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The infimal convolution operation arises in mathematical economics in the analysis of several problems.
In this paper we first present a survey and summarize two previous papers by the authors on the classic
firm’s cost-minimization problem. Moreover, we present a new application: the analytical solution of the
utility maximization problem which we shall obtain applying the supremal convolution operation.
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1. Introduction

The infimal convolution (IC) operation is a fundamental fact in discrete convex analysis that is
often usefully applied in mathematical economics. In [16], the continuous IC operation arises in
the analysis of problems involving transferable utilities. In [7], the value of the optimal allocation
problem is given by the IC. [2] investigates basic properties of ICs defined between two convex
risk measures. [1] formulates the optimal risk allocation problem as their IC. An excellent review
of the literature on IC within the context of optimal risk exchange and optimal allocation problems
can be found in [10].

This operator is well known within the context of convex analysis [11,15,17,18]. We shall
commence by reviewing its definitions and basic properties.

Definition 1 Let F, G : R −→ R̄ := R ∪ {+∞, −∞} be two functions. We denote as the IC of
F and G the operation defined as follows:

(F
⊙

G)(x) := inf
y∈R

{F(x) + G(y − x)}.
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2 L. Bayón et al.

It is well known that (�(R, R̄),
⊙

) is a commutative semigroup. Furthermore, for every finite
set E⊂ N and Fi : R → R̄, ∀i ∈ E, it is verified that

(
⊙

i∈EFi)(K) = inf∑
i∈E xi=K

∑
i∈E

Fi(xi).

When the functions are considered constrained to a certain domain, Dom(Fi) = [mi, Mi], the
above definition continues to be perfectly valid redefining Fi(x) = +∞ if x /∈ Dom(Fi). In this
case, the definition may be expressed as follows:

(F1
⊙

F2)(ξ) := min
x1+x2=ξ

mi≤xi≤Mi

(F1(x1) + F2(x2)) = min
m1≤x≤M1

m2≤ξ−x≤M2

((F1(x) + F2(ξ − x)).

Another problem of mathematical economics in which the IC operation offers major advantages is
in the classic firm’s cost-minimization (FCM) problem. In two previous papers [3,4], the authors
of the present paper presented two new applications of the IC: in [3], the FCM problem with
the Cobb–Douglas production function, and in [4], the FCM problem with the linear production
function in economies of scale. The approach and fundamental results obtained are summarized
in Section 2. One advantage of our technique is that it allows the analytical solution to be obtained
in the general case, considering constraints for the inputs.

In Section 3, we present a new application to demonstrate the enormous potential of this
mathematical tool in the field of economics: the analytical solution of the utility maximization
problem. We shall address this problem in an exact way in this paper, transforming it into the
constrained supremal convolution (SC) problem of the log-concave functions. It should be stressed
that classical optimization techniques solve problems of this type for specific budget levels. In this
paper, we provide, in a simple way, closed formulae for solving the family of problems resulting
from ξ covering the entire range of possible budget levels. Therefore, the principal advantage of
the method proposed here compared with traditional techniques, in which a different problem
needs to be solved each budget level, is that we obtain the solution for any value of the budget
level.

We present an academic example with m = 20 inputs in Section 4 to demonstrate the potential
of our method in large systems. Finally, Section 5 presents a realistic case based on a classic
example [8,9], to which we have added inequality constraints on the inputs. Our method is able
to incorporate these constraints, thus increasing the possibilities of classical models.

2. Applications of IC

We shall see some applications of the IC operator in this section, all of which are variants of the
classic FCM problem.

