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Abstract In this paper, we present a quasi-analytical method to calculate the optimal
enzyme concentrations in a chemical process, considering the minimization of the
operation time. The resulting constrained optimal control problem is solved using
Pontryagin’s Minimum Principle. First, our method allows us to obtain the generalized
solution of an n-step system with an unbranched scheme and bilinear kinetic models
and non-equal catalytic efficiencies of the enzymes. Second, we discuss the sensitivity
analysis of these catalytic parameters in detail.
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1 Introduction

A fast and reliable mathematical model derived from chemical principles is needed to
optimize a chemical process. Kinetic investigations of multi-step enzymatic reactions
are a crucial part of these studies. In this context, one of the most important problems
is the study of enzyme concentrations, while minimizing the operation time during
which the substrate is converted into the product. A very common kinetic model for
an enzymatic reaction is the first-order kinetic model. Let us consider an unbranched
metabolic pathway composed of n irreversible reaction steps converting substrate x1
into product p. We denote as xi (i = 2, . . . , n) the concentration of the intermediate
compounds, and as ui (i = 1, . . . , n), the concentration of the enzyme catalyzing the
i-th reaction.
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An explicit solution for the simplest case, i.e. n = 2, can be found in [1], while
for longer pathways, the authors solved the optimization problem numerically. The
solution is obtained quasi-analytically in [2], though with the constraint of considering
only the case of n = 3, with two intermediate compounds. In [3] several theoretical
results on the qualitative properties of the solution for the general case of n steps are
presented. These authors prove that the optimal enzyme concentration profile is of
the ” bang-bang” type (except in the last interval), though they do not present the
analytical solution.

In a previous paper [4], we extended the theoretical analysis of [1], [2] and [3],
presenting the quasi-analytical solution for the more general case of n steps while
assuming equal catalytic efficiencies of the enzymes (ki = 1). In [4], we addressed
the minimization of the transition time. This transition time is defined by a improper
integral running until infinite time. As this model may be considered somewhat unre-
alistic (even if this integral is approximated by a proper integral over a long, finite
time), in the present paper we shall consider a more realistic situation in chemistry or
biology. We shall minimize the operation time, defined by specifying the final product
concentration. It clearly makes more sense to define an operation time according to the
reasoning that a certain percentage, say 90 %, of the initial substrate should be con-
verted into product. Moreover, we shall substantially extend the theoretical analysis
of [4], considering nonequal catalytic efficiencies, ki .

Identification of the most sensitive parameters influencing the system conditions is
likewise of major importance for optimizing process control. Sensitivity analysis (SA)
investigates the relations between model parameters and a property of the outcome.
Classically (see, for example, [5] and [6]), SA is performed by the partial derivatives
of the outcome with respect to its parameters. This SA method is called differential
SA (also known as the direct method) and belongs to the so-called local methods, as
the derivative is taken at a fixed point in the state space of the model parameters. When
a closed-form equation describes the relationship between the independent variables
and the dependent variable, this SA is easy to perform. This is precisely the major
advantage of our method, which allows us to obtain the partial derivatives of the
concentration of the compounds, xi , with respect to the catalytic efficiencies of the
enzymes, ki . When the analytical solution is not available, a SA can be obtained by
increasing each parameter while leaving all others constant and analyzing the change
in model outcome. This method belongs to the class of one-at-a-time (OAT) methods
and is the method we shall use in this paper for the SA of the operation time, t f , with
respect to ki .

