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Preface 

 
 

One year more, it is our great pleasure to present the proceedings of the 14th 

International Conference on Computational and Mathematical Methods in Science 

and Engineering (CMMSE 2014), at Rota, Cádiz (Spain), July 3
rd

-7
th

, 2014. These 

proceedings, comprised of the extended abstracts and the papers accepted to the 

conference, are of significant interest and contain original and substantial analyses of 

computational and mathematical methodologies. The proceedings have five volumes, the 

first four correspond to the articles typeset in LaTeX and the fifth to articles typeset in 

Word. 

CMMSE 2014 continues with the same philosophy of being a great forum where 

researchers from several disciplines of applied mathematics discus about the new 

advances and open problems. We hope that during the session the usual and desirable 

exchange of ideas, comments and suggestions leading to the improvement and deepening 

of the papers presented to allow further development of the research occurs. We also 

hope that the developed activity narrows and renews the links between participants. 

This year we have achieved a new record in the number of symposiums and the 

quality of the accepted papers is also very high. The first one, high-performance 

computing, considers new large-scale problems that arise in fields like bioinformatics, 

computational chemistry, and astrophysics. The second symposium address analytical, 

numerical and computational aspects of partial differential equations in life and materials 

science. Computational finance is a session focuses on solving problems related to asset 

pricing, trading and risk analysis of financial assets that have no analytic solutions under 

realistic assumptions and thus require computational methods to be resolved. A forum for 

discussion of the growing impact of new technologies on teaching and the development 

of new tools to increase learning efficiency is provided in the symposium: new 

educational methodologies supported by new technologies offers. The symposium on 

mathematical models and information-intelligent transport systems researches in the field 

of flow-modelling of particles with motivated behaviour in complex networks, applied to 

traffic flows, pedestrian flows, ecology, etc. Special utility has this symposium in the 

traffic regulation in Moscow. The seventh symposium studies computational methods for 

linear and nonlinear optimization and numerical methods for solving nonlinear problems 

is given in another session. Bio-mathematics studies both theoretical and practical 

applications of   population dynamics, eco-epidemiology, epidemiology of infectious 

diseases and     molecular and antifenic evolution. The tenth symposium presents recent 

methodological developments in function approximation, multiway array decompositions, 

ODE and PDE solutions: applications from dynamical systems to quantum and statistical 

dynamics. The applications of fractional derivatives in sciences are considered in the 

twelfth symposium. The applied mathematics and computer science symposium focuses 

on new methods, technologies and applications of computer science and mathematics. 

Fractional Calculus from a theoretical viewpoint is considered in analytical and 

numerical methods for fractional differential equations. Obtaining a consistent 

description of the transition from small clusters to the liquid or solid state is a major 

challenge in computational chemistry and physics and will be addressed in the 

symposium: from clusters to the solid state. Crypto & codes aims to provide a forum 

there researchers can exchange the latest results, trends and open problems in the areas of 

cryptography and coding theory. Computational methods for fluid flow uses numerical 

methods and algorithms to solve and analyze the mathematical models that govern fluid 

http://gsii.usal.es/cmmse/index.php?option=com_content&task=view&id=2&Itemid=3#ms5
http://gsii.usal.es/cmmse/index.php?option=com_content&task=view&id=2&Itemid=3#ms5
http://gsii.usal.es/cmmse/index.php?option=com_content&task=view&id=2&Itemid=3#ms7
http://gsii.usal.es/cmmse/index.php?option=com_content&task=view&id=2&Itemid=3#ms8
http://gsii.usal.es/cmmse/index.php?option=com_content&task=view&id=2&Itemid=3#ms8
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flows. Various numerical solution methods for large linear systems are presented and 

discussed in this session. The enormous potential of fixed point theory, which is needed 

in mathematics, engineering, chemistry, biology, economics, computer science, and other 

sciences, justify the great interest in fixed point theory in various abstract spaces and 

related applications. Finally, special sessions cover topics related to industrial 

mathematics, computational discrete mathematics and the numerical solution of 

differential equations. 

We would like to thank the plenary speakers for their outstanding contributions to 

research and leadership in their respective fields, including physics, chemistry and 

engineering. We would also like to thank the special session organizers and scientific 

committee members, who have played a very important part in setting the direction of 

CMMSE 2014. Finally, we would like to thank the participants because, without their 

interest and enthusiasm, the conference would not have been possible. 

We cordially welcome all participants. We hope you enjoy the conference.  

 

Costa Ballena, Rota, Cádiz (Spain), July 15th, 2014  

 

 

I. P. Hamilton, J. Vigo-Aguiar, J. Medina,  

P. Schwerdtfeger, W. Sprößig, M. Demiralp,  

E. Venturino, V.V. Kozlov, P. Oliveira 
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Abstract

Two algorithms are proposed for inverting general nonsingular upper Hessenberg
matrices H, unreduced as well as reduced. The first step in both procedures is based on
the expanded Ikebe method, now adapted to work also on reduced matrices. Thus the
quasiseparable lower Hessenberg matrix HL of the inverse factorization H−1 = HLU

−1

is obtained. Then the inverse is obtained by using two well-known numerically stable
procedures. In the first algorithm the matrix U−1 is computed by forward substitution
(column version). The second one uses the iterative (Newton’s method) Schulz algo-
rithm, with HL as initial guess. It is shown that such an iterative procedure provides
an optimal route towards the inverse matrix H−1 by increasing the superdiagonal rank
of the quasiseparable matrix HL. An illustrative numerical comparison is also given.

Key words: Accuracy, Hessenberg matrix, inverse matrix, iterative Newton’s method,
matrix factorization, stability.

1 Extended abstract

1.1 Introduction

The inverses matrices H−1 of n × n nonsingular Hessenberg matrices H, with entries hi,j
(1 ≤ i, j ≤ n), hi,j = 0 for i−j ≥ 2 in the upper case treated here, appear in many branches
of mathematics, applied sciences and engineering. Abundant literature has been generated
in the particular study of such inverses; see e.g. [3, 1] and references given there. These
approaches have been mainly focused on unreduced Hessenberg matrices, with nonzero
entries on their subdiagonals. A new factorization H−1 = HLU

−1 for the inverses of
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The Ikebe-Schulz algorithm for inverting Hessenberg matrices

nonsingular upper Hessenberg matrices and its related algorithm in the unreduced case was
introduced recently in [1], which expands the Ikebe method [3] to obtain the quasiseparable
matrix HL and apply forward substitution to obtain the triangular matrix U−1 involved in
such an inverse factorization. Specific methods for inverting reduced Hessenberg matrices
are also of interest, different to those based on the Schur complement approach, which
presents in general bad numerical performance [2].

Now we adapt the expand Ikebe method to cover nonsingular reduced Hessenberg ma-
trices by partitioning the quasiseparable matrix HL as a block diagonal matrix. Hence the
algorithm from [1] is now applicable also on reduced Hessenberg matrices. In addition, we
can improve the accuracy, with respect to the forward substitution step for obtaining U−1

given in the algorithm from [1], by increasing the superdiagonal rank of HL up to complete
the whole inverse H−1. It is proven that this procedure is nothing else but the iterative
Schulz algorithm (Newton’s method) [4], with the matrix HL as initial guess. Such an
initial election enables us to attain, in almost all situations, the numerical inverse of an
n×n nonsingular upper Hessenberg matrix over ceil(log2(n)) iterations. This number is in
practice notably less than the number of iterations required for the Schulz algorithm with
its customary initial guess.

1.2 The Ikebe method on reduced Hessenberg matrices

For upper unreduced Hessenberg matrices H, the Ikebe method to obtain the lower half
(plus the main diagonal) of their inverses matrices H−1 in O(n2) time was introduced in [3].
Recently, the Ikebe method was expanded to cover the superdiagonal of the inverse matrix
[1] without additional computational cost.

There is no difficulty to adapt the expanded Ikebe method to reduced Hessenberg
matrices noting that such reduced matrices H can be partitioned in a block upper triangular
matrix. Then we can apply the expanded Ikebe algorithm on each matrix entry of the main
diagonal and the resulting matrix HL is a (block diagonal) quasiseparable lower Hessenberg
matrix. The superdiagonal entries in the exterior of the diagonals blocks of the inverse
matrix H−1 can be chosen arbitrarily, in the positions opposite to those (hi,i−1 = 0) null
entries on the subdiagonal of the reduced Hessenberg matrix H. It is because in the reduced
case any election of such inverse entries preserves the inverse factorization H−1 = HLU

−1,
with the upper triangular matrix U−1 having ones on the main diagonal. We choose, by
numerical convenience, such entries of the inverse as null entries. Note also that this inverse
factorization is not unique. Although solely one of these has the matrix HL with the same
entries (hi,j)

(−1) than H−1 for j ≤ i + 1.
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1.3 Obtaining U−1 by forward substitution

With the expanded Ikebe procedure adapted to cover also reduced Hessenberg matrices,
there is no difficulty to apply a forward substitution vector scheme (column version) on the
matrix U = HHL to obtain the matrix U−1 after a slight modification of the algorithms
from [1]. See also Equation (13) in the same reference and some comparisons of the times
elapsed with respect to other specific algorithm for inverting unreduced Hessenberg matrices.

1.4 The Ikebe-Schulz algorithm

An alternative procedure to the forward substitution stage that improves the accuracy of
the numerical inverses is based on the obtainment of the inverse matrix H−1 by completing
in an iterative way the diagonals of the upper half (above the main diagonal) of the matrix

HL. It is not difficult to observe that, taking H
(0)
L = HL and defining the iterative proce-

dure (Newton’s method) H
(k+1)
L = H

(k)
L

(
2In −HH

(k)
L

)
, k = 0, 1, 2, . . ., the matrix H

(k+1)
L

updates in each iteration some of the diagonals of its upper half, in such a way that the
entries of these diagonals are equal than those of the corresponding diagonals of the inverse
matrix H−1. The following theorem gives explanation for such assertions.

Theorem 1 Let H be an n × n nonsingular upper Hessenberg matrix and HL the qua-
siseparable matrix obtained with the expanded Ikebe algorithm and associated to the inverse

factorization H−1 = HLU
−1. The iterate matrices H

(k)
L of Newton’s method, with initial

guess H
(0)
L = HL, satisfy the equation, for k = 0, 1, 2, . . .,

H
(k)
L = H−1

(
In − (In −U)2

k
)
.

Moreover, the inverse matrix can be obtained in at most ceil(log2(n)), where ceil(x) denotes
the smaller integer greater or equal than x.

Sketch of proof : Note that H
(0)
L = HL = H−1U. Hence H

(0)
L = H−1 (In − (In −U)).

Thus the equation can be checked by induction. To obtain the inverse matrix we use
Cayley-Hamilton’s theorem on matrix In − U, (In −U)n = On, the zero square matrix.

Thus matrix In −U is nilpotent. Therefore for ceil(log2(n)) ≤ k, we have H
(k)
L = H−1. �

Theorem 1 gives rise to the Ikebe-Schulz algorithm for inverting Hessenberg matrices.
The first stage is the expanded Ikebe algorithm applicable to arbitrary nonsingular Hessen-
berg matrices. In the second stage we obtain the inverse matrix by using Schulz’s algorithm
[4], with HL as initial guess.

In Figure 1, a comparison is done of the mean left,
||Ĥ−1H− In||∞
||Ĥ−1||∞||H||∞

, and the mean right

normwise relative residual [2],
||HĤ−1 − In||∞
||H||∞||Ĥ−1||∞

, over 50 trials, where Ĥ−1 is the numerical
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Figure 1: Comparison of the accuracy using mean relative residuals, over 50 trials, for the
three procedures used for computing the inverses of random nonsingular upper Hessenberg
matrices H, with rcond(H) > 10−3.

inverse, supplied by the algorithms Ikebe-Schulz, Ikebe-forward substitution, and Matlab’sr

build-in function inv(). Random unreduced upper Hessenberg matrices H were tested with
reciprocal condition numbers rcond(H) > 10−3. The order of matrices from 15 to 105, in
step of 10 units. The IEEE unit roundoff, u ≈ 1.1 · 10−16, is also indicated. The accuracy
of the right inverse of the Ikebe-Schulz algorithm is remarkable.
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Abstract

A method, based on recurrence relations, is proposed for evaluating classical inverses
of infinite (unreduced as well as reduced) tridiagonal matrices using a known result on
inversion of finite Hessenberg matrices, applicable also on tridiagonal matrices. Some
illustrative examples of both unreduced and reduced cases are given. The recurrences
relations for the inverse way are also provided.

Key words: Hessenberg matrix, tridiagonal matrix, inverse matrix.

1 Introduction

A characterization for the nonsingular unreduced Hessenberg matrices in the finite case
is related with the particular structure of their inverse matrices, [5, 6]. Such inverses are
a rank one perturbation of a triangular matrix UV + T . Matrix T is triangular, U is a
column vector and V is a row vector. This result can be also applied to the case of finite
tridiagonal matrices. In this work we study the case of infinite tridiagonal matrices and we
find recurrence relations for their classical inverses in the general case. Some interesting
particular cases are also discussed. In this work we do not view infinite matrices as operators
on some vector spaces, only as matrices on R or C.

The material is organized as follow. In Section 1, we recall some basic result about
inverses of finite Hessenberg and tridiagonal matrices. In Section 2 we study the inversion
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of infinite unreduced tridiagonal matrices and, as a corollary, we give the inverse way.
Finally, Section 3 covers the case of infinite reduced tridiagonal matrices. Some illustrative
examples are also given.

1.1 Unreduced Hessenberg matrices with a finite order

We extend and adapt here to upper Hessenberg matrices H; i.e. hij = 0 for i ≥ j + 2,
a well-known lemma [5, 6]. We also recall that a Hessenberg matrix H = (hij)

n
i,j=1 is an

unreduced upper Hessenberg matrix if its subdiagonal entries are nonzero, hi+1,i 6= 0, and
i = 1, 2, ..., n− 1.

Lemma 1 A nonsingular matrix H = (hij)
n
i,j=1 is unreduced upper Hessenberg if and only

if its inverse matrix has the structure B = UV + T , being U a column matrix with nonzero
n-th component, V is a row matrix with nonzero 1-st component, and T is a strictly upper
triangular having null entries on its main diagonal and nonzero entries on the superdiagonal,
ti,i+1 = 1

hi+1,i
6= 0, 1 ≤ i ≤ n− 1.

In the proof of Lemma 1 appears the matrix

B =


u1v1 b12 b13 · · · b1n
u2v1 u2v2 b23 · · · b2n
u3v1 u3v2 u3v3 · · · b3n

...
...

...
. . .

...
unv1 unv2 unv3 · · · unvn


with bij = uivj + ti,j , for j > i.

The determinant of B is given by

|B| = unv1∏n−1
i=1 (−hi+1,i)

= (−1)n−1unv1

n−1∏
i=1

ti,i+1

and elements of U and V are

ui =
(−1)i−1

|H|
|H(i)

n−i|
1

[hi+1,i · · ·hn,n−1]
, vj = (−1)j−1|Hj−1|[hj+1,j · · ·hn,n−1].

For a proof of this Lemma 1 see e.g. [5, 6]. A more detailed proof can be found in [3].
An equivalent lemma can be obtained for lower Hessenberg matrices.
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1.2 Unreduced tridiagonal matrices with a finite order

We recall that a tridiagonal matrix having nonzero entries in both the subdiagonal and
the superdiagonal is called unreduced tridiagonal matrix. The following result is also well
known [5, 6, 3].

Lemma 2 A nonsingular matrix H = (hij)
n
i,j=1 is an unreduced tridiagonal matrix if and

only if its inverse matrix B = (bij)
n
i,j=1 has the entries

bij =

{
uivj , for i ≥ j;
wixj , for i ≤ j.

and the entries u1, vn, wn, and x1 are nonzero entries.

The proof is trivial because a tridiagonal matrix is also lower and upper Hessenberg,
and the result follows as an immediate consequence of Lemma 1. Trivially, ukvk = wkxk. If
in addition the matrix is symmetric, ui = xi, and vj = wj .

Example 1 We apply Lemma 1 on the following n× n real symmetric tridiagonal matrix

Jn =



b a 0 0 · · · 0
a b a 0 · · · 0
0 a b a · · · 0
0 0 a b · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · b


.

We obtain the matrix

Bn =



|Jn−1||J0|
|Jn|

−a |Jn−2||J0|
|Jn|

a2
|Jn−3||J0|
|Jn|

· · · (−a)n−1
|J0||J0|
|Jn|

−a |Jn−2||J0|
|Jn|

|Jn−2||J1|
|Jn|

−a |Jn−3||J1|
|Jn|

· · · (−a)n−2
|J1||J1|
|Jn|

a2
|Jn−3||J0|
|Jn|

−a |Jn−3||J1|
|Jn|

|Jn−3||J2|
|Jn|

· · · (−a)n−3
|J2||J2|
|Jn|

...
...

...
. . .

...

(−a)n−1
|J0||J0|
|Jn|

(−a)n−2
|J1||J1|
|Jn|

(−a)n−3
|J2||J2|
|Jn|

· · · |J0||Jn−1|
|Jn|


.

Because for n determined we expand the determinant by the first column, the involved de-
terminants can easily be computed by using the three-term recurrence relation

|Jn| = b|Jn−1| − a2|Jn−2|
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and here we have, in the case b2 − 4a2 6= 0, that the value of determinant is

|Jn| =

(
b+
√
b2 − 4a2

)n+1
−
(
b−
√
b2 − 4a2

)n+1

2n+1
√
b2 − 4a2

that can trivially be obtained using induction, or using the characteristic equation. In the
case b2 − 4a2 = 0, i.e. b = ±2a, we obtain easily |Jn| = (n + 1)an when b = 2a and
|Jn| = (n+ 1)(−a)n when b = −2a. Then we have the inverse of the real symmetric matrix
Jn in all the cases, covering the case when a = 0 which correspond to a matrix Jn reduced.

Some numerical methods for inverting finite Hessenberg matrices and tridiagonal ma-
trices are available, see e.g. [4, 6, 1, 2] and references given there.

2 Inverses of infinite unreduced tridiagonal matrices

We want to extend Lemma 2 to infinite tridiagonal matrices in the next theorem. We recall
that if A = (aij)

∞
i,j=1 is an infinite matrix of complex numbers, the matrix B = (bij)

∞
i,j=1 is

a classical inverse of A if we have AB = BA = I.
It is well known that an infinite matrix can have not inverse matrix, for example the

matrix corresponding to right-shift operator,

SR =


0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...

...
...

...
. . .

,
has not associated an inverse matrix, because the product of the first row of SR to the first
column of other matrix can not give 1. It is also well known that an infinite matrix can have
two classical inverse matrices, as we will show in some examples, and then infinite many
classical inverses, because if B′ and B′′ are inverses of A, then αB′ + (1 − α)B′′ is too an
inverse matrix of A, for every α ∈ C.

Finite tridiagonal matrices are denoted by {ai, bi, ci}, 1 ≤ i ≤ n, where the {bi}ni=0 are
the entries of the principal diagonal. The {ai}ni=1 and {ci}ni=1 are those of the lower and
upper subdiagonal, respectively. We use also the notation H = {ai, bi, ci} to indicate the
tridiagonal matrix

H =


b0 c1 0 0 · · ·
a1 b1 c2 0 · · ·
0 a2 b2 c3 · · ·
0 0 a3 b3 · · ·
...

...
...

...
. . .

.
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Theorem 1 Let H be an infinite invertible matrix. Then H is a tridiagonal unreduced
matrix H = {ai, bi, ci} if and only if its classical inverse matrix B = (bij)

∞
i,j=1 has the

entries

bij =

{
uivj , for i ≥ j;
wixj , for i ≤ j,

where the vectors U = (u1, u2, . . .), V = (v1, v2, . . .),W = (w1, w2, . . .), X = (x1, x2, . . .)
satisfy the following recurrence relations

u2 =
1− b0u1v1

c1v1

ui =
−ai−2ui−2 − bi−2ui−1

ci−1


v2 =

−b0v1
a1

vi =
−ci−2vi−2 − bi−2vi−1

ai−1
w2 =

−b0w1

c1

wi =
−ai−2wi−2 − bi−2wi−1

ci−1


x2 =

1− b0w1x1
a1w1

xi =
−ci−2xi−2 − bi−2xi−1

ai−1

for i ≥ 3, with v1 6= 0, w1 6= 0, and u1v1 = w1x1.

Proof Let be H and B the matrices

H =


b0 c1 0 0 · · ·
a1 b1 c2 0 · · ·
0 a2 b2 c3 · · ·
0 0 a3 b3 · · ·
...

...
...

...
. . .

, B =


u1v1 w1x2 w1x3 w1x4 · · ·
u2v1 u2v2 w2x3 w2x4 · · ·
u3v1 u3v2 u3v3 w3x4 · · ·
u4v1 u4v2 u4v3 u4v4 · · ·

...
...

