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Abstract. In this paper we provide a complete analytic solution to a particular separable convex
quadratic programming problem with bound and equality constraints. This study constitutes the
generalization of prior papers in which additional simplifications were considered. We present
an algorithm that leads to determination of the analytic optimal solution. We demonstrate that
our algorithm is able to deal with large-scale QP problems of this type. Finally, we present an
very important application: the classical problem of economic dispatch.

1. Introduction

Quadratic Programming (QP) is the problem of minimizing a convex quadratic
function in n variables, subject to m linear (in)equality constraints over the variables.
In addition, the variables may have to lie between prespecified bounds. In this general
formulation, QP can be written as:

minimize: 1
2xT Hx+gTx

subject to: Ax � b
l � x � u

Here, H is a positive semi-definite n×n -matrix, g an n -vector, A an m×n -matrix, b
an m-vector, and l,u are n -vectors of bounds (values −∞,∞ may occur). The symbol
� indicates that any of the m order relations it stands for can independently be ‘< ’,
‘= ’ or ‘> ’. If H = 0, we obtain a linear program as a special case of QP.

QP problems have long been a subject of interest in the scientific community. Hun-
dreds (and thousands) of papers [11] have been published that deal with applying QP
algorithms to diverse problems. There is likewise a vast array of software packages for
solving QP problems numerically, such as: BQPD, CGAL, CPLEX, KNITRO, LINDO,
LOQO, LSSOL, MINQ, MOSEK, QPOPT or QUADPROG. Links to these (and other)
QP codes can be found in [12], and in Hans Mittelmann’s list [17] of QP solvers.
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The solution to an unconstrained QP problem with H positive definite is obvious:
x∗ = −H−1g . The solution of an equality constrained QP problem with H positive
definite can be found by looking at the Lagrangian function:

L =
1
2
xT Hx+gTx+λ T (Ax−b)

If the QP includes inequality constraints, then there are two main approaches to our
problem. In the first, denoted pegging algorithms, an optimal solution is built up from
solutions to relaxations of the problem wherein the bound constraints are relaxed. It is
a recursive algorithm wherein at each iteration some variables will receive their optimal
values. We refer to this as a primal algorithm (see, for example: [18], [19], [20], [21]).
The second class of algorithms utilizes the simple form of the KKT conditions and/or
the Lagrangian dual problem which has only one variable. We refer to this class of
algorithms as a dual one (see, for example: [7], [13], [15]).

Readers are referred to [11], which constitutes an excellent list of over 1000 of
the published works on QP. Within this extremely wide-ranging field of research, some
authors (see [5], [10], [1], [14]) have sought the analytic solution for certain particular
cases of QP problems. In this paper we provide a complete analytic solution to a par-
ticular QP problem: the separable convex quadratic programming problem consisting
in

minimize:
N
∑
i=1

Fi(xi) =
N
∑
i=1

(
αi +βixi + γix2

i

)
subject to:

N
∑
i=1

xi = ξ

mi � xi � Mi, ∀i = 1, ...,N

being γi > 0. Several optimal algorithms have been presented for this bound and equal-
ity constrained QP problem [8], [9]. In this paper we present an algorithm that leads to
determination of the analytic optimal solution. This study constitutes the generalization
of prior papers ([16], [6], [2], [4]) in which additional simplifications were considered,
such as only including constraints of the type xi � 0, or imposing certain conditions in
the bounds of the form: F ′

i (mi) < F ′
j (Mj), ∀i, j .

In this paper we consider the above separable box and equality constrained QP
problem, without any simplification. The type of constraints considered allow a hier-
archy to be established among these constraints. This hierarchy is independent of the
equality constraint (i.e. of ξ ), such that, of the 3N possible states of activity of the con-
straints, only 2N + 1 are theoretically feasible. On the basis of this idea, we propose
an algorithm that determines the 2N + 1 feasible possibilities, as well as allowing the
building of intervals, within each of which the set of active constraints remains con-
stant and independent of the value of ξ . Considering Ψ(ξ ) to be the solution of the
problem and Ψi(ξ ) the solution for each xi , we establish their analytic expressions and
prove that Ψ is piecewise quadratic, continuous and, under certain conditions, belongs
to class C1 .

