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This paper presents an environmentally constrained economic dispatch algorithm for a hydrothermal
system within the framework of a competitive and deregulated electricity market. The optimization
problem of a firm in a competitive market is described, the objective function of which can be defined as
profit maximization, and we consider that thermal plants are constrained to technical and environmental
restrictions. An optimal control technique is applied and Pontryagin’s theorem is employed. The
proposed algorithm is implemented using the Mathematica© package and is applied to a sample system.
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1. Introduction

For decades, pulverized coal combustion (PCC) power plants have constituted the dominating
technology among coal power generation technologies. Worldwide the majority of these PCC
plants have no emission control equipment other than particulate removal systems. The tech-
nology for generating electricity from coal is undergoing change due to continued demand for
cleaner power production. More efficient and cleaner power generation technologies [1] that
will enable utilities to meet future environmental requirements while containing electricity
costs will be the leading candidates in the decades to come. Fluidized bed combustion (FBC)
has emerged as a viable alternative.

In a fluidized bed, solid inert material forms a bed on a perforated plate. Air is blown upward
through the bed of particles at a sufficient velocity for the particles to overcome gravity; each
particle will thus float on the gas stream like a boiling turbulent mass. Due to the good particle
mixing, a uniform combustion temperature is obtained over the entire bed, resulting in a
low combustion temperature. A temperature range of between 800 and 900 ◦C is commonly
employed. If the gas is not pressurized, the system is termed atmospheric. As the gas velocity
increases, hot particles are carried out of the combustion zone. After separation in a cyclone,

*Corresponding author. Email: bayon@uniovi.es

International Journal of Computer Mathematics
ISSN 0020-7160 print/ISSN 1029-0265 online © 2008 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/00207160701242334



D
ow

nl
oa

de
d 

B
y:

 [B
ay

ón
, L

.] 
A

t: 
10

:1
0 

27
 M

ar
ch

 2
00

8 

346 L. Bayón et al.

the particles are recycled into the combustion chamber for further combustion. This scheme
is termed circulating FBC or CFBC.

One of the main advantages of CFBC is the possibility of reducing the sulphur dioxide (SO2)
formed during combustion from the sulphur content of the fuel by adding a cheap absorbent
material to the bed such as limestone (CaCO3) or dolomite (CaCO3 · MgCO3). If limestone
is added to the bed, this undergoes a transformation called calcination to then form calcium
oxide (CaO). The calcium oxide (a porous product) reacts with the SO2 and oxygen to form
calcium sulphate (CaSO4), a transformation called sulphation. These reactions are optimum
at temperatures of around 850 ◦C and this is one of the reasons why the operating temperatures
in CFBC boilers are normally around 850 ◦C.

Another advantage of CFBC is the possibility of reducing the nitrogen oxides. Nitrogen
oxides are formed during the combustion of coal; these oxides are normally abbreviated as
NOx . NOx are partially formed by the nitrogen in the air (called thermal NOx) and partially
by the nitrogen bound in the coal (fuel NOx). The reactions involving thermal NOx are only
significant at high temperatures (>1200 ◦C) and, since the combustion temperature in a CFBC
boiler is below 900 ◦C, this extra NOx is avoided. Fuel NOx may be reduced with the aid of
the CO present in the combustion gases that react with the nitrogen oxides. This is used in
phase combustion, where the combustion in the first phase takes place under sub-stoichiometric
conditions, resulting in CO being formed. Final combustion takes place in the following phase,
once the remaining air has been added as secondary air.

On the other hand, the electricity supply industry is undergoing major restructuring. Tradi-
tional centralized regulation is being replaced by a competitive deregulated framework. This
has been the case for Spanish utilities since 1 January 1998. In this paper the new short-
term problems that are faced by a generation company in a deregulated electricity market are
addressed and an optimization algorithm is proposed.

Several methods have been proposed for simulating competitive generation markets. The
majority of these models [2] may be categorized into two main groups: models that represent all
the generation companies and models that focus on a particular generation company. Models
in the former group may be classified into two families: equilibrium and simulation models.
Two approaches can be adopted to represent the spot market auctions when only one company
is considered: price modelled as an exogenous variable and price modelled as a function of
the demand supplied by the company under study.

In this paper we present the operation of one company in detail, including each of the
company’s generation units. Our model of the spot market explicitly represents the price of
electricity as a known exogenous variable. We represent generation units at a high level of
detail and our model distinguishes individual generation units and considers inter-temporal
constraints such as hydro reserves.