2.1 FCM problem with the Cobb–Douglas production function

One of the most well-known problems in the field of Microeconomics is the FCM Problem (see,
e.g. [12,14,20]). In [3], we established the analytical expression for the cost function c(w, y) using
the Cobb–Douglas model, considering maximum constraints for the inputs. Moreover, we proved
that this solution belongs to the class C1.
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We first present the classic FCM problem. This problem can be expressed as follows: produce
a given output y, and choose inputs to minimize its cost:

c(w,y) = min
x≥0

wx

s.t. f (x) = y, (1)

where x ∈Rm are the inputs and w ∈Rm are the factor prices. We consider the general Cobb–
Douglas production function

y = f (x) = A
m∏

i=1

xαi
i

and we shall usually measure units so that the total factor productivity A = 1. The sum of αi

determines the returns to scale. Our cost-minimization problem will be:

c(w,y) = min
m∑

i=1

wixi

s.t. y =
m∏

i=1

xαi
i

0 ≤ xi ≤ Mi; i = 1, . . . , m. (2)

We shall address this problem in an exact way in this paper, transforming it into a nonlinear
(exponential) separable programming problem, which we state as a constrained IC problem.
Taking into account the following changes in the variables:

ln y = q,

αi ln xi = zi, i = 1, . . . , m

the cost-minimization problem (2) is equivalent to the IC problem:

c̃(w,q) = min
m∑

i=1

wi e(1/αi)zi

s.t.
m∑

i=1

zi = q

− ∞ < zi ≤ αi ln Mi = Pmax
i ; i = 1, . . . , m. (3)

The function c̃(w,·) is, in fact, the IC of the exponential functions

Fi(zi) := wi e(1/αi)zi .

In [3] the solution of the cost-minimization problem is shown to be the following.

Theorem 1 The conditional demand function for the kth input is

xk(w, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m∏
i=1

(
αkwi

αiwk

)αi/α̃1

· y1/α̃1 if y < eθ1 ,

exp

[
(− ∑j

i=1 Pmax
i )

α̃j+1

]
m∏

i=j+1

(
αkwi

αiwk

)αi/α̃j+1

· y1/α̃j+1 if eθj ≤ y < eθj+1 ≤ eθk ,

ePmax
k /αk if y ≥ eθk
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4 L. Bayón et al.

with the coefficients

θk =
m∑

i=k

αi

αk
Pmax

k +
m∑

i=k

ln

(
αiwk

αkwi

)αi

+
k−1∑
i=1

Pmax
i

and the cost function is a piecewise potential (plus constant)

c(w, y) =
{

w̃1y1/α̃1 if y < eθ1 ,

μ̃k + w̃ky1/α̃k if eθk−1 ≤ y < eθk

with the coefficients

μ̃k =
k−1∑
i=1

wi ePmax
i /αi ; α̃k =

m∑
i=k

αi,

w̃k = exp

[
(− ∑k−1

i=1 Pmax
i )

α̃k

] ⎡
⎣α̃k

m∏
j=k

(
wj

αj

)αj/α̃k

⎤
⎦ .

2.2 FCM problem with a linear production function and economies of scale

Problems involving economies of scale (in production and sales) (see, e.g. [6,13,19]) can often be
formulated as concave quadratic programming problems [5]. In [4], we consider a case in which
n products are being produced, with xi being the number of units of product i and wi being the
unit production cost of product i. As the number of units produced increases, the unit cost usually
decreases. This can often be correlated by a linear functional

wi(xi) = bi − cixi, (4)

where ci > 0. Thus, given constraints on production demands and the availability of each product
and using the classic linear production function model, the FCM problem can be written as

C(y) = min
x

n∑
i=1

xiwi(xi),

s.t.
n∑

i=1

aixi = y; ai �= 0, i = 1, . . . , n,

0 ≤ xi ≤ Ui; i = 1, . . . , n. (5)

where y is the output and Ui are the maximum constraints for the inputs. This is a concave
minimization problem. As well as representing a situation in which the inputs are acquired with
a discount proportional to the amount, the affine function model for the prices (4) can also be
interpreted as dealing with inputs which are in turn outputs of a prior production process of
economies of scale with a quadratic cost: xibi − cix2

i . On the other hand, the linear production
function is presented in a natural way when the output is the result of the sum of the inputs (ai = 1)
or, in general, a specific fraction of each of these.
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Using Equation (4) and making these changes in the variables

aixi = zi; aiUi = Mi,

bi

ai
= βi;

ci

a2
i

= γi

the FCM problem may be re-written as follows:

C(y) = min
z

n∑
i=1

(βizi − γiz
2
i )

s.t.
n∑

i=1

zi = y

0 ≤ zi ≤ Mi; i = 1, . . . , n, (6)

which makes C(y) the IC of the quadratic functions:

Fi(zi) := βizi − γiz
2
i

respectively constrained to the domains [0, Mi]; i.e.

