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Entry and leaving arcs of turnpikes: their
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Abstract. We settle the question of how to compute the entry and leaving arcs for turnpikes in
autonomous variational problems, in the one-dimensional case using the phase space of the vector
field associated with the Euler equation, and the initial/final and/or the transversality condition. The
results hinge on the realization that extremals are the contours of a well-known function and that
the transversality condition is (generically) a curve. An approximation algorithm is presented, and an
example is included for completeness.

1 Introduction

The idea of turnpike in the Calculus of Variations or in Optimal Control describes the
(usual) phenomenon which takes place when, in problems with finite but arbitrarily
large time, the optimal solutions spend most of their time near a specific point. Even
more, these solutions tend to be composed of three parts: an entry arc, the turnpike
arc, and the leaving arc. The first and last ones are transitory arcs which take little time
of the solution, whereas the middle arc (the turnpike) is a long arc which is essentially
stationary, and tends to be exponentially near an equilibrium (see [19]). Roughly
speaking, in the long term, approximate solutions to problems having a turnpike are
determined essentially by the integrand function of the objective functional, and are
– again, essentially – independent of their endpoints and time interval.

Although the first works on the topic investigated specific problems arising in
the context of economics and econometrics [7, 18], today the turnpike property has
become of interest in other areas [9, 12]. Recent studies have proposed its use in
applications varying from membrane-filtration systems [15] to control of chemical
reactors with uncertain models [10] or shape optimization in aircraft design [17].

The property has also been noticed in Optimal Control Problems of almost
any type: with/without terminal constraints [4, 19]; with/without discounted cost
functionals [13, 24]; discrete-time problems with constraints [6, 12]; in a continuous-
time problems without constraints [19]; and so forth. Of course, no work on the
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turnpike property can omit referencing Zaslavski’s exhaustive studies, whose results
and complete references are collected in [21, 23].

From a practical point of view, the interest of the turnpike phenomenon arises
from the fact that under this condition, the computation of (approximate) optimal
trajectories in all areas of optimal control and variational problems becomes trivial
for long enough time spans. In this sense, one of the first applications is [2], where a
time-invariant linear quadratic optimal control problem is studied. They prove that
the optimal trajectory is approximately composed of two solutions of two infinite-
horizon optimal control problems. With x(0) fixed, the solution for the interval
(0,+∞) defines the part of the trajectory for the original problem from x = 0 to the
turnpike. With x(T)fixed, the solution for the interval (−∞, T)defines the part of the
trajectory of the original problem from the turnpike to t = T . The two parts are then
pieced together and exhibit a similar transient behavior. Their approach is elementary
and points out very clearly that the hyperbolicity phenomenon is the heart of the
turnpike property.

Recently, in [19], the authors investigate the relation between the turnpike property
and numerical methods (direct and indirect) for a general nonlinear optimal control
problem, without any specific assumption, and for very general terminal conditions.
In the context of turnpike theorem, they provide a new method to ensure the suc-
cessful initialization of numerical methods. Assuming that the Pontryagin maximum
principle has been applied, the usual shooting method can be used. However, this is in
general very hard to initialize. As a solution, they propose a variant: as the extremal is
approximately known along the interval [ε, T − ε], for some ε > 0 (i.e., the turnpike),
but it is not at the endpoints t = 0 and t = T , the idea is choose some arbitrary point
of [ε, T − ε] (for instance, t = T/2), and then integrate backward over [0, T/2] to
get an approximation to x(0), and forward over [T/2, T] to get the approximation
to x(T). The unknown value of x(T/2) must be adjusted, for instance, through a
Newton method, so that transversality conditions are satisfied.

Even more recently, in the same spirit, in [8], the authors use the turnpike property
in the numerical computation of optimal trajectories, splitting the optimization
horizon at the turnpike. They proceed as follows: given the turnpike equilibrium x e ,
the optimization horizon T > 0, an initial condition x(0), and a terminal condition
x(T), they compute an optimal trajectory x1(⋅) with finite horizon T1 < T and initial
and terminal conditions x1(0) = x(0) and x1(T1) = x e ; and an optimal trajectory
x2(⋅) with horizon T2 < T − T1 and initial and terminal conditions x2(0) = x e and
x2(T2) = x(T). Finally, an approximation of the optimal trajectory is then obtained
by concatenating the three arcs: x1(t), t ∈ [0, T1]; x e , t ∈ [T1 , T − T2]; and x2(t − T +
T2), t ∈ [T − T2 , T]. The resulting error can be estimated if the speed of convergence
toward the turnpike is known (as in the case of exponential turnpike). They also use a
second approach via Model Predictive Control which may have has some advantages.

