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Abstract

This paper deals with the optimal control problem that arise when a hydraulic
system with fixed-head hydroplants is considered. In the frame of a deregulated
electricity market the resulting Hamiltonian for such systems is linear in the control
variable and results in an optimal singular/bang-bang control policy. To avoid dif-
ficulties associated with the computation of optimal singular/bang-bang controls,
an efficient and simple optimization algorithm is proposed. The computational
technique is illustrated on one example.
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1 Introduction

The computation of optimal singular/bang-bang controls is of particular interest to re-
searchers because of the difficulty in obtaining the optimal solution. Several engineering
control problems, such as chemical reactor start-up or hydrothermal optimization prob-
lems, are known to have optimal singular/bang-bang problems. This paper deals with
the optimal control (OC) problem that arises when addressing the new short-term prob-
lems that are faced by a generation company in a deregulated electricity market. Our
model of the spot market explicitly represents the price of electricity as a known ex-
ogenous variable and we consider a system with fixed-head hydroplants. These plants,
with a large capacity reservoir, are the most important in the electricity market. The
resulting Hamiltonian for such systems, H, is linear in the control variable, u, and
results in an optimal singular/bang-bang control policy.

In general, the application of Pontryagin’s Maximum Principle (PMP) is not well
suited for computing singular control problems as it fails to yield a unique value for the
control. Different methods for determining optimal controls with a possibly singular
part have already been developed. In [1], the switching function is used as a constraint
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and the resulting problem is solved as a differential algebraic equation (DAE) problem.
Other popular approaches are the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm and other decay methods taken from nonlinear optimization [2], Maurer’s Method
[3], which converts the problem into a two point boundary value problem (TPBVP)
that can be solved by the multi shooting method, and the Method by Fraser-Andrews
[4], which determines the structure using orthogonal functions.

Another method that has been used by a number of researcher is the ε-method by
Bell and Jacobson. This method [5] involves solving the singular/bang-bang optimal
control problem as the limit of a series of nonsingular problems. The problem then
becomes well defined so that methods based on PMP can be used. However, some
existing numerical methods for handling such problems behave poorly. One alternative,
Iterative Dynamic Programming (IDP) [6], has been used and applications to different
types of problems have been reported. Recently [7] Maurer et al. presented a numerical
scheme for computing optimal bang-bang controls on problems with a larger number
of switchings. They assume that every component of the optimal control is bang-bang
and that there are only finitely many switching times. Such a bang-bang control can
be computed by solving an induced optimization problem, using the durations of the
bang-bang arcs as optimization variables instead of the switching times.

In this paper we propose a simple and efficient optimization algorithm that avoids
all the difficulties that the above methods present. The algorithm has been specifically
developed for a hydraulic problem and we remark that no approach has yet been devel-
oped to find the bang-bang solution to our hydro-problem. The paper is organized as
follows. In Section 2, we present the mathematical environment of our work: the sin-
gular optimal control problem with control appearing linearly. In Section 3, we present
the mathematical models of our fixed-head hydroplant. In Section 4 we formulate our
optimization problem: profit maximization of fixed-head hydroplants in a deregulated
electricity market and prove that singular controls can be excluded. In Section 5 we
describe the algorithm that provides the structure of bang-bang arcs. The results of the
application of the method to a numerical example are presented in Section 6. Finally,
the main conclusions of our research are summarized in Section 7.

2 General statement of the singular OC problem

Let us assume a system given by: a state x(t) ∈ Rn at time t ∈ [0, T ], a control
u(t) ∈ U(t) ⊂ Rm, where u is piecewise continuous and U(t) is compact for every
t ∈ [0, T ], a state equation x′(t) = f(t, x(t), u(t)) almost everywhere, an initial condition
x(0) = x0 and final condition x(T ) ∈ Z 6= ∅, where [0, T ] is fixed, and the scalar
functions g and L with a suitable domain. The following problem is called the Bolza
problem (P):

Find an admissible pair (x, u) on [0, T ] such that the functional

J(u) = g(x(T )) +
∫ T

0
L(t, x(t), u(t))dt
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becomes maximal. If g ≡ 0, we call (P) a Lagrange problem, while (P) is called a
Mayer problem if L ≡ 0. We define the Hamiltonian:

H(u, x, λ, t) := L(t, x, u) + λT f(t, x, u)

where λT ∈ Rn holds. We assume that every fi (i = 1, ..., n) is continuous in (t, x, u),
that the derivatives ∂

∂tfi and ∇xfi exist and are continuous in (t, x, u) for every i.
Furthermore we assume that g ∈ C1 and that (P) has a solution (x∗, u∗) with Z = Rn.
The following theorem is often very useful in solving Bolza problems:

Theorem 1 (PMP). Under the above hypothesis, there thus exists an absolutely
continuous function λ : [0, T ] → Rn with the following properties:

a) x′ = Hλ and λ′ = −Hx along (x∗, u∗)
b) H(u∗(t), x∗(t), λ(t), t) = max{H(u, x∗(t), λ(t), t) | u ⊂ U(t)} for every t ∈ [0, T ]
c) λ 6= 0 on [0, T ]
d) λ(T )dx(T )− dg = 0 (transversality condition)

In the usual case, the optimality condition

H(u∗(t), x∗(t), λ(t), t) = max{H(u, x∗(t), λ(t), t) | u ⊂ U(t)} (1)

is used to solve for the extremal control in terms of the state and adjoint (x, λ). Nor-
mally, the optimality condition is imposed as Hu = 0 and this system of equations is
solved for the control vector u(t). Additionally, since u∗ is to maximize H, the Hessian
must be positive definite: Huu < 0 (Legendre-Clebsch (LC) condition).

We now consider the case of scalar control appearing linearly (Huu is singular):

max
∫ T

0
[f1(t, x) + uf2(t, x)]dt

x′ = g1(t, x) + ug2(t, x); x(0) = x0

umin ≤ u(t) ≤ umax

(2)

The variational Hamiltonian is linear in u and can be written as

H(u, x, λ, t) := f1(t, x) + λg1(t, x) + [f2(t, x) + λg2(t, x)]u

The optimality condition (maximize H w.r.t. u) leads to:

u∗(t) =





umax if f2(t, x) + λg2(t, x) > 0
using if f2(t, x) + λg2(t, x) = 0
umin if f2(t, x) + λg2(t, x) < 0

and u∗ is undetermined if Φ(x, λ) ≡ Hu = f2(t, x) + λg2(t, x) = 0. The function Φ is
called the switching function. If Φ(x∗(t), λ(t)) = 0 only at isolated time points, then
the optimal control switches between its upper and lower bounds, which is said to be
a bang-bang type control (i.e. the problem is not singular). The times when the OC
switches from umax to umin or vice-versa are called switch times.



An algorithm for Bang-Bang control

If Φ(x∗(t), λ(t)) = 0 for every t in some subinterval [t′, t′′] of [0, T ], then the original
problem is called a singular control problem and the corresponding trajectory for [t′, t′′],
a singular arc. The case when Φ vanishes over an interval is more troublesome, because
the optimality condition is vacuous, since H(u, x∗(t), λ(t), t) is independent of u. In
the singular case, PMP yields no information on the extremal (or stationary) control.

In order to find the control on a singular arc, we use the fact that Hu remains
zero along the whole arc. Hence, all the time derivatives are zero along such an arc.
By successive differentiation of the switching function, one of the time derivatives may
contain the control u, in which case u can be obtained as a function of x and λ. The
next result (see [8]) is important.

Proposition 1. If Hu is successively differentiated with respect to time, then u
cannot first appear in an odd-order derivative.

As u first appears in an even-order derivative, we denote this by d2q(Hu)
dt2q and q is

the order of the singular arc. An important theorem (see [8]) is the necessary condition
for a singular arc to be optimal: the Generalized Legendre-Clebsch (GLC) condition.

Theorem 2 (GLC Condition). If x∗(t), u∗(t) are optimal on a singular arc,
then, for scalar u,

(−1)q ∂

∂u

[
d2q(Hu)

dt2q

]
≤ 0

3 Hydroplant performance models

Conventional hydroplants are classified as run-of-river plants and storage plants. Run-
of-river plants have little storage capacity and use water as it becomes available. The
water not utilized is spilled. Storage plants are associated with reservoirs that have
significant storage capacity. During periods of low power requirements, water can be
stored and then released when demand is high.

A basic physically-based relationship between the active power generated P (in
MW) by a hydroplant and the rate of water discharge, q (in m3/s), and the effective
head, h (in m), is given by

P = 0.0085 q.h.η(q, h)

where η is a function of q and h. A variety of models have been proposed in the literature
[9], [10] due to the diversity of plant types and their characteristics (see Table I). The
appropriate choice of mathematical models for representing the physical system is a
crucial aspect when addressing any optimization problem. In this paper we consider
the approximation presented by El-Hawary [9] to be the most appropriate on account
of its precision and flexibility.
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Table I. Hydroplant models.