...
...

. . .

,

where B = UV + T , wi−1xi = ui−1vi + ti−1,i, and ti−1,i = 1
ai,i−1

6= 0.

First we consider the matrix product HB. If we multiply the i-th row of H by the i-th
column of B, we have from recurrences,

ai−1wi−1xi + bi−1uiv1 + ciui+1vi = ai−1(ui−1vi + ti−1,i) + bi−1uivi + civi
−ai−1ui−1 − bi−1ui

ci
= 1 + ai−1ui−1vi + bi−1uivi − (ai−1ui−1 + bi−1ui)vi

= 1 + (ai−1ui−1 + bi−1ui − ai−1ui − bi−1ui) = 1.

Now, we multiply the i-th row of H by the j-th column of B. In the case i > j, we have

ai−1ui−1vj + bi−1uivj + ciui+1vj =

(
ai−1ui−1 + bi−1ui + ci

−ai−1ui−1 − bi−1ui
ci

)
vj

= (ai−1ui−1 + bi−1ui − ai−1ui−1 − bi−1ui)vj = 0.
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In the case i < j, we have

ai−1wi−1xj + bi−1wixj + ciwi+1xj =

(
ai−1wi−1 + bi−1wi + ci

−ai−1wi−1 − bi−1wi

ci

)
xj

= (ai−1wi−1 + bi−1wi − ai−1wi−1 − bi−1wi)xj = 0.

We consider now the matrix product BH. If we multiply the i-th row of B by the i-th
column of H, we obtain

uivi−1ci−1 + uivibi−1 + wixi+1ai = uivi−1ci−1 + uivibi−1 + (uivi+1 + ti,i+1)ai

= ui(vi−1ci−1 + vibi−1 + vi+1ai) + ti,i+1ai

= ui

(
vi−1ci−1 + vibi−1 + ai

−ci−1vi−1 − bi−1vi
ai

)
+ 1 = 1.

Now, we multiply the i-th row of B by the j-th column of H. In the case i > j, we have

uivj−1cj−1 + uivjbj−1 + uivj+1aj = ui

(
vj−1cj−1 + vjbj−1 + aj

−cj−1vj−1 − bj−1vj
aj

)
= ui(vj−1cj−1 + vjbj−1 − cj−1vj−1 − bj−1vj) = 0.

In the case i < j, we obtain

wixj−1cj−1 + wixjbj + wixj+1aj = wi

(
xj−1cj−1 + xjbj−1 + aj

−cj−1xj−1 − bj−1xj−1
aj

)
= wi(xj−1cj−1 + xjbj−1 − cj−1xj−1 − bj−1xj−1) = 0.

Therefore, matrix B is the classical inverse of the matrix H and conversely, matrix H is the
classical inverse of the matrix B.

We must to prove that the condition u1v1 = w1x1 implies ukvk = wkxk, for k = 2, 3, . . .
Indeed, for k = 2,

u2v2 =
1− b0u1v1

c1v1
· −b0v1

a1
=
−b0(1− b0u1v1)

a1c1
=
−b0(1− b0w1x1)

a1c1

=
1− b0w1x1

a1w1
· −b0w1

c1
= x2w2 = w2x2.

In addition,

a1b1u1v2 + b1c1u2v1 = a1b1u1
−b0v1
a1

+ b1c1v1
1− b0u1v1

c1v1
= −b0b1u1v1 + b1(1− b0u1v1) = −b0b1w1x1 + b1(1− b0w1x1)

= b1c1
−b0w1

c1
x1 + a1b1w1

1− b0w1x1
a1w1

= b1c1w2x1 + a1b1w1x2 = a1b1w1x2 + b1c1w2x1.
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Now we use induction,

uk−1vk−1 = wk−1xk−1, ukvk = wkxk

In addition,

ak−1bk−1uk−1vk + bk−1ck−1ukvk−1 = ak−1bk−1wk−1xk + bk−1ck−1wkxk−1.

Therefore,

uk+1vk+1 =
−ak−1uk−1 − bk−1uk

ck
· −ck−1vk−1 − bk−1vk

ak

=
1

akck
(ak−1ck−1wk−1xk−1 + ak−1bk−1wk−1xk + bk−1ck−1wkxk−1 + bk−1bk−1wkxk)

=
−ak−1wk−1 − bk−1wk

ck
· −ck−1xk−1 − bk−1xk

ak
= wk+1xk+1.

The proof is complete, uk+1vk+1 = wk+1xk+1, ∀k. �

Remark 1 In the establishment of the preceding theorem, we have recurrence relations and
the conditions v1 6= 0, w1 6= 0, and u1v1 = w1x1. Then, three of these parameters are free.
When we choose different values of these, we obtain different inverse matrices of the infinite
tridiagonal matrix H.

Example 2 We illustrate with the infinite real symmetric tridiagonal matrix

H =


1 −2

5 0 · · ·
−2
5 1 −2

5 · · ·
0 −2

5 1 · · ·
...

...
...

. . .

,
where bi = 1 and ai = ci = −2

5 . If we choose, say u1 = v1 = 1, we have

U =

(
1, 0,−1,

−5

2
,
−21

4
,
−85

8
, · · ·

)t

, V =

(
1,

5

2
,
21

4
,
85

8
,
341

16
,
1365

32
, · · ·

)
.

We obtain by symmetry B′ as a classical inverse of matrix H. However, if we choose, say
u1 = 5

4 and v1 = 1, we have

U =

(
5

4
,
5

8
,

5

16
,

5

32
,

5

64
,

5

128
, · · ·

)t

, V =

(
1,

5

2
,
21

4
,
85

8
,
341

16
,
1365

32
, · · ·

)
.

We obtain B′′ as an inverse of H. Finally, if we choose, say u1 = 0 and v1 = 1, we have

U =

(
0,
−5

2
,
−25

4
,
−105

8
,
−425

16
,
−1705

32
, · · ·

)t

, V =

(
1,

5

2
,
21

4
,
85

8
,
341

16
,
1365

32
, · · ·

)
,
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and we obtain B′′′ as an inverse of H. The matrices B′, B′′, and B′′′ are

B′=



1 0 −1 −5
2

−21
4 · · ·

0 0 −5
2

−25
4

−105
8 · · ·

−1 −5
2

−21
4

−105
8

−441
16 · · ·

−5
2

−25
4

−105
8

−425
16

−1785
32 · · ·

−21
4

−105
8

−441
16

−1785
32

−7161
64 · · ·

...
...

...
...

...
. . .


, B′′=



5
4

5
8

5
16

5
32

5
64 · · ·

5
8

25
15

25
32

25
64

25
128 · · ·

5
16

25
32

105
64

105
128

105
256 · · ·

5
32

25
64

105
128

425
256

425
512 · · ·

5
64

25
128

105
256

425
512

1705
1024 · · ·

...
...

...
...

...
. . .


,

B′′′=



0 −5
2

−25
4

−105
8

−425
16 · · ·

−5
2

−25
4

−125
8

−525
16

−2125
32 · · ·

−25
4

−125
8

−525
16

−2205
32

−8925
64 · · ·

−105
8

−525
16

−2205
32

−8925
64

−36125
128 · · ·

−425
16

−2125
32

−8925
64

−36125
128

−144925
256 · · ·

...
...

...
...

...
. . .


.

These three matrices are examples of classical inverses of matrix H. Note also that if we
choose v1 = i, we obtain the vector V =

(
i, 5i2 ,

21i
4 ,

85i
8 ,

341i
16 , . . .

)
, and taking u1 = 1, for

example, we have a complex classical inverse of a real matrix H.

Example 3 We consider the infinite, real or complex, symmetric tridiagonal matrix

H =


1 + a2 a 0 · · ·
a 1 + a2 a · · ·
0 a 1 + a2 · · ·
...

...
...

. . .

,
then bi = 1 + a2 and ai = ci = a. For u1 = v1 = 1, we have the following vectors
U = (1,−a, a2,−a3, a4, ...)t and

V =

(
1− a2

1− a2
,− 1− a4

a(1− a2)
,

1− a6

a2(1− a2)
,− 1− a8

a3(1− a2)
,

1− a10

a4(1− a2)
, ...

)
.

We obtain by symmetry the matrix

B =
1

1− a2



1− a2 −a(1− a2) a2(1− a2) −a3(1− a2) a4(1− a2) · · ·
−a(1− a2) 1− a4 −a(1− a4) a2(1− a4) −a3(1− a4) · · ·
a2(1− a2) −a(1− a4) 1− a6 −a(1− a6) a2(1− a6) · · ·
−a3(1− a2) a2(1− a4) −a(1− a6) 1− a8 −a(1− a8) · · ·
a4(1− a2) −a3(1− a4) a2(1− a6) −a(1− a8) 1− a10 · · ·

...
...

...
...

...
. . .


,
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a classical inverse matrix of the matrix H. Note that if we take a = i, we have a classical
inverse of the bidiagonal complex matrix H = {i, 0, i}. If we take a = 0, we have I as
the inverse of the matrix I. Finally, taking a = 1 and after simplifying, the inverse of the
matrix H = {1, 2, 1} is given by

B =


1 −1 1 −1 1 · · ·
−1 2 −2 2 −2 · · ·
1 −2 3 −3 3 · · ·
−1 2 −3 4 −4 · · ·
...

...
...

...
...

. . .

 = ((−1)i+j min{i, j}∞i,j=1).

Theorem 1 gives us classical inverses of a tridiagonal matrix H. Conversely, we show in the
next corollary the way for obtaining the inverse of an infinite matrix B with structure UV
and WX.

Corollary 1 Let B = (bij)
∞
i,j=1 be an infinite invertible matrix with structure UV for i ≥ j,

and WX for i ≤ j. Its classical inverse, the infinite tridiagonal matrix H = {ai, bi, ci}, is
unique, The entries of the inverse matrix H are given by the following recursive relations:

b0 =
b22

b11b22 − b12b21
, bi−2 =

bi−2,1(bi−1,i−1b1,ibi,1 − biib1,i−1bi−1,1
ci−2bi−1,1(biib1,i−2bi−2,1 − bi−2,i−2b1,ibi,1)

, and
a1 =

1− b0x1
x2

ai−1 =
−ci−2xi−2 − bi−2xi−1

xi

, and


c1 =

1− b0u1
u2

ci−1 =
−ai−2ui−2 − bi−2ui−1

ui

,

for i ≥ 3. The order in the computation of parameters is the following: first b0, after a1
and c1, after b1, after a2 and c2 and sequentially.

Proof We take v1 = w1 = 1 without loss of generality. The matrix B is

B =


u1 x2 x3 x4 · · ·
u2 u2v2 w2x3 w2x4 · · ·
u3 u3v2 u3v3 w3x4 · · ·
...

...
...

...
. . .

,
with x1 = u1 and ukvk = wkxk, k = 2, 3, . . . The first column of B is the vector U and the
first row of B is the vector X. Thus ui, xi, i = 1, 2, . . . are known. Recurrence relations of
ai and ci are obtained from recurrences of xi and ui from Theorem 1. We must determine
b0 and bi. Entry b22 of the matrix B is u2v2. Since u2 is known, we have v2 = b22

u2
= b22

b21
.

Recurrence for vi, with v1 = 1, allows us to obtain

b0 = −a1v2 =
b0x1 − 1

x2
v2 ⇒ b0x2 = b0x1v2 − v2 ⇒ b0(x1v2 − x2) = v2 ⇒
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b0 =
v2

x1v2 − x2
=

b22
b21

b11
b22
b21
− b12

=
b22

b11b22 − b12b21
,

where the denominator is nonzero because, in other case, the two first columns and rows of
the matrix B are proportional, and matrix B is not invertible.

We give some details about the computations of the bi. Since

ai−1 =
−ci−2vi−2 − bi−2vi−1

vi
=
−ci−2xi−2 − bi−2xi−1

xi
, we obtain

−ci−2vi−2xi − bi−2vi−1xi = −ci−2xi−2vi − bi−2xi−1vi ⇒ bi−2 =
vi−1xi − xi−1vi

ci−2(xi−2vi − vi−2xi)
.

Furthermore, since uivi = bii ⇒ vi = bii
ui

= bii
bi1

, we have

bi−2 =

bi−1,i−1

bi−1,1
b1i − b1,i−1 bii

bi1

ci−2

(
b1,i−2

bii
bi1
− bi−2,i−2

bi−2,1
b1i

) =
b21(bi−1,i−1b1ibi1 − biib1,i−1bi−1,1)

ci−2bi−1,1(biib1,i−2bi−2,1 − bi−2,i−2b1ibi1)
,

where numerator and denominator are nonzero because matrix B is invertible. In particular,
for i = 3 we obtain

b1 =
b11(b22b13b31 − b33b12b21)
c1b21(b33b11b11 − b11b13b31)

=
b22b13b31 − b33b12b21
c1b21 (b11b33 − b13b31)

·

Products of rows by columns of H and B are already computed in the proof of Theorem 1.
In summary, H is the inverse matrix of B, and conversely. The unicity of matrix H follows
from the unicity of the expressions for ai, bi, and ci. �

3 Inverses of infinite reduced tridiagonal matrices

When a tridiagonal matrix H has at least a null entry on its subdiagonal, we can calculate
its classical inverse in a similar way as the known method of the Schur complement for a
matrix of finite order.

Proposition 1 Let H be an infinite invertible tridiagonal matrix with only a zero entry on
its subdiagonal and nonzero entries on its superdiagonal. Then its classical inverse matrix

can be calculate using a block matrix procedure. If matrix H =

(
H11 H12

0 H22

)
, a clas-

sical inverse matrix is B =

(
H−111 −H−111 H12H

−1
22

0 H−122

)
, where H11 is a finite nonsingular

unreduced tridiagonal matrix and H22 is an infinite invertible unreduced tridiagonal matrix.

Proof The proof follows trivially by considering the products HB = I and BH = I. Thus
matrix B is a classical inverse of matrix H. �
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Example 4 Let H be the infinite tridiagonal matrix, with an unique null entry on its
subdiagonal, h43 = 0, a classical inverse of H will be B, where

H =



2 1 0 · · ·
1 2 1 · · ·
0 1 2 1 · · ·

0 2 1 · · ·
1 2 1 · · ·

1 2 · · ·
...

...
...

...
...

...
. . .


, B =



3
4

−1
2

1
4 · · ·

−1
2 1 −1

2 B12 · · ·
1
4

−1
2

3
4 · · ·

0 0 0 1 −1 1 · · ·
0 0 0 −1 2 −2 · · ·
0 0 0 1 −2 3 · · ·
...

...
...

...
...

...
. . .


.

The block matrix entry B12 is

B12 = −H−111 H12H
−1
22 = −

 3
4

−1
2

1
4

−1
2 1 −1

2
1
4

−1
2

3
4

 0 0 0 · · ·
0 0 0 · · ·
1 0 0 · · ·




1 −1 1 · · ·
−1 2 −2 · · ·
1 −2 3 · · ·
...

...
...

. . .



= −

 1
4 0 0 · · ·
−1
2 0 0 · · ·
3
4 0 0 · · ·




1 −1 1 · · ·
−1 2 −2 · · ·
1 −2 3 · · ·
...

...
...

. . .

=

 −1
4

1
4

−1
4 · · ·

1
2

−1
2

1
2 · · ·

−3
4

3
4

−3
4 · · ·

.
The case of finitely many zeros on the subdiagonal follows from Proposition 1.

Corollary 2 Let H be an infinite invertible tridiagonal matrix with a finite number of zero
entries on its subdiagonal and nonzero entries on its superdiagonal. Then its classical in-
verse matrices can be calculate using the same block matrix procedure as given in Proposition
1, but now the finite nonsingular tridiagonal matrix H11 is reduced.

This corollary can be extended in a natural way when the tridiagonal matrix H has infinitely
many zeros on its subdiagonal. An analogous procedure is valid if the null entries are on
its superdiagonal.

4 Conclusions

We have proposed a method for building classical inverses of a general, unreduced as well
as reduced, infinite (real or complex) tridiagonal matrix. Some free parameters have been
chosen and different inverses have been obtained using the recurrence relations involved.
Conversely, a constructive method was presented for calculating the inverse of an infinite
matrix with the structure UV and WX.
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Abstract

This paper deals with the numerical solution of Fractional Differential Equations
by means of m-step recursions. For the construction of such formulas, we consider a
technique based on a rational approximation of the generating functions of Fractional
Backward Differentiation Formulas (FBDFs). The so-defined methods simulate very
well the properties of the underlying FBDFs with noticeable advantages in terms of
memory saving. This fact becomes particularly evident when they are used for discretiz-
ing fractional partial differential equations like the ones occurring in some population
dynamic models.

Key words: Fractional Differential Equations, Fractional BDFs, Matrix functions

1 Introduction

We consider the numerical solutions of Fractional Differential Equations (FDEs) of the type

t0D
α
t y(t) = g(t, y(t)), t ∈ (t0, T ], 0 < α < 1, (1)

where t0D
α
t denotes the fractional derivative operator in the Caputo sense (see, e.g., [2])

defined as

t0D
α
t y(t) =

1

Γ(1− α)

∫ t

t0

y′(u)

(t− u)α
du, (2)

being Γ(·) the standard Gamma function. As well known, the use of the Caputo’s definition
for the fractional derivative allows to treat the initial conditions at t0 for FDEs in the
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same manner as for integer order differential equations. Setting y(t0) = y0 the solution of
(1) exists and is unique under the hypothesis that g is continuous and fulfils a Lipschitz
condition with respect to the second variable.

A classical approach for solving (1) is based on the discretization of the fractional
derivative (2) which leads to the so-called Fractional Backward Differentiation Formulas
(FBDFs) introduced in [1]. In more details, FBDFs are given by the full-term recursions∑n

j=0
ωn−jyj = hαg(tn, yn), p ≤ n ≤ N, (3)

where h = (T − t0)/N is the step-length of the uniform meshgrid tj = t0 + jh, yj ≈ y(tj)
and ωn−j are the Taylor coefficients of the generating function

ω(α)
p (ζ) = (a0 + a1ζ + ...+ apζ

p)α , 1 ≤ p ≤ 6; (4)

here {a0, a1, . . . , ap} are the coefficients of the underlying BDF.

2 The fractional derivative approximation

Our idea is to design new schemes based on a rational approximation of (4)

Rm(ζ) ≈ ω(α)
p (ζ), Rm(ζ) =

pm(ζ)

qm(ζ)
, pm, qm ∈ Πm, (5)

where Πm denotes the set of polynomials of degree not exceeding m. Writing pm(ζ) =∑m
i=0 αiζ

i and qm(ζ) =
∑m

i=0 βiζ
i, the above approximation naturally leads to implicit

m-step recursions of the type∑n

j=n−m
αn−jyj = hα

∑n

j=n−m
βn−jg(tj , yj), n ≥ m. (6)

After considering a BDF discretization of order p of the first derivative operator, which can
be represented by a lower triangular banded Toeplitz matrix of the type

Ap =



a0 0 0
... a0 0

ap
. . . 0

0
. . .

. . . 0
0 ap · · · a0


∈ RN×N , (7)

we approximate the Caputo’s fractional differential operator t0D
α
t by calculating Aαp . The

technique we have used is based on the fact that the first column of Aαp contains the first
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N coefficients of the Taylor expansion of ω
(α)
p (ζ). In particular, a k-point Gauss-Jacobi

quadrature rule has been used for approximating the contour integral representation of the
function zα. The obtained schemes are of type (6) with m = kp � N and they generalize
in some sense the methods based on the Short Memory Principle in which the truncated
Taylor expansion of (4) is considered (see [2, §8.3] for some examples). The advantages
in terms of memory saving are noticeable especially in the case when (1) arises from the
semi-discretization of fractional partial differential equations.

3 A numerical example

We consider the following problem

0D
α
t u(x, t) =

∂(p(x)u(x, t))

∂x
+Kα

∂2u(x, t)

∂x2
+ ru(x, t)

(
1− u(x, t)

K

)
,

u(0, t) = u(5, t) = 0, t ∈ [0, 1],

u(x, 0) = x2(5− x)2, x ∈ [0, 5].

This is a particular instance of the time-fractional Fokker-Planck equation with a nonlinear
source term [3]. In population dynamics, its solution u(x, t) represents the population
density at location x and time t and the nonlinear source term in the equation is known as
Fisher’s growth term. The application of the classical second order semi-discretization in
space leads to a nonhomogeneous nonlinear fractional differential problem of type (1) which
has been solved by applying the schemes proposed. The results of our experiments are very
encouraging.
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Abstract

An opinion published in Nature [1] has stated that dengue fever could be a significant
problem in some of the Brazilian cities hosting the games, however, the conclusions were
taken after a brief observation of the available data, analyzing its mean and standard
deviation only, without a major scientific reason to cause alarm for the world cup in
Brazil. Here, with a more careful data analysis for the Brazilians cities hosting the
games, we show that the seasonality of the disease plays a major role in transmission.
The density of dengue cases is residual during the winter period and the fans of football
are not likely to get dengue during the tournament season.