C = F1
⊙

F2
⊙

. . .
⊙

Fn.

In [4], we studied the IC of two concave functions, which is crucial as the basis for the optimization
algorithm. Unfortunately, the IC operator does not preserve the concave nature of the functions.
In general, the result is a piecewise concave function. This means that the IC of more than two
functions cannot be obtained by means of a simple reiteration of the aforestated lemma, but
requires resorting to calculating the IC of several piecewise concave functions. To perform this
calculation, we shall interpret a piecewise concave function as the minimum function of several
concave functions, preceding as shown in the following obvious lemma.

Lemma 1 Let the function

F(x) =

⎧⎪⎨
⎪⎩

F1(x) if x ∈ [m1, M1]
· · · · · · · · ·
Fk(x) if x ∈ [mk , Mk]

be piecewise concave (concave in each interval [mk , Mk]). Thus,

F(x) = min
i∈{1,...k}

Fi(x),

where we have redefined each function Fi(x) as

Fi(x) :=
{

Fi(x) if x ∈ [mi, Mi]
∞ if x /∈ [mi, Mi] , i = 1, . . . k.

Once redefined in this way, the calculation of the IC of two piecewise concave functions requires
a combinatorial exploration that is reflected in the following proposition.
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6 L. Bayón et al.

Proposition 1 Let F(x) := mini∈A(Fi(x)) and G(x) := mini∈B(Gi(x)), then:

(F
⊙

G)(t) = min
(i,j)∈A×B

(Fi
⊙

Gj)(t).

This proposition justifies the construction of the IC of the two functions defined piecewise as the
minimum function of all the possible ICs of pairs of pieces. Now, bearing in mind the associative
nature of the IC operation, the IC may be calculated by means of a recursive process, carrying
out n operations of IC considering the following recurrence:

H1
⊙

H2
⊙ · · · ⊙Hn = (H1

⊙
H2

⊙ · · · ⊙Hn−1)
⊙

Hn.

The calculation of the IC

(F
⊙

G)(x) = min
i∈{1,...,N}((Fi

⊙
G)(x))

is performed in two phases:

Phase (1) Calculation of Fi
⊙

G for each i ∈ {1, . . . , N}.

Phase (2) Calculate mini∈{1,...,N}(Fi
⊙

G)(x).

Once again, we stress the fact that the previously proposed recursive algorithm allows us to
calculate the analytical solution for the piecewise concave quadratic functions.

3. The utility maximization problem

In this section, we shall consider the utility maximization problem for the case of the utility
function following the Cobb–Douglas model,

∏m
i=1 xαi

i , and the availability of the commodities
having upper constraints. We shall obtain the analytical solution of the problem with the aid of
the SC operator. This operator is defined in a similar way to that of the IC:

Definition 2 For every finite set E⊂ N and Fi : R → R̄, ∀i ∈ E functions, we denote as the SC
of Fi the operation defined as follows:

(�
i∈E

Fi)(K) = sup∑
i∈E xi=K

∑
i∈E

Fi(xi).

When the functions are considered constrained to a certain domain, the definition may be expressed
as follows:

(F1 � F2)(ξ) := max
x1+x2=ξ

mi≤xi≤Mi

(F1(x1) + F2(x2)) = max
m1≤x≤M1

m2≤ξ−x≤M2

((F1(x) + F2(ξ − x)).

