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In this paper we have developed a much simpler theory than previous ones that resolves the problem of
the optimization of hydrothermal systems. The problem involves non-holonomic inequality constraints.
In particular, we have established a necessary condition for the stationary functions of the functional. We
shall use Pontryagin’s Minimum Principle as the basis for proving this theorem, setting out our problem
in terms of optimal control in continuous time, with the Lagrange-type functional. This theorem allows
us to elaborate the optimization algorithm that leads to the determination of the optimal solution of the
hydrothermal system. We generalize the problem, taking into account a cost associated with the water, to
then set out and solve the corresponding Bolza’s problem. Finally, we present an example employing the
algorithm developed for this purpose with the ‘Mathematica’ package.
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1. Introduction

This paper studies the optimization of hydrothermal systems. A hydrothermal system is made up of
hydraulic and thermal power plants that must jointly satisfy a certain demand in electric power during a
definite time interval. Thermal plants generate power at the expense of fuel consumption, which is the
object of minimization, while hydro-plants obtain power from the energy liberated by water, there being
a limited quantity of water available during the optimization period.

The study of optimal conditions for the functioning of a hydrothermal system constitutes a com-
plicated problem that has attracted significant interest in recent decades. Several techniques have been
applied to solve this problem, such as functional analysis techniques (El-Hawary & Christensen, 1979),
network techniques (Branlund et al., 1986), fuzzy dynamic programming (Xiao et al., 1997), sequential
Monte-Carlo simulation (Allan et al., 1998), a probabilistic algorithm (Puntel et al., 1998), a Lagrangian
relaxation technique (Ernan et al., 1999; Ngundam et al., 2000), Ritz’s method (Bayón & Suárez, 2000),
neural networks (Lee & Kim, 2002) or a simulated annealing algorithm (Mantawy et al., 2003).

In this paper we propose Pontryagin’s Minimum Principle (PMP) to solve the optimum scheduling
problem of hydrothermal systems. Several applications of optimal control theory (OCT) in hydrother-
mal optimization have been reported in the literature. These range from the initial studies corresponding
to El-Hawary & Christensen (1979), Papageorgio (1985) or Christensen et al. (1987) to more recent
works such as that of Wong et al. (1993), who consider a class of discrete-time constrained opti-
mal control problems in which the cost function is non-smooth, or Pursimo et al. (1998), who have
developed an optimal feedback control method, and in which the constraints are considered using
Lagrangian multipliers. What is more, some applications of PMP to hydrothermal systems have
focused on a different problem, such as that of designing the configuration of multi-reservoir systems
(Mousavi & Ramamurthy, 2002).
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The studies cited above employ concrete models both for the function of thermal cost as well as for
the function of effective hydraulic generation. Hence, if the model changes, the obtained algorithms
are not valid. Such a variety of mathematical models forces us to undertake a general study of the
problem. We have done so thanks to the new developments in the application of PMP for hydrothermal
optimization that we present in this paper, which generalize and take even further those presented in the
literature to date.

In prior studies (Bayón et al., 2002a), it was proven that the problem of optimization of the fuel costs
of a hydrothermal system with m thermal power plants may be reduced to the study of a hydrothermal
system made up of one single thermal power plant, called the thermal equivalent. In the present paper,
we first of all consider a simple hydrothermal system with one hydraulic power plant and m thermal
power plants that have been substituted by their thermal equivalent. Under these conditions, we present
the problem from the electrical engineering perspective to then go on to resolve the mathematical prob-
lem thus formulated. We will call this problem: the H1–T1 problem. This type of approach is quite
common, as we can see in the recent study of Bortolossi et al. (2002).

In Section 2, we shall see that the H1–T1 problem consists in the minimization of a functional

F(z) =
∫ T

0
L(t, z(t), z′(t)) dt,

within the set of piecewise C1 functions (Ĉ1) that satisfy z(0) = 0, z(T ) = b and the constraints

0 � H(t, z(t), z′(t)) � Pd(t) ∀ t ∈ [0, T ].

Hence, the problem involves non-holonomic inequality constraints. Variational problems in which the
derivatives of the admissible functions must be subject to certain inequality constraints (differential
inclusions) have traditionally been dealt with by recurring to a large number of diverse techniques (see,
e.g. Clarke, 1983). Using classic mathematical methods, we shall focus in the present paper on the
development of the applications of OCT to the specific problem of hydrothermal optimization.

In Section 3, we shall establish a necessary condition for the stationary functions of the functional
and we shall use PMP as the basis for proving this theorem. We shall see that the treatment of the
constraints of the problem using this new approach will be very simple.

The development is self-contained and extremely basic and also enables the construction, in Section
4, of the optimization algorithm that leads to the determination of the optimal solution of the hydrother-
mal system. In the said section, we shall also study the general case in which the system consists of n
hydraulic power plants and we will call this problem the Hn–T1 problem.

In Section 5, we shall assign a cost to the water, we shall generalize the problem and we shall set
out the corresponding Bolza’s problem. We shall thus show how it is possible using this technique to
modify the cost functional and to obtain the solution of different problems in a simple way.

Finally, in Section 6, we present an example employing the algorithm developed for this purpose
with the ‘Mathematica’ package.

