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Nieto, J. M. Grau, and M. M. Ruiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pag:
25-30

6. Calculation of the adjoint flux of the neutron diffusion equation, by A. Bernal, J.
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219-222

37. Mathematical Modelling of Shafts in Drives, by T. Náhĺık, P. Hrubý, and D. Smetanová
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November 30, 2016

1 Introduction

In the last years some of the studies concerning on iterative methods for ap-
proximating roots of nonlinear equations have focused on multiple roots. That
is, to find a multiple zero α of multiplicity m of a nonlinear equation f(x) = 0,
f : D ⊆: R −→: R, it is a special case where some particular aspects must be
taken into account. In this sense different iterative methods for this particular
case have been recently published see [1]-[6] and the references therein.

Given an iterative method, We say that r is the radius of the local conver-
gence ball if the sequence xn generated by this iterative method, starting from
any initial point in the open ball B(α, r) converges to α and remains in the ball.

First of all, we have studied the local convergence of Dong’s method (1).
This method has two steps and because of that some variations must be taken
into account.

yn = xn −
√
m f(xn)

f ′(xn)
, (1)

xn+1 = yn −m
(

1− 1√
m

)(1−m)
f(yn)
f ′(xn)

. (2)

Previous papers studied the local convergence of this method when the involved
function satisfies Hlder continuity conditions, that is, ∀x, y ∈ D, p ∈]0, 1] and
K0,Km positive real numbers,∣∣∣f (m)(x∗)−1(f (m+1)(x)− f (m+1)(y))

∣∣∣ ≤ K0|x− y|p, (3)∣∣∣f (m)(x∗)−1f (m+1)(x)
∣∣∣ ≤ Km. (4)

∗e-mail: dielacor@doctor.upv.es

1
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In this work we give a simple alternative to obtain this local convergence without
using sophisticated properties of divided differences operators. In this case we
will use the following bound conditions:

|f (m)(α)−1f (m+1)(x)| ≤ k1, ∀x ∈ D, k1 > 0. (5)

and in case the method uses second derivative we need a second assumption as
follows:

|f (m)(α)−1f (m+2)(x)| ≤ k2, ∀x ∈ D, k2 > 0. (6)

2 Preliminaries

Lemma 1 If α is a multiple zero of multiplicity m with m > 1, of a nonlinear
equation f(x) = 0, where f : D → R is a sufficiently differentiable function in
a open interval D, then the function f(x) can be expressed as

f(x) = (x− α)mh(x), h(α) 6= 0, (7)

where

h(x) =
f (m)(α)

m!
+

1

(m− 1)!

∫ 1

0

[f (m)(α+θ(x−α))−f (m)(α)](1−θ)m−1dθ, (8)

Lemma 2 Let f(x) be a function satisfying conditions (5) and (6) for all x0 ∈
]α − r0, α + r0[= I0 where r0 = m+1

k1
and e0 = x0 − α. Then, function h(x)

defined by (8) verifies the following bounds:

(B1)
∣∣h(α)−1h(x0)

∣∣ ≤ m+ 1 + k1|e0|
m+ 1

(B2)
∣∣h(α)−1h′(x0)

∣∣ ≤ k1
m+ 1

(B3)
∣∣h(x0)−1h(α)

∣∣ ≤ m+ 1

m+ 1− k1|e0|

(B4)
∣∣h(x0)−1h′(x0)

∣∣ ≤ k1
m+ 1− k1|e0|

(B5)
∣∣h(x0)−1h′′(x0)

∣∣ ≤ 2k2
(m+ 2)(m+ 1− k1|e0|)

.

3 Local convergence results

We start the study with the firs step that we can write:

ê0 = y0 − α = x0 − α−m
1
2
f(x0)

f ′(x0)
=
h′(x0)e0 +m

1
2 (m

1
2 − 1)h(x0)

h′(x0)e0 +mh(x0)
e0,
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First, we bound upperly the numerator (Â0) using the mean value theo-
rem and the bounding conditions. Then, we use Banach Lemma to bound the
denominator (B̂0). So we have:

|Â0| ≤
k1|e0|+m

1
2 (m

1
2 − 1)(m+ 1 + k1|e0|)
m(m+ 1)

|B̂−10 | =
m

m− k1|e0|
.

It is important to notice that for bounding the denominator it appears a
new restriction, so we have to take now |e0| < m

k1
= r1. Turning to the error

equation we have:

|ê0| ≤
k1|e0|+m

1
2 (m

1
2 − 1)(m+ 1 + k1|e0|)

(m+ 1)(m− k1|e0|)
|e0| = g1(|e0|)|e0|,

verifying ∃r2 ∈]0, r1[ / 0 ≤ g1(t) < 1 ∀t ∈]0, r2[. Now, we proceed to
analyze the second step. In a similar reasoning as before we get:

|ê1| ≤
ϕ(|e0|)

(m+ 1)(m− k1|e0|)
= g2(|e0|)|e0|

verifying ∃r3 ∈]0, r2[ / 0 ≤ g2(t) < 1 ∀t ∈]0, r3[. The same process holds
starting from x1 and getting x2 and by an inductive procedure and by taking
limits in the infinite we have proved that the iterative sequence is well-defined
and tends to α.

4 Numerical results

In this section, first we give the local convergence radius for the previous method.
For that, we use some equations taken from [3] and [5].

Exercise α m k1 = km k2 k0 p

f1(x) = cos(x)− 1 0 2 1 1 1 1

f2(x) = (x5/2 − 1)2 1 2 54
5 −

1
10

√
6 72

5 + 1
30

√
6 72

5 −
3
30

√
2 1

2

f3(x) = x2(x2 − 1) 0 2 12 12 12 1

f4(x) =
∫ x

0
G(x)dx,

0 2 1 + 2π 2π(1 + 2π) 2π 1
G(x) =

∫ x

0
(x+ cos(πx2))dx

f5(x) = ( 1
10x−

1
15x

3/2)2 9
4 2 2.56 0.43 6.32 1

2

f6(x) = x5 − 8x4 + 24x3
1 3 4 10 10 1−34x2 + 23x− 6

Table 1: Nonlinear examples.

In table 2 we can see the different values of ri, i = 0, 1, 2, 3 described in our
theoretical results for Dong’s iterative method (1). As it can be observed, the
minimum value for the radio is always r3.
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Dong’s method
Examples r0 r1 r2 r3 r

f1 3 2.0000 0.9252 0.2167 0.2167
f2 0.2842 0.1895 0.0877 0.0205 0.0205
f3 0.2500 0.1667 0.0771 0.0181 0.0181
f4 0.4119 0.2746 0.1270 0.0298 0.0298
f5 1.1719 0.7813 0.3614 0.0846 0.0846
f6 1.0000 0.7500 0.2763 0.0230 0.0230

Table 2: Numerical values of local convergence radii for examples given in Tabla
(1).

5 Case of unknown multiplicity

Now the goal is to analyze the behavior of some iterative methods for multiple
roots when the value of the multiplicity, m is unknown. Our aim in this section
is to check if the formulas proposed in [7] for approximating the multiplicity.
Finally, some examples are shown to demonstrate their application.

For this section, we use the modified Newton method, Osada’s method and
an optimum method of fourth order (M4), see [2] defined as

yn = xn − b
f(xn)

f ′(xn)
,

xn+1 = xn −
(
s1 + s2h(yn, xn) + s3h(xn, yn) + s4h(yn, xn)2

) f(xn)

f ′(xn)
.

Additionally, to meet the objective, we have the following procedures to
estimate the multiplicity m of the root given in [7].

We have defined three different strategies to approximate the multiplicity.
First, without rounding the estimation. Second, rounding the estimation to
the nearest integer and last one if we get to consecutive values of the estimation
equal we work with this value and stop the estimation of the multiplicity. These
3 strategies have been applied to example f2 of Section 4.

In order to compare the performance of the different strategies, we count the
number of functional evaluations of the whole procedure per each case.

Table 3 shows, for each method and multiplicity estimation procedure, the
number of iterations needed to converge, the approximated computational order
of convergence obtained according to the absolute value of the difference between
the last two iterates, the absolute value of the function at the last iterate,
the multiplicity estimations used in each iteration, and the total cost of the
iterations, in terms of the total number of evaluations of the function and its
derivatives along the iterations of each method.

Although the methods for estimating the multiplicity give a good approxi-
mation to the multiplicity, using these estimations limit the convergence order
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Method Aprox. iter ρ incr f(xn) mul EF

M. Newton

Ost1 6 2.00 7.42e-36 2.66e-141 [1.03, 1.96, 1.99, 1.99, 1.99, 1.99] 24
Ost2 6 2.00 6.81e-26 7.58e-101 [ 1, 2, 2, 2, 2, 2] 24
Ost3 6 2.00 6.81e-26 7.58e-101 [ 1, 2, 2] 18
Scho1 7 2.00 3.88e-22 8.00e-86 [0.52, 1.21, 1.82, 1.99, 1.99, 1.99, 1.99] 21
Scho2 6 2.00 6.81e-26 7.58e-101 [ 1, 2, 2, 2, 2, 2] 18
Scho3 6 2.00 6.81e-26 7.58e-101 [ 1, 2, 2] 15
Trau1 24 1.02 6.03e-22 2.56e-45 [..., 1.93] 48
Trau2 9 2.00 4.06e-23 9.58e-90 [ 1, 1, 1, 1, 1, 2, 2, 2, 2] 18
Trau3 30 1.00 6.06e-11 2.29e-20 [1, 1] 60
Stra1 5 2.42 5.58e-35 4.80e-117 [1.03, 1.96, 1.99, 1.99, 1.99] 20
Stra2 6 2.00 6.81e-26 7.58e-101 [ 1, 2, 2, 2, 2, 2] 24
Stra3 5 2.00 6.54e-36 6.45e-141 [ 1, 2, 2] 16
known 8 2.00 1.95e-38 5.13e-151 2 16

Osada

Ost1 6 2.00 6.61e-40 3.78e-157 [1.03, 1.98, 1.99, 1.99, 1.99, 1.99] 30
Ost2 5 3.00 2.06e-35 2.18e-207 [ 1, 2, 2, 2, 2] 25
Ost3 5 3.00 2.06e-35 2.18e-207 [ 1, 2, 2] 21
Scho1 7 2.00 3.88e-22 8.01e-86 [0.52, 1.21, 1.82, 1.99, 1.99, 1.99, 1.99] 21
Scho2 5 3.00 2.06e-35 2.18e-207 [ 1, 2, 2, 2, 2] 15
Scho3 5 3.00 2.06e-35 2.18e-207 [ 1, 2, 2] 15
Trau1 21 1.03 7.82e-21 1.33e-43 [..., 1.93] 63
Trau2 8 3.00 1.28e-23 1.29e-136 [ 1, 1, 1, 1, 1, 2, 2, 2] 24
Trau3 30 1.00 6.06e-11 2.29e-20 [1, 1] 90
Stra1 5 2.43 3.13e-37 1.88e-125 [1.03, 1.96, 1.99, 1.99, 1.99] 25
Stra2 5 3.00 2.06e-35 2.18e-207 [ 1, 2, 2, 2, 2] 25
Stra3 4 2.39 3.15e-36 2.75e-212 [ 1, 2, 2] 21
known 7 2.99 4.83e-42 3.61e-247 2 21

M4

Ost1 6 2.00 1.92e-33 5.57e-132 [1.03, 1.93, 1.99, 1.99, 1.99, 1.99] 30
Ost2 4 4.01 1.10e-22 1.08e-175 [ 1, 2, 2, 2] 20
Ost3 4 4.01 1.10e-22 1.07e-175 [ 1, 2, 2] 18
Scho1 7 2.00 1.28e-36 1.95e-144 [0.52, 1.42, 1.95, 1.99, 1.99, 1.99, 1.99] 21
Scho2 4 4.01 1.10e-22 1.08e-175 [ 1, 2, 2, 2] 12
Scho3 4 4.01 1.10e-22 1.08e-175 [ 1, 2, 2] 12
Trau1 16 1.03 6.41e-22 1.63e-46 [..., 1.93] 48
Trau2 6 4.00 6.61e-41 1.80e-321 [ 1, 1, 1, 2, 2, 2] 18
Trau3 30 1.00 1.08e-17 1.13e-34 [1, 1] 90
Stra1 5 2.42 2.46e-45 6.00e-154 [1.03, 1.98, 1.99, 1.99, 1.99] 25
Stra2 4 4.01 1.10e-22 1.08e-175 [ 1, 2, 2, 2] 20
Stra3 4 3.43 2.43e-76 6.05e-605 [ 1, 2, 2] 18
known 6 3.99 7.51e-28 4.95e-217 2 18

Table 3: f2(x) = (x5/2 − 1)2, x0 = 0.5, α = 1, m = 2

to about 2, in spite of the method’s theoretical convergence order, as seen in the
tables at the rows where the method’s name has subindex 1. This convergence
order can be reached by rounding the multiplicity estimations, as show the rows
with subindexes 2 and 3.

An additional reduction of the cost can be obtained if one ceases estimating
the multiplicity when it stabilizes. So, rows with subindex 3 have lower cost
than the ones with subindex 2.

The Schroeder’s method for estimating the multiplicities gives in general
the bests results, whereas Traub’s method fails sometimes in estimating the
multiplicity and converging.

The cost increment due to the multiplicity estimation is quite moderated.
In general, it is less than two times the cost of the same method with known
multiplicity.
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Abstract 

Nowadays there are a lot of methods to value brands, however there is not a consensus about 
the most convenient methodology to be used in accordance to the purpose of the valuation. 
For this reason, the most common methods are the mixed methods. This fact produced that 
international consultancy companies have developed rankings to value brands using its own 
mixed methods, but these consultancy companies also diverge in their results when ranking 
companies by their estimated brand value.  

This paper deals with developing mathematical models that explain the value of brand 
rankings in the sector of new technologies based on economic-financial and stock market 
information from 2000 to 2016. 

The linear regression analysis shows that economic-financial information is useful for 
explaining the brand value of technological companies; specifically, the net results is the 
most significant driver in the three selected rankings. Its explanatory power oscillates in the 
interval [45.7%, 61.8%]. Also, other common significant quantitative variables are: financial 
expenses, number of employees and account receivables. Furthermore, among 71.30% and 
89% of the value of the brand is explained by economic-financial variables, while the 
remaining proportion [11%, 28.7%] is explained by the driver brand strength. Finally, our 
results show that some consultancy companies value brands over others consistently; in 
concrete Millward Brown values are the highest, while Brand Finance values are lower than 
the other two selected consultancy companies. 

 

Keywords 

Valuation, economic-financial information, technology brands, models, rankings. 

 

1. Introduction 
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In recent years, brands have taken a significant relevance in the creation of value of the 
companies (Bonet, 2003). Nevertheless, due to the component of immateriality and 
subjectivity of brands, there is no consensus on the most appropriate valuation method and 
numerous valuation methods have been developed. These methods can be classified into two 
main groups: methods based on economic-financial information (Aaker, 1991; Damodaran, 
1994, 2007; Fernández, 2005; Simon & Sullivan, 1993), and methods based on consumer 
perception (Kapferer, 1992, 2004; Keller, 1993, 2007; Ratnatunga & Ewings, 2009). 

While methods based on marketing perspective or consumer perception provide an index of 
the value of the brand and they use qualitative variables, methods based on economic-
financial perspective provides a quantitative value of the brand through economic-financial 
variables. 

At the same time, within the economic-financial approach to brand valuation are 
distinguished three methods, based on costs, market and results. However, through the study 
of the literature (Majerova & Kliestik, 2015; Salinas & Ambler, 2009) it is observed that the 
vast majority of researches do not use a pure method, but a combination of them, mixing 
qualitative and quantitative variables, and those are called the mixed methods. 

Due to this lack of consensus in methodologies and since there isn’t a single method to value 
brands, the most used methods are the mixed methods. And this fact produced that 
international consultancy firms, such as Interbrand, Brand Finance, and Millward Brown, 
have developed rankings to value brands using mixed methods, but this consultancy 
companies only publish the top 100 brands of their rankings. Moreover, they diverge results 
in their annual rankings, since the position of brands in the rankings are different between 
them, and this is due to the different methodology and variables considered for valuing the 
brand. 

The aim of this paper is to develop mathematical models that explain the value of brand 
rankings in the sector of new technologies based on economic-financial and stock market 
information. 

 

2. Method 
a. Information sources 

Data was obtained from secondary sources of information, in particular from the annual 
rankings of brands estimated by 3 consultancy firms during the period from 2000 to 2016, 
but also from the annual income statements of the brand’s companies. Our population of 
study was composed by those brands that had been ranked in the top 100 of at least two of 
the three consultancy firms Interbrand, Millard Brown and Brand Finance but also the 
companies must belong to the technology sector. Then, the economic-financial information 
of the companies was obtained from the firms’ publicly reported income statements. 
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With these requirements, the population of study is composed by 13 technology brands. 
Those are Apple, Cisco, Google, HP, IBM, Intel, Microsoft, Oracle, Samsung, SAP, Sony, 
Accenture, and Facebook. 

 

b. Mathematical model 

The methodology used is a multivariate linear regression analysis using the next expression: 

Y = a + b1 X1 + b2 X2+ …… + bn Xn + ε 

The parameters used are: 

Y: Dependent variable, 

a: Constant term, 

bi: Coefficients of the explanatory variables. Estimated by Ordinary Least Squares. 

Xi: Explanatory variables, 

ε: Random disturbance term, 

However, to satisfy the hypotheses of normality, heterogeneity, and linearity, dependent 
variable has been transformed in logarithmic form. The model is expressed as follows: 

Ln Y = a + b1 X1 + b2 X2+ …… + bn Xn + ε 
 

Dependent variables are the value of the brands estimated by the 3 consultancy firms selected. 
According with these criteria, 8 models have been built, where dependent variables in each 
model are: 

Model 1 and 2  VImn: Interbrand value ($) of brand m in period n, 

Model 3 and 4  VBmn: Brand Finance value ($) of brand m in period n, 

Model 5 and 6   VMmn: Millward Brown value ($) of brand m in period n, 

Model 7 and 8  Vmn: Value of the three firms ($) of brand m in period n, 

And there are 17 explanatory variables expressing the economic-financial information of the 
companies. Those variables are: accounts receivables, capital, current assets, current 
liabilities, dividends, dividends per share, financial expenses, net equity, net result, number 
of employees, number of shares, operating income, research and development, sales, tax rate, 
total assets, and total liabilities. 

 

3. Results 

Results of regression analysis are compiled in Table 1. 

Table 1. Models generated by regression analysis for each ranking. 
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DEPENDENT VARIABLES 

Ln VImn Ln VBmn Ln VMmn 
EXPLANATORY 
VARIABLES  MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5 MODEL 6 
CONSTANT  9.475 9.014 9.523 9.095 9.712 9.777 
NET RESULT  7.12 9.104 5.243 2.698 6.778 2.562 
R&D   7.951 -5.545 
EMPLOYEES   1.24 3.267 3.932 
FINANCIAL 
EXPENSES   -1.525 -1.293 -2.919 
DVND. PER SHARE  -0.04 -0.04 
ACCOUNT 
RECEIVABLES   1.837 3.053 4.231 
NUM. SHARES   1.264  
TOTAL 
LIABILITIES   -7.645 

N  201 104 137 

Adjusted R2  58.80% 89.00% 61.80% 79.00% 45.70% 71.30% 
F  234.687 190.508 154.907 60.702 103.748 38.885 

 

As table I shows, the goodness of fit of models 1, 3 and 5 varies among the interval [45.7%, 
61.80%]; for those models net results was the only explanatory variable. However, models 
2, 4 and 6, reached a better goodness of fit by including additional explanatory variables 
(Table 1), resulting in a higher goodness of fit. Thus, Interbrand values reached a of 89% 
explanatory power, while Brand finance was 79% and Millward Brown was 71.30%.   

Model number 2 reached the best goodness of fit (89%) explained by quantitative variables, 
thus the remained percentage, 11%, could be explained by qualitative variables or brand 
strength. 

Table 2. Models generated by regression analysis for the three rankings jointly. 

 DEPENDENT VARIABLE: Ln Vmn  

EXPLANATORY VARIABLES  MODEL 7 MODEL 8 

CONSTANT  9,.15 9.212 

NET RESULT  6.085 1.858 

CURRENT ASSETS  3.162 

EMPLOYEES  4.166 

NUM. SHARES  9.838 

ACCOUNT RECEIVABLES  3.04 

TOTAL LIABILITIES  -4.156 

FINANCIAL EXPENSES  -18 

D.INTERBRAND  0.213 ∆  +23.70%  

D.MILLWARDBROWN  0.412 ∆  +50.98%  

N  312 

Adjusted R2  51.10% 74.50% 

F  383,083 94,911 
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Table 2 shows results of models 7 and 8, where dependent variable are the values of three 
rankings jointly in logarithmic form, from period 2007 to 2016. Then, the number of 
observation is 312. Moreover, we have introduced dummy variables of the 3 rankings in those 
two models. 

We observe that model 7 is only explained by net results, where its goodness of fit is 51.10%. 
However, model 8 is explained by quantitative variables (see Table 2). Model 8 is better than 
model 7, because its goodness of fit is 74.50%.  

Therefore, Brand Finance adds less value in comparison with Interbrand and Millward Brown 
valuations. In particular, Millward Brown increase the values by approximately 51% in 
relation to Brand Finance, and Interbrand's does by 23.70%. 

 

4. Conclusions 

The paper presents models to value brands of technology sector considering quantitative 
variables, such as the economic financial information of companies but also the value of 
brands estimated by international consultancy companies. 

On the one hand, the main result obtained is that economic-financial information is useful for 
estimating the brand value of technological companies. Specifically, results show that net 
result is the most significant driver in the three rankings, its explanatory power ranges in the 
interval [45.7%, 61.8%]. Other common significant quantitative variables are: financial 
expenses, number of employees and account receivables. In addition, among 71.30% and 
89% of the value of the brand is explained by economic-financial variables, while the 
remaining 11-28.7% by brand strength. 

On the other hand, results show that some consultancy companies value higher than others, 
in concrete Millward Brown values higher, while Brand Finance value lower than the other 
two companies. 
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1. Introduction 

The Self-Regulation Therapy (SRT) is a psychological procedure based on learning and 
suggestion that has been specially designed to facilitate reproducing effects of drugs, imitation 
and re-experimenting effects of drugs. For a review of the theoretical foundations and 
experimental results, see Amigó (2016). This article deals with reproducing the effects of a 
stimulating drug, methylphenidate (MP).  

 
The SRT can be used to remember the effects of a drug taken in the past, or to re-experiment 

the effects of a recently taken drug when a detailed account of its effects is still remembered. In 
the latter case, the procedure consists in two sessions: 1) a drug-taking session by experiencing 
real effects and scoring them with subjective scales of the effects and with instruments to measure 
physiological variables; 2) reproducing effects of a drug “mentally” by next using the SRT (2 or 
3 days later).  

 
To compare the effects, former research has statistically compared the subjective and 

physiological scores obtained at the most intense point of the effects of a drug, or what is known 
as the drug’s high (and rush). In this way, the similarity between the drug’s high and that achieved 
with the SRT is verified. This is precisely what was achieved for MP and the SRT (Amigó, 1997, 
2005, Amigó, Caselles, Micó & García, 2009).  

 
Comparing the dynamic effects of a drug and the SRT is most interesting to verify whether 

the evolution of the subjective and objective scores corresponds. The main tool employed to date 
for this purpose has been a visual inspection, which verifies the similarity between the effect of 
MP and the SRT as far as the course of the effects curve is concerned, although the duration of 
the effect with the SRT is shorter than it is with the drug (Amigó, Caselles & Micó, 2013; Micó, 
Amigó & Caselles, 2012). Nonetheless, the mathematical analysis is more complex for two 
reasons; on the one hand, scores present serial dependence; on the other hand, and as previously 
mentioned, a visual inspection reveals differences in the type of effects curve. For instance, the 
duration of the effect of the SRT is shorter than it is with the drug and, moreover, the effect starts 
earlier, is more intense and also ends earlier with the SRT than with the drug. Thus determining 
a direct correspondence between the effects curve obtained with MP and the SRT is not the most 
suitable approach. 

 
This article proposes dealing with this matter, that of comparing the effects curves of MP 

and the SRT, with a voluntary participant using a single-case experimental design. 
Participant, design and procedure 

                                                 
1 E-mail: salvador.amigo@uv.es  
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 The participant was a 46-year-old man who was a University of Valencia staff member. 
A single-case experimental ABC design was used. In phase A, the participant received no 
treatment. At the start of phase B, the participant took 20 mg of MP. In phase C, he underwent 
the SRT to reproduce the effects of MP, but did not take this drug. In phases A and B, the 
participant filled in a sheet of adjectives every 15 minutes over a 4-hour period. In phase C, the 
participant filled in the list for 2 hours as previous studies have indicated visibly shorter effects 
than that of the drug. These adjectives measure the General Factor of Personality, which 
represents the organism’s general activation. It is a Five-Adjective Scale of the General Factor of 
Personality (GFP-FAS, Amigó, Mico & Caselles, 2009), and the five adjectives are: adventurous, 
daring, enthusiastic, merry and bored. For the mathematical analysis, the response model was 
applied as an integro-differential equation, whose usefulness has been shown to model the 
dynamic effect of a stimulant drug (Amigó, Caselles & Micó, 2008; Caselles, Micó & Amigó, 
2010, 2011). The model is as follows: 
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(1)     
In (1),	ݏሺݐሻ represents the stimulus,	ݕሺݐሻ represents the GFP-FAS, and b e y0  are 

respectively their tonic level and initial value. The other parameters are a, p, q and τ	, which are 
respectively called the power of the homeostatic effect, the power of the excitement effect, the 
power of the inhibitor effect and the delay in the inhibitor effect. The stimulus was calculated as: 
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                        (2) 

 
In (2), it is assumed that the organism is completely free of MP before it is administered. 

M is the quantity of MP taken, ߙ	is the assimilation rate and	ߚ	is the distribution rate. 
 

Results  
 Figure 1 depicts the GFP dynamics during the 4-hour period of Phase A without 
treatment. We observe mass data dispersion. Figure 2 shows the GFP dynamics caused by 20 mg 
of MP in Phase B, with an inverted U, which has been obtained in the studies cited in the previous 
section. The GFP dynamics also takes an inverted U, obtained after reproducing the effects of MP 
with the SRT in Phase C (see Figure 3). However, the Phase C duration lasts half the time of the 
other two phase durations (because the effect of the SRT is known to last less than that of MP). 
The GFP recovers in the end. 
 
 Tables 1 and 2 provide the value of the model parameters that correspond to Phases B 
(with MP) and C (with the SRT). We can see that some parameters considerably differ. Indeed in 
Phase C, both the excitement and inhibitor effects are greater than in Phase B, as is the 
assimilation rate, while the delay in the inhibitor effect is shorter. On the whole, we can conclude 
that the effect becomes more intense with the SRT than with MP itself, but the MP dose is 20 mg 
(M1) and the SRT “dose” is 7.67 (M2), which seems a contradiction. However, as already 
mentioned, the SRT effect duration is approximately half that of the MP. 
 
Discussion  
 Now it is important to reflect on the apparent contradictions that we have just pointed out. 
The duration of the effect is shorter with the SRT than it is with MP. Hence we can conclude that 
the suggested SRT “dose” (7.67 mg) is lower than the MP one (20 mg) and, to a point, it is 
proportional to the duration of the effect.  
 
 So, why is it that when reading the parameters in Tables 1 and 2 we think that the SRT 
effect is more intense despite lasting less? Let’s remember that the excitement and inhibitory 
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effects, and the assimilation rate, are greater. The response is found in the shape of the curve. The 
curve produced by MP is flatter than that produced by the SRT, and the latter curve presents an 
initially more pronounced slope and also a quicker drop. Nonetheless in the two phases, the 
participant experiences a high at the same level with both MP and the SRT, with a score of 24 out 
of 25. So why then is the SRT “dose” considerably smaller than that of MP? 
 
 The response that best includes these apparently different and contradictory results is to 
consider the hypothesis that the SRT reflects the effect of the drug, but the drug is administered 
differently. We know that as opposed to being taken orally, snorting causes subjective effects 
more quickly, with a more intense “rush” in stimulants like d-amphetamine or methamphetamine 
(e.g., Hart et al., 2008; Lile et al., 2011). The hypothesis that stems from this article is that the 
SRT reproduces the effect of MP, but not when taken orally, rather when it is snorted or taken 
intravenously. Following intravenous dosing, uptake in the brain is very fast for methylphenidate 
(6–10 minutes) and the onset of the perceived “high” parallels the fast uptake of the drugs in the 
striatum, with the peak for the “high” reported at about the same time as the peak striatal 
concentration. But, however, the “high” returned to baseline even while the striatal levels of 
methylphenidate remained high (80% of peak). “Behavioral/reinforcing half life” of intravenous 
methylphenidate is much shorter than its pharmacokinetic half life (Volkow and Swanson, 2003; 
pp. 1912-1913). Thus we could consider that the SRT “dose” of 7.67 mg (M2) is the equivalent 
of MP being snorted or taken intravenously, which corresponds to an oral 20 mg dose (M2) in the 
M1/M2=2.6, proportion, as seen in Table 2. 
 
 The consequences would be most significant if this were indeed the case. With the 
mathematical response model that was used herein, and which we mentioned earlier, we could 
calculate the proportional doses of a given drug according to how it is administered, which would 
extend its application in the pharmacology domain and in the study of drugs, and also with 
therapeutic consequences. Thus if someone is capable of applying the SRT to him/herself to 
experiment the rush of a drug by snorting or by taking it intravenously, and without having to 
take the drug, or by remembering its effects when orally taken, it would be feasible to follow this 
procedure to reduce, or to even eliminate, real drug use. Evidence exists that the SRT can reduce 
drug craving (see Amigó, 1996, for a review). 
 
 Although what is currently a hypothesis needs to be empirically confirmed, and repeating 
this study with more participants is also necessary, it is true that we have established a reasonable 
criterion to mathematically compare the real effect of a drug and the conditioned effect which, in 
this case, is done by the SRT. Thus it is a matter of mathematically studying the invariance of real 
effects with “mental” or psychological ones. This also opens up a new perspective on the path 
that we have been following to study the mind-body problem (Micó, Caselles, Amigó, Cotolí & 
Sanz, 2013). 
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Parameter symbol Name Optimal value 
M1 Methylphenidate 

dose 
20.0 

τ Inhibitor effect delay 102.1278972923755600 
 Assimilation rate 0.0032860666513443 ߙ
 Distribution rate 0.0008838047437323 ߚ
a Homeostatic control 

power 
0.0049064028928751 

b Tonic level 10.9240722656250000 
p Excitation effect 

power 
1.3321752324700356 

q Inhibitor effect power 0.0000126763916016 
p/b Excitation effect 

intensity 0.1219485920705610 
q.b Inhibitor effect 

intensity 0.0001384778179232 
 
Table 1: optimal values of the model parameters 2, Phase B, corresponding  
to the GFP dynamics (Y). 
 

Parameter symbol Name Optimal value 
M2 Dose  without 

Methylphenidate 
7.6786547899246216 

Figure 1: Dynamics of the GFP(Y) 
versus time (t) in minutes, for Phase A  

Figure 2: Dynamics of the GFP (Y), measured 
by the GFP-FAS, versus time (t) in minutes, 
for Phase B. The dots represent the 
experimental values and the curve the 

theoretical values. R
2
=0.91.

Figure 3: Dynamics of the GFP (Y), measured 
by the GFP-FAS, versus time (t) in minutes, 
for Phase C. The dots represent the 
experimental values and the curve the 

theoretical values. R
2
=0.81. 
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τ Inhibitor effect delay 26.8286811240000200 
 Assimilation rate 0.0374856430099922 ߙ
 Distribution rate 0.0001013970502164 ߚ
a Homeostatic control 

power 
0.0010036492012055 

b Tonic level 16.6801452636718750 
p Excitation effect 

power 
5.1046919459528768 

q Inhibitor effect power 0.0000507841074228 
p/b Excitation effect 

intensity 0.3060340222018650 
q.b Inhibitor effect 

intensity 0.0008470862888982 
M1/M2 Dose proportion 2.6046228860610500 

Table 2: optimal values of the model parameters, Phase C, corresponding  
to the GFP dynamics (Y). 
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Camı́ de Vera, s/n, 46022 Valéncia
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1 Introduction

One of the most important and challenging problems in scientific computing
is to find efficiently the real roots of nonlinear systems. Let us consider the
system of nonlinear equations of the form

G(x) = Ax− ϕ(x) = 0, (1)

where A ∈ Cm×m and ϕ(x) : D ⊆ Cm −→ Cm. This kind of nonlinear equa-
tions arise in many areas of scientific computing and engineering applications.
In this paper, we try to find the solution of these nonlinear equations, when
A is a large, sparse, positive definite matrix and ϕ(x) is a continuously dif-
ferentiable function. The most common root-finding method for nonlinear
systems is Newton’s scheme

x(n+1) = x(n) − [G′(x(n))]−1G(x(n)), n = 0, 1, 2, . . .

∗e-mail: amiriabdolreza@ymail.com, acordero@mat.upv.es, darvishimt@yahoo.com, jr-
torre@mat.upv.es
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Besides, many high order schemes in recent decades have been introduced to
improve the order of convergence of Newton method. Most of these methods
need to compute or approximate Jacobian matrix at one or several points at
each iteration, which is a very time-consuming process. Therefore, introduc-
ing any scheme which does not need Jacobian matrices is welcome. Based
on the separability and strong dominance between the linear term Ax and
the nonlinear term ϕ(x) (weakly nonlinear system), one can use the Picard
iteration method as (see [1])

Axn+1 = ϕ(xn). (2)

By applying (2), one must solve a linear system such as Ax = b. Usually an
iterative method is used to solve this linear system that arises at each step of
the Picard iteration. We call these iterative methods inner iterations. Some
of the most famous inner iteration methods are Jacobi, Gauss-Siedel, suc-
cessive overrelaxation (SOR), accelerated overrelaxation (AOR) and Krylov
subspace methods. They are based on splitting of the coefficient matrix A
as A = M −N .

In this paper, we present two new Jacobian-free methods to solve non-
linear systems. In the next section we introduce the new algorithms and in
Section 3 some numerical tests are performed.

2 New algorithm

In this section, we propose a new iterative method to solve nonlinear systems
which is based on HSS scheme [2]. Let us consider the system of linear
equations Ax = b and suppose that H and S are the Hermitian and skew-
Hermitian parts of A, respectively, that is, A = H + S with H = 1

2
(A+ A∗)

and S = 1
2
(A−A∗). Now, for an initial guess x0 ∈ Cm, and positive constants

α and tol, in HSS scheme, one computes xl for l = 1, 2, . . . by

{
(αI +H)xl+ 1

2
= (αI − S)xl + b,

(αI + S)xl+1 = (αI −H)xl+ 1
2

+ b,
(3)

where α is a given positive constant and I denotes the identity matrix. Stop-
ping criteria for relations (3) is ‖b−Axl‖ ≤ tol‖b−Ax0‖, for an initial guess
x0 and a given tolerance tol.
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When the the system of nonlinear equations (1) is weakly nonlinear, Picard-
HSS is a Jacobian-free method for solving nonlinear problems.

Usually a modified form of Picard scheme called nonlinear Picard is used
to avoid the computing of the stopping criteria at each step of Picard itera-
tion. However, this variant is still too costly.

In order to solve (1), without using Jacobian matrices we construct a new
algorithm that not only, like Picard and non-linear Picard, is good for solving
weakly nonlinear problems, but also it can solve wider range of nonlinear
problems. First, let us change (1) as

Ax(n+1) − Ax(n) = −Ax(n) + ϕ(x(n)). (4)

For known x(n), we define b(n) = ϕ(x(n)) and Gn(x) = b(n) − Ax. Next, by
intermediate iterations we obtain x(n+1) as follows:
Let x

(n)
0 = x(n) and until ‖G(x

(n)
k ) ‖6 toln‖G(x

(n)
0 )‖ do

As
(n)
k = G(x

(n)
k ), (5)

where s
(n)
k = x

(n)
k+1 − x

(n)
k . Note that to solve (5) we can use any inner solver,

here we use HSS scheme. Then for initial value x
(n)
0 and k = 1, 2, . . . , kn − 1

until ‖Gn(x
(n)
k ) ‖6 toln‖Gn(x

(n)
0 )‖ , we apply HSS algorithm as follows:

1) Set s
(n)
k,0 = 0.

2) For l = 0, 1, 2, . . . , lkn − 1, apply algorithm HSS: (αI +H)s
(n)

k,l+ 1
2

= (αI − S)s
(n)
k,l +Gn(x

(n)
k )

(αI + S)s
(n)
k,l+1 = (αI −H)s

(n)

k,l+ 1
2

+Gn(x
(n)
k )

(6)

and obtain s
(n)
k,lkn

such that

‖ Gn(x
(n)
k )− As(n)k,lkn

‖6 ηnk‖Gn(x
(n)
k )‖ ηnk ∈ [0, 1). (7)

3) Set x
(n)
k+1 = x

(n)
k + s

(n)
k,lkn

.
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Finally, set x
(n+1)
0 = x

(n)
kn

, b(n+1) = ϕ(x
(n+1)
0 ) and Gn+1(x) = b(n+1) − Ax

and again we apply the previous steps until the following stopping criteria
holds

‖Ax(n) − ϕ(x(n))‖ 6 tol ‖ Ax(0) − ϕ(x(0)) ‖ .

At the end of this procedure we set x(n+1) = x
(n)
k+1. This algorithm is a

Jacobian-free one, because we don’t compute any Jacobian matrix. Also,
since in this algorithm we use the HSS method thus in fact, we have a
Jacobian-free HSS scheme. In it there are three kinds of iterations. The
outermost iteration which yields x(n), is used to generate new b(n) = ϕ(x(n))
and Gn(x) = b(n) − Ax. The intermediate iteration that we call it Newton-
like iteration scheme, because it is similar to Newton-HSS scheme (see [5]).
However in this intermediate iteration, Jacobian matrix is not used. The
other iteration, which is used in this algorithm is the innermost iteration,
which applies HSS scheme to solve linear equations that are obtained in each
iteration of our Newton-like scheme. We call this new method as JFHSS
(Jacobian free HSS) algorithm.

Since JFHSS scheme uses many HSS splittings based on HSS algorithm,
hence we can use another splitting methods instead of the HSS one. In
the next section we use the JFHSS scheme to solve a system of nonlinear
equations.

3 Numerical tests

In this section, we apply JFHSS method to solve a system of nonlinear
equations. This example shows that JFHSS method perform better than
Nonlinear HSS-like and Picard-HSS. Consider the following two-dimensional
nonlinear convection-diffusion equation [3]

−(uxx + uyy) + qex+y(xux + yuy) = ueu + sin(
√

1 + u2x + u2y), (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ ∂Ω

where Ω = (0, 1)× (0, 1), ∂Ω is its boundary and q is a positive constant for
measuring magnitude of the convection term. By applying the upwind finite
difference scheme on the equidistant discretization grid with the stepsize

h =
1

N + 1
and the central difference scheme to the convective term, we
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obtain a system of nonlinear equations of the form

F (x) = Mx− h2ψ(x). (8)

The initial guess is chosen as u(0) = 0 = (0, 0, · · · , 0)T . The stopping criterion
for the outer iteration in this example for all methods, is

‖Mu(n) + h2ψ(u(n)) ‖
‖Mu(0) + h2ψ(u(0)) ‖

≤ 10−12.

q 50 100 200 400 1200 2000

N = 48 αopt 0.8 1.4 2.6 4.8 13 20.5
JFHSS CPU 5.25 5.31 5.5 5.93 6.21 6.28

ITout 12 12 12 12 12 12
ITint 12 12 12 12 12 12
ITinn 13.66 14.58 15.083 16.08 17.34 17.58
‖F (x)‖ 2.42,-14 6.04,-15 6.36,-15 1.96,-14 6.15,-15 8.60,-15

Nonlinear HSS-like CPU 8.87 11.828 10.02 10.31 11.28 11.85
IT 161 209 178 186 201 207
‖F (x)‖ 1.5,-14 1.59,-14 1.46,-14 1.57,-14 1.615,-14 1.46,-14

Picard-HSS CPU 50.81 50.01 51.85 53.34 56.32 59.95
ITout 12 12 12 12 12 12
ITinn 177.16 179.1 183.50 189.34 202.75 213.25
‖F (x)‖ 7.7,-15 9.67,-15 1.11,-14 1.23,-14 1.22,-14 1.26,-14

N = 64 αopt 0.7 1 1.8 3.3 8.9 14.2
JFHSS CPU 21.68 18.23 18.65 19.156 20.53 21.39

ITout 12 12 12 12 12 12
ITint 12 12 12 12 12 12
ITinn 21 17.39 18.17 18.75 19.91 20.84
‖F (x)‖ 1.61,-14 6.73,-15 9.15,-15 8.39,-15 7.7,-15 4.71,-15

Nonlinear HSS-like CPU 38.57 31.78 33.50 34.65 36.56 37.70
IT 246 206 213 221 235 242
‖F (x)‖ 1.17,-14 1.26,-14 1.26,-14 1.16,-14 1.19,-14 1.22,-14

Picard-HSS CPU 219.54 217.45 266.83 225.37 228.60 248.35
ITout 12 12 12 12 12 12
ITinn 219.54 248.58 230.75 252 258.75 264.50
‖F (x)‖ 6.12,-15 7.7,-15 8.9,-15 1.0,-14 1.1,-14 1.1,-14

Table 1: Numerical results of JFHSS, Nonlinear HSS-like and Picard-HSS
methods for system (8) (η = tol = 0.1).

Table 1 show CPU-time in JFHSS is much better than CPU-time in
Picard-HSS and Nonlinear HSS-like algorithms. Also we adopt the exper-
imentally optimal parameters α to obtain the least CPU times for these



Modelling for Engineering & Human Behaviour 2017 24

iterative methods. These optimal values are listed in Table 1. One can see
the number of outer iteration in both Picard-HSS and JFHSS are the same,
but there are big difference between their CPU-time.

4 Conclusion

In this paper, a Jacobian-free iterative method based on HSS scheme has
been proposed. It is a combination of inexact Newton method, Hermitian
and skew-Hermitian splittings and Jacobian-free Newton-Krylov algorithms.
The advantage of this method over the Newton and the Newton-HSS iteration
schemes is that they do not need explicit construction and accurate compu-
tation of Jacobian matrices. Hence, computation workloads and computer
memory may be saved in actual implantations. Numerical implementations
show that JFHSS method is effective, robust, and feasible nonlinear solver
for the class of nonlinear and weakly nonlinear systems. Application of this
algorithm is found to be simple, accurate, fast, flexible, convenient and has
small computation cost.
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1 Introduction

Modeling a “stock” of terrorists, is not common, but has precedents, espe-
cially after September 11, 2001 [1]. In this sense [2] presents an intelligent
ecological metaphor to analyze actions by Governments and citizens against
terror. In [3] a model for the transmission dynamics of extreme ideologies in
vulnerable populations is presented. In [4] the authors propose a terror-stock
model that treats the suicide bombing attacks in Israel. In other countries
like, for example, Spain or Ireland, the problem has also been analyzed.

Several papers develop dynamical models of terrorism. In [5] the authors
incorporate the effects of both military/police and nonviolent/persuasive in-
tervention to reduce the terrorist population. This idea is widely developed
in [6] where the controls are two types of counter-terror tactics: “water” and
“fire”, which is the model we shall consider in this paper.

In this context we present in this work a new approach to analyze the
efficacy of counter-terrorism tactics. We state an optimal control problem
that attempts to minimize the total cost of terrorism. An excellent summary
of optimal control application in terrorism issues can be consulted in [7].

The optimization criterion is to minimize the discounted damages cre-
ated by terror attacks plus the costs of counterterror efforts. The underlying
mathematical problem is complicated. It constitutes a multi-dimensional,
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constrained problem where the optimization interval is infinite. An impor-
tant feature is that the time t is not explicitly present in the problem (hence,
it is a time-autonomous problem), except in the discount factor. Using the
Minimum Principle of Pontryagin, the shooting method and the cyclic de-
scent of coordinates we develop an optimization algorithm. We alse present
a method (based upon [8]) for computing the optimal steady-state in multi-
control, infinite-horizon, autonomous models. This method does not require
the solution of the dynamic optimization problem. Using it, we can choose
parameters that reach a desirable steady-state solution.

2 Mathematical Model

In this work we use the excellent model provided by [6], which classifies
counter-terrorism tactics into two categories:

• “Fire” strategies are tactics that involve significant collateral damage.
They include, for example, the killing of terrorists through drones, the
use of indiscriminate checkpoints or the aggressive blockade of roads.

• “Water” strategies, on the other hand, are counter-measures that do
not affect innocent people, like intelligence arrests against suspects in-
dividuals.

The fire and water strategies will be denoted by the control variables
v(t) and u(t), respectively. Both controls have their advantages, and their
drawbacks. For example v(t) have the direct benefit of eliminating current
terrorists but the undesirable indirect effect of stimulating recruitment rates
(and the possible harm to innocent bystanders). On the other hand, u(t) is
more expensive and more difficult to be applied than v(t).

The strength or size of the terrorists is represented by the state variable
x(t). This includes not only the number of active terrorists, but also the
organization’s total resources including financial resources, weapons, etc. [2].
Its value changes over time and we distinguish two inflows and three outflows
in it:

ẋ = τ + I(v, x)−O1(x)−O2(u, x)−O3(v, x) (1)

We include first of all a small constant recruitment term τ , accounting for a
small constant recruitment rate. Second, following [3], the model considers
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that new terrorists are recruited by existing terrorists. So the inflow I(v, x)
is increasing in proportion to the current number of terrorists x. But this
growth is bounded and should also slow down. Moreover, the aggressive
control v, also increases recruitment. In summary the form of the model is:

I(v, x) = (1 + ρv)kxα (2)

with τ, ρ ≥ 0, k > 0 and 0 ≤ α ≤ 1.
On the other hand, we consider three outflows: The first one, O1(x),

represents the rate at which people leave the organization by several reasons
not related with the controls. This natural outflow is assumed linear in x:

O1(x) = µx (3)

with µ > 0. The second outflow, O2(u, x), reflects the effects of water strate-
gies. This outflow is assumed to be concave in x because there is a limited
number of units that conduct water operations:

O2(u, x) = β(u)xθ (4)

with θ ≤ 1. The third outflow O3(v, x) is due to fire strategies. This is
modeled as linear in x, because the methods are perceived to be “direct
attack”:

O3(v, x) = γ(v)x (5)

The functions β(u) and γ(v) should be concave; Culkins [6] uses the same
functional form for both: a logarithmic function. The water function is pre-
multiplied by a constant β smaller than the corresponding constant γ for fire
operations. These two constants reflect the “efficiency” of the two types of
operations.

Finally, the costs of terrorism are assumed to be linear in the number of
terrorists, that is, of the form cx. We also model the control cost function
as separable, and the costs of employing the water and fire strategies are
modeled as quadratic. Over a infinite planning horizon, the objective is to
minimize the sum of both costs (terrorism and counter-terror operations).
We also assume that outcomes are discounted by a constant rate r. In brief,
the control problem we pose can be written as:

min
u,v≥0

J = min
u,v≥0

∫ ∞
0

(cx+ u2 + v2)e−rtdt (6)

ẋ = τ + (1 + ρv)kxα − µx− β ln(1 + u)xθ − γ ln(1 + v)x; x(0) = x0

u(t) ≥ 0; v(t) ≥ 0
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where x0 is the initial stock level and we impose also control constraints.

3 Optimization Algorithm

The above problem (6), is an Optimal Control Problem (OCP) where the
total costs have to be minimized, given the state dynamics and the constraints
on the controls. Denoting u(t) = (u(t), v(t)) = (u1(t), u2(t)), we wish to
compute:

min
u(t)

J =

∫ ∞
0

F (t, x(t),u(t)) dt (7)

subject to satisfying:

ẋ(t) = f (t, x(t),u(t)) , 0 ≤ t ≤ ∞; x(0) = x0 (8)

u(t) ∈ U(t), 0 ≤ t ≤ ∞ (9)

The problem presents several noteworthy features. First, the optimization in-
terval is infinite. Second, the time t is not explicitly present in the problem (it
is a time-autonomous problem), except in the discount factor. Third, we im-
pose constraints on the control and finally, it constitutes a multi-dimensional
problem.

To solve the multi-control variational problem, we propose a numerical
algorithm which uses a particular strategy related to the cyclic coordinate
descent (CCD) method [9]. The classic CCD method minimizes a function
of n variables cyclically with respect to the coordinates. With our method,
the problem can be solved like a sequence of problems whose error functional
converges to zero. The algorithm (with i = 1, 2) carries out several iterations
and at each j-th iteration it calculates 2 stages, one for each i. At each stage,
it computes the optimal of ui(t), assuming the other variable is fixed.

Beginning with some admissible u0, we construct a sequence of (uj) and
the algorithm will search:

lim
j→∞

uj (10)

It is easy to justify the convergence of the algorithm taking into account
Zangwill’s global convergence Theorem [10].

Based on the above, we present the solution for the unidimensional case,
using Pontryagin’s Minimum Principle (PMP) [11]. Our integrand takes the
form:

F (x(t), u(t), t) = G(x(t), u(t), t)e−rt (11)
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where r is the positive rate of discount, and G is a function bounded from
above. Under these conditions, the integral is found to be convergent for
each admissible control. Let H be the associated Hamiltonian:

H(t, x, u, λ) = F (t, x, u) + λ · f (t, x, u) (12)

where λ is thecostate variable. Using PMP, the optimal solution can be
obtained from a two-point boundary value problem. In order for u∗ ∈ U to
be optimal, a nontrivial function λ must exist, such that for almost every
t ∈ [0,∞) :

ẋ = Hλ = f ; x(0) = x0 (13)

λ̇ = −Hx; lim
t→∞

λ(t) = 0 (14)

H(t, x, u∗, λ) = min
u(t)∈U

H(t, x, u, λ) (15)

Due to the nonlinearity of the system dynamics, the optimal solution can only
be computed numerically. In this paper we propose an efficient method which
adapts the shooting method, Euler’s method, and numerical integration. All
the calculations are carried out in the Mathematica environment.

4 Steady-state Solution

In [8] a method for computing the optimal steady-state in infinite-horizon
one-dimensional problems is presented which does not require the solution
of the dynamic optimization problem, in which the bounds U(t) do not play
any role. Tsur considers:

min
u(t)

J =

∫ ∞
0

G(x(t), u(t))e−rtdt (16)

ẋ(t) = f (x(t), u(t)) , x(0) = x0 (17)

For the steady-state solution, u = R(x), the evolution function is defined by:

L(x) = r

(
Gu(x,R(x))

fu(x,R(x))
+ Ẇ (x)

)
with W (x) =

1

r
G(x,R(x)) (18)

The function L(x) allows to formulate the following necessary condition for
the optimal steady state xs:

L(xs) = 0 (19)

We also extend the method to multi-dimensional problems.
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Camı́ de Vera s/n, 46022, Valencia (Spain),

(†) Department of Information Systems and Computation, Universitat Politècnica de València
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1 Introduction

The aim of this work is to perform a fast calculation of the adjoint flux
of the neutron diffusion equation. The neutron diffusion equation is the
easiest way of calculating the neutron distribution inside nuclear reactors. It
is a partial differential equation, which contains spatial and time differential
terms. Time differential terms are set to zero for considering the steady state
of the neutron diffusion equation, which is an eigenvalue problem and the
eigenvector is the neutron flux [1]. Spatial differential terms are discretized
by using numerical methods in a discretized geometry.

The adjoint flux is the adjoint operator of the neutron diffusion equation,
which is important and useful in several applications, such as transient cal-
culations and the generalized perturbation theory [1]. In these applications,
both forward and adjoint neutron flux are needed, which can be calculated
by solving both eigenvalue problems, forward and adjoint.

These eigenvalue calculations might be computationally costly for large
matrices. So, it would be desirable to calculate only one of them and calculate
the other from the first one.

∗e-mail: abernal@iqn.upv.es
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There are some methods for estimating the adjoint eigenvectors from the
forward ones, such as that developed in [2]. In this method, the adjoint eigen-
vectors are calculated by using a combination of the forward eigenvectors,
whose coefficients are determined by solving a reduced eigenvalue problem.
This method is fast, but it might be inaccurate for some cases.

In this work, the authors proposed a simpler and more accurate method,
based on the product of the forward eigenvectors and the adjoint system
matrix. In addition, the method includes a reorthogonalization for conserving
the biorthogonal relationship of the forward and adjoint eigenvectors. Several
tests are performed and compared with the method developed in [2] and with
the adjoint eigenvalue calculation, which shows the capability of the method.

The outline of this paper is as follows. Section 2 describes briefly the
method. Section 3 defines the validation cases and shows the results. This
section is subdivided into two subsections, one for each reactor used for the
validation. Section 4 summarizes the conclusions.

2 Method

Eq.1 shows the adjoint eigenvalue problem of the neutron diffusion equa-
tion,where Φ∗ is the adjoint eigenvector and k is the eigenvalue. This method
estimates the adjoint eigenvector as shown in Eq.2, where U is a matrix cal-
culated as expressed in Eq.3. This calculation of U guarantees the accom-
plishment of the biorthogonal relationship, as shown in Eq.4, where I is the
identity matrix.

LTΦ∗ =
1

k
MTΦ∗ (1)

Φ∗ =
1

k

(
LT
)−1

MTΦ∗ ≈ 1

k

(
LT
)−1

MTΦU (2)

U =
(
ΦTMTΦ

)−1
(3)

〈Φ∗,MΦ〉 = 〈ΦU,MΦ〉 = I (4)
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Table 1: Cross sections of the homogeneous reactor

D1 D2 Σa,1 Σa,2 νΣf,1 νΣf,2 Σs,1→2

(cm) (cm) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)
1.28205128205 0.666667 0.01 0.1 0.01 0.109017634020268 0.075

3 Results

The authors applied this method and that proposed by Döring and Kalkkuhl
to two reactors: a homogeneous reactor and Langenbuch reactor.

The validation is based on the accomplishment of two equations. First,
the biorthogonal property, which is expressed in Eq.5, where δi,j is the Kro-
necker delta. Second, the adjoint eigenvalue problem, which is evaluated
with the error shown in Eq.6.

〈Φ∗i , LΦj〉 = δi,j (5)

Ei =
〈
LTΦ∗iki −MTΦ∗i , L

TΦ∗iki −MTΦ∗i
〉

(6)

The authors calculated 5 adjoint eigenpairs and checked the biorthogonal
property with 10 forward eigenvectors. In addition, the authors used the
Nodal Collocation Method (order 2) to discretize the spatial derivatives.

3.1 Homogeneous reactor

This reactor is a parallelepiped with the following dimensions: 99cm x 60cm
x 180cm. It is composed of only one material with the cross section defined
in Table 1. The boundary conditions were zero flux.

The method proposed in this work and that developed by Döring and
Kalkkuhl provide the same results. Errors (Ei) are zero for the five eigen-
pairs. The biorthogonal property is also accomplished for the 10 forward
eigenvectors, as shown in Table 2. One can conclude that the results are
excellent.
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Table 2: Biorthogonal property for the homogeneous reactor

LΦj

Φ∗i

-995.20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1003.58 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 -1017.22 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1021.44 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 -1029.48 0.0 0.0 0.0 0.0 0.0

Table 3: Cross sections of Langenbuch reactor

Material D1 D2 Σa,1 Σa,2 Σs,1→2 νΣf,1 νΣf,2

(cm) (cm) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)
Comb.1 1.423913 0.356306 0.01040206 0.08766217 0.0175555 0.006477691 0.1127328
Comb.2 1.425611 0.350574 0.01099263 0.09925634 0.01717768 0.007503284 0.1378004

Absorbent 1.423913 0.356306 0.01095206 0.09146217 0.0175555 0.006477691 0.11273228
Reflector 1.634227 0.264002 0.002660573 0.04936351 0.02759693 0.0 0.0

3.2 Langenbuch reactor

Langenbuch reactor is a heterogeneous reactor composed of 4 materials,
whose cross sections are defined in Table 3. Fig.1 shows the geometry of
this reactor. The boundary conditions were zero flux for all boundaries,
except for boundaries -X and -Y, which were reflective.

As regards the results obtained with the method of Döring and Kalkkuhl,
Table 4 displays the errors (Ei) and Table 5 shows the biorthogonal property.
One might draw two conclusions from these tables. First, Ei are not close
to zero. Second, there are some values of the biorthogonal property which
are clearly not zero, such as i = 2, j = 6 and i = 5, j = 9; thus, one cannot
conclude that the biorthogonal property is accomplished.

One can see the results for this method in Tables 6 and 7. Table 6 displays
the errors (Ei), which are close to zero. Table 7 shows the biorthogonal prop-
erty, in which one can appreciate that there are some values slightly higher
than zero. However, these values are almost zero and they are about three
order of magnitude lower than non-zero values. Thus, one concludes that
the biorthogonal property is accomplished. In conclusion, the method pro-
posed by Döring and Kalkkuhl might provide wrong results for heterogeneous
results, whereas the method of this work provides accurate results.



Modelling for Engineering & Human Behaviour 2017 35

(a) Axial plane (b) Frontal plane

Figure 1: Langenbuch reactor

Table 4: Errors for Langenbuch reactor and the method of Döring and
Kalkkuhl

Eigenpair 1 2 3 4 5
Ei 320.81 305.05 323.80 256.74 274.24

Table 5: Biorthogonal property for Langenbuch reactor and the method of
Döring and Kalkkuhl

LΦj

Φ∗i

-92.78 0.0 0.0 0.0 -0.31 0.0 -6.29 0.0 -0.36 0.0
0.0 -86.17 0.0 0.0 0.0 -19.44 0.0 -0.39 -0.33 0.0
0.0 0.0 97.52 0.0 0.0 0.0 -0.41 0.0 0.0 -0.16
0.0 0.0 0.0 81.94 0.0 0.74 0.0 -17.69 0.33 0.0
0.0 0.0 0.0 0.0 -88.25 0.07 0.0 0.20 -19.92 0.0

Table 6: Errors for Langenbuch reactor and the method of this work

Eigenpair 1 2 3 4 5
Ei 0.69 0.70 1.37 1.13 0.72
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Table 7: Biorthogonal property for Langenbuch reactor and the method of
this work

LΦj

Φ∗i

101.08 0.0 0.0 0.0 0.0 -0.00 0.0 -0.01 0.00 0.0
0.0 102.88 0.0 0.0 0.0 -0.28 0.0 -0.00 0.00 0.0
0.0 0.0 106.33 0.0 0.0 0.0 0.00 0.0 0.0 0.00
0.0 0.0 0.0 99.32 0.0 -0.01 0.0 0.19 -0.01 0.0
0.0 0.0 0.0 0.0 105.76 0.01 0.0 -0.00 -0.31 0.0

4 Conclusions

This work shows a simple method to estimate the adjoint eigenvectors of the
neutron diffusion equation from the forward ones. The method is based on
the product of the forward eigenvectors by the adjoint system matrix.

The authors validated the method in two reactors: a homogeneous reac-
tor and Langenbuch reactor. The results were compared with the method
proposed by Döring and Kalkkuhl. One draws two conclusions from the re-
sults of this method. First, the biorthogonal relationship is accomplished.
Second, errors are lower in comparison with the method proposed by Döring
and Kalkkuhl.

As regards future work, the authors would like to perform better estima-
tions of the initial adjoint flux, which will be based on a linear combination
of the forward ones.

References

[1] W. M. Stacey, Nuclear Reactor Physics. New York, John Wiley & Sons,
2001.
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J.C. Cortés(a) ‡,D. Mart́ınez-Rodŕıguez(a) §, R.-J. Villanueva(a) ¶.
(a) Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València
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1 Introduction

The aim to this work is to study the dynamics of carriers of Men W. We
have proposed a susceptible-carrier-susceptible (SCS) epidemiological model,
in order to determine the percentatge of carriers in the population, togheter
with a fractional Lotka- Volterra competition model due to describe the evo-
lution of the meningococcal genogroups in Spain among the carriers.

Using data available from the amount of carriers of Meningococcus of
each genogroup in Spain in 2011 and 2012, we find the model parameters
that best fit our data.

