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Abstract
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1 Introduction: Optimal Stopping Problems

1.1 Optimal Stopping Times

Finding an optimal stopping time for a (discrete and in principle finite) stochastic
sequence X = {Xi }ni=1 and payoff functions {Pi }ni=1 can be a daunting task in the
absence of more information on the process and payoff functions. In this paper, we
propose an asymptotic method for a non-homogeneous Markov process X each of
whose Xi has a Bernoulli distribution (but with possibly different parameter pi for
each i), and whose payoff functions satisfy some realistic properties. The secretary
problem is perhaps the best-known instance of such a problem, but examples in the
literature are plentiful [9, 14, 18].

The problems we study are modeled by means of a stochastic processX = {Xi }ni=1
and payoff functions {Pi }ni=1, and they take place in the usual setting of a stopping
problem:

(1) At each step (time) k, the value Xk = xk is observed. Based on this value, the
choice between stopping or continuing is made. If k = n, the process stops in any
case.

(2) The final payoff Pτ (x1, . . . , xτ ) is obtained when the process is stopped at step
(time) τ ∈ {1, . . . , n}.

The problem to be solved is to maximize the expected final payoff, which we will
denote by P.

As stated above, we study the case when Xk ∼ Be(pk) are mutually independent
Bernoulli random variables, for k ∈ {1, . . . , n}, and the payoff functions Pk have
the forgetfulness property of only depending on the last observation xk . Despite its
seeming simplicity, this setting applies to several well-known problems which we
cover in detail.

Under these assumptions, we can state the original problem as a dynamic program
as follows: Let ℘ be the payoff obtained if the process ends after the n-th step (that is,
without stopping), and let E(k) be the expected payoff if the process is not stopped at
step k, but the optimal strategy is followed from that point on. By definition, E(n) = ℘.
For k < n, E(k) is the weighted mean of:

(1) The maximum between (a) the payoff from stopping at step k + 1 with xk+1 = 1
and (b) the expected payoff E(k + 1) of continuing further than step k + 1, and

(2) The maximum between (a) stopping at step k + 1 with xk+1 = 0 and (b) the same
E(k + 1),

each having respective weights pk+1 and (1 − pk+1). Thus, for k ∈ {1, . . . , n − 1}:

E(k) = pk+1 max
{
Pk+1(1), E(k + 1)

} + (1 − pk+1)max
{
Pk+1(0), E(k + 1)

}
,

E(n) = ℘.

This dynamic program allows us to compute the expected payoff when following the
optimal strategy (which turns out to be simply E(0)) in linear time O(n), even if we
do not actually know which this optimal strategy is.
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In the same setting, we can consider the (usual) situation in which the process is
never optimal when Xk = 0 (recall that Xk are Bernoulli random variables), or we
are not allowed to stop in that event. This can be modeled setting Pk(0) = −∞. With
this condition, the previous recurrence becomes, for k ∈ {1, . . . , n − 1}:

E(k) = pk+1 max
{
Pk+1(1), E(k + 1)

} + (1 − pk+1)E(k + 1),

E(n) = ℘.

Defining the optimal stopping set O as

O = {k : Pk(1) ≥ E(k)},

the optimal strategy in this case consists in stopping whenever k ∈ O and Xk = 1.
The expected payoff following this strategy is precisely E(0).

If the optimal stopping set turns out to be of the form O = {κ + 1, . . . , n}, then
the number κ is called the optimal stopping threshold and the strategy that consists
in stopping at step k, with k = min{k : k ∈ O, Xk = 1}, is optimal. It is called the
optimal threshold strategy.

Of course, in any problem, we may always decide to follow a threshold strategy
using an arbitrary stopping threshold k (not necessarily optimal). If we denote by E(k)
the expected payoff obtained when following such a strategy, a recursive argument
shows that for any such threshold k ∈ {1, . . . , n − 1}:

E(k) = pk+1Pk+1(1) + (1 − pk+1)E(k + 1),

E(n) = ℘.

Obviously, E(κ) = P is the maximum expected payoff using a threshold strategy.
Insofar we have assumed that the number n of events is fixed, but it can be set

as a parameter. For any n, we may consider an optimal stopping problem defined

by mutually independent Bernoulli random variables
{
X (n)
i

}n

i=1
and payoff functions

{
P(n)
i

}n

i=1
. Thus, if we assume that the optimal strategy for each n is of the threshold

type, we will have a sequence of recursive functions {En} representing, for each n,
the expected payment using the threshold k ∈ {1, . . . , n − 1}:

En(k) = p(n)
k+1P

(n)
k+1(1) + (1 − p(n)

k+1)En(k + 1), (1)

En(n) = ℘n .

Each of these problems will have an optimal stopping threshold κn , and an expected
payoff En(κn) = Pn using the corresponding optimal threshold strategy. A natural
problem is thus to study the asymptotic behavior of these values as n tends to infinity.

We shall compute limn
κn
n and limn Pn by means of differential equations, as we

proceed to explain.
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1.2 FromDiscrete to Continuous

In many cases, the optimal stopping threshold κn happens to be asymptotically of
the form κn ∼ nθ for some θ ∈ [0, 1]. Recall that κn is, by definition, the value for
which the function En reaches its maximum. The computation of θ = limn

κn
n can

be achieved, under adequate conditions, by means of the sequence of functions { fn},
with fn : [0, 1] → R defined by

fn(x) = En(�nx�).

If, for example, fn(x) converges uniformly to a continuous function f ∈ C[0, 1] with
a single global maximum θ , then we have shown that [2]:

lim
n

κn

n
= θ, lim

n
Pn = f (θ).

The uniform convergence of the sequence fn(x) to a continuous function is an issue
which can often be heuristically ascertained, but whose proof needs not be straightfor-
ward at all. In [15], we were able to prove the following result, when En(k) satisfies
a recurrence relation similar to (1):

Theorem 1 Consider a sequence of functions {Fn} with Fn : [0, n] ∩ Z → R defined
recursively, for k ∈ {1, . . . , n − 1}, by the conditions:

Fn(k) = Gn(k) + Hn(k)Fn(k + 1) and Fn(n) = μ.

Let fn(x) := Fn(�nx�), hn(x) := n(1−Hn(�nx�)) and gn(x) := nGn(�nx�). If both
hn(x) and gn(x) converge in (0, 1) and uniformly in [ε, ε′] for all 0 < ε < ε′ < 1
to continuous functions in (0, 1), h(x) and g(x), respectively, and fn(x) → f (x)
uniformly in [0, 1] with f ∈ C[0, 1], then f (1) = μ and f satisfies the following
differential equation in (0, 1)

f ′(x) = f (x)h(x) − g(x).

This is in fact a very useful result [4, 15], but the important issue about the uniform
convergence remains. The aim of this paper is to overcome this complication by
showing how, under certain conditions on Fn(k),Gn(k) and Hn(k) in the theorem
above, uniform convergence is guaranteed and the functions f (x), g(x), h(x) satisfy
the differential equation of the statement. We demonstrate the power of our result by
revisiting a number of well-known problems, as well as addressing some new ones,
and applying it to them.

Notice, however, that our asymptotic study is, in no way (or, at least as far as we
understand it), a translation of the initial discrete and finite-time Markov chain to a
continuous-time stochastic process; what we do is transform the stochastic problem
(finding an optimal stopping time) into a problem of difference equations, by means
of dynamic programming, and only at this point do we use the approximation given by
differential calculus in order to find an asymptotic solution to the dynamic program.
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1.3 Previous Art and Structure of thisWork

Precedents to this work are Shokin and Yanenko’s works on difference equations and
their differential equations equivalents [29, 30]. Our approach to the optimal stopping
problem using dynamic programming and differential equations can be already seen
in Mucci’s works [20, 21], applied also to versions of the best choice problem; finally,
using differential equations to study variants of the secretary problem has numerous
precedents [6–8, 12, 13, 19, 28, 33]. This is not surprising, given the relationship
between difference and differential equations. The importance of the present work
lies in providing a systematic methodology for the variants of the secretary problem
we have found in the literature, and for optimal stopping problems of similar nature.
Certainly, the technique is also applicable to a great variety of sequences of recurring
functions.

