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Abstract
In this paper we consider two variants of the Secretary problem: The Best-or-Worst
and the Postdoc problems. We extend previous work by considering that the number
of objects is not known and follows either a discrete Uniform distribution U[1, n] or a
Poisson distributionP(λ). We show that in any case the optimal strategy is a threshold
strategy, we provide the optimal cutoff values and the asymptotic probabilities of
success. We also put our results in relation with closely related work.

Keywords Secretary problem · Best-or-Worst problem · Postdoc problem ·
Combinatorial optimization

Mathematics Subject Classification 60G40 · 62L15

1 Introduction

The classical Secretary problem has been extensively studied in the fields of applied
probability, statistics or decision theory and has been considered by many authors (see
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Ferguson 1989; Ferguson et al. 1992; Szajowski 2009 for an extensive bibliography).
It can also be posed as a decision making problem in a game with the following rules:

(1) We have to choose one object from a set.
(2) The total number of objects in the set is known.
(3) The objects are rankable from best to worst.
(4) The objects appear sequentially and in random order.
(5) Each object must be accepted or rejected before the next one appears.
(6) The decision depends only on the relative ranks of the objects examined so far.
(7) Rejected objects cannot be called back.
(8) We want to maximize the probability of selecting the best object.

Dynkin (1963) and Lindley (1961) independently proved that, in the previous
setting, the best strategy consists in observing roughly n/e of the objects and then
choosing the first one that is better than all those observed so far. This strategy returns
the best object with a probability of at least 1/e, this being its approximate value for
large values of n. This well-known solution was later refined by Gilbert and Mosteller
(1966), showing that

⌊
(n − 1

2 )e
−1 + 1

2

⌋
is a better approximation than �n/e�, although

the difference is never greater than 1.
We mention here that the classical Secretary problem is just a special case of

the problem of stopping without recall on the very last interesting event, since it
suffices to define interesting as better than the previous ones. The solution is therefore
a corollary of the odds-theorem of optimal stopping Bruss (2000). Moreover, Bruss
(2003) shows that the lower bound of 1/e for the success probability holds, remarkably,
in all generality for whatever law of interesting events. For further developments see
also (Dendievel 2013, 2015; Louchard 2017).

If we modify rule (8) above, we can get variants of the secretary problem. Some of
them also have simple, elegant solutions. For example, if we consider

(8′) We want to maximize the probability of selecting the second best object.

we obtain the so-called Postdoc problem in Vanderbei (1983). In this setting the prob-
ability of success for an even number of applicants is exactly n

4(n−1) . This probability
tends to 1/4 as n tends to infinity, illustrating the fact that it is easier to pick the best
than the second best. This variant was also considered in Bayón et al. (2018), Rose
(1982) and Szajowski (1982).

On the other hand, if we consider

(8′′) We want to maximize the probability of selecting either the best or the worst
object.

we get the so-called Best-or-Worst problem. This variant can be found on Ferguson
(1992) as a multicriteria problem in the perfect negative dependence case. In Bayón
et al. (2018) we considered the Best-or-Worst and the Postdoc problems proving that
both of them share the same threshold strategy as optimal stopping rule and that the
probability of success in the Best-or-Worst problem is twice the probability of success
in the Postdoc problem.

Besides these, many other variants of the classical Secretary problem have been
recently studied, specially in the framework of partially ordered objects Freij and
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Wastlund (2010), Georgiou et al. (2008) and Garrod and Morris (2013) or matroids
Babaioff et al. (2007), Gharan and Vondrák (2013) and Soto (2013).

Interesting lines of work also arise if we alsomodify rule (2) above. If the number of
objects is unknown, the decision maker faces an additional risk because if he rejects an
object, he may then discover that it was the last one, in which case he fails. In Presman
and Sonin (1972) the case in which the number of objects follows a discrete Uniform
distribution U[1, n] was studied for the classical secretary problem. In this setting,
the cutoff value for large N is approximately Ne−2 and the probability of success is
2e−2. This same paper also dealt with the case in which the number of candidates
follows a Poisson distributionP(λ) showing that the optimal stopping limit relation is
r∗(λ)/λ → e−1 and that this is also the asymptotic value of the probability of success.
This was first studied in a continuous time setting by Cowan and Zabczyk (1978)
for a Poisson process of candidates with known arrival rate and then generalized by
Bruss (1987) for an unknown arrival rate. See also Szajowski’s work (2007) for a
corresponding game version.

In the present paper, we want to extend the work done in Bayón et al. (2018) by
considering the Best-or-Worst and the Postdoc problems when the number of objects
follows a Uniform distribution U[1, n] or a Poisson distribution P(λ).

The paper is organized as follows: In Sect. 2, we recall the relation between the
Best-or-Worst and the Postdoc problems for a known number of objects and extend
it to our setting. In Sect. 3 we show that in the considered situations; i.e., if the ran-
dom number of candidates follows either a discrete Uniform distribution U[1, n] or
a Poisson distribution P(λ) the optimal strategy is still a threshold strategy. After
that, Sects. 4 and 5 deal with the Uniform case and with the Poisson case, respec-
tively. Finally, Sect. 6 presents a comparative table of the results and some concluding
remarks.

2 The relation between the Best-or-Worst problem and the Postdoc
problem

The following theorem establishes the relation between the optimal strategies in the
Best-or-Worst problem and the Postdoc problemwhen the number of objects in known.

Theorem 1 (See Sect. 4 in Bayón et al. (2018)) Let us define a nice candidate as
an object which is either better or worse than all the preceding ones (in the Best-
or-Worst problem) or which is the second better than all the preceding ones (in the
Postdoc problem). Then, if n is the total number of objects, the following strategy is
optimal:

(1) Reject the � n
2 � first inspected objects regardless their rank.

(2) After that, accept the first nice candidate.

Moreover, if PBW (n) and PPD(n) are the probabilities of success following this strat-
egy in the Best-or-Worst and in the Postdoc problem respectively, then we have that

2PPD(n) = PBW (n) =
{

n
2(n−1) , if n is even;
n+1
2n , if n is odd.
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In Bayón et al. (2018) it was also shown that, in the Postdoc problem, selecting a candi-
date that is better than all the previous ones has the same probability of success as wait-
ing for the next nice candidate (second better than the previous ones). This means that
the optimal strategy can neglect if a given candidate is better than all the preceding ones
and focus only onwhether the candidate is the second better than all the preceding ones.

