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Abstract
We present a new numerical indirect method to solve optimal control prob-
lems with degenerate equilibrium points. When the optimal control problem
is autonomous, the corresponding canonical system becomes an autonomous
system of ordinary differential equations. Combining the well-known blow-up
technique of vector fields with the classic backward integration method, and
focusing on a specific type of degenerate singular points, we develop a new
method that is both easy to implement and able to deal with complex problems.
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1 INTRODUCTION

A broad range of numerical algorithms can be used to solve optimal control problems (OCPs). Numerical techniques can
often be classified as either direct or indirect. In direct methods, the differential equation and the integral are discretized
and the problem is converted into a nonlinear programming (NLP) problem. Conversely indirect methods approxi-
mate solutions to OCPs by numerically solving the boundary value problem (BVP) for the differential-algebraic system
generated by the minimum principle.

In this article we restrict ourselves to the class of autonomous, infinite time horizon problems. To solve the OCP we
first use Pontryagin’s minimum principle (PMP) to establish the corresponding canonical system, and then we trans-
form the OCP to a two-point BVP. This formulation gives rise, in general, to a system of nonlinear differential equations
describing the solution. There exist numerical methods to overcome the problem of nonlinearity: multiple shooting,1 the
projection method,2 the discretization method of Mercenier and Michel,3 the method of time elimination,4,5 reverse shoot-
ing,6 the backward integration method,7 the relaxation algorithm,8 and the forward–backward sweep method.9 Their main
features are discussed subsequently.

The multiple shooting method1 subdivides the evaluation interval into N subintervals. Then, it iterates several times
the combination of N forward integrations with backward integration once over the whole interval. However, the perfect
foresight saddlepoint problem is ill-conditioned for multiple shooting. The projection methods (or weighted residual
methods)2 reformulate the problem as a system of differential equations and search an analytic approximation using,
frequently, Chebyshev polynomials. Its performance, however, depends on the goodness of the initial guess. Mercenier
and Michel3 transform the original problem into a finite horizon optimal control problem in discrete time with the same
stationary solution, and then the solution is obtained by a static optimization procedure. Discretization requires that the
system must be derived and linearized at the steady state.
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Solving a saddlepoint problem backward was done first in the method of time elimination,4,5 but this can only be
applied to low-dimensional saddlepoint systems with monotonous adjustment. This method is also called reverse shoot-
ing in Reference 6, and like the backward integration (BI) method,7 it exploits the backward stability of the stable manifold
of a saddle point. The main difference between the two is that Reverse Shooting6 uses an exogenously guessed terminal
time t, whereas BI7 determines t endogenously. The variant of the Relaxation method presented in Reference 8 to solve a
saddlepoint problem, takes first an arbitrary trial solution; then it measures the deviation from the true path using a mul-
tidimensional error function and uses the derivative of the error function to improve the trial solution in a Newton-type
iteration. The forward backward sweep method9 solves first the state equation with a Runge–Kutta routine, then the
costate equation backward in time with the same Runge–Kutta solver, and updates the control. In Reference 10 two con-
vergence theorems are proved for this method. More information (and their comparison) about all these procedures can
be found in References 7,8. All of these are indirect numerical methods. In Reference 11, the limitations of direct and
indirect methods for solving OCPs are studied.

Possibly the most relevant limitation of all the above methods is that they are unable to deal with degenerate singu-
larities: equilibrium points of the differential equation whose Jacobian has zero determinant. Our aim is to introduce the
classical blowing-up method for ordinary differential equations12 and apply it to OCPs.

To this end, we present a modification of the BI method which we use after performing the blow-up of the canonical
equation. Blowing-up is a well-known technique in the area of holomorphic and real-analytic vector fields; we point the
reader to the main reference,12 its application to plane vector fields,13 and to the quite accessible survey.14 A deeper but
also detailed exposition can be found in Reference 15, where the authors review the main result of Reference 16. For a
complete exposition of singularities of holomorphic differential equations (in which blowing-up plays a significant role),
see Reference 17.

It is important to note that we are interested in a type of problem which has not been addressed before: degenerate
equilibrium points of what we shall call multiple hyperbolic saddle type, defined below. In Reference 7, and later in
Reference 18, the case of backward integration for simple saddlepoint systems is analyzed in detail. They study the case
of one state variable avoiding the difficulties posed by multiple state variables.19 We will introduce a modified backward
integration (MBI) method for a particular case of degenerate singular points. The method is easy to implement and permits
solving complex problems.

Starting with an example of fight against an invasive species (see, e.g., References 20-22 for some background), we
state an optimal control problem (with parameters in which possible uncertainties and disturbances are included) whose
canonical system has, generically in the parameters, a hyperbolic saddle as equilibrium point. However, this hyperbolic
saddle, for some special family of parameters becomes a degenerate singularity, which upon further inspection is of the
type we can solve. Using our technique, we explicitly compute a solution and compare the values we obtain to those found
using a different method (which has been proved useful for the nondegenerate case),23-25 which is unable to approach the
equilibrium point efficiently.

The article is organized as follows. In Section 2 we introduce the parametric OCP and briefly describe its main prop-
erties in relation to our problem. In Section 3 we summarize (as already known results) the classic backward integration
method and the blow-up technique. In Section 4 we formulate the basic ideas of the MBI method for multiple hyper-
bolic saddles and illustrate it with an example of singular degenerate vector field. In Section 5, we compute the solution
approaching the degenerate equilibrium using our technique, and compare it to what other methods can do. In Section 6
we analyze the challenges arising when dealing with discounted functionals. Finally, Section 7 summarizes the main
contributions of the article and gives some pointers for further research.

2 MOTIVATION: FIGHTING AN INVASIVE SPECIES

Managing invasive species can be a challenging, urgent and complicated problem, as ecologists everywhere known and
the general population is starting to notice in large areas. We are thinking, near us (in Spain), of the camalote (Eichhornia
crassipes) invasion of the Guadiana river26 or the algae Caulerpa racemosa in the Mediterranean Sea,27 to give a couple
of examples.