Section 2 is dedicated to the main result. The long Sect. 3 is devoted to applying our
methodology to several variants of the secretary problem, all of them well known, in
a unified way: the original secretary problem [14, 18], the postdoc variant [2, 32, 36],
the best-or-worst version [2, 3], the secretary problem with uncertain employment
[31], the secretary problem with interview cost [6], the win-lose-or-draw marriage
problem [11], the duration problem [10], the multicriteria secretary problem [17],
and the secretary problem with a random number of applicants [23, 25]. Section 4
also includes applications of the new methodology, but now to other problems created
ad hoc such as lotteries with increasing prize, the secretary problem with wildcard,
the secretary problem with random interruption of the interviews, and the secretary
problem with penalty if the second best is selected. Finally, in Sect. 5 we present and
motivate two lines of continuation of this research: on one side, stopping problems
whose optimal strategy involves several thresholds and, on the other, sequences of
recurrent functions Fn : {0, . . . , n} −→ R for which the sequence fn(x) := F(�nx�)
does not converge uniformly in [0, 1], but does so punctually in (0, 1).

2 TheMain Result

This section is devoted to proving ourmain result. In forthcoming sections, wewill use
it to establish a novel methodology for determining the asymptotic optimal threshold
and the asymptotic probability of success in problems for which the optimal strategy
is a threshold strategy. As we already mentioned, the underlying ideas were present
in [15]. The following two technical lemmas are easy but helpful.

Lemma 1 Let f : [0, 1] −→ R be a continuous function and, for every n, let f̃n(x) =
f

(�nx�
n

)
: [0, 1] −→ R. Then, the sequence of functions { f̃n} converges uniformly

to f on [0, 1].
Proof Since [0, 1] is compact, f is uniformly continuous in [0, 1]. For every x ∈ [0, 1],
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0 ≤
∣∣∣∣
�nx�
n

− x

∣∣∣∣ <
1

n
,

so the uniform continuity of f in [0, 1] gives the result. �

Lemma 2 Let {Sn} be a sequence of functions Sn : {0, . . . , n} −→ R recursively
defined by:

Sn(n) = an,

Sn(n − 1) = bn,

Sn(k) = Tn(k) +Un(k)Sn(k + 1), for 1 ≤ k ≤ n − 2,

Sn(0) = cn,

for some an, bn, cn ∈ R, and functions Tn,Un : {0, . . . , n} −→ R. For n ∈ N, define
sn : [0, 1] −→ R by sn(x) = Sn(�nx�), and tn = ∑n−2

k=1 |Tn(k)|.
If limn an = limn bn = lim cn = limn tn = 0 and |Un(k)| ≤ 1, then the sequence

of functions {sn} converges uniformly to 0 in [0, 1].
Proof By recurrence, for k ∈ {1, . . . , n − 2}, we have

Sn(k) = bn

n−k∏

i=2

Un(n − i) +
n−k∑

i=2

⎛

⎝
n−k∏

j=i+1

Un(n − j)

⎞

⎠ Tn(n − i).

Taking into account that 0 ≤ �nx� ≤ n for x ∈ [0, 1], we get

|sn(x)| = |Sn(�nx�)| ≤ |an| + |bn| + |cn| + tn,

and the result follows from Lemma 1. �

Remark 1 Notice that, even removing the conditions limn an = 0 and limn cn = 0
in Lemma 2, we can still prove that limn Sn(k) = 0 for every 1 ≤ k ≤ n. This
also remains true if we furthermore replace the condition limn tn = 0 by the weaker
condition limn Tn(k) = 0 for every 1 ≤ k ≤ n. Thus, whatever an and cn are, the
sequence sn(x) converges uniformly to 0 in [ε, 1 − ε] for any ε > 0.

We can now prove our main result

Theorem 2 Let μ ∈ R be a constant real number and {Fn} a sequence of functions
Fn : {0, . . . , n} −→ R recursively defined by

Fn(n) = μ,

Fn(k) = Gn(k) + Hn(k)Fn(k + 1), 0 ≤ k ≤ n − 1,

for some functions Gn, Hn : {0, . . . , n} −→ R.
For every n ∈ N, let fn, gn, hn : [0, 1] −→ R be the functions fn(x) = Fn(�nx�),

hn(x) = n(1 − Hn(�nx�)), and gn(x) = nGn(�nx�), respectively. Assume the fol-
lowing conditions hold:
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(1) |Hn(k)| ≤ 1,
(2) limn

(
Gn(n − 1) + μHn(n − 1)

) = μ,
(3) There exist h, g ∈ C1(0, 1) such that the differential equation y′ = yh− g admits

a solution f ∈ C[0, 1] with:
(i) f (1) = μ,
(ii) limn

(
Gn(0) + f (0)Hn(0)

) = f (0),

(iii) limn
1
n

∑n−2
k=1 |Vn(k)| = 0, where

Vn(k) =
(
gn

(
k

n

)
− g

(
k + 1

n

))
− f

(
k + 1

n

) (
hn

(
k

n

)
− h

(
k + 1

n

))
,

(iv) limn
∑n−2

k=1
Mn(k)
n2

= 0, where Mn(k) is given by

Mn(k) = max{| f ′′(x)| : x ∈ [k/n, (k + 1)/n]}.

Then, the sequence of functions { fn} converges uniformly to f on [0, 1].
Proof By definition f ∈ C2(0, 1), so that Taylor’s theorem ensures that for each
k ∈ {1, . . . , n − 2}, there exists cn(k) ∈ (k/n, (k + 1)/n) such that:

f

(
k

n

)
= f

(
k + 1

n

)
− 1

n
f ′

(
k + 1

n

)
+ 1

2n2
f ′′ (cn(k)) .

On the other hand, since f satisfies the differential equation y′ = yh − g in (0, 1),
then for k ∈ {1, . . . , n − 2} the above equality can be rewritten as

f

(
k

n

)
= f

(
k + 1

n

)
− 1

n

(
f

(
k + 1

n

)
h

(
k + 1

n

)
−g

(
k + 1

n

))
+ 1

2n2
f ′′ (cn(k)) .

Define, for each n, the function Sn : {0, . . . , n} −→ R as Sn(k) = Fn(k) − f
( k
n

)
.

Certainly, the following equalities hold:

Sn(n) = Fn(n) − f (1) = 0,

Sn(n − 1) = Fn(n − 1) − f

(
n − 1

n

)
= Gn(n − 1) + μHn(n − 1) − f

(
n − 1

n

)
,

Sn(k) =
(
1

n
Vn(k) − 1

2n2
f ′′ (cn(k))

)
+ Hn(k + 1)Sn(k + 1),

Sn(0) = Fn(0) − f (0).

In order to apply Lemma 2, we need to check that limn Sn(0) = 0. To do so, just
observe that

Fn(0)− f (0)=(
Gn(0)+ f (0)Hn(0)− f (0)

)+Hn(0)Sn(1) + Hn(0)
(
f (1/n) − f (0)

)
,
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noting (recall Remark 1) that limn Sn(1) = 0, Hn(0) is bounded, and f ∈ C[0, 1].
Since the remaining hypothesis of Lemma 2 follows immediately from conditions
(1)-(3), we conclude that {sn} converges to 0 uniformly in [0, 1].

Now, fn(x) = Fn(�nx�) = sn(x)+ f
( �nx�

n

)
. Since f ∈ C[0, 1], Lemma 1 implies

that f
( �nx�

n

)
converges uniformly to f on [0, 1] and the result follows. �


Remark 2 As suggested by above the expression for Vn(k), the most readily avail-
able candidates for g and h are the functions defined as the (pointwise) limits of the
sequences {gn} and {hn}. Namely,

g(x) := lim
n

gn(x) = lim
n

nGn(�nx�),
h(x) := lim

n
hn(x) = lim

n
n(1 − Hn(�nx�)).

Note that this construction may not lead to g, h ∈ C1(0, 1). However, the latter
property will hold in most of the forthcoming examples.

3 Application to Known Problems

In this section, we are going to apply Theorem 2 to a collection of some well-known
problems in order to illustrate the usefulness of our result and to show how all those
problems can be dealt with in a systematic way using our technique. Recall from
Introduction that n is the number of independent events (sequential choices), Xi are
mutually independent Bernoulli random variables (whose pi are possibly different),
Pn denotes the expected payoff under the optimal threshold strategy and κn is the
optimal stopping threshold. In all cases, there is a sequence of functions {Fn} with
Fn : {0, . . . , n} −→ R, defined recursively as:

Fn(n) = μ,

Fn(k) = Gn(k) + Hn(k)Fn(k + 1), for 0 ≤ k ≤ n − 1,

where Gn(k) = p(n)
k+1P

(n)
k+1(1) and Hn(k) = 1 − p(n)

k+1. The following two properties
characterize κn :

(1) It maximizes Fn , that is: Pn = Fn(κn) = max{Fn(k) : 0 ≤ k ≤ n}, and
(2) It is the largest value for which it is preferable to continue rather than to stop:

Fn(κn) > P(n)
κn

(1), and Fn(κn + i) ≤ P(n)

ˇn+i (1) for 1 ≤ i ≤ n − κn .