Note that Theorem 1 implies that, when the number of objects is known, both
problems share the same optimal threshold strategy. Moreover, under this strategy the
probabilities of success in both problems are closely related (one is twice the other).
We will now see that, as long as we follow a threshold strategy, this relationship still
holds even if the number of objects is unknown. To do so, we first need two easy results.

Proposition 1 If n is the total number of objects, let ABW
n (r) and APD

n (r) denote the
probability of success if we accept a nice candidate at the r-th step in the Best-or-Worst
and in the Postdoc problem, respectively. Then,

ABW
n (r) = r

n

APD
n (r) = r(r − 1)

n(n − 1)
.

Recall that a threshold strategy with cutoff value r consists of rejecting the first r
candidates and then accepting the first nice candidate after that. The following result
is a direct consequence of the previous proposition.

Proposition 2 If n > 1 is the total number of objects, let RBW
n (r) and RPD

n (r) denote
the probability of success following a threshold strategy with cutoff value r in the
Best-or-Worst and in the Postdoc problem, respectively. Then,

2RPD
n (r) = RBW

n (r) =

⎧
⎪⎪⎨

⎪⎪⎩

2/n, if r = 0;
2r(n − r)

n(n − 1)
, if n ≥ r;

0, if n < r .

Now, we can extend part of Theorem 1 to the case when the number of objects is
unknown.

Corollary 1 If X is the random variable defining the number of objects, let PBW
X (r) and

PPD
X (r) denote the probability of success following a threshold strategy with cutoff

value r > 1 in the Best-or-Worst and in the Postdoc problem, respectively. Then,

PBW
X (r) = 2PPD

X (r).

Proof Taking into account the previous proposition, it is enough to observe that

PBW
X (r) =

∑

i≥r+1

RBW
i (r) · p(X = i) =

∑

i≥r+1

2RPD
i (r) · p(X = i) = 2PPD

X (r).

�	
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This corollary will be important in the sequel because, once we show that the
optimal strategy is a threshold strategy and regardless the distribution followed by
the unknown number of objects, both problems will share the same optimal cutoff
value and the probability of success in the Best-or-Worst problem will be twice the
probability of success in the Postdoc problem. Consequently, we will be able to focus
on just one of them, namely the Best-or-Worst problem.

3 Threshold strategies for a random number of objects

As we have already mentioned, when the number of objects is known, the optimal
strategy is a threshold strategy. Unfortunately, this is not necessarily the case if the
number of objects is random. For example, let us assume that in the classical secretary
problem the number of objects is a discrete randomvariable X such that p(X = 100) =
0.99 and p(X = 1000) = 0.01. Clearly, in such a situation the optimal strategy is not
a threshold strategy. In fact, if at the 100-th step we inspect an object which is better
than all the preceding ones, it must be accepted and the probability of success is greater
than 0.99. However, at the 101-th step we should reject an object even if it is better
than all the preceding ones because accepting it would be equivalent to accepting it if
the number of objects was equal to 1000 and, as we know, that would not be optimal.

In this section we will prove that if the random number of objects X satisfies certain
properties, then the optimal strategy is still a threshold strategy. Moreover, we will see
that the required properties are fulfilled in the case of a Uniform distribution U[1, n] as
well as in the case of aPoissondistributionP(λ).Wewill address theBest-or-Worst and
the Postdoc problems separately but all the hard work will be done in the former case.

3.1 The Best-or-Worst problem

Recall that in the Best-or-Worst problem, a nice candidate is an object which is either
better or worse than all the preceding ones.

Definition 1 If the random number of objects is a discrete random variable X , let us
define the following probabilities.

• PX
A (r) is the probability of success if we accept a nice candidate at the r -th step.

Note that if X = k and we accept a nice candidate at the r -th step, the probability
of success is r/k. Thus,

PX
A (r) = E

( r

X

∣∣∣X ≥ r
)

=
∑∞

k=r
r
k p(X = k)

∑∞
k=r p(X = k)

.

• PX
R (r) is the probability of success if we reject an object (regardless it is nice or

not) at the r -th step in order to accept the next nice candidate to be found. If X = k
and we reject an object at the r -th step in order to accept the next nice candidate

to be found, the probability of success is
2r(k − r)

k(k − 1)
(see Proposition 2). Thus,
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PX
R (r) = E

(
2r(X − r)

X(X − 1)

∣∣∣X ≥ r

)
=

∑∞
k=r

2r(k−r)
k(k−1) p(X = k)

∑∞
k=r p(X = k)

.

• P̃ X
R (r) is the probability of success if we reject an object at the r -th step in order

to adopt the optimal strategy later on. If we consider qr = p(X > r |X ≥ r) it is
easy to see that

P̃ X
R (r) = qr

2

r + 1
max

{
PX
A (r + 1), P̃ X

R (r + 1)
}

+ qr
r − 1

r + 1
P̃ X
R (r + 1).

In this setting and in terms of dynamic programming, the following strategy is
obviously optimal at the r -th step:

• If the r -th object is not a nice candidate, then reject it.
• If the r -th object is a nice candidate but PX

A (r) < P̃ X
R (r), then reject it.

• If the r -th object is a nice candidate and PX
A (r) ≥ P̃ X

R (r), then accept it.

Observe that, from the very definition it is clear that PX
R (r) ≤ P̃ X

R (r) for every r . It
is also clear that, if the range of X is infinite, then the probability of success rejecting
an object at the r -th step is strictly positive for every r ; i.e., P̃ X

R (r) > 0. The following
result will allow us to work with PX

R (r) rather than with the more complex P̃ X
R (r).

Lemma 1 Let X be a non-negative discrete random variable such that, either its range
is finite or lim inf PX

A (r) > 1/2. Assume that there exists r0 such that PX
A (r) ≥ PX

R (r)
for every r > r0. Then, PX

A (r) ≥ P̃ X
R (r) for every r > r0.

Proof Given r0, let us consider the set S = {r > r0 : PX
A (r) < P̃ X

R (r)}. We claim
that S is bounded. If the range of X is finite, this is trivially the case. If, on the other
hand, the range of X is infinite, lim inf PX

A (r) > 1/2 implies that there exists r̃ such
that PX

A (r) > 1/2 for every r > r̃ . Since PX
A (r) + P̃ X

R (r) ≤ 1, this implies that
PX
A (r) > P̃ X

R (r) for every r > r̃ and hence S is bounded (by r̃ ).
If S = ∅ the result follows so let us assume that S is nonempty and let r ′ be its

maximum. This means that P̃ X
R (r ′) > PX

R (r ′) while PX
A (r ′ + 1) ≥ P̃ X

R (r ′ + 1) but
this is a contradiction.

