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Abstract- One of the most important physical characteristics of a reservoir is the elevation-storage curve. In most cases,
linear simplification is applied to this curve, which is approximated as a linear relationship. However, this simplification
can produce serious errors in the optimal solution. In this paper we consider a non-linear elevation-storage curve to
be applied to the reservoir and therefore consider a non-linear problem. To obtain the optimal solution, the problem is
formulated within the framework of optimal control theory using Pontryagin’s Maximum Principle. The advantage of this
technique with respect to previous methods lies in the possibility of obtaining theoretical results whose implementation
(and computational complexity) is feasible regardless of the non-linear characteristics of the problem. Results of the
application of the method to a numerical example are presented and we show the differences between the two approaches.
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1 Introduction

This paper deals with the influence of the design of
the reservoir in the optimization of hydro-plants, one of
the important optimization problems in a hydrothermal
power system. We represent the hydro-plant at a high
level of detail and include inter-temporal constraints such
as hydro reserves. We consider a non-linear elevation-
storage curve to be applied to the reservoir and therefore
consider a non-linear problem.

In a hydro-plant, power is derived by converting the
potential energy of water to electrical energy using a hy-
draulic turbine which is connected to a generator. The
output power P (MW) is given by

P =
qh

G
(1)

where q is the rate of water discharge (m3/h), h is
the effective water head (m), and G is the efficiency
(m4/h.MW). One of the most important physical char-
acteristics of a reservoir is the elevation-storage curve
(Fig. 1). Elevation y (m) and volume s (m3) are phys-
ical relationships linked to each other by the topography
of the surrounding area. A mathematical function of the
elevation-storage curve for each reservoir needs to be ap-
proximated. In most cases, linear simplification is ap-
plied, and y is approximated as a linear relationship:

y = α0 + α1s (2)

where y is the elevation of the water surface above a given
reference level, and αi are parameters computed from
measured elevation-storage data.

However this simplification can produce serious er-
rors in the optimal solution. In this paper we consider

the curve to be approximated by second-order polyno-
mial functions:

y = α0 + α1s + α2s
2 (3)

Fig. 1: Typical reservoir elevation-storage curve

Hydraulic optimization problems have been the sub-
ject of intensive research and several methods have been
widely employed in their solution: dynamic program-
ming (Wood et al. [7]), mixed integer linear program-
ming (Torre et al. [5]), Lagrangian relaxation (Redondo
et al. [3]), genetic algorithms (Zoumas et al. [8]), evo-
lutionary programming (Sinha et al. [4]), among oth-
ers. However, most of these approaches require substan-
tial simplifying assumptions and present certain disad-
vantages. The main drawback to the majority of these
methods is the difficulty of treating non-linear large-scale
systems.

Of the many problems concerned with ascertaining
optimal hydro power, we shall focus in the present pa-
per on the problem faced by a generation company in
a deregulated electricity market when preparing its of-
fers for the day-ahead market for one hydro-plant. Our
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model of the spot market represents the price of electric-
ity π(t) as a known exogenous variable. To obtain the
optimal solution, the problem is formulated within the
framework of optimal control theory (OCT) (Vinter [6])
using Pontryagin’s Maximum Principle (PMP). This fea-
ture distinguishes our work from all the aforementioned
studies. The advantage of this technique with respect to
previous methods lies in the possibility of obtaining theo-
retical results whose implementation (and computational
complexity) is feasible regardless of the non-linear char-
acteristics of the problem.

The paper is organized as follows. In Section 2,
we pay special attention to the mathematical model-
ing of hydro power, considering two approximations for
the elevation-storage curve: one linear and the other
quadratic. In Section 3, we set out our non-linear prob-
lem in terms of optimal control in continuous time, with
the Lagrange-type functional and use PMP to obtain the
optimal solution. We present the optimization algorithm
that leads to determination of the optimal solution of the
hydro-plant. The algorithm is implemented in the com-
mercial program Mathematica. The results of the applica-
tion of the method to a numerical example are presented
in Section 4, in which the differences between the two ap-
proaches are highlighted. Finally, Section 5 summarizes
the main conclusions of our research.

