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An optimization problem in deregulated electricity markets
solved with the nonsmooth maximum principle
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In this paper, the new short-term problems that are faced by a generation company in a deregulated
electricity market are addressed and an optimization algorithm is proposed. Our model of the spot market
explicitly represents the price of electricity as an uncertain exogenous variable. We consider a very complex
problem of hydrothermal optimization with pumped-storage plants, so the problem deals with non-regular
Lagrangian and non-holonomic inequality constraints. To obtain a necessary minimum condition, the
problem was formulated within the framework of nonsmooth analysis using the generalized (or Clarke’s)
gradient and the Nonsmooth maximum principle. The optimal control problem is solved by means of an
algorithm implemented in the commercial software package Mathematica. Results of the application of
the method to a numerical example are presented.
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1. Introduction

Over the last decade, the electricity industry has experienced significant changes in terms of
deregulation and competition. In this paper, we focus on the problem that a generation company
faces when preparing its offers for the day-ahead market. Several methods have been proposed
for simulating competitive generation markets. Most of these models [18] can be categorized
into two major groups: models that represent all the generation companies and models that focus
on a particular generation company. Two approaches can be adopted to represent spot market
auctions when only one company is considered: price modelled as an exogenous variable and
price modelled as a function of the demand supplied by the firm under study. In the former, the
price of electricity does not depend on the company’s decisions. This can be acceptable if the
company is small enough. These models can again be classified into two sub-groups, depending
on whether they use a deterministic [8] or probabilistic [17] price representation.

In this paper, we only represent the operation of one company in detail, including each of
the company’s generation units. Our model of the spot market explicitly represents the price
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of electricity as an uncertain exogenous variable. We represent generation units at a high
level of detail and our model distinguishes individual generation units and considers inter-
temporal constraints such as hydro reserves. In addition, we also consider pumped-storage
hydro-plants.

The Spanish activity rules [6] have been used as a reference model for the market. The day-
ahead market in the Spanish wholesale electricity market is organized as a set of 24 simultaneous
hourly auctions. The simple bid format consists of a pair of (hourly) values: quantity q[MWh]
and price p[¤/MWh]. The utility company that inspires our paper, HC, controls approximately
only 7% of all the electricity that is generated. So, we consider our company as a price-taker,
and under this assumption, the volatility of the spot market price of electricity is represented
by a stochastic model. Price forecasting techniques in power systems [7,10] are relatively recent
procedures. In [12,13], an analysis based on differentiability is developed using stochastic models
and a discretized version of a dynamic programming algorithm is applied to economic models.
Although the problem of constructing the probability distribution exceeds the purpose of this
paper, we suggest the following simplified approach based on ref. [1]. The idea is to search
for past spot market sessions that can be considered similar to the session that the company is
about to face. To identify the days, we classify the entire collection of sessions (using clustering
techniques) according to the values of an explanatory variable. The most relevant information
about the current session for our problem is the vector of 24 prices that has resulted from the
day-ahead market clearing (in contrast with [1], in which the predicted chronological hourly
demand curve is used). Once a group of S similar days has been identified, the company can
assume that the probability distribution for the market session under study is completely defined
by these past S market sessions (probability distributions with finite support). If we now focus
on a particular auction, it is easy to understand that the S quantities and S prices decided by the
company for that hour constitute the offer curve (nondecreasing) that the company must submit
to that auction.

This paper addresses a very complex problem of hydrothermal optimization with pumped-
storage plants. In this kind of problem (see the previous paper [4]), the Lagrangian is piecewise
continuous and we consider constraints for the admissible generated power. Hence, this paper
considers non-regular Lagrangian and non-holonomic inequality constraints (differential inclu-
sions). The hydrothermal scheduling problem has been the subject of intensive investigation for
several decades now. Dynamic programming [22] and mixed integer linear programming [16]
methods have been widely used in different formulations, but these approaches require substan-
tial simplifying assumptions to make the problem computationally tractable. Promising results
have been obtained by using the Lagrangian relaxation technique to generate near optimal solu-
tions [11]. The disadvantage of this approach lies in the primal solution, which is infeasible. As
a result, some heuristic procedures are needed to get a feasible primal solution. In recent years,
evolutionary computational optimization techniques is one tool that has shown certain ability in
solving this problem. These evolutionary algorithms can be implemented in various forms, such
as genetic algorithms [23], evolutionary programming [14], simulated annealing [21] and evolu-
tionary strategy [20]. The main drawback with the majority of these finite-dimensional methods
is the difficulty of treating large-scale systems.