This paper is organized as follows. In Section 2, two mathematical epi-
demiological models will be described in order to study the dynamics of Men
W. In Section 3 a probabilistic study in order to fit the carriers of Men W in
Spain is shown. Finally in Section 4 all the conclusions are written.
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2 Mathematical models

In this section the two mathematical models required to describe the dynam-
ics of Men W among the total population are introduced. Firts a susceptible-
carrier-susceptible (SCS) model, in order to study the evolution of the carrier
individuals, is constructed. Second a Lotka-Volterra competition model is
described due to study the dynamics of meningococcus genogroup over the
time. The real data available for this study is collected in Table 1, which is
supplied by the Reference Laboratory for Meningococci of the Spanish Insti-
tute of Health Carlos III, corresponding to December, 2011 and December,
2012.

Year t1 = 2011 t2 = 2012
Sample size n1 = 3000 n2 = 500

Susceptible population 2626 (87.53%) 409 (81.8%)
Carrier population of any meningococcus 374 (12.47%) 91 (18.2%)

Genotype Men W 16 (4.3%) 358 (95.7%)
Other genotypes 5 (5.5%) 86 (94.5%)

Table 1: Sample size. Number and percentage of susceptible/carriers of any
meningococcus. Percentage of carriers of the genotype Men W and the rest of
genotype meningococcus in Spain corresponding to Dec 2011 and Dec 2012.

Working with percentages and using a discrete SIS type-epidemiological
model recalling the “infected” population with carrier of Meningococcus, the
transmission dynamics of all the meningococci over the time is modeled. In
fact, this model is named as the SCS-model. Let β be the transmision rate
of meningicocci and γ the recovery rate, the dynamics of Ct can be described
using a classical discrete SCS-type epidemiological model by the following
difference equation

Ct+1 = (1 + β − γ)Ct − βC2
t , β, γ > 0 . (1)

As we will work in percentatges the susceptible population at the time instant
t, St, is given by St = 1− Ct

Once we have modelled the dynamics of suspectible and carrier popu-
lation, we need to describe the carrier of meningococci W among the total
amount of carrier. It is well known that the meningococci genogroups are in
competition. The competition dynamics may reinforce certain genogroups
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by DNA recombination or mutations and this would depend on the other
genogroups coexisting with them as well as the time this coexistence lasts and
their populations. In this spirit, we will extend the original Lotka-Volterra
competition model to a generalized one in which ordinary derivatives are
replaced by fractional derivatives. It is well known that fractional differen-
tial equations could get these memory effects as they are usually applied to
visco-elastic materials and subdiffusive processes, given that the historic of
a function is considered with non-integer derivatives, see [1, 4].

In order to motivate the formulation of that fractional model, let us first
consider the classical Lotka-Volterra model

X ′1(t) = r1X1(t)(K1 −X1(t))− α1,2X1(t)X2(t),

X ′2(t) = r2X2(t)(K2 −X2(t))− α2,1X2(t)X1(t),
(2)

where i = 1 corresponds to Men W genogroup, i = 2 corresponds to non-Men
W genogroup, and

• Xi(t), 1 ≤ i ≤ 2, denotes the total amount of the genotype i meningoc-
cocus bacteria at the time instant t (in months),

• ri > 0 is the growth rate of the genotype i meningoccocus bacteria,

• Ki > 0 is the carrying capacity of the genotype i meningoccocus bac-
teria,

• αi,j > 0 is the effect of the genotype j bacteria on the growth of the
genotype i bacteria, 1 ≤ j ≤ 2, j 6= i.

Data available in Table 1 is in percentages. Thus, in order to apply this
data with the SCS model (1), the scaling of the model (2) is indispensable.
With this aim the following change of variable is introduced

xi(t) =
Xi(t)

Ki

, i = 1, 2,

representy the percentatge of ecosystems occupied by the i-th-genogroup.
As x1(t) +x2(t) = 1, we can recast the first equation of model (2) as follows.

x′1(t) = N1x1(t)(1− x1(t)), (3)
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where N1 = H1 −M1 and H1 = r1K1 > 0, and M1 = α1,2K2 > 0. Proceding
with the same approach we can obtain the diferential equation from x2(t).
Once we have scaled the model, the first derivative, x′1(t) in (3), is substituted
by the fractional Caputo derivative, CDαx1(t) := 1

Γ(1−α)

∫ t
0
x′1(s)(t− s)−α ds,

[5]. This leads to the fractional Lotka-Volterra model

CDαx1(t) = N1x1(t)(1− x1(t)). (4)

This continuous model does not admit a closed-form solution, so we need
to discretizate it. To this aim, let us consider the following discrete scheme
for the Caputo operator named as Caputo like-delta-difference operator, see
[6].

(∆α
∗x1) (t) =

1

Γ(1− α)

t−n+α∑
s=0

Γ(t− s)
Γ(t− s+ 1)

(∆x1)(s), (5)

where t ∈ N1−α := {1− α, 2− α, . . .} and (∆x1) (t) is the discretization
of the first derivative of x1(s) in discrete time, i.e.,

(∆x1)(s) = x1(s)− x1(s− 1) . (6)

Substituting the Caputo like-delta-difference operator in the model, we ob-
tain

(∆α
∗x1) (t) = N1x1(t)(1− x1(t)). (7)

Putting x1(t) = xt, changing the index from t ∈ N1−α to t ∈ N, and isolating
xt, the fractional Lotka-Volterra model in discrete time can be rewritten as

xt = x0 +
N1

Γ(α)

t∑
k=1

Γ(t− k + α)

Γ(t− k + 1)
xk−1(1− xk−1), (8)

where N1 and α are the model parameters to be determined and t is the time
in months.

3 Results

Applying the probabilistic technique developed in [3] in the two differents
scaled models, we can obtain on the one hand a confidence interval of the
carrier percentage of meningococcus (without distinction of group) among
the total population. On the other hand the percentage of carrier of Men



Modelling for Engineering & Human Behaviour 2017 41

W among the total population of carriers is obtained. Combining all two
models we can get a confidence interval with the percentage of carriers of
MenW among the total population which is shown in Figure 1.

2010 2012 2014 2016 2018 2020 2022
t(years)

0

0.01

0.02

0.03

0.04

0.05
W

t
IC 95% of percentage  of meningococcus W among total population

Figure 1: The light line represents the 95% CI of the solution stochastic
process of the percentage of carriers given by model (8) for each month, t,
from Dec 2011 until Dec 2021. The dark green line represents the mean of
the process.

4 Conclusions

In this work we have used seroepidemiological data corresponding to the
prevalence of genogroup W and other meningococci genogroups in Spain. Our
model consists of two coupled systems. First, we consider the transmission
of the disease among the human population in terms of a SCS model. Then,
applying a fractional Lotka-Volterra competition model we can study the
dynamics of the carriers of Men W among the total amount of carriers.
Mixing both models we have established the equivalence between the carriers
of Men W among the total population.
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1. Introduction 

Many decision-making techniques use pairwise comparisons (PCs) elicited by one or more stakeholders 

involved in a given corresponding decision-making process. In very complex problems, the number of 

criteria or options to be compared may be too large, thus limiting PC applicability to large-scale decision 

problems due to the so-called curse of dimensionality, that is, a large number of pairwise comparisons need 

to be produced from a decision maker. For example, in AHP, Saaty [1] recommends that to obtain a 

reasonable and consistent PC matrix, the number of comparing elements should be at most seven. In [2] 

and [3], arguing on limitations of the human capabilities, the maximum number of elements to be handled 

simultaneously is approached by a maximum of seven plus two. This limit, also called ‘channel capacity’, 

a measure of our ability to process information, is widely known in the literature (see Miller [4]), and refers 

to the number of elements that can be held in short term memory simultaneously.  

Miller also stated that his magic number was for items with one aspect or attribute, and reported this to be 

true for various tasks. The aim was to assess how well humans can separate various levels of intensity of 

certain particular stimuli. Among these stimuli we have frequency, position in an interval, loudness, 

saltiness, size, etc. However, when more attributes are considered, then one can remember more, depending 

on his or her familiarity with the situation and the complexity of the subject. As a result, according to [5], 

Miller’s magical number seven is only true for information that has one memory attribute or function – and 

we can work with many more. Marnell [6], using one of the examples provided by Miller, states that ‘there 

is... no parallel between naming tonal frequencies according to a provided legend and unravelling the 

meaning of a map, block...’ (this last part of the comparison refers to more complex information structures). 

This same author also states that Miller’s article discusses what he calls the span of immediate memory 

(also known as the capacity of our short-term memory), and makes it clear that ‘the capacity of our short-

term memory might well be relevant to our ability to take in and comprehend material at the atomic level 

... but at the molecular level ... its relevance is doubtful’, and that ‘... short-term memory is the very stuff of 

Miller’s paper, especially its role in judgment, attention and recall’. Marnell claimed that this theory ‘needs 

to be radically updated to bring it into line with current knowledge in cognitive psychology’, and he cites 

[7] to conclude that ‘a limit of 7 ± 2 is yesterday’s guesstimate. Today it is 4 ± 1 for unrelated items and 15 

for... [related concepts]’. 

In this contribution we argue that, in special cases, comparison matrices of more than the traditional 7 ± 2 

elements may be valid. For example, when a renowned expert on a subject is confronted with a high number 

of elements and there is no clear possibility of clustering them following some homogeneity criteria as 

suggested in [2]. This is the most salient feature of the case study we address in this paper: a team of experts 

working on a daily basis with the management and operation of a utility infrastructure were confronted with 

the problem of elucidating about the ease of operation of fifteen individual parts of the infrastructure. The 
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PC matrix was eventually built and taking into account the team profound expertise in the problem, the 

matrix was considered to encompass reliable information, according to our claim. Nonetheless, aware of 

the problems associated with dealing with so many elements, for example when working further with 

alternatives or when including the PCs in an analytic network process (ANP) solution of the problem, and 

after observing certain structured patterns in the matrix, we thought of devising a method to consistently 

shrink or compress the comparison matrix, thus reducing the size of the problem. In this paper, using a 

linearization technique already introduced by the authors [8], we develop such a compressing or merging 

technique so that certain elements may be synthesized to produce a new comparison matrix that gathers 

some elements into clusters, while maintaining the experience and the perception of the experts, and also 

the consistency and, eventually, reducing the size of the problem, thus making it more manageable. Of 

course, the final approval of the panel of experts is deemed absolutely necessary. This size reduction is 

devised to be useful for a number of technical purposes. For example, to avoid PCs when assessing 

alternatives with respect to the criteria; reciprocally, the number of comparisons will also be lower when 

providing PCs among the criteria for any of the considered alternatives (in the case the ANP methodology 

is used). Regarding other problems, this comparison matrix clustering technique may also be useful in other 

interesting contexts, such as, for example, the merging of companies in stoke markets, once an alliance has 

been produced, to avoid the whole process of PCs from scratch. 

 

2. Main results for consistent matrices 

Let us recall that if ܣ ൌ ሾܽ௜௝ሿ ∈ ௡ࣧ is a consistent matrix, then there exists ݒ ൌ ሾݒଵ ௡ሿ்ݒ	… ∈ ܴ௡ such that 

ܽ௜௝ ൌ ௝ݒ௜ݒ
ିଵ for all 1 ൑ ݅, ݆ ൑ ݊. This vector ݒ is the priority vector of the matrix ܣ, and it is easily checked 

that ݒ is an eigenvector of ܣ associated to the eigenvalue ݊. This eigenvalue ݊ is the Perron eigenvalue of 

the positive matrix ܣ (see [9] for the complete details). Before studying how to collapse several judgments 

in a consistent matrix, let us see a general useful fact: let ܣ ∈ ௡ࣧ be a consistent matrix. If ࢠ ∈ ܴ௡ is the 

priority vector of ܣ, then ܮሺܣሻ 	ൌ 	߮௡ሺܮሺݖሻሻ, where ߮௡ሺݔሻ ൌ ൫ݔ௜ െ ݔ ௝൯௜,௝ୀଵ,..,௡ forݔ ൌ ሾݔଵ ௡ሿ்ݔ	… ∈ ܴ௡. 

In fact, since ܽ௜௝ 	ൌ 	 ௝ݖ௜ݖ
ିଵ we have ݈݃݋ሺܽ௜௝ሻ 	ൌ ௜ሻݖሺ݃݋݈	 െ 	௝ሻ for all 1ݖሺ݃݋݈ ൑ 	݅, ݆	 ൑ 	݊, and therefore, 

ሻܣሺܮ 	ൌ 	߮௡ሺܮሺݖሻሻ. 

Let ܣ ∈ ௡ࣧା௠
ା   be a consistent matrix and let us partition ܣ as follows:  

ܣ  ൌ ൤
ଵܣ ଶܣ
ଷܣ ସܣ

൨ , ଵܣ ∈ ௡ࣧ, ସܣ ∈ ࣧ௠.       (1) 

It is evident that ܣଵ is consistent (it is the comparison matrix of the 1, . . . , ݊ judgements). Also, ܣସ is the 

comparison matrix of the ݊ ൅ 1, . . . , ݊ ൅ ݉ judgements, which is also consistent. Let ࢠ ∈ ܴ௡ା௠ be the 

priority vector of ܣ. Let us decompose ࢠ ൌ ቂ
ଵࢠ
ଶࢠ
ቃ, where ࢠଵ ∈ ܴ௡. Now, one has ܮሺܣሻ 	ൌ 	߮௡ା௠ሺܮሺࢠሻሻ. 

Hence 

ሻܣሺܮ  ൌ ൤
ଵሻܣሺܮ ଶሻܣሺܮ
ଷሻܣሺܮ ସሻܣሺܮ

൨ ൌ ߮௡ା௠൫ܮሺࢠሻ൯ ൌ ሻ૚௡ା௠்ࢠሺܮ െ ૚௡ା௠ܮሺࢠሻ்	 

 ൌ ൤
ଵሻࢠሺܮ
ଶሻࢠሺܮ

൨ ሾ૚௡் ૚௠் ሿ െ ൤
૚௡
૚௠

൨ ሾܮሺࢠଵሻ்  ଶሻ்ሿࢠሺܮ

 =൤
ଵሻ૚௡்ࢠሺܮ െ ૚௡ܮሺࢠଵሻ் ଵሻ૚௠்ࢠሺܮ െ ૚௡ܮሺࢠଶሻ்

ଶሻ૚௡்ࢠሺܮ െ ૚௠ܮሺࢠଵሻ் ଶሻ૚௠்ࢠሺܮ െ ૚௠ܮሺࢠଶሻ்
൨  
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 =൤
߮௡ሺܮሺࢠଵሻሻ ଵሻ૚௠்ࢠሺܮ െ ૚௡ܮሺࢠଶሻ்

ଶሻ૚௡்ࢠሺܮ െ ૚௠ܮሺࢠଵሻ் ߮௠ሺܮሺࢠଶሻሻ
൨.      

So, we have proven the following Proposition. 

Proposition 1. Let ܣ ∈ ௡ࣧା௠ be a consistent matrix decomposed as in (1) whose priority vector is 

ሾݖଵ	ݖଶ ࢠ ௡ା௠ሿ் and let us decomposeݖ	… ൌ ቂ
ଵࢠ
ଶࢠ
ቃ, where ࢠଵ ∈ ܴ௡. Then ࢠଵ is the priority vector of ܣଵ and 

 .ସܣ ଶ is the priority vector ofࢠ

Theorem 1. Let ܣ ∈ ௡ࣧା௠ be a consistent matrix decomposed as in (1) whose priority vector is 

ሾݖଵ	ݖଶ ܯ ௡ା௠ሿ் andݖ	… ൌ  :ሻ be decomposed as followsܣሺܮ

ܯ  ൌ ൤
ଵܯ െܯଶ

ଶܯ
் ଷܯ

൨ ∈ ௡ࣧା௠, ଵܯ ∈ ௡ࣧ,ܯଷ ∈ ࣧ௠.       

Let ܰ be produced by the collapse of the last ݉ judgements of ܯ, and finally, let us denote ࢝ଵ ൌ

ሾ݈݃݋ሺݖଵሻ	… ଶݏ ௡ሻሿ் andݖሺ	݃݋݈	 ൌ ݃݋݈ ௡ାଵݖ ൅…	൅	 ݃݋݈  ௡ା௠. Thenݖ

(i) ܰ ൌ ൤
ଵܯ െ࢜
்࢜ 0

൨, where ࢜ ൌ െ࢝ଵ ൅
ௌమ
௠
૚௡. 

(ii) ݌௡ାଵሺܰሻ ൌ ܰ. We obtain that ܰ ∈ 	ख௡ାଵ, or equivalently, ܧሺܰሻ is a consistent matrix. 

(iii) The priority vector for ܧሺܰሻ is ሾݖଵ ௡ݖ	… ඥݖ௡ାଵ ௡ା௠ݖ	…
೘ 	ሿ். 

 

3. Case study 

We study an intermittent water supply system (IWSS) (see Figure 1), one of the subsystems of the water 

supply system of the city of Oruro (Bolivia). It is located in the southern part of the city, consists of 15 

sectors fed by a single tank, and supplies water to 37,700 inhabitants. Each sector has a specific supply 

schedule and specific operation tasks, such as valve maneuvering, which are manually performed. 

 

Figure 1. Studied IWSS, south area of Oruro, Bolivia 
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We proceeded with the pairwise comparison process, asking the experts to analyze the ease of operation of 

a sector with respect to another. Despite the large number of elements for comparison, the panel was 

eventually able to develop a coherent and reliable comparison matrix (see Table 1). 

Table 1. Comparison matrix for the qualitative criterion: ease of operation for sectors. The consistency ratio 
for this matrix is 5.8%. 

 

As explained before, the possibility of reducing the volume of this information may be deemed interesting, 

for example if posterior comparisons regarding alternatives were necessary. In addition, some patterns 

presented by the matrix clearly suggest the possibility of reducing the matrix size by grouping sectors, a 

situation that was not initially obvious. The identification of these groups will enable us to develop 

strategies for improvement in the technical management based on differentiated areas. Various proposals 

were presented to the technicians who manage the system. We describe here a successful one. 

The proposal tried to use ideas provided by the technicians to guide the observation of patterns in the matrix 

of comparisons. Thus, sectors S01-09, S01-13, S01-14 and S01-15 were initially selected to be grouped. 

Theorem 1 above, by using the permutation given by (S01-05, S01-06, S01-07, S01-08, S01-10, S01-11, 

S01-16, S02, M02, S01-12, S01-18, S0109, S01-13, S01-14, S01-15), gives a new comparison matrix where 

the last four sectors are grouped (under the identification 09-15). The matrix, which corresponds to the 

sector order (S01-05, S01-06, S01-07, S01-08, S01-10, S01-11, S01-16, S02, M02, S01-12, S01-18, 09-

15), is given by: 

	 1	 5	 3 1	 3 1 1 3 7 1	 1	 1

	 0.2	 1	 0.333	 0.333	 0.333 0.333 0.333 5 5 0.333	 0.333	 0.383

	 0.333	 3	 1 0.333	 0.333 0.333 0.333 0.333 7 0.333	 0.333	 0.347

	 1	 3	 3 1	 1 1 1 3 7 1	 1	 0.858

	 0.333	 3	 3 1	 1 1 1 1 7 1	 1	 0.763
	 1	 3	 3 1	 1 1 1 1 7 1	 1	 0.804

	 1	 3	 3 1	 1 1 1 1 5 1	 0.333	 0.625

	 0.333	 0.2	 3 0.333	 1 1 1 1 5 1	 0.333	 0.442

	 0.143	 0.2	 0.143	 0.143	 0.143 0.143 0.2 0.2 1 0.2	 0.143	 0.109

	 1	 3	 3 1	 1 1 1 1 5 1	 0.333	 0.585
	 1	 3	 3 1	 1 1 3 3 7 3	 1	 1.008

	 1	 2.614	 2.885	 1.165	 1.311 1.244 1.601 2.262 9.161 1.711	 	 1
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The priority vector given by Theorem 1 is: 

ሾ0.126			0.048			0.044			0.108			0.096			0.101			0.079			0.056			0.014			0.074			0.127			0.126ሿ். 

For this matrix, the Perron vector, corresponding to the Perron eigenvalue ߣ	 ൌ 	13.2, is: 

ሾ0.127			0.053			0.045			0.104			0.088			0.095			0.085			0.060			0.013			0.084			0.131			0.116ሿ். 

Giving the values ܫܥ	 ൌ 	0.1069 and ܴܥ	 ൌ 	7.03%, which is satisfactory from the consistency point of 

view. Continuing in the same line, a new clustering was performed, taking the latter as a starting point. In 

this case, sectors S01-08, S01-10 and S01-11 were the candidates for a new grouping.  

Again, using Theorem 1 on the permutation of the previous matrix given by (S01-05, S01-06, S01-07, S01-

16, S02, M02, S01-12, S01-18, 09-15, S01-08, S01-10, S01-11), a new comparison matrix was obtained 

with the last three sectors grouped (under the name 08-11), given by: 

	 1	 5 3	 1 3 7 1 1 1	 1.238	 	

	 0.2	 1 0.333	 0.333 5 5 0.333 0.333 0.383	 0.474	 	

	 0.333	 3 1	 0.333 0.333 7 0.333 0.333 0.347	 0.429	 	

	 1	 3 3	 1 1 5 1 0.333 0.625	 0.774	 	

	 0.333	 0.2 3	 1 1 5 1 0.333 0.442	 0.548	 	

	 0.143	 0.2 0.143	 0.2 0.2 1 0.2 0.143 0.109	 0.135	 	

	 1	 3 3	 1 1 5 1 0.333 0.585	 0.724	 	

	 1	 3 3	 3 3 7 3 1 1.008	 1.284	 	

	 1	 2.614	 2.885	 1.601 2.262 9.161 1.711 0.993 1	 1.239	 	

	 0.808	 2.11	 2.33	 1.292 1.826 7.397 1.381 0.801 0.807	 1	 	

 

In this matrix the corresponding order is (S01-05, S01-06, S01-07, S01-16, S02, M02, S01-12, S01-18, 09-

15, 8-11). The priority vector given by theorem 4 is: 

ሾ0.159			0.061			0.055			0.099			0.070			0.017			0.093			0.160			0.159			0.128ሿ். 

For this matrix, the Perron vector, corresponding to the Perron eigenvalue ߣ	 ൌ 	11.1, is: 

ሾ0.149			0.070			0.061			0.101			0.070			0.015			0.100			0.173			0.144			0.116ሿ். 

giving the values ܫܥ	 ൌ 	0.125 and ܴܥ	 ൌ 	8.40%, which is still satisfactory from the consistency point of 

view. This proposal was positively considered by the technicians. In addition to the acceptable values of 

 the technicians appreciated that both clusters, the initial 09-15 and the subsequent 08-11, have an ,ܴܥ

interesting technical interpretation, which is based on the proximity to the source of clusters 08-11 and 09-

15 (which are at successive rings, consecutively further away from the source). As a result, areas or groups 

of sectors with similar operating characteristics are defined based on the opinion of water company 

technicians. This poses a new scenario (see Figure 2) that will enable a better planning in the operation and 

maintenance tasks of the system, such as reorganizing the manual work of the operators, who hourly open 

and close the valves to supply water, and the prioritization of maintenance tasks. Therefore, it becomes a 

very useful tool for the technical management of intermittent water supply systems, and is a fundamental 

criterion for a future transition to a continuous water supply. 
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Figure 2. Studied IWSS, after cluster identification 
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1 Introduction

The neutron diffusion equation is an approximation of the neutron transport
equation relying on the assumption that the neutron current is proportional
to the gradient of the neutron flux by means of a diffusion coefficient.

For a given configuration of a nuclear reactor core, it is possible to force
its criticality dividing the neutron production rate in the neutron diffusion
equation by a positive number, λ, obtaining a neutron balance equation
known as the λ-modes problem. This equation for two groups of energy and
assuming that there is not up-scattering has the following form [1]:[
−~∇(D1

~∇) + Σa1 + Σ12 0

−Σ12 −~∇(D2
~∇) + Σa2

][
φ1
φ2

]
=

1

λ

[
νΣf1 νΣf2

0 0

] [
φ1
φ2

]
, (1)

where φ1 and φ2 denote the fast and thermal flux, respectively. The macro-
scopic cross sections D1, Σa1, νΣf1, D2, Σa2, νΣf2 and Σ12 are constants that
depend on the position.

∗e-mail:amcarsan@iqn.upv.es
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The largest eigenvalue in magnitude characterises the criticality of the
reactor core and its corresponding eigenfunction describes the steady state
neutron distribution in the core. Next sub-critical eigenvalues and their cor-
responding eigenfunctions are useful to develop modal methods to integrate
the time dependent neutron diffusion equation.

To solve the problem (1), a spatial discretization of the equations has to
be selected. In this work, a high order Galerkin finite element method is used
leading to an algebraic eigenvalue problem with the following structure,

Lφ̃ =
1

λ
Mφ̃, (2)

where φ̃ =
(
φ̃1, φ̃2

)T
is the algebraic vector of weights associated with the

fast and thermal neutron fluxes (more details can be found in [1]). The finite
element method has been implemented using the open source finite elements
library Deal.II [2]. A set of dominant eigenvalues and their corresponding
eigenvectors of problem (2) have to be computed.

2 Eigenvalue solvers

2.1 Modified Block Newton method

Given a partial generalized eigenvalue problem of the form

MV = LV Λ, (3)

where V ∈ Rn×q is a matrix of eigenvectors and Λ ∈ Rq×q is a diagonal matrix
whose elements are the desired eigenvalues. It is assumed that the eigenvec-
tors can be factorized as V = ZS, where ZTZ = Iq, and the biorthogonality
condition WTZ = I, is introduced, where W is a fixed matrix. Then, the
non linear problem

F (Z,Λ) :=

[
MZ − LZK
W TZ − Iq

]
=

[
0
0

]
, (4)

has to be solved. From Newton’s method, a new iterated solution arises as,

Z(k+1) = Z(k) −∆Z(k), K(k+1) = K(k) −∆K(k), (5)
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where ∆Z(k) and ∆K(k) are solutions of the system{
M∆Z(k) − L∆Z(k)K(k) − LZ(k)∆K(k) = MZ(k) − LZ(k)K(k),
W T∆Z(k) = W TZ(k) − Iq,

(6)

The system (6) is coupled, since the matrix K(k) is not necessarily a diag-
onal matrix. To decouple the system, the Modified Block Newton method ap-
plies two previous steps. The first step consists of an orthogonalization to the
matrix Z(k) using the modified Gram-Schmidt Orthogonalization. Once Z(k)

is an orthonormal matrix, i.e., Z(k)TZ(k) = Iq, as a second step, a Rayleigh-
Ritz procedure for generalized eigenvalue problems is applied, [3].

2.2 Inverse Free Krylov method

Given the problem (3) and an initial approximation (λ0, x0), we aim at im-
proving it through the Rayleigh-Ritz orthogonal projection on a certain sub-
space V , i.e.

max
x∈V

λ(x) where λ(x) :=
xTMx

xTLx
.

The steepest descend method, starting from (λ0, x0), looks for a new
iterate in the direction of

r0 =
(M − λ(x0)L)x0

xT0Lx0
.

This can be considered as the Rayleigh-Ritz projection method on the
subspace

K1 := span{x0, (M − λ0L)x0}.

A natural extension can be considered that finds a new x1 from

Km = span{x0, (M − λ0L)x0, . . . , (M − λ0L)mx0},

by using the Rayleigh-Ritz projection method [4]. The projection can be
carried out by constructing a basis for Km and then forming and solving
the projection problem for the pencil (M,L). Arnoldi method is used to
construct the basis Km.
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2.2.1 Acceleration technique using the Orthomin method

With the Orthomin method, a new iterated is computed

xi+1 = xi + αis
i,

where αi is a scalar and si is a direction vector.
The scalar αi is chosen to minimize

F (αi) = ‖λ(xi)L(xi + αis
i)−M(xi + αis

i)‖22,

in the direction si. And the new direction vector si+1 is evaluated by

si+1 = ri+1 + βis
i,

where the parameter βi satisfies

((M − λi+1L)si+1, (M − λi+1L)si) = 0.

The Inverse Free Krylov method is accelerated combining narn iterations
of this method with nacc iterations of the orthomin method.

2.3 Multigrid method

A coarse mesh is used to obtain an initial guess to the solution of the problem
with in a finner mesh, defining a two-mesh multigrid method. The problem
associated to the coarse mesh is solved with the Krylov-Schur method. Figure
1 shows a scheme of this method.

Initial
problem
in the

fine mesh

Problem
in

coarse
mesh

Solution
in

coarse
mesh

Solution of
the initial
problem

Initial
iter.

(Restriction)

Coarsening

mesh

Krylov-

Schur

Block

method

(Interpolation)

Figure 1: Two-mesh multigrid method.
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3 Numerical results

To study the performance of methods the NEACRP reactor has been consid-
ered [5]. To compare the efficiency of the methods the residual errors and the
computational times are represented. Figure 2(a) displays the convergence
of the inverse free method using different dimensions of the Krylov subspace.
It is shown, the rate of convergence increases for higher values of the di-
mension. However, the number of matrix-vector multiplications increases
too, so a high dimension is not recommended. In Figure 2(b), the rate of
convergence of the inverse free Krylov method accelerated (dim=9) with the
Orthomin method are represented with different combinations. The conver-
gence of the inverse free method without acceleration is also included. In this
graph, we observe that the acceleration technique improves the convergence
of the method without acceleration.
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Figure 2: Residual errors against CPU time for the inverse free Krylov
method.

Figure 3 shows the computational times for the benchmark problem obtained
with the modified block Newton method and the inverse free Krylov method
with acceleration. In this plot, we observe that the computation with the
Newton method is faster than the computation with the inverse free method.
The Inverse free Krylov method does not need to solve linear systems, how-
ever it needs to make a lot of matrix-vector products. In future works, we
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will study other kind of accelerations to improve the convergence rates of
these methods.
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Figure 3: Residual errors against CPU time for the inverse free method
accelerated and the modified Newton method.
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1 Introduction

This work deals with the construction of analytic-numerical solution, in the
mean square sense [1], of the time-dependent random parabolic partial dif-
ferential problem

ut(x, t) = a2(t)uxx(x, t) + a1(t)ux(x, t) + a3(t)u(x, t) ,

−∞ < x < +∞, t > 0, (1)

u(x, 0) = f(x) , −∞ < x < +∞ , (2)

where ai(t) ≡ ai(t, ω) :]0,+∞[×Ω −→ R, 1 ≤ i ≤ 3 and f(x) ≡ f(x, ω) :
R×Ω −→ R are stochastic processes (s.p.’s), defined in a complete probability

∗This work has been partially supported by the Spanish Ministerio de Economı́a y
Competitividad grant MTM2013-41765-P.
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space (Ω,F ,P), that satisfy certain hypotheses.

For the random time-dependent coefficient parabolic models, the capture
of the solution s.p. of the original problem involves, throughout the inverse
integral transform, unbounded random integrals that makes advisable the
numerical evaluation of random complicated integrals. This is a major con-
tribution introduced here, where we extend, to the random framework, the
practical Gauss-Hermite quadrature formulae for the evaluation of improper
random integrals that appear in a natural way when using random integral
transform methods. We also show that, a random Fourier transform method,
[2], can be applied so efficiently as it has been proved to be in the solution
of deterministic problems [3]. However, in the random case, not only the
solution s.p. is important, but also its expectation and standard deviation.
To achieve these goals, it is required the so-called Lp-random calculus [4].

2 The random Gauss-Hermite quadrature for-

mulae

In this section, we establish some auxiliary results related to Lp-random
calculus.

Lemma 1 Let h(ξ) be a complex deterministic function and let â(t) be a real
s.p. such that

∃Mâ > 0, Ht,â > 0 : E [|â(t)|m] ≤Mâ (Ht,â)
m < +∞ , ∀m ≥ 0 , (3)

for every t > 0 fixed. Then,

‖exp(h(ξ) â(t))‖2,RV ≤
√
Mâ exp(Re (h(ξ))Ht,â).

where Re (·) denotes the real part of a complex number.

We extending to the random framework the practical Gauss-Hermite quadra-
ture formulae for the evaluation of improper random integrals that appear
in a natural way when using random integral transform methods. For f ∈
LSP
2 (R× Ω) =

{
f : R× Ω→ C /

∫ +∞
−∞ (E [|f(v)|p])1/p dv < +∞

}
, let us con-

sider the following integral

I = I[f ] =

∫ +∞

−∞
f(ξ) exp(−ξ2) dξ, (4)
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which is a r.v. Since 0 < exp(−ξ2) ≤ 1 for all ξ ∈ R and f ∈ LSP
2 (R × Ω),

one gets

‖I‖2,RV =

∥∥∥∥∫ +∞

−∞
f(ξ) exp(−ξ2) dξ

∥∥∥∥
2,RV

≤
∫ +∞

−∞
‖f(ξ) exp(−ξ2)‖2,RV dξ ≤

∫ +∞

−∞
‖f(ξ)‖2,RV dξ < +∞.

Then, I[f ] is well-defined. If we further assume that f ∈ LSP
2 (R × Ω) has

continuous sample trajectories, i.e. f(x)(ω) is continuous with respect to
x ∈ R for all ω ∈ Ω, then the r.v. (4) coincides, with probability 1, with the
(deterministic) sample integrals

I(ω) = I[f ](ω) =

∫ +∞

−∞
f(ξ;ω) exp(−ξ2) dξ, ω ∈ Ω , (5)

which are well-defined and thus they are convergent for all ω ∈ Ω [1, Ap-
pendix I]. Then, taking advantage of the Gauss-Hermite quadrature formula
of degree N , [5], we can consider the following numerical approximation

IG-H
N [f ](ω) ≈

N∑
j=1

ρj f(ξj,H;ω) , ρj =
2N+1N !

√
π

(H ′N(ξj,H))2
, 1 ≤ j ≤ N , ω ∈ Ω ,

(6)
where ξj,H are the roots of the deterministic Hermite polynomial, HN , of
degree N .

3 Solving random parabolic problems

We assume the following conditions under the coeficients ai and the initial
condition f(x) of problem (1)–(2):

ai(t), f(x) are independent r.v.’s, ∀i : 1 ≤ i ≤ 3 , ∀(x, t) ,
−∞ < x < +∞ , t > 0, both fixed, (7)

f(x) is a ‖·‖4,RV − absolutely integrable s.p.

such that its random Fourier transform F (ξ) ∈ LSP
4 (R× Ω) , (8)
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ai(t) are ‖·‖4,RV − continuous s.p.’s, ∀i : 1 ≤ i ≤ 3 , (9)

and

âi(t) =

∫ t

0

ai(s) ds, 1 ≤ i ≤ 3, (10)

satisfy condition (3). Let us denote by

a(t) := a(t, ξ) = −ξ2 a2(t) + i ξ a1(t) + a3(t) , ξ ∈ R fixed,

and assume that

∃ δ > 0 , r > 2p : sup
s,s∗∈[−δ,δ]

E
[
exp

(
r

∫ t+s∗

x+s

a(v) dv

)]
< +∞. (11)

Applying the random Fourier transform introduced in [2]

F[x(v)](ξ) =

∫ +∞

−∞
x(v) exp(− i ξv) dv, ξ ∈ R, i = +

√
−1,

to both sides of equation (1) and to the initial condition (2), and using its
linearity, one gets for the active variable x and t fixed

F[ut(·, t)](ξ) = a2(t)F[uxx(·, t)](ξ) + a1(t)F[ux(·, t)](ξ) + a3(t)F[u(·, t)](ξ) ,

F[u(·, 0)](ξ) = F[f(x)](ξ) = F (ξ) .

By the properties of the random Fourier transform of a s.p. stated in [2],
and considering the notation F[u(·, t)](ξ) = U(t)(ξ), one gets

F[uxx(·, t)](ξ) = −ξ2F[u(·, t)](ξ) = −ξ2U(t)(ξ) , (12)

F[ux(·, t)](ξ) = i ξ F[u(·, t)](ξ) = i ξU(t)(ξ) . (13)

Assuming that the solution s.p. u(x, t) is such that ut(·, t) is Fourier trans-
formable and that hypotheses of Lemma 2 of [2] hold, then one gets

F [ut(·, t)] (ξ) =
d

dt
(F [u(·, t)]) (ξ) =

d

dt
(U(t))(ξ) . (14)

Therefore, from (12)–(14) one deduces that, for each ξ ∈ R fixed, U(t)(ξ)
satisfies the random IVP

d

dt
(U(t))(ξ) = (−ξ2 a2(t) + i ξ a1(t) + a3(t))U(t)(ξ), t > 0 ,

U(0)(ξ) = F (ξ) .

 (15)
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By hypotheses (7)–(11), Theorem 8 of [6] allows us to guarantee that the
mean square solution s.p. of the IVP (15) is given by

U(t)(ξ) = exp

(∫ t

0

a(s, ξ) ds

)
F (ξ) , t > 0 , being ξ ∈ R fixed . (16)

Using formally the random inverse Fourier transform, the candidate solution
s.p. of problem (1)–(2) is given by

u(x, t) = F−1 [U(t)(ξ)] =
1

2π

∫ +∞

−∞
exp

(
i ξx+

∫ t

0

a(s, ξ) ds

)
F (ξ) dξ . (17)

Note that for every (x, t) ∈ R × [0,+∞[ fixed, the latter random integral
given in (17) is convergent in the space LSP

2 (R×Ω). The following result has
been established

Theorem 1 Let us consider the random IVP (1)–(2) and assume that the
coefficients ai(t), 1 ≤ i ≤ 3 and the initial condition f(x) satisfy conditions
(7)–(11). Then, the mean square solution s.p. of (1)–(2) is given by (17).

Taking into account that
∫ t

0
a(s, ξ) ds and F (ξ), are independent r.v.’s for

every t > 0 and ξ ∈ R due to condition (7), we can obtain the following
explicit expressions for the expectation and the standard deviation of the
solution s.p. (17) of the random IVP (1)–(2)

E[u(x, t)] =
1

2π

∫ +∞

−∞
exp(iξx)E

[
exp

(∫ t

0

a(s, ξ) ds

)]
×E [F (ξ)] dξ , (18)

E[(u(x, t))2] =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
exp (i(ξ1 + ξ2)x)

×E
[
exp

(∫ t

0

(a(s, ξ1) + a(s, ξ2)) ds

)]
×E [F (ξ1)F (ξ2)] dξ1dξ2 ,√

Var[u(x, t)] = +

√
E[(u(x, t))2]− (E[u(x, t)])2 . (19)

Example 1 Let us consider the following particular case of the random IVP
(1)–(2) for −∞ < x < +∞ and t > 0,

ut(x, t) = a2 uxx(x, t) + a1 ux(x, t) + a3 u(x, t) , (20)

u(x, 0) = exp(−x2) . (21)
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The initial condition (21) is deterministic and admits a deterministic Fourier

transform, F (ξ) = F[f(x)](ξ) = 1√
2

exp
(
−ξ2
4

)
. We will assume that coeffi-

cients ai, 1 ≤ i ≤ 3, in (20), are independent r.v.’s satisfying condition (3).
We can obtain an exact s.p. of problem (20)–(21)

u(x, t) =
1√
2π

exp(ta3)√
4ta2 + 1

exp

(
−(ta1 + x)2

4ta2 + 1

)
, x ∈ R, t > 0 . (22)

Note that for fixed (x, t), u(x, t) given by (22) can be approximated using
random Gauss-Hermite quadrature formula (6) and one gets

uG-H
N (x, t) =

exp(ta3)

2π
√

2

∑N
j=1 ρj exp

(
−ξ2j

(
ta2 − 3

4

))
cos (ξj(ta1 + x)) ,

ρj =
2N+1N !

√
π

(H ′N(ξj))
2 , 1 ≤ j ≤ N .

(23)

Assume that r.v. a1 has a gamma distribution of parameters (2; 3) truncated
on the interval [0, 6], a1 ∼ Gamma[0,6](2; 3); a2 has a beta distribution of pa-
rameters (2; 1), a2 ∼ Beta(2; 1); and finally a3 has an exponential distribution
of parameter λ = 1 truncated on the interval [1, 2], a3 ∼ Exp[1,2](1).

In Figures (a) and (c), we compare the exact expectation E[u(xi, 0.5)],
(18), and the standard deviation

√
Var[u(x, 0.5)], (19), respectively, vs their

numerical approximations, E
[
uG-H
N (x, 0.5)

]
and

√
Var[uG-H

N (x, 0.5)] for some
Hermite’s polynomials of degree N = {3, 5, 8, 10, 12, 15}, at the time instant
t = 0.5 and on the spatial domain −5 ≤ x ≤ 5. It can be seen in Figures
(b) and (d) how the numerical values of the relative errors for the approx-
imate expectation, RelErr

[
EG−HN

]
, and the approximate standard deviation,

RelErr

[√
VarG−HN

]
decrease when the degree N increases, that is, how the

approximations improving.
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1. Introduction 
 
In the application case here presented, methylphenidate is the drug being used. It is a powerful 
psycho-stimulant. This psycho-stimulation can be measured by the General Factor of Personality 
(GFP), as a universal observable feature of personality. The five adjectives scale here used to 
measure the GFP is the one described by Amigó, Micó & Caselles [3]. This scale is based on the 
General Factor of Personality Questionnaire [5], which has been constructed specifically to 
assess GFP in the context of the Unique Trait Personality Theory (UTPT) [1][5]. The UTPT 
claims for a unique trait, as synonymous of single trait, substituted later by the equivalent concept 
of GFP, to represent the overall human personality. The GFP is the psychological expression of 
the activation level of the organism stress system. In fact, in the context of the UTPT, GFP is 
called also extraversion in a wider sense than the one used in behavioral science, i.e., in the sense 
of activation level of the organism stress system. 
 
The response model is an integro-differential equation that has been widely assessed in the 
context of different experimental designs. It can reproduce the acute effect of a stimulant drug 
[2][6][9][10][11]. The model reproduces the dynamical pattern forecasted by Solomon & Corbit 
[13] and Grossberg [7], by using the hedonic scale, and by Amigó [1] for the GFP, i.e., a typical 
inverted-U. 
 
The here performed calibration of the model is based on a genetic algorithm. Genetic algorithms 
(GAs) are Evolutionary Algorithms (EAs) (they adapt their parameters according to previous 
results) that try to imitate Natural Selection inside a population through parent selection, 
recombination, mutation and migration. About details on GAs and its use in systems calibration, 
see for instance: Whitley, [14], Guzmán-Cruz et al., [8] and Muraro & Dilao [12]. Nevertheless 
there are a lot of possible options for their definition, obviously related on how to perform 
selection, crossover and mutation. The here introduction of immigration could be a novelty. 
 
 

2. The response model  
 

                                                           
1 E-mail: antonio.caselles@uv.es  
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The kinetic part of the response model provides the evolution of the stimulus amount ݏሺݐሻ, 
present in plasma after intake by the individual. It is given by the time function:  
              

ሻݐሺݏ				           ൌ ൝
ఈ൉ெ

ఉିఈ
ሺ݁݌ݔሺെߙ ൉ ሻݐ െ ߚሺെ݌ݔ݁ ൉ ሻሻݐ ∶ ߙ	 ് ߚ

ߙ ൉ ܯ ൉ ݐ ൉ ߙሺെ݌ݔ݁ ൉ ሻݐ ∶ ߙ	 ൌ ߚ
                                                 (1) 

 
 
Equation (1) is the solution of two coupled differential equations [11], which assumes that no 
drug/stimulus is present in the organism before consumption. In (1) M is the initial amount of a 
drug single dose, α is the stimulus assimilation rate and β is the stimulus elimination rate. The 
dynamics of the GFP is given by the following integro-differential equation [11]: 

 
ௗ௬ሺ௧ሻ

ௗ௧
ൌ ܽሺܾ െ ሻሻݐሺݕ ൅

௣

௕
ሻݐሺݏ െ ܾ ൉ ݍ ൉ ׬ ℮

ೣష೟
ഓ ൉ ሻݔሺݏ ൉ ݔ݀	ሻݔሺݕ

௧
଴

ሺ0ሻݕ ൌ ଴ݕ
ൡ                           (2)  

 
 
In (2), s(t) represents the stimulus; y(t) represents the GFP dynamics; and b and y0 are 
respectively its tonic level and its initial value. Its dynamics is a balance of three terms, which 
provide the time derivative of the GFP: the homeostatic control a(b-y(t)), i.e., the cause of the 
fast recovering of the tonic level b, the excitation effect p·s(t)/b, which tends to increase the GFP, 

and the inhibitor effect  ׬ ℮
ೣష೟
ഓ ൉ ሻݔሺݏ ൉ ݔ݀	ሻݔሺݕ

௧
଴ , which tends to decrease the GFP and is the 

cause of a continuously delayed recovering, with the weight ℮
ೣష೟
ഓ . Parameters a, p, q and τ are 

named respectively the homeostatic control power, the excitation effect power, the inhibitor effect 
power and the inhibitor effect delay. All the parameters of the model depend on the individual 
personality or individual biology and on the type of stimulus. 
 
 

3. The genetic algorithm used for the response model calibration  
 
The program we use for calibration has been ad hoc designed for the previously described model 
but it can be adapted easily for systems with the following characteristics: 

(1) Real data are deterministic. In the case of the response model, real GFP is measured by 
the responses of an individual to a questionnaire every some minutes. And model 
parameters are specific of the individual. 

(2) The system to be calibrated is deterministic. 
(3) All parameters have a continuous range of possible or plausible values from a maximum 

to a minimum value. 
(4) A single objective variable (function) must be considered, but it may be designed as a 

weighted combination of several other ones. 
(5) Parameter space (search space) is a multidimensional compact space (continuity is 

assumed in parameter values inside a range of possible or plausible values). 
(6) In order to assure the global character of the found optimum three strategies are 

considered: 
a. A random sample may be analyzed, from the entire search space or from specific 

zones, in order to identify starting points. 

b. Random migrants with reproduction capacity are introduced inside the current 
population in every generation. 
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c. Several iterations are performed using the previous optimum as a new starting 
point, up to no improvement is found or the top number of iterations is reached. 

 
3.1. The needed data 
 
The response mode has seven parameters: α, β, a, b, p, q, τ and M (M may also be adjusted like 
the other parameters when the stimulus is not measurable, for instance: a placebo), which 
meaning has been previously explained. A vector of nine components containing a value for each 
parameter plus the corresponding GFP (y) may be considered as an individual of a population of 
possible characterizations of the system. The staring values of the parameters (given by previous 
knowledge), their maximum values, their minimum values, their search window width (% of their 
initial value), and their search step width (% of their initial value) have to be introduced at the 
beginning of the search process. Other needed data are the number of experimental values, their 
time step, and their values. The integration method (Euler or Runge-Kutta-4) and the integration 
step size have to be also specified. The function to be optimized may be the mean squared 
deviation (s2), the determination coefficient (R2) or the relative mean deviation. 
 
The GA may be optionally used, and in the case it is used the following options must be specified: 
number of individuals of the population, percentage of the population corresponding to 
reproducers (the best individuals), number of immigrants per generation, mutant genes per 
thousand in a new individual, number of generations inside a given iteration, and maximum 
number of iterations. In the case of not using the GA but only analyzing a sample, it may be 
exhaustive or uniformly random. This sampling process also admits iterations. 

 
3.2 The GA pseudo-code 
 
The proposed GA intends to be the simplest possible one in order to be as fast as possible without 
restricting the possibility to find a global optimum. The following pseudo-code might be enough 
descriptive of the here presented GA that we name PARDOSU. 
 
Introduce data and options 
Define the initial population (vectors with random values for parameters and the objective 
function value) 
For i=1 to “number of iterations”, do: 
   For j=1 to “number of generations”, do: 
      Arrange population from lower to higher the objective function 
      Retain the best individuals and eliminate the remaining ones 
      Incorporate some immigrants (randomly defined inside parameters’ ranges) 
      “Complete the population by reproduction (with mutation) of the present individuals, i.e.:” 
      For k=”number of reproducers”+1 to “population size”, do: 
         Choose randomly the “father” and the “mother” of the new individual 
         For each gen (parameter) choose randomly whether it comes from “father” or “mother” 
         For each gen (parameter) choose randomly whether it is newly randomly defined or not 
      Next new individual 
   Next generation 
   If “previous optimum is not improved” Then Exit-Iterations-Loop Else Continue 
   Use the optimum individual as new starting point 
Next iteration 
Calculate residuals by comparing the found optimum with the experimental values 
Test residuals for Normality and zero-mean 
If “yes” Then “calculate confidence intervals to define the optimal fitting evolution band” 
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Write results 
 
 

4. The response model calibration 
 
The studied application case consists in one subject that consumed 20 mg of methylphenidate. 
The Five Adjectives scale questionnaire (adventurous, daring, enthusiastic, merry and bored) was 
filled out before consumption and after consumption every 15 minutes during 4 hours. The 
interval of the GFP measures is yœ[0,25]. The calibration result of the response model for the 
GFP dynamics is provided in Figure 1. 

   

Figure 1: GFP (Y) versus time (t). Experimental values (dots) and the calibrated response model 
(line). R2=0.97. 
 
 
Conclusions 
 
Figure 1 shows the calibration result of the response model for the GFP response as a 
consequence of 20 mg of methylphenidate obtained with the proposed GA. The obtained 
determination coefficient value R2 supports model applicability as in other studies from literature 
(see Section 1). The algorithm shows a good performance and time efficiency. 
 
For future work we aim to compare the efficiency of the present features of PARDOSU with 
alternative specific features, such as for instance: mutation of each parameter restricted to values 
close to the present one, optional equipotency of gens (at present all gens are dominant/recessive), 
and incest prevention. Options such as selection by competition are discarded due to they do not 
guarantee the permanence of the best individuals inside the population. 
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1 Introduction

We will introduce in this work new rational-polynomial Hermite matrix expansions which permit us obtain
accurate and e�cient methods for computing the matrix cosine. These proposed methods are compared
with the most publicized method based on Padé method for computing the matrix cosine.
The computation of matrix trigonometric functions has received remarkable attention in the last decades
due to its usefulness in the solution of systems of second order linear di�erential equations. Several state-of-
the-art algorithms have been provided for computing these matrix functions, see for example [23, 2, 20] and
references therein.

The study of orthogonal matrix polynomials are becoming more and more relevant in the last decades. In
particular, the matrix Hermite polynomials, introduced and studied in [17, 18] in have received considerable
attention for its application in the solution of matrix di�erential equations, see [4]. The series of Hermite
matrix polynomials have been studied for its application in the matrix exponential computation, see [21],
matrix cosine approximation, [8, 9, 23] and the hyperbolic sine and cosine computation, see [7, 6], for example.

In the scalar case, Hermite polynomials Hn(x) are widely used in quantum mechanics, mathematical physics,
nucleon physics, and quantum optics. Recently, new formulas for series of Hermite scalar polynomials of

the type
∑
n≥0

H2n+l(x)

n!
tn, l = 1, 2, 3, . . . have been obtained in [16] and these formulas have been applied

in quantum optics theory. The generalization of this classes of formulae for Hermite matrix polynomials
Hn(x,A) can be found in [10].

In this paper we will calculate the exact value of new Hermite matrix polynomial series, in particular

A(x, t;A) :=
∑
n≥0

(−1)nH2n+1(x,A)

(2n)!
t2n,B(x, t;A) :=

∑
n≥0

(−1)nH2n+3(x,A)

(2n+ 1)!
t2n, (1)

which are a generalization of formulas [8, p.833]:∑
n≥0

(−1)nH2n(x)

(2n)!
t2n = et

2

cos
(
xt
√
A
)
,
∑
n≥0

(−1)nH2n+1(x)

(2n+ 1)!
t2n = et

2

sin
(
xt
√
A
)
, x ∈ R, |t| <∞ (2)

∗Acknowledgements: This work has been supported by Spanish Ministerio de Economía y Competitividad and the
European Regional Development Fund (ERDF) grant TIN2014-59294-P .
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(obtained by replacing A by
√

2A and taking t = 1/λ, x = y/t in formulas (2.70) − (2.8) of [8]). We use
formulas (1) to obtain new rational expansion in Hermite matrix polynomials of the matrix cosine.

The organization of the paper is as follows: Throughout this paper, we denote by Cr×r the set of all the
complex square matrices of size r. We denote by Θ and I, respectively, the zero and the identity matrix in
Cr×r. If A ∈ Cr×r, we denote by σ(A) the set of all the eigenvalues of A. We denote by bxc the integer part
of x and by dxe the nearest integers to x towards in�nity.

If f(z), g(z) are holomorphic functions in an open set Ω of the complex plane, and if σ(A) ⊂ Ω, we denote
by f(A), g(A), respectively, the image by the Riesz-Dunford functional calculus of the functions f(z), g(z),
respectively, acting on the matrix A, and f(A)g(A) = g(A)f(A), see [12, p.558]. We say that matrix A is posi-
tive stable if Re(z) > 0 for every eigenvalue z ∈ σ(A). In this case, let us denote

√
A = A1/2 = exp

(
1
2 log (A)

)
the image of the function z1/2 = exp

(
1
2 log (z)

)
by the Riesz-Dunford functional calculus, acting on the ma-

trix A, where log (z) denotes the principal branch of the complex logarithm.

In this paper, we use consistent matrix norms. For example, in tests we use the 1−norm of a matrix A ∈ Cr×r

de�ned by ‖A‖1 = sup
x 6=0

‖Ax‖1
‖x‖1

, where ‖·‖1 denotes the vector 1-norm de�ned as ‖y‖1 = |y1| + · · · + |yr|,

y ∈ Cr, see chapter 2 from [13]. For a positive stable matrix A ∈ Cr×r the n−th Hermite matrix polynomial
is de�ned in [17] by:

Hn(x,A) = n!

bn2 c∑
k=0

(−1)k
(√

2A
)n−2k

k!(n− 2k)!
xn−2k, (3)

which satis�es the three-term matrix recurrence:

H−1(x,A) = Θ , H0(x,A) = I , Hm(x,A) = x
√

2AHm−1(x,A)− 2(m− 1)Hm−2(x,A) , m ≥ 1 . (4)

The following result about upper bound of Hermite matrix polynomials was demonstrated in [3]:

‖H2n(x,A)‖2 ≤ gn(x) , n ≥ 1

‖H2n+1(x,A)‖2 ≤ |x|

∥∥∥∥∥
(
A

2

)− 1
2

∥∥∥∥∥
2

2gn(x)

n+ 1
, n ≥ 0

 , gn(x) =
(2n+ 1)!22n

n!
exp

(
5

2
‖A‖2 x

2

)
. (5)

2 The new formulas

We intend to calculate the exact value of the matrix series A(x, t;A) and B(x, t;A) de�ned by (1). First we
will prove that both matrix series are convergent. Taking into account (5) one gets∥∥∥∥ (−1)nH2n+1(x,A)

(2n)!
t2n
∥∥∥∥ = |x|

∥∥∥∥∥
(
A

2

)− 1
2

∥∥∥∥∥
2

2gn(x)

(n+ 1)(2n)!
|t|2n.

Since
∑
n≥0

gn(x)

(n+ 1)(2n)!
|t|2n is convergent for |t| <∞, the matrix series A(x, t;A) is convergent in any compact

real interval. Analogously, taking into account (5) again one gets

∥∥∥∥ (−1)nH2n+3(x,A)

(2n+ 1)!
t2n+1

∥∥∥∥ =

∥∥∥∥ (−1)nH2(n+1)+1(x,A)

(2n+ 1)!
t2n+1

∥∥∥∥ = |x|

∥∥∥∥∥
(
A

2

)− 1
2

∥∥∥∥∥
2

2gn+1(x)

(n+ 2)(2n+ 1)!
|t|2n+1.

Since
∑
n≥0

gn+1(x)

(n+ 2)(2n+ 1)!
|t|2n+1 is convergent for |t| <∞, the matrix series B(x, t;A) is convergent in any

compact real interval. Using now (4) and (2) one gets
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A(x, t;A) = x
√

2A
∑
n≥0

(−1)nH2n(x,A)

(2n)!
t2n − 4

∑
n≥1

(−1)nnH2n−1(x,A)

(2n)!
t2n

= H1(x,A)et
2

cos
(
xt
√
A
)
− 2t

∑
n≥1

(−1)nH2n−1(x,A)

(2n− 1)!
t2n−1

= H1(x,A)et
2

cos
(
xt
√
A
)
− 2t

∑
n≥0

(−1)n+1H2n+1(x,A)

(2n+ 1)!
t2n+1

= H1(x,A)et
2

cos
(
xt
√
A
)

+ 2tet
2

sin
(
xt
√
A
)
.

Working in a similar form and using (4) and (2), one gets that

B(x, t;A) = x
√

2A
∑
n≥0

(−1)nH2n+2(x,A)

(2n+ 1)!
t2n+1 − 2

∑
n≥0

(−1)n(2n+ 2)H2n+1(x,A)

(2n+ 1)!
t2n+1

= x
√

2A

x√2A
∑
n≥0

(−1)nH2n+1(x,A)

(2n+ 1)!
t2n+1 − 2

∑
n≥0

(−1)n(2n+ 1)H2n(x,A)

(2n+ 1)!
t2n+1


− 2

∑
n≥0

(−1)n(2n+ 1)H2n+1(x,A)

(2n+ 1)!
t2n+1 +

∑
n≥0

(−1)nH2n+1(x,A)

(2n+ 1)!
t2n+1


= x

√
2A

x√2Aet
2

sin
(
xt
√
A
)
− 2t

∑
n≥0

(−1)nH2n(x,A)

(2n)!
t2n


− 2

∑
n≥0

(−1)nH2n+1(x,A)

(2n)!
t2n+1 + et

2

sin
(
xt
√
A
)

= et
2

sin
(
xt
√
A
) (

2x2A− 2I
)
− 2xt

√
2Aet

2

cos
(
xt
√
A
)
− 2

∑
n≥0

(−1)nH2n+1(x,A)

(2n)!
t2n+1.

Using again (4) one gets

B(x, t;A) = et
2

sin
(
xt
√
A
) (

2x2A− 2I
)
− 2xt

√
2Aet

2

cos
(
xt
√
A
)

− 2

x√2A
∑
n≥0

(−1)nH2n(x,A)

(2n)!
t2n+1 − 2

∑
n≥1

(−1)n(2n)H2n−1(x,A)

(2n)!
t2n+1


= et

2

sin
(
xt
√
A
) (

2x2A− 2I
)
− 2xt

√
2Aet

2

cos
(
xt
√
A
)

− 2

xt√2Aet
2

cos
(
xt
√
A
)
− 2

∑
n≥1

(−1)nH2n−1(x,A)

(2n− 1)!
t2n+1


= et

2

sin
(
xt
√
A
) (

2x2A− 2I
)
− 4xt

√
2Aet

2

cos
(
xt
√
A
)

+ 4t2
∑
n≥1

(−1)nH2n−1(x,A)

(2n− 1)!
t2n−1.

Rearranging indexes in the last series, we have

B(x, t;A) = et
2

sin
(
xt
√
A
) (

2x2A− 2I
)
− 4xt

√
2Aet

2

cos
(
xt
√
A
)
− 4t2

∑
m≥0

(−1)mH2m+1(x,A)

(2m+ 1)!
t2m+1

= et
2

sin
(
xt
√
A
) (

2x2A− 2I
)
− 4xt

√
2Aet

2

cos
(
xt
√
A
)
− 4t2et

2

sin
(
xt
√
A
)

= et
2

sin
(
xt
√
A
) (

2x2A− 2I − 4t2I
)
− 4xt

√
2Aet

2

cos
(
xt
√
A
)
.
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By (3), we have that H1(x,A) =
√

2Ax,H2(x,A) = 2x2A− 2I, and we can write the last expression in the
form

B(x, t;A) := et
2 (
H2(x,A)− 4t2I

)
sin
(
xt
√

2A
)
− 4tH1(x,A)et

2

cos
(
xt
√

2A
)
.

Form the previous comments, the following result has been probed:

Lemma 2.1 Let A ∈ Cr×r be a positive stable matrix. Then

A(x, t;A) : = et
2
[
H1(x,A) cos

(
xt
√

2A
)

+ 2t sin
(
xt
√

2A
)]
,

B(x, t;A) : = et
2
[(
H2(x,A)− 4t2I

)
sin
(
xt
√

2A
)
− 4tH1(x,A) cos

(
xt
√

2A
)]
.

(6)

3 On new rational-polynomial Hermite matrix expansions for the

matrix cosine

Let A ∈ Cr×r be a positive stable matrix, then the matrix polynomial H1(x,A) =
√

2Ax is invertible.

