
Brill Academic Publishers
P.O. Box 9000, 2300 PA Leiden,
The Netherlands

Lecture Series on Computer
and Computational Sciences

Volume 1, 2005, pp. 1-4

A Constrained and Nonsmooth Hydrothermal Problem

L. Bayón1 ; J.M. Grau; M.M. Ruiz; P.M. Suárez

Department of Mathematics, University of Oviedo, Spain

Abstract: This paper addresses a hydrothermal problem that simultaneously considers
non-regular Lagrangian and non-holonomic inequality constraints, obtaining a necessary
minimum condition. It is further shown that the discontinuity of the lagrangian does not
translate as discontinuity in the derivative of the solution. Finally, a solution algorithm is
developed and applied to an example.
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1 Introduction

This paper deals with the optimization of hydrothermal problems. In a previous paper [1], we
considered a hydrothermal system with one hydro-plant and m thermal power plants that had
been substituted by their thermal equivalent and addressed the problem of minimizing the cost of
fuel F (P ) during the optimization interval [0, T ]

F (P ) =

Z T

0

Ψ(P (t))dt (1.1)

P (t) +H(t, z(t), z0(t)) = Pd(t), ∀t ∈ [0, T ] (1.2)

z(0) = 0, z(T ) = b (1.3)

where Ψ is the function of thermal cost of the thermal equivalent and P (t) is the power generated
by said plant. The following must be also be verified: the equilibrium equation of active power
(1.2), and the boundary conditions (1.3), where Pd(t) is the power demand, H(t, z(t), z0(t)) is the
power contributed to the system at the instant t by the hydro-plant, z(t) being the volume that
is discharged up to the instant t by the plant, z0(t) the rate of water discharge of the plant at the
instant t, and b the volume of water that must be discharged during the entire optimization interval.
In said paper, we likewise considered constraints for the admissible generated power (P (t) ≥ 0 and
H(t, z(t), z0(t)) ≥ 0). The mathematical problem (P1) was stated in the following terms:

min
z∈Θ1

F (z) = min
z∈Θ1

Z T

0

Ψ [Pd(t)−H(t, z(t), z0(t))] dt = min
z∈Θ1

Z T

0

L(t, z(t), z0(t))dt

Θ1 = {z ∈ bC1[0, T ] | z(0) = 0, z(T ) = b, 0 ≤ H(t, z(t), z0(t)) ≤ Pd(t),∀t ∈ [0, T ]}

where ( bC1) is the set of piecewise C1 functions. The problem (P1) was formulated within the
framework of optimal control [2] and

Yq(t) := −Lz0(t, q(t), q0(t)) · exp
∙
−
Z t

0

Hz(s, q(s), q
0(s))

Hz0(s, q(s), q0(s))
ds

¸
(1.4)
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was called the coordination function of q ∈ Θ1, obtaining the following result:
Theorem 1. If q is a solution of (P1), then ∃K ∈ R+ such that:

Yq(t) is

⎧⎨⎩ ≤ K if H(t, q(t), q0(t)) = 0
= K if 0 < H(t, q(t), q0(t)) < Pd(t)
≥ K if H(t, q(t), q0(t)) = Pd(t)

In another previous paper [3], a problem of hydrothermal optimization with pumped-storage plants
was addressed, though without considering constraints for the admissible generated power. In this
kind of problem, the derivative of H with respect to z0 (Hz0 ) presents discontinuity at z0 = 0,
which is the border between the power generation zone (positive values of z0) and the pumping
zone (negative values of z0). The mathematical problem (P2) was stated in the following terms:

min
z∈Θ2

F (z) = min
z∈Θ2

Z T

0

Ψ [Pd(t)−H(t, z(t), z0(t))] dt = min
z∈Θ2

Z T

0

L(t, z(t), z0(t))dt

Θ2 = {z ∈ bC1[0, T ] | z(0) = 0, z(T ) = b}

where L(·, ·, ·) and Lz(·, ·, ·) are the class C0 and Lz0(t, z, ·) is piecewise continuous (Lz0(t, z, ·) is
discontinuous in z0 = 0). Denoting by Uq(t), q ∈ Θ2 the function:

Uq(t) := −Lz0(t, q(t), q0(t)) +
Z t

0

Lz(s, q(s), q
0(s))ds (1.5)

and by U+q (t) and U−q (t) the expressions obtained when considering the lateral derivatives with
respect to z0. The problem (P2) was formulated within the framework of nonsmooth analysis [4],
using the generalized (or Clarke’s) gradient, the following result being proven:
Theorem 2. If q is a solution of (P2), then ∃K ∈ R+ such that:(

U+q (t) = U−q (t) = K if q0(t) 6= 0
U+q (t) ≥ K ≥ U−q (t) if q0(t) = 0

This paper merges the two previous studies, simultaneaously considering non-regular Lagrangian
and non-holonomic inequality constraints (differential inclusions), obtaining a necessary minimum
condition. Furthermore, under certain convexity conditions, we shall establish the result (smooth
transition) that the derivative of the minimum presents a constancy interval, the constant being
the value for which Lz0(t, z, ·) presents discontinuity. Finally, we shall present a solution algorithm
and shall apply it to an example.