Glimn-Kirchmayer q = Kψ(h)φ(P ) ψ(h) = αh2 + βh + γ
φ(P ) = xP 2 + yP + z

Hildebrand q =
L∑

i=0

K∑
j=0

CijP
ihj (L and K are usually taken to be 2)

Hamilton-Lamont q = ψ(h)φ(P )
h ψ(h) = αh2 + βh + γ

φ(P ) = xP 3 + yP + z

Arvanitidis-Rosing P = qh[β − e−αS ] (S is reservoir storage)

El-Hawary’s Model. In this model the output power P (MW) is given by

P =
qh

G

where q is the rate of water discharge (m3/h), h is the effective water head (m), and
G is the efficiency (m4/h.MW). For the sake of simplicity, we assume the rate of water
spillage and the penstock head losses to be negligible. Thus, we have h = y−yT , where
y is the forebay elevation and yT the tailrace elevation. In most cases, a typical linear
variation between yT and the discharge, q, and a typical linear elevation-storage curve
may be assumed:

y(t) = [y0 + Bys(t)]− [yT0 + BT q(t)]

where s(t) is the reservoir storage. The reservoir’s dynamics may be suitably described
by the equation

ds(t)
dt

= i(t)− q(t) → s(t) = S0 + i · t−Q(t)

being i the natural inflow (that is, in general, assumed constant), Q(t) being the volume
discharged up to the instant t by the plant and S0 the initial volume. So, we have that

P (t,Q(t), q(t)) := A(t) · q(t)−B ·Q(t) · q(t)− C · q2(t)

A(t) =
(y0 − yT0) + By(S0 + i · t)

G
; B =

By

G
; C =

BT

G

(3)

This is a variable-head model and the hydroplant’s hydraulic generation, P , is a function
of Q(t) and q(t). According to El-Hawary’s model, power output is a function of
discharge and the head. For a large capacity reservoir, it is practical to assume that the
effective head is constant over the optimization interval. Here the fixed-head hydroplant
model is defined and P is represented by the linear equation:

P (t) =
(y0 − yT0) + By(S0)

G
q(t) = Aq(t) (4)
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4 Structure of the solution of the optimization problem

For convenience of formulation, in this section we introduce this new notation: q(t) ≡
z′(t);Q(t) ≡ z(t). Let P (t, z(t), z′(t)) be the function of the hydroplant’s hydraulic
generation, where z(t) is the volume that is discharged up to the instant t by the plant,
and z′(t) the rate of water discharge of the plant at the instant t. If we assume that b
is the volume of water that must be discharged during the entire optimization interval
[0, T ], the following boundary conditions will have to be fulfilled:

z(0) = 0, z(T ) = b

Throughout the paper we assume that P (t, z, z′) : [0, T ] × R+ × R+ −→ R+; that
is, we shall only admit non-negative volumes, z(t), and rates of water discharge, z′(t)
(pumped-storage plants will be not considered). Besides the previous statement, we
consider z′(t) to be bounded by technical constraints

qmin ≤ z′(t) ≤ qmax, ∀t ∈ [0, T ]

No transmission losses will be considered in our study; this is a crucial aspect when
addressing the optimization problem from a centralized viewpoint. From the perspec-
tive of a generation company and within the framework of the new electricity market,
said losses are not relevant, as power generators currently receive payment for all the
energy they generate in power plant bars.

This study constitutes a modification of previous papers by the authors [11], [12],
where a variable-head model (3) was considered. When the term−C ·q2(t) is considered,
the Hamiltonian is not linear in u and the control is not singular/bang-bang. The
Hamiltonian is also not linear in u when transmission losses are considered using the
classic Kirchmayer model: PL = BP (t)2; PL being the losses.

In our problem, the objective function is given by revenue during the optimization
interval [0, T ]

F (z) =
∫ T

0
L(t, z(t), z′(t))dt =

∫ T

0
π(t)P (t, z(t), z′(t))dt

Revenue is obtained by multiplying the hydraulic production of the hydroplant by the
clearing price π(t) at each hour t. Our model of the spot market explicitly represents
the price of electricity as a known exogenous variable. Here the fixed-head hydroplant
model (4) for P is used. In keeping with the previous statement, our objective functional
in continuous time form is

max
z

F (z) = max
z

∫ T

0
π(t) A z′(t)dt

on Ω =
{

z ∈ Ĉ1[0, T ] | z(0) = 0, z(T ) = b; qmin ≤ z′(t) ≤ qmax, ∀t ∈ [0, T ]
}
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where Ĉ1 is the set of piecewise C1 functions. A standard Lagrange type OC problem
of type (2) can be mathematically formulated as follows:

max
∫ T

0
Aπ(t)udt = max

∫ T

0
f(t)udt

z′ = u; z(0) = 0, z(T ) = b

umin ≤ u(t) ≤ umax

With the aim of obtaining a solution numerically, we first attempt to determine the
structure of the solution; that is, the sequence of the bang-bang and the singular parts.
We define the Hamiltonian:

H(u, x, λ, t) := f(t)u + λu = [f(t) + λ]u

The switching function is Φ(x, λ) ≡ Hu = f(t) + λ. The optimality condition (1) leads
to:

u∗(t) =





umax if f(t) + λ > 0
using if f(t) + λ = 0
umin if f(t) + λ < 0

(5)

On the other hand, the co-state equation of PMP allows us to obtain:

λ′ = −Hz = 0 → λ = λ0 (cte) (6)

To find the control on a singular arc, we use the fact that Hu remains zero along the
whole arc. By differentiation of the switching function, we obtain

d

dt
Hu =

d

dt
[f(t) + λ] = f ′(t) = Aπ′(t) = 0

...

dn

dtn
Hu = Aπ(n)(t) = 0

We can see that in the successive derivatives of Hu w.r.t. t, doesn’t appear the control
u. We have only derivatives of the clearing price π(t). The presence of singular arcs in
the solution are thus ruled out.

