(t) is

⎧⎨
⎩

≥ K if H(t, b, ż∗(t)) = Hmin

= K if Hmin < H(t, z∗(t), ż∗(t)) < Hmax

≤ K if H(t, 0, ż∗(t)) = Hmax

and Ψ̇ (P ∗(t)) = p(t)

We shall call this relation

Lż(t, P (t), z(t), ż(t)) −
∫ t

0
Lz(s, P (s), z(s), ż(s))ds = K ∈ R

+,∀t ∈ [0, T ] (3.1)
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the coordination equation for z(t), and the positive constant K will be termed the
coordination constant of the extremal.

Note. It is very important to stress that the problem is thus easily broken down
into the two sub-problems: Thermal and Hydro. In the thermal sub-problem, the power
P (t) of the equivalent thermal plant is distributed (as we see in [10]) between the m
thermal plants, and so is completely resolved. In the next section, we consider once
more the general problem (Hn − T1) with n hydro-plants, which is the problem to be
solved.

4 Generalization to the (Hn − T1) Problem.
The Optimization Algorithm

In this section, we present an algorithm of the numerical resolution of the problem of
optimization of a hydrothermal system that involves n hydro-plants. The associated
variational problem is related to solving a boundary-value problem for a system of
differential equations. The algorithm uses a particular strategy related to the method
of cyclic coordinate descent (CCD). The CCD method minimizes a function cyclically
with respect to the coordinate variables. With our method, a problem of the type
Hn − T1 could be solved (under certain conditions) if we start out from the resolution
of a sequence of problems of the type H1−T1. The algorithm for the Hn−T1 problem
carries out several iterations and at each j-th iteration calculates n stages, one for each
hydro-plant. At each stage, it calculates the optimal functioning of a hydro-plant, while
the behavior of the rest of the plants is assumed fixed. For every z = (z1, . . . , zn) ∈ Ω,
we consider the functional F i

z defined by

F i
z(P, vi) =

∫ T

0

[
p(t)(P (t) + H i

z(t, vi(t), v̇i(t))) − Ψ(P (t))
]
dt

with H i
z(t, vi, v̇i) = H(t, z1, . . . , zi−1, vi, zi+1, . . . , zn, ż1, . . . , żi−1, v̇i, żi+1, . . . , żn)

where H i
z represents the power generated by the hydraulic system as a function of

the rate of water discharge and the volume turbinated by the i-th plant, under the
assumption that the rest of the plants behave in a definite way. We call the i-th
minimizing mapping the mapping φi : Ω −→ Ω, defined in the following way: for every
z ∈ Ω

φi(P, z1, . . . , zi, . . . , zn) = (P ∗, z1, . . . , z
∗
i , . . . , zn)

where (P ∗, z∗i ) minimizes F i
z. If we set Φ = (φn ◦ φn−1 ◦ · · · ◦ φ2 ◦ φ1) and

(P j , zj) = Φ(P j−1, zj−1)

beginning with some admissible (P 0, z0), we construct a sequence of (P j , zj) via suc-
cessive applications of {φi}n

i=1 and the algorithm will search

lim
j→∞

(P j , zj)

75



It is simple to justify the convergence of the algorithm in a finite number of steps,
simply by considering the following solution set:

{z | F (P, z) − F (Φ (P, z))< ε}
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Fig. 1. The Optimization Algorithm.

The application of every φi involves solving a problem of the type (H1−T1). To obtain
the optimum operating conditions of the hydro-plant, we shall use the coordination
equation (3.1). To undertake the approximate calculation of the solution, expressed in
Theorem 1, we use a similar numerical method to those used to solve differential equa-
tions in combination with an appropriate adaptation of the classical shooting method.

Step 1) Approximate construction of zK (the adapted Euler method).
The problem will consist in finding for each K the function zK that satisfies

zK(0) = 0, and the conditions of Theorem 1. From the computational point of view,
the construction of zK can be performed with the use of a discretized version of Equa-
tion (3.1). The approximate construction of each zK , which we shall call z̃K , is carried
out by means of polygonals (Euler’s method). In general, the construction of żK must
be carried out by constructing and successively concatenating the extremal arcs and
boundary arcs until completing the interval [0, T ].

Step 2) Construction of a sequence {Kj}j∈N such that zKj (T ) converges to b (the
adapted shooting method).
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Varying the coordination constant K, we would search for the extremal that fulfils
the second boundary condition zK(T ) = b. The procedure is similar to the shooting
method used to resolve a two-point boundary value problem (TPBVP). A number of
methods exist for solving these problems, including shooting, collocation and finite
difference methods. Among the shooting methods, the Simple Shooting Method (SSM)
and the Multiple Shooting Method (MSM) appear to be the most widely known and
used methods. We implemented a SSM and obtained good results. Effectively, we may
consider the function ϕ(K) := zK(T ) and calculate the root of ϕ(K) − b = 0, which
may be realized approximately using elemental procedures. The secant method was
used in the present paper, and the algorithm shows a rapid convergence to the optimal
solution for a wide range of Kmin and Kmax.