In the Spanish market, two major electricity groups, Endesa and Iberdrola, control approx-
imately 80% of all the electricity that is generated and distributed in Spain. The company that
inspired our paper, HC, controls approximately only 7% of all the electricity that is generated.
Accordingly, we consider our company as a price-taker, and this type of optimization model
represents a market under perfect competition.

Traditionally, power generating plants have been dispatched following minimum fuel cost
criteria (economic dispatch or optimal load flow) without considering the pollution produced.
However, due to the ever increasing requirements of environmental regulations and social
awareness, the opening up of these types of alternative strategies is becoming fundamental.

Numerous strategies exist [3] with the common goal of reducing the pollutant emissions
of thermal power generation: minimization of total emissions (also known as emission dis-
patch) [4], minimization of the weighted sum of cost and emissions [5] and minimization
of the cost with environmental constraints [6]. This is the typical economic dispatch, but
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An environmentally constrained economic dispatch 347

maximum emissions are included among the operating constraints. This dispatch is called
environmentally constrained economic dispatch (ECED). These are more realistic studies, as
the majority of the regulations concerning environmental matters take the form of maximum
pollution constraints.

This paper develops an ECED for a system that considers both thermal and hydro power
plants, all within the framework of the new competitive deregulated electricity market, and
will analyse the role of FBC plants in detail. The paper is organized as follows. In section 2 we
consider a simple hydrothermal system with one hydro-plant. We set out our problem in terms
of optimal control in continuous time, with the Lagrange-type functional, and use Pontryagin’s
minimum principle (PMP). In section 3 we present the optimal solution of the environmental
and economic dispatch. In section 4 we present a solution algorithm. Section 5 illustrates the
performance of our approach with a numerical example. Finally, section 6 summarizes the
main conclusions of our research.

2. Statement of the hydrothermal problem

In this section the optimization problem of one company is described, the objective function
of which can be defined as profit maximization. Let us assume that our hydrothermal system
accounts for one hydro-plant and m thermal plants.

Let �i : Di ⊆ R −→ R (i = 1, . . . , m) be the cost functions (Euro/h) of the m thermal
plants. The most usual cost function [7] of each generator can be represented as a quadratic
function:

�i(Pi(t)) = αi + βiPi(t) + γiP
2
i (t), i = 1, . . . , m, (1)

the solution of which can be obtained by conventional mathematical methods. In (1) Pi (MW)
is the power generated, and we consider the thermal plants to be constrained by technical
restrictions of the type

P Tch
i min ≤ Pi(t) ≤ P Tch

i max, i = 1, . . . , m, ∀t ∈ [0, T ], (2)

[0, T ] being the optimization interval. There are other models that we do not consider in this
paper. For example, in [8], two cases of non-smooth cost functions are considered. One is the
case with the valve-point loading problem where the objective function is generally described
as the superposition of sinusoidal functions and quadratic functions. The other is the case with
the multiple fuel problem where the objective function is expressed as piecewise quadratic
cost functions.

On the other hand, several models have been used to represent the emissions function [3]
of thermal plants. In [4] we construct a quadratic model for both emissions (SO2 and NOx)
and calculate

Ei(Pi(t)) = εiPi(t) + σiP
2
i (t), i = 1, . . . , m, (3)

where Ei (mg/N m3) is the pollutant emission (6% O2) and Pi (MW) is the power generated,
the parameters being computed via the least-squares criterion from several tests at thermal
plants. Our problem considers the economic dispatch but also includes maximum emissions
among the operating constraints: environmentally constrained economic dispatch (ECED).

Recently (November 2005), Spain formulated a National Plan for Reducing Emissions from
Existing Large Combustion Plants (LCP). This plan contains the emission limit values (ELV)
for SO2 and NOx (in mg/N m3) for each plant, applicable for the period 2008–2015. Knowing
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348 L. Bayón et al.

the curve for each plant (3), and imposing the ELV of said plant, we immediately obtain
environmental restrictions of the type:

P Env
i min ≤ Pi(t) ≤ P Env

i max, i = 1, . . . , m, ∀t ∈ [0, T ]. (4)

In prior studies [9] it was proven that the problem of optimization of the fuel cost of a
hydrothermal system with m thermal plants (with restrictions of type (2) or (4)) may be
reduced to the study of a hydrothermal system made up of one single thermal plant, called
the thermal equivalent. We shall denote as the equivalent minimizer of {�i}m1 , the function
� : D1 + · · · + Dm → R (where Di are the domains of �i) defined by

�(P (t)) = min
m∑

i=1

�i(Pi(t)),

with P(t) the power generated by said thermal equivalent.
Throughout the paper, no transmission losses will be considered, a crucial aspect when

addressing the optimization problem from a centralized viewpoint. From the perspective of a
generation company, and within the framework of the new electricity market, said losses are
not relevant, since the generators currently do not participate in the sharing out of losses, thus
receiving payment for all the energy they generate in power plant bars.