The paper is organized as follows. In the next section we present results of previ-
ous papers necessary for our approach. In Section 3 we provide some basic definitions
and preparatory results. Section 4 presents the description of the algorithm that leads
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to determination of the optimal solution. The results of numerical experiments are dis-
cussed in Section 5. We present two numerical examples: first, a classical problem of
electrical engineering, the thermal equivalent plant, and then proceed to demonstrate
that the analytic solution obtained with our algorithm is able to deal with large-scale
QP problems of this type. Finally, Section 6 summarizes the main conclusions of our
research.

2. Previous results

In this section we summarize the main results obtained by Bayon et al. in previous
papers, which we consider necessary for a better understanding of the present paper.

In [2] we considered the case where the cost functions are second-order polyno-
mials

Fi(xi) = αi +βixi + γix2
i , ∀i = 1, . . . ,N

where γi > 0 and, moreover, we imposed the natural restriction of positivity of the
thermal power: xi � 0. Without loss of generality, we assumed that β1 � β2 � . . . � βN .
We denote by Ψ(ξ ) the minimum value of ∑N

i=1 Fi(xi) and (Ψ1(ξ ), . . . ,ΨN(ξ )) the
vector where said minimum value is reached. Following the nomenclature employed
in [2] and [4], we shall call Ψ the equivalent minimizer of {Fi}N

i=1 and each Ψi the
i-th distribution function. We proved that the equivalent minimizer is a second-order
polynomial with piece-wise constant coefficients:

Ψ(ξ ) =
N

∑
i=1

Fi(Ψi(ξ )) = α̃k + β̃kξ + γ̃kξ 2 if δk � ξ < δk+1

with the coefficients

δk =
1
2

[
βk

k

∑
i=1

1
γi
−

k

∑
i=1

βi

γi

]
; γ̃k =

1
k
∑
i=1

1
γi

; β̃k = γ̃k
k

∑
i=1

βi

γi
; α̃k =

N

∑
i=1

αi +
β̃ 2

k

4γ̃k
−

k

∑
i=1

β 2
i

4γi

We proved that for every k = 1, . . . ,N , the k -th distribution function is

Ψk(ξ ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

j
∑
i=1

βi

γi
+2ξ

2γk
j

∑
i=1

1
γi

− βk

2γk
if δk � δ j � ξ < δ j+1

0 if ξ < δk

Moreover, we proved that Ψ(ξ ) belongs to the class C1 and Ψ′(δk) = βk for i =
1, . . . ,N .

In [4] we calculated the equivalent minimizer in the case where the cost functions
are a general (non-quadratic) model. We assumed {Fi}N

i=1 ⊂C1[0,∞) , with xi � 0, F ′
i



456 L. BAYÓN, J. M. GRAU, M. M. RUIZ AND P. M. SUÁREZ

strictly increasing, and with F ′
i (0) � F ′

i+1(0), (i = 1, ...,N) . We proved that for every
k = 1, . . . ,N , the k -th distribution function is

Ψk(ξ ) =

⎧⎪⎪⎨⎪⎪⎩
(

j

∑
i=1

F ′−1
i ◦F ′

k

)−1

(ξ ) if δk � δ j � ξ < δ j+1

0 if ξ � δk

with δk =
k

∑
i=1

(F ′−1
i ◦F ′

k)(0) . Moreover, we analyzed the situation that arises when the

thermal plants are constrained to more general restrictions of the type: Pi
min � xi � Pi

max ,
while imposing certain conditions of the form: F ′

i (P
i
min) < F ′

j(P
j
max),∀i, j . We proved

that for every k = 1, . . . ,N , the k -th distribution function is:

Ψk(ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pk
min if ξ � δk(

j

∑
i=1

F ′−1
i ◦F ′

k

)−1

(ξ −
N
∑

i= j+1
Pi

min) if δk � δ j � ξ < δ j+1

(
N

∑
i=1

F ′−1
i ◦F ′

k

)−1

(ξ ) if δN � ξ < θ1

(
N

∑
i= j+1

F ′−1
σ(i) ◦F ′

k

)−1

(ξ −
j

∑
i=1

Pσ(i)
max ) if θ j � ξ < θ j+1

Pk
max if θσ−1(k) � ξ

with δk =
k

∑
i=1

(F ′−1
i ◦F ′

k)(P
k
min)+

N
∑

i=k+1
Pi

min; θk =
N

∑
i=k

(F ′−1
σ(i) ◦F ′

σ(k))(P
σ(k)
max )+

k−1
∑
i=1

Pσ(i)
max

σ ∈ ΣN the permutation such that F ′
σ(i)(P

max
σ(i) ) � F ′

σ(i+1)(P
max
σ(i+1)),∀i = 1, . . . ,N−1

Moreover, we proved that Ψ(ξ ) belongs to the class C1.

