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Abstract. In this paper, the authors continue a previous study about the broken extremals in vari-
ational problems with differential inclusions. In said paper, we presented a necessary condition
for extremals with corner points that isvalid for shapeable sets. Thiscondition has been obtained
by adapting a novel proof of the first Welertrass-Erdmann condition.

In the present paper we extend the class of shapeable sets and demonstrate that the set

Q:={ze KCYa b] | Gy(t, z(t)) < Z(t) < Ga(t, (1)), Vt € [a b] ae.}

with G1, G, € C!, isshapeable for every t.
Finally, we present two examples, the second being a classic engineering problem: the
optimization of hydrothermal systems.

1. Introduction

The extremal values of the functional

F(z) = /b L(t, z(t), Z (t))dt

on
D = {ze KC'a b] | z(a) = a, z(b) = p}

may be achieved in functions with corner points. For KC1[a, b], we denote the set
of continuous with piecewise continuous derivative functions. In all the paper, when
reference is made to properties of the derivative of afunction, these shall be understood
to be fulfilled for the two lateral derivatives.

TheWeiertrass-Erdmann conditions (W-E conditions) show that thediscontinuities
of g that are permitted at corner pointsof alocal extremal g arelimited to thosewhich
preserve the continuity of both

{ (i) Lz (t, a(t), q'(1))
(i) L(t, t), o'(1)) — g (L2 (¢, a(t), 4 (1))

The W-E conditions are of crucial importance in determining broken extremals and
sometimes allow one to prove that such extremals do not exist. Although these two
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Key wordsand phrases: Calculus of Variations, optimization, Weierstrass-Erdmann, broken extremals,
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conditions of continuity have been known since the end of the 19th century [12], they
have been expounded on diverse occasions with insufficient care. Both are correct
when dealing with strong extremals, but only the first is true for weak extremals. An
incorrect formulation of the second of these conditions was expounded by the authors
of [24] and [26], who assumed that the condition was true for the weak minima. The
counterexamples presented in [4-5] show that this assumption was incorrect.

The so-called first W-E condition is not always satisfied in variational problems
where the admissible functions are subject to certain constraints. For example, this
condition is not fulfilled in the problems of reflection of the extremals; one can easily
discover other examples where the condition is also violated.

We shall analyze the first condition and study the possibility of its extension to
variational problems with constraints on the admissible functions.

The classic proofs of the W-E conditions are based on the fact that either the
Géteaux differential of the functional vanishes at the extremal [15], or [26] employ the

equation
t

L (t, q(t), g'(t)) = Const. +/ Lz(x, a(x), o (x))dx (1)

These techniques do not work if the constraints are taken into account, because the
functional need not admit bilateral variationsat the extremum, or Equation (1) issimply
not satisfied.

Variational problems in which the derivatives of the admissible functions must
be subject to certain inequality constraints (differential inclusion z' € E(t, z)) have
traditionally been dealt with by recurring to alarge number of diverse techniques. The
first studiesin thisfield were conducted by Flodin [13] for simpler constraints of thetype
A < Z(t) < B and by Follinger, who in [14] deals in avery complex way with a more
general constraint of thetype H(t, z(t)) < Z/(t) < G(t, z(t)) (for present-day existence
theoremssee [6-16]). In [7], Clarke dealswith necessary conditionsfor problemsin the
caculus of variations that incorporate inequality constraints of the form f(z,z') < 0.
In[8], the author determines necessary conditions, in terms of generalized gradients, for
the existence of an extremal arc for calculus of variations and optimal control problems
with differential multi-inclusion z' € E(t, z).

In [9], Clarke and Loewen consider an optimal control problem on a fixed time
interval [0, T], and avariety of necessary conditions are derived for the original optimal
control problem. The same authors, in [10], develop an existence theory for solutions
to the original problemwith |Z'(t)| < R. In[17-18], Loewen and Rockafellar consider
the classical Bolza problem in the calculus of variations, incorporating endpoint and
velocity constraints through infinite penalties. The integrand L are alowed to be
nondifferentiable. In [19], the authors have recurred to techniques of optimal control
and formulate a sufficient optimality condition for broken extremals in terms of the
solution of the Hamilton-Jacobi-Bellman equation.

