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Abstract In this paper we present a generalization of the classic Firm’s profit max-
imization problem, using the linear model for the production function, considering a
non constant price and maximum constraints for the inputs. We formulate the problem
by previously calculating the analytical minimum cost function. This minimum cost
function will be calculated for each production level via the infimal convolution of
quadratic functions and the result will be a piecewise quadratic function. To solve this
family of optimization problems, we present an algorithm of quasi-linear complexity.
Moreover, the resulting cost function in certain cases is not C1 and the profit maxi-
mization problem will be solved within the framework of nonsmooth analysis. Finally,
we present a numerical example.

Keywords Firm’s profit maximization · Infimal convolution · Quadratic functions ·
Nonsmooth analysis · Computational complexity

1 Introduction

When the Firm’s profit maximization (FPM) problem is considered (Varian 2005;
Nicholson 2002), several generalizations can be presented. The classic approach to
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2 R. García-Rubio et al.

the FPM problem of Microeconomics is the following:

π(p, w) = max
x,y

(py − wx)

s.t. y = f (x) (1)

where x ∈ R
n are the inputs, w ∈ R

n are the factor prices, p is the price, y is the
output and f (x) is the production function.

To solve the FPM problem, we use the short-cut-via-cost minimization; i.e. we
formulate the problem by previously calculating the analytical minimum cost function
and then maximizing over the output quantity. So, the FPM problem is solved in two
stages:

(I) First, the Firm’s cost minimization (FCM) problem:

c(w,y) = min
x

wx

s.t. f (x) = y (2)

(II) Second, having calculated the cost function C(y) := c(w,y), the FPM problem:

π(p, w) = max
y

(py − c(w,y)) = max
y

(py − C(y)) (3)

In the case of C(y) belonging to class C1, this means that it is necessary to deter-
mine the optimum level of output y for which the marginal cost C ′(y) coincides
with the price p.

The production function f (x) express how inputs are transformed into outputs. Popular
production functions models (Jehle and Reny 2001; Luenberger 1995) include:

Leontief production function: f (x) = min(a1x1, a2x2, ..., an xn)

Cobb-Douglas model: f (x) = xα1
1 · xα2

2 · . . . · xαn
n =

n∏

i=1

xαi
i

Linear production function: f (x) = a1x1 + a2x2 + · · · + an xn =
n∑

i=1

ai xi (4)

The formulae for the corresponding cost function c(w,y) are well known (Hamermesh
1996) when the production function follows the Cobb-Douglas model:

c(w,y) = αy
1
α

n∏

i=1

(
wi

αi

) αi
α

, with α =
n∑

i=1

αi (5)

These formulae, which can be obtained simply via the Lagrange multipliers method,
present the drawback that they are not applicable when upper limit constraints are
considered for the different inputs.
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Generalization of the Firm’s Profit Maximization 3

In this paper we consider the Linear production function model, and shall generalize
the classic FPM problem, adding box constraints for the inputs and non constant
prices:

wi (xi ) = bi + ci xi (6)

The affine function model for the prices (6) represents a supposed production model
in which the prices of the inputs are not independent of the amount, but increase
linearly. Likewise, the function (6) may be directly interpreted as the cost (quadratic
cost) of employing an amount xi of the i-th input. On the other hand, the Linear
production function is presented in a natural way when the output is the result of the
sum of the inputs (ai = 1) or, in general, a specific fraction of each of these. We thus
have:

π(p, w) = max
x,y

(
py −

n∑

i=1

xiwi (xi )

)

s.t.
n∑

i=1

ai xi = y; ai �= 0, i = 1, . . . , n (7)

0 ≤ xi ≤ Ui ; i = 1, . . . , n

Problems of this kind, with box constraints, become complicated in the presence of
boundary solutions.

If we focus on the first stage, the FCM problem, there is a vast array of software
packages for numerically solving nonlinear optimization problems (Griva et al. 2009),
(Neos). These methods only obtain an approximate solution for specific values of the
output y, but do not provide the analytical expression of the cost function c(w, y).
It is thus not possible to know the marginal cost expression ∂c(w,y)/∂y needed to
solve the FPM problem. For this reason, we shall address this problem in an exact way
in this paper, which we state as a constrained infimal convolution problem (Hiriart-
Urruty and Lemaréchal 1996). Several optimal algorithms have been presented for this
non-linear separable programming problem with box constraints. The present paper
generalizes prior studies (Bayón et al. 2010a), presenting an algorithm of quasi-linear
complexity for the family of infimal convolution problems.