The problem of total eradication, or of, at least, reaching a reasonable steady state, can be modeled as an optimal
control problem in which the optimization is performed on the total cost of the operation. This is our approach in the
example that follows.
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Consider a species whose population x(t) follows, absent any harvesting, a standard logistic model, and which is
subject to harvesting at a rate u(t). Thus, its true evolution is described by the equation:

ẋ(t) = rx(t)
(

1 − x(t)
K

)
− u(t), (1)

where r is the growth rate and K is the carrying capacity. Harvesting, on one hand provides a benefit which we model
as proportional to the harvest (we assume the species has some value, say from a chemical point of view or even just as
fuel). On the other hand, it incurs some costs, which we model as: linear in the square of the harvest and proportional to
the ratio between this square and the actual population (this is due to harvesting being more difficult as the population
decreases). Finally, the very existence of the species is also costly (it takes volume from otherwise useful resources), and
we model this cost as proportional to the population; see Reference 28 for a detailed explanation of these parameters and
Reference 24 for an application to real-world fisheries. Thus, there is a cost function, which after normalization we can
assume has three parameters:

F(x,u) = u − au2 − b u2

x
− cx3. (2)

We are going to state the problem of minimizing the costs (which might even become maximizing the benefits if the
problem turns out to be economically productive) of harvesting with t →∞, and we shall see whether this leads to total
eradication or to reaching a steady state.

Thus, our optimal control problem is:

min
u(t)

J =

∞

∫
0

−
(

u(t) − au(t)2 − b u(t)2

x(t)
− cx(t)3

)
dt

ẋ(t) = rx(t) (1 − x(t)∕K) − u(t), 0 ≤ t < ∞; x(0) = x0 > 0 (3)

with the state x(t) ∶ R → R, and the control u(t) ∶ R → R, 0≤ t <∞.
Let H be the associated Hamiltonian:

H(x,u, 𝜆) = −𝜆0
(

u(t) − au(t)2 − b u(t)2

x(t)
− cx(t)3

)
+ 𝜆 ⋅ (rx(t) (1 − x(t)∕K) − u(t)) , (4)

where 𝜆 ∶ R → R is the costate variable. From the Pontryagin minimum principle, we know that solutions to the problem
satisfy the equation

𝜕H
𝜕u

= 0 ⇔ 2au + 2bu
x

− 𝜆 − 1 = 0 (5)

so that

u = (𝜆 + 1)x
2(ax + b)

(6)

(the case 𝜆0 = 0 has no solution). Substituting this value into H(x,u, 𝜆), setting 𝜆0 = 1, gives

H(x, 𝜆) =
x
((

4cx2(ax + b) + 4𝜆r(ax + b) − 𝜆2 − 2𝜆 − 1
)

K − 4𝜆rx(ax + b)
)

4K(ax + b)
, (7)

which is defined for x ≥ 0 (as long as b> 0). The canonical system associated to this optimal control problem is, after
substituting u by its value (6):



930 FORTUNY AYUSO et al.

ẋ = rx(1 − x∕K) − x(𝜆 + 1)
2(ax + b)

,

𝜆̇ = b(𝜆 + 1)2

4(ax + b)2 − 3cx2 + r𝜆(2x∕K − 1) (8)

for which the line x = 0 is invariant (as should be, from the biological point of view). This system is analytic for x > 0, as
all the parameters are assumed to be nonzero. Thus, for any initial value (x0, 𝜆0) with x0 > 0, it admits a unique solution
(x(t), 𝜆(t)) starting at (x0, 𝜆0) defined for all t > 0.

The set of equilibria of (8) depends greatly on a, b, c, r and K but there are two special ones:

(0,−1 + 2br − 2
√
−br + b2r2), (0,−1 + 2br + 2

√
−br + b2r2), (9)

which appear from solving a quadratic equation after setting x = 0 in (8). These two points coalesce into (0, 1) when b= 1/r.
Furthermore, there are three extra equilibria, one of which happens to be (0, 1) in some special cases (which involve
b= 1/r and K = 1/b); this multiple confluence will provide us with the degenerate singularity we shall study.

In the generic case, all the equilibria are different and have nonzero Jacobian (i.e., are nondegenerate). Some of
them can be nonreal: there are values of the parameters for which only one equilibrium is real, v.gr. a= 1.25, b= 0.73,
c= 0.76, r = 0.63, and K = 1.89, values for which there are three real ones, v.gr. a= 20, b= 30, c= 2, r = 0.25, K = 1.52, and
values for which there are five, v.gr. a= 2, b= 3, c= 0.2, r = 0.9, K = 1.25. These cases degenerate when there are relations
between the parameters.

2.1 Statement of the degenerate problem

Consider Problem (3) with parameters a= 1, b= 3/2; c= 5/2, r = 2/3, K = 3/2. Notice how both equilibria of the form (9)
correspond to (x, 𝜆) = (0, 1). The canonical system becomes:

ẋ(t) = −
x
(
8x2 + 9𝜆 − 9

)
9(2x + 3)

,

𝜆̇(t) = −15x2

2
+ 3(𝜆 + 1)2

2(2x + 3)2 + 2
9
(4x − 3)𝜆, (10)

which we wish to study at the equilibrium point (x, 𝜆) = (0, 1). Notice that, if 𝜆(t) is bounded on a trajectory (x(t), 𝜆(t))
with x(t)→ 0, then H(x(t), 𝜆(t)) in (7) tends to 0, which is a necessary condition for PMP to hold in problems with infinite
horizon.29 Thus, we need to study the trajectories converging to this equilibrium point, as they give rise to admissible
solutions. As a matter of fact (although we are not really interested in a detailed study of this problem), the limit of H(x, 𝜆)
on trajectories of (8) converging to x = 0 but 𝜆 → ∞ is ∞, so that the only trajectories we need to study are, indeed, those
converging to (x, 𝜆) = (0, 1). After changing variables in order to place this point at (0, 0), that is, setting x = x, 𝜆 = y + 1,
we obtain:

ẋ(t) = −
8x3 + 9xy
18x + 27

,

ẏ(t) =
−540x4 + 64x3y − 1556x3 + 144x2y − 1071x2 + 27y2

18(2x + 3)2 , (11)

which has multiplicity 2 at (0, 0), that is, the origin is a degenerate singularity, which—as explained in the Introduction—is
unsuitable for the classical methods (Figure 1).