2 Mathematical Statement and Resolution of the Problem

In this paper, we consider a hydrothermal system with one thermal plant (the thermal equivalent)
and one pumped-hydro plant, which will have certain constraints in both genearation and pumping
for H. We shall take Hmin (maximum pumping capacity) as the lower boundary and Hs(t) =
min {Hmax, Pd(t)} (Hmax being maximum generation) as the upper boundary.
The mathematical problem (P3) may be stated in the following terms:

min
z∈Θ

F (z) = min
z∈Θ

Z T

0

Ψ [Pd(t)−H(t, z(t), z0(t))] dt = min
z∈Θ

Z T

0

L(t, z(t), z0(t))dt

Θ = {z ∈ bC1[0, T ] | z(0) = 0, z(T ) = b,Hmin ≤ H(t, z(t), z0(t)) ≤ Hs(t),∀t ∈ [0, T ]}
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where L(·, ·, ·) and Lz(·, ·, ·) are the class C0 and Lz0(t, z, ·) is piecewise continuous. We shall assume
that Ψ is strictly increasing and strictly convex, that H verifies Hz0 > 0, and Hz(t, z(t), 0) = 0, and
the strictly increasing nature of Lz0(t, z, ·). We shall establish the necessary minimum condition for
this problem with non-regular Langrangian and constraints on the admissible functions, employing
to this end the coordination function, Yq(t).
We shall denote by Y+q (t) and Y−q (t) the expressions obtained when considering in (1.4) the

lateral derivatives with respect to z0. We shall prove that these functions also verify Theorem 2
in the same way as U+q (t) and U−q (t), and that for the stated problem, except in those values of
z0 for which Lz0(t, z, ·) is not continuous, Theorem 1 will continue to be valid. We thus obtain the
following result:
Theorem 3. If q is a solution of (P3), then ∃K ∈ R+ such that:

i) If Lz0(t, q(t), ·) is discontinuous at q0(t) =⇒ Y+q (t) ≤ K ≤ Y−q (t)
ii) If Lz0(t, q(t), ·) is continuous at q0(t) =⇒

Yq(t) is

⎧⎨⎩ ≤ K if H(t, q(t), q0(t)) = Hmin

= K if Hmin < H(t, q(t), q0(t)) < Hs(t)
≥ K if H(t, q(t), q0(t)) = Hs(t)

3 Smooth Transition

In this section, we present a qualitative aspect of the solution of (P3). We prove that, under certain
conditions, the discontinuity of the derivative of the Langrangian does not translate as discontinuity
in the derivative of the solution. In fact, it is verifed that the derivative of the extremal where
the minimum is reached presents an interval of constancy, the constant being the value for which
Lz0(t, z, ·) presents discontinuity. The character C1 of the solution is thus guaranteed.
Theorem 4. Let L(·, ·, ·) be the Lagrangian of the functional F in the conditons stated above,

and let us assume that the function Lz0(t0 , z(t0), ·) is strictly increasing (decreasing) and discon-
tinuous in 0. If q is minimum (maximum) for F, then:
(i) t0 is not an isolated point of a change in the sign of q0.
(ii) q0 ≡ 0 in some interval that contains t0 .
(iii) q0 is continuous in t0 .
Note that this result has a very clear interpretation in terms of pumping plants: under optimum

operating conditions, pumping plants never switch brusquely from generating power to pumping
water or vice versa, but rather carry out a smooth transition, remaining inactive during a certain
period of time.

4 Optimization Algorithm

From the computational point of view, the construction of qK can be performed with the use of
a discretized version of Theorem 3. The problem will consist in finding for each K the function
qK that satisfies conditions i) and ii) of Theorem 3, and from among these functions, an admisible
function qK ∈ Θ. In general, the construction of qK cannot be carried out all at once over the entire
interval [0, T ]. The construction must necessarily be carried out by constructing and successively
concatenating the extremal arcs, until completing the interval [0, T ], where:
· Hmin < H(t, q(t), q0(t)) < Hs(t) (free extremal arcs), or
· q0(t) = 0 (the hydro-plant is on shut-down), or
· H(t, q(t), q0(t)) = Hs(t) (the hydro-plant generates all the demanded power or its technical

maximum), or
· H(t, q(t), q0(t)) = Hmin (the hydro-plant is functioning at its maximum pumping power)
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If the values obtained for q and q0 do not obey the constraints, we force the solution qK to
belong to the boundary until the moment when the conditions of leaving the domain (established
in Theorem 3) are fulfilled.

5 Application to a Hydrothermal Problem

A program that resolves the optimization problem was elaborated using the Mathematica package
and was then applied to one example of hydrothermal system made up of the thermal equivalent
plant and a hydraulic pumped-storage plant.
We use the quadratic model: Ψ(x) := c1 + c2x+ c3x

2, for the fuel cost model of the equivalent
thermal plant. The power production H of the hydroplant (variable head) is a function of z(t)
and z0(t) and its power consumption during pumping is a lineal function of the amount of water
pumped (M · z0(t)). Hence the function H is defined piecewise as

H(t, z(t), z0(t)) :=

(
A(t) · z0(t)−B · z(t) · z0(t) if z0(t) > 0

M · z0(t) if z0(t) ≤ 0

where A(t) = By
G (S0+t ·i), B =

By
G . The parameters are: G(m4/h.Mw) the efficiency, i(m3/h) the

natural inflow, S0(m3) the initial volume, and By(m
−2) a parameter that depends on the geometry

of the tanks. M(h.Mw/m3) is the factor of water-conversion of the pumped-storage plant and we
consider two cases: (1) M1 = (1, 04)A(0) and (2) M2 = (1, 10)A(0).

Figure 1. Optimal solution with M1. Figure 2. Optimal solution with M2.

Figures 1 and 2 presents the optimum solution. It can be seen how the interval of smooth transtion
varies when considering two different values of M .
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