The paper is organized as follows. Section 2 presents the statement of the problem,
analyzing the kinetic model and the objective function in detail. In Sect. 3, the resulting
mathematical problem is presented as an optimal control problem. We prove a the-
orem based on Pontryagin’s Minimum Principle that allows us to obtain the optimal
solution. The two SA methods used for the optimal solution are presented in Sect. 4.
The optimal solutions of several numerical examples are then presented in Sect. 5,
as is the SA of the optimal solution. Finally, we present the conclusions drawn in
Sect. 6.
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2 Statement of the problem

2.1 Model formulation

Let us consider the following unbranched metabolic pathway composed of n irre-
versible reaction steps converting substrate x1 into product p:

x1
u1→ x2

u2→ x3
u3→ · · · → xn−1

un−1→ xn
un→ p (1)

where x1(t) is the substrate concentration at time t , p(t) the concentration of the final
product at time t , xi (t) (i = 2, . . . , n) the concentration of the intermediate compounds
at time t , and ui (t) (i = 1, . . . , n) the concentration at time t of the enzyme catalyzing
the i-th reaction. In this kind of problem, the rate laws vi (xi (t), ui (t)) (vi being the
rate of the i-th reaction) characterize the kinetic properties of the enzymes catalyzing
the pathway. Most enzyme kinetic models satisfy the following assumptions:

(i) The rate laws are linear in the enzyme concentrations, ui :

vi (xi (t), ui (t)) = wi (xi (t)) · ui (t) (2)

(ii) The functions wi (xi (t)) ≥ 0 are continuous and:

dwi

dxi
> 0 for xi > 0, with wi (0) = 0, (i = 1, . . . , n) (3)

These two conditions are satisfied by the following common kinetic models:

wi (xi ) = ki xi (Mass action)

wi (xi ) = ki xi

Ki + xi
(Michaelis-Menten)

wi (xi ) = ki xm
i

Ki + xm
i

(Hill)

wi (xi ) = ki xc
i (Power law)

(4)

where ki > 0, Ki > 0, m ≥ 0 and c > 0. The dynamic model for the pathway shown
in (1) is given by mass conservation as:

ẋi (t) = vi−1(xi−1(t), ui−1(t)) − vi (xi (t), ui (t)); (i = 1, . . . , n) (5)

Many papers address these models. For example, in [1] and [2], the authors assumed
both bilinear (linear in the metabolite concentrations, xi , and linear in the enzyme
concentrations, ui ) and irreversible rate laws. Both papers present the solution for
very simple cases: in [1], for n = 5, and in [2], for n = 3. In [3], however, it is used
the Michaelis-Menten model, a nonlinear model in xi , though also for a particular case
(n = 4).
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In this paper, we assume the mass action equation:

wi (xi ) = ki xi (6)

and hence use a bilinear kinetic model to solve the problem analytically for the general
case of n reactions. For the sake of simplicity, we employ normalized quantities, i.e.
enzyme levels are divided by the maximum total enzyme concentration, and substrate,
intermediate and product levels are divided by the initial substrate concentration. The
model of the reactions in (1) can then be described using (2), (5), and (6) by the set of
differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −k1u1x1 x1(0) = 1, x1(t) ≥ 0

ẋ2 = k1u1x1 − k2u2x2 x2(0) = 0, x2(t) ≥ 0

ẋ3 = k2u2x2 − k3u3x3 x3(0) = 0, x3(t) ≥ 0

· · ·
ẋn = kn−1un−1xn−1 − knun xn xn(0) = 0, xn(t) ≥ 0

(7)

As an initial condition, for t = 0, we shall consider the concentrations of the intermedi-
ate compounds and of the product to be equal to zero. We assume that the enzymes can
be switched on and off instantaneously. Finally, we shall consider the concentrations
of the compounds, xi , as well as those of the enzymes, ui , to be positive limited quan-
tities and, after normalization, that the upper bound on the enzymatic concentration
is 1.

In a previous paper [4], we assumed equal catalytic efficiencies of the enzymes (ki =
1). In this paper, we shall substantially generalize the study, considering nonequal
catalytic efficiencies.

2.2 Objective function

The optimization of enzyme concentrations in metabolic pathways can be calculated
using the optimality criterion of minimizing the time period during which an essential
product is generated. Our goal is to convert substrate x1 into product p as fast as
possible, taking into consideration several cost functions.

