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1. Introduction

The infimal convolution operator is well known within the context of convex analysis. For a survey of the properties of
this operation, see [1–3].

Definition 1. Let F ,G : R −→ R̄ := R∪{+∞, −∞} be two functions. We denote as the Infimal Convolution of F and G the
operation defined as follows:

(F


G)(x) := inf
y∈R

{F(x) + G(y − x)}.

It is known that (z(R, R̄),


) is a commutative semigroup. Furthermore, if A = {1, . . . ,N}, we have that
i∈A

Fi


(ξ) = inf

i∈A
xi=ξ


i∈A

Fi(xi).

When the functions are considered to be constrained to a certain domain,Dom(Fi) = [mi,Mi], the above definition continues
to be valid by redefining Fi(x) = +∞ if x ∉ Dom(Fi). In this case, the equivalent definition may be expressed as follows:

(Fi


Fj)(K) := min
x1+x2=K
mi≤xi≤Mi

(F1(x2) + F2(x2)) = min
m1≤x≤M1

m2≤K−x1≤M2

(F1(x) + F2(K − x))

Ψ A(ξ) :=


i∈A

Fi


(ξ) = min

i∈A
xi=ξ

mi≤xi≤Mi


i∈A

Fi(xi).
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This operator has amicroeconomic interpretation that is quite precise: ifΨ A is the infimal convolution of several production
cost functions, Ψ A(ξ) represents the joint cost for a production level ξ when the latter is shared out among the different
units in the most efficient way possible.

In this paper we present an algorithm that leads to the determination of the analytic optimal solution of a particular
quadratic programming (QP) problem: Let {Fi}i∈A be a family of strictly convex quadratic functions:

Fi(xi) = αi + βixi + γix2i .

We denote by {PrA(ξ)}ξ∈R the family of separable convex QP problems:

minimize :


i∈A

Fi(xi)

subject to:

i∈A

xi = ξ ; mi ≤ xi ≤ Mi, ∀i ∈ A.

QP problems have long been a subject of interest in the scientific community. Thousands of papers [4] have been published
that deal with applying QP algorithms to diverse problems. Within this extremely wide-ranging field of research, some
authors, like for example [5,6], have sought the analytic solution for certain particular cases of QP problems with additional
simplifications.

Focusing on our particular problem, {PrA(ξ)}ξ∈R, several optimal algorithms have been presented for this bound and
equality constrained QP problem. For example, [7] presents an algorithm of linear complexity for the case of a single equality
constraint (fixed ξ ), including only constraints of the type xi ≥ 0. The present paper generalizes prior studies, presenting
an algorithm of quasi-linear complexity, O(N log(N)), for the family of problems {PrA(ξ)}ξ∈R. This supposes a substantial
improvement to a previous paper in [8] in which an algorithm was presented that, as we shall show in this paper, is one of
quadratic computational complexity, O(N2).

The paper is organized as follows. In the next section we first provide some basic definitions and preparatory results to
then proceed to present the description of the algorithm that leads to the determination of the optimal solution. The results
of the computational complexity of the new algorithm and the previous version [8] are discussed in Section 3. In Section 4
we present a numerical example to demonstrate that the analytic solution obtained with our algorithm is able to deal with
large-scale QP problems of this type. Finally, the main conclusions of our research are summarized in Section 5.

2. Algorithm

In this section, we first present the necessary definitions to build our algorithm.

Definition 2. If Ψ A
:=


i∈A Fj(K), the i-th distribution functions

Ψ A
i :


i∈A

mi,

i∈A

Mi


−→ [mi,Mi]

that satisfy


i∈A Ψ A
i (ξ) = ξ and (Ψ A

1 , . . . , Ψ A
N ) ∈

N
i=1[mi,Mi] are the solution of PrA(ξ).

Definition 3. Let us consider in the set A × {m,M} the binary relation 4 defined as follows:

(i,m) 4 (j,m) ⇐⇒ F ′

i (mi) < F ′

j (mj) or (F ′

i (mi) = F ′

j (mj) and i ≤ j)

(i,m) 4 (j,M) ⇐⇒ F ′

i (mi) < F ′

j (Mj) or (F ′

i (mi) = F ′

j (Mj) and i ≤ j)

(i,M) 4 (j,m) ⇐⇒ F ′

i (Mi) < F ′

j (mj) or (F ′

i (Mi) = F ′

j (mj) and i ≤ j)

(i,M) 4 (j,M) ⇐⇒ F ′

i (Mi) < F ′

j (Mj) or (F ′

i (Mi) = F ′

j (Mj) and i ≤ j).

