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1 Introduction

Modeling a “stock” of terrorists, is not common, but has precedents, espe-
cially after September 11, 2001 [1]. In this sense [2] presents an intelligent
ecological metaphor to analyze actions by Governments and citizens against
terror. In [3] a model for the transmission dynamics of extreme ideologies in
vulnerable populations is presented. In [4] the authors propose a terror-stock
model that treats the suicide bombing attacks in Israel. In other countries
like, for example, Spain or Ireland, the problem has also been analyzed.

Several papers develop dynamical models of terrorism. In [5] the authors
incorporate the effects of both military/police and nonviolent/persuasive in-
tervention to reduce the terrorist population. This idea is widely developed
in [6] where the controls are two types of counter-terror tactics: “water” and
“fire”, which is the model we shall consider in this paper.

In this context we present in this work a new approach to analyze the
efficacy of counter-terrorism tactics. We state an optimal control problem
that attempts to minimize the total cost of terrorism. An excellent summary
of optimal control application in terrorism issues can be consulted in [7].

The optimization criterion is to minimize the discounted damages cre-
ated by terror attacks plus the costs of counterterror efforts. The underlying
mathematical problem is complicated. It constitutes a multi-dimensional,
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constrained problem where the optimization interval is infinite. An impor-
tant feature is that the time t is not explicitly present in the problem (hence,
it is a time-autonomous problem), except in the discount factor. Using the
Minimum Principle of Pontryagin, the shooting method and the cyclic de-
scent of coordinates we develop an optimization algorithm. We alse present
a method (based upon [8]) for computing the optimal steady-state in multi-
control, infinite-horizon, autonomous models. This method does not require
the solution of the dynamic optimization problem. Using it, we can choose
parameters that reach a desirable steady-state solution.

2 Mathematical Model

In this work we use the excellent model provided by [6], which classifies
counter-terrorism tactics into two categories:

• “Fire” strategies are tactics that involve significant collateral damage.
They include, for example, the killing of terrorists through drones, the
use of indiscriminate checkpoints or the aggressive blockade of roads.

• “Water” strategies, on the other hand, are counter-measures that do
not affect innocent people, like intelligence arrests against suspects in-
dividuals.

The fire and water strategies will be denoted by the control variables
v(t) and u(t), respectively. Both controls have their advantages, and their
drawbacks. For example v(t) have the direct benefit of eliminating current
terrorists but the undesirable indirect effect of stimulating recruitment rates
(and the possible harm to innocent bystanders). On the other hand, u(t) is
more expensive and more difficult to be applied than v(t).

The strength or size of the terrorists is represented by the state variable
x(t). This includes not only the number of active terrorists, but also the
organization’s total resources including financial resources, weapons, etc. [2].
Its value changes over time and we distinguish two inflows and three outflows
in it:

ẋ = τ + I(v, x)−O1(x)−O2(u, x)−O3(v, x) (1)

We include first of all a small constant recruitment term τ , accounting for a
small constant recruitment rate. Second, following [3], the model considers
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that new terrorists are recruited by existing terrorists. So the inflow I(v, x)
is increasing in proportion to the current number of terrorists x. But this
growth is bounded and should also slow down. Moreover, the aggressive
control v, also increases recruitment. In summary the form of the model is:

I(v, x) = (1 + ρv)kxα (2)

with τ, ρ ≥ 0, k > 0 and 0 ≤ α ≤ 1.
On the other hand, we consider three outflows: The first one, O1(x),

represents the rate at which people leave the organization by several reasons
not related with the controls. This natural outflow is assumed linear in x:

O1(x) = µx (3)

with µ > 0. The second outflow, O2(u, x), reflects the effects of water strate-
gies. This outflow is assumed to be concave in x because there is a limited
number of units that conduct water operations:

O2(u, x) = β(u)xθ (4)

with θ ≤ 1. The third outflow O3(v, x) is due to fire strategies. This is
modeled as linear in x, because the methods are perceived to be “direct
attack”:

O3(v, x) = γ(v)x (5)

The functions β(u) and γ(v) should be concave; Culkins [6] uses the same
functional form for both: a logarithmic function. The water function is pre-
multiplied by a constant β smaller than the corresponding constant γ for fire
operations. These two constants reflect the “efficiency” of the two types of
operations.

Finally, the costs of terrorism are assumed to be linear in the number of
terrorists, that is, of the form cx. We also model the control cost function
as separable, and the costs of employing the water and fire strategies are
modeled as quadratic. Over a infinite planning horizon, the objective is to
minimize the sum of both costs (terrorism and counter-terror operations).
We also assume that outcomes are discounted by a constant rate r. In brief,
the control problem we pose can be written as:

min
u,v≥0

J = min
u,v≥0

∫ ∞
0

(cx+ u2 + v2)e−rtdt (6)

ẋ = τ + (1 + ρv)kxα − µx− β ln(1 + u)xθ − γ ln(1 + v)x; x(0) = x0

u(t) ≥ 0; v(t) ≥ 0
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where x0 is the initial stock level and we impose also control constraints.