In the following sections we introduce a method which provides a way to compute the admissible trajectories con-
verging to this singularity, by transforming the degenerate point into several new ones amenable to the application of
the backward integration method.7 This transformation is carried out by what is known as the blow-up technique. Then,
we proceed to perform the computations compare them with the results obtained using two other methods (backward
integration and shooting) in a straightforward way, as if the equilibrium were nondegenerate.
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F I G U R E 1 The degenerate singularity at (x, 𝜆) = (0, 1) (axes
not to scale): notice the three “invariant” directions at (0, 1). The
dashed line marks the direction on which a trajectory converges to
the singularity (as we shall show) [Colour figure can be viewed at
wileyonlinelibrary.com]
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3 PRELIMINARY RESULTS

3.1 The backward integration method

The idea of backward integration7 consists first in the transformation of a BVP (“reaching the steady state”) into an initial
value problem (IVP) (“starting near the steady state”), and then to use the attractive property of the unstable manifold of a
hyperbolic saddle: trajectories near the saddle tend to approach it exponentially. This allows the use of standard numerical
methods. In order to use the latter property, backward integration reverses the time variable and, as a consequence, swaps
the roles of the stable and unstable manifolds. Since the state (xs, 𝜆s) of the system is completely known at time t =∞, the
problem can be solved recursively walking backward in time to obtain the (approximate) values (x(0), 𝜆(0)) at time t = 0
of the solution to the OCP, which will remain near the original stable manifold (for reasonable values of t, obviously): the
computed solution converges toward the stable manifold of the forward system. One uses the eigenvectors at the steady
state in order to start sufficiently “near” the original stable manifold (one cannot start exactly at the steady state because,
by definition, one would stay there indefinitely).

In Reference 7 the canonical system is formulated using the control and the state as variables. Nevertheless, in Ref-
erence 18, the canonical system is formulated with the state and the costate as variables. We follow this same approach
using the canonical system associated to an OCP (with one state), which we write:

( ẋ
𝜆̇

)
=
(

f (x, 𝜆)
g (x, 𝜆)

)
= Φ(x, 𝜆). (12)

Assume, for simplicity, that the system possesses a single steady state (xs, 𝜆s), which is (this is the requirement of Refer-
ences 7,18 which we are going to relax) a stable saddle point. From the hypotheses follows that the solution approaching
the steady state corresponds to the stable manifold W s of (12), parametrized by the time t. Thus, the initial condition
x(0)= x0 and the boundary condition

lim
t→∞

(x(t), 𝜆(t)) = (xs, 𝜆s) (13)

are satisfied by that parametrization of the W s. Consider the effect of a time reversal on the original system (12): that is,
perform the change of variables t =−t: ( ẋ

𝜆̇

)
= −Φ(x, 𝜆). (14)

http://wileyonlinelibrary.com
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As the linear part of (12) is reversed in (14), the eigenvalues change sign and, as a consequence, the stable W s and unsta-
ble W u manifolds are swapped. It is well known (as Reference 7 explains) that trajectories of (12) approach the unstable
manifold exponentially. Hence, trajectories of (14) approach W s exponentially. Let vs = (vx, v𝜆) be an eigenvector associ-
ated to the eigenvalue corresponding to W s. The point P0 = (x0, 𝜆0) = −𝜀(vx, v𝜆) is sufficiently near both W s and (xs, 𝜆s) for
𝜀 ≪ 1. The solution 𝛾(t) of (14) starting at P0 approaches W s exponentially. This solution can be efficiently computed using
numerical algorithms, as it corresponds to a standard IVP. Let x0 be any initial condition of (12): when 𝛾(t) = (x0, 𝜆0), the
value 𝜆0 (which is unique, certainly, by the Cauchy–Kowalevski Theorem) is (approximately) the corresponding initial
value for the costate variable for the optimal solution of (3). At this point, one only needs to compute the value of the inte-
gral in the original problem (3) for that trajectory (with the time properly reversed) in order to obtain the optimal solution.

3.2 The blow-up technique

We are also going to apply the well-known (in the area of holomorphic and real-analytic vector fields) technique of
blowing-up. We point the reader to the standard reference,12 the application of the technique to plane vector fields,13

and the quite accessible survey.14 A deeper but also detailed exposition can be found in Reference 15, where the authors
review the main result of Reference 16. For a complete exposition of singularities of holomorphic differential equations
(in which blow-up plays a significant role), see Reference 17, mainly pages 112–120.

Consider the real-analytic vector field

X = A(x, y) 𝜕
𝜕x

+ B(x, y) 𝜕
𝜕y

, (15)

which we shall always write in the differential-equation notation

X ≡
{

ẋ = A(x, y)
ẏ = B(x, y)

(16)

and assume that P= (0, 0) is a singularity (equilibrium point): that is, A(0, 0)=B(0, 0)= 0. Rewrite (16) using the
homogeneous expansion of A(x, y) and B(x, y):

X ≡
{

ẋ = Am(x, y) + Am+1(x, y) + …
ẏ = Bm(x, y) + Bm+1(x, y) + …

, (17)

where at least one of Am(x, y), Bm(x, y) is not zero. The number m is called the multiplicity of the vector field at P. A
nonsingular vector field at P satisfies m= 0. A nondegenerate singularity has m= 1 and, if A1(x, y)= a10x + a01y and
B1(x, y)= b10x + b01y, then:

|J1| = ||||||
a10 a01

b10 b01

|||||| ≠ 0, (18)

where J1 is called the linear part (or Jacobian matrix) of X . As a matter of fact, a hyperbolic saddle corresponds to a
nondegenerate singularity such that the eigenvalues of the linear part are both real and of different sign. The stable
manifold corresponds to the negative eigenvalue, and the unstable manifold, to the positive one.