Substituting sin
(
xt
√

2A
)
given in (2) into the expression of A(x, t;A) given in (6) we obtain a new rational

expression for the matrix cosine in terms of Hermite matrix polynomials:

cos
(
xt
√

2A
)

= e−t
2

∑
n≥0

(−1)nH2n+1(x,A)

(2n)!

(
1− 2t2

2n+ 1

)
t2n

 [H1(x,A)]
−1
,

x ∈ R, |t| < +∞.

(7)

Substituting cos
(
xt
√

2A
)
given by (2) into the expression of B(x, t;A) given in (6), the expression obtained

is reduced to that given in (2). On the other hand, replacing the expression of sin
(
xt
√

2A
)
given in (2)

into B(x, t;A), we have another new rational expression for the matrix cosine in terms of Hermite matrix
polynomials:

cos
(
xt
√

2A
)

=
−e−t2

4


∑
n≥0

(−1)nH2n+3(x,A)

(2n+ 1)!
t2n −

(
H2(x,A)− 4t2I

)∑
n≥0

(−1)nH2n+1(x,A)

(2n+ 1)!
t2n


︸ ︷︷ ︸

?

 [H1(x,A)]
−1
,

x ∈ R, |t| < +∞.
(8)

We always have one more product of matrices in formula (8), the matrix product remark by (?). Due to
the importance of reducing the number of matrix products, see [22] for more details, we will focus on the
expansion (7).

Substituting in (7) the matrix A by matrix A2/2 we avoid the square roots of matrices. In addition, from
(3), it follows that

A−1H2n+1

(
x,

1

2
A2

)
= (2n+ 1)!

n∑
k=0

(−1)kx2(n−k)A2(n−k)

k!(2(n− k) + 1)!
= H̃2n+1

(
x,

1

2
A2

)
, (9)

so the right side of (9) is still de�ned in the case where the matrix A is singular. In this way, we can re-write

the relation (7) in terms of the matrix polynomial H̃2n+1

(
x,

1

2
A2

)
, and taking x = λ, λ 6= 0, t = 1/λ, we

obtain
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Table 1: Values of zm.

m 2 4 6 9 12 16
zm 1.4440e− 5 7.70884e− 3 1.3286e− 1 1.3292e0 5.2844 1.7679e1

cos (A) =
e−

1
λ2

λ

∑
n≥0

(−1)nH̃2n+1

(
λ, 12A

2
)

(2n)!λ2n

(
1− 2

(2n+ 1)λ2

)
. (10)

Note that expansion given in (10) is really a polynomial series in matrix A. Truncating the given series (10)
until order m, we obtain the approximation Cm (λ,A) ≈ cos (A) de�ned by:

Cm (λ,A) =
e−

1
λ2

λ

m∑
n=0

(−1)nH̃2n+1

(
λ, 12A

2
)

(2n)!λ2n

(
1− 2

(2n+ 1)λ2

)
≈ cos (A), 0 < |λ| < +∞. (11)

for any matrix A ∈ Cr×r.

Working analogously to the proof of the formula (3.3) of [6], you have

∥∥∥∥H̃2n+1

(
x,

1

2
A2

)∥∥∥∥
2

≤ (2n+ 1)!
e sinh

(
x
∥∥A2

∥∥1/2
2

)
‖A2‖1/22

. (12)

We can perform the following approximation of the approximation error:

‖cos (A)− Cm (λ,A)‖2 ≤ e−
1
λ2

λ

∑
n≥m+1

∥∥∥H̃2n+1

(
λ, 12A

2
)∥∥∥

2

(2n)!λ2n

∣∣∣∣1− 2

(2n+ 1)λ2

∣∣∣∣
≤

e1−
1
λ2 sinh

(
λ
∥∥A2

∥∥1/2
2

)
λ ‖A2‖1/22

∑
n≥m+1

2n+ 1

λ2n

∣∣∣∣1− 2

(2n+ 1)λ2

∣∣∣∣ . (13)

Taking λ >
√

2 it is follows that
2

(2n+ 1)λ2
< 1, and one gets∑

n≥m+1

2n+ 1

λ2n

(
1− 2

(2n+ 1)λ2

)
=

2 + (2m+ 3)λ2(λ2 − 1)

λ2m+2 (λ2 − 1)
2 ,

thus from (13) we �nally obtain:

‖cos (A)− Cm (λ,A)‖2 ≤
e1−

1
λ2 sinh

(
λ
∥∥A2

∥∥1/2
2

) (
2 + (2m+ 3)λ2(λ2 − 1)

)
‖A2‖1/22 λ2m+3 (λ2 − 1)

2
. (14)

From this expression (14) we derived the optimal values (λm; zm) such that

zm = max

z =
∥∥A2

∥∥
2

;
e1−

1
λ2 sinh

(
λz1/2

) (
2 + (2m+ 3)λ2(λ2 − 1)

)
z1/2λ2m+3 (λ2 − 1)

2 < u


where u is the unit roundo� in IEEE double precision arithmetic, u = 2−53. The optimal values of m, z and
λ have been obtained through a MATLAB program. The results are given in the table 1.
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4 The proposed MATLAB implementations

The matrix cosine can be computed for A ∈ Cn×n by the expression

Pm(B) =

m∑
i=0

piB
i, (15)

where B = A2, and pi is the coe�cient polynomial of Hermite expression (11), or pi = (−1)i
(2i)! , if the Taylor

approximation is used. Since Hermite and Taylor series are accurate only near the origin, in algorithms that
use these approximations the norm of matrix B must be reduced by scaling the matrix. Once the cosine of
scaled matrix has been computed, the approximation of cos(A) is recovered by means of the double angle
formula cos(2X) = 2 cos2(X) − I. Algorithm 1 shows a general algorithm for computing the matrix cosine
based on Taylor approximation. By using the fact that sin(A) = cos(A− π

2 I), Algorithm 1 also can be easily
used to compute the matrix sine.

Algorithm 1 Given a matrix A ∈ Cn×n, this algorithm computes C = cos(A) by Taylor/Hermites series.

1: Select adequate values of m and s . Phase I
2: B = 4−sA2

3: C = Pm(B) . Phase II: Compute Taylor/Hermite approximation
4: for i = 1 : s do . Phase III: Recovering cos(A)
5: C = 2C2 − I
6: end for

In Phase I of Algorithm 1, m and s can be calculated so that the Hermite or Taylor approximations of
the scaled matrix is computed accurately and e�ciently. In this phase some powers Bi, i ≥ 2, are usually
computed for estimating m and s and if so they are used in Phase II.
Phase II consists of computing the approximations (11) or (15). Taylor matrix polynomial approximation

(15), expressed as Pm(B) =

m∑
i=0

piB
i, B ∈ Cn×n, can be computed with optimal cost by the Paterson-

Stockmeyer's method [19] choosing m from the set

M = {1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, . . . } ,

where the elements ofM are denoted asm1,m2,m3, . . . The algorithm computes �rst the powersBi, 2 ≤ i ≤ q
not computed in the previous phase, being q =

⌈√
mk

⌉
or q = b√mkc an integer divisor of mk, k ≥ 1, both

values giving the same cost in terms of matrix products. Therefore, (15) can be computed e�ciently as

Pmk(B) = (16)

(((pmkB
q + pmk−1B

q−1 + pmk−2B
q−2 + · · ·+ pmk−q+1B + pmk−qI)Bq

+ pmk−q−1B
q−1 + pmk−q−2B

q−2 + · · ·+ pmk−2q+1B + pmk−2qI)Bq

+ pmk−2q−1B
q−1 + pmk−2q−2B

q−2 + · · ·+ pmk−3q+1B + pmk−3qI)Bq

. . .

+ pq−1B
q−1 + pq−2B

q−2 + · · ·+ p1B + p0I.

We made two implementations based on the algorithms cosher [5] and cosmtay [20]. The MATLAB im-
plementation cosherm is a modi�cation of the MATLAB's code cosher, taking the values of m, z and λ of
Section 3 instead of these values from [5]. The MATLAB's implementation cosmtayher is a modi�cation of
the MATLAB's code cosmtay, taking the values of zm instead of Θm to obtain the approximation degree m
and the scaling factor s of the matrix A, and replacing the Taylor polynomial of cosmtay by the �Hermite"
matrix polynomial obtained from λm.

5 Numerical experiments

The following MATLAB implementations (version: 9.1.0.441655, R2016b) have been compared:

• cosm. Code based on the Padé rational approximation for the matrix cosine [1].
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• cosmtay. Code based on the Taylor series for the matrix cosine [20].

• cosherm. New code for computing the matrix cosine based on the new developments of Hermites matrix
polynomials (11) and the algorithm cosmtayher from [5].

• cosmtayher. New code for computing the matrix cosine based on the new developments of Hermites
matrix polynomials (11) and the algorithm cosmtayher from [20].

In tests, �fty eight 128 × 128 matrices from Toolbox [14] and Eigtool [24] packages have been used. These
matrices have been chosen because they have more varied and signi�cant characteristics. For the accurate
of MATLAB codes we have calculated the relative errors as∥∥∥X̃ − cos(A)

∥∥∥
1

‖cos(A)‖1
,

where X̃ is the computed matrix cosine.

We only show the accurate and computational costs of cosmtayher compared to the accurate and com-
putational costs of the other implementations, since cosmtayher is the implementation that presents the
best performances. To compare the computational costs, the number of products of each code has been
calculated, since this operation has the highest computational cost. The resolution of linear systems that
appears in the code based on Padé approximation cosm has been calculated as 4/3 products, because from a
computational point of view, the cost of that operation compared to the product of matrices is approximately
equal to 4/3, see Table C.1 from [15, p. 336].

Table 2 shows the percentage of cases in which the relative errors of MATLAB codes cosm, cosmtay and
cosherm are, respectively, lower and greater than the relative errors of cosmtayher. Table 3 show the matrix
products of the four MATLAB codes.

Table 2: Error comparative between cosmtayher and the other MATLAB implementations.

E(Ex)<E(cosmtayher) E(Ex)>E(cosmtayher)
Ex≡cosm 21.05% 78.95%

Ex≡cosmtay 33.33% 66.67%
Ex≡cosherm 47.37% 52.63%

Table 3: Matrix products of the four MATLAB implementations.

cosm cosmtay cosherm cosmtayher

621 508 541 355

Figure 1 shows the normwise relative error and the performance pro�les graphics [11]. The solid line of
Sub�gures 1a, 1c and 1e is the function kcosu, where kcos is the condition number of matrix cosine function
[15, Chapter 3] and u = 2−53 is the unit roundo� in the double precision �oating-point arithmetic.

According to the results obtained, we can outline the following conclusions:

• Sub�gures 1b, 1d and 1f show that the four implementations have a similar numerical stability.

• The MATLAB code cosmtayher has a lower computational cost than the other MATLAB codes (see
Table 3).

• In general, MATLAB code cosmtayher is more accurate than the other MATLAB codes (see Table 2
and Sub�gures 1a, 1c and 1e ).
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Figure 1: Normwise relative errors and the performance pro�les.
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6 Conclusions

In this work we have developed more accurate MATLAB implementations (cosherm,cosmtayherm) based on
the new Hermite series (11) that improve others from the state of the art for the computation of the matrix
cosine function (cosm,cosmtay). Among the new implementations it is worth highlighting the MATLAB
implementation cosmtayherm, because it has a lower computational cost than the other MATLAB codes.
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1 Introduction

Wildfire propagation modelling is a challenging problem due to its complex
multi-scale multi-physics nature. This process can be described by a reaction-
diffusion equation based on the energy balance principle, see e.g. [1]. Alter-
native technique is the so-called level-set method (LSM) [6] and it is used
in wildfire modelling [4] as well as in many other fields. In present study a
methodology for fire propagation modelling that reconciles these approaches
is proposed. This methodology is distinguishable and significant from both
academical and industrial point of view because of the inclusion of the ran-
dom effects by preserving the existing algorithms and direct implementation
as a post-processing numerical routine.

The random behaviour of the fire front is caused, for example, by the
turbulence and the fire-spotting phenomenon. A probability density function
(PDF) is employed in order to describe the random process. In earlier studies
[5] it has been shown that new independent ignitions can increase the rate of
spread (ROS) of fire and therefore should be carefully studied. In this respect,

∗e-mail:vegorova@bcamath.org
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a physical parametrization of the fire-spotting distribution was proposed [3].
Special attention in the present study is paid to the atmospheric stability
conditions. The parametrization proposed in Ref. [3] is completed by the
multiple fire-spotting modelling. Afterwards special attention is paid to the
study of uniqueness of the PDF and consistency with the energy balance
equation. Numerical results and discussions complete the study.

2 Fire front model and non-uniqueness

Detailed explanation of the proposed method can be found in [2, 5]. Here
we briefly describe the idea. Fire propagation is splitted into a drifting part
and a fluctuating part. The drifting part is handled by a chosen existing
method, while the fluctuating part that includes the random effects is found
as a results of a comprehensive statistical description of the physical system.
Thus, denoting the burning area by Ω(t), the evolution of the fire front can
be defined by the following novel family of reaction-diffusion equations

∂φe
∂t

=

∫
Ω(t)

∂f

∂t
dx̄ +

∫
Ω(t)

∇x̄ [V (x̄, t)f(x; t|x̄)] dx̄, (1)

where φe(x, t) =
∫

Ω(t)
f(x; t|x̄)dx̄ is an effective indicator function, such that

for some threshold value φ∗e expression φe(x, t) ≥ φ∗e represents the burning
area. V (x, t) is the ROS of the fire front, f(x; t|x̄) is the PDF that accounts
for turbulence and fire-spotting effects.

Wildfire model can be formulated as the balance equations for energy and
fuel, see [1]. However, as it is stated in [5], the reaction-diffusion equation
and the LSM ”can indeed be considered complementary and can be recon-
ciled” by the proposed technique when Ω(t) is the burned area estimated
by the LSM approach. The connection between these two approaches is the
connection between the indicator function φe and the temperature T , that
can be expressed in an amount of heat:

ψ(x, t) =

∫ t

0

φe(x, η)
dη

τ
=
T (x, t)− Ta(x)

Tign − Ta(x)
, T < Tign, (2)

where τ is the ignition delay. From (2) one can see, that ψ(x, t) = 1 entails
that T (x, t) = Tign and the spacial point x at the moment t belongs to the
burning area. Derivation of the energy balance equation can be found in [5],
here we provide the result:



Modelling for Engineering & Human Behaviour 2017 80

∂T

∂t
= εT +

Tign − Ta
τ

(IΩ0(x) +W (x, t)) , (3)

where Tign is the ignition temperature, Ta(x) is the ambient temperature,
IΩ0(x) = φe(x, 0) and W (x, t) is the rate of fuel consumed by the fire.

Equation (3) can be understood as the energy balance equation associated
to the model. This preliminary result will be completed by the numerical
comparison with existing models.

Denoting the wind velocity by U , the shape of the PDF is defined by
the isotropic bi-variate Gaussian function (considering turbulence effects)
G(x− x̄; t) and the firebrand landing distribution q(l) as follows

f(x; t|x̄) =

{∫∞
0
G(x− x̄− ln̂; t)q(l)dl, downwind,

G(x− x̄; t), otherwise,
(4)

where q(t) is the lognormal distribution q(l) = 1√
2πσl

exp −(ln l/µ)2

2σ2 . Parameter
µ is the ratio between the square of the mean of landing distance l and its
standard deviation, σ is the standard deviation of ln l/µ.

The physical parametrisation of the fire-spotting distribution is consid-
ered with the following parameters [3],

µ = H

(
3ρaCd
2ρfrg

)1/2

, σ =
1

2zp
ln

(
U2

rg

)
, (5)

where, according to [7], the maximum loftable height is described in terms
of atmospheric stability conditions, such that HABL is the height of the at-
mospheric boundary layer and N2 is the Brünt-Väsäla frequency.

Taking into account the wind direction through the angle θ, σ defined in
(5) becomes

σ =
1

2zp
ln

(
(U cos θ)2

rg

)
≥ σ0, with cos θ ≥

√
rg

U
exp(zpσ0), (6)

where σ0 is minimum possible value of σ.
Thus, multiple fires due to the so-called fire-spotting can be modelled

since secondary fires appear where (6) holds.
The uniqueness of the the effective indicator function φe requires a dis-

cussion. This analysis is based on the theorem that if an integral of a non-
negative function is zero then the function is zero almost everywhere. The
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result agrees also with the Radon-Nikodym Theorem, that shows that there
is no one-to-one correspondence between the PDF and the effective indicator
function and the following statement can be formulated: Some burning area,
described by the effective indicator function can be generated by the different
PDFs.

This is an important issue since it allows to model a complex topology of
the burning area by a simple suitable PDF. For instance, if the fuel inside
the fire zone is completely burned out the combustion ceases, that leads to
the crown or ring form of the burning area since the ignitions are observed
only at the leading edge of the fire perimeter. However, fire propagation in
such domain can be modelled by the PDF (4) as for the entire one just with
the suitable parameters.

Due to parametrization (5)-(6) the dependence of the fire front upon the
atmospheric stability is found. However, there are a lot of factors that can
effect the process. Such that influence of the flame geometry, mainly flame
length, is going to be studied in the future.

3 Numerical results and discussions

In this section some numerical examples are provided to show the results of
parametrization and multiple fire-spotting effects. The choice of fire-spotting
distribution parameters is crucial for the model since it manages the fire
brand travel distance. As it is shown in Figure 1 (left), the merging effect
can be observed for certain parameters µ and σ.

Inclusion of condition (6) into the numerical algorithm results in multiple
secondary fires in some angle θ, as it is presented in Figure 1 (right).

The proposed numerical routine can also take into account a firebreak
zones. From the real data it is known that when the fire front reaches the
fire-break, it stops for a while, but then it crosses the zone and continues
the propagation. Moreover, spot fires can overcome the firebreak, that can
cause dangerous effects. Numerical simulations for a such case are presented
in Figure 2. This is a very important issue for the fire-fighters management.

The proposed method reconciles existing wildfire propagation models im-
proving operational codes by the significant post-processing numerical algo-
rithm. The model includes effects of turbulence and fire-spotting that results
in random fire front. It allows to model the fire that overcomes a fire-break
zone and increase the rate of spread. This improvement has an important
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Figure 1: Fire-spotting effect: merging secondary fires with µ = 12, σ = 8
(left) and multiple fire-spotting with µ = 9.75 and σ = 8.15 and incorporation
of (6) (right).

0 2000 4000 6000
x [m]

0

2000

4000

6000

y
 [

m
]

0

2
5

4
0

84

9
7 9

7

1
0

0 100 1
2
5 1251

2
5

125

0 2000 4000 6000
x [m]

0

2000

4000

6000
y
 [

m
]

0

2
5 254
0

40
8
4

84

84

97

9
7

97

1
0

0

1
0
0

1
0

0

125
125

1
2

5

143

143

1
4
3

1
5
0

150

150
175

1
7

5

1
7

5

200

2
0
0

2
0
0

225

2
2

5

2
2

5

Figure 2: Wildfire propagation in the presence of the firebreak zone.

economical impact since it can be helpful for fire suppression and control.
Parametrization of the fire-spotting distribution leads to the definition of
the angle of the multiple fire-spotting and allows the future consideration of
other factors, such as flame geometry.

The future intention is to incorporate data assimilation algorithms in
order to adopt the methodology to the real topography, as well as to calibrate
the model.
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1 Introduction

In order to construct a reliable mathematical model for commodities\options
have a long time to be expired, it is convenient to consider that its interest
rate is controlled by a stochastic process. In Heston model, the underlying
asset and its variance are controlled by two stochastic differential equations
(SDEs). By adding a third stochastic differential equation for the interest
rate, the model is called the Heston-Hull-White (HHW) model. Consider a
complete probability space (Ω,F , P ) with a time domain [0, T ], Ω is the set all
inquiry of the stochastic economy between 0 and T . F is the sigma algebra of
distinguishable events at time T and P is the risk-neutral probability measure
on F . Here the option pricing under the probability measure P is constituted
by a system of three stochastic differential equations (SDEs) given by [1, 2]

dS = rSdt+
√
νSdW1(t),

dν = κ(η − ν)dt+ σ1
√
νdW2(t),

dr = a(b(t)− r)dt+ σ2dW3(t),
(1)

∗Corresponding author. Email: fakharany@aucegypt.edu
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where S, ν and r are the underlying asset, its variance and interest rate.
W1(t), W2(t) and W3(t) are standard Brownian motions associated with
correlation factors ρ12, ρ13 and ρ23 ∈ (−1, 1) such that dWidWj = ρijdt,
1 ≤ i, j ≤ 3 ∧ j > i. The speed of the volatility is denoted by κ > 0, η is the
volatility mean, σ1, and σ2 are the second order volatility and the volatility of
the interest rate respectively. The parameter a > 0 determines the speed of
mean reversion of the interest rate process and b(t) represents the structure
of the interest rate. Based on the non-arbitrage assumptions, the European
option under HHW-model is given by [1]-[3]

∂u
∂τ

= 1
2
νS2 ∂2u

∂S2 +
σ2
1

2
ν ∂

2u
∂ν2

+
σ2
2

2
∂2u
∂r2

+ ρ12σ1Sν
∂2u
∂S∂ν

+ ρ13σ2S
√
ν ∂2u
∂S∂r

+ρ23σ1σ2
√
ν ∂2u
∂ν∂r

+ rs ∂u
∂S

+ κ(η − ν)∂u
∂ν

+ a(b(T − τ)− r)∂u
∂r
− ru,

(2)

where τ = T − t, S, ν > 0, r ∈ R, associated with the boundary conditions:

u(0, ν, r, τ) = 0, lim
S→∞

∂u

∂S
= 1,

∂u

∂r
(S, ν, rmin, τ) = 0,

∂u
∂r

(S, ν, rmax, τ) = 0, lim
ν→∞

u(S, ν, r, τ) = S,

∂u
∂τ

=
σ2
2

2
∂2u
∂r2

+ rS ∂u
∂S

+ κη ∂u
∂ν

+ a(b(T − τ)− r)∂u
∂r
− ru, ν = 0.

(3)

Initial condition for European call option is given by the payoff

u(S, ν, r, 0) = max{0, S − E}, (4)

where E is the strike price.

2 Problem Transformation

We start this section by applying a suitable mathematical transformation
on (2) in order to reduce the number of the mixed derivatives. Consider the
new variables (x, y, z) such that

x = σ1 lnS, y = ν − ρ12σ1 lnS, z = r − 2σ2(ρ23 − ρ12ρ13)
σ1ρ̃212

√
ν. (5)

The new PDE based on the transformation (5) becomes

∂u
∂τ

= α(x, y)
(
∂2u
∂x2

+ ρ̃212
∂2u
∂y2

)
+ ρ̂∂

2u
∂z2

+ β(x, y) ∂2u
∂x∂z

+ γ(x, y, z)∂u
∂x

−γ̃(x, y, z)∂u
∂y

+ γ̂(x, y, z, τ)∂u
∂z
− γ̆(x, y, z)u,

(6)
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where

α(x, y) =
σ2
1

2
(y + ρ12x),

ρ̂ = 1
2

(
σ2
ρ̃212

)2

((ρ212 − ρ̃212)ρ223 − 2ρ13ρ
3
12ρ23 + (ρ12ρ13)

2 + ρ̃412) ,

β(x, y) = σ1σ2(ρ13−ρ12ρ23)
ρ̃212

√
y + ρ12x,

γ(x, y, z) = σ1(z + 2σ2(ρ23−ρ12ρ13)
σ1ρ̃212

√
y + ρ12x− 1

2
(y + ρ12x)),

γ̃(x, y, z) = ρ12γ(x, y, z) + κ((y + ρ12x)− η),

γ̂(x, y, z, τ) = a(b(T − τ)− z + 2σ2(ρ23−ρ12ρ13)
σ1ρ̃212

√
y + ρ12x) + ρ̂1√

y+ρ12x
− ρ̂2
√
y + ρ12x,

ρ̂1 =
σ2(ρ13ρ12−ρ23)(4κη−σ2

1)

4σ1ρ̃212
,

ρ̂2 = κσ2
ρ̃212σ1

(ρ12ρ13 − ρ23),
γ̆(x, y, z) = z + 2σ2(ρ23−ρ12ρ13)

σ1ρ̃212

√
y + ρ12x.

(7)
The boundary conditions and payoff under the transformation are given by

lim
x→−∞

u(x, y, z, τ) = 0, σ1 lim
x→∞

(
∂u

∂x
− ρ12

∂u

∂y

)
= e

x
σ1 ,

∂u
∂z

∣∣
zmin

= 0, ∂u
∂z

∣∣
zmax

= 0, lim
y+ρ12x→∞

u(x, y, z, τ) = e
x
σ 1 ,

∂u
∂τ

=
(

2σ1z − κη
ρ12

)
∂u
∂x
, y = −ρ12x,

u(x, y, z, 0) = max{0, e
x
σ1 − E}.

(8)

Note that under the transformation (5), two mixed derivative are elimi-
nated, consequently, removing eight points stencil from the corresponding
finite scheme.

3 The finite difference scheme Construction

The time domain is discretized by the mesh points τn = n∆τ , 0 ≤ n ≤
Nτ , and the spatial variables x, y and z are divided by the nodes xi =
x0 + i∆x, yj = y0 + j∆y, zk = z0 + k∆z, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny

and 0 ≤ k ≤ Nz. The first partial derivative of the option with respect to
time is discretized using the three time-level approximation [4], while first
and second order spacial derivatives are discretized using implicit central
approximations. Let u(xi, yj, zk, τn) ≈ Un

i,j,k consequently, the corresponding
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finite difference scheme is discretized by

âijk(1)Un+1
i,j,k + âijk(2)Un+1

i+1,j,k + âijk(3)Un+1
i−1,j,k + âijk(4)Un+1

i,j+1,k + âijk(5)Un+1
i,j−1,k

+âij(6)
(
Un+1
i+1,j,k+1 − U

n+1
i+1,j,k−1 − U

n+1
i−1,j,k+1 + Un+1

i−1,j,k−1
)

+ ânijk(7)Un+1
i,j,k+1

+ânijk(8)Un+1
i,j+1,k−1 = Un

i,j,k − 1
4
Un−1
i,j,k ,

(9)
where âijk(l), l = 1, 2 . . . , 5, âij(6), ânijk(7) and ânijk(8) are the discretiza-
tion coefficients. The derivatives at the boundaries are discretized using the
central approximations and the points outside the computational domain are
eliminated by solving their equations with the scheme (9) at the same points,
in order to obtain a finite difference scheme with a truncation error of the
second order of the spatial variables and time stepsizes.

4 Numerical Example

In this section, we provide an example for the associated error of the pro-
posed finite difference scheme (9) using MatLab.

Example 1. Consider an European call option problem (2)-(4) under HHW-
model with parameters T = 1, E = 100, Smax = 14E, νmax = 10, rmin = −1,
rmax = 1, σ1 = 0.04, σ2 = 0.03, κ = 3, η = 0.12, a = 0.2, b(t) = 0.05−0.01e−t,
ρ12 = 0.6, ρ13 = 0.2, ρ23 = 0.4. Consequently, x ∈ [−3, 3], y ∈ [−2, 12] and
z ∈ [−1.2, 1], the number of mesh points are chosen such that Nx = 20,
Ny = 50, Nz = 10 and Nτ = 40. The value of the option is calculated at
a finer grid (100, 200, 100, 100) and (20, 50, 10, 40), after that we obtain the
absolute difference as a function in (S, ν, r) at the expiration time. Figure
(1.a) shows the option value as a function of (S, ν) and Figure (1.b) reveals
the associated absolute error.
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(1.a) The option price u as a function of S and ν. (1.b) The Error surface when r = 0.1
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1 Introduction

The aim of this study was to obtain a predictive model able to perform an
early detection of the eutrophication in water bodies such as lakes. This
study presents a novel hybrid algorithm, based on support vector machines
(SVM) approach in combination with the artificial bees colony (ABC) tech-
nique, for predicting the eutrophication from biological and physical-chemical
input parameters determined experimentally through samplings in the Pozón
de la Dolores lake and subsequent analysis in a certificate laboratory. This
optimization technique involves hyperparameter setting in the SVM training
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procedure, which significantly influences the regression accuracy. Addition-
ally, a multilayer perceptron network (MLP) and M5 model tree were fitted
to the experimental data with comparison purposes. Indeed, regression with
optimal hyperparameters was performed and coefficients of determination
equal to 0.90 for the Total phosphorus estimation and 0.92 for the Chloro-
phyll concentration were obtained when this hybrid ABC–SVM–based model
was applied to the experimental dataset, respectively. Furthermore, the re-
sults obtained with the MLP approach and M5 model tree are clearly worse.
The agreement between experimental data and the model confirmed the good
performance of the latter.

Eutrophication is a water enrichment in nutrients (mainly phosphorus)
that generally leads to symptomatic changes and deterioration of water qual-
ity and all its uses in general, when the production of algae and other aquatic
vegetations are increased in water bodies [1]. Additionally, Chlorophyll a
(Chl -a) is also an important responsive variable closely related to water eu-
trophication. Chl -a is the major photosynthetic pigment of algae and macro-
phytes and it is usually used as an estimator for algae growth. Therefore,
total phosphorus, total nitrogen and Chl -a, namely eutrophication indicat-
ors, are routinely monitored to identify the trophic status of natural water
bodies [2,3]. At the same time, eutrophication is an important environmental
problem in lakes (e.g. the Pozón de la Dolores lake (see Fig. 1)).

To fix ideas, the objective of this innovative study is to evaluate the
application of support vector machines (SVMs) approach in combination
with the evolutionary optimization technique known as Artificial Bee Colony
(ABC) as well as the Multilayer Perceptron (MLP) and M5 model tree to
identify eutrophication in water bodies (lakes, reservoirs, etc.), comparing the
results obtained among the three techniques through its performances [4].

On the other hand, in order to carry out the optimization mechanism
corresponding to the kernel optimal hyperparameters setting in the SVM
training, the artificial bee colony (ABC) technique was used here with suc-
cess. The artificial bee colony technique is an optimization algorithm based
on the intelligent foraging behavior of honey bee swarms [5].

In summary, hybrid ABC optimized SVM (ABC–SVM) models as well
as the MLP model and M5 model tree were used as automated learning
tools, training them in order to predict the eutrophication from the biological
and physical-chemical input parameters in the Pozón de la Dolores lake.
Specifically, the Pozón de la Dolores is a lake located just 5.5 km from the
center of the Bay of Santander (see Fig. 1).
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Figure 1: Aerial photograph of the Pozón de la Dolores lake and the Bay of
Santander (Northern Spain).

2 Materials and methods

2.1 Experimental dataset

The data used for the ABC–SVM, MLP and M5 tree analyses were collected
over 9 years (2006–2014) from several samples in Pozón de la Dolores lake.
The total number of samples processed was 244. The information is quantit-
ative on the abundance of phytoplankton species. Specifically, this reservoir
was sampled several times a month from January 16, 2006 to December 25,
2014, following the sampling protocols for lakes and reservoirs of the Spanish
Ministry of Agriculture, Food and Environment, which are consistent with
the guidelines established by the European Union and international agencies
dealing with these issues [2, 6].

The input variables are the quantity of phytoplankton species (Cyanobac-
teria, Diatoms, Euglenophytes, Dinophlagellata, Chrysophytes, Chlorophytes
and Cryptophytes) and physical-chemical parameters (water temperature,
turbidity, nitrate concentration, ammonium ion concentration, dissolved oxy-
gen concentration, conductivity and pH). The output variables are two eco-
logical indicators linked to the algae growth used to evaluate the eutrophi-
cation in lakes and reservoirs: Total phosphorus (mg P/L) and Chlorophyll
concentration (Chl -a) (µg/L).
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2.2 Computational procedure

2.2.1 Support vector machine (SVM) method

The Support Vector Regression (SVR) uses the same principles as the SVM
for classification, with only a few minor differences. In the case of regression,
a margin of tolerance, ε, is set in approximation to the SVM. The main idea
is always the same: to minimize error, individualizing the hyperplane which
maximizes the margin, keeping in mind that part of the error is tolerated. As
a consequence, new predictions y′ can be formulated as in linear SVR [4,7]:

y′ =
L∑
i=1

(
α+
i − α−i

)
xi · x′ + b

In case of a nonlinear SVR, the kernel functions k (xi,xj) = Φ (xi) · Φ (xj)
transform the data into a higher dimensional feature space to make it possible
to perform the linear separation [4, 7]:

y′ =
L∑
i=1

(
α+
i − α−i

)
k (xi,x

′) + b

2.2.2 The artificial bee colony (ABC) algorithm

In the ABC optimization technique, the colony consists of three groups of
bees [5] employed bees, onlookers and scouts. It is assumed that there is only
one artificial employed bee for each food source. Employed bees go to their
food source and come back to hive and dance on this area. The employed bee
whose food source has been abandoned becomes a scout and starts to search
for finding a new food source. Onlookers watch the dances of employed bees
and choose food sources depending on dances.

2.3 Multilayer perceptron (MLP) neural network

The multilayer perceptron (MLP) is a kind of artificial neural networks
(ANNs) that consists of an input layer and an output layer and one or more
hidden layers of nonlinearly-activating nodes [8]. An MLP is a feedforward
artificial neural network model that maps input data onto a set of appropriate
output. It is a modification of the standard linear perceptron in that it uses
three or more layers of neurons (nodes) with nonlinear activation functions.
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2.4 M5 model tree

M5 Model Tree (M5Tree), first introduced by Quinlan [9], is based on a
binary decision tree. It has linear regression functions at the terminal (leaf)
nodes, which develops a relationship between input and output variables.
Unlike decision tree, it can also be used for quantitative data [10].

3 Analysis of results and discussion

The biological and physical-chemical input variables considered in this re-
search work were indicated above in subsection 2.1 [2, 3]. The total number
of predicting variables used to build the hybrid ABC–SVM–based model,
MLP approach and M5 model tree was 14. The output predicted variables
(Total phosphorus and Chl -a) are measured in mg P/L and µg/L [2, 3], re-
spectively.

In this study, we have built three different models (specifically, the ABC–
SVM–based model, the MLP approach and M5 model tree) taking as depen-
dent variables Total phosphorus and Chl -a, respectively. Indeed, in order to
estimate the Total phosphorus and Chl -a from other biological and physical-
chemical parameters, it is important to select the model that best fits the
experimental data. In this sense, we have chosen ABC optimization tech-
nique as a suitable, efficient and simple method [5] for tuning the SVR. Fig.
2 shows the flowchart of this new hybrid ABC–SVM–based model developed
in this study.

Finally, this research work was able to predict the Total phosphorus in
agreement to the actual experimental values observed using the ABC–RBF–
SVM–based model with great accurateness and success. Indeed, Fig. 3 shows
the comparison between the Total phosphorus values observed and predicted
by using the M5 tree model (see Fig. 3(a)), MLP model (see Fig. 3(b)), and
ABC–SVM–based model with RBF kernel (see Fig. 3(c)). It is necessary the
use of a SVM model with an ABC–based optimization technique in order to
achieve the best effective approach to nonlinearities present in this regression
problem. Obviously, these results coincide again with the outcome criterion
of goodness-of-fit (R2) so that the ABC–RBF–SVM–based model has been
the best fitting. [2, 3]

Similarly, Fig. 4 shows the comparison between the Chlorophyll concen-
tration values observed and predicted by using the M5 tree model, MLP
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1. Initialize randomly 

C,  , σ 

2. SVM training process 

3. SVM validating process 

4. Coefficient of determination 

(fitness function) 

6. ABC searching 

7. Optimized parameters 
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C,  , σ 

No 

Yes 
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Figure 2: Flowchart of the new hybrid ABC–SVM–based model.

approach and ABC–RBF–SVM–based model. Again, it has been necessary
the use of a SVM model with a ABC–based optimization technique in order
to achieve the best effective approach to the eutrophication in water bodies
such as the Pozón de la Dolores lake.

4 Conclusions

Based on the experimental and numerical results, the main findings of this
research work can be summarized as follows:

• Firstly, eutrophication is a very common and serious problem in wa-
ter bodies such as lakes, reservoirs and so on. The diagnostic tech-
niques commonly used based on the traditional methods (such as the
assessment of eutrophication in lakes and reservoirs through the peri-
odic sampling and subsequent analysis in an accredited laboratory) are
expensive from both the material and human points of view. Con-
sequently, the development of alternative diagnostic techniques is ne-
cessary. In this sense, the new hybrid ABC–RBF–SVM–based method
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Figure 3: Comparison between the Total phosphorus values observed and
predicted by using the M5 tree model, MLP approach and ABC–RBF–SVM–
based model: (a) M5 tree model (R2 = 0.84); MLP network (R2 = 0.84);
and RBF–SVM model (R2 = 0.90).
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Figure 4: Comparison between the Chlorophyll concentration values observed
and predicted by using the M5 tree model, MLP approach and ABC–RBF–
SVM–based model: (a) M5 tree model (R2 = 0.83); (b) MLP network (R2 =
0.83); and (c) RBF-SVM model (R2 = 0.92).
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used in this work is a good choice to evaluate the eutrophication in the
Pozón de la Dolores lake.

• Secondly, a high coefficient of determination equal to 0.90 was obtained
when this hybrid ABC–RBF–SVM–based model was applied to the ex-
perimental dataset corresponding to the Total phosphorus (see Fig. 3).
Similarly, a high coefficient of determination equal to 0.92 was obtained
when this new hybrid ABC–RBF–SVM–based model was applied to the
experimental dataset corresponding to Chlorophyll concentration (see
Fig. 4).

• Thirdly, the significance order of the input variables involved in the pre-
diction of the eutrophication was set. Specifically, the physical-chemical
input variable Water temperature could be considered the most influ-
ential parameter in the prediction of the Total phosphorus, while the
Euglenophytes concentration is for the Chlorophyll concentration. In
this regard, it is also important to highlight the influential role of the
Turbidity and Dinophlagellata concentration in the dependent variables
Total phosphorus and Chlorophyll concentration, respectively.

• Finally, this innovative methodology could be applied to other eutroph-
ication processes with similar or different sources of pollutants for water
with success, but it is always necessary to take into account the spe-
cificities of each location.

Acknowledgements

Authors wish to acknowledge the pollutant data in the Pozón de la Dolores
lake of Santander (Northern Spain) supplied by the Cantabrian Basin Au-
thority (Spanish Ministry of Agriculture, Food and Environment).

References

[1] R.D. Grundy, Strategies for control of man-made eutrophication, Envi-
ron. Sci. Tech. 5 (1971) 1184–1190.

[2] C.S. Reynolds, Ecology of Phytoplankton, Cambridge University Press,
New York, 2006.



Modelling for Engineering & Human Behaviour 2017 98

[3] C. Brönmark, L.–A. Hansson, The Biology of Lakes and Ponds, Oxford
University Press, New York, 2005.

[4] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learn-
ing, Springer-Verlag, New York, 2003.

[5] D. Karaboga, B. Basturk, A powerful and efficient algorithm for nu-
merical function optimization: artificial bee colony (ABC) algorithm, J.
Global Optim. 39 (3) (2007) 459–171.

[6] Directive 2000/60/EC of the European Parliament and of the Council
of 23 October 2000, Establishing a framework for community action in
the field of water policy, L-327, Luxembourg, 2000.

[7] I. Steinwart, A. Christmann, Support Vector Machines, Springer, New
York, 2008.

[8] S. Haykin, Neural Networks. A comprehensive foundation, Prentice Hall,
New York, 1999.

[9] J.R. Quinlan, Learning with continuous classes, in: Proceedings of Aus-
tralian Joint Conference on Artificial Intelligence, World Scientific Press,
Singapore, 1992, pp. 343–348.

[10] M. Pal, S. Deswal, M5 model tree based modelling of reference evapo-
transpiration, Hydrol. Process. 23 (10) (2009) 1437–1443.



Efficient class of iterative schemes with
memory for solving nonlinear problems∗

Alicia Cordero†, Neus Garrido‡, Esther Gómez§,
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1 Introduction

Finding the solution α of a nonlinear equation f(x) = 0, where f : I ⊂ R −→
R is a scalar function in an open interval I, has been for many decades an
important task in different fields of science and technology. This nonlinear
problem is widely solved using iterative methods. The best-known iterave
scheme is Newton’s method,

xk+1 = xk −
f(xk)

f ′(xk)
, k ≥ 0,

which has quadratic convergence and is characterized by its simplicity and
economy of operations and functional evaluations.
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In the last years, many multi-step methods have been proposed to improve
the order of convergence of Newton’s scheme and its computational efficiency;
see for example [2–5] and the references therein. As an example, we consider
third-order Traub’s scheme [1] which is the starting point of the present work.
Its iterative expression is

yk = xk −
f(xk)

f ′(xk)
,

xk+1 = yk −
f(yk)

f ′(xk)
, k ≥ 0.

(1)

Recently, several multi-step iterative methods with memory have been
developed. This kind of iterative methods uses information from the current
and previous iterations and can increase the convergence order and the com-
putational efficiency of methods without memory with the same number of
functional evaluations. For a background study regarding the acceleration of
convergence order via with memorization, one should see e.g. [6, 7].

Our aim in this work is to introduce some accelerating parameters in (1)
(and in its derivative-free version) such that the new scheme allows us to
accelerate the order of convergence without new functional evaluations per
iteration. Finally, numerical tests are shown to confirm the theoretical results
and to compare the convergence orders.

2 Traub type methods with or without deriva-

tives

First of all, we add two accelerator parameters in Traub’s method and we
obtain the following family of iterative schemes:

yk = xk −
f(xk)

f ′(xk) + δ1f(xk)
,

xk+1 = yk −
f(yk)

f ′(xk) + δ2f(xk)
, k ≥ 0.

(2)

The order of convergence of this family is analyzed below.

Theorem 2.1 Let f : I ⊂ R −→ R be a real function sufficiently differen-
tiable in an open interval I. If α ∈ I is a simple root of f(x) = 0 and x0 is
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close enough to α, then the iterative method (2) has convergence order 3, for
any values of parameters δ1 and δ2, being its error equation

ek+1 = (δ1 + c2)(δ2 + 2c2)e
3
k +O(e4k), (3)

where ek = xk − α and cj = f (j)(α)
j!f ′(α)

, j ≥ 2.

Now, we analyze how to improve the convergence order of the family by an-

alyzing its error equation. Of course, if δ1 = −c2 =
f ′′(α)

2f ′(α)
or δ2 = −2c2 the

order of convergence increase, at least, in one unit, but α is not known.
So, we need to approximate f ′(α) and f ′′(α) transforming the iterative
schemes in other ones with memory. For this purpose, we use the New-
ton’s polynomial interpolation of second degree in points xk, xk−1 and yk−1,
N2(t;xk, xk−1, yk−1) = N2(t), which is defined by:

N2(t) = f(xk) + f [xk, xk−1](t− xk) + f [xk, xk−1, yk−1](t− xk)(t− xk−1).

If we set the approximations

f ′(α) ≈ N ′2(xk), f ′′(α) ≈ N ′′2 (xk),

we will have the following accelerator parameters:

δ1,k ≈ −
1

2

N ′′2 (xk)

N ′2(xk)
, δ2,k ≈ −

N ′′2 (xk)

N ′2(xk)
. (4)

Then, we can observe that the using of the previous parameters originates a
method with memory. In addition, the next result shows how much the order
of convergence has increased with respect to the method without memory.

Theorem 2.2 Let f : I ⊂ R −→ R be a real function sufficiently differen-
tiable in an open interval I. If α ∈ I is a simple root of f(x) = 0 and x0 is
close enough to α, then the iterative method (2) with the values δ1,k and δ2,k
defined by (4) converges to α with order of convergence p ≈ 4.65.

Now, we carry out a study similar to the previous one but using the
derivative-free version of Traub’s method. First, we transform the iterative
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scheme (2) in a derivative-free one by replacing f ′(xk) with a divided differ-
ence of first order. So, let us consider the family of iterative methods

w1
k = xk + ρ1f(xk),

yk = xk −
f(xk)

f [xk, w1
k]
,

w2
k = xk + ρ2f(xk),

xk+1 = yk −
f(yk)

f [xk, w2
k]
, k ≥ 0.

(5)

In the following result we describe that the methods of this family have the
same convergence order. Furthermore, their error equation has an interesting
structure.

Theorem 2.3 Let f : I ⊂ R −→ R be a real function sufficiently differ-
entiable in an open interval I. If α ∈ I is a simple root of f(x) = 0 and
x0 is close enough to α, then the iterative methods (5) converge s to α with
order of convergence 3, for any value of parameters ρ1 and ρ2, being its error
equation

ek+1 = (1 + f ′(α)ρ1) (2 + f ′(α)ρ2) c
2
2e

3
k +O(e4k), (6)

where ek = xk − α and cj = f (j)(α)
j!f ′(α)

, j ≥ 2.

In a similar way as before, for improving the convergence order of (5) we use
the Newton’s polynomial interpolation of second degree, N2(t), in the same
points as before but using the following approximations:

ρ1,k ≈ −
1

N ′2(xk)
, ρ2,k ≈ −

2

N ′2(xk)
. (7)

Therefore, with the incorporation of the parameters (7) in the iterative
scheme (5), we have again a method with memory whose order of convergence
is analyzed below.

Theorem 2.4 Let f : I ⊂ R −→ R be a real function sufficiently differ-
entiable in an open interval I. If α ∈ I is a simple root of f(x) = 0 and
x0 is close enough to α, then the iterative method (5) with the accelerator
parameters (7) converges to α with order of convergence p ≈ 4.64.
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It can be observed that the use of methods with memory is decisive for in-
creasing the order of convergence in both cases. Moreover, the ”memorizing”
process that has been made in this work allows us to rise the convergence
order more than a unit with no additional functional evaluations, which is
really interesting from the point of view of the computational efficiency.

In the following section we carry out a comparison between the iterative
schemes (2) and (5) and the different approximations for their accelerator
parameters by using some numerical examples.

3 Numerical results

In this section, we have tested Method 1, (2), and Method 2, (5), by using the
approximations for the accelerator parameters given by (4) and (7), respec-
tively. Our main goal is to compare the computational efficiency between the
methods studied during this work. In order to get this aim, let us consider
the following test functions:

• f1(x) = sin(x)− x
2
.

• f2(x) = ln(x2 + x+ 2)− x+ 1.

• f3(x) = x2 + sin(x
5
)− 1

4
.

• f4(x) = e−x
2+x+2 − x.

Numerical computations have been carried out using variable precision
arithmetic with Matlab R2016b with 2000 significant digits.
Table 1 shows, for each test function and some initial estimations, the number
of iterations required to obtain |xk+1−xk| < 10−200 or |f(xk+1)| < 10−200, and
the approximated computational order of convergence, ACOC, introduced
in [4]:

p ≈ ACOC =
ln |(xk+1 − xk)/(xk − xk−1)|

ln |(xk − xk−1)/(xk−1 − xk−2)|
.

As we can observe, numerical results only agree with the theoric convergence
order for the Method 2. On the other hand, the values of the ACOC obtained
for Method 1 is due to the divided differences used for the approximations
in the accelerator parameters, which are quite unstable. However, in the
first iterations of Method 1 these values are in concordance with the theory
developed before.
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iterations ACOC |xk+1 − xk| |f(xk+1)|

f1, x0 = 2
Method 1 5 3.58 5.419e–178 2.386e–633
Method 2 4 4.64 9.576e–81 2.501e–374

f2, x0 = 4
Method 1 4 3.496 2.153e–70 7.305e–252
Method 2 4 4.503 4.625e–129 3.247e–602

f3, x0 = 0.5
Method 1 4 3.502 3.845e–56 1.003e–201
Method 2 4 4.961 9.009e–74 5.98e–343

f4, x0 = 2
Method 1 5 3.61 9.903e–112 3.057e–396
Method 2 4 4.743 4.858e–45 3.911e–207

Table 1: Comparison between Method 1 and Method 2
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1. Introduction 

The intense development of high speed railways in the recent years, together with a 

constant increase of passenger comfort standards have led to a considerable rise in quality 

requirements for the railway infrastructure. In this regard, if the rails are not perfectly 

aligned and smooth, such irregularities will induce extra vehicle oscillations and an 

increase of dynamic loads. In consequence, passenger comfort might be threatened and 

maintenance costs of both track structure and rolling stock may significantly rise [1, 2]. 

The measurement of rail irregularities has been traditionally done manually by 

maintenance workers; and more recently with the help of special machinery (e.g., 

inspection cars and multiple tampering machines), which implies high maintenance costs 

[3]. Therefore, an intense research has been carried out over the past decade in order to 

develop different techniques for an indirect detection of rail defects, where the dynamic 

response of the running vehicle is used instead of a direct measurement on the rail [4]. In 

this sense, this paper presents a methodology for the assessment of rail defects and 

irregularities based on acceleration registers measured on the vehicle. 
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2. Description of the method 

This section presents in detail, the methodology followed for the indirect assessment of 

rail defects and irregularities, which can be divided in two phases: i) data acquisition; and 

ii) data processing. In this regard, the time history of accelerations is registered on the 

vehicle body by means of tri-axial accelerometers; while its position on the track is 

constantly recorded with a GPS. Then, the measurements are processed and transformed 

into 3D rail geometry data along the railway line, according to the algorithm described 

below and presented in Fig. 1. 

 

Fig. 1. Scheme of the data processing algorithm 

First, the recorded time history of accelerations is double-integrated over time through 

eq.(1)  in order to obtain the time history of vehicle displacements. 

    0 0 0

t
x t x v t a t dt dt         (1) 

Where x(t) and v(t) are the displacement and acceleration time histories, respectively; and 

x0, v0 are the initial values of vehicle displacements and velocities. Once the vehicle 

displacements have been calculated in the time domain, they shall be transformed into the 
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frequency domain in order to allow a subsequent filtering of the data. This process is 

carried out by means of the Fourier transform in a discrete form (DFT, eq.(2) ). 

    
  2 1 1

1

i r sn
n

r

x x t e



 



    (2) 

Where coefficients r and s vary from 1 to n; and n is the total number of points in the data 

series. A high-pass filtering of the signal is then performed with the aim of removing low 

frequencies (i.e., long wavelength components), since they do not correspond to rail 

irregularities or alignment defects, but to track geometry regular variations, such as cant 

and slope changes. 

The fourth step of the algorithm deals with the vehicle-track interaction. In this phase, the 

displacements on the wheel-rail interface are calculated by solving the system of 

differential equations provided by the two-masses model of the vehicle - eq. (3) -,. The 

model explicitly accounts for the effect of the unsprung mass (i.e., wheelset) and a 

combination of sprung (i.e., car body) and semi-sprung (i.e., bogie) masses.  
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  
  (3) 

Where m1 is the unsprung mass; m2 is the combination of sprung and semi-sprung masses; 

k1 is the track stiffness; and k2, c2 are the stiffness and damping coefficients of the primary 

suspension, respectively. The recorded data have been transformed in the previous step 

into the frequency domain for filtering; and thus, eq.(3) is transformed into eq.(4) by 

means of the Fourier transform properties [5] and solved in such domain. 
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Once the rail geometry is known in the frequency domain, the results shall be transformed 

back to the time domain, which is performed by means of the inverse discrete Fourier 

transform shown in eq. (5). 

    
  1 1

2

1

1 r sn i
n

r

z t Z e
n




 




    (5) 

Finally, the rail geometry dataset in the time domain is transformed into the space domain 

by correlating its values with the locations provided by the GPS. 

3. Model validation 

In order to determine the validity of the described algorithm, a field data gathering 

campaign was carried out along a 1500 m, straight track stretch in Lonquén, Chile. The 

results provided by such method were visually and statistically compared with those 

obtained by means of a commercial tool of proven reliability (i.e., a mobile rail scanner). 

Figure 2 presents the registered rail geometry data series, which shows a good agreement 

between the new model and the commercial solution, although the signal noise presents 

a higher amplitude in the first one. For the sake of concision, only results from one rail 

are shown. On the other hand, position and magnitude of major rail defects is properly 

detected with both methods. In this regard, two significant defects are located near 

positions 755 and 1460 m, with a similar magnitude (4 - 5 mm). 

Concerning the statistical comparison, a goodness-of-fit indicator (C) has been defined 

according to eq.(6), and represents the average error with respect to a reference maximum 

value (Mref). 

 , ,1 100
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i
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i
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c M M
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n M
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

  (6) 
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Where Mnm,i and Mcm,i are the values obtained on each point i with the new method and 

the commercial method, respectively; n is the total amount of points measured; and Mref 

is a reference value of the maximum admissible deviation, set to 5 mm according to the 

manufacturer of the mobile rail scanner. It should be taken into account that allowing 

measurement errors higher than 5 mm (or within this magnitude) would “hide” the real 

defects under signal noise, thus reducing the effectiveness of the method. 

 

Fig. 2. Rail geometry data registered and processed according to the proposed 

methodology (blue); and those provided by a mobile rail scanner (green) 

An average error value C = 4.72 % has been obtained, and hence, the validity of the 

proposed methodology for the detection of rail defects and imperfections can be 

confirmed. 
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4. Conclusions 

Along this paper, a new methodology for the detection of rail defects has been presented 

and described in detail. The algorithm is based on the register of the vehicle accelerations 

along a track stretch and its later processing in order to obtain the rail geometry. It has 

been successfully validated over a 1500 m long real track stretch and constitutes a useful 

and more affordable tool for rail inspection. Further developments of this technique 

should be oriented to the refinement of data filtering (and therefore the reduction the 

signal noise), as well as to validation over longer and more complex track stretches (e.g., 

canted curves, slopes, stiffness transitions). 
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1. Introduction 

Propagation of railway-induced vibrations through the soil and its transmission to 

surrounding structures is a matter of major concern, since it may affect the operation of 

sensitive equipment or even human comfort. Therefore, a significant amount of research 

has been carried out regarding mitigation of train-induced vibrations at some point of the 

emission-transmission path: i) at the source, by preventing its generation; ii) along the 

ground, by avoiding its transmission; and iii) in the vicinity of the receiver. 

In this regard, measures adopted to interrupt the transmission path have the advantage 

that no intervention on the track is needed and multiple buildings can be benefited, if this 

measure is performed close enough to the track. Among the existing alternatives, wave 

barriers may be highlighted, since they can be implemented in any moment of the railway 

lifespan without interfering on its operation. Nevertheless, restrictions imposed by the 

environment (e.g., roads, buildings) usually exist and may considerably affect the barrier 

design. Hence, when the barrier geometry and position is restricted, the election of an 

appropriate in-fill material is of utmost importance to ensure a satisfactory performance 

of the mitigation measure. 
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On the other hand, the recycling of scrap tyres has become a viable option for sustainable 

construction in the past years by means of using recycled waste tyre rubber as an 

aggregate substitute in concrete [1]. In this sense, the addition of such particles to the 

concrete leads to a considerable reduction of its compressive and tensile strength, as well 

as an increase of its elasticity, deformability and damping. Hence, due to its excellent 

properties for vibration attenuation, such modified concretes arise as an excellent option 

for wave barrier in-fill material. Moreover, the decrease in resistance (both compressive 

and tensile) can be compensated if a certain amount polypropylene fibres is added to the 

mixture, thus reducing the main drawbacks of the new material. 

The purpose of this research project is therefore to analyse the vibration attenuation 

efficiency of a modified concrete (i.e., with added polypropylene fibres and scrap tyres 

aggregate) acting as a wave barrier in-fill material. 

2. Description of the FEM numerical model 

With the aim of analysing the efficiency of the new concrete, four scenarios have been 

proposed: a case zero with no mitigation measure; and three different configurations made 

out of the modified concrete. In this regard, a 3D FEM numerical model has been 

developed within ANSYS LS-DYNA V.14 commercial software, which has been later 

calibrated and validated with real measurements from a field experiment. The vibrational 

problem can be solved by means of the equation of motion expressed by eq.(1). 

            M C K  ü u u F t   (1) 

Where [M], [C] and [K] are the global mass, damping and stiffness matrices, respectively; 

, andü u u  are the acceleration, velocity and displacement vectors; and  F t  contains 
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the time-dependent forces, which are introduced as harmonic forces. The global damping 

matrix C is generally defined by eq.(2). 

        
1 1

nm ne

i i j
i j

C M K K C  
 
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Where α and β are the Rayleigh coefficients; and nm, ne are the total number of materials 

and elements of the system, respectively. However, for the sake of simplicity, it can be 

considered without a significant reduction of accuracy [2, 3] that the damping matrix only 

contains the stiffness term, as shown in eq.(3). 

    C K   (3) 

Where the global damping coefficient (β) is a priori unknown and should be estimated 

through the calibration process. The model global dimensions have been set according to 

[4] in order to avoid undesired wave reflection effects, and the modelling of the rail and 

the railpad has been simplified following the recommendations of [5]. It consists of a 48 

m long ballasted track stretch, with 80 wooden sleepers and UIC-54 rails. Different soil 

characteristics have been applied on the stratum located under the track and that located 

behind the barrier (see Fig. 1) to better reproduce the real field conditions. 

 

Fig. 1. Numerical mesh example (longitudinally reduced) for the hollow-block solution 
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The considered vehicle is an ALCO S321 locomotive with two bogies and 6 wheelsets 

(see Fig. 2) running at a speed of 150 km/h over the track stretch. Given the maximum 

frequency of interest (100 Hz) and the material properties (Rayleigh wave velocity) a 

minimum element size of 0.17 m has been stablished. 

 

Fig. 2. Sketch and dimensions (mm) of the ALCO S321 locomotive used for this study 

3. Considered scenarios 

Four different scenarios have been modelled in order to determine the attenuation 

effectivity of the new material: i) a zero case with no mitigation measure (C0); ii) a case 

with a solid-block wave barrier (C1); iii) a case with a hollow-block wave barrier (C2); 

and iv) a case with a 0.3 m thick wave impeding block (WIB) located beneath the 

embankment (C3). In both cases C1 and C2, the barrier is 3 m deep and is located at a 

distance of 3 m, parallel to the track. Figure 3 presents below a simplified sketch of the 

four aforementioned cases. 

 

Fig. 3. Front-view sketch of the considered scenarios: a) C0, b) C1; c) C2 and d) C3 
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4. Results 

The vertical particle velocity and acceleration time histories were obtained in 7 points 

along a line perpendicular to the track, from the rail web to the soil surface behind the 

trench. Then, the decibel scale adopted by the U.S. Department of Transportation - VdB 

and AdB - and defined by eq.(4), was applied to the data on each point. 

 , ,
10 108 8

20 log , 20 log
5 10 5 10

y rms y rms
dB dB

v a
V A    

 
  (4) 

A comparison of the results obtained for each case is presented in Fig. 4 in terms of 

particle velocities and accelerations. It shows a reduction in both parameters as the 

distance from the track increases for all the considered cases, as expected. Furthermore, 

all the proposed mitigation measures induce a reduction of vibrations in the area located 

furthest away from the track, while such reduction is generally negligible on the track 

structure (x < 3 m) except for C3. The latter is due to the mitigation mechanism of each 

solution, which is different for the vertical barriers (cases C1 and C2) and the horizontal 

WIB (case C3). 

 

Fig. 4. Velocity (left) and acceleration (right) results for all the modelled alternatives 
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Regarding the mitigation capacity of the different alternatives, both barrier cases present 

a similar behaviour, with up to 40% reduction of vertical particle velocities and up to 15% 

of vertical accelerations with respect to the case without any mitigation measure. It should 

be also noted that a minor increment in vertical accelerations is induced by all three 

alternatives (between 3% - 5%) in the zone near the track (3 m < x < 6 m), which is 

probably due to partial wave reflection on the barrier surface. Thus, it can be concluded 

that the modified concrete proposed in this paper is effective for the reduction of train 

induced vibrations, although its absolute efficiency will highly depend on the final 

constructive disposition. 
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1. Introduction 

Abrupt discontinuities in the vertical stiffness of a railway track (e.g., due to the presence 

of a rigid structure, or a connection between ballasted and non-ballasted track), generally 

induce an amplification of vibrations on both the vehicle and the track. Hence, such 

critical segments – which are commonly referred as transition zones –, are highly exposed 

to material degradation, geometry distortion and loss of passenger comfort [1]. 

In this regard, an extensive research has been performed in the last years in order to better 

understand the dynamics of track transitions as well as all the processes involved. Hence, 

diverse solutions – usually known as track stiffness transitions – have been proposed to 

provide a smoother stiffness change between track sections. However, to the best of the 

authors knowledge, no research has fully studied the effect of vehicle speed and only one 

value is generally used instead of considering a wider range [2]. 

