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This paper deals with the optimal control (OC) problem that arise when a hydraulic system with fixed-head
hydroplants is considered. In the frame of a deregulated electricity market, the resulting Hamiltonian for
such OC problems is linear in the control variable and results in an optimal singular/bang–bang control
policy. To avoid difficulties associated with the computation of optimal singular/bang–bang controls, an
efficient and simple optimization algorithm is proposed. The computational technique is illustrated on
one example.
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1. Introduction

The computation of optimal singular/bang–bang controls is of particular interest to researchers
because of the difficulty in obtaining the optimal solution. Several engineering control problems,
such as the chemical reactor start-up or hydrothermal optimization problems, are known to have
optimal singular/bang–bang controls. This paper deals with the optimal control (OC) problem
that arises when addressing the new short-term problems that are faced by a generation company
in a deregulated electricity market. Our model of the spot market explicitly represents the price of
electricity as a known exogenous variable and we consider a system with fixed-head hydroplants.
These plants, with a large capacity reservoir, are the most important in the electricity market. The
resulting Hamiltonian for such OC problems, H , is linear in the control variable, u, and results
in an optimal singular/bang–bang control policy.

In general, the application of Pontryagin’s maximum principle (PMP) is not well suited for
computing singular control problems as it fails to yield a unique value for the control. Different
methods for determining OCs with a possibly singular part have already been developed.

A popular approach introduced by Jacobson et al. [11] has been used by a number of researchers
including Edgar and Lapidus [7,8] and more recently by Chen and Huang [3]. This method involves
solving the singular/bang–bang OC problem as the limit of a series of non-singular problems. It is
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1950 L. Bayón et al.

important to establish the limitations of these perturbation-based methods for practical problems.
In fact, the convergence criterion described in [11] requires that the perturbation parameter, ε,
be sufficiently small; however, numerical difficulties result when ε approaches a zero limit. The
reader is referred to [3,5] and [6] for further details. The procedure may therefore not be a suitable
technique for certain types of problems.

Other studies have assumed a priori knowledge of the number and location of the singular
subarcs. For example, Maurer et al. [14] presented a numerical scheme for computing optimal
bang–bang controls. They assume that every component of the OC is bang–bang and that there
are only a known finite number of switching times (in the Rayleigh problem, specifically three).
Hence, these type of studies are less general.

In the present paper, a major effort has been made to develop a general, computationally efficient
algorithm for a wide class of OC problems with the final state and the final time fixed. We propose a
simple and efficient optimization algorithm that avoids all the difficulties that the aforementioned
methods present. The algorithm combines optimality conditions with the shooting method to
develop the optimal solution.

Our method needs no prior knowledge of the number and location of the bang–bang arcs. Neither
does it handle any parameter (such as, for example, discretization or a penalization factor) that
has an influence on convergence or the precision of the result. As it is specifically designed for
problems of this type, we shall see that it is much faster and more reliable than commercial solvers
that address any type of general OC problem.

Our method has a very wide-ranging field of application. In this paper, the algorithm has been
illustrated by means of the hydraulic system optimization problem. We have chosen this hydraulic
framework as it is a very important problem within the fields of both applied mathematics and
electrical engineering. We also underline the fact that bang–bang problems have barely been
tackled due to the computational complexities they involve.

The paper is organized as follows. In Section 2, we present the mathematical environment of
our work: the singular OC problem with control appearing linearly. In Section 3, we present the
mathematical models of our fixed-head hydroplant. In Section 4, we formulate our optimization
problem and prove that singular controls can be excluded. In Section 5, we describe the algorithm
that provides the structure of bang–bang arcs. The results of the application of the method to a
numerical example are presented in Section 6. Finally, the main conclusions of our research are
summarized in Section 7.

2. General statement of the singular OC problem

Let us assume a system given by: a state x(t) ∈ R
n at time t ∈ [0, T ], a control u(t) ∈ U(t) ⊂ R

m,
where u is piecewise continuous and U(t) is compact for every t ∈ [0, T ], a state equation
x ′(t) = f (t, x(t), u(t)) almost everywhere, an initial condition x(0) = x0 and a final condition
x(T ) ∈ Z �= ∅, where [0, T ] is fixed, and the scalar functions g and L with a suitable domain.
The following problem is called the Bolza problem (P):

Find an admissible pair (x, u) on [0, T ] such that the functional

J (u) = g(x(T )) +
∫ T

0
L(t, x(t), u(t)) dt

becomes maximal. If g ≡ 0, we call (P) a Lagrange problem, while (P) is called a Mayer problem
if L ≡ 0. We define the Hamiltonian:

H(u, x, λ, t) := L(t, x, u) + λT f (t, x, u),
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where λ ∈ R
n. We assume that every fi (i = 1, . . . , n) is continuous in (t, x, u), that the deriva-

tives (∂/∂t)fi and ∇xfi exist and are continuous in (t, x, u) for every i. Furthermore, we assume
that g ∈ C1 and that (P) has a solution (x∗, u∗) with Z = R

n. The following theorem [17] is often
very useful in solving Bolza problems.