We assume, from now on, that m≥ 1. If m> 1, then J1 is the zero matrix and its only eigenvalue is, obviously, 0. In
this case, instead of the eigenvectors, the directions in which some trajectory may approach P are given by the points in
the tangent cone of X at P (see References 13,14):

Definition 1. The tangent cone of X at P is the set of projective points [a : b] (i.e., directions in the plane R2) such that

bAm(a, b) − aBm(a, b) = 0 (19)

If T(x, y):= yAm(x, y)− xBm(x, y)≡ 0 then the singularity is called dicritical.
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If the singularity is dicritical, then it is known that, for every tangent direction at P except possibly a finite number,
there is an analytic trajectory of X adherent to P tangent to that direction (analogue to radial singularities). We do not
deal with this type of points. Notice, on the other hand, that there needs not be a trajectory adherent to P tangent to every
direction of the tangent cone (this topic is dealt with, in the complex plane, in Reference 16).

In order to take full advantage of the tangent cone, one performs the blow-up of the plane at P (for the last time, we
refer the reader to Reference 14, which is the easiest reference):

Definition 2. The blow-up of R2 at P is the analytic manifold M covered by the charts U1, U2, both diffeomorphic to R2,
with respective coordinates (x1, y1) and (x2, y2), with the following gluing on U1 ∩U2:

x1 = x2y2, y1 = 1
x2

(20)

defined on x2 ≠ 0, y1 ≠ 0.

It is well known that there is a map 𝜋 ∶ M → R2 (also called the blow-up) having the respective expressions:

𝜋|U1(x1, y1) = (x1, x1y1), 𝜋|U2(x2, y2) = (x2y2, y2) (21)

(usually, and informally, U1 is called the “first chart” of 𝜋 and U2, the “second chart”). Notice how the preimage of the
line y = 𝛼x is 𝜋−1(x, 𝛼x) ≡ (x1, 𝛼): this gives the main geometric idea of the blow-up: the lines passing through P become
parallel when taking their preimages. As a consequence, the preimage or P, E = 𝜋−1(P) is a whole projective line (a closed
circumference): one point for each of the directions through P. This set (the preimage of P by 𝜋) is called the exceptional
divisor of 𝜋. This is why the map 𝜋 is called the blow-up: the point P “blows-up” to become a circumference and, as a side
effect, the lines through P part. Moreover, the vector field X can be “pulled-back” to M:

Theorem 1. Assume m≥ 1. There exists a vector field X on M such that 𝜋∗(X) = d𝜋(X) = X. Moreover, in local coordinates
in U1, this vector field has the expression

X ≡
⎧⎪⎨⎪⎩

ẋ1 = A(x1, x1y1)

ẏ1 = 1
x1
(B(x1, x1y1) − y1A(x1, x1y1))

(22)

(notice that the division by x1 makes sense because m≥ 1). Even more, there exists a vector field X1 on U1 and a vector field
X2 on U2 (notice that they are not defined globally on M) such that

X = xm−1
1 X1, X = ym−1

2 X2. (23)

If X is nondicritical, then both X1 and X2 have only a finite number of singular points in the exceptional divisor E.

We include a proof for the sake of completeness.

Proof. The manifold M is covered by the two charts U1 and U2 above. In order to have a vector field defined on M, we
need to show that there are two vector fields X1 and X2, defined on U1 and U2, respectively, which coincide on U1 ∩U2.

Let X1 = X be given by (23) on U1; this vector field is well defined on U1 because U1 = 𝜋−1(x ≠ 0) and x1 = x on U1. Let

X2 =
⎧⎪⎨⎪⎩

ẋ2 = 1
y2
(A(x2y2, y2) − x2B(x2y2, y2))

ẏ2 = B(x2y2, y2)
, (24)

which is defined on U2 for the same reason: U2 = 𝜋−1(y ≠ 0) and y2 = y in U2. We claim that X1 =X2 in U1 ∩U2, so that
the vector field X of the statement exists. In order to prove this equality, recall that by (22), x1 = x2y2 and y1 = 1/x2 in
U1 ∩U2, so that:

X1(x2) = X1(1∕y1) = − 1
y2

1
X1(y1) = − 1

y2
1

1
x1

(B(x1, x1y1) − y1A(x1, x1y1)) = ⋆, (25)
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which, taking again into account (22), is:

⋆ = x2

y2

(
−B(x2y2, y2) +

1
x2

A(x2y2, y2)
)

= 1
y2

= 1
y2

(A(x2y2, y2) − x2B(x2, y2)) = X2(x2). (26)

On the other hand,

X1(y2) = X1(x1y1) = x1
1
x1

(B(x1, x1y1) − y1A(x1, x1y1)) + A(x1, x1y1)y1 = B(x1, x1y1) = B(x2y2, y2) = X2(y2) (27)

showing that X1 and X2 coincide in U1 ∩U2, so that they glue together on M to give the global vector field X . ▪

The vector fields X1 and X2, each of which is only defined, respectively, in U1 and U2, are called, the strict transforms
of X in each chart. Notice, from (22) and (23), that E is always invariant for both X1 and X2 if X is nondicritical. The
importance of the tangent cone comes from the following property:

Theorem 2 (see Reference 17). Assume X has a singular point at P= (0, 0) which is not dicritical. Let [a : b] denote a
direction through P= (0, 0). Then: if a≠ 0, the point x1 = 0, y1 = b/a is a singular point of X1. If a= 0, then x2 = 0, y2 = 0 is a
singular point for X2. The converse is also true.

Hence, if P= (0, 0) is not a dicritical singularity of X , singular points of X1 or X2 correspond to “singular directions”
of X . As a matter of fact (ibid.):

Theorem 3 (ibid.). Let 𝛾 ∶ (0,∞) → R2 be a trajectory of X with 𝛾(t) → (0, 0) as t →∞ and 𝛾(t) ≠ (0, 0). Let 𝛾 be the lift of 𝛾
to M (which is a trajectory of X). Assume X is not dicritical at P= (0, 0). If 𝛾 has a single accumulation point Q in E = 𝜋−1(P),
then Q belongs to the tangent cone.