In [25], the simplest problem of the calculus of variations is investigated, along
with the corresponding Euler equation. Some new results on the Euler equation are
obtai ned and a minimizing sequence whose derivativesform afamily of equicontinuous
functions at a point is studied. Examples of the problem with singular extremals that
are local minimaare given.
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In [21] the simplest problem of the calculus of variations is considered. The
authors aim to prove that the classical second-order conditions formulated in terms of
a conjugate point and Riccati equation can also be generalized to the case of a broken
extremal. However, the type of minimum considered is weaker than a strong minimum
and stronger than a weak minimum. It is called the © -weak minimum. Osmolovskii
[22] distinguishes five basic types of minimum: weak minimum, © -weak minimum,
Pontryagin minimum, bounded-strong minimum, and strong minimum. The method of
the strengthening of the quadratic conditionsis used throughout the paper, and quadratic
conditions are formulated for broken extremals. In [23], the authors obtain sufficient
conditionsfor positive definiteness of the quadraticformin termsof the Riccati equation
and hence sufficient optimality conditionsfor broken extremals.

Noble and Schéttler [20] devel op sufficient conditions for a relative minimum for
broken extremalsin an optimal control problem based on the method of characteristics.

Inthe present paper, theauthors continueapreviousstudy [1] into broken extremals
in variational problemswith differential inclusions. In said paper, we presented a novel
proof of the first W-E condition. This proof is based on the analysis of the Gateaux
variationsin certain directionswhich we will call h? .

DEFINITION 1. Let ustake to € (a,b) and ¢ > 0. We consider the auxiliary
function h®

0 if telato—el Ulto+e, b
ho(t) .= (t—to+e) if t € [to— & to]
—(t—to—e¢) if t € [to, to + €]

THEOREM 1. If L(t, z,Z) € C1([a b] x R?) and q € KC'[a, b] providesa (weak)
local extremal valuefor F(z) = f; L(t, z(t), Z(t))dt on D = {z€ KC[a, b] | z(a) =
o , z(b) = B}, then Vt € [a, b] thefirst condition W-E holds: L, (t, q(t), d'(t-)) =
I-Z’ (t7 Q(t), ql(t+)) .

The method proposed for the proof can be adapted to study the extremum of the
functional restricted to the sets where

toy
DF(q, hto) ‘— |lim F(q+Xh£) F(Q)
& x—0t X

exists. We call these constraints shapeable sets.

2. Shapeable sets

Let us establish the concept of a shapeable set of functions. Thiswill allow us to
introduce a class of constraints on the admissible functions under which the necessary
condition for broken extremals that we present is satisfied.

DEFINITION 2. We will say that « is W-admisibleat q if 36 > 0 such that
g+xw € W, ¥x € [0, 6].
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DEFINITION 3. We will say that aset of functions Q c KC'[a, b] is shapeablein
to € (a,b) if Vqge Q

i) q(to_) < d(toy) = Je > 0 suchthat hY? is Q — admisible at q.

ii) o (to) > q(tor) => Je > 0 suchthat —h? is Q — admisible at q.

L et us see anecessary condition for broken extremals.

THEOREM 2. (THE FIRST W-E GENERALIZED CONDITION). If L(t,Z, Z) € CY([a, b] x
R?), Q isshapeablein to and q provides a (weak) local minimum value for F(z) =
f; L(t,z(t),Z(t))dt on D = Qn{ze KCYa b]| z(a) = a A z(b) = B} thenit
holds that:

(d'(to-) — 0 (to+)) - (L (to, O(to), 0 (to-)) — Lz (to, A(to), o' (to+))) <O

We show how, by imposing a certain property on L, , the necessary condition
(Theorem 2) becomes the classic first W-E condition.

