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A Bolza problem in hydrothermal optimization
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Abstract

This paper studies the optimization of large-scale hydrothermal power systems. For the general problem with n hydro-
plants, we present an algorithm using a particular strategy related to the Gauss–Southwell method of nonlinear optimiza-
tion. The algorithm offers a constructive method for producing sequences of problems with one hydro-plant. For this
simple problem we use Pontryagin’s minimum principle to prove a condition for the extremals of the functional. We set
out our problem in terms of optimal control in continuous time, with the Bolza-type functional. Finally, we present one
example employing a program developed with the ‘‘Mathematica’’ package and analyze the convergence of the algorithm.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper addresses the short-term hydrothermal coordination (STHC) problem for large-scale power sys-
tems. This problem plays a most important role in the safety, reliability and economic operation of electric
power systems whereby the generations of hydro- and thermal plants are allocated so as to minimize total
operating cost in a schedule horizon of 1 day or 1 week while satisfying various constraints on plants and
a certain demand in electric power.

This is a large-scale, nonlinear problem and there is a vast bibliography describing different formulations
and solution methodologies applied to the STHC problem. Dynamic programming [1,2] and mixed integer
linear programming [3,4] methods have been widely used in different formulations, but these approaches
require substantial simplifying assumptions to make the problem computationally tractable. Promising results
have been obtained by using the Lagrangian relaxation technique to generate near optimal solutions [5,6].
The disadvantage of this approach lies in the primal solution, which is infeasible. As a result, some heuristic
procedures are needed to get a feasible primal solution.

The main drawback with the majority of these methods is the difficulty of treating large-scale systems. In
this paper, we propose Pontryagin’s minimum principle (PMP) to solve the STHC problem. Several applica-
tions of optimal control theory (OCT) in hydrothermal optimization have been reported in the literature
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[7–11]. What is more, some applications of Pontryagin’s minimum principle to hydrothermal systems have
focused on a different problem, such as that of designing the configuration of multi-reservoir systems [12].

Conventional studies consider only the fuel cost of thermal plants, but we shall also assign a cost to the
water to then go on to set out the corresponding Bolza problem. This water cost does not correspond to a
real cost of the m3, as is applied for urban, industrial or irrigation consumption, since the water that turbines
a plant is neither polluted nor lost. It is a similar factor to the penalization factor employed for the pollution
produced by thermal plants, the aim of which is to assure a certain water reserve. It is thus considered that the
water is no longer in the reservoir, but that it continues to flow downstream and may be used for the afore-
mentioned consumptions.

Let us assume that the hydrothermal system accounts for n hydro-plants and m thermal plants (Hn � Tm

problem). In order to reduce the dimension of the problem, the method proposed in this paper adopts an iter-
ative optimization algorithm and the technique consists of the following four stages:

Stage 1. The m thermal power plants are substituted by their thermal equivalent (Hn � T1 problem).
Stage 2. An efficient algorithm prompted by the Gauss–Southwell method (descent in coordinate directions

with maximal gradient) is developed. The Hn � T1 problem could thus be solved, under certain con-
ditions, if we resolve of a sequence of problems with one hydro-plant (H1 � T1 problem).

Stage 3. We shall use PMP as the basis for solving the H1 � T1 problem, setting out our problem in terms of
optimal control in continuous time, with the Bolza-type functional.

Stage 4. The generation assigned to the thermal equivalent is distributed between the m thermal plants.

This paper focuses on Stage 2 and Stage 3, as Stage 1 and Stage 4 have been fully developed in previous
studies [13,14]. The paper is organized as follows. Section 2 gives a formulation of the STHC problem. Section
3 presents the simple H1 � T1 problem and establishes a condition for the stationary functions of the func-
tional. Section 4 provides a novel optimization algorithm that leads to determination of the optimal solution
of the general problem with n hydro-plants. The algorithm offers a constructive method for producing
sequences of problems with one hydro-plant. Section 5 includes one real example and numerical results involv-
ing a power system in Asturias (Spain) are reported. We employ a program developed for this purpose using
the ‘‘Mathematica’’ package. Section 6 compares the behaviour of different procedures for carrying out the
coordinate descent of the n hydro-plants and analyzing the convergence. Finally Section 7 presents conclu-
sions and future perspectives.