To illustrate the turnpike and their methods, they consider a well-known harvest
example [5], with both bilinear and quadratic objectives. Remarkably enough, the
authors do not seem to notice that in the free-endpoint case, the leaving arc ends
always at the same value of x(T), regardless of x(0) and T. Something similar happens
in [11]: the author, who studies two examples of optimal investment problems, states
literally: “Without any terminal constraints, all predictions end in x = 2,” but does not
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delve into this happening. We shall see that this is a general property of turnpikes with
free-endpoint solutions.

As a matter of fact, one of us had already noticed this in the previous paper [3].
There a model of renewable resource exploitation in an open-access fishery [1], more
detailed and general than [5], is studied. It was noticed that, without constraints on
the terminal state (which force the trajectory to leave the turnpike), the solution
spontaneously leaves the turnpike in order to reduce the cost of the overall trajectory,
and the leaving arc always ends at the same value of x(T), for all T.

In this note, we intend to settle the question of the entry and leaving arcs of the
turnpike in the generic hyperbolic situation for variational problems. The key point
was suggested in [3] but not led to its natural consequence there. In short, and loosely
speaking, our statement can be summarized as follows (for autonomous problems in
R): assume P = (xP , ẋP) is a turnpike for a problem with initial condition x0 and free
terminal condition, and let T(x , ẋ) = 0 denote the equation giving the transversality
condition. Then:

Statement: There is a function C(x , ẋ) such that:
• The entry arc of the turnpike starts at

Qe = {x = x0} ∩ {C(x , ẋ) = C(xP , ẋP)} .

• The leaving arc of the turnpike ends at

Q l = {T(x , ẋ) = 0} ∩ {C(x , ẋ) = C(xP , ẋP)} .

The function C(x , ẋ) is well known to any practitioner: it is the function whose
level sets are the extremals [16]. Certainly, the statement needs to be properly formal-
ized, but its spirit should be clear to anyone familiar with the turnpike property. It is
also more general (the problem may have both endpoints fixed, or none).

The main tool in our argument is to study the phase space of the plane vector
field equivalent to the Euler equation associated with the variational problem. This
vector field has very nice properties (among other things, its trajectories are both the
extremals of the problem and the level sets of C(x , ẋ)), and a direct application of the
classical results on ordinary differential equations is enough to prove the statement.

The consequences of that result are straightforward: in order to determine the entry
and leaving arcs, one only needs to know the intersection points between C(x , ẋ),
the transversality condition, and/or the initial and final conditions (if any). Once
these points are known, the entry arc can be computed by forward integration, and
the leaving arc by backward integration, as the question has become an initial value
problem at this point.

We hope this work provides a useful support for the study of long-term
autonomous variational (and possibly control) problems near a steady state.

Our results are all straightforward consequences of the standard results on con-
tinuous dependence on parameters of solutions of ordinary differential equations, as
well as the local structure of hyperbolic singularities. Despite this fact, we dedicate
Section 3 to a thorough description of the geometric setting of the problem, with the
aim of helping the reader understand the situation. We hope this is clearer, briefer,
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and simpler than a technical proof which would provide no insight and would be no
more informative than what we provide.

After the formal statements in Section 4 and a suggestion for an approximate
algorithm, we dedicate Section 5 to a hopefully illustrative example and Section
6 to numerical computations in it. A final section provides some remarks on the
n-dimensional case.

2 Statement of the problem

Consider the autonomous variational problem in one dimension:

P ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min∫
T

0
F(x(t), ẋ(t)) dt ,

x(0) = x0 ,
(2.1)

where F is a C2(R2) function, and T is large enough. It is well known since [7] that
many of these problems have a turnpike: a value xP such that “most” solutions of
(2.1) pass near it during a long period (i.e., x(t) ≃ xP and ẋ(t) ≃ 0 for a “large” inner
subinterval of [0, T]), for T →∞. Moreover, as Zaslavsky has proved [22], there are
also initial and final curves (the entry and leaving arcs) γe and γ l such that, as T →∞,
any solution of that problem is very near γe at the beginning, then near xP , and finally,
it is near γ l in the end. Of course, all the terms between quotation marks can be
properly defined [24].