2. Statement of the problem (H1–T1)

The H1–T1 problem consists in minimizing the cost of fuel needed to satisfy a certain power demand
during the optimization interval [0, T ]. The said cost may be represented by the functional

F(P) =
∫ T

0
Ψ (P(t)) dt,
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where Ψ is the function of thermal cost of the thermal equivalent and P(t) is the power generated by
the said plant. Moreover, the following equilibrium equation of active power will have to be fulfilled

P(t) + H(t, z(t), z′(t)) = Pd(t) ∀ t ∈ [0, T ],

where Pd(t) is the power demand and H(t , z(t), z′(t)) is the power contributed to the system at the
instant t by the hydro-plant, z(t) being the volume that is discharged up to the instant t by the plant and
z′(t) the rate of water discharge of the plant at the instant t .

Taking into account the equilibrium equation, the problem reduces to calculating the minimum of
the functional

F(z) =
∫ T

0
Ψ (Pd(t) − H(t, z(t), z′(t))) dt.

If we assume that b is the volume of water that must be discharged during the entire optimization
interval, the following boundary conditions will have to be fulfilled:

z(0) = 0, z(T ) = b.

For the sake of convenience, we assume throughout the paper that these are sufficiently smooth and are
subject to the following additional assumptions:
Function of thermal cost: Let us assume that the function of thermal cost Ψ : R+ → R

+ satisfies
Ψ ′(x) > 0, ∀ x ∈ R

+, and is thus strictly increasing. This constraint is absolutely natural: it reads
more cost to more generated power. Let us also assume that Ψ ′′(x) > 0, ∀ x ∈ R+, and is therefore
strictly convex. The models traditionally employed meet this constraint.
Function of effective hydraulic generation: Let us assume that the hydraulic generation H(t, z, z′):
ΩH = [0, T ] ×R+ ×R+ → R

+ is strictly increasing with respect to the rate of water discharge z′, i.e.
Hz′ > 0. Let us also assume that H(t , z, z′) is concave with respect to z′, i.e. Hz′z′ � 0.

The real models meet these two restrictions; the former means more power to a higher rate of water
discharge. We see that we only admit non-negative thermal power P(t) and we will solely admit non-
negative volumes z(t) and rates of water discharge z′(t).

Therefore, we may expound the mathematical problem in the following terms. We will call H1–T1
the problem of minimization of the functional

F(z) =
∫ T

0
L(t, z(t), z′(t)) dt,

with L having the form

L(t, z(t), z′(t)) = Ψ (Pd(t) − H(t, z(t), z′(t))),

over the set Θb.

Θb = {z ∈ Ĉ1[0, T ]|z(0) = 0, z(T ) = b, 0 � H(t, z(t), z′(t)) � Pd(t), ∀ t ∈ [0, T ]}.
The assumptions we have made guarantee the fulfilment of the following inequalities: Lz′z′(t, z, z′) > 0;
Lz′(t, z, z′) < 0. It is evident that in the set Θb technical constraints of the following type may also be
considered

H(t, z(t), z′(t)) � Hmax.
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To do so, it is sufficient to take the following function as the upper limit for H(t, z(t), z′(t)) at any
instant

min{Hmax, Pd(t)},
and the theoretical development would be the same.

In a previous paper (Bayón et al., 2003a), the problem to be solved was approximated substituting
the constraint

0 � H(t, z(t), z′(t)) � Pd(t), (2.1)

by others of the type
0 � H(t, b, z′(t)), H(t, 0, z′(t)) � Pd(t). (2.2)

To do so, bearing in mind the weak influence of volume z(t), it was assumed that

H(t, b, z′) � H(t, z, z′) � H(t, 0, z′) ∀ z ∈ Θb,

thus obtaining an approximate solution. One of the main contributions of the present paper is that we
shall now consider the original problem with constraints of type (2.1), without any additional simplifi-
cations.

If z satisfies Euler’s equation for the functional F(z), we have that, ∀ t ∈ [0, T ], Euler’s equation is
fulfilled

Lz(t, z(t), z′(t)) − d

dt
(Lz′(t, z(t), z′(t))) = 0. (2.3)

Integrating (2.3), we have the integral form of Euler’s equation, known as the Du Bois-Reymond
equation

∫ t

0
Lz(s, z(s), z′(s)) ds − Lz′(t, z(t), z′(t)) = −Lz′(0, z(0), z′(0)) = K ∈ R+ ∀ t ∈ [0, T ]. (2.4)

If we divide Euler’s equation (2.3) by Lz′(t, z(t), z′(t)) < 0, ∀ t, and integrating with

L(t, z(t), z′(t)) = Ψ (Pd(t) − H(t, z(t), z′(t))),

we have that

−Lz′(t, z(t), z′(t)) exp

[
−

∫ t

0

Hz(s, z(s), z′(s))
Hz′(s, z(s), z′(s))

ds

]
= −Lz′(0, z(0), z′(0)) = K ∈ R+. (2.5)

We shall call relation (2.5) the coordination equation for z(t), and the positive constant K will be termed
the coordination constant of the extremal.