Key words: Dengue fever, Data analysis, time series, box-plot

1 Introduction

Dengue is a viral mosquito-borne infection, a leading cause of illness and death in the tropics
and subtropics. It is estimated that every year 390 million dengue infections per year, of
which 96 million manifest apparently (any level of disease severity). [2]. In many countries
in Asia and South America dengue fever/dengue hemorrhagic fever (DF/DHF) has become
a substantial public health concern leading to serious social-economic costs. The infection
can be asymptomatic or show with a broad clinical spectrum. There is no specific treatment
for dengue, and a vaccine which simulates a protective immune response to all four serotypes
is not yet available. Tetravalent vaccines are under investigation, but so far, prevention of
exposure remains the only alternative to prevent dengue transmission.

Dengue fever epidemiology dynamics shows large fluctuations of disease incidence and
mathematical models describing transmission of disease ultimately aim to be used as pre-
dictive tools to evaluate the introduction of intervention strategies [3, 4].
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In Brazil, the occurrence of the dengue fever is persisting and is increasing since 1980s.
By 2000, dengue virus (DENV) transmission was reported in 22 of 27 Brazilian states,
occupying a significant place in the international ranking for total cases of the disease,
according to the World Health Organization (WHO) [5, 6]. The disease outbreak starts
during the rainy season, from Mid of September till Mid of May (see Fig.3) where vector
infestation increase considerably. The suspected dengue cases are of compulsory notification
and all reported cases from public health services or private health providers are included
in the notification database (SINAN), which is openly accessible via the internet [7].

This years World Cup 2014 tournament will be held in Brazil, during the winter season,
starting on June 12 and ending on July 13. According to estimates from the Brazilian
Tourism Ministry, more than 600,000 football fans will visit the country. The World Cup
will be staged across twelve host cities in Brazil: Belo Horizonte, Braslia, Cuiab, Curitiba,
Fortaleza, Manaus, Natal, Porto Alegre, Recife, Rio de Janeiro, Salvador and So Paulo, and
according to the opinion by Simon Hay, published in Nature [1], dengue fever could be a
significant problem in Fortaleza, Natal and Salvador. The authors claimed that much could
be done by the authorities there to reduce dengue risk in the run-up to the tournament and
have advised travelers to “select accommodation with screened windows and doors and air
conditioning; use insecticides indoors; wear clothing that covers the arms and legs, especially
during early morning and late afternoon, when the chance of being bitten is greatest; and
apply insect repellent to clothing and exposed skin”.

These conclusions were taken after the authors have analyzed the mean and the standard
deviation for the available data of the twelve cities in Brazil that will host the games. There
was not a major scientific reason to cause fear or alarm for the world cup, and specially
also to promote expensive accommodations where screened windows and doors and air
conditioning is required, for example. This opinion by Simon Hay had a big repercussion in
the media worldwide, but will dengue be effectively a threat during the football tournament?

A systematic data collection and a correct analysis should be performed in order to
minimizing the false predictions that could be generated by using wrong data or its mis-
interpretation [4]. In this manuscript we perform a more careful data analysis for the
Brazilians cities that are hosting the games and we show that the risk of being infected by a
dengue virus is seasonal and also proportional to the population density in Brazil, increasing
during the rainy season and the presence of vector and human population density.

2 Methods and Results

In this study, we analyzed the available epidemiological dengue data for the Brazilians cities
which are going to host the football games during the FIFA World Cup in 2014. A time
series and a box-plot analysis were performed.

The epidemiological dengue data was obtained in the Brazilian notification database
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Figure 1: Time series of number of dengue cases per 1000 inhabitants, from 2001 to 2012, for six of

the Brazilian cities hosting the football games during the World Cup 2014. In A) Fortaleza, in B)

Natal, in C) Recife, in D) Cuiabá, in E) Belo Horizonte, and in F) Rio de Janeiro. The white bars

confine the the period where the World Cup is scheduled to happen, from 12 of June to 13 of July.

SINAN [7], the same data set used in [1]. The monthly number dengue cases that were
confirmed in laboratory are available from 2001 to 2012 only, and since the population
density can be different for each one of the Brazilian cities, we assume that the disease
transmission is density-dependent.

The information given by the precipitation data in Brazil was obtained from the Na-
tional Institute of Meteorology (INMET)[8], where a meteorological data base for research
is available. The data base holds a daily weather data in digital form, such as historical
series of INMET network stations. Climatological data, combined with the epidemiological
data analysis, were used to conclude that the fans of football are not likely to get dengue
during the tournament season.

2.1 Time Series Analysis

The epidemiological data were analyzed taking into consideration the human population
density for each one of the cities, and the conclusions were taken based on the results
obtained by a time series and box plot analysis, combined with the information given by
the precipitation data.

Time series of density dengue infection are shown in Fig.1, for some of the Brazilian
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Figure 2: Time series of number of dengue cases per 1000 inhabitants, from 2001 to 2012, for six of

the Brazilian cities hosting the football games during the World Cup 2014. Here we plot the number

of cases per month, showing the dynamics of the dengue epidemics in each year. In A) Fortaleza,

in B) Natal, in C) Recife, in D) Cuiabá, in E) Belo Horizonte, and in F) Rio de Janeiro. The white

bars confine the the period where the World Cup is scheduled to happen, from 12 of June to 13 of

July.

cities which are hosting the World Cup football games. Among the twelve selected cities,
Fortaleza (1A), Cuiabá (1D) and Belo Horizonte (1E) appears to be the cities with higher
density of dengue cases. Manaus, Recife (1C), Braśılia and Rio de Janeiro (1F) have shown
a mild density of cases with rarely high outbreaks during the last 12 years. The density
of cases is very small and not significant in Natal (1B), Salvador and São Paulo, and for
Curitiba and Porto Alegre, the density of cases are negligible, with only few occasional
notified and confirmed cases.

In Fig.2 we plot twelve years of monthly data, for each one of the cities we are studying.
We observe that, for all the twelve cities, the dengue season starts in January/February, with
the peak of the epidemics around March/April. In May, the number of cases have decreased
considerably, and in June and July, during the football games period (signalized by gray
bars in the graphics), the number of cases are residual. This pattern is also confirmed to
happen for the other cities that are also hosting the football games [10] and it is coherent
with the increase of vector infestation, that is highly correlated with the rainfall [9] (see
Fig.3).
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A B

C D

E F

Figure 3: Time series of precipitation and temperature, from 2001 to 2012, for six of the Brazilian

cities hosting the football games during the World Cup 2014. The white bars confine the the period

where the World Cup is scheduled to happen, from 12 of June to 13 of July.

Exceptions on the described paten, where the peak of the dengue epidemic occur during
the winter period: Fortaleza in 2005 and 2006 and in Recife in 2010, although with relatively
low number of infections, less than 2 per 100 thousands individuals.
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Figure 4: Box-plot for the density dengue infection in some of the Brazilian cities that are hosting

the games. The white bars confine the the period where the World Cup is scheduled to happen,

from 12 of June to 13 of July.

2.2 Box-plot Analysis

Using The box-plot, we present the minimum value, the 25%, 50% (median) and 75%
quartiles and the maximum of density dengue infection for the Brazilian cities that are
going to host the football games. The data is not normally distributed and therefore, we
look at the median and quartiles instead of the mean and standard deviation, differently
from what Simon Hay have done in [1].

Cities with frequent high outbreaks appears with a large median and third quartile, as
opposed to cities which have not significant outbreaks, represented by the maximum bar
only. Fortaleza and Belo Horizonte are the cities where large outbreaks have been reported
more frequently. For all other cities, we observe that the median is very low, showing that
the reported outbreaks during the 12 years period have been mild in term od number of
cases.

In fig.4 we observe that during the period of the world Cup, Fortaleza appears to have
the higher density of cases, among the other cities in study.
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3 Conclusions

The results of Simon Hay published in [1] were obtained after analyzing the data with mean
and standard deviation only, assuming that the data is normally distributed. The population
density was also not taking into consideration, giving the false impression that Fortaleza,
Natal and Salvador cities would have lots of cases happening during the winter, causing fear
for the World Cup 2014 and promoting expensive accommodations with screened windows
and doors and air conditioning required, for example.

In this manuscript we performed a more careful data analysis for the Brazilians cities
that are hosting the games and we showed that the risk of being infected by a dengue virus
is seasonal and also proportional to the population density in Brazil, increasing during
the rainy season and the presence of vector and human population density. Despite some
exceptions, the dengue season happens during the same period of every year and during the
winter period, the number of cases are residual, bringing no risk for the football fans which
are coming to Brazil for the World Cup 2014.

Those findings have important implications for the effectiveness of intervention measures
that will be provided for Public Health Authorities for dengue control.
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Abstract

In this work we study the rank aggregation problem in a general setting, that is,
we approach the problem for any kind of ranking: complete or incomplete and with
or without ties. The underlying idea behind our approach is to take into account the
so-called extension set of a ranking, that is, the set of permutations that are compatible
with the given ranking. Moreover, we propose two new distances to compare any kind
of rankings. As an application of our proposal, we develop a hill climbing algorithm
associated to our distances to deal with the rank aggregation problem.

Key words: rank aggregation problem, Kemeny ranking problem, Kendall distance,
Borda method, Extension set, permutation, partial ranking, hill climbing algorithm
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1 Introduction

Dealing with rankings is currently a hot topic in statistics and machine learning research.
Perhaps the reason is the increasing availability of problems whose basic data are rankings
(e.g. recommender systems, combinatorial optimization, preferences, etc.).

Rankings are a natural way to express preferences. Specifically, given a set of items
Sn = {1, 2, . . . , n}, a ranking π is an order of preference over (some of) these items. The
case that has received more attention in the literature is the one in which all the items are
ranked, that is, rankings are permutations of n elements [4]. However, real world problems
usually deal with incomplete rankings, i.e. only p items are ranked, 2 ≤ p < n. This is the
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case of users expressing preferences about a set of movies, books, etc., when they have no
opinion about some items. Moreover, in these cases is also usual to use a preference system
which allows the user to assign the same score to different items, so obtaining (incomplete)
rankings with ties.

An important problem when dealing with rankings is to obtain a consensus ranking
which best represents (summarizes) a given set of rankings. In the case of complete rankings,
i.e. permutations, this problem is known as the Kemeny ranking problem [3, 5]. In the more
general case when dealing with incomplete rankings (with or without ties), this problem is
known as the rank aggregation problem [7] and has application in many real-world problems.
In all the cases it is an NP-hard problem and its solution is a permutation (complete
without ties ranking) . For this reason, it is usual to approach this problem by using greedy
algorithms. Among them, the Borda algorithm is undoubtedly the preferred one, because
of its good trade-off between efficiency and accuracy [6, 5].

Given a dataset of rankings, the Borda algorithm assigns points to the items according
to their positions in the rankings of the dataset (the more preferred an item is, the more
points it gets) and finally it computes the consensus ranking by ordering the items from
the most valued to the less valued one. For permutations, the points are assigned easily
by giving n points to the first ranked item, n − 1 to the second one, and so on. The
problem appears when dealing with arbitrary (incomplete with/without ties) rankings. In
this sense, two different approaches can be followed: (i) to ignore, when assigning points,
those items not included in the incomplete ranking (as the Modified Borda algorithm does
[8, 7]), or (ii) to deal with the uncertainty associated to the items non appearing in a given
ranking, that is, taking into account the positions of the ranking in which they could be
placed. Our proposal belongs to the second approach, and particularly uses the concept
of extension sets to manage the unobserved information (see [9, 10] for related research on
this idea). Moreover, to evaluate how good the obtained consensus ranking is, we introduce
a similarity measure based on an extension of the well-known Kendall tau distance that
allows to compute the distance between any two arbitrary rankings.

Thus, we provide a new Borda-type method based on a normative approach to deal
with the rank aggregation problem for arbitrary (incomplete with or without ties) rankings.
As mentioned above, the idea is based on the use of extension sets, and particularly on its
number of elements. We provide the mathematical expressions to efficiently compute the
cardinality of the required extension sets, avoiding in this way a brute-force approach. Our
proposal generalizes previous developments designed to cope only with particular types of
rankings (i.e. incomplete or with ties, but not both types simultaneously). To test the
goodness of the proposed algorithm we conduct an experimental study to compare it with
a generalized version of the classical Borda algorithm that allows to consider arbitrary
rankings.

Another interesting topic is, given two rankings, to establish a way to measure how
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similar they are, that is, to compare them. In the case of complete rankings, i.e. permuta-
tions, many tools have been proposed to deal with this problem. Distances as Kendall tau
distance, which measures the total number of pairwise inversions, and Spearman’s footrule
distance, which measures the l1 distance between ranks, are those that have received more
attention in the literature. When dealing with incomplete rankings or rankings with ties,
some approaches have been proposed based on the disagreements that the rankings consid-
ered present. However, all these proposals compare only one type of rankings, and do not
join every type of rankings together in the comparisons.

In this work we provide a new method for comparing arbitrary (incomplete with or
without ties) rankings based on the use of the extension sets to take into account all the
information that the rankings provide. Our proposal generalizes previous developments
designed to cope only with particular types of rankings (i.e. incomplete or with ties, but
not both types simultaneously). As an application of our proposal, we develop a hill climbing
algorithm associated to our distances to deal with the rank aggregation problem.
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Abstract

In this work we introduce a wide generalization of dynamical systems over graphs,
by considering that the states of the entities can take values in an arbitrary Boolean
algebra with 2p elements, p ∈ N, p ≥ 1. Then the orbit structure of these more general
parallel dynamical systems over undirected graphs where the evolution operator is an
arbitrary maxterm or minterm is analyzed. Finally, we also study the cases of parallel
dynamical systems whose evolution update is defined by means of independent local
Boolean functions.
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1 Introduction

A graph dynamical system (GDS) is a dynamical system constructed over a graph whose
vertices, named entities, can have different states, such that all these states together at a
given time constitute a state of the system which can evolve thanks to an updating scheme.
The states of the vertices are commonly modeled by the Boolean values 0 and 1, while the
updating scheme consists of as many local functions as vertices and a series of rules that
indicate the order in which the local functions act.

When all the local functions act synchronously the system is called parallel (PDS)
[3, 4, 5, 6, 7, 12]. In contrast, when the local functions follow an order to act, the system is
called sequential (SDS) [12, 20].
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In the specific literature, other related topics appeared previously, as cellular automata
(CA) [16, 22, 25, 26] and Boolean networks (BN) [17, 18], which are, in fact, particular
cases of GDS.1.

CA, when finite, can be considered as a special kind of PDS by considering cells as
entities. Nevertheless, CA are restricted cases of PDS in several ways. First of all, for a CA
seen as a PDS, the dependency graph, which is derived from the lattice and the neighborhood
structure, is regular, whereas the graph of a general PDS is arbitrary. Secondly, CA have
a fixed local function or rule, associated to every cell, while general PDS can have distinct
local functions to update different entities, which can be the restriction of a global one
(see [3, 12]) or independently defined (see [5]). Thus, general PDS can have more involved
update schemes.

CA are also updated in a parallel or synchronous manner by applying local functions
on a subset that contains the (state value of the) cell. Nevertheless, in the last few years
some extensions of the concept of CA, considering sequential or asynchronous updating,
have appeared in the literature (see [13, 19, 23]). In fact, the concept of SDS constitutes a
generalization of such a CA extension.

BN are a generalization of (finite) Boolean CA but, at the same time, a particular case
of GDS by considering nodes as entities. One of the main differences with CA is that, in
BN, the state of each node is not affected necessarily by its neighbors, but potentially by
any node in the network. Thus, the uniform structure of neighborhood in CA disappears.
However, some homogeneity remains, since each node is affected by k connections with
other (or the same) entities. This homogeneity makes BN a particular case of GDS, since in
GDS connections can be totally arbitrary. Another important difference between BN and
CA is that, for BN, local Boolean functions of k−variables are generated randomly, which
provides a different update schedule for each entity. This idea has been carried out and
extended for PDS in two directions. Firstly, as can be seen in [3], local Boolean functions
acting on each entity can have different number of variables (what cannot occur for BN);
and secondly, they can be totally independent for each entity [5].

GDS, as a concept that generalizes the aforementioned ones, is relatively young and
unexplored. In fact, the first ideas appeared in [8], which constituted an important step in
the development of the mathematical foundations for the theory of Computation. In this
work, sequentially updated cellular automata (SCA) over arbitrary graphs are employed
as a paradigmatic framework. This first work was followed by [9], [10] and [11], where
the authors developed this theory, analyzing the asymptotic behavior of such mathematical
models. Later, many other works have appeared in order to describe the behavior of these
dynamical systems (see [3, 4, 5, 6, 7, 12]) and also as applications of them to other questions
(see [14, 15]).

1The abbreviations GDS, PDS, SDS, CA and BN will be used for the singular and plural forms of the
corresponding terms, since it seems better from an aesthetic point of view.
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In all of these works, the entities in the model can only have two state values, i.e., each
entity can be either activated or deactivated. This is usually modeled by means of Boolean
variables xi ∈ {0, 1}, i = 1, 2, . . . , n, where n is the number of entities, in such a way that
xi = 1 (resp. xi = 0) means that the entity i is activated (resp. deactivated). However, the
original definition of CA in [25] contemplates the possibility that the cells take state values
in a finite set, although subsequently the majority of studies have been made in the case of
Boolean CA. In fact, in experimental models, the state values of the entities can belong to
a more general (finite) set. This situation naturally appears, for instance, when each entity
can have different levels of activation or intensity, belonging to a totally ordered finite set
which can be represented by {0, 1, . . . ,m} (see [24] for this approach in the context of
probabilistic Boolean networks); or when each entity consists of several sub-entities, which
can be activated or deactivated.

This last conception has inspired our extended model in this work. In this sense, we
introduce a wide generalization of GDS, by considering that the state values of the entities
can belong to an arbitrary Boolean algebra B with 2p elements, p ∈ N, p ≥ 1. This
consideration widely extends the traditional one where it is assumed that every entity can
take values only in the simplest Boolean algebra {0, 1}.

In particular, we develop some techniques which allow us to study the orbit structure of
these dynamical systems. As an application, we study the orbit structure of parallel dynam-
ical systems over undirected graphs where the evolution operator is an arbitrary maxterm
or minterm, using and generalizing at the same time the results in [3]. Moreover, taking
into account the results in [5], we also analyze the case of parallel dynamical systems on
general Boolean algebras whose evolution update scheme is defined by means of independent
local functions chosen among OR,AND,NAND and NOR. Finally, as a consequence, the
results for parallel dynamical systems over directed dependency graphs in [4] and [5] can be
also extended to this more general context.
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Abstract

The aim of this paper is to numerically study a class of nonlinear nonlocal degener-
ate parabolic equations. The convergence and error bounds are proved for a linearized
Crank-Nicolson-Galerkin finite element method with polynomial approximations of de-
gree k ≥ 1. Some explicit solutions are obtained and used to test the implementation
of the method in Matlab environment.
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1 Introduction

In this work, we study parabolic problems with nonlocal nonlinearity of the following type
ut −

(∫
Ω
u2(x, t)dx

)γ
∆u = f (x, t) , (x, t) ∈ Ω×]0, T ]

u (x, t) = 0 , (x, t) ∈ ∂Ω×]0, T ]
u(x, 0) = u0(x) , x ∈ Ω

(1)

where Ω is a bounded open domain in Rd, d ≥ 1, γ ≥ 1
2 is a real constant, f and u0 are

continuous integrable functions.
These type of problems were studied initially by Chipot and Lovat in [6], where they pro-
posed the equation

ut − a(
∫

Ω
u dx)∆u = f (2)
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to model the density of a population, for example of bacteria, subject to spreading. In this
paper, the authors prove the existence and uniqueness of weak solutions. Equation (2) can
also appear in the study of heat propagation or in epidemic theory.
The existence, uniqueness, asymptotic behavior of weak and strong solutions of parabolic
equations and systems with nonlocal diffusion terms have been widely studied in the last
two decades (see, for example, [12, 8, 10] and their references).
The numerical analysis and simulation of such problems have been less studied. In [1], Ack-
leh and Ke proposed and made some numerical simulations with a finite difference scheme
in one dimension and a finite volume discretization in two space dimensions to approximate
the solutions of a nonlocal PDE. Bendahmane and Sepulveda [5], in 2009, investigated the
propagation of an epidemic disease modelled by a system of three nonlocal partial differ-
ential equations (PDE), in a physical domain Ω ⊂ Rn (n = 1, 2, 3). They established the
existence of discrete solutions to finite volume scheme and its convergence to the weak solu-
tion of the PDE. In [7] the authors proved the optimal order of convergence for a linearized
Euler-Galerkin finite element method for a nonlocal system with absorbtion, and presented
some numerical results. Almeida et al. [3],[4], established the convergence and error bounds
of the fully discrete solutions for a class of nonlinear equations and for systems of reaction-
diffusion nonlocal type with moving boundaries, using a linearized Crank-Nicolson-Galerkin
finite element method with polynomial approximations of any degree. In [9], Robalo et al.
obtained approximate numerical solutions for nonlocal reaction-diffusion systems of this
type with a Matlab code based on the moving finite element method (MFEM) with high
degree local approximations.
In this paper, we analyze a different diffusion term, dependent on the L2-norm of the solu-
tion. In most of the previous papers, it is assumed that the diffusion term is bounded with
0 < m ≤ a(s) ≤ M < ∞, s ∈ R, and so the problem is always nondegenerate. Here, we
study a case were the diffusion term could be zero or infinity. This work is concerned with
the proof of the convergence of a total discrete solution using a Crank-Nicolson-Galekin
finite element method and the use of this method to study the behaviour of the weak so-
lutions. To the best of our knowledge, these results are new for nonlocal reaction-diffusion
equations with this type of diffusion term.
The paper is organized as follows. In Section 2, we formulate the problem and the hy-
potheses on the data. In Section 3, we prove the convergence of the semidiscrete solution.
Section 4 is devoted to the proof of the convergence to a fully discrete solution. In Section
5, we obtain some explicit solutions and we use then to simulate some examples in Section
6. Finally, in Section 7, we draw some conclusions.
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2 Statement of the problem

Let Ω be a bounded open domain in Rd, d ≥ 1, with Lipschitz-continuous boundary ∂Ω,
and T an arbitrary positive finite instant. We consider the problem of finding the function
u(x, t) which satisfies the following conditions

ut − a(u)∆u = f (x, t) , (x, t) ∈ Ω×]0, T ]
u (x, t) = 0 , (x, t) ∈ ∂Ω×]0, T ]
u(x, 0) = u0(x) , x ∈ Ω

(3)

where a(u) =
(∫

Ω u
2(x, t)dx

)γ with γ ≥ 1
2 and f and u0 are continuous integrable functions.