Obviously, 4 is a total order relation and (A × {m,M}, 4) is isomorphic with respect to ({1, 2, . . . , 2N}, ≤).

Definition 4. We denote by g the isomorphism

g(n) := (g1(n), g2(n)), g : ({1, 2, . . . , 2N}, ≤) −→ (A × {m,M}, 4)

which at each natural number n ∈ {1, 2, . . . , 2N} corresponds to the n-th element of A × {m,M} following the order
established by 4 .

A proposition was demonstrated in [8] that allows us to interpret that the set A × {m,M} symbolizes the 2N possible
states of activity/inactivity of the variable constraints and that the activation of the minimal constraints and the activation
of the maximal constraints present an order of priority that the solution of the problem must necessarily respect. Thus, a
vector v = (a1, . . . , aN) which constitutes the solution of the problem PrA(ξ) and satisfies ai = mi will necessarily also
have to satisfy ak = mk if (i,m) 4 (k,m) and, likewise, ak < Mk if (i,m) 4 (k,M). This fact, which is not exclusive to
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quadratic problems, is of extraordinary importance, seeing as it allows the 3N possible combinations of activity/inactivity of
the constraints to be reduced to only 2N + 1.

We now present the optimization algorithm that leads to the determination of the optimal solution. The algorithm
generates all the feasible states of activity/inactivity of the constraints on the solution of the problem. We build a sequence
(Ωn, Θn, Ξn) starting with the triad (A, ∅, ∅), which represents the fact that all the constraints on the minimum are active,
and ending with the triad (∅, ∅, A), which represents the fact that all the constraints on the maximum are active. We
can interpret each triad as the representation of the state of activity of the constraints in the sense that the elements
of Ωn symbolize the variables whose lower constraint is active (xi = mi), Ξn the variables whose upper constraints
are active (xi = Mi), and Θn the variables whose constraints are both inactive. Each step of the process consists in
decreasing the number of active constraints on a minimum by one unit or increasing the number of active constraints on a
maximum by one unit, following the order established by the relation 4. Let us consider the following recurrent sequence,
Xn := (Ωn, Θn, Ξn), n = 0, . . . , 2N:

Ω0 = A Θ0 = ∅ Ξ0 = ∅
If g2(n) = M : Ωn = Ωn−1 Θn = Θn−1 − {g1(n)} Ξn = Ξn−1 ∪ {g1(n)}
If g2(n) = m : Ωn = Ωn−1 − {g1(n)} Θn = Θn−1 ∪ {g1(n)} Ξn = Ξn−1.

We prove the following propositions.

Proposition 1. There exist

{φi}
2N
i=1 ⊂ R,

N
i=1

mi = φ1 ≤ · · · ≤ φ2N =

N
i=1

Mi

such that ∀ξ |φn ≤ ξ < φn+1, the solution of the problem v = (Ψ A
1 (ξ), . . . , Ψ A

N (ξ)) satisfies:

Ψ A
k (ξ) =


2γn(ξ − µn) +βn − βk

2γk
if k ∈ Θn

mk if k ∈ Ωn
Mk if k ∈ Ξn

being

φ1 =

N
i=1

mi; φn = φn−1 +
1
2
[sn − sn−1]

1γn−1

s1 = 0; sn =


sn−1 if Θn−1 = ∅
F ′

g1(n)(mg1 (n)) if g2(n) = m ∧ Θn−1 ≠ ∅
F ′

g1(n)(Mg1 (n)) if g2(n) = M ∧ Θn−1 ≠ ∅

γn :=
1

i∈Θn

1
γi

βn := γn


i∈Θn

βi

γi

µn :=


i∈Ωn

mi +

j∈Ξn

Mj

Proof. First, we suppose that Θn ≠ ∅, ∀n = 1, . . . , 2N − 1. In this case we obtain the expression for each Ψ A
k by reasoning

similarly as in [9,10].
The values of {φi}

2N
i=1 are easily established taking into account [8]:

As

φn =


1
2


i∈Θn

F ′

g1(n)
(mg1(n)) − βi

γi
+


i∈Ωn

mi +

j∈Ξn

Mj if g2(n) = m

1
2


i∈Θn

F ′

g1(n)
(Mg1(n)) − βi

γi
+


i∈Ωn

mi +

j∈Ξn

Mj if g2(n) = M.