In this paper, to obtain a necessary minimum condition, the problem is formulated within the
framework of nonsmooth analysis [5,19] using the generalized (or Clarke’s) gradient and the
Nonsmooth Maximum Principle. This characteristic distinguishes our work from all the above
and, to our knowledge, is the first paper in the literature in which this theory is applied to the
proposed hydrothermal problem. The advantage of this infinite-dimensional technique compared
to previous ones lies in the possibility of obtaining theoretical results (see the Main Theorem of
Coordination in Section 3) whose implementation is feasible regardless of the size of the problem.
Considering an elevated number of discretization intervals may make the use of other methods
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unviable, whereas our technique would in this case be more plausible while barely increasing the
computational effort. Likewise, employing our technique (see the strategy inspired by the method
of cyclic coordinate descent (CCD) in Section 4), the computational complexity of the problem
does not become exorbitant when considering an elevated number of hydro-plants, whereas it
may not be possible to address it using other techniques.

The paper is organized as follows. Section 2 presents the optimization models of the hydrother-
mal system, and the mathematical environment of our work: the nonsmooth Maximum Principle.
In Section 3, we first consider a simple hydrothermal system with one hydro-plant. We shall
set out our problem in terms of optimal control in continuous time, with the Lagrange-type
functional, and we shall use nonsmooth analysis. In Section 4, we shall study the general case
in which the system consists of n hydro-plants. We shall present the optimization algorithm
that leads to determination of the optimal solution. Section 5 illustrates the performance of our
approach with a real numerical example. Finally, Section 6 summarizes the main conclusions of
our research.

2. Statement of the problem

In this section, the optimization problem of one company is described, the objective function of
which can be defined as its profit maximization. Let us assume that our hydrothermal system
accounts for n hydro-plants and m thermal plants: the (Hn − Tm) problem.

Let �i : Di ⊆ R
+ → R

+ (i = 1, . . . , m) be the cost functions (¤/h) of the m thermal plants.
The most usual cost function of each generator can be represented as a quadratic function:

�i(Pi(t)) = αi + βiPi(t) + γiP
2
i (t); i = 1, . . . , m,

where Pi(MW) is the power generated, and we consider the thermal plants to be constrained by
technical restrictions of the type

Pi min ≤ Pi(t) ≤ Pi max; i = 1, . . . , m, ∀t ∈ [0, T ],

[0, T ] being the optimization interval. In prior studies [2], it was proven that the problem
with m thermal plants may be reduced to the study of a hydrothermal system made up of
one single thermal plant, called the thermal equivalent: the (Hn − T1) problem. We shall
denote as the equivalent minimizer of {�i}m1 , the function � : D1 + · · · + Dm → R defined by
�(P (t)) = min

∑m
i=1�i(Pi(t)); Pmin ≤ P(t) ≤ Pmax, with P(t) the power generated by said

thermal equivalent.
We assume that our system accounts for n hydro-plants that have a pumping capac-

ity. The mapping H : �H → R, H(t, z1(t), . . . , zi(t), . . . , zn(t), ż1(t), . . . , żi(t), . . . , żn(t)) =
H(t, z(t), ż(t)), is called the function of effective hydraulic contribution and is the power con-
tributed to the system at the instant t by the set of hydro-plants, zi(t) being the volume that is
discharged up to the instant t by the i-th hydro-plant, żi (t) the rate of water discharge at the instant
t by the i-th hydro-plant, and �H ⊂ [0, T ] × R

n × R
n the domain of definition of H .

We say that ż = (z1, . . . , zn) is admissible for H if zi belong to the class Ĉ1[0, T ] (the set
of piecewise C1 functions), and (t, z(t), ż(t)) ∈ �H, ∀t ∈ [0, T ]. The volume bi that must be
discharged up to the instant T is called the admissible volume of the i-th hydro-plant. Let
b = (b1, . . . , bn) ∈ R

n be the vector of admissible volumes. In a general model, with hydraulic
coupling between the n hydro-plants, we call Hi(t, zi(t), żi(t)) : �Hi

= [0, T ] × R × R → R
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the function of effective hydraulic contribution by the i-th hydro-plant, being

H(t, z(t), ż(t)) =
n∑

i=1

Hi(t, zi(t), żi(t)).