If γ = 0, we have the heat equation which is widely known. For γ > 0, the problem could
degenerate if there is an extinction phenomenon, and for γ < 0, if the extinction occurs,
the problem becomes singular.
This problem was studied in [2], where the authors proved the existence of weak solutions
for t ∈ [0, T ] and the existence of a positive instant t∗ such that these solutions are unique
and classical for t ∈ [0, t∗]. These conclusions follow mainly from the next Lemmas which
are proved in [2].

Lemma 1. Suppose that γ > 1
2 . If

∫
Ω u0 dx > 0, then there exists a t∗ > 0 such that

a(u) ≥ m > 0 for t ∈ [0, t∗] where u is a weak solution of problem (3).

Lemma 2. If

0 < m ≤
∫

Ω
v2 dx,

∫
Ω
w2 dx ≤M <∞

then
|a(v)− a(w)| ≤ C‖v − w‖,

where C may depend on γ , m and M .

This Lemmas prove the nondegeneracy and the Lipschitz-continuity of the diffusion
term and will be needed in the proofs of the following sections.
In [2] the asymptotic behaviour of the solutions as time increases, was also studied.
In what follows, let (·, ·) and ‖ ·‖ be, respectively, the inner product and the norm in L2(Ω).
The definition of a weak solution to this problem is as follows:

Definition 3 (Weak solution). We say that the function u is a weak solution of Problem
(3) if

u ∈ L2(0, T ;H1
0 (Ω)),

∂u

∂t
∈ L2(0, T ;L2(Ω)), (4)

the equality
(ut, w) + a(u)(∇u,∇w) = (f, w) (5)

is valid for all w ∈ H1
0 (Ω) and t ∈]0, T [, and

u(x, 0) = u0(x), x ∈ Ω. (6)
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Next, we present a Lemma which proves the Lipschitz-continuity of the diffusion term
and which will be needed in the proofs of the following sections.

3 Space discretization

Let Th denote a partition of Ω into disjoint simplexes Ti, i = 1, . . . , nt such that no ver-
tex of any simplex lies in the interior or on the side of another simplex, and let h =
max{diam(Ti), i = 1, . . . , nt}. Moreover, let Skh denote the continuous functions on the
closure Ω̄ of Ω, which are polynomials of degree k in each simplex of Th and which vanish
on ∂Ω, that is,

Skh = {W ∈ C0
0 (Ω̄)|W|Ti is a polynomial of degree k for all Ti ∈ Th}.

If {ϕj}npj=1 is a basis for Skh, then we can represent every W ∈ Skh as W =
∑np

j=1wjϕj .
Given a smooth function u on Ω which vanishes on ∂Ω, we may define its interpolant,
denoted by Ihu, as the function of Skh which coincides with u at the points {Pj}npj=1, that is,
Ihu =

∑np
j=1 ujϕj .

Lemma 4 ([11]). If u ∈ Hk+1(Ω) ∩H1
0 (Ω), then

‖Ihu− u‖+ h‖∇(Ihu− u)‖ ≤ Chk+1‖u‖Hk+1 .

Definition 5 ([11] Ritz projection). A function Ũ ∈ Skh is said to be the Ritz projection of
u ∈ H1

0 (Ω) onto Skh if it satisfies

(∇Ũ ,∇W ) = (∇u,∇W ), for all W ∈ Skh.

Lemma 6 ([11]). If u ∈ Hk+1(Ω) ∩H1
0 (Ω), then

‖Ũ − u‖+ h‖∇(Ũ − u)‖ ≤ Chk+1‖u‖Hk+1 ,

where C does not depend on h or k.

The semidiscrete problem, based on Definition 3, consists in finding U(x, t) belonging
to Skh, for t ≥ 0, such that for all W ∈ Skh and t ∈]0, t∗[:{

(Ut,W ) + a(U)(∇U,∇W ) = (f,W )
U(x, 0) = Ihu0

. (7)

Theorem 7. For γ > 0, if u is the solution of Problem (3) and U is a solution of (7), then

‖U − u‖ ≤ Chk+1, t ∈]0, t∗],

where C does not depend on h or k.
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In virtue of Lemmas 1 and 2, the proof follows from classical arguments, and so we will
only present the main steps.

Proof. Let us consider

‖U − u‖ ≤ ‖U − Ũ‖+ ‖Ũ − u‖ = ‖θ‖+ ‖ρ‖,

where Ũ is the Ritz projection of u. By Lemma 6

‖ρ‖ ≤ Chk+1‖u‖Hk+1(Ω) (8)

and for θ we have that

(θt,W ) + a(U)(∇θ,∇W ) = ((u− Ũ)t,W ) + (a(u)− a(U))(∇u,∇W ).

Choosing W = θ, the Cauchy inequality and Lemma 1 imply that

1
2
d

dt
‖θ‖2 +m‖∇θ‖2 ≤ 1

2
‖ρt‖2 +

1
2
‖θ‖2 +m‖∇θ‖2 + C(a(u)− a(U))2‖∇u‖2.

By Lemma 2,
d

dt
‖θ‖2 ≤ C‖θ‖2 + C‖ρ‖2 + ‖ρt‖2.

Gronwall’s Lemma permits us to conclude that

‖θ‖2 ≤ C‖θ(x, 0)‖2 + C

∫ t∗

0
‖ρ‖2 dt+

∫ t∗

0
‖ρt‖2 dt,

where the elements of the right hand side are bounded as follows:

‖θ(x, 0)‖2 ≤ Ch2(k+1)‖u‖2Hk+1(Ω),∫ t∗

0
‖ρ‖2 dt ≤ Ch2(k+1)

∫ t∗

0
‖u‖2Hk+1(Ω) dt,∫ t∗

0
‖ρt‖2 dt ≤ Ch2(k+1)

∫ t∗

0

∥∥∥∥∂u∂t
∥∥∥∥2

Hk+1(Ω)

dt.

If we assume that u is sufficiently regular, then

‖θ‖2 ≤ Ch2(k+1),

and, adding the estimate in (8), the result is proved.
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4 Time discretization

For the time discretization, we choose a multistep linearization of the Crank-Nicolson
method with an initial predictor-corrector scheme. Consider the partition [0, t∗] = ∪nij=1[tj−1, tj ]
with δ = tj − tj−1. Let us define

∂̄Un =
Un − Un−1

δ
, Ûn =

Un + Un−1

2
, Ūn =

3
2
Un−1 −

1
2
Un−2 and fn−1/2 = f(x,

tn + tn−1

2
).

The fully discrete approximation Un(x) ≈ u(x, tn), n = 1, . . . , ni, belonging to Skh, is ob-
tained in such a way that U0 = Ihu0, and for all W ∈ Skh,

(
U0,1 − U0

δ
,W ) + a(U0)(∇

(
U1,0 + U0

2

)
,∇W ) = (f1/2,W ), (9)

(∂̄U1,W ) + a(
U1,0 + U0

2
)(∇Û1,∇W ) = (f1/2,W ), (10)

(∂̄Un,W ) + a(Ūn)(∇Ûn,∇W ) = (fn−1/2,W ), n = 2, . . . , ni. (11)

Theorem 8. Assuming γ > 0, if u is the solution of problem (3) and Un is the fully discrete
solution defined by (9)-(11), then

‖Un − u(x, tn)‖ ≤ C(hk+1 + δ2), n = 1, . . . , ni,

where C does not depend on h, k or δ.

Proof. We first establish the result for n = 1. Considering θ1,0 = U1,0 − Ũ1, θ̂1,0 = θ1,0+θ0
2

and ∂θ1,0 = θ1,0−θ0
δ , we have

(∂̄θ1,0,W ) + a(U0)(∇θ̂1,0,∇W ) = (f1/2,W )− ((ut)1/2,W )− a(u1/2)(∇u1/2,∇W )

+((ut)1/2 − ∂̄Ũ1,W ) + (a(u1/2)∇u1/2 − a(U0)∇û1,∇W ).

Setting W = θ̂1,0, and using the Poincaré and Hölder inequalities, we obtain

1
2
∂̄‖θ1,0‖2 +m‖∇θ̂1,0‖2 ≤ C(‖(ut)1/2 − ∂̄Ũ1‖+ ‖∇(u1/2 − û1)‖+ ‖u1/2 − U0‖)‖∇θ̂1,0‖.

Furthermore,

‖(ut)1/2 − ∂̄Ũ1‖ ≤ ‖(ut)1/2 − ∂u1‖+ ‖∂u1 − ∂Ũ1‖ ≤ Cδ2 + Chk+1,

∥∥∇(u1/2 − û1)
∥∥ ≤ Cδ ∫ t1

t0

‖∇utt‖ dt ≤ Cδ2,
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‖u1/2 − U0‖ ≤ ‖u1/2 − u0‖+ ‖u0 − U0‖ ≤ Cδ + Chk+1.

Hence
∂‖θ1,0‖2 ≤ C(hk+1 + δ)2

and we have the estimate

‖θ1,0‖2 ≤ ‖θ0‖2 + Cδ(hk+1 + δ)2 ≤ C(h2(k+1) + δ3).

Repeating this process for the corrector equation (10), we then arrive at

1
2
∂̄‖θ1‖2 +m‖∇θ̂1‖2 ≤ C(‖(ut)1/2 − ∂̄Ũ1‖+ ‖∇(u1/2 − û1)‖+ ‖u1/2 −

U1,0 − U0

2
‖)‖∇θ̂1‖.

Now

‖u1/2 −
U1,0 − U0

2
‖ ≤ ‖u1/2 −

ˆ̃U1‖+ ‖ ˆ̃U1 −
U1,0 − U0

2
‖ ≤ ‖u1/2 −

ˆ̃U1‖+
1
2
‖θ1,0‖+

1
2
‖θ0‖ ≤

≤ C(hk+1 + δ2) + Chk+1 + C(hk+1 + δ
3
2 ) ≤ C(hk+1 + δ

3
2 ),

and so, by Cauchy’s inequality, we conclude that

∂‖θ1‖2 ≤ C(h2(k+1) + δ3),

whence
‖θ1‖2 ≤ ‖θ0‖2 + Cδ(h2(k+1) + δ3) ≤ C(h2(k+1) + δ4).

In order to prove the result for n ≥ 2, we apply the same process to the equation in (11)
and use the estimate

‖un−1/2 − Un‖ ≤ ‖un−1/2 − un‖+ ‖un − Un‖ ≤ ‖un−1/2 − un‖+ ‖ρn‖+ ‖θn‖ ≤

≤ Cδ2 + Chk+1 + C(‖θn−1‖+ ‖θn−2‖)

to prove that

1
2
∂̄‖θn‖2 +m‖∇θ̂n‖2 ≤ C(‖(ut)n−1/2 − ∂̄Ũn‖+ ‖∇(un−1/2 − ûn)‖+ ‖un−1/2 − Ūn‖)‖∇θ̂n‖,

and
∂‖θn‖2 ≤ C‖θn−1‖2 + C‖θn−2‖2 + C(h(k+1) + δ2)2.

Iterating, we obtain

‖θn‖2 ≤ (1+Cδ)‖θn−1‖2+Cδ‖θn−2‖2+Cδ(hk+1+δ2)2 ≤ C‖θ1‖2+Cδ‖θ0‖2+Cδ(hk+1+δ2)2

and recalling the estimates for ‖θ0‖, ‖θ1‖ and ‖ρn‖, the proof is complete.
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5 Explicit solution

In order to test the implementation of the discrete solution in a programming language, we
need to find an explicit exact solution to the problem. We seek an explicit solution of the
form

u(x, t) = k(x)l(t). (12)

Then the first equation in (3) becomes

k(x)l′(t)− l2γ+1(t)
(∫

Ω
k2(x) dx

)γ
∆k(x) = f(x, t). (13)

If l is chosen such that

l′(t) = −l2γ+1(t)⇔ l(t) = (2γt− 2γC)−
1
2γ , γ 6= 0 or l(t) = Ce−t, γ = 0, C ∈ R (14)

then (13) has the form

k(x) +
(∫

Ω
k2(x) dx

)γ
∆k(x) =

f(x, t)
−l2γ+1(t)

. (15)

To obtain a function k(x) which only depends of x, we must assume that

f(x, t)
−l2γ+1(t)

= g(x)⇔ f(x, t) = −g(x)l2γ+1(t).

In this case, let w(x, α) be such that

w(x) + α∆w(x) = g(x). (16)

Then
k(x) = w(x,

(∫
Ω
w2 dx

)γ
) (17)

is a solution of (15). But (17) is defined in an implicit way, and so in order to obtain k in
an explicit form, we must solve the equation

α =
(∫

Ω
w2(x, α) dx

)γ
. (18)

Collecting (17), (14) and (12), we obtain an explicit solution for the first equation in (3).
For d = 1, the equation in (16) becomes w(x) +αw′′(x) = g(x), and if g is continuous in Ω,
then it admits the solution

w(x) = C1sin(
x√
α

) + C2cos(
x√
α

)− 1√
α

∫ x

0
g(ξ)sin(

ξ − x√
α

) dξ. (19)

Remark 9. The constants C, C1 and C2 must be chosen in such a way that u satisfies the
initial data and boundary conditions.

Remark 10. The derivation of conditions for the solvability of the equation in (18) is under
study .
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6 Numerical simulations

6.1 Example 1

Consider Problem (3) with γ = 0.5, f = x2

(t+1)2
and

u0 =
1− 2α+ 2α cos( 1√

α
)

sin( 1√
α

)
sin(

x√
α

)− 2α cos(
x√
α

)− x2 + 2α

with α = 0.223688785954835. The solution is

u(x, t) =

(
1− 2α+ 2α cos( 1√

α
)

sin( 1√
α

)
sin(

x√
α

)− 2α cos(
x√
α

)− x2 + 2α

)
(t+ 1)−1

In Figure 1, we show the obtained solution for h = 10−2, δ = 10−3 and k = 2. As expected,
[2] there is a decay of the solution as the time increases. We simulated the problem with
different combinations of h, δ and k. The results are shown in Figures 2 and 3. In Figure
2, it is evident that the convergence of h is of order k+ 1, and, in Figure 3, we can observe
that the error for δ is of order 2.

Figure 1: Evolution in time
of the obtained solution in
example 1 for h = 10−2,
δ = 10−3 and k = 2.

Figure 2: Study of conver-
gence of h.

Figure 3: Study of conver-
gence of δ.
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6.2 Example 2

For γ < 0, we do not have the proof of the convergence, but we simulated an example.
Consider Problem (3) with γ = −0.5, f = 0 and u0 =

√
2π2 sin(πx). From the last section,

we have that u(x, t) =
√

2π2 sin(πx)(1− t) is an exact explicit solution for Problem (3).

Figure 4: Evolution in time
of the obtained solution in
the example 2 for h = 10−2,
δ = 10−3 and k = 2.

Figure 5: Study of the
asymptotic behaviour.

In Figure 4, we show the obtained solution for h = 10−2, δ = 10−3 and k = 2. As expected,
we can observe an extinction in t = 1. The extinction is more evident in Figure 5, where we
plotted the logarithm of the energetic function y =

∫
Ω u

2 dx as a function of t, for Examples
1 and 2.

7 Conclusions

We proved optimal rates of convergence for a linearized Crank-Nicolson-Galerkin finite
element method with piecewise polynomial of arbitrary degree basis functions in space
when applied to a degenerate nonlocal parabolic equation. Some numerical experiments
were presented, considering different functions f and exponent γ. The numerical results
agree with the exact explicit solutions deduced and are in accordance with the theoretical
results.
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Abstract

A real matrix A = (aij)1≤i,j,≤n is said to be almost strictly totally negative if it
is almost strictly sign regular with signature ε = (−1,−1, . . . ,−1). In this paper a
characterization of nonsingular almost strictly totally negative matrices is presented.

Key words: sign regular matrices, almost strictly totally negative matrices, Neville
elimination

MSC 2000: 65F05, 15A48, 65F40

1 Introduction

Matrices with all its minors nonnegative, known as Totally Positive (TP) matrices, have
been widely studied since mid of the last century (see e.g. [2–5]). They form a subclass of
the set of the Sign Regular (SR) matrices, whose minors of the same order have the same
sign (see e.g. [2,8]). Among the SR matrices, an important particular subclass is that of the
Almost Strictly Sign Regular (ASSR) matrices, defined by R. Huang et al. [7] as that whose
nontrivial minors of the same order have all the same strict sign. In this work the authors,
that characterized this kind of matrices through the Neville Elimination (NE) procedure
in a previous paper [1], deal with a subset of them called Almost Strictly Totally Negative
(ASTN) matrices. All nontrivial minor of these matrices are strictly negative, which notably
simplifies the characterization proposed in [1] for ASSR matrices.

The NE is an alternative procedure to Gaussian elimination for reducing a square matrix
to upper triangular form, preferable for some classes of matrices and when using pivoting
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strategies in parallel implementations. Roughly speaking, the Neville elimination introduces
zeros in of each column of a matrix by adding to each row an appropriate multiple of the
previous one (instead of using a single row with a fixed pivot, as in Gaussian elimination).

The ASSR matrices present grouped null elements in certain positions, and can be
classified in two classes which are defined below, type-I and type-II staircase.

A matrix A = (aij)1≤i,j≤n is called type-I staircase if it satisfies simultaneously the
following conditions

• a11 6= 0, a22 6= 0, . . . , ann 6= 0;

• aij = 0, i > j ⇒ akl = 0, ∀l ≤ j, i ≤ k;

• aij = 0, i < j ⇒ akl = 0, ∀k ≤ i, j ≤ l.

From now on it will be frequently used the backward identity matrix n× n, Pn, whose
element (i, j) is defined as {

1, if i+ j = n+ 1,
0, otherwise.

So, A is a type-II staircase matrix if it verifies that PnA is a type-I staircase matrix.
To describe clearly the zero pattern of a nonsingular matrix A type-I staircase (or

type-II staircase, using the n × n backward identity matrix Pn) we must introduce some
notations. For a matrix A = (aij)1≤i,j≤n type-I staircase, we define

i0 = 1, j0 = 1, (1)

and for k = 1, . . . , l:
ik = max

{
i / aijk−1

6= 0
}

+ 1 (≤ n+ 1), (2)

jk = max {j ≤ ik / aikj = 0}+ 1 (≤ n+ 1), (3)

where l is given in this recurrent definition by jl = n+ 1.
Analogously we define

ĵ0 = 1, î0 = 1 (4)

and for k = 1, . . . , r:

ĵk = max
{
j / âik−1j

6= 0
}

+ 1 (≤ n+ 1), (5)

îk = max
{
i ≤ ĵk / aiĵk = 0

}
+ 1 (≤ n+ 1), (6)

where îr = n+ 1.
Finally, we denote by I, J , Î and Ĵ the following sets of indices

I = {i0, i1, . . . , il} , J = {j0, j1, . . . , jl} ,
Î =

{̂
i0, î1, . . . , îr

}
, Ĵ =

{
ĵ0, ĵ1, . . . , ĵr

}
,

thereby defining the zero pattern in the matrix A.
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2 Basic notations, definitions and auxiliary results

Since all the matrices of our concern are described through their minors, we are going to
introduce some classic notations. For m,n ∈ N, with 1 ≤ m ≤ n, Qm,n denotes the set of
all increasing sequences of m natural numbers not greater than n. For α = (α1, . . . , αm),
β = (β1, . . . , βm) ∈ Qm,n and A an n × n real matrix, we denote A[α|β] the m × m
submatrix of A containing rows α1, . . . , αm and columns β1, . . . , βm of A. If α = β, we
denote by A[α] := A[α|α] the corresponding principal minor. Q0

m,n denotes the set of
increasing sequences of m consecutive natural numbers not greater than n.