In [1], [2] and [4], the authors use the transition time, τ (defined in [7] and [8]).
This transition time is defined by a time integral running until infinite time:

min
u1,...un

τ = min
u1,...un

∫ ∞

0

1

x1(0)
(x1(0) − p(t))dt (8)

Due to normalization, x1(0) = 1, and the conservation relation:

x1(t) + x2(t) + · · · + xn(t) + p(t) = 1, ∀t ≥ 0 (9)
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the objective function may be written as:

min
u1,···un

τ = min
u1,...un

∫ ∞

0
(x1(t) + x2(t) + · · · + xn(t))dt (10)

where concentrations x1, x2, . . . , xn are the state variables (p is eliminated) and the
enzyme concentrations u1, u2, . . . , un comprise the control variables. Evidently, this
improper integral is unrealistic and hence other functionals must be taken into con-
sideration. In [3] it is considered a combined optimization of the time taken to reach
the new steady state and a measure of enzyme usage:

min
u1,...un

∫ t f

0
(1 + αT u(t))dt (11)

where α is the vector of weights and u = (u1(t), ...,un(t)), the vector of enzyme
concentrations.

In this paper, we shall consider a more realistic situation in biology, in which the
product p(t) need not be fully synthesized, but rather synthesized to a pre-defined
concentration. We therefore minimize the operation time (to distinguish it from the
transition time), defined by specifying the final product concentration, e.g. p(t f ) =
0.9, with t f as the final time. This definition does not require unrealistic improper
integration until infinite time. In the case of an exhaustible initial substrate, x1, from
the conservation relation (9), we have that:

x1(t f ) + x2(t f ) + · · · + xn(t f ) + p(t f ) = 1 (12)

and imposing p(t f ) = 0.9, we obtain:

x1(t f ) + x2(t f ) + · · · + xn(t f ) = 0.1 (13)

The objective function of the optimization problem may thus be defined as:

τ90 = min
u1,...un

t f = min
u1,...un

∫ t f

0
dt (14)

As we see, this objective coincides with (11) if we choose α = 0.

3 Optimal solution

In this section, we present the solution to the problem defined in the previous section:

τ90 = min
u1,...un

t f = min
u1,...un

∫ t f

0
dt (15)
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subject to:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −k1u1x1 x1(0) = 1, x1(t) ≥ 0

ẋ2 = k1u1x1 − k2u2x2 x2(0) = 0, x2(t) ≥ 0

ẋ3 = k2u2x2 − k3u3x3 x3(0) = 0, x3(t) ≥ 0

· · ·
ẋn = kn−1un−1xn−1 − knun xn xn(0) = 0, xn(t) ≥ 0

(16)

and (u1(t), ..., un(t)) ∈ Ω , being:

Ω = {u = (u1(t), . . . , un(t)) ∈ R
n|u1 ≥ 0, . . . un ≥ 0; u1 + · · · + un ≤ 1} (17)

We have thus stated an optimal control problem (OCP). Our standard Lagrange-type
OCP may be mathematically formulated as follows:

min
u(t)

∫ t f

0
F (t, x(t), u(t)) dt (18)

subject to satisfying:

ẋ(t) = f (t, x(t), u(t)) ; x(0) = x0 (19)

u(t) ∈ Ω, 0 ≤ t ≤ t f (20)

where F ≡ 1 is the objective function, x = (x1(t), . . . , xn(t)) ∈ R
n is the state

vector, with initial conditions x0, u ∈ R
n is the control vector, Ω denotes the set of

admissible control values, and t is the operating time, which starts from 0 and ends
at t f (the value to minimize). The state variables must satisfy the state equation (19),
with given initial conditions, and we consider the final state to be free. Let H be the
Hamiltonian function:

H(t, x, u, λ) = F (t, x, u) + λ · f (t, x, u) (21)

where λ = (λ1(t), . . . , λn(t)) ∈ R
n is called the costate vector. Using Pontryagin’s

Minimum Principle [9], the necessary conditions lead to a two-point boundary value
problem (TPBVP):

ẋ = ∂ H

∂λ
; x(0) = x0 (22)

·
λ = −∂ H

∂x
; λ(t f ) = 0 (23)

min
u∈�

H(t, x, u, λ) (24)

When control u appears linearly, the last optimality condition (24) leads to the mini-
mization of a linear function of n variables of the following type:
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min
u∈Ω

H = min
u∈Ω

{−μ1u1 − μ2u2 − · · · − μnun} (25)

where the functions μi are called the switching functions. It is known that control
ui will be activated when the switching function, μi , reaches its maximum value. If
ui switches between its upper and lower bounds only at isolated points in time, then
the optimal control is said to be a bang-bang type control [10]. The times are called
switching times.