THEOREM 3. If L(t,z Z) € C([a, b] x R?), w(X) = Ly (to, q(to), X) is nonde-
creasing, Q is shapeable at to, and g provides a (weak) local minimum value for
F(2) = [2L(t, 2(t), Z(t))dt on D= QN {ze KCab] | za) = a A z(b) = B},
then the first W-E condition holds:

Lz (o, 9(to), 0 (to-)) = Lz(to, A(to), ' (to+))-

And it is now obviousthat the property that L, is strictly increasing with respect
to Z alowsthe existence of extremalswith corner pointsto be rejected.

THEOREM 4. If L(t,z,Z) € CY([a b] x R?), and y(X) = Lx(t, z x) is dtrictly
increasing Y(t, z) € (a b) x R, Q isshapeablefor every t € [a, b], and q provides
a (weak) local minimum value for F(z) = f; L(t, z(t), Z(t))dt on D = Qn {z €
KCla b]| z(a)=a A z(b)=B},thenqis CL

In [24] we see, with examples, that the concept of the shapeable set embraces the

constraints considered in the classic obstacle problem and in problems with velocity
constraints.

PROPOSITION 1. If gi,02 € CY[a b], thenthe set {z € KCl[a,b] | gi(t) <
2(t) < ga(t), Vt € [a, b]} isshapeable Vo € (a, b).

PROPOSITION 2. If g1,02 € C[a, b], then the set {z € KCl[a, b] | gi(t) <
Z(t) < ga(t), ¥t € [a, b]} isshapeable Vi, € (a, b).

In the present paper, the class of shapeable constraintsis extended and it is demon-
strated that, given two functions Gy, G, € C!, the set
{ze KCa,b] | Gu(t, z(t)) < Z(t) < Gat, Z(t)), Vt € [a b] ae}

is shapeablefor each t.
As a consequence of this, and of Theroems 3 and 4, it is once more established
that under adequate conditions of convexity, the broken solutions of certain variational
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problems with differential inclusion constraints satisfy the first classic Weierstrass-
Erdmann condition. It is likewise concluded that, in the case of the Langrangian being
strictly convex with respect to Z', the minimum value of the functional is necessarily
achieved in functions of class C*.

Finally we present two examples. Thefirst is of ageometrical type and the second
is aclassic engineering problem: the optimization of hydrothermal systems.

3. Shapeable setsand differential inclusions

Employing the following theorem, we shall demonstrate that the set associated
with certain differential inclusion constraintsis also shapeablefor every t € (a, b).

THEOREM 5. If G € CY([a, b] x R), the set
Q:={zeKCYab] | Z(t) < G(t, z(t)), Vt € [a b] ae}
is shapeable for every to € (a, b).
Proof. Let usassumefirstly that

q (to-) < d'(tos+) < G(to, Z(to))

Let
m:= min G(t, q(t))

t b
Itis evident that there existswfficientl;e/[:‘riall € and 6 so asto verify, for every
(t, x) € [to — &, tg) x [0, 6]

that

q'(t) +x(h)'(t) = d'(t) +x < G(t, q(t) + xhe(t)) (1)
and so that, for every t € (tgto + €]

1< (~t+to+¢€)-m
Employing the Theorem of Lagrange, we shall also have that, for every (t,x) €
(to,to + €] x [0, 6]
G(t, q(t) + xh°(t)) = G(t, q(t) + X(—t +to + €))

(1) + X(—t + to + €)Gy(t, c&)
where ¢; € [z(t), z(t

)+ X(—t+1to+¢€)].
Hence, for every

(t,X) € (to,to + €] x [0, 6]
q'(t) +x(h2)' () =q'(t) —=x < G(t, q(t)) + X(—t +to+ ) - Gy(t, &) (2)
= G(t, q(t ) +xh(t))

Inshort, (1) and (2) guaranteethat hY? is Q — admissible at to.
In the case of

G(to, Z(to)) = q'(to—) > (o)
by anal ogousreasoning, wereachtheconclusionthat —h¥ is Q —admissible at ty. O
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THEOREM 6. If G € C', the set
{ze KCYa,b] | G(t, z(t)) < Z(t), Vt € [a, b ae}
is shapeablefor every to € (a, b).
THEOREM 7. If Gy, G, € CY([a, b] x R) , the set
{ze KCMa,b] | Gy(t, 2(1)) < Z(t) < Ga(t, (1)), VL € [a,b] ae]}
is shapeablefor every to € (a, b).