Besides, we consider Hi(t, zi(t), żi(t)) to be bounded by technical constraints

Hi min ≤ Hi(t, zi(t), żi(t)) ≤ Hi max; i = 1, . . . , n, ∀t ∈ [0, T ].

Throughout the paper, no transmission losses will be considered; a crucial aspect when addressing
the optimization problem from a centralized viewpoint. From the perspective of a generation
company, and within the framework of the new electricity market, said losses are not relevant,
since the generators currently receive payment for all the energy they generate in power plant bars.

Let us assume that the cost function � is strictly increasing, i.e. it reads more cost to more gen-
erated power. Let us assume as well that � is strictly convex. The models traditionally employed
meet this constraint.

Let us assume that the function Hi is strictly increasing with respect to the rate of water
discharge żi , i.e. more power to a higher rate of water discharge and that [∂Hi/∂zi]żi=0 = 0. Let
us also assume that ∂2Hi/∂ż2

i < 0. The real models meet these three constraints. In addition,
pumped-storage plants are considered, and in this kind of problem, the derivative of Hi with
respect to żi presents discontinuity at żi = 0, which is the border between the power generation
zone (positive values of żi) and the pumping zone (negative values of żi). In the real models, it
is verified that H+

ż ≤ H−
ż . In the (Hn − T1) problem, the objective function is given by revenue

minus cost during the optimization interval [0, T ]. Revenue is obtained by multiplying the total
production (thermal and hydraulic) of the company by the clearing price p(t) in each hour t. Cost
is given by �, the cost function of the thermal equivalent, where P(t) is the power generated by
said plant. With this statement, our objective functional in continuous time form is

max
P,z

F(P, z) = max
P,z

∫ T

0
L(t, P (t), z(t), ż(t))dt,

with:

L(t, P (t), z(t), ż(t)) = p(t)(P (t) + H(t, z(t), ż(t))) − � (P (t))

on the set:

� =
⎧⎨⎩

zi(0) = 0, zi(T ) = bi

z ∈ (
Ĉ1[0, T ])n |Hi min ≤ Hi(t, zi(t), żi(t)) ≤ Hi max, ∀t ∈ [0, T ]

∀i = 1, . . . , n

⎫⎬⎭ .

In the next section we shall present this problem as an optimal control problem. To solve it, we
shall use the nonsmooth version of Pontryagin’s Minimum Principle (PMP).

3. The (H1 − T1) problem

We begin the development in this section by presenting the simple problem with one pumped-
storage hydro-plant (i = 1). In the (H1 − T1) problem, we have z = z and our objective
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functional is

F(P, z) =
∫ T

0
L(t, P (t), z(t), ż(t))dt,

with:

L(t, P (t), z(t), ż(t)) = p(t)(P (t) + H(t, z(t), ż(t))) − � (P (t)) ,

on the set:

� =
{
z ∈ Ĉ1[0, T ] | z(0) = 0, z(T ) = b

Hmin ≤ H(t, z(t), ż(t)) ≤ Hmax, ∀t ∈ [0, T ]
}

.

where L(·, ·, ·, ·) and Lz(·, ·, ·, ·) are the class C0 and Lż(t, P , z, ·) is piecewise continuous
(Lż(t, P , z, ·) is discontinuous in ż = 0). The problem involves non-holonomic inequality con-
straints (differential inclusions) and the previous assumptions guarantee that: Lżż(t, P , z, ż) < 0;
Lż(t, P , z, ż) > 0. We also assume that

H(t, b, ż(t)) ≤ H(t, z(t), ż(t)) ≤ H(t, 0, ż(t)), ∀z ∈ �.