However, despite all the results around turnpikes, and as we have remarked in the
Introduction, there is still no programmatic way to find their entry and exit arcs. The
aim of this work is to explicitly show which curves these arcs are and how to compute
them in the generic case.

3 Extremal curves, level sets, and hyperbolic saddles

Given problem (2.1), Euler’s equation

∂F(x(t), ẋ(t))
∂x

− d
dt
(∂F(x(t), ẋ(t))

∂ẋ
) = 0(3.1)

is best rewritten, after simplifying a common factor u, for our purposes, as a vector
field, using x and u as subindices to indicate partial differentiation with respect to the
first and second variables:

E ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ = u ,

u̇ = Fx − uFxu

Fuu
.

(3.2)

This vector field might have singularities where Fuu = 0 (this implies, for instance,
that if the problem is strictly convex in u, then there are no such singularities). The
extremal curves (solutions to Euler’s equation) then coincide with the trajectories of
E. Moreover, as the problem is autonomous, it is well known (see, for instance, [16])
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that the following function

C(x , u) = F(x , u) − uFu(x , u)(3.3)

is constant in the extremals. Thus, extremals, as one-dimensional manifolds, are the
level sets of C(x , u) in R

2, for the problem P.
Let us work away from the points where Fuu = 0, that is, we limit ourselves to an

open set W where Fuu(x , u) ≠ 0. Consider an equilibrium point P ofE, that is, a point
with u = 0, Fx − uFxu = 0. The linear part of E is always of the form

L = (0 ⋆1
1 ⋆2

) ,

where the stars are unknown values. Except in degenerate cases, P is then either a
center-focus (when both eigenvalues of L are complex), a node (both eigenvalues of L
are real and have the same sign), or a hyperbolic saddle (real eigenvalues with different
sign). Obviously, the nature of either center-foci or nodes prevents such a point from
being a turnpike with entry and leaving arcs: if P is a center, trajectories turn around
it, if it is a focus, then they either converge to it (so that P is not strictly speaking
a turnpike) or move away from it (again, not a turnpike). For the same reasons as
for foci, nodes cannot be turnpikes. Hence, turnpikes with entry and leaving arcs
correspond, in the non-degenerate case, to hyperbolic saddles, as is well known.

Assume then that P = (xP , uP) is a hyperbolic saddle of E, which by definition will
have uP = 0 (this is exactly what makes P a turnpike: near P, the velocity of E tends to
0 and extremals spend “a long time” near P). On the other hand, we have Fx(xP , uP) −
uP Fxu(xp , uP) = 0, which becomes at P just Fx(xP , 0) = 0. As P is a hyperbolic saddle,
there are two invariant manifolds adherent to P: the stable Xs and unstable Xu ones,
meeting transversely at P (see Figure 1: the stable manifold “falls” toward P and the
unstable one “goes away” from it). As these manifolds are unions of extremal curves
(they are trajectories of E), they correspond also to level curves of C(x , u) and, as P
belongs to both, if we denote by M = Xs ∪ Xu their union, they must necessarily have

M ≡ C(x , u) = C(xP , 0).

That is, the invariant set near P is given by C(x , u) = C(xP , 0).
Near P, the set M can be divided into four different trajectories of E: γ1

s , γ2
s , which

are the two components of Xs/ {P} and γ1
u , γ2

u for Xu/ {P}. Any connected open set
V containing P with sufficiently smooth border is divided by these four curves into
four open subsets: U11, U12, U21, U22, each U i j corresponding to the “angle” defined
by γ i

s and γ j
u , in that order (see Figure 1).

The solutions of the variational problem P are extremals (so they correspond to
trajectories of E) which verify the initial condition x(0) = x0 and also satisfy the
transversality condition Fu(x(T), u(T)) = 0. The equation given by the trasnversality
condition Fu(x , u) = 0 defines (usually) a curve in the (x , u)-plane. Figure 2 shows
the “general” situation in which we find ourselves. The trajectory γe , part of the stable
manifold, and γ l , part of the unstable one, are the entry and leaving arcs, respectively.
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Figure 1: Hyperbolic saddle P and the open sets U i j .