If g2(n) = m, then we have that

φn =
1
2


i∈Θn−1∪{g1(n)}

F ′

g1(n)
(mg1(n)) − βi

γi
+ µn
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=
1
2

 
i∈Θn−1

F ′

g1(n)
(mg1(n)) − βi

γi
+

F ′

g1(n)
(mg1(n)) − βg1(n)

γg1(n)


+ µn−1 − mg1(n)

=
1
2


i∈Θn−1

F ′

g1(n)
(mg1(n)) − βi

γi
+ µn−1.

Analogously, we obtain φn for the case in which g2(n) = M . It can, therefore, be easily seen that

φn =


φn−1 +

1
2
[F ′

g1(n)(mg1(n)) − F ′

g1(n−1)(mg1(n−1))]
1γn−1

if g2(n) = m

φn−1 +
1
2
[F ′

g1(n)(Mg1(n)) − F ′

g1(n−1)(Mg1(n−1))]
1γn−1

if g2(n) = M.

Denoting by

sn =


F ′

g1(n)(mg1 (n)) if g2(n) = m
F ′

g1(n)(Mg1 (n)) if g2(n) = M

we have that

φn = φn−1 +
1
2
[sn − sn−1]

1γn−1

We now suppose that for a specified n (n ≠ 0, 2N), Θn = ∅. Following the order established by the relation 4, we have

Θn+1 = {g1(n + 1)} ≠ ∅

and

φn+1 =
1
2


i∈Θn+1

F ′

g1(n+1)(mg1(n+1)) − βi

γi
+


i∈Ωn+1

mi +


j∈Ξn+1

Mj

=
1
2

βg1(n+1) + 2γg1(n+1)mg1(n+1) − βg1(n+1)

γg1(n+1)
+


i∈Ωn

mi − mg1(n+1) +


j∈Ξn

Mj

= φn.

We are again in a position to continue with the recurrent process. �

Proposition 2. The function Ψ A (infimal convolution) is a continuous function and a piecewise quadratic C1 function.
Specifically, if φn ≤ ξ < φn+1, (being φn the coefficients defined in Proposition 1) we have

Ψ A(ξ) =αn +βn(ξ − µn) +γn(ξ − µn)
2

where:

γ1 = γg1(1);
β1 = βg1(1); α1 = αg1(1) +


i∈Ω1

Fi(mi); µ1 =

N
i=1

mi − mg1(1)

and:

(i) If Θn ≠ ∅ ∧ Θn−1 ≠ ∅:

µn =


µn−1 − mg1(n) if g2(n) = m
µn−1 + Mg1(n) if g2(n) = M

αn =


αn−1 + αg1(n) −

(βn−1 − βg1(n))
2

4(γn−1 + γg1(n))
− Fg1(n)(mg1(n)) if g2(n) = m

αn−1 − αg1(n) −
(βn−1 − βg1(n))

2

4(γn−1 − γg1(n))
+ Fg1(n)(Mg1(n)) if g2(n) = M

βn =


1γn−1 + γg1(n)

[βn−1 · γg1(n) + βg1(n) ·γn−1] if g2(n) = m

1γn−1 − γg1(n)
[−βn−1 · γg1(n) + βg1(n) ·γn−1] if g2(n) = M
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γn =


γn−1 · γg1(n)γn−1 + γg1(n)

if g2(n) = m

−
γn−1 · γg1(n)γn−1 − γg1(n)

if g2(n) = M

(ii) If Θn ≠ ∅ ∧ Θn−1 = ∅:

µn = µn−1 − mg1(n); αn =αn−1 + αg1(n) − Fg1(n)(mg1(n));
βn = βg1(n); γn = γg1(n)

(iii) If Θn = ∅:αn =αn−1 − αg1(n) + Fg1(n)(Mg1(n)) =


i∈Ωn

Fi(mi) +


i∈Ξn

Fi(Mi);βn := 0;γn := 0

Proof. Its continuous and piecewise quadratic C1 character, is easily proven by simply using the technique employed
in [9,10].