Theorem 1 (PMP) Under the above hypothesis, there thus exists an absolutely continuous
function λ : [0, T ] → R

n with the following properties:
(a) x ′ = Hλ and λ′ = −Hx along (x∗, u∗).
(b) H(u∗(t), x∗(t), λ(t), t) = max{H(u, x∗(t), λ(t), t)|u ⊂ U(t)} for every t ∈ [0, T ].
(c) λ �= 0 on [0, T ].
(d) λ(T ) dx(T ) − dg = 0 (transversality condition).

In the usual case, the optimality condition

H(u∗(t), x∗(t), λ(t), t) = max{H(u, x∗(t), λ(t), t)|u ⊂ U(t)} (1)

is used to solve for the extremal control in terms of the state and adjoint (x, λ). Normally, the
optimality condition is imposed as Hu = 0 and this system of equations is solved for the control
vector u(t).

We now consider the case of scalar control appearing linearly (Huu is singular):

max
∫ T

0
[f1(t, x) + uf2(t, x)] dt

x ′ = g1(t, x) + ug2(t, x); x(0) = x0

umin ≤ u(t) ≤ umax.

The variational Hamiltonian is linear in u and can be written as

H(u, x, λ, t) := f1(t, x) + λg1(t, x) + [f2(t, x) + λg2(t, x)]u.

The optimality condition (maximize H w.r.t. u) leads to

u∗(t) =

⎧⎪⎨
⎪⎩

umax if f2(t, x) + λg2(t, x) > 0

using if f2(t, x) + λg2(t, x) = 0

umin if f2(t, x) + λg2(t, x) < 0

and u∗ is undetermined if �(x, λ) ≡ Hu = f2(t, x) + λg2(t, x) = 0. The function � is called
the switching function. If �(x∗(t), λ(t)) = 0 only at isolated time points, then the OC switches
between its upper and lower bounds, which is said to be a bang–bang type control (i.e. the
problem is not singular). The times when the OC switches from umax to umin or vice versa are
called switch times.

If �(x∗(t), λ(t)) = 0 for every t in some subinterval [t ′, t ′′] of [0, T ], then the original problem
is called a singular control problem and the corresponding trajectory for [t ′, t ′′], a singular arc.
The case when � vanishes over an interval is more troublesome, because the optimality condition
is vacuous, since H(u, x∗(t), λ(t), t) is independent of u. In the singular case, PMP yields no
information on the extremal (or stationary) control.

In order to find the control on a singular arc, we use the fact that Hu remains zero along the
whole arc. Hence, all the time derivatives are zero along such an arc. By successive differentiation
of the switching function, one of the time derivatives may contain the control u, in which case u

can be obtained as a function of x and λ. The next result [12] is important.
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1952 L. Bayón et al.

Proposition 1 If Hu is successively differentiated with respect to time, then u cannot first appear
in an odd-order derivative.

As u first appears in an even-order derivative, we denote this by (d2q(Hu))/dt2q and q is the
order of the singular arc. An important theorem [12] is the necessary condition for a singular arc
to be optimal: the generalized Legendre–Clebsch (GLC) condition.

Theorem 2 (GLC condition) If x∗(t), u∗(t) are optimal on a singular arc, then, for scalar u,

(−1)q
∂

∂u

[
d2q(Hu)

dt2q

]
≤ 0.

3. Hydroplant performance models

Conventional hydroplants are classified as run-of-river plants and storage plants. Run-of-river
plants have little storage capacity and use water as it becomes available. The water not utilized is
spilled. Storage plants are associated with reservoirs that have significant storage capacity. During
periods of low power requirements, water can be stored and then released when demand is high.

A basic physically based relationship between the active power generated P (in MW) by a
hydroplant and the rate of water discharge, q (in m3/s), and the effective head, h (in m), is
given by

P = 0.0085qhη(q, h),

where η is a function of q and h. A variety of models have been proposed in the literature [9,
13] due to the diversity of plant types and their characteristics (Table 1). The appropriate choice
of mathematical models for representing the physical system is a crucial aspect when addressing
any optimization problem. In this paper, we consider the approximation presented by El-Hawary
and Christensen [9] to be the most appropriate on account of its precision and flexibility.