The aim of this research is thus to explicitly analyse the effect of train speed on the 

vibration attenuation capacity of two different track stiffness transitions: a concrete slab 

wedge and a hot mixed asphalt (HMA) transition. For this purpose, a 3D FEM numerical 

model has been developed within commercial software ANSYS. It has been calibrated 
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and validated with data of a real track stretch of the high speed line Madrid-Barcelona; 

and has been later used to reproduce three different scenarios (two transition typologies 

plus a zero case without transition) and vehicle speeds (50, 160 and 300 km/h). 

2. Numerical model 

The numerical model consists of two different sub-models, namely the track-soil model 

and the vehicle model. Both the track and the soil have been reproduced using 8-node 

hexahedral elements; and the material behaviour has been assumed to be isotropic linear 

elastic, since the effect of the train does not induce large strains in the soil. Due to the 

symmetry of the problem, only half of the track has been modelled in the longitudinal 

direction z and a total model length of 54 m (90 sleepers) has been considered. The cross 

sectional (x,y) dimension is 10 m, which is enough to avoid wave reflection boundary 

problems and still involves an acceptable computational cost [3]. The boundary 

conditions have been defined as a constraint of the perpendicular displacement on each 

edging plane, according to [4]. Additionally, in order to accurately reproduce tensional 

discontinuities on the sleeper-ballast contact, it has been modelled with bounded 

perpendicular D.O.F.s. 

With the aim of simplifying. the vehicle has been reduced to a three-mass model 

(wheelset, bogie, and car-body). In this sense, point elements have been selected for 

modelling the masses, which are linked by springs and dampers reproducing the primary 

and secondary suspensions. The wheel/rail interaction is modelled as a Hertzian spring 

and a node-to-beam contact, allowing for sliding and loss of contact by means of the 

Penalty algorithm. On the other hand, a full Newton-Raphson method has been employed 

for solving the nonlinear equations, while the transient dynamic equilibrium has been 

addressed by means of a Newmark implicit time integration. 



Modelling for Engineering & Human Behaviour 2017______________________________________120 
 

A real 8-car AVE S-103 train running at 300 km/h on a real track stretch has been 

considered for the calibration of the model. The numerical results were superposed in 

order to reproduce the effect of the 32 wheelsets of the train, and four unknown 

parameters were determined through the calibration process: three Young moduli (soil, 

ballast and sub-ballast); and the stiffness matrix multiplier for damping (β). 

The model has been later validated by comparing its results with registers of another two 

AVE S-103 trains running at 300 km/h and 216 km/h. The comparison between the 

registered and calculated accelerations on the ballast layer below the sleepers is shown in 

Fig. 1, where slight differences can be seen between measured and calculated data for 

both train speeds, although maximum peaks and time-scaling are well reproduced. 

 

Fig. 1. Real (black) and modelled (grey) vertical accelerations on the ballast layer for a 

train running at 300 km/h (left) and 216 km/h (right). 

3. Considered scenarios 

In order to study the influence of vehicle speed on the performance of a track transition 

between an embankment and a culvert, three scenarios have been defined: i) an abrupt 

stiffness transition (i.e., a case 0 without any mitigation measure); ii) a concrete slab 

wedge located under the sub-ballast layer, similar to that developed in [1]; and iii) an 
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HMA wedge placed within the sub-ballast layer, designed according to [5]. In this regard, 

Fig. 2 presents a scheme of the cases with smooth transition. 

 

Fig. 2. Profile scheme of the modelled alternatives: up, concrete slab wedge; down, hot 

mix asphalt wedge 

For both scenarios, the vehicle running direction is set from the embankment to the 

structure (i.e., soft to stiff direction) since it has been found in previous studies [6] to be 

the most critical one. 

4. Results and conclusions 

A total of nine cases have been modelled, resulting from the combination of the three 

scenarios and vehicle speeds considered. The vertical particle velocity time-history has 

been extracted on the surface of 24 sleepers located close to the transition zone. Given 

the high amount of data available, the use of an indicator is employed in order to simplify 

the analysis and clarify the contribution of train speed on the performance of each 
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transition typology. Therefore, the decibel scale adopted by the U.S. Department of 

Transportation - or VdB -, which is defined by eq.(1), has been calculated on each point 

of the track. Such metric is closely related with the analysis of human comfort under 

vibrations, since it describes the smoothed vibration amplitude of the entire time history. 

 ,
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Where vy,rms is the root mean square amplitude of the particle velocity time history. 

Results are presented in Fig. 3, where the vertical black line indicates the embankment-

culvert transition section. 

 

Fig. 3. Effect of vehicle speed on soil vibrations for different transition typologies. 

It can be determined from Fig. 3 that train speed has a significant influence on the 

variation of vertical particle velocities between soft and stiff sections, which considerably 

increases for higher values of vehicle speed, and particularly for very high speeds (i.e., 

300 km/h). Such effect occurs for all the considered scenarios and is more pronounced in 

the soft section (i.e., track over the embankment). Hence, it can be concluded that placing 

a track stiffness smooth transition may only be worthwhile in high speed lines. 
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On the other hand, regarding the comparison between the analysed transition typologies, 

it can be confirmed that the concrete slab wedge induces significantly higher reductions 

of the particle velocities on the soil (more than 50% reduction in all cases, when compared 

to case zero) than the HMA wedge. Furthermore, VdB values are slightly higher for the 

HMA wedge when compared to the case without smooth transition for low and medium 

train speeds (i.e., 50 km/h and 160 km/h). Such effect may be due to the partial 

substitution of the sub-ballast layer with a layer of hot mix asphalt (significantly stiffer), 

which may cause a match between the vehicle speed and the critical speed of the system 

and hence increase the vibrational response. 
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1. Introduction 

Soil liquefaction usually takes place under conditions of rapid and intense stresses (e.g., 

earthquakes) in low cohesion soils (e.g., granular) with a high humidity content. Such 

stresses induce a severe particle relocation and thus a reduction of the effective stress (σ’), 

which according to Terzaghi’s principle (eq.(1)) results in an abrupt increase of pore 

pressures (u). Moreover, if the decrease of effective stresses is high enough, the soil will 

behave as a viscous liquid, thus losing its shear resistance. 

 ' u     (1) 

In this regard, harbour and coastal structures such as quays or breakwaters located within 

areas of high seismicity, present an elevated risk of failure due to liquefaction, since 

coastal grounds are generally formed by granular, low cohesive materials and the water 

table is situated close to or above the surface. 

However, it should also be taken into account that soil liquefaction is not an automatic 

and instantaneous process but a continuous one, which requires a certain duration and 

intensity to completely develop. Therefore, different phases (i.e., no liquefaction, partial 
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liquefaction and total liquefaction) can be distinguished [1] in the process, which would 

affect the structure in diverse manners. In this sense, modal analysis of structures arises 

as a very useful and versatile tool for the assessment of failure risk in structures subjected 

to soil liquefaction. Such technique aims to determine the degree of affection of a 

structure (and thus the risk of failure) by analysing variations in its vibrational response 

due to soil liquefaction. In this respect, laboratory scaled tests [1] have demonstrated that 

natural frequencies of the structure may suffer a strong decrease (up to 50% for total 

liquefaction), while the damping coefficient might be increased up to 20%. 

This research project takes advantage of the aforementioned knowledge in order to 

develop a methodology for the detection of soil liquefaction in harbours, based on a 

continuous monitoring of the vibrational response of the structure to be analysed. 

2. Proposed methodology 

First of all, the real-time variations in pore pressure and the vibrational response of the 

structure should be registered by placing pressure transducers and tri-axial accelerometers 

in different points of the ground and the quay. Then, if a sudden increase in pore pressure 

is detected (e.g., due to an earthquake) the degree of liquefaction will be evaluated by 

analysing the variations in natural frequencies and damping coefficient of the structure. 

To this aim, the registered values will be compared with a catalogue of different 

liquefaction scenarios elaborated prior to the operational phase by means of a numerical 

model. In this regard, a modal analysis will be carried out considering the soil-structure 

system as a simplified Winkler beam model (see Fig. 1). 
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Fig. 1. Simplified Winkler beam model of the soil-structure system 

The model reproduces the effect of the soil surrounding the structure as a group of non-

linear elastic-plastic springs with variable stiffness (i.e., depending on the liquefaction 

depth and intensity given by the pressure transducers), while the dissipation effect of the 

water table is modelled by means of dampers with a certain viscosity [1, 2]. The election 

of a non-linear model for the springs allows to consider plasticising of the soil, while the 

structure materials can be considered elastic linear without substantially diminishing the 

accuracy of the model. 

2. Model validation 

Because of the inherent uncertainty in terrain mechanical properties, model calibration 

and validation became an important phase of the research. In order to ensure about the 

adequate behaviour of the model, two different extreme scenarios were processed: infinite 

and zero support stiffness. This provided the range of maximum and minimum first 

natural frequencies of the structure independently of the liquefaction.  Both were 2.31 Hz 

and 3.85 Hz, which are inside the typical range in this sort of structures.  

After validation, the initial ground stiffness was estimated using real field measurements 

of accelerations – determine spring constants [49,14 MN/m] -. 
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3. Cases of study 

Eight different cases of study were studied, corresponding to eight different levels of 

liquefaction [0,2,3,4,...,7 m].  

 
 

Fig. 2 Different liquefaction levels scheme.  

Variation in three first vibration modes (long. translation, transversal translation, 

torsion) was studied for each liquefaction level.  

3. Numerical model results  

Obtained results for non-liquefaction case are:  

 
Chart 1: Modal freq. for three first vibration modes in non-liquefied foundation. 

 

 And estimated variation for each mode and level of liquefaction:  

 
Fig. 3 : Evolution of modal freq. for 1st mode (left), 2nd mode (centre) and 3rd mode 

(right) vs liquefaction level. 
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3. Field test results  

Regarding non-liquefied case, results obtained from frequency domain analysis of 

vibrations showed following frequencies for three first modes:  

 
Chart 2: Numerical model vs. field test frequencies.  

 
4. Conclusions 

Proposed methodology for liquefaction monitoring based on variation of first natural 

frequencies of the structure allowed to identify and quantify this phenomena.  

Comparison between numerical modelling of a quay structure and its foundation with 

modal analysis carried out and field test vibration analysis in frequency domain showed 

that is possible to estimate with live data the liquefaction level on an offshore structure 

with an acceptable accuracy – less than 20% error in higher modal frequencies [3]-.  

In addition, it is possible to delimit maximum deviation assumed by applying this 

methodology. Extreme values of infinite and zero soil stiffness allow to obtain maximum 

and minimum possible frequencies range. Thus, it eases results interpretation when 

estimated stiffness value is fixed and cooperates to perform more accurate models.  

It is also showed how natural frequencies decrease with soil stiffness leakage due to 

liquefaction phenomena and how is it possible to apply accelerometers distributed in the 

structure to identify modal parameters which depend on soil mechanical properties.  
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1. Introduction 

Belt conveyors are commonly used as continuous transport equipment in industries, since 

they present a high efficiency, large capacity, simple construction, and do not require 

intense maintenance works. Moreover, they constitute a key element of the entire 

industrial process; and a severe failure of one conveyor may result into a stop of 

production. On the other hand, one of the most frequent reasons for rotating machinery 

breakdown is deterioration of the rolling element bearings (REB) [1]. 

Traditional maintenance techniques (e.g., corrective maintenance, preventive 

maintenance) generally involve substantially higher costs and may even reduce the 

production capacity in case that a critical failure occurs. In this context, predictive 

maintenance techniques based on a continuous monitoring of each component, arise as a 

more efficient and cost-effective solution (i.e., maintenance tasks are performed only 

when necessary). 

Among such techniques, those based on a vibrational analysis of the conveyor 

components (e.g., FFT and envelope demodulation) permit a real-time, simple and 
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accurate detection of a wide variety of failure typologies [2]. However, REB vibratory 

signals are non-stationary, non-linear and relatively weak, which makes them susceptible 

of being masked by stronger signals, such as the noise generated by other components. 

Consequently, the aim of this research project is to develop a high precision system for 

early prediction of failures and deterioration of industrial conveyor bearings. Moreover, 

the methodology is applied to a field case study to analyse the state of an industrial 

conveyor. 

2. Proposed methodology 

In order to evaluate the real-time state of conveyor bearings, the acceleration time-

histories of the key components of the conveyor are first registered during operation, by 

means of tri-axial accelerometers. Such registers should be then analysed, and an 

algorithm has been developed for this purpose consisting of two different phases: a pre-

processing module and a processing module (see Fig. 1). 

 

Fig. 1. Scheme of the proposed algorithm 

First, the pre-processing module separates and eliminates the noise from the bearing 

vibratory signal by means of a self-adaptive noise cancellation (SANC) filter with a 

normalised least mean square (NLMS) learning algorithm. The SANC filter permits the 
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separation of a signal in two components; one of them deterministic (in this case, the 

bearings vibrational response) and the other, non-deterministic (the noise) [3]. To this 

aim, a delayed version of the input signal is processed with a transversal filter and 

subtracted from the input signal to estimate a prediction error [4]. Then, the transversal 

filter weights are adaptively adjusted (by the NLMS algorithm) so as to minimise the 

output error. 

In a second phase, the processing module (which is based on the envelope method) 

analyses the signal and determines the bearing deterioration. First, the clean vibratory 

signal of the conveyor bearing is introduced and the envelope is calculated by means of 

the Hilbert transform. The envelope is later transformed into the frequency domain by 

means of the Fast Fourier Transform (FFT). This process intensifies the main components 

of the dynamic signal, which permits a simpler and more precise analysis of the machine 

vibratory pattern. 

Finally, the algorithm compares the registered pattern with that of a bearing with a certain 

failure and determines the state of the monitored element. A failure pattern catalogue 

should be thus introduced in the system prior to the operation phase for an adequate 

identification of bearing pathologies. 

3. Case study 

The proposed methodology has been implemented in Matlab® computing environment 

and has been later applied to the analysis of a field case study. In this regard, different 

elements of an A-800 L-1076-EH industrial conveyor were monitored on a mineral 

aggregate production plant in Murcia, Spain. To this aim, vibrations were registered on 

the head and tail drums as well as on an intermediate roller (see Fig. 2) by means of three 

ADXL345 digital accelerometers connected to Arduino controllers. 



Modelling for Engineering & Human Behaviour 2017______________________________________133 
 

 

Fig. 2. Disposition of accelerometer groups along the industrial conveyor for the model 

validation: on the tail drum, left; on a roller, centre; on the head drum, right. 

The acceleration registers showed that the principal vibrations occur in the vertical 

direction and therefore, only the measurements related to such directions will be analysed 

in the following. In this sense, Fig. 3 presents the row data (in both time and frequency 

domains) obtained from the head drum during a time lapse of 10 s, together with the 

processed results (i.e., filtered data and envelope). 

 

Fig. 3. Acceleration registers from the head drum: a) row data in the time domain; b) 

row data in the frequency domain; c) filtered data; d) envelope 
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Furthermore, it should be noted that the results of the roller and the tail drum are omitted 

in this paper for the sake of concision, since they show a similar behaviour to those of the 

head drum. Regarding the later, the filtering process eliminates the signal noise contained 

in Fig. 3b, which leads to a clean vibrational signal describing the state of the component 

(Fig. 3c). Then, the processing module obtains the envelope (Fig. 3d) by means of the 

Hilbert transform. The yellow line on Fig. 3d is a user-input threshold value related to 

each conveyor component failure mode. For its determination it is necessary to carry out 

a preliminary analysis on the conveyor in order to determine the magnitude of the 

frequency peaks associated to each type failure (i.e., elaborate a failure catalogue). 

Once the envelope has been calculated and the threshold value has been stablished, the 

algorithm evaluates the number of times that each frequency overcomes the threshold. 

The later permits to determine if it is due to a random event (no repetition) or if it is 

related to a failure of the component (periodically repeated). In this case, the algorithm 

detects several frequency values surpassing the threshold, although all them are 

associated to random events, since the y do not present repetition (see Fig. 4). 

 

Fig. 4. Repetition of the frequencies surpassing the threshold 
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4. Conclusions 

Along this paper, a highly precise new methodology has been developed for the predictive 

maintenance of industrial belt conveyors. The system consists of registering the real-time 

accelerations of the different components of the conveyor. Then, the row data are 

transformed into the frequency domain for filtering and the envelope of the signal is 

obtained. The last step is the comparison of the envelope with a user-introduced failure 

threshold (to be obtained in advance), which determines the actual state of the conveyor 

component. A field case study on a real industrial belt conveyor has been presented in 

order to illustrate an application of the proposed methodology. 

References 

[1] Ben Ali, J., Fnaiech, N., Saidi, L., Chebel-Morello, B., and Fnaiech, F. Application 

of empirical mode decomposition and artificial neural network for automatic 

bearing fault diagnosis based on vibration signals. Applied Acoustics, 2014. 89: p. 

16 - 27. 

[2] Dybala, J. and Zimroz, R. Rolling bearing diagnosing method based on Empirical 

Mode Decomposition of machine vibration signal. Applied Acoustics, 2014. 77: p. 

195 - 203. 

[3] Starr, A. and Rao, B.K.N. Condition Monitoring and Diagnostic Engineering 

Management. in COMADEM. 2001. Manchester, UK. 

[4] Antoni, J. and Randall, R.B. Unsupervised noise cancellation for vibration signals: 

part I - evaluation of adaptive algorithms. Mechanical Systems and Signal 

Processing, 2004. 18(1): p. 89 - 101. 

 

 



Modelling for Engineering & Human Behaviour 2017______________________________________136 
 

Effect of mixture gradation and thickness on the cooling 

process of hot mix asphalts 

Julia Real Herráiz1*, Beatriz Baydal Giner2, Miriam Labrado Palomo3, Adrián Zornoza Arnao4 

1, 2, 3, 4 Institute of Multidisciplinary Mathematics, Polytechnic University of Valencia, Camino de Vera, 

46022 Valencia, Spain 

*Corresponding author. E-mail: jureaher@tra.upv.es. Telephone: +349638770000 

1. Introduction 

One of the most important factors affecting the design and performance of hot mix asphalt 

(HMA) pavements is to ensure an adequate compaction of the mixture, since it controls 

the resulting quality (e.g., high durability, absence of irregularities). In this sense, several 

parameters influence the compaction process, such as pouring temperature, base typology 

and bitumen content. Among them, pouring temperature is of major concern, since it 

governs the compaction process and therefore determines the final quality of the product. 

Nevertheless, given that mixture temperature is generally much higher than the ambient 

one, it tends to rapidly decrease (especially for the case of thin asphalt layers), thus 

shortening the available compaction time [1]. Moreover, the cooling process does not take 

place homogeneously along the entire thickness, being more accelerated on the lower 

layers (i.e., those located right over the base) than close to the free surface [2]. In this 

regard, the thermal properties of the mixture, which strongly depend on its gradation [3], 

can be modified in order to increase the cooling time and ease the compaction process. 

Hence, the purpose of this research work is to analyse the effect of varying the layer 

thickness and mixture grading on the cooling process of an HMA pavement. 



Modelling for Engineering & Human Behaviour 2017______________________________________137 
 

2. Description of the model 

In order to reproduce the cooling process of an HMA pavement, a 3D FEM model has 

been developed within ANSYS commercial software, and 10 different combinations (two 

mixture gradings and five pavement thicknesses) have been modelled. Concerning the 

HMA mixtures, two typologies with very different grading have been studied: 

 Stone mastic asphalt (SMA). A gap-graded HMA designed to maximize durability 

and deformation resistance by using a structural basis of stone-on-stone contact. 

 Asphalt concrete (AC) with a 90% of 16 mm passing aggregate (AC16) 

On the other hand, the selected thicknesses for the pavement layer (h) are 2, 4, 5, 8 and 

10 cm, placed over a 22 cm deep soil-cement base, a 40 cm deep sub-base, and a 60 cm 

deep embankment (Fig. 1). Additionally, the model is 2 m wide (i.e., in the transversal 

direction of the road) and 5 m long (i.e., in the longitudinal direction). 

 

Fig. 1. Road section modelled in ANSYS 

Tri-dimensional 8-node elements SOLID70 with thermal conduction capability have been 

used for modelling the solid materials; while the HMA-air interface is reproduced by 

means of bi-dimensional SURF152 elements.  
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3. Analysis of results 

A transient analysis has been carried out with a total cooling time of 5 h; and the initial 

temperatures for the mixture and the soil-air environment have been set to 140 ºC and 25 

ºC, respectively. Moreover, the variation of density, thermal conductivity and specific 

heat of both mixtures due to temperature fluctuation has been accounted (see Table 1). 

Table 1. Thermal properties considered for the study 

Layer Density [kg/m3] K (W/mK) Cp [J/kgK] 

AC16 

25 ºC 2372 2.5 659 

50 ºC 2370 2.1 779.5 

75 ºC 2368 1.9 900 

SMA 

25 ºC 2297 1.81 1116 

50 ºC 2295 1.63 1240 

75 ºC 2293 1.45 1364 

Base 2000 1.4 1050 

Embankment 2000 0.77 920 

Air - 0.0257 1005 

 

 As an example of the results obtained, Fig. 2 presents the temperature evolution over the 

first 3 h of a 4 cm thick AC16 mixture (left) and a 4 cm thick SMA mixture (right). The 

temperature has been calculated in three different points: i) on the open surface of the 

mixture (green line); ii) on the mixture-base interface (blue line); and iii) on the base (red 

line). The figure shows a similar tendency for both mixtures, which rapidly cool during 

the first 30 – 60 minutes, although the process is considerably longer (3980 s vs. 7200 s) 

and the equilibrium temperature, higher (64.5 ºC vs. 67.1 ºC) for the SMA.  
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Fig. 2. Temperature evolution during the cooling process of a 4 cm thick AC16 (left) 

and SMA (right) mixtures 

In order to simplify the comparison process between different mixture gradations and 

thicknesses, the aforementioned indicators (i.e., equilibrium temperature and the time to 

reach it) have been calculated for all the considered combinations and are presented in 

Fig. 3. Moreover, the maximum thermal amplitude in the mixture layer (i.e., maximum 

temperature difference between a point on the mixture surface and one in the base-mixture 

interface) and its time of occurrence have also been obtained and are shown in the figure. 

 

Fig. 3. Evolution of the equilibrium temperature (left) and maximum thermal amplitude 

in the asphalt layer (right) for different mixture gradings and thicknesses 
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As can be seen in Fig. 3, both the equilibrium temperature and the time necessary to reach 

equilibrium in the asphalt layer invariably increase with layer thickness. However, while 

such increment is roughly linear regarding time, the equilibrium temperature presents a 

more abrupt growth from 2 cm to 4 cm and becomes approximately linear for larger 

thickness values. Furthermore, the gap-graded asphalt mixture (SMA) presents higher 

equilibrium temperatures and longer times for all the considered thicknesses. Therefore, 

it can be concluded that increasing the layer thickness or using gap-graded mixtures may 

lead to a considerably higher quality of the compaction process. 

On the other hand, the maximum thermal amplitude within the asphalt layer also increases 

with thickness, which may contribute to a poor compaction. Nevertheless, it tends to 

stabilize for higher thickness values (8 cm onwards for AC16 and 5 cm onwards for 

SMA). In this regard it should be pointed out that the gap-graded mixture presents a better 

behaviour (i.e., lower thermal amplitude values) than the AC16 for thick layers (8 cm and 

10 cm). 

4. Conclusions 

In this paper, the effect of layer thickness and mixture grading on the cooling process of 

a hot mix asphalt has been explicitly evaluated. For this purpose, a 3D FEM numerical 

model of a standard road section has been developed within ANSYS commercial 

software. Five different layer thicknesses (2 – 10 cm) and two mixture gradings (AC16 

and SMA) have been modelled, from which the following conclusions may be drawn: 

 An augment in layer thickness invariably increases both the equilibrium 

temperature and time. 
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 A gap-graded asphalt mixture (such as the SMA) presents higher equilibrium 

temperatures and longer times for all the considered layer thicknesses thus 

enhancing the quality of the compaction process. 

 The maximum thermal amplitude within the asphalt layer increases with layer 

thickness up to a value that depends on the mixture type (5 cm for SMA and 8 cm 

for AC16) from which it stabilizes. 

 The gap-graded mixture presents lower thermal amplitude values than the asphalt 

concrete for large values of layer thickness. 
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1. Introduction 

Ballasted high speed railway lines might eventually experience a phenomenon known as 

flying ballast (or ballast projection). It consists of ballast particles becoming airborne 

under the effect of a running train, and may lead to safety and management problems on 

both the rails and the vehicle [1]. In this regard, the aerodynamic field generated between 

the track and the rolling stock plays a key role, being able to set in motion the ballast 

particles under certain circumstances [2]. Such displacements may be either superficial 

or aerial and derive into new particle projections (i.e., by colliding with nearby particles), 

thus amplifying the phenomenon. 

A considerable amount of scientific research has been carried out in the recent years in 

order to study the processes involved as well as to propose mitigation measures, 

concluding that the problem can be addressed either by acting on the vehicle or the track 

aerodynamics (or on both). In this sense, the present research project aims to develop a 

new heavy ballast, made out of concrete and other high-density recycled materials, to be 

less prone to suffer the flying ballast phenomenon. Within this project, the new material 
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has been numerically and physically modelled in order to better know its behaviour, test 

its efficiency and determine the most convenient design parameters. 

The numerical modelling of the new ballast behaviour under the passage of a high speed 

train has been divided in two clearly differentiated segments: i) the aerodynamic 

interaction between the track (i.e., ballast, rails and sleepers) and the vehicle, which 

determines the initiation of motion of the ballast particles; and ii) the mechanical 

behaviour of the ballast (accounting for its nature as a discrete medium) under the 

vibrational and aerodynamic excitation induced by the train. 

This paper describes a simplified aerodynamic model of the vehicle-track system, which 

is able to reproduce the air flux generated in the vicinity of the upper ballast layer due to 

the relative train-track displacement. It is later used to obtain the averaged aerodynamic 

loading (velocity profile and turbulence) induced on the ballast particles after several train 

passages, by means of a CFD (computational fluid dynamics) numerical model and field 

measurements from [3]. Such loads shall be later introduced in a DEM model of the track 

for the entire flying ballast phenomenon to be modelled [4]. 

2. Description of the model 

The model is based on the hypothesis that the air flux between the train and the ballast 

can be assimilated to a developed turbulent Coulette flux [1] with certain added 

particularities such as: i) periodical variability of the planar distance due to the presence 

of sleepers and irregular vehicle geometry (e.g., train equipment, car-car connections); 

and ii) development of a boundary layer starting from the train nose and extending along 

the nearby region, which moderates the air flux along the first meters (typically 25 m). 
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Prior to the development of the model, the reference system (x,y,z) and main planes (top 

of rail -TOR-, top of sleeper -TOS- and top of ballast -TOB-) shall be identified. In this 

regard, Fig. 1 presents a schematic description of the aforementioned elements. 

 

Fig. 1 Scheme of the reference system and main planes 

Measurements from previous field data gathering campaigns showed that the maximum 

train-induced pulling velocities (and thus the maximum aerodynamic loading on the 

ballast particles) occur in the central area of the track (y = 0). Hence, the simplified model 

has been developed to predict the air flux in such zone and initially, on a point between 

two sleepers (x = 0). The selection of a position in z of for the model definition should 

take into account that the area of interest is that where the ballast particles are more 

susceptible of suffering the flying ballast phenomenon (i.e., those directly exposed to the 

air flux). Given the standard dimensions of a high speed railway line, the minimum 

reference z value (zBS) can be defined between two sleepers (-1.5 < x < 1.5) by eq.(1). 

  
1.050 1

0.875 1 1.5
BS

x
z x

x

  
  

  (1) 
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The simplified flux model will be therefore calculated only in the area of occurrence of 

the phenomenon (zTOR < z < zBS). In this regard, for any magnitude φ, the averaged phase 

value at x = 0 can be expressed as: 

    0
0, , ,z t z t    (2) 

For a given value of x, the temporal modulation of averaged magnitudes is strongly 

correlated and hence, the spatial (z) and temporal (t) dependences of eq.(2) can be 

separated in two components, as in eq.(3). 

      0 00
,z t f z g t      (3) 

Averaging eq. (3) along a certain period such as the entire passage of a train (denoted), it 

is possible to reduce it to eq.(4). 

    0 0
,f z z t    (4) 

Where the averaged function is denoted by an overbar and given that the time-averaging 

of  0 1g t  . Considering eqs. (3) and (4), the simplified flux description in a point 

different to x = 0 (e.g., over the sleeper in x = ± 1.5) can be done by means of a correction 

function  1 ,f x z , which leads to eq.(5). 

          1 1 00
, , , , ,x z t f x z z t f x z f z         (5) 

And therefore, 

    
 1

0

, ,
,

x z t
f x z

f z



   (6) 

Where  1 0, 1f z   for any magnitude φ. Moreover,  1 ,f x z  can be obtained either 

through field measurements in different points of the track (i.e., varying x) or by CFD 
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modelling of the entire flux field along a simplified train-track geometry. Once the 

correction function is known, the calculation of the phase-averaged field of any fluid 

variable can be done by means of eq.(7). 

        1 0, , , ,x z t f x z f z g x t        (7) 

3. Model calibration and validation 

The model calibration and validations has been performed by means of a combination of 

CFD modelling and real field data from a gathering campaign. In this regard, the fluid 

variables considered have been the phase-averaged axial fluid velocity its fluctuations (u 

and u’, respectively). The functions  0uf z  and  0 'uf z , which refer to the field on a 

central point between two sleepers (x = 0) have been calculated and compared with both, 

experimental measurements and results from CFD modelling (see Fig. 2) in order to 

determine the accuracy of the simplified analytical model. The comparison shows a good 

agreement between both real data and CFD model results with the analytical functions 

and therefore, the proposed model can be considered valid for estimating the fluid field 

in a point located in the centre between two sleepers. 

 

Fig. 2. Comparison of the analytical functions  0 ,uf x z  -blue- and  0 ' ,uf x z  -red- with 

real track measurements (left) and CFD modelling results (right). 
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On the other hand, the correction functions  1 ,uf x z  and  1 ' ,uf x z cannot be directly 

obtained from the analytical model without data provided by numerical simulations or 

real measurements. In this sense, a comparison between both methods is shown in Fig. 3 

for a point located on a sleeper, with the aim of verifying the accuracy of numerical 

results, which can be obtained in a considerably simpler, faster and less expensive 

manner. In general terms the comparison proves that although the CFD model does not 

perfectly reproduce the real measurements, it presents a maximum deviation of 10% and 

therefore can be considered a valid tool for the estimation of the correction functions. 

 

Fig. 3. Correction functions obtained through CFD modelling and experimentally 
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1. Introduction 

The projection of ballast particles due to the aerodynamic field generated by the 

circulation of a train is an issue of major concern for high speed line managers, since it 

may lead to severe safety and maintenance problems [1]. Hence, a significant research 

effort has been done in the recent years to better understand the processes involved as 

well as to propose solutions to reduce the incidence of such phenomenon. 

In this sense, the present research project is aimed to develop a new type of ballast made 

out of modified concrete and high-density recycled materials. Therefore, numerical and 

physical modelling has been performed in order to test the behaviour of the new material 

under flying ballast conditions, as well as to determine the most convenient design 

parameters. Regarding the numerical modelling, it has been divided in two different 

segments: i) the aerodynamic interaction between the track and the vehicle, which 

determines the initiation of motion of the ballast particles and is described in detail in [2]; 

and ii) the mechanical behaviour of the ballast (accounting for its nature as a discrete 

medium) under the vibrational and aerodynamic excitation induced by the train. 
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2. Numerical model 

This paper delves into the second segment and thus describes in detail the modelling of 

the ballast particles under certain aerodynamic loading conditions by means of a DEM 

(discrete element method) model developed within YADE-DEM commercial software. 

Such technique is based on the discretization of the material in a group of independent 

elements, which allows to accurately reproduce the discontinuous and heterogeneous 

nature of ballast. Once the model is defined, a sensitivity analysis has been performed 

regarding several key parameters. 

 Geometry of the modelled particles 

It has been found that the most adequate solution (taking into account both computing 

resources and accuracy of results) is to combine several assemblages of 5 to 7 spherical 

elements with different radius, so that the grading of the final aggregate fulfils the official 

regulations for high speed railway lines. 

 Settlement of the particles after placement 

In this regard, two cases have been modelled: i) considering only the action of gravity on 

the ballast particles; and ii) considering the application of an additional compaction force. 

Results show that the later induces an unrealistic settlement of the modelled particles, 

creating a flat surface that does not correspond to that of real ballast. Hence, only the 

action of gravity is considered hereafter. 

 Size and length of the model 

Three different thickness of the ballast layer (15, 40 and 60 cm) and two model lengths 

(0.6 m and 10 m) have been tested in order to determine the effect on the accuracy of the 

results. In this sense, a 40 cm thickness of the ballast layer, which fulfils the official 

requirements for high speed lines, produces accurate results within an acceptable 
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computational effort. On the other hand, although a 10 m model length yields to very 

precise results, it also requires unaffordable computation times and thus several random 

shorter segments (0.6 m long each) have been considered instead. The width of the model 

has been set to 1.435 m for all the cases. 

The conclusions drawn from the sensitivity analysis are of utmost importance for the 

optimization of the numerical modelling of the entire phenomenon, which has been later 

performed to determine the optimal shape of the new ballast material. In this concern, 

the projection of a spherical particle over a 0.6 m ballasted track segment has been 

reproduced (see Fig. 1). Nine different configurations have been modelled by combining 

three flying particle weights (100 g, 150 g and 200 g) and three ballast particle shapes 

(conventional, cubic and spherical). It should be noted that the term “ballast particle 

shape” refers to the form of the entire assemblage representing each ballast particle, not 

to the individual elements conforming such assemblages (which are spheres in all cases, 

as concluded from the sensitivity analysis). Moreover, the conventional shape refers to 

that characteristic of crushed ballast. The coding of the cases is as follows: a letter A, B 

or C is related to the projected particle weight, while the number 1, 2 or 3 refers to the 

ballast shape in the aforementioned orders (e.g., B2 means 150 g and cubic shape). 

 

Fig. 1. Modelling of a spherical particle projection over a track segment with different 

ballast particle shapes: a) conventional; b) cubic; c) spherical. 



Modelling for Engineering & Human Behaviour 2017______________________________________152 
 

3. Results 

With the purpose of analysing the effect of ballast shape in the flying ballast process (and 

thus determine the most appropriate shape for the new ballast material), the velocity and 

position on the longitudinal (x) direction of the projected particle has been calculated for 

each case for both the aerial and superficial transport phases.  

In this regard, Fig. 2 presents the results for a 150 g spherical particle projected over a 

track segment with conventional-shaped and cubic-shaped ballast particles (i.e., cases 

B1 and B2, respectively). The initial velocity of the projected particle has been 

considered to be 1 m/s and its starting position is the centre of the first sleeper (x = 0.108 

m) in all the scenarios. The abrupt decrease in particle velocity occurring after 0.15 s in 

case 4 (left) and 0.10 s in case 5 (right) marks the moment when the particle impacts the 

ballast and the superficial transport phase starts. 

 

Fig. 2. Particle velocity and position for cases B1 (left) and B2 (right) 

On the other hand, Fig. 3 presents the results obtained in cases A3 and C3, which 

respectively correspond to a 100 g and 200 g particle projected over a track segment with 

spherical-shaped ballast particles. 
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Fig. 3. Particle velocity and position for cases A3 (left) and C3 (right) 

Regarding the results shown in Fig. 2 and Fig. 3, it can be concluded that cubic-shaped 

ballast reduces the particle displacement in both the aerial and superficial transport 

phases, when compared to the conventional-shaped ballast. Moreover, an increment of 

the projected particle weight does not necessarily reduce its displacement along the 

ballast layer. Although for the sake of succinctness, only the results from cases A3, B1, 

B2 and C3 have been graphically presented in the paper, an accurate analysis of the 

process should also account for the other 5 modelled combinations. Therefore, a 

complete overview of the 9 cases is presented in Table 1, where several relevant 

parameters (e.g., aerial and superficial displacements, impact time) are indicated. 

Table 1. Summary of the numerical modelling results 

Case 
Aerial transport phase Impact Superficial transport phase 

Pos. [m] Displacement. [m] Time [s] Pos. [m] Displacement [m] 

A1 0.250 0.142 0.143 0.254 0.004 
A2 0.183 0.075 0.078 0.144 0.039 
A3 0.281 0.173 0.175 0.246 0.035 
B1 0.249 0.141 0.142 0.288 0.039 
B2 0.185 0.077 0.079 0.143 0.042 
B3 0.279 0.171 0.169 0.248 0.031 
C1 0.246 0.138 0.145 0.262 0.016 
C2 0.183 0.075 0.076 0.153 0.030 
C3 0.279 0.171 0.162 0.249 0.030 
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As shown in Table 1, the track segment modelled with cubic-shaped ballast particles 

presents the lowest displacement values (up to 35% lower) during the aerial phase and 

the highest ones during the superficial phase for all the considered particle weights. On 

the other hand, the spherical ballast induces the largest aerial displacements, while the 

conventional one presents the lower superficial values for all the modelled weights. 

Nevertheless, the lowest total displacement (i.e., accounting for both phases) is achieved 

with cubic-shaped ballast, with an average 30% reduction respect to the conventional-

shaped particles and 45% respect to the spherical ones. 

4. Conclusions 

With the aim of studying the flying ballast phenomenon, a 3D DEM numerical model has 

been presented in this paper and a sensitivity analysis has been carried out to determine 

the most appropriate model parameters to provide accurate results within an acceptable 

computation time. Furthermore, the model has been used for analysing three particle 

shapes for a new ballast under diverse conditions. The major conclusion of such analysis 

is that the cubic-shaped particles arise as the most convenient ones for the new material, 

since they provide 30% to 45% lower displacement values than the other two alternatives. 
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1. Introduction 

Properly scheduling maintenance and conservation tasks of a tunnel is a matter of utmost 

importance in order to ensure its adequate functioning, safety and reliability. In this 

regard, the most usual maintenance strategy is preventive maintenance, where cyclic 

conservation tasks are scheduled based on the analysis of historical repair data [1]. 

However, such approach cannot prevent unexpected system failures and generally implies 

unnecessary maintenance, since it does not take into account the current health state of 

the structure, which considerably increases maintenance costs. On the other hand, 

corrective maintenance is another widely used strategy, where the scheduling of repair 

and conservation tasks is done after a failure has been detected. Such technique usually 

involves significant costs and reduces the capacity of the infrastructure, since major repair 

tasks may be expensive and even require the closure of the tunnel. 

Therefore, with the aim of overcoming the drawbacks of the aforementioned 

methodologies, predictive maintenance arises as a more efficient technique accounting 

for the real-time health state of the structure. It consists of a continuous monitoring of the 

tunnel, which allows to evaluate its health state and thus the need of maintenance before 
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the occurrence of a failure. Furthermore, it should be taken into account that the 

conservation of the concrete revetment is one of the most important tasks among those 

composing tunnel maintenance, since this region of the structure is more vulnerable to 

critical failures [2]. 

In this regard, a methodology has been developed within this research project for the 

predictive maintenance of tunnels based on acceleration registers measured on the 

concrete revetment of the structure. 

2. Proposed methodology 

For this purpose, tri-axial accelerometers should be placed on the most vulnerable 

locations (to be determined depending on the typology of the tunnel section) of each 

instrumented section. Then, the time history of accelerations is transformed into the 

frequency domain by means of a discrete form of the Fast Fourier Transform (FFT, see 

eq.(1)) and the peak picking method can be applied. 

    
  2 1 1

1

i r sn
n
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


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Where coefficients r and s vary from 1 to n; and n is the total number of points in the data 

series. Once in the frequency domain, a low-pass filtering of the signal is performed with 

the aim of removing high frequencies out of the range of interest (0 – 100 Hz). 

The next step is the application of the peak picking method, a technique based on the 

hypothesis that the dynamic response of the resonance peaks is determined by a single 

mode, which is valid for low damping structures (e.g., concrete) and sufficiently separated 

modes [3]. Hence, the Power Spectrum Density (PSD) is obtained from the data series in 

the frequency domain and the average normalized PSD value (ANPSD) is calculated for 
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every instrumented section of the tunnel. According to the method, if a variation is 

detected on the first frequency peak of a certain tunnel section, it can be concluded that 

such section presents damage. 

Once the damaged sections have been identified, the PSD ratio (RPSD) is calculated, 

which permits the classification of the damage into four different categories depending 

of its variation: i) no defect if the variation is close to zero; ii) presence of cavities or lack 

of thickness if it is constantly negative; iii) perimeter crack if it is constantly positive; and 

iv) radial crack if the variation does not present a clear trend and oscillates around zero. 

Finally, the location and magnitude of the damage can be determined by comparing the 

acceleration measurements on the studied section with the results provided by a 2D 

Distinct Element Method (DEM) numerical model. To this aim, a variety of cases 

comprising different damage typologies, magnitudes and positions should be executed 

and analysed prior to the implementation of the method, thus creating a wide damage 

catalogue valid for any section of the tunnel. 

Such numerical technique considers materials as a group of individual particles, thus 

permitting independent displacements and rotations of each one, as well as the occurrence 

of new contacts/loss of contact between them. Therefore, it constitutes an excellent tool 

for the numerical modelling of cases where discontinuities appear on the material as a 

consequence of the deformation process. The Mohr-Coulomb criteria and the Coulomb 

sliding criteria have been adopted for the modelling of the mechanical behaviour of the 

rock and the rock-revetment interface, respectively. Moreover, a Rayleigh damping 

coefficient of 1-2% and viscous boundary conditions have been considered in order to 

accurately reproduce real materials and avoid boundary reflections. 
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3. Cases of study  

Approached casuistry is based on different three different type of defects performance: 

longitudinal cracks, circumferential cracks and cavity. Thus, variables of study are, for 

each defect, location, depth (only in cracks), amplitude angle (cavity and circumferential 

cracks) and growing direction (back-through-inside / inside-through-back in longitudinal 

cracks and cavities). This results in 26 different scenarios (25 damaged plus 1 undamaged 

as reference).  

3. Results and discussion 

 Logarithmic normalization of RPSD (NRPSD) was established in order to enable an 

adequate comparison between different direction RPSD – which often differ in more than 

one order of magnitude -. 

 
Fig. 1: Example of RPSD circumferential/radial (top left), NRPSD (c/r) vs frec. (bottom left) and averaged NRPSD 

(right).  
 

NRPSD histograms were compared in order to characterize the influence of each defect 

properties and establish a behaviour pattern for its identification.  

 For longitudinal cracks, depth increase is proportional to RPSDC/R increase (i), invert 

growing direction also inverts the sign of  RPSDC/R (ii), inside-to-back direction 

originates greater absolute RPSDC/R  values  than backwards (iii).   
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Fig. 2:Defect parameters influence on  NRPSDC/R comparison.  

For circumferential cracks: major amplitude increases RPSDC/R values (iv); usually, 

glade accelerometers will detect more intensity signal (RPSD) than keystone ones (v); 

as crack location depth increases, as higher difference values between glade and 

keystone RPSD are obtained (vi); circumferential cracks cause major absolute values of 

RPSDC/R than  longitudinal ones (vii). 

For cavities: which are located on the inside surface of lining, keystone sensor will 

register more intense signal than gable one (viii); RPSDC/R increases with cavity 

amplitude angle as also occurs in circumferential cracks (ix);   
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4. Conclusions  

In this paper, 26 different scenarios have been approached to analyse the influence of 

different parameters which define the defect location and magnitude. One of this 

scenarios correspond to undamaged section and was used to calibrate a 2D DEM model 

which was used after to replicate 25 alternatives of damage based on three most common 

defect types: longitudinal cracks, circumferential cracks and cavities.   

A damage indicator based on the relationship between different directions 

(Circumferential [C], Radial [R] and Longitudinal [L]) stiffness (RPSD) was used.  

Exposed methodology enables to detect, identify, quantify and gives an approximated 

location of three different types of defects in tunnel lining using only a couple of 

accelerometers per section.  

5. References 

[1] Lee, D. and Pan, R. Predictive maintenance of complex system with multi-level 

reliability structure. International Journal of Production Research, 2017: p. 1-17. 

[2] Yuan, Y., Jiang, X., and Liu, X. Predictive maintenance of shield tunnels. 

Tunnelling and Underground Space Technology, 2013. 38: p. 69 - 86. 

[3] Freire, C. Implementación y validación del método mejorado de descomposición 

en el dominio de la frecuencia (EFDD) para la identificación de los parámetros 

modales de estructuras genéricas utilizando ruido ambiente. Estudio del rango de 

aplicabilidad en función del modelo estructural y las condiciones de uso, 2011, 

Universidad de Las Palmas de Gran Canaria: Spain. 

 



Stability of parametric family of iterative
methods for root-finding ∗
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1 Introduction

Nonlinear systems F (x) = 0, where F : D ⊆ Rn → Rn, n ≥ 1, is a nonlinear
function defined in a convex set D, are often used for modeling real problems
arising in science and engineering as, for example, in the analysis of dynamical
models of chemical reactors, preliminary orbit determination of satellites, in
radioactive transfer, in economics modeling problems, transport theory, etc.
These problems lead to a rich blend of mathematics, numerical analysis and
computing science.

In general, for solving these equations iterative methods must be used.
The proliferation of iterative schemes for solving nonlinear equations (n =
1) has been spectacular in the last years (we can see an overview in [1]).
The most of them are variants of Newton’s method obtained by means of
different procedures. The direct composition of known methods with a later
treatment to reduce the number of functional evaluations, the weight function
procedure, etc. are some of the most used techniques for designing new
schemes.
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In the literature, iterative methods are analyzed under different points of
view. A research area that is getting strength nowadays consists of applying
discrete dynamics techniques to the associated fixed point operator of iter-
ative methods. The dynamical behavior of such operators when applied on
the simplest nonlinear function (a low degree polynomial) gives us relevant
information about its stability and performance. This study is focused on
the asymptotic behavior of fixed points, as well as in its associated basins
of attraction. Indeed, in case of families of iterative schemes, the analysis of
critical points (where the derivative of the rational function is null), different
from the roots of the polynomial, not only allows to select those members
of the class with better properties of stability, but also to classify iterative
methods of the same order in terms of their dynamics.

In the last years, the use of tools from complex dynamics has allowed the
researchers in this area of numerical analysis to deep in the understanding of
the stability of iterative schemes (see, for example, [2–6]). The analysis, in
these terms, of the rational function R associated to the iterative procedure
applied on quadratic polynomials, gives us valuable information about its
role on the convergence’s dependence on initial estimations, the size and
shape of convergence regions and even on a possible convergence to fixed
points that are not solution of the problems to be solved or to attracting
cycles. Moreover, if a family of parametric schemes is studied, the most
stable elements of the class can be chosen, by means of an appropriate use
of the parameter plane.

In this paper, we analyze the dynamical behavior of a parametric family
of two steps iterative methods, for solving nonlinear equations f(x) = 0,
whose iterative expression is

yk = xk −
f(xk)

f ′(xk)
,

xk+1 = yk −

(
α1 + α2

f ′(yk)

f ′(xk)
+ α3

(
f ′(yk)

f ′(xk)

)2
)
f(yk)

f ′(xk)
,

(1)

for k = 0, 1, 2, . . ., where α1, α2 and α3 are parameters.
The following result establishes the order of convergence of family (1).

Theorem 1 Let f : D ⊆ R −→ R be sufficiently differentiable at each point
of an open interval D such that x̄ ∈ D is a simple solution of equation f(x) =
0 and the initial estimation x0 is close enough to x̄. Then, sequence {xk}k≥0
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obtained from expression (1) converges to x̄ with order 4 when α2 = 3− 2α1

and α3 = −2 + α1, being in this case the error equation

ek+1 = (13− 4α1)C
3
2e

4
k +O(e5k)

where Cj =
1

j!

f (j)(x̄)

f ′(x̄)
, j = 2, 3, . . . and ek = xk − x̄.

There exists an element of the family, corresponding to α1 = 13/4, with
fifth-order of convergence.

2 Dynamical behavior

In order to analyze the dynamical behavior of family (1) on quadratic poly-
nomials we choose a generic one p(z) = (z − a)(z − b), with a 6= b. If we
apply (1) on p(z), a rational operator depending to parameters a, b and α1,
Tp,α1,a,b(z), is obtained.

By means of the conjugacy map h (z) =
z − a
z − b

, (a Möbius transforma-

tion), with the following properties:

i) h (∞) = 1, ii) h (a) = 0, iii) h (b) =∞,

operator Tp,α1,a,b(z) on quadratic polynomials is conjugated to operatorOα1 (z),

Oα1 (z) =
(
h ◦ Tp,α1,a,b ◦ h−1

)
(z)

= −z4 13− 4α1 + 14z + 14z2 + 6z3 + x4

−1− 6z − 14z2 − 14z3 − 13z4 + 4α1z4
. (2)

We analyze the fixed and critical points of operator Oα1 (z). Some re-
sults about the stability of the fixed points are obtained and the behavior
of the independent free critical points, used as initial guesses, give us inter-
esting parameter planes. From them (see Figure 1) we can extract valuable
information about the stability of the different members of the family.

This parameter plane has been obtained by associating each point of the
plane with a complex value of α1, i.e., with an element of family (1). Every
value of α1 belonging to the same connected component of the parameter
plane give rise to subsets of schemes of family (1) with similar dynamical
behavior.
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Figure 1: Parameter plane of family (1)

When we consider the free critical points (critical points different to the
roots) as a starting point of the iterative scheme of the family associated
to each complex value of α1, we paint this point of the complex plane in
red if the method converges to any of the roots (zero and infinity) and they
are black in other cases. A mesh of 1000 × 1000 points has been used, 500
has been the maximum number of iterations involved and 10−3 the tolerance
used as a stopping criterium.

The dynamical plane associated to a value of the parameter, that is,
obtained by iterating an element of family, is generated by using each point
of the complex plane as initial estimation. We paint in blue the points
whose orbit converges to infinity, in orange the points converging to zero, in
other colors those points whose orbit converges to one of the strange fixed
points and in black if it reaches the maximum number of iterations without
converging to any of the fixed points.

There are some regions in the parameter spaces whose corresponding
iterative methods have good numerical behavior, in terms of stability and
efficiency. We have chosen some values in these regions α1 = 13/4, 2, 12, 8
and we have shown in Figure 2 the corresponding dynamical planes.

On the other hand, unstable behavior is found when we choose values
of α1 in the black region of parameter planes. In Figure 3 we show the
dynamical planes of the iterative schemes corresponding to the values of
parameter α1 = −30, 69, 16.
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(c) α1 = 12
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Figure 2: Some dynamical planes with stable behavior
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(c) α1 = 16

Figure 3: Dynamical planes with unstable behavior
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1 Introduction

This work proposes to approach multiple time series analysis of water con-
sumption data. The information is arranged in a network composed by water
sources and consumption nodes. The abstraction of a water distribution sys-
tem (WDS) to a network analysis is approached by understanding water pipes
(or set of pipes) as network links. Reservoirs, tanks, and water consumption
points (or set of points forming district metered areas) are represented as
network nodes. These nodes have different properties depending on the role
they have on the water supply. Basic network analyses provide information
regarding the most important link in the network or the nodes most strongly
or weakly connected to water sources such as reservoirs and tanks. This
prior information is based on graph-theoretical measures such as edge and
node betweenness, k-shortest paths, and minimal spanning trees [1]. After
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approaching this graph-theoretical framework it is possible to have valuable
network characteristics. This opens the possibility to know which network
areas are strongly correlated among themselves or which links are the most
important for meeting water demand requirements at every node.

The process continues by proposing a WDS division into district metered
areas (DMA). Historical records of water demand are collected at each of
these DMA and a multiple time series analysis is approached at several levels
of resolution of the water demand time series. The proposal is that the
predictive model computed at any DMA can support the predictive model
approached for another DMA depending on the relationship among these
network areas. This work introduces a neural network framework to handle
this interconnectivity of spatially distributed predictive models. To speed
up the whole process while maintaining a high accuracy it is proposed an
Extreme Learning Machine process [2]. This is conditioned by predictive
models coming from another DMAs. We find out that this combined model
beats single approaches accuracy when testing its performance.

2 Conditioning Extreme Learning Machines

An artificial neural network (ANN) is an interconnected group of artificial
neurons. Each neuron executes a non-linear computation based on the input
values and the resulting value is fed to other neurons. Neurons are usually
arranged as series of interconnected layers. Based on the data presented to
the network, an algorithm (usually back-propagation) is used to iteratively
adjust the neuron connection weights so as to improve the predictive perfor-
mance of the network [3].

An Extreme Learning Machine (ELM) is a 2-layer ANN in which the hid-
den nodes are randomly initialized and then fixed without iteratively tuning.
The only free parameters need to be learned are the connections (or weights)
between the hidden layer and the output layer [4]. This guarantees a superior
regularization performance and consequently a better generalization for the
model. There exists the possibility of ill conditioning the ELM output model
approach if there is not a priori notion of scaling the first layer. This is the
main aim of this work, where instead of using random seeds it is proposed
to use as ELM input ANN features computed for each DMA in which the
original water network is divided. This is done as the database is spatially
distributed in several related time series corresponding to the above men-
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tioned DMAs. The ANN for the i-th DMA will impact the ELM for the j-th
DMA following the relationship given by the correlation between the i-th
and j-th DMA demands, and geo-social and topological characteristics. This
represents the basis for a conditioning ELM approach, which overall process
is shown in Figure 1

Figure 1: Proposed scheme for a spatio-temporal conditioning ELM process

3 Experimental study

This study uses water demand data collected from operational DMAs in
Franca, Brazil, as an extension of the previous case-study already analysed
by the authors [5]. Water consumption data corresponds to metered data at
each DMA inlet every 20 minutes from May 2012 until December 2013. The
results enhance previous approaches providing higher accuracy. As the model
takes into account spatio-temporal characteristics it supports a better under-
standing on how water demand has DMA relationships varying throughout
the whole WDS.
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4 Conclusions

This work takes advantage of a previous DMA partition of a water network
to improve the efficiency and accuracy of predictive models. So, time series
forecasting are shown to be enhanced by ensemble of spatially related predic-
tive models. This is investigated by proposing a novel conditioning approach
for the ELM algorithm in which the initial values are inherited by combining
individual, previously computed, predictive models per DMA.

ELM learning speed can be thousands of times faster than traditional
feed-forward network learning algorithms such as back-propagation. Further
work on near real-time water management control and operation can be
focused on having major advances w.r.t. these good ELM properties.
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Universitat Politècnica de València, València, Spain, http://orcid.org/0000-0002-9147-2681.

1 Introduction

Many complex systems in the real world in which there is interaction be-
tween the elements can be modeled as graphs or networks. The elements are
represented by nodes and the relationships between them as edges. We can
talk about directed graphs and symmetric or non-directed graphs. In some
cases, the relations, edges, have associated attributes that may be numeric,
which we call weights, or categorical, called labels.

We can find graphs where the elements are highly related among them,
there are many more edges than nodes: dense graphs, or what is more usual,
graphs where the number of edges is much smaller than they could have at
most: dispersed graphs.

A common characteristic element on these graphs is the existence of cer-
tain sets of nodes referred as communities. The nodes in a community are
highly connected between them and poorly connected with nodes at other
communities. Nodes grouped in the same community have common charac-
teristics that make them play a certain role within the graph.
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Figure 1: Dense graph Figure 2: Disperse Graph

Figure 3: Communities in a graph

Several techniques and algorithms have been developed for the detection
and study of communities, which is a constantly evolving area of work. Each
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algorithm may detect different communities in the same graph, which good-
ness has to be analyzed depending on the properties of the graph.

In order to be able to compare the capacity of these algorithms it can
be used synthetic community graph generators on which these algorithms of
community detection can be applied, and in this way obtain benchmarking
of their detection capacities.

The benchmarking process consists of generating graphs with those algo-
rithms, and apply the detection algorithm under study after the addition of
new edges between nodes of different communities.

The NMI index allows to compare the different detection of communities:
If communities are the same, then, the value of NMI is 1; while in the opposite
case, if the communities are completely different, then, the value is 0. These
graphs show the added percentage of links between communities on the x-
axis, and the degree of similarity in the detected communities on the y-axis.

The high number of edges within communities allows continuing to detect
the same communities even after adding some links between communities.
Previous works show that the original set of communities at some different
types of graphs is no longer detected after increasing a 50% the number of
edges.

Notice that the most common practice in designing these generators is
to use random graphs, assigning probabilities to the existence of each edge.
This allows obtaining different types of graphs, more or less homogeneous,
according to the established criteria [1, 2, 3, 4]. However, even there are
synthetic graph generators for a wide variety of graphs, there is some kind of
graphs not being generated. In particular, there are not any generator which
produces graphs like in Figure 2.

In our work, we are interested in finding the communities in graphs like
the one in Figure 2, which is a disperse graph with directed and weighted
edges. That graph is not homogeneous, the weights of the edges are very
different, not all nodes are connected to the rest within the same commu-
nity. In particular, the Girvan-Newman algorithm is not able to detect these
communities after adding a few edges between communities [1, 6].

2 Algorithm

In the best of our knowledge, the main existing Graph generator was pub-
lished in [4]. The next command line produces the most similar graph to the
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graph in the Figure 2 that can be generated with it. The parameters in the
command line corresponding to the statistical values of the Figure 2.

./benchmark -N 200 -k 2.48 -maxk 9 -mut 0 -muw 0 -minc 3 -maxc 36
Unfortunately, the distribution in our graph shows a large number com-

munities of small size than those of other sizes, (see Figure 2). However,
the synthetic has a linear proportion between the number of communities of
each size and the community sizes. In particular, our analysis shows that
our distribution of community sizes is adjusted with a Weibull function, such
distribution appears in Figure 4.(a).

(a) (b)

Figure 4: Amount of communities by their number of nodes, (a) for the
graph in the figure 2, and (b) for the graph generated with [4].

The existing random graph generators require as input statistics the
bounding limits on the number of nodes per community, number of com-
munities, and the amount of edges per node. However, it is not enough for
generating graphs like in Figure 2. Therefore, we consider that it is needed
additional parameters like the number of nodes per community and number
of communities. In this paper, we propose the algorithm 1, which generates
communities with the distribution of sizes defined by the Weibull function,
and the edges and their weights are defined random paths inside each com-
munity.

3 Conclusions

We proposed a generator of directed weighted graphs which accepts the same
input parameters as the “Fortunato et al” generator: the number of vertices,
the average degree of edges, the maximum degree of edges, the minimum for
the community sizes and the maximum for the community sizes.
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Algorithm 1: Directed Graphs Generator

1 Function Generator (total communities)
// Definition of the size of each community

2 for c = 0→ total communities− 1 do
3 num vertices community[c] = rand scaled weibull(total communities)

// Definition of the number of output links of each vertex

4 for v = 0→ num vertices community[c]− 1 do
5 N = num vertices community[c]

6 total output edges[c, v] = round
(
rand%

(
1.2/
√
N + 1

))
// Edges in the community are defined using random paths

7 for path = 1→ 100 + num vertices community[c] ∗ 20 do
8 if path == 1 then
9 v = rand weibull vertex(c)

10 inc weight = 1.21
11 for step = 1→ 5 do // length of the path

12 output edge = rand%total output edges[c, v]

13 edge weight(v, output edge)∗ = inc weight
14 if undefined output edge(v, output edge) then
15 next v = rand weibull vertex(c)
16 define output edge(v, output edge, next v)

17 else
18 next v = next vertex(v, output edge)

19 v = output edge

In addition, it provides the desired distribution of community sizes and
the distribution of weights of links as in the graph of the Figure 2.
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1 Introduction to one-factor stochastic

volatility models

The modern theory of option pricing was based on the ideas of Black-Scholes
(BS) framework firstly published in [1]. Nowadays it is widely accepted
that these models are not sufficiently accurate in capturing the real world
features of the stock markets, because its idealized assumptions do rarely
hold in practice. One of them is the limitation of constant volatility, which
can be relaxed by models with assumptions of stochastic volatility. There are
a number of models, e.g., models by Hull-White [6], Scott [8], Stein-Stein [10]
or Heston [4]. A standard mathematical approach to these models leads to
partial differential equations (PDEs) completed by the system of boundary
and terminal (initial) conditions, where the (semi) closed-form solution is not
always attainable and one has to construct numerical approximations.