Next, we present some definitions and basic results.

Definition 1 For a real matrix A = (aij)1≤i,j≤n type-I (type-II) staircase, a submatrix
A[α|β], with α, β ∈ Qm,n is nontrivial if all its main diagonal (secondary diagonal) elements
are nonzero.

The minor associated to a nontrivial submatrix (A[α|β]) is called nontrivial minor
(detA[α|β]).

Definition 2 A vector ε = (ε1, ε2, . . . , εn) ∈ Rn is a signature sequence, or simply, a
signature, if |εi| = 1, ∀i ∈ N, i ≤ n.

Definition 3 A real matrix A = (aij)1≤i,j≤n is said to be ASSR with signature ε =
(ε1, ε2, . . . , εn) if all its nontrivial minors detA[α|β] satisfy that

εm detA[α|β] > 0, α, β ∈ Qm,n, m ≤ n. (7)

The backward identity matrix allows us relating the signatures of an ASSR matrix A
and PnA by means of the following result (see [1]).

Proposition 1 A real matrix A = (aij)1≤i,j≤n is ASSR if and only if PnA it is also.
Furthermore, if the signature of A is ε = (ε1, ε2, . . . , εn), then the signature of PnA is

ε′ = (ε′1, ε
′
2, . . . , ε

′
n), with ε′m = (−1)

m(m−1)
2 εm.

Rong Huang et al. prove in Theorem 10 of [7] the next characterization for ASSR
matrices:

Theorem 1 Let A be a real matrix n × n and ε = (ε1, ε2, . . . , εn) be a signature. Then A
is nonsingular ASSR with signature ε if and only if A is a type-I or type-II staircase matrix
and all its nontrivial minors with α, β ∈ Q0

m,n, m ≤ n, satisfy

εm detA[α|β] > 0. (8)
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3 ASTN matrices

Below we present the definitions and results that allow us characterizing the ASTN matrices
by means of the NE procedure.

Definition 4 A real matrix A = (aij)1≤i,j,≤n is said to be Totally Negative (TN) if all its
minors satisfy

detA[α|β] ≤ 0, ∀α, β ∈ Qm,n, 1 ≤ m ≤ n. (9)

Obviously a TN matriz is SR with signature ε = (−1,−1, . . . ,−1).

Definition 5 A real matrix A = (aij)1≤i,j≤n is said to be Strictly Totally Negative (STN)
if all its minors detA[α|β] satisfy that

detA[α|β] < 0, α, β ∈ Qm,n, m ≤ n. (10)

Definition 6 A real matrix A = (aij)1≤i,j,≤n is said to be Almost Strictly Totally Negative
(ASTN) if it is ASSR with signature ε = (−1,−1, . . . ,−1).

Taking account that an ASTN matrix nonsingular is an ASSR matrix with ε2 = −1,
such matrix is type-II staircase. In [8] the author defines the sign regular matrices of order
m (SRm), as those satisfying for all j = 1, . . . ,m, that all their minors of order j have
the same sign or are zero. By Theorem 2.1 of [8] we can describe the zero pattern for
the ASTN matrices. This result assures that if ε1 = ε3 and ε2 = −1, then aij 6= 0 for
(i, j) ∈ {(1, 1), (n, n)}.

Remark 1 Let A = (aij)1≤i,j,≤n be a nonsingular ASTN matrix with n ≥ 2. Then B =

PnA = (bij)1≤i,j,≤n is a type-I staircase matrix and its zero pattern verifies card(I), card(Î) ≤
3. In fact, its zero pattern only can be

• If bij 6= 0 for all i, j, then I = [1, n+ 1], J = [1, n+ 1], Î = [1, n+ 1], Ĵ = [1, n+ 1].

• If bn1 is the only zero in B, then I = [1, n, n + 1], J = [1, 2, n + 1], Î = [1, n + 1],
Ĵ = [1, n+ 1].

• If the only zero in B is b1n, then I = [1, n + 1], J = [1, n + 1], Î = [1, 2, n + 1],
Ĵ = [1, n, n+ 1].

• If the elements b1n and bn1 are zero, then I = [1, n, n + 1], J = [1, 2, n + 1], Î =
[1, 2, n+ 1], Ĵ = [1, n, n+ 1].

Next, a characterization of ASTN matrices is presented.
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Theorem 2 Given a nonsingular matrix A n × n, with n ≥ 2, A is ASTN if and only if
the following properties hold simultaneously:

(a) A has all its elements not zero, except at most those who occupy the positions (1, 1)
and (n, n).

(b) The NE of B = PnA and B̃ = PnA
T can be performed without row exchanges.

(c) The pivots pij of the NE of B, with i ≥ j verify:

pn1 = 0⇔ bn1 = 0, (11)

if j = jt, then pij < 0⇔ bij 6= 0, (12)

if j > jt, then (−1)j−jtpij > 0⇔ bij 6= 0, (13)

and the pivots qijof B̃ with i < j verify

q1n = 0⇔ b1n = 0, (14)

if i = ît, then qij < 0⇔ bij 6= 0, (15)

if i > ît, then (−1)i−îtqij > 0⇔ bij 6= 0, (16)

where

jt = max {js ∈ J / 0 ≤ s ≤ k − 1, j − js ≤ i− is} , (17)

ît = max
{̂
is ∈ Î / 0 ≤ s ≤ k′ − 1, i− îs ≤ j − ĵs

}
, (18)

k is the only index satisfying jk−1 ≤ j < jk and k′ is the only index satisfying îk′−1 ≤
i < îk′.

(d) The matrix M = A[1, . . . , n− 1|2, . . . n] is STN.

If an ASTN matrix A verifies that a11 6= 0 and ann 6= 0 then it is an STN matrix.
By the Remark 3.6 of [6], it is possible to affirm that a nonsingular matrix A that verifies
ann < 0 is STN if and only if the NE of A and AT can be performed without row exchanges
with positive multipliers and with diagonal pivots verifying

p11 < 0, pii > 0 ∀i > 1. (19)

By this way, if A is an STN matrix we can characterize it analogously with Theorem 2
supposing that it is an ASTN matrix without zero positions.

Theorem 3 If A is a nonsingular matrix n × n, n ≥ 2, a11 < 0 and ann < 0. Then A is
an STN matrix if and only if the following properties hold simultaneously:

c©CMMSE ISBN: 978-84-616-9216-3Page 53 of 1485



On the characterization of ASTN matrices

(a) The NE of B = PnA and B̃ = PnA
T can be performed without row exchanges.

(b) The pivots pij of the NE of B, with i ≥ j verify:

pi1 < 0, (20)

j > 1, then (−1)j−1pij > 0, (21)

and the pivots qijof B̃ with i < j verify

q1j < 0, (22)

i > 1, then (−1)i−1qij > 0. (23)
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Abstract

This study deals with testing whether the High Dimensional Model Representation
(HDMR) method can be used as an image reconstruction method by investigating the
performance of the method in representing images. HDMR is a method which intents to
decompose the given multivariate function and/or multivariate data. In this study, since
a true color image object is a three-dimensional array which stores the color values for
each pixel as RGB triplets in MATLAB, we use HDMR method to decompose this three-
dimensional array. After the decomposition we obtain HDMR components and using
superposition of these components we create new images. Finally, we try to determine
the quality of these images. This study has also some illustrative applications.

Key words: HDMR, Image reconstruction, Decomposition, Image representation.

1 Introduction

Mostly, scientific studies including multivariate functions are stalled by the dimensionality of
the problem. To overcome this and decrease dimension, scientists try to find new methods.
High Dimensional Model Representation (HDMR) is one of these methods and is used for
twenty years [1–5]. HDMR and its variaties allow us to make highly accurate approximations
using less variate functions instead of the given multivariate function. HDMR method is
used in two different ways in the literature. One of them is to decompose a multivariate
function given in analytical form and the other one is to partition the given multivariate
data when we only know the function values at the nodes of the problem domain. In this
work, the second way is used to make image representation.

Image reconstruction is considered as generation of a image from scattered data set and
it is useful in medicine, biology, earth science, archeology, materials science and astronomy
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[6–9]. The aim of image reconstruction is to recover an image that has been degraded by
some mathematical and statistical models [10,11]. In this work, we use a three-dimensional
array that represents an image. We try to partition that multivariate data set into less
variate data sets and to create the image using these partitioned data sets. When that data
set is once obtained through Image Processing Toolbox of MATLAB [12] as RGB format,
we investigate at what level the HDMR method is successful to reconstruct the image as an
matematical method. For this purpose, at first the univariate components of HDMR method
are obtained and an image is produced by superpositioning these components. However,
this image includes the color of the original image the characteristics of it are not reflected
by the univariate terms. Hence, if the bivariate terms are evaluated and an image is created
by considering these bivariate terms, it is seen that both the pattern and the color of the
original image are obtained. Here, the basic issue is whether the given image is represented
exactly. Our efforts show that if the original image is grayscale then the HDMR method
can represent the given image exactly but the original image is colored one then the HDMR
method can not represent the image. All these findings are given in fourth section. To
represent the colored image exactly by using HDMR method, we need an improvement in
the method but this is considered as further work. So, this work aims to investigate whether
we can use HDMR as an image reconstruction method.

This paper is organized as follows. The second section includes some of main issues of
the High Dimensional Model Representation (HDMR), how the HDMR method is applied
to the image processing is given in the third section. The fourth section covers the numerical
results and some images which are obtained through the HDMR method. The final section
consists of certain concluding remarks.

2 Mathematical Background

2.1 High Dimensional Model Representation

The basic expansion formula of HDMR for a given multivariate function, f(x1, . . . , xN ), is
given as follows.

f(x1, . . . , xN ) = f0 +

N∑
i1=1

fi1(xi1) +

N∑
i1,i2=1
i1<i2

fi1i2(xi1 , xi2) + · · ·+ f12...N (x1, . . . , xN ) (1)

This is a finite expansion and it consists of a constant term f0, univariate terms fi1(xi1),
bivariate terms fi1i2(xi1 , xi2) and higher variate terms. The critical issue in the HDMR
algorithm is to determine the right hand side components of HDMR. For this purpose,
we use the following vanishing conditions under some normalization conditions defined on
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weight factors to uniquely obtain the components of the HDMR expansion∫ b1

a1

dx1 · · ·
∫ bN

aN

dxNW (x1, . . . , xN )fi(xi) = 0,

∫ bj

aj

dxjWj(xj) = 1 (2)

where 1 ≤ j ≤ N and Wj(xj)s are weight factors and the product of these factors constructs
the weight function, W (x1, . . . , xN ) [1, 2].

W (x1, . . . , xN ) ≡
N∏
j=1

Wj(xj), xj ∈ [ aj , bj ] , 1 ≤ j ≤ N (3)

The HDMR components are determined through multiple integrations by also taking these
vanishing and normalization conditions into consideration. To obtain the general structure
of the constant component, we need to apply an operator having N -tuple integrals with
the weight function given in (3) to the both sides of the HDMR expansion. The following
relation is obtained as the constant component structure after some calculations

f0 =

∫ b1

a1

dx1 · · ·
∫ bN

aN

dxNW (x1, . . . , xN )f(x1, . . . , xN ). (4)

In a similar manner the general structure of each univariate component can also be deter-
mined, however, this time we need to use an operator with (N − 1)-tuple integrations. The
independent variable discarded from the integration is the variable of the targeted univari-
ate component. Finally, the following relation is obtained as the general structure of the
univariate HDMR components

fi(xi) ≡
∫ b1

a1

dx1W1(x1) · · ·
∫ bi−1

ai−1

dxi−1Wi−1(xi−1)

∫ bi+1

ai+1

dxi+1Wi+1(xi+1)

× · · ·
∫ bN

aN

dxNWN (xN )f(x1, . . . , xN )− f0, 1 ≤ i ≤ N (5)

Higher variate terms can be found by using same philosophy [2].
Since the main aim of this study is to develop a new algorithm to be used in reconstruc-

tion of images. That is, we need to perform this new algorithm on finite number of data.
Therefore, we have to rewrite above relations in terms of summations. For this reason,
Dirac delta functions are utilized in the weight factors [3]

Wj(xj) ≡
nj∑

kj=1

α
(j)
kj
δ
(
xj − ξ

(kj)
j

)
, xj ∈ [ aj , bj ] , 1 ≤ j ≤ N (6)

where α parameters are used to give a different importance to each node of the data set that
represents the image under consideration. To this end, the constant component is obtained
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as follows

f0 =

n1∑
k1=1

n2∑
k2=1

· · ·
nN∑

kN=1

(
N∏
i=1

α
(i)
ki

)
f(ξ

(k1)
1 , . . . , ξ

(kN )
N ) (7)

The structure of the univariate terms can be obtained as follows when we use the weight
function whose factors are composed of Dirac delta functions given in (6).

fm

(
ξ(km)
m

)
=

n1∑
k1=1

n2∑
k2=1

· · ·
nm−1∑

km−1=1

nm+1∑
km+1=1

· · ·
nN∑

kN=1

 N∏
i=1
i6=m

α
(i)
ki

 f(ξ
(k1)
1 , . . . , ξ

(kN )
N )− f0

1 ≤ km ≤ nm, 1 ≤ m ≤ N (8)

The bivariate components can be determined in the same manner and the following relation
is obtained

fm1m2

(
ξ
(km1 )
m1 ξ

(km2 )
m2

)
=

n1∑
k1=1

n2∑
k2=1

· · ·
nm1−1∑

km1−1=1

nm1+1∑
km1+1=1

· · ·
nm2−1∑

km2−1=1

nm2+1∑
km2+1=1

· · ·

×
nN∑

kN=1

 N∏
i=1

i6=m1∧i6=m2

α
(i)
ki

 f(ξ
(k1)
1 , . . . , ξ

(kN )
N )− fm1

(
ξ
(km1 )
m1

)
−fm2

(
ξ
(km2 )
m2

)
− f0 (9)

where 1 ≤ km1 ≤ nm1 , 1 ≤ km2 ≤ nm2 , and 1 ≤ m1,m2 ≤ N .
Getting constant, univariate and bivariate HDMR components under Dirac delta type

weight correspond to partitioning the given multivariate data into a constant value, uni-
variate and bivariate data sets like below.

s0(x1, . . . , xN ) = f0

s1(x1, . . . , xN ) = s0(x1, . . . , xN ) +

N∑
i1=1

fi1(xi1)

s2(x1, . . . , xN ) = s1(x1, . . . , xN ) +
N∑

i1,i2=1
i1<i2

fi1i2(xi1 , xi2)

(10)

where s0(x1, . . . , xN ), s1(x1, . . . , xN ) and s2(x1, . . . , xN ) are the consecutive summation of
data sets. Since we are dealing with image reconstruction and we have three independent
variables, at most the bivariate HDMR components can be used in the representation of
the image through HDMR expansion.
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3 Image Processing Through HDMR

In this section, we reconstruct the HDMR method to represent the image. A colored image
has a 3-dimensional finite data set. So, there are 3 independent variables, x1, x2, x3 and
each variable takes on n1, n2 and n3 number of different values respectively.

Hence, we can write the constant term of HDMR component as follows

f0 =

n1∑
k1=1

n2∑
k2=1

3∑
k3=1

α
(1)
k1
α
(2)
k2
α
(3)
k3
f(ξ

(k1)
1 , ξ

(k2)
2 , ξ

(k3)
3 ) (11)

where f(ξ1, ξ2, ξ3) denotes the values of image in RGB format. Since RGB format is used

here n3 is always taken as 3. α
(1)
k1

, α
(2)
k2

and α
(3)
k3

are named as weight factors and they are
utilized to give different importance level to each datum.

If the normalization conditions, given in relation (2), on the weight factors are applied
with the help of Dirac delta function [3], the following relation about α parameters is
obtained.

nj∑
kj=1

α
(j)
kj

= 1, 1 ≤ j ≤ 3 (12)

In this work, for simplicity we choose the α parameter to be same for the related dimension.
Under all these circumstances and using relation (8) given in previous section, we obtain
the univariate components of HDMR.

f1

(
ξ
(k1)
1

)
=

n2∑
k2=1

3∑
k3=1

α
(2)
k2
α
(3)
k3
f(ξ

(k1)
1 , ξ

(k2)
2 , ξ

(k3)
3 )− f0

f2

(
ξ
(k2)
2

)
=

n1∑
k1=1

3∑
k3=1

α
(1)
k1
α
(3)
k3
f(ξ

(k1)
1 , ξ

(k2)
2 , ξ

(k3)
3 )− f0

f3

(
ξ
(k3)
3

)
=

n1∑
k1=1

n2∑
k2=1

α
(1)
k1
α
(2)
k2
f(ξ

(k1)
1 , ξ

(k2)
2 , ξ

(k3)
3 )− f0

(13)

Each univarite function demonstrates a two dimensional array that is corresponding to a
matrix. The superposition of these three matrices and the constant term of HDMR, f0,
constructs the image under consideration. Our research shows that the obtained image is
not well enough to represent the original image. Because the univariate HDMR approximant
cannot represent its pattern that is, it is inefficient to achieve representation. So we need
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to calculate bivariate components of HDMR as follows

f12

(
ξ
(km1 )
1 , ξ

(km2 )
2

)
=

3∑
k3=1

α
(3)
k3
f(ξ

(k1)
1 , ξ

(k2)
2 , ξ

(k3)
3 )− f1

(
ξ
(k1)
1

)
− f2

(
ξ
(k2)
2

)
− f0

f13

(
ξ
(km1 )
1 , ξ

(km3 )
3

)
=

n2∑
k2=1

α
(2)
k2
f(ξ

(k1)
1 , ξ

(k2)
2 , ξ

(k3)
3 )− f1

(
ξ
(k1)
1

)
− f3

(
ξ
(k3)
3

)
− f0

f23

(
ξ
(km2 )
2 , ξ

(km3 )
3

)
=

n1∑
k1=1

α
(1)
k1
f(ξ

(k1)
1 , ξ

(k2)
2 , ξ

(k3)
3 )− f2

(
ξ
(k2)
2

)
− f3

(
ξ
(k3)
3

)
− f0

(14)

Each bivariate function is an one dimensional array and is obtained through the formulation
(9). Since we have 3 independent varibles we evaluate at most bivarite terms of HDMR. In
order to obtain image through HDMR method, the summation of constant, univariate and
bivariate terms of HDMR should be used, that is, we have to evaluate second order HDMR
approximant, s2, which is given in (10) like below

s2(x1, x2, x3) = f0 +

3∑
i1=1

fi1(xi1) +

3∑
i1,i2=1
i1<i2

fi1i2(xi1 , xi2) (15)

When the mentioned approximants are obtained through the HDMR method, a new problem
comes out about how qualified these approximants and images constructed through either
univarite or bivariate approximation in representing the original image. To answer this
question, we can use some measures. In this work, we prefer to use relative error analysis
to measure it. The related formulation is given as follows;

Nsi =
‖foriginal − fsi‖
‖foriginal‖

(16)

where foriginal denotes the original image data set and fsi , i = 1, 2 is the new data set which
is evaluated by using either first or second order HDMR aproximant respectively.

4 Findings

To determine the efficiency of the newly developed algorithm, we chose some images and we
obtained a representation for each image by using HDMR method. To be able to achieve
this, we wrote a code in MATLAB [12] environment. Hence we obtained image’s pixel map
as three-dimensional array which consists of three m by n matrices and then we applied
HDMR method to this three-dimensional array to decompose that array. Hence we obtained
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(a) Constant (b) Univariate (c) Bivariate (d) Original

Figure 1: Comparison of constant, univariate, bivariate approximants of HDMR and the
original image

a constant value, some vectors and some matrices after decomposition. That is, a constant
value, vectors and matrices correspond the constant, univariate and bivariate components
of HDMR method respectively. To compose the HDMR approximants, we used the formula
given in (10).