These twoproperties allowus to apply the following two technical results to perform
the desired asymptotic analysis.

Proposition 1 Let Fn : {0, . . . , n} −→ R be a sequence of functions and M(n) an
argument for which Fn is maximum. Define { fn}n∈N as fn(x) := Fn(�nx�), and
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assume that { fn} converges uniformly in [0, 1] to f ∈ C[0, 1] having a single global
maximum θ in [0, 1]. Then,
(i) lim

n
M(n)/n = θ ,

(ii) lim
n

Fn(M(n)) = f (θ).

Proof See [2]. �


Proposition 2 Let {Fn, Qn}n∈N be two sequences of real functions defined in
{0, . . . , n}, and let N(n) ∈ {0, . . . , n − 1} be such that

Qn(N(n)) < Fn (N(n)) ,

Qn(N(n) + i) ≥ Fn (N(n) + i) for all i = 1, . . . , n − N(n).

Assume that the sequences of functions { fn}n∈N and {qn}n∈N defined by fn(x) =
Fn(�nx�) and qn(x) = Qn(�nx�) for x ∈ [0, 1] converge uniformly in [0, 1] to
continuous functions f and q (respectively), and assume there is a unique θ ∈ (0, 1]
such that q(x) − f (x) changes sign around θ . Then, lim

n
N(n)/n = θ .

Proof By the uniformcontinuity, if there is such θ , then it is unique under the conditions
on Qn and Fn . Let ε > 0 be such that q(x) < f (x) for x ∈ [θ −ε, θ) and q(x) > f (x)
for x ∈ (θ, θ + ε]. Define the new sequences

Qn(k) =
⎧
⎨

⎩

Qn(N(n) − �εn�) if k < N(n) − �εn�
Qn(k) if N(n) − �εn� ≤ k ≤ N(n) + �εn�
Qn(N(n) + �εn�) if k > N(n) + �εn�

and

Fn(k) =
⎧
⎨

⎩

Fn(N(n) − �εn�) if k < N(n) − �εn�
Fn(k) if N(n) − �εn� ≤ k ≤ N(n) + �εn�
Fn(N(n) + �εn�) if k > N(n) + �εn�

These sequences converge uniformly to q(x), f (x) for x ∈ [θ − ε, θ + ε] and to the
values q(θ − ε), f (θ − ε), (and q(θ + ε), f (θ + ε)) for x ≤ θ − ε, (and x ≥ θ + ε),
respectively. By the continuity of q(x) and f (x), the function defined in [0, 1] by
h(x) = 1 − (q(x) − f (x))2 has a single maximum at θ . The sequence of functions
Hn = {1 − (Qn − Fn)

2} converges uniformly to h(x) in [0, 1]. The result follows
now from Proposition 1. �


In what follows, each problem is succinctly stated and we will make extensive use
of Theorem 2, and Propositions 1 and 2 . The required conditions are stated without
explanation when they are easy to verify.
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3.1 The Classical Secretary Problem

An employer is willing to hire the best one of n candidates, who can be ranked
somehow. They are interviewed one by one in random order and a decision about
each particular candidate has to be made immediately after the interview, taking into
account that, once rejected, a candidate cannot be called back. During the interview,
the employer ranks the candidate among all the preceding ones, using a strict order,
but is unaware of the rank of the yet unseen candidates. The goal is to determine
the optimal strategy that maximizes the probability of successfully selecting the best
candidate.

This problem is an optimal stopping one with a threshold optimal strategy [5, 9,
14, 18] that consists in choosing the first maximal candidate interviewed after the
optimal threshold. Using the notation and terminology from Sect. 1, X (n)

k = 1 if and

only if the k-th candidate is better than all the previous ones; so p(n)
k = 1

k , and the

payoff function is P(n)
k (1) = k

n , since
k
n is precisely the probability of success if we

choose the k-th candidate provided it is maximal at that step. The expected payoff
using a threshold strategy (with threshold k) is equal to the probability of successfully
choosing the best candidate using such strategy. Thus, if we denote this probability
by Fn(k), it follows from (1) that the functions Fn(k) satisfy the following recurrence
relation for k ∈ {1, . . . , n − 1}:

Fn(k) = 1

n
+ k

k + 1
Fn(k + 1),

Fn(n) = 0.

and the objective is to maximize this probability.
With the notation of Theorem 2, we have that

μ = 0,Gn(k) = 1

n
, and Hn(k) = k

k + 1
.

so that

gn(x) = nGn(�nx�) = 1,

hn(x) = n(1 − Hn(�nx�)) = n

�nx� + 1
,

and taking into account Remark 2, we can consider

g(x) = lim
n

gn(x) = 1,

h(x) = lim
n

hn(x) = 1

x
.
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Table 1 Data for the postdoc
variant

μ Gn(k) gn(x) g(x) Hn(k) hn(x) h(x)

0 k
n(n−1)

�nx�
n−1 x k

k+1
n

�nx�+1
1
x

Thus, f (x) is the solution of the Initial Value Problem (IVP from now on):

{
y′ = y

x
− 1

y(1) = 0

which gives:

f (x) = −x log x .

The hypotheses of Theorem 2 hold:

• Conditions (1), (2), (3i) and (3ii) are straightforward.
• Condition (3iii) holds because Vn(k) = 0.
• Condition (3iv) follows because Mn(k) = n/k, as | f ′′(x)| = 1/x is decreasing.

Applying Theorem 2, Fn(�nx�) converges uniformly to f (x) = −x log x in [0, 1].
Hence, since f (x) reaches its maximum at x = e−1 and f (e−1) = e−1, Proposition 1
gives the well-known results:

lim
n

κn

n
= e−1, lim

n
Pn = e−1.

3.2 The Postdoc Variant

This problem is essentially the previous one with the difference that the goal is to
select the second best candidate. We know [2, 26, 36] that the probability Fn(k)
of successfully choosing the second best candidate using a threshold strategy with
threshold k ∈ {1, . . . , n − 1} satisfies:

Fn(k) = k

n(n − 1)
+ k

k + 1
Fn(k + 1),

Fn(n) = 0.

Thus, the relevant data are given in Table 1
The corresponding IVP is:

{
y′ = y

x
− x

y(1) = 0

with solution:

f (x) = x − x2.
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Table 2 Data for the
best-or-worst variant

μ Gn(k) gn(x) g(x) Hn(k) hn(x) h(x)

0 2
n 2 2 k−1

k+1
2n

�nx�+1
2
x

In this example, as in most of the subsequent ones, conditions (1), (2), (3i), and
(3ii) from Theorem 2 are again straightforward (in fact we will not mention them any
more). Conditions (3iii) and (3iv) hold because:

Vn(k) = k − n + 1

(n − 1)n
, Mn(k) = 2.

By Theorem 2, the sequence Fn(�nx�) converges uniformly to f (x) in [0, 1]. Since
f (x) reaches its maximum at x = 1

2 and f ( 12 ) = 1
4 , we can apply Proposition 1 to

get the well-known results [2, 26, 36]:

lim
n

κn

n
= 1

2
, lim

n
Pn = 1

4
.

3.3 The Best-or-Worst Variant

In this version, the aim is to select either the best or the worst candidate, and it is also
an optimal stopping problem. The corresponding probabilities Fn(k) of successfully
choosing the best or worst candidate using a threshold strategy with threshold k ∈
{1, . . . , n − 1} satisfy [2]:

Fn(k) = 2

n
+ k − 1

k + 1
Fn(k + 1),

Fn(n) = 0.

The relevant data are given in Table 2:
The corresponding IVP is:

{
y′ = 2y

x
− 2

y(1) = 0

whose solution is:

f (x) = 2x − 2x2.

Conditions (3iii) and (3iv) in Theorem 2 hold in this case because Vn(k) = 0 and
Mn(k) = 4. As a consequence, Fn(�nx�) converges uniformly to f (x) in [0, 1]. Since
f (x) reaches its maximum at x = 1

2 and f ( 12 ) = 1
2 , Proposition 1 gives the results

from [2]:
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Table 3 Data for the secretary
problem with uncertain
employment

μ Gn(k) gn(x) g(x) Hn(k) hn(x) h(x)

0 p
n p p k+1−p

k+1
pn

�nx�+1
p
x

lim
n

κn

n
= 1

2
, lim

n
Pn = 1

2
.