The performance demands on the numerical valuation process is very
high and several techniques have been developed to obtain efficient pricing
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algorithms over last years, from lattice/trees methods [2], over finite dif-
ference schemes [9] to finite element approaches [11]. These methods have
also its limitations in the treatment of numerical option pricing under more
complex market conditions such as an assumption of a stochastic volatility.
Therefore, it should be convenient to follow novel alternative option pricing
schemes which are also robust with respect to different market conditions
that need to be taken into account. In this work we propose a numerical
technique based on the discontinuous Galerkin method (see [7]) to unify the
option pricing under a wide spectrum of volatility models with one stochastic
process.

Let us consider a financial asset whose price is given by the stochastic
differential equation

dSt = µStdt+ σtStdWt, (1)

where µStdt is a drift term with a constant rate µ, Wt is a Brownian motion
and σt is the volatility. Further, we assume that σt = f(Yt) for some non-
negative function f with the domain of definition Df and Yt is the general
driving process

dYt = A(Yt)dt+B(Yt)dZt, (2)

where nothing will be assumed about the functions A(·) and B(·), and the
second Brownian motion Zt is correlated to Wt with factor ρ ∈ (−1; 1).

Note that a suitable choice of A and B can include different processes
such as lognormal, mean-reverting OU process or CIR process. Secondly,
the setting of f together with the value of the correlation coefficient leads to
particular stochastic volatility models. The frequently used models are listed
in the following table (α, β and m are nonnegative constants).

Model A(Y ) B(Y ) function f correlation

Heston α(m− Y ) β
√
Y f(Y ) =

√
Y ρ 6= 0

Hull-White αY βY f(Y ) =
√
Y ρ = 0

Scott α(m− Y ) β f(Y ) = exp(Y ) ρ = 0
Stein-Stein α(m− Y ) β f(Y ) = |Y | ρ = 0

Next, we consider a European option on the financial asset S (for the sake
of clarity we omit the subscript t) with maturity T and assume instantaneous
risk-free interest rate r. The option price V (S, Y, t) depends on the underlying
asset S, the driving process Y and the actual time t. A common approach
based on no arbitrage principle, Itô stochastic calculus and a construction of
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a sophisticated portfolio lead to the pricing PDE, which can be decomposed
in the following way

∂V

∂t
+ Lf

BS(V ) + Lf
corr(V ) + Lproc(V )− Lprem(V ) = 0, (3)

for S > 0, Y ∈ Df , t ∈ [0, T ). The differential operators in (3) represent
Black-Scholes part, correlation, driving process and premium defined as

Lf
BS(V ) =

1

2
f 2(Y )S2∂

2V

∂S2
+ rS

∂V

∂S
− rV, Lf

corr(V ) = ρB(Y )Sf(Y )
∂2V

∂S∂Y
,

Lproc(V ) =
1

2
B2(Y )

∂2V

∂y2
+ A(Y )

∂V

∂Y
, Lprem(V ) = B(Y )Λ(S, Y, t)

∂V

∂Y
,

where the premium term Lprem(V ) represents the market price of the volati-
lity risk defined by the specific function Λ for particular stochastic volatility
model.

In order to obtain the initial boundary value problem, the pricing equation
has to be restricted to a bounded domain Ω ⊂ IR+ × Df and closed with
the set of initial and boundary conditions. Since (3) is backward in time,
the terminal (initial) condition at maturity date T is given by the payoff
function V 0(S) depending on the type of an option (call or put). Due to the
localization of (3) on Ω, one has to prescribe mixed boundary conditions on
appropriate parts of ∂Ω, which are chosen compatible with the payoff and
using knowledge on the asymptotic behavior of options.

2 Numerical approach to pricing PDEs

Since the pricing equation is closely related to the convection-diffusion equa-
tion, which exhibits parabolic and hyperbolic behavior in dependency on
a proportion of the convection and diffusion parts, the numerical schemes for
solving of such equation should be constructed with respect to these proper-
ties. Here, we extend the DG framework from [5] with some modifications
with respect to the unified approach to studied volatility models.

We construct solution Vh = Vh(t) from the finite dimensional space Sp
h

consisting from piecewise polynomial, generally discontinuous, functions of
the p-th order defined on the domain Ω. Using a method of lines leads to
a system of the ordinary differential equations

d

dt
(Vh, ϕh) +Ah(Vh, ϕh) = 0 ∀ϕh ∈ Sp

h, ∀ t ∈ (0, T ), (4)
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where the initial condition is given by V 0, (·, ·) denotes the inner product
in L2(Ω) and the form Ah(·, ·) stands for the DG semi-discrete formulation
of the operator Lf

BS + Lf
corr + Lproc − Lprem. Consequently, we realize the

discretization in time by Crank-Nicolson scheme and obtain at each time
level tm ∈ [0, T ] the sparse matrix equation(

M +
τ

2
A

)
Vm+1 =

(
M− τ

2
A

)
Vm +

τ

2
(Fm+1 + Fm) , (5)

where τ is the time step, the vector Vm is related to the DG solution Vh(tm),
the matrix M to the mass matrix, the matrix A to the bilinear form Ah and
the vector Fm to the boundary conditions, respectively.

The rest part is devoted to the numerical results, which are presented
on reference market data in order to illustrate the usage of DG method
to pricing of options under two different stochastic volatility models. All
computations are carried out with an algorithm implemented in the solver
Freefem++, the detailed description can be found in [3]. We use piecewise
linear, quadratic and cubic approximations on structured triangular grids.
To specify the implementation settings the time step is set proportional to
one calendar day and GMRES is used as a sparse solver for (5).

In the first benchmark we want to price European call option under the
Hull-White model. To be consistent with the reference experiment from [6]
we consider a unit strike, half-year maturity, zero risk-free interest rate and
the following stochastic volatility parameters: α = 0, β = 1. We compute
discrete solutions on one fixed grid having mesh size h = 0.01. The com-
parative results are evaluated at reference level Yref = 0.01 and depicted in
Figure 1, which shows general relationship between the option price under
stochastic volatility model and the BS price. One can easily observe that the
numerical results are of higher accuracy and better match reference values
as the polynomial order increases. More precisely, the corresponding price
differences are significantly apparent at or near at the strike price.

As the second problem, the valuation of European call option under the
Stein-Stein model is performed on reference market data from [10]. Our aim
is to investigate the behaviour of option values with respect to varying strikes
under fixed parameters: T = 0.5, r = 0.0953, α = 16, m = 0.25, β = 0.4. For
different strikes, we compute solutions on one fixed grid with spacing 480×10.
The numerical solutions are evaluated at given reference node [Sref , Yref ] =
[100, 0.25] and recorded in Table 1 along with the reference values. The
obtained results give fairly the same values as in [10] for higher polynomial
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Figure 1: Option price differences between Hull-White model and BS model
with volatility 10%.

orders. Finally, note that our observations illustrate typical findings common
for the European options priced under stochastic volatility models.

K ref. value [10] Vh(P1) Vh(P2) Vh(P3)
90 16.09 16.1580 16.0924 16.0914
95 12.62 12.7092 12.6250 12.6235

100 9.65 9.7455 9.6518 9.6504
105 7.20 7.2875 7.1978 7.1956
110 5.24 5.3164 5.2431 5.2407
115 3.74 3.7870 3.7384 3.7360
120 2.61 2.6366 2.6154 2.6132

Table 1: Comparison of approximate option values of Stein-Stein model at
reference node [Sref , Yref ] for different scenarios and polynomial orders.
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1 Introduction

The general theme of the present article is the numerical integration of the 2nd-
order time-dependent linear partial differential equation

utt(x, t) = f(t, x, ∂x, . . .)u(x, t), x ∈ Rd, t ≥ 0, (1)

equipped with the initial conditions u(x, 0) = u0(x) and ut(x, 0) = u′0(x).
We consider the case when f is a linear operator and traps the solution
into a bounded region such that u(x, t) and its derivatives attenuate far
away from the region of interest. Thanks to this property accurate solutions
can be obtained using high-order numerical methods as the schemes will not
suffer from order reduction.

After spatial discretization, the operator f is represented by a matrix
N(t) and eq. (1) can be expressed as a 2nd-order ODE system:

y′′(t) = N(t)y(t), y(t0) = y0, y
′(t0) = y′0, y ∈ Rr, t ≥ 0. (2)

∗e-mail:
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An equivalent 1st-order linear non-autonomous system is given by

z′(t) = A(t)z(t), A(t) =

(
0 I

N(t) 0

)
, z =

(
y
y′

)
=

(
q
p

)
, z ∈ R2r. (3)

Matrix N(t) has two important properties. Firstly, usage of a fine spa-
cial grid results in a matrix of large dimension. Secondly, when N(t) is a
symmetric negative definite matrix, the solution is highly oscillatory.

To build high-order methods with a reduced computational cost we em-
ploy and expand the results obtained in [2, 3, 5]. Exponential integrators
have been shown to produce accurate results for similar problems since they
can provide highly oscillatory numerical solutions. We base our exponential
methods on the Magnus expansion, taking into account the particular alge-
braic structure of A(t) in eq. (3). Since the problem considered in this work
require the computation of matrix exponentials action on the state vector.
For this reason, we employ Krylov-type methods .

In the present work, using the particular structure of the problem, we
show that exponential Magnus-decomposition integrators with Krylov-type
exponentials show good efficiency compared to other types of exponential
methods. We construct 4th- and 6th-order methods of the form

Υ[p] =
∏

e
∑
xiAi ,

where the action of each exponential on the vector state can be evaluated
efficiently. We analyse different classes of schemes and their performance
for solving the non-autonomous wave equation; we describe the results in
terms of accuracy versus computational cost, expressed in the number of
matrix–vector multiplications.

2 Methods based on the Magnus expansion

The Magnus expansion [7] expresses the solution of eq. (3) on [tn; tn + h] as
a single exponential

Φ(tn, h) = exp Ω(tn, h), Ω(tn, h) =
∞∑
k=1

Ωk(tn, h). (4)
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The terms Ωk of the Magnus series are given by

Ω1(tn, h) =

tn+h∫
tn

A(τ1) dτ1, Ω2(tn, h) =
1

2

tn+h∫
tn

τ1∫
tn

[A(τ1), A(τ2)] dτ2 dτ1, . . .

(5)
where [A,B] = AB−BA is the matrix commutator of A and B. When N(t)

in eq. (3) is real and symmetric, Ω and any truncation Ω̂[p] =
∑p

k=1 Ωk of
order p, belong to the symplectic Lie algebra, and symplecticity is preserved.

The Magnus expansion eq. (4) can be approximated up to order p = 2s

in terms of A(t) in an easy way. If one considers a polynomial Ã(t) of degree
s − 1 in t that interpolates A(t) on the interval [tn, tn + h] at the points
tn + cih, i = 1, . . . , s; ci are the nodes of the Gauss – Legendre quadrature
rule of order 2s on the interval [0, 1]. Here we consider s = 3 and c1 =
5−
√
15

10
, c2 = 1

2
, c3 = 5+

√
15

10
Given

α1 =

(
0 hI
µ1 0

)
, αj =

(
0 0
µj 0

)
, j > 1

with

µ1 = hN2, µ2 =

√
15h

3
(N3 −N1), µ3 =

10h

3
(N3 − 2N2 +N1), (6)

where Ni = N(tn + cih), it is immediate to check that α1 = O(h), α2 =
O(h2), α3 = O(h3). A 6th-order approximation Ω[6] = Ω +O(h7), is given by
(see [3, 4] and references therein)

Ω[6] = α1 +
1

12
α3 −

1

12
[12] +

1

360
[113]− 1

240
[212] +

1

720
[1112], (7)

where [ij . . . kl] represents the nested commutator [αi, [αj, [. . . , [αk, αl] . . .]]].
In this case [2, 3] = 0 and [2, 1, 2] is a nilpotent matrix so, the resulting

algebra allows a simple representation and has some structural properties
that enable one to build new methods with a particular structure.

3 Krylov-type matrix exponentiaton

Due to the structure of A(t) it is possible to build exponential methods in
which some of the exponentials are obtained analytically. However, some
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of the exponentials need to be computed. There exist a lot of methods for
matrix exponentiation. However, large-dimensional matrices render these
exponentials computationally unreasonable. Hence the need for a method
that does not require straightforward matrix multiplications, e.g., Krylov-
type methods.

In general, given a vector v ∈ R2r and a matrix A ∈ R2r×2r, Krylov
methods produce an orthonormal basis {v,Av, ..., Am−1}, which spans an
m-dimensional subspace, and a Hessenberg matrix of coefficients Hm. Let
Vm be a matrix constructed of the basis vectors columnwise. Then, eAv is
approximated by the first column of the following product:

βVme
Hm , β := ‖v‖2. (8)

4 Results

The new 6th-order exponential methods, obtained via Magnus expansion, are
summarized in the following relations: K = N3 −N1, L = N1 − 2N2 +N3

C
[6]
1 = −

√
15
3
x0K, C

[6]
2 = +

√
15
3
x0K;

D
[6]
1 = N2 −

√
15
3

x2
x1
K + 10

3
x3
x1
L, D

[6]
2 = N2 + 10

3
x5
x4
L,

D
[6]
3 = N2 +

√
15
3

x2
x1
K + 10

3
x3
x1
L,

with xi having the values:

x0 = 0.01544620325088392, x1 = 0.5670407188654774, x2 = 0.1567979554672175,

x3 = 0.08574816028245607, x4 = −0.1340814377309548, x5 = −0.08816298723157881.

Υ
[6]
3 =

(
I 0

hC
[6]
2 I

)
exp

(
x1h

(
0 I

D
[6]
3 0

))
exp

(
x4h

(
0 I

D
[6]
2 0

))
×

× exp

(
x1h

(
0 I

D
[6]
1 0

))(
I 0

hC
[6]
1 I

)
.

C
[6]
1 = +

√
15
3
x0K + 10

3
x1L, C

[6]
2 = −

√
15
3
x0K + 10

3
x1L, D

[6]
1 = N2 +

√
15
3

x3
x2
K +

10
3
x4
x2
L, D

[6]
3 = N2 −

√
15
3

x3
x2
K + 10

3
x4
x2
L,;

E
[6]
1 =

√
15
3
x5K,
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where the coefficients are the following:

x0 =
1
20(1 +

1
11(−6 +

√
3)), x1 =

1
104(3 +

1
5(−6 +

√
3)), x2 =

1
2 ,

x3 =
1
55(6−

√
3), x4 =

1
520(−6 + 3(6−

√
3)), x5 =

1
60(−2 +

3
11(6−

√
3)),

Υ̃
[6]
3 =

(
I 0

hC
[6]
2 I

)
exp

(
x2h

(
0 I

D
[6]
3 0

))
exp

(
h

(
hE

[6]
1 0

0 −hE[6]
1

))
×

× exp

(
x2h

(
0 I

D
[6]
1 0

)) (
I 0

hC
[6]
1 I

)
.

Furthermore, the exponentials in these methods are computed using Krylov
approximation in order to deal with the large dimension of the system.

The methods are compared with classical Runge–Kutta methods and
commutator-free (CF) methods from [1], which have a similar structure on
the following benchmark equation:

∂2t u = ∂2xu− (1 + ε cos δt)x2u, t ∈ [0, 20π], x ∈ [−10, 10];

u(x, 0) = e−
1
2
(x−9.5)2 + 0.79e−

1
2
(x+5)2 , u′(x, 0) = 0;

u(−10, t) = u(10, t).

As expected, Magnus–decomposition methods show better performance
in case of highly oscillating systems, i.e. when δ is small and ε is relatively
large.
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1 Introduction

Since the last few years, glucose modeling has become a very prolific field of
study. Different models have been proposed [1], [2], being the aim of all of
them the explanation and eventually prediction of plasma glucose concentra-
tions. The correct modeling of glucose would allow to predict risk situations
in people who suffers diabetes or insulin resistance. It also may be used as
a powerful tool in diet composition for people suffering this disease, having
greater control of body reactions in known activities, as for example sport
events.

This study is based on a previous model developed by Dalla Man, Rizza
and Cobelli [1]. This model is formed by several subsystems connected in
a close loop feedback, depending all of them on each other along the time.
This fact transforms the combination of equations in a really complex system,
where any small change in its parameter may produce destabilization in the
response of the system.

∗e-mail: damarro3@etsii.upv.es
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Dalla Man et al. [1] obtained parameter values describing what is known
as in silico patients. This means that the authors of the model obtained a
range of values where the model has the same magnitude order in behaviour
than normal people. However, they do not obtain the values for a single
person, but a confidence interval for many of them. The aim of this paper is
to obtain customized values for those parameters, in such a way that it may
be used in clinic patients.

2 Methodology

In order to accomplish the objective of the study, the first thing that has
been done is the computer modeling of the paper written by Dalla Man et al.
MATLAB software has been used as programming language. The model is
split in seven subsystems: Glucose Kinetics, Insulin Kinetics, Rate of Appear-
ance, Endogeneous Production, Utilization, Secretion and Renal Excretion,
as it can be seen in Figure 1. Each subsystem has its own parameters, and
all of them depend on each other.

Figure 1: Subsystems from Dalla Man et al. model [1].

The mathematical model has been transformed from differential equations
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into difference equations in order to be discretized and being able to simulate
with mathematical methods.

In order to obtain data to fit the model with a single patient, an author
of the study has measured his plasma glucose level during twenty hours and
written down all his glucose ingest during that time. The weigh of the patient
is 95 kg and the activity performed during the study may be considered as
medium, with sport periods and resting periods.

0 200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6

7
10

4

Ingested glucose

Figure 2: Ingested glucose during measurement.

The model has been fitted with a modified Particle Swing Optimization
(PSO) algorithm [3].The modification made is related with mutations of the
30% on particles, avoiding the stuck of the optimal solution after a few it-
erations. Parameters are let to change 500% of the initial values found by
Dalla Man et al. Unstable solutions are discarded during the fitting, which
tries to find the best values of the set of parameters that minimizes the error
committed.

The error has been calculated as:

minutes∑
i=0

‖Measured Glucosei −Modeled Glucosei‖ (1)

where ‖.‖ denotes the euclidean norm, so mean square error has been
considered.
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Figure 3: Real patient model output values.

3 Results

The first step to consider the parameters obtained from the PSO algorithm
as valid is the comparison between the output of the model and the output
from [1]. The results of the output are shown in Figure 3. All the outputs
are in the same order of magnitude as the ones obtained in [1]. The model is
stable, cyclical and has enclosed values. The comparison between predicted
glucose and measured glucose can be seen at Figure 4. Ingested glucose has
been plotted in Figure 2. Comparing glucose ingest, the rate of appearance
in plasma and plasma glucose levels, it can be seen that there is a clear
correlation, existing a slight delay between both values of the model.

However, only with data plotted in previous figures, the validation of
the parameters obtained cannot be ensured. In order to have an objective
measurement method, [4] and [5] methods have been used. Both methods
were developed at the end of the XX Century, in 1987 and 2000 respectively,
with the aim of quantifying the error made by the glucose gauge during the
glucose measurement compared with the real value.

Graphics of these methods compare the measured values by the device
and the real values obtained with more accurate procedures. Real glucose is
plotted in the horizontal axis, and measured glucose is plotted in the vertical
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Figure 4: Comparison between experimental and modelled data.

axis. If there is no difference between both values, the point of the plot is
set in the line that cross the graphic. The rest of the graphic is divided into
different areas, each one with a specific meaning.

• A area is considered under the 20% of error made by the reference of
the gauge.

• B area is considered as an error of the gauge, but with no harmful
treatment.

• C area is considered as an error of the gauge that leads into an unnec-
essary treatment.

• D area is considered as a failure of the gauge, that is unable to detect
hypoglycemia or hyperglycemia.

• E area is considered as a failure of the gauge that leads to treat hypo-
glycemia as hyperglycemia and vice versa.

As it is seen in Figure 5, fitting of the model obtained from the PSO
algorithm is inside acceptable values, being all of them in the A area. This
means that the error made is less than the reference of the gauge.

Once the computer model has been validated, the simulation is performed
during four more hours after the experimental data with the aim of prove
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(a) Clarke’s graphic. (b) Parker’s graphic.

Figure 5: Validation graphics.

that the model is still stable after the validation time. The ingested glucose
for the prediction has been considered as null. Both data, the experimental
and the modelled are plotted in Figure 6. After the red line, the plot shows
the values of the simulation that lasts 240 minutes.
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Figure 6: Glucose prediction during four hours.

The prediction has the same tendency as the previous data, and after ap-
pearing all the glucose that was being processed in the gastro-intestinal track,
plasma glucose levels decrease slowly. There is not any irregular behavior as
it was supposed.
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4 Conclusions

As it has been explained throughout the study, it has been proved that
glucose prediction can be applied not only to in silico patients, but also in
specific patients. Parameters fitting of Dalla Man et al. model has been
calculated, and a prediction for four hours time lapse has been considered
with satisfactory results. For future studies, a computer application might
be done in order to approach this technical technique to health workers.
Summing up, the results may be considered acceptable, opening a new study
line with the objective of applying these findings to clinical practice.
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Abstract

The semilocal convergence of an efficient fifth order iterative method
is established under weaker conditions for solving nonlinear equations.
It is done by assuming omega continuity condition on second order
Fréchet derivative. The novelty of our work lies in the fact that sev-
eral examples are available where Lipschitz and Hölder condition fails
but omega condition holds. Existence and uniqueness theorem is es-
tablished along with R-order and error bounds. The R-order is found
to be 4+q, q ∈ (0, 1]. Numerical experiments involving nonlinear inte-
gral equations are performed to show the applicability of the method.
Finally the existence and uniqueness balls are obtained along with
error bounds for all the examples.
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1 Introduction

Let X and Y are Banach spaces and consider solving

G(x) = 0

where G : Ω ⊆ X → Y be a nonlinear operator in an open convex domain
Ω0 ⊆ Ω. Solution of various real life problems such as dynamical systems,
boundary value problems etc. are obtained by solving these equations (see,
[1, 2]). The most well known quadratically convergent Newton’s method to
solve (1) is defined for k ≥ 0, by

xk+1 = xk − ΓkG(xk) (1)

where, Γk = G
′
(xk)

−1 and x0 is the initial point. Various modification of
Newton’s method are proposed to increase the order of convergence and effi-
ciency. In literature [3, 4, 5, 6, 7, 8], authors have established the semilocal
convergence of higher order iterative methods under various continuity con-
ditions.

Recently, the semilocal convergence of an efficient fifth order method is
established in [9] under Lipschitz condition on F

′′
. It is given for k = 0, 1, 2 . . .

by

yk = xk − ΓkG(xk),

zk = yk − ΓkG(yk), (2)

xk+1 = zk −G
′
(yk)

−1G(zk),

In real life applications, various numerical examples are available which nei-
ther satisfies Lipschitz nor Hölder condition. This motivate us to establish
the semilocal convergence of an efficient fifth order method under weaker
conditions.

2 Semilocal convergence analysis

Let Γ0 = G
′
(x0)

−1 ∈ BL(Y,X) exists at x0 ∈ Ω, where BL(Y,X) denotes
the set of bounded linear operators from Y to X and the following conditions
hold.
(1) ‖Γ0‖ ≤ β0
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(2) ‖Γ0G(x0)‖ ≤ η0
(3) ‖G′′(x)‖ ≤M
(4) ‖G′′(x)−G′′(y)‖ ≤ ω(‖x−y‖), x, y ∈ Ω, for a continuous non-decreasing
real function ω(x), x > 0, ω(0) ≥ 0 such that, ω(tx) ≤ tqω(x) for t ∈ [0, 1],
x ∈ (0,∞) and q ∈ [0, 1].
Let r0 = Mβ0η0, s0 = β0η0ω(η0) and define sequences {rk}, {sk} and {ηk}
for k = 0, 1, 2 . . ., by

rk+1 = rkφ(rk)
2ψ(rk, sk), (3)

sk+1 = skφ(rk)
2+qψ(rk, sk)

1+q, (4)

ηk+1 = ηkφ(rk)ψ(rk, sk), (5)

where,

φ(u) =
1

1− ug(u)
, (6)

g(u) =

(
1 +

u

2
+

u2

2(1− u)

(
1 +

u

4

))
, (7)

and

ψ(u, v) =
u2

2(1− u)

(
1 +

u

4

) [ v

1 + q

(
u1+q

21+q
+

1

2 + q

(
u2

2(1− u)

(
1 +

u

4

))1+q
)

+
u

2

(
u+

u2

2(1− u)

(
1 +

u

4

))]
. (8)

Let h(u) = g(u)u − 1. Since, h(0) = −1 and g(u) is increasing function,
therefore, h(u) has a real root ν. If u ∈ (0, ν), we get g(u)u < 1.

Lemma 2.1. Let φ(u), g(u) and ψ(u, v) are given by (6), (7) and (8) re-
spectively. If 0 < r0 < ν and φ(r0)

2ψ(r0, s0) < 1, then
(i) φ(u) and ψ(u) are increasing functions and φ(u) > 1, g(u) > 1 for
u ∈ (0, ν).
(ii) ψ(u, v) is an increasing function of u, for u ∈ (0, ν).
(iii) {rk}, {sk} and {ηk} are decreasing sequences and rkg(rk) < 1 as well
as φ(rk)

2ψ(rk, sk) < 1 for k ≥ 0.

Lemma 2.2. Let φ(u) and ψ(u, v) are given by (6) and (8), respectively. If
γ ∈ (0, 1) then φ(γt) < γφ(t) and ψ(γu, γ1+qv) < γ3+qψ(u, v).
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Lemma 2.3. Let γ = φ(r0)
2ψ(r0, s0), 0 < r0 < ν and δ = 1

φ(r0)
. Then,

(i) rk ≤ γ(4+q)
k−1

rk−1 ≤ γ
(4+q)k−1

3+q r0 and sk ≤
(
γ(4+q)

k−1
)1+q

sk−1 ≤
(
γ

(4+q)k−1
3+q

)1+q
s0.

(ii) φ(rk)ψ(rk, sk) ≤
γ(4+q)

k

φ(r0)
∀ k ∈ N .

(iii) ηk ≤ γ
(4+q)k−1

3+q δkη0.

Using the above results, we will establish the following recurrence relations
and convergence theorem.
(I) ‖Γk‖ ≤ φ(rk−1)‖Γk−1‖,
(II) ‖ΓkG(xk)‖ ≤ φ(rk−1)ψ(rk−1, sk−1)ηk−1,
(III) M‖Γk‖‖ΓkG(xk)‖ ≤ rk,
(IV) ‖Γk‖‖ΓkG(xk)‖ω (‖ΓkG(xk)‖) ≤ sk,
(V) ‖xk − xk−1‖ ≤ g(rk−1)ηk−1.

Theorem 2.1. Let r0 = Mβ0η0 < ν, s0 = β0η0ω(η0) and assumptions (1)-

(4) hold. Then for B(x0, Rη0) ⊆ Ω, where R =
g(r0)

1− δγ
, the sequence {xk}

generated by (2) converges to the solution of (1). Moreover, yk, zk, xk+1, x
∗ ∈

B(x0, Rη0) and x
∗ is the unique solution in B

(
x0,

2
L1β0
−Rη0

)
∩Ω. The error

bound for iterates is given as follows.

‖xk − x∗‖ ≤ g(r0)δ
k γ

(4+q)k−1
3+q

1− δγ(4+q)k
η0.

3 Numerical examples

In this section, we consider nonlinear Hammerstein type integral equation
which arises in dynamical model of a chemical reactor (see, [10]) given by

x(r) +
m∑
i=1

∫ b

a

Ki(r, s)Si(x(s))ds = f(r), r ∈ [a, b], (9)

where functions f , Ki and Si for i = 1, 2, . . .m are known, the solution x is
to be determined and −∞ < a < b < +∞. In order to solve (9), we have to
solve

G(x)(u) = x(u) +
m∑
i=1

∫ b

a

Ki(u, v)Si(x(v))dv − f(u) (10)
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If S
′
i(x(u)) is (Mi, αi)- Hölder continuous in Ω, then, under max-norm, we

have

‖G′′(x)−G′′(y)‖ ≤
m∑
i=1

Mi‖x− y‖αi , Mi ≥ 0, αi ∈ [0, 1], ∀ x, y ∈ Ω. (11)

For different αi, G
′′

neither satisfies Lipschitz nor Hölder condition but sat-
isfies the weaker ω-condition. Using the proposed study, we obtain the exis-
tence and uniqueness balls for the solution along with error bounds.

4 Conclusions

Using recurrence relations, semilocal convergence of an efficient fifth order
iterative method is presented under weaker conditions for solving nonlinear
equations. The convergence theorem is established along with error bounds.
Different examples involving nonlinear integral equations are solved to show
the applicability of the approach. Existence and uniqueness balls are ob-
tained along with error bounds for the considered examples.
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1 Model Building

Electronic commerce has numerous advantages because offers saving time when we pur-
chase a good, offers the possibility of reviewing without depending on schedules of tradi-
tional stores, access to a wider variety and quantity of articles, in many cases, with lower
prices, etc.

Taking into account official data from INE [4], the total population is divided into
2 subgroups, 16-44 years old and 45-74 years old where every age group is divided into
two subgroups, the first one consisting of people adopting this technology and the second
one who do not. We propose a type-epidemiological mathematical model to study the
dynamics of e-commerce in Spain based on a nonlinear system of difference equations
whose parameters are the innovation coefficients, associated with each age group and
related to advertising and the imitation coefficients, related to the influence of an adopting
technology group on non-adopting group.
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2 Model Building

This section deals with the construction and the scaling of the model. We will work with
a demographical model of two age groups of ages together with ones that describe the
diffusion of the electronic commerce.

The difference between our model and different models described in the literature [1],
[2], [3] is the variation of the population during the time.

2.1 Demographical model

A consistent age-structured demographic model is required in order to integrate demo-
graphic information from INE [4] with the aim of constructing a reliable diffusion model
for e-commerce. This age-structured model considers two different age groups due to
significant changes in both age groups respect to e-commerce data.

• Group 1 (G1): Population aged between 15 and 44 years old.

• Group 2 (G2): Population aged between 45 and 74 years old.

The demographic model is given by the following system of difference equations [5]:

G1(t+ 1) = µ− c1G1(t)− d1G1(t).

G2(t+ 1) = c1G1(t)− d2G2(t).
(1)

where:

• µ is the yearly birth rate (assuming that almost nobody dies between 0 and 14
years).

• d1 is the yearly death rate in the first group.

• d2 is the rate of people outgoing from the model.

• c1 is the yearly growth rate from G1 to G2.

We calculate the parameters of the demographic model taking into account the avail-
able data from [4], these results are given by table 1.

2.2 Electronic commerce model

In this section, we propose a discrete model which describes the dynamics of these data
over the time. In order to formulate the mathematical diffusion model to study the e-
commerce in Spain, first of all we introduce the following variables:

• Ni(t) (i = 1, 2), denotes the amount of population of group Gi that does not adopt
the technology (e-commerce), at time instant t (months).

• Yi(t) (i = 1, 2), denotes the amount of population of group Gi that adopt the
technology (e-commerce), at time instant t (months).
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µj dj1 Death Rate in G2 + People leaving the model
j = 2007 0.010857 7.16805× 10−04 0.041911
j = 2008 0.011275 6.70342× 10−04 0.041609
j = 2009 0.010647 6.10648× 10−04 0.041415
j = 2010 0.010421 5.62175× 10−04 0.041152
j = 2011 0.010068 5.40130× 10−04 0.041042
j = 2012 0.009638 5.13720× 10−04 0.040945
j = 2013 0.007109 4.67524× 10−04 0.040734
j = 2014 0.009171 4.57443× 10−04 0.040619
j = 2015 0.009015 4.48471× 10−04 0.040668

Table 1: Demographic data calculated from INE [4]. Parts per unit.

For the people who adopt the technology (Yi(t), i = 1, 2), we distinguish: the ones that
adopt the e-commerce influenced by the society (imitators) and the others that adopt the
technology by themselves (innovators). On the other hand, for the population who have
not adopt the technology (Ni(t), i = 1, 2), we can distinguish the people who never have
bought by the Internet or those who have not bought by Internet in the last six months.

The diffusion of the technology will be represented by the transmission of an individual
from the population Ni(t) to Yi(t) (i = 1, 2) through the coefficients of innovation or
imitation described by:

• p1, p2 are the coefficients of innovation for the i-th group.

• α1, α2, α3, α4 are the e-commerce influence coefficients i = 1, 2 of the Yi on Nj
(i, j = 1, 2) age group, that is when someone who has bought yet by the Internet
influences another person who has not yet done.

• γi, (i = 1, 2) are the coefficients that describe the behavior when an individual who
has already bought by the Internet does not buy anymore in six months, so he/she
gets susceptible.

Furthermore, we will consider the following assumptions:

• Let us assume homogeneous population mixing, i.e., each individual can contact
with any other individual [5].

• Let us assume that nobody dies between 0 and 14 years, thus people with 15 years
old enter into the system in N1(t) with a rate given by µ.

• Let us assume that the total population (PT (t)) is not constant, i.e. it changes over
the time and the total population is defined by PT (t) = N1(t)+Y1(t)+N2(t)+Y2(t).

Under the above assumptions, and considering that the time step is defined by months,
our age-structured mathematical diffusion model for e-commerce in Spain is based on the
nonlinear system of ordinary difference equations given by eqs. (2) to (5). fig. 1 shows a
compartmental representation of this system.
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N1(t+ 1) = N1(t)− d1
12
N1(t) +γ1Y1(t)− c1

12
N1(t) −N1(t)

α1Y1(t) + α2Y2(t)

PT (t)
− p1N1(t) +

µ

12
PT (t),

(2)

Y1(t+ 1) = Y1(t) +
d1
12
Y1(t) −γ1Y1(t)− c1

12
Y1(t) +N1(t)

α1Y1(t) + α2Y2(t)

PT (t)
+ p1N1(t),

(3)

N2(t+ 1) = N2(t)− d2
12
N2(t) +γ2Y2(t) +

c1
12
N1(t) −N2(t)

α3Y1(t) + α4Y2(t)

PT (t)
− p2N2(t),

(4)

Y2(t+ 1) = Y2(t)− d2
12
N2(t) −γ2Y2(t) +

c1
12
N1(t) +N2(t)

α3Y1(t) + α4Y2(t)

PT (t)
+ p2N2(t).

(5)

Figure 1: Compartmental model. The boxes represent the populations and
the arrows transitions between populations.

Now, we are going to scale the model. Scaling the model is interesting because data
population use to be given in percentage. To this aim first of all, we add all the expressions
eqs. (2) to (5) in order to establish a relation between PT (t+ 1) and PT (t).

PT (t+ 1) = PT (t) +
µ

12
PT (t)− d1

12
(N1(t) + Y1(t))− d2

12
(N2(t) + Y2(t)). (6)

If we define:
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n1(t) :=
N1(t)

PT (t)
, y1(t) :=

Y1(t)

PT (t)
, n2(t) :=

N2(t)

PT (t)
, y2(t) :=

Y2(t)

PT (t)
, (7)

and we divide eq. (2) by PT (t+ 1) we obtain

N1(t+ 1)

PT (t+ 1)
=

µ
12PT (t) +N1(t)− d1

12N1(t) + γ1Y1(t)− c1
12N1(t)−N1(t)α1Y1(t)+α2Y2(t)

PT (t) − p1N1(t)

PT (t) + µ
12PT (t)− d1

12 (N1(t) + Y1(t))− d2
12 (N2(t) + Y2(t))

.

(8)
Then we divide numerator and denominator eq. (8) by PT (t) obtaining:

n1(t+1) =
n1(t) + µ

12 −
d1
12n1(t) + γ1y1(t)− n1(t) (α1y1(t) + α2y2(t))− c1n1(t)− p1n1(t)

1 + µ
12 −

d1
12 (n1(t) + y1(t))− d2

12 (n2(t) + y2(t))
.

(9)
Using the same procedure in eqs. (3) to (5), we obtain the following scaled system of

difference equations:

n1(t+ 1) =
n1(t) + µ

12 −
d1
12n1(t) + γ1y1(t)− n1(t) (α1y1(t) + α2y2(t))− c1n1(t)− p1n1(t)

1 + µ
12 −

d1
12 (n1(t) + y1(t))− d2

12 (n2(t) + y2(t))
,

(10)

y1(t+ 1) =
y1(t)− d1

12y1(t)− γ1y1(t) + n1(t) (α1y1(t) + α2y2(t))− c1y1(t) + p1n1(t)

1 + µ
12 −

d1
12 (n1(t) + y1(t))− d2

12 (n2(t) + y2(t))
,

(11)

n2(t+ 1) =
n2(t)− d2

12n2(t) + γ2y2(t)− n2(t) (α3y1(t) + α4y2(t)) + c1n1(t)− p2n2(t)

1 + µ
12 −

d1
12 (n1(t) + y1(t))− d2

12 (n2(t) + y2(t))
,

(12)

y2(t+ 1) =
y2(t)− d2

12y2(t)− γ2y2(t) + n2(t) (α3y1(t) + α4y2(t)) + c1y1(t)− p2n2(t)

1 + µ
12 −

d1
12 (n1(t) + y1(t))− d2

12 (n2(t) + y2(t))
.

(13)

3 Conclusion

In this paper, we propose a type-epidemiological mathematical model to study the dy-
namics of e-commerce in Spain using real data from INE (Spanish Statistical Institute).
This model allows us to describe the diffusion of e-commerce with varying the population
size.

The conclusions obtained from this study are:

• E-commerce development might be approximated to a type-epidemiological math-
ematical model.
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• Population might be divided in two groups with different behavior.

• The model must be scaled in order to establish a relation between the model and
the data collected from the INE.

In future studies, the aim of the authors is to fit the model parameters described in
this paper with e-commerce available data. This future work would be useful trying to
make predictions on the development of e-commerce over the next years.
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1 Extend Abstract

Microgrid is a low voltage distributed network formed by various distributed
energy resources (DERs) consisting of a variety of loads, microsources (MS),
energy storages systems (SS), and plugin hybrid electric vehicles (PHEVs),
(See Figure 1) [1]. Microgrids have emerged as a powerful, resilient and sus-
tainable power grid by incorporating advanced renewable energy systems for
power generation that can integrate and manage large amount of distributed
energy resources in real time. Microgrids can operate in grid-connected mode
and islanded mode disconnected from the main grid at the point of common
coupling (PCC) in case of faults and be reconnected once the fault has dis-
appeared. In addition, a microgrid must have its own control to ensure the
correct operation and coordination of the different DERs.

The communication network plays a critical role in microgrids due to
the increase number of renewable resources and microgeneration units (Dis-
tributed energy resources, DERs) that are being deployed in them [2]. Now,
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Figure 1: Simplified scheme of a microgrid.

the communication infrastructure must have the ability to easily handle an
increasing amount of data traffic or services requests and must to provide a
real-time monitoring and control operation of all these nodes leading to move
from a centralized communication infrastructure to a decentralized one [3].

The evolution towards the future smart microgrid requires the develop-
ment of distributed communication architectures and protocols. Recently a
new paradigm of Peer-to-Peer (P2P) communications has become the focus
of intense research in the field of control and communication structures in
microgrids due to they allow robustness, efficiency, scalability and flexibil-
ity characteristics [4]. To add smart control which achieves efficient energy
management of distributed energy resources, Peer-to-Peer (P2P) has been
considered as promising technology that can provide interesting opportuni-
ties on control and optimization microgrid operation [5].

Peer-to-peer (P2P) overlay networks are distributed systems without any
hierarchical organization or centralized control. These systems avoid a single
point of failure and are scalable because the available resources grow with
the number of nodes joining the network. Nodes are capable to cooperate to
achieve a common goal and they have self-organization capabilities. In these
networks the connectivity between nodes is carried out through a physical
IP network while network topology is created in a virtual network, called
overlay, which are built on top of the physical networks. Overlays allow
increased flexibility, extensibility and adaptive reconfiguration. This implies
that each node communicates with each other to create self-organizing overlay
structures on top of the subjacent physical networks [5].

There are two classes of overlay networks: Unstructured and Structured.
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Traditionally Peer-to-Peer networks are mainly developed for file sharing and
both structured and unstructured overlay P2P systems are designed for quick
search and efficient file storage mechanisms for a huge number of files [6].

On one side, unstructured P2P network has a random and unstructured
mesh network topology. There is not an algorithm for organization. The
information and data resources are distributed among peers. Flooding lookup
technique is used to locate resources and data retrieval in unstructured P2P.
Each peer that uses this technique propagates a request to directly connected
peers through a successively deeper search in the system. The propagation
remains until the message time to live (TTL) threshold (typically four) has
been exceeded [7]. This flooding creates a large amount of signal traffic and
makes use of a lot of network bandwidth and very high CPU/memory usage.
These characteristics do not result in a scalable and efficient system.

On the other hand, structured P2P networks have a dedicated network
and a well-defined topology where peers are responsible to the information
and data resource. In structured overlays, Distributed Hash Tables (DHT) is
used to routing in order to locate resources in the network. In this strategy
each peer has a local table (DHT-Distributed Hash Tables) which is used as
a lookup algorithm to route the request data according to node tables. DHT
tables allows peers find data addressed using flat identifiers (IDs) where IDs
and IP addresses node are registered for each neighbouring node. This kind
of P2P system improves the network communication usage.

DHT is the most efficient lookup technique, since the resources discovery
can be satisfied in a bounded number of steps even in a large scale distributed
systems. The proposed algorithm is based on Chord protocol. For DHT
lookup algorithms, Chord is the most popular structured routing protocol
[8]. Chord DHT-overlay organizes peers on a virtual ring topology. In this
protocol each node is responsible of a collection of keys in the space of keys.
Each node in the ring upholds a routing table, called the finger table, which
is used by the lookup algorithm. The lookup algorithm is started by one
node in the ring in order to find a particular key in the space-keys or by
an external request and follows these steps [8]: i) Firstly checks if the node
which started the search is in charge of that key. If this is true the search
is over and the algorithm ends, ii) Otherwise the node will employ its finger
table to localize the successor of the target nodes key and request the search
of the key to the target node.

As described, Chord specifies which node is responsible of each group of
keys and it regulates communication between nodes. However, Chord does



Modelling for Engineering & Human Behaviour 2017 211

not specify any retrieval data mechanism [9], i.e. each node stores keys to
locate information of the key which is responsible, although each node should
stablish its own methods to find this information. In addition, traditional
DHT-Chord does not consider locality [10]. Locality allows creating a group
of peers for a particular task. Peers with close interests create shortcuts and
use them to locate content. The underlying physical network path could
be significantly different from the path on the overlay network if locality in
DHT-Chord is not considered. Therefore, the lookup latency in the overlay
network could be quite higher and decrease the performance of the applica-
tions running over the DHTData Layer [10](See Figure 3). In the specific
case of microgrids, these logical groups are often categorized by their nodes
functionality (loads, generators, storage system, etc.).

As a result, for achieve these capabilities and create an operational peer,
several software layers need to be built as shown in Figure 3.

Figure 2: Main Functional Layers of a Peer-to-Peer Application

On the basis of Chord lookup algorithm, the target to achieve in this work
is to embed DHT-Data layer functions (layer 3) into DHT-Chord Layer (layer
2) trying minimizing impact of the lookup Chord algorithm to the network
performance. This is very important indeed for microgrids since peer-to-
peer networks are principally developed for file and processor cycle sharing
and network usage resource are less critical than microgrid operation where
high efficiency in terms of quality network requirements (high bandwidth and
low-latency) is required [11, 12].

In this way, a new clustering algorithm based in Chord approach has
been developed. DERs functionality has been embedded into finger table
and routing management has been modified in order to: i) Add locality
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capabilities for creating node clusters with close interests, ii) Provide location
of information and data retrieval, iii) Reduce communications overhead.

An experimental setup has been build up to evaluate the performance of
the proposed algorithm.

Figure 4 shows the comparison of proposed and Chord algorithm.

Figure 3: Average Messages count comparison between proposed lookup and
retrieval data algorithm and chord lookup algorithm with different network
size.

It can be seen, the differences are not significant, as might be expected.
Chord algorithm average messages are referred only to the lookup process
while proposed algorithm the messages count are referred to total average
messages sent into the network for lookup and retrieval processes, thus en-
abling the reduction of the overall data traffic on the network and end-to-end
latencies.

In the case this work will be accepted, in the extended version of the
paper, it will be provided a detailed description of the proposed algorithm,
its mathematical framework and other experimental results that not appear.
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1. Introduction 
 
The first rational approach to the body-mind problem is given to Plato as a dualism between sensitive 
(body) and intelligible (mind) worlds. Aristotle substitutes Plato’s dualism for a matter-shape 
dualism, considering in his approach psychology, in early ages of philosophy, as a part of physiology. 
In the Middle Ages the Christian dualism between body and soul (mind) is the dominant thought. 
Descartes defends a substantial dualism of body and mind but connected through the pineal glandule, 
although Spinoza and Leibnitz reduce the dualism to two aspects of an all, rather than two total 
separated aspects. In the twentieth century the positivism proposes the associationism as a way to 
study the relationship between body and mind through the scientific method. Basically, ending the 
twentieth century and starting the twenty-first century, two philosophers of science have studied 
deeply the body-mind problem: Karl R. Popper [1] and Mario Bunge [2]. 
     
No researcher denies in the present that body and mind work intimately integrated. A way to observe 
their relationship is to study the psychological and biological responses to drug consumption. In fact, 
in the application case presented to study the body-mind problem, methylphenidate is the drug used. 
It is a powerful psycho-stimulant. The psycho-stimulation can be measured by the General Factor of 
Personality (GFP), as a universal observable amount of personality (mind). In fact, to measure the 
GFP, the five adjectives scale has been used in the application case [3]. This scale is based on the 
General Factor of Personality Questionnaire [4], which has been constructed specifically to assess 
GFP in the context of the Unique Trait Personality Theory (UTPT) [3, 5]. The UTPT claims for a 
unique trait, as synonymous of single trait, substituted later by the equivalent concept of GFP, to 
describe the overall human personality. The GFP is the psychological expression of the activation 
level of the organism stress system. In fact, in the context of the UTPT, GFP is also called as 
extraversion in a wider sense than the used in behavioural science, i.e., in the sense of activation level 
of the organism stress system.    
 
Glutamate (body) is connected with the GFP (mind) because it plays a system roll in the overall 
biological processes related to the activation of the organism stress system, and thus to GFP. See the 
work [5] for this question. The aim to use methylphenidate as the stimulus in the application case is 
because, in addition to its psycho-stimulant effect, its acute administration actives the production of 
glutamate [6]. Thus, it is a universal observable amount of the biological bases of personality (body), 
and it can be measured by its molar concentration in blood [7]. Therefore, the double response 
produced by methylphenidate, psychological (mind) and biological (body), emphasizes its importance 
in the application case presented.  
 
The response model is an integro-differential equation that has been widely assessed in the context of 
different experimental designs. It can reproduce the acute effect of a stimulant drug at the both levels 
of description considered in this work [8, 9, 10, 11, 12]. The model reproduces the dynamical pattern 
forecasted by Solomon & Corbit [13] and Grossberg [14], by using the hedonic scale, and Amigó [5] 
for the GFP, i.e., a typical inverted-U dynamical pattern.  
 
The assumption of a mathematical invariance principle, which claims that the psychological (mind) 
and biological (body) responses hold the response model, provides the bridge model, a second order 
partial differential equation. It has been assessed, in a more primitive mathematical structure (a first 
order partial differential equation), where the drug provided is caffeine [12], to study the co-evolution 
of the GFP and the Big Five traits. Although published before, it has been assessed subsequently in a 
more evolved mathematical structure: a coupled system of two first order partial differential equations 
[11]. There, the co-evolution of the GFP, the regulator gen c-fos and glutamate are studied as a 
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consequence of methylphenidate consumption. However, it is still more primitive than the bridge 
model here presented. 
 
In this paper the response model is presented, and by using the invariance principle, the bridge model 
is deduced. By using the outcomes of the application case both models are validated. The response 
model is validated by calibration for both responses: the GFP, measured by the five adjectives list, 
and the glutamate, measured by the molar concentration in blood. Subsequently the bridge model is 
validated by using the calibrated values of the response model parameters.  
  

2. The response model 
The kinetic part of the response model provides the evolution of the drug stimulus amount, ݏሺݐሻ, in 
organism, after being consumed by the individual. It is given by the time function:  

 

ሻݐሺݏ ൌ ൝
ఈ൉ெ

ఉିఈ
ሺexpሺെߙ ൉ ሻݐ െ expሺെߚ ൉ ሻሻݐ ∶ ߙ	 ് ߚ

ߙ ൉ ܯ ൉ ݐ ൉ expሺെߙ ൉ ሻݐ ∶ ߙ	 ൌ ߚ
                                                       (1)                         

 
Eq. 1 is the solution of two coupled differential equations [12], which assumes that no drug is present 
in the organism before consumption. In Eq. 1 M is the initial amount of a drug single dose, ߙ is the 
drug assimilation rate and ߚ is the drug distribution rate. The dynamics of the GFP is given by the 
following integro-differential equation [12]: 
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In Eq. 2, ݏሺݐሻ represents the stimulus given by Eq. 1; ݕሺݐሻ represents the GFP dynamics; and b and y0 
are respectively its tonic level and its initial value. Its dynamics is a balance of three terms, which 
provide the time derivative of the GFP: the homeostatic control (ܽሺܾ െ  ሻሻ), i.e., the cause of theݐሺݕ
fast recovering of the tonic level b, the excitation effect (݌ ൉  ,ሻ/ܾ), which tends to increase the GFPݐሺݏ

and the inhibitor effect (ܾ ൉ ݍ ൉ ׬ ℮
ೣష೟
ഓ ൉ ሻݔሺݏ ൉ ݔ݀	ሻݔሺݕ

௧
଴ ), which tends to decrease the GFP and is the 

cause of a continuously delayed recovering, with the weight ℮
ೣష೟
ഓ . Parameters a, p, q and τ are named 

respectively the homeostatic control power, the excitation effect power, the inhibitor effect power and 
the inhibitor effect delay. All the parameters of the model depend on the individual personality or 
individual biology and on the type of stimulus.  

 

3. The bridge model 
To deduce the bridge model, the starting point is assuming the invariance principle, i.e., the glutamate 
dynamical response can be also described by the response model given by Eq. 2, but with different 
parameter values. If ݃ሺݐሻ is the glutamate variable, ݃଴ its initial value, and ܤ ,ܣ, ܲ, ܳ and ܶ are the 
parameters, the response model corresponding to the glutamate response can be written as: 
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Note in Eq. 3 that s(t) is the stimulus function of Eq. 1. Thus, the invariance principle assumes that 
the influence of the stimulus on the GFP and on glutamate is the same. To find the mathematical 
relationship between glutamate and the GFP and the time t, the hypothesis stated is: 
 

 ݃ ൌ ݃ሺݐ,                          ሻ                                                                                                                           (4)ݕ
 

Taking the time derivative in Eq. 4:        
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Substituting Eqs. 2 and 3 in Eq. 5, and considering now that the time function ݃ሺݐሻ is, from Eq. 4, a 
two-variables function: 
 

ܤ൫ܣ െ ݃ሺݐ, ሻ൯ݕ ൅
ܲ
ܤ
ሻݐሺݏ െ ܤ ൉ ܳ ൉ ݂ሺݐ, ሻݕ ൌ 

ൌ
డ௚ሺ௧,௬ሻ

డ௧
൅

డ௚ሺ௧,௬ሻ

డ௬
ቀܽሺܾ െ ሻݕ ൅

௣

௕
ሻݐሺݏ െ ܾ ൉ ݍ ൉  ሻቁ                              (6)ݐሺݖ

 
Take into account in Eq. 6 that, in order to simplify, and for subsequent computations that:  
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The way to avoid the delayed term ݂ሺݐ,  ሻ in Eq. 6, specified by Eq. 8, is to convert it in a secondݕ
order partial differential equation. To do this, the partial time derivative is taken in both sides of Eq. 
6:  
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Note from Eqs. 7 and 8 that:  
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The substitution of Eqs. 10 and 11 in Eq. 9 provides: 
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The next step is the elimination of the integral term 
஻൉ொ

்
݂ሺݐ, ܤ ሻ in Eq. 12. First, the termݕ ൉ ܳ ൉ ݂ሺݐ,  ሻݕ

is isolated from Eq. 6: 
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Subsequently Eq. 13 is substituted in Eq. 12, and after reorganization: 
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Eq. 14 must be completed with the boundary conditions: 
 

 ݃ሺ0, ሻݕ ൌ ݃଴                                                                                                                             (15)                          
డ௚

డ௧
ሺ0, ሻݕ ൌ ܤሺܣ െ ݃଴ሻ                                                                                                              (16)                          

 
Eqs. 14, 15 and 16 provide the bridge model sought. Note that ݖሺݐሻ is considered a time function 
obtained from the numerical solution of Eqs. 2 and 10.   
 

4. The response and bridge models validation 
The application case consists in one subject that consumed 20 mg of methylphenidate. The five 
adjectives scale (adventurous, daring, enthusiastic, merry and bored) was filled out before 
consumption and after consumption every 15 minutes for 4 hours, and the interval of the GFP 
measures is ݕ ∈ ሾ0,25ሿ. In addition, a sample of blood was extracted to the subject, before 
consumption and after consumption every 1 hour. A mass spectrometer is used to obtain the 
glutamate level in blood. The analysis of the sample provides concentrations of glutamate measured 
by the direct molar concentration (mc) in blood, and it is used with a scale multiplied by 1018 mc. 
With this scale, the glutamate concentration varies in the interval ݃ ∈ ሾ0,60ሿ.     
 

The calibration of the response model for the GFP dynamics is provided in Fig. 1 and for the 
glutamate dynamics in Fig, 2. 
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The theoretical values of the bridge model, ݃ሺݐ,  ,ሻ, are given by the numerical solutions of Eqs. 14ݕ
15 and 16, by considering the optimal parameter values arisen in the calibration of the response 
model. These numerical solutions have been obtained with the NDSolve function of the 
MATHEMATICA 10.4 program. The validation is provided in Fig. 3. 
  

 
Fig. 3: Experimental values (dots) and theoretical bridge model values (crosses) of glutamate (G) versus experimental values of GFP (Y). R2=0.85. 
  

Conclusions 
Figs. 1 and 2 provide the calibration of the response model, respectively for the GFP response (mind) 
and for the glutamate response (body), as a consequence of 20 mg of methylphenidate. The visual 
inspection of these figures as well as the high determination coefficients (R2) supports the response 
model validation. In addition, the visual inspection of Fig. 3 and the corresponding high 
determination coefficient (R2) provide also the bridge model validation. 
  
Particularly, the response model can be considered validated in the context of the application case 
presented, supporting its universality, due to it has been already validated in the context of different 
application cases provided in the literature of Section 1.  
 
However, the bridge model has been validated for first time in the present mathematical structure. 
The two past application cases cited in Section 1 where it has been validated presented a lesser 
complexity. The growth in complexity is necessary to overcome two difficulties. In [12] the 
invariance principle is applied to a differential equation with a non-delayed inhibitor effect. As a 
consequence, by assuming the invariance principle, the bridge model becomes a first order partial 
differential equation. In fact, the simplified response model fits the caffeine response. But generally, 
other stimuli, such as methylphenidate, need to have a delayed inhibitor effect to fit the response. The 
way to find a more general bridge model is to convert first the delayed integro-differential equation in 
a system of two coupled differential equations. Subsequently, by assuming the invariance principle, 
the bridge model is deduced with a third artificial independent variable in two coupled first order 
partial differential equations. However, this bridge model provides often unstable numerical solutions, 
due to the arbitrariness of the boundary conditions [11]. Therefore, the present bridge model is an 
attempt to overcome these difficulties. Then, it needs to be validated in the context of more future 
application cases.  
 
Let us stress the importance of the bridge model: it represents the co-evolution of the GFP (mind) and 
glutamate (body) as a consequence of methylphenidate consumption. On a hand, the importance of 
the GFP as representative of mind must not be neglected. The GFP represents the apex of a 
hierarchical model of personality that involves the Big Five traits [4, 5]. In addition glutamate as 
representative of body has neither to be neglected. It takes part of an overall set of biochemical 
processes related with the stress system in organism [5].  
 
Therefore, the co-evolution that provides the bridge model is a fruitful mathematical approach to 
study the integrated relationship of body and mind. In fact, its structure shows that this relationship 
has a dynamical nature, which can be considered a scientific discovering about the subject in 

         
Fig. 1: GFP (Y) versus time (t). The dots are the experimental 
values and the line the response model calibrated. R2=0.97. 

  
Fig. 2: Glutamate (G) versus time (t). The dots are the 
experimental values and the line the response model calibrated. 
R2=0.85. 
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question. It is, finally, a step to better understand the ancient body-mind problem from a mathematical 
and successful approach.        
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1. INTRODUCTION 
 
From a business point of view, the decision to locate the distribution center of a firm in a given 
logistics center can condition its performance, since the movement and storage of products is 
increasingly important in the current industrial landscape, as a part of the firm’s supply chain, being a 
key element of its competitiveness (Porter, 2000). 

There have been proposed some methodologies for the location selection’s problem (e.g Chen, 
2001; Kayikci, 2010; Kampf et al., 2011) by using different approaches (e.g. Analytic Hierarchy 
Process, Topsis, Artificial Neural Network). The location selection’s problem usually considers some 
common criteria (e.g. accessibility, security, costs, environmental impact, proximity to customers, 
proximity to suppliers, possibility of expansion, quality of service, infrastructure conditions and 
human resource). However, the effectiveness has not usually been considered in the decision making 
process. Understanding the effectiveness of a logistics center allows its sustainable development, from 
the point of view of a company analyzing possible locations for its distribution center, the study of this 
aspect should be considered in order to identify the most competitive alternative. 

The main objective of this paper is to identify the determining factors that affect the 
effectiveness of a logistics center, and propose a model based on the analytic hierarchy process (AHP), 
for the assessment of its competitiveness. 
 
2. ANTECEDENTS 
 
2.1. Concept of Logistics Center 
 
There is no consensus in the literature when defining the concept of logistics center. Several authors 
gather a compilation of the different terms used (Meiduté, 2005; Rimiene and Grunday, 2007). The 
most common terms are Logistics Park, Logistics Platform, Freight Village, Logistics Center, 
although there are other terms (e.g dry port, distribution terminal). 

This paper adopts the definition given by The European Logistics Platforms Association 
(Europlatforms, 2017) which considers: 

 “A Logistics Center is a center in a defined area within which all activities relating to transport, logistics and the distribution 
of goods – both for national and international transit, are carried out by various operators on a commercial basis. The 
operators can either be owners or tenants of buildings and facilities (warehouses, distribution centres, storage areas, offices, 
truck services, etc.), which have been built here”. 

According to Europlatforms, a Logistics Center should preferably be served by a multiplicity of 
transport modes and be managed in a single and neutral legal body. 
 
2.2. Effectiveness and competitiveness in logistics centers 
 
Moreno-Jiménez (2006) considers the effectiveness implies "doing the right thing", that is, identifying 
the relevant aspects and using them appropriately to solve the problem, which implies long-term 
strategic planning. Therefore, the effectiveness will mean the sustainable development of the logistics 
center as a whole, giving a level of service according to the demand of the users and the general 
requirements of the logistics activity. 

On the other hand, as regards the concept of competitiveness, Porter (2000) considers it is 
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determined by the productivity, defined as the value of the product generated by a unit of labor or 
capital. A logistics infrastructure is considered competitive when its positioning is superior compared 
to other alternatives. To achieve sustainable growth and a competitive market position, a number of 
factors should be analyzed, which encompass a global and strategic vision of the logistics center. 
 
2.3. The analytic hierarchy process (AHP) 
 
AHP is a multicriteria methodology used in decision-making processes. It is included in the group of 
so-called 'discrete', since it considers the number of alternatives is discrete and each of them can be 
explicitly treated. This tool allows the consideration of multiple scenarios, actors, factors and criteria 
(tangible and intangible). It builds an absolute scale, associated with the priorities of the elements 
being compared, based on a four-step process: (i) modeling, (ii) valuation, (iii) prioritization and (iv) 
synthesis (Saaty, 1980; 1994). The AHP approach requires the translation of perceptions into 
numerical scales. One of the most used mechanisms is the Saaty's scale through pairwise comparisons 
(Saaty, 1980). 