3. Basic definitions and preparatory results

Let A = {1, ...,N} and {Fi}i∈A be a family of strictly convex quadratic functions:

Fi(xi) = αi +βixi + γix2
i

We denote by PrA(ξ ) the separable QP Problem consisting in:

minimize: ∑
i∈A

Fi(xi)

subject to: ∑
i∈A

xi = ξ

mi � xi � Mi,∀i ∈ A

The compactness of the set defined by the constraints guarantees that PrA(ξ ) has a
solution ∀ξ ∈ [∑i∈Ami,∑i∈AMi] , and the strict convexity of each Fi , that it is unique.
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PROPOSITION 1. (a1, . . . ,aN)∈∏N
i=1[mi,Mi] is a solution of PrA(ξ ) ⇐⇒ ∃K ∈

R satisfying ∀i = 1, . . . ,N :

i) F ′
i (ai) = K if mi < ai < Mi

ii) K � F ′
i (ai) if ai = mi

iii) K � F ′
i (ai) if ai = Mi

Proof.
=⇒) Let l ∈ A such that ml < al < Ml and let us make K := F ′

l (al) . It is easily
proven, using theory of Lagrange multipliers, that if mj < a j < Mj , then F ′

l (al) =
F ′

j (a j) = K . Let us now assume that ak = mk and K > F ′
k(mk) , and we consider

Φ(ε) = ∑
i∈A−{l,k}

Fi(ai)+Fl(al − ε)+Fk(ak + ε)

Note that Φ(0) = ∑
i∈A

Fi(ai) constitutes the minimum value of ∑
i∈A

Fi(xi) constrained to

∑
i∈A

xi = ξ , and mi � xi � Mi,∀i ∈ A

However, Φ′(0) = −F ′
l (al)+Fk(ak) = −K +F ′

k(mk) < 0, which contradicts the mini-
mal nature of (a1, . . . ,aN) since, for some ε > 0, we shall have

∑
i∈A

Fi(xi) > ∑
i∈A−{l,k}

Fi(ai)+Fl(al − ε)+Fk(ak + ε)

the vector (a1, . . . ,al − ε, . . .ak + ε, . . . ,aN) satisfying the problem constraints.
Assuming that ak = Mk and K < F ′

k(mk) leads to the identical contradiction.
⇐=) It suffices to note that the Gâteaux derivative in (a1, . . . ,aN) with respect

to any admissible direction is greater than or equal to zero. In fact, every admissible
direction ω = (ω1...,ωn) in the vector (a1, . . . ,aN) satisfies the following:

ωi � 0 if ai = mi, ωi � 0 if ai = Mi and ∑
i∈A

ωi = 0

Let us now consider

A0 = {∀i ∈ A|mi < ai < Mi}, A− = {∀i ∈ A|mi = ai} and A+ = {∀i ∈ A|Mi = ai}

We have that the Gâteaux derivative in (a1, . . . ,aN) in the direction of the vector ω is:

δF(v,ω) = lim
ε→0

F(v+ εω)−F(v)
ε

= ∑
i∈A0

F ′
i (ai)ωi + ∑

i∈A−
F ′

i (mi)ωi + ∑
i∈A+

F ′
i (Mi)ωi � 0

�
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COROLLARY 1. The i-th distribution functions Ψi are not decreasing.