3.4 The Secretary Problemwith Uncertain Employment

This variant [31] introduces the possibility that each candidate can be effectively hired
only with certain fixed probability 0 < p ≤ 1 (independent of the candidate). If a
specific candidate cannot be hired, it cannot be chosen and the process must continue.
Obviously, the case p = 1 is the classical problem, while the case p = 0 is absurd.

In this situation, p(n)
k = p

k
and P(n)

k (1) = k

n
. Hence, the probabilities Fn(k) satisfy

the following recurrence relation for k ∈ {1, . . . , n − 1}:

Fn(k) = p

n
+

(
1 − p

k + 1

)
Fn(k + 1),

Fn(n) = 0.

Table 3 summarizes the relevant data (all the computations are straightforward).
The corresponding IVP is:

{
y′ = py

x
− p

y(1) = 0

with solution:

f (x) = p(x p − x)

1 − p
.

Conditions (3iii) and (3iv) of Theorem 2 hold because Vn(k) = 0 and Mn(k) =
p2

( n
k

)2−p. Thus, Fn(�nx�) converges uniformly to f (x) in [0, 1]. The function f (x)

reaches its maximum at x = p
1

1−p , and f (p
1

1−p ) = p
1

1−p , so that Proposition 1
provides the results from [31]:

lim
n

κn

n
= p

1
1−p , lim

n
Pn = p

1
1−p .

Observe that, as expected, if p → 1, these values converge to the solution of the
classical problem.
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Table 4 Data for the secretary
problem with interview cost

μ Gn(k) gn(x) g(x) Hn(k) hn(x) h(x)

−c 1−c
n 1 − c 1 − c k

k+1
n

�nx�+1
1
x

3.5 The Secretary Problemwith Interview Cost

In this variant [6], a cost c
n (with 0 ≤ c < 1) for each observed candidate is introduced.

(If c = 0, the problem is the classical one.) The difference with the classical problem
(cf. subsect. 3.1) is that, in this situation, p(n)

k = 1
k , the payoff function is P(n)

k (1) =
k
n (1 − c) and μ = −c. Thus, for k ∈ {1, . . . , n − 1}:

Fn(k) = 1 − c

n
+ k

k + 1
Fn(k + 1),

Fn(n) = −c.

Table 4 contains the relevant data.
The corresponding IVP is:

{
y′ = y

x
− (1 − c)

y(1) = −c

with solution:

f (x) = −cx + cx log x − x log x .

In this case, Vn(k) = 0 and Mn(k) = (1−c)n
k . Theorem 2 holds and Fn(�nx�)

converges uniformly to f (x) in [0, 1]. Since f (x) reaches its maximum at x = e
1

c−1

and f
(
e

1
c−1

)
= (1 − c)e

1
c−1 , Proposition 1 gives the results from [6]:

lim
n

κn

n
= e

1
c−1 , lim

n
Pn = (1 − c)e

1
c−1 .

For c = 0, we obviously recover the values for the classical problem.

3.6 TheWin-Lose-or-Draw Secretary Problem

In this variant, there is a reward α when choosing the best candidate, a penalty β when
choosing a wrong one, and a different penalty γ when choosing none. The original
version of this variant is due to Sakaguchi [27] (as noted by Ferguson [11]), and it has
α = β = 1, and γ = 0.
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Table 5 Data for the win-lose-or-draw secretary problem

μ Gn(k) gn(x) g(x) Hn(k) hn(x) h(x)

−γ
(α+β)(k+1)−βn

(k+1)n
(α+β)(�nx�+1)−βn

�nx�+1 α + β − β
x

k
k+1

n
�nx�+1

1
x

This problem has p(n)
k = 1

k , and the payoff function is, for k ∈ {1, . . . , n}:

P(n)
k (1) = α

k

n
− β

(
1 − k

n

)
,

so that the Fn(k) are defined recursively, by the formulas (for k ∈ {1, . . . , n − 1}):

Fn(k) = (α + β)(k + 1) − βn

(k + 1)n
+ k

k + 1
Fn(k + 1),

Fn(n) = −γ.

Notice that if α = 1 − γ and β = 0, we are in the previous case with c = γ . Also, if
α = 1, and β = γ = 0, we are in the classical secretary problem.

The relevant data are contained in Table 5.
The corresponding IVP is:

{
y′ = y

x
− (α + β − β

x
)

y(1) = −γ

whose solution is:

f (x) = −(α + β)x log x + β(x − 1) − γ x .

Theorem 2 holds because Vn(k) = 0 and Mn(k) = (α+β)n
k . As a consequence,

Fn(�nx�) converges uniformly to f (x) in [0, 1]. Since f (x) reaches its maximum at

x = e
−α−γ
α+β , Proposition 1 gives

lim
n

κn

n
= e

−α−γ
α+β , lim

n
Pn = f

(
e

−α−γ
α+β

)
.

For α = β = 1 and γ = 0, we get the results given in [11]:

lim
n

κn

n
= 1√

e
= 0.6065306 . . . , lim

n
Pn = 2√

e
− 1 = 0.2130613 . . .

3.7 The Best Choice Duration Problem

This variant specifies a reward of n+1−k
n when choosing the best candidate at step k

(notice that the reward decreases with k), so that there is an incentive to make the
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Table 6 Data for the best choice
duration problem

μ Gn(k) gn(x) g(x) Hn(k) hn(x) h(x)

0 n−k
n2

n−�nx�
n 1 − x k

k+1
n

�nx�+1
1
x

correct choice as soon as possible. We refer to [10] and [24] for previous studies on
this problem.

Setting p(n)
k = 1

k , the payoff function P(n)
k is, for k ∈ {1, . . . , n}

P(n)
k (1) = k(n + 1 − k)

n2
,

so that Fn(k) is given, for k ∈ {1, . . . , n − 1}, by:

Fn(k) = n − k

n2
+ k

k + 1
Fn(k + 1),

Fn(n) = 0.

Table 6 includes the summary of the relevant information.
The IVP for this variant is:

{
y′ = y

x
− (1 − x)

y(1) = 0

with solution:

f (x) = x2 − x − x log x .

In this case, Vn(k) = 1
n and Mn(k) ≤ 2 + n

k , so that all the hypotheses from
Theorem 2 hold. Thus, Fn(�nx�) converges uniformly to f (x) in [0, 1]. Themaximum
of f (x) is reached at x = ϑ = − 1

2W (−2e−2) with f (ϑ) = ϑ − ϑ2, where W is
the Lambert W function [22, 38]. Proposition 1 gives the known results [10, 24], but
notice that both references print the first value as 0.23 . . . (missing the hundredths
digit 0):

lim
n

κn

n
= ϑ = 0.2031878 . . . , lim

n
Pn = f (ϑ) = 0.1619025 . . .

3.8 A SimplifiedMulticriteria Secretary Problem

In this case, the n candidates are ranked across m ≥ 1 independent attributes (m = 1
is the just classical case), and the aim is to choose a candidate which is the best in
one of the attributes. When a candidate is chosen, it is specified in which attribute it
is considered to be the best. This is a simplification of the original variant [17], in
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Table 7 Data for the multicriteria secretary problem

μ Gn(k) gn(x) g(x) Hn(k) hn(x) h(x)

0
(
1 −

(
k

k+1

)m)
k+1
n (�nx� + 1)

(
1 −

( �nx�
�nx�+1

)m)
m

(
k

k+1

)m
n

(
1 −

( �nx�
�nx�+1

)m)
m
x

which the attribute does not have to be specified. This simplification can be seen to be
asymptotically negligible, but we do not get into details.

In this case, for k ∈ {1, . . . , n}, we have p(n)
k = 1− ( k−1

k

)m
, the payoff function is

P(n)
k (1) = k

n and Fn(k) is given, for k ∈ {1, . . . , n − 1}, by:

Fn(k) =
(
1 −

(
k

k + 1

)m)
k + 1

n
+

(
k

k + 1

)m

Fn(k + 1),

Fn(n) = 0.

The relevant information is summarized in Table 7.
The corresponding IVP is:

{
y′ = my

x
− m

y(1) = 0

whose solution for m > 1 is (the case m = 1 should be addressed separately, but it
is just the classical case):

f (x) = −m (xm − x)

m − 1
.