3 Optimization Algorithm

The above problem (6), is an Optimal Control Problem (OCP) where the
total costs have to be minimized, given the state dynamics and the constraints
on the controls. Denoting u(t) = (u(t), v(t)) = (u1(t), u2(t)), we wish to
compute:

min
u(t)

J =

∫ ∞
0

F (t, x(t),u(t)) dt (7)

subject to satisfying:

ẋ(t) = f (t, x(t),u(t)) , 0 ≤ t ≤ ∞; x(0) = x0 (8)

u(t) ∈ U(t), 0 ≤ t ≤ ∞ (9)

The problem presents several noteworthy features. First, the optimization in-
terval is infinite. Second, the time t is not explicitly present in the problem (it
is a time-autonomous problem), except in the discount factor. Third, we im-
pose constraints on the control and finally, it constitutes a multi-dimensional
problem.

To solve the multi-control variational problem, we propose a numerical
algorithm which uses a particular strategy related to the cyclic coordinate
descent (CCD) method [9]. The classic CCD method minimizes a function
of n variables cyclically with respect to the coordinates. With our method,
the problem can be solved like a sequence of problems whose error functional
converges to zero. The algorithm (with i = 1, 2) carries out several iterations
and at each j-th iteration it calculates 2 stages, one for each i. At each stage,
it computes the optimal of ui(t), assuming the other variable is fixed.

Beginning with some admissible u0, we construct a sequence of (uj) and
the algorithm will search:

lim
j→∞

uj (10)

It is easy to justify the convergence of the algorithm taking into account
Zangwill’s global convergence Theorem [10].

Based on the above, we present the solution for the unidimensional case,
using Pontryagin’s Minimum Principle (PMP) [11]. Our integrand takes the
form:

F (x(t), u(t), t) = G(x(t), u(t), t)e−rt (11)
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where r is the positive rate of discount, and G is a function bounded from
above. Under these conditions, the integral is found to be convergent for
each admissible control. Let H be the associated Hamiltonian:

H(t, x, u, λ) = F (t, x, u) + λ · f (t, x, u) (12)

where λ is thecostate variable. Using PMP, the optimal solution can be
obtained from a two-point boundary value problem. In order for u∗ ∈ U to
be optimal, a nontrivial function λ must exist, such that for almost every
t ∈ [0,∞) :

ẋ = Hλ = f ; x(0) = x0 (13)

λ̇ = −Hx; lim
t→∞

λ(t) = 0 (14)

H(t, x, u∗, λ) = min
u(t)∈U

H(t, x, u, λ) (15)

Due to the nonlinearity of the system dynamics, the optimal solution can only
be computed numerically. In this paper we propose an efficient method which
adapts the shooting method, Euler’s method, and numerical integration. All
the calculations are carried out in the Mathematica environment.

4 Steady-state Solution

In [8] a method for computing the optimal steady-state in infinite-horizon
one-dimensional problems is presented which does not require the solution
of the dynamic optimization problem, in which the bounds U(t) do not play
any role. Tsur considers:

min
u(t)

J =

∫ ∞
0

G(x(t), u(t))e−rtdt (16)

ẋ(t) = f (x(t), u(t)) , x(0) = x0 (17)

For the steady-state solution, u = R(x), the evolution function is defined by:

L(x) = r

(
Gu(x,R(x))

fu(x,R(x))
+ Ẇ (x)

)
with W (x) =

1

r
G(x,R(x)) (18)

The function L(x) allows to formulate the following necessary condition for
the optimal steady state xs:

L(xs) = 0 (19)

We also extend the method to multi-dimensional problems.



Modelling for Engineering & Human Behaviour 2017 30

References

[1] P. Heymann, Dealing with terrorism after september 11, 2001: An
overview. In Countering terrorism: Dimensions of preparedness, MIT
Press, 57-72, 2003.

[2] N.O. Keohane, R.J. Zeckhauser, The Ecology of Terror Defense. Journal
of Risk and Uncertainty 26, 201-229, 2003.

[3] C. Castillo-Chavez, B. Song, Models for the transmission dynamics of
fanatical behaviors. In Bioterrorism: Mathematical Modeling Applica-
tions in Homeland Security, SIAM, Philadelphia, 155-172, 2003.

[4] E.H. Kaplan, A. Mintz, S. Mishal, C. Samban, What happened to sui-
cide bombings in Israel? Insights from a terror stock model. Studies in
Conflict and Terrorism 28, 225-235, 2005.

[5] F. Udwadia, G. Leitmann, L. Lambertini, A dynamical model of terror-
ism. Discrete Dynamics in Nature and Society, 1-32, 2006.

[6] J.P. Caulkins, D. Grass, G. Feichtinger, G. Tagler, Optimizing counter-
terror operations: Should one fight fire with “fire” or “water”?. Com-
puters & Operations Research 35, 1874-1885, 2008.

[7] D. Grass, J.P. Caulkins, G. Feichtinger, G. Tragler, D.A. Behrens, Op-
timal Control of Nonlinear Processes: With Applications in Drugs, Cor-
ruption and Terror. Springer-Verlag, Berlin, 2008.

[8] Y. Tsur and A. Zemel, The infinite horizon dynamic optimization prob-
lem revisited: A simple method to determine equilibrium states, Euro-
pean Journal of Operational Research 131(3), 482-490, 2001.

[9] Z.Q. Luo and P. Tseng, On the convergence of the coordinate descent
method for convex differentiable minimization, J. Optim. Theory Appl.
72(1), 7-35, 1992.

[10] W.L. Zangwill, Nonlinear Programming: A Unified Approach, Prentice
Hall, Nueva Jersey, 1969.

[11] A. Chiang, Elements of Dynamic Optimization. Waveland Press, 2000.