We now present the solution to the OCP defined above using Pontryagin’s Minimum
Principle [9]. The fundamental result to obtain may be summarized as follows:

Theorem 1 There exists a set of switching times {t1, t2, · · · , tn−1}, (with 0 < ti < t j ,

for i < j ) which partition the optimization interval as:

[0, t1) ∪ [t1, t2) ∪ · · · ∪ [tn−2, tn−1) ∪ [tn−1, t f ] (26)

such that the optimal profile of the i-th enzyme is of the bang-bang type and satisfies:

u∗
i (t) =

{
1 for t ∈ [ti−1, ti )

0 for t /∈ [ti−1, ti )
; i = 1, . . . , n (27)

with t0 = 0 and tn = t f . In each interval [ti−1, ti ], i = 1, . . . , n, the optimal
metabolite concentration is given by:

x1(t) =
{

e−k1t i = 1
e−k1t1 i > 1

(28)

x j (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j−1∏

h=1
(1 − e−kh(th−th−1)) · e−k j (t j −t j−1) j = 2, . . . , i − 1

j−1∏

h=1
(1 − e−kh(th−th−1)) · e−k j (t−ti−1) j = i

i−1∏

h=1
(1 − e−kh(th−th−1)) · (1 − e−ki (t−ti−1)) j = i + 1

0 j = i + 2, . . . , n

(29)

Proof As the proof is quite similar to that presented in [4], we shall omit some steps
which the reader may consult in more detail in [4]. In our case, when the Hamiltonian,
H :

H = 1 + λ1(−k1u1x1) + λ2(k1u1x1 − k1u2x2) + · · · + λn(kn−1un−1xn−1 − knun xn)

(30)
is minimized w.r.t. the control variables, we have that:

min
u∈Ω

H = min
u∈Ω

{−μ1u1 − μ2u2 − · · · − μnun} (31)

= min
u∈Ω

{k1(λ1 − λ2)x1u1 − k2(λ2 − λ3)x2u2 − · · · − knλn xnun} (32)
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Hence, control ui will be activated when the function μi reaches its maximum. More-
over, according to the optimality condition (23), we have:

·
λ1 = k1(λ1 − λ2)u1, . . . ,

·
λn−1 = kn−1(λn−1 − λn)un−1,

·
λn = knλnun (33)

When control ui is activated, the coefficient μi has to be positive: μi ≥ 0, (∀i =
1, . . . , n) (otherwise ui = 0). The following condition can thus be easily seen to hold:

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn (34)

We shall obtain the optimal solution constructively by intervals, starting from t = 0
and concatenating the results.

– First interval [0, t1] . For t = 0 ⇒ u1 = 1, u2 = 0, u3 = 0, · · · , un = 0, since,
if u1 = 0 from (16), ẋ1 = 0 ⇒ x1(t) = 1,∀t , and the product will not be produced.
Therefore, from (16), we have:

⎧
⎪⎨

⎪⎩

ẋ1 = −k1x1 x1(0) = 1

ẋ2 = k1x1 x2(0) = 0

ẋ3 = 0, . . . , ẋn = 0 x3(0) = 0, . . . , xn(0) = 0

⇒

⎧
⎪⎨

⎪⎩

x1(t) = e−k1t

x2(t) = 1 − e−k1t

x3(t) = 0, . . . , xn(t) = 0
(35)

Moreover, from (16), (31) and (33), the following holds:

·
λ1 = k1 (λ1 − λ2) ,

·
λ2 = 0,

·
λ3 = 0 (36)

and

·
μ1 = 0

·
, μ2 ≥ 0, μ3 = 0, . . . , μn = 0 (37)

Hence,

μ1 = cte, μ2 = increasing, μ3 = 0, . . . , μn = 0 (38)

– Second interval [t1, t2] . For t = t1 ⇒ u1 = 0, u2 = 1, u3 = 0, . . . , un = 0.
Thus, from (16):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = 0 x1(t1) = e−k1t1

ẋ2 = −k2x2 x2(t1) = 1 − e−k1t1

ẋ3 = k2x2 x3(t1) = 0

ẋ4 = 0, . . . , ẋn = 0 x4(t1) = 0, . . . , xn(t1) = 0

⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1(t) = e−k1t1

x2(t) = (
1 − e−k1t1

)
e−k2(t−t1)

x3(t) = (
1 − e−k1t1

) (
1 − e−k2(t−t1)

)

x4(t) = 0, . . . , xn(t) = 0

(39)
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Once again, using (16), (31) and (33), we have that:

·
λ1 = 0,

·
λ2 = k2 (λ2 − λ3) ,

·
λ3 = 0,

·
λ4 = 0 (40)

and ·
μ1 ≤ 0,

·
μ2 = 0,

·
μ3 ≥ 0, μ4 = 0, . . . , μn = 0 (41)

Hence,

μ1 = decreasing, μ2 = cte, μ3 = increasing, μ4 = 0, . . . , μn = 0 (42)

The successive intervals are similarly obtained. In the last step, which simply
involves concatenating the solutions, we obtain the following result.

– Interval [tn−1, t f ]. For t = tn−1 ⇒ u1 = 0, u2 = 0, u3 = 0, · · · , un−1 =
0, un = 1. From the state equations:

ẋ1 = 0, . . . , ẋn−1 = 0, ẋn = −kn xn (43)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = e−k1t1

x2(t) = (
1 − e−k1t1

)
e−k2(t2−t1)

x3(t) = (
1 − e−k1t1

) (
1 − e−k2(t2−t1)

)
e−k3(t3−t2)

. . .

xn−2(t) = (
1 − e−k1t1

) · · · (1 − e−kn−3(tn−3−tn−4))e−kn−2(tn−2−tn−3)

xn−1(t) = (
1 − e−k1t1

) · · · (1 − e−kn−2(tn−2−tn−3))e−kn−1(tn−1−tn−2)

xn(t) = (
1 − e−k1t1

) · · · (1 − e−kn−1(tn−1−tn−2))e−kn(t−tn−1)

(44)

μ1 = cte, μ2 = cte, . . . μn−3 = cte, μn−2 = cte, μn−1 = decreasing, μn = cte

(45)

We now have to determine the switching times: t1, t2, . . . , tn−1, and the value of t f .
In order to do so, we apply the method of Lagrange multipliers to the augmented
functional:

L(t1, t2, . . . , tn−1, t f , β) = t f + β(x1(t f ) + x2(t f ) + · · · + xn(t f ) − 0.1) (46)

where the values of concentrations x1(t f ), x2(t f ), . . . , xn(t f ) are given by (44). We
now need to solve the non-linear system:

∂L

∂t1
= 0; ∂L

∂t2
= 0; . . . ; ∂L

∂tn−1
= 0; ∂L

∂t f
= 0; ∂L

∂β
= 0 (47)

which may be done by means of any widely used program. The problem is completely
solved. �

The Table 1 presents the results developed from the formula (29) for ease of com-
prehension.
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Table 1 Metabolite concentration

t ∈ [0, t1] :
⎧
⎪⎨

⎪⎩

x1(t) = e−k1t

x2(t) = 1 − e−k1t

x3(t) = 0; . . . ; xn(t) = 0

t ∈ [t1, t2] :
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1(t) = e−k1t1

x2(t) =
(

1 − e−k1t1
)

e−k2(t−t1)

x3(t) =
(

1 − e−k1t1
) (

1 − e−k2(t−t1)
)

x4(t) = 0; . . . ; xn(t) = 0

. . .