This means that the tangent cone describes—essentially—the directions on which trajectories approach the singular
point P.

In this first approach, we are going to restrict ourselves to degenerate singularities which only give rise to new saddle
points.

Definition 3. A multiple hyperbolic saddle is a degenerate singularity P of a vector field X such that each of the singular
points of X1 and X2 in Theorem 1 is a hyperbolic saddle.

An easy result whose proof follows from the discussion in Reference 15 is:

Lemma 1. If P is a multiple hyperbolic saddle of X of multiplicity m, then there are exactly m+ 1 singularities in E, for X1
and X2 (counting both). Each of these corresponds to a direction in the tangent cone.

A consequence of the Cauchy–Kowalevski Theorem is the following:

Lemma 2. Let 𝛾 ∶ (0,∞) be a trajectory of X with 𝛾 → P = (0, 0) as t →∞, and assume P is a multiple hyperbolic saddle.
Let 𝛾 be the lift of 𝛾 to M (which is a trajectory of X). Then there is Q ∈ E = 𝜋−1(0, 0) such that 𝛾 → Q, and Q corresponds to
one of the hyperbolic saddles of either X1 or X2.

Hence, if P is a multiple hyperbolic saddle of X , the directions in which there is a trajectory adherent to P correspond
to the points of the tangent cone. Thus, the tangent cone plays the role of the eigenvalues for a multiple hyperbolic saddle.
In fact, if one performs the blow-up of a nondegenerate hyperbolic saddle, the tangent cone is, exactly, the set of invariant
directions of the linear part. However, depending on the sign of the coordinates and the multiplicity of X at P, the trajectory
may or may not approach P when the corresponding eigenvalue is positive or negative. We study this in the next section.

4 MODIFIED BACKWARD INTEGRATION FOR MULTIPLE HYPERBOLIC
SADDLES

From the previous section, one deduces that, if P= (0, 0) is a multiple hyperbolic saddle of multiplicity m, one can
blow-up P in order to compute the tangent cone (i.e., the singular points of the strict transform of X), which will con-
tain exactly m+ 1 directions: Q1, … , Qm+ 1. On each one of these, say Q, one must verify the existence of approaching
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trajectories, and perform the backward integration method in order to compute (an approximation) to the trajectory
accumulating at P in the direction given by Q. This will provide the set of trajectories of X accumulating at P. As the
strict transform requires division by a power of the equation of the exceptional divisor, one has to take it into account.
Specifically:

Lemma 3. Let m be the multiplicity of X at a multiple hyperbolic saddle P and let 𝜋 ∶ M → R2 be the blow-up at P. Let
Q ∈ E = 𝜋−1(P) be a singular point of X1 and 𝜆, 𝜇 be the eigenvalues of X1 at Q, such that 𝜇 corresponds to E (which is
invariant for X1). Then:

1. If 𝜆 < 0, then there is a trajectory 𝛾 ≡ (x(t), y(t)) of X approaching P in the direction Q with x(t)> 0.
2. If m− 1 is even and 𝜆 < 0, then there is a trajectory 𝛾 ≡ (x(t), y(t)) of X approaching P in the direction Q with x(t)< 0.
3. If m− 1 is odd and 𝜆 > 0, then there is a trajectory 𝛾 ≡ (x(t), y(t)) of X approaching P in the direction Q with x(t)< 0.

Otherwise, there is no trajectory of 𝛾 approaching P in the direction Q. (An analogous statement holds for X2 and
y(t)<>0).

The proof is a direct application of the definition of hyperbolic saddle and strict transform of a vector field.
Thus, the only possible trajectories of X approaching P correspond to the saddles of X1 or X2 in E whose eigenvalues

satisfy the properties in the lemma.
Example. By way of illustration, consider the vector field

X ≡
{

ẋ = 3y2 − x2

ẏ = 2xy
, (28)

which has a degenerate singularity at P= (0, 0). It has multiplicity m= 2. The tangent cone is the set of directions [a : b]
such that

3b3 − a2b − 2a2b = 0, (29)

that is:

3b(b2 − a2) = 0 ⇔ b = 0, b = a, b = −a. (30)

Thus, the tangent directions correspond to the lines y= 0, x = y, x =−y: the points [1 : 0], [1 : 1], and [1:− 1] in E. All of
them belong to the chart U1, so that we can just look at the strict transform X1. The pull-back of X of X in M is (in
coordinates (x1, y1) in U1):

X ≡
{

ẋ1 = x1(−x1 + 3y2
1x1)

ẏ1 = x1(3y1 − 3y3
1)

. (31)

The strict transform X1 is

X1 ≡
{

ẋ1 = −x1 + 3y2
1x1

ẏ1 = 3y1 − 3y3
1

(32)

and the singular points with x1 = 0 are given, as they should, by y1 = 0, y1 = 1, y1 =−1. Notice how E ≡ (x1 = 0) is invariant
for X1, as X is nondicritical at (0, 0). At Q= [1 : 0] (which corresponds to x1 = y1 = 0), the eigenvalues are

𝜆 = −1, 𝜇 = 3, (33)

where 𝜇 corresponds to the direction of the axis x1 = 0 (i.e., the exceptional divisor). The eigenvalue 𝜆 = −1 provides an
approaching trajectory in the direction y= 0 (the OX axis) for x > 0 but, as m− 1 is odd, there is no approaching trajectory
for x < 0 in that direction.
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At Q= [1 : 1], the vector field X1 has equations

X1 ≡
{

ẋ1 = 2x1 + 6x1y1 + 3x1y2
1

ẏ1 = −6y1 − 9x1y1 − 3y3
1

, (34)

which gives 𝜆 = 2, 𝜇 = −6. This implies that there is an approaching trajectory in the direction x =−y for x < 0 and a
diverging one for x > 0.