Let H(t, z(t), ż(t)) be the function of the effective hydraulic contribution, i.e. the power
contributed to the system at instant t by the hydro-plant, z(t)being the volume that is discharged
up to instant t by the plant, and ż(t) the rate of water discharge of the plant at instant t . If we
assume that b is the volume of water that must be discharged during the entire optimization
interval [0, T ], the following boundary conditions will have to be fulfilled:

z(0) = 0, z(T ) = b.

For the sake of convenience, we assume throughout the paper that these are sufficiently smooth
and are subject to the following additional assumptions. Let us assume that the cost function
� : R

+ −→ R
+ satisfies � ′(x) > 0, ∀x ∈ R

+, i.e. it is strictly increasing. This constraint
is absolutely natural: it reads more cost to more generated power. Let us also assume that
� ′′(x) > 0, ∀x ∈ R

+, i.e. it is strictly convex. The models traditionally employed meet this
constraint. Let us assume that the function of effective hydraulic generation H(t, z, ż) : �H =
[0, T ] × R

+ × R
+ −→ R

+ is strictly increasing with respect to the rate of water discharge
ż, i.e. Hż > 0. Let us also assume that H(t, z, ż) is concave with respect to ż, i.e. Hżż < 0.
Real models meet these two constraints; the former means more power to a higher rate of
water discharge. It can be seen that we only admit non-negative thermal power P(t) and we
shall only admit non-negative volumes, z(t), and rates of water discharge, ż(t). Besides the
previous statement, we consider H(t, z(t), ż(t)) to be bounded by technical restrictions

Hmin ≤ H(t, z(t), ż(t)) ≤ Hmax, ∀t ∈ [0, T ].
In our problem the objective function is given by revenue minus cost during the optimization
interval [0, T ],

F(P, z) =
∫ T

0
[p(t)(P (t) + H(t, z(t), ż(t))) − �(P (t))] dt.

Revenue is obtained by multiplying the total production (thermal and hydraulic) of the com-
pany by the clearing price p(t) in each hour t . The cost is given by �, the cost function of
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An environmentally constrained economic dispatch 349

the thermal equivalent, where P(t) is the power generated by said plant. With the previous
statement, our objective functional in continuous time form is

max
P,z

F (P, z) = max
P,z

∫ T

0
L(t, P (t), z(t), ż(t)) dt,

with L(t, P (t), z(t), ż(t)) = p(t)(P (t) + H(t, z(t), ż(t))) − �(P (t)), on the set

� =
{
z ∈ Ĉ1[0, T ]

∣∣∣∣ z(0) = 0, z(T ) = b,

Hmin ≤ H(t, z(t), ż(t)) ≤ Hmax, ∀t ∈ [0, T ]
}

,

where Ĉ1 is the set of piecewise C1 functions.

3. Optimal solution

We shall focus in the present paper on the development of the applications of optimal control
theory (OCT) to this problem. If z satisfies Euler’s equation for the functional F , we have that,
∀t ∈ [0, T ], Euler’s equation is fulfilled:

Lz(t, P (t), z(t), ż(t)) − d

dt
Lż(t, P (t), z(t), ż(t)) = 0.

If we divide Euler’s equation by Lż(t, P (t), z(t), ż(t)) > 0, ∀t , and integrate, we have

Lż(t, P (t), z(t), ż(t)) · exp

[
−

∫ t

0

Hz(s, z(s), ż(s))

Hż(s, z(s), ż(s))
ds

]
= Lż(0, P (0), z(0), ż(0))

= K ∈ R
+, ∀t ∈ [0, T ].

We shall call this relation the coordination equation for z(t), and the positive constant K will
be termed the coordination constant of the extremal. Let us term the coordination function of
z ∈ � the function in [0, T ], defined as follows:

Yz(t) = Lż(t, P (t), z(t), ż(t)) · exp

[
−

∫ t

0

Hz(s, z(s), ż(s))

Hż(s, z(s), ż(s))
ds

]
,

with Lż(t, P (t), z(t), ż(t)) = p(t)Hż(t, z(t), ż(t)). Let us now obtain the fundamental result,
which enables us to characterize the extremals of the problem and which is also the basis for
elaborating the optimization algorithm that leads to the determination of the optimal solution
of the hydrothermal system. We present the problem considering the state variables to be z(t)

and P(t) and the control variables u1(t) = H(t, z(t), ż(t)) and u2(t) = Ṗ (t). Moreover, as
Hż > 0, the equation

u1(t) − H(t, z(t), ż(t)) = 0

allows the state equation ż = f (t, z, u1) to be explicitly defined and we easily obtain

fz = −Hz

Hż

, fu1 = 1

Hż

.