(i) First we suppose that Θn ≠ ∅ ∧ Θn−1 ≠ ∅.
The values of the coefficients are easily established taking into account the values of [8] and the constructed recurrent

sequence. We provide the demonstration for the case in which g2(n) = m, the process being analogous for the case
g2(n) = M .

As µn :=


i∈Ωn
mi +


j∈Ξn

Mj, it is evident that

µn = µn−1 − mg1(n).

Asγn :=
1

i∈Θn
1
γi

, then

γn =
1

i∈Θn−1∪{g1(n)}

1
γi

=
1

i∈Θn−1

1
γi

+
1

γg1(n)

=
1

1γn−1
+

1
γg1(n)

=
γn−1 · γg1(n)γn−1 + γg1(n)

.

Asβn := γn


i∈Θn
βi
γi
, then

βn = γn


i∈Θn−1∪{g1(n)}

βi

γi
=

γn−1.γg1(n)γn−1 + γg1(n)

 
i∈Θn−1

βi

γi
+

βg1(n)

γg1(n)



=
1γn−1 + γg1(n)

γn−1


i∈Θn−1

βi

γi
· γg1(n) +γn−1 · βg1(n)



=
1γn−1 + γg1(n)

βn−1 · γg1(n) + βg1(n) ·γn−1

.

Asαn :=


i∈Θn
αi +

β2
n

4γn −


i∈Θn

β2
i

4γi
+


i∈Ωn
Fi(mi) +


i∈Ξn

Fi(Mi), then

αn =


i∈Θn−1∪{g1(n)}

αi +
β2

n

4γn
−


i∈Θn−1∪{g1(n)}

β2
i

4γi
+


i∈Ωn−1−{g1(n)}

Fi(mi) +


i∈Ξn−1

Fi(Mi)

=


i∈Θn−1

αi + αg1(n) +

β2
n

4γn
−


i∈Θn−1

β2
i

4γi
−

β2
g1(n)

4γg1(n)
+


i∈Ωn−1

Fi(mi) − Fg1(n)(mg1(n)) +


i∈Ξn−1

Fi(Mi)

=


i∈Θn−1

αi −


i∈Θn−1

β2
i

4γi
+


i∈Ωn−1

Fi(mi) +


i∈Ξn−1

Fi(Mi) + αg1(n) +

β2
n

4γn
−

β2
g1(n)

4γg1(n)
− Fg1(n)(mg1(n)).

Considering
β2
n

4γn in terms ofβn−1 andγn−1 and operating, we obtain that

αn =αn−1 + αg1(n) −
(βn−1 − βg1(n))

2

4(γn−1 + γg1(n))
− Fg1(n)(mg1(n)).

(ii) If Θn ≠ ∅ ∧ Θn−1 = ∅, bearing in mind the order established for the binary relation 4, we have

Θn = {g1(n)} and g2(n) = m.

Moreover, from Proposition 1, we have that

µn = µn−1 − mg1(n);
βn = βg1(n); γn = γg1(n)
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and from the definition ofαn in (i), it is easy to see thatαn =αn−1 + αg1(n) − Fg1(n)(mg1(n)).

(iii) If Θn = ∅, we takeβn := 0; γn := 0.

Bearing in mind the order established for the binary relation 4, we have that Θn−1 is a unit set, and from Θn = ∅ it is
evident that

g2(n) = M.

Finally, from the definitions of µn andαn, we obtain that

µn = µn−1 + Mg1(n)αn =αn−1 − αg1(n) + Fg1(n)(Mg1(n)) =


i∈Ωn

Fi(mi) +


i∈Ξn

Fi(Mi) �

Remark. If Θn ≠ ∅, ∀n = 1, . . . , 2N − 1, also using the technique employed in [9,10] provides the character C1 of Ψ A.
If Θn = ∅, there is no guarantee that Ψ A belongs to class C1, because it may be not be derivable in φi. This is what occurs

in the example we shall see in Section 4.

3. Computational complexity of the algorithm

In this section we analyze the complexity of the algorithm presented in this paper and compare it to the one presented
in [8]. In the former case we shall have complexity of a quasi-linear order, O(N log(N)), and in the latter, quadratic
complexity, O(N2). As both cases share the underlying idea and cannot avoid the ordering of the set A × {m, n}, the quasi-
linear complexity cannot thus be improved.

