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Abstract

In this paper we present a method to solve a constrained optimal control problem
to calculate the optimal enzyme concentrations in a chemical process by considering
the minimization of the transition time. The method, based on Pontryagin�s Max-
imum Principle, allows us to obtain, in an almost exclusively analytical way, the
generalized solution of an n-step system with an unbranched scheme and bilinear
kinetic models.
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1 Introduction

In this paper we present an optimal control problem that arises when metabolic
chemical processes are considered. Within this context, one of the most important
problems is the study of enzyme concentrations. Our work focuses on dynamic
optimization, studying the problem of minimizing the transition time during which
the substrate is converted into the product.

Let us consider the following (unbranched) reaction chain of n irreversible reac-
tions steps converting substrate x1 into product p:

x1
u1! x2

u2! x3
u3! � � � ! xn�1

un�1! xn
un! p (1)

where x1 is the substrate concentration (starting reagent), p the concentration of the
�nal product, xi (i = 2; : : : ; n) the concentration of the intermediate compounds,
and ui (i = 1; : : : ; n) the concentration of the enzyme catalyzing the i-th reaction.

For the dynamic case, the aim is to solve the problem analytically and numer-
ically. An explicit solution for the simplest case, i.e. n = 2, can be found in [1].



For longer pathways, i.e. n > 2, the aforementioned authors solved the optimization
problem numerically. An interesting study is presented in [2] in which the solution
is obtained quasi-analytically, though with the constraint of considering only the
case of n = 3 with two intermediate compounds. An interesting theoretical result is
presented in [3] for the general case of n steps: the optimal enzyme concentration
pro�le is of the �bang-bang�type (a well-known concept in the framework of optimal
control which implies that the solution switches between 0 and the maximal level),
except in the last interval. Other qualitative considerations of the solution are also
presented, but not the analytical solution.

In this paper we shall substantially extend the theoretical analysis of [2] and
[3], presenting the quasi-analytical solution for the more general case of n steps.
The paper is organized as follows. Section 2 presents the statement of the problem.
In Section 3 we carry out a calculation based on Pontryagin�s Maximum Principle.
Finally, we present the conclusions drawn.

2 Statement of the Problem

The optimization of enzyme concentrations in metabolic pathways can be calcu-
lated using the optimality criterion of minimizing the time period during which an
essential product is generated. [1] and [2] assumed bilinear (linear in the metabo-
lite concentrations, xi, and linear in the enzyme concentrations, ui) and irreversible
rate laws. [3] used a more general model: the rate laws are only linear in the ui,
and some assumptions are made about the behaviour of xi. In this paper we use
a bilinear kinetic model to solve the problem analytically, likewise assuming that
the enzymes can be switched on and o¤ instantaneously. For simplicity�s sake, we
employ normalized quantities. Enzyme levels are divided by the maximum total
enzyme concentration, and substrate, intermediate and product levels by the initial
substrate concentration.

Our goal is to convert substrate x1 into product p as fast as possible. Several
cost functions may be considered. In [3], combined optimization of the time taken
to reach the new steady state and a measure of enzyme usage is considered. In this
paper, we use the transition time, � , as de�ned in [4], which is likewise used in [1]
and [2]. Thus, the objective function of the optimization problem may be de�ned
as:

min
u1;:::un

� = min
u1;:::un

Z 1

0

1

x1(0)
(x1(0)� p(t))dt

Due to normalization, x1(0) = 1, and the conservation relation:

x1(t) + x2(t) + : : :+ xn(t) + p(t) = 1; 8t � 0

the objective function can be written as:

min
u1;:::un

� = min
u1;:::un

Z 1

0
(x1(t) + x2(t) + : : :+ xn(t))dt (2)



where the concentrations x1; x2; : : : ; xn are the state variables (p is eliminated) and
the concentration of enzymes u1; u2; : : : ; un are the control variables.

The model of the reactions in (1) can then be described by the set of di¤erential
equations (see [1] and [2]):8>>>><>>>>:

_x1 = �k1u1x1 x1(0) = 1 x1(t) � 0
_x2 = k1u1x1 � k2u2x2 x2(0) = 0 x2(t) � 0
_x3 = k2u2x2 � k3u3x3 x3(0) = 0 x3(t) � 0
� � �
_xn = kn�1un�1xn�1 � knunxn xn(0) = 0 xn(t) � 0

(3)

where, for the sake of simplicity, we shall assume equal catalytic e¢ ciencies of the
enzymes (ki = k = 1). As an initial condition, for t = 0, we shall consider the
concentrations of the intermediate compounds and of the product to be equal to zero.
Finally, we shall consider the concentrations of the compounds, xi, as well as those
of the enzymes, ui, to be positive limited quantities and, after normalization, that
the upper bound on the enzymatic concentration is 1. Hence, (u1(t); :::;un(t)) 2 
,
being:


 = fu = (u1(t); :::;un(t)) 2 Rn j u1 � 0; : : : un � 0; u1 + : : :+ un � 1g (4)

We have thus stated an optimal control problem.