Let us now see the fundamental result (the main coordination theorem), which enables us to charac-
terize the extremals of the problem and which is also the basis for elaborating the optimization algorithm
that leads to determination of the optimal solution of the hydrothermal system. We shall use the above
coordination equation (2.5) in the development of the proof of the theorem.

3. The main coordination theorem

We shall use PMP as the basis for proving this theorem, setting out our problem in terms of optimal
control in continuous time, with the Lagrange-type functional.
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In a previous paper (Bayón et al., 2003a), the problem was set out considering the state variable
to be z(t), the control variable u(t) and the state equation z′ = u. The optimal control problem was
therefore:

min
u(t)

∫ T

0
L(t, z(t), u(t)) dt, with

⎧⎪⎨
⎪⎩

z′ = u,

z(0) = 0, z(T ) = b,

u(t) ∈ Ω∗(t) = {x |0 � H(t, b, x) ∧ H(t, 0, x) � Pd(t)}.
With this statement, the Du Bois-Reymond equation given by expression (2.4) was obtained by applying
PMP, from which the necessary conditions for the extremals were consequently obtained. However, the
real problem was not solved, but rather an approximation, since the weak influence of the volume was
imposed so as to be able to consider the constraints defined by means of the set Ω∗(t).

In this paper we present the problem considering the state variable to be z(t) and the control variable
u(t) = H(t , z(t), z′(t)). Moreover, as Hz′ > 0, the equation u(t) – H(t , z(t), z′(t)) = 0 allows the state
equation z′ = f (t , z, u) to be explicitly defined. The optimal control problem is thus:

min
u(t)

∫ T

0
L(t, z(t), u(t)) dt, with

⎧⎪⎨
⎪⎩

z′ = f (t, z, u),

z(0) = 0, z(T ) = b,

u(t) ∈ Ω(t) = {x |0 � x � Pd(t)},
with L having the form

L(t, z(t), u(t)) = Ψ (Pd(t) − u(t)).

We shall see that with this new approach we shall arrive at the coordination equation (2.5). The main
advantage of this study is that it is thus possible to consider the real constraint (2.1) by means of the set
Ω(t).

It can be seen that from the relations u(t) – H(t , z(t), z′(t)) = 0 and z′ = f (t , z, u), we easily obtain

fz = − Hz

Hz′
, fu = 1

Hz′
.

Prior to proving the theorem, we define the following function.

DEFINITION 1 Let us term the coordination function of q ∈ Θb the function in [0, T ], defined as
follows

Yq(t) = −Lz′(t, q(t), q ′(t)) exp

[
−

∫ t

0

Hz(s, q(s), q ′(s))
Hz′(s, q(s), q ′(s))

ds

]
.

THEOREM 1 (The main coordination theorem) If q ∈ Ĉ1 is a solution of problem H1–T1, then there
exists a constant K ∈ R+ such that

(i) If 0 < H(t, q(t), q ′(t)) < Pd(t) (t is not a boundary point) ⇒ Yq(t) = K .

(ii) If H(t, q(t), q ′(t)) = Pd(t) ⇒ Yq(t) � K .

(iii) If H(t, q(t), q ′(t)) = 0 ⇒ Yq(t) � K .

Proof. We shall term the optimal control uopt, which we see in our case is the function of effect-
ive hydraulic generation H(t, z(t), z′(t)), and therefore the optimal state will be q(t). Let H be the
Hamiltonian associated with the problem

H(t, z, u, λ) = Ψ (Pd(t) − u) + λ f (t, z, u).
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In virtue of Pontryagin’s Principle, there exists a piecewise C1 function λopt (co-state variable) that
satisfies the two following conditions:

λ′
opt(t) = −∂H(t, q(t), uopt(t), λopt(t))

∂z
= −λopt(t) fz(t, q(t), uopt(t)), (3.1)

H(t, q(t), uopt(t), λopt(t)) � H(t, q(t), u, λopt(t)) ∀ u, 0 � u � Pd(t). (3.2)

From (3.1), it follows that

λopt(t) = λopt(0) exp

[
−

∫ t

0
fz(s, q(s), uopt(s)) ds

]
. (3.3)

From (3.2), it follows that for each t , uopt(t) minimizes the function

F(u) = Ψ (Pd(t) − u) + λopt(t) f (t, q(t), u), on {u|0 � u � Pd(t)}.
Hence, in accordance with the Kuhn–Tucker Theorem, for each t there exist two real non-negative
numbers, α and β, such that uopt(t) is a critical point of

F∗(u) = Ψ (Pd(t) − u) + λopt(t) f (t, q(t), u) + α(−u) + β(u − Pd(t)),

it being verified that:

– if H(t , q(t), q ′(t)) > 0, then α = 0.

– if H(t , q(t), q ′(t)) – Pd(t) < 0, then β = 0.

We hence have

F∗′(uopt(t)) = −Ψ ′(Pd(t) − uopt(t)) + λopt(t) fu(t, q(t), uopt(t)) − α + β = 0,

and the following cases:
Case 1. 0 < uopt(t) = H(t, q(t), q ′(t)) < Pd(t). In this case, α = β = 0 and hence

Ψ ′(Pd(t) − uopt(t)) = λopt(t) fu(t, q(t), uopt(t)).