In this problem,

Vn(k) =
(
km(k + 1)1−m − k + m − 1

) (
−mn

( k+1
n

)m + k + 1
)

(k + 1)(m − 1)
,

so it holds that |Vn(k)| < m/k, whereas

∣∣ f ′′(x)
∣∣ = m2xm−2 ≤ m2,

which give conditions (3iii) and (3iv) of Theorem 2. Thus, Fn(�nx�) converges uni-
formly to f (x) in [0, 1]. The function f (x) reaches its maximum at x = m

1
1−m and

f
(
m

1
1−m

)
= m

1
1−m , so Proposition 1 gives the results from [17]:

lim
n

κn

n
= m

1
1−m , lim

n
Pn = m

1
1−m .
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Table 8 Data for random secretary problem

μ Gn(k) gn(x) g(x) Hn(k) hn(x) h(x)

0
Mn (k)PA

n (k+1)
k+1

Mn (�nx�)PA
n (�nx�+1)

�nx�+1
log(x)
x−1

Mn (k)k
k+1 n

(
1 − Mn (�nx�)�nx�

�nx�+1

)
1

x−x2

3.9 The Secretary Problemwith a RandomNumber of Applicants

We now depart slightly from the classical setting by letting N (the number of candi-
dates) be a random variable uniform over {1, . . . , n}, as in [11, 23, 25]. Notice that
Tamaki [34, 35] has dealt with different non-uniform distributions of this variable.

First, for k ∈ {1, . . . , n}, let Mn(k) be the probability that, when rejecting a can-
didate in the k-th interview, there are still more available candidates. Also, let PA

n (k)
be the probability of success when choosing, in the k-th interview, a candidate which
is better than all the previous ones. Then, the following equalities hold:

• Mn(0) = 1, and for k > 0:

Mn(k) = n − k

n − k + 1
,

• Using the well-known digamma function ψ ,

PA
n (k) = 1

n − k + 1

n∑

i=k

k

i
= k(ψ(n + 1) − ψ(k))

n − k + 1
.

On the other hand, let Fn(k) be the probability of success when rejecting the k-th
candidate and choosing, later on, the one which is better than all the previous ones.
That is, the probability of success using the threshold strategy k assuming that there are
at least k candidates. The following recurrence relations hold for k ∈ {1, . . . , n − 1}:

Fn(k) = Mn(k)
1

k + 1
PA
n (k + 1) + Mn(k)

k

k + 1
Fn(k + 1),

Fn(n) = 0.

Finally, the prior probability of there being at least k candidates (or what is the
same, the probability that the k-th interview can be reached) is Ln(k) = n−k+1

n . As a
consequence, the probability of success using the threshold k is given by

Pn(k) = Ln(k)Fn(k).

Obviously, Ln(�nx�) converges uniformly to the function 1− x in the interval [0, 1],
so we just need to study the uniform convergence of Fn(�nx�).

To do so, the relevant data are summarized in Table 8.
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The corresponding IVP is:

⎧
⎨

⎩
y′ = y

x − x2
− log(x)

x − 1
y(1) = 0

Note that this differential equation is singular at the initial condition x = 1, y = 0.
From a formal point of view, the function

f (x) = − x log2(x)

2(x − 1)
, f (0) = f (1) = 0

satisfies the differential equation in (0, 1) and is in fact continuous in [0, 1]. Hence,
we need to verify that the conditions of Theorem 2 hold for it. Conditions (3i) and
(3ii) are obvious. Regarding condition (3iii), we observe that

Vn(k) = kn(n − k) (Hn − Hk−1)

(k + 1)(−k + n + 1)2
− n(k + n + 1) log2

( k+1
n

)

2(k − n − 1)(k − n + 1)2
− n log

( k+1
n

)

k − n + 1
<

1

k
,

while for condition (3iv), from

f ′′(x) = (x − log(x) − 1)(−x + x log(x) + 1)

(x − 1)3x
,

follows that:

Mn(k) =
∣∣∣∣ f

′′
(
k + 1

n

)∣∣∣∣ ≤ n

k
.

As a consequence, Fn(�nx�) converges uniformly to f (x) on [0, 1] and, uniformly in
[0, 1], we have that

lim
n

Pn(�nx�) = lim
n

Ln(�nx�) lim
n

Fn(�nx�) = (1 − x) f (x) = x log2(x)

2
.

Moreover, the maximum of this function in [0, 1] is reached at x = e−2, so Proposi-
tion 1 gives the know results from [23, 25]:

lim
n

κn

n
= e−2 = 0.1353352 . . . , lim

n
Pn = (1 − e−2) f (e−2) = 2e−2 = 0.2706705 . . .

4 Four Original Examples

Wenowdevise four original examples inwhich our techniqueworks straightforwardly.
The first one is a lottery in which the winning payoff increases at each stage, but which
may end up with no prize at all. The three remaining ones are new versions of the
secretary problem not considered in the literature so far.

123



   46 Page 20 of 37 L. Bayón et al.

Table 9 Data for the lottery with
increasing payoff

μ Gn(k) gn(x) g(x) Hn(k) hn(x) h(x)

0 1
n Y

(
k+1
n

)
Y

( �nx�+1
n

)
Y (x) n−1

n 1 1

4.1 Lotteries with IncreasingWinning Payoff

There are n balls in an urn, only one of which is white. The game has n identical stages
in which a ball is randomly drawn from the urn and a decision is taken:

• If the ball is black, it is returned and the player proceeds to the next stage.
• If the ball is white at the k-th stage, the player can choose between ending the game
with a payoff Y (k/n) (where Y (x) is a function defined in [0, 1]), or returning it
to the urn and proceed to the next stage.

• The game ends at the end of the n-th stage.

For k ∈ {1, . . . , n}, let PR
n (k) be the expectation of winning after ending the k-th

stage, when following the optimal strategy. Aswementioned in Introduction, whatever
this strategy is, the expectation of winning following it is PR

n (0). The functions PR
n (k)

satisfy the recurrence, for k ∈ {1, . . . , n − 1}:

PR
n (k) = 1

n
max

{
Y

(
k + 1

n

)
, PR

n (k + 1)

}
+ n − 1

n
PR
n (k + 1),

PR
n (n) = 0.

If the payoff function Y (x) is non-decreasing, it can be easily seen that the optimal
strategy is threshold. It is described in the following proposition.

Proposition 3 In the previous setting, let us assume that the payoff function Y (x) is
non-decreasing. Then, for all n, there exists κn such that the optimal strategy consists
in stopping whenever a white ball appears after the κn-th stage and rejecting it before
that stage.

Now, let Fn(k) be the expected payoff when using a threshold strategy of threshold
k. These functions satisfy the recurrence relation, for k ∈ {1, . . . , n − 1}:

Fn(k) = 1

n
Y

(
k + 1

n

)
+ n − 1

n
Fn(k + 1),

Fn(n) = 0.

The relevant data for this game are summarized in Table 9.
Consequently, we must solve the IVP

{
y′ = y − Y (x)
y(1) = 0
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Assuming that Y (x) is Lipschitz in [0, 1], its solution is given by

f (x) = ex
∫ 1

x
e−uY (u) du.

In order to apply Theorem 2, note that condition (3iii) holds because

Vn(k)

n
= Y

( k
n

) − Y
( k+1

n

)

n
,

so that, Y (x) being Lipschitz, it follows that

n−2∑

k=1

Vn(k)

n
= Y

( 1
n

) − Y
( n−1

n

)

n
−→ 0.

Also, condition (3iv) is satisfied because f ′′ is bounded in [0, 1], since:

f ′′(x) = f (x) − Y (x) − Y ′(x).

Thus, due to Theorem 2 Fn(�nx�) converges uniformly to f (x) in [0, 1]. Moreover,
if ϑ is the unique solution of f (x) = Y (x), we have that f ′(ϑ) = 0, f ′′(ϑ) =
−Y ′(ϑ) < 0, and by Proposition 1:

lim
n

κn

n
= ϑ, lim

n
Pn = Y (ϑ).

Example 1 Let us consider the payoff function Y (x) = x . Then, it follows that f (x) =
x − 2ex−1 + 1. If we set n = 107, it can be directly computed using the dynamic
program that κn = 3068528, and Pn = 0.3068528 . . ..

Now, in this case, and according to our previous discussion limn
κn
n = ϑ = limn Pn

where ϑ = 1 − log 2 = 0.3068528 . . . is the unique solution to x − 2x−1 + 1 = x .