As regards the second stage, i.e. the determination of the optimum level of output
y for which the marginal cost ∂c(w,y)/∂y coincides with the price p, we shall see
that for the model (8) the character of the resulting cost function cannot be C1. This
second stage may thus become complex, in which case the study falls within the
scope of nonsmooth analysis and the generalized (or Clarke’s) gradient (Clarke 1983),
(Loewen 1993) must be considered.

The paper is organized as follows. In the next section we state the generalized
problem (8). An algorithm for calculating the infimal convolution of the resulting
quadratic functions is presented in Sect. 3, while Sect. 4 analyzes the nonsmooth FPM
problem. In Sect. 5, we discuss the results of a numerical example. Finally, Sect. 6
summarizes the main conclusions of our research.
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4 R. García-Rubio et al.

2 Statement of the Generalized Problem

We shall consider the first stage of the generalized problem to solve to be:

C(y) = min
x

n∑

i=1

xiwi (xi )

s.t.
n∑

i=1

ai xi = y; ai �= 0, i = 1, . . . , n (8)

0 ≤ xi ≤ Ui ; i = 1, . . . , n

Using (6), and making

ai xi = zi ; aiUi = Mi

bi

ai
= βi ; ci

a2
i

= γi
(9)

this problem may be re-written as follows:

C(y) = min
z

n∑

i=1

βi zi + γi z
2
i

s.t.
n∑

i=1

zi = y

0 ≤ zi ≤ Mi ; i = 1, . . . , n (10)

which makes C(y) the infimal convolution of the quadratic functions:

Fi (zi ) := βi zi + γi z
2
i (11)

respectively constrained to the domains [0, Mi ]; i.e.

C = F1
⊙

F2
⊙

. . .
⊙

(12)

In this case, C(y) is guaranteed to be a convex function in view of the fact that each
of the Fi functions is convex. However, there is no guarantee that it belongs to class
C1. Thus, the determination of the optimum level of output y for which the marginal
cost coincides with the price p, which for the classic problem may be represented by
the simple equation

p = C ′(y) (13)

should be substituted by

p ∈ ∂C(y) (14)

where ∂C(y) is the generalized (or Clarke’s) gradient.
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Generalization of the Firm’s Profit Maximization 5

3 An Algorithm for the Infimal Convolution of the Quadratic Functions

The infimal convolution operator (Stromberg 1996) is well known within the context
of convex analysis.

Definition 1 Let F, G : R −→ R̄ := R ∪ {+∞,−∞} be two functions. We denote
as the Infimal Convolution of F and G the operation defined as follows:

(F
⊙

G)(x) := inf
y∈R

{F(x) + G(y − x)} (15)

When the functions are considered to be constrained to a certain domain, Dom(Fi ) =
[0, Mi ], the equivalent definition may be expressed as follows:

C(y) :=
(

n⊙
i=1

Fi

)
(y) = min∑n

i=1 zi =y
0≤zi ≤Mi

n∑

i=1

Fi (zi ) (16)

We shall now expound the adaptation to the problem (10) of the results presented in
(Bayón et al. 2010a), which were further developed in (Bayón et al. 2010b).

We first present the definitions needed to build our algorithm. Let A = {1, . . . , n}.

Definition 2 If C(y) :=
(

n⊙
i=1

Fi

)
(y), we denote by the i-th distribution functions,

the functions

Ψi :
[

0,

n∑

i=1

Mi

]
−→ [0, Mi ] (17)

that satisfy

n∑

i=1

Ψi (y) = y and (Ψ1(y), . . . , Ψn(y)) ∈
n∏

i=1

[0, Mi ] (18)

and are the solution of (10).