From (3.3), we have

Ψ ′(Pd(t) − uopt(t)) = fu(t, q(t), uopt(t))λopt(0) exp

[
−

∫ t

0
fz(s, q(s), uopt(s)) ds

]
,

Ψ ′(Pd(t) − uopt(t))

fu(t, q(t), uopt(t))
exp

[∫ t

0
fz(s, q(s), uopt(s)) ds

]
= λopt(0).

Bearing in mind that
Ψ ′

fu
= Ψ ′ Hz′ = −Lz′ and fz = − Hz

Hz′
, (3.4)

the following relation is fulfilled

−Lz′(t, q(t), q ′(t)) exp

[
−

∫ t

0

Hz(s, q(s), q ′(s))
Hz′(s, q(s), q ′(s))

ds

]
= λopt(0) ⇒ Yq(t) = K .
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Case 2. uopt(t) = H(t, q(t), q ′(t)) = Pd(t), then β � 0 and α = 0. In this case,

−Ψ ′(Pd(t) − uopt(t)) + λopt(t) fu(t, q(t), uopt(t)) + β = 0.

Bearing in mind now that β � 0 and fu > 0, we have

−Ψ ′(Pd(t) − uopt(t)) + λopt(t) fu(t, q(t), uopt(t)) � 0,

Ψ ′(Pd(t) − uopt(t)) � fu(t, q(t), uopt(t))λopt(0) exp

[
−

∫ t

0
fz(s, q(s), uopt(s)) ds

]
,

Ψ ′(Pd(t) − uopt(t))

fu(t, q(t), uopt(t))
exp

[∫ t

0
fz(s, q(s), uopt(s)) ds

]
� λopt(0).

Applying (3.4), we have
Yq(t) � K .

Case 3. uopt(t) = H(t, q(t), q ′(t)) = 0, then α � 0 and β = 0. In this case

−Ψ ′(Pd(t) − uopt(t)) + λopt(t) fu(t, q(t), uopt(t)) − α = 0.

By analogous reasoning, we have
Yq(t) � K .

�
Note. With the hypothesis Lz′z′(t, z, z′) > 0 (Bayón et al., 2003b), the solution may also be guaranteed
to be of class C1.

4. Construction of the optimal solution. Generalization to the problem (Hn–T1)

If we did not have the constraints 0 � H(t, z(t), z′(t)) � Pd(t), we could use the shooting method to
resolve the problem. In this case, we would use the coordination equation (2.5), ∀ t ∈ [0, T ]

−Lz′(t, z(t), z′(t)) exp

[
−

∫ t

0

Hz(s, z(s), z′(s))
Hz′(s, z(s), z′(s))

ds

]
= −Lz′(0, z(0), z′(0)) = K ∈ R+.

Varying the initial condition of the derivative z′(0) (initial flow rate), we would search for the extremal
that fulfils the second boundary condition z(T ) = b (final volume). However, we cannot use this method
in our case, as due to the restrictions, the extremals may not admit bilateral variations, i.e. they may
present boundary arcs.

We use the same framework in the present case, but the variation of the initial condition for the
derivative, which now need not make sense, is substituted by the variation of the coordination
constant K .

The problem will consist in finding for each K the function qK that satisfies qK (0) = 0 and the
conditions of the main coordination theorem and, from among these functions, the one that gives rise to
an admissible function (qK (T ) = b).

We will denote by M the rate of water discharge at the instant t = 0 that is needed for the hydraulic
power station to satisfy the power demand: H(0, 0, M) = Pd(0) and we will denote by m the rate of
water discharge at the instant t = 0 that is needed for H (0, 0, m) = 0. We also set

Km = −Lz′(0, 0, m), KM = −Lz′(0, 0, M).
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We observe that ∀ x ∈ (m, M) (with the hypothesis Lz′z′(t, z, z′) > 0), we have

KM < −Lz′(0, 0, x) < Km .

To construct qK , we proceed by the steps shown in Appendix A.
From the computational point of view, the construction of qK can be performed with the same proced-

ure as in the shooting method, with the use of a discretized version of the coordination equation (2.5).
The exception is that at the instant when the values obtained for z and z′ do not obey the constraints,
we force the solution qK to belong to the boundary until the moment when the conditions of leaving the
domain (established in the main coordination theorem) are fulfilled.

Having resolved the H1–T1 problem, we now generalize the study to the Hn–T1 problem. Let us
assume that a hydrothermal system accounts for n hydro-plants.

The mapping

H : ΩH → R; H(t, z1(t), z2(t), . . . , zn(t), z′
1(t), z′

2(t), . . . , z′
n(t))

is called the function of effective hydraulic contribution, and is the power contributed to the system at
the instant t by the set of hydraulic plants, zi (t) being the volume that is discharged up to the instant t
by the i-th power station, z′

i (t) the rate of water discharge at the instant t by the i-th power station and
ΩH ⊂ [0, T ] × R2n the domain of definition of H . We say that 
Z = (z1, z2, . . . , zn) is admissible for
H if zi belong to the class Ĉ1[0, T ], and (t, z1, . . . , zn, z′

1, . . . , z′
n) ∈ ΩH , ∀ t ∈ [0, T ].

The volume bi that should be discharged up to the instant T is called the admissible volume of the
i-th hydraulic power station. Under the above notation, let 
b = (b1, . . . , bn) ∈ R

n be the vector of
admissible volumes.

