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Abstract

In this paper we present a quasi-analytical method to calculate the optimal enzyme
concentrations in a chemical process by considering the minimization of the operation
time. The resulting constrained optimal control problem is solved using Pontryagin’s
Minimum Principle. Our method allows us, first, to obtain the generalized solution of
a n-step system with an unbranched scheme and bilinear kinetic models and with non-
equal catalytic efficiencies of the enzymes. Second, we discuss in detail the sensitivity
analysis of these catalytic parameters.
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1 Introduction

Let us consider an unbranched metabolic pathway composed of n irreversible reaction steps
converting substrate x1 into product p. An explicit solution for the simplest case, i.e.
n = 2, can be found in [1], while for longer pathways, the authors solved the optimization
problem numerically. The solution is obtained quasi-analytically in [2], though with the
constraint of considering only the case of n = 3 with two intermediate compounds. [3]
present several theoretical results over qualitative properties of the solution for the general
case of n steps. These authors prove that the optimal enzyme concentration profile is of the
“bang-bang” type, though they do not present the analytical solution. In a previous paper
[4], we extended the theoretical analysis of [1], [2] and [3], presenting the quasi-analytical
solution for the more general case of n steps and assuming equal catalytic efficiencies of
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the enzymes (ki = 1). We considered the minimization of the transition time in [4]. This
transition time is defined by a improper integral running until infinite time. Given that
this model is somewhat unreal, in this paper we shall consider a more realistic situation in
chemistry or biology. Moreover, we shall substantially extend the theoretical analysis of [4]
to consider nonequal catalytic efficiencies ki.

Sensitivity analysis (SA), on the other hand, investigates the relations between param-
eters of a model and a property of the outcome. Classically (see, for example, [5]), SA is
performed by the partial derivatives of the outcome with respect to its parameters. When a
closed-form equation describes the relationship between the independent variables and the
dependent variable, this SA is easy to perform. This is precisely the major advantage of our
method: it allows us to obtain the partial derivatives of the concentration of the compounds
xi with respect to the catalytic efficiencies of the enzymes ki.

2 Statement of the Problem

2.1 Model formulation

Let us consider the following unbranched metabolic pathway composed of n irreversible
reaction steps converting substrate x1 into product p:

x1
u1→ x2

u2→ x3
u3→ · · · → xn−1

un−1→ xn
un→ p (1)

where x1(t) is the substrate concentration at time t, p(t) the concentration of the final
product at time t, xi(t) (i = 2, . . . , n) the concentration of the intermediate compounds at
time t, and ui(t) (i = 1, . . . , n) the concentration at time t of the enzyme catalyzing the i-th
reaction. The model of the reactions in (1) can then be described by the set of differential
equations: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = −k1u1x1 x1(0) = 1, x1(t) ≥ 0
ẋ2 = k1u1x1 − k2u2x2 x2(0) = 0, x2(t) ≥ 0
ẋ3 = k2u2x2 − k3u3x3 x3(0) = 0, x3(t) ≥ 0
· · ·
ẋn = kn−1un−1xn−1 − knunxn xn(0) = 0, xn(t) ≥ 0

(2)

In a previous paper [4], we assumed equal catalytic efficiencies of the enzymes (ki = 1).
In this paper, we shall substantially generalize the study to consider nonequal catalytic
efficiencies.

2.2 Objective function

Our goal is to convert substrate x1 into product p as fast as possible and several cost
functions may be considered. The transition time, τ (defined in [6]), is used in [1], [2] and
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[4]. This transition time is defined by a time integral running until infinite time:

min
u1,...un

τ = min
u1,...un

∫ ∞

0

1

x1(0)
(x1(0)− p(t))dt (3)

In this paper, we shall consider a more realistic situation in biology where the product
p(t) need not be fully synthesized, but rather synthesized to a defined concentration. We
therefore minimize the operation time (to distinguish it from the transition time) defined
by specifying the final product concentration, e.g. p(tf ) = 0.9, with tf as the final time.
The objective function of the optimization problem may thus be defined as:

τ90 = min
u1,...un

tf = min
u1,...un

∫ tf

0
dt (4)

3 Optimal Solution

In this section, we present the solution to the optimal control problem (OCP) defined in
the previous section:

min
u(t)

∫ tf

0
F (t,x(t),u(t)) dt (5)

subject to satisfying:

ẋ(t) = f (t,x(t),u(t)) (6)

x(0) = x0 (7)

u(t) ∈ Ω, 0 ≤ t ≤ tf (8)

where F ≡ 1 is the objective function, x = (x1(t), ..., xn(t)) ∈ R
n is the state vector, with

initial conditions x0, u ∈ R
n is the control vector, Ω denotes the set of admissible control

values and t is the operating time, which starts from 0 and ends at tf (value to minimize).
The state variables must satisfy the state equation (6) with given initial conditions. In
this statement, we consider the final state to be free. Let H be the Hamiltonian function
associated with the problem