Figure 2: Hyperbolic saddle P (turnpike), extremal (γ), and entry (γe ) and leaving (γ l ) arcs.
In yellow, the “slow” zone. As long as there are no singularities of E in the cyan zone, the
turnpike property holds inside it, and as T →∞, the corresponding extremal of P approaches
γe at the beginning and γ l at the end. The entry arc starts at Qe , and the leaving arc
ends at Q l .

The intersection points between the transversality condition Fu(x , u) = 0 and
M are key in our statements. These points are the solutions of the system of
equations:

{ F(x , u) − uFu(x , u) = C(xP , 0) ,
Fu(x , u) = 0 ,
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which, after simplifying, becomes (see [3], where this system of equations appeared
for the first time):

{ F(x , u) = C(xP , 0) ,
Fu(x , u) = 0 ,(3.4)

In the problem P, the initial value x(0) = x0 is set. Assume Qe = (x0 , ue) belongs to
x = x0 ∩ {C(x , u) = C(xP , 0)} and to the stable manifold of P, and let Q = (x l , u l)
be the solution of (3.4) in the unstable manifold (as in Figure 2) which is nearest to P.
Under these assumptions, the Turnpike property happens relative to P (as in Figure 2)
and extremals with x(0) = x0 start near Qe = (x0 , ue), so that u(0) → ue , and finish
near Q l , so that x(T) → x l as T →∞.

If there existed a solution R = (xe , ue) of (3.4), belonging to the stable manifold
and satisfying the transversality condition (this case is not plotted in Figure 2), a dual
argument using f (x ,−ẋ) shows that there are extremals of the variational problem
with no initial or terminal condition:

P′ ≡min∫
T

0
F(x(t), ẋ(t)) dt(3.5)

with starting points x(0) → xe (and endpoints ending at Q l as above).
This theoretical description which is just a qualitative expression of the well-known

results on the continuous dependence of solutions of ODEs on the parameters, and
of the local structure of hyperbolic singularities (see, for example, [14]), is enough to
prove our results, so that instead of proofs, we just refer to this section.

Our statements have two versions: one in which a solution γ ofP is already known,
and one in which all depends just on the solutions of (3.4).

4 Statements of the results

As explained in the Introduction, F(x , u) is of class C2 in R
2, and all our statements

are in an open set W ⊂ R2 where Fuu(x , u) ≠ 0. We shall make frequent reference to
the vector field E defined in (3.2).

Our first result assumes the existence of an extremal “sufficiently” near a hyperbolic
turnpike.

Theorem 4.1 Let P = (xP , uP) be a hyperbolic saddle of E, and let γ be an extremal
of P included in an open set U ⊂W containing P which admits a subdivision U i j for
i , j ∈ {1, 2} as above. We assume the following conditions:
(1) The curve Fu(x , u) = 0 meets γ1

u and γ transversely at the points Q = (x l , u l) and
(x(T), u(T)).

(2) That curve Fu(x , u) = 0 admits an injective parametrization near Q, η ∶ [−1, 1] →
R

2 with η(0) = Q, η(1) = (x(T), u(T)) such that η is transverse to any extremal
meeting it.

(3) The extremals γ1
s and γ meet the manifold x = x0 transversely at (x0 , ue) and

(x0 , u0), respectively.
(4) The open set V (delimited by γ1

s and γ1
u , η, and the line x = x0) contains no more

singularities of E.
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Then:
(1) For any T > T, the problem

ST

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min∫
T

0
F(x(t), ẋ(t)) dt

x(0) = x0

has an extremal γ which is totally included in V.
(2) For any ε > 0, there is Tε > T, Tε ,e > 0, and Tε ,∞ < T, such that for T > Tε , the

corresponding extremal γT satisfies:
• The metric distance between γT ∶ [0, Te] → R

2 and γe is less than ε.
• The metric distance between γT ∶ [Te , Tl ] → R

2 and P is less than ε.
• The metric distance between γT ∶ [Tl , T] → R

2 and γ l is less than ε.
Moreover, one can also choose Te and Tl such that Tl − Te →∞ as ε → 0 and
Tl , Te < K for some K < ∞.