Now we will call ℘{J, 
b}, the problem of minimizing the functional

J ( 
Z) =
∫ T

0
L(t, 
Z(t), 
z′(t) dt =

∫ T

0
Ψ (Pd(t) − H(t, 
Z(t), 
z′(t))) dt,

over the set Ω = Ωb1 × Ωb2 × · · · × Ωbn , being Ωbi ⊂ {zi ∈ Ĉ1[0, T ]/zi (0) = 0, zi (T ) = bi }.
The problem of optimization of a hydrothermal system that involves various hydro-plants is highly

complicated. One should not forget that the associated variational problem is related to solving a
boundary-value problem for a system of differential equations. We have developed an algorithm of
its numerical resolution prompted by the so-called method of cyclic coordinate descent. With the def-
initions presented in Appendix B, the following result is demonstrated (Bayón et al., 2002b).

THEOREM 2 If the functional J is convex in Ω , and, in certain topology: (i) the minimizing mappings
Φi are continuous, ∀ i = 1, . . . , n, and (ii) the descending subsequences Si

k are convergent, ∀ i = 1, . . .,
n, then every descending subsequence converges to a solution of the problem ℘{J, 
b}.

A problem of the type Hn–T1 could thus be solved under certain conditions if we start out from the
resolution of a sequence of problems of the type H1–T1. The solution of the problem will be constructed
as the limit of a descending sequence. If the conditions of the theorem are fulfilled, this sequence

provides us with an approximation of the solution. Beginning with some admissible
−→
Q0 = (z1, . . . , zn),

we construct a sequence via successive and iterative applications of Φ1, Φ2, . . . , Φn . The application of
every Φi involves solving a problem of the type H1–T1. If we set Φ = (Φn ◦ Φn−1 ◦ · · · ◦ Φ2 ◦ Φ1), the
solution will be

lim
k→∞ Φk

(−→
Q0

)
.
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From the algorithmic and computational point of view, we obtain the iteration process that calculates at
each stage the optimal functioning of a hydraulic power station, while the behaviour of the rest of the
stations is assumed fixed.

5. A Bolza problem: water cost

In the previous sections, the optimum control problem was studied considering the initial and final
instants, 0 and T , respectively, to be previously fixed and the state of the system at these instants to be
given by z(0) = 0, z(T ) = b. The necessary optimality conditions provided by PMP were studied for
the formulated problem.

In this section, we propose to study the same problem for a different final condition: when the final
instant T is given and the final state has an upper boundary: z(T ) � b. This problem arises in practice
when a cost S[z(T )] is assigned to the water at the hydraulic plants. This model is more real, since
at many hydraulic plants the water is also put to other uses: irrigation, domestic consumption, etc.
A solution that consists in not using up the maximum amount of available water in the reservoir for
the optimization interval [0, T ] may thus make sense.

With this approach to the problem, our objective functional in Bolza’s form is

F(z) =
∫ T

0
L(t, z(t), z′(t)) dt + S[z(T )].

To simplify the exposition, we shall carry out our approach with the H1–T1 problem, its extension to
the general case Hn–T1 being immediate. Remember that the constraint 0 � H(t, z(t), z′(t)) � Pd(t)
is still present.

Once more, we present the problem considering the state variable to be z(t), the control variable
u(t) = H(t, z(t), z′(t)) and the state equation z′ = f (t, z, u). The optimal control problem is thus:

min
u(t)

∫ T

0
L(t, z(t), u(t)) dt + S[z(T )], with

⎧⎪⎨
⎪⎩

z′ = f (t, z, u),

z(0) = 0, z(T ) � b,

u(t) ∈ Ω(t) = {x |0 � x � Pd(t)},
with

L(t, z(t), u(t)) = Ψ (Pd(t) − u(t)).

THEOREM 3 If q ∈ Ĉ1 is a solution of problem H1–T1, then there exists a constant K ∈ R+ such that

(i) If 0 < H(t, q(t), q ′(t)) < Pd(t) (t is not a boundary point) ⇒ Yq(t) = K .

(ii) If H(t, q(t), q ′(t)) = Pd(t) ⇒ Yq(t) � K .

(iii) If H(t, q(t), q ′(t)) = 0 ⇒ Yq(t) � K ,

and

K � ∂S[q(T )]

∂z

−Yq(T )

Lz′(T, q(T ), q ′(T ))
.

Proof. The demonstration of (i), (ii) and (iii) is that of Theorem 1 (the main coordination theorem).
The application of PMP to this Bolza’s problem leads us to the function λopt (co-state variable)

satisfying

λ′
opt(t) = −∂H(t, q(t), uopt(t), λopt(t))

∂z
= −λopt fz(t, q(t), uopt(t)), (5.1)
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with the final condition

λopt(T ) − ∂S[q(T )]

∂z
� 0; (= 0 if q(T ) < b). (5.2)

From (5.1) it follows that

λopt(t) = λopt(0) exp

[
−

∫ t

0
fz(s, q(s), uopt(s)) ds

]
,

and substituting in (5.2)

λopt(0) exp

[
−

∫ T

0
fz(s, q(s), uopt(s)) ds

]
− ∂S[q(T )]

∂z
� 0,

K = λopt(0) � ∂S[q(T )]

∂z
exp

[∫ T

0
fz(s, q(s), uopt(s)) ds

]
(5.3)

= ∂S[q(T )]

∂z

−Yq(T )

Lz′(T, q(T ), q ′(T ))
.