The optimal control problem is thus

max
u1(t),u2(t)

∫ T

0
L(t, P (t), u1(t)) dt, with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż = f (t, z, u1),

Ṗ = u2,

z(0) = 0, z(T ) = b,

u1(t) ∈ 	 = {x | Hmin ≤ x ≤ Hmax}.
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350 L. Bayón et al.

We shall use Pontryagin’s minimum principle (PMP) [10] as the basis for proving this theorem.

THEOREM 3.1 (theorem of coordination) If (z∗, P ∗) ∈ (Ĉ1, C1) is a solution of our problem,
then ∃K ∈ R

+ such that

Yz∗(t)

⎧⎪⎪⎨
⎪⎪⎩

≤K, if H(t, z∗(t), ż∗(t)) = Hmin,

=K, if Hmin < H(t, z∗(t), ż∗(t)) < Hmax,

≥K, if H(t, z∗(t), ż∗(t)) = Hmax,

and

�̇(P ∗(t)) = p(t).

Proof We shall term the optimal controls u∗
1 and u∗

2, the optimal states will be z∗(t) and
P ∗(t), and the co-state variables will be λ1 and λ2. Let H be the Hamiltonian associated with
the problem

H(t, P , u2, z, u1, λ2, λ1) = L(t, P (t), u1(t)) + λ1(t) · f (t, z(t), u1(t))

+ λ2(t) · u2(t)

= p(t)(P (t) + u1(t)) − �(P (t))

+ λ1(t) · f (t, z(t), u1(t)) + λ2(t) · u2(t).

By virtue of PMP, there exist two Ĉ1 functions, λ∗
1 and λ∗

2, that satisfy the two following
conditions:

λ̇∗
1(t) = −∂H(t, P ∗(t), u∗

2(t), z
∗(t), u∗

1(t), λ
∗
2(t), λ

∗
1(t))

∂z

= −λ∗
1(t) · fz(t, z

∗(t), u∗
1(t)), (5)

λ̇∗
2(t) = −∂H(t, P ∗(t), u∗

2(t), z
∗(t), u∗

1(t), λ
∗
2(t), λ

∗
1(t))

∂P

= −LP (t, P ∗(t), u∗
1(t)), (6)

H(t, P ∗(t), u∗
2(t), z

∗(t), u∗
1(t), λ

∗
2(t), λ

∗
1(t))

≥ H(t, P ∗(t), u∗
2(t), z

∗(t), u1(t), λ
∗
2(t), λ

∗
1(t)), ∀u1(t) ∈ 	, (7)

H(t, P ∗(t), u∗
2(t), z

∗(t), u∗
1(t), λ

∗
2(t), λ

∗
1(t))

≥ H(t, P ∗(t), u2(t), z
∗(t), u∗

1(t), λ
∗
2(t), λ

∗
1(t)), ∀u2. (8)

From (5) it follows that

λ∗
1(t) = λ∗

1(0) · exp

[
−

∫ t

0
fz(t, z

∗(s), u∗
1(s)) ds

]
. (9)

From (7) and (8) it follows that, for each t , (u∗
1(t), u

∗
2(t)) maximizes on {u1 | Hmin ≤ u1 ≤

Hmax} the function

F(u1, u2) = H(t, P ∗(t), u2(t), z
∗(t), u1(t), λ

∗
2(t), λ

∗
1(t)).
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An environmentally constrained economic dispatch 351

Hence, in accordance with the Kuhn–Tucker theorem, for each t there exist two real
non-negative numbers, α and β, such that (u∗

1(t), u
∗
2(t)) is a critical point of

G(u1, u2) = H(t, P ∗(t), u2(t), z
∗(t), u1(t), λ

∗
2(t), λ

∗
1(t)) + α(Hmin − u1)

+ β(u1 − Hmax)

= p(t)(P ∗(t) + u1(t)) − �(P ∗(t)) + λ∗
1(t) · f (t, z∗(t), u1(t))

+ λ∗
2(t) · u2(t) + α(Hmin − u1) + β(u1 − Hmax),

it being verified that ifHmin < H(t, z∗(t), ż∗(t)), thenα = 0, andβ = 0 ifH(t, z∗(t), ż∗(t)) <

Hmax.
Hence we have

∂G(u∗
1, u

∗
2)

∂u1
= p(t) + λ∗

1(t) · fu1(t, z
∗(t), u∗

1(t)) − α + β = 0, (10)

∂G(u∗
1, u

∗
2)

∂u2
= λ∗

2(t) = 0, (11)

and the three following cases.