Proof The first conclusion follows from the continuous dependence of solutions
of an ordinary differential equation on the parameters (and from all the qualitative
descriptions in Section 3). The second one follows also from the local structure of
hyperbolic saddle singularities (see, for instance, [14]). ∎

Definition 4.1 The curve γe from x = x0 ∩ γe to P is called the entry arc to the
turnpike P. The curve γ l from P to Q is called the leaving arc of the turnpike P.

The previous statement seems to require a lot from the equation. As it happens,
most of the hypotheses are just technical and will hold in generic situations. On the
other hand, we can also say a lot (locally) if we just know that the transversality condi-
tion meets γ l transversely. The following result is again a straightforward consequence
of the local structure of hyperbolic saddles and the continuous dependence on the
parameters of solutions of ODEs. All the statements are inside W ⊂ Fuu(x , u) ≠ 0.

Theorem 4.2 Let P be a hyperbolic saddle, and let γ l ⊂ γ1
u ∪ γ2

u be one of the compo-
nents of the unstable manifold. Assume that the transversality condition Tr ≡ Fu(x , u) =
0 meets γ l transversely at Q l = (x l , u l) and that there are no more intersection points
between Q l and P belonging to γ l . Then there is ε > 0 and a parametrization τ ∶
[−ε, ε] → Tc with τ(0) = Q l such that the two extremals containing τ(−ε) and τ(ε)
satisfy all the properties of Theorem 4.1. As a consequence, P is a turnpike for P.
Moreover, assume that γ1

s is to the right of P and that γ2
s is to its left. Assume, for

simplicity, that Q l is to the left of P (i.e., x l < xP). Then:
(1) The point P is a turnpike for P for x0 ∈ (xP , xP + ε), for some ε > 0, γ l (from P to

Q) is the leaving arc, and γ1
s (from x = x0 to P) is the entry arc.

(2) At the same time, P is a turnpike for P for x0 ∈ (xP − ε, xP) for some ε > 0, γ l
(from P to Q) is the leaving arc, and γ2

s (from x = x0 to P) is the entry arc.
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Notice how there is a switch of entry arcs when the initial condition x0 changes
from being “greater than xP” to “less than xP .” This is easy to see in Figure 2: if x0
is less than xP , the extremals ending near Q must approach, at their beginning, the
top-left separatrix for T →∞, instead of γe . Obviously, for the dual problem (final
condition set but initial condition free), it is the leaving arc that changes.

Consider the problem (3.5) with no initial or final condition. Near a hyperbolic sin-
gularity P of E, we may have a turnpike result if the system of equations (3.4) has two
solutions near P. Again, everything is restricted to some open set W ⊂ Fuu(x , u) ≠ 0.

Theorem 4.3 With the notations above, assume that P is a hyperbolic singularity of
E. If Qe ∈ γ1

s and Q l ∈ γ1
u are two solutions of (3.4) and there are no more solutions of

(3.4) between Qe and P and P and Q l , then P is a turnpike for the problem (3.5). That
is, for T →∞, there are extremals γ = (x(t), u(t)) of (3.5) satisfying:
(1) The origin tends to Qe : (x(0), u(0)) → Qe .
(2) The end tends to Q l : (x(T), u(T)) → Q l .
(3) The curve γ approaches the part of γ1

s between Qe and P at the beginning (the entry
arc).

(4) The curve γ approaches the part of γ1
u between P and Q l at the end (the leaving

arc).

Proof As previously, the proof is a straightforward application of the description
in Section 3, the structure of hyperbolic singularities and the continuous dependence
on parameters of solutions of ODEs. ∎

Finally, consider the problem with fixed endpoints:

P ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min∫
T

0
F(x(t), ẋ(t)) dt,

x(0) = x0 , x(T) = xT .
(4.1)

In this case, the statements hold regardless of the transversality condition.

Theorem 4.4 Assume that P is a hyperbolic singularity ofE. Assume that x = x0 meets
γs

1 at Qe and that x = xT meets γu
1 at Q l . Then P is a turnpike for the problem (4.1), and

there is an open neighborhood V of P such that for T →∞, any extremal γ of (4.1)
included in V satisfies statements (1)–(4) of Theorem 4.3.

Notice that Qe and Q l in previous results can be easily computed using the fact
that γs

i and γu
i are level sets of C(x , u). Thus, if they exist, then

Qe ∈ {C(x , u) = C(P) ∧ x = x0} , Q l ∈ {C(x , u) = C(P) ∧ x = xT} .