The testing images were selected from either well known images used in image processing
literature or taken by the authors as photos from the real life. As mentioned before, first we
got three-dimensional pixel map of each image. However, the first and second dimensions,
which is 256x256x3, are same in each image. The first two dimensions can be selected
differently while the third one must remain 3 because of the RGB format

When an image is represented by HDMR, we can find some approximated images to
the original one by evaluating s0, s1 and s2 as given in (10). In Figure 1, we created three
different images by using constant approximant s0, univariate approximant s1 and bivariate
approximant s2 respectively. The first figure of Figure 1 was produced by constant approx-
imant including nothing about the image. For this reason we can not represent the original
image by that. While the second one created by the univariate approximant has a colored
pattern in it, it still represents nothing. The last image presented by bivariate approximant
has enough information to show the image under consideration. Hence this approximant is
very adequate to represent the image. In the other words, the image information is hidden
in bivariate components. All these characteristics and performance differerences between
the HDMR approximants can be easily seen in Figure 1.

When we apply HDMR method to grayscale image, the picture obtained from the
bivariate approximant represents the original picture exactly. This is seen in Figure 2. On
the other hand, if the relative error formula given in relation (16) is used, then the relative
error for the given grayscale image is found as 0. It means that the grayscale image can be
represented by bivariate HDMR approximant exactly. This result is shown in Table 1. This
table also includes Ns1 , the relative error of the obtained approximant with the constant
and the univariate terms and Ns2 , the relative error of the obtained approximant with the
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(a) Tram (b) Representation

Figure 2: Comparison of the gray scale pictures with bivariate approximant of HDMR

Table 1: Relative Errors for different images representation through HDMR

NPeppers NTram Nlena NSunflower NDog NGirl

Ns1 0.3999 0.3437 0.2863 0.4862 0.2741 0,2792
Ns2 0.0632 0 0.0984 0.2174 0 0,0632

constant, the univariate and the bivariate terms.

In Figure 3. Some colored images and their representations by obtaining with HDMR
are given to understand the efficiency of the method. These representation is created by
using all constant, univariate and bivariate of HDMR expansion.

5 Conclusion

In this study, we chose some images and we represented these images by using HDMR
method. Our aim is to investigate the performance of HDMR method in image reconstruc-
tion. Our research shows that if the original image is grayscale then the method works
very well. But if we have a colored image in RGB format, then although many features of
the image are captured we cannot represent the images exactly. We left to find the way of
improving the performance of HDMR for this purpose as a future work. Because if we do
that, we can use the HDMR method as an image reconstruction method also for colored
images.

We use HDMR here because we decompose three-dimensional array to a constant value,
some vectors and some matrices. Then, we create new images by using superpositioning of
the constant, vectors and matrices. According to the results, the constant and univariate
terms of HDMR are not sufficient to demonstrate the image under consideration. When
the bivariate terms are used, then the pattern and colors of the image are determined. To
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(a) Sunflower (b) Girl (c) Peppers

(d) Representation (e) Representation (f) Representation

Figure 3: Some original images and their HDMR representations

understand at what level the image obtained through HDMR represents the original one,
we evaluate the relative error values.

To get the approximants, relative error values related to these approximations and
finally the images, we wrote several codes on MATLAB [12] and all results are performed
on a computer of Intel Core i5 1.3 GHz processor and 4GB 1600 MHz DDR3 RAM.
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Abstract

In this work we introduce a way to parallelize a classical secure multicast protocol
that nowadays is unused due to computation and data management requirements when
the audience gets large, although it has nice cryptographic properties, showing its actual
applicability.
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1 Introduction

Protection of information that is sent through an unsecure channel is a classical problem, but
nowadays is of particular interest due to the massive use of Internet for communications and
particularly for information distribution. The increasing interest of distribution of contents
in streaming, for instance IPTV, makes necessary to find methods that allow to develop
this task in an efficient way.

The so-called secure multicast protocols (cf. [12]) are nowadays the preferred solution.
These allow a user to send contents to a plurality of users in a secure and efficient way and
every user recovers the original information using a common session key that is renewed
every time a user leaves or joins the communication group that is sharing the information.
These kind of methods are widely extended in applications such as IPTV ([9]).

The secure multicast protocol introduced in [5] and known as Secure Lock, shows a
great simplicity and that its parameters concerning communication overhead are better
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than most of those used nowadays. However, computational requirements at the server
side are resource demanding and it turns out inefficient as the number of users increases,
(cf. [6]), as is the case of most of applications that pretend to be developed by these type
of schemes. Efficiency problems concerning computational requirements are due to the
use of the Chinese Remainder Algorithm (CRA) to generate rekeying messages. We note
that the aforementioned method given in [9] is based on the existence of an interpolator
polynomial over a finite field, which can be considered also as an output of a CRA. In that
case, inefficiency is solved by distributing users into groups on a tree arrangement. Other
cryptographical applications making use of CRA are, for instance those given in [8] and
[10].

Thus it is easily understandable the interest in obtaining an optimization of CRA. Our
purpose in this paper is to offer an efficient implementation of Secure Lock in order to make
it feasible to be used in actual applications and whose ideas could be also applied to other
settings.

2 The Secure Lock

Let us recall from [5] the definition of the so-called Secure Lock protocol. So let Ui, i =
1, . . . , n be a group of users and let ki and mi, i = 1, . . . , n be a key corresponding to any
symmetric block cryptosystem and an integer such that mi and mj are coprime whenever
i 6= j. Every user Ui owns a pair (ki,mi.

Now let S be the secret that a server aims to distribute among the users Ui, i = 1, . . . , n.
To this end it acts as follows:

• Encrypts the secret S with every secret key ki, computing si = Eki(S), i = 1, . . . , n,
where Eki denotes the encryption (decryption) function using the key ki.

• Solves the system of congruences x ≡mi si, getting a solution L.

• Broadcasts L.

When every user gets L he just have to compute L ≡mi si and then, S = Eki(si).

It is clear that security of the precedent is based on the secrecy of the pair (ki,mi) for
every i = 1, . . . , n. However as it is easily observed and pointed out in [6], serious problems
come out as the number n grows, which is usual in many of the possible applications for
multicast of this protocol nowadays and thus the only suggested solution is a distribution of
users on a tree arrangement in order to decrease the number of congruences to be solved (cf
[6]). However it is very common that any broadcasting could reach millions of users, what
means that the considered tree should have a considerable depth, since its degree should be
small in order not to solve systems with a large number of congruences. This implies that
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the number of keys stored at every user’s side should be large (one more than the depth of
the considered tree).

If we try to parallelize the process of finding solutions to the corresponding system of
congruences following what it is made in [10], then the used formula to do that is

S =

n∑
i=1

ai · (
n∏

i=1

mi) · (
n∏

i=1,i6=j

mi)
−1(mod mj)

and consequently we will face off the problem of dealing with large integers that are given
by the products and thus we will may find problems related to storing due lack of memory.

3 An efficient implementation

It is clear that first step of the algorithm where the secret is encrypted using every private key
is clearly solved by parallelizing the process. However, as it was previously set, problems
arise in the CRA step when trying to get the solution of the corresponding system of
congruences. Our first approach could be trying to parallelize this CRA step by using a
divide and conquer strategy. However this is not applicable to every architecture or every
parallel implementation environment. Thus we need to get an approach that we could
use in a generic way. To do so we need to avoid recursions, that require a big amount of
computational resources. To do so, we will assume that the set of congruences is already
divided in an efficient way. In practice this implies a deduction based on the following: we
have as many congruences as the size of the system. Considering this we are able to define
combinations of the elements of the set and thus we can define groups inside our set and
therefore we are avoiding the process of creating a tree for the resolutions of the system of
congruences that would start from the leaves. We propose then the following two algorithms
(algorithms 1 and 2):

Algorithm 1:

1. Limit = n÷2

2. for i = 0 to log2n do

3. Resolution (Coefficients, Modules, Limit)

4. Limit = Limit ÷ 2

5. Actualize sets of coefficients and modules
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6. end for

7. return solution

Algorithm 2:

1. for i = 0 to i = Limit, run in parallel do

2. ResolutionCRA(Coefficients, Modules, 2∗i, 2∗i + 1)

3. end for

4. return solution

4 Tests

We have made a comparison of three possible implementations. Firstly, the above consid-
ered in [10]; secondly, a classical recursive implementation of CRA and finally, the one given
by Algorithms 1 and 2. These implementations have been made taking into account two
different approaches in parallel computing, that are completely opposite. In the first two
cases we have chosen a CPU based parallelization, making use the multicore technology of
the processor i7-920, described below (see Table 1), together with the power of the set of
resources Parallels .NET. Particularly, in the recursive case we have chosen an hybrid plat-
form CPU-GPGPU, more precisely the above noted processor supported by GPU NVIDIA
260GTX, in order to use the multicore capabilities of the CPU jointly with the power of
the GPU platform.

CPU Intel Core i-7 GPU ASUS EN260GTX
Processors 1 9
Cores/proc 4 24
Frequency 2.66 Ghz 576 Mhz

RAM 4096 MB DDR 1333MHz 896 MB DDR3 2000MHz

Table 1: Characteristics of the execution platform

As we can see in Table 1 the CPU system shows more powerful computation capabilities
than the GPU, whereas the latter offers many processing units. With these configurations,
we have developed a set of tests over words of length 16 and 32 bits and over sets of 100,
1000 and 10000 congruences, results can be found in Table 2, Table 3 and Table 4.
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nBits GPU* CPU FB* CPUyDV
16 3.04 0.08 0.4
32 3.34 0.10 0.64

Table 2: Medium times for 100 executions, measured in ms for a population of 100

As we can observe the algorithm based on that of [10] shows the best results, but with
the problems above noted on the memory storing. This is due to the under-utilization of
the GPU platform.

nBits GPU* CPU FB* CPUyDV
16 4.20 0.10 16.32
32 4.30 0.15 38.80

Table 3: Medium times for 100 executions, measured in ms for a population of 1000

As the number of users grows we can observe the problems of the algorithm considered
in [10] and the hybrid implementation shows a better performing. More precisely, for 32
bits length words we get a speedup of 9x.

nBits GPU* CPU FB* CPUyDV
16 15.54 0.12 19.75
32 16.20 0.2 102.77

Table 4: Medium times for 100 executions, measured in ms for a population of 10000

A progressive increasing of the population clearly slow-down time execution on the CPU
platform whereas the hybrid case keeps showing acceptable execution times with a speedup
of 7x.
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Abstract

We consider the optimization of the embedded RKN 6(4) pair of Moawwad El-
Mikkawy, El-Desouky Rahmo. The new method, which has variable coefficients, is
constructed by the nullification of the phase-lag and amplification-error of a method
based on the previous based pair. We verify the preservation of the algebraic order and
evaluate the principal term of the local truncation error. Furthermore, we perform the
periodicity analysis and numerical tests to measure the efficiency of the new method
via the integration of several initial value problems.
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1 Introduction

We investigate the solution of second order differential equations of the form y′′(x) = f(x, y),
while the initial conditions y(x0) = y0, y′(x0) = y′

0
hold. This general problem, especially

when it presents an oscillatory behavior, is often met in many areas of astronomy, astro-
physics, quantum mechanics etc. For the numerical integration of the above problem we
consider the class of Runge-Kutta-Nyström (RKN) methods.

The efficiency of RKN methods lies partially on the use of a variable step size, which
can be determined by using an algorithm for automatic step size control, usually attained
by utilizing an estimation of the local truncation error of the numerical method. Often,
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this is achieved by embedding a second RKN method with the same or lower number
of stages and lower order. Dormand, El-Mikkawy and Prince, by setting and satisfying
various criteria, have developed highly efficient algorithms, like the 6(4) pair, developed
in [2] with six stages that owns the FSAL (First Stage As Last) property, thus effectively
using five stages. Despite the fact that the FSAL property lowers the computational cost,
it also restricts the further optimization of the efficiency criteria, by involving additional
equations. More recently, El-Mikkawy and Rahmo have created a 6(4) pair with six stages
without the FSAL property, which is proved to have improved characteristics and be more
efficient than the FSAL pair of Dormand, El-Mikkawy and Prince [3].

The above mentioned algorithms have been developed for the efficient solution of
the general initial value problem. However, they discard information about an oscilla-
tory/periodic nature of the problem, utilized by various methodologies. Here we apply
the methodology of phase-fitting and amplification-fitting to the 6(4) pair of El-Mikkawy
and Rahmo [3]. In order to achieve this, the new method must have two variable coef-
ficients that depend on the product of the dominant frequency of the problem and the
step-length. In this way, the produced pair with variable coefficients, will succeed zero
phase-lag and amplification-error. Additionally, we evaluate the local truncation error for
the new method, the corresponding method of El-Mikkawy and Rahmo and the method of
Dormand, El-Mikkawy and Prince. Furthermore, the periodicity analysis of the high-order
method of the new pair reveals that the latter is ”almost” P-stable, in the sense that is
P-stable excluding some discrete values. The numerical results prove the efficiency of the
new pair via the integration of several oscillatory Initial Value Problems (IVPs).

2 Basic theory

2.1 Explicit Runge-Kutta-Nyström methods

The general form of an explicit s−stage Runge-Kutta-Nyström method is presented in (1).

If yn+1 and y
′

n+1
denote the approximations of y(xn+1) and y

′

(xn+1) respectively, where
xn+1 = xn+h, n = 0, 1, . . ., then for the numerical solution of the general problem we have
the following algorithm















yn+1 = yn + h y
′

n + h2
s
∑

i=1

bi ki,

y
′

n+1
= y

′

n + h
s
∑

i=1

b
′

i ki,
(1)

where ki = f(xn + ci h, yn + h ci y
′

n + h2
i−1
∑

j=1

aij kj), i = 1, . . . , s,
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An embedded q(p) RKN pair consists of two methods, one (c,A, b, b′) of order q and an-
other (c,A, b̂, b̂′) of order p < q. The high order method produces the solution (yn+1, y

′

n+1
),

while the low order method produces the solution (ŷn+1, ŷ
′

n+1
), which is only used for the

estimation of the local truncation error.

Given an initial step length, every next step length hn+1 is determined through the
following algorithm

hn+1 = 0.9hn

(

TOL

EST

)
1

p+1

,

where

EST = max{‖δn+1‖∞, ‖δ′n+1
‖∞},

δn+1 = ŷn+1 − yn+1, δ′n+1
= ŷ′n+1

− y′n+1
.

TOL represents the maximum allowed local error. If EST < TOL, then the step is
accepted, otherwise it is rejected and is repeated with a new step length provided by the
algorithm above [3].

The algebraic order of a Runge-Kutta-Nyström method is given by the Definition below

Definition 1 [7] It is said that a Runge-Kutta-Nyström method has algebraic order p if:

{

yn+1 − y(x0 + h) = O (hp+1) and

y′n+1
− y′ (x0 + h) = O (hp+1), n = 1, 2, · · · , p.

(2)

2.2 Analysis of phase-lag, amplification error and stability

The analysis of the phase-lag, amplification error and stability of method (1) is based on
the test equation

y′′ = −ω2 y, ω ∈ R with y(x0) = y0 y′(x0) = y′0. (3)

After the application of method (1) to the scalar test equation (3), we produce the
numerical solution

[

yn
h y

′

n

]

=
[

M(v2)
]n
[

y0
h y

′

0

]

, v = ω h, where (4)

The characteristic equation corresponding to the difference equation (4) is

λ2 − tr(M(v2))λ+ det(M(v2)) = 0 (5)

We have the following theorem:
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Theorem 1 [9] For the Runge-Kutta-Nyström method given in (1), after the application

in Eq. (3), we have the following formula for the direct calculation of the phase-lag (or

dispersion error) Φ(v):

Φ(v) = v − arccos

(

tr(M(v2))

2
√

det(M(v2))

)

. (6)

If Φ(v) = O(vq+1), then the method is said to be of phase-lag order q.

Definition 2 [9] For the Runge-Kutta-Nyström method, presented in (1), the quantity

α(v) = 1− |λ|, where | λ |=
√

det(M(v2))

is called the amplification error or the dissipative error. If α(v) = O(vr+1) then the method

is said to be of amplification error order r.

Furthermore, we study the stability properties of method (4) when applied to equation
(3).

Definition 3 [8] The stability function R(v2) of the RKN method is defined as the spectral

radius ρ(M(v2)).

Definition 4 [8][1] The interval (0,K), K ∈ R
+ ∪ {+∞}, so that v2 ∈ (0,K) is called

1. the interval of stability of the RKN method, if K = kstab is the highest value such that

R(v2) < 1,

2. the interval of periodicity of the RKN method, if K = kper is the highest value such

that R(v2) = 1 and
[

tr
(

M(v2)
)]

2
− 4 det

(

M(v2)
)

< 0 (the eigenvalues of M are

complex conjugate).

• If (0, kstab) lies in the stability interval, then kstab is called stability boundary.

• If (0, kper) lies in the periodicity interval, then kper is called the periodicity boundary.

• If kstab = ∞, then the RKN method is A-stable [11].

• If kper = ∞, then the RKN method is P-stable [6].
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3 Construction, analysis and application of the new pair

We consider the 6(4) embedded explicit Runge-Kutta-Nyström pair of M. El-Mikkawy, E.D.
Rahmo [3], which has 6 stages and does not use the FSAL property. Based on this pair,
we develop an optimized pair, where the high order method has zero phase-lag and zero
amplification error.

For the development of the optimized method, we set b2 and b3 free and then nullify the
phase-lag Φ(v) and the amplification error α(v). These two expressions depend now on b2
and b3, apart from v, thus we can nullify them by solving for b2 and b3. The solution of the
system {Φ(v) = 0, α(v) = 0} yields the new method with b2(v) and b3(v). Of course b2(0)
and b3(0) are identical to the constant coefficients b2 and b3 of the corresponding classical
method.

The local truncation error analysis reveals that the algebraic order of the new method
is six. Furthermore, by evaluating the characteristic roots of the new fitted method, it is
proved to be ”almost” P-Stable (except for a set of discrete values).

In order to measure the efficiency of the method constructed, we compare it to other
well known methods, by integrating several oscillatory initial value problems
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Abstract

The delimitation of crop land areas grouping zones that share similar soil properties
is a key factor in the precision agriculture context. However automatic land delimitation
is a challenging task. We propose automatically delimit the zones based on remoted
sensed reflectivity and we study how the temporal resolution affects to this delimitation.
In order to obtain this zoning, the Partition Around Medoids clustering algorithm has
been used and applied to data collected from Terras Gauda vineyar, a well known
Spanish producer of Albariño wine. The results are promising in the sense that the
clusters obtained are consistent to the current land organization and show that the
lower temporal resolution, the more compact the clusters.

Key words: Precision Agriculture, Land Delimitation, Clustering, Satellite Data

1 Introduction

The identification of homogeneous zones of crop land areas is a key factor [1] in the precision
agriculture context. These management zones (MZ) [2] address spatial variability of crops
grouping areas that share similar soil properties in order to apply specific farming practices
to each MZ.

The knowledge of the farmer about the crops and soil could be a starting point in
zones determination. However, other approaches provide methods for a systematic MZ
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identification such as the classification of apparent soil electrical conductivity [3] or the
analysis of yield maps [4].

Sensors and onboard satellite instruments related to environmental and Earth obser-
vation, measure electromagnetic radiation emitted and reflected by the observed objects.
Based on these radiometric data it is possible to obtain valuable variables and indicators
from the agriculture perspective [5] such as moisture and soil temperature, the vegetation
index or even the kind of vegetation and its health. These remotely sensed data may be used
for the estimation of soil properties and the recognition of spatial patterns [6]. However,
non-commercial satellite data products with both high spatial and high temporal resolution
are not available.

We propose the identification of homogeneous zones of crops based on remoted sensed
reflectivity and we study how the temporal resolution affects to the delimitation of MZ [7],
providing decision support to select the satellite data product to identify MZ. We test this
method with a case study for the grape vine crops of Terras Gauda, a producer from Galicia
(Spain).

This paper addresses the automatic delimitation of the land, selecting algorithms to
cluster land points characterised by the satellite reflectance data in order to evaluate how
temporal resolution affects the clustering. Section 2 provides an overview of the precision
agriculture approach. Section 3 explains the satellite data products used in the clustering
process. Section 4 describes the PAM clustering algorithm. Section 5 exposes results of the
application of clustering algorithms. Finally, Section 6 shows the conclusions and presents
some ideas for future work.

2 Precision Agriculture

Precision Agriculture (PA) or Precision Farming takes advantage of Information and Com-
munications Technology (ICT) in order to provide valuable information and services to
farmers. The term “precision” implies that these services can be customized to the needs
of an area or specific farm plot and their characteristics, such as the spatial variability of
the land and the different features at topographic or geological level. For instance, for the
application of fertilizers, knowing the soil nutrients concentration and the in-field variability
will allow to choose the right amount of fertilizer [8]. In a similar way, pest control can be
more efficient by applying pesticides in a localized manner, where necessary, in contrast to
its widespread application on the entire crop [9].