This is because, if the probability of success rejecting an object at the r ′-th step
is bigger than the probability of success rejecting it in order to accept the next nice
candidate; i.e., if P̃ X

R (r ′) > PX
R (r ′), then accepting a nice candidate at the next step

cannot be optimal; i.e., it is not possible that PX
A (r ′ + 1) ≥ P̃ X

R (r ′ + 1). �	
Now, we can prove the following general result which shows that, under certain

conditions, the optimal strategy is a threshold strategy.

Theorem 2 In the Best-or-Worst problem, let the number of objects X be a
non-negative discrete random variable such that, either its range is finite or
lim inf PX

A (r) > 1/2. Furthermore, assume that

PX
A (r) ≥ PX

R (r) ⇒ PX
A (r + 1) ≥ PX

R (r + 1).

Then, there exists r0 such that the following strategy is optimal:
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(1) Reject the r0 first inspected objects.
(2) After that, accept the first nice candidate which is inspected.

Proof Just consider r0 = max{r : PX
A (r) < PX

R (r)} and apply the previous lemma. �	
The remaining of the section will be devoted to see that we can apply Theorem 2

either if the random number of objects follows a Uniform distribution X ∼ U[1, n] or
a Poisson distribution X ∼ P(λ). In particular, we will see that in both situations the
conditions from Theorem 2 holds.

The following lemma is devoted to explicitly compute PU [1,n]
A (r) and PU [1,n]

R (r),
which are defined as in Definition 1 but for the particular case of X ∼ U[1, n].
Lemma 2 Let ψ denote the digamma function. Then,

(i) PU [1,n]
A (r) = r (ψ(n + 1) − ψ(r))

n + 1 − r
,

(ii) PU [1,n]
R (r) = 2r (r − n + nψ(n) − nψ(r))

n(n + 1 − r)
.

Proof Let X ∼ U[1, n] be the random variable defining the number of objects. If
X = k (i.e., if there are k objects) and we accept a nice candidate at the r -th step, the
probability of success is r/k. Thus, taking into account that

p(X = k|X ≥ r) = 1/(n + 1 − r),

we have that

PU [1,n]
A (r) =

n∑

k=r

r

k(n + 1 − r)
= r (ψ(n + 1) − ψ(r))

n + 1 − r

because, for any positive integer m it holds that ψ(m) =
∑m−1

k=1

1

k
− γ , (γ being the

Euler-Mascheroni constant).
On the other hand, if X = k and we reject a nice candidate at the r -th step in

order to accept the next nice candidate to be found, the probability of success is

Pk(r) = 2r(k − r)

k(k − 1)
. Hence,

PU [1,n]
R (r) :=

n∑

k=r+1

Pk(r)
1

n + 1 − r
= 2r (r − n + nψ(n) − nψ(r))

n(n + 1 − r)

using again the definition of the digamma function. �	
Once we have computed the values of PU [1,n]

A (r) and PU [1,n]
R (r) we can prove the

following result that guarantees that we can apply Theorem 2 in the Uniform case.

Proposition 3 Let n ∈ N and r ∈ [1, n). Then,

PU [1,n]
A (r) > PU [1,n]

R (r) ⇒ PU [1,n]
A (r + 1) > PU [1,n]

R (r + 1).
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Proof It is easy to see that, for every n/2 < r < n it holds that PU [1,n]
A (r) >

PU [1,n]
R (r). Hence, we can restrict ourselves to the case 1 < r ≤ n/2.

Let us assume that PU [1,n]
A (r) > PU [1,n]

R (r) and that PU [1,n]
A (r +1) ≤ PU [1,n]

R (r +
1). Using Lemma 2, we have that

PU [1,n]
R (r+1) − PU [1,n]

A (r + 1)= (r+1)
(
(r − n)(2r+1)+nr(ψ(n) − ψ(r))

)

n (n − r) r
≥0

Consequently, we have that

A := (r − n)(2r + 1)

nr
+ ψ(n) − ψ(r) ≥ 0.

On the other hand, using Lemma 2 again we have that

PU [1,n]
A (r) − PU [1,n]

R (r) = r
(
1 + 2n − 2r − nψ(n) + nψ(r)

)

n(n + 1 − r)
> 0

and, consequently, that

B := 1 + 2n − 2r

n
− ψ(n) + ψ(r) > 0.

Now, since A, B > 0, it follows that

0 < A + B = 1 + 2n − 2r

n
+ (r − n)(2r + 1)

nr
= 2r − n

nr
.

Since this implies that r > n/2 we have reached a contradiction and the result follows.
�	

Now, we turn to the Poisson case. The following lemma is devoted to explicitly
compute PP(λ)

A (r) and PP(λ)
R (r), which are defined as in Definition 1 but for the

particular case of X ∼ P(λ).

Lemma 3 For any λ > 0 let us define

�(r , λ) :=
∞∑

k=r

λk

eλk! .

Then,

(i) PP(λ)
A (r) = 1

�(r , λ)

∑∞
k=r

r

k

λk

eλk! ,

(ii) PP(λ)
R (r) = 1

�(r , λ)

∑∞
k=r

2(k − r)r

(k − 1)k

λk

eλk! .
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Proof Let X ∼ P(λ) be the random variable defining the number of objects. Then,

p(X = k|X ≥ r) = p(X = k)

p(X ≥ r)
=

λk

eλk!
�(r , λ)

and the result follows. �	

Now that we have explicit expressions for PP(λ)
A (r) and PP(λ)

R (r), the following
results show that the conditions of Theorem 2 also hold in the Poisson case under
consideration.

Proposition 4 For any λ > 0 it holds that

lim
r→∞

1

�(r , λ)

∞∑

k=r

r

k

λk

eλk! = 1.

Proof Let us denote S(r , λ) =
∑∞

k=r

r

k

λk

eλk! . Then it is enough to apply the Stolz-

Cesàro theorem taking into account that:

�(r + 1, λ) − �(r , λ) = − λr

eλr ! ,

S(r + 1, λ) − S(r , λ) =
∞∑

k=r+1

λk

keλk! − λr

eλr ! ,

�	

Proposition 5 Let λ > 0. Then

PP(λ)
A (r) > PP(λ)

R (r) ⇒ PP(λ)
A (r + 1) > PP(λ)

R (r + 1).