Case 1. Hmin < u∗
1(t) < Hmax. In this case, from (10), α = β = 0 and hence

p(t) = −λ∗
1(t) · fu1(t, z

∗(t), u∗
1(t)).

From (9) we have

p(t) = −fu1(t, z
∗(t), u∗

1(t)) · λ∗
1(0) · exp

[
−

∫ t

0
fz(t, z

∗(s), u∗
1(s)) ds

]
,

p(t)

fu1(t, z
∗(t), u∗

1(t))
· exp

[∫ t

0
fz(t, z

∗(s), u∗
1(s)) ds

]
= −λ∗

1(0).

Bearing in mind that

fu1 = 1

Hż

and fz = −Hz

Hż

,

the following relation is fulfilled:

p(t) · Hż(t, z(t), ż(t)) · exp

[
−

∫ t

0

Hz(s, z
∗(s), ż∗(s))

Hż(s, z∗(s), ż∗(s))
ds

]
= −λ∗

1(0),

and the formula of Theorem 3.1 is verified:

Yz∗(t) = K = −λ∗
1(0).

Case 2. u∗
1(t) = H(t, z∗(t), ż∗(t)) = Hmax, then β ≥ 0 and α = 0. By analogous reasoning,

we have

Yz∗(t) ≥ K.

Case 3. u∗
1(t) = H(t, z∗(t), ż∗(t)) = Hmin, then α ≥ 0 and β = 0. By analogous reasoning,
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352 L. Bayón et al.

we have

Yz∗(t) ≤ K.

Finally, from (11) and (6),

−LP (t, P ∗(t), u∗
1(t)) = 0 =⇒ �̇(P ∗(t)) = p(t). �

Note. It is very important to stress that the problem is thus easily broken down into two
sub-problems: thermal and hydro.

4. Optimization algorithm

To obtain the optimum operating conditions of the hydro-plant we use the coordination
equation

Yz(t) = K, ∀t ∈ [0, T ]. (12)

The peculiar form of the solution, expressed in Theorem 3.1, allows us to undertake its
approximate calculation using numerical methods similar to those used to solve differen-
tial equations in combination with an appropriate adaptation of the classical shooting method.
More precisely, we undertake two approximation processes.

• Approximate construction of zK (the adapted Euler method).
• Construction of a sequence {Kj }j∈N such that zKj

(T ) converges to b (the adapted shooting
method).

Step 1 Approximate construction of zK (the adaptad Euler method). The problem will con-
sist of finding, for each K , the function zK that satisfies zK(0) = 0 and the conditions of
Theorem 3.1. From a computational point of view, the construction of zK can be performed
with the use of a discretized version of equation (12). In general, the construction of żK cannot
be carried out all at once over the entire interval [0, T ]. The construction must necessarily be
carried out by constructing and successively concatenating the extremal arcs and boundary
arcs until completing the interval [0, T ]. If the values obtained for z and ż do not obey the
constraints, we force the solution zK to belong to the boundary until the moment when the
conditions of leaving the domain (established in Theorem 3.1) are fulfilled.

The approximate construction of each zK , which we shall call z̃K , is carried out by means
of polygonals (Euler’s method). We denote

Yz̃K
(tn) = p(tn) · Hż(tn, Xn, Yn) · exp[−In],

and we consider the triple recurring sequence (Xn, Yn, In) with n = 0, . . . , N − 1, h = T/N

and tn = n · h, which represents the following approximations:

zK(tn) ≈ z̃K(tn) := Xn,

żK(tn) ≈ ˜̇zK(tn) := Yn,

zK(t) ≈ z̃K(t) := Xn−1 + (t − tn−1) · Yn−1, ∀t ∈ [tn−1, tn],∫ tn

0

Hz(s, zK(s), żK(s))

Hż(s, zK(s), żK(s))
ds ≈ In :=

∫ tn

0

Hz(s, z̃K(s),˜̇zK(s))

Hż(s, z̃K(s),˜̇zK(s))
ds,

and which obeys the following recurrence relation:

X0 = 0, I0 = 0,
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An environmentally constrained economic dispatch 353

– if H(tn−1, Xn−1, Yn−1) = Hmin → Yn = the solution of H(tn, Xn, χ) = Hmin;

if

⎧⎪⎪⎨
⎪⎪⎩

Yz̃K
(tn) < K −→ Yn = the solution of H(tn, Xn, χ) = Hmin,

Yz̃K
(tn) ≥ K −→ Yn = the solution of p(tn) · Hż(tn, Xn, χ) · exp[−In]

= K;
– if Hmin < H(tn−1, Xn−1, Yn−1) < Hmax → Yn = the solution of p(tn) · Hż(tn, Xn, χ)

· exp[−In] = K;

if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H(tn, Xn, Yn) < Hmin −→ Yn = the solution of H(tn, Xn, χ) = Hmin,

Hmin ≤ H(tn, Xn, Yn) ≤ Hmax −→ Yn = the solution of p(tn)

· Hż(tn, Xn, χ) · exp[−In] = K,

H(tn, Xn, Yn) > Hmax −→ Yn = the solution of H(tn, Xn, χ) = Hmax;
– if H(tn−1, Xn−1, Yn−1) = Hmax → Yn = the solution of H(tn, Xn, χ) = Hmax;

if

⎧⎪⎨
⎪⎩

Yz̃K
(tn) > K → Yn = the solution of H(tn, Xn, χ) = Hmax,

Yz̃K
(tn) ≤ K → Yn = the solution of p(tn) · Hż(tn, Xn, χ) · exp[−In]

= K,

Xn+1 = Xn + h · Yn,

In+1 = In +
∫ tn+1

tn

Hz(s, Xn + (s − tn) · Yn, Yn)

Hż(s, Xn + (s − tn) · Yn, Yn)
ds.

Step 2 Construction of a sequence {Kj }j∈N such that zKj
(T ) converges to b (the adapted

shooting method). Varying the coordination constant K , we search for the extremal that fulfils
the second boundary condition zK(T ) = b. The procedure is similar to the shooting method
used to resolve a two-point boundary value problem (TPBVP). A number of methods exist
for solving these problems, including shooting, collocation and finite difference methods. Of
the shooting methods [11, 12], the simple shooting method (SSM) and the multiple shooting
method (MSM) appear to be the most widely known and used methods.

The simple shooting method transforms a TPBVP into an initial value problem where the
initial values of selected parameters are varied to satisfy the desired end conditions. The
boundary conditions are satisfied when the differential equation is integrated over [0, T ],
using the initial condition obtained using the SSM. It should be noted that there can be serious
problems with the convergence of the SSM if the starting initial condition is not close to the
solution. This drawback of the SSM can be addressed by implementing what is known as the
multiple shooting method (MSM).

The MSM is similar to the SSM, in that one selects unknown parameters at the initial
time; however, one does not integrate the differential equation all the way to the final time.
Instead, the ‘distance’ from a corresponding point on a pre-selected reference path is checked
continuously as the integration proceeds, and the integration is aborted when the distance
exceeds a tolerance value. Then, one starts the integration again from the corresponding point
on the reference path and the previous step is repeated, until the system is integrated to the final
time. An advantage of this approach over the SSM is that convergence can now be obtained
for a larger class of TPBVPs. A serious disadvantage of this method is that if the differential
equations are re-integrated to result in one continuous trajectory for the system, the actual final
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354 L. Bayón et al.

values may not be close to the desired final values. This is a common problem when solving
TPBVPs that result from optimal control, like our problem.

Bearing in mind the above considerations, we implemented an SSM and obtained good
results. Effectively, we may consider the function ϕ(K) := zK(T ) and calculate the root of

ϕ(K) − b = 0, (13)

which may be realized approximately using elemental procedures. In this work the secant
method was used to calculate the approximate value of K for which (13) was verified. The
algorithm shows rapid convergence to the optimal solution if we choose the next Kmin and
Kmax.

We set H(t, z(t), ż(t)) = Hmax, ∀t ∈ [0, T ]. We calculate Yz(t), ∀t ∈ [0, T ] and we choose
Kmin = mint Yz(t).

We set H(t, z(t), ż(t)) = Hmin, ∀t ∈ [0, T ]. We calculate Yz(t), ∀t ∈ [0, T ] and we choose
Kmax = maxt Yz(t).

Note that ∀K admissible (with the hypothesis Hżż(t, z, ·) < 0), we have

Kmin < K < Kmax.