Proof. If Ψi(ξ )=mi , it is obvious that Ψi is not decreasing in ξ . If mi <Ψi(ξ )�
Mi , in virtue of Proposition 1, it is verified that F ′

i (Ψi(ξ )) � Kξ . Let us now assume
that Ψi(ξ +ε) <Ψi(ξ ) , hence F ′

i (Ψi(ξ +ε)) < F ′
i (Ψi(ξ )) � Kξ . Hence, Ψi(ξ +ε) =

Mi, which contradicts the assumption Ψi(ξ + ε) < Ψi(ξ ) � Mi . �

DEFINITION 1. Let us consider in the set A×{m,M} the binary relation � de-
fined as follows:

(i,m) � ( j,m) ⇐⇒ F ′
i (mi) < F ′

j (mj) or (F ′
i (mi) = F ′

j(mj) and i � j)

(i,m) � ( j,M) ⇐⇒ F ′
i (mi) < F ′

j(Mj) or (F ′
i (mi) = F ′

j (Mj) and i � j)

(i,M) � ( j,m) ⇐⇒ F ′
i (Mi) < F ′

j (mj) or (F ′
i (mi) = F ′

j (Mj) and i � j)

(i,M) � ( j,M) ⇐⇒ F ′
i (Mi) < F ′

j(Mj) or (F ′
i (mi) = F ′

j(Mj) and i � j)

Obviously, � is a total order relation and (A×{m,M},�) is isomorphic with respect
to ({1,2, · · · ,2N},�) . We denote by g the isomorphism g(i) := (g1(i),g2(i)) , g :
({1,2, · · · ,2N},�)−→ (A×{m,M},�), which at each natural number n∈{1,2, · · · ,2N}
corresponds to the n -th element of A×{m,M} following the order established by � .

PROPOSITION 2. Let v = (a1, . . . ,aN) be a solution of PrA(ξ ) .
a) If (i,m) � ( j,m) then a j > mj ⇒ ai > mi (or ai = mi ⇒ a j = mj ).
b) If (i,M) � ( j,M) then ai < Mi ⇒ a j < Mj (or a j = Mj ⇒ ai = Mi ).
c) If (i,m) � ( j,M) and F ′

i (mi) �= F ′
j(Mj) then a j = Mj ⇒ ai > mi (or ai = mi ⇒

a j < Mj ).
d) If (i,M) � ( j,m) then ai < Mi ⇒ a j = mj (or a j > mj ⇒ ai = Mi ).

Proof. a) If (i,m) � ( j,m) , then F ′
i (mi) � F ′

j(mj) . Assuming that ai = mi and
a j > mj leads to the contradiction. Let us consider the function:

Φ(ε) = ∑
k∈A−{i, j}

Fk(ak)+Fi(ai + ε)+Fj(a j − ε)

Hence Φ′(0) = F ′
i (mi)−F ′

j (a j) < F ′
i (mi)−F ′

j (mj) � 0, which contradicts the minimal
nature of (a1, ...,aN).

b), c) and d) By identical reasoning. �

This proposition allows us to interpret that the set A×{m,M} symbolizes the
2N possible states of activity/inactivity of the variable constraints. Accordingly, (i,m)
symbolizes that the constraint xi � mi is inactive (xi > mi) and (i,M) symbolizes that
the constraint xi � Mi is active (xi = Mi) . Thus, the relation � establishes a hierarchi-
cal order among these in the sense that a vector v = (a1, . . . ,aN) which constitutes the
solution of the problem PrA(ξ ) and satisfies ai = mi will necessarily also have to sat-
isfy ak = mk if (i,m) � (k,m) and, likewise, ak < Mk if (i,m) � (k,M). In other words,
the activation of the minimal constraints and the activation of the maximal constraints
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present an order of priority (Proposition 2) that the solution of the problem must neces-
sarily respect. This fact, which is not exclusive to quadratic problems, is of extraordi-
nary importance, since it allows the 3N possible combinations of activity/inactivity of
the constraints to be reduced to only 2N +1.

DEFINITION 2. Let A = {1,2, ...,N} . We denote by 3A the set:

3A := {(A1,A2,A3) ∈ P(A)3 | A1∪A2∪A3 = A and Ai∩Aj = ∅, ∀i �= j}

We can interpret each triad (A1,A2,A3) as the representation of the state of activity
of the constraints in the sense that the elements of A1 symbolize the variables whose
lower constraint is active (xi = mi) , A3 the variables whose upper constraints are active
(xi = Mi) and A2 the variables whose constraints are both inactive. We thus have a total
of 3N possibilities, many of which may be ruled out in virtue of Proposition 2.