�
From the computational point of view, the construction of the optimal solution can be performed with
the same procedure as in the previous problem (without water cost): Varying the coordination constant
K , we would search for the extremal that fulfils the second boundary condition z(T ) � b and (5.3).

Firstly, we search for the value of K whose associated extremal satisfies qK (T ) = b. If the following
relation is fulfilled

K � ∂S[qK (T )]

∂z

−YqK (T )

Lz′(T, qK (T ), q ′
K (T )

,

then qK (t) is the optimal solution and all the available water, b, is consumed.
If the encountered K does not verify (5.3), the value of K that fulfils the following equality is

searched for

K = ∂S[qK (T )]

∂z

−YqK (T )

Lz′(T, qK (T ), q ′
K (T ))

,

then qK (t) is the optimal solution, and the optimal final volume in this case is qK (T ) < b.

6. A numerical example

A computer program was written (using the ‘Mathematica’ package) to apply the results obtained in
this paper to a real power system. In this way, we avoided the use of standard commercial solvers (such
as MINOS), which present serious drawbacks for resolving a problem with so many and such complex
constraints as ours.

The system consists of eight thermal plants and three hydro-plants with the configuration of the
hydro-network that we shall see below. Let us see the models of different subsystems used in our study.

6.1 Cost fuel model

The cost function that has systematically been used is a second-order polynomial

Ψi (x) = αi + βi x + γi x2.
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TABLE 1 Coefficients of the thermal plants

Plant i αi β i γ i bii Pmax

1 (Aboño 1) 1227.83 17.621 0.01325 0.000103 330
2 (Aboño 2) 743.78 20.842 0.00211 0.000072 514
3 (Soto 2) 77.72 21.277 0.00286 0.000172 240
4 (Soto 3) 1615.35 16.676 0.01659 0.000100 330
5 (Narcea 2) 2248.16 −7.984 0.17026 0.000353 150
6 (Narcea 3) 1459.44 21.569 0.01489 0.000121 330
7 (Lada 3) 1625.43 6.347 0.09803 0.000220 150
8 (Lada 4) 2155.62 17.745 0.01982 0.000097 330

It is also usual to consider the function of losses li (x) = bii x2 (Kirchmayer’s model), where bii is
termed the loss coefficient. As an example, we shall use the thermal system of the company HC in
Asturias (Spain), which is made up of eight thermal plants. The data of the plants are summarized in
Table 1. The units for the coefficients are αi in $/h, β i in $/h·MW, γ i in $/h·MW2, the maximum
thermal generation Pmax in MW and the loss coefficients bii in 1/MW.

For the fuel cost model of the equivalent thermal plant, we use the quadratic model

Ψ (P(t)) = αeq + βeq P(t) + γeq P(t)2.

We construct the equivalent thermal plant as we saw in Bayón et al. (2002c), obtaining αeq = 9377.2,
βeq = 19.2616 and γ eq = 0.00175314.

6.2 Hydro-network model

The hydro-network is assumed to have several chains of hydro-plants on different rivers as well as
hydraulically isolated plants. We assume that the rate of discharge at the upstream plant affects the
behaviour at the downstream plants. We say that the hydraulic system has hydraulic coupling. We
consider that the transmission losses for the hydro-plant are also expressed by Kirchmayer’s model. We
use a variable-head model and the i-th hydro-plant’s active power generation Phi is given by

Phi (t) = Ai (t)z
′
i (t) − Bi z

′
i (t)[zi (t) − Coupi (t)],

where Ai (t) and Bi are the coefficients

Ai (t) = 1

Gi
Byi (S0i + tii ), Bi = Byi

Gi
,

and Coupi (t) represents the hydraulic coupling between plants. The parameters that appear in this for-
mula are the efficiency G, the natural inflow i , the initial volume S0 and the coefficient By , a parameter
that depends on the geometry of the reservoir.

In the variable-head models, the term −Bi z′
i (t)[zi (t) − Coupi (t)] represents the negative influence

of the consumed volume, and reflects the fact that consuming water lowers the effective height and
hence the performance of the station. So, the function of effective hydraulic generation is

Hi (t) = Phi (t) − bii (Phi (t))
2,
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TABLE 2 Hydro-plant coefficients

Plant i G b bii i S0 By Hmax ν

1 (Salime) 519840 11 × 106 0.000166 133200 239.5 × 106 4.34079 × 10−7 120 0.003
2 (Tanes) 337542 8 × 106 0.000154 21600 25.3 × 106 3.06555 × 10−6 200 0.004
3 (La Barca) 363950 5 × 106 0.000364 111600 25.2 × 106 2.61709 × 10−6 60 0.003

where bii is the loss coefficient. As an example, we shall use the hydro-system of the company HC,
which is made up of three variable-head hydro-plants. The plants in this system belong to different
rivers, i.e.

Coup1(t) = 0, Coup2(t) = 0, Coup3(t) = 0.