3 Optimization

In this section we present the solution to the optimal control problem de�ned in the
previous section using Pontryagin�s Minimum Principle (PMP) [5]. In our case, as
regards the control appearing linearly in the Hamiltonian function H:

H = x1+x2+ � � �+xn+�1(�u1x1)+�2(u1x1�u2x2)+ � � �+�n(un�1xn�1�unxn)

when H is minimized w.r.t. the control variables:

min
u
H = min

u2

f��1u1 � �2u2 � � � � � �nung ;

8>>>>><>>>>>:

�1 = (�1 � �2)x1
�2 = (�2 � �3)x2
...
�n�1 = (�n�1 � �n)xn�1
�n = �nxn

(5)

it is shown that control ui will be activated when the switching function �i reaches
its maximum value. If ui switches between its upper and lower bounds only at
isolated points in time, then the optimal control is said to be a bang-bang type
control. The times are called switching times. We shall obtain the optimal solution
constructively by intervals, starting from t = 0 and concatenating the results. The
fundamental result to obtain may be summarized as follows:



Proposition 1. There exists a set of switching times ft1; t2; :::; tn�1g, (with
0 < ti < tj ; for i < j) which partition the optimization interval as:

[0; t1) [ [t1; t2) [ ��� [ [tn�2; tn�1) [ [tn�1;1)

such that the optimal pro�le of the i-th enzyme satis�es:

u�i (t) =

�
1 for t 2 [ti�1; ti)
0 fot t =2 [ti�1; ti)

; i = 1; : : : ; n� 1

with t0 = 0. In the last interval (t � tn�1), the solution is not of the bang-bang type.

Interval Concentrations � i

[0; t1]
x1(t) = e

�t

x2(t) = 1� e�t
x3(t) = 0; : : : ;xn(t) = 0

t1

[t1; t2]

x1(t) = e
�t1

x2(t) =
�
1� e�t1

�
e�(t�t1)

x3(t) =
�
1� e�t1

� �
1� e�(t�t1)

�
x4(t) = 0; : : : ;xn(t) = 0

t2 � t1

[t2; t3]

x1(t) = e
�t1

x2(t) =
�
1� e�t1

�
e�(t2�t1)

x3(t) =
�
1� e�t1

� �
1� e�(t2�t1)

�
e�(t�t2)

x4(t) =
�
1� e�t1

� �
1� e�(t2�t1)

�
(1� e�(t�t2))

x5(t) = 0; : : : ;xn(t) = 0

t3 � t2

: : : : : : : : :

[tn�2; tn�1]

x1(t) = e
�t1

x2(t) =
�
1� e�t1

�
e�(t2�t1)

x3(t) =
�
1� e�t1

� �
1� e�(t2�t1)

�
e�(t3�t2)

...
xn�2(t) =

�
1� e�t1

�
� � � (1� e�(tn�3�tn�4))e�(tn�2�tn�3)

xn�1(t) =
�
1� e�t1

�
� � � (1� e�(tn�2�tn�3))e�(t�tn�2)

xn(t) =
�
1� e�t1

�
� � � (1� e�(tn�2�tn�3))(1� e�(t�tn�2))

tn�1 � tn�2

(6)
The optimal solution is obtained analytically for the intervals [0; t1) [ [t1; t2)[ ���
[[tn�2; tn�1). The value of ui is given by Proposition 1, while the values of the
concentrations x1; x2; : : : ; xn are given by (6). The transition times � i are de�ned
by:

� i =

Z ti

ti�1

(x1(t) + x2(t) + x3(t) + � � �+ xn(t)) dt; i = 1; : : : ; n� 1

In the last interval, [tn�1;1), it is observed that un cannot be activated. Therefore,
in order to calculate the solution in this last interval, we need to determine the min-
imum total transition time, � . It can be seen that �(t1; t2; : : : ; tn�1; u1; u2; : : : ; un)



is given by:

� = tn�1+x1(tn�1)

�
1

u1
+ � � �+ 1

un

�
+x2(tn�1)

�
1

u2
+ � � �+ 1

un

�
+� � �+xn(tn�1)

�
1

un

�
where xi(tn�1) are known from (6).

To minimize � with the condition:

u1 + u2 + : : :+ un = 1

we apply the method of Lagrange multipliers to the augmented functional:

L(t1; t2; : : : ; tn�1; u1; u2; : : : ; un; �) = � + �(u1 + u2 + : : :+ un � 1)

In order to do so, we have to solve the non-lineal system:

@L

@t1
= 0;

@L

@t2
= 0; : : : ;

@L

@tn�1
= 0;

@L

@u1
= 0;

@L

@u2
= 0; : : : ;

@L

@un
= 0;

@L

@�
= 0

which may be done by means of any commonly used program.
It is therefore in this last step when we truly determine the switching times:

t1; t2; : : : ; tn�1, and the values of u1; u2; : : : ; un in the last interval, [tn�1;1) (in the
other intervals ui is given by Proposition 1). The problem is completely solved by
calculating x1(t); x2(t); � � � ; xn(t) in [tn�1;1) by means of the following equations:8>>>>>>>>>>>>><>>>>>>>>>>>>>:

x1(t) = x1(tn�1)e�u1(t�tn�1)

x2(t) = x2(tn�1)e�u2(t�tn�1)

+ u1
u2�u1x1(tn�1)

�
e�u1(t�tn�1) � e�u2(t�tn�1)

�
x3(t) = x3(tn�1)e�u3(t�tn�1) +

u2
u3�u2x2(tn�1)e

�u2(t�tn�1)

+ u2u1
u2�u1x1(tn�1)

�
e�u1(t�tn�1)

u3�u1 � e�u2(t�tn�1)

u3�u2

�
� u2
u3�u2x2(tn�1)e

�u3(t�tn�1)

� u2u1
u2�u1x1(tn�1)(

1
u3�u1 �

1
u3�u2 )e

�u3(t�tn�1)

...

We have thus solved the problem quasi-analytically; this last step, the calculation
of the switching times, being the only one that is not carried out analytically or
exactly.

4 Conclusions

Our paper supposes the generalization of the optimal control problem that arises
when considering a linear unbranched chemical process with n steps. We provide a
quasi-analytical solution to the case of n steps by considering the minimization of
the transition time.
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