Definition 3 Let us consider, in the set A × {m, M}, the binary relation � defined as
follows:

(i, m) � ( j, m) ⇐⇒ F ′
i (0) ≤ F ′

j (0) or (F ′
i (0) = F ′

j (0) and i ≤ j) (19)

(i, m) � ( j, M) ⇐⇒ F ′
i (0) ≤ F ′

j (M j ) or (F ′
i (0) = F ′

j (M j ) and i ≤ j)

(i, M) � ( j, m) ⇐⇒ F ′
i (Mi ) ≤ F ′

j (0) or (F ′
i (Mi ) = F ′

j (0) and i ≤ j)

(i, M) � ( j, M) ⇐⇒ F ′
i (Mi ) ≤ F ′

j (M j ) or (F ′
i (Mi ) = F ′

j (M j ) and i ≤ j)

Obviously, � is a total order relation and (A ×{m, M},�) is isomorphic with respect
to ({1, 2, . . . , 2n},≤).
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6 R. García-Rubio et al.

Definition 4 We denote by g the isomorphism

g(i) := (g1(i), g2(i)), g : ({1, 2, . . . , 2n},≤) −→ (A × {m, M},�) (20)

which at each natural number i ∈ {1, 2, · · · , 2n} corresponds to the i-th element of
A × {m, M} following the order established by �.

We now present the optimization algorithm that leads to the determination of the
optimal solution. The algorithm generates all the feasible states of activity/inactivity
of the constraints on the solution to the problem. We build a sequence (Ωi ,Θi , Ξi )

starting with the triad (A, ∅, ∅), which represents the fact that all the constraints on
minimum are active, and ending with the triad (∅, ∅, A), which represents the fact
that all the constraints on maximum are active. Let us consider the following recurrent
sequence Xi := (Ωi ,Θi , Ξi ), i = 0, . . . , 2n:

Ω0 = A Θ0 = ∅ Ξ0 = ∅

If g2(i) = M : Ωi = Ωi−1 Θi = Θi−1 − {g1(i)} Ξi = Ξi−1 ∪ {g1(i)}
If g2(i) = m : Ωi = Ωi−1 − {g(i)} Θi = Θi−1 ∪ {g1(i)} Ξi = Ξi−1

(21)

The following propositions will allow us to construct the infimal convolution.

Proposition 1 There exist

{φi }2n
i=1 ⊂ R, 0 = φ1 ≤ · · · ≤ φ2n =

n∑

i=1

Mi (22)

such that ∀y |φi ≤ y < φi+1, the solution to the problem (Ψ1(y), . . . , Ψn(y)) satisfies:

Ψk(y) =

⎧
⎪⎪⎨

⎪⎪⎩

2γ̂i (y − μi ) + β̂i − βk

2γk
if k ∈ Θi

0 if k ∈ Ωi

Mk if k ∈ Ξi

(23)

being

φ1 = 0; φi = φi−1 + 1

2

[
si − si−1

] 1

γ̂i−1

s1 = 0; si =
⎧
⎨

⎩

si−1 if Θi−1 = ∅

F ′
g1(i)

(0)

F ′
g1(i)

(Mg1 (i))

if
if

g2(i) = m ∧ Θi−1 �= ∅

g2(i) = M ∧ Θi−1 �= ∅

(24)

γ̂i : = 1
∑

j∈Θi

1

γ j

; β̂i := γ̂i

∑

j∈Θi

β j

γ j
; μi :=

∑

j∈Ξi

M j (25)
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Generalization of the Firm’s Profit Maximization 7

Proposition 2 The function C(y) (infimal convolution) is continuous function and
piecewise quadratic C1 function. Specifically, if φi ≤ y < φi+1, (being φi the coeffi-
cients defined in proposition (1) we have that

C(y) = α̂i + β̂i (y − μi ) + γ̂i (y − μi )
2 (26)

where

(i) If Θi = ∅:

α̂i = α̂i−1 + Fg1(i)
(
Mg1(i)

) =
∑

j∈Ξi

Fj (M j ); β̂i := 0; γ̂i := 0

(ii) If Θi �= ∅ ∧ Θi−1 �= ∅:

μi =
{

μi−1 if g2(i) = m
μi−1 + Mg1(i) if g2(i) = M

(27)

α̂i =

⎧
⎪⎨

⎪⎩

α̂i−1 −
(
β̂i−1−βg1(i)

)2

4
(
γ̂i−1+γg1(i)

) if g2(i) = m

α̂i−1 −
(
β̂i−1−βg1(i)

)2

4
(
γ̂i−1−γg1(i)

) + Fg1(i)
(
Mg1(i)

)
if g2(i) = M

(28)

β̂i =
⎧
⎨

⎩

1
γ̂i−1+γg1(i)