These suppositions are fulfilled in all real hydrothermal problems, and bearing in mind the weak
influence of z(t), (H(t, b, ż) � H(t, z, ż) � H(t, 0, ż)), it is reasonable to substitute the restric-
tion: Hmin ≤ H(t, z(t), ż(t)) ≤ Hmax by others of the type: Hmin ≤ H(t, b, ż); H(t, 0, ż) ≤ Hmax.
Thus, it is reasonable to substitute � by

�∗ =
{
z ∈ Ĉ1[0, T ] | z(0) = 0, z(T ) = b

Hmin ≤ H(t, b, ż); H(t, 0, ż) ≤ Hmax, ∀t ∈ [0, T ]
}

.

The solution to the problem in �∗ will be very close to that obtained with the set �, the advantage
being that the mathematical treatment of sets of type �∗ is much simpler than of those of type
�. We shall focus in the present paper on the development of the applications of Optimal Control
Theory (OCT) and nonsmooth analysis to this problem. Let us term as the coordination function
of z ∈ �∗ the function in [0, T ], defined by:

Yz(t) = Lż(t, P (t), z(t), ż(t)) −
∫ t

0
Lz(s, P (s), z(s), ż(s))ds,

denoting by Y
+
z (t) and Y

−
z (t) the expressions obtained when considering the lateral derivatives of

L with respect to ż. Let us now see the fundamental result, which is the basis for elaborating the
optimization algorithm. We present the problem considering the state variables to be z(t) and P(t)

and the control variables u1(t) = ż(t) and u2(t) = Ṗ (t). The optimal control problem is thus:

max
u1(t),u2(t)

∫ T

0
L(t, P (t), z(t), u1(t))dt; with

{
ż = u1; Ṗ = u2,

z(0) = 0, z(T ) = b,

u1(t) ∈ � = {x | Hmin ≤ H(t, b, x); H(t, 0, x) ≤ Hmax} ; u2(t) ∈ (−∞, ∞).

We shall use the nonsmooth version of PMP as the basis for proving this theorem.
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242 L. Bayón et al.

THEOREM 1 (Main Theorem of Coordination) If (z∗, P ∗) ∈ (Ĉ1, C1) is a solution of our problem,
then ∃K ∈ R

+ such that:

(i) If ż∗(t) = 0 → Y
+
z∗(t) ≤ K ≤ Y

−
z∗(t).

(ii) If ż∗(t) �= 0 → Yz∗(t)is

⎧⎪⎨⎪⎩
≥ K if H(t, b, ż∗(t)) = Hmin,

= K if Hmin < H(t, z∗(t), ż∗(t)) < Hmax,

≤ K if H(t, 0, ż∗(t)) = Hmax,

and �̇ (P ∗(t)) = p(t).

Proof We shall term the optimal controls u∗
1 and u∗

2, the optimal states will be z∗(t) and P ∗(t),
and the co-state variables will be λ1 and λ2. For the sake of simplicity, in certain steps we shall omit
the argument: (t) of the functions P, p, u2, z, u1, λ2, and λ1. Let H be the pseudo Hamiltonian
associated with the problem.

H(t, P , u2, z, u1, λ2, λ1) = λ1 · u1 + λ2 · u2 − L(t, P, z, u1)

= λ1 · u1 + λ2 · u2 − p(P + H(t, z, u1)) + �(P ).

In virtue of PMP, there exists two functions λ∗
1, λ

∗
2 that satisfy:

−λ̇∗
1(t) ∈ ∂zH(t, P ∗, u∗

2, z
∗, u∗

1, λ
∗
2, λ

∗
1), (1)

−λ̇∗
2(t) ∈ ∂P H(t, P ∗, u∗

2, z
∗, u∗

1, λ
∗
2, λ

∗
1), (2)

H(t, P ∗, u∗
2, z

∗, u∗
1, λ

∗
2, λ

∗
1) ≥ H(t, P ∗, u∗

2, z
∗, u1, λ

∗
2, λ

∗
1); ∀u1(t) ∈ �, (3)

H(t, P ∗, u∗
2, z

∗, u∗
1, λ

∗
2, λ

∗
1) ≥ H(t, P ∗, u2, z

∗, u∗
1, λ

∗
2, λ

∗
1); ∀u2. (4)

From the continuity of H with respect to z, and (1) we have that

−λ̇∗
1(t) ∈ ∂H(t, P ∗, u∗

2, z
∗, u∗

1, λ
∗
2, λ

∗
1)

∂z
= −Lz(t, P

∗(t), z∗(t), u∗
1(t)). (5)