The priorities of the model (wi=1,…,n) can be obtained by means of different methods. In this 
paper it is applied the eigenvector problem 

wAw max         



n

i
iw

1

1 (1)

where A=(aij) is the reciprocal pairwise comparison matrix, λmax is the principal eigenvalue of A and w 
is the vector of priorities. The measure of inconsistency in judgements have been obtained by means 
of the Consistency Index- CI (Saaty, 1980), expressed as 

1
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where λmax is the principal eigenvalue of the judgements matrix, and n its order. When the reciprocal 
comparison matrix is consistent λmax = n, and CI=0. Saaty proposed the Consistency Ratio- CR as a 
way of normalize the measurement, that is given by 

)(nRI

CI
CR   (3)

where RI(n) is the Random Consistency Index for matrices of order n, obtained by means of the 
simulation of 100,000 reciprocal matrices randomly generated (Aguarón and Moreno-Jiménez, 2003). 
 
3. MODEL DEVELOPMENT 
 
The proposed model consists of four levels: goal (G- to measure the effectiveness and competitiveness 
of a logistics center), 2 criteria (C), 8 subcriteria (SC), and 18 attributes (A). The assessment of the 
hierarchy has been carried out by a group of five experts (Administration representative, park 
manager, logistics operative, user company, logistics researcher) working in a context of group 
decision making (single decision based on consensus). 

The elements of the model and the priorities obtained (with exception of the goal) are defined in 
Table 1 and Table 2. The group elicited 1 judgment for the pairwise comparison matrix that compared 
the relative importance of the actors versus the factors with respect to the goal; 12 judgments (6+6) 
when comparing the eight sub-criteria with respect to the criteria (two pairwise comparison matrices), 
12 judgments (1+3+1+3+1+1+1+1) when comparing the attributes with respect to the sub-criteria 
(eight pairwise comparison matrices). All pairwise comparison matrices have acceptable 
inconsistencies (CR <0.10). The overall inconsistency of the model is acceptable (0.08). 
 
Table 1. Model prioritization  
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Table 2. Elements of the proposed model 
Elements Description 
C1. Actors Entities and groups of people involved in the activity of the logistics center. 
SC1. Property Entity that owns the park. 
A1. Public Property The Logistics Center belongs to the Administration. 
A2. Private Property Company or group of companies. 
SC2. Management Independent, it guarantees a centralized control of operations and ensures the strategy of the 

initiative. 
A3. Top management Maintains the strategic mission of the logistics center, ensures the accomplishment of the 

requirements considered objectives of the park. 
A4. Commercial management It positions the logistics center in the market and analyzes its approach through the appropriate 

selection of located companies’ typology. 
A5. Technical –operational 
management 

Management of the infrastructure technical aspects, which affect its daily operation. It cannot be 
neglected for giving a service of quality. 

SC3. Direct users The companies located in the logistics center which have chosen this location to carry out its 
activity. 

A6. CEO Organization working with the strategic alignment and acts according to this view. 
A7. Economical-
Technological commercial 
management 

Departments analyzing the operational aspects of the supply chain management. They evaluate 
the tangible parameters and give advice on the adequacy of the operative to the mission of the 
company. 

SC4. Indirect users Logistic operators and transport infrastructure managers. Essential for the operation of the 
logistics center. 

A8. Direct services  Logistic operators and transport infrastructure managers.  
A9. Complementary services Commercial, social, environmental support activities and technology and communication 

facilitation activities (shopping centers, financial institutions, restaurants, etc). 
A10. Workers Includes all types of activities in the logistics center. 
C2. Factors Aspects related to the effectiveness and competitiveness of the logistics center. 
SC5. Technical-operational The operational and structural aspects of the logistics center. 
A11. Characteristics of the 
center 

Surface for logistics activities, level of occupation, brand image, existence of synergies, etc. 

A12. Technological- 
operational characteristics 

Geostrategic position, infrastructures and capacity, extension of the influence area. 

SC6. Economic Establishment and maintenance costs in a logistics center, and expected profitability. 
A13. Cost Expected cost for the company for its location in a logistics center. This factor depends mainly 

on the property, and secondly on the management entity. 
A14. Induced profitability Expected profitability for the companies of the logistics center. 
SC7. Social Availability and quality of employment, with its effect in the logistics center and the region. 
A15. Employment The property factor, particularly the public property, ensures that the workforce is not a problem 

for the initiative, and even promotes regulations for that purpose. 
A16. Innovation and 
knowledge 

The advanced and innovative provision in new technologies is fundamental in the automation of 
the logistic processes, with a consecuence in a dynamization of the workforce, maximizing the 
use of resources. 

SC8. Environmental Beneficial effect of the supply chain management improvement to minimize the negative impact 
of logistics operations. 

A17. Regulatory compliance The environmental aspect must be considered from the design stage. The most modern 
environmental treatment solutions available with less unwanted effects are valued. 

A18. Environmental 
improvements 

Wastewater treatment for reuse, optimization of electrical use, existence of renewable energy for 
the maintenance of the logistics center and supply to users, use of efficient transport. 

 
4. CASE STUDY 
 
The application of the model has been carried out through the comparison of three logistics centers in 
Spain (S): S1. Zaragoza Logistics Platform (PLAZA), S2. Coslada Transport Center, Madrid (CTC) 
and S3. Vitoria-Gasteiz Intermodal Transport and Logistics Center (CTV). The selected logistics 
centers are comparable in the decision-making process for a given company, since they offer a similar 
activity that satisfies its needs. The valuation of the three alternatives has been made by the group of 
experts based on their knowledge and expertise and the available information on these logistics 
centers. 

From a global point of view, it can be seen that the final or total priorities of the alternatives are: 
w(S1) = 0.564; w(S2) = 0.143; w(S3) = 0.293. The ranking of alternatives shows that PLAZA (S1> 
S3> S2) is the preferred alternative in terms of effectiveness and competitiveness (Figure 1). 

 
 

 
 

Figure 1. Final priorities of the analyzed alternatives 
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If analyzed the ranking of alternatives from the point of view of the Actors it can be seen (Figure 2a) 
PLAZA is the preferred alternative followed by CTC (S1> S2> S3). However, the same analysis from 
the point of view of the Factors (Figure 2b) shows there is a rank reversal of the alternatives, although 
PLAZA remains preferred over the other two alternatives (S1> S3> S2).  
 

 

Figure 2. Preference of the alternatives with respect 
to the actors and factors of the model 

Figure 3. Sensitivity analysis of the global model

 

The sensitivity analysis of the model has been carried out by using the Expert ChoiceTM software. The 
Performance graph (Figure 3) provides information on the total priorities of the alternatives and their 
global behavior with respect to the criteria. It can be seen that the best alternative, S1, dominates the 
other two alternatives both in the actors and factors criteria (Figure 3a). By introducing changes in the 
weights of the criteria it can be produced a rank reversal of the best alternative at a global level. 
Carrying out a simulation (Figure 3b) it is necessary to increase the weight of the Actors criterion by 
59% for CTC to be the preferred alternative over CT Vitoria, although the preferred alternative 
remains being PLAZA. In any case, this change is quite improbable due to the radical changes needed 
with regards to the initial values. 

In short, the sensitivity analysis confirms that the ranking S1>S3> S2 is strongly robust and that 
PLAZA is the most effective and competitive alternative. 
 
5. CONCLUSIONS 

 
This paper proposes a model for the assessment of the effectiveness and competitiveness of a logistics 
center. A hierarchy of the factors involved has been obtained through the application of the AHP 
methodology with relative measures. The economic factor, particularly the company location costs in 
the logistics center (A13), together with the technological-operational characteristics of the logistics 
center (A12) are the main influential factors. The environmental factor has average relevance, 
consolidating the general trend of commitment to the environment and the use of efficient and 
sustainable resources. 

The validation of the model has been carried out by means of the analysis of three logistics 
centers in Spain, under similar conditions of supply for a company, determining that PLAZA is the 
most competitive option. In the case of three comparable alternatives, the application of AHP with 
relative measurements is advisable. However, when the number is greater than 72 it is recommended 
to use AHP with absolute measurements, allowing to establish a recommendable level of 
competitiveness. 
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1 Introduction

Propeller shafts of drive vehicles transmit a torque at relatively large dis-
tances. The shafts are based on long and slender, and must be dimensioned
not only in terms of torsional stress, but it is also necessary to monitor its
resistance to lateral vibration. Due to the continuous operational area, the
shafts are needed to operate in sub-critical speed. It is necessary to find the
critical speed. Due to results of previous works and experiments, it is not
possible to model the shafts using procedures that are commonly reported
in the literature [1, 2], but it is necessary to formulate a model that allows
to respect that with increasing the angular velocity of rotation significantly
reduce the spectrum of natural frequency relative lateral vibrations.

∗e-mail:nahlik@mail.vstecb.cz
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2 Formulation of the problem

Propeller shafts are in a steady state stressed by excitation bending moments
harmonic, and their vectors are orthogonal to the rotating plane of a relevant
fork Hooks joints (Figure 1).

Figure 1: Model of propeller shafts

We build a model on assumption of formation relative spatial bending
vibration in the shaft system O(x, y, z)

Figure 2: Coordinates system of the shaft

(Figure 2), which rotates at an angular speed
−→̇
ϕx. We can reduce the

dimensionality of the problem from 3D to 2D bz neglecting the Coriolis force
and gyroscopic moments acting on the element of the shaft. Then we can
solve the problem in the rotating plane O(x, y). The instantaneous state of
the element is determined by the angular velocity

−→̇
ϕx, the velocity

−→̇
vx and

the angular velocity
−→̇
ϕZs . We would like to build a mathematical model of a

coupling shaft to calculate spectral and modal properties of the connecting
shaft including the natural frequency of bending oscillations.
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3 Physical Discretization

We will replace the drive shaft shown in the Figure 1 (consider solid bearings)
by discrete mechanical system with only one degree of freedom. This will
system will be divided into two equal halves which will represent an intangible
spring (Figure 3) having rigidity k

2
.

Figure 3: Replacing of the drive shaft by divided system of one degree of
freedom.

The mass is concentrated to the endpoints of the springs. This means
that two fixed points belongs to the support and two others fixed points will
merge in to one in the middle of the shaft. This middle point will have the
mass of m = Slρ

2
, where S is the cross-section area, l is length of the shaft

and ρ is density. This model can be simply transform to model of the spring
(Figure 4).

Figure 4: Modelling of the shaft by the spring

In this case we can determine the stiffness of this spring as k = 48EJ
l3

,
where E is modulus of elasticity in tension, J is defined as J = π

4
r4 and l is

length of the shaft. Assuming the constant angular velocity ω it is necessary
to introduce the moment

−→
M . Now we can write equations for kinetic and
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potential energy of the spring.

Ek =
1

2
mẏ2 +

1

2
m (yϕ̇x)

2 (1)

Ep =
1

2
ky2 (2)

And also equations of motion.

mÿ + (k −mω2)y = 0,M − 2myẏω = 0 (3)

We can rewrite the equation of relative oscillating movement in rotating plane
in the form:

ÿ + Ω2y = 0 (4)

Where Ω =
√

k
m
− ω is the natural frequency of relative undamped oscilla-

tions. By modification of this equation we obtain:

Ω2 + ω2 =
k

m
(5)

which is equation of the circle with origin in O(ω,Ω) and radius k
m

.

4 Test model

Parameter of the test model (propeller shaft of the vehicle Š 781):
r = 0.0105m, l = 0.65m, E = 2.1 · 1011Pa and ρ = 7.8 · 103kg ·m−3. Using
these parameters we will obtain:
J = 9 · 10−4m4, S = 3.46 · 10−4m2, k = 3.3 · 105Nm−1, m = 0.88kg and
Ω(0) = 591.9483rad · s−1 (see Figure 5)

It is also possible to obtain analytical solution by solving following equa-
tion derived in [3], which is describing the model on the Figure 6

∂4y

∂x4
− ρSr2

4EJ
· ∂4y

∂x2∂t2
− ρSr2ω2

4EJ
· ∂

2y

∂x2
+
ρS

EJ
· ∂

2y

∂t2
− ρSω2

EJ
· y = 0 (6)

Solution of eq. 6 provide us relation between Ω and ω in form of:

Ω2

R2
+
ω2

R2
= 1 (7)
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Figure 5: The natural frequency dependence of discrete model’s relative
transverse vibration (shown in Figure 4) on the angular velocity of rotation

Figure 6: Test model for calculation of propeller shaft’s speed resonance

For our test model is the final analytic solution:

R =
r

2

√
E

ρ

(
π

l

)2

(8)

If we calculateR with testing parameters we obtain the valueR = 636.1432rad·
s−1 and by parametrizing with ω the graph 7.

5 Conclusion

We are able to define the mathematical model based on the physical dis-
crertization and used it for solving the problem of finding critical speed of
rotations. This model was programmed as a script in GNU Octave. There
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Figure 7: The graph functional dependence of the angular frequency (Ω)
lateral vibrations relative to the angular speed of rotation (ω) of the propeller
shaft’s test model.

is also possibility of using analytical solution derived from equation 6. Both
of these solutions gives us the circular dependency of Ω and ω (Equations
5, 7). As future work we would like to use also Finite element method for
modelling propeller shaft and for calculation of critical speed.
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November 30, 2017

1 Introduction

In this contribution we study the randomization of the classical logistic dif-
ferential equation

X ′(t) = K(t)(1−X(t))X(t), t > t0 ∈ R, X(t0) = X0. (1)

We will assume that the initial condition, X0, is an absolutely continuous
real random variable (r.v.) and the diffusion coefficient, K(t), is a stochastic
process (s.p.) defined on a common complete probability space (Ω,F ,P).
For the sake of convenience, it is assumed the equation is normalized, that
is,

P [{ω ∈ Ω : 0 < X0(ω) < 1}] = 1.

We compute the first probability density function (1-p.d.f.), f1(x, t), of the
solution s.p. X(t) to random initial value problem (1) in different scenarios.
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The computation of the 1-p.d.f. is advantageous since it permits to compute
all one-dimensional statistical moments of the solution s.p.

E
[
(X(t))k

]
=

∫ +∞

−∞
(x(t))kf1(x, t) dx, k = 0, 1, 2, . . .

As a consequence, the mean, µX(t) = E [X(t)], and the variance, σ2
X(t) =

V [X(t)] = E [(X(t))2]− (µX(t))2, are easily derived as particular cases. Fur-
thermore, f1(x, t) allows us to compute the probability that the solution lies
in specific sets of interest,

P [{ω ∈ Ω : a ≤ X(t, ω) ≤ b}] , −∞ ≤ a < b ≤ +∞.

To conduct our study, two major techniques will be applied in a combined
manner, namely, the so-called Karhunen-Loève expansion (KLE) and the
Random Variable Transformation (RVT) method.

The KLE allows us to represent the second-order s.p. K(t), i.e., E [K2(t)] <
+∞ for all t, that has a non-numerable degree of randomness as a function of
a denumerable set of r.v.’s, say {ηi : i ≥ 1} having zero-mean, unit variance
and uncorrelated, E[ηi] = 0, V[ηi] = 1 and E[ηiηj] = 0 for every i, j ≥ 1,
i 6= j. KLE constitutes a generalized Fourier-type spectral representation for
second-order s.p.’s.

Theorem 1 (KLE expansion) [1, p.202]. Let us consider the second-
order s.p. {X(t) : t ∈ T } being T ⊂ R. Then,

X(t, ω) = µX(t) +
∑
j≥1

√
vjφj(t)ηj(ω), ω ∈ Ω, (2)

where this sum is mean square convergent and

ηj(ω) :=
1
√
vj
E [(X(t)− µX(t))φj(t)] ,

being {(vj, φj(t)) : j ≥ 1} the eigenpairs of the covariance ΓX(t, s) operator
satisfying the integral equation

λjφn(t) =

∫
T

ΓX(t, s)φk(s) ds, j ≥ 1.
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The RVT method is a powerful result that permits to obtain the joint
p.d.f. of a random vector that results after mapping another random vector
whose joint p.d.f. is known. This result is very useful in dealing with s.p.’s
having a finite degree of randomness. In its multi-dimensional version, this
result can be stated as follows

Theorem 2 (Multidimensional RVT method) [2, p.25]. Let us con-
sider X = (X1, . . . , Xn)T and Z = (Z1, . . . , Zn)T two n-dimensional abso-
lutely continuous random vectors defined on a probability space (Ω,F,P).
Let r : Rn → Rn be a one-to-one deterministic transformation of X into
Z, i.e., Z = r(X). Assume that r is continuous in X and has contin-
uous partial derivatives with respect to each Xi, 1 ≤ i ≤ n. Then, if
fX(x) denotes the joint probability density function of random vector X, and
s = r−1 = (s1(z1, . . . , zn), . . . , sn(z1, . . . , zn))T represents the inverse map-
ping of r = (r1(x1, . . . , xn), . . . , rn(x1, . . . , xn))T, the joint probability density
function of random vector Z is given by

fZ(s) = fX (h(z)) |J | , (3)

where |J |, which is assumed to be different from zero, is the absolute value of
the Jacobian defined by the determinant

J = det

(
∂sT

∂z

)
= det


∂s1(z1,...,zn)

∂z1
· · · ∂sn(z1,...,zn)

∂z1
...

. . .
...

∂s1(z1,...,zn)
∂zn

· · · ∂sn(z1,...,zn)
∂zn

 . (4)

2 Study-cases

2.1 General case: Non-numerable degree of random-
ness

In a first step, we deal with the case that the diffusion coefficient K(t) is an
arbitrary second-order s.p. Then, we use a truncated KLE together the RVT
method to construct the following sequence {fN1 (x; t) : N ≥ 1}, that is, the
1-p.d.f. of each truncation of the solution s.p., XN(t).
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fN1 (x; t) =

∫
D(η1)
· · ·
∫
D(ηN )

fN


x exp

− ∫ tt0
µK(s) +

N∑
j=1

√
vjφj(s)ηj

 ds


1+ x

−1 +exp

− ∫ tt0
µK(s)+

N∑
j=1

√
vjφj(s)ηj

ds

 , η1, . . . , ηN


×

exp

− ∫ tt0
µK(s) +

N∑
j=1

√
vjφj(s)ηj

 ds


1+ x

−1 +exp

− ∫ tt0
µK(s)+

N∑
j=1

√
vjφj(s)ηj

 ds

2 dηN · · · dη1,

(5)
being 0 < x < 1, t > 0, fN = fX0,η1,...,ηN and D(ηi), 1 ≤ i ≤ N , stands for the

domain of r.v. ηi. Furthermore, we provide mild conditions in order to guarantee
the convergence of this sequence to the 1-p.d.f. of the exact solution s.p.

This result is particularized in the significant case that K(t) := W (t) is the
brownian (or Wiener) s.p. for which the correlation function is ΓW (t, s) = min(t, s)

and the eigenpairs are
{(

4T 2

π2(2j−1)2 ,
√

2
T sin

(
(2j−1)πt

2T

))}
for a fixed interval [0, T ],

T > 0. The numerical results obtained via the approximation {fN1 (x; t) : N ≥ 1}
are compared against the exact distribution which is known in this particular. So,
this example acts as a test to account for the accuracy of the proposed technique.

2.2 Lognormal case

As a second example, we consider the case where K(t) = exp(W (t)), that is the
diffusion coefficient is a positive s.p., namely, the so-called Lognormal s.p.. In this
case a sequence of approximations is constructed using the KLE for W (t) and then
we obtain approximations for K(t) = exp(W (t)). This type of positive s.p.’s can
play the role of the diffusion coefficient in dealing with the random logistic model,
thus its theoretical and practical analysis has interest by itself right.

2.3 Numerable degree of randomness

The study is completed obtaining the 1-p.d.f. of the random IVP (1) in the case
that the diffusion coefficient depends on a finite number of r.v.’s. In particular, we
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consider the case K(t) = A exp(Bt) being A and B r.v.’s. An exact expression for
the 1-p.d.f. of X(t) is obtained take advantage of the RVT technique. Afterwards,
the theoretical results are illustrated modelling the diffusion of a technology using
real data. In this context, both A and B are assumed to have parametric probabil-
ity distribution and then applying an inverse estimation technique the parameters
of such distributions are adjusted. Once this has been done, the theoretical result is
applied to construct punctual predictions (via the mean function) and probabilistic
predictions (via confidence intervals) as well as further quantities of interest.
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1. INTRODUCTION 
 
The maintenance of railway fleets is a problem of great relevance at present. An optimum 
maintenance has significant implications in society, both in terms of safety and economics. 

The application of innovative methods and technologies to the railway maintenance has shown in real 
cases increases in productivity and service, with savings up to 23%, and investments that can be 
amortized in less than two years (González-Fernández, 2012). 

The implementation of requirements for the calculation of the Life Cycle Cost (LCC) has driven the 
development of railway maintenance. In this regard, the European Standard UNE-EN 60300-3 defines 
the calculation of the LCC as an economic analysis process to determine the life cycle cost of the 
product during its life cycle or a part thereof. The life cycle is considered as the time interval between 
the conception of the product and its elimination, and the LCC is the accumulated cost of the product 
during its life cycle. The LCC procedure provides customer service and a clear competitive advantage 
(Dunk, 2004). 

This paper focuses on the study of the optimization of the costs of railway maintenance under the 
philosophy of LCC, studying the main parameters of optimization of the maintenance plan from the 
perspective of the reliability engineering. For doing this, the Delay Time Model approach is adapted to 
the railway case and a proposal of graphic resolution method is presented. 

 

2. CONCEPT OF DELAY TIME MODEL 
 
The basic Delay Time Model for a complex system was developed by Christer and Waller (1984). It is 
based on the concept of the delay time h of a defect, which is the time that elapses since a defect can 
be detected by means of an inspection until the defect becomes a fault. The process is divided into two 
stages (see Figure 1), allowing the development of different delay time models for maintenance policy 
optimization (e.g. Wang (2002), Jardine et al. (2006)). 

 
Figure 1. Time relationship between observable defect, failure and delay time 

 
The main difficulty in this family of models lies in the determination of the initial time distributions u 
and the delay time h. This paper proposes an adaptation of the Delay Time Model by using graphic 
methods. This type of optimization method based on inspection with revealed failures is considered 
adequate for the optimization of the rail safety inspections. 

Given u and h distributions, the inspection policy to be modelled is characterized according to the 
following hypotheses (H): 

 H1. Inspections are carried out every T units of time with a cost Ci (currency unit), duration ti, 
being T >> ti. 
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 H2. Inspections are perfect: (a) in case of any defect, it is detected; (b) the inspection does not 
contribute to degrade the system. 

 H3. In case of any defect detection during the inspection, it is repaired in ti at a CCM cost 
within the inspection period. It is considered enough resources to address repairs.  

 H4. The repair is perfect (the component of the repaired system stays in the initial condition). 
 H5. Defects follows a Homogenous Poisson Process with a rate of defects occurrence, , 

constant.  
 H6. In case of failure, it is immediately repaired at a time dp with a cost Cb, which comprises 

the repair cost and a penalty cost. 
 H7. The repair time complies dp << T. 
 H8. The delay time H of a random defect is described by a probability density function f(h) and 

a cumulative distribution function F(H), independent of the initial point of occurrence of the 
defect U. 

 H9. Cb > CCM. 
 H10. The probability density function of the delay time, f(h), is known. 

 
3. GRAPHIC MODEL PROPOSAL FOR THE DELAY TIME MODEL 
 
It is selected a Delay Time Model formulation with exponential distributions for the occurrence of 
defects u(t) and the delay time h(t). The study considers a period with a single inspection and N 
defects. A number B of defects will not be detected, implying a penalty. The model is expressed as 
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where C(T) is the total cost per unit of time in the cycle; Cb are the penalty costs, CCM are the 
corrective maintenance costs, and Ci are the inspection costs (Cb > CCM > Ci); T is the time of the 
periodic inspection cycle; di is the time required for a periodic inspection; N represents the total 
number of defects in a cycle. The defect detection rate is considered to follow an exponential 
distribution; the total number of failures in the period is given by 

TTN *)(  (2)

Considering an exponential distribution for the delay time, the number of failures per cycle B(T) is 
expressed as  
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Substituting the terms of Eq. (1), simplifying and taking into account that T>>di (in railway 
maintenance, safety inspections usually last minutes and inspection periods, months), it is obtained the 
following expression 
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This equation seeks to obtain the total cost per unit of time for a programmed inspection period. It can 
be observed that the result depends on three cost variables (Ci, Cb, CCM) and two statistical variables 
(λ, β). The multiple dependence of the equation in this general form decreases its application 
usefulness, since in practice it is not intuitive understanding the variations of the final result in 
function of the precision of each of the available variables. This research intends to understand the 
weighting of each variable, while developing a simplified method for estimating the minimum cost 
inspection cycle. For doing this, certain algebraic manipulations are carried out. 

If Eq. (4) is reordered by grouping terms according to their dependence on the inspection period, the 
following expression is obtained: 
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The corrected rate of failure is defined as 
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Owing Cb > CCM > Ci and Cb > CCM + Ci, the cost ratio (K) is greater than 1 (Eq. (8)). These 
relationships must be fulfilled to make sense the program of inspections. Otherwise it would be carried 
out a replacement program based on schedule or age. 
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Thus, the corrected rate of failure (Λ) will be the failure rate of the equipment weighted by a factor 
that will usually raise its order of magnitude by one or two orders in the railway case. 
Substituting Λ into Eq. (6) it is obtained the following expression 
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Observing Eq. (9) it is deduced the cycle cost is obtained as a sum of two terms: 

(i) λ*Cb, is the cost of a cycle in which no inspection is carried out. It represents the maximum 
cost, calculated as the number of failures in cycle λ multiplied by the cost that would imply 
all the failures be penalizable, Cb. This term does not depend on the inspection period and 
will be denominated as the maximum cost of cycle, Cmax. 
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  represents the achievable savings through a 

policy of periodic inspections. It depends on the inspection period and is the term to be 
optimized. 

Eq. (9) can also be expressed as (Eq. (10), Figure 2). 
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Figure 2. Costs per cycle based on the inspection period 
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4. USEFULNESS OF THE MODEL  
 
Eq. (10) shows once the transformation of the starting model (Eq. 1) has been carried out, the saving 
term A(T) is the only one dependent on the inspection period. In addition, the number of variables of 
the problem has been reduced from the initial five, to three: period, delay factor (β) and corrected rate 
of failure (Λ). 

The utility of the graphic method presented (Figure 3) is the representation of the optimum period in 
which saving is maximum. In order to graph the results, it has only be considered the term which 

varies with the period, the function 
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For doing this, it is intended to solve the equation in two domains, time and cost, according to the 
following objectives: 

1. Obtain the optimal inspection period to maximize the saving function based on β and Λ; 
2. Obtain the maximum achievable saving Ao for this optimal inspection period, based on β and Λ. 

 
Figure 3. Optimum inspection period to obtain maximum savings per cycle based on Λ and β (T> ti) 

 
The need for an easy graphic representation of the model has involved a mathematical transformation 
that will be presented in the full version of the paper. 
 
5. CONCLUSION  
 
This paper presents a new model of the Delay Time Model with exponential distributions for its 
application in the railway maintenance. The objective is to speed up the calculation for its practical 
application in this type of operations. With this graphic model presented, a mathematical model can be 
applied for the calculation of the delay time in tasks of rail transport equipment and fleets maintenance 
in an agile and precise way, being this is the main usefulness of the model. 
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1 Introduction

Since the introduction of the PageRank algorithm - originally devised by the
founders of Google [16]- to sort web pages, much research has been done in
order to improve both the numerical method and the range of applications.
In this respect, in the latest research papers one can find new numerical
methods for computing PageRank (see, e.g., [21], [22], [20], [15], [9] ) and
a myriad of new applications (see, e.g., [1], [19], [12], [14], and the dedi-
cated article [7]) including those applications related to the emerging topic
of multiplex networks, like the studies in [2] and [5]. It is also worth noting
the technique of extension of PageRank by using higher-order Markov chains
(that is, chains that depend on previous states of the surfer), see [8] and the
references therein.

We are interested in a particular feature of the PageRank algorithm:
its capability of biasing the PageRank -and therefore the resulting ranking-
to some particular nodes. This biasing is done by means of the so-called
personalization vector, see [13], [3]. Given that the PageRank vector is the
dominant unitary positive eigenvector of a stochastic matrix, and by using

∗e-mail:pedroche@mat.upv.es
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basic matrix algebra, it is easy to explicitly write the PageRank vector π,
associated to a network of n nodes, as the product of a personalization vector
v times a nonsingular matrix X. That is, in the form

πT = vTX (1)

where X is a nonsingular n× n matrix, and π, v ∈ Rn×1.
By using (1) and some properties of matrix X, one can obtain a useful

result: giving a network, the value of the PageRank of each node can only
attain values inside a precise subinterval of (0, 1) depending on the entries of
matrix X. In more detail, the bounds are defined by the minimum of each
column of X and the values of the diagonal entries of X (in [6] it is shown
precisely how this localization of the PageRank takes place). Consequently,
we have that the biasing produced by the personalization vector v is limited.

In this talk, we present a result about the localization of a particular class
of PageRank. We refer to this PageRank as the multiplex PageRank, that is,
an ad-hoc PageRank that has been introduced to deal with the problem of
multiplex graphs (graphs composed by several layers with the same number
of nodes).

There are different ways to define multiplex PageRank (see, for exam-
ple [10] and [4]), but we use the one introduced in [17]. According to this
approach the multiplex PageRank is the unitary positive eigenvector of a
stochastic matrix Mk associated to the multiplex equipped with k layers
with n nodes on each layer. Matrix Mk is of the form

Mk =
1

k

(
B11 B12

B21 B22

)
∈ R2kn×2kn, (2)

where B11 gathers the information about the topology of the network, B22

takes into account the personalization vectors and B21 and B21 are diagonal
matrices.

In this new formulation, personalization vectors are also considered. In
fact, we consider one personalization vector for each layer. In the same
manner as in the classic PageRank, the multiplex PageRank changes when
there exists a change in the personalization vectors. Once again, this change
is delimited and its magnitude can be precisely described. In the following
we recall this result and show an example in a small multiplex.
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2 Results

Given a multiplex with adjacency matrices A1, A2, . . . , Ak, we construct row
stochastic matrices PAi

by dividing each coefficient of Ai by the sum of the
entries in its row. Let

PA =


αPA1 In · · · In
In αPA2 · · · In
...

...
. . .

...
In In · · · αPAk

 , Ỹ = Ikn −
1

k
PA,

Z̃ = Ỹ − α(1− α)

k
Ikn, B̃ =

(1− α)2

k(1 + α(k − 1))
(Ỹ Z̃−1 + αZ̃−1),

and 
C1

C2
...
Ck

 = B̃


In
In
...
In

 .

Then (see Theorem 4.4 in [18]) it holds that each component i-th of the
Multiplex PageRank vector π̂k lies in the interval (c(i), d(i)) where

c(i) = min
j

(C1)ji + min
j

(C2)ji + . . .+ min
j

(Ck)ji

and
d(i) = (C1)ii + (C2)ii + . . .+ (Ck)ii

for the matrices C1, . . . , Ck defined above.

Example. Let us consider a multiplex with three layers defined by the
adjacency matrices

A1 =


0 0 1 1
0 0 1 0
0 0 1 0
0 0 1 0

 , A2 = A3


0 1 0 0
1 0 0 0
0 0 1 0
1 0 0 0

 .

When taking the personalization vectors v1 = v2 = v3 = 1
4
[1, 1, 1, 1]T , then

the Multiplex PageRank results to be [0.0370, 0.0332, 0.9166, 0.0131]T .
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node c(i) d(i)
1 0.0000 0.0679
2 0.0000 0.0629
3 0.8825 1.0000
4 0.0000 0.0389

Table 1: Bounds for the Multiplex PageRank in the example with three layers
and four nodes in each one.

The bounds for each component are shown in Table 1. We can observe
that no matter the personalization vector, the node 3 always obtain the
greatest value.

Let us compare the value of the Multiplex PageRank with that obtained
by projecting all the layers into a single one with adjacency matrix

Ap =


0 1 1 1
1 0 1 0
0 0 1 0
1 0 1 0


In this case, by using the homogeneous personalization vector v = 1

4
[1, 1, 1, 1]T ,

one can obtain that the classic PageRank results to be

[0.0914, 0.0634, 0.7818, 0.0634]

and the bounds (computed by the formula given in [6]) are shown in Table
2. As we see, there can be differences in the results when one uses a single
approach or a multiplex approach.

node min max
1 0.0000 0.3179
2 0.0000 0.2977
3 0.5869 1.0000
4 0.0000 0.2977

Table 2: Bounds for the classic PageRank in the example by using a projected
single layer.
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Abstract
We have proposed a new method able to improve and enhance the details of a color image
at the same time that the noise is removed. The characterization based on graph theory
allows us to distinguish different regions and to use each of them to achieve the simulta-
neous sharpening and denoising. With this method we solve the problems presented by
the two-step application, getting to enhance the details without increasing the noise, and
smoothing without losing too much information.

1 Introduction
Nowdays, the use of digital images is present in almost every area, from daily life use with
digital cameras to medical applications or artificial intelligence. More and more fields
make use of digital imaging for different purposes, which has led a great growth of the
techniques able to improve the image visual quality and extract all kind information from
it.

*e-mail: cripebe1@posgrado.upv.es
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There are many factors that can affect the image quality, causing loss of information
that makes difficult to process the image. Sensor malfunctions and poor acquisition condi-
tions are the two most common causes of deterioration in the visual appearance of images.
Sensor quality is closely related to the amount of noise in the image whereas the poor con-
ditions during the acquisition process may limit the definition of image details. For this
reason, it is both necessary to remove the image noise and enhance the texture and details.

In many applications we need to improve the image details, for example, for later seg-
mentation or object detection. However, pristine images do not exist in the real world and
almost all images contain noise to a greater or lesser extent. This noise hampers the work
of enhancement techniques and therefore a previous smoothing step is required. This need
has led to the development of methods that combine both pre-processing techniques.

The intuition could lead us to consider two different steps, first smoothing and then
shaperning, or the other way around. However, these approach can lead to many problems
since if we apply a smoothing technique there is the risk of losing details information that
will not be recovered in the enhancement step. On the other hand, if we apply an enhanc-
ing method over a noisy image, we will amplify the noise preventing a suitable smoothing.
In the Figure 1 we can see an example of this two-step approaches, using the well-known
Bilateral Filter [1] for smoothing and CLAHE [2] for sharpening.

A more efficient solution to address this problem is a simultaneous perspective capa-
ble of sharpening image details while removing noise. However, this is not a simple task
given the opposite nature of these two operations given both correspond to high frequen-
cies. Some authors have tried to address this problem, by using differents approaches [3]-
[4]. Nevertheless the state of the art concerning smoothing or sharpening is very extensive,
there are currently not many methods able to address with both methods in a simultaneous
way [5].

We propose a new model which enable the noise removing at the same time that en-
hance the borders and details. A new graph-based model enables us to characterize a color
image and operate properly to smooth or sharpen according to the pixel nature.

2 Simultaneous sharpening and denoising approach
We consider, for each image pixel F0, a window centered on it of size 3× 3. The rest of
the neighbour pixels in the window are denoted as Fi, i = 1, . . . ,N2−1. Each pixel Fi is in
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Figure 1: Example of the two-step approach. In the first row, from left to right, the noise-free image, the
noisy image, the smoothed image and the result of enhancing over the smoothed image. In the second
row, noise-free and noisy image, the enhanced image and finally, the result of smoothing over the enhanced
image.

turn defined by the tern (FR
i ,FG

i ,FB
i ) of its three RGB colour components.

Given a pixel F0, we define a local weighted graph GF0 where the node set and the
links set are given by

V (GF0) = {Fi, i = 0, . . . ,N2−1}

L(GF0) = {(Fi,F j), i 6= j, ||Fi−F j||2 < U }

That is, a link exists between pixel Fi and F j, i 6= j, if the euclidean distance between
their colour vectors is lower than a certain threshold U . If such link exists, its weight is
w(Fi,F j) = ||Fi−F j||2, where || · || stands for the Euclidean norm.

The principal role of the parameter U is to determine the different connected compo-
nents of the associated graph to each pixel that allow us to classify it into flat region or
detail region, even in presence of noise. This classification allows us to process each pixel
appropiately in function of its nature. We can see more details about the model as well as
the setting of an optimal threshold in [6].

There is a lot of information that we can extract from the graph for an appropiate image
processing. For example, in [6], the cardinal of the links set of the connected component
that contain the central pixel is used for color image smoothing in an adaptative way.
In this case, the main feature of these graphs that allows us to smooth and sharpen in a
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simultaneous way are the different connected components of the graph since each of them
represents a different region of the image.

Figure 2: Examples of the associated graphs to a flat region and a detail region

In the Figure 2 we can see an example of the graph associated to a pixel that belongs
to a flat and other to a detail one. In the first case all pixels are grouped in a single
connected component while in the detail zone they are grouped into several components.
This structure of the graph shows us that we are in a flat or border region.

Notice that a suitable classification requires a good setting of the threshold, otherwise
we shall run the risk of classify a homogeneuos region as a detail one, and therefore high-
lighting regions that do not interest us, or the other way around, classify as flat region a
border or detail one and blurs it.

To achieve the simultaneous result we are looking for, we have defined a 3x3 adaptive
kernel using the information provided by the model so that each kernel weight is deter-
mined by the membership of its associated node in a connected component. The pixels
that belong to the connected component that contains the central pixel will be used for
smoothing, corresponding to positive values in the kernel. On the other hand, the pixels
that belongs to other connected components will be used for sharpening, corresponding to
negative values in the kernel.

Figure 3: Illustration of the 3x3 pixel window, its notation and the asociated 3x3 kernel
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Given a pixel F0 and its asociated neighborhood, we denote the corresponding 3x3
kernel in analogous way that in the neighborhood case in order to simplify the notation,
see Figure 3.

And, the values wi of the kernel are given by the following expressions

wi =


exp
−‖F0−Fi‖

2α2

∑i∈CCF0
exp
−‖F0−Fi‖

2α2

(1+λ ) i f Fi ∈CCF0

− λ

card(CCF0
) i f Fi 6∈CCF0

(1)

where α 6= 0 is the parameter that controls the smoothing effect, λ is a parameter for
controlling the sharpening effect, CCF0 is the connected component that contains the cen-
tral pixel and card(CCF0

) is the cardinal of the connected components that do not contain
the central pixel.

In Figure 4 we can see an example of applying the proposed method over an image
with White Gaussian Noise. Firstly the result of applying only smoothing, and then the
result of the simultaneous shapening and smoothing, where we can see that the noise has
been removed and the details and borders of the image have been enhanced.

Figure 4: Example of the proposed method, firstly, the initial noisy image, then the result of applying only
smoothing and finally the combination between smoothing and sharpening

3 Conclusions
Sharpening and denoising are two methods related to the improvement of the digital color
images within the Computer Vision field. In many cases it is necessary to apply both meth-
ods for different purposes and their opposite nature makes their simultaneous application
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still a challenge. We have proposed a new graph-based model that allows us to charac-
terize a color image and use its local features for removing noise while improving image
border and details.
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(†) Instituto de Matemática Multidisciplinar, Universitat Politècnica de València,
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1 Concrete carbonation problem and Front-

fixing transformation

This work deals with the construction, analysis and computation of a nu-
merical method to solve a moving boundary coupled nonlinear system of
parabolic equations, arising in concrete carbonation problems, see [1]. By
means of a front-fixing transformation, the domain of the problem becomes
fixed, and the position of the moving carbonation front has to be determined
together with the mass concentrations of the involved chemical species. Qual-
itative properties like positivity and stability of the numerical solution are
established.

The mass concentrations of the species are represented by the following
variables, where time takes values in the interval 0 ≤ t ≤ T ,

Ū1(x, t) = [CO2(aq)], Ū2(x, t) = [CO2(g)], Ū5(x, t) = [H2O], 0 ≤ x ≤ S(t),

Ū3(x, t) = [Ca(OH)2(aq)], Ū6(x, t) = [H2O], S(t) ≤ x ≤ L,

Ū4(t) = [CaCO3(aq)], (1)
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where T > 0 is the time horizon.
Let us consider the suitable transformation of variables:

Ûi(x, t) = φφωŪi(x, t), i ∈ {1, 3}, (2)

Û2(x, t) = φφaŪ2(x, t), Û4(t) = φφωŪ4(t), (3)

Ûi(x, t) = φŪi(x, t), i ∈ {5, 6}, (4)

where porosity of concrete is given by the parameter φ, while air and water
fractions in pores are denoted by φa and φω, respectively.

Under the new variables Ûi(x, t), i ∈ {1, 2, 3, 5, 6}, Û4(t) and using Kro-
necker’s symbol δij, the continuous model proposed in [1, 2] is described by
a coupled system of five partial differential equations (PDE) and one ordi-
nary differential equation (ODE); together with the initial, boundary and
transmission conditions and the velocity law of the moving front:

(δ1i + δ2i + δ5i)
∂Ûi

∂t
−Di

∂2Ûi

∂x2
= (1− δ5i)(−1)iPi(Û1 −QiÛ2),

0 ≤ x < S(t), 0 < t < T, i ∈ {1, 2, 5}, (5)

∂Ûi

∂t
−Di

∂2Ûi

∂x2
= δ3i(−S3,diss(Û3−U3,eq)), S(t) < x ≤ L, 0 < t < T, i ∈ {3, 6},

(6)

dÛ4

dt
= κ(φφω)1−p−q[(Û1)p(Û3)q]Γ(t), 0 < t < T. (7)

The transformed initial conditions become S(0) = S0 > 0 and

Û1(x, 0) = Û10(x) = φφωŪ10(x), Û2(x, 0) = Û20(x) = φφaŪ20(x),

Û5(x, 0) = Û50(x) = φŪ50(x), 0 < x < S0, (8)

Û4(0) = Û40 = φφωŪ40, (9)



Modelling for Engineering & Human Behaviour 2017 252

Û3(x, 0) = Û30(x) = φφωŪ30(x), Û6(x, 0) = Û60(x) = φŪ60(x), S0 < x < L,
(10)

and the transformed boundary conditions are

Ûi(0, t) = Λi(t), 0 < t < T, i ∈ {1, 2, 5}, (11)

∂Ûi

∂x
(L, t) = 0, 0 < t < T, i ∈ {3, 6}. (12)

Finally, the transformed interface conditions for x = S(t), 0 < t < T , become

−

[
Di
∂Ûi

∂x

]
Γ(t)

= (δ5i − δ1i)(φφω)−p−qηΓ(Û1, Û3) + S ′(t)[Ûi]Γ(t), i ∈ {1, 2, 5},

(13)[
Di
∂Ûi

∂x

]
Γ(t)

= −(δ3i)(φφω)−p−qηΓ(Û1, Û3) + S ′(t)[Ûi]Γ(t), i ∈ {3, 6}, (14)

and the velocity law is

S ′(t) = ακ(φφω)1−p−q[(Û1)p(Û3)q−1]Γ(t). (15)

For the sake of simplicity, and taking advance of the fact that (S2(t))′ =
2S(t)S ′(t), in the following we will consider as unknown the square of the
free boundary R(t) instead of the free boundary itself S(t) in order to obtain
a more simplified PDE system, i.e. R(t) = S2(t).

In order to transform the PDE problem with moving domain into a fixed
domain one, let us consider the following change of spatial variable inspired
by the well known Landau transformation:

z(x, t) =


(
x/
√
R(t)

)
− 1, 0 ≤ x <

√
R(t), 0 ≤ t ≤ T,

0, x =
√
R(t), 0 ≤ t ≤ T,(

x−
√
R(t)

)/(
L−

√
R(t)

)
,
√
R(t) < x ≤ L, 0 ≤ t ≤ T.

(16)
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2 Positive and stable numerical scheme

In this section we construct a finite difference scheme for solving numerically
the coupled system after applying Landau front-fixing transformation. Let M
and N be positive integers, so that the domain [−1, 1]× [0, T ] is partitioned
in (2M + 1) × (N + 1) mesh points denoted by (zj, t

n), where zj = jh,
−M ≤ j ≤M and tn = nk, 0 ≤ n ≤ N . Here the step sizes discretizations h
and k verify hM = 1 and kN = T , respectively. Numerical approximations
of the involved variables are denoted by uni,j ≈ Ui(zj, t

n), i ∈ {1, 2, 3, 5, 6},
un4 ≈ U4(tn), rn ≈ R(tn), while we denote λni = Λi(t

n), i ∈ {1, 2, 5}.
Partial derivatives at the interior points are approximated using forward

in time and centered in space finite difference expressions. With respect
to the discretization of the first derivatives of the transformed transmission
conditions at the carbonation front z = 0, we use one side second order finite
difference approximations.

The solutions at the interior points at time level n+ 1 are given by:

un+1
i,j = ani,ju

n
i,j−1 + bni,ju

n
i,j + cni,ju

n
i,j+1 + δ1ikP1Q1u

n
2,j + δ2ikP2u

n
1,j,

−M + 1 ≤ j ≤ −1, 0 ≤ n ≤ N − 1, i ∈ {1, 2, 5},
(17)

un+1
i,j = ani,ju

n
i,j−1 + bni,ju

n
i,j + cni,ju

n
i,j+1 + δ3ikS3,dissu

n
3,eq,

1 ≤ j ≤M, 0 ≤ n ≤ N − 1, i ∈ {3, 6},
(18)

where

ani,j =

{
Dik
h2rn
− 1+zj

4h
∆n

1 , i ∈ {1, 2, 5},
Dik
h2∆n

3
+

zj−1

4h
rn

∆n
1 ∆n

2

∆n
3
, i ∈ {3, 6},

(19)

bni,j =

{
1− 2Dik

h2rn
− δ1ikP1 − δ2ikP2Q2, i ∈ {1, 2, 5},

1− 2Dik
h2∆n

3
− δ3ikS3,diss, i ∈ {3, 6},

(20)

cni,j =

{
Dik
h2rn

+
1+zj

4h
∆n

1 , i ∈ {1, 2, 5},
Dik
h2∆n

3
+

1−zj
4h
rn

∆n
1 ∆n

2

∆n
3
, i ∈ {3, 6},

(21)

and

∆n
1 =

rn+1

rn
− 1, ∆n

2 =
L√
rn
− 1, ∆n

3 =
(
L−
√
rn
)2

, 0 ≤ n ≤ N − 1. (22)
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Finally, the concentration of CaCO3(aq) in the carbonation front at the
step n+ 1 is given by

un+1
4 = un4 + kκ(φφω)1−p−q(un1,0)p(un3,0)q, 0 ≤ n ≤ N − 1. (23)

We assume the hypothesis:

Q1G̃2 ≤ G̃1, G̃1 ≤ Q2G̃2, (24)

where G̃1 is the upper bound of [CO2(aq)] and G̃2 is the upper bound of
[CO2(g)], for both at the exposed boundary and in the carbonated zone at
the initial time, together with the condition on the equilibrium concentration
of Ca(OH)2(aq):

un3,eq ≤ G̃3. (25)

We also assume the existence of an upper bound G̃5 for the water content
for both at the exposed boundary and in the carbonated region at the initial
time, and that [Ca(OH)2(aq)] and water content are upper-bounded by G̃3

and G̃6, respectively, at the initial time, see [2], Section 3, pp. 239-240.
Taking small enough values of h and imposing the following condition on

the temporal step size

k < k0 = min{ki}, 1 ≤ i ≤ 6, i 6= 4, (26)

where

k1 ≤
h2r0

2D1 + h2r0P1

, k2 ≤
h2r0

2D2 + h2r0P2Q2

, k5 ≤
h2r0

2D5

, i ∈ {1, 2, 5},

(27)

k3 ≤
h2L2(1− β)2

2D3 + h2L2(1− β)2S3,diss

, k6 ≤
h2L2(1− β)2

2D6

, i ∈ {3, 6}, (28)

the following theorem shows that the numerical solution obtained from the
scheme (17)-(18) and (23), preserves the qualitative properties of the theo-
retical solution obtained in Section 3 of [2]:

Theorem 1. Under hypotheses (24)-(25), for small enough values of the step
size h together with the condition (26), the following conclusions hold true:
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i) Concentration solutions uni,j, i ∈ {1, 2, 5} of the scheme (17) in the car-
bonated zone, concentration solutions uni,j, i ∈ {3, 6} of the scheme (18)
in the uncarbonated region, and concentrations uni,0, 1 ≤ i ≤ 6, i 6= 4, at
the carbonation front are positive and uniformly bounded for 0 ≤ n ≤ N .

ii) The solution un4 of the scheme (23) for the calcium carbonate concentra-
tion is positive, increasing and bounded, for 0 ≤ n ≤ N .

iii) The carbonation front is positive and increasing, 0 < r0 < r1 < . . . < rN .

As a consequence of the boundedness of the mass concentrations, scheme
(17)-(23) is ‖·‖∞-stable under assumptions (24)-(25), for small enough values
of h and conditions (26).

References
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CONSTRUCTION MACHINERY. AN ORDINARY LEAST-
SQUARES APPROACH AND QUANTILE REGRESSION 
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ABSTRACT 

The development of information and communication technologies has had an impact 
on the economic, political, social and cultural perspectives. After the world economic 
crisis and subsequent recession, several economic sectors have decreased their 
activity profoundly. In Spain, the construction industry has been the most affected by 
the economic crisis. As a consequence of the decrease in the public construction, part 
of the machinery used in that activity has been put on sale in the secondary market. 
Currently, a large amount of information is available on the internet, which allows 
studying the behavior of the price (endogenous variable) of these assets based on 
several variables (exogenous variable). This research uses ordinary least-squares 
regression from three perspectives, linear, exponential and power. The main goal is 
to determine the depreciation rate at which these assets are depreciated as a function 
of their age, that is, it relates the asking price in the secondary market with the 
machine age. Furthermore, this research shows the difference between each level of 
asking price and its depreciation rate for each group of assets. This relationship is the 
first basic parameter of the depreciation of a productive asset. Finally, these rates are 
contrasted with the minimum and maximum percentages proposed by the accounting 
regulations in Spain. 

Keywords: quantile regression, MAD, depreciation, machinery, construction. 

INTRODUCTION 

The variety of construction machinery that is commercialized at the moment is extensive. 
In general terms, different asset families are established to carry out the analisys: machinery 
used for earthmoving, excavation and thrust, excavation and loading, loading and hauling, 
compaction and hoisting machinery. 
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The economic crisis has deeply affected the construction sector, and consequently public 
construction. This caused a downturn in the demand of this type of services, and led to an 
underutilization of the productive capacity of the sector. According to the Central Business 
Directory of Spain (CBDS) from 2008 to 2016 the construction sector has decreased by-
34.63%. The cessation/stoppage of activity of a large part of the companies in the industry 
entailed the liquidation of their assets, and this caused a decrease of the market prices of 
public construction machinery. Its supply in the secondary market increased sharply while the 
demand was reduced or almost disappeared. 

The mechanization of the construction industry has allowed gaining competitiveness, 
reducing production costs and increasingearnings. Labor costs have been gradually reduced, 
nevertheless, machinery costs have been increased, particularly due to the evolution of fuel 
prices, insurance, repairs, maintenance and depreciation. The depreciation methods legally 
established and accepted by the accounting principles are theoretical models. Nevertheless, 
these models do not assure the real imputation of the depreciation that the assets have 
suffered. 

In the United States there are several studies that show this situation, as reflected by 
Peacock and Brake (1970), McNeil (1979), Leatham and Baker (1981), Reid and Bradfrod 
(1983), Perry et al. (1990), Hansen and Lee (1991), Cross and Perry (1995) and Unterschultz 
and Mumey (1996). Some of them used regression methods to estimate the residual value of 
the machinery taking into account variables such as age and technical characteristics. In 
Spain, some studies have also been developed, as shown by Fenollosa and Guadalajara 
(2007), in the case of the agricultural machinery industry. 

The extensive number of machines in the market together with the growing data 
availability on the internet makes it possible to study the machinery depreciation with 
samples larger than ever. Therefore the main goal of the chapter is to determine empirical 
depreciation rates and models for construction machinery. 

 

METHODS 
Data Gathering 

 
The information to carry out this chapter has been obtained by means of web-scraping 

techniques. Specifically, sale listings of used construction machinery in Spain where gathered 
from www.europa-mop.com on Agust, 2015.   

For each machinery type the listings provided some descriptive information (brand and 
model of the asset, location and other secondary information), machine age, operation hours 
and sale price (asking price). 

For this research the information of operating hours has been deemed insufficient since 
many of the sale references do not provide it. Furthermore the accounting systems 
implemented in Spanish Small and Mediums Enterprises (SMEs) do not track the number of 
operating hours of their machines. Thus, it is difficult to apply a depreciation coefficient as a 
function of the number of operating hours. 

The research focuses on the analysis of the following groups of assets: a) Bulldozers, b) 
Compactors, c) Track excavators, d) Wheel excavators, e) Mini excavators, f) Graders. 

http://www.europa-mop.com/
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Regression models 

 
This research focuses on analyzing the relationship between the age of the machines from 

several groups of assets and their market price. To do this a regression model, based on 
ordinary least squares, is proposed. 

The general expression of a regression model for a total of k explanatory variables is: 
 

      [1] 
 

Where ‘Y’ is the endogenous variable, ‘xi’are the exogenous variables, and the parameters 
‘bi’are parameters that quantify the relationship between the endogenous variable and each 
exogenous variable, ‘a’ represents de interception in the regression model and ‘U’ is the 
model’s error. 

In this case, the model is based on relating the asking price (exogenous variable) with the 
age of the machine (endogenous variable). It is not a valuation model since is not used to 
value but to obtain the depreciation rate. Three diferents approaches have been developed in 
order to determine the depreciation rate following models from literature. 

The model uses asking price as the endogenous variable since sale listings are the main 
data source. However, the goal of the research is to model depreciation which should be 
related with market value. Therefore the asking price is used as the best proxy of market 
value although some bargaining discounts can be expected, Peña (2000). 

In some cases, a exponential relationship can be found between t (age) and V (asking 
price): 

       [3] 
 

By applying the neperian logarithm, equation [3] can be linearized: 
 

       [4] 
 

Finally, he relation between t (age) and V (asking price) can be logarithmic. 
 

        [5] 
 

it can be transformed into: 
 

        [6] 
 

Quantile regression 
 
Since the data sample are made of machine types each sample includes different brands 

and models which brand new price can be totally different. This fact raises the question 
whether expensive and economical machines should use the same depreciation rate.  That is 
to say, is the depreciation behavior the same within each machinery group?  
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To answer this question quantile regression will be used. The quantile regression offers 
the possibility of creating different regression lines for different quantile levels for the 
dependent variables.  For this research sample, the relationship between quantile machinery 
prices and age could be worked out. Koenker and Basset (1978) explain that quantile 
regression is suited for those cases of heteroscedasticy, presence of outliers or structural 
change. 

In order to determine the coefficient of determination of each quantile the Pseudo-R or R1 
has been used (Koenker and Machado, 1999). 

 
Outliers treatment. Median Absolute Deviation (MAD) 

 
In a database obtained from public sale listings errors, mistakes and non-realistic values 

are bound to exist. Therefore an strategy to deal with outliers is needed. Considering the 
number of machine groups and the number of machines in each group an automated strategy 
has been applied.  

Specifically, the median absolute deviation (MAD) has been used. The MAD relies on 
the use of the deviations around the median. The median (M) is, like the average, a measure 
of the central tendency but offers and advantage, it is less sensitive to the presence of outliers. 
An example of this lack of sensitivity would be the “breaking point” (Donoho & Huber, 
1983). MAD would be defined, according to Huber (1981) as: 

 

         [7] 

Where xj is the original number of observations and Mi is the median of the series. The 
parameter b = 1.4826 is usually a constant, assumed from the normality of the data, against 
the abnormality induced by the outliers (Rousseeuw&Croux, 1993). The MAD has been 
applied recursively to each machine group until no outlier is found. 

 

RESULTS 
 
The R programming language has been used for processing and modeling. Table 1 

summarizes the coefficients obtained by applying the least-squares regression models in their 
linear, exponential and potential approaches. The column ‘n0’ expresses the number of initial 
data for each group of assets. Nevertheless, when outlier data are detected, MAD technique is 
used to remove them. In this way, the variable ‘n1’ provides the information corresponding to 
the final data for each group. 

 
Table 1. Summary of statistical parameters. 

   
OLS Linear Model (M1) 

Type of asset n0 n1 Coef. A Coef. B R2 
Wheel excavators 451 407 52,413.43 -1,841.7224 0.5145 

   

   
OLS Exponential Model (M2) 

Type of asset n0 n1 Coef. A Coef. B R2 
Wheel excavators 451 407 1,109.69 -0.0753 0.6163 
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OLS Power Model (M3) 

Type of asset n0 n1 Coef. A Coef. B R2 
Wheel excavators 451 407 1,235.30 -0.9044 0.5475 

 
Among the three linear least squares regression models, Linear (Model 1), Exponential 

(Model 2) and Power (Model 3), Model 2 shows the higher R2 coefficient for any type of 
productive assets. Compactors are the only exception, Model 2 offers an R2 of 0.0181, while 
Model 3 equals 0.0322. Nevertheless, in both cases, this R2 indicates that the model does not 
have a significant goodness-of-fit. 

The R2 explains how much of the variability of a factor can be caused or explained by its 
relationship to another factor, i.e. the quality of the model when calculating the value of the 
type of productive asset as a function of the explanatory variable (age). Compactors have a 
low R2, in all of the three models proposed. This implies that the explanatory variable ‘age’ is 
not representative to determine the price of this type of assets.The closer to 1 is, the greater 
the adjustment, and therefore the less possibility that there are significant devaitions between 
the calculated value and the value that can be found in the market. 

At this point it should be noted that the purpose of this research is not to establish a 
model to carry out the valuation of productive assets. On the other hand, the market 
depreciation rate is analyzed in order to determine the rates of depreciation according to the 
market behavior and to compare it with the coefficients established by official bodies (such as 
the Public Finance). Developing this chapter we can observe that Model 2, exponential 
regression, has the highest R2, which belongs to the group of Wheel Excavators (R2 = 
61.63%). 

 
Figure 1. Regression models f(Price, Age) Wheel Excavators. R software. 

The exponential model presents a path of productive assets subject to accelerated 
depreciation, greater depreciation in the initial stage of the asset’s useful life, and then a 
moderate depreciation rate. For the first years, the exponential model slope is less steeper than 
the potential model one (see Figure 1). The R2 of Model 3 is 54.71%. Thus, we proceed with 
the calculation and presentation of the depreciation coefficients for each asset group based on 
the three models analyzed (Table 2). 
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Table 2. Summary of depreciation coefficients. 

 
Model 1. Linear Model 2. Exponential Model 3. Power 

Wheel excavators -0.035 0.927 -0.904 

 
In Model 1, it can be seen that for all asset groups, the depreciation rate goes from 0.7% 

(compactors) to 3.8% (mini excavators) following a straight-line. Wheel Excavators would 
depreciate at 3.5% annual rate. That is, they would have a maximum useful life of 
approximately 28 years. 

Through Model 2, it can be concluded that the assets with the highest depreciation 
coefficient are the ones corresponding to the excavators (track, wheels and mini excavators). 
Compactors would have a longer lifespan. In general, the exponential regression exhibits a 
higher depreciation in the first years; and a milder depreciation in the medium/long term. E.g., 
in the fifth year the Wheel Excavators have been depreciated by 31.38% of their market 
value. By age 28, the accumulated depreciation reaches 89.56%. 

Finally, Model 3 shows the extremely fast depreciaton of the assets in the first years. 
Wheel Excavators value would deteriorate by almost 76.67% in five years of use.  

According to the Spanish corporate tax regulation machinery should be depreciated by 
means of straight-line method with a depreciation rate within in the range 5.55% - 12%. The 
secondary market, on the other hand, implicitly recognizes that these productive assets have a 
longer life than the legal or accounting life. This extension of the useful life is determined by 
updates and maintenance, which improves and increases the state of conservation of the 
machinery. There are several variables from which regression analysis can be established 
(brand, model, hours of operation, etc.), however, the approach developed in this chapter aims 
to establish a basic depreciation rate, based on the age of the assets. 

These coefficients would apply to all assets of the same typology, nevertheless, there may 
be a difference in the behavior of the depreciation rate as a function of the value of the assets.  

Thus, by applying the quantile regression on the exponential model for the “Wheel 
excavator”, the realized quantile partition is shown in Figure 2. 