2. Statement of the STHC problem

In prior studies [13,14], it was proven that the problem of optimization of the fuel cost of a hydrothermal
system with m thermal plants may be reduced to the study of a hydrothermal system made up of one single
thermal plant, called the thermal equivalent. Under these conditions, we present the (Hn � T1) problem from
the electrical engineering perspective to then go on to resolve the mathematical problem thus formulated.

Let us assume that a hydrothermal system accounts for n hydro-plants. The mapping H : XH ! Rþ
Hðt; z1ðtÞ; . . . ; ziðtÞ; . . . ; znðtÞ; z01ðtÞ; . . . ; z0iðtÞ; . . . ; z0nðtÞÞ ¼ Hðt;�zðtÞ;�z0ðtÞÞ

is called the function of effective hydraulic contribution, and is the power contributed to the system at the in-
stant t by the set of hydro-plants, zi(t) being the volume that is discharged up to the instant t by the ith hydro-
plant, z0iðtÞ the rate of water discharge at the instant t by the ith hydro-plant, and XH � ½0; T � � ðRþÞn � ðRþÞn
the domain of definition of H.

We say that �z ¼ ðz1; . . . ; znÞ is admissible for H if zi, belong to the class, bC1½0; T � (the set of piecewise C1

functions), and ðt;�zðtÞ;�z0ðtÞÞ 2 XH "t 2 [0, T]. The volume bi that could be discharged up to the instant T is
called the admissible volume of the ith hydro-plant. Let �b ¼ ðb1; . . . ; bnÞ 2 Rn be the vector of admissible vol-
umes. In a general model, with hydraulic coupling between the n hydro-plants, we call P hiðt;�zðtÞ;�z0ðtÞÞ the
power generated by the ith hydro-plant.

The (Hn � T1) problem consists in minimizing the cost needed to satisfy a certain power demand during the
optimization interval [0,T]. Said cost may be represented by the functional
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F ðP ;�zÞ ¼
Z T

0

WðP ðtÞÞdt þ S½�zðT Þ�;
where W : Rþ ! Rþ is the function of cost of the thermal equivalent, P(t) is the power generated by said plant,
and S½�zðT Þ� is the cost assigned to the water discharged. Moreover, the following equilibrium equation of ac-
tive power will have to be fulfilled
P ðtÞ þ Hðt;�zðtÞ;�z0ðtÞÞ ¼ P dðtÞ 8t 2 ½0; T �;
where Pd(t) is the power demand. With the previous statement, we only admit non-negative P and H and
therefore
0 6 Hðt;�zðtÞ;�z0ðtÞÞ 6 P dðtÞ 8t 2 ½0; T �:

Taking into account the equilibrium equation, the thermal component P(t) disappears and our objective

functional in the Bolza form is
Jð�zÞ ¼
Z T

0

Lðt;�zðtÞ;�z0ðtÞÞdt þ S½�zðT Þ� ð2:1Þ
with Lðt;�zðtÞ;�z0ðtÞÞ ¼ WðP dðtÞ � Hðt;�zðtÞ;�z0ðtÞÞÞ, on the set
X ¼ �z 2 ðbC1½0; T �Þn
��� zið0Þ ¼ 0; ziðT Þ 6 bi 8i ¼ 1; . . . ; n

0 6 Hðt;�zðtÞ;�z0ðtÞÞ 6 P dðtÞ 8t 2 ½0; T �

� �
: ð2:2Þ
As we see, the final instant T is given and the final state has an upper boundary: zi(T) 6 bi. We begin the
development, in the following section, by presenting the simple problem with one hydro-plant.