The following proposition guarantees that, at the nodes {tn}N−1
n=0 , the approximation z̃K satisfies

the condition established in Theorem 3.1.

PROPOSITION 4.1 z̃K satisfies in {tn}N−1
n=0 the following:

Yz̃K
(tn)

⎧⎪⎪⎨
⎪⎪⎩

≤ K, if H(tn, Xn, Yn) = Hmin,

= K, if Hmin < H(tn, Xn, Yn) < Hmax,

≥ K, if H(tn, Xn, Yn) = Hmax.

Proof Let us bear in mind that

YzK
(tn) ≈ Yz̃K

(tn) = p(tn) · Hż(tn, Xn, Yn) · exp[−In],
if

Hmin < H(tn, Xn, Yn) < Hmax =⇒ Yz̃K
(tn) = p(tn) · Hż(tn, Xn, Yn)

· exp[−In] = K.

Considering now that Hż(tn, Xn, ·) is decreasing, we have

if H(tn, Xn, Yn) = Hmin =⇒ ∃ξ | Hmin ≤ H(tn, Xn, ξ) such that

p(tn) · Hż(tn, Xn, ξ) · exp[−In] = K =⇒ Yz̃K
(tn) ≤ K;

if H(tn, Xn, Yn) = Hmax =⇒ ∃ξ | H(tn, Xn, ξ) ≤ Hmax such that

p(tn) · Hż(tn, Xn, ξ) · exp[−In] = K =⇒ Yz̃K
(tn) ≥ K. �

To calculate the optimum power P(t) of the thermal plant, we solve the equation

p(t) = �̇(P (t)), ∀t ∈ [0, T ].
The distribution among the thermal plants is immediate by means of the definition of the
thermal equivalent, imposing the corresponding constraints (2) or (4) for each of the power
plants.
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An environmentally constrained economic dispatch 355

A number of methods exist for solving the environmentally constrained economic dispatch
(ECED) problem. Wong and Yuryevich [13] apply the evolutionary programming (EP) tech-
nique, El-Keib et al. [14] and Yalcinoz and Altun [15] propose a solution using modified
genetic algorithms (GAs), and Santos and Vigo-Aguiar [16, 17] apply a dynamic program-
ming algorithm to economic models. However, we could not find in the literature any work
that considers hydro-plants (with a model containing a lot of detail) in the ECED problem,
and, in addition, within the framework of the new competitive deregulated electricity market.

5. Example

A computer program was written using the Mathematica© package to apply the results obtained
in this paper to a hydrothermal power system. In order to consider an example close to reality,
we focused on a thermal system from Asturias (Spain). We consider a conventional 550 MW
PCC plant belonging to the company HC, Aboño II, which has been studied by the present
authors [4] and whose pollutant emissions were modelled, as well as another 50 MW CFBC
plant belonging to the company Hunosa, La Pereda, which presents much more favourable
environmental advantages than the former plant. The idea underlying this paper is to com-
pare the two technologies. Therefore, given the small size of the La Pereda power plant, it was
decided to take as an example the two CFBC plants that currently constitute a reference world-
wide: Jacksonville (USA), generating 300 MW, and Gardanne (France), generating 250 MW.
Using these two plants, we construct an equivalent CFBC plant [8], obtaining the parameters
summarized in table 1.

The cost function �i used is a quadratic model (3) and the units for the coefficients are αi

(Euro/h), βi (Euro/h.MW) and γi (Euro/h.MW2). We consider P Tch
i min = P Env

i min = 0. To calculate
P Env

1 max for the PCC plant, we took the ELV published in the National Plan for Reducing
Emissions from Existing LCP as reference. The Aboño II plant was assigned (from 2008 to
2015) 484 mg/N m3 of SO2 and 437 mg/N m3 of NOx . This means a reduction in SO2 of 83%
and a reduction in NOx of 44%. With these data, we obtain P Env

1 max = 100 MW, a restriction
that must be complied with from the year 2008 onwards.

For the CFBC plant we took the pollutant emissions published for Jacksonville, 90 mg/N m3

of NOx and 140 mg/N m3 of SO2, and for Gardanne, 240 mg/N m3 of NOx and 30 mg/N m3

of SO2. With these data, our equivalent CFBC does not exceed the ELV in any case, and we
have P Env

2 max = 550 MW, which is hence equal to the technical restriction.
The hydrothermal system also considers one hydro-plant. We shall use the Salime plant in

Asturias (Spain), which also belongs to a HC company. We use a variable-head model and
the hydro-plant’s effective hydraulic generation H (without transmission losses) is a function
of z(t) and ż(t),

H(t, z(t), ż(t)) := A(t) · ż(t) − B · z(t) · ż(t) − C · ż2(t),

with

A(t) := By

G
(S0 + t · i), B = By

G
, C = BT

G
.