H(t,x,u, λ) = F (t,x,u) + λ · f (t,x,u) (9)

where λ = (λ1(t), ..., λn(t)) ∈ R
n is called the costate vector. The classical approach involves

the use of Pontryagin’s Minimum Principle [7], which results in a two-point boundary value
problem (TPBVP). In order for u ∈ Ω to be optimal, a nontrivial function λ must necessarily
exist, such that for almost every t ∈ [0, tf ]:

ẋ = Hλ; x(0) = x0 (10)
·
λ = −Hx; λ(tf ) = 0 (11)

min
u∈Ω

H(t,x,u, λ) (12)
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We now present the solution to the optimal control problem defined above using Pontryagin’s
Minimum Principle [7]. The fundamental result to obtain may be summarized as follows:

Theorem 1. There exists a set of switching times {t1, t2, ..., tn−1}, (with 0 < ti < tj ,
for i < j) which partition the optimization interval as:

[0, t1) ∪ [t1, t2) ∪ ··· ∪ [tn−2, tn−1) ∪ [tn−1, tf ] (13)

such that the optimal profile of the i-th enzyme is of the bang-bang type and satisfies:

u∗i (t) =
{

1 for t ∈ [ti−1, ti)
0 for t /∈ [ti−1, ti)

; i = 1, . . . , n (14)

with t0 = 0 and tn = tf . In each interval [ti−1, ti], i = 1, . . . , n, the optimal metabolite
concentration is given by:

x1(t) =

{
e−k1t i = 1
e−k1t1 i > 1

(15)

xj(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j−1∏
h=1

(1− e−kh(th−th−1)) · e−kj(tj−tj−1) j = 2, . . . , i− 1

j−1∏
h=1

(1− e−kh(th−th−1)) · e−kj(t−ti−1) j = i

i−1∏
h=1

(1− e−kh(th−th−1)) · (1− e−ki(t−ti−1)) j = i+ 1

0 j = i+ 2, . . . , n

(16)

We have thus solved the problem quasi-analytically. The optimal solution has been ob-
tained analytically for all the intervals [0, t1)∪ [t1, t2)∪ ··· ∪[tn−1, tf ]. The calculation of the
switching times t1, t2, . . . , tn−1 and the value of tf is the only one that is not carried out
analytically or exactly.

4 Examples

Using the results presented in the previous section, we developed a program using the
Mathematica package that allows us to obtain the optimal solution.

4.1 Example 1: Optimal solution

Let us consider the following values for the nonequal catalytic efficiencies ki:

k1 = 10; k2 = 10; k3 = 9; k4 = 9; k5 = 8; k6 = 7; k7 = 5; k8 = 3; k9 = 12 (17)

In Table I, we present the optimal solution for the cases n = 3, . . . , 9. Let us see the
switching times ti (i = 1, . . . , n), and the operation time τ = tn. Remember that ui is given
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by 1 in all the intervals (when it is active). Moreover, the substrate concentration, x1,
the concentrations of the intermediate compounds, x2, . . . , xn, and the concentration of the
final product, p, are immediately obtained in any interval using the formulas presented in
Theorem 1. Figure 1 shows the optimal solution for the case n = 9.

Table I. Switching times and operation time of the optimal solution.

n t1 t2 t3 t4 t5 t6 t7 t8 t9
3 0.3401 0.6803 1.0469 - - - - - -

4 0.3702 0.7404 1.1404 1.5404 - - - - -

5 0.3958 0.7917 1.2201 1.6485 2.1160 - - - -

6 0.4188 0.8376 1.2915 1.7453 2.241 2.7898 - - -

7 0.4440 0.8880 1.3698 1.8516 2.3792 2.9633 3.7150 - -

8 0.4755 0.9510 1.4677 1.9845 2.5512 3.1801 3.9942 5.1845 -

9 0.4821 0.9642 1.4883 2.0124 2.5874 3.2257 4.0529 5.2648 5.6817

Figure 1. Metabolite and product profile. Case n = 9.

4.2 Example 2: Differential SA

Sensitivity analysis (SA) investigates the effect of parameter change on the solution of
mathematical models, with more than a dozen SA techniques having been reported ([5]).
Differential SA will be employed in the present paper. In this case, the sensitivity coefficient,
φi, for a particular independent variable can be calculated from the partial derivative of the
dependent variable with respect to the independent variable. When an explicit algebraic
equation describes the relationship, the differential SA is easy to perform.
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Let us now see how the Differential SA of our problem can be performed immediately,
employing analytic formulas to do so (16). The sensitivity coefficient, φij , defined from the
partial derivative of the dependent variable xi (i = 1, . . . , n) with respect to kj (i = 1, . . . , i) :

φij =
dxi
kj

(18)

was calculated using the Mathematica package. A summary of the results is shown in Figure
2.

Figure 2. Sensitivity coefficients.

5 Conclusions

Our paper supposes the generalization of the optimal control problem that arises when
considering a linear unbranched chemical process with n steps. We provide a quasi-analytical
solution to the case of n steps by considering the minimization of the operation time and
non-equal catalytic efficiencies of the enzymes. Using our closed-form equation for the
optimal solution, the sensitivity analysis is very easy to perform.
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