[
β̂i−1 · γg1(i) + βg1(i) · γ̂i−1

]
if g2(i) = m

1
γ̂i−1−γg1(i)

[−β̂i−1 · γg1(i) + βg1(i) · γ̂i−1
]

if g2(i) = M
(29)

γ̂i =
⎧
⎨

⎩

γ̂i−1·γg1(i)

γ̂i−1+γg1(i)
if g2(i) = m

− γ̂i−1·γg1(i)

γ̂i−1−γg1(i)
if g2(i) = M

(30)

(iii) If Θi �= ∅ ∧ Θi−1 = ∅ :

μi = μi−1; α̂i = α̂i−1; β̂i = βg1(i); γ̂i = γg1(i) (31)

being

γ̂1 = γg1(1); β̂1 = βg1(1); α̂1 = 0; μ1 = 0 (32)

Corollary 1 Under the same conditions as in the above proposition, if Θi �=
∅,∀i, 0 < i < 2n, then the function C(y)(infimal convolution) also belongs to class
C1.

The demonstrations of these two propositions and the corollary are adaptations of
those presented in (Bayón et al. 2010b).

Remark When Θi = ∅ and hence φi = φi+1, it may be that the infimal convolution
is not derivable in φi . This occurs, for example, in the case of two functions F1 and
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8 R. García-Rubio et al.

F2 with domains [0, M1] and [0, M2], where F ′
1[M1] < F ′

2[0]. The convolution of F1
and F2 is given by

(F1 � F2) (x) =
{

F1(x) if x ∈ [0, M1]
F2(x − M1) + F1(M1) if x ∈ [M1, M1 + M2] (33)

and is obviously not derivable in M1. This is what occurs in the example we shall see
in Sect. 5.

4 Nonsmooth FPM Problem

Nonsmooth analysis works with locally Lipschitz functions, f, which are differentiable
almost everywhere (the set of points at which f fails to be differentiable is denoted by
Ω f ).

Definition 5 Let f (x) : R
n −→ R be Lipschitz near x, and let us assume S is any set

of Lebesgue measure 0 in R
n . The generalized (or Clarke’s) gradient, ∂ f , is

∂ f (x) = co
{
lim ∇ f (xi ) : xi −→ x, xi /∈ S, xi /∈ Ω f

}
(34)

The meaning of Eq. (34) is the following: consider any sequence xi converging to x
while avoiding both S and points at which f is not differentiable, and such that the
sequence ∇ f (xi ) converges; then the convex hull of all such limit points is ∂ f (x).

It follows simply from this reasoning that if f is a piecewise C1 function, then
∂ f = [ f ′−(x), f ′+(x)], where f ′−(x) and f ′+(x) represent the lateral derivatives of f .

In the case of the functions for which the generalized (or Clarke’s) gradient exists,
we have (Clarke 1983) the following result:

Proposition 3 If f is convex (resp. concave), the function reaches its absolute minimum
(resp. maximum) at x0

0 ∈ ∂ f (x0) (35)

In the case we are dealing with here, the cost function C(y) (see Eq. 26) is of quadratic
piecewise character C1. Consequently, the profit-maximization problem:

π(p) = max
y

(py − C(y)) (36)

translates into the determination of the optimum level of output y∗ for which

0 ∈ ∂(py∗ − C(y∗)) (37)

in which case, π(p) = py∗ − C(y∗).
Applying the above definition to C(y), we immediately have that the generalized

(or Clarke’s) gradient is

∂C(y) = [C ′−(y), C ′+(y)] (38)

where C ′−(y) and C ′+(y) represent the lateral derivatives of C.
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Generalization of the Firm’s Profit Maximization 9

Table 1 Example data
i 1 2 3 4 5

ai 0.95 0.97 0.98 0.95 0.97

Mi 360 543 253 350 250

bi 51 31 67 25 2

ci 0.191 0.016 0.14 0.024 0.011

Summing up, the optimum level of production should satisfy the following relation:

C ′−(y) ≤ p ≤ C ′+(y) (39)

However, also bearing in mind that the cost function is piecewise quadratic, the correct
calculation of the output level requires prior investigation of the interval [φi , φi+1]
for which:

C ′−(φi ) ≤ p ≤ C ′+(φi+1) (40)

This question is trivial, as we already have the analytical expression of C(y).