Proof As in Proposition 4, using the Stolz-Cesàro theorem, it can be easily proved
that lim

r→∞ PP(λ)
A (r) = 1 and that lim

r→∞ PP(λ)
R (r) = 0. In this situation, the statement is

equivalent to prove that there exists at most one integer r0 ≥ 1 such that PP(λ)
A (r0 −

1) ≤ PP(λ)
R (r0 − 1) and PP(λ)

A (r0) > PP(λ)
R (r0). In other words, either PP(λ)

A (r) is

always greater than PP(λ)
R (r) or they “intersect” just once.

If, for r ≥ 1, we define

f (r) :=
2r−1∑

k=r

2r − k − 1

k(k − 1)

λk

k! , g(r) :=
∞∑

k=2r

k − 2r + 1

k(k − 1)

λk

k!
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it is straightforward to see that PP(λ)
A (r)− PP(λ)

R (r) = re−λ

�(r , λ)
( f (r) − g(r)). Thus,

we will see that f (r) and g(r) “intersect” at most once.
Note that, since PP(λ)

A (r) is ultimately bigger than PP(λ)
R (r), then f (r) is ultimately

bigger than g(r).
Now,

G1(r) := g(r + 1) − g(r) =
∞∑

k=2r+1

−2

k(k − 1)

λk

k! − 1

2r(2r − 1)

λ2r

(2r)! < 0,

G2(r) := G1(r + 1) − G1(r)

= 1

2r(2r − 1)

λ2r

(2r)! +
2

2r(2r + 1)

λ2r+1

(2r+1)! +
1

(2r+1)(2r+2)

λ2r+2

(2r+2)! >0.

This means that g(r) strictly decreases (to 0) and that it is “convex”.
On the other hand,

F1(r) := f (r + 1) − f (r) =
2r−1∑

k=r+1

2

k(k − 1)

λk

k! + 1

2r(2r − 1)

λ2r

(2r)! − 1

r

λr

r ! .

This implies that F1 changes sign at most once. Since F1(r) is clearly negative for big
values of r , this means that f (r) is either strictly decreasing or it first increases and
then decreases with only one change in its monotony. Furthermore,

F2(r) := F1(r + 1) − F1(r) = G2(r) + λr

r(r + 1)2r !φ(r),

with φ(r) = (
r2 + (2 − λ)r + (1 − 2λ)

)
. This implies that F2(r) > G2(r) for every

r > r̃ , with r̃ the biggest root of φ(r) = 0. In other words, for r > r̃ , f (r) is “more
convex” than g(r).

Finally, assume that f (r) and g(r) intersect at some point in which both of them are
decreasing. Since f (r) must be ultimately bigger that g(r), this contradicts either the
fact that f (r) only has at most one change in monotony or the fact that F2(r) > G2(r)
for some moment on. This means that either f (r) and g(r) do not intersect at all or
that they do so only once, which is what we wanted to prove. �	

Remark We have just seen that PP(λ)
A (r) and PP(λ)

R (r) intersect at most once. Since

PP(λ)
A (r) increases monotonically to 1 while PP(λ)

R (r) tends to 0, the intersection

of both functions depends only on the relationship between PP(λ)
A (1) and PP(λ)

R (1).

Namely, PP(λ)
A (r) > PP(λ)

R (r) for every r if and only if PP(λ)
A (1) > PP(λ)

R (1).

Solving the equation PP(λ)
A (1) = PP(λ)

R (1) leads to the approximate value of λ0 =
2.2197719 . . .which means that, for every λ < λ0 it holds that the functions P

P(λ)
A (r)

and PP(λ)
R (r) never intersect and for every λ ≥ λ0 they intersect exactly once.
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Finally, we can give the main result of this section to establish that the optimal
strategy in both considered situations is a threshold strategy.

Theorem 3 In the Best-or-Worst problem let the number of objects follow a Uniform
distribution U[1, n] (resp. a Poisson distribution P(λ)). Then, there exists r(n) (resp.
r(λ)) such that the following strategy is optimal:

(1) Reject the r(n) (resp. r(λ)) first inspected objects.
(2) After that, accept the first nice candidate which is inspected.

We will refer to the value r(n) (resp. r(λ)) as the optimal cutoff value.

Proof It follows from Theorem 2. If X ∼ U[1, n] it is enough to apply Proposition 3
because the range of X is finite. On the other hand, if X ∼ P(λ), we have to apply
both Propositions 4 and 5. �	
Remark The proof of Theorem 3 can also be approached in terms of Markov chains as
it was done in Presman and Sonin (1972) for the classical Secretary problem. In fact, in
order to prove that the optimal strategy is a threshold strategy, the only relevant factor
is the function that determines the probability of success if we accept a nice candidate
at the r -th step with a known number of objects k. As it turns out, this function is
the same in the classical problem as in the Best-or-Worst problem. Thus, the proof
would go just as in the aforementioned paper Presman and Sonin (1972). However,
we decide to provide full explicit proofs, avoiding Markov chains, to keep the paper
self-contained and elementary in nature.

3.2 The Postdoc problem

Nowwe turn to the Postdoc problem. In this setting, a nice candidate is an object which
is the second better than all the preceding ones. First of all, we have the following
analogue to Definition 1.

Definition 2 If the random number of objects is a discrete random variable X , let us
define the following probabilities.

• PX
A (r) is the probability of success if we accept a nice candidate at the r -th step.

Note that if X = k and we accept a nice candidate at the r -th step, the probability
of success is r/k. Thus,

PX
A (r) = E

(
r(r − 1)

X(X − 1)

∣∣
∣X ≥ r

)
=

∑∞
k=r

r(r−1)
k(k−1) p(X = k)

∑∞
k=r p(X = k)

.

• PX
R (r) is the probability of success if we reject an object (regardless it is nice or

not) at the r -th step in order to accept the next nice candidate to be found. If X = k
and we reject an object at the r -th step in order to accept the next nice candidate

to be found, the probability of success is
r(k − r)

k(k − 1)
(see Proposition 2). Thus,

PX
R (r) = E

(
r(X − r)

X(X − 1)

∣∣
∣X ≥ r

)
=

∑∞
k=r

r(k−r)
k(k−1) p(X = k)

∑∞
k=r p(X = k)

.
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• P̃X
R (r) is the probability of success if we reject an object at the r -th step in order

to adopt the optimal strategy later on. If we consider qr = p(X > r |X ≥ r) it is
easy to see that

P̃X
R (r) = qr

r + 1
max

{
PX
A (r + 1), P̃X

R (r + 1)
}

+ rqr
r + 1

P̃X
R (r + 1).