At Q= [1:− 1], the vector field X1 has equations

X1 ≡
{

ẋ1 = 2x1 − 6x1y1 + 3x1y2
1

ẏ1 = −6y1 + 9x1y1 − 3y3
1

(35)

and the situation is the same as for [1 : 1]. Figure 2 shows the local dynamics of X at P= (0, 0), where the approaching
curves (T − t, T − t), (T − t, t −T) and (0, T − t) for t ∈ (0, T) can be clearly seen.

4.1 Stability of multiple hyperbolic saddles

The local stability of a multiple hyperbolic saddle cannot be studied by means of the linear part of the vector field, as it
is always the zero matrix. However, precisely because they have a specific structure, we can provide a description of the
local behavior of trajectories near the such an equilibrium point.

Proposition 1. Let P be a multiple hyperbolic saddle for the plane analytic vector field X, of multiplicity m. Then: there exist
trajectories 𝛾1(t), 𝜂1(t) … , 𝛾m+1(t), 𝜂m+1(t) of X and a neighborhood U of P such that:

1. For i= 1, … , m+ 1, the trajectory 𝛾i(t) approaches P and 𝜂i(t) moves away from P, that is: P = limt→∞𝛾i(t), and P =
limt→0𝜂i(t).

2. If P0 ∈U is different from P, then either P0 = 𝛾i(t) for some i, t or the trajectory of X passing through P0 leaves U eventually.

Proof. After a linear change of coordinates, we may assume that the tangent cone of X at P does not include the point
[0 : 1], corresponding to the axis x = 0. If 𝜋 is the blow-up of P, we know that, as P is a multiple hyperbolic saddle:

• The exceptional divisor is invariant for the strict transform X1 of X in U1.
• All the singularities of the strict transform X1 on the exceptional divisor are hyperbolic saddles, and there are exactly

m+ 1 of them.

-0.10 -0.05 0.00 0.05 0.10

-0.10

-0.05

0.00

0.05

0.10

F I G U R E 2 The flow corresponding to the vector field (28).
Notice the approaching trajectories in the directions of the angles
0, 3𝜋∕4, and 5𝜋∕4 [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 3 Schematic structure of the dynamics of the strict transform X1 of a multiple hyperbolic saddle. In blue, the exceptional
divisor. We assume, for simplicity, that all the singularities are “visible” in U1 [Colour figure can be viewed at wileyonlinelibrary.com]

This implies that the structure of the trajectories of X1, the strict transform of X in the first chart is, schematically, as
in Figure 3 (a finite sequence of m+ 1 alternating saddles all of them included in an algebraic set: the exceptional divisor).

Denote by E the exceptional divisor, which is a compact 1-dimensional manifold on which the m+ 1 hyperbolic
singularities, say P1, … Pm+ 1, are. Let X denote the pull-back of X . By compacity of E, and because all the singular-
ities of X1 are hyperbolic, there is an open set U ⊃ E such if Q ∈ U and Q∉E, then: either Q belongs to the unique
trajectory of X converging to some Pi or the trajectory of X starting at Q eventually leaves U. Taking U = 𝜋(U), 𝛾i the
projection of the trajectories of X converging to E and 𝜂i the projection of the trajectories of −X converging to E, we
are done. ▪

Notice that in Figure 3, we do not claim that X1 is a vector field on the whole of a neighborhood of E: the strict transform
X1 is defined only on the open set U1. However, the hyperbolicity of its singularities holds by definition.

As a consequence, we have proved that a multiple hyperbolic saddle at P is always unstable and there are just a finite
number of trajectories converging to P (exactly m+ 1 of them).

5 SOLUTION TO THE INVASIVE SPECIES PROBLEM

Recall that we had to compute the trajectories (if there are any) of the vector field X given by (11):

X =
⎧⎪⎨⎪⎩

ẋ(t) = −8x3 + 9x𝜆
18x + 27

𝜆̇(t) = −540x4 + 64x3𝜆 − 1556x3 + 144x2𝜆 − 1071x2 + 27𝜆2

18(2x + 3)2

(36)

approaching (0, 0) (we had already performed the change of variables sending (0, 1) to (0, 0)). We do not need to worry
about the denominators being 0 (i.e., 2x + 3= 0, that is x =−3/2), as the trajectories starting with x(0)> 0 (the only ones
we study because x(t) denotes a population) remain positive (i.e., x(t)> 0) because the line x = 0 is invariant. From now
on, we use y instead of 𝜆 in order to follow the standard convention when dealing with vector fields. As the origin is a
degenerate singularity of X , we first compute the tangent cone (19). Taking into account that the multiplicity of X is 2 at
(0, 0), the tangent cone C is the set of projective zeroes of the homogeneous polynomial T(x, y):

T(x, y) = yA2(x, y) − xB2(x, y) = −
xy2

3
− x

(
y2

6
− 119

18
x2
)
, (37)

that is:

C =

{[
1 ∶ −

√
119
3

]
,

[
1 ∶

√
119
3

]
, [0 ∶ 1]

}
, (38)

which means that the point “at infinity” [0 : 1] is also a singular point of the blow-up X of X . Hence, we need to study
three points in the exceptional divisor E of the blow-up M of R2 at (0, 0): two in the first chart U1 and one in the
second chart U2. We shall set Q1 = [1 ∶ −

√
119∕3], Q2 = [1 ∶

√
119∕3] (these two are in U1) and Q3 = [0 : 1], which

belongs to U2 .

http://wileyonlinelibrary.com
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5.1 The invariant curve x = 0

We first study Q3 = [0 : 1]. The strict transform of X in the second chart U2 is a vector field which, in local coordinates
(x2, y2) centered at Q3, has the form:

X2(x2, y2) =
⎧⎪⎨⎪⎩

ẋ2 = x2

(
− 1

2
+ …

)
ẏ2 = y2

(
1
6
+ …

) , (39)

where the ellipses indicate terms of order at least 1. Thus, Q3 is a hyperbolic saddle whose stable manifold is x2 = 0 (notice
that both the exceptional divisor y2 = 0 and the curve x2 = 0 are invariant). As the multiplicity of X at (0, 0) is 2, Lemma 3
tells us that that the trajectories of X included in x = x2 = 0 approach (0, 0) both when y< 0 and when y> 0. However, the
set x = 0 describes the equilibrium with no population, which is irrelevant.