From the continuity of H with respect to P, and (2) we have that

−λ̇∗
2(t) = ∂H(t, P ∗, u∗

2, z
∗, u∗

1, λ
∗
2, λ

∗
1)

∂P
= −LP (t, P ∗(t), z∗(t), u∗

1(t)). (6)

If ż∗(t) �= 0, from Equation (5), it follows that

−λ̇∗
1(t) = −Lz(t, P

∗(t), z∗(t), u∗
1(t)) = −p(t) · Hz(t, z

∗(t), u∗
1(t)). (7)

If ż∗(t) = 0, from Equation (5), and [∂Hi/∂zi]żi=0 = 0, it follows that

λ̇∗
1(t) = 0. (8)

Hence, we can integrate (7), and bearing in mind (8), we obtain

λ∗
1(t) = λ∗

1(0) +
∫ t

0
Lz(s, P

∗(s), z∗(s), u∗
1(s))ds, ∀t ∈ [0, T ]. (9)

From Equations (3) and (4), it follows that for each t , (u∗
1(t), u

∗
2(t)) maximizes on � × (−∞, ∞)

the function

F(u1, u2) = H(t, P ∗, u2, z
∗, u1, λ

∗
2, λ

∗
1).
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Hence, in accordance with the Kuhn–Tucker Theorem, for each t there exists two real non-positive
numbers, α and β, such that (u∗

1(t), u
∗
2(t)) is a critical point of

G(u1, u2) = H(t, P ∗, u2, z
∗, u1, λ

∗
2, λ

∗
1) + α(Hmin − H(t, b, u1)) + β(H(t, 0, u1) − Hmax)

= λ∗
1 · u1 + λ∗

2 · u2 − p(t)(P ∗ + H(t, z∗, u1)) + �(P ∗)

+ α(Hmin − H(t, b, u1)) + β(H(t, 0, u1) − Hmax),

with α = 0 if Hmin < H(t, b, ż∗(t)), and β = 0 if H(t, 0, ż∗(t)) < Hmax. If G attains a local
maximum at (u1, u2), then

0 ∈ ∂u1G(u∗
1, u

∗
2), (10)

0 ∈ ∂u2G(u∗
1, u

∗
2). (11)

From the discontinuity of Hż(t, z, ·) in ż = 0, and (10) we have that

0 ∈ λ∗
1(t) − p(t)∂u1H(t, z∗, u∗

1) − α∂u1H(t, b, u∗
1) + β∂u1H(t, 0, u∗

1). (12)

From the continuity of G with respect to Ṗ , and (11) we have that

0 = ∂G(u∗
1, u

∗
2)

∂u2
= λ∗

2(t). (13)

We must analyse the three following cases:

Case 1 Hmin < H(t, z∗(t), ż∗(t)) < Hmax. In this case α = β = 0, and from Equation (12) we
have that

0 ∈ λ∗
1(t) − p(t)∂u1H(t, z∗, u∗

1).

If ż∗(t) = 0, then Hż(t, z, ·) is discontinuous, that is ∂żH(t, z(t), ż(t)) = [H+
ż , H−

ż ] a.e., so we
have

p(t) · H+
ż ≤ λ∗

1(t) ≤ p(t) · H−
ż .

From Equation (9), we have

p(t) · H+
ż ≤ λ∗

1(0) +
∫ t

0
Lz(s, P

∗(s), z∗(s), u∗
1(s))ds ≤ p(t) · H−

ż ,

p(t)H+
ż −

∫ t

0
Lz(s, P

∗, z∗, u∗
1)ds ≤ λ∗

1(0) ≤ p(t)H−
ż −

∫ t

0
Lz(s, P

∗, z∗, u∗
1)ds,

and the formula of Theorem 1 is verified: Y
+
z∗(t) ≤ K ≤ Y

−
z∗(t).

If ż∗(t) �= 0, then Y
+
z∗(t) = Y

−
z∗(t) and in such a case Yz∗(t) = K.

Case 2 H(t, 0, ż∗(t)) = Hmax. In this case β ≤ 0, α = 0, and from Equation (12) we have that

0 = λ∗
1(t) − p(t)Hu1(t, z

∗, u∗
1) + βHu1(t, 0, u∗

1).