After these definitions, we could state and prove the direct analogues to Lemma 1
and to Theorem 2. On the other hand, note that it is straightforward to check that

PX
A (r) − PX

R (r) = PX
A (r) − PX

R (r).

Consequently, the corresponding analogues to Propositions 3 and 5 also hold in this
setting. Finally, as in Proposition 4, it can be easily proved using the Stolz-Cesàro
theorem that

lim
r→∞PP(λ)

A (r) = 1.

This being said, it follows that the following analogue to Theorem 3 also holds,
showing that in the Postdoc problem the optimal strategy is still a threshold strategy.

Theorem 4 In the Postdoc problem let the number of objects follow a Uniform distri-
bution U[1, n] (resp. a Poisson distribution P(λ)). Then, there exists r(n) (resp. r(λ))
such that the following strategy is optimal:

(1) Reject the r(n) (resp. r(λ)) first inspected objects.
(2) After that, accept the first nice candidate which is inspected.

We will refer to the value r(n) (resp. r(λ)) as the optimal cutoff value.

Now that we have seen than both in the Best-or-Worst problem and in the Postdoc
problem the optimal strategies are threshold strategies,we are in the conditions to apply
Corollary 1. Thus, we can focus just on one of the problems (we choose the Best-or-
Worst problem). The forthcoming sections will be devoted to study the optimal cutoff
values as well as the associated probabilities of success for each of the considered
distributions.

4 The Best-or-Worst problemwhen the number of objects follows a
uniform distributionU[1,n]

Taking into account Proposition 2, if there were k > 1 objects, the probability of
success using a threshold strategy with cutoff value 1 ≤ r < k would be Pk(r) =
2r(k−r)
k(k−1) . On the other hand, if the random variable defining number of objects follows

a discrete Uniform distribution X ∼ U[1, n], we have that p(X = k) = 1/n for every
k. Hence, the probability of success is given in this situation by the function

FU (r , n) =
n∑

k=r+1

Pk(r)p(X = k) =
n∑

k=r+1

Pk(r)

n
=

n∑

k=r+1

2r(k − r)

k(k − 1)n
.
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Now, let us denote by M(n) ∈ [1, n] the optimal cutoff value; i.e., the value for
which the function FU (·, n) reaches its maximum. Also, let us denote by P(n) :=
FU (M(n), n). Thus, P(n) denotes the probability of success in the Best-or-Worst
problem when the number of objects follows a discrete Uniform distribution U[1, n]
using the optimal threshold strategy.

Remark With the previous notation, it is straightforward to see thatM(1) = M(2) =
0 and also that P(1) = P(2) = 1. This corresponds to the fact that, in the Best-or-
Worst problem, if there is only one or two objects, we will always succeed if we accept
the first one.

In order to study the behavior ofM(n) and P(n) we shall first prove that, with the
only exception of the previous remark, P is strictly decreasing. To do so we first prove
an adaptation of the strategy-stealing argument in the following lemma.

Lemma 4 For every pair of integers (r , n) with 1 < r < n, one of the following
identities holds:

FU (r , n + 1) < FU (r − 1, n),

FU (r , n + 1) < FU (r , n).

Proof Let us denote H(n, r) =
∑n−1

k=r

1

i
. Then,

FU (r , n) =
n∑

k=r+1

2k(k − r)

k(k − 1)n
= 2r

n

n∑

k=r+1

(
r

k
+ 1

k − 1
+ r

k − 1

)

= 2r

n

(( r
n

− 1
)

+
n∑

k=r+1

1

k − 1

)

= 2r

n

(( r
n

− 1
)

+ H(n, r)
)

.

In the same way we have that

FU (r , n + 1) = 2r

n + 1

((
r

n + 1
− 1 + 1

n

)
+ H(n, r)

)
,

FU (r − 1, n) = 2(r − 1)

n

((
r − 1

n
− 1 + 1

r − 1

)
+ H(n, r)

)
.

And, as a consequence, it follows that

FU (r , n+1) − FU (r − 1, n)= 2(1+n − r)

n(n+1)

(
− (1+2n)(1+n − r)

n(n + 1)
+ H(n, r)

)
,

FU (r , n + 1) − FU (r , n) = 2r

n(n + 1)

(
2n(1 + n − r) − r

n(n + 1)
− H(n, r)

)
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Now, if we assume that both FU (r , n + 1) − FU (r − 1, n) ≥ 0 and FU (r , n +
1) − FU (r , n) ≥ 0, we get that

A := H(n, r)n(n + 1) − (1 + 2n)(1 + n − r) ≥ 0,

B := − (H(n, r)n (n + 1)) + 2n (1 + n − r) − r ≥ 0.

As a consequence, it follows that 0 ≤ A + B = −1 − n < 0. This is a contradiction
and hence the result. �	

Using this lemma, we can now prove that P is decreasing.

Proposition 6 Let n > 1 be any integer. Then, P(n + 1) < P(n).

Proof If n > 1,

P(n+1)=FU (M(n+1), n+1)<max{FU (M(n+1), n), FU (M(n+1)−1, n)}
≤ FU (M(n), n) = P(n),

where the first inequality follows fromLemma 4 and the second holds by the definition
of M(n). �	

In order to provide further information about M(n) and P(n) we first need two
technical results. The first one was proved in Bayón (2018, Proposition 1), while the
second is just an elementary Calculus exercise. Recall that for every x > −1/e, the
principal branch of the LambertW -function is the only real numberW (x) > −1 such
that x = W (x)eW (x).

Lemma 5 Let {Fn} be a sequence of real functions with Fn ∈ C[0, n] and letM(n) be
the value for which the function Fn reaches its maximum. Assume that the sequence
of functions {gn}n∈N given by gn(x) := Fn(nx) converges uniformly on [0, 1] to a
function g and that θ is the only global maximum of g in [0, 1]. Then,
(i) lim

n
M(n)/n = θ .

(ii) lim
n

Fn(M(n)) = g(θ).

(iii) If M(n) ∼ M(n) then lim
n

Fn(M(n)) = g(θ).

Lemma 6 The function g(x) = −2x log x − 2x(1− x) reaches its absolute maximum
in the interval [0, 1] at the point

ϑ := −1

2
W

(
− 2

e2

)
= 0.20318786 . . . ,

where W denotes Lambert W-function. Moreover, the value of this maximum is:

g(ϑ) = 2(ϑ − ϑ2) = 0.32380511 . . .