4. Algorithm

In this section we present the optimization algorithm that leads to determination of
the optimal solution. The algorithm generates all the feasible states of activity/inactivity
of the constraints on the solution of the problem (which do not contradict Proposition
2) . We build a sequence (Ωn,Θn,Ξn)⊂ 3A starting with the triad (A,∅,∅) , which rep-
resents the fact that all the constraints on minimum are active and ending with the triad
(∅,∅,A) , which represents the fact that all the constraints on maximum are active.
Each step of the process consists in decreasing by one unit the number of active con-
straints on minimum or increasing by one unit the number of active constraints on max-
imum, following the order established by the relation � . Specifically, the constraint
on minimum that is deactivated or the constraint on maximum that is activated in the
n -th step is symbolized by g(n) . In the n -th step, g(n) = (i,M) (resp. g(n) = (i,m))
consists to activate (resp. deactivate) the constraint: xi � Mi (resp. xi � mi ).

Let us consider the following recurrent sequence Xn := (Ωn,Θn,Ξn) ∈ 3A, (n =
0, . . . ,2N) :

Ω0 = A Θ0 = ∅ Ξ0 = ∅

If g2(n) = M =⇒ Ωn := Ωn−1 Θn := Θn−1−{g1(n)} Ξn := Ξn−1∪{g1(n)}
If g2(n) = m =⇒ Ωn := Ωn−1−{g1(n)} Θn := Θn−1∪{g1(n)} Ξn := Ξn−1

PROPOSITION 3. v = (a1, . . . ,aN)∈
N

∏
i=1

[mi,Mi] is the solution of PrA(ξ )⇔∃K ∈
R , and n ∈ A satisfying:

i) F ′
i (ai) = K, ∀i ∈ Θn

ii) K � F ′
i (mi), ∀i ∈Ωn

iii) K � F ′
i (Mi), ∀i ∈ Ξn

Proof.
⇐) It is an immediate consequence of Proposition 1.
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⇒) It is likewise an immediate consequence of Proposition 1, bearing in mind
that the sequence Xn contains the 2N + 1 possible states of activity/inactivity of the
constraints, which is compatible with the fact that (a1, . . . ,aN) is the solution to the
problem PrA(ξ ) . �

PROPOSITION 4. There exist {φi}2N
i=1 ⊂ R, ∑N

i=1mi = φ1 � · · · � φ2N =∑N
i=1Mi

such that if φn < ξ < φn+1 , the solution of the problem v = (Ψ1(ξ ), . . . ,ΨN(ξ )) satis-
fies:

Ψk(ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ξ− ∑
i∈Ωn

mi− ∑
j∈Ξn

Mj+ ∑
i∈Θn

βi

2γi

γk ∑
i∈Θn

1
γi

− βk

2γk
if k ∈Ωn

mk if k ∈ Θn

Mk if k ∈ Ξn

being

φn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2 ∑
i∈Θn

F ′
g1(n)(mg1(n))−βi

γi + ∑
i∈Ωn

mi + ∑
j∈Ξn

Mj if g2(n) = m

1
2 ∑
i∈Θn

F ′
g1(n)(Mg1(n))−βi

γi + ∑
i∈Ωn

mi + ∑
j∈Ξn

Mj if g2(n) = M

Proof. Since the distribution functions Ψi are not decreasing, if the solution for
the problem PrA(ξ ) presents an inactive constraint on minimum (respectively active
constraint on maximum), it will likewise do so for greater values than ξ . It is there-
fore obvious that there exists a collection of real numbers {φi}2N

n=1 such that in each
interval (φn,φn+1] the corresponding problem (φn < ξ � φn+1) has identical active
constraints on maximum and inactive constraints on minimum and one less inactive
constraint on minimum or one more active constraint on maximum in the following
interval (φn+1,φn+2] . Specifically, the active constraints on minimum in each interval
(φn,φn+1] will be those represented by the set Ωn and the active constraints on maxi-
mum those represented by Ξn .

