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Abstract: This paper deals with the optimization of a hydrothermal problem that con-
siders non-regular Lagrangian L(t, z, z0). We consider a general case where the functions
Lz0(t, z, ·) and Lz(t, z, ·) are discontinuous in z0 = φ(t, z), which is the borderline point
between two power generation zones. This situation arises in problems of optimization of
hydrothermal systems where the thermal plant input-output curve considers the shape of
the cost curve in the neighborhood of the valve points. The problem shall be formulated
in the framework of nonsmooth analysis, using the generalized (or Clarke’s) gradient. We
shall obtain a new necessary minimum condition and we shall generalize the known re-
sult (smooth transition) that the derivative of the minimum presents a constancy interval.
Finally, we shall present an example.
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1 Introduction

In a previous paper [1], a problem of hydrothermal optimization with pumped-storage plants was
considered. The problem consisted in minimizing the cost of fuel needed to satisfy a certain power
demand during the optimization interval [0, T ]. The mathematical problem was stated in the
following terms:

min
z∈Θ

F (z) = min
z∈Θ

Z T

0

Ψ [Pd(t)−H(t, z(t), z0(t))] dt = min
z∈Θ

Z T

0

L(t, z(t), z0(t))dt (1.1)

Θ = {z ∈ bC1[0, T ] | z(0) = 0, z(T ) = b}

By ( bC1) we denote the set of piecewise C1 functions from [0, T ] to R, Pd is the power demand, H
the function of effective hydraulic generation, z(t) the volume that is discharged up to the instant
t by the hydroplant, z0(t) the rate of water discharge at the instant t by the hydraulic plant, b the
volume of water that must be discharged during the entire optimization interval and Ψ is the cost
function of the thermal plant. In this kind of problem, the derivative of H with respect to z0 (Hz0)
presents discontinuity at z0 = 0, which is the border between the power generation zone (positive
values of z0) and the pumping zone (negative values of z0).
Thus, the Lagrangian L(·, ·, ·) : [0, T ] × R × R → R and Lz(·, ·, ·) belong to class C0 and the

function Lz0(t, z, ·) is piecewise continuous (Lz0(t, z, ·) is discontinuous in z0 = 0). Denoting by
Uq(t), q ∈ Θ the function:

Uq(t) := −Lz0(t, q(t), q0(t)) +
Z t

0

Lz(s, q(s), q
0(s))ds (1.2)
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and by U+q (t) and U−q (t) the expressions obtained when considering the lateral derivatives with
respect to z0. The problem was formulated within the framework of nonsmooth analysis [2], using
the generalized (or Clarke’s) gradient, the following result being proven:
Theorem 1. If q is a solution of (1.1), then ∃K ∈ R+ such that:(

U+q (t) = U−q (t) = K if q0(t) 6= 0
U+q (t) ≤ K ≤ U−q (t) if q0(t) = 0

(1.3)

In another previous paper [3], we presented a qualitative aspect of the solution: the smooth transi-
tion. The following result was proven: under certain convexity conditions, the discontinuity of the
derivative of the Langrangian does not translate as discontinuity in the derivative of the solution.
In fact, it is verifed that the derivative of the extremal where the minimum is reached presents an
interval of constancy, the constant being the value for which Lz0(t, z, ·) presents discontinuity. The
character C1 of the solution is thus guaranteed.
This paper generalizes the two previous studies, considering a more general and non-regular

Lagrangian: L(·, ·, ·) belongs to class C0, but Lz0(t, z, ·) and Lz(t, z, ·) are piecewise continuous,
i.e. both are discontinuous in

z0 = φ(t, z) (1.4)

where φ belongs to class C1. This situation arises in problems of optimization of hydrothermal
systems where the thermal plant input-output curve considers the shape of the cost curve in the
neighborhood of the valve points. Let us consider a thermal plant defined by several quadratic
cost function such that Ψ is continuous but Ψ0 is discontinuous at the valve points.

Fig. 1. Thermal plant input-output curve.

In Fig. 1 we see that Ψ0 is discontinuous at P1 and P2. At P1, for example, we have that

P1 = Pd(t)−H(t, z(t), z0(t))⇒ z0 = φ(t, z) (1.5)

so Lz0(t, z, ·) and Lz(t, z, ·) are discontinuous in z0 = φ(t, z). We shall obtain a necessary minimum
condition using the generalized (or Clarke’s) gradient. Furthermore, we shall generalize the smooth
transition and shall prove that the derivative of the minimum presents a interval where (1.4) is
verified. Finally, we shall present a solution algorithm and shall apply it to an example.

2 A Necessary Condition

We now consider the mathematical problem

min
z∈Θ

F (z) = min
z∈Θ

Z T

0

Ψ [Pd(t)−H(t, z(t), z0(t))] dt = min
z∈Θ

Z T

0

L(t, z(t), z0(t))dt (2.1)

Θ = {z ∈ bC1[0, T ] | z(0) = 0, z(T ) = b}
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where L(·, ·, ·) belongs to class C0, and Lz0(t, z, ·) and Lz(t, z, ·) are piecewise continuous (both are
discontinuous in z0 = φ(t, z)).
Nonsmooth analysis [2] works with locally Lipschitz functions that are differentiable almost

everywhere (the set of points at which f fails to be differentiable is denoted Ωf ). Let f(x) :
Rn −→ R be Lipschitz near x, and let us assume that S is any set of Lebesgue measure 0 in
Rn. The generalized (or Clarke’s) gradient ∂f can be calculated as a convex hull of (almost) all
converging sequences of the gradients