In the utility maximization problem, the aim is to choose the best among all possible options
subject to the budget constraint:

∑m
i=1 pixi = ξ and to the available amount of commodities:

0 ≤ xi ≤ Ni such that the utility is maximized, where p = (p1, . . . , pm) is the price vector of the
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International Journal of Computer Mathematics 7

different commodities, i.e.:

u(p, ξ) = max
m∏

i=1

xαi
i ,

s.t.
m∑

i=1

pixi = ξ ,

0 ≤ xi ≤ Ni. (7)

Problems of this kind, with box constraints, become complicated in the presence of boundary
solutions. We shall address this problem in an exact way in this paper, transforming it into a
nonlinear separable programming problem, which we state as a constrained SC problem. The
problem (7) is equivalent to a new problem:

ũ(p, ξ) = max
m∑

i=1

αi ln

(
yi

pi

)
,

s.t.
m∑

i=1

yi = ξ ,

0 < yi ≤ piNi = Mi (8)

with αi, pi > 0, i = 1, . . . , m, in which only the following change in the variables needs to be
taken into account:

pixi = yi.

The function ũ(p,·) is in fact the SC of the log-concave functions

Fi(yi) := αi ln

(
yi

pi

)
.

In this paper, we develop the necessary mathematical tools to justify the proposed method for
solving the stated problem.

3.1 Solution of the problem

In this section, we shall calculate the SC for the functions Fi(yi) and then go on to prove that it
belongs to the class C1. The demonstration of the results not shown will be analogous to those
developed in a previous paper [9] for exponential functions.

Let us calculate the SC of the concave functions Fi(yi) considering their domain to be
constrained to (0, Mi]. Let us assume throughout the paper, without loss of generality, that

F ′
i(Mi) ≤ F ′

i+1(Mi+1), ∀i = 1 . . . m. (9)

Let the function F : (0, M1] × · · · × (0, Mm] −→ R given by

F(y1, . . . , ym) :=
m∑

i=1

Fi(yi).

Let Cξ be the set

Cξ :=
{

(y1, . . . , ym) ∈ (0, M1] × · · · × (0, Mm]
/

m∑
i=1

yi = ξ

}
.
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8 L. Bayón et al.

The SC of the {Fi}m
i=1is

(F1 � · · · � Fm)(ξ) := max
Cξ

m∑
i=1

Fi(yi).

Let us now see the definitions of the elements which are present in our problem.

Definition 3 Let us call the function �i : (0,
∑m

j=1 Mj] −→ (−∞, Mi] the ith distribution
function, defined by

�i(ξ) = yi, ∀i = 1, . . . , m,

where (y1, . . . , ym) is the unique maximum of F on the set Cξ , i.e.

m∑
i=1

�i(ξ) = ξ and
m∑

i=1

Fi(�i(ξ)) = (F1 � · · · � Fm)(ξ).

The following lemma guarantees that if yi reaches its maximum value, all those yk for which
the derivative of Fk at its maximum value is greater than or equal to the derivative corresponding
to Fi will likewise have already reached their maximum.

Lemma 2 If the function F reaches at (a1, . . . , am) the maximum on the set Cξ and, for a certain
i ∈ {1, . . . , m}, ai = Mi, then

∀k ∈ {1, . . . , m}/F ′
i(Mi) ≤ F ′

k(Mk) =⇒ ak = Mk .

The following lemma establishes the order of the points where the variables reach their
maximum value.

Lemma 3 The parameters

θk :=
m∑

i=k

Mi + Mk

αk

k−1∑
i=1

αi

satisfy

θm ≤ θm−1 ≤ · · · ≤ θ1 =
m∑

i=1

Mi.

Proof

θk+1 =
m∑

i=k+1

Mi + Mk+1

αk+1

k∑
i=1

αi ≤
m∑

i=k+1

Mi + Mk

αk

k∑
i=1

αi

=
m∑

i=k

Mi + Mk

αk

k−1∑
i=1

αi = θk .

�

The following theorem establishes a necessary and sufficient condition to obtain the interior
solution.
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International Journal of Computer Mathematics 9

Theorem 2 The function F(y1, . . . , ym) attains the maximum over the set Cξ at the point

(a1, . . . , am) ∈ o
Cξ iff

ξ < θm = Mm

αm

m∑
i=1

αi.