2 Mathematical models

The appropriate choice of mathematical models for rep-
resenting the physical system is a crucial aspect when
addressing any optimization problem. Many mod-
els for hydro-plant performance exist, for example:
Glimn-Kirchmayer, Hildebrand, Hamilton-Lamont and
Arvanitidis-Rosing. We consider the approximation pre-
sented by El-Hawary [2] to be the most appropriate due
to its precision and flexibility. Let us now see the chosen
modeling for each element of the problem.

2.1 Effective head model

The effective hydraulic head h at the hydro-plant is equal
to the difference between the gross head hg and the head
losses in the penstock hp

h = hg − hp (4)

The gross head hg is defined as the difference between
the forebay elevation y and the tailrace elevation yT

hg = y − yT (5)

The tailrace elevation is a function of the discharge q as
well as the spillage σ. We assume a linear relationship
between the two variables expressed by the following re-
lationship:

yT = yT0 + BT (q + σ) (6)

The forebay elevation is a function of the geometry of
the reservoir, natural water inflow, spillage and water dis-
charge. It is thus necessary to consider reservoir model-
ing in the case of variable head hydro-plants.

A typical linear variation between the head loss char-
acteristic and discharge may be assumed:

hp = hp0 + Bpq (7)

The resulting expression for the effective head is thus

h(t) = y(t)−(yT0+hp0)−BT σ(t)−(BT +Bp)q(t) (8)

2.2 Reservoir model

A reservoir model of interest in our optimization problem
is a realistic one that relates the plant’s forebay eleva-
tion y to the discharge q. These parameters determine the
active power generation available from the hydro-plant.
The reservoir’s dynamics may be suitably described by
the equation

ds(t)
dt

= i(t) − q(t) − σ(t) (9)

where s(t) is the reservoir storage, i(t) the rate of natural
inflow adjusted for evaporation and seepage losses, q(t)
the rate of water release through the hydro-plant and σ(t)
the rate of water spillage.

The variation in storage in a reservoir of regular shape
with elevation can be computed using formulas for the
volumes of solids. For example, if we assume a trape-
zoidal reservoir representation (Fig. 2), the forebay el-
evation y(t) is related to the forebay volume of stored
water s(t) by the relation

s(t) = b0 · l · y(t) + l · tanφ · y2(t) (10)

Fig. 2: Trapezoidal reservoir configuration

If we consider vertical-sided reservoirs, we have

y(t) = Bys(t) (11)

where By = 1/b0 · l denote the inverse of the reservoir
surface.

The variation of storage with elevation for reservoirs
at natural sites is determined from the elevation-storage
curve. This curve can be calculated from the topogra-
phy of the surrounding area using commercial software
by simply introducing the elevation and the area enclosed
within each contour within the reservoir site (see Fig. 3).
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Thus, if we know a number of points of the elevation-
storage curve, it can be approximated (ordinary least-
squares polynomial regression) by a general mathemat-
ical model of the form:

y(t) =
N∑

i=0

αis
i(t) (12)

(a) Contour map of the reservoir

(b) Side view

Fig. 3: Determination of the elevation-storage curve

It should be noted that natural factors (for example
sediment accumulation) will change the configuration of
the reservoir over time and that the reservoir model needs
to be updated periodically.

2.3 Hydro-plant model

As can be seen in (1), the hydro-plant’s active power gen-
eration is given by

P (t) =
q(t)h(t)

G
(13)

We shall use (8) to calculate the effective hydraulic head
h and shall consider two approximations for y(t): (a) the
classic linear relationship, and (b) the second-order ap-
proximation, to then compare the results. For the sake
of simplicity, we assume the following to be negligible:
σ(t) the rate of water spillage, and hp the penstock head
losses. Thus, we have

h(t) = y(t) − [yT0 + BT q(t)] (14)

(a) Linear elevation-storage curve. If we choose

y(t) = y0 + Bys(t) (15)

expression (13) can be written as

P (t) =
q(t)
G

[y0 − yT0 + Bys(t) − BT q(t)] (16)

From (9), we have that

ds(t)
dt

= i(t) − q(t) (17)

In general, as the natural inflow i is assumed constant,

s(t) = s(0)+ i · t−
∫ t

0

q(r)dr = S0 + i · t−Q(t) (18)

Q(t) being the volume discharged up to the instant t by
the plant and S0 the initial volume.