Bearing in mind that in each interval (φn,φn+1] the next constraint on minimum to
become deactivated or the next constraint on maximum to become active (in accordance
with the relation � ) is that corresponding to g(n) , we obtain the expression for each
Ψi by reasoning similarly as in [2] and [4]. �

PROPOSITION 5. The function Ψ (equivalent minimizer) is piecewise quadratic,
continuous and, if Θn �= ∅, ∀0 < i < 2N , then it also belongs to class C1. Specifically,
if φn � ξ � φn+1

Ψ(ξ ) = α̂n + β̂n(ξ − μn)+ γ̂n(ξ − μn)2

μn := ∑
i∈Ωn

mi + ∑
j∈Ξn

Mj; γ̂n :=
1

∑
i∈Θn

1
γi

; β̂n := γ̂n ∑
i∈Θn

βi

γi
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α̂n := ∑
i∈Θn

αi +
β̂ 2

n

4γ̂n
− ∑

i∈Θn

β 2
i

4γi
+ ∑

i∈Ωn

Fi(mi)+ ∑
i∈Ξn

Fi(Mi)

Proof. Both its piecewise quadratic nature and the values of the coefficients are
easily established as in [2] and [4]. The continuity and the character C1 , (which can
only be guaranteed when Θn �= ∅, ∀n = 1, ...,2N − 1), are easily proven by simply
using the technique employed in [2] and [4] for particular cases. �

5. Examples

5.1. Equivalent Thermal unit

Quadratic programs are widely used in many hundreds of real-life applications,
such us portfolio analysis, support vector machines, structural analysis, discrete-time
stabilization, optimal and fuzzy control, finite impulse response design, optimal power
and economic dispatch. In this section we present an example, embedded in the line
of research entitled Optimization of hydrothermal systems, which constitutes a compli-
cated problem that has attracted significant interest in recent decades: the equivalent
thermal unit. In previous papers ([2], [4]) we prove that power plants can be substituted
by a single one that behaves equivalently to the entire set. This supposes a significant
simplification of hydrothermal models [3] and will also be useful for any method used
to study the problem. It allows us to develop algorithms that are simpler, more reliable,
and which require less time for their execution.

Table I: Coefficients of the thermal plants.

Plant i αi βi γi mi Mi

1 841.75 50.431 0.1987 50 360
2 115.67 31.265 0.0166 60 543
3 116.58 66.915 0.1429 50 253
4 423.02 25.014 0.0248 34 350
5 300.00 1.5500 0.0111 30 250

A program that solves the optimization problem was developed using the Mathematica
package and was then applied to an example of a thermal system made up of 5 thermal
plants. For the thermal plants, the cost function Fi used is a quadratic model: Fi(x) =
αi + βix + γix2 . The data of the plants are summarized in Table I. The units for the
coefficients are: αi in (euro/h) , βi in (euro/h.MW ) , and γi in (euro/h.MW 2) . We
shall now apply the theory developed previously. Bearing in mind the values of F ′

i (mi)
and F ′

i (Mi) :

F ′
5(m5) F ′

5(M5) F ′
4(m4) F ′

2(m2) F ′
4(M4) F ′

2(M2) F ′
1(m1) F ′

3(m3) F ′
3(M3) F ′

1(M1)
2.22 7.10 26.70 33.26 42.37 49.29 70.30 81.21 139.22 193.49

we have that the elements of (A×{m,M}), in accordance with the order � are:

{5,m}�{5,M}�{4,m}�{2,m}�{4,M}�{2,M}�{1,m}�{3,m}�{3,M}�{1,M}
g(1) g(2) g(3) g(4) g(5) g(6) g(7) g(8) g(9) g(10)
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and the sequence Xn := (Ωn,Θn,Ξn)

Ωn Θn Ξn

{1,2,3,4,5} {} {}
{1,2,3,4} {5} {}
{1,2,3,4} {} {5}
{1,2,3} {4} {5}
{1,3} {4,2} {5}
{1,3} {2} {5,4}
{1,3} {} {5,4,2}
{3} {1} {5,4,2}
{} {1,3} {5,4,2}
{} {1} {5,4,2,3}
{} {} {1,2,3,4,5}

The family {φi}10
i=1 ⊂ R , where ∑5

i=1mi = φ1 � · · · � φ2N =∑5
i=1Mi, is: φ1 = 224.;