3. The (H1 � T1) problem

In the H1 � T1 problem, we have �z ¼ z and our objective functional is
JðzÞ ¼
Z T

0

Lðt; zðtÞ; z0ðtÞÞdt þ S½zðT Þ� ð3:1Þ
on the set
X ¼ z 2 bC1½0; T �
��� zð0Þ ¼ 0; zðT Þ 6 b

0 6 Hðt; zðtÞ; z0ðtÞÞ 6 P dðtÞ 8t 2 ½0; T �

� �
: ð3:2Þ
Hence, the problem involves non-holonomic inequality constraints (differential inclusions). We shall focus
in the present paper on the development of the applications of OCT to this STHC problem. We assume
throughout the paper that the functions are sufficiently smooth and are subject to the following additional
assumptions:

– Let us assume that the function of thermal cost W satisfies W0ðxÞ > 0 8x 2 Rþ and is thus strictly increasing.
This constraint is absolutely natural: it reads more cost to more generated power. Let us assume as well that
W00ðxÞ > 0 8x 2 Rþ and is therefore strictly convex. The models traditionally employed meet this constraint.

– Let us assume that the hydraulic generation H(t,z,z 0) is strictly increasing with respect to the rate of water
discharge z 0, i.e. H z0 > 0. Let us also assume that H(t,z,z 0) is concave with respect to z 0, i.e. H z0z0 6 0. The
real models meet these two restrictions; the former means more power to a higher rate of water discharge.

The assumptions we have made guarantee the fulfilment of the following inequalities: Lz0z0 ðt; z; z0Þ > 0;
Lz0 ðt; z; z0Þ < 0. It is evident that in the set X, technical constraints of the type P hðt; zðtÞ; z0ðtÞÞ 6 P hmax )
Hðt; zðtÞ; z0ðtÞÞ 6 H max may also be considered. To do so, it is sufficient to take the function min{Hmax,Pd(t)}
as the upper limit for H(t,z(t),z 0(t)) at any instant, and the theoretical development would be the same.
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If z satisfies Euler’s equation for the functional J, we have that "t 2 [0,T], Euler’s equation is fulfilled:
Lzðt; zðtÞ; z0ðtÞÞ �
d

dt
ðLz0 ðt; zðtÞ; z0ðtÞÞÞ ¼ 0: ð3:3Þ
Integrating (3.3), we have the integral form of Euler’s equation, known as the Du Bois–Reymond equation
Z t

0

Lzðs; zðsÞ; z0ðsÞÞds� Lz0 ðt; zðtÞ; z0ðtÞÞ ¼ �Lz0 ð0; zð0Þ; z0ð0ÞÞ ¼ K 2 Rþ 8t 2 ½0; T �: ð3:4Þ
If we divide Euler’s Eq. (3.3) by Lz0 ðt; zðtÞ; z0ðtÞÞ < 0 8t, and integrate, we have that
�Lz0 ðt; zðtÞ; z0ðtÞÞ � exp �
Z t

0

H zðs; zðsÞ; z0ðsÞÞ
H z0 ðs; zðsÞ; z0ðsÞÞ

ds
� �

¼ �Lz0 ð0; zð0Þ; z0ð0ÞÞ ¼ K 2 Rþ 8t 2 ½0; T �: ð3:5Þ
We shall call relation (3.5) the coordination equation for z(t), and the positive constant K will be termed the
coordination constant of the extremal. Let us now see the fundamental result, which enables us to characterize
the extremals of the problem and which is also the basis for elaborating the optimization algorithm that leads
to determination of the optimal solution of the hydrothermal system. We shall use the above coordination Eq.
(3.5) in the development of the proof of the theorem.

In this paper, we generalize a previous study [15] in which the problem was simplified for its resolution. We
now present the problem without simplifications, considering the state variable to be z(t) and the control var-
iable u(t) = H(t,z(t), z

0
(t)). Moreover, as H z0 > 0, the equation
uðtÞ � Hðt; zðtÞ; z0ðtÞÞ ¼ 0
allows the state equation z 0 = f(t,z,u) to be explicitly defined and we easily obtain fz ¼ � Hz
Hz0

; fu ¼ 1
Hz0

. The opti-
mal control problem is thus
min
uðtÞ

Z T

0

Lðt; zðtÞ; uðtÞÞdt þ S½zðT Þ� with

z0 ¼ f ðt; z; uÞ;
zð0Þ ¼ 0; zðT Þ 6 b;

uðtÞ 2 fxj0 6 x 6 P dðtÞg

8><>:
9>=>;:
with L(t,z(t),u(t)) = W(Pd(t) � u(t)). Prior to proving the theorem, we define the following function.