P (t) =
q(t)
G

[(y0−yT0)+By(S0+i ·t−Q(t))−BT q(t)]
(19)

For convenience of formulation, we introduce this new
notation: q(t) ≡ ż(t); Q(t) ≡ z(t) and we have that

P (t, z(t), ż(t)) := A(t) · ż(t)−B · z(t) · ż(t)−C · ż2(t)
(20)

with

A(t) =
(y0 − yT0) + By(S0 + i · t)

G

B =
By

G
; C =

BT

G
(21)

This is a variable-head model and the hydro-plant’s hy-
draulic generation P is a function of z(t) and ż(t).

(b) Quadratic elevation-storage curve.
If we choose

y(t) = y0 + Bys(t) + Cys2(t) (22)

following the same steps as in (a), we have that

P (t, z(t), ż(t)) := A(t) · ż(t) − B · z(t) · ż(t)−
− C · ż2(t) + D · z2(t) · ż(t) (23)

with

A(t) =
(y0 − yT0) + By(S0 + i · t) + Cy(S0 + i · t)2

G

B =
By + 2Cy(S0 + i · t)

G
; C =

BT

G
; D =

Cy

G
(24)

3 Statement of the problem and op-
timal solution

Let P (t, z(t), ż(t)) be the function of the hydro-plant’s
hydraulic generation, z(t) being the volume that is dis-
charged up to the instant t by the plant, and ż(t) the rate
of water discharge of the plant at the instant t. If we as-
sume that b is the volume of water that must be discharged
during the entire optimization interval [0, T ], the follow-
ing boundary conditions will have to be fulfilled

z(0) = 0, z(T ) = b (25)
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For the sake of convenience, throughout the paper we as-
sume that the function of effective hydraulic generation
P (t, z, ż) : ΩP = [0, T ] × R

+ × R
+ −→ R

+ is strictly
increasing with respect to the rate of water discharge ż,
i.e., Pż > 0. Let us also assume that P (t, z, ż) is concave
with respect to ż, i.e., Pżż < 0. The real models meet
these two constraints; the former means more power to
a higher rate of water discharge. It can be seen that we
shall only admit non-negative volumes, z(t), and rates
of water discharge, ż(t). Besides the previous statement,
we consider P (t, z(t), ż(t)) to be bounded by technical
restrictions

Pmin ≤ P (t, z(t), ż(t)) ≤ Pmax, ∀t ∈ [0, T ] (26)

In our problem, the objective function is given by rev-
enue during the optimization interval [0, T ]

F (z) =
∫ T

0

L(t, z(t), ż(t))dt =

=
∫ T

0

π(t)P (t, z(t), ż(t))dt (27)

Revenue is obtained by multiplying the hydraulic pro-
duction of the company by the clearing price π(t) at each
hour t. In keeping with the previous statement, our objec-
tive functional in continuous time form is

max
z

F (z) = max
z

∫ T

0

π(t)P (t, z(t), ż(t))dt (28)

on the set

Ω =

⎧⎨
⎩z |

z(0) = 0, z(T ) = b
Pmin ≤ P (t, z(t), ż(t)) ≤ Pmax

∀t ∈ [0, T ]

⎫⎬
⎭ (29)

with z ∈ Ĉ1[0, T ], being Ĉ1 is the set of piecewise C1

functions.
To obtain the optimal solution, the problem is formu-

lated in this paper within the framework of Optimal Con-
trol Theory (OCT).