Now, the following result provides estimations for the values M(n) and describes
the asymptotic behavior of P .
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Theorem 5 With all the previous notation, the following hold:

(i) For every positive integer n,

1 = P(1) = P(2) > P(3) > · · · > P(n) > P(n + 1) > · · · > 2(ϑ − ϑ2).

(ii) lim
n

M(n)

n
= ϑ; i.e., M(n) ∼ ϑn.

(iii) lim
n

FU (�ϑ · n�, n) = lim
n→∞ P(n) = 2(ϑ − ϑ2).

Proof As in the proof of Lemma 4, we have that

FU (r , n) = 2r

n

(
( r
n

− 1
)

+
n−1∑

k=r

1

k

)

so, if we recall the definition of the digamma function ψ(n) :=
∑n−1

k=1

1

k
− γ , we get

that

FU (r , n) = 2r (r − n + nψ(n) − nψ(r))

n2

Now, if we define gn(x) := FU (nx, n) we have that the sequence of functions {gn}
converges uniformly to the function g(x) := 2x (−1 + x − log(x)).

Since P(n) = gn
(M(n)

n

)
it is enough to apply Proposition 6 and Lemma 6 to

obtain point (i). Points (ii) and (iii) readily follow from Lemmas 5 and 6 and the proof
is complete. �	

Theorem 5 shows that [ϑ · n] (the nearest integer to ϑ · n) constitutes a practical
estimation of the optimal cutoff value in the optimal threshold strategy and that, fol-
lowing this strategy, the probability of success is greater than 2(ϑ −ϑ2) = 0.3238 . . ..
The first few values of n for which the estimation [nϑ] fails are

8, 13, 18, 23, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 96, 101, 106, 111, 116, 121, . . .

Even if the estimation fails about 20% of times, [nϑ] differs at most 1 from the actual
optimal cutoff value and the error is negligible if compared with the probability of
success of the optimal strategy for large values of n.

We are now interested in finding a better estimate forM(n). As usual, we first need
to introduce a technical result.

Lemma 7 Let us consider the function f (r , n) := − 2r
n + 2r2

n2
+ 2r

n ψ(n)− 2r log(r)
n + 1

n
and let α(n) ∈ [1, n] be the value for which the function f (·, n) reaches its maximum.
Then, α(n) ≈ M(n).
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Proof As we saw int he proof of Theorem 5,

FU (r , n) = −2r

n
+ 2r2

n2
+ 2r

n
ψ(n) − 2r

n
ψ(r).

On the other hand, for any integer r it holds that ψ(r) = log r − 1
2r + ε(r), with

ε(r) = O(1/2r) if r → ∞. Thus,

FU (r , n)= −2r

n
+ 2r2

n2
+ 2r

n
ψ(n) − 2r log(r)

n
+ 1

n
− 2rε(r)

n
= f (r , n) − 2rε(r)

n
.

Since r ≥ 1, it follows that there exists k such that |2rε(r)| ≤ k for every r and
hence:

g1(r , n) = f (r , n) − k

n
≤ P(r , n) ≤ f (r , n) + k

n
= g2(r , n).

Obviously both functions g1(r , n) and g2(r , n) reach their maximum at α(n). In this
situation, there exist points β1(n) and β2(n) such that g2(β1(n), n) = g2(β2(n), n) =
g1(α(n), n) and α(n) ∈ (β1(n), β2(n)) and the inequality above implies that

β1(n) ≤ M(n) ≤ β2(n).

Finally, for every r we have that g2(r , n) − g1(r , n) = 2k/n so it follows that
|β2(n) − β1(n))| −→

n→∞ 0 and, consequently also |α(n) − M(n)| −→
n→∞ 0 as wewanted

to prove. �	
As a consequence of the previous result, if we compute the value of α(n) we can

give another estimation for M(n). In fact, we have the following result.

Theorem 6 With all the previous notation, the following hold:

(i) M(n) ≈ −n

2
W

(

−2e−2+ψ(n)

n

)

,

(ii) M(n) ≈ nϑ + 1

4 − 2e2−2ϑ .

Proof (i) Since f (·, n) (see Lemma 7) reaches its maximum at α(n), it follows that

0 = ∂ f

∂r
(α(n), n) = −4

n
+ 4α(n)

n2
+ 2

n
ψ(n) − 2 log(α(n))

n
.

From this, and taking into account the definition of LambertW -function it follows
that

α(n) = −n

2
W

(

−2e−2+ψ(n)

n

)

so it is enough to apply Lemma 7.
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(ii) Using (i), we have that

lim
n

(M(n) − nϑ) = lim
n

(

−n

2
W (−2e−2+ψ(n)

n
) − nϑ

)

= 1

4 − 2e2−2ϑ .

Thus,

M(n) ≈ nϑ + 1

4 − 2e2−2ϑ

as claimed.
�	

As far as our computing capabilities let us check, the estimation M(n) ≈(
nϑ + 1

4−2e2−2ϑ

)
fails for very few values of n (only four cases have been found:

2, 3, 23 and 2971). On the other hand, we have not found any value of n > 4 for which

the estimation M(n) ≈
[
− n

2W
(
− 2e−2+ψ(n)

n

)]
fails.

5 The Best-or-Worst problemwhen the number of objects follows a
Poisson distributionP(�)

Now, let us assume that the random variable defining number of objects follows a

Poisson distribution X ∼ P(λ). Hence, p(X = k) = λk

eλk! and reasoning like at the
beginning of the previous section, we conclude that the probability of success using a
threshold strategy with cutoff value 1 ≤ r < k is given in this situation by the function

FP (r , λ) =
n∑

k=r+1

Pk(r)p(X = k) =
∞∑

k=r+1

2r(k − r)

k(k − 1)

λk

eλk! .

and

FP (0, λ) = λ

eλ
+ λ2

2eλ
+

∞∑

k=3

2

k

λk

eλk!

Also, following the same notation as in the previous section, let us denote by
M(λ) the value for which FP (·, λ) reaches its maximum value and let P(λ) =
FP (M(λ), λ); i.e., P(λ) denotes the probability of success in the Best-or-Worst prob-
lem when the number of objects follows a Poisson distributionP(λ) using the optimal
threshold strategy.

Remark The value λm for which the probability of success P(λ) reaches its maximum
can be explicitly computed solving the equation

−2 + 2ex − x + 2γ x + x2 + 2x(−x) + 2x log(−x) = 0,
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Fig. 1 Graph of the function P(λ)

which leads to an approximate value of λm = 2.01771 . . . and P(λm) = 0.72647 . . .

as can be seen in Fig. 1.