Definition 1. Let us term the coordination function of q 2 X the function in [0, T], defined as follows:
YqðtÞ ¼ �Lz0 ðt; qðtÞ; q0ðtÞÞ � exp �
Z t

0

Hzðs; qðsÞ; q0ðsÞÞ
H z0 ðs; qðsÞ; q0ðsÞÞ

ds
� �

:

Theorem 1 (The main coordination theorem). If q 2 bC1 is a solution of problem (H1 � T1), then there exists a

constant K 2 Rþ such that

(i) If 0 < H(t, q(t), q 0(t)) < Pd(t) (t is not a boundary point)) YqðtÞ ¼ K.

(ii) If Hðt; qðtÞ; q0ðtÞÞ ¼ P dðtÞ ) YqðtÞP K.
(iii) If Hðt; qðtÞ; q0ðtÞÞ ¼ 0) YqðtÞ 6 K and K P oS½qðT Þ�

oz � �YqðT Þ
Lz0 ðT ;qðT Þ;q0ðT ÞÞ

.

Proof. We shall term the optimal control uopt, which we see in our case is the function H(t,z(t), z 0(t)), and
therefore the optimal state will be q(t). Let H be the Hamiltonian associated with the problem
Hðt; z; u; kÞ ¼ WðP dðtÞ � uÞ þ k � f ðt; z; uÞ:

In virtue of PMP, there exists a bC1 function kopt (co-state variable) that satisfies the two following

conditions:
k0optðtÞ ¼ �
oHðt; qðtÞ; uoptðtÞ; koptðtÞÞ

oz
¼ �koptðtÞ � fzðt; qðtÞ; uoptðtÞÞ; ð3:6Þ

Hðt; qðtÞ; uoptðtÞ; koptðtÞÞ 6 Hðt; qðtÞ; u; koptðtÞÞ; 8u; 0 6 u 6 P dðtÞ: ð3:7Þ
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From (3.6), it follows that
koptðtÞ ¼ koptð0Þ � exp �
Z t

0

fzðs; qðsÞ; uoptðsÞÞds
� �

: ð3:8Þ
From (3.7), it follows that for each t, uopt(t) minimizes the function
FðuÞ ¼ WðP dðtÞ � uÞ þ koptðtÞ � f ðt; qðtÞ; uÞ on fuj0 6 u 6 P dðtÞg:

Hence, in accordance with the Kuhn–Tucker Theorem, for each t there exists two real non-negative num-

bers, a and b, such that uopt(t) is a critical point of
F�ðuÞ ¼ WðP dðtÞ � uÞ þ koptðtÞ � f ðt; qðtÞ; uÞ þ a � ð�uÞ þ b � ðu� P dðtÞÞ
it being verified that if H(t,q(t),q 0(t)) > 0, then a = 0 and if H(t,q(t),q 0(t)) � Pd(t) < 0, then b = 0. We hence
have
F�0ðuoptðtÞÞ ¼ �W0ðP dðtÞ � uoptðtÞÞ þ koptðtÞ � fuðt; qðtÞ; uoptðtÞÞ � aþ b ¼ 0
and the three following cases:

Case 1: 0 < uopt(t) = H(t,q(t),q
0
(t)) < Pd(t). In this case, a = b = 0 and hence
W0ðP dðtÞ � uoptðtÞÞ ¼ koptðtÞ � fuðt; qðtÞ; uoptðtÞÞ:
From (3.8) we have