4.2 Secretary Problemwith aWildcard

There are n+1 balls in an urn: n of them are ranked from 1 to n, and the other one is a
wildcard. At each stage of the game, a ball is extracted. The rank of each ball is known
only when it is extracted. The player decides according to the following scheme:

• If the ball is the wildcard, he can stop the game and get a payoff of 1/2, or he can
decide to continue the game discarding the wildcard (i.e., it is not returned to the
urn).

• Otherwise, the player can either stop the game, in which case he wins 1 if the ball
is the best, and 0 otherwise; or he can discard the ball and continue the process.

Thus, once the wildcard is rejected, the game goes on according to the rules of the
classical secretary problem.
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For k ∈ {1, . . . , n}, let En(k) be the expected payoff when rejecting the k-th ball if
the wildcard has not appeared in the k − 1 previous extractions. This En(k) satisfies
the following recurrence (dynamic program), where, as usual, Pn = En(0) is the
expected payoff using the optimal strategy.

En(k) = 1/2

n − k + 1
+ n − k

n − k + 1
· 1

k + 1
· max

{
k + 1

n
, E(k + 1)

}

+ n − k

n − k + 1
· k

k + 1
· En(k + 1),

En(n) =1

2
.

The optimal strategy in this game is a threshold strategy, as we see in the following
result.

Proposition 4 For each n > 1, there is κn such that the following strategy is optimal:

(1) Stop the game whenever the wildcard is extracted. Otherwise,
(2) Before the κn-th extraction continue the game, and
(3) From the κn-th extraction on, choose any ball which is better than the previous

ones (or is the wildcard, obviously).

Proof Certainly, if the wildcard in encountered, it must always be chosen because if
it is discarded we are in the classical secretary problem in which the expected payoff
is always smaller than 1/2 and there is no value in continuing with the process.

On the other hand, the function En(k) is trivially non-increasing in k. This implies
that if, for a specific k, the optimal decision is to stop with any ball better than the
previous ones, then the same holds for all values greater than k. In other words,

En(k) ≤ k/n �⇒ En(k + 1) ≤ k + 1

n
,

and this finishes the proof. �

Let now Fn(k) be the expected payoff following a strategy that consists in rejecting

the k-th ball and then choosing either the wildcard or the first ball which is better than
the previous ones. Thus, for k ∈ {1, . . . , n − 1}:

Fn(k) = 3n − 2k

2n(n − k + 1)
+ k(n − k)

(k + 1)(n − k + 1)
Fn(k + 1),

Fn(n) = 1/2.

Table 10 contains the relevant data, and the IVP is:

⎧
⎨

⎩
y′ = y

x − x2
− 3 − 2x

2 − 2x
y(1) = 1/2
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Table 10 Data for the wildcard game

μ Gn(k) gn(x) g(x) Hn(k) hn(x) h(x)

1
2

3n−2k
2n(n−k+1)

3n−2�nx�
2(n−�nx�+1)

3−2x
2−2x

(n−k)k
(n−k+1)(k+1)

n(n+1)
(n−�nx�+1)(�nx�+1)

1
x−x2

which, despite the singularity at x = 1, has the unique solution (continuous in [0, 1]):

f (x) = −2x2 + 2x + 3x log(x)

2(x − 1)
.

Condition (3iii) of Theorem 2 holds because

Vn(k) = 3n
(
(k + n + 1) log

( k+1
n

) − 2(k − n + 1)
)

2(k − n − 1)(k − n + 1)2
<

1

k
,

while condition (3iv) also holds because the function:

∣∣ f ′′(x)
∣∣ =

∣∣∣∣∣
−3

(
x2 − 2x log(x) − 1

)

2(x − 1)3x

∣∣∣∣∣

is decreasing and

|Mn(k)| = − f ′′(k/n) = 3n2
(−k2 + 2kn log

( k
n

) + n2
)

2k(k − n)3
<

n

k
.

Hence, we conclude that Fn(�nx�) converges uniformly to f (x) in [0, 1] and we have
the following, where W is again the Lambert W function (recall Sect. 3.7):

Proposition 5

lim
n

κn

n
= −3

4
W

(
− 4

3e4/3

)
= 0.5456050 . . .

Proof First of all, note that

Fn(κn) >
κn

n
and Fn(κn + i) ≤ κn + i

n
for all i = 1, . . . , n − κn .

Consequently, the result follows from Proposition 2, and the fact that f (x) = x has a
single solution in (0, 1]. �


We also have

Proposition 6 Let ϑ = − 3
4W

(
− 4

3e4/3

)
. Then,

lim
n

Pn = 1

2
ϑ + (1 − ϑ)ϑ = 0.5207226 . . .
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Proof The probability of reaching step κn without having extracted the wildcard is
clearly 1 − kn

n+1 . As a consequence,

Pn = 1

2

κn

n + 1
+

(
1 − κn

n + 1

)
Fn(kn).

Then, the result follows because limn Fn(κn) = f (ϑ) = ϑ , and κn
n −→ ϑ due to the

previous proposition. �

Remark 3 These results seem to be accurate. In fact, for n = 107 we obtain the
following values using directly the dynamic program:

P107 = 0.520722700032 . . .

κ107 = 5456050.

4.3 Secretary Problemwith Random Interruption

There are n ranked balls (from 1 to n) in an urn. At each stage of the game, a ball is
extracted. The rank of each ball is known only when it is extracted. The game is the
classical secretary game with the modification that at each stage, a random event with
probability 1/n decides whether the game stops without payoff or continues (e.g., the
ball may “blow up” and end the game with probability 1/n).

The probability of success (i.e., choosing the best ball) using the optimal strategy
(whatever this might be) is Fn(0) and can be computed by means of the following
dynamic program, where for k ∈ {1, . . . , n − 1}, Fn(k) is the probability of success
after rejecting the k-th ball and following the optimal strategy from that point on:

Fn(k) =
(
1 − 1

n

)(
max

( k+1
n , Fn(k + 1)

)

k + 1
+ kFn(k + 1)

k + 1

)

,

Fn(n) = 0.

The following result shows that the optimal strategy is threshold:

Proposition 7 For every n ∈ N, there exists κn ∈ [0, n] such that the following strategy
is optimal in the previous game:

(1) Do not choose any candidate before interview κn.
(2) Starting at interview κn, chose the first candidate which is better than the previous

ones.

Proof From the dynamic program above, it follows that

Fn(k + 1)

Fn(k)
≤ n

n − 1
,
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Table 11 Data for Game III
μ Gn(k) gn(x) g(x) Hn(k) hn(x) h(x)

0 n−1
n2

n−1
n 1 k(n−1)

(k+1)n
�nx�+n
�nx�+1 1 + 1

x

which leads to the implication

Fn(k) ≤ k

n
⇒ Fn(k + 1) ≤ k + 1

n
.

Since k/n is the success probability when choosing the k-th candidate, the threshold
κn is then the maximum k such that Fn(k) > k/n:

κn = max
{
k : Fn(k) > k/n

}
.

�

Let now Fn(k) be the probability of success after rejecting the k-th ball and then

choosing the first ball which is better than the all the previous ones. The following
recurrence holds for k ∈ {1, . . . , n − 1}:

Fn(k) = n − 1

n2
+ k(n − 1)

(k + 1)n
Fn(k + 1),

Fn(n) = 0.

The data for this game are summarized in Table 11
In this case, the IVP to be solved is

⎧
⎨

⎩
y′ =

(
1

x
+ 1

)
y(x) − 1

y(1) = 0

whose solution is

f (x) = ex x(Ei(−1) − Ei(−x)),

where Ei(x) is the exponential integral function [1, 22, 37]

Ei(x) =
∫ x

−∞
et

t
dt,

and we extend f (x) to 0 by continuity as f (0) = 0.
Condition (3iii) of Theorem 2 holds because

Vn(k) = e
k+1
n

(
Ei(−1) − Ei

(− k+1
n

)) − 1

n
<

1

k
,
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while condition (3iv) holds because

f ′′(x) = ex (x + 2)(Ei(−1) − Ei(−x)) − x + 1

x
,

and

n−2∑

k=1

Mn(k) <
log(n)

n
.

Hence, we conclude that Fn(�nx�) converges uniformly to f (x) in [0, 1] and we
have the following

Proposition 8 Let ϑ = 0.2710545 . . . be the only solution in (0, 1] of

e−x =
∫ −1

−x

et

t
dt .

Then,

lim
n

κn

n
= ϑ,

lim
n

Pn = f (ϑ)e−ϑ = 0.2066994 . . .