PA uses different measuring techniques such as small-size unmanned air vehicles equipped
with spectrometers, luxometers or multi-spectral, modified land vehicles or sensor networks
in the field. Using data from wireless sensor networks in greenhouse crops, it is possible
to develop disease early-warning systems [10] based on models considering leaf moisture,
temperature and time factors. Advances in wireless sensors that use technologies such as
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RFID and Very Long Range Identification Tag [11] can help mitigate some drawbacks of
mobile sensor networks [12] as their high cost or low autonomy.

However, the deployment of these measurement systems is not essential for PA. The
use of satellite imagery and aerial photographs for measuring the radiation emitted and
reflected by the fields in several areas of the electromagnetic spectrum allows to observe
multiple variables which affect crops [13] as well.

Among the smart services that PA can provide, automatic land delimitation is one of
the most challenging tasks. In fact, clustering and automatic delimitation of agroecozones
(geographic zones that share similar ecological and environmental features) may be relevant
to determine crops potentially more suitable for each zone. Some approaches to automatic
land delimitation have been developed. For example, Kumar et al. in [14] apply the k-means
clustering algorithm to remote sensing data obtained from the MODIS-based greenness in-
dex [15] and also to the seasonal leaf area index [16]. In the same line, Ortega and Santibaez
in [17] systematically delimit crop management zones relying on six soil chemical properties
related to fertility. Some years ago, Le Ber in [18] built an expert system prototype which
is able to recognize different plots, to estimate the production and to classify villages based
on particular patterns on the crop arrangement.

3 Digital Data

Valuable data related to precision agriculture such as vegetation indices, land surface tem-
perature or surface reflectance are collected by MODIS (Moderate Resolution Imaging Spec-
troradiometer) [19]. Around 70 data products are provided by this instrument operated from
TERRA and AQUA satellites [16]. Table 1 shows a sample of the MODIS data products
related to precision agriculture. These data products are publicly available by HTTP, FTP
and at the NASA Land Processes Distributed Active Archive Center [15]. Usually the data
will consist of images on JPG format, XML files and data in a hierarchical format (HDF).

In order to generate the data sets for the MZ identification process, daily surface re-
flectance data products were considered. Specifically MOD09GQ at 250m of spatial res-
olution. It includes data about surface reflectance for spectral bands 1 and 2 and other
variables to measure the quality of the observations and their coverage [20].

c©CMMSE ISBN: 978-84-616-9216-3Page 79 of 1485



Evaluation of time-series of reflectance for land delimitation

Name Data Product Res. (m) Frequency

MYD09GA Surface Reflectance Bands 1-7 500 m Daily
MOD09GQ Surface Reflectance Bands 1-2 250 m Daily
MOD11A1 Land Surface Temperature and Emissivity 1000 m Daily
MOD13Q1 Vegetation Indices 250 m 16 days
MOD15A2 Leaf Area Index - FPAR 1000 m 8 days
MOD14A1 Thermal Anomalies and Fire 1000 m Daily
MOD44B Vegetation Continuous Fields 250 m Annual

Table 1: A sample of MODIS data products related to Precision Agriculture

Column Description

x Coordinate x of the data point in the UTM 29 CRS
y Coordinate y of the data point in the UTM 29 CRS
date Year + Day number of the year in the format YYYYddd
refl b01 Reflectivity values from MOD09GQ band 1
refl b02 Reflectivity values from MOD09GQ band 2
num observations The number of observations for this measure
QC 250m A byte of information about the quality of the measure
NDVI Normalized Difference Vegetation Index
NDVI scaled Normalized Difference Vegetation Index. Scaled [0..255] values

Table 2: Columns of the dataset for the MOD09GQ data product. Spatial resolution: 250
m. Temporal resolution: daily. CRS: UTM 29

NDVI indicator is calculated as the relation between the difference of the values of both
Red (Red) and NIR (near infrared) channels and its sum [21].

NDV I = (NIR−Red)/(NIR + Red)

Negative values correspond to water, clouds or snow since their reflectance in the visible
spectrum is greater than the corresponding in near infrared, whilst soil and rocks have
values near zero. Ranges between 0.1 and 0.6 are indicators of vegetation. Values above 0.6
correspond to dense vegetation canopy.

4 Clustering Algorithm

As it was described in Section 3, the data used in this approach include information about
surface reflectance for spectral bands 1 and 2 with a spatial resolution of 250m obtained
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from MODIS [20] and the NVDI index. The purpose of this work is to automatically delimit
the zones of the vineyard. In order to obtain this zoning, the PAM clustering algorithm
[22] has been used. The main characteristics of this algorithm are the following:

• It is a partitioning algorithm. Thus, it breaks the input data up into groups until
some stability condition is reached.

• The number of groups is defined in advance.

• PAM stands for Partition Around Medoids. It tries to find a set of objects called
medoids that are centrally located in clusters.

• PAM is an algorithm more robust than K-means because it minimizes a sum of dis-
similarities instead of a sum of squared euclidean distances.

The bottleneck of clustering algorithms is to properly select the best clustering distri-
bution. In fact, the evaluation of clustering structures is the most difficult task in clustering
algorithms. A large number of ways of evaluating the goodness of a clustering algorithm
have been proposed in the literature. In this case, since we have no reference to external
information, the method selected to validate the clustering was the Silhouette coefficient
[23]. It is based on the comparison of cluster tightness and separation. This silhouette
shows which objects lie well within their cluster, and which ones are merely somewhere
in between clusters. The average silhouette width provides an evaluation of the clustering
validity, and might be used to select an appropriate number of clusters.

Therefore, to select the optimum k according to the Silhouette coefficient, we follow the
procedure described below (suppose that the number of points to cluster is n and that K∗

is the maximum number of clusters, which is equal to or less than n):

for j = 1,K∗ do
for i = 1, n do
s(i) = b(i)−a(i)

max{(b(i),a(i)} , with a(i) = average dissimilarity between i and all other points

of the cluster to which i belongs and b(i) = minCd(i, C),∀ cluster C
end for
sjavg =

∑n
i=1 s(i)
n

end for
k = argmax{sjavg}

Once the number of clusters is computed, the cluster assignment is retrieved, providing
the land delimitation.
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Figure 1: Land delimitation for parcel p1.

5 Experiments

The purpose of this paper is to automatically delimit the Terras Gauda vineyard. The
Terras Gauda vineyard is divided into three separated parcels (hereinafter called p1, p2,
p3). According to the spatial resolution provided by the MODIS satellite, that is 250m., p1
and p2 are represented using 30 points and p3 by 16 points. Each point is characterised by
4 variables per day (surface reflectance for spectral bands 1 and 2, NVDI and NVDI-scaled
indexes). As data were extracted for 90 days, each point x is represented by 360 values as
follows

x = (b1day1 , b2day1 , NV DIday1 , b1day2 , b2day2 , NV DIday2 , . . . , b1day90 , b2day90 , NV DIday90)

Following the procedure described in Section 4, we have clustered the three parcels
using the Manhattan distance as dissimilarity metric. We have tested the performance of
the values obtained from the MODIS satellite in automatic land delimitation and also the
effect of different temporal resolutions. To test the temporal resolution we consider all the
attributes every day, every 2 days ... until every 10 days. To test the effect of the four
attributes, the clustering procedure is performed considering each possible combination of
the four attributes obtained per day. However, due to length limitations, only the results
obtained when the four attributes afore defined are considered together.

Figures 1 to 2 respectively show the land delimitation for parcels p1, p2 an p3. The
structure of each figure is the following: It contains 10 squares divided into smaller squares
according to the the spatial resolution provided by MODIS. Considering each figure as a
matrix with 2 rows and 5 columns, the square at position [1, j] contains the clusters obtained
when temporal resolution is j. The square at position [2, j] contains the clusters obtained
when temporal resolution is j + 5. Therefore the topleft square represents clustering results
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Figure 2: Land delimitation for parcel p2.

for daily resolution and the bottomright square represents clustering results for a ten days
resolution.

The question now is how to decide which land delimitation is the best. As it was stated
in Section 4, the criterion used is the Silhouette coefficient. X-axis of Figure 4 represents
the temporal resolution (from 1 day to 10 days) while Y -axis represents the value of the
Silhouette coefficient. As it can be seen in Figure 4 the lower the temporal resolution, the
higher the Silhouette coefficient. Therefore, the main result we can extract is that there is
no need to include daily information in order to keep the performance of the clusters. In
fact, the clusters are more compact when the temporal resolution is lower.

6 Conclusions and Future Work

This paper presents a first attempt to automatic delimitation of Terras Gauda vineyard.
Terras Gauda is a well known Spanish producer of Albariño wine. The results are promising
in the sense that the clusters obtained are consistent to the current land organization. In
addition, we have checked how the temporal resolution of the data characterizing the land
affects the land delimitation. The results show that the lower the resolution, the more
compact the clusters. This work opens many interesting new problems. Among them, to
study the performance of hierarchical algorithms in automatic land delimitation and to
retrieve data from Landsat 8, whose spatial resolution is much higher but the temporal one
is lower.
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Figure 3: Land delimitation for parcel p3.

Figure 4: Silhouette coefficient obtained by the clustering algorithm
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Abstract

Second order hyperbolic differential equations have been used to model many pro-
blems that appear related to heat conduction, mass diffusion and fluid dynamics. In this
work a numerical method is presented to solve a two dimensional second order hyperbolic
equation with convection terms. A hybrid numerical method is considered which consists
of applying the Laplace transform in time and a finite volume discretization in space,
where the shape functions associated with the finite volume method are chosen as the
combination of hyperbolic functions. We present some numerical tests to show the
efficiency of the numerical method.

Key words: Hyperbolic equation, Laplace transform, finite volumes
MSC 2000: AMS codes (35L20, 65M12, 65M22)

1 Introduction

The use of second order hyperbolic differential equations has shown to be useful in modeling
diffusive problems. The heat conduction, the mass diffusion and the fluid dynamics are
some of the examples belonging to a wide range of subjects covered by these hyperbolic
equations. We can find in the literature several proposals for solving these equations for
different applications, such as, diffusive problems which include a potential field [4, 6] and
various heat conduction problems [2, 5, 9, 10]. However, the incorporation of a convection
term in the equation and its effect on the behavior of the solution has not been properly
investigated, despite its great relevance in practical applications such as, for instance, the
mass concentration distribution of diffusion problems.

c⃝CMMSE ISBN: 978-84-616-9216-3Page 88 of 1485



A hybrid numerical method for a second order hyperbolic equation

We describe briefly the mathematical formulation of the problem under focus. The
mass transfer in a two dimensional system is governed by the balance equation

∂u

∂t
+∇ ⋅ J = 0, (1)

where u is the mass concentration and J is the mass flux. To accommodate the assumption
of finite propagation speed [6, 7, 8] the mass flux verifies the relation

J = −� ∂J
∂t
−D∇u+ Vu, (2)

where � is the relaxation time of the mass flux, D the diffusion coefficient and is assumed
constant in our study and V is the velocity field.

Elimination of the mass flux between equation (1) and (2) leads to the hyperbolic
equation

�
∂2u

∂t2
+
∂u

∂t
+∇ ⋅Vu = DΔu. (3)

The main purpose of this work is to apply a hybrid numerical method, combining the
Laplace transform technique with a finite volume method, to solve the two dimensional
second order hyperbolic equation. This hybrid numerical method has been applied in one
dimensional problems in [6] and for a pure diffusive problem in two dimensions in [5]. We
generalize this numerical method, being an innovation in the context of two dimensional
diffusive hyperbolic problems with convection. As we present in this work, the application of
the Laplace transform technique is easily generalized to two dimensional problems, but the
finite volume discretization requires special attention when we consider partial derivatives
of first and second order.

The efficiency of the numerical method is due to the choice of hyperbolic functions used
to develop the finite volume method. The method has the advantage of suppressing oscilla-
tions, specially when a discontinuity is present in the initial data. Note that for hyperbolic
problems the discontinuities may remain through time. Although in [3] an efficient method
for one dimensional problems was also introduced to deal with discontinuities, it has the
disadvantage of not being generalizable to higher dimensions.

We consider the problem defined by the second order hyperbolic equation

�
∂2u

∂t2
+
∂u

∂t
+∇ ⋅Vu = DΔu, x ∈ Ω, t > 0, (4)

where u is the mass concentration, D is the diffusion coefficient, V is the velocity field and
� ∈]0, 1] is the relaxation time of the mass flux. For our problem we consider the initial
conditions given by

u (x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), x ∈ Ω (5)
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and Dirichlet boundary conditions

u(x, t) = f(x), x ∈ ∂Ω, t > 0. (6)

Note that for � = 0, equation (4) is the classical parabolic convection-diffusion equation
with initial condition given only by the first equality in (5).

2 The numerical method

The Laplace transform has been used in several works to remove the time dependent terms
and obtain a differential equation in space variable ([4], [5], [10], [11]). Using this technique
and combining it with an appropriate spatial discretization method has some advantages.
First, we can compute the approximate solution for long times accurately and quickly and
we do not need to do computations in the time domain using time iterations. Secondly, it
also avoids undesirable numerical oscillations that are related with the bad choices of time
steps. Any iterative numerical method would take too long to compute the solution for
similar times, due to the increased computational effort for discretizing in time, even when
we consider an unconditionally implicit numerical method which will allow large time steps.
To solve problem (4)–(6) we first apply the Laplace transform to the partial differential
equation and boundary conditions, in order to remove the time dependent terms, yielding a
differential equation in the space variable that depends on the Laplace parameter. Secondly,
we solve the differential equation obtained using a spatial discretization based on a finite
volume method that follows an idea presented in [6]. At last, a numerical inverse Laplace
transform algorithm is used to obtain the final approximate solution in time and space. The
combination of Laplace transform with the finite volume method will be named the Laplace
transform finite volume method. We will apply it to our model problem (4)–(6) considering
non-trivial initial conditions and different values of the vector V, for both parabolic (� = 0)
and hyperbolic (� ∕= 0) equations.

2.1 One dimensional problem

Let us first see what happens when we consider a one dimensional problem, since it helps
to understand the generalization to two dimensions. The problem (4)–(6) can be written as

�
∂2u

∂t2
(x, t) +

∂u

∂t
(x, t) +

∂

∂x
(P (x)u(x, t)) = D

∂2u

∂x2
(x, t), (7)

where P (x) is now the one dimensional velocity field, with the initial conditions given by

u (x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), x ∈ (a, b) (8)
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and the Dirichlet boundary conditions by

u (a, t) = f(t), u (b, t) = g(t), t > 0. (9)

We denote the Laplace transform of the mass concentration u by ũ. If we apply the
Laplace transform to equation (7) we obtain the ordinary differential equation

d2ũ

dx2
(x, s)− �2

sũ(x, s)− d

dx

(
P (x)

D
ũ(x, s)

)
= −u0(x)

D
(1 + �s)− u1(x)

D
, (10)

where �s =
((
�s2 + s

)
/D
)1/2

and s is a complex variable, with the boundary conditions,

derived from (9), ũ (a, s) = f̃(s) and ũ (b, s) = g̃(s). The approximate solution of u is
obtained by using an inverse Laplace transform algorithm. If P is constant and equation
(10) is homogeneous, we are able to apply the inverse Laplace algorithm directly. If we have
a non-homogeneous equation, we can apply the inverse Laplace algorithm directly only if
we know a particular solution, otherwise we must consider a spatial discretization. If P is
non-constant, the spatial discretization is mandatory.

We consider a finite volume formulation to discretize the ordinary differential equation
(10). Assume we have a space discretization xi = a + iΔx, i = 0, . . . , N , where Δx =
(b− a)/N . Let Ũi(s), i = 0, . . . , N represent the approximations of ũ (xi, s) in the Laplace
transform domain. After spatial discretization we obtain the linear system

K (s) Ũ (s) = b̃ (s) , (11)

where K(s) = [Ki,j(s)] is a banded matrix of size (N − 1)× (N − 1), with bandwidth three,

the vector Ũ (s) is given by Ũ (s) = [Ũ1 (s) , . . . , ŨN−1 (s)]T and b̃ (s) contains source terms
and boundary conditions.

In what follows, we describe the spatial discretization and give the entries of the matrix
K and the vector b̃. The matrix K and the numerical approximation of the grid point
depend on s. However, for the sake of clarity we omit the parameter s denoting Ki,j(s) and

Ũi(s) by Ki,j and Ũi respectively.
The discretization consists of using the finite volume formulation by integrating in x

the ordinary differential equation (10) in the i-th control volume [xi −Δx/2, xi + Δx/2],

∫ xi+
Δx
2

xi−Δx
2

[
d2ũ

dx2
− �2

sũ−
d

dx

(
P

D
ũ

)]
dx = − 1

D

∫ xi+
Δx
2

xi−Δx
2

((1 + �s)u0(x) + u1(x))dx. (12)

We compute the integral on the right hand side by the midpoint rule, that is,∫ xi+
Δx
2

xi−Δx
2

((1 + �s)u0(x) + u1(x))dx ≃ Δx [(1 + �s)u0(xi) + u1(xi)] .
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We can write the integral on the left hand side as

[
d

dx
Ũ (x, s)

]xi+
Δx
2

xi−Δx
2

− �2
s

[∫ xi

xi−Δx
2

Ũ (x, s) dx+

∫ xi+
Δx
2

xi

Ũ (x, s) dx

]

−P (xi + Δx/2)

D
Ũ (xi + Δx/2, s) +

P (xi −Δx/2)

D
Ũ (xi −Δx/2, s) . (13)

For x ∈ [xi, xi+1], i = 0, . . . , N − 1, we approximate Ũ (x, s) by the following combination
of hyperbolic functions,

Ũ (x, s) =
sinh (�s (xi+1 − x))

sinh (�sΔx)
Ũi(s) +

sinh (�s (x− xi))
sinh (�sΔx)

Ũi+1(s),

where Ũi(s), i = 0, . . . , N , represent the approximations of ũ(xi, s) in the Laplace transform
domain. These shape hyperbolic functions have been suggested in [6]. Substituting this
approximation in (13) yields

�s
sinh(�sΔx)

[
Ũi−1(s)− 2 cosh(�sΔx)Ũi(s) + Ũi+1(s)

]
−P (xi + Δx/2)

D

sinh(�sΔx/2)

sinh(�sΔx)

(
Ũi(s) + Ũi+1(s)

)
+
P (xi −Δx/2)

D

sinh(�sΔx/2)

sinh(�sΔx)

(
Ũi−1(s) + Ũi(s)

)
.

Finally, the evaluation of (12) produces the following discretized equations, for
i = 1, . . . , N − 1,

Ki,i−1(s)Ũi−1(s)+Ki,i(s)Ũi(s)+Ki,i+1(s)Ũi+1(s) = −sinh(�sΔx)

D�s
Δx [(1 + �s)u0(xi) + u1(xi)]

(14)

for

Ki,i−1(s) = 1 + Pi−1/2
sinh (�sΔx/2)

D�s
, Ki,i+1(s) = 1− Pi+1/2

sinh (�sΔx/2)

D�s
,

Ki,i(s) = −2 cosh (�sΔx)−
(
Pi+1/2 − Pi−1/2

) sinh (�sΔx/2)

D�s
, (15)

where Pi±1/2 = P (xi ±Δx/2). The vector that contains boundary terms is given by

b̃ (s) = −Δx sinh(�sΔx)

D�s

⎡⎢⎢⎢⎢⎢⎣
(1 + �s)u0(x1) + u1(x1)
(1 + �s)u0(x2) + u1(x2)

...
(1 + �s)u0(xN−2) + u1(xN−2)
(1 + �s)u0(xN−1) + u1(xN−1)

⎤⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎣

K1,0(s)Ũ0(s)
0
...
0

KN−1,N (s)ŨN (s)

⎤⎥⎥⎥⎥⎥⎦ ,
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Thus, equation (14) can be written in the matrix form (11) where the matrix K and the
vector b̃ are defined by the entries given above.

The next step is to determine an approximate solution U (xi, t) from Ũ (xi, s) by using
the Laplace inversion numerical method described in [1, 4]. The errors that come from
the numerical inversion of Laplace transform are described in [4]. We can prove the spatial
discretization error, using the finite volume method, is at least of second order and similarly
to what was done in [4] we obtain a second order error convergence for the full numerical
method.