W0ðP dðtÞ � uoptðtÞÞ ¼ fuðt; qðtÞ; uoptðtÞÞ � koptð0Þ exp �
Z t

0

fzðs; qðsÞ; uoptðsÞÞds
� �

W0ðP dðtÞ � uoptðtÞÞ
fuðt; qðtÞ; uoptðtÞÞ

� exp

Z t

0

fzðs; qðsÞ; uoptðsÞÞds
� �

¼ koptð0Þ:

Bearing in mind that W0

fu
¼ W0 � Hz0 ¼ �Lz0 and fz ¼ � Hz

Hz0
, the following relation is fulfilled:

�Lz0 ðt; qðtÞ; q0ðtÞÞ � exp �
Z t

0

H zðs; qðsÞ; q0ðsÞÞ
Hz0 ðs; qðsÞ; q0ðsÞÞ

ds
� �

¼ koptð0Þ ) YqðtÞ ¼ K:
Case 2: uopt(t) = H(t,q(t), q
0
(t)) = Pd(t), then b P 0 and a = 0. By analogous reasoning, we have
YqðtÞP K:
Case 3: uopt(t) = H(t,q(t), q
0
(t)) = 0, then a P 0 and b = 0. By analogous reasoning, we have
YqðtÞ 6 K:

Otherwise, the application of PMP to this Bolza problem leads us to the function kopt (3.8) having to
satisfy the final condition

koptðT Þ �
oS½qðT Þ�

oz
P 0; ð¼ 0 if qðT Þ < bÞ:
Therefore
koptð0Þ � exp �
Z T

0

fzðs; qðsÞ; uoptðsÞÞds
� �

� oS½qðT Þ�
oz

P 0;

K ¼ koptð0ÞP
oS½qðT Þ�

oz
� exp

Z T

0

fzðs;qðsÞ;uoptðsÞÞds
� �

¼ oS½qðT Þ�
oz

� �YqðT Þ
Lz0 ðT ;qðT Þ;q0ðT ÞÞ

: � ð3:9Þ
We note that with the hypothesis Lz0z0 ðt; z; z0Þ > 0 the solution may also be guaranteed to be of class C1 (see
[16]). In the next section, we consider once more the general problem Hn � T1 with n hydro-plants.
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4. The optimization algorithm

The problem of optimization of a hydrothermal system that involves n hydro-plants is highly complicated
because the associated variational problem is related to solving a boundary-value problem for a system of dif-
ferential equations. In this section, we present an algorithm of its numerical resolution using a particular strat-
egy related to the Gauss–Southwell method of coordinate descent [17]. With this method, a problem of the
type Hn � T1 could be solved, under certain conditions, if we start out from the resolution of a sequence of
problems of the type H1 � T1.

Let the function G : Rn ! R, G 2 C1ðRnÞ, and �x ¼ ðx1; . . . ; xj; . . . ; xnÞ. The idea of the coordinate descent
method is to use the coordinate axes as descent directions. The method sequentially searches for the minimum
of G in all the directions �ej. Descent with respect to the xj coordinate means that G(x1, . . . ,xj, . . . ,xn) is min-
imized with respect to xj, while the rest remain fixed.

There exists a number of different selection strategies for the coordinates. However, we are specifically inter-
ested in the Gauss–Southwell-type selection scheme, which selects the coordinate that has the largest absolute
value in the gradient vector. Instead of doing steps in the direction of the negative gradient as in standard gra-

dient descent methods, only the variable that has the largest gradient component is changed. Now we adapt the
finite-dimensional version of this algorithm to our functional (2.1) on (2.2).