Proof Note that in problem (7) the xi belong to a compact set, which clearly guarantees
the existence of the maximum. Furthermore, the concavity of the functions Fi guarantees its
uniqueness. �

Having proven the above results, we are now in a position to obtain the Distribution Functions:

Theorem 3 For every k = 1, . . . , m, the kth distribution function is

�k(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αk∑m
i=1 αi

ξ if ξ < θm,

αk∑j−1
i=1 αi

⎡
⎣ξ −

m∑
i=j

Mi

⎤
⎦ if θj ≤ ξ < θj−1 ≤ θk ,

Mk if ξ ≥ θk ,

with the coefficients

θk =
m∑

i=k

Mi + Mk

αk

k−1∑
i=1

αi.

Suggestion for the Proof. In view of Theorem 1, if ξ < θm, then the distribution functions �k(ξ) <

Mk for all k and it remains to derive the expression for yk . If θm ≤ ξ < θm−1, then the maximum
of

∑m
i=1 Fi(yi) cannot be attained in the interior. According to Lemma 2, at least ym = Mm. Thus,

�m(ξ) = Mm. The same argument applies to the remaining problem of dimension m − 1. Finally,
repeating the argument once again, we obtain the results shown for the kth distribution function.

Now, following a similar reasoning to that used in [3], it is straightforwardly proven that the
SC of the functions {Fi}m

i=1 belongs to the class C1 :

Theorem 4 Let {Fi}m
i=1 ⊂ C1(R). Let us consider

(F1 � F2 � · · · � Fm)(ξ) := max
Cξ

m∑
i=1

Fi(yi)

with Cξ =
{

(y1, · · · ym) ∈
m∏

i=1

(0, Mi]
∣∣∣∣∣

m∑
i=1

yi = ξ

}
.

Then

(F1 � F2 � · · · � Fm) ∈ C1

(
0,

m∑
i=1

Mi

]
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10 L. Bayón et al.

Theorem 5 The SC of the log functions Fi(yi) is a logarithmic piecewise function:

(F1 � F2 � · · · � Fm)(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β̃m+1 +
m∑

i=1

αi ln

(
ξ

pi

)
if ξ < θm,

β̃k +
k−1∑
i=1

αi ln

(
ξ −

m∑
i=k

Mi

)
if θk ≤ ξ < θk−1,

with the coefficients

α̃k =
k∑

i=1

αi; β̃k =
k−1∑
i=1

αi ln

(
αi

α̃k−1

)
+

m∑
i=k

αi ln

(
Mi

pi

)
.

Moreover, it belongs to the class C1.

3.2 Solution of the utility maximization problem

Having calculated the function ũ(p, ξ) and having established its character, C1, considering the
fact that u(p, ξ) = eũ(p,ξ), the following theorem provides us with the analytical solution of the
utility maximization problem:

Theorem 6 The demand for the kth commodities is

xk(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

αk

α̃m · pk
ξ if ξ < θm,

αk

α̃j−1 · pk

⎛
⎝ξ −

m∑
i=j

Mi

⎞
⎠ if θj ≤ ξ < θj−1 ≤ θk ,

Mk

pk
if ξ ≥ θk ,

and the maximum utility obtained for each budget level ξ is

u(p, ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m∏
i=1

(
αi

pi · α̃m

)αi

· ξαi if ξ < θm,

μ̃k

k−1∏
i=1

(
αi

pi · α̃k−1

)αi

·
⎛
⎝ξ −

m∑
j=k

Mj

⎞
⎠

αi

if θk ≤ ξ < θk−1,

with the coefficients

α̃k =
k∑

i=1

αi; μ̃k =
m∏

i=k

(
Mi

pi

)αi

.

Proof Taking into account the change in the variable pixi = yi and Theorem 3, we obtain the
expression of the demand for the kth commodities, xk(ξ).