Table 1. Coefficients of the thermal plants.

Plant αi βi γi P Tch
imax P Env

imax

1 (PCC) 1615.35 36.676 0.03659 550 100
2 (CFBC) 1724.55 40.072 0.03511 550 550
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Table 2. Hydro-plant coefficients.

G b i S0 By BT Hmax

519 840 6 × 106 133 200 239.5 × 106 4.34079 × 10−7 2.94 × 10−5 112

In variable-head models, the term −B · z(t) · ż(t) represents the negative influence of the
consumed volume and reflects the fact that consuming water lowers the effective height and
hence the performance of the plant. The hydro-plant data are summarized in table 2. The units
for the coefficients of the hydro-plant are: the efficiency G (m4/h.MW), the constraint on
the volume b (m3), the natural inflow i (m3/h), the initial volume S0 (m3), the coefficients
By (m−2) and BT (m−2 h) (parameters that depends on the geometry of the tanks), and the
maximum hydraulic generation Hmax (MW).

We consider Hmin = 0, a short-term hydrothermal scheduling (24 h) with an optimization
interval [0, 24] and we consider a discretization of 24 sub-intervals.

For this hydro-system we analyse two thermal systems: the one formed by the PCC plant
and the hydro-plant and that formed by the equivalent CFBC plant and the hydro-plant. In
both cases we shall carry out two studies: economic dispatch (ED) with technical restrictions,
in which we shall maximize the profit for a given price, and the environmentally constrained
economic dispatch (ECED), which includes among the operating constraints those referring
to maximum emissions. The results obtained are shown below. In the figures, we use the terms
P(t) to denote the optimal power for the thermal plant and H(t) for the hydro-plant. The
clearing price p(t) corresponding to 5 February 2006 (Sunday) for the Spanish electricity
market and the profit obtained for all the cases are presented in figure 1.

Figures 2 and 3 show the economic dispatch with technical restrictions for the two systems.
Comparing the two cases, we see that the PCC plant is more profitable, as expected given
its lower electricity cost. With the new regulations, it is necessary to impose environmental
restrictions; figures 3 and 4 clearly show that the equivalent CFBC plant is more profitable in

Figure 1. Clearing price p(t) and profit.

1 4 8 12 16 20 24
t(h)

100

200

300

400

500
Power (MW) P

H

Figure 2. PCC plant with technical restrictions.
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Figure 3. CFBC plant with technical or environmental restrictions.
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Figure 4. PCC plant with environmental restrictions.

this case. It is obvious that the CFBC plant solution is the same in the two dispatches, as it is
likewise evident that the hydro-plant solution is the same in both cases, since, as we saw in
Theorem 3.1, its functioning is independent of the behaviour of the thermal power plant.

In the PCC example, 14 iterations were needed and the time required by the program was
1.8 s on a personal computer (Pentium IV/2 GHz). In the CFBC example, 14 iterations were
needed and the time required by the program was 2 s.

6. Conclusions

This paper develops an environmentally constrained economic dispatch for a hydro-thermal
system within the framework of the new competitive deregulated electricity market, specif-
ically in the day-ahead market under perfect competition. We compare the functioning of
CFBC plants with conventional PCC plants.

It is generally known that CFBC plants have several advantages in comparison with con-
ventional boilers: the possibility of employing a very large variety of solid fuels, reduced
fuel preparation costs (if coal is used as fuel), high combustion efficiency, very reduced
pollutant emissions in flue gases, with the possibility of complying with current ecological
regulations, with no need for special supplementary installations, and the boiler construc-
tion being developed upwards, the seating surface being relatively restricted. With respect to
economic/constructive characteristics, a CFBC that presents admissible pollution emission
values according to international regulations is 55–65% cheaper than a conventional boiler
with similar characteristics, which must be equipped with denox and desulphur systems and
installations in order to comply with the requirements of these regulations.

In this paper we have examined the electricity cost of two different technologies, comparing
the classical economic dispatch with technical restrictions (maximizing profit for a given price)
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with the ECED, which includes maximum emissions constraints. We have shown that a PCC
plant is less advantageous under ECED than a CFBC plant. Thus, the replacement of conven-
tional boilers with CFBC boilers may be a solution to satisfying the imposed requirements of
current regulations regarding pollutant emissions into the atmosphere.
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