The algorithm for the Hn � T1 problem carries out several iterations and at each kth iteration calculates n

stages, one for each hydro-plant. At each stage, it calculates the optimal functioning of a hydro-plant, while
the behaviour of the rest of the plants is assumed fixed. For every �q ¼ ðq1; . . . ; qnÞ 2 X, we consider the func-
tional J i

q defined by
J i
�qðziÞ ¼

Z T

0

WðP dðtÞ � H i
�qðt; ziðtÞ; z0iðtÞÞÞdt; with

Hi
�qðt; zi; z0iÞ ¼ Hðt; q1; . . . ; qi�1; zi; qiþ1; . . . ; qn; q

0
1; . . . ; q0i�1; z

0
i; q
0
iþ1; . . . ; q0nÞ
where Hi
�q represents the power generated by the hydraulic system as a function of the rate of water discharge

and the volume turbined by the ith plant, under the assumption that the rest of the plants behave in a definite
way. We call the ith minimizing mapping the mapping /i:X! X, defined in the following way: for every �q 2 X
/iðq1; . . . ; qi; . . . ; qnÞ ¼ ðq1; . . . ; q�; . . . ; qnÞ;
where q* minimizes J i
�q. Beginning with some admissible �q0 ¼ ðq0

1; . . . ; q0
nÞ, we construct a sequence of �qk via

successive applications of f/ig
n
i¼1. In order to select the ‘‘coordinate’’ qi at which we carry out the descent

at each stage, instead of calculating the coordinate that has the largest absolute value in the gradient vector,
which now does not make sense, we consider the function Yi

�qðtÞ, and the set of instants vi
�q where the solution is

a free extremal:
Yi
�qðtÞ ¼ �Lz0i

ðt; �qðtÞ; �q0ðtÞÞ � exp �
Z t

0

Hziðs; �qðsÞ; �q0ðsÞÞ
Hz0i
ðs; �qðsÞ; �q0ðsÞÞ ds

" #
;

vi
�q ¼ t 2 ½0; T �

0 < P hiðt; �qðtÞ; �q0ðtÞÞ < P himax

0 < Hðt; �qðtÞ; �q0ðtÞÞ < P dðtÞ

���� ��
:

We give the name imbalance in the ith plant at �q to the positive number
di
�q ¼ max

t2vi
�q

Yi
�qðtÞ �min

t2vi
�q

Yi
�qðtÞ:
The algorithm, at each stage of the kth iteration, it selects the coordinate ith with largest di
�q. If we set
Urk ¼ ð/rkðnÞ � /rkðn�1Þ � � � � � /rkð2Þ � /rkð1ÞÞ;
rkbeing the permutation that at the kth iteration establishes the above mentioned order, and
�qk ¼ Urk ð�qk�1Þ
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the algorithm will search
lim
k!1

�qk:
The application of every /i involves solving a problem of the type H1 � T1; the optimal functioning of one
hydro-plant being calculated at each stage in the following way. The problem will consist in finding for each K

the function qK that satisfies qK(0) = 0, the conditions (i), (ii) and (iii) of the main coordination theorem, and
from among these functions, the one that gives rise to an admissible function (qK(T) 6 b) and
K P
oS½qKðT Þ�

oz
� �YqK

ðT Þ
Lz0 ðT ; qKðT Þ; q0KðT ÞÞ

: ð4:1Þ
Step 1: From the computational point of view, the construction of qK can be performed with the use of a
discretized version of the coordination Eq. (3.5). In general, the construction of q0K cannot be carried
out all at once over the entire interval [0,T]. The construction must necessarily be carried out by con-
structing and successively concatenating the extremal arcs and boundary arcs until completing the
interval [0,T]. If the values obtained for z and z

0
do not obey the constraints, we force the solution

qK to belong to the boundary until the moment when the conditions of leaving the domain (estab-
lished in the main coordination theorem) are fulfilled.

Step 2: Varying the coordination constant K, we would search for the extremal that fulfils the second boundary
condition qK(T) 6 b and (4.1). Firstly, we search for the value of K whose associated extremal satisfies
qK(T) = b. The procedure is similar to the shooting method used to resolve second-order differential
equations with boundary conditions. Effectively, we may consider the function u(K): = qK (T) and cal-
culate the root of u(K) � b = 0, which may be realized approximately using elemental procedures.