However, those solution sets might have more than one point, and one needs to verify
which (if any) can be a candidate.
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4.1 Suggestion for an approximate algorithm

From the discussions above, the following method is suggested to use the turnpike
and the entry and leaving arcs as approximate extremals for T ≫ 0. Specifically, for
Problem (2.1) with x(0) fixed and x(T) free:
(1) State a tolerance ε > 0.
(2) Find the possible turnpike P = (xP , 0). This requires studying the phase space

of (3.2), its singularities, and the separatrices γ i
s and γ i

u , for i = 1, 2. For this, one
can just use the level set C(x , u) = C(xP , 0).

(3) Find the adequate Qe and Q l . As explained above, Qe belongs to x = x0 and
C(x , u) = C(xP , 0), whereas Q l is found using system (3.4).

(4) From Qe , compute the trajectory γe(t) of E with γe(0) = Qe and ending at
∣γe(Te) − xP ∣ < ε. This is an IVP integrated until some condition is met.

(5) From Q l , compute the trajectory γ l(t) of E with γ l(Tl) = Q l and ∣γ l(0) − xP ∣ <
ε. This is a backward IVP integrated until some condition is met.

After those computations, if T > Te + Tl , then any extremal γT of (2.1) can be
approximated by the turnpike as:

γT(t) ≃
⎧⎪⎪⎪⎨⎪⎪⎪⎩

γe(t) if t ∈ [0, Te) ,
xP if t ∈ [Te , T − Tl ] ,
γ l(t) if t ∈ (T − Tl , T] .

(4.2)

5 An example: shallow lakes

In this section, we showcase the well-known shallow lakes model without discount
(see, for instance, [20] for the details), with a modified cost function to prevent, in
our example, the issues with the logarithm. The problem to be solved is, initially, the
Optimal Control problem with control variable v:

P ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max∫
T

0
(v2 − cx2) dt

ẋ = v − bx + r x2

x2 + 1
x(0) = x0

(5.1)

with c, b, r positive constants. This is, in fact, a variational problem, as v can be
expressed as a function of x , ẋ and there are no restrictions. Thus, we shall in fact
study the variational problem

P ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

max∫
T

0
F(x , ẋ) dt

x(0) = x0

(5.2)

with

F(x , ẋ) = b2x2 − 2brx3

x2 + 1
+ 2bxẋ − cx2 + r2x4

(x2 + 1)2 −
2rx2 ẋ
x2 + 1

+ ẋ2 ,
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Figure 3: Stream lines of E in the example. The red dots are its singularities, at u = 0, x ∈
{0, 0.2747, 1.5062}.

and we shall set the value of the constants to r = 1, c = 0.1, and b = 0.7. The Euler
equation for this problem is, once divided by ẋ,

1
(1 + x2)3 (x6(−2ẍ − 1.4) + x4(−6ẍ − 5.6) + x2(−6ẍ − 4.2)−

(2ẍ + 0.78x7 + 2.34x5 + 6.34x3 + 0.78x) = 0.(5.3)

And, the vector field associated with this second-order equation is, in the (x , u) plane
corresponding to (x , ẋ),

E ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ = u ,

u̇ =
0.39x (x6 − 1.79487x5 + 3.x4 − 7.17949x3 + 8.12821x2 − 5.38462x + 1)

(x2 + 1)3 .

(5.4)

The denominator in u̇ is never 0, so that E is well defined in all R2. The vector field E

has three singular points: two hyperbolic saddles P1 = (0, 0) and P2 ≃ (1.5062, 0) and
a center/focus, O = (0.2747, 0). Figure 3 shows the structure of E near its singularities
(in red).
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Figure 4: Hyperbolic structure of the example. The leftmost singularity is hyperbolic, but its
level set (blue) meets the transversality condition only at the singularity. The level set of the
rightmost singularity (yellow) meets the transversality condition twice (at the green dots).

The function whose level sets are the extremals (the trajectories of E) is

C(x , u) = x2 ( x2

(x2 + 1)2 −
1.4x

x2 + 1
+ 0.39) − u2

so that we need to focus our attention on the level sets

L1 ≡ C(x , u) = C(P1) = 0

and

L2 ≡ C(x , u) = C(P2) = −0.097.