∂f(x) = co {lim∇f(xi) : xi −→ x, xi /∈ S, xi /∈ Ωf} (2.2)

We now extend this study to integral functionals, which will be taken over the σ-finite positive
measure space (T,=, µ) = [0, T ] with Lebesgue measure. L∞(T, Y ) denotes the space of measurable
essentially bounded functions mapping T to Y , equipped with the usual supremum norm, with Y
being the separable Banach space Y = R×R. We are also given a closed subspace X of L∞(T, Y )

X =

½
(s, v) ∈ L∞(T, Y ) for some c ∈ R, s(t) = c+

Z t

0

v(τ)dτ

¾
(2.3)

and a family of functions ft : Y −→ R (t ∈ T) with ft(s, v) = L(t, s, v). We define a function f

f(s, v) =

Z T

0

L(t, s(t), v(t))dt

Under the above hypotheses, f is Lipschitz in a neighborhood of (bs, bv) ∈ X and the following holds:

∂f(bs, bv) ⊂ Z T

0

∂L(t, bs(t), bv(t))dt (2.4)

Hence, if ξ ∈ ∂f(bs, bv), we deduce the existence of a measurable function ξt = (r(t), p(t)) such that

(r(t), p(t)) ∈ ∂L(t, bs(t), bv(t)) a.e. (2.5)

(∂L denotes the generalized gradient with respect to (s, v)) and where, for any (s, v) ∈ X

< ξ, (s, v) >=

Z T

0

< ξt, (s, v) > dt =

Z T

0

[r(t)s(t) + p(t)v(t)] dt (2.6)

If ξ = 0 (as when F attains a local minimum at bs), then 0 ∈ ∂f(bs, bv), it hence follows easily
(Dubois-Reymond lemma) that p(·) is absolutely continuous and that r = p0 a.e. Thus, in this
case we have a nonsmooth version (generalized subgradient version) of the Euler-Lagrange equation

(p0(t), p(t)) ∈ ∂L(t, bs(t), bs0(t)) a.e. (2.7)

For our problem, we assume the following notations throughout the paper:

L+z0(t, z, z
0) := Lz0(t, z, z

0
+);L

−
z0(t, z, z

0) := Lz0(t, z, z
0
−) (2.8)

L+z (t, z, z
0) := Lz(t, z, z

0
+);L

−
z (t, z, z

0) := Lz(t, z, z
0
−)

U+z (t) = −L+z0(t, z(t), z0(t)) +
Z t

0

L−z (τ , z(τ), z
0(τ))dτ

U−z (t) = −L−z0(t, z(t), z0(t)) +
Z t

0

L+z (τ , z(τ), z
0(τ))dτ

With the above definitions, we can prove the following result (necessary condition for minimum).
Theorem 2. If q is a solution of (2.1), then ∃K ∈ R+ such that:(

U+q (t) = U−q (t) = K if q0(t) 6= φ(t, q(t))

U+q (t) ≤ K ≤ U−q (t) if q0(t) = φ(t, q(t))
(2.9)
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3 Smooth Transition

In this section, we present a qualitative aspect of the solution of (2.1). We prove that, under certain
conditions, the discontinuity of the derivative of the Langrangian does not translate as discontinuity
in the derivative of the solution. In fact, it is verifed that the derivative of the extremal where the
minimum is reached presents an interval where (1.4) is verified. The character C1 of the solution
is thus guaranteed.
Theorem 3. Let L(·, ·, ·) be the Lagrangian of the functional F in the conditions stated

above, and let us assume that the function Lz0(t0 , z(t0), ·) is strictly increasing and discontinuous
in φ(t

0
, q(t

0
)). If q is minimum for F , then q0(t) = φ(t, q(t)) in some interval that contains t

0

and q0 is continuous in t
0
.

This result has a very clear interpretation: under optimum operating conditions, thermal plants
never switch brusquely from one generating power zone to other, but rather carry out a smooth
transition, remaining above the boundary q0(t) ≡ φ(t, q(t)) a certain interval.

4 Application to a Hydrothermal Problem

A program that resolves the optimization problem was elaborated using the Mathematica package
and was then applied to an example of hydrothermal system made up of one thermal plant and
one hydro plant. The Optimization Algorithm is very similar to the algorithm that we present in
[3]. Let us consider a thermal plant with

Ψ(P ) =

⎧⎨⎩ α1 + β1P + γ1P
2

α2 + β2P + γ2P
2

α3 + β3P + γ3P
2

if
if
if

Pmin ≤ P < P1
P1 ≤ P < P2
P2 ≤ P < Pmax

(4.1)

where Ψ0 is discontinuous at P1 and P2 (as we can see in Fig. 1). This model in the cost curves
is due to sharp increases in throttle losses due to wire drawing effects occurring at valve points.
These are loading (output) levels at which a new steam admission valve is being opened. The
shape of the cost curve in the neighborhood of the valve points is difficult to determine by actual
testing. Most utility systems find it satisfactory to represent the input-output characteristic by a
smooth curve that can be defined by a polynomial or, even better, by means of a piecewise C1

quadratic function. We accept this more approximate model.
For the power production H of the hydroplant (variable head), we consider a function of z(t)

and z0(t) defined as

H(t, z(t), z0(t)) := A(t) · z0(t)−B · z(t) · z0(t) with A(t) =
By

G
(S0 + t · i), B =

By

G
(4.2)

The parameters are: G(m4/h.Mw) representing efficiency, i(m3/h) the natural inflow, S0(m3) the
initial volume, and By(m

−2) a parameter that depends on the geometry of the tanks. We shall
present the optimal solution.
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