Furthermore, we shall consider a linear model for the associated water cost

S[z(T )] = νz(T ),

where ν is a water conversion factor, which accounts for the unit conversion from cubic metres to dollars.
The data of the hydro-plants are summarized in Table 2. The units for the coefficients of the hydro-

plants are the efficiency G in m4/h·MW, the constraint on the volume b in m3, the loss coefficients bii

in 1/MW, the natural inflow i in m3/h, the initial volume S0 in m3, the coefficients By in m−2 and the
maximum effective hydraulic generation Hmax in MW.

6.3 Solution

We consider a short-term hydrothermal scheduling (24 h) with an optimization interval [0, 24] and we
consider a discretization of 96 subintervals. The optimal power for the hydro-plants are shown in Fig. 1
and the system’s power demand and the optimal power for the equivalent thermal plant in Fig. 2.

As can be seen in Fig. 1, the power generated by Plant 1 is limited by its technical maximum Hmax =
120. The same occurs in Plant 3, whose generated power is limited by its technical maximum Hmax =
60, while Plant 2 (with little available water b) does not reach this value. The three plants present
intervals (of greater or lesser amplitude) in which they are switched off, coinciding with the trough in
power demand.

Plant 1 has a considerably sized reservoir (see its S0), compared to Plants 2 and 3, which are smaller.
This is why the influence of the volume is greater in these last two plants, 2 and 3 (see their By). The
different behaviours observed in these two plants with similar characteristics are due to the fact that
Plant 3, with a large natural inflow i , consumes all its available water at the end of the interval so as
to be able to make full use of this natural inflow i . Plant 2, in contrast, with a small natural inflow i ,
consumes its available water proportionally throughout the whole interval.

Finally, we highlight the cost S[z(T )] = νz(T ) that we have associated with the water in the three
plants. This term does not correspond to a real cost of the cubic metres, as is applied for urban, industrial
or irrigation consumption, since the water that turbines a plant is neither polluted nor lost. It is a factor
similar to the penalization factor employed for the pollution produced by thermal power plants, the
aim of which is to assure a certain water reserve. It is thus considered that the water is no longer
in the reservoir, but that it continues to flow downstream and may be used for the aforementioned
consumptions (urban, industrial and irrigation). With this interpretation, and the considered ν, it is
seen that Plants 1 and 3 consume all the available water, whilst Plant 2 does not consume the available
8 × 106 m3, but only 7.21685 × 106 m3.
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FIG. 1. Optimal hydro-power.

The algorithm shows a rapid convergence to the optimal solution. In the example, it turned out to be
sufficient to perform four iterations to obtain the prescribed error (10−7). The variation of relative error
in absolute value with iterations is shown in Fig. 3. The time required by the program was 2 min on a
personal computer (Pentium IV/2 GHz).

7. Conclusions and contributions

This paper describes a method for scheduling large-scale hydrothermal power systems based on PMP.
We have developed a simple theory that resolves the problem of minimization of a functional F(z)
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FIG. 2. Power demand Pd(t) and optimal thermal power Pth(t).

FIG. 3. Convergence to the optimal solution.

within the set of piecewise C1 functions that satisfy boundary conditions and non-holonomic inequality
constraints. We have established a necessary condition for the stationary functions of the functional,
setting out our problem in terms of optimal control in continuous time, with the Lagrange-type func-
tional. This theorem allows us to elaborate the optimization algorithm that leads to the determination
of the optimal solution of the hydrothermal system. The problem has also been generalized assigning
a cost to the water and solving the resulting Bolza’s problem. This demonstrates that this technique
allows the cost functional to be modified and the solution to different problems to be obtained in a
simple way. Finally, we have presented an example employing the algorithm developed for this pur-
pose with the ‘Mathematica’ package. The developed program is very simple and easy to use and the
algorithm obtained with this study should be extensible to a large set of hydrothermal problems.

From the engineering perspective, one of the main contributions of this paper is that the implemented
algorithm is independent of the models used for both thermal and hydraulic power plants, in contrast
to the majority of methods in this field, which use concrete models. What is more, we have obtained a
very simple method that enables us to find an optimal solution in the presence of inequality constraints
and which requires very little computational effort.

From the mathematical point of view, we have also obtained notable results. The main contribution
of this paper is a property of the extremals in variational problems with non-holonomic constraints. The
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said property permits the solution to be constructed by means of a method inspired by the shooting
method that is much simpler than those employed to date for resolving this type of problem.

The algorithm presents a series of advantages. First of all, one does not have to start out from
specially selected initial values in order to run the method. Moreover, it shows a rapid convergence to
the optimal solution, and it can be run in a relatively short time due to the simplicity of the operations
to be performed in this method.

REFERENCES

ALLAN, R. N., LI, R. & ELKATEB, M. M. (1998) Modelling of pumped-storage generation in sequential Monte-
Carlo production simulation. IEE Proc. Gener. Transm. Distrib., 145, 611–615.
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Appendix A

Step 1 (The first arc)

(i) If K � Km , we set qK (t) = ω(t), the solution of the differential equation H(t, ω(t), ω′(t)) = 0
with ω(0) = 0 in the maximal interval [0, t1], where K � Yω(t). (The thermal power station
generates all the power demanded in [0, t1].)