t ∈ [
tn−2, tn−1

] :
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = e−k1t1

x2(t) =
(

1 − e−k1t1
)

e−k2(t2−t1)

x3(t) =
(

1 − e−k1t1
) (

1 − e−k2(t2−t1)
)

e−k3(t3−t2)

. . .

xn−2(t) =
(

1 − e−k1t1
)

· · · (1 − e−kn−3(tn−3−tn−4))e−kn−2(tn−2−tn−3)

xn−1(t) =
(

1 − e−k1t1
)

· · · (1 − e−kn−2(tn−2−tn−3))e−kn−1(t−tn−2)

xn(t) =
(

1 − e−k1t1
)

· · · (1 − e−kn−2(tn−2−tn−3))(1 − e−kn−1(t−tn−2))

t ∈ [
tn−1, t f

] :
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = e−k1t1

x2(t) =
(

1 − e−k1t1
)

e−k2(t2−t1)

x3(t) =
(

1 − e−k1t1
) (

1 − e−k2(t2−t1)
)

e−k3(t3−t2)

. . .

xn−2(t) =
(

1 − e−k1t1
)

· · · (1 − e−kn−3(tn−3−tn−4))e−kn−2(tn−2−tn−3)

xn−1(t) =
(

1 − e−k1t1
)

· · · (1 − e−kn−2(tn−2−tn−3))e−kn−1(tn−1−tn−2)

xn(t) =
(

1 − e−k1t1
)

· · · (1 − e−kn−1(tn−1−tn−2))e−kn (t−tn−1)

4 Sensitivity analysis

Sensitivity analysis investigates the effect of parameter change on the solution of
mathematical models. The literature (see, for example, [5,6,11] and [12]) con-
tains details on the types of SA employed in various modeling situations. More
than a dozen SA techniques have been reported, two of which will be employed
in this paper. A generalized model is considered throughout the following defi-
nitions that contains several independent variables, X = (X1, . . . , Xn), and one
dependent variable, Y , where Y = f (X). The SA methods that we shall employ
are:
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(i) Differential SA. In this case, the sensitivity coefficient, φi , for a particular inde-
pendent variable, Xi , can be calculated from the partial derivative of the dependent
variable, Y , with respect to Xi :

φi = dY

Xi
(48)

If a measure that is independent of the units used for Y and Xi is needed, SXi can be
used:

SXi = dY

Xi

Xi

Y
(49)

where the quotient Xi/Y is introduced to normalize the coefficient by removing
the effects of units. When an explicit algebraic equation describes the relationship
Y = f (X), the differential SA is easy to perform. Employing the analytical formulas
(28) and (29) obtained in the previous section, we are able to obtain the sensitivity
coefficient, φi , of the concentration of the intermediate compounds and substrate xi

with respect to the catalytic efficiencies, ki (i = 1, . . . , n).
(ii) One-at-a-Time SA. The simplest SA method is to repeatedly vary one parameter

at a time while keeping the others fixed. A SA can be easily obtained by increasing
each catalytic efficiency, ki , by a given percentage, while leaving all others constant
and quantifying the change in model output one factor at a time (OAT). We shall use
this method to study the SA of the operation time, t f , with respect to ki , since, as
stated in the previous section, we do not possess the analytical relationship between
them.

These two types of analysis have been defined as local SA, as they address the point
chosen and not the entire parameter distribution.

5 Example: discussion of the results

Using the results presented in the previous section, we developed a program using
the Mathematica� package that allows us to obtain the optimal solution. We shall
perform three examples. The first presents the optimum solution as the number n of
intermediate compounds increases. The second example studies the sensitivity of the
concentrations with respect to the catalytic efficiencies, while the third studies the
influence of these efficiencies on the operation time.