Step 3: If (4.1) is fulfilled, then qK(t) is the optimal solution and all the available water, b, is consumed. If the
encountered K does not verify (4.1), the value of K that fulfills the equality in (4.1) is searched for once
more using the shooting method, and then qK(t) is the optimal solution, and the optimal final volume
in this case is qK(T) < b.
5. Application to a hydrothermal problem

A program that resolves the optimization problem was elaborated using the Mathematica package and was
then applied to one example of a hydrothermal system made up of eight thermal plants and one hydro-plant of
variable head. We consider the functional (3.1). We shall use the thermal system of Asturias (Spain), which is
made up of eight thermal plants. The cost function Wi that has been used is a quadratic model
WiðxÞ ¼ ai þ bixþ cix
2;
and we consider Kirchmayer’s model for the transmission losses: li (x) = bii Æ x2, where bii is termed the loss
coefficient. The data of the plants is summarized in Table 1.

The units for the coefficients are ai in ($/h), bi in ($/h MW), ci in ($/h MW2), and the loss coefficients bii in
(1/MW). We construct the equivalent thermal plant as we saw in [13,14], obtaining aeq = 9438.13;
beq = 19.1762; ceq = 0.00178282.

And finally, we shall use the hydro-plant of Salime in Asturias (Spain). We use a variable-head model and
the hydro-plant’s active power generation Ph (variable head) is a function of z(t) and z 0(t)
P hðt; zðtÞ; z0ðtÞÞ :¼ AðtÞ � z0ðtÞ � B � zðtÞ � z0ðtÞ; AðtÞ :¼ By

G
ðS0 þ t � iÞ; B ¼ By

G
:

In variable-head models, the term �B Æ z(t) Æ z
0
(t) represents the negative influence of the consumed volume

and reflects the fact that consuming water lowers the effective height and hence the performance of the plant.
We consider that the transmission losses for the hydro-plant are also expressed by Kirchmayer’s model (where
bll is the loss coefficient). Hence, the function of effective hydraulic generation is
Hðt; zðtÞ; z0ðtÞÞ :¼ P hðt; zðtÞ; z0ðtÞÞ � bllP 2
hðt; zðtÞ; z0ðtÞÞ:



Table 1
Coefficients of the thermal plants

Plant i ai bi ci bii

1 (Abo~no 1) 1227.83 17.621 0.01325 0.000103
2 (Abo~no 2) 743.78 20.842 0.00211 0.000072
3 (Soto 2) 77.72 21.277 0.00286 0.000172
4 (Soto 3) 1615.35 16.676 0.01659 0.000100
5 (Narcea 2) 2248.16 �7.984 0.17026 0.000353
6 (Narcea 3) 1459.44 21.569 0.01489 0.000121
7 (Lada 3) 1625.43 6.347 0.09803 0.000220
8 (Lada 4) 2155.62 17.745 0.01982 0.000097
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Furthermore, we shall consider a linear model for the associated water cost S[z(T)] = m Æ z(T), where m is a
water conversion factor that accounts for the unit conversion from (m3) to ($).

The data of the hydro-plant (Salime) is summarized in Table 2. The units for the coefficients of the hydro-
plant are the efficiency G in (m4/h MW), the constraint on the volume b in (m3), the loss coefficient bll in
(1/MW), the natural inflow i in (m3/h), the initial volume S0 in (m3), the coefficient By (a parameter that
depends on the geometry of the tanks) in (m�2) and the maximum hydraulic generation Ph max in (MW).
Finally, for the water cost we present two cases: (a) m = 0.00375 ($/m3) and (b) m = 0.00475 ($/m3).

We consider a short-term hydrothermal scheduling (24 h) with an optimization interval [0,24] and we con-
sider a discretization of 96 subintervals. The optimal power for the hydro-plant, Ph(t), for two cases (a) and (b)
is shown in Fig. 1, and the system’s power demand, Pd(t), and the optimal power for the equivalent thermal
plant, Pth(t), in case (a) in Fig. 2.