Taking into account that Hu1 > 0, we have

λ∗
1(t) − p(t)Hu1(t, z

∗, u∗
1) ≥ 0.

So, we have Yz∗(t) ≤ K .
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Case 3 H(t, b, ż∗(t)) = Hmin. In this case α ≤ 0, β = 0, and by analogous reasoning, we have
that Yz∗(t) ≥ K.

Finally, from Equations (13) and (6)

−LP (t, P ∗(t), u∗
1(t)) = 0 =⇒ �̇

(
P ∗(t)

) = p(t). �

We shall call this relation

Lż(t, P (t), z(t), ż(t)) −
∫ t

0
Lz(s, P (s), z(s), ż(s))ds = K ∈ R

+, ∀t ∈ [0, T ], (14)

the coordination equation for z(t), and the positive constant K will be termed the coordination
constant of the extremal.

Note. It is very important to stress that the problem is thus easily broken down into the two
sub-problems: Thermal and Hydro. In the thermal sub-problem, the power P(t) of the equivalent
thermal plant is distributed (as we see in ref. [2]) between the m thermal plants, and so is completely
resolved.

4. Generalization to the (Hn − T1) problem the optimization algorithm

In this section, we present an algorithm of the numerical resolution of the problem of optimization
of a hydrothermal system that involves n hydro-plants. The associated variational problem is
related to solving a boundary-value problem for a system of differential equations. The algorithm
uses a particular strategy related to the method of CCD [3]. The CCD method minimizes a
function cyclically with respect to the coordinate variables. With our method, a problem of the
type Hn − T1 could be solved (under certain conditions) if we start out from the resolution of a
sequence of problems of the type H1 − T1. The algorithm for the Hn − T1 problem carries out
several iterations and at each j -th iteration calculates n stages, one for each hydro-plant. At each
stage, it calculates the optimal functioning of a hydro-plant, while the behaviour of the rest of the
plants is assumed fixed. For every z = (z1, . . . , zn) ∈ �, we consider the functional F i

z defined by

F i
z (P, vi) =

∫ T

0

[
p(t)(P (t) + Hi

z (t, vi(t), v̇i(t))) − � (P (t))
]

dt,

with

Hi
z (t, vi, v̇i) = H(t, z1, . . . , zi−1, vi, zi+1, . . . , zn, ż1, . . . , żi−1, v̇i , żi+1, . . . , żn),

where Hi
z represents the power generated by the hydraulic system as a function of the rate of water

discharge and the volume turbinated by the i-th plant, under the assumption that the rest of the
plants behave in a definite way. We call the i-th minimizing mapping the mapping φi : � → �,
defined in the following way: for every z ∈ �

φi(P, z1, . . . , zi, . . . , zn) = (P ∗, z1, . . . , z
∗
i , . . . , zn),

where (P ∗, z∗
i ) minimizes F i

z . If we set � = (φ
n
◦ φ

n−1 ◦ · · · ◦ φ2 ◦ φ1) and

(P j , zj ) = �(P j−1, zj−1),

beginning with some admissible (P 0, z0), we construct a sequence of (P j , zj ) via successive
applications of {φi}ni=1 and the algorithm will search: limj→∞(P j , zj ). It is simple to justify the
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convergence of the algorithm in a finite number of steps, simply by considering the following
solution set:

{z | F(P, z) − F(�(P, z)) < ε}.
The application of every φi involves solving a problem of the type (H1 − T1). To obtain the
optimum operating conditions of the hydro-plant, we shall use the coordination Equation (14). To
undertake the approximate calculation of the solution, expressed in Theorem 1, we use a similar
numerical method to those used to solve differential equations in combination with an appropriate
adaptation of the classical shooting method.

Step 1 Approximate construction of zK (the adapted Euler method).