5.2 Trajectories in the direction Q1 diverge

The strict transform of X in the first chart is:

X1 =

⎧⎪⎪⎨⎪⎪⎩
ẋ1 = −

x1(8x1 + 9y1)
9(2x1 + 3)

ẏ1 = −
12x2

1(8y1 − 45) + 4x1
(
9y2

1 + 48y1 − 389
)
+ 9

(
9y2

1 − 119
)

18(2x1 + 3)2

. (40)

Consider Q1 = [1 ∶ −
√

119∕3]. The linear part of X1 at x1 = 0, y1 = −
√

119∕3 (the point Q1) is:

X1(x1, y1) =

⎧⎪⎪⎨⎪⎪⎩
ẋ1 =

√
119
9

x1

ẏ1 = −
540 + 32

√
119

81
x1 −

√
119
3

y1

, (41)

which is a hyperbolic saddle. The eigenvalue corresponding to the exceptional divisor is −
√

119∕3 and the eigenvalue
corresponding to the other invariant manifold is

√
119∕3. As a consequence, the only trajectory of X included in x1 > 0

approaching Q1 is the exceptional divisor (we do not need to consider the case x1 < 0 because these are not physical
solutions, as x1 = x; Lemma 3 is not useful for this specific problem in this case).

5.3 Convergent trajectory in the direction Q2

The linear part of X1 (given by (40)) at Q2 = [1 ∶
√

119∕3] is, in coordinates centered at Q2:

X1(x1, y1) =

⎧⎪⎪⎨⎪⎪⎩
ẋ1 = −

√
119
9

x1

ẏ1 = −
540 − 32

√
119

81
x1 +

√
119
3

y1

, (42)

which is again a hyperbolic saddle. In this case, the sign of the eigenvalues is transposed from that of Q1, so that there is
a unique trajectory converging to Q2 in M, included in x = x2 > 0. This is the one we need to study.
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5.4 Blow-up and backward integration

As Q2 has homogeneous coordinates [1 ∶
√

119∕3], we might just try to use backward integration straightaway using, as
tentative direction, the line y =

√
119
3

x. However, our method provides a better initial condition, as blowing-up gives an
extra order of approximation.

Consider the linear part of X , given by (42) at the point Q2 in M. The unstable manifold of that linear singularity is
y2 ≃ 0.486x2. Therefore, a convenient initial point for the differential equation corresponding to −X at Q2 might be P0 =
(x1, y1) = (10−4, 3.63629). Notice that this provides, better accuracy than taking P0 = (x, y)= (10−4, 0.00036), which is what
one would choose in order to use the backward integration method with the direction given by Q3 without blowing-up
(disregarding the fact that the backward integration method is not straightforwardly applicable at (0, 0) as the singularity
is degenerate).

As x > 0, we do not need to consider the sign conditions in Lemma 3 and we just integrate−X (i.e., X “backward”) from
P0 until we get to the desired value x1 = 0.25 along a trajectory (x1(u), y1(u)). Using Mathematica™, we obtain x2 = 0.25,
y2 ≃ 3.74913 (the value of u giving these is useless, as X is a modification of X). Therefore, the initial condition for the
optimal trajectory (x∗(t), 𝜆∗(t)) of the canonical system converging to (0, 1) is (x(0), 𝜆(0)) = (0.25, 1.937281).

We now integrate X forward from this initial condition, in order to compute the trajectory depending on time t. As
explained above, the points (x(u), 𝜆(u)) = (x2(u), x2(u)y2(u)) computed from the trajectory of X above belong to the set
{(x∗(t), 𝜆∗(t)) ∶ t ∈ (0,∞)} but the variable u has no direct relation to the true time t, hence the necessity of this forward
integration. This last step provides the optimal solution (x∗(t), 𝜆∗(t)) which, using (6) gives the solution (x∗(t),u∗(t)) to (3)
with x(0)= 0.25, for the specific values of the parameters. Figure 4 contains the plots of x∗(t) and u∗(t) as a function of
time for the solution to the optimal control problem converging to (x, 𝜆) = (0, 1) with x(0)= 0.25.

The cost of that trajectory in the control problem is C =−0.152741 (computed using a discretization of t = .01), so that
it is actually profitable. We have seen that this is the only trajectory of the canonical system converging to the steady state
and that the Hamiltonian only converges to 0 on these. Hence, this value is the cost of the optimal solution to our OCP.

5.5 Comparison with other methods

We have considered two possible alternative methods: a naive use of the backward integration method7 and a version of
the shooting method which we have successfully used in several other contexts.23-25

We point out in passing that the degenerate singularity we are studying is of the “simplest” type, as there are only
three invariant curves passing through it. The drawbacks of these methods will only increase in more complicated cases.

5.5.1 Backward integration

One might try and use the backward integration method7 naively, but there is a great problem: what initial condition near
the singularity does one take in order to—going backward—approach a trajectory converging to it? The Jacobian matrix
(i.e., the linear part of the vector field) at the singularity provides no information, as it is the zero matrix, so that it provides
no information.

F I G U R E 4 Population x∗(t) (red) and harvest u∗(t) (blue) as a
function of time for the solution converging to (x, 𝜆) = (0, 1) [Colour
figure can be viewed at wileyonlinelibrary.com] 20 40 60 80 100 120 140
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For this specific problem, as long as one chooses an initial value (for backward integration) 𝜆(0) > −
√

119
9

x(0), the
backward integration method will give a solution truly approaching the trajectory converging to the equilibrium. How-
ever, if that condition does not hold, the backward integration method will give a solution approaching the invariant set
x = 0, which is useless. For example, if one chooses x(0)= 0.001 and y(0)=−0.01, the backward trajectory is very soon
asymptotic to x = 0.