Therefore, applying Theorem 3, under adequate conditionsof convexity, the broken
solutions to certain variational problems with differential inclusion constraints satisfy
the first Weierstrass-Erdmann condition. It is likewise concluded, applying Theorem 4,
that in the case of the Langrangian being strictly convex with respectto z', theminimum
value of the functional is necessarily achieved in functions of the class C*.

4. A numerical example

Letustake L € C[R] withthestrictly increasing L’ . Let usconsider the problem
of minimizing
1
F(z) = / L(Z(t))dt
0
on
D=Qn{zeKC0,1]|20) =0,z1) =b}
where

Q:={ze KCYHO, 1] | z(t) +t < Z(t) < z(t) + t + 2 Vt € [0, 1]}

We shall denote as:

fs : the solution of the differential equation z'(t) = z(t) + t + 2 with the intial
condition z(0) = 0.

fi : thesolution of the differential equation z'(t) = z(t)+t withthefinal condition
z(1) = b.

Itisnecessary for the solution g to account for the arcs of the extremal (C1 + Cat)
and the boundary arcs (—1—t + C3e! 0 —3 —t+ C4€' ). Hence, since Q is shapeable
at every point, and by virtue of Theorem 4, its derivative must be continuous and can
only be of the form

1-t+é if te[0ql
qit)y =< —-1—oa+e* if telo o+p]
—3—t+Cse if tea+p,1]
_ . —A+ (24 a)a _t-a-p
for acertain o, Wlthﬁ_—Z(—a—i-eO‘) ad C= o

We denote by ke the slope of the extremal; kis = f2(0); ki = /().
If kis > b > ki isfulfilled, thesolutionisthefreeextremal (Fig. 1-a): q(t) = bt.
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L et us analyse the cases with boundary arcsin more detail.
4

S

-—— - -
é;\“

—_—

0

Fig. 1. Solution q.

Case a) If kis < b; ki < b, the solution is formed by a boundary arc fs(t) and
an extrema arc tangential to fs(t) (Fig. 1-b). Thatis, o+ = 1.

Case b) If kis > b; ki > b, the solution is formed by an extrema arc followed
by aboundary arc fi(t) (Fig. 1-c). Thais, a = 0.

Case c) If kis < b < ki, the solution consists in both boundary arcs and an
extremal arc between these (Fig. 1-d).

This example shows how the assertion of Theorem 4 can exclude the presence of
the corner points and therefore the unique solution is obtained in a much simpler way
than by means of any traditional method (for example, optimal control or an equivalent
Caratheodory formulation).

5. A hydrothermal problem

A hydrothermal system is made up of hydraulic and thermal power plants which
during a definite time interval must jointly satisfy a certain demand in electric power.
Thermal plantsgenerate power at the expense of fuel consumption (whichistheobject of
minimization), while hydraulic plants obtain power from the energy liberated by water
that movesaturbine; alimited amount of water being available during the optimization
period.

In prior studies [11-2], it has been proven that the problem of optimization of
the fuel costs of a hydrothermal system with m thermal power plants may be reduced
to the study of a hydrothermal system made up of one single thermal power plant,
called the thermal equivalent. In the present paper, we consider a hydrothermal system
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with one hydraulic power plant and m thermal power plants that have been substituted
by their thermal equivalent. With these conditions, we present the problem from the
Electrical Engineering perspective to then go on to resolve the mathematical problem
thus formulated.

5.1. Hydrothermal statement of the problem

The problem consists in minimizing the cost of fuel needed to satisfy a certain
power demand during the optimization interval [0, T]. Said cost may be represented

by the functional
T
= / Y(P(t))dt
0

where ¥ isthefunction of thermal cost of the thermal equivalent and P(t) isthe power
generated by said plant. Moreover, the following equilibrium equation of active power
will have to be fulfilled

P(t) + H(t, (1), Z (1)) =

Pa(t
Pq4(t) beingthepower demandand H(t, z(t), Z'(t)) the power contributed to the system
at theinstant t by the hydraulic plant, where: z(t) isthe volume that is discharged up
to theinstant t (in what follows, simply volume) by the plant, and Z'(t) the rate of
water discharge at the instant t of the plant.