If z satisfies Euler’s equation for the functional F , we
have that, ∀t ∈ [0, T ], Euler’s equation is fulfilled

Lz(t, z(t), ż(t)) − d

dt
Lż(t, z(t), ż(t)) = 0 (30)

If we divide Euler’s equation by L ż(t, z(t), ż(t)) > 0, ∀t,
and integrate, we have that

Lż(t, z(t), ż(t)) · exp
[
−

∫ t

0

Pz(s, z(s), ż(s))
Pż(s, z(s), ż(s))

ds

]
=

= K ∈ R
+, ∀t ∈ [0, T ] (31)

We shall call this relation the coordination equation for
z(t), and the positive constant K ∈ R

+ will be termed
the coordination constant of the extremal. Let us term

the coordination function of z ∈ Ω the function in [0, T ],
defined as follows

Yz(t) = Lż(t, z(t), ż(t)) · e
−
∫ t

0

Pz(s, z(s), ż(s))
Pż(s, z(s), ż(s))

ds

(32)
We present the problem considering the control variable
u(t) = P (t, z(t), ż(t)) and the state variable to be z(t).
Moreover, as Pż > 0, the state equation ż = f(t, z, u)
can be explicitly defined. The optimal control problem is
thus:

max
u(t)

∫ T

0

L(t, u(t))dt

with

⎧⎨
⎩

ż = f(t, z, u)
z(0) = 0, z(T ) = b
u(t) ∈ {x | Pmin ≤ x ≤ Pmax}

⎫⎬
⎭ (33)

Using Pontryagin’s Minimum Principle (PMP) (Vinter
[6]), it is easy to prove (Bayón et al. [1]) the following
theorem:

Theorem. If z∗ ∈ Ĉ1 is a solution of our problem,
then ∃K ∈ R

+ such that: Yz∗(t) is⎧⎨
⎩

≤ K if P (t, z∗(t), ż∗(t)) = Pmin

= K if Pmin < P (t, z∗(t), ż∗(t)) < Pmax

≥ K if P (t, z∗(t), ż∗(t)) = Pmax

(34)

On the basis of this theorem, we now present the opti-
mization algorithm that leads to the determination of the
optimal solution of the hydro-plant.

To obtain the optimum operating conditions of the
hydro-plant, we shall use the coordination equation

Yz(t) = K, ∀t ∈ [0, T ] (35)

The problem will consist in finding for each K the func-
tion zK that satisfies zK(0) = 0 and the conditions of
the theorem, and from among these functions, the one
that gives rise to an admissible function (zK(T ) = b).
From the computational point of view, the construction
of zK can be performed using the same procedure as in
the shooting method, employing a discretized version of
the coordination equation. The exception is that at the in-
stant when the values obtained for z and ż do not obey
the constraints, we force the solution zK to belong to the
boundary until the moment when the conditions of leav-
ing the domain (established in the theorem) are fulfilled.
A more detailed explanation of this algorithm can be con-
sulted in Bayón et al. [1].

4 Example

A program was written using the Mathematica package
to apply the results obtained in this paper to an example
of a hydrothermal system made up of one variable-head
hydro-plant. The hydro-plant data are summarized in Ta-
ble 1.
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We shall also consider the technical restrictions:
Pmin = 0; Pmax = 100. In order for the comparison of
the two models (see Fig. 4) to be reliable, we shall con-
sider the real elevation-storage curve to fit the following
quadratic model perfectly (r2 = 1) :

y(t) = y0 + Bys(t) + Cys2(t) (36)

with y0 = 5(m); By = 4.3407910−8(m−2); Cy =
−2.8938610−17(m−5). We now perform a least-squares
polynomial regression to a linear model:

y(t) = y0 + Bys(t) (37)

obtaining for the fit: y0 = 6.18166; By =
2.8938610−8(m−2) with r2 = 0.983.

Table 1: Hydro-plant coefficients
G(m4/h.MW) 319840
b(m3) 50 106

i(m3/h) 133200
S0(m3) 2.395 108

yT0(m) 5
BT (hm−2) 2.94 10−7

An optimization interval of T = 24 h was considered,
with a discretization of 24 subintervals. The solution may
be constructed in a simple way by taking into account the
above theorem. The secant method was used to calculate
the approximate value of K for which zK(T ) − b = 0.
We obtain K = 0.001869288935030247 in 3 iterations
for the lineal model and K = 0.002045271714939654 in
10 iterations for the quadratic model.