 

 
  

Figure 2. Quantile exponential regression model  f(Price, Age) Wheel Excavators. R software. 
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Results show that the depreciation rate is in the range 0.92 – 0.94 for all the quantiles. 
This means that in 30 years the residual value would be in the 9 – 14.5 %. 

In other words, the cheapest Wheel excavators have a slower rate of depreciation. 

Table 3. Depreciation coefficients by quantile regression (Exponential model). 

  
tau= 0.025 tau= 0.25 tau= 0.50 tau= 0.75 tau= 0.975 

Wheel 
excavators 

Dep. rate 0.93058421 0.923259251 0.920539692 0.927396572 0.937452789 

Pseudo R2 9.95% 34.07% 43.08% 42.23% 37.62% 
 
The same quantile analysis has been carried out for the rest of the machinery groups. In 

all of them the depreciation rates are not affected by the machine asking price. 
 

CONCLUSIONS 
 
This chapter allows two main conclusions to be drawn:  
- The data availabitily in the machinery secondary market makes possible to determine 

that these machines do not follow a straight line depreciation. The best fit is reached 
by means of an exponential or semi-log relationship. This relationship implies that 
the depreciaton is higher in the early years. 

- Economical machines do not depreciate differently than expensive machines.  

This work makes up a good example of how the increasing Internet information can help 
to improve anlysis and decisions in business environments. It also highlights the differences 
between fiscal and accounting regulations, and market behavior. 
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Abstract 

Suicide is one of the leading causes of death for all ages of the general population, but its 
relevance seems to be hidden by several reasons (Hawton, et al., 2013; Leadholm et al., 
2014). In fact, western media coverage minimizes their writing about the subject and calls 
the public attention to alternative issues; this pattern tries to prevent “social contagion” 
(Werther effect), but also it responds to an initial lack of evidence about the problem. 

Contrary to popular assumption, suicidal behavior does not only occur in countries with bad 
weather, or limited sunshine; it also takes place in countries such as Spain, where 
international media links us to tourism and happiness, ignoring an increasingly hidden 
problem (Miret et al., 2014). In fact, in Spain the suicide is the second non-natural death, 
beneath the traffic mortal accidents. 

One of the reasons that explains the hidden nature of the problem is the undetermined level 
of suicidal intend cases that leads police investigations and medico-legal examinations to 
non- conclusive results for a large number of deaths (by poisoning, drawings...), which are 
classified as accidents. 

In recent years, associations preventing from suicide have emerged, but they have not 
captured massive public attention. This social problem has in common characteristics with 
other mental disorders such as drugs addiction, depression; thus, suicidal behavior is a kind 
of mental disorder, (Gea et al., 2013). 

In fact, the fatal event of a person taking his/her own life, affects their close neighborhood 
(family and friends) by the experienced loss as well as society due to the loss of 
productivity and health care costs (Dias de Mattos Souza, et al.,  2016). 

The neglect of this phenomenon stems from a lack of measure, which is uncontrolled and 
hence can not be improved. Thus, sizing the population at risk of suicide has an undoubted 
social interest. 

The quantification of the general population to the risk of attempting suicide is not an easy 
task. It is also controversial due to the multidisciplinary nature of the problem. In fact, 

mailto:manalgon@upv.es
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previous studies tackling the suicidal behavior have not agreed on an approach to determine 
the magnitude of the problem. 

In this paper we address the quantification of the Spanish population at risk of attempting 
suicide aged among the interval [16, 78] during the period of time July 2015 to January 
2021. Thus, a discrete mathematical model will be created to quantify the level of risk of 
attempting suicide of Spanish population by taking into account demographic, cultural, and 
socio-economic factors. 

Keywords 

Risk, suicide, Spain, dynamic compartment model, economy, mental illness, stress. 

 

1. Introduction 

Suicide is the action of killing onself intentionally. In fact, nobody talks openly about it but 
about 4,000 people suicided in Spain in 2014, (SIS, Spanish Institute of Statistics, 2016). 
Moreover, suicide is the top rank violent death in Spain causing more deaths than traffic 
accidents.  

Apart from the official data about suicides, there is a relevant number of suicides that have 
been classified as “natural” or as domestic or work accidents. Actually, the number of 
suicides is uncertain and hidden. Thus, official statistics about suicide victims reflect just a 
small proportion of total number of fatal events, but from 20 attempts of suicide,  just 1 
succeeds (hyphothesis assumed by experts). In addition, in 90% of suicides the victim was 
suffering some mental disease, (bipolar disorder, schizophrenia, personality disorder). 

Suicide is a social problem that needs attention for its direct effects, but also for the indirect 
effects causing that for each suicide, 6 people life is socio-economically and 
psychologically impacted in the close environment of the fatal event. Also, there is a 
relevant loss of labor productivity and growth of healthcare expenditure that justifies the 
need of public resources to treat not only physical citizen illnesses but also mental ones. 

In fact, many depressive people never become suicidal, and many non-diagnosed but 
depressed people commit suicide, (Solomon, 2015). Suicide varies inversely with the 
degree of integration of the individual to the social groups of which belongs (family; 
religion; politics), (Durkheim, 1995 (1896)). The person who suffers from depression, does 
not understand what happens to him/her but feels the urgency to isolate himself/herself to 
carry this burden.  Also, the individual has no information but society neither abou the 
depression. In conclusion, it can be stated that depression is something that can affect any 
of us, (Rojas, 2016). 

2. Methods 
a. Hypothesis of the study 

The model was built under several hypotheses that is important to detail. The first one 
consist of the assumption about the suicide is not an unpredictable event, since there is an 
evolution on people’s behaviour towards this fatal event. This drives us to the second 
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hypothesis about how individual behaviour is not predictable but the aggregated might be, 
(Raafat et al., 2009). Thus, the third hypothesis was made under the assumption that the 
Spanish population can be classified according to their risk to commit suicide. Following 
this hypothesis a rating to classify Spanish population according to their level of risk to 
commit suicide was built. We considered 4 levels of risk to commit suicide : 

• No risk subpopulation, (Z): individuals who have none indicator suggesting a 
relation to the problem. In fact, it is assumed that a proportion of them (F*) will 
never transit. 

•  Pre-risk subpopulation, (P): individuals that due to their personality traits (LGTBI, 
post-traumas), and or having experienced episodes of violence, and/ or due to their 
labor have access to weapons and suffer from labor stress. 

•  Low risk population, (L): those who have ideated/planed a suicide. 

•  High risk population, (H): those attempting to suicide at least once in their life 
combined with those who suicide. 

The forth hypothesis assumes individuals transit from one category to another in one 
semester period, what has been called the “one jump principle”. The subpopulation transits 
can occur to higher but also to lower risk categories (recovery). 

The fith hypothesis relies on the bases that individual behaviour is affected by different 
drivers. The combination of those drivers makes a proportion of each subpopulation evolve 
(jump) from one category to another. Following the factors impacting on individuals’ 
behavioir are detailed: 

• Demographic factor (Birth & death rates; emigration), (SIS, 2016) 

• Economic factor (Poverty rate indicator), (SIS, 2016) 

• Social contagion factor (Christakis & Fowler, 2009), 

• Behaviour patterns, (Raafat et al., 2009), 

• Alcohol abuse and drugs consumption, (SIS, 2016) 

• Emotional slow-down, (Rojas, 2016) 
 

i.  Population of study 

The Spanish population S(0)=37,075,000 aged [16, 78] in July 2015 (n=0) is classified at 
one of the subpoplations according to the reports and previous studies: 

• Z(0) = 31,603,000, non risk population is the 85.24% of S(0). 

•  P(0) = 4,925,000, pre-risk subpopulation is the 13.28% of S(0). 

•  L(0) = 450,000, low risk subpopulation is the 1.21% of S(0). 

•  H(0) = 97,500, high risk subpopulation is the 0.26% of S(0). 
 

b. Transition Coefficients Modelling 

There are four types of transit coefficients: demographic, economic, social contagion and 

drugs and alcohol abuse consumption. Those are denoted by  when the transit expresses 

an increase in the level of risk to commit suicide, meaning a transit to lower risk 
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compartments. Then, neutral demographic factor at semester n is denoted by bi(n), where 

.  

The demographic factor bi(n), represents the net balance among newcomers and out-comers 
to the system. The newcomers of the system are those individuals becoming 16 years old, 
while the outcomers are those who become 79 years old at semester n and those who are 
deceased at semester n, (excluding those who suicide according to official data, (INE, 
2015)). 

The transit from Z(n) to P(n+1) can be due to the contagion effect (αc*(n)), and/or the 
economic stress, (αp*(n)).  The αc*(n) is explained as follows: 

          (1) 

where 10% are “immune against depression”, (Spanish Ministry of Education, Culture and 
Sports, 2015). 

The economic stress, (αp*(n)) is expressed as: 

 (2) 

where ρ(n) is the Spanish poverty risk rate (based on the household income), [2015, 2017], 
INE. Also, 10% Z(0) are not affected by the economy. 3,700,000 people. 

 The transit from P((n)-H*) to L(n+1) is due to the combination of at least three factors       

( ) impacting on individual behavior. Where H* represents the amount of people that 

due to physical and psychical conditions will not transit to L(n+1). . 

The transit from L(n) to H(n+1) is explained by the impulse coefficients α2
AD. This transit 

coefficient is explained by the abuse of drugs and alcohol of population already at risk 

(L(n)). . 

Finally, the population at risk is susceptible to recover transiting to lower levels of risk. 

However, it is assumed the recovery ( , where ) will be easier for those 

individuals at lower risk levels. Thus, the recovery from P(n) to Z(n+1) is modeled as 

, where ρ(n) is the Spanish poverty risk rate, (SIS, 

2016). While is based on psychotherapy/drug prescription (Rojas, 2016) and   is the 

recovery byendogenous reasons (physical illness/mental disorders) but it is a slow long 
process, (Rojas, 2016). For the period of study considered 

.   

c. Mathematical model 

Z(n+1) = Z(n) – αc*(n) (Z(n)-F*) – αp*(n) (Z(n)-F*) + βr1(P(n)) +b1 

 P(n+1) = P(n) –α1*(P(n)-H*) + αp*(n) (Z(n)-F*) +αc*(n) (Z(n)-F*) –βr1(P(n)) +βr2(L(n))+b2 

 L(n+1) = L(n) –(α2
AD)*(L(n)) +α1*(P(n)-H*) –βr2(L(n)) +βr3(H(n))+b3 
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 H(n+1) = H(n) + (α2
AD)*(L(n)) – αs(H(n))– βr3(H(n))+ b4,    (3) 

Then, solving the difference system of equations of the model the subpopulations Z(n),P(n), 
L(n), and H(n) are computed for each semester forecasting those at the end of the period of 
study, January 2021. 

3. Results 

Table1 shows the trend of subpopulations for the period of study. Table 2 shows the initial 
proportions of each supopulation (n=0) and the subpopulations at n=13. 

Table 1. Forecast of subpopulations for the period of study 
Semester       Z          P     L     H 
July 2015  31,603,000      4,925,000     450  97,5 
January 2016  30,665,955      5,616,305     489,99  143,31 
July 2016  30,481,404      5,537,251     543,961  192,339 
January 2017  30,354,971      5,406,077     589,443  246,064 
July 2017  30,239,481      5,268,411     626,06  303,406 
January 2018  30,132,378      5,128,201     654,71  363,272 
July 2018  30,031,227      4,986,398     676,285  424,700 
January 2019  29,935,754      4,843,873     691,597  486,856 
July 2019  29,844,523      4,701,260     701,378  549,017 
January 2020  29,757,132      4,559,201     706,29  610,565 
July 2020  29,672,625      4,418,193     706,931  670,970 
January 2021  29,590,591      4,278,705     703,839  729,785 
      

   Table 2. Proportions of the subpoplations at n=0 and n=13. 

   Z  P  L  H 
July 2015  85.24%  13.28%  1.21%  0.26% 
January 2021  83.82%  12.12%  1.99%  2.07% 

4. Conclusions 

This paper models and quantifies the suicidal risk growth in the Spanish population aged 
[16, 78] during the period July 2015–January 2021. For this purpose, it has been necessary 
to identify and quantify the main drivers of this social problem. Thus, we have identified 
the population on risk to ideate and commit suicide and we have proposed a model to rate 
their level of risk. 

By forecasting the number of future suicides, we can provide recommendations to reduce 
and prevent the growth of this social problem. The main action should be focused on 
avoiding individual isolation; this requires the promotion of social integration and the 
elimination of marginalization, favouring the growth of values. Also, it is recommened to 
include the study of humanities and educate youth on how to employ their leisure time. 
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1 Introduction

In the last couple of decades, sprays have been a central point of investiga-
tion for Internal Combustion Engines (ICE). In fact, spray atomization is of
fundamental relevance in combustion process and pollutant formation. As
regulation on pollutant emission and energy efficiency are becoming more
and more restrictive, the scientific community has invested considerable time
and resources addressing the combustion process from both a theoretical and
a practical standpoint, both with numerical and experimental techniques. In
this context, it is nowadays evident that the actual knowledge on sprays,
primary and secondary atomization as well as coalescence in the injection
process is far from been complete as it becomes more and more relevant for
applied research, especially in a complex frame as the ICE application, where
the combination of injection velocities, pressures and characteristic length is
quite unique and difficult to replicate and study with experimental technique
on the appropriate length scale.
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In this work, Direct Numerical Simulation (DNS) is used to provide a
detailed description of the very first millimetres downstream the nozzle: this
area is of fundamental importance in the formation of the spray, as it presents
the regions in which the atomization begins ([7]) due to the combination of
aerodynamic drag forces and air/liquid turbulence interaction. As a simula-
tion environment, the code Paris-Simulator, developed in [1], is been chosen.
In order to accurately represent turbulence properties of the velocity outgoing
the nozzle, a Large Eddy Simulation was performed in OpenFOAM.

The results provided up to now with DNS for the Near-Field region have
reportedly simulate low injection velocity, therefore pressure conditions un-
realistic for Diesel ICE and rare for Gasoline Direct Injection ICE. Currently,
only Lebas et al. [4] have simulated turbulence at the outlet of the nozzle,
accounting for the turbulence generated by the fluid inside the nozzle duct.
Many studies have related cavitating [5] and non-cavitating conditions [6]
inside the nozzle with non negligible effects on the turbulence distribution at
the nozzle outlet. Furthermore, it has been proved in previous works [3] that
the higher the turbulence at the injector outlet is, the more the atomization
affects the spray shape, as the intact core length reduces significantly and
the atomization process starts earlier.

As appears evidently, still large improvement in the understanding of
turbulent atomization can be achieved. This work investigate how the nozzle
turbulence features (such as distribution and lengthscale) effects the spray’s
shape, turbulence and formation, while reproducing the inlet turbulence with
a methodology derived in [3] and applied to circular jet. In order to do so, a
comparison between the case .

2 Main results

In order to get the correct turbulence features for the case studied here, a
LES simulation of a periodic pipe has been performed in order to assess the
turbulence distribution and the turbulence length scale.

In Fig. 1 a cross section of the pipe velocity field is showed. As it can
be observed, the mesh used is significantly finer at the pipe wall, in order
to capture the boundary layer dynamics. The results have been validated
against DNS from [2] and theoretical data and the comparison is represented
in Fig. 2. Here is clear how, even with lower grid resolution in comparison
with DNS simulations, the LES in clearly capable of capturing the turbulence
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Figure 1: Instantaneous velocity field in the periodic pipe in the middle
section

behaviour of the pipe flow. therefore, the turbulence coherent structures have
been analysed and the parameters to be used as inputs for the synthetic
boundary conditions have been isolated.

Fig. 3 shows the external aspect of the spray at t = 20µs. As it can be
clearly noted, the higher the turbulence induced, the sooner the atomization
process starts, shortening the external non-perturbed length. The penetration
in the two cases is significantly different due to the different axial Reynolds
number, that is justified by the behaviour of the velocity profile in the tur-
bulent case, shown in Fig. 2(a). The atomization process is significantly
promoted by the nozzle turbulent, as it can be demonstrated by the sig-
nificant higher number of droplets in the turbulent case. Furthermore, the
typical mushroom tip is no more visible in the turbulent cases, showing once
again the chaotic behaviour introduced by the atomization process.
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(a) Mean velocity profile at the pipe wall (b) Velocity rms ath the pipe wall

Figure 2: Validation of LES results

The different behaviour among the cases can be quantified by means of
the mass concentration (mc), calculated as :

mc =
ρl · C

ρl · C + ρg · (1− C)
(1)

where ρl is the liquid density, ρg is the gas density and C is the color function
defined in [1]. Figure 4 shows the time-averaged mass concentration in the
spray axis. Once the spray is stabilized for the both cases, mc is used to
characterized the intact core length, which is directly related to the atom-
ization intensity. It can be noticed that while the case without turbulent
boundary condition do not reach the axial breakup (and therefore the drop
in the axial mass concentration), the case with the synthetic turbulence at
the inlet shows a more realistic behaviour and drop to a mass concentration
under 95% within the simulation domain. Fig. 4 can be viewed also as a
further quantification of the increased atomization regime for the case with
the synthetic turbulence.
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Figure 3: External aspect of the injected spray at t = 20µs

Figure 4: Axial mass concentration
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1 Introduction

Multidimensional methods are widely used for the acoustic modelling of au-
tomotive exhaust silencers [1]. Accurate predictions of the sound attenuation
performance at mid and high frequencies require the consideration of three di-
mensional waves corresponding to higher order modes. Numerical approaches
such as the boundary element method (BEM) and the finite element method
(FEM) are usual design tools, although the associated computational expen-
diture of these fully numerical schemes can be considerable as the number of
degrees of freedom increases [2, 3]. Thus, an effort has been made in the last
two decades with a view to develop alternative modelling techniques that pro-
vide improved computational efficiency without sacrificing accuracy. Some of
these techniques are based on hybrid approaches [4-11] that combine analytical
and numerical aspects of the wave propagation. For example, in silencers with
irregular but axially uniform cross section, a numerical approach can be used
to model the transversal governing eigenequation [7]. The complete solution
of the acoustic field in a particular silencer subdomain is obtained by consid-
ering the contribution of the axial propagating terms analytically. Finally, the
acoustic coupling of all the subdomains involved is achieved through enforcing
suitable compatibility conditions of acoustic pressure and axial velocity across
the geometrical discontinuities. Bibliography tends to favour the point collo-
cation technique and mode matching method as techniques to enforce these
conditions [4, 11-13]. In general, for small dimensions mode matching has been
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shown to have some advantages in terms of speed and accuracy, due in part to
symmetry properties, orthogonality of the transversal modes, the sensitivity
of point collocation to the grid chosen and acoustic scattering at particular
locations [4, 12, 13].
On the other hand, absorbent granular materials are studied here, from an
acoustical point of view, as a potential alternative to the traditional fibrous
materials used in dissipative silencers. As shown in earlier studies, sound prop-
agation in granular materials can be modelled through complex and frequency
dependent density and speed of sound [14]. Their acoustic properties can be
predicted through models available in the bibliography [15, 16], which will be
used in the context of the current investigation.
In this work, a mathematical approach based on a numerical version of the
mode matching method [8, 9] is presented to compute the transmission loss
of silencers with granular material. Multidimensional sound propagation is
taken into account in configurations with arbitrary, but axially uniform, cross
section. Transversal material heterogeneities are included in the model [3, 11].
Also, the possibility of using different filling levels of granular material gives
rise to cross sections with an abrupt change of properties and the existence of a
transition between air and material involving a remarkable change in porosity
(see Figure 1). The computational requirements of a full numerical scheme
such as FEM are reduced through a method that combines analytical axial
propagation terms with numerical transversal eigensolutions of the silencer
heterogeneous cross section. Numerical mode matching [8, 9] is then used to
couple the modal expansions associated with each silencer component and to
obtain the complete solution of the wave equation. To this end, the compati-
bility conditions of the acoustic fields (pressure and axial acoustic velocity) at
the geometric discontinuities between the silencer chamber and the inlet and
outlet pipes are taken into account. Transmission loss predictions show good
agreement with experimental results obtained for a particular configuration.
Also, the results obtained with the proposed approach are compared favourably
with general three-dimensional finite element computations, offering a reduc-
tion in the computational effort. Finally, a number of silencer geometries with
granular material have been considered. The effect of several parameters on
the acoustic attenuation has been assessed, including filling level, grain size
and porosity. The results are not presented here for the sake of brevity.

2 Overview of the mathematical approach

The governing equation for the sound propagation is common for the chamber
containing air and granular material (see Figure 1), and it can be written as
[3, 11]

∇
(

1

ρa/gr
∇Pa/gr

)
+
k2
a/gr

ρa/gr
Pa/gr = 0 (1)

where subscripts a and gr are related to the air and the granular material
domains, respectively. P is the acoustic pressure, k the wavenumber and ρ the
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Figure 1: Scheme of silencer with granular material.

density (notice that ρa is the air density, while ρgr is the equivalent density of
the granular material [14]). Taking into account that the silencer presents an
axially uniform cross section and following a separation of variables procedure,
the pressure amplitud can be expressed as [7, 8]

Pa/gr(x, y, z) = Ψxy
a/gr(x, y)e−jkzz (2)

where Ψxy is the transversal acoustic pressure and kz is the axial wavenumber.
Now, a 2D FE discretization can be considered and applying the weighting
residuals method, together with Green’s theorem and Galerkin’s approach [11],
the procedure leads to∫

Sa/gr

1

ρa/gr
∇T

xyN∇xyNdS
{
Ψa/gr

}
+∫

Sa/gr

1

ρa/gr

(
k2
z − k2

a/gr

)
NTNdS

{
Ψa/gr

}
=

∫
Γa gr∪Γp

1

ρa/gr
NT ∂Ψa/gr

∂n
dΓ

(3)

where N are vectors that contain the nodal shape functions of each subdomain,
Sa refers to SA and SCa, and Sgr represents SCgr. Then, the coupling conditions
at interface Γa gr are related to continuity of pressure and normal acoustic
velocity, the latter being

1

ρa

∂Ψa

∂n
= − φ

ρgr

∂Ψgr

∂n
(4)

where φ is the porosity of the granular material. Regarding the porosity of the
perforated duct (with boundary Γp), it is assumed high enough (near 100%)
so that, in practical terms, its acoustic impedance can be neglected and the
transition between the air and the granular material can be modelled in the
same way as the interface Γa gr. Now, by introducing Eq. (4) in the system
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represented by expression (3), the following assembled FE system of equations
can be obtained∫

Sa

1

ρa

(
∇T

xyN∇xyN +
(
k2
z − k2

a

)
NTN

)
dS {Ψa}+∫

Sgr

φ

ρgr

(
∇T

xyN∇xyN +
(
k2
z − k2

gr

)
NTN

)
dS {Ψgr} = {0}

(5)

Then, the solution of the system provides the axial wavenumbers and pressure
modes associated with the cross section of the chamber. Finally, the conti-
nuity of the acoustic fields (pressure and axial acoustic velocity) is taken into
account at the geometric discontinuities (expansion/contraction) between the
chamber and the inlet/outlet ducts. These acoustic fields can be written in
terms of a modal expansion, containing both the incident and reflected waves.
The corresponding expressions for the continuity of the acoustic pressure, in
compact form, are∫

SI

PIΨ
n
iI(x, y)dSI =

∫
SA

PAΨn
iI(x, y)dSA (6)∫

SA

PAΨn
iO(x, y)dSA =

∫
SO

POΨn
iO(x, y)dSO (7)

where A is referred to the central duct section within the chamber and I/O,
to the inlet/outlet duct sections at coordinates z = LI and z = LI + LC (LI

and LC being the length of the inlet duct and the chamber), respectively. The
weighting function chosen is ΨiI/O, given by the eigenfunction associated with
the incident wave at the inlet/outlet sections. In addition, the weighted axial
acoustic velocity conditions can be written as∫

SI

UIΨ
n
iC(x, y)dSI =

∫
SC

UCΨn
iC(x, y)dSC (8)∫

SC

UCΨn
iC(x, y)dSC =

∫
SO

UOΨn
iC(x, y)dSO (9)

SC = SA∪SCa∪SCgr being the integration domain related to the whole cham-
ber cross section (including the air central duct SA, see Figure 1), while ΨiC is
the the weighting function associated with the incident wave at the chamber
[7]. Then, weighting integrals are numerically evaluated after truncating the
number of unknown wave amplitudes at n modes. Equations are simultane-
ously solved to obtain the modal amplitudes, considering a unity amplitude
for the incident wave at the inlet section and an anechoic termination of the
silencer [7, 8-13]. Further details about the methodology can be found at [17].

3 Granular material model

The granular material can be modelled by means of its equivalent properties,
e. g. complex density and bulk modulus. According to Umnova et al. [15] the
equivalent density of the granular material can be expressed as
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ρgr = ρaq

1− jµσ

ωρacaq

√
1 +

ωρa4q2k2
p

−jµΛ2σ2

 (10)

where ca is the air sound speed, µ the dynamic viscosity, σ the volumetric
porosity (different from the surface porosity previously defined), q the tortuos-
ity, kp the steady state thermal permeablity, and Λ the viscous characteristic
length.
In addition, the bulk modulus can be written as [16]

Kgr = γP0

γ − (γ − 1)

(
1 +

8µ

jωρaNPrΛ2

√
1 +

jωρaNPrΛ′2

16µ

)−1
−1

(11)

γ being the specific heat capacity ratio, P0 the atmosferic pressure, NPr the
Prandtl number, ω the angular frequency and Λ′ the thermal characteristic
length. Once the complex density and the bulk modulus are known, the charac-
teristic impedance of the granular material can be obtained as Zgr =

√
Kgrρgr.

More details about the material model can be found at [15-17].

4 Results

The mode matching model previously developed for a silencer containing gran-
ular material is validated for a circular configuration. The material is com-
posed of spherical particles of 0.00595 m in diameter, while its porosity is
39.9%. The dimensions of the geometry under study are defined by the radii
of the inlet/outlet ducts,RI = RO = 0.0268 m, and the radius and length of
the central chamber, RC = 0.091875 m and LC = 0.3 m, respectively. The
air properties at 21.4◦C are ρa = 1.1979 kg/m3 and ca = 344.13 m/s. Two
different cases have been studied: (I) The chamber of the silencer has been
filled up to approximately 0.02 m below the bottom of the inlet/outlet ducts;
(II) the chamber is filled until the spheres reach the bottom of the inlet/outlet
ducts.
The results computed with the mode matching method (using 40 modes) for
filling cases I and II are compared in Figure 2a and 2b, respectively, show-
ing a good agreement with those obtained from experimental measurements
as well as an analysis carried out with the FE commercial software Comsol
Multiphysics R©. However, in filling case II (see Figure 2b) the discrepancies
between the experimental measurement and the numerical models are slightly
higher, probably due to a stronger effect of the material model inaccuracy as
the amount of spheres increases. The use of granular material increases the
attenuation achieved by the silencer in the mid and high frequency range due
to sound energy dissipation, as expected [3].
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(a) Case I (b) Case II

Figure 2: TL of a silencer partially filled with granular material: +++,
experimental measurement; ***, mode matching method; ooo, Comsol
Multiphysics R©.

5 Conclusions

A numerical model based on the mode matching technique has been presented
in this work to assess the acoustic behaviour of silencers with an arbitrary
uniform cross section containing granular material. The approach proposed in
this work has been shown to provide accurate predictions of the attenuation
performance while reducing the computation time of a traditional FEM calcu-
lation. The model for the granular material has also been proved to be accurate
enough. However, some discrepancies appear as the amount of spheres within
the chamber increases.
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1 Introduction

Microwave filters are essential components in high frequency communication
systems. So far, for designing these filtering structures, different technologies
are used. One of them are rectangular o circular metallic waveguides, which
present low insertion losses, ability to carry out high power signals and high
quality factor [1]. However, metallic waveguides are heavy, big, expensive
and difficult to integrate with planar technology. Lately Substrate Integrated
Waveguide (SIW) technology has appeared to solve these problems [2]. It
integrates a rectangular waveguide into a planar substrate, obtaining devices
much smaller, significantly cheaper and easier to manufacture.

For all technologies, the coupled cavities H-plane filters are the most used.
Their design combines cavity resonators and impedance inverters. These
impedance inverters are implemented by coupling windows, whose widths
change depending on the desired impedance value [3]. However, there is
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a new alternative to this scheme consisting on filling the waveguide with
dielectric material by sections, keeping the width of the whole structure.

There are several commercial tools like Ansys HFSS and CST Studio
Suite based on numerical methods that enable to carry out the analysis and
design of these structures, but they require a very high computational time
during the analysis process. This affects negatively to the automated design
of these devices, since the optimization process of the design requires a huge
number of iterations of the analysis of the structure.

In this paper, the authors propose an efficient and accurate analysis
method by following a multimodal analysis of the device. The device is
considered as a waveguide with N different sections of length l(i) and N − 1
dielectric discontinuities as shown in Fig. 1. The sections filled with a di-
electric material (odd sections in the figure, except the first and the last one)
behave as resonant cavities and the empty sections (even ones in the figure)
are the coupling windows.

For the analysis, the input and output normalized electric and magnetic
fields are defined for each section and mode. At each discontinuity, the con-
tinuity of electric and magnetic transverse fields is forced for the M modes,
obtaining 2(N − 1) equations for each mode. These equations are solved
recursively obtaining the cross relation between the input and output volt-
ages of the first and last section. The relations of these normalized voltages
determine the scattering matrix (S) of the whole device.

Figure 1: Multiple discontinuities waveguide filter and its reference system.
Gray sections are the coupling windows. White sections are the resonant
cavities.

Since both the geometry and the excitation are invariant in height (di-
mension y), for the analysis, only TEm0 modes are considered. Furthermore,
although there are infinite modes, only the first M modes are selected.
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2 Results

The analysis tool is implemented in MatLab and integrated into a Computer
Aided Design (CAD) tool based on the theoretical synthesis of a starting
point, in order to calculate the physical parameters of the stucture, i.e. the
lengths of the resonant cavities and the coupling windows. Once the starting
point has been calculated, the next step is the optimization of these design
dimensions to get a frequency response as much similar as possible to the
ideal response.

The optimization process is based on several iterations of the analysis of
the structure: in each iteration the analysis tool calculates the electromag-
netic response of the structure, then it is compared to the desired response,
if the difference between them does not reach a predefined minimum, the
structure parameters are slightly changed and the process is repeated. Obvi-
ously, the strategy for changing these physical dimensions is not random, but
a set of optimizations algorithms are used. The whole process is described in
[4], where its efficiency and robustness are improved by using the adequate
combination of algorithms.

In order to evaluate the effectiveness (computational time) and the ac-
curacy (frequency response) of the analysis tool, several filters with different
number of cavities have been designed and afterward analyze. The responses
of two of them are presented.

Figure 2 shows the frequency response of a filter of two cavities when it
is analyzed with the analysis tool and a commercial software (CST). Both
modal and numerical analysis are compared to the ideal response of a two
cavities Chebysev filter. It is observed that there is a very good agreement
between all of them. It means that the developed analysis tool is accurate.

Figure 3 shows the same comparison that the previous figure but for a
filter of four cavities. In this case, it is also observed the very good agreement
between all the frequency responses. The analysis tool can be used for filters
of different orders.

Once the accuracy of the tool is checked, the effectiveness is also tested.
The computational time for the analysis of filters from two to ten cavities is
shown in Table 2 for the Modal Method and CST commercial software. This
time is calculated under the same conditions for both: computing processor,
start and stop frequencies and number of sample points. The obtained times
are plotted in Figure 4. It is observed that the computational time of the
commercial software based on numerical methods increases linearly with a
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Figure 2: Comparison of frequency responses for a filter of two cavities.
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Figure 3: Comparison of frequency responses for a filter of four cavities.

sharp slope when the number of cavities increases. However, in the case of
the developed modal method the time increases very slowly. It shows the
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advantage of the new method versus the commercial one.

Cavities Modal Method CST
2 2.70 s 40.00 s
4 4.28 s 80.00 s
6 5.79 s 130.00 s
8 7.15 s 160.00 s
10 8.85 s 194.00 s

Table 1: Computational time for the analysis of the filter.

Figure 4: Computational time comparison between both methods.

3 Conclusion

A modal method for the efficient analysis of microwave waveguide filters
based on multiple discontinuities has been developed and assessed. Its per-
formance shows that the method is more efficient and accurate compared to
numerical methods commercial software. This makes the new approach very
competitive for its usage in the automatic design of such devices.
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1 Introduction and Objectives

We are interested in studying processes which generate events repeatedly over
time, as multiple recurrences of a tumor that occur in the same subject (Sur-
vival analysis) or multiple failures of a device (Reliability). A correlation
between the recurrent relapse or failure times within the same unit (patient
or device) may exist due to either the heterogeneity among the individuals or
devices and the event dependence. This situation leads us to have correlated
and not identically distributed inter-failure times. In this study we consider
a device with three failures and so with three inter-failure times (Figure 1
and 2). We assume that after each failure the device is repaired immediately
and the repair time is negligible. It is simulated a sample of operational ran-
dom times for 300 independent devices with inter-failure times, T1, T2 and
T3, each one as we indicate in the following table

T1 T2 T3

device (1) t
(1)
1 t

(1)
2 t

(1)
3

device (2) t
(2)
1 t

(2)
2 t

(2)
3

device (3) t
(3)
1 t

(3)
2 t

(3)
3

...
...

...
...

device (300) t
(300)
1 t

(300)
2 t

(300)
3
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Figure 1: one device with three failures

Figure 2: Simulated data of 300 devices

The most common assumptions in the literature is that events occur
independently and with the same distribution. For it the Poisson process with
specific arrival rate is the usual arrival process used to model this situation.
When these two assumptions fail, we need models to fit correctly to data with
correlated inter-failure times and with a different distribution. Moreover, the
introduction of covariates that identify the different characteristics of the
devices is of great interest in the modelization process. Then, in order to
obtain more accurate predictions, our aim is to model correlated and not
identically distributed inter-failure times taking into account covariates.

2 Simulated data

The inter-failure times are simulated using Weibull distributions where the
dependence is performed modifying the shape parameter of this distribution.
Let Tk be the random variable representing the operational time between the
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Figure 3: Mixture of two Erlang distributions in each transition

(k–1)–th failure and the k–th failure. In our case, T1, T2 and T3 are correlated
and not identically distributed (Figure 1).

The following step consists of selecting a suitable probability model family
Fij(t|θij) for each waiting time distribution in each transition. We compute
the empirical distributions and approximate them by means of the mixture
of two Erlang distributions, a class of Phase-Type distribution ([1],[2]). The
Erlang distribution E[r, µ] has a representation (α,H) as a PH-distribution,
with α = (1, 0, . . . , 0)1×r a row r-vector and

H =


−µ µ

−µ µ
. . .

. . .

−µ µ
−µ


r×r

a square matrix of order r representing a distribution time associated to a
Markov process with generator

Q =

(
H −He
0 0

)
,

with e denoting a column vector with all components equal to one. The
distribution function is F (t) = 1− α exp(Ht)e, t ≥ 0.

The parameters αi and Hi for i = 1, 2, 3 of each transition (mixture of
two Erlangs) are calculated by minimizing ‖Fij(t) − PHi(t|αi, Hi)‖ where
Fij(t) is the empirical Kaplan-Meier estimator for the transition i → j and
PHi(t|αi, Hi) is the mixture distribution for the same transition (Figure 3).

The Cumulative Distribution Functions for the variables T1, T2 and T3
are represented in the Figure 4.
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Figure 4: Erlang mixture (smooth line) and empirical distribution (step function) for
the transitions 0→ 1, 1→ 2 and 2→ 3 respectively.

3 The Markov Arrival Process (MAP) with

covariates

The Markov Arrival Process (MAP) is a matrix generalization of the
Poisson point process for dealing with correlated inter-failures times and not
identically distributed ([3], [4], [5], [6]). A MAP (π,D0, D1) is an irreducible
Markov chain with a finite state space S, initial vector π and a generator
matrix Q which is represented as Q = D0 +D1 where,

• D1 ≥ 0, D1 6= 0

• D0(i, j) ≥ 0 for i 6= j

• (π,D0) is a phase-type distribution [6].

The idea is to make up a MAP (π,D0, D1) for modeling this process
0 → 1 → 2 → 3 of three failures for 300 devices. The joint density function
for the three dependent interarrival times (t

(i)
1 , t

(i)
2 , t

(i)
3 ) of each device is

fi(t
(i)
1 , t

(i)
2 , t

(i)
3 ) = πeD0t

(i)
1 D1e

D0t
(i)
2 D1e

D0t
(i)
3 D1e

Then we simulate two covariates for each device: age, continuous variable
(using a Normal distribution: X1) and device class, variable of two levels
(using a Bernoulli distribution: X2).

We consider the matrix D0 as the mean of the three matrices: H1, H2 and
H3 of the Phase-Type distributions fitted before (Figure 3). We introduce
the effect of the covariates multiplying by

D0 ∗ eβ1∗X1+β2∗X2 = D0 ∗ e
~β ~X
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Figure 5: FT1(t), FT2(t), FT3(t) (smooth line) and empirical distribution (step function)
for the transitions 0→ 1, 1→ 2 and 2→ 3 respectively. Group: age of device 12 years old
and material class 0. P-value Kolmogorov–Smirnov test=0.12, 0.93 and 0.11 respectively
for the three transitions.

with ~β the vector of coefficients to estimate, where (π,D0 ∗ e
~β ~X) is a phase-

type distribution [7].
In a second step the matrix D1 is fitted by maximizing the likelihood

function for the 3 interarrival operational times (t
(i)
1 , t

(i)
2 , t

(i)
3 ) of 300 devices.

300∏
i=1

fi(t
(i)
1 , t

(i)
2 , t

(i)
3 )

Then D0 ∗ e
~β ~X + D1 will represent the matrix generator of a Markov

process J(t), with stationary vector φ, that is calculated as

φP ∗ = φ

where P ∗ is the transition probability matrix given by P ∗ = (−D0∗e
~β ~X)−1D1.

The cumulative density function (CDF) of the variables T1, T2 and T3 are
defined by these expressions

FTk(t) = 1− πkeD0∗e
~β ~X te

where πk = π(P ∗)k−1 and Tk ∼ PH{πk, D0 ∗ e
~β ~X}, different phase–type

distributions for the correlated variables T1, T2 and T3 (Figure 5).

4 Concluding Remarks

• Realistic contexts in biomedical and engineering fields need to deal with
correlated and not identically distributed data. Taking into account
covariates is a fundamental issue. Markovian Arrival Processes (MAPs)
are a useful tool to manage this type of data.
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• We have proposed an easy set-up method to take into account covariates
in the MAP methodology.

• Our approach is extensible in a natural way to allow us to incorporate
censored data, another typical feature of real life.
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1. Introduction 
 

Most people believe that happiness is the basis of a meaningful life [1], and for this reason, the intention 
to measure the happiness is increasing. The literature reflects two different ways to measure this concept. 
On the one hand, authors who try to measure the happiness of the people. George Gallup created the Gross 
National Well-Being (GNW), also known as the Gross National Happiness Index (GNH Index). It consists 
of 7 dimensions: economic, environmental, physical, mental, work, social, and political. The Scale of Life 
Satisfaction (SWLS) [2] is a short 5-item instrument designed to measure global cognitive judgments of 
satisfaction with one's life, and the Scale of Subjective Happiness [3] asks four questions to measure the 
happiness on a scale from 1 to 7. On the other hand, there are authors that try to measure the happiness of 
a country, as The Happy Planet Index (HPI), which captures the degree to which long and happy lives are 
achieved per unit of environmental impact. It is calculated [4] through life expectancy at birth, well-being 
and progress in life, and ecological footprint. Finally, in the Overall Life Satisfaction Index, used in [5], 
subjective well-being questions are involved about health, wealth, and access to basic education.  
 
The index presented here is calculated through the terms studied by Caselles [6]. He considered that 
human dignity (from now on Happiness Index) could be calculated from five fundamental concepts (see 
Fig. 1). He also showed a list of variables (qualitative and quantitative) that could be related with them. 
 
This paper has two objectives. First, obtaining a generic formula to measure the happiness of a 
country/region with quantitative variables. The term “generic” is introduced because this formula could 
be extrapolated to any country, although in this work this new index has been calculated only for 13 EU 
countries in 2013, because the information is not available for all countries in the different database. 
Second, adding this index to a dynamic mathematical model through the demographic rates [7,8]. 

 

2. Happiness Index 
 

As mentioned before, we consider happiness as a disaggregation of the five fundamental concepts: 
Development, Solidarity, Justice, Peace and Freedom, but in order to evaluate it, we must find quantitative 
variables that allow us to get closer to its meaning.  

                                                           
* Email:.  m.teresa.sanz@uv.es 
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Fig 1. Causal diagram of the Happiness Index. 

 
Our theoretical reference has been [6], and data have been obtained from Eurostat and World Data Bank 
in the 2001-2015 period. The methodology to obtain the Happiness Index is the one used in UNDP 
Reports. Minimum and maximum values (values limits) are determined to transform the real variables 
into variables with values between 0 and 1. In this way, all variables can be used in the same formula 
because they have the same dimension. Due to the limitation on the number of pages, it is impossible to 
show all the equations here. For this reason, the fundamental concepts are only explained and the chosen 
quantitative variables are presented. 

 

Development: Options of survival and self-fulfilment. It includes: life/health, social progress (education, 
culture, etc.) and standard of life (economic resources, comforts, etc.).  

It is related with the Gender Development Index (GDI) [5]. Note that the education quality is not computed 
in GDI, therefore it is included through the following four variables: a) primary school teachers trained to 
teach, b) performance of 15-year-old students in reading, mathematics and science, c) the average number 
of pupils per teacher in primary education in a given school year and d) public expenditure on education. 

 

Freedom: Non-restrictions to self-fulfilment. This would be the total freedom that, obviously, in a group 
must be limited by the dignity of the other members of the group. The variables used in this subsystem 
are: a) Net migration rate, b) Stock of immigrants, c) International inbound tourists, d) Mobile phone 
subscriptions, e) Exports and imports and f) Research and development expenditure. 

 

Peace: Absence of violence, coercion and fear. The corresponding quantitative variables to measure this 
concept are the prison population and the homicide rate. 

 

Solidarity: It is considered synonymous of brotherhood, that is, mutual aid. The information to create the 
Solidarity Index are a) at-risk-of-poverty rate, b) share of total population living in a dwelling, and c) 
material deprivation rate. 

 

Justice: Mechanisms of prevention, protection and compensation for individuals or groups face to 
possible damages or benefits”. The variables considered in this case are, a) the police officers, b) the 
professional judges, c) the prison population. and d) crimes and violence. 

 

Finally, the Happiness Index (HAIN) is calculated through Eq. (1). The geometric mean is used because 
it is considered the best option to calculate indices [5]. 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡)=�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗5     (1) 
 
 

To validate this new index, we have compared it with the Overall Life Satisfaction Index (Fig. 2), 
calculated in the Human Development Reports [5].  
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Fig 2. Happiness Index (circle) and Overall Life Satisfaction Index (triangle) in 2013 year. R2=0.5027. 

 
 

3. Demographic Model 
 

The starting point of the demographic model is the model presented by [9] without age structure where 
all variables depend on time t ∈ [𝑡𝑡0,∞[, i=1 refers to male and i=2 refers to female, 
 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖(t)

dt
=𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖(𝑡𝑡)·𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2(t)-𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖(𝑡𝑡)·𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(t)+(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖(𝑡𝑡) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖(𝑡𝑡)) · 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑡𝑡)  (2) 

 
where, POPLi is the total population, RFERi is the birth rate, RDEFi is the death rate, RINMi and REMMi 
are, respectively, the immigration and emigration rates.  
 
In previous studies, birth and death rates depended on the well-being variables [7,10] or the environmental 
variables [8]. A goal of this paper is to introduce the Happiness Index in all demographic rates: birth, 
death and migration rates (emigration and immigration). The model, with this change, would be the 
following, 
 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖(t)

dt
=𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖(𝑥𝑥ℎ𝑑𝑑𝑑𝑑, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,ℎ𝑎𝑎𝑎𝑎𝑎𝑎)·𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2(t)-

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖(𝑥𝑥ℎ𝑑𝑑𝑑𝑑, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,ℎ𝑎𝑎𝑎𝑎𝑎𝑎)·𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(t)+(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖(𝑥𝑥ℎ𝑑𝑑𝑑𝑑, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,ℎ𝑎𝑎𝑎𝑎𝑎𝑎) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖(𝑥𝑥ℎ𝑑𝑑𝑑𝑑, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,ℎ𝑎𝑎𝑎𝑎𝑎𝑎)) ·
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑡𝑡)                                                                                                                           (3) 
 
Where, HDI, EQUI and HAIN are, respectively, the Human Development Index [11], the Environmental 
Quality Index [11] and the Happiness Index. 
 
To do this, the input variables of the Happiness Index must be fitted by the time through a software 
(Regint) [12,13]. Regarding the Environmental Index, an extension of the temporal period is made, since 
in [8] the construction is for a time series from 2000 to 2007 and is needed until 2015. Finally, the Human 
Development Index is defined by the UN Human Development Reports [11] and there is a time series 
2010-2014. In [5] there are values since 1980 but every 5 years. To have the time series analogous to the 
previous ones, the temporal trend is observed and it is fitted as a logistic function with a determination 
coefficient, R2= 0.99964. 
 
The mathematical structure considered for the demographic rates are described as functions of the three 
indices as follows: 
 

a0 + b0

1+Exp[�−b1+𝑥𝑥ℎ𝑑𝑑𝑑𝑑·ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � b2� �
+ c0

1+Exp[�−c1+𝑥𝑥ℎ𝑑𝑑𝑑𝑑·ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � c2� �
    (4) 

 

Logistic functions have the property that they can be interpreted in saturation of resources, and their use 
in demography has been proved to be very useful [14]. To introduce the Happiness Index in the fertility 
and mortality rates [8], the rates tendency with the new index is observed and it reveals direct relation. In 
the migration rates case, they are fitted with the same independent variable and with the same 
mathematical structure. Finally, the specific structures have been found by a trial and error process with 
the fitter tool Regint [12,13]. The fitted process is considered successful for three reasons: the R2 are very 
high: female fertility rate R2=0.683692, male fertility rate R2=0.705732, female mortality rate 
R2=0.61328, male mortality rate R2=0.809224, female emigration rate R2=0.86737, male emigration rate 
R2=0.887952, female immigration rate R2=0.888557 and male immigration rate R2=0.899601. The 
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randomness of the residuals has been verified and the Kolmogorov-Smirnov test is chosen to prove the 
data normality. 
 

4. Validation 
 
The historical data used in this article to fit the model have been obtained from the Spanish National 
Statistics Institute database [15] in 2001-2015 period. The software tool used for the model verification 
is SIGEM [13]. 
 
The validation is considered successful for three reasons: the visual evaluation of the graphic overlapping 
of the historical data and the calculated data is satisfactory, the determination coefficients, R2, are very 
high and the randomness of the residuals is verified by the maximum relative error, which do not exceed 
the 5%. As an example, Fig. 3 shows the female mortality and the male immigration. 

    
Figure 3. Left: Spanish Female Mortality, R2= 0.70961. Right: Spanish Male Immigration, R2= 0.55873. Real 
data (points), Fitted data (line), in 2001-2015 period.  

 
5. Conclusion 
 
A dynamic demographic model by sex has been presented where the birth, death and migration rates are 
calculated through variables related with well-being, environmental and happiness. The well-being and 
environmental variables have been presented in previous works [7,8] but the happiness variables are built 
in this work. A general formula is obtained from a Happiness Index. It is calculated through five 
fundamental concepts: solidarity, development, justice, peace and freedom. This formula provides similar 
values to those obtained with the Overall Life Satisfaction Index [5] in the case of 13 countries in 2013. 
 
The mathematical structures of the demographic rated are logistic function with a specific dependent 

variable (
𝑥𝑥ℎ𝑑𝑑𝑑𝑑·ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
). Finally, the study has been performed with a deterministic model and has been fitted 

and verified with the corresponding criteria and real data from Spain in the 2001-2015 period.  
 
Nowadays we are working on the design of the different strategies and scenarios to obtain a demographic 
sustainability with this model.  
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1 Introduction

Consider one-dimensional Burgers’ equation

∂u

∂t
+

∂

∂x
(
u2

2
) = ν

∂2u

∂x2
, (x, t) ∈ D × [0,∞), (1.1a)

with the initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ 1, (1.2a)

and the boundary conditions

u(0, t) = u1(t), u(1, t) = u2(t), t ≥ 0, (1.3a)

where D = [0, 1], t and x represent time and space variable respectively,
ν > 0 is the coefficient of kinematic viscosity defined by ν = 1/Re , Re is the

∗e-mail:m.seydaoglu@alparslan.edu.tr

301
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Reynolds number and the given function u0(x) is sufficiently smooth. The
steady state solutions of the nonlinear partial differential equation (1.1) are
first time presented by Bateman in [1]. In 1948, Burger [2] used this equation
in a mathematical modeling of turbulence, therefore it is known as “Burgers’
equation”. This equation arise in different areas of applied mathematics,
physics, and engineering, containing gas dynamics, modeling of shock waves,
traffic flows, heat conduction, elasticity and continuous stochastic processes,
etc [3, 4]. The purpose of the present paper is to present the numerical
integration of Burgers’ equation using splitting methods tailored for near-
integrable systems.

2 Splitting methods for near-integrable sys-

tems

One dimensional Burgers’ equation (1.1) involves small viscosity parameter ν.
Thus it is possible to consider splitting methods for near-integrable systems
to obtain accurate solutions of the Burgers’ equation. Consider the nonlinear
separable PDE of the form

du

dt
= A(u(t)) + εB(u(t)), u(0) = u0, (2.1)

u(x, t) ∈ RD, where ε is small parameter, i.e |ε| � 1, and the (possibly
unbounded) operators A, B and A + εB are infinitesimal generators of C0

semi-groups for positive t on a finite or infinite Banach space. For simplicity,
the nonlinear equation can be written in the (apparently) linear form

du

dt
= LA(u(t))u(t) + εLB(u(t))u(t), (2.2)

where LA, LB are the Lie operators acting on u(t) of A and B respectively,
i.e.

LA(u(t)) ≡ A(u(t))
∂

∂u
, LB(u(t)) ≡ B(u(t))

∂

∂u
. (2.3)

The key idea behind splitting methods to approximately solve (2.2) is to
construct of an approximate solution by concatenating the solutions of the
two subproblems

du

dt
= A(u(t)) and

du

dt
= εB(u(t)). (2.4)



Modelling for Engineering & Human Behaviour 2017 303

On the other hand, one can replace the formal solution of the (2.2), et(LA+εB),

by the flow map Φ
(LA+εB)
t in the nonlinear case. Now we define the exact h-

flows for each problem in (2.4) to be ΦLA
h ,ΦεLB

h ( or ehLA , ehεLB) respectively,
where h is sufficiently small time step. Approximation at any order can be
constructed with arbitrary coefficients in the pattern ABA with bp+1 = 0

Ψ(h) = ehap+1LA ehbpεLB · · · eha2LA ehb1εLB eha1LA , (2.5)

or pattern BAB with ap+1 = 0 [5]

Ψ(h) = ehbp+1εLB ehapLA · · · ehb2εLB eha1LA ehb1εLB . (2.6)

On the other hand, if one considers the second order symmetric methods
of effective order (2s, 2), then can obtain methods with positive and real
coefficients by considering the terms of order h2l+1 for l = 1, 2, . . . , s to be
zero. These methods are well defined for non-reversible systems such as
Burgers’ equation and their error is of order O(εh2s+1 + ε2h3) [6].

2.1 Splitting methods for Burgers’ equation

Consider the one-dimensional Burgers’ equation (1.1) and split it into sub-
problems

ut = −uux, (2.7a)

ut = νuxx. (2.7b)

The splitting method for Burgers’ equation (1.1) can be applied by concate-
nating the solutions (exact or numerical) of the separate problems (2.7a) and
(2.7b). Let the exact solution (or a sufficiently accurate numerical approxi-
mation) of the (2.7a), (2.7b) to be maps ΦLA

h , ΦεLB
h respectively. Then, the

approximate solutions of (1.1) can be obtained as u(x, h) = Ψhu0(x), where
Ψh is (2.5)(or 2.6) for sufficiently small h.

2.2 Methods for the Subproblems

We consider the Picard’s approximation for the equation (2.7a) and then
numerically solve the discretized form of the linearized version of the equation
(2.7a) and the linear equation (2.7b) by the Crank-Nicolson finite difference
method. Picard’s approximation for the equation (2.7a) reads as

u
(n+1)
t = −(uux)

(n), n = 0, 1, 2, . . . , (2.8)
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where the value of u at the nth iteration defined by u(n) with the initial data
u(0). The solution domain

{
(x, t) : x ∈ [0, 1], t ∈ [0,∞)

}
is discretized into a

uniform grid with the grid point (xm, tj) where xm = mτ,m = 0, 1, 2, . . . , N ,
tj = jk, j = 0, 1, 2, . . . ,M , τ is spatial mesh size and k is time step. The exact
and numerical values of u at the grid point (xm, tj) denoted as um,j and Um,j
respectively. Following [7], Crank-Nicolson finite difference approximation to
equation (2.7a) is given by

U
(n+1)
m,j+1 − U

(nj)
m,j =

−k
4τ

[U
(n)
m,j+1(U

(n)
m+1,j+1 − U

(n)
m−1,j+1)

+ U
(nj)
m,j (U

(nj)
m+1,j − U

(nj)
m−1,j)],

(2.9)

where the nj represents the final number of iteration needed to approximate
the value of Um,j by considering following criterion [7]

max
m

∣∣∣U (n+1)
m,j − U (n)

m,j

∣∣∣ ≤ 10−8, 1 ≤ m ≤ N. (2.10)

On the other hand, Crank-Nicolson scheme for equation (2.7b) reads

aUm,j+1−b(Um+1,j+1 + Um−1,j+1) =

(a− 4b)Um,j + b(Um+1,j + Um−1,j), (2.11)

where a = 1
k

+ ν 1
τ2

and b = ν 1
2τ2

.

3 Numerical Results

In order to illustrate the efficiency and accuracy of the present methods,
we have applied it to a test example whose exact solutions and numerical
results available in the literature. Even one uses the unconditionally stable
methods, this problem will produce oscillations and nonlinear instabilities
for the small viscosity ν. Thus, one should care about these properties. One
can reduce the effect of these oscillations and instabilities by using proper
filtering procedure. In this work, we have considered the filtering technique
presented in [7] which suggest to approximate U j

m in the nonlinear term as

Um,j =
Um+1,j + γUm,j + Um−1,j

2 + γ
, (3.1)

where γ = 4ν−τ
τ−2ν

.
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Table 1: Comparison of the approximate solutions with the exact solution of
example 1 at different times with v = 0.01, N = 80 and k = 0.01.

x T [8] [9] [10], k = 0.0001 Mc(10,2) [6] Exact Solution

0.25 0.4 0.34229 0.34267 0.34819 0.34187 0.34191
0.6 0.26902 0.26908 0.27536 0.26894 0.26896
1.0 0.18817 0.18806 0.19375 0.18818 0.18819
3.0 0.07511 0.07505 0.07754 0.07511 0.07511

0.50 0.4 0.66797 0.67588 0.66543 0.66065 0.66071
0.6 0.53211 0.53678 0.53525 0.52937 0.52942
1.0 0.37500 0.37671 0.38047 0.37439 0.37442
3.0 0.15018 0.15022 0.15362 0.15017 0.15018

0.75 0.4 0.93680 0.95424 0.91201 0.91032 0.91026
0.6 0.77724 0.79252 0.77132 0.76721 0.76724
1.0 0.55833 0.56535 0.56157 0.55601 0.55605
3.0 0.22485 0.22528 0.22874 0.22485 0.22481

Example 1 The first problem corresponds the (1.1) on space domain [0, 1]
with the initial condition

u(x, t = 0) = sin(πx), (3.2)

and the following boundary conditions

u(x = 0, t) = u(x = 1, t) = 0, t > 0. (3.3)

The exact solution of this problem can be obtained by using the Hopf-Cole
transformation.

In Table 1 numerical solutions generated by effective order Mc(10, 2) [6]
method have been tabulated at different times and compared with results
presented in [8, 9] for v = 0.01, h = 0.0125, k = 0.01 and also compared with
[10] where the time step taken as k = 0.001. In Table 1 the superiority of
the effective order Mc(10, 2) method is manifest.
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1. Introduction 
 
Mathematical modelling is helpful for prevention and control of emerging infectious diseases. It 
provides both information to health workers about the vaccination needed to protect a population 
and help to the public health decision making when new diseases potentially emerge on a large 
scale, such as Bird flu, measles, malaria, influenza and Ebola over the past few years [1]. After 
Bernouilli presented the first model for an infectious disease in 1760 [2], Kermack and McKendrick 
published papers on epidemic models and obtained the threshold that has to be exceeded for an 
epidemic outbreak can occur [3, 4]. Their model includes three states, the S (susceptible), I 
(Infectious) and R (Recovered) instead of the two, S and I, of the Bernouilli’s model [5]. In the 
nineties, new paradigms spread out to better understand and model the impact of numerous 
variables that go beyond the micro host–pathogen level, such as ecological, social, economic, and 
demographic factors. Multidisciplinary approach is suitable for rapid assessment of urgent 
pandemic situations. The case of HIV/AIDS is a good example [6-9].  
This paper presents a model to approach the dynamics of infectious diseases expansion.  The spread 
of the disease is performed by binary rules that are tailored to model different situations such as 
Susceptible, Infected, Recovered, with or without capability to infect further. The capability of the 
rules to perform the expansion depends on the neighbourhood relationship between individuals. 
Following the introduction, in Section 2 our model is detailed and compared with the Susceptible-
Infectious-Recovered (SIR) model solved by ordinary differential equations (ODE). Section 3 
promotes a discussion concerning the link between both approaches. Finally, Section 4 presents 
some concluding remarks. 
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2. Method  

 
2.1   Our model 

Our model is based on both, a concrete connection pattern provided by a particular neighbourhood 
(4-neighbours or Von Neuman, 8-neighbours or Moore, chess horse jumping) which fixes the 
possible contacts between individuals, and a local rule which defines whether the contact is 
infective or not. This rule is implemented by a binary operation to define the results of the contacts 
between 0 and 1, 1 and 0, 0 and 0, 1 and 1, see [10-12]. Without loss of generality, we consider a 
two-dimensional square grid where every cell represents a susceptible person (value 0) except the 
one at the centre, which locates an infected one (value 1). When the infected person contacts with 
his/her neighbours, he/she can spread the disease. The new infected people have then in turn the 
capability to infect their neighbours, a time later. When infected people recover from their illness 
they can no longer infect nor transmit the illness because they immunize. As follows, Figure 1 
represents the number of Susceptible, Infected and Recovered people in the case of different 
neighbourhood patterns, for a 10x10 grid (100 people) and for a concrete binary rule. The chosen 
rule defines the result of the contacts as follows: (1, 0) = 1; (1, 1) = 1; (0, 1) = 1 and (0, 0) = 0. The 
first and second conditions depict the contagion mode triggered by the value 1 (in bold), which 
changes 0 to 1 and has no effect on 1. The third and fourth conditions mean the value 0 (in bold) 
has no effect on 0 nor 1. Obviously, 24=16 different rules can be defined. 
 
 

 
(a) 

 

 
(b) 

 
(c) 

 
Figure 1.  Simulation of our SIR model for different neighbourhood patterns.  
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Figure 1 represents the simulation of our SIR model for three different neighbourhoods. Horizontal 
axis stands for the time (generations), vertical axis stands for the number of individuals 
(percentages, here equivalent to the number of individuals). We observe a symmetric evolution of 
S and I. The plotting presents a crossing point for S and R at the same time as a maximum value 
for I occurs.  In this experiment we have fixed the disease duration in two generations, but it can 
be variable depending of the concrete disease we have to model. 
 