As we can see in Fig. 1, the graph of P(λ) consists of a sequence of concave arcs.
The rest of the section will be devoted to provide an estimation forM(λ) and to study
the asymptotic behavior of P(λ). In particular, we will see that, as suggested by Fig. 1,
lim

λ→∞ P(λ) = 1/2. But first we need some technical results.

Lemma 8 Let us consider the function

f (r , λ) :=
r∑

k=2

2r(k − r)

k(k − 1)

λk

eλk! .

Then, lim
λ→∞ f (λ/2, λ) = 0.

Proof First of all, note that

∣∣∣∣
∣∣

λ/2∑

k=2

2(λ/2)(k − λ/2)

k(k − 1)

λk

eλk!

∣∣∣∣
∣∣
< λ2e−λ

λ/2∑

k=2

λk

k! <
1

λ
.

Thus, if we define

an := 22n2e−2n
n∑

k=2

2knk

k! ,

we just need to prove that lim
n

an = 0.
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Now,

an+1 = 22(n + 1)2e−2(n+1)
n+1∑

k=2

2k(n + 1)k

k!

and since

n+1∑

k=2

2k(n + 1)k

k! =
n∑

k=2

2knk

k! + 22

2! (2n + 1) + 23

3! (3n
2 + 3n + 1) + · · ·

+ 2n

n!
(
nn + n

1!n
n−1 + n(n − 1)

2! nn−2 + · · · + n(n − 1) · · · 2.1
n!

)

+ 2n+1

(n + 1)! (n + 1)n+1,

we have that

an+1 = 22(n + 1)2e−2(n+1)
n∑

k=2

2knk

k! + 22(n + 1)2e−2(n+1) 2
2

2! (2n + 1) + · · ·

+ 22(n + 1)2e−2(n+1) 2
n

n!
(
nn + n

1!n
n−1 + n(n − 1)

2! nn−2 + · · · + n(n − 1) · · · 2.1
n!

)

+ 22(n + 1)2e−2(n+1) 2n+1

(n + 1)! (n + 1)n+1.

On the other hand,

n∑

k=2

2knk

k! = an
22n2e−2n

so

an+1 =
(
n + 1

n

)2 an
e2

+ 22(n + 1)2e−2(n+1) 2
2

2! (2n + 1) + · · ·

+ 22(n + 1)2e−2(n+1) 2
n

n!
(
nn + n

1!n
n−1 + n(n − 1)

2! nn−2 + · · · + n(n − 1) · · · 2.1
n!

)

+ 22(n + 1)2e−2(n+1) 2n+1

(n + 1)! (n + 1)n+1,

which clearly implies that

lim
n

(

an+1 −
(
n + 1

n

)2 an
e2

)

= 0. (1)

Finally, since an is decreasing and non-negative, we have that lim
n

an+1 = lim
n

an =
l. Consequently, Eq. 1 implies that l = l/e2; i.e., l = 0 as claimed. �	
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Theorem 7 Let us consider the function

f �(r , λ) :=
∞∑

k=2

2r(k − r)

k(k − 1)

λk

eλk! .

For every λ > 0, let us denote by M�(λ) the value for which f �(·, λ) reaches its
maximum and let P�(λ) = f �(M�(λ), λ). Then, the following hold:

(i) lim
λ→∞M�(λ)/λ = 1/2.

(ii) lim
λ→∞ f �(λ/2, λ) = 1/2.

(iii) M�(λ) ≈ λ/2 − 1.

Proof First of all, we are going to compute the value of M�(λ). To do so, let us
consider the following functions:

S1(x) =
∞∑

k=2

xk

(k − 1)k! ,

S2(x) =
∞∑

k=2

xk

k(k − 1)k! = −
∞∑

k=2

xk

kk! + S1(x),

S3(x) =
∞∑

k=2

xk

kk! .

Then, we have that

S′′
1 (x) = ex − 1

x
, S′

3(x) = ex − 1

x
− 1

and, by integrating these expressions we obtain that

S1(x) = 1 − ex + x − γ x + x E(x) − x log x,

S3(x) = −γ + E(x) − log x − x,

where

E(λ) = γ + log λ +
∫ λ

0

ex − 1

x
dx .

Also, as a consequence we obtain that

S2(x) = 1 − ex + 2x + (γ − E(x) + log x) (1 − x) .

Now, we observe that
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f �(r , λ) = 2re−λ

( ∞∑

k=2

λk

(k − 1)k! − r
∞∑

k=2

λk

k(k − 1)k!

)

= 2re−λS1(λ) − 2r2e−λS2λ).

Thus,

∂ f �(r , λ)

∂r
= 2e−λS1(λ) − 4re−λS2(λ)

so, if we define

rλ := 1 − eλ + λ − γ λ + λE(λ) − λ log λ

2
(
1 − eλ + 2λ + (γ − E(λ) + log λ) (1 − λ)

) ,

it is clear that ∂ f �(r ,λ)
∂r |r=rλ = 0 and, consequently,wehave just obtained thatM�(λ) =

rλ.
Once we have computed the value of M�(λ), we are in the condition to prove the

three statements of the theorem.

(i) If we recall the definition of E(λ), we have that

lim
λ→∞

M�(λ)

λ
= 1

2
lim

λ→∞
1 − eλ + λ − γ λ + λE(λ) − λ log λ

λ
(
1 − eλ + 2λ + (γ − E(λ) + log λ) (1 − λ)

)

= 1

2
lim

λ→∞
1 − eλ + λ + λ

∫ λ

0
ex−1
x dx

λ
(
1 − eλ + 2λ + (λ − 1)

∫ λ

0
ex−1
x dx

)

so, applying L’Hôpital’s rule repeatedly we obtain:

lim
λ→∞

M�(λ)

λ
= 1

2
lim

λ→∞
1 + λ

λ + 3
= 1

2
,

as claimed.
(ii) We have that

lim
λ→∞ f �(λ/2, λ)

= lim
λ→∞

λ

2eλ

(
(−λ2 + 3λ)

∫ λ

0

ex − 1

x
dx + (λ − 2)eλ − 2λ2 + λ + 1

)

so, using L’Hôpital’s rule, we get that:

lim
λ→∞ f �(λ/2, λ) = 1

2
lim

λ→∞
6 + 2λ

2λ + 5
= 1

2
.