Taking into account the equilibrium equation, the problem reduces to calculating
the minimum of the functional

), Vt € [0, T]

T
F(z):/0 W (Pa(t) — H (t, z(t), Z(t))) dt

If we assume that b is the volume of water that must be discharged during the entire
optimization interval, the following boundary conditionswill have to be fulfilled

z(0)=0, z2(T)=b

For the sake of convenience, we assume throughout the paper that they are sufficiently
smooth and are subject to the following additional assumptions.

Let us assume that the cost function ¥ : RY — R* satisfies W/(x) > O,
VYx € Rt andthusisstrictly increasing. Thisrestrictionistotally natural: it reads more
cost to more generated power. Let usassume aswell that ¥ (x) > 0, Vx € R andis
therefore strictly convex. The models traditionally employed meet this restriction.

Let us assume that the hydraulic generation H(t,z, ') : Qy = [0, T] x Rt x
Rt — R* isdtrictly increasing with respect to the rate of water discharge z', with
Hy > 0. Letusalsoassumethat H(t, z, Z') isconcavewithrespectto Z' ,i.e. Hy»y < 0.
The real models meet these two restrictions, and the former means more power to a
higher rate of water discharge.

We see that we only admit non-negative thermal power (P(t)) and we will solely
admit non-negative volumes (z(t)) and rates of water discharge (Z'(t)), therefore we
may present the mathematical problem in the following terms.
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6. Variational statement of the problem

We will call I, the problem of minimization of the functional

!
F(zt) = / L(t, Z(t), Z ()t
with L of the form

L(t, 2(t), Z(t)) = W(Pa(t) — H(t, z(t), Z(1)))

over the set
D=Qn{ze KCYO,T]|z0)=0,zT)=bh}
where
Q:={ze KCYO, T]| 0 < H(t, z(t),Z(t)) < Py(t)}

So the problem involves inequality non-holonomic constraints in the derivative z'(t).
Let us teke ¥ € C[R], (fuel cost) strictly convex, P4 € C([0,T]) and H €
CY([0, T] x R?) (strictly increasing with respect to its second component).

Itiseasy to seethat Q isshapeableif webearinmindthat H isstrictly increasing
with respect to Z' and that it may be expressed as

Q:={ze KCYO, T]| Gu(t, z(t)) < Z(t) < Ga(t, Z(1)), Vt € [0, T]}

where H(t, z(t), Gi(t, z(t))) = 0 and H(t, z(t), Ga(t, z(t))) = Pq(t).

It is necessary for the solution g to account for the arcs of the extremal and the
boundary arcs (g'(t) = 0 or H(t, g'(t), (t)) < Pq(t)). Hence, since Q is shapeable
at every point, and by virtue of Theorem 4, its derivative must be continuous.

If z satisfies Euler’s equation for the functional

F(z) = /OT L(t, z(t), Z (t))dt

forevery t € [, o + B], where L(t, z(t), Z(t)) = ¥ (Py(t) — H(t, z(t), Z(t))) , we
have that

Lult, 200, 2(0)) — o (Le (6,200, 2(1) = 0

If we divide Euler'sequation by L, (t, z(t), Z(t)) < 0, Vt, we have that

Lo(t, z(1), Z (1) % [Lz (¢, 2(1), Z (V)]

I-Z’ (t7 Z(t)7 Zl(t)) I-Z’ (t7 Z(t)7 Zl(t))
and, integrating, we have

=0

' Ho(s 2(s). Z(s))
Hz (s 2(s), Z(9))

We shall call the preceding relation the coordination equation for z(t), and the positive
constant K will be termed the coordination constant of the extremal.