The Glimn–Kirchmayer model gives the variation of the rate of discharge as a bi-quadratic
function of h and P . K is a constant of proportionality and the parameters of the model are
assumed to be obtainable. The problem of estimating these parameters is treated in [10]. A
more generalized form of the model is that of Hildebrand, in which L and K are usually
taken to be 2. In Hamilton–Lamont’s model, the equation is modified through division by the
head h. The proportionality constant K is not required and a cubic term in P is added. All of
these models can be interpreted as a consequence of Taylor expansion for a function of several
variables. Finally, the Arvanitidis–Rosing model uses an exponential variation, in which S is
reservoir storage.

Table 1. Hydroplant models.

Glimn–Kirchmayer q = Kψ(h)φ(P ) ψ(h) = αh2 + βh + γ

φ(P ) = xP 2 + yP + z

Hildebrand q =
L∑

i=0

K∑
j=0

CijP
ihj

Hamilton–Lamont q = ψ(h)(φ(P ))/h ψ(h) = αh2 + βh + γ

φ(P ) = xP 3 + yP + z

Arvanitidis–Rosing P = qh(β − e−αS)
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El-Hawary’s model. In this model the output power P (MW) is given by

P = qh

G
,

where G is the efficiency (m4/h MW). For the sake of simplicity, we assume the rate of water
spillage and the penstock head losses to be negligible. Thus, we have h = y − yT, where y is the
forebay elevation and yT the tailrace elevation. In most cases, a typical linear variation between
yT and the discharge, q, and a typical linear elevation–storage curve may be assumed as follows:

y(t) = [y0 + Bys(t)] − [yT0 + BT q(t)],
where s(t) is the reservoir storage and the coefficients By (in m−2) and Bt (in h m−2) are parameters
that depend on the geometry of the reservoir. The reservoir’s dynamics may be suitably described
by the equation

ds(t)

dt
= i(t) − q(t) −→ s(t) = S0 + it − Q(t)

being i the natural inflow (i.e., in general, assumed constant), Q(t) being the volume discharged
up to the instant t by the plant and S0 the initial volume. So, we have that

P(t, Q(t), q(t)) := A(t)q(t) − BQ(t)q(t) − Cq2(t)

A(t) = (y0 − yT0) + By(S0 + it)

G
, B = By

G
, C = BT

G
. (2)

This is a variable-head model and the hydroplant’s hydraulic generation, P , is a function of Q(t)

and q(t). According to El-Hawary’s model, power output is a function of discharge and the head.
For a large capacity reservoir, it is practical to assume that the effective head is constant over the
optimization interval. Here the fixed-head hydroplant model is defined and P is represented by
the linear equation:

P(t) = (y0 − yT0) + By(S0)

G
q(t) = Aq(t). (3)

4. Structure of the solution of the optimization problem

For convenience of formulation, in this section, we introduce this new notation: q(t) ≡
z′(t); Q(t) ≡ z(t). Let P(t, z(t), z′(t)) be the function of the hydroplant’s hydraulic generation,
where z(t) is the volume that is discharged up to the instant t by the plant, and z′(t) the rate of
water discharge of the plant at the instant t . If we assume that b is the volume of water that must
be discharged during the entire optimization interval [0, T ], the following boundary conditions
will have to be fulfilled:

z(0) = 0, z(T ) = b.

Throughout the paper, we assume that P(t, z, z′): [0, T ] × R
+ × R

+ → R
+; that is, we shall only

admit non-negative volumes, z(t), and rates of water discharge, z′(t) (pumped-storage plants will
be not considered). Besides the previous statement, we consider z′(t) to be bounded by technical
constraints

qmin ≤ z′(t) ≤ qmax, ∀t ∈ [0, T ].
No transmission losses will be considered in our study; this is a crucial aspect when addressing
the optimization problem from a centralized viewpoint. From the perspective of a generation
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1954 L. Bayón et al.

company and within the framework of the new electricity market, said losses are not relevant, as
power generators currently receive payment for all the energy they generate in power plant bars.

This study constitutes a modification of previous papers by the authors [1,2], where a variable-
head model (2) was considered. When the term −C · q2(t) is considered, the Hamiltonian is not
linear in u and the control is not singular/bang–bang. The Hamiltonian is also not linear in u

when transmission losses are considered using the classic Kirchmayer model: PL = BP(t)2; PL

being the losses.
In our problem, the objective function is given by revenue during the optimization interval [0, T ]

F(z) =
∫ T

0
L(t, z(t), z′(t)) dt =

∫ T

0
π(t)P (t, z(t), z′(t)) dt.