(iii) Since
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lim
λ→∞(M�(λ) − λ/2) = 1

2
lim

λ→∞
1 − eλ + λeλ − 2λ2 + (2λ − λ2)

∫ λ

0
ex−1
x dx

1 − eλ + 2λ + (λ − 1)
∫ λ

0
ex−1
x dx

,

L’Hôpital’s rule leads to

lim
λ→∞(M�(λ) − λ/2) = 1

2
lim

λ→∞
−2λ − 4

λ
= −1

and hence the result. �	
Note that the value M�(λ) ≈ λ/2 − 1 is not the optimal cutoff value that we are

looking for.M�(λ) is the value for which the function f �(·, λ) reaches its maximum,
while we are interested in finding M(λ) which is the value for which the function
FP (·, λ) reaches its maximum. Of course, both functions are closely related and, as
we will see, so are M�(λ) and M(λ).

Recall that, in the case when the number of objects is known, the probability of
success following the optimal threshold strategy in the Best-or-Worst problem is given
by

PBW (n) =
{

n
2(n−1) , if n is even;
n+1
2n , if n is odd.

The next lemma holds.

Lemma 9

lim
λ→∞

∞∑

k=1

PBW (k)
λk

eλk! = 1/2.

Proof Taking into account the definition of PBW wehave the following decomposition

∞∑

k=1

PBW (k)
λk

eλk! =
∞∑

k=1

PBW (2k)
λ2k

eλ(2k)! +
∞∑

k=1

PBW (2k − 1)
λ(2k−1)

eλ(2k − 1)!

Now, it can be easily seen that

∞∑

k=1

PBW (2k)
λ2k

eλ(2k)! =
∞∑

k=1

2k

4k − 2

λ2k

eλ(2k)! = λ

2
e−λS(λ),

∞∑

k=1

PBW (2k − 1)
λ(2k−1)

eλ(2k − 1)! =
∞∑

k=1

2k

4k − 2

e−λλ(2k−1)

(2k − 1)! = sinh(λ)

2 eλ
+ S(λ)

2eλ
,

where

S(λ) =
∫ λ

0

sinh(x)

x
dx .
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Consequently,

lim
λ→∞

∞∑

k=1

PBW (k)
λk

eλk! = λ

2
e−λS(λ) + sinh(λ)

2eλ
+ S(λ)

2eλ

and the result follows from L’Hôpital’s rule. �	
Using this result we can compute the asymptotic probability of success using the

optimal threshold strategy in the Poisson case.

Theorem 8 With all the previous notation, we have that

lim
λ→∞ FP (λ/2, λ) = lim

λ→∞ FP (M(λ), λ) = lim
λ→∞ P(λ) = 1/2.

Proof By definition, PBW (k) is the maximum probability of success in the Best-or-
Worst problem with a known number of objects k > 1. Hence,

2M(λ)(k − M(λ))

k(k − 1)
= Pk(M(λ)) ≤ PBW (k).

Consequently,

P(λ) = FP (M(λ), λ) =
∞∑

k=M(≥)+1

2M(λ)(n − M(λ))

k(k − 1)

λk

eλk! ≤
∞∑

k=1

PBW (k)
λk

eλk!

so, if we take upper limits it is clear that lim
λ→∞ P(λ) ≤ 1/2.

On the other hand, recalling Lemma 8 and Theorem 7 we have that

P(λ) = FP (M(λ), λ) ≥ FP (λ/2, λ) = f �(λ/2, λ) − f (λ/2, λ).

and also that

lim
λ→∞ f �(λ/2, λ) − f (λ/2, λ) = 1/2.

Thus, taking lower limits lim
λ→∞

P(λ) ≥ 1/2.

In conclusion, 1/2 ≤ lim
λ→∞

P(λ) ≤ lim
λ→∞ P(λ) ≤ 1/2 and the proof is complete. �	

Even if we did not explicitly find an estimation for the optimal cutoff valueM(λ),
this theorem satisfactorily solves the problem, since it implies that λ/2 is an acceptable
estimation for the optimal cutoff value because it provides the same asymptotic proba-
bility of success as the exact value ofM(λ)would do; i.e., 1/2.Thus, Theorem8proves
that, if the random number of objects follows a Poisson distribution P(λ), the optimal
strategy consists in rejecting the firstλ/2 objects and then accept the first nice candidate
after them. With this strategy we will succeed approximately one half of the times.
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In addition, as far as we were able to check, �λ/2 − 1� coincides with the exact
value of M(λ) for every integer value of λ > 1. Hence, we propose the following
conjecture.

Conjecture 1 M(λ) ≈ M�(λ) ≈ λ/2 − 1.

6 Concluding remarks

In the table below we compare the optimal cutoff valueM and the asymptotic proba-
bility of success P in the classical, the Best-or-Worst and the Postdoc problems and in
the different variants studied in this paper for the number of objects X . Recall the rela-
tionship between the Best-or-Worst problem and the Postdoc problem that was stated
in Theorem 1. All the constants that appear in the table can be expressed in terms of
e = 2.71828 . . . and the rumor’s constant ϑ := − 1

2W (−2e−2) = 0.20318 . . .

Classic Best-or-Worst Postdoc

X M P M P M P
X = n ne−1 e−1 n/2 1/2 n/2 1/4
X ∼ U [1, n] ne−2 2e−2 nϑ 2(ϑ − ϑ2) nϑ (ϑ − ϑ2)

X ∼ P(λ) λ/e e−1 λ/2 1/2 λ/2 1/4

We close the paper with an intriguing remark pointed out by Havil (2003) relating
the convergents for the continued fraction of e−1 and the optimal cutoff value r(n) in
the secretary problem with a known number of candidates n. In fact, the convergents
for the continued fraction of e−1 (see sequences A007676 and A007677 in the OEIS)
are given by

0,
1

2
,
1

3
,
3

8
,
4

11
,
7

19
,
32

87
,
39

106
,
71

193
,
465

1264
,
536

1457
,
1001

2721
, . . .

which exactly coincide with the fractions of the form r(n)/n.
Now, if we focus on the Best-or-Worst problem when the number of candidates

follows a discrete Uniform distribution U[1, n] the same relation arises considering ϑ

instead of e−1. The convergents for the continued fraction of ϑ are

0,
1

4
,
1

5
,
12

59
,
13

64
,
38

187
,
51

251
,
1262

6211
,
1313

6462
,
11766

57907
,
13079

64369
,
64082

315383
, . . .

which, as far as our computation capabilities allowed us to check, also coincide with
fractions of the form r(n)/n, with r(n)being the optimal cutoff value for the considered
problem. However, as Havil’s remark, this relation remains an open problem.
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