Similarly, from Theorem 5, we obtain the expression of the maximum utility for each budget
level ξ , u(p, ξ). �
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International Journal of Computer Mathematics 11

4. Example I

We shall now consider the following example:

u(p, ξ) = max
m∏

i=1

xαi
i ,

s.t.
m∑

i=1

pixi = ξ ,

0 ≤ xi ≤ Ni,

with m = 20 commodities, and with the data presented in Table 1. This example has also been
used in [3].

Figure 1 shows the graph of the utility function, u(p, ξ), obtained for each budget level ξ .
In addition, the area where α̃k > 1 and where the utility function is hence a concave function,

is highlighted in grey.
The values {θk}m

k=1 = {142.78, 138.798, 127.86, 125.94, 122.04, 118.717, 111.115, 97.92,
97.2707,90.7267,88.51, 83.8387, 83.7333, 71.6176, 54.3, 52.4364, 45.42, 36.6, 31.3105, 27.4083}
constitute the different levels of budget level ξ at which the parameters of the utility function
expression change. These correspond to the levels at which the different commodities reach their
maximum value, which, according to the theoretical development, they do so in this example in
the following order: {14, 4, 16, 20, 11, 5, 7, 3, 6, 13, 19, 9, 12, 15, 18, 8, 2, 17, 10, 1}. The analytical
expression of the piecewise utility function is presented in Table 2, being obtained as shown in
Theorem 6.

Table 1. Example data.

i 1 2 3 4 5 6 7 8 9 10

αi 0.12 0.25 0.1 0.11 0.13 0.14 0.24 0.22 0.15 0.19
Ni 1 2 1.5 3 2.4 3.9 3 1 1.9 1
pi 1.1 2 3.2 6.1 4 1.7 5 4.2 2.9 2

i 11 12 13 14 15 16 17 18 19 20

αi 0.15 0.09 0.18 0.05 0.17 0.08 0.16 0.21 0.1 0.15
Ni 2 3 2.5 3 1 2.8 2 1.4 2 3
pi 6 1.1 3 4.1 5 2.8 1 3 2 4.5

Figure 1. Utility function, u(p, ξ).
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Table 2. Piecewise utility function.

u(p, ξ) ξ ∈ [a, b)

6.53045 · 10−6 · ξ2.99 [0, 27.4083)

0.0000109281 · (−1.1 + ξ)2.87 [27.4083, 31.3105)

0.0000250898 · (−3.1 + ξ)2.68 [31.3105, 36.6)

0.0000513895 · (−5.1 + ξ)2.52 [36.6, 45.42)

0.000164155 · (−9.1 + ξ)2.27 [45.42, 52.4364)

0.000463575 · (−13.3 + ξ)2.05 [52.4364, 54.3)

0.00123358 · (−17.5 + ξ)1.84 [54.3, 71.6176)

0.00285854 · (−22.5 + ξ)1.67 [71.6176, 83.7333)

0.00451842 · (−25.8 + ξ)1.58 [83.7333, 83.8387)

0.00958282 · (−31.31 + ξ)1.43 [83.8387, 88.51)

0.0158164 · (−35.31 + ξ)1.33 [88.51, 90.7267)

0.0385114 · (−42.81 + ξ)1.15 [90.7267, 97.2707)

0.0768389 · (−49.44 + ξ)1.01 [97.2707, 97.92)

0.12455 · (−54.24 + ξ)0.91 [97.92, 111.115)

0.403284 · (−69.24 + ξ)0.67 [111.115, 118.717)

0.752439 · (−78.84 + ξ)0.54 [118.717, 122.04)

1.50284 · (−90.84 + ξ)0.39 [122.04, 125.94)

2.87947 · (−104.34 + ξ)0.24 [125.94, 127.86)

3.95551 · (−112.18 + ξ)0.16 [127.86, 138.798)

6.01492 · (−130.48 + ξ)0.05 [138.798, 142.78)

These results allow us to check the C1 character of the utility function.