The problem will consist in finding for each K the function zK that satisfies zK(0) = 0, and
the conditions of Theorem 1. From the computational point of view, the construction of zK can be
performed with the use of a discretized version of Equation (14). The approximate construction
of each zK , which we shall call z̃K , is carried out by means of polygonals (Euler’s method). We
denote

Yz̃K
(tn) = Lż(tn, P (tn), Xn, Yn) − In,

and we consider the triple recurring sequence (Xn, Yn, In) with n = 0, . . . , N − 1, with h = T/N

and tn = n · h, which represents the following approximations:

zK(tn) ≈ z̃K(tn) := Xn; żK(tn) ≈ ˜̇zK(tn) := Yn,

zK(t) ≈ z̃K(t) := Xn−1 + (t − tn−1) · Yn−1; t ∈ [tn−1, tn],∫ tn

0
Lz(s, P (s), zK(s), żK(s))ds ≈ In :=

∫ tn

0
Lz(s, P (s), z̃K(s),˜̇zK(s))ds.

In general, the construction of żK must be carried out by constructing and successively
concatenating the extremal arcs and boundary arcs until completing the interval [0, T ].

Step 2 Construction of a sequence {Kj }j∈N such that zKj
(T ) converges to b (the adapted shooting

method).

Varying the coordination constant K , we would search for the extremal that fulfils the second
boundary condition zK(T ) = b. The procedure is similar to the shooting method used to resolve
a two-point boundary value problem (TPBVP). A number of methods exist for solving these
problems, including shooting, collocation and finite difference methods. Among the shooting
methods [15], the Simple Shooting Method (SSM) and the Multiple Shooting Method (MSM)
appear to be the most widely known and used methods. We implemented a SSM and obtained
good results. Effectively, we may consider the function ϕ(K) := zK(T ) and calculate the root
of ϕ(K) − b = 0, which may be realized approximately using elemental procedures. The secant
method was used in the present paper, and the algorithm shows a rapid convergence to the optimal
solution for a wide range of Kmin and Kmax.

5. Application to a real hydrothermal system

A computer program was written (using the Mathematica package) to apply the results obtained
in this paper to a real power system. As an example, we shall use the hydrothermal system that the
electricity company HC [9] has inAsturias (Spain), which is made up of two classic thermal plants:
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Aboño (with two groups of 360 and 543 of power (MW) respectively) and Soto (with two groups of
254 and 350 of power (MW), respectively) and nine hydro-plants. For our optimization problem,
we shall only use the three variable-head (the generation is function of z and ż) hydro-plants
of the utility company HC: Salime, Tanes (pumped-storage) and La Barca. We do not consider
the remaining hydro-plants, because they are run-of-river type (without reservoir) and power
generation is not controllable. Let us see the models of different subsystems used in our study.
For the cost functions, we use a second-order polynomial. The data on the plants is summarized
in Table 1. The units for the coefficients are: αi in (¤/h), βi in (¤/h.MW), γi in (¤/h.MW2) (we
have included the cost of CO2 emissions) and the technical limits for thermal generation Pi,min

and Pi,max in (MW). We construct the equivalent thermal plant as we saw in ref. [2], obtaining:

�(P (t)) = 11188.7 + 56.761P(t) + 0.0056812P(t)2; with 200 ≤ P(t) ≤ 1507.

The hydro-network has the three hydro-plants on different rivers, so the rate of discharge at the
upstream plant does not affect the behaviour at the downstream plants: the hydraulic system has
no hydraulic coupling. We use a variable head model and the i-th function of effective hydraulic
generation Hi (for a conventional hydro-plant) is given by

Hi(t, zi(t), żi(t)) = Ai(t)żi(t) − Biżi(t)zi(t) − Ciż
2
i (t); żi (t) ≥ 0,

where Ai(t), Bi and Ci are the coefficients: Ai(t) = 1/GiByi
(S0i + t · ii); Bi = Byi

/Gi;
Ci = Bti /Gi . For the pumped-storage plant, Hi is defined piecewise, taking in the pumping zone:

Hi(t, zi(t), żi(t)) = M · [
Ai(t)żi(t) − Biżi(t)zi(t) − Ciż

2
i (t)

] ; żi (t) < 0.

The parameters that appear in this formula are: the efficiency G in (m4/h.MW), the natural inflow
i in (m3/h), the initial volume S0 in (m3), and the coefficients By in (m−2) and Bt in (hm−2). The
data on the hydro-plants is summarized in Table 2. The minimum and maximum effective hydraulic
generation Hmin and Hmax are in (MW) and the efficiency of Tanes hydro-plant is M = 1.15.