Revenue is obtained by multiplying the hydraulic production of the hydroplant by the clearing
price π(t) at each hour t . Our model of the spot market explicitly represents the price of electricity
as a known exogenous variable. Here the fixed-head hydroplant model (3) for P is used. In keeping
with the previous statement, our objective functional in continuous time form is

max
z

F (z) = max
z

∫ T

0
π(t)Az′(t) dt

on  = {z ∈ Ĉ1[0, T ]|z(0) = 0, z(T ) = b; qmin ≤ z′(t) ≤ qmax, ∀t ∈ [0, T ]},
where Ĉ1 is the set of piecewise C1 functions. A standard Lagrange-type OC problem of type (2)
can be mathematically formulated as follows:

max
∫ T

0
Aπ(t)u dt = max

∫ T

0
f (t)u dt

z′ = u, z(0) = 0, z(T ) = b

umin ≤ u(t) ≤ umax.

With the aim of obtaining a solution numerically, we first attempt to determine the structure of the
solution; that is, the sequence of the bang–bang and the singular parts. We define the Hamiltonian:

H(u, x, λ, t) := f (t)u + λu = [f (t) + λ]u.

The switching function is �(x, λ) ≡ Hu = f (t) + λ. The optimality condition (1) leads to

u∗(t) =

⎧⎪⎨
⎪⎩

umax if f (t) + λ > 0,

using if f (t) + λ = 0,

umin if f (t) + λ < 0.

(4)

On the other hand, the co-state equation of PMP allows us to obtain

λ′ = −Hz = 0 −→ λ = λ0(cte). (5)

To find the control on a singular arc, we use the fact that Hu remains zero along the whole arc.
By differentiation of the switching function, we obtain

d

dt
Hu = d

dt
[f (t) + λ] = f ′(t) = Aπ ′(t) = 0.

...

dn

dtn
Hu = Aπ(n)(t) = 0.
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We can see that in the successive derivatives of Hu w.r.t. t does not appear the control u. We have
only derivatives of the clearing price π(t). The presence of singular arcs in the solution are thus
ruled out.

5. Algorithm for the bang–bang solution

Having ruled out the presence of singular arcs, we now determine the bang–bang segments and the
boundary on which the solution is situated. To obtain the optimal solution, we apply Equations (4)
and (5), obtaining

u∗(t) =
{

umax if f (t) > −λ0,

umin if f (t) < −λ0.
(6)

The algorithm that leads to the optimal solution (6) comprises the following steps:

(i) First, f (t) must be interpolated to obtain a continuous function. Note that in real electricity
markets, the clearing price π(t) is only known at each hour (t = 1, 2, . . . , 24). In this paper,
we have used linear interpolation with good results.

(ii) Second, we have to determine the switch times: t1, t2, . . . These instants are calculated solving
the equation

f (t) = −λ.

(iii) Third, the optimal value λ0 must be determined in order for

zλ(T ) =
Ns∑
i=1

δiqmax +
(

T −
Ns∑
i=1

δi

)
qmin = b,

δi being the duration of the ith bang–bang segment in the upper bound umax, Ns the number
of such segments and zλ(T ) the final volume obtained for each λ. Figure 1 illustrates the
proposed method.

(iv) To calculate an approximate value of λ0, we propose an iterative method (such as, for example,
bisection or the secant method) using this condition

Error = |zλ(T ) − b| < tol

to finalize the algorithm (Figure 2). As we shall see in the next section, the secant method has
provided satisfactory results using these initial values:

λmin = min f (t); λmax = max f (t).

t1

f(t)

t2 t3

d1 d2 d3

t4 T
t

Figure 1. Illustration of the method.
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1956 L. Bayón et al.

Figure 2. Computational flow of the proposed algorithm.

6. Example

A program was written using the Mathematica package to apply the results obtained in this paper
to an example of a hydraulic system made up of one fixed-head hydroplant. The hydroplant data
are summarized in Table 2.

We shall also consider the technical constraints: qmin = 0 and qmax = 3.94258 × 106 (m3/h),
which correspond, respectively, to Pmin = 0 and Pmax = 100 (MW). With these coefficients, the
hydraulic model is P(t) = 0.0000253641q(t).

In this paper, we focus on the problem that a generation company faces when preparing its
offers for the day-ahead market. Thus, the classic optimization interval of T = 24 h was consid-
ered. The clearing price π(t) (euros/h MW) corresponding to 1 day was taken from the Spanish
electricity market [4]. The known values of π(t) : t = 1, 2, . . . , 24 were linearly interpolated
(Figure 3).