5.1 Example 1: optimal solution

Let us consider the following values for the nonequal catalytic efficiencies, ki (s−1):

k1 = 10; k2 = 10; k3 = 9; k4 = 9; k5 = 8; k6 = 7; k7 = 5; k8 = 3; k9 = 12
(50)

In Table 2, we present the optimal solution for the cases n = 3, . . . , 9. Let us now
look at the switching times, ti (i = 1, . . . , n), and the operation time, τ = tn . Recall
that ui is given by 1 in all the intervals (when it is active). Moreover, the substrate
concentration, x1, the concentrations of the intermediate compounds, x2, . . . , xn , and
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Table 2 Switching times and
operation time of the optimal
solution

n 3 4 5 6 7 8 9

t1 0.3401 0.3702 0.3958 0.4188 0.4440 0.4755 0.4821

t2 0.6803 0.7404 0.7917 0.8376 0.8880 0.9510 0.9642

t3 1.0469 1.1404 1.2201 1.2915 1.3698 1.4677 1.4883

t4 − 1.5404 1.6485 1.7453 1.8516 1.9845 2.0124

t5 − − 2.1160 2.241 2.3792 2.5512 2.5874

t6 − − − 2.7898 2.9633 3.1801 3.2257

t7 − − − − 3.7150 3.9942 4.0529

t8 − − − − − 5.1845 5.2648

t9 − − − − − − 5.6817

Fig. 1 Metabolite and product
profile. Case n = 9

the concentration of the final product, p, are immediately obtained in any interval
using the formulas presented in Theorem 1. Figure 1 shows the optimal solution for
the case n = 9.

The results show that during each of the n intervals, only one enzyme is active and
present at its maximum value (ui = 1), corresponding to intermediate compound xi ,
which we wish to convert into xi+1, (i = 1, . . . , n − 1). The solution is hence of the
bang-bang type. In the first interval, starting from x1(0) = 1 and using u1, substrate
x1 is converted into x2. At the first switching time, t1, x2 reaches its maximum value,
x2(t1), while x1 takes on a constant value, x1(t1), which it will maintain until the final
instant, t f . The process is repeated in the second interval, though now it is x2 which,
starting from this maximum value, x2(t1), is converted into x3. The process is likewise
repeated for all xi . From the qualitative point of view, we may present the following
conclusions:

(i) The maximum values obtained by all the compounds, xi (ti−1), become progres-
sively smaller as the process advances, regardless of the values of ki (see Fig. 1).

(ii) The constant values, xi (ti ), which they maintain during a good part of the chain
reaction depend on the values of ki . If ki decreases, xi (ti ) increases, and vice
versa. Moreover, it is seen that if the ki are equal (cases k1 = k2 and k3 = k4),
the values decrease very slightly with i . In the example under consideration, the
values obtained are present in Table 3.
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Table 3 The constant values, xi (ti ) (10−3)

x1(t1) x2(t2) x3(t3) x4(t4) x5(t5) x6(t6) x7(t7) x8(t8) x9(t9)

8.06 7.99 8.80 8.72 9.71 10.97 15.12 24.53 6.09

(iii) In this paper, using different ki , the intervals between switching times (ST) are
directly related to the values of ki . It can be easily seen in Table 2 that if the ki

are equal (cases k1 = k2 and k3 = k4), the intervals between ST are also equal
(t1 − t0 = t2 − t1, and t3 − t2 = t4 − t3). It can also be seen that if ki decreases
(see, for example: k4 > k5 > k6 > k7 > k8), the intervals between ST increase,
and vice versa (case k8 < k9). This result is logical from the point of view of
reaction kinetics. Recall that in [4], with ki = 1, ∀i , and also with a different
functional (the transition time), these intervals become progressively smaller as
the chain reaction advances.

(iv) Product p is only generated in the last interval [tn−1, t f ] and the concentration
of the substrates in this time period are ordered as stated in (ii).

(v) The minimal operation time logically increases as the number of intermediate
compounds, n, increases.

(vi) Finally, it can also be seen that all the switching times are increasingly delayed
with increasing n and the intervals between ST also increase with n, regardless
of the values of ki .