As can be seen in Fig. 1, for m = 0.00375 the hydro-plant consume all the available water, and the power
generated by the hydro-plant is limited by its technical maximum Ph max = 120. However, with m = 0.00475 the
hydro-plant does not consume the available 11 · 106 m3, but only 7.71017 · 106 m3. The algorithm shows a
rapid convergence to the optimal solution. The secant method was used to calculate the approximate value
of K for which qK (T) � b = 0. For example, in case (a) with 13 iterations: jqK(T) � bj < 10�3 (m3) for
K = 4803.89860288 · 10�6 and the time required by the program was 15 s on a personal computer (Pentium
IV/2 GHz).
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Fig. 1. Optimal hydro-power Ph(t).

Table 2
Hydro-plant coefficients

G b bll i S0 By Ph max

519840 11 106 0.000166 133200 239.5 106 4.34079 10�7 120
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Fig. 2. Optimal thermal power Pth(t) and Pd(t).
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6. Convergence of the algorithm

The analysis of the convergence of the minimizing sequence f�qkg, like the verification of the minimizing
character of its limit, is a nontrivial problem of functional analysis that exceeds the goals of this paper. It
is, however, simple to justify the convergence of the algorithm in a finite number of steps, simply by consid-
ering the following solution set:
�qj9r 2
X

n

such that F ½�q� � F ½Urð�qÞ� < e

( )
;

i.e. the set of admissible elements over which, after one iteration of the algorithm, the functional has not de-
creased more than e It need only be borne in mind that the value of the functional is lower limited by zero and
hence an infinite sequence of descents greater than e cannot occur.

Finally we compare the behaviour of different procedures to carry out the coordinate descent of the n
hydro-plants and analyze the convergence. In a previous paper [18] addressing a similar problem, the authors
consider an algorithm based on the cyclic coordinate descent (CCD) method. The coordinate selection defined
in this method is slightly different from Gauss–Southwell selection. The CCD method minimizes a function
G(x1 , . . . ,xj , . . . ,xn) cyclically with respect to the coordinate variables. That is, first x1 is searched, then x2,
etc. This method is generally attractive because of its easy implementation, but its convergence properties
are generally poorer than Gauss–Southwell descent.
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Fig. 3. Convergence with 10 hydro-plants.
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Fig. 4. Convergence with 20 hydro-plants.
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To verify this statement, two tests were conducted considering in both the same eight thermal plants from
the above example and 10 and 20 hydro-plants respectively with the same variable-head model as in the pre-
vious example. Figs. 3 and 4 present the obtained results. We can see how the Gauss–Southwell-type method
presents a much more rapid convergence than its CCD-type counterpart, this effect being much more pro-
nounced as the number of plants increases.

It is most important, in fact, to highlight that when considering twice the number of plants, the Gauss–
Southwell-type method only requires two more iterations (from 16 to 18) to achieve the established tolerance.
This makes said method an ideal tool for working with large-scale systems.

7. Conclusions, contributions and future perspectives

This paper describes a method for coordinating large-scale hydrothermal power systems based on Pontrya-
gin’s minimum principle. We have developed a simple theory that resolves the problem of minimization of a
functional within the set of piecewise C1 functions that satisfy boundary conditions and non-holonomic
inequality constraints. We have seen that the treatment of the constraints of the problem using this new
approach is very simple. The problem has been generalized assigning a cost to the water and solving the result-
ing Bolza problem. We have established a condition for the stationary functions of the functional, setting out
our problem in terms of optimal control in continuous time. This theorem allows us to elaborate the optimi-
zation algorithm that leads to determination of the optimal solution of the hydrothermal system. Finally, we
have presented examples employing the program developed with the ‘‘Mathematica’’ package. Simulation
results show that the proposed method has enough efficiency for practical use in terms of convergence char-
acteristics, thus indicating a robust and efficient tool for short-term coordination.

As far as future perspectives are concerned, it would be most interesting to apply this method when the
system is made up of n hydro-plants including pumped hydro-plants. In this kind of problem, the derivative
of H with respect to z0ðH z0 Þ presents discontinuity at z 0 = 0, which is the point at which a sudden change of H z0

is produced, as it is the border between the power generation zone (positive values of z 0) and the pumping zone
(negative values of z 0). The problem could hence be formulated within the framework of nonsmooth analysis,
using Clarke’s gradient.
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