Lt 2(t), 7 (1)) exp [— / §| = —Lu(a,2(@), Z(@) =K e R*
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Inreal problems, H isdecreasingwithrespectto z (H, < 0) and H, isincreasing
with respect to time (H,; > 0). This alows us to assert in a simple way that the
optimal thermal power P(t) = Pq4(t) — H(t, z(t), Z(t)) is decreasing in the intervals
correspondingto theextremal arcs. Effectively, with the aboverel ations, the exponential

[ (s ). 2(9)
exp{ /0 Hy (5209.2(9) "

isincreasing with respect to time, and so for the coordination constant to be maintained,
the expression

=Ly (t, 2(1), Z (1)) = ¥ (Pa(t) — H(t, 2(t), Z(1))) - Hx (8, (1), Z (1))

(with Hy > 0) leads usto the conclusion that the optimal thermal power is decreasing.
This circumstance allows us to assert that thereexists o, € [0, T] such that the
solution q satisfies

{ H(t,q'(t),qt)) =0 if te][0 o]
free extremal if telo,a+p]
H(t, d'(t), q(t)) = Pa(t) if tefa+p,T]

where § may be calculated from o.
In these conditions, the aim is to consider for very o € [0, T] thefunction q,
€ C1[0, T] that fulfills g,(0) = 0 and the following conditions

H(t, g, (1), au(t)) =0 if  t€[0,a]
free extremal if telo,a+ By
H

(t, Ao (1), Qu(t)) = Pa(t) if te o+ B, T]

and to determine the value of « for which the final volume condition q4(T) = b is
satisfied. All this may be done, at least in an approximate way, using simple numerical
techniques.

A program was elaborated using the Mathematica package which resolves the
optimization problem and was then applied to a hydrothermal system made up of the
thermal equivalent and a hydraulic plant.

For thefuel cost model of the equivalent thermal plant, we use the quadratic model

P(P(t)) = o + BP(t) + yP(t)?

The units for the coefficients are: o in ($/h); B in ($/h.Mw); v in ($/h.MW?).
The hydro-plant’s active power generation is given by

Pn(t) = —A(1)Z (t) — BZ(t)z(t) — CZ(1)?

where the coefficients A, B and C are

A(t):%lBy(S)+t-i)7 B:% c=_T
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We consider that the transmission losses for the hydro-plant are expressed by Kirch-
mayer's model, with the following loss equation: by - (Py(t))?. So

H(t) = Ph(t) — by - (Pn(1))

The units for the coefficients of the hydro-plant are: the efficiency G in (m?*/h.Mw),

the restriction on the volume b in (m?), theloss coefficient by in (1/Mw), the natural

inflow i in (m®/h), theinitial volume S in (m®), the coefficients Bt in (m~2.h) and

the coefficients By in (m~2) (parametersthat depend on the geometry of the tanks).
The datafor the thermal and hydraulic plants are summarized in Table .

o B y G i
9127.31[19.8841]0.0012718|570.834 -103 [301.952-10°
S Br By by

407.808-108 |219.597-10 8(149.5-10° 1| 0
Table | .- Coefficients

The values of the power demand (in Mw ) were adjusted to the following curve
Pq(t) = 350 + 5t(24 — t)

An optimizationinterval of 24 h. was considered, and afinal volume b = 90.120- 108
m.
Fig. 2 presentsthe plots of power demand ( Py ) and thermal power ( Py ).

P (Mw)
1000
800
600 R
400 - = Pt

200

t(h)
6 12 18 24

Figure 2. A hydrothermal example.

The method of resolution may be consulted in more detail in [3].

7. Conclusions

This paper continues a previous study by the authors into broken extremals in
variational problemswith differentia inclusions.

In particular, it is demonstrated that, given certain functions G, G, of the class
C!, the set

{z € KCla, b] | Gu(t, 2(1)) < Z(t) < Ga(t, (1)), Vt € [a, bl ae}
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is shapeablefor every t.

Finally, we present two examples. The first is of the geometrical type and the

second is a classic engineering problem: the optimization of hydrothermal systems.
These exampl es show how the theory developed can exclude the presence of the corner
points, thus obtaining the unique solution in avery simple way.
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