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Abstract

1 Introduction

Obtaining the accurate solution of optimal control problems is a crucial aspect in many
areas of applied science. In this paper we shall focus especially on problems that arise
in chemical engineering. There is a vast array of numerical methods and software
packages for solving dynamic optimization or optimal control problems numerically,
such as: SOCS, RIOTS 95, DIRCOL, MISER3, MINOPT, NDOT, DIDO, GPOCS,
DYNOPT or Bryson’s Matlab code. Unfortunately, these packages require an initial
guess of the solution to start the iterations. Sometimes, in cases when convergence
is not obtained, it is likely that the initial guess is such that convergence to the true
solution is impossible. In such cases, users of these packages are accordingly advised
to try different sets of initial guesses.

In this paper we shall concentrate on the special structure that appears in numerous
problems of chemical reactors; more specifically, in the nonlinear Continuous Stirred
Tank Reactor (CSTR). We shall present a very simple method to obtain an initial
guess for the solution for this complex system. Moreover, we shall show that, for the
chemical processes tested, the initial guess is very close to the solution and that our
initial guess is attracted to a global minimum. We shall show that the theory allows
us to address a wide range of problems: constrained, unconstrained, nondifferentiable,
etc., while employing a very short computation time in all cases.

2 Mathematical Formulation

A Lagrange type Optimal Control Problem (OCP) can be formulated as follows:

min
u(t)

I =
∫ tf

0
F (t,x(t),u(t)) dt (1)



subject to satisfying:
.
x(t) = f (t,x(t),u(t)) (2)
x(0) = x0 (3)

u(t) ∈ U(t), 0 ≤ t ≤ tf (4)

where I is the performance index, F is an objective function, x = (x1(t), ...,xn(t)) ∈Rn

is the state vector, with initial conditions x0, u = (u1(t), ...,um(t)) ∈Rm is the control
vector bounded by umin and umax, U denotes the set of admissible control values, and t
is the operation time that starts from 0 and ends at tf . The state variables (or simply
the states) must satisfy the state equation (2) with given initial conditions (3). In this
statement, we consider that the final instant is fixed and the final state is free. Let H
be the Hamiltonian function associated with the problem

H(t,x,u, λ) = F (t,x,u) + λ · f (t,x,u) (5)

where λ = (λ1(t), ...,λn(t)) ∈Rn is called the costate vector. The classical approach
involves the use of Pontryagin’s Minimum Principle (PMP), which results in a two-
point boundary value problem (TPBVP). In order for u ∈ U to be optimal, a nontrivial
function λ must necessarily exist, such that for almost every t ∈ [0, tf ]

.
x = Hλ = f (6)
.
λ = −Hx (7)

H(t,x,u, λ) = min
v(t)∈U

H(t,x,v, λ) (8)

x(0) = x0; λ(tf ) = 0 (9)

In this paper we deal with various chemical models whose dynamic equations present
a particular structure (we present the two dimensional case for the sake of simplicity):

min
u1(t)

I =
∫ tf

0
F (x1(t), x2(t), u1(t)) dt (10)

.
x1(t) = f (x1(t), x2(t), u1(t)) (11)
.

x2(t) = f (x1(t), x2(t)) (12)

The principal characteristic of this system is the absence of the control u2 in equations
(10-12). In several previous papers [1,2], the authors have presented a very simple
method that is able to solve, for a known x2, the problem formed by the equations
(10-11). We now adapt this method to obtain an initial guess for the solution of the
system (10-11-12).

The idea consists in constructing x1 in an approximate and similar way to how it
is constructed in [1,2] and in simultaneously constructing x2 using Euler’s (or Euler’s
improved) method in (12). In the discretization process, the values of x2 obtained at
the prior nodes are used to calculate x1 at each node, and the values obtained for x1

are used to calculate x2. The method that we have developed to obtain x1 is based on
the use of an integral form of the Euler equation, combined with the simple shooting
method. In the next section we shall see the excellent behavior of our approach by
means of several examples.