5 Application to a Real Hydrothermal System

A computer program was written (using the Mathematica package) to apply the re-
sults obtained in this paper to a real power system. As an example, we shall use the
hydrothermal system that the electricity company HC has in Asturias (Spain), which
is made up of 2 classic thermal plants: Aboño (with two groups of 360 and 543 of
power (Mw) respectively) and Soto (with two groups of 254 and 350 of power (Mw)
respectively) and 9 hydro-plants. For our optimization problem, we shall only use the 3
variable-head (the generation is function of z and ż) hydro-plants of the utility company
HC : Salime, Tanes (pumped-storage) and La Barca. We do not consider the remaining
hydro-plants, because they are run-of-river type (without reservoir) and power gen-
eration is not controllable. Let us see the models of different subsystems used in our
study. For the cost functions, we use a second-order polynomial

Ψi(Pi(t)) = αi + βiPi(t) + γiP
2
i (t)

The hydro-network has the three hydro-plants on different rivers, so the rate of dis-
charge at the upstream plant does not affect the behaviour at the downstream plants:
the hydraulic system has no hydraulic coupling. We use a variable head model and the
i-th function of effective hydraulic generation Hi (for a conventional hydro-plant) is
given by

Hi(t, zi(t), żi(t)) = Ai(t)żi(t) − Biżi(t)zi(t) − Ciż
2
i (t); żi(t) ≥ 0

where Ai(t), Bi and Ci are the coefficients

Ai(t) =
1
Gi

Byi(S0i + t · ii); Bi =
Byi

Gi
; Ci =

Bti

Gi

For the pumped-storage plant, Hi is defined piecewise, taking in the pumping zone
(żi(t) < 0): M · Hi(t, zi(t), żi(t)). The parameters that appear in this formula are: the
efficiency G in (m4/h.Mw), the natural inflow i in (m3/h), the initial volume S0 in
(106m3), and the coefficients By in (10−7m−2) and Bt in (10−5hm−2), parameters that
depend on the geometry of the reservoir.
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Let us consider the construction of the scenario structure for the day-ahead market
problem faced by the company HC in the Spanish spot market. In particular, the
market session of February 15th 2006 is considered as the current session. The past
market sessions [4] that are considered relevant range from February 1st to February
14th. Table I presents the results of the clustering analysis performed on this range of
days. The classification provided by the S-means algorithm for S = 4 (four clusters) is
presented below.

Table I. Clustering Analysis.

Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Day W Th F Sa S M T W Th F Sa S M T W

Cluster 4 4 4 1 2 3 4 4 4 4 1 2 3 4 4

As can be seen, the four day types provided by the clustering analysis are quite rea-
sonable: Cluster 1 and Cluster 2 corresponds to low-price days (Saturdays and Sun-
days, respectively), Cluster 3 includes one type of weekday: Mondays, and Cluster 4
comprises the other type of weekdays. This analysis suggests considering eight sce-
narios (eight realizations) for the day-ahead market problem faced by the company on
February 15th. We consider short-term hydrothermal scheduling (24 hours) with an
optimization interval [0, 24] and we consider a discretization of 24 subintervals. The
total optimal hydro and thermal power generation for the company HC are shown in
Figure 2-a and Figure 2-b respectively. The eight scenarios considered are presented in
both figures.
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Fig. 2. (a) Optimal hydro-power. (b) Optimal thermal-power.

The solution yields the optimal offers that the company must submit to each of the day-
ahead market auctions. Figure 3-a shows the offers corresponding to the 4th auction
for the total optimal thermal-power, and for the eight possible realizations. The 8
quantities and 8 prices for that hour constitute the offer curve (nondecreasing) that the
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company must submit to that auction.
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Fig. 3. (a) Thermal-offers. (b) Hydro-offers.

These results can be easily analyzed. Figure 3-a shows that the offer curve obtained
for the 4th hourly auction is quite flat, thus making the company rather uncertain
about the amount of energy that it will finally sell. This is confirmed by Figure 2-b,
in which the company’s eight possible levels of sales for the 4th hour are very different.
However, it is not possible to construct an offer curve (nondecreasing) for the company’s
optimal hydro-power. Figure 3-b shows the offers corresponding to the 12th auction
for the total optimal hydro-power, and for the eight possible realizations. It is easy to
understand that this behaviour is due to the inter-temporal constraints for the hydro-
plants, besides the pumped-storage character of some of the hydro-plants (the optimal
hydro-solution of one of the auctions influences the rest of the auctions). Therefore, we
suggest that the optimal offers that the company must submit, for the hydro-plants,
must be a half value of the optimal hydro-power generation that we present in Figure
2-a.
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