5 Example

The problem (8) has been developed in the previous sections and may be tackled using
the aforementioned algorithm. We now present an example. A program that solves the
Firm’s Profit-optimization Problem was written using the Mathematica package and
was then applied to one example using the linear model for the production function:
f (x) = ∑n

i=1 ai xi , the affine function model for the prices: wi (xi ) = bi + ci xi , and
maximum constraints Mi for the n = 5 inputs. The data on the inputs is summarized
in Table 1.

We shall now apply the theory developed previously. Taking into consideration the
values of F ′

i (0) and F ′
i (Mi ) in accordance with the order �:

we have that the elements of (A × {m, M}), in accordance with the order � and the
sequence Xi := (Ωi ,Θi , Ξi ), i = 0, . . . , 10, are:

i g(i) �i i �i

0 {1, 2, 3, 4, 5} {} {}
1 {5, m} {1, 2, 3, 4} {5} {}
2 {5, M} {1, 2, 3, 4} {} {5}
3 {4, m} {1, 2, 3} {4} {5}
4 {2, m} {1, 3} {4, 2} {5}
5 {4, M} {1, 3} {2} {5, 4}
6 {2, M} {1, 3} {} {5, 4, 2}
7 {1, m} {3} {1} {5, 4, 2}
8 {3, m} {} {1, 3} {5, 4, 2}
9 {3, M} {} {1} {5, 4, 2, 3}

10 {1, M} {} {} {1, 2, 3, 4, 5}
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10 R. García-Rubio et al.

Table 2 Derivatives at box
constraints

F ′
5(0) F ′

5(M5) F ′
4(0) F ′

2(0) F ′
4(M4)

2.06186 7.90732 26.3158 31.9588 44.9307

F ′
2(M2) F ′

1(0) F ′
3(0) F ′

3(M3) F ′
1(M1)

50.4262 53.6842 68.3673 142.128 206.061

Table 3 Values of φi φ1 = 0 φ2 = 250 φ3 = 250 φ4 = 356.1 φ5 = 981.417

φ6 = 1143 φ7 = 1143 φ8 = 1177.69 φ9 = 1604.95 φ10 = 1756

250 500 750 1000 1250 1500 1750

20000

40000

60000

80000

100000

Fig. 1 Cost function

The family {φi }10
i=1 ⊂ R, where

0 = φ1 ≤ · · · ≤ φ2n =
5∑

i=1

Mi = 1756 (41)

is:
The coincidences φ2 = φ3 and φ6 = φ7 are due to the fact that Θ2 = ∅ = Θ6

(Tables 2, 3).
The fact that the solution of (10) has all its constraints active (Θ2 = ∅) for y = φ

means that it is impossible for this situation to be produced in any interval of the form
[φ2, φ2 + ε) with ε > 0. Hence, φ3 must necessarily coincide with φ2, in which case
the cost function presents angular points at φ2 = φ3 = 250 and at φ6 = φ7 = 1143
(see Fig. 1).
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50

p 100

150

200

p 20

250 500 750 1000 15001250 1750

Fig. 2 Marginal cost function

Next, we show the analytical expression for the cost function, considering con-
straints on the inputs. We can see that it is a piece-wise quadratic function:

C(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2.06186y + 0.0116909y2 if φ1 ≤ y ≤ φ2 = φ3

−3670.75 + 13.0194y + 0.0265928y2 if φ3 ≤ y ≤ φ4

−5727.62 + 24.5716y + 0.0103723y2 if φ4 ≤ y ≤ φ5

660.832 + 11.5528y + 0.017005y2 if φ5 ≤ y ≤ φ6 = φ7

251210 − 430.112y + 0.211634y2 if φ7 ≤ y ≤ φ8

77401.7 − 134.943y + 0.0863175y2 if φ8 ≤ y ≤ φ9

400203 − 537.199y + 0.211634y2 if φ9 ≤ y ≤ φ10

Remark Coincidences in the φi may also arise without any Θi being empty. In fact, this
occurs whenever we have situations of the type: F ′

i (0) = F ′
j (0) or F ′

i (0) = F ′
j (M j )

or F ′
i (Mi ) = F ′

j (M j ). In these cases, however, the infimal convolution does not cease

to belong to class C1.

As an example to illustrate this, let us consider two functions F1 and F2 with
domains [0, M1] and [0, M2], where F ′

1[M1] = F ′
2[0].