3 Examples

We analyze three cases. In Example 3.1 we first consider the nonlinear CSTR as
being unconstrained. In Example 3.2, we generalize the previous example, considering
the constrained case with bounded control. Finally, in Example 3.3. we present a
nondifferentiable case. We now present only the first case.

3.1 Unconstrained CSTR

Let us consider the system consisting of the dynamic optimization of a first-order
irreversible chemical reaction carried out under non-isothermal conditions in a CSTR.
The equations describing the chemical reactor are

dx1

dt
= −(2 + u)(x1 + 0.25) + (x2 + 0.5) exp(

25x1

x1 + 2
) (13)

dx2

dt
= 0.5− x2 − (x2 + 0.5) exp(

25x1

x1 + 2
) (14)

The control variable u(t) represents the manipulation of the flow-rate of the cooling
fluid. Here x1(t) represents the deviation from the dimensionless steady-state tempera-
ture, and x2(t) represents the deviation from the dimensionless steady-state concentra-
tion. In this section, we consider the case in which the control u is unbounded, and the
initial conditions x1(0) = 0.09 and x2(0) = 0.09 are used. The optimal control problem
is to determine u in the time interval 0 ≤ t < tf that will minimize the quadratic
performance index

I =
∫ tf

0
(x2

1 + x2
2 + 0.1u2)dt (15)

subject to the nonlinear dynamic constraints, where the dimensionless final time tf is
specified as 0.78.

Using a control vector iteration procedure, Luus and Cormack [3] showed that there
exists a local optimum of I = 0.244425 and a global optimum of I = 0.133094. This
optimal control problem provides a good test problem for optimization procedures and
is a member of the list of benchmark problems [4]. It has been used by Luus [5] to
evaluate his Iterative Dynamic Programming (IDP) algorithm, and by Luus and Galli
[6] to examine the multiplicity of solutions. Ali et al. [7] solved this problem using
eight stochastic global optimization algorithms, the results obtained varying between
I = 0.135 and I = 0.245. The CPU time used was quite high, in some case more than
2382 s .

We apply our simple method and present the results below. The minimum value
of I = 0.1334 was obtained very rapidly. The computation time for 15 iterations, with
a discretization of 100 subintervals, was 2.5 s .

Our method presents numerous advantages: It is very easy to programme, the
theory allows us to address a wide range of problems, the computation time is very
short, the initial guess is very close to the solution, and the initial guess is attracted to



a global minimum. The resulting initial guess for the optimal control policy is given in
Figure 1 and for the state trajectories in Figure 2.

Fig. 1. Optimal control. Fig. 2. Trajectories of the state variables.

References

[1] L. Bayon, J.M. Grau, M.M. Ruiz, and P.M. Suarez, New Developments in
the Application of Pontryagin’s Principle for the Hydrothermal Optimization, IMA
Journal of Mathematical Control and Information 22(4) (2005) 377-393.

[2] L. Bayon, J.M. Grau, M.M. Ruiz, and P.M. Suarez, A Bolza Problem in
Hydrothermal Optimization, Applied Mathematics and Computation 184(1) (2007)
12-22.

[3] R. Luus and D.E. Cormack, Multiplicity of solutions resulting from the use of
variational methods in optimal control problems, Can. J. Chem. Eng. 50 (1972),
309-312.

[4] Ch.A. Floudas, et al., Handbook of Test Problems in Local and Global Opti-
mization, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.

[5] R. Luus, Iterative Dynamic Programming, Chapman & Hall/CRC Press, Boca
Raton, FL, 2000.

[6] R. Luus and M. Galli, Multiplicity of solutions in using dynamic programming
for optimal control, Hung. J. Ind. Chem. 19 (1991), 55-62.

[7] M.M. Ali, C. Storey, A. Torn, Application of stochastic global optimization
algorithms to practical problems, J. Optim. Theory Applic. 95(3) (1997) 545–563.