Fig. 4: Two approximations for y(t)

Fig. 5: Optimal hydro-power P(t)

Table 2 presents the optimal solution (optimal rate
q(106m3/h) and optimal hydro power P (MW), together
with the clearing price π(euro/h.MW) for t = 1, . . . , 24
(h) corresponding to the Spanish market. We use the su-
perscript l to denote the solution obtained using the linear
model and the superscript q the solution obtained with the
quadratic model.

Table 2: Optimal solution and clearing price

t ql P l qq P q π
1 0.5861 14.52 0.4029 10.84 76.93
2 0. 0. 0. 0. 68.20
3 0. 0. 0. 0. 68.20
4 0. 0. 0. 0. 60.00
5 0. 0. 0. 0. 55.01
6 0. 0. 0. 0. 56.28
7 0. 0. 0. 0. 69.47
8 0.4337 10.82 0.2325 6.31 75.79
9 4.2426 89.50 4.3555 100. 105.90
10 4.3044 88.93 4.4507 100. 106.50
11 4.6031 91.98 4.5545 100. 110.00
12 4.4909 88.43 4.6684 100. 108.46

t ql P l qq P q π
13 4.1436 81.41 4.2913 91.69 104.08
14 3.8006 74.61 3.9145 83.57 100.00
15 1.6811 36.04 1.5830 36.96 80.50
16 1.3738 29.68 1.2447 29.31 78.23
17 1.1935 25.87 1.0459 24.73 76.93
18 1.2002 25.89 1.0532 24.80 76.93
19 2.8251 56.05 2.8457 61.57 90.00
20 4.3167 78.09 4.4924 88.48 106.89
21 4.0357 72.62 4.1837 81.90 103.00
22 3.8114 68.10 3.9377 76.47 100.00
23 1.4749 29.34 1.3675 29.62 76.93
24 1.4817 29.29 1.3752 29.60 76.93

Figure 5 presents the optimal hydro-power P for the
two approaches. This figure allows a better appreciation
of the difference between the optimum solutions corre-
sponding to the two models. This difference is of up
to 10 − 15% at peak hours, despite the fact that the lin-
ear approximation of y(t) (in the light of its r2) may be
considered very good. It can also be appreciated that the
minimum constraint affects the optimum solution in both
cases, while the maximum constraint (100 MW) only
does so in the quadratic case P q.

Furthermore, it should be noted how the different be-
havior of the plan produces a discrepancy in the optimum
profits depending on the model employed. The greater
degree of approximation of the elevation-storage curve
will enable optimum power generation to be achieved at



Int. J. Simul. Multidisci.Des. Optim. 3, 326-331(2009)
c©ASMDO 2009

DOI: 10.1051/ijsmdo:2009006
Available online at:

http://www.ijsmdo.org

the plant, thus guaranteeing increased profits. The bene-
fits of the optimal solution is 97936 euro using the linear
model and 107021 euro with the quadratic model. The
algorithm runs very quickly, the CPU time employed for
both models being 4.0 sec on a personal computer (Pen-
tium IV/2GHz).

5 Conclusions and future perspec-
tives

As we have shown in this paper, linear simplification ap-
plied to the elevation-storage curve produces serious er-
rors in the optimal solution of the hydraulic problem. Per-
fect knowledge of the optimum power on the part of elec-
tricity generation companies is very important, since in
the new pool-based electricity market, the drawing up of
next-day prices is based (among other aspects) on this da-
tum. It is therefore recommendable to model this curve in
detail and even to update the model periodically in order
to take into account the effect of sediments, for instance,
which is another crucial aspect not usually considered.

We believe the results presented in this paper open
up many future lines of research, such as for example:
higher-degree models for y, the consideration of the tail-
race elevation yT also as a quadratic function of the dis-
charge q, or the analysis of the influence of the rate of
water spillage σ(t) and penstock head losses hp on the
optimum solution.
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