The convolution of F1 and F2 is given by

(F1 � F2) (x) =
{

F1(x) if x ∈ [0, M1]
F2(x − M1) + F1(M1) if x ∈ [M1, M1 + M2] (42)

and is obviously derivable throughout its domain even though there is a coincidence
in the values φ2 and φ3 :

0 = φ1 < φ2 = φ3 = M1 < φ4 = M1 + M2

Figure 2 shows the graph of the marginal cost function, which, as has already been
established, is piecewise continuous (i.e. the cost function is piecewise C1). It can be
seen that there are two points for which the marginal cost “jumps”, at φ2 = φ3 = 250
and at φ6 = φ7 = 1143.
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12 R. García-Rubio et al.

Finally, we present the solution for two price cases: Case (i) p = 100; Case (ii)
p = 20.

– In case (i), the interval for which C ′−(φi ) ≤ 100 ≤ C ′+(φi+1) is [φ8, φ9]. In this
case, the solution is derivable; hence:

0 ∈ ∂(py∗ − C(y∗)) �⇒ 0 = p − C ′(y∗) �⇒ 100 = −134.943 + 0.172635y∗

(43)

Thus, y∗ = 1360.92 and the maximum profit is

π(100) = 100y∗ − C(y∗) = 82469.2 (44)

– In case (ii), the interval for which C ′−(φi ) ≤ 20 ≤ C ′+(φi+1) is [φ2, φ3]. In this
case, the solution is not derivable

C ′−(φ2) = 7.907; C ′+(φ3) = 26.316 (45)

hence:

0 ∈ ∂(py∗ − C(y∗)) �⇒ 0 ∈ p − ∂C(y∗) (46)

�⇒ 20 ∈ [7.907, 26.316] �⇒ y∗ = 250 (47)

For y∗ = 250, the maximum profit is

π(20) = 20y∗ − C(y∗) = 3753.91 (48)

It is very important to highlight the fact that situations such as those considered
in case (ii), in which there is no derivability, are very difficult to analyze if the
analytic solution is not available.

The algorithm runs quickly despite our analytic solution method. The optimal solution
was calculated on a personal computer (Pentium IV, 3.4 GHz PC) using the commercial
program Mathematica 5.0 ®. The above solution presents an execution time of only
16 ms.

The total time represents the time that is consumed in each of the different phases
of algorithm:

Phase I: Construction of the sequence Xi := (Ωi ,Θi , Ξi ).
Phase II: Ordering of the elements of (A × {m, M}) and construction of g, in
accordance with the order � .

Phase III: Calculation of the exact solution C(y) using the recurrent formulae of
Proposition 1 and Proposition 2.
Phase IV: Calculation of the i such that C ′−(φi ) ≤ p ≤ C ′+(φi+1).
Phase V: Calculation of the y∗ for which 0 ∈ ∂(py∗ − C(y∗)).
Phase VI: Calculation of the solution π(p) = py∗ − C(y∗).
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The numerous trials carried out using the algorithm show that, of all the phases, the
one that consumes almost all the time is Phase II. In the above example, Phase II
employed 15 ms.

Finally, it should be noted that, as we have proven in (Bayón et al. 2010b), the
complexity of the aforementioned algorithm is quasi-linear:

O(n log(n)) (49)

The reason for this is that the algorithm has two fundamental parts:

(I) Ordering of the setA × {m, M} following the ordering relation �
(II) Iterative construction of the sequences:

si ,i = 0, . . . , 2n

α̂i , β̂i , γ̂i , μi ,i = 1, . . . , 2n − 1

φi ,i = 1, . . . , 2n

The first, using merge sort, is of quasi-linear complexity: O(n ∗ log(n)). The second,
which involves iteratively calculating the different coefficients is of linear complexity:
O(n). In conclusion, the complexity is quasi-linear. This fact means that our algorithm
is a tool that able to tackle large-scale problems.

6 Conclusions

In this paper we have established the analytic solution for the classic firm’s profit
maximization problem in the general case with n inputs. We have considered, for the
first time, maximum constraints for the inputs. For the considered models, the solution
may not be derivable and our method calculates the exact solution without any kind
of simplification.

Our study has a number of advantages over other methods: the exact boundary
solution is obtained and the method is not affected by the size or the derivability of
the problem. Moreover, the complexity of the algorithm is quasi-linear and it is able
to tackle large-scale problems.
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