5 Algorithm for the Bang-Bang solution

Having ruled out the presence of singular arcs, we now determine the bang-bang seg-
ments and the boundary on which the solution is situated. To obtain the optimal
solution, we apply (5) and (6), obtaining

u∗(t) =
{

umax if f(t) > −λ0

umin if f(t) < −λ0
(7)

The algorithm that leads to the optimal solution (7) comprises the following steps:
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(i) First, f(t) must be interpolated to obtain a continuous function. Note that
in real electricity markets, the clearing price π(t) is only known at each hour (t =
1, 2, ..., 24). In this paper we have used linear interpolation with good results.

(ii) Second, we have to determine the switch times: t1, t2, ... These instants are
calculated solving the equation

f(t) = −λ

(iii) Third, the optimal value λ0 must be determined in order for:

zλ(T ) =
Ns∑

i=1

δi · qmax + (T −
Ns∑

i=1

δi) · qmin = b

δi being the duration of the i-th bang-bang segment in the upper bound umax, Ns the
number of such segments, and zλ(T ) the final volume obtained for each λ. Figure 1
illustrates the proposed method.

Figure 1. Illustration of the method.

Figure 2. Computational flow of the proposed algorithm.



L. Bayón et al.

(iv) To calculate an approximate value of λ0, we propose an iterative method (like,
for example, bisection or the secant method) using this condition

Error = |zλ(T )− b| < tol

to finalize the algorithm. As we shall see in the next section, the secant method has
provided satisfactory results using these initial values:

λmin = min f(t); λmax = max f(t)

6 Example

A program was written using the Mathematica package to apply the results obtained in
this paper to an example of a hydraulic system made up of one fixed-head hydroplant.
The hydroplant data are summarized in Table II.

Table II: Hydroplant coefficients.

G(m4/h .MW) b(m3) S0(m3) y0(m) yT0(m) By(m−2)
319840 45 106 2.395 108 6.18166 5 2.89386 10−8

We shall also consider the technical constraints: qmin = 0; qmax = 3.94258 106 (m3/h),
which correspond, respectively, to Pmin = 0;Pmax = 100 (MW). With these coefficients,
the hydraulic model is:

P (t) = 0.0000253641 q(t)

In this paper, we focus on the problem that a generation company faces when preparing
its offers for the day-ahead market. Thus, the classic optimization interval of T = 24 h .
was considered. The clearing price π(t) (euros/h ·MW) corresponding to one day was
taken from the Spanish electricity market [13]. The known values of π(t) : t = 1, 2, ..., 24
were linearly interpolated (see Figure 3).

Figure 3. Clearing price π(t).

The solution may be constructed in a simple way by taking into account the above
algorithm. In this example we have:

f(t) = 0.0000253641 π(t)

λmin = min f(t) = 0.00139528
λmax = max f(t) = 0.00279005
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The secant method was used to calculate the approximate value of λ for which

Error = |zλ(T )− b| < tol

with tol = 50 (m3). The optimal value obtained is λ0 = 0.002107617885177008 and
the switch times are:

t1 = 0.528346, t2 = 8.24259, t3 = 14.8669, t4 = 18.4717, t5 = 22.7328

Figure 4. Optimal hydro-power P (t).

Figure 4 presents the optimal hydro-power, P . The profits from the optimal solution
are 130908 euros.

Figure 5. Convergence of the algorithm.

The algorithm runs very quickly (see Figure 5). In the example, 11 iterations were
needed and the CPU time required by the program was 0.188 sec on a personal computer
(Pentium IV/2GHz).

7 Conclusions and future perspectives

This paper presents a novel method for developing the optimal control problem faced
by a fixed-head hydroplant in a deregulated electricity market (no transmission losses).
We have proved that singular controls do not exist and, for the first time, a simple
and very efficient algorithm has been specifically developed for the resulting bang-
bang problem. In spite of its hydraulic origin, it should be noted that our method
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may be applied to other problems with the same characteristics. As far as future
perspectives are concerned, it would be very interesting to apply this method when the
system is made up of variable-head hydroplants of the type: P (t) = f(Q(t)) · q(t) or
P (t) = f(t, Q(t)) · q(t).
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