2.2   The deterministic SIR model 
The Kermack-McKendrick or SIR model concerns a number of people infected with a contagious 
illness in a closed population over time. The model assumes that the population size, N, is fixed 
(i.e., no births, deaths due to disease, nor deaths by natural causes) and incubation period of the 
infectious agent is instantaneous. The population is divided into three health states: Susceptible 
Infected and Recovered. The SIR model provides immunity, so recovered people are no more able 
to infect nor transmit the disease.  The model is depicted by a system of ODE shown in (1). 
Although the system has no analytical solution, in practice it can numerically be solved (Euler, 
Runge-Kutta). The rate at which susceptible hosts become infected is a product of the number of 
contacts each host has per unit time, r, and the probability of transmission of infection per contact, 
β. The recovery rate is γ (or, in other words, the mean infective period is 1/γ).  The total population 
size is N = S + I +R. Figure 2 represents a generic simulation of the SIR model equations. Horizontal 
axis stands for the time, vertical axis stands for the number of individuals. 
 

I
dt
dR

IrSI
dt
dI

rSI
dt
dS

γ

γβ

β

=

−=

−=

                               (1) 

 
Figure 2. The generic deterministic SIR model simulation (Wikipedia) 

 
 
 

3. Discussion  
 

Our model establishes a link between traditional simulation of the Susceptible-Infectious-
Recovered (SIR) model of disease expansion based on ODE, and a very simple approach, based on 
both connectivity between people and elementary binary rules that define the result of these 
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contacts. Our model identifies the connectivity pattern (neighbourhood + rule), with the parameter 
βr (number of effective infections per time unit), and the delay (generations between contagion and 
healing) with the parameter 1/γ. We have assumed “time = generation” in order to allow flexibility 
for parameter fitting in real cases. We have also set 10 x 10 = 100 people in the grid to obtain the 
percentages of Susceptible, Infectious and Recovered people for an easier comparison between 
different study cases. We observe some similarities between our graphics in Figure 1 and the 
generic simulation in Figure 2. In Table 1 we analyse the main results provided by the different 
models.  

 

Model Time / gener. 
for equilibrium 
in Susceptible 

Time /gener. 
for equilibrium 
in  Recovered 

Time /gener. 
for crossing 

point between 
S and R 

(Time; height) or 
(Gener.; height)   
for the peak of 

Infected 
ODE (Figure 2) 15 40 13 (13; 65) 

V.N. neighbourhood 
Figure 1 (a) 

9 11 5,5 (5,5; 32)   

M. neighbourhood 
Figure 1 (b) 

7 7 4   (4; 55) 

H.J. neighbourhood 
Figure 1 (c) 

4 6 3 (3;75) 

 

Table 1. Comparison between the results provided by the different models. 

Table 1 shows the timing for equilibrium in Susceptible and Recovered, and for crossing point 
between Susceptible and Recovered (the timing is estimated in generations in our model). The 
fourth column shows the coordinates of the peak of Infected in all the cases.  It appears that in ODE 
simulation, the time for equilibrium in Susceptible (15) and for crossing (13) is very similar, and 
the time for equilibrium in Recovered is about three times greater and the peak of Infected reaches 
65% of the population. On the contrary, in our model, we observe less similarity between time for 
equilibrium in Susceptible and crossing, as well as more similarity between time for equilibrium 
for Susceptible and Recovered. The peak of Infected has a variable height depending on the 
considered neighbourhood. 

A more careful study based on real cases is crucial to succeed in an accurate approximation, just as 
we do when simulating with the traditional ODE model. The Susceptible-Infectious (SI) 
deterministic compartmental model and the Susceptible-Infectious-Susceptible (SIS) model have 
already been analysed and successfully modelled by our method in the case of different 
connectivity patterns [11, 12]. 

 

4. Conclusions 
 
Our proposal presents an alternative to the ODE conventional approach of the SIR model for 
infectious disease expansion. The method is based on both a connectivity pattern, which determines 
the possible contacts between people, and a local rule, which defines whether the contacts are 



Modelling for Engineering & Human Behaviour 2017                                                                               311 
 

infective or not. We have considered three connectivity patterns (4-neighbours or Von Neumann, 
8-neighbours or Moore, chess horse jumping) and a concrete rule among 16 different possible rules. 
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1 Introduction

The work is devoted to an extension of classical HamiltonCartan variational
theory on fibered manifolds to the case of class second order Langrangians.
The aim of this pape is to announce some recent results in case of second
order Lagrangians corresponding to 2nd and 3rd EulerLagrange form. We
are interested in second order Lagrangians which give rise to Euler Lagrange
equations of the 3rd order or non-affine 2nd order. All these Lagrangians are
singular in the standard HamiltonDe Donder theory and do not have Legen-
dre transformation. For such Lagrangian we find appropriate set of Lepagean
equivalents (resp. family of Hamilton equations) whose admit a generalized
Legendre transformation. We note that the generalized momenta pσij satisfy
pσij 6= pσji . The generalized Legendre transformation and its properties are il-
lustrated on examples. We consider Hamiltonian systems for concrete above
mentioned Lagrangians.

Throughout the paper all manifolds and mappins are smooth and sum-
mation convention is used. We consider a fibered manifold (i.e., surjective
submersion) π : Y → X, dim X = n, dim Y = n+m, its r-jet prolongation
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πr : JrY → X, r ≥ 1 and canonical jet projections πr,k : JrY → JkY ,
0 ≤ k ≤ r (with an obvious notations J0Y = Y ). A fibered char on Y (resp.
associated fibered chart on JrY ) is denoted by (V, ψ), ψ = (xi, yσ) (resp.
(Vr, ψr), ψr = (xi, yσ, yσi , . . . , y

σ
i1...ir

)).
A vector field ξ on JrY is called πr-vertical (resp. πr,k-vertical) if it

projects onto the zero vector field on X (resp. on JkY ).
Recall that every q-form η on JrY admits a unique (canonical) decom-

position into a sum of q-forms on Jr+1Y as follows [4]:

π∗
r+1,rη = hη +

q∑
k=1

pkη,

where hη is a horizontal form, called the horizontal part of η, and pkη, 1 ≤
k ≤ q, is a k-contact part of η.

We use the following notations:

ω0 = dx1 ∧ dx2 ∧ . . . ∧ dxn, ωi = i∂/∂xiω0, ωij = i∂/∂xjωi,

and

ωσ = dyσ − yσj dxj, . . . , ωσi1i2...ik = dyσi1i2...ik − y
σ
i1i2...ikj

dxj

For more details on fibered manifolds and the corresponding geometric
stuctures we refer e.g. to [9].

2 Hamiltonian systems of 3rd order.

In general, a second order Lagrangian gives rise to an Euler–Lagrange form
on J4Y . We shall consider second order Lagrangians λ which satisfy one of
the following conditions

1) The corresponding Euler–Lagrange form is of order 3, i.e. the La-
grangians satisfy the conditions(

∂2L

∂yσij∂y
ν
kl

)
Sym(ijkl)

= 0, (1)

where Sym(ijkl) means symmetrization in the indicated indices,
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2) The Euler–Lagrange expressions λ of are of the second order, “non-
affine” in the second derivatives

∂2Eσ
∂yνkl∂y

κ
ij

6= 0. (2)

In what follows, we shall study Hamiltonian systems corresponding to a
special choice of a Lepagean equivalent of such Lagrangians, namely, α of
order 3, α = dρ, where

ρ = Lω0 +

(
∂L

∂yσj
− dk

∂L

∂yσjk

)
ωσ ∧ ωj +

∂L

∂yσij
ωσi ∧ ωj + µ̄ (3)

+ aijσνω
σ ∧ ων ∧ ωij + bkijσν ω

σ ∧ ωνk ∧ ωij
+ cklijσν ω

σ ∧ ωνkl ∧ ωij,

with an arbitrary at least 3-contact n-form µ̄ and functions aijσν , b
kij
σν , cklijσν

dependent on variables xk, yκ, yκk , yκkl and satisfying the conditions

aijσν = − ajiσν , a
ij
σν = − aijνσ; bkijσν = − bkjiσν ; (4)

cklijσν = clkijσν , c
klij
σν = − ckljiσν .

PropositionLet dim X ≥ 2. Let λ = Lω0 be a second order Lagrangian
with the Euler–Lagrange form (1) or (2), and α = dρ with ρ of the form (3),
(4), be its Lepagean equivalent. Assume that the matrix

P ijkl
σν =

(
∂2L

∂yνij∂y
σ
kl

+ 2 cklijνσ

)
Sym(jkl)

, (5)

with mn3 rows (resp. mn columns) labelled by σjkl (resp. νi) has maximal
rank equal to mn and matrix

Qijkl
σν =

(
∂2L

∂yσij∂y
ν
kl

− 2cklijσν

)
, (6)

with mn2 rows (resp. mn2 columns) labelled by σij (resp. νkl) has maximal
rank equal to mn (n+ 1) /2. Then the Hamiltonian system α = dρ is regular
(i.e. every Dedecker–Hamilton extremal is of the form π3,2 ◦ δD = J2γ, where
γ is an extremal of λ).
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If moreover µ̄ is closed then the Hamiltonian system α = dρ is strongly
regular (i.e. every Hamilton extremal is of the form π3,2 ◦ δ = J2γ, where γ
is an extremal of λ).

The Hamiltonian systems admitting Legendre transformation are studied.
By the Legendre transformation we understand the coordinates transforma-
tion onto J3Y .

Writing the Lepagean equivalent ρ (3), (4) in the form of a noninvariant
decomposition we get

ρ = −Hω0 + pjσdy
σ ∧ ωj + pijσ dy

σ
i ∧ ωj + 2cklijσν y

σ
j dy

ν
kl ∧ ωi (7)

+ aijσνdy
σ ∧ dyν ∧ ωij + bkijσν dy

σ ∧ dyνk ∧ ωij
+ cklijσν dy

σ ∧ dyνkl ∧ ωij + µ̄,

where

H = −L+

(
∂L

∂yσi
− dj

∂L

∂yσij

)
yσi +

∂L

∂yσij
yσij − 2aijσνy

σ
i y

ν
j (8)

− 2(bkijσν )Sym(ki)y
σ
i y

ν
kj − 2(cklijσν )Sym(klj)y

σ
i y

ν
klj,

pjσ =
∂L

∂yσj
− di

∂L

∂yσij
+ 4aijσνy

ν
i + 2(bkijσν )Sym(ki)y

ν
ki + 2(cklijσν )Sym(kli)y

ν
kli,

pijσ =
∂L

∂yσij
+ 2bijkνσ y

ν
k .

If moreover the matrix  ∂piσ
∂yν
kl

∂piσ
∂yν
klm

∂pijσ
∂yν
kl

∂pijσ
∂yν
klm

 , (9)

has maximal rank then

(xi, yσ, yσi , p
i
σ, p

ij
σ )

is part of coordinate system.

3 Conclusion

A regularization (by different methods) of some interesting singular phys-
ical fields (the Dirac field, the Electromagnetic field and Scalar Curvature
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Lagrangians) has been studied in [2], [3] and [5], some second order La-
grangians have been discussed also in [8]. The multisymplectic approach has
been proposed in [1], [7] and [11].
Note that an alternative approach to the study of “degenerated” Lagrangians
(singular in standard sense) is the constraint theory in mechanics (see [10])
and in the field (c.f. [6]).
In the paper [8] properties (e.g., regularity, Legendre transformation) of
Hamilton p2-equations for second order Lagrangian affine in second deriva-
tives are studied. The Hamilton p2-equations for second order Lagrangian
are created from Lepagean equivalents whose order of contactness is maximal
2.

This paper is generalization of the paper [8] to Hamilton equations whose
arise from Lepagean equivalent more than 2-contact. The case of second order
Lagrangians affine in second derivatives is generalized to case of Lagrangians
satisfying the conditions (1) and (2).
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[8] Smetanová, D. On Hamilton p2-equations in second-order field theory,
in: Steps in Differential Geometry, Proc. of the Coll. on Diff. Geom.,
Debrecen 2000 (University of Debrecen, Debrecen, 2001), 329–341, 2001.

[9] D. J. Saunders, The Geometry of Jets Bundles, Cambridge University
Press, Cambridge, 1989.
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1. Introduction 
 

Linear Programming, and particularly its cases with all integer variables (ILP) and with both integer 
and continuous variables, are increasingly applied in the field of energy and buildings to solve 
optimization problems, mainly to improve the energy efficiency of a building [1-4].  

 
Thermal transmittance U (Wm-2K-1) ([5]) is a key magnitude to assess the energy efficiency of a 
building, and measures the rate of heat flow through the elements of the building envelope [5]. The 
external wall is one of the most relevant parts of this envelope, and its thermal transmittance must 
abide by the current legislation [6] depending on the climate zone. 
 
After an exhaustive research, we realized that there is no work in the scientific literature relating 
the thermal transmittance of an external wall to be built, from the constructor’s or designer’s point 
of view, beyond the standards of the legal regulations. The aim of this paper is to present an ILP 
approach that takes into account some restrictions involved in  the building process of a wall: 
current legislation with respect to thermal transmittance, budget, total thickness of the wall, number 
of layers, availability of  materials and thicknesses for the different layers, workforce, time limits, 
final cost, etc. Among thousands of combinations of materials and thicknesses for the different 
layers of the wall, the aim of this paper is to choose the best one to optimize one of the involved 
variables without violating any restriction to be taken into account by the construction company. 
In particular, in this paper we deal with the problem of minimizing the thermal transmittance of the 
wall, but other variables, like cost or thickness, can be optimized in a similar way.  This magnitude 
has been chosen due to the fact that the housing stock represents 24.8% of the final energy 
consumption in the EU [7] and due to an increased demand of a more sustainable and healthy indoor 
environment that helps reducing the carbon footprint. 
 
 
 
1 E-mail: dsoler@mat.upv.es 
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  Nomenclature 
  

  n        Number of layers of the wall 
  s        Total surface in m2 of the wall 
  m       Number of different materials  
  ℎ𝑖𝑖𝑖𝑖𝑖𝑖   Standard internal conductivity 
  hext     Standard external conductivity 
  𝑤𝑤𝑗𝑗      Number of different thicknesses for material j 
  𝑒𝑒𝑗𝑗𝑗𝑗      Thickness corresponding to material j with type of thickness k 
  𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖    Cost of placing in layer i 1m2 of material j with type of thickness k 
  𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖    Time of placing in layer i 1m2 of material j with type of thickness k 
  𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚   Lower bound for the thickness of the wall 
  𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚  Upper bound for the thickness of the wall 

  𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗    Maximum number of m2 available of material j with thickness of type k 

  𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗    Maximum budget for the installation of the material j with thickness of type k 

  𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚   Maximum time required to construct the wall 
  𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚   Maximum budget to construct the wall 
  U        Thermal transmittance 
  𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚  Maximum thermal transmittance allowed for the wall 
  𝜆𝜆𝑗𝑗       Thermal conductivity corresponding to material j 

 

 
 

2. Definition of the ILP problem 
 

Taking into account the nomenclature given above, the variables of the ILP problem are 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖, whose 
values are 1 if layer i is made with material j and thickness k, or 0 otherwise, 𝑖𝑖 ∈ {1, … ,𝑛𝑛}, 𝑗𝑗 ∈
{1, … ,𝑚𝑚}, 𝑘𝑘 ∈ {1, … ,𝑤𝑤𝑗𝑗}. It is important to stress that k does not indicate the measure of the 
thickness but the type of thickness. Note also that layers will be enumerated from outside to inside. 
 
The thermal transmittance of the wall, as described in [5], is therefore given by Eq. (1): 

 

𝑈𝑈 =
1

1
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

+ ∑ ∑ ∑
𝑒𝑒𝑗𝑗𝑗𝑗
𝜆𝜆𝑗𝑗
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 1

ℎ𝑒𝑒𝑒𝑒𝑒𝑒
𝑤𝑤𝑗𝑗
𝑘𝑘=1

𝑚𝑚
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

            (1) 

 

Since U is not a linear function of variables 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖, it cannot be the objective function of the ILP 
problem. However, ℎ𝑖𝑖𝑖𝑖𝑖𝑖, ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 𝑒𝑒𝑗𝑗𝑗𝑗 and 𝜆𝜆𝑗𝑗 are constant for all the involved subscripts, and 
minimizing U is equivalent to maximizing the triple summation given in the denominator of U, 
which is certainly a linear function of binary variables 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖. Therefore, our ILP problem will 
maximize this triple summation. The restriction set of the ILP problem is open, in the sense that the 
set of restrictions presented represents the most usual conditions imposed to a constructor to build 
an external wall. But this set can be expanded, reduced or modified, according to the particular 
conditions or interest of each building in construction or refurbishment, to adjust as much as 
possible the mathematical model to the real problem. 

 

The ILP formulation of the problem studied here is given through Eqs. 2 to 12: 
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 s.t.: 
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1
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ℎ𝑖𝑖𝑖𝑖𝑖𝑖
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𝑗𝑗𝑗𝑗

𝑛𝑛
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      ∀𝑗𝑗 ∈ {1, … ,𝑚𝑚},𝑘𝑘 ∈ �1, … ,𝑤𝑤𝑗𝑗�                      (8) 

�𝑠𝑠𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗𝑗𝑗

𝑛𝑛

𝑖𝑖=1

  ∀𝑗𝑗 ∈ {1, … ,𝑚𝑚},𝑘𝑘 ∈ �1, … ,𝑤𝑤𝑗𝑗�                    (9) 

                          𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 0      ∀ 𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                                     (10)   
                        𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑥𝑥(𝑖𝑖+1)𝑗𝑗′𝑘𝑘′ ≤ 1    ∀ (𝑖𝑖𝑖𝑖𝑖𝑖 − (𝑖𝑖 + 1)𝑗𝑗’𝑘𝑘’) −  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   (11) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}    ∀ 𝑖𝑖 ∈ {1, … ,𝑛𝑛}, 𝑗𝑗 ∈ {1, … ,𝑚𝑚},𝑘𝑘 ∈ �1, … ,𝑤𝑤𝑗𝑗�         (12) 
 

In this formulation: 
- Eq. (3) ensures that the obtained thermal transmittance meets the legal upper bound 𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚 
according to the climate zone.  
- Eq. (4)  guarantees that the total thickness of the wall belongs to the interval [𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚, 𝑒𝑒𝑚𝑚𝑚𝑚x ]. 
- Eq. (5) forbids that the cost per m2 of the wall exceeds the budgeted cost  𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚. 
- Eq. (6) guarantees that each layer is composed by exactly one material with a specific 
thickness.  
- Eq. (7) forbids to exceed the established time limit 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚  to build a m2 of the wall. 
- Eq. (8) takes into account the available quantity of each material with its respective 
thicknesses.  
- Eq. (9) forbids to spend more money than budgeted for each material and thickness. 
- Eq. (10) forbids to place a given material j with a given thickness k in a given layer i (this 
fact is denoted by “ijk-incompatibility”). For instance, it does not make sense to put a 
waterproof extruded face brick in an intermediate layer. But even if some options make sense, 
the conditions imposed on the constructor may forbid these options.  
- Eq (11) forbids to place a material j’ with thickness k’ in the next layer to the one (layer i) 
containing the material j with thickness k (this fact is denoted by (ijk-(i+1)j’k’)-
incompatibility). Therefore, at most one of the two materials with the given thickness will 
appear in the corresponding layer. For instance, it does not make sense to put solid concrete 
block as a layer, with the next layer (to the interior) made by pressed face brick.  
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- Eq. (12) defines variables 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 as binary.  
 
3. Case study and best achieved solution  

 
Our case study consists on a façade of 6 layers. This façade is a common but representative 
constructive solution for an external wall. Its composition is described in Table 1. 
 
Table 1. Composition of the layer of the case study  
 

Layer Function Material Thickness Fixing 
solution 

 
Layer 1  

 
External coating 

2 plaster types,  
plates,  
absence. 

 
Up to 4 thicknesses 

 

 
Layer 2 

 
External panel 

Solid brick,  
concrete block,  
face brick,  
2 pressed face brick 

Depending on the 
dimension of the 
brick or block 

 

 
Layer 3 

 
Air chamber 

Light ventilated,  
not ventilated, 
absence 

 
3 thicknesses 

 

 
 
Layer 4 

 
 
Thermal insulation 

Cork 
Mineral wool 
Extruded polystyrene 
Expanded polystyrene 
Wood chips 
Sandwich panel 

 
 
Up to 6 thicknesses 

 
 
3 fixing 
methods 

 
Layer 5 

 
Internal panel 

Solid brick 
Air brick 
perforated brick 

Depending on the 
dimension of the 
brick  

 

Layer 6 Internal coating Plaster Up to 4 thicknesses  
 
In all cases costs are taken from the cost generator website of CYPE Ingenieros [8]. Costs always 
include materials, staff and site facilities. With these options, a total amount of 671,328 
combinations for this external wall are possible.  Furthermore, the recommended thermal resistance 
for the air layers close to the external and internal surfaces are: 1/hext = 0,04 m2KW-1 and 1/hint = 
0,13 m2KW-1 as indicated in the Spanish Technical Act (CTE), Basic Document of Energy Saving 
(DB_HE) [6].  
 
We have considered that the total thickness of the wall can vary between 0.24 and 0.69 m in 
intervals of 1 cm. We have also considered a budget to construct 1 m2 of wall limited to an amount 
ranging between €85 and €190, with intervals of €5. The aim is to find the lowest thermal 
transmittance wall for each combination of wall thickness and budget. As there are 45 intervals of 
1 cm and 22 budgets, 990 ILP problems have been solved using Mathematica 10.4 [9].  
 
As expected trend, given a fixed thickness, the thermal transmittance decreases as the budget 
increases. Another expected trend is that given a budget, the thermal transmittance also decreases 
as the thickness increases, but once a certain thickness is exceeded, the problem becomes 
impossible.  
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The lowest possible U value for an external wall is 0.2035 Wm-2K-1, which is achieved for a cost 
of 166.89 €/m2 and a thickness of 0.664m. Note that this U value is very small and therefore is 
useful for every climate zone. Figure 1 represents the best solution.   
 

 
Figure 1. Lowest U vs Thickness and cost. 
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Camino de Vera, s/n, 46022 Valencia, Spain,

(†) Institute for Analysis and Scientific Computing,

Vienna University of Technology,

Wiedner Hauptstrasse 8–10/1152, 1040 Wien, Austria.

November 30, 2017

1 Introduction

Metamaterials are artificially manufactured materials which by far surpass
the properties of conventional materials found in nature. With their help
researchers and engineers alike are presented with unique possibilities for
the development of novel artificial devices with extraordinary characteris-
tics. This does not merely entail a simple and gradual improvement of devices
with already known features, but involves a paradigm shift, e.g. with optical
metamaterials it has become possible to construct devices with negative re-
fractive index [1]—a concept which was traditionally regarded as impossible,
although already hypothesized in the late 1960’s [2].

For almost two decades researchers now have focussed on optical metama-
terials, whereas the manipulation of sound waves via acoustic metamaterials
only recently has come under their spotlight [3–6]. Acoustic metamaterials
allow to model sophisticated acoustic phenomena with curved background

∗e-mail: mtung@imm.upv.es
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spacetimes and make predictions for future laboratory experiments. Apart
from the interesting technical applications, these models may also help to
settle fundamental questions with far-reaching impact.

One of the first—and remarkably simple—solutions of Einstein’s equa-
tions for the curved spacetime of the gravitational field with underlying static
and spherical symmetry is the Schwarzschild solution [7]. In the beginning
considered to be a mathematical curiosity and only of academic interest, it
has now in the age of high-precision GPS navigation and black-hole astron-
omy become the center stage of many practical and important applications.

In order to implement 2D artificial black holes for acoustic waves, several
experimental and theoretical pathways have been studied and proposed in
the literature [8–11]. In the present work, we employ a different approach to
model acoustic wave propagation on a curved spacetime, which is based on
a variational principle within the powerful framework of differential geome-
try [12–14].

The Schwarzschild geometry is both a mathematically and physically in-
triguing non-euclidean geometry and as such a fascinating candidate for the
implementation and study of an acoustic metamaterial. In general, for the
(n+1)D case, it represents a modification of flat Minkowski spacetime which
imposes full spherical symmetry for the n-dimensional spatial part.

First, we will briefly review the field formulation of acoustics and its vari-
ational principle. Then, before beginning the discussion on the modelling
of acoustic wave propagation on the Schwarzschild plane, we examine the
feasibility of Schwarzschild-type geometries in (2+1) spacetime dimensions.
Next, we outline how to derive within this framework the partial differen-
tial equation for the acoustic potential which simulates wave propagation
on the Schwarzschild plane. Finally, we will comment on the design and
implementation of such a spacetime with acoustic metadevices. Employing
the constitutive equations [12] will enable us to connect the Schwarzschild
geometry with the acoustic parameters of the model.

2 Field formulation of acoustics and varia-

tional principle

This outline on the field formulation of acoustics and its variational princi-
ple closely follows Refs. [12, 14]. The importance of variational principles in
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classical and field mechanics, including optics and electrodynamics, lies in
defining concisely and in a coordinate-independent manner the fundamental
laws which they describe, i.e. they remain invariant with respect to arbi-
trary transformations of the coordinates. The equations of motion that fully
determine the physical behaviour of the system correspond to the extremal
solutions of the action integral A for a given scalar Lagrange function L .
This Lagrangian approach allows to easily reveal the underlying symmetries
and conservation laws of the theoretical model via Noether’s theorem. Fur-
thermore, physical laws will have their equivalent in equations of motion with
self-adjoint differential operators acting on the related field variables [15]. In
principle, this yields separable partial differential equations which are Sturm-
Liouville problems for one of the filed variables with analytical or at least
semi-analytical solutions.

Let acoustics be described by the acoustic potential φ : M → R, where M
is a smooth spacetime endowed with a Lorentzian metric g having negative
signature, i.e. g = detg < 0. Then, we postulate that the following action
integral is stationary with respect to variations of the potential [12]:

A [φ] =

∫
Ω

dvolgL (x, φ,∇φ) = 0 so that
δ

δφ
A [φ] = 0. (1)

The integration domain Ω ⊆ M is a bounded, closed set of spacetime and
the invariant volume element is denoted by dvolg =

√
−g dx0 ∧ . . . ∧ dx3,

where x ∈ M . Here, in general, the Lagrangian is a function L : TM →
R, where TM is the tangent bundle of coordinate space M . The form of
L is severely constrained by fundamental symmetry requirements: energy-
momentum conservation, locality, and free-wave propagation. Its simplest
possible choice is [12]

L (φ,µ) = 1
2
g(∇φ,∇φ) = 1

2
gµνφ,µφ,ν . (2)

Note that if v denotes the local fluid velocity, p the acoustic pressure, %0

the density, and c > 0 the time-independent wave speed of the acoustic
metamaterial, the gradient or covariant derivative1 appearing in Eq. (2) will

1Greek tensor indices indicate the full range of spacetime components, whereas Latin
indices will only refer to the spatial components. Comma and semicolon are standard
notation for partial and covariant derivatives, respectively. For a scalar φ it always holds
φ;µ = φ,µ.
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be

φ,µ =

(
p/c%0

−v

)
. (3)

This expression encapsulates elementary relations of acoustics [16] and is
valid within a fixed laboratory frame.2

After substituting Eq. (2) into Eq. (1), we obtain the Euler-Lagrange
equation for the acoustic potential. This equation directly gives the wave
equation of the acoustic system for the spacetime (M,g) under investiga-
tion. In the laboratory ( physical space), the acoustic engineer who wishes to
implement spacetime (M,g) has to calibrate the mass-density tensor % and
bulk modulus κ relating them to their magnitude in the corresponding space
with known acoustic wave propagation (virtual space). For convenience, we
will denote all quantities in virtual by an overbar. In explicit form, both
of these spaces are linked by the constitutive relations [12]. The underlying
symmetry for the (n+ 1)D Schwarzschild geometry obviously implies SO(n)
symmetry for the n spatial coordinates. This group symmetry obviously
reflects itself in the constitutive relations, and for n = 2 we have

κ =

√
γ
√
γ̄
κ̄, ρ0ρ

ij =

√
γ̄
√
γ
ḡij, (4)

where we have employed the usual shorthand notation γ = det (gij) for the
determinant of the spatial metric components.

3 Schwarzschild-type spacetime geometries

In (n+ 1)D spacetime geometry, the static and spherically symmetric metric
of Schwarzschild-type takes the following form

g = −h(r) c2dt⊗ dt+ h−1(r)dr ⊗ dr + r2dΩn−1 ⊗ dΩn−1, (5)

where t and r are the local time and radial coordinates, respectively. It is
a generalized form of the Friedmann-Lemâıtre-Robertson-Walker (FLRW)
metric with positive curvature including the radial fudge factor h(r). For
h ≡ 1, one recovers the FLRW form in hyperspherical coordinates. Here, as

2Obviously the four-vector φ,µ cannot be fully relativistic but transforms with a sub-
group of the Lorentz group.
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usual, the solid angle Ωn comprises all n angles ϕi of the hypersphere Sn,
and it is defined by

dΩ2
n = dϕ2

1 + sin2ϕ1 dϕ
2
2 + · · ·+

(
n−1∏
i=1

sin2ϕi

)
dϕ2

n, (6)

where ϕ1 ∈ [0, 2π[ and ϕi ∈ [0, π[ for i = 2, 3, . . . , n.
The radial function implies the inverse correlation between relativistic

time dilation and space contraction, and thus it will satisfy 0 < h(r) ≤ 1
for all r > 0. The specific solution for h(r) will depend on dimension n and
the physical conditions imposed. For n = 3 the vacuum solution yields the
conventional Schwarzschild metric. O’Neill [17] introduced the toy model
with the geometry of Eq. (5) for n = 1, which is conformally flat, and thus
all solutions are automatically vacuum solutions. Here, we will propose the
considerably richer case n = 2, a spacetime which we term the (2 + 1)D
Schwarzschild plane, and will discuss its admissible solutions.

Rewriting the metric Eq. (5) for n = 2 in terms of the nonholonomic basis
1-forms θµ, we obtain

g = −(
√
h(r) cdt)⊗ (

√
h(r) cdt)︸ ︷︷ ︸
θ0

+
dr√
h(r)

⊗ dr√
h(r)︸ ︷︷ ︸
θ1

+(r dϕ)⊗ (r dϕ)︸ ︷︷ ︸
θ2

. (7)

In the nonholonomic frame (θ0, θ1, θ2) local flatness and orthogonality hold,
such that η = −θ0⊗θ0 +θ1⊗θ1 +θ2⊗θ2, with η being the Minkowski metric,
and Cartan’s structure equations enable us to compute the curvature 2-form
Ω in a straightforward manner.

Explicit calculation of the curvature yields only three non-vanishing re-
sults: Ω0

1 = (−h′′/2) θ0∧θ1, Ω0
2 = (−h′/2r) θ0∧θ2, and Ω0

1 = (−h′/2r) θ1∧
θ2. From Ωi

j = R̂i
jij θ

i∧θj (no summation implied), the independent compo-

nents of the Riemann tensor R̂i
jkl in the Cartan frame can easily be obtained.

Next, contraction immediately gives the Ricci tensor R and then the curva-
ture scalar

R = −h′′ − 2h′

r
, (8)

which themselves imply the following Einstein tensor

Ĝ = R̂− 1
2
Rη =


− h′

2r
0 0

0 h′

2r
0

0 0 1
2
h′′

 . (9)
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The Einstein tensor Eq. (9) has to vanish in all frames due to the vacuum
condition. Hence, there exists only one trivial solution exactly then when
h(r) = C1 is a constant, and the corresponding metric is Minkowski flat (all
R̂i

jkl = 0). After selecting the appropriate time scale h ≡ 1, the metric
agrees with the FLRW metric. Consequently, black holes are forbidden to
exist on the conventional 2D plane, and it would not make much sense either
to try implementing the acoustic analogue.

A necessary requirement for Schwarzschild-type spacetimes is that the
Ricci curvature scalar R must be constant. Upon integrating Eq. (8), we
obtain

h(r) = C1 +
C2

r
− R

6
r2, (10)

and we note again that C2 = 0 and R = 0 (Ricci flatness) is the only possible
solution. However, Eq. (7) with Eq. (10) represents the Kottler metric [18,19].
It is well-known to be the only spherically symmetric solution of Einstein’s
vacuum field equation with a cosmological constant Λ: Ĝ+Λη = 0. In three
spacetime dimensions one has Λ = R/6. Furthermore, since Ĝ00 = −Ĝ11 in
Eq. (9), we require for consistency that C2 = 0. Altogether this gives for
Eq. (10):

h(r) = 1− Λr2, Λ 6= 0. (11)

Choosing the natural length scale ` > 0, we may identify

Λ = ± 1

`2
, (12)

which for the positive sign gives de Sitter spacetime (dS2+1) with positive
scalar curvature. Similarly, for a negative sign it gives anti-de Sitter space-
time (AdS2+1) with negative scalar curvature (see e.g. [19]). This leaves
us with two possible spacetime candidates in (2+1)D for implementing and
simulating the acoustic analogues of black holes.

4 Acoustic wave simulation of black holes

A description of wave propagation for acoustic black holes in dS2+1 and
AdS2+1 spacetime is readily obtained by applying the variational principle,
Eq. (1), with the Lagrangian function, Eq. (2), where the metric g explicitly
contains h(r) = 1±r2/`2 [viz. Eqs. (11)–(12)]. The resulting wave equation is
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just the Euler-Lagrange equation and involves the Laplace-Beltrami operator
for either the dS2+1 or the AdS2+1 manifold M :

∆M =
1

r

(
r gµνφ,µ

)
,ν
φ = 0. (13)

This is a self-adjoint partial differential equation for coordinates x0 = ct,
x1 = r, and x2 = ϕ. The standard procedure is to use the separation of
variables method and assume

φ(t, r, ϕ) = φ0(t)φ1(r)φ2(ϕ). (14)

The time dependence φ0(t) will display a simple harmonic behaviour. It will
also be reasonable to study concentric wave propagation, so that φ2(ϕ) ≡ 1.

Therefore, only the radial dependence φ1(r) remains to be examined and
completely determines the nontrivial behaviour for the wave propagation. A
detailed calculation yields the following differential equations for the AdS2+1

potential φ−1 (r), and the dS2+1 potential φ+
1 (r):

AdS2+1 : r

(
1 +

r2

`2

)2

φ−′′1 +

(
1 +

r2

`2

)(
1 + 3

r2

`2

)
φ−′1 + λrφ−1 = 0, (15)

dS2+1 : r

(
1− r2

`2

)2

φ+′′
1 +

(
1− r2

`2

)(
1− 3

r2

`2

)
φ+′

1 + λrφ+
1 = 0. (16)

Figures 1 and 2 illustrate the radial behaviour of prototype waves probing
AdS2+1 and dS2+1 spacetime, respectively. The numerical estimates were
carried out with Mathematica and the SBVP solver under Matlab [20].

The analogous acoustic space is implemented by a suitable choice of the
physical parameters % and κ. For this we only require the components of
metric g, immediately read off from Eq. (7) with Eqs. (11)–(12), and the
constitutive equations, Eqs. (4). Thus, we obtain the following simple pre-
scription for the acoustic analogue of Schwarzschild-deSitter black holes and
Schwarzschild-AdS spacetime:

κ =
κ̄√

1± r2/`2
, ρ0ρ

ij =
√

1± r2/`2

(
1 0
0 1/r2

)
, (17)

where it is clear that only the quantities with a negative sign (dS2+1) will
give rise to a spacetime geometry with an event horizon.
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Figure 1: Simulation of acoustic AdS2+1 spacetime. Numerical estimates for
the nontrivial radial dependence φ−1 (r) obeying Eq. (15), with scale ` = 1
and boundary conditions φ−1 (1) = 1, φ−′1 (1) = 0. A potential well is observed
while any event horizons are absent.
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Figure 2: Simulation of acoustic dS2+1 black hole. Numerical estimates for
the nontrivial radial dependence φ+

1 (r) obeying Eq. (16), with scale ` = 1 and
boundary conditions φ+

1 (1.01) = 1, φ+′
1 (1.01) = 0. A typical event horizons

emerges as r approaches ` = 1.
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The concentric wave solution φ(t, x, y) for Eq. (13) displays a harmonic
dependence in the time variable t. All of the non-trivial propagation be-
haviour occurs in the radial direction, as expected. Standard techniques
may yield useful approximate solutions for the nontrivial r-dependence of
Eq. (13) in terms of the Bessel functions Jn and Yn.

5 Conclusions

Our closer examination of (2+1)D Schwarzschild black holes naturally led
us to spacetimes with a non-vanishing cosmological constant, since conven-
tional Schwarzschild solutions on the plane are forbidden. The dS2+1 or
Schwarzschild-deSitter black hole is also mathematically very intriguing, be-
cause there is no comparable solution with a noncompact event horizon in
asymptotic Minkowski space. On the other hand, AdS2+1 solutions have no
event horizons. However, we have seen that their radial potential takes the
form of a potential well.

The acoustic analogues of both spacetimes are therefore particularly in-
teresting. In order to derive the corresponding wave equation for the acoustic
potential, we have employed a covariant variational principle, and in princi-
ple we have arrived at a unified description of acoustic wave phenomena on
the (2+1)D Schwarzschild plane.

It is our hope that the variational spacetime approach to transformation
acoustics and the corresponding constitutive relations supply a powerful tool
for the study and design of acoustic metadevices and may help to open up
new research pathways in this field.
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1 Introduction

High-fidelity neutronic simulations of nuclear systems are an important goal
to ensure the efficient and safe operation of nuclear reactors. The steady-
state neutron transport equation [1] predicts the quantity of neutrons in
every region of the reactor and thus, the number of fissions and nuclear
reactions. The neutron transport equation for three-dimensional problems
is an equation defined in a support space of dimension 6, and this makes
that high-fidelity simulations using this equation can only be done using

∗e-mail: dginesta@mat.upv.es
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super computers. Different approximations have been successfully used for
deterministic neutron transport, eliminating the energy dependence of the
equations by means of the multi-group approximation, and using a special
treatment to eliminate the dependence on the direction of the incident neu-
trons. The angular discretization of the neutron transport equation chosen
in this work has been the Discrete Ordinates method (SN), which is a collo-
cation method based on a set of quadrature points for the unit sphere, [1],
obtaining equations depending only on the spatial variables. The spatial dis-
cretization used in this work, has been a high-order discontinuous Galerkin
finite element method. After the spatial discretization, a large algebraic gen-
eralized eigenvalue problem with rank deficient matrices is obtained, which
can be formulated in different ways.

The eigenvalue problem arising from the different approximations to the
deterministic neutron transport equations is classically solved with the power
iteration method. However, Krylov methods are becoming increasingly pop-
ular. These methods permit to solve the eigenvalue problem faster when the
power iteration convergence decreases due to high dominance ratios. It also
allows to compute more eigenvalues than the largest one. We study the ad-
vantage of using a Krylov subspace method such as the Krylov-Schur method
for these generalized eigenproblems, compared to the use of simpler solvers
as the power iteration method.

2 The Discrete Ordinates Method

The energy multigroup neutron transport equation can be written as

Lgψg =
G∑

g′=1

(
Sg,g′ +

1

λ
χgFg′

)
ψg′ , g = 1, . . . , G, (1)

where the group dependent operators of transport, Lg, scattering, Sg,g′ and
fission Fg′ are defined by

Lgψg = Ω · ∇ψg + Σt, gψg , Sg,g′ψg′ =

∫
(4π)

Σs, gg′ψg′dΩ′ ,

Fg′ψg′ =
1

4π
νg′Σf,g′

∫
(4π)

ψg′dΩ′ ,
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and Σt, g, Σs, gg′ and Σf,g′ are the total, scattering and fission cross sections.
ψg is the angular neutron flux for the group g.

This equation is discretized in the angular variable by means of a colloca-
tion method on a set of quadrature points of the unit sphere, {Ωn}Nn=1 with

their respective weights {ωn}Nn=1. This method is referred as the Discrete
Ordinates method, SN [1].

Using the angular discrete ordinates quadrature set the discrete ordinates
equation is written as

Lg,nψg,n =Mn

G∑
g′=1

Sg,g′Dψg′ +
χg
λ

G∑
g′=1

Fg′φ0
g′ , (2)

g = 1, . . . , G, n = 1, . . . , N,

where the transport and fission operators are redefined by

Lg,mψg, n = Ω · ∇ψg, n + Σt, gψg, n ,

Fg′ψg′ =
1

4π
νg′Σf,g′ψg′dΩ′ .

M is the projector moment-to-direction operator and D is the direction-to-
moment operator. Generally, L 6=M−1.

A discontinuous Galerkin finite element method for the SN approximation
of the transport equation is used leading to the following algebraic generalized
eigenvalue problem.

LΨ = MSDΨ +
1

λ
XFDΨ (3)

where each matrix is the result of the energetic, angular and spatial dis-
cretization of the SN approximation and Ψ is the vector of weights for the
polynomials expansion of the angular neutron flux. A similar discontinuous
Galerkin discretization for the neutron diffusion equation was developed in
[2].

3 Eigenvalue Calculation

Equation (3) can be arranged into an ordinary eigenvalue problem of the
form

AΦ = λΦ , (4)
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where A = DH−1XF, H = L−MSD and Φ = DΨ. In particular, the solu-
tion of the system involving H is performed as H−1v = (I−L−1MSD)−1L−1v,
which greatly reduces the number of iterations needed to solve the system,
where L−1 is the most costly operation known as the transport sweep.

To solve the ordinary eigenvalue problem (4) only the multiplication by
the matrix A is available. Each multiplication is usually called an outer
iteration. The matrices L, M and D are block diagonal where each block
corresponds to the transport equation for a particular energy group. If a
problem does no have upscattering, the S is block lower diagonal. In that
case, the action of the operator H on a vector is calculated by block forward
substitution for each group from high to low energy in a sequence. Each
forward substitution requires solving the spatially discretized SN equations
for a single energy group, which is called the source problem [3]. This source
problem is usually solved by using a Krylov iterative method preconditioned
with a diffusion synthetic acceleration. The iterations used to solve each
source problem are called inner iterations.

3.1 Power Iteration method

The power iteration method to solve the eigenvalue problem (4) reads as the
iterative procedure

Φi+1 =
1

λ1

AΦi, (5)

where λ1 is updated at each iteration according to the Rayleigh quotient

λ(i+1) = λ(i) Φ(i)TXFΦ(i+1)

Φ(i)TXFΦ(i)
, (6)

where Φ(i) = DΨ(i).
Power iteration will converge to the eigenvalue of largest magnitude,

keff. However, if more than one eigenvalue is requested a deflation tech-
nique should be used. In other words, it can be computed one harmonic
at a time while decontaminating the subspace of the computed eigenvalue.
The convergence rate is determined as by the dominance ratio δ = |λ2|/|λ1|,
where λ2 is the next largest eigenvalue in magnitude. Convergence of the
power iteration method slows as δ → 1.0.
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Table 1: Performance results without upscattering for the MOX fuel slab.

δ Method m O I Time (s)

0.895

Power Iteration - 31 2410 9.5
Krylov-Schur 3 25 3771 14.0
Krylov-Schur 5 14 2129 8.1
Krylov-Schur 10 10 1509 5.6

0.946

Power Iteration - 48 3722 14.6
Krylov-Schur 3 31 4542 17.0
Krylov-Schur 5 17 2484 9.3
Krylov-Schur 10 15 2144 8.1

0.971

Power Iteration - 100 7447 29.2
Krylov-Schur 3 53 7876 28.8
Krylov-Schur 5 23 3364 12.7
Krylov-Schur 10 20 2914 10.8

3.2 Krylov-Schur

The Krylov-Schur method is an Arnoldi method which uses an implicit restart
based on a Krylov-Schur decomposition. In this work, the Krylov-Schur
method algorithm has been using the eigenvalue problem library SLEPc [4].
The Arnoldi method is based on the creation of a Krylov subspace of dimen-
sion m,

Km(A,Φ(0)) = span{Φ(0), AΦ(0), . . . , Am−1Φ(0)}. (7)

4 Numerical Results

To test the results some numerical benchmarks are solved. Table 1 displays
the performance results for a MOX fuel slab problem of the C5G7 bench-
mark. It is shown the number of outer, O, and inner iterations, I, using the
eigenvalue solvers for the different problems with different dominance ratio
that have been defined. For problems with high dominance ratio Krylov-
Schur method can be from 1.5 to 6 times faster than the usual power itera-
tion method. For these high dominance ratio problems the Krylov subspace
dimension, m, must be high to achieve a better performance.
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5 Conclusions

In this work, a SN method based on a Discontinuous Galerkin method has
been presented and is used to approximate the Lambda modes problem as-
sociated to the neutron transport equation. The generalized algebraic eigen-
value problem resulting from the energy, angles and spatial discretization is
very large and has been implemented using a matrix-free methodology. Two
eigenvalue solvers have been considered, the usual power iteration method
and the Krylov-Schur method and the performance of both methods have
been evaluated solving different problems with different dominance ratios.
From the obtained results in can be concluded that only for problems with
high dominance ratios it is worth the while to use the Krylov subspace
method with a large Krylov subspace dimension. Otherwise it is better to
use the simpler power iteration method to compute the dominant eigenvalue
and its corresponding eigenfunction for a reactor core.
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(†) Instituto de Matemáticas Multidisciplinar, Universitat Politècnica de València,
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1 Introduction

Newton’s method has been widely used to investigate simple or multiple zeros
of a non-linear equation. If the given function involves only one numerical
zero, then Newton’s method converges quadratically to the exact solution
provided that a proper initial guess is selected close enough to the exact
solution. However, Newton’s method has a drawback: it converges linearly
when a given function has repeated (multiple) roots. For a non-linear equa-
tion f(x) = 0, which involves repeated roots with multiplicity m > 1 a prior,
modified Newton’s method [1] is given as:

xn+1 = xn −m
f(xn)

f ′(xn)
, n = 0, 1, 2, ... (1)

It efficiently locates the desired multiple zero with quadratic order of con-
vergence. The numerical scheme (1) is a second-order, one-point, optimal

∗e-mail: fizazafar@gmail.com, acordero@mat.upv.es, sanasultana8877@gmail.com, jr-
torre@mat.upv.es
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method on the basis of Kung-Traub’s conjecture [2] which states that any
multipoint method without memory can reach it’s convergence order of at
most 2r−1 for r function evaluations per iteration. In the recent past, many
researchers from all over the world like Li et al. [3] in 2009 and Sharma and
Sharma [4] in 2010, Zhou et al. [5] in 2011, Sharifi et al. [6] in 2012, Soley-
mani et al. [7] in 2013 and Hueso et al. [8] in 2015 have presented optimal
fourth order iterative methods for multiple zeros. Recently, in [9] Behl et al.
have developed a family optimal eighth order iterative methods.

Motivated by the need to present a family of optimal higher order con-
vergent methods for finding simple as well as multiple roots, we construct
an optimal eighth order convergent method involving weight functions for
finding multiple roots. Section 2 provides the methodology and some special
cases of new scheme. Section 3 includes the numerical experiments using test
functions. Finally, conclusions are given in Section 4.

2 Construction of optimal scheme with eight-

order convergence

Let us consider the following scheme involving univariate weight functions
for solving the root-finding problem:

yn = xn −m
f(xn)

f ′(xn)
,

zn = yn −munH(un)
f(xn)

f ′(xn)
,

xn+1 = zn − unP (un)G(vn)L(wn)
f(xn)

f ′(xn)
, n ≥ 0 (2)

where the weight functions Hf : C → C, Pf : C → C, Gf : C → C
and Lf : C → C are analytic functions in a neighborhood of 0 with un =

( f(yn)
f(xn)

)
1
m , vn = ( f(zn)

f(yn)
)

1
m and wn = ( f(zn)

f(xn)
)

1
m . In the next result, we show that

the order of convergence of the proposed scheme will reach at optimal eight
without using additional function evaluations.

Theorem 1 Let x = γ be a multiple zero with multiplicity m > 1 of the
involved function f . In addition, we assume that f : C → C is an an-
alytical function in the region enclosing a multiple zero γ. The proposed
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scheme defined by (2) has an optimal eight-order convergence, satisfying
H0 = H(0) = 1, H1 = H ′(0) = 2, H2 = H ′′(0), H3 = H ′′′(0) are free
real numbers and

P0 = P (0), L0 = L(0), P1 = P ′(0) = 2P0, P2 = P ′′(0) = P0(2 +H2),

L1 = L′(0) = 2L0, P3 = P ′′′(0) = P0(−24 + 6H2 +H3),

G0 = G(0) = 0, G1 = G′(0) =
m

L0P0

, G2 = G′′(0) =
2m

L0P0

,

where P0, L0 are also free real numbers. The error equation is given as:

xn+1 =
1

48m8
c1
(
c21 (m−H2 + 9)− 2mc2

) [{
14m3 −G3L0P0 (H2 − 9)2

−m2 (G3L0P0 + 12H2 − 144)

+2m
(
161− 48H2 + 3H2

2 + 4H3 − 9G3L0P0 +G3H2L0P0

)}
c41

−4m
{

12m2 +G3 (H2 − 9)L0P0 −m (−72 + 6H2 +G3L0P0)
}
c21c2

+4m2 (6m−G3L0P0) c
2
2 + 24m3c1c3

]
e8n +O(e9n). (3)

Now, we discuss some special cases of our suggested method (2) by using
different types of weight functions P,H,G and L. These special cases are as
follows:

Iterative Method S1: When all the weight functions are polynomials:

H(un) = 1 + 2un +
H2

2
u2n +

H3

6
u3n,

P (un) = P0 + 2P0un +

(
1 +

H2

2

)
P0u

2
n +

(
−4 +H2 +

H3

6

)
P0u

3
n,

G(vn) =
m

L0P0

vn +
m

L0P0

v2n +G3
v3n
6
,

and

L(wn) = L0 + 2L0wn + L2
w2
n

2
+ L3

w3
n

6
, (4)

so for H2 = H3 = G3 = L2 = L3 = 0 the method (2) becomes:

yn = xn −m
f(xn)

f ′(xn)
,

zn = yn −mun (1 + 2un)
f(xn)

f ′(xn)
,
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xn+1 = zn −munvn
f(xn)

f ′(xn)

[(
1 + 2un + u2n − 4u3n

)
(1 + vn) (1 + 2wn)] . (5)

Iterative Method S2: When the combination of polynomial and ratio-
nal functions are used:

H(un) =
1

6

(
−24− 48un + 6H2un − 4u3nH3 + 3u3nH

2
2

−4 +H2un

)
,

P (un) =
1

6

P0(−24− 36un + 6H2un + 108u3n − 12H2u
3
n + 3H2

2u
3
n − 4H3u

3
n)

−4 + 2un +H2un
,

G(vn) =
m

L0P0

vn +
m

L0P0

v2n +G3
v3n
6
,

L(wn) = − 2(−3L2 + 24L0 + L3wn − 12L2wn + 48L0wn)L2
0

6L0L2 − 48L2
0 − 2L0L3wn + 12L0L2wn − 3L2

2w
2
n + 4L3L0w2

n

.

For L2 = G3 = 0, H2 = H3 = L0 = L3 = 1 the method (2) becomes:

yn = xn −m
f(xn)

f ′(xn)
,

zn = yn −mun
1

6

(
−24− 42un − u3n
−4 + un

)
f(xn)

f ′(xn)
,

xn+1 = zn −munvn
f(xn)

f ′(xn)

[
1

6

−24− 30un + 95u3n)

−4 + 3un

(1 + vn)

(
24 + 49wn

24 + wn − 2w2
n

)]
. (6)

In a similar way, we can find new optimal eight order convergence it-
erative schemes for multiple zero by simply assigning different values of
P0, L0, G3, L2, L3, H2, H3 or by considering new weight functions which satisfy
all the conditions of Theorem 1.

3 Numerical Experiments

In this section, we will demonstrate the efficiency, convergence behavior and
effectiveness of our suggested scheme. For this purpose, we consider some
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special cases of our proposed scheme namely, (5) and (6), denoted by S1 and
S2 respectively. We choose two test problems and we test our methods on
the basis of residual errors in the function |f(xn)|, iteration error |xn − γ|,
asymptotic error constant and computational order of convergence ρn. All
computations have been performed using Maple 16, with multiple precision
arithmetic. We have done our calculations with a minimum of 1000 signifi-
cant digits. Further, the meaning of a(±b) is a a× 10(±b) in the Table. We
use the formula given by Jay [10]:

ρn ≈
log |f(xn+1)/f(xn)|
log |f(xn)/f(xn−1)|

,

in order to calculate COC.

Example 1 Let us consider f1(x) =
[
cos

(
πx
2

)
+ x2 − π

]5
. This function

has a multiple zero at γ ≈ 2.03472489627912661035 of multiplicity m = 5;
we use the initial guess x0 = 2.5.

Example 2 Let us suppose another standard test function f2 (x) =
(
sin2 x− x2 + 1

)2
.

The function f2 has multiplicity m = 2 , multiple zero at γ = 1.40449164821534122603
and initial guess x0 = 2.

Table 1: Results for Selected New Methods
fi(x) n xn |f(xn)| |xn − α| |en/e8n−1| ρn
f1 0 2.5
S1 1 2.034847775 3.470811790(−17) 1.228789153(−4)

2 2.034724896 1.729229137(−153) 6.745130071(−32) 5.606819161(−2) 7.423159330
3 2.034724896 6.612246055(−1244) 5.565313341(−250) 1.297691254 7.999977075

f2 0 2.0
S2 1 1.406320394 2.066902234 (−5) 1.828746306 (−3)

2 1.404491648 1.518564168 (−41) 1.569755717 (−21) 1.185049311(−1) 6.742817383
3 1.404491648 1.364389398 (−330) 4.7052712778 (−166) 1.254886302 (1) 7.999319213

4 Conclusion

In this paper, we have proposed a family of iterative methods for solving
nonlinear equations for multiple roots with known multiplicity. The family
of methods include univariate weight functions involving function-to-function
ratio. The methods involve only one derivative evaluation. The selection of
weight functions yield optimal eighth order convergent methods for multiple
roots. In addition, Table 1 shows that the proposed methods S1 and S2
perform efficiently to approximate a multiple root of a function.
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1 INTRODUCTION 
 
Diabetes is a metabolic condition that affects the glucose levels due to problems 

associated with the insulin. Depending on the affection’s origin, we consider different types, 
principally Type 1, in which there has been a complete destruction of the ß cells in the 
pancreas, causing the absence of insulin; and Type 2, related to the deficit or resistance to this 
hormone. We can find as well other minor types, such as the LADA or gestational ones. 

To contextualize the situation of the diabetes in Spain, we will take as reference the 
results of the ‘di@bet.es’ study about the patients affected of Type 2 diabetes. We can find 
alarming data pointing out that this pathology affects the 13,8% of the population older than 
18, and the 43% of these people (near 2.3 millions) have not been diagnosed. In addition, the 
12,6% of the population presents glucose intolerance, a previous stage that can lead to the 
presence of the diabetes [1]. 

 Attending to this data, it can be seen the importance of the disease, and the great 
impact that it has and will have in the National Health Service. For this reason, it is 
significantly important to take into account the consumption of resources associated with the 
diabetes process, seeking to maximize the efficiency as the assistance quality improves. 

 One of the main factors in the attendance of diabetes patients is the pharmacological 
treatment. Attending to the recommendations provided by the American Diabetes Association 
(ADA)  related to this fact, there are four different stages in the treatment, starting with the 
use of metformine, a medicine with a moderated cost that in further steps is combined with 
one or several second-generation compounds, ending up in the higher therapy level where the 
use of injected insulin is required [2]. The importance of this classification goes beyond the 
patients attendance, as the cost of the treatment also raises as we move on the different stages. 

The objective for the present work is to analyse the diabetes type 2 farmaceutical 
trataments in the Valencia Region, modelling the spatial distribution of the prevalence and 
cost of drugs used. 

 

2 MATERIAL AND METHODS  
 
A database is available containing all the prescriptions made in the primary health centres 

and hospitals in the different health distrits in the Valencia Region in 2015. The study carried 
out finds the spatial distribution of the variables, represented in maps, as well as the linear 
regression model associated [3]. 
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 The process starts clustering the initial information of the patient’s data by primary 
health centre. With these aggregated data and the total population related to each health 
centre, it is possible to develop a calculation of both the prevalence and the average cost per 
patient for each health centre. Finally, the spatial mapping is carried out with the prepared 
variables, and the linear regression model is proposed [4-5]. 

 

3 MODELLING  
 
To quantify the level of spatial dependence in the data we will use the Moran’s I index, 

which formula can be found below, and will offer a value between 0 and 1, been 1 the 
complete spatial correlation and values close to 0 the correspondent to a random spatial 
distribution. To generate the nodes weights matrix required, a threshold distance was 
stablished, warranting the existence of at least one neighbour for each node. 

 
Figure 1: Moran’s I index formula 

For the result visualization, LISA (Local Indicator of Spatial Association) maps are 
available, in which there will be shown the clustering areas of high and low values, as well as 
the distribution outliers. 

 The modelling of the variables studied will be carried out employing a lineal 
regression model where different demographic and socioeconomically parameters will be 
essayed. We distinguish in the regression residuals one part as corresponding to the spatial 
dependence of the variable, which estimation will be considered as it has been said employing 
the Moran’s I index. 

 
Figure 2: General lineal regression model proposed 

4 RESULTS  
 

Prevalence 
While calculating the Moran’s I test in the conditions explained, we obtain a value of 

0,2941, showing that whereas there is a certain spatial dependence in the prevalence results, 
the correlation is not high. 

Analysing the LISA maps, we can see that half of the health centres presents significant 
values that can be distinguished into two different cluster types: on one hand, the 
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metropolitan zones of the province capitals, as well as in most of the Alicante region, there 
are low value clusters. On the other hand, the interior zones of Valencia and Castellon, 
Southern coast of Valencia and little interior areas of Alicante presents high values. In 
addition, we find significant outliers principally in the capitals, where some health centres 
raises beyond the values expected by the location. 

 

 
 

Figure 3: LISA maps of statistical signification (left) and clustering (right) for the 
prevalence 

When trying to generate a regression model valid to explain the prevalence values, 
according to the nature of the disease that often takes place related to others as it was 
commented in the introduction, we decided to add a well-known comorbidity index that have 
been studied, the Clinical Risk Groups (CRG) values. If we represent the spatial distribution 
of the average CRG value of the primary health centres, we can find a mapping similar to the 
prevalence one, matching the clusters in general. 

 
Figure 4: LISA clustering map of the average value of CRG 
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This way we find a regression model for the prevalence that shows a great relation with 

the state of health quantified in the CRG values, as well as with the average age of the 
patients. An Ordinary Least Squares adjust is obtained, with an R2 value of 0.6401 for these 
two variables. If we take into account the spatial dependence reflected in the Moran’s I index, 
we can consider that the majority of the variability in prevalence values can be explained. 

 

Variable Coefficient Std. Error 

Constant -0.01902 0.00347 

CRG - Weight 0.00109 0,00005 

Average age 0,00094 0,00009 

 

Total pharmacological cost 
 
As for the prevalence, we start the study with the Moran’s I test, taking a high value of 

0.6825. This result is indicative of the presence of a high spatial dependence in the complete 
pharmacological cost. 

Attending to the LISA maps results, we can clearly observe that the majority of the health 
centres present significant values, and while clustering them there is clear evidence of the 
dependence that the Moran’s I index showed. We can find high values in the southern half of 
the community, especially in Alicante province, as well as in the northern part of Castellon. 
On the opposite, we find the Valencia province and the southern part of Castellon clustering 
with low values. The outliers can be found mainly in capital, Valencia City, where some 
centres presents higher values than the neighbour cluster. 

 
Figure 5: LISA maps of statistical signification (left) and clustering (right) for the complete 

pharmacological cost 
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When proposing a regression model, we find that variables that in a first approach we can 
assume as explicative, such as the prevalence itself previously studied, or the state of health 
measured in the comorbidity index, are not statistically significant for the model. As the 
Moran’s I test showed in advance, the pharmacological cost presents a spatial dependence 
stronger than with any of the variables studied, as they are not able to explain the distribution 
satisfyingly. 

 

5 CONCLUSIONS  
 
Taking into account the results obtained in the study, we can affirm that there is a spatial 

dependence in the variables that have been studied, been significantly higher for the 
pharmacological cost over the prevalence. For this one, a regression model can be obtained 
using demographic information and related to the state of health of the population. Adding 
knowledge about the spatial distribution allows having a correct explanation of the values. 

 On the other hand, for the pharmacological cost the high spatial dependence is 
alarming, for the preponderance over medical and demographical aspects. This is indicative 
of a high variability in the use of resources that does not follow the criteria of ADA. The 
development and put into practice of clinical guidelines according to professional studies and 
publications could be a great tool to correct the mentioned variability. 
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