The solution may be constructed in a simple way by taking into account the above algorithm. In
this example, we have: f (t) = 0.0000253641π(t), λmin = min f (t) = 0.00139528 and λmax =
max f (t) = 0.00279005.

The secant method was used to calculate the approximate value of λ for which

Error = |zλ(T ) − b| < tol

Table 2. Hydroplant coefficients.

G(m4/h MW) b(m3) S0(m3) y0(m) yT0 (m) By (m−2)

319,840 45 × 106 2.395 × 108 6.18166 5 2.89386 × 10−8
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Figure 3. Clearing price π(t).

Figure 4. Optimal hydropower P(t).

Figure 5. Convergence of the algorithm.

with tol = 50 (m3). The optimal value obtained is λ0 = 0.002107617885177008 and the switch
times are: t1 = 0.528346, t2 = 8.24259, t3 = 14.8669, t4 = 18.4717, t5 = 22.7328. Figure 4
presents the optimal hydropower, P . The profits from the optimal solution are 130,908 euros.

The algorithm runs very quickly (Figure 5). In the example, 11 iterations were needed and the
CPU time required by the program was 0.188 s on a personal computer (Pentium IV/2 GHz).

7. Comparison with PROPT

In this section, we perform a comparison with a well-known solver: PROPT [15,16] a Matlab
Optimal Control Software, and compare the results with those in the paper. PROPT is built on
top of the source transformation package TomSym in the TOMLAB Base Module. PROPT aims
to encompass all areas of OC, including the bang–bang control.

PROPT uses pseudospectral collocation methods to solve OC problems. This means that the
solution takes the form of a polynomial. It is very important to note that a solution computed by
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1958 L. Bayón et al.

PROPT only satisfies the ordinary differential equation and constraints in the specified collocation
points. There is no guarantee that the solution holds between these points! This constitutes a serious
drawback of this solver. The default choice is to use n Gauss points as collocation points, although
the user can specify any set of points to use. A common way of testing the integrity of a solution
is to rerun the computation using twice as many collocation points. If nothing changes, then there
were probably sufficient points in the first computation.

In this section, we present a test and choose the same hydroplant as in the previous section. For
the sake of clarity in the comparison, we have chosen a fictitious clearing price, π(t), that takes the
following values: 90 (euros/h MW) in even hours and 70 (euros/h MW) in odd hours. Figure 6(a)
shows the optimal solution obtained with our algorithm and Figure 6(b) the optimal solution
obtained with PROPT and n = 150. Owing to the regularity that the price function, π(t), presents
in this example, the switch times obtained with our algorithm also present the following regularity:
t1 = 0.47558, t2 = 1.52442, t3 = 2.47558, t4 = 3.52442, t5 = 4.47558, t6 = 5.52442, . . . , t23 =
22.47558, t24 = 23.52442.

Table 3 affords a very interesting comparison between our algorithm and PROPT. We use two
metrics to determine efficiency (CPU time and the number of iterations). We also present the final
solution obtained (i.e. the profit) and the first switching time.As can be seen, our algorithm obtains
the solution in a very short time. In contrast, PROPT needs a large number of iterations and hence
CPU time in order to progressively approach the real solution of the problem. Furthermore, for
higher values of n, PROPT presents problems of convergence.

Summing up, our algorithm has the following advantages:

• There is no need to carry out any kind of prior estimation of the number of switch times.
• There is no need to use an increasing number of collocation points to ensure the goodness of

the solution.
• It is fast, even when compared with commercial packages that address more general problems.

Figure 6. Optimal solution. (a) Solution with our algorithm. (b) Solution with PROPT.

Table 3. Comparison.

PROPT

Our algorithm n = 100 n = 150 n = 300 n = 600

Iterations 3 111 160 324 649
CPU time (s) 0.015 0.0468 0.0937 0.5781 5.750
Solution (euros) 97,296.5 96,867.5 97,093.4 97,250.4 97,283.2
t1 0.47558 0.5531 0.5054 0.4733 0.4749
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We may therefore consider our algorithm to be an advantageous tool with respect to commercial
packages of general application.

8. Conclusions

This paper presents a novel method for developing optimal bang–bang control for a wide class
of problems with the final state and the final time fixed. We have proven that singular controls do
not exist and a simple and very efficient algorithm has been developed.

We have compared our method with a well-known commercial solver and have proven that it
presents numerous advantages with respect to the said package: speed, precision, reliability and,
as already stated, no prior estimation of the solution is needed nor it is necessary to use specific
parameters of the algorithm unrelated to the problem. Although we have presented a hydraulic
example, it should be noted that our method may be applied to other problems with the same
characteristics.
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