5.2 Example 2: differential SA

This section presents the sensitivity properties of the optimal solution. Let us now see
how the Differential SA of our problem can be performed immediately, employing
analytic formulas to do so (28) and (29). The sensitivity coefficient, φi j , defined from
the partial derivative of the dependent variable xi (i = 1, . . . , n) with respect to k j

( j = 1, . . . , i):

φi j = dxi

k j
(51)

was calculated using the Mathematica� package. The result obtained for the sensitivity
coefficient, φi j , (i = 1, 2, 3), is shown in Fig. 2.

The main results are:

(i) The major influence on each xi corresponds to the parameters ki and ki−1. Regard-
ing the former has a negative derivative and the second, a positive derivative.

(ii) The main influence of ki−1 on xi is produced during the reaction: xi−1 → xi , the
sensitivity coefficient subsequently being virtually negligible.

(iii) The influence of ki on xi is noted most in the time interval during which the
reaction: xi → xi+1 takes place. It subsequently remains constant.

(iv) The rest of the parameters k j ( j < i − 1) exert a much smaller influence over
xi . In this case, the sensitivity coefficients are always positive, much smaller that
the previous ones, and also follow the shape of the metabolites.
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Fig. 2 Sensitivity coefficient
φi j (i = 1, 2, 3)

Figure 3 shows the results obtained for the remaining compounds: xi (i =
4, . . . , 9). The performance is similar to that already seen. The graph is not so
clear, as the sensitivity coefficients dxi

k j
sometimes overlap for j < i −1. The last

result can, however, be clearly distinguished in Fig. 3.
(v) The sensitivity coefficients increase progressively, in absolute values, as the reac-

tion advances.

5.3 Example 3: OAT SA

In this example, we analyze the influence of each ki on the operation time, t f . As
t f is obtained by solving the nonlinear system using approximate methods (47) (in
our case, using the Newton method included in Mathematica), we shall use the well-
known OAT SA. Varying one catalytic efficiency, ki , at a time and setting the others
to their nominal values, we obtain the optimal solutions of t f for different values of
ki . For ease of comprehension, we now choose a example with n = 6, the value of the
parameters ki (s−1) (all non-equal) being:

k1 = 10; k2 = 9; k3 = 8; k4 = 7; k5 = 6; k6 = 5 (52)

The results are shown in Fig. 4. We first solved the problem starting from the
base values (52), obtaining an optimal value of t f = 3.40187(s). Next, keeping the
remaining k j ( j �= i) constant, we successively varied each ki until duplicating its
base value (52). We represent 
ki , defined as the relative increment, in per unit, on
the x-axis, while the operation time, t f (s), is represented on the y-axis. The main
conclusions drawn are:
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Fig. 3 Sensitivity coefficient φi j (i = 4, . . . , 9)

Fig. 4 Optimal cost,
t f , as a function of catalytic efficiencies, ki

(i) As expected, the operation time, t f , always decreases with increasing ki .
(ii) The operation time, t f , is less sensitive to higher values of ki . For example,

increasing k1 = 10 to 100% of its nominal value (k∗
1 = 20) yields a t f = 3.16877(s),

whereas the same percentage increase in k6 (k6 = 5 → k∗
6 = 10) yields a t f =

3.00707(s).

6 Conclusions

Our paper supposes the generalization of the optimal control problem that arises when
considering a linear unbranched chemical process with n steps. We provide a quasi-
analytical solution to the case of n steps, considering the minimization of the operation
time and non-equal catalytic efficiencies of the enzymes. The model used for the cost
functional and the kinetic model used in the reaction are thus much more realistic.
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Moreover, using our closed-form equation for the optimal solution, the SA is very easy
to perform. This type of analysis is very important for researchers when quantifying
the importance of the parameters employed. We believe that the results presented in
this paper constitute a fundamental tool for comparing any other approximate method.
Moreover, in this respect, it is essential no longer be subject to the constraint of equal
ki . Finally, as regards future lines of research, it would be very interesting to carry
out similar analytical studies, though using nonlinear models such as the Michaelis-
Menten model.
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