5. Example II

Finally, in this section we present a realistic case based on a classic example, to which we have
added inequality constraints on the inputs. We consider the micro-funded model presented in [8]
which defines lifestyle and explains the relationship between health and income and the effects
of income on health. The model proposed in [9] is augmented in [8] to produce a model with two
equations: (1) the consumer utility function and (2) the health production function (HPF).

First, let us assume that an economy produces two commodities for consumption, x and z. The
consumer utility function is assumed to be a Cobb–Douglas function in which health, h, is an
input, and, for this reason, health affects the consumer utility function. The other two inputs are
the commodities x and z. The utility function can be written as

U(h, x, z) = hαxβzδ , (10)

where α, β and δ are the elasticities of h, x and z, respectively. The HPF is

h(x, z, h0, ψ , t, ε) = xρz−γ h0ψ eφt eε

where health, in addition to the commodities x and z, also depends on the initial level of health
(h0), public health (ψ), time (t) and a stochastic component, ε. The function can be split into two
parts: xpz−γ can be interpreted as a consumer’s activity, and h0ψ eφt eε can be attributed to other
factors. To simplify the model, [8] use the relation: 
 = h0ψ eφt eε and assume 
 = 1. The HPF
is hence:

h(x, z) = xρz−γ (11)

To maximize the consumer utility function, Equation (11) is substituted into Equation (10)
obtaining:

U(x, z) = xαρ+βzδ−αγ (12)
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The elasticity with respect to x becomes αρ + β, and the elasticity with respect to z becomes
δ − αγ . The consumer’s budget constraint is

px · x + pz · z = cy (13)

where px and pz are the prices of the goods, y is the per capita income used for consumption, and
c is the average propensity to consume (0 < c < 1). Furthermore, we shall consider limitations
on the maximum values of commodities x and z :

0 < x ≤ Mx; 0 < z ≤ Mz. (14)

To maximize (12) w.r.t Equations (13) and (14), simply applying Theorem 6, we are able to present
the closed formulae for the solution. Assuming, without loss of generality that F ′

x(Mx) ≤ F ′
z(Mz),

the demand for the commodities is

x(y) =

⎧⎪⎨
⎪⎩

αρ + β

β + δ + α(ρ − γ )

cy

px
if cy < θ2,

cy − pzMz

px
if θ2 ≤ cy ≤ θ1,

z(y) =
⎧⎨
⎩

δ − αγ

β + δ + α(ρ − γ )

cy

pz
if cy < θ2,

Mz if θ2 ≤ cy ≤ θ1,

where

θ2 = pzMz
β + δ + α(ρ − γ )

δ − αγ
; θ1 = pxMx + pzMz

and the maximum utility u(px, pz, y) obtained for each budget level y is

u =

⎧⎪⎪⎨
⎪⎪⎩

(
αρ + β

β + δ + α(ρ − γ )

cy

px

)αρ+β (
δ − αγ

β + δ + α(ρ − γ )

cy

pz

)δ−αγ

if cy < θ2,(
cy − pzMz

px

)αρ+β

(Mz)
δ−αγ if θ2 ≤ cy ≤ θ1.

6. Conclusions

In this paper, we have presented some of the mathematical economics problems in which the
IC operator is a very useful tool. We have presented a summary of two applications to the FCM
problem: the FCM problem with the Cobb–Douglas production function, and the FCM problem
with the linear production function in economies of scale. Moreover, we have presented a new
application: the analytical solution of the utility maximization problem.

IC is a mathematical tool with an enormous potential in the field of economics. It should be
noted that this technique allows the analytical solution to be established in the general case with m
inputs and considering constraints for the inputs. Our study presents a number of advantages with
respect to other methods: the exact boundary solution is obtained and the method is not affected
by the dimension of the problem. At the same time, it is easy to generalize to other studies, such
as the classic profit maximization problem, including maximum constraints for the inputs.

Finally, we stress the fact that our paper does not solve a single concrete problem, but rather
a uniparametric family of problems resulting from varying the budget level ξ in the equality
constraint.
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