Given the family of strictly convex quadratic functions Fi(xi) = αi+βixi+γix2i with i = 1, . . . ,N andDom(Fi) = [mi,Mi],
each one of these shall be represented by the list {mi,Mi, αi, βi, γi}. The union of all these functions constitutes the input
for the algorithm:

{{m1,M1, α1, β1, γ1}, {m2,M2, α2, β2, γ2}, . . . , {mN ,MN , αN , βN , γN}}.

The output, which we symbolize as:

{{φ1, φ2,α1,β1,γ1}, . . . , {φn, φn+1,αn,βn,γn}, . . . , {φ2N−1, φ2N ,α2N ,β2N ,γ2N}}

shall represents the infimal convolution
i∈A

Fj


(K) =αi +βiK +γiK 2

which symbolizes the 2N polynomials with their respective intervals of action.
The algorithm presents the following phases:

(A) Construction of the set A × {m,M}.
(B) Ordering of the set A × {m,M} following the ordering relation 4.
(C) Construction of the recurrent sequence Xn := (Ωn, Θn, Ξn), n = 0, . . . , 2N .
(D) Construction of the sequence sn, n = 0, . . . , 2N .
(E) Construction of the sequencesαn,βn,γn, n = 1, . . . , 2N − 1.
(F) Construction of the sequences φn, n = 1, . . . , 2N .

For the aforementioned algorithm, we prove the following proposition.

Proposition 3. The complexity of the aforementioned algorithm is quasi-linear:

O(N log(N))

Proof. Phases (A) and (C) The complexity is O(N).
Phase (B) Using merge sort, we have complexity O(N log(N)).
Phases (D), (E) and (F) Bearing in mind that the construction is recurrent, with a constant complexity for the loop, with

a recurrence

g(n) = O(1) + g(n − 1)

the complexity of this phase is O(N).
In short, the complexity of the entire algorithm is, in fact, that of phase (B): O(N log(N)) which dominates the others,

which are linear in order. �
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Table 1
CPU time (s).

n 400 800 1600 3200 6400 12800

t CPU New algorithm 0.05 0.2 1.1 3.6 18.7 86.23
t CPU Old algorithm [8] 10.46 66.8 433 3855.346 35201 319227

Fig. 1. CPU time.

For the prior algorithm, we prove the following proposition.

Proposition 4. The complexity of the algorithm [8] is quadratic:

O(N2)

Proof. Phases (A), (B), (C) are common to both versions and their joint complexity is O(N log(N)).
Phase (D) is not explicitly required.
Phases (E) and (F) are of complexity O(N2) as the calculation of each

{φn,αn,βn,γn}

requires O(2N) operations. �

4. Example

In this section we present an example of a large-scale QP problem. Both the new and the old algorithm presented in [8]
were implemented using the symbolic calculus programMathematica. We shall generate an example, which is very easy to
reproduce, considering the quadratic model: Fi(x) = αi + βix + γix2, generating the coefficients with the formulas:

αi = 0; βi = i; γi =
1
2i

; mi =
1
i
; Mi =

1
i

+ 1, i = 1, . . . , n

Table 1 presents the CPU time employed (in seconds, measured on a Pentium IV, 3.4 GHz PC) by the two algorithms analyzed
in this paper. We considered different values of n and present the times corresponding to phases A, C, D, E and F, the ones in
which these differ. Phase B (ordering of the set A×{m,M} following the ordering relation 4) is common to both algorithms
and was performed using the Sort command available in the Mathematica package.

Fig. 1 shows, in logarithmic scale, the time employed by both algorithms versus n.
As can be appreciated, the new algorithm supposes a substantial improvement to its predecessor. For values of tens of

thousands of variables, it shows itself to be both a powerful and robust tool.

5. Conclusions

In this paper we have provided a complete analytic solution to a family of separable convex quadratic programming
problems with bound and equality constraints. This study constitutes a substantial improvement to a prior paper in which
the computational complexity of the algorithmwas much greater. We have demonstrated that our algorithm is able to deal
with large-scale QP problems. Finally, we underline the fact that these algorithms do not solve a single concrete problem
of separable quadratic programming, but rather an uniparametric family of problems resulting from varying the equality
constraint.
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