Finally, the transversality condition in this case is given by

Tr ≡ 2u + 1.4x − 2x2

1 + x2 = 0.

In Figure 4, we have plotted the sets L1 (cyan), L2 (yellow), and Tr (black). Notice
how Tr ∩ L1 is just the hyperbolic point P1 whereas Tr ∩ L2 has two points, one above
u = 0 and the other one below (both in green).

Surprisingly enough, the transversality condition (in black in Figure 4) only meets
the curve M1 ≡ C(x , u) = C(P1) (in cyan) at (0, 0) so that our results only apply to P1
in the fixed-endpoints versions (because Tr never meets M1 transversely).
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Consider the hyperbolic saddle P2. We are going to showcase the four turnpike
possibilities for it under problem (5.2).

The transversality condition meets the (yellow) curve M2 = C(x , u) = C(P2) at the
(green) points Q1 ≃ (−0.9852, 1.1822) and Q2 ≃ (0.9852,−1.971). Clearly, the top-left
and bottom-right parts of M are the stable manifolds, call them γ1

s and γ2
s , respectively,

whereas γ1
u is the bottom-left part.

5.1 Initial condition fixed. Change of entry arc and of turnpike

Recall that we have called: γ1
s the top-left branch of M2 (in yellow in Figure 4) and

γ2
s the bottom-right branch (these are the stable trajectories and will give rise to the

entry arcs). Also, γ1
u is the bottom-left branch, and γ2

u is the top-right one, which will
give rise to the leaving arcs.

In this subsection, we are going to study the problem (5.1) (i.e., with initial
condition but no end condition).

If x0 > 1.5062, the extremals meet the transversality condition near Q2 ≃
(0.9852,−1.971) for T →∞, whatever the value of x0. The entry arc to the turnpike
P2 in this case is γs

2 from x = x0 to P2: this happens for any x0 > 1.5062 because the
transversality condition does not meet M2 for x > 1.5026.

However, the moment x0 is to the left of P2, that is, x0 < 1.5062, and the entry arc
to turnpike P changes from γ2

s to γ1
s (which is above u = 0). As x0 → −0.9852 (the

x-coordinate of Q1), the extremals approach γ1
s . The problem with x0 = −0.9852 has

no solution because Q1 is the only intersection point between an extremal and the
transversality condition (this is easily seen in Figure 4).

Finally, for x0 < −0.9852, the candidate extremals for problem P f for T →∞
approach P1 = (0, 0), the intersection point of Tr and M1 (the black and cyan lines
in Figure 4). Thus, there is an entry arc, from x = x0 ∩ Tr to P1, but the turnpike is
never left, in this case.

5.2 Initial and final conditions fixed

When x(0) = x0 and x(T) = xT are both fixed, the transversality condition plays
no role and one needs only study the relation between these conditions and the
hyperbolic singularities P1 and P2. For the sake of simplicity, we are only going to show
some cases. Let xP1 = 0 denote the x-coordinate of P1 and xP2 ≃ 1.5062 the one of P2.
Of course, in order to have a turnpike behavior, there must be at least one singularity
between x0 and xT .
• When x0 > xP2 > xT , then P2 is a turnpike and the entry arc is γ2

s ∩ {x = x0}, and
the leaving arc is γ1

u ∩ {x = xT}.
• On the other hand, if x0 < xP2 < xT , then the situation reverses at P2 (we are “above

u = 0” and the arcs are now: γ1
s the entry one from x = x0 to P2 and γ2

u from P2 to
x = xT .

• If x0 , xT ∈ (xP1 , xP2) (that is, both endpoints are between P1 and P2), it is easy to
realize that P1 is still a turnpike and the entry and leaving paths correspond to γ1

s
and γ2

u , respectively (starting at x = x0 and ending at x = xT , also).
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• When, say x0 < xP1 and xT < xP2 , there are two candidate extremal curves for T →
∞: one having a turnpike at P1, and the other one at P2; it is necessary here to discern
the optimality by other methods (which we shall not do, as this is out of our aim).
Obviously, each turnpike has his respective entry and leaving arcs (in this case, P1
arcs are the cyan unbounded curves to its left).