(ii) If K � KM , we set qK (t) = ω(t), the solution of the differential equation H(t, ω(t), ω′(t)) =
Pd(t) with ω(0) = 0 in the maximal interval [0, t1], where K � Yω(t). (The hydraulic power
station generates all the power demanded in [0, t1].)

(iii) KM < K < Km (∃ x such that K = −Lz′ (0, 0, x)). Now qK will be the arc of the interior
extremal (with qK (0) = 0) which satisfies Euler’s equation in its maximal domain [0, t1] and
therefore the coordination equation K = YqK (t).

i-th Step (i-th arc)

(A) If qK has an interior arc in [ti−1, ti ], there are two possibilities:

(I) If H(ti , qK (ti ), q ′
K (ti )) = 0, we consider the maximal interval [ti , ti+1] such that, ∀ t ∈

[ti , ti+1]

K � −Lz′(t, ω(t), ω′(t)) exp

[
−

∫ ti

0

Hz(s, qK (s), q ′
K (s))

Hz′(s, qK (s), q ′
K (s))

ds −
∫ t

ti

Hz(s, ω(s), ω′(s))
Hz′(s, ω(s), ω′(s))

ds

]
,

ω(t) being a solution of the differential equation

H(t, ω(t), ω′(t)) = 0, with ω(ti ) = qK (ti ).

If this is the case, we set qK (t) = ω(t), ∀ t ∈ [ti , ti+1].

(II) If H(ti , qK (ti ), q ′
K (ti )) = Pd(ti ), we consider the maximal interval [ti , ti+1] such that, ∀ t ∈

[ti , ti+1]

K � −Lz′(t, ω(t), ω′(t)) exp

[
−

∫ ti

0

Hz(s, qK (s), q ′
K (s))

Hz′(s, qK (s), q ′
K (s))

ds −
∫ t

ti

Hz(s, ω(s), ω′(s))
Hz′(s, ω(s), ω′(s))

ds

]
,

ω(t) being a solution of the differential equation

H(t, ω(t), ω′(t)) = Pd(t), with ω(ti ) = qK (ti ).

If this is the case, we set qK (t) = ω(t), ∀ t ∈ [ti , ti+1].

(B) If [ti−1, ti ] is the boundary interval, we consider the maximal interval [ti , ti+1] such that, ∀ t ∈
[ti , ti+1]

K = −Lz′(t, ω(t), ω′(t)) exp

[
−

∫ ti

0

Hz(s, qK (s), q ′
K (s))

Hz′(s, qK (s), q ′
K (s))

ds −
∫ t

ti

Hz(s, ω(s), ω′(s))
Hz′(s, ω(s), ω′(s))

ds

]
,

ω(t) being an interior arc of the extremal, with ω(ti ) = qK (ti ), which satisfies Euler’s equation
in its maximal domain [ti , ti+1] and therefore satisfies the coordination equation. Now, we set
qK (t) = ω(t), ∀ (t) ∈ [ti , ti+1].
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Appendix B

DEFINITION 1 For every 
Q = (q1, . . . , qn) ∈ Ω, we consider

H

Q

i (t, zi , z′
i ) = H(t, q1, . . . , qi−1, zi , qi+1, . . . , qn, q ′

1, . . . , q ′
i−1, z′

i , q ′
i+1, . . . , q ′

n)

and the functional J

Q

i defined over Ωi by

J

Q

i (zi ) =
∫ T

0
Ψ (Pd(t) − H


Q
i (t, zi (t), z′

t (t))) dt .

H

Q

i represents the power generated by the hydraulic system as a function of the rate of water discharge
and the turbined volume by the i-th plant, under the assumption that the rest of the stations behave in a
definite way.

DEFINITION 2 We call the i-th minimizing mapping, the mapping Φi : Ω → Ω , defined in the following
way: For every 
Q = (q1, . . . , qn) ∈ Ω

Φi (q1, . . . , qi , . . . , qn) = (q1, . . . , q∗, . . . , qn),

where J (q1, . . . , q∗, . . . qn) < J (q1, . . . , X, . . . , qn), ∀ X ∈ Ωbi − {q∗}.
The following is evident: If J is convex in Ω , then

Φi ( 
Q) = 
Q, ∀ i = 1, . . . , n ⇔ 
Q is a solution of ℘{J, 
b},
and if J is convex in Ω , the minimizing mappings satisfy

Φi ( 
Q) = 
Q ⇔ J (Φi ( 
Q)) = J ( 
Q).

DEFINITION 3 Let us call a descending sequence of ℘{J, 
b} every sequence { 
Qi,k} ⊂ Ω with (i, k) ∈
{1, . . . , n} × N, defined in the following recurrent manner:


Qi,1 =
−→
Q0 ∈ Ω, ∀ i = 1, . . . , n,


Qi+1,k = Φi+1( 
Qi,k), ∀ i = 1, . . . , n − 1, ∀ k ∈ N,


Q1,k+1 = Φ1( 
Qn,k), ∀ k ∈ N.

DEFINITION 4 We call the i-th descending subsequence of { 
Qi,k} the sequence resulting from fixing i :
Si

k = 
Qi,k .