One might use the tangent cone for choosing the initial value for the backward integration method but one also
needs—in order for this to provide useful information—to study which points in the tangent cone are points of
convergence of trajectories of the blown-up vector field.

5.5.2 Modified shooting method

Using a version of the shooting method adapted to Optimal Control Problems, we can easily solve the generic case (i.e.,
when the parameters give rise to an ordinary saddle), with a short convergence time and very good approximation, as in
our previous works; v.gr., for t = 50, we obtain x(t)≃ 0.2209, the equilibrium being x ≃ 0.2165, an error of less than 5 per
thousand.

However, when trying to use it for the degenerate case, we get, for t = 50, the value 0.06, whereas the true value at t = 50
is 0.015 (notice the large relative error). The reason (as we see it) is related to the great curvature of the trajectories near
the singular point, as Figure 1 shows. This modified shooting method is not only unable to quickly find the steady state
but any increase in the desired approximation requires a delicate and troublesome choice of discretization and bounding
parameters, which makes it unfeasible for the degenerate case.

6 COMMENTS ON DISCOUNTED FUNCTIONALS

In economic models, one usually encounters the special case of a discounted control problem with infinite horizon:

min
u(t)

J = ∫
∞

0
G(x(t),u(t))e−rtdt,

ẋ(t) = f (x(t),u(t)) , 0 ≤ t < ∞; x(0) = x0, (43)

where x(t) ∶ R → R, u(t) ∶ R → Rn, 0≤ t <∞, r ≥ 0 is the positive rate of discount, and G is a function bounded from
above.

Equation (4) defines H, which is called, in the presence of a discount factor, the present-value Hamiltonian. Nev-
ertheless, it is usually desirable to define a new Hamiltonian that is free of the discount factor: the current-value
Hamiltonian:

Hc(x,u, 𝜆) = H(x,u, 𝜆) ⋅ ert = G(x,u) + m ⋅ f (x,u) , (44)

where a new (current-value) Lagrange multiplier m is defined:

m = 𝜆 ⋅ ert.

When working with Hc instead of H, all the conditions of the PMP must be reexamined (see References 29,30). The next
conditions are equivalent to the necessary conditions imposed by the PMP:

ẋ = 𝜕Hc

𝜕m
= f ; x(0) = x0, (45)

ṁ = rm − 𝜕Hc

𝜕x
; lim

t→∞
Hc(t)e−rt = 0, (46)

Hc(x,u∗,m) = min
u(t)

Hc(x,u,m). (47)
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And the current-value Hamiltonian of an autonomous problem has an additional property: its value along the optimal
paths must be constant over time, that is, H∗

c = cst.
Let u∗(t) be an admissible control of the OCP satisfying the Hamiltonian minimizing condition (47). Then the ODE:

ẋ(t) = 𝜕Hc

𝜕m
(x(t),u∗(t),m(t)) = f (x(t),u∗(t)) , (48)

ṁ(t) = rm(t) − 𝜕Hc

𝜕x
(x(t),u∗(t),m(t)), (49)

is also called the canonical system of the OCP. The current-value notation has the advantage that this canonical system
becomes an autonomous ODE. The corresponding Jacobian is:

J(xs,ms) =

(
a11 a12

a21 a22

)
=

(
𝜕2H∗

c
𝜕m𝜕x

𝜕2H∗
c

𝜕m2

− 𝜕2H∗
c

𝜕x2 −r − 𝜕2H∗
c

𝜕x𝜕m

)
, (50)

where H∗
c = Hc(xs,u∗(xs,ms),ms) is the maximized Hamiltonian.

The elements in the diagonal of the Jacobian (50) differ by a constant (the discount factor): this implies that, as long as
u∗ is an analytic function of x and m, the Jacobian cannot be the zero matrix. As a consequence (see, for instance, Reference
18), the only possible singularities with monotone approaching trajectories are hyperbolic saddles or saddle-nodes (this
have a zero eigenvalue and a nonzero one). The first case is well known, whereas the second may give rise to an infinite
number of trajectories approaching the steady state. If in our OCP (3) we add a discount factor to the functional, say
e−rt and compute the current-value canonical system for 𝜌 = 2∕3 (which is certainly nonreal but this is just by way of
example), we obtain a vector field whose Jacobian at (0,− 1) is:

J(0, 1) =

(
2∕3 0
−8∕9 0

)
, (51)

which means that the singularity at (0, 0) is degenerate of saddle-node type. Unfortunately, these singularities have the
undesirable property of having infinite number of trajectories of the vector field accumulating (as sets) at the singularity.
Saddle-nodes are also quite unstable numerically, as they tend to have nonconvergent power series solutions, despite
having multiplicity 1. We have not carried out the complete study of our example in this case as we reckon it requires a
deeper study, for which the tools in this article are unsuitable.

7 CONCLUSIONS AND FURTHER RESEARCH

Optimal control theory has become a key discipline in many branches of economics, social sciences and biology. Due to
the complexity of the recent applications, OCPs are most often solved numerically. However, qualitative study of steady
states is relevant because the nature of the problem may change drastically near one. For degenerate steady states (whose
Jacobian determinant is 0), there is no available technique in the literature.

We show how to modify the backward integration method, using the blow-up technique, in order to deal with solutions
approaching a specific class of degenerate steady states (multiple hyperbolic saddles). The required modification turns
out to be simple and effective, due to the nature of hyperbolic saddles.

Using this technique we can completely analyze multiple hyperbolic saddles with any number of admissible trajecto-
ries approaching the steady state, whereas the classical approach can only deal with a single trajectory.

Two examples are presented illustrating the techniques and their feasibility.
The case of discount factor is addressed and shown to require a deeper study and more developed strategies.
The blow-up technique and the qualitative study of degenerate singularities of vector fields may provide greater insight

into the nature of steady states in optimal control problems. We state, as future research paths: the study of equilibria of
saddle-node type; singularities in which trajectories become tangent (which may require iterating the blow-up process);
bounding the number of possible trajectories approaching an equilibrium.
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