Let us consider the construction of the scenario structure for the day-ahead market problem
faced by the company HC in the Spanish spot market. In particular, the market session of 15
February 2006 is considered as the current session. The past market sessions [6] that are considered
relevant range from 1 February to 14 February. Table 3 presents the results of the clustering analysis
performed on this range of days. The classification provided by the S-means algorithm for S = 4
(four clusters) is presented below.

Table 1. Coefficients of the thermal plants.

Plant i αi βi γi Pi min Pi max

(Aboño 1) 3683.49 52.863 0.03975 50 360
2 (Aboño 2) 2231.34 62.526 0.00333 50 543
3 (Soto 2) 233.16 63.831 0.00858 50 254
4 (Soto 3) 4846.05 50.028 0.04977 50 350

Table 2. Hydro-plant coefficients.

Plant i G b i S0 By BT Hmin Hmax

1 (Salime) 519840 6 × 106 133200 239.5 × 106 4.34079 × 10−7 2.94 × 10−5 0 112
2 (Tanes) 337542 5 × 106 21600 25.3 × 106 30.6555 × 10−7 3.12 × 10−5 −100 123
3 (La Barca) 363950 3 × 106 111600 25.2 × 106 26.1709 × 10−7 2.35 × 10−5 0 57.7
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Table 3. Clustering analysis.

Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Day W Th F Sa S M T W Th F Sa S M T W
Cluster 4 4 4 1 2 3 4 4 4 4 1 2 3 4 4

It has been obtained the four day types provided by the clustering analysis: Cluster 1 and Cluster
2 corresponds to low-price days (Saturdays and Sundays, respectively), Cluster 3 includes one
type of weekday: Mondays, and Cluster 4 comprises the other type of weekdays. This analysis
suggests considering eight scenarios (eight realizations) for the day-ahead market problem faced
by the company on 15 February.

We consider short-term hydrothermal scheduling (24 h) with an optimization interval [0, 24]
and we consider a discretization of 24 subintervals. The total optimal hydro and thermal power
generation for the company HC are shown in Figure 1a and b respectively. The eight scenarios
considered are presented in both figures.

The solution yields the optimal offers that the company must submit to each of the day-ahead
market auctions. Figure 2a shows the offers corresponding to the fourth auction for the total optimal
thermal-power, and for the eight possible realizations. The eight quantities and eight prices for
that hour constitute the offer curve (nondecreasing) that the company must submit to that auction.

These results can be easily analyzed. Figure 2a shows that the offer curve obtained for the 4th
hourly auction is quite flat, thus making the company rather uncertain about the amount of energy
that it will finally sell. This is confirmed by Figure 1b, in which the company’s eight possible
levels of sales for the 4th hour are very different. However, it is not possible to construct an
offer curve (nondecreasing) for the company’s optimal hydro-power. Figure 2b shows the offers

Figure 1. (a) Optimal hydro-power. (b) Optimal thermal-power.

Figure 2. (a) Thermal-offers. (b) Hydro-offers.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
a
y
ó
n
,
 
L
.
]
 
A
t
:
 
0
9
:
1
1
 
9
 
D
e
c
e
m
b
e
r
 
2
0
0
8



248 L. Bayón et al.

corresponding to the 12th auction for the total optimal hydro-power, and for the eight possible
realizations. It is easy to understand that this behaviour is due to the inter-temporal constraints for
the hydro-plants, besides the pumped-storage character of some of the hydro-plants (the optimal
hydro-solution of one of the auctions influences the rest of the auctions). Therefore, we suggest
that the optimal offers that the company must submit, for the hydro-plants, must be a half value
of the optimal hydro-power generation that we present in Figure 1a.

6. Conclusions

In this paper, we have proposed a new formulation of the single-firm optimization problem that is
valid under deregulation and which constitutes, to our knowledge, the first work in the literature in
which the Nonsmooth Maximum Principle is applied to this hydrothermal problem. The advantage
of this infinite-dimensional technique compared to previous ones lies in the possibility of obtaining
theoretical results whose implementation is feasible regardless of the size of the problem. The
power generation system of the marketplace has been modelled to a high degree of detail, paying
special attention to the hydraulic subproblem, including pumped-storage plants and variable head
plants. Our model takes into account uncertainty on the spot market price of electricity. The
solution of this problem allows us to derive optimal offers for a generation company. The approach
is suitable for real-size systems, as shown in the example.
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