Proof First of all, note that Fn(κn) > κn
n and Fn(κn + i) ≤ κn+i

n for all i > κn . So by
Proposition 2, limn

κn
n is the only positive root of f (x) = x , which is ϑ .

Now, in order to succeed using the optimal threshold κn , two successive independent
events must take place:

A) The κn-th extraction takes place, and the game does not end because of the random
event (i.e., the ball does not “blow-up”). This happens with probability

(
1 − 1

n

)κn .
B) The κn-th ball is rejected, and after this rejection, the game ends successfully

following the threshold strategy with threshold κn . This happens with probability
Fn(κn).

Consequently,

Pn =
(
1 − 1

n

)κn

Fn(κn),

and the result follows because limn Fn(κn) −→ f (ϑ), and limn (1 − 1/n)κn = e−ϑ .
�


Remark 4 This proposition seems to be accurate. In fact, for n = 107 we obtain the
following values using directly the dynamic program:

P107 = 0.206699425033 . . . ,

κ107 = 2710546.
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4.4 Secretary Problemwith Penalty if the Second Best is Selected

This is an original variant in which if the second best candidate is chosen, then a
penalty is incurred. Success provides a payoff of 1, whereas the penalty is b ≥ 0. The
most similar problem is studied by Gusein-Zade in [16], where the aim is to choose
the best or the second best candidate with respective payoffs u1 and u2, both greater
than 0. However, our case is not covered because u2 would be −b < 0.

Let Sn(k) be the probability that a candidate which is the second best up to the k-th
interview turns out to be the global second best. By definition, for k ∈ {1, . . . , n}:

Sn(k) =
(k
2

)

(n
2

) = k2 − k

n2 − n
.

On the other hand, let Mn(k) be the expected payoff when choosing at step k
the best candidate to date. Then, Mn(k) satisfies the following recurrence, for k ∈
{1, . . . , n − 1}:

Mn(k) = −b

k + 1
Sn(k + 1) + k

k + 1
Mn(k + 1),

Mn(n) = 1,

and it can be seen that

Mn(k) = k(b(k − n) + n − 1)

(n − 1)n
.

Just like in the classical secretary problem,we have that p(n)
k = 1

k , but the difference

is that in this situation the payoff function is P(n)
k (1) = Mn(k). Consequently, if En(0)

is the expected payoff using the optimal strategy, then the following dynamic program
holds:

En(k) = 1

k + 1
max {Mn(k + 1), En(k + 1)} + k

k + 1
En(k + 1),

En(n) = 0.

Thus, reasoning as usual, if Fn(k) is the expected payoff when rejecting the k-th
candidate and using k as threshold, we have that

Fn(k) = 1

k + 1
Mn(k + 1) + k

k + 1
Fn(k + 1),

Fn(n) = 0.

Table 12 summarizes the relevant data
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Table 12 Penalty if second best is selected

μ Gn(k) gn(x) g(x) Hn(k) hn(x) h(x)

0 Mn (k+1)
k+1

Mn (�nx�)
�nx�+1 b(x − 1) + 1 1

k+1
1

�nx�+1
1
x

And the IVP is
{
y′(x) = −b(x − 1) + y

x
− 1

y(1) = 0

whose solution is

fb(x) = −bx2 + bx + bx log(x) − x log(x).

Condition (3iii) of Theorem 2 holds because

Vn(k) = −b(3k + 2)n + b(k + 1)2 + (b − 1)n2 + n

(k + 1)(n − 1)n
<

b

k
,

and condition (3iv) holds because:

Mn(k) = f ′′
(
k + 1

n

)
= bn

k + 1
− 2b − n

k + 1
<

bn

k
.

Thus, Fn(�nx�) converges uniformly to f (x) on [0, 1]. Moreover, if ϑb is such that
fb(ϑb) is maximum, by Proposition 1, we have that

lim
n

κn

n
= ϑb :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−1 if b = 0

(1 − b)

2b
W

(
b

1 − b

(
21−be2b−1

) 1
1−b

)
if 0 < b < 1

1

2
if b = 1

(1 − b)

2b
W−1

(
b

1 − b

(
21−be2b−1

) 1
1−b

)
if b > 1

lim
n

Pn = fb(ϑb) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−1 if b = 0

1

4
if b = 1

−
ϑb

(
2(b − 1) log

(
−ϑb

2b

)
+ 2b + ϑb

)

4b
if 0 �= b �= 1
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Example 2 If b = 2, using the previous results we have that limn
κn
n = ϑ2 =

− 1
4W−1

(
− 4

e3

)
= 0.6374173 . . . and, on the other hand, limn Pn = ϑ2(2 − 2ϑ2 +

log(ϑ2)) = 0.1751843 . . .

These results seem accurate since, for n = 107, the following values can be com-
puted directly using the dynamic program:

P107 = 0.175184397659 . . . ,

κ107 = 6374173.

5 Future Perspectives

Our methodology extends to practically any optimal stopping problem for which the
optimal strategy has a single threshold value. When there are several thresholds, there
is an important modification in the theoretical background still undeveloped. On a
different note, there are sequences of functions defined by recurrence relations whose
associated functions fn(x) := Fn(�nx�) are not uniformly convergent in the closed
interval [0, 1] but seem to converge pointwise in the open interval (0, 1). We provide
some insight on these two issues in what follows.

5.1 Punctual Non-uniform Convergence

Under certain conditions, even though { fn} may not converge uniformly in [0, 1],
it does converge punctually in (0, 1) to a C1 function f satisfying the differential
equation from Theorem 2. This function f may not extend continuously to 1 or, even
if it does, f (1) may not coincide with the final value μ. We hope to find sufficient
conditions guaranteeing this punctual convergence of { fn} in (0, 1) to such an f , and
determining what f (1) must be (or what conditions it must satisfy). In this regard, we
state the following conjectures:

Conjecture 1 Let {Fn}, {Gn} and {Hn} be sequences of real functions on {1, . . . , n}
satisfying, for k ∈ {1, . . . , n − 1}:

Fn(k) = Gn(k) + Hn(k)Fn(k + 1),

Fn(n) = μ,

and assume that the functions defined in [0, 1] by gn(x) := nGn(�nx�) and hn(x) :=
n(1 − Hn(�nx�)) converge pointwise in (0, 1) to continuous functions g and h, and
that the differential equation

y′(x) = −g(x) + h(x)y(x)

admits a solution y(x) in (0, 1] only for the final condition y(1) = 
. Then, Fn(�nx�)
converges pointwise in (0, 1) to a function f ∈ C1(0, 1] satisfying
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f ′(x) = −g(x) + h(x) f (x) for x ∈ (0, 1),

f (1) = 
.

Conjecture 2 With the samenotation as inConjecture 1, andunder the same conditions
on gn and hn, let us assume that the following limit exists:


 = lim
n→∞ lim

k→∞ Fn(n − k).

Then, Fn(�nx�) converges pointwise in (0, 1) to a function f ∈ C1(0, 1] satisfying

f ′(x) = −g(x) + h(x) f (x),

f (1) = 
.

We provide two examples to illustrate these conjectures and to show that they seem
plausible.

Example 3 Consider, for k ∈ {1, . . . , n − 1}, the following sequences:

Fn(k) = Gn(k) + Hn(k)Fn(k + 1),

Fn(n) = μ,

where

Gn(k) := k

n2
+ 2(k + 2n)

n(−3k + 3n + 2)
,

and

Hn(k) := 3n − 3k

−3k + 3n + 2
.

We have Gn(n − 1) + μHn(n − 1) = 3(μ+2)
5 , so that condition (2) of Theorem 2

holds if and only if μ = 3. All the other conditions hold irrespective of μ. Consider
the corresponding differential equation (obtained using our methodology):

y′(x) = 2y(x)

3 − 3x
− −3x2 + 5x + 4

3 − 3x
.

It has a single solution in (0, 1] with final condition y(1) = 3, namely:

y(x) = 1

40

(
−15x2 + 22x + 113

)
.

We plot in Figs. 1, 2 and 3 the functions Fn(�nx�) with μ ∈ {3, 8/3, 10/3} for several
values of n, to illustrate the likely uniform convergence in the first case, and the
non-uniformity in the other two. The punctual convergence to g(x) in (0, 1) holds
regardless of the value of μ.
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Fig. 1 Likely uniform convergence in [0,1] for μ = 3 in Example 3

Fig. 2 Pointwise, but not uniform, convergence in [0,1) for μ = 8/3 in Example 3

Fig. 3 Pointwise, but not uniform, convergence in [0,1) for μ = 10/3 in Example 3
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Example 4 Define now, for k ∈ {1, . . . , n − 1}:

Fn(k) = Gn(k) + Hn(k)Fn(k + 1),

Fn(n) = μ,

where

Gn(k) =
(
k

n

)n

+ 1

k + n
; Hn(k) = k

k + 1
.