5.3 The free endpoint problem

Finally, the free endpoint problem requires the extremals to meet the transversality
condition at x(0) and x(T). In our case, only M2 meets Tr twice away from a
singularity, whereas M1 ∩ Tr = {P1}. As far as extremals go, the “constant curve”
(x(t), u(t)) = P1 for all t ∈ [0, T] is always a candidate trajectory (as it is an extremal
which satisfies the transversality conditions). These have obviously constant cost
F(P1) × T .

There is, however, a second possibility giving rise to a true turnpike: the solutions
starting near Q1 below γ1

s , approaching P2 and ending near Q2 above γ1
u . In this case,

the entry arc is γ1
s from Q1 to P and the leaving arc is γ1

u from P1 to Q2.

6 Simulations

In this section, we plot the simulations corresponding to some of the cases in Section
5. We have used a budget computer (Intel Core i5 with 16GB RAM) and Mathematica,
with no excessive time used (the simulations can be run in several hours, the longest
time taken by the very precise computation of the entry and leaving arcs and,
unfortunately, the plotting commands, as the numerical solutions are interpolating
functions and their evaluation is quite slow). We restrict ourselves, for the sake of
brevity, to the initial problem (2.1) with x(0) = x0 = 0.5 and T ≫ 0.

The above requires computing the turnpike entry arc starting at the point Pe =
(0.5, ue), which is the solution of the first equation in (3.4) with x = 0.5, that is, ue is
the solution of

F(0.5, u) = C(P2) = C(1.5062, 0),(6.1)

giving ue ≃ 0.30751221580. However, one needs to compute ue with a huge precision in
order to really obtain a fine approximation to the turnpike. In our computations, we
used 30 values of precision when computing the solution of (6.1) (so that P2 was also
computed with that precision).

We also need to compute the leaving arc of that turnpike, which requires knowing
the point Pl = Q2, solution of (3.4):

{ F(x l , u l) = C(P2) ,
Tr(x l , u l) = 0 ,(6.2)

which gives, as indicated above, Pl ≃ (0.9852,−1.971) (with the same caveat regarding
the precision).

Figure 5 contains the plot of the extremal x(t) (in blue) and its derivative u(t) =
ẋ(t) (orange), corresponding to (2.1) with x0 = 0.5 and T = 63. Overlain (in dashed
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Figure 5: Turnpike entry and leaving arcs compared to solution for T = 63.

Figure 6: Absolute differences between entry (left) and leaving (right) arcs and the correspond-
ing part of the solution for T = 63. On the right, the time is reversed (from Q l to P).

lines) we have plotted the entry arc from t = 0 to t = 24, and the leaving arc, from
t = 41 to t = 63. There is no noticeable difference.

Figure 6 shows, on the left, the difference between x(t) and the entry arc for
the same T = 63, and on the right, the difference between u(t) = ẋ(t) and the
corresponding value on the turnpike, for t = T − 22 to T (where 22 is taken as a value
where the x-value of the leaving arc is less than 10−5 from the true turnpike P2). Notice
that the time is inverted in the latter plot because we have computed the leaving arc
“backward.” The errors are, as can be seen, irrelevant to all purposes.

Finally, Figure 7 contains the plots of the different solutions x(t) for times T
between 51 and 56 and for time T = 63. The structure of the entry arc is essentially
the same for all and all are, obviously, indistinguishable, whereas the leaving arc is
also essentially equal but starts at different times.

Figure 8 shows the difference between the corresponding entry and leaving arcs
and the ones of the turnpike (where the cutting point is set as above).
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Figure 7: Solutions for times between 51 and 56, and for T = 63.

Figure 8: Absolute difference between the solutions in Figure 7 and the entry (left) and leaving
(right) arcs (time is reversed on the right).

7 Final remarks

Our aim in this paper is just to show, in the case of dimension 1, which is the most
graphical one and how to compute the entry and leaving arcs of the turnpike of
an autonomous variational problem in order to settle this question. Of course, the
generalization to variational problems in which the functional F(x1 , ẋ1 , . . . , xk , ẋk)
has “separated variables,” that is, problems with

∂2F
∂u∂v

= 0

whenever u, v correspond to variables with different indices (i.e., u ∈ {x i , ẋ i} and v ∈
{x j , ẋ j} with i ≠ j), is straightforward, as the associated vector fields are defined by
independent equations.

The most general autonomous case is, for the time being, inaccessible to us, but we
hope the technique presented in this work may be useful to elucidate their solution.
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