φ2 = 444.; φ3 = 444.; φ4 = 576.19; φ5 = 1034.61; φ6 = 1243.; φ7 = 1243.; φ8 =
1270.44; φ9 = 1619.43; φ10 = 1756. The coincidences φ2 = φ3 and φ6 = φ7 are due
to the fact that Θ2 = ∅ = Θ6 . The fact that, for ξ = φ2 , the solution of PrA(ξ ) has
all its constraints active (Θ2 = ∅) makes it impossible for this situation to be produced
in any interval of the form [φ2,φ2 + ε) with ε > 0, and hence φ3 must necessarily
coincide with φ2 . In this case, the equivalent minimizer presents angular points in
φ2 = φ3 = 444 and in φ6 = φ7 = 1243 (see Figure 1-a). The equivalent plant of these
functions, Ψ(euro/h) (with ξ in MW ) is a second-order polynomial with piecewise
constant coefficients:

Ψ(ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

11450.2−2.7568ξ+0.0111ξ 2 if φ1 � ξ � φ3

5448.39+4.678ξ+0.0248ξ 2 if φ3 � ξ � φ4

516.274+21.7978ξ+0.00994ξ 2 if φ4 � ξ � φ5

7640.99+8.025ξ+0.0166ξ 2 if φ5 � ξ � φ7

262881.−423.667ξ+0.1987ξ 2 if φ7 � ξ � φ8

76335.−129.996ξ+0.08312ξ 2 if φ8 � ξ � φ9

379447.−504.339ξ+0.1987ξ 2 if φ9 � ξ � φ10

Fig. 1. (a) Equivalent Thermal Plant. (b) The distribution functions.

Figure 1-b shows the distribution functions. These are the power ratings that the



AN ANALYTIC SOLUTION FOR SOME QUADRATIC PROGRAMMING PROBLEMS 463

thermal plants must generate, for each power demand, for the overall cost to be mini-
mum.

REMARK. Coincidences in the φi may also arise without any Θi being empty. In
fact, this occurs whenever we have situations of the type: F ′

i (mi) = F ′
j (mj) or F ′

i (mi) =
F ′

j (Mj) . In these cases, however, the equivalent minimizer does not cease to belong to

class C1.

5.2. Large-scale QP

Our particular concern is for medium- to large-scale problems, i.e. those involv-
ing tens or hundreds of thousands of unknowns and/or constraints. There is already a
vast literature concerned with methods appropriate for small problems (those involving
hundreds or low thousands of variables/constraints), and a number of excellent software
packages.

In this section we present an example of a large-scale QP problem. We shall gen-
erate an example, which is very easy to reproduce, considering the quadratic model:
Fi(x) = αi +βix + γix2, with ξ = 50, generating the coefficients with the simple for-
mulas:

αi = 0; βi = i; γi =
1
2i

; mi =
1
i
; Mi =

1
i
+1, i = 1, ...,n

Table II shows that the Matlab solver QUADPROG cannot deal with this type of prob-
lem, giving erroneous solutions from n = 201 onward.

Table II: Comparison of Costs.

n 201 202 203 300 500
Solution Ψ(ξ ) 1200.67478 1201.45199 1202.23030 1281.96697 1459.51433
QUADPROG 1200.67478 1220.65661 1223.27776 2473.34456 6664.10737

Secondly, Table III presents the solution obtained and the CPU time (in seconds) used
(measured on a Pentium IV, 3.4GHz PC) when n is large. We present the times that
are consumed in each of the different phases of algorithm: Phase I: Construction of the
sequence Xn; Phase II: ordenation of the elements of (A×{m,M}), in accordance with
the order �; Phase III: Calculus of the n such that φn < ξ < φn+1; Phase IV: calculus
of the exact solution Ψ(ξ ) .

Table III: CPU time.

n 1000 5000 10000
Exact Solution Ψ(ξ ) 1929.51391 5861.49621 10833.06937

CPU Phase I: sequence Xn 0.188 3.791 15.304
CPU Phase II: (A×{m,M},�) 0.546 3.4 7.301
CPU Phase III: φn < ξ < φn+1 0.206 0.678 2.066
CPU Phase IV: Ψ(ξ ) 0.281 6.849 27.831
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6. Conclusions

In this paper we have provided a complete analytic solution to a particular separa-
ble convex quadratic programming problem with bound and equality constraints. This
study constitutes the generalization of prior papers in which additional simplifications
were considered. We have demonstrated that our algorithm is able to deal with large-
scale QP problems. This study puts the finishing touches to the so-called economic
dispatch problem in Electrical Engineering and may also be applied to problems in
economics such as the maximization of consumer utility under budgetary restrictions
with numerous goods whose utility functions are quadratic.
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