In this case,

Gn(n − 1) + μHn(n − 1) =
(
n − 1

n

)n

+ 1

2n − 1
− μ

n
+ μ,

so that limn Gn(n−1)+μHn(n−1) = μ+ e−1 �= μ and condition (2) in Theorem 2
does not hold for any value of μ.

Let us check Conjecture 2. First, note that the following limit exists


 := lim
n→∞ lim

k→∞ Fn(n − k) = 1

e − 1
+ μ.

The solution of the differential IVP:

y′(x) = − 1

x + 1
+ y(x)

x
, y(1) = 
,

is:

f (x) = x

(
log(x) − e log(2x) + (e − 1)μ + 1 + log(2)

e − 1
+ log(x + 1)

)
.

In Fig. 4, one can perceive the expected punctual convergence to f (x) in (0, 1), as
conjectured.

Let ϑ = 0.3487376 . . . be the value (accurate to 7 decimal places) at which f (x)
reaches its maximum in [0, 1]. Notice the following approximations:

argmax{F105(k) : 0 < k < 105} = 34873 ≈ 105 · ϑ = 34873.76 . . .

and with accuracy to 7 decimal places

m = max{F105(k) : 0 < k < 105} = 0.2585685 . . . ≈ f (ϑ)

with |m − f (ϑ)| ≤ 2572.0 · 10−9.
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0.2 0.4 0.6 0.8 1.0

-0.1

0.1

0.2

f100 (x)
f20(x)

f(x)

Fig. 4 fn(x) = Fn(�nx� for n ∈ {20, 100} and its limit f (x) for μ = −1/2

5.2 Piecewise Functions: Gusein-Zade’s GeneralizedVersion of the Secretary
Problem

There are cases in which the optimal strategy has two (or more) thresholds. In these
cases, Theorem 2 and Proposition 2 can only provide the asymptotic value of the last
one. The adaptation of both results to this case is not straightforward, but the idea
looks promising. The following result, resembling Theorem 1, holds in any case.

Proposition 9 Let {sn}n∈N with sn ∈ {0, . . . , n} be such that limn→∞ sn
n = s are the

real sequences of functions {Fn}n∈N, {G1
n}n∈N, {G2

n}n∈N, {H1
n }n∈N and let {H2

n }n∈N
defined in {0, . . . , n}, satisfy, for k ∈ {1, . . . , n − 1}:

Fn(k) = G1
n(k) + H1

n (k)Fn(k + 1) if k < sn,
Fn(k) = G2

n(k) + H2
n (k)Fn(k + 1) if sn ≤ k < n,

Fn(n) = μ.

Given x ∈ R, define

fn(x) := Fn(�nx�),
hin(x) := n(1 − Hi

n(�nx�)),
gin(x) := nGi

n(�nx�).

If the following conditions hold:

(i) The sequences {h1n} y {g1n} converge punctually in (0, s] and uniformly in [ε, s] for
any 0 < ε < s to the continuous functions h1(x) y g1(x), respectively.

(ii) The sequences {h2n} y {g2n} converge punctually in [s, 1) and uniformly in [s, ε] for
any s < ε < 1 to the continuous functions h2(x) y g2(x), respectively.

(iii) The sequence { fn} converges uniformly in [0, 1] to a continuous function f .

Then: f (1) = μ, and f is the solution, in [s, 1] of the initial value problem:

y′(x) = y(x)h2(x) − g2(x), y(1) = μ,
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and f is also the solution in (0, s] of the IVP

y′(x) = y(x)h1(x) − g1(x), y(s) = f (s).

The proof of this result is identical to the one in [15], but it presents the exact
same weakness, namely the required assumption of the uniform convergence of fn .
Our approach is to find conditions analogue to those of this paper (cf. Theorem 2)
eliminating that requirement.

In what follows, we assume that such a result exists in order to explain how the
secretary problem in which success is reached upon choosing either the best or the
second-best candidate would be studied (asymptotically). This variant has already
been studied by Gilbert and Mosteller [14], and by Gusein-Zade [16]. The following
result gives the optimal strategy.

Proposition 10 For any n ∈ N, there are rn, sn ∈ [0, n] such that the following strategy
is optimal

(1) Do not choose any candidate up to interview rn.
(2) From interview rn to sn (inclusive), choose the first candidate which is better than

the previous ones.
(3) After interview sn, choose the first candidate which is at least the second-best

among the already interviewed.

Let Sn(k) be the success probability when choosing the candidate in the k-th inter-
view, assuming it is the second-best among the interviewed ones. Certainly,

Sn(k) =
(k
2

)

(n
2

) .

LetMn(k) be the success probabilitywhen choosing the candidate in the k-th interview,
assuming it is the best among the interviewed ones. The following recurrence holds
for k ∈ {1, . . . , n − 1}:

Mn(k) = 1

k + 1
Sn(k + 1) + k

k + 1
Mn(k + 1); Mn(n) = 1.

From the above follows that

Mn(k) = k2 − 2kn + k

n − n2
.

Let Fn(k) be the success probability after rejecting the candidate in the k-th inter-
view, and waiting to choose the first which is at least second best among the already
interviewed. We have:

Fn(k) = 2

n
+ k − 1

k + 1
Fn(k + 1); Fn(n) = 0 �⇒ Fn(k) = −2k(k − n)

(n − 1)n
.
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5.2.1 Computing limn
sn
n

This can truly be done using the results of this paper. Notice that the optimal thresh-
old sn is the last value of k for which rejecting a second-best candidate (among the
interviewed ones) is preferable to choosing her. That is, sn satisfies that

S(sn) = s2n − sn
(n − 1)n

< Fn(sn),

and

Fn(sn + i) ≤ S(sn + i) = (sn + i)2 − sn − i

(n − 1)n
.

We know from the formula for Fn(k) that f n(x) := F(�nx�) converges uniformly
in [0, 1] to f (x) := 2(x− x2). In addition, it is trivial to verify that S(�nx�) converges
in [0, 1] to s(x) = x2. Hence, by Proposition 2, lim sn

n = 2
3 , which is the largest

solution of the equation s(x) = f (x) in [0, 1].

5.2.2 Computing limn
rn
n and the Asymptotic Probability of Success

Since sn is the second optimal threshold (Proposition 10), we denote by Fn(k) the
probability of success when rejecting the k-th candidate and waiting to:

(1) Choose the first one which is the best among the interviewed ones if this happens
before the sn-th interview, or

(2) Choose the onewhich is at least secondbest if this happens after the sn-th interview.

Equivalently, Fn(k) represents the probability of successwhen using the first threshold,
if k ≤ sn , and if k > sn , then Fn(k) is the probability of success when rejecting the
k-th candidate, waiting to choose one which is at least second best afterward (i.e.,
Fn(k) = Fn(k) for k > rn). In other words,

Fn(k) =
⎧
⎨

⎩

2
n + k−1

k+1 Fn(k + 1) if k < sn
Mn(k+1)

k+1 + k
k+1 Fn(k + 1) if sn ≤ k < n

0 if k = n

Now, either assuming the uniform convergence in [0, 1] of Fn(�nx�) to f (x) or
assuming some kind of generalization of Theorem 2, one would reason as follows.
Consider the initial value problem

y′(x) = y(x)

x
+ x − 2, y

(
2

3

)
= f

(
2

3

)
= 4

9
,

whose solution is

f (x) = x2 − 2x log(x) − 2x log

(
3

2

)
.
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This, together with the previous computation for [4/9, 1], gives:

f (x) =
{
x2 − 2x log(x) − 2x log

( 3
2

)
if 0 ≤ x ≤ 2

3−2
(
x2 − x

)
if 2

3 < x ≤ 1

The maximum of f (x) in [0, 1] is reached at ϑ = −W
(− 2

3e

) = 0.3469816 . . .

(accurate to 7 decimal places), so that

lim
rn
n

= ϑ = −W

(
− 2

3e

)
= 0.3469816 . . . ,

and

limPn = f (ϑ) = ϑ(2 − ϑ) = 0.5735669 . . .

And these values coincide with the solutions from [14] and [16].
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