2.2 Two dimensional problem

The numerical method described in one dimension is extended in this section to solve the
two dimensional hyperbolic diffusion equation, defined in a rectangular domain Ω ⊂ IR2,

�
∂2u

∂t2
(x, y, t) +

∂u

∂t
(x, y, t) +

∂

∂x
(P (x)u(x, y, t)) +

∂

∂y
(Q(y)u(x, y, t))

= D

(
∂2u

∂x2
(x, y, t) +

∂2u

∂y2
(x, y, t)

)
, (x, y) ∈ Ω, t > 0, (16)

where the velocity field V is now given by (P (x), Q(y)). The initial conditions are given by

u (x, y, 0) = u0(x, y), and
∂u

∂t
(x, y, 0) = u1(x, y), (x, y) ∈ Ω, (17)

and the Dirichlet boundary conditions are given by

u(x, y, t) = f(x, y, t), (x, y) ∈ ∂Ω, t > 0. (18)

Similarly to what has been done in one dimension, we apply the Laplace transform to
remove the time dependent terms and obtain the equation

∂2ũ

∂x2
+
∂2ũ

∂y2
− �2

sũ−
∂

∂x

(
P

D
ũ

)
− ∂

∂y

(
Q

D
ũ

)
= −u0(x, y)

D
(1 + �s)− u1(x, y)

D
, (19)

with ũ(x, y, s) the Laplace transform of u(x, y, t) and �2
s = (�s2 + s)/D. We now generalize

the Laplace transform finite volume method presented in the previous section to two dimen-
sions. Consider the control volume Ωi,j = [xi −Δx/2, xi + Δx/2]× [yj −Δy/2, yj + Δy/2] ,
i = 1, . . . , Nx−1, j = 1, . . . , Ny−1, represented in Figure 1 and where the point O represents
(xi, yj).

We integrate the differential equation (19) within the control volume Ωi,j , that is,∫
Ωi,j

∂2ũ

∂x2
+
∂2ũ

∂y2
− �2

sũ−
∂

∂x

(
P

D
ũ

)
− ∂

∂y

(
Q

D
ũ

)
dxdy

= − 1

D

∫
Ωi,j

(1 + �s)u0(x, y) + u1(x, y)dxdy. (20)
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A. Araújo, C. Neves, E. Sousa

Figure 1: Control volume Ωi,j .

The control volume Ωi,j is subdivided in four rectangular elements as shown in Figure
1. To derive the discretization, we approximate ũ(x, y, s) in terms of the nodal points and
the shape functions in each element. The four shape functions are chosen in a similar way
to what was done for the one dimensional case, as explained in [5]. For the element ΩNE ,
and assuming O represents the point (xi, yj), the shape functions are given by

NO(x, y, s) =
1

sinh(�Δx) sinh(�Δy)
sinh(�(xi+1 − x)) sinh(�(yj+1 − y)),

NE(x, y, s) =
1

sinh(�Δx) sinh(�Δy)
sinh(�(x− xi)) sinh(�(yj+1 − y)),

NN (x, y, s) =
1

sinh(�Δx) sinh(�Δy)
sinh(�(xi+1 − x)) sinh(�(y − yj)),

NNE(x, y, s) =
1

sinh(�Δx) sinh(�Δy)
sinh(�(x− xi)) sinh(�(y − yj)),

where � = �s/
√

2. For this element the solution is then approximated by

Ũ(x, y, s) = NO(x, y, s)Ũi,j +NE(x, y, s)Ũi+1,j +NN (x, y, s)Ũi,j+1

+NNE(x, y, s)Ũi+1,j+1.

For the other three elements Ũ(x, y, s) can be represented in a similar way. We compute
the integral on the right hand side of equation (20) by the midpoint rule and obtain∫ xi+

Δx
2

xi−Δx
2

∫ yj+ Δy
2

yj−Δy
2

((1 + �s)u0(x, y) + u1(x, y))dxdy ≃ ΔxΔy [(1 + �s)u0(xi, yj) + u1(xi, yj)] .
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After integration of the left member of (20), the complete discretized equation that
corresponds to node O is obtained by the contribution of all the four elements and it
originates a compact discretization given by

KOŨi,j +KEŨi+1,j +KW Ũi−1,j +KN Ũi,j+1 +KSŨi,j−1 +KNEŨi+1,j+1

+KNW Ũi−1,j+1 +KSEŨi+1,j−1 +KSW Ũi−1,j−1

= −ΔxΔy

D
sinh(�Δx) sinh(�Δy) ((1 + �s)u0(xi, yj) + u1(xi, yj)) ,

where the coefficients are defined by

KO = 4[cosh(�Δx) cosh(�Δy/2) + cosh(�Δy) cosh(�Δx/2)]− 8 cosh(�Δx) cosh(�Δy)

+
2

�
(Pi+1/2 − Pi−1/2) sinh(�Δx/2)(cosh(�Δy)− cosh(�Δy/2))

+
2

�
(Qj+1/2 −Qj−1/2) sinh(�Δy/2)(cosh(�Δx)− cosh(�Δx/2)),

KE = 2[2 cosh(�Δy)− cosh(�Δy/2)− cosh(�Δx/2) cosh(�Δy)]

+
2

�
Pi+1/2 sinh(�Δx/2)(cosh(�Δy)− cosh(�Δy/2))

+
1

�
(Qj+1/2 −Qj−1/2) sinh(�Δy/2)(cosh(�Δx/2)− 1),

KW = 2[2 cosh(�Δy)− cosh(�Δy/2)− cosh(�Δx/2) cosh(�Δy)]

− 2

�
Pi−1/2 sinh(�Δx/2)(cosh(�Δy)− cosh(�Δy/2))

+
1

�
(Qj+1/2 −Qj−1/2) sinh(�Δy/2)(cosh(�Δx/2)− 1),

KN = 2[2 cosh(�Δx)− cosh(�Δx/2)− cosh(�Δx) cosh(�Δy/2)]

+
1

�
(Pi+1/2 − Pi−1/2) sinh(�Δx/2)(cosh(�Δy/2)− 1)

+
2

�
Qj+1/2 sinh(�Δy/2)(cosh(�Δx)− cosh(�Δx/2)),

KS = 2[2 cosh(�Δx)− cosh(�Δx/2)− cosh(�Δx) cosh(�Δy/2)]

+
1

�
(Pi+1/2 − Pi−1/2) sinh(�Δx/2)(cosh(�Δy/2)− 1)

− 2

�
Qj−1/2 sinh(�Δy/2)(cosh(�Δx)− cosh(�Δx/2)),
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KNE = [cosh(�Δx/2) + cosh(�Δy/2)− 2] +
1

�
Pi+1/2 sinh(�Δx/2)(cosh(�Δy/2)− 1)

+
1

�
Qj+1/2 sinh(�Δy/2)(cosh(�Δx/2)− 1),

KNW = [cosh(�Δx/2) + cosh(�Δy/2)− 2]− 1

�
Pi−1/2 sinh(�Δx/2)(cosh(�Δy/2)− 1)

+
1

�
Qj+1/2 sinh(�Δy/2)(cosh(�Δx/2)− 1),

KSE = [cosh(�Δx/2) + cosh(�Δy/2)− 2] +
1

�
Pi+1/2 sinh(�Δx/2)(cosh(�Δy/2)− 1)

− 1

�
Qj−1/2 sinh(�Δy/2)(cosh(�Δx/2)− 1),

KSW = [cosh(�Δx/2) + cosh(�Δy/2)− 2]− 1

�
Pi−1/2 sinh(�Δx/2)(cosh(�Δy/2)− 1)

− 1

�
Qj−1/2 sinh(�Δy/2)(cosh(�Δx/2)− 1).

The matricial formulation of the problem is also given by K(s)Ũ(s) = b̃(s), where the
matrix K is now a block matrix and each block is a banded matrix with bandwidth three.

This finite volume difference scheme has accuracy of second order in space as will be
confirmed by the numerical results.

3 Numerical tests

In this section numerical results are presented for the two dimensional problem to show
the second order convergence rate of the numerical method developed, and called Laplace
transform finite volume method (Laplace-FV-2D), and also to illustrate the behavior of the
solutions. In order to compare the numerical solution Ui,j(t) = Ui,j , i = 1, . . . , Nx − 1,
j = 1, . . . , Ny − 1 with the respective exact solution u(xi, yj , t) = ui,j , we consider two
problems.

Problem 1: Consider the problem (16)–(18) for � = 1, P (x) = Q(y) = 0, defined in
Ω = (0,

√
8�) × (0,

√
8�), with initial conditions given by u0(x, y) = sin(x/

√
8) sin(y/

√
8),

u1(x, y) = −(1/2)u0(x, y) and boundary conditions u(x, y, t) = 0 for (x, y) ∈ ∂Ω, t > 0.
The exact solution is given by u(x, y, t) = e−t/2 sin

(
x/
√

8
)

sin
(
y/
√

8
)
.

Problem 2: Consider the problem (16)–(18), for � = 0, P (x) = Q(y) = 1, defined in IR2

with initial condition u0(x, y) = e−(x2+y2) and assuming u(x, y, t) = 0 for any (x, y, t) with

large (x, y). The exact solution is given by u (x, y, t) = (1/
√

1 + 4t)e−((x−Pt)2+(y−Qt)2)/(1+4t).

To have information about the rate of convergence of the numerical method, we present
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Δx = Δy Problem 1 Rate Δx = Δy Problem 2 Rate√
8�/40 0.3700× 10−2 20/40 0.1100× 10−2
√

8�/80 0.9349× 10−3 2.0 20/80 0.2701× 10−3 2.0√
8�/120 0.4156× 10−3 2.0 20/120 0.1198× 10−3 2.0√
8�/160 0.2338× 10−3 2.0 20/160 0.6734× 10−4 2.0√
8�/200 0.1496× 10−3 2.0 20/200 0.4307× 10−4 2.0

Table 1: Errors and rates obtained for t = 1, TOL = 1/N3, T = 20, � = − ln(10−16)/2T ,
computed with the norm ℓ∞. Problem 1: 0 ≤ x, y ≤

√
8�. Problem 2: −10 ≤ x, y ≤ 10.

in Table 1, the ℓ∞ error norm, defined by

∥u− U∥∞ = max
1≤i≤Nx−1,1≤j≤Ny−1

∣u(xi, yj , t)− U(xi, yj , t)∣.

The results show a convergence rate of second order for Problem 1 and Problem 2.

To illustrate the behaviour of the solutions, we consider two additional problems. Both
problems are for � = 1 and different values of P and Q.

Problem 3: We first consider the problem defined in the domain Ω = (0, 1)×(0, 1), with
the initial conditions u0(x, y) = u1(x, y) = 0 and boundary conditions given by u(x, 0, t) = 0,
u(x, 1, t) = 0, u(0, y, t) = sin(�y), u(1, y, t) = 0. In Figure 2 we compare the performance
of the method we are presenting, the Laplace-FV-2D, with the Laplace transform finite
differences method (Laplace-FD-2D). This method is presented in [4] for the one dimensional
case and can be easily extended to two dimensions. We observe the Laplace-FV-2D method
suppresses oscillations easier than the Laplace-FD-2D method.

0
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1
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1

 x y 0
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1

0

0.5

1
0

0.5

1

 x y

Figure 2: Approximate solution of Problem 3 for � = 1, P (x) = 1 and Q(y) = 0 at t = 1.
Computed with Δx = Δy = 0.025. Left: Laplace-FD-2D. Right: Laplace-FV-2D.
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Problem 4: To see how the Laplace-FV-2D method handles a discontinuity at the
initial data, we consider the problem defined in the domain Ω = (0, 4)×(0, 4), with the initial
conditions u0(x, y) = u1(x, y) = 0 and boundary conditions u(x, 0, t) = 0, u(x, 4, t) = 0,
u(0, y, t) = 1, u(4, y, t) = 0. This is illustrated in Figure 3. Although the solution presents
a jump discontinuity in the initial time, the Laplace-FV-2D method performs quite well
without oscillations. The behavior of the solution can be observed as we travel in time.

0 1 2 3 40
2

4
0

1

2

3

 x y 0 1 2 3 40
2

4
0

1

2

3

 x y

Figure 3: Approximate solution of Problem 4 for � = 1, P (x) = 2 and Q(y) = 0. Computed
with Δx = Δy = 0.08. Left: t = 1. Right: t = 2.

4 Final Remarks

We have derived a numerical method to solve a two dimensional hyperbolic problem based
on the Laplace transform and the finite volume method. The full technique can be described
in three steps. First, we apply the Laplace transform to the partial differential equation and
boundary conditions, in order to remove the time dependent terms, yielding a differential
equation in the space variable that depends on the Laplace parameter. Secondly, we solve
the differential equation obtained using a finite volume method. In the end, a numerical
inverse Laplace transform algorithm is used to obtain the final approximate solution in time
and space. It has been shown by the numerical results that this numerical method has accu-
racy of second order, can avoid oscillations and it also deals efficiently with discontinuities
that in the case of hyperbolic problems can be propagated through time.
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Abstract

Linear elements are the major object group represented in maps, and its definition
is usually expressed as a polygonal shape. Roads are the most important manmade
linear elements appearing in cartography, and one of the most important issues which
Mapmakers focus in, particularly its positional accuracy. Nowadays there are a lot of
cartography sources (National and Regional Agencies, digital cartographic companies,
open source organizations, etc), nevertheless the spatial position for the same road can
be slowly, even highly, discrepant from each one of the above mentioned source. One
could expect getting a better accuracy blending the linear data coming from different
sources, i.e., using all the points defining the same road from each cartographic producer.
In our study we used a B-spline least square fit in order to improve the positional
accuracy for the final result.

Key words: mapmarkers, B-spline, least square fit

1 Introduction

There are several approaches to obtain the trace for the roads: photogrammetry, which
is the usual way in medium scale maps, like the MTN25 in Spain (Instituto Geográfico
Nacional, 2000), precise differential GPS (Edelkamp and Schrödl, 2003), repeated large
traces set coming from different sources or users (Li et al., 2012)... The last approach,
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i.e. computing a representative axis from a large set of samples is denoted mining data
processing, and particularly in our case is denoted as mining spatial data processing (Lima
and Ferreira, 2009). Multiple GPS traces is the preferred dataset to be processed in the axis
road determination (Biagioni and Eriksson, 2012,). The methods proposed to estimate the
representative axis come from the cluster approach (Edelkamp and Schrdl, 2003) up to the
multiples hypothesis for fusioning lines (Schuessler and Axhausen, 2009), passing through
cutting the traces set transversely and computing the centroid (Zhang et al., 2010). Any
method uses an approach fitting a B-spline to the whole points cloud composed by the
traces set (multiple traces captured by a low precise GPS with spatial positional errors
around 5 m). We think the main raison because researchers didnt used a B-spline fit is the
difficult to program an algorithm, which admits a big points cloud dataset, which, a priori,
are unordered.

2 Material, methodology and results

Our data set is composed by 140 road traces defined each one by a polyline. Each trace was
captured by a user GPS with spatial accuracy around 5 m. The kind of road we studied
can be considered as a medium mountain one. As we can see in figure 1 the road is highly
sinuous with some pieces of curves characterized by high curvature. The step we address in
order to get a suitable adjustment was as follow:

• Selecting a piece of the same area from each one of the 140 road traces.

• Dividing each piece in the same number of segments, each one by 5 m approximately,
so that the resulting points on one line can be seen as the homotopy transformation
from whatever of the other lines.

• Grouping the homotopic points in differentiated subsets.

• Fitting a 3D curve in the space of cubic splines by least square method taking into
account that each point in a differentiated subset has the same evaluation value. In
this linear space we used the B-spline basis associated with the extended partition
with multiple knots of a uniform partition of the domain of the parametrized curve
(de Boor, 2001).

After fitting the parametrized curve expressed in terms of B-spline, the estimated road
axis looks pretty representative for the whole traces set (see figure 1). Previously we had
experienced with other methods based on mean values which, although they were suitable,
they also produce a few undesirable corners. With the method exposed in this study that
problem doesnt appear.
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Figure 1: Fitted spline curve resulting: left image contains the B-spline in red and the
control points are in blue; central image is a horizontal view including the points cloud in
yellow; the right image is a perspective view with the points cloud in green
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Abstract

When simulating natural hazards, data input uncertainty should be considered due
to its impact into the prediction results. A way to overcome this problem consists of
calibrating inaccurate input data applying computational intensive methods. However,
when dealing with natural disasters, it is compulsory to provide an accurate hazard
evolution forecast on time. In this paper, a multi-threaded Genetic Algorithm is pro-
posed to exploit multi-core platform in order to accelerate a forest fire spread prediction
system. The algorithm is parallelized using an hybrid MPI-OpenMP approach. The
proposed solution allows to keep bounded the prediction time to the predefined time
prediction requirements by including time-aware population classification, in order to
allocate the most appropriate number of cores to each individual to achieve the preset
deadline.

Keywords: Multi-core platforms, forest fire spread prediction, Hybrid MPI-OpenMP
scheme, time assessment, core allocation

1 Introduction

A natural hazard is a possibility of a natural event that causes harm to humans. When
this natural hazard causes unacceptable large numbers of fatalities and/or overwhelming
property damage is a natural disaster. Wildfires are natural hazards with a high potential to
become a natural disaster. For that reason, there exist a large scientific community studying
such a phenomena. When dealing with an ongoing natural disaster such as a forest fire,
a critical point to considering is the response time of the emergency systems and their
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ability to act in the most efficient way. Experience on fire fighting and forest fire behaviour
knowledge are the basic key point used to decide how to tackle an ongoing fire. In order to
help fire fighting decisions, forest fire spread simulators can became a relevant tool to assess
decision support systems [1]. However, to be effective, the forecasted forest fire behaviour
must be delivered in advance to the predicted fire evolution. Consequently, any forest fire
spread prediction system is guided by real time constraints to be useful. Furthermore, and
not dismissible, there exists an inherent error related to any natural hazard prediction due
to, among others, the uncertainty in the data needed to perform the forecast. For the
particular case of forest fire, we can find in the literature different approaches to tackle
these problems ranging from applying ensemble strategies to soften the uncertainty input
parameters effects [2] to apply Kalman filter to certain input variables to tune their values
[3]. Most of these approaches do not care about response time.

In this work, we focus on strategies to relieve the uncertainty effects due to the impreci-
sion of input simulator data by ensuring a time limit. For that purpose, we used the so call
Two-Stage prediction scheme, which is composed of a Calibration stage where the input
parameters values are tuned to better reproduce the observed past behaviour of the fire,
and those calibrated parameters are then used in the Prediction stage to forecast the forest
fire evolution [4]. As a calibration strategy the Two-Stage prediction scheme uses a Genetic
Algorithm (GA). However, although GAs are powerful and robust optimization techniques
because of their independence of the initial guess and their few constrains on the solution do-
main, their main drawback is their overall run time which can easily become unacceptable.
Furthermore, forest fire simulation time for a certain combination of the input parameters
set, can vary from minutes to hours for the same topographic area. Consequently, it arises
the need of finding a trade-off between prediction accuracy achieved thanks to the calibra-
tion strategy and the time incurred in reaching this prediction improvement. To harmonize
quality and time, we propose a multi-threaded Genetic Algorithm to exploit multi-core
platform in order to accelerate the Two-Stage forest fire spread prediction system. The
prediction scheme has been parallelized using an hybrid MPI-OpenMP approach, where a
time-aware core allocation scheme has been implemented to ensure a simulation time limit
for each executed GA individual. Thus, the proposed solution allows to keep bounded the
prediction time to the predefined time prediction requirements, enabling the capacity of
deliver forest fire behaviour information useful to the wildfire analysts in charge of the fire
management.

In the next section the hybrid MPI-OpenMP prediction framework is described. Section
3, introduces the time aware core allocation scheme. The application of the improved
prediction scheme to a real case is analyzed in section 4 and, finally, the main conclusion of
this work are sited in section 5.
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Figure 1: 2 stage prediction method

2 Hybrid MPI-OpenMP Master/Worker Prediction Scheme

A simulator independent data-driven prediction scheme is used to calibrate the input data
set provided to a certain simulator [4]. For this purpose, a previous calibration step is
introduced, as can be seen in figure 1. So, the input data set used for the Prediction stage
is calibrated in this first stage for each Prediction step. Based on the hypothesis that
the meteorological conditions will not suddenly change from the calibration stage to the
prediction stage, the calibrated data set could be used to produce a more accurate prediction.
Because of their outstanding results within this framework [5], this work is based on the use
of Genetic Algorithm (GA) as calibration technique. The algorithm starts from an initial
random population of individuals, each one representing a scenario to be simulated. An
individual is composed of a set of different genes that represent input variables such as dead
fuel moisture, live fuels moisture, wind speed and direction, among others.

Each individual is simulated and it is evaluated comparing the predicted and real fire
propagation by estimating the fitness function (also called error function) described in
equation 1. This fitness function computes the symmetric difference between predicted and
real burned areas divided by actual real spread considering a cell based area description.

Difference =
UnionCells− IntersectionCells

RealCells− InitCells
(1)

In equation 1, UnionCells is the number of cells which describe the surface burned con-
sidering predicted fire and the real fire. IntersectionCells is the number of cells burned in
the real map and also in the predicted map, and RealCells are the cells burned in the real
map. InitCells is the number of cells burned at the starting time. This difference takes into
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account the wrong predicted burned cells (false alarms) and the real burned cells that were
not predicted (misses).

According to this fitness function the whole population is ranked and the genetic opera-
tors selection, elitism, mutation and crossover are performed over the population, producing
an evolved population which will have, at least, the best individual of the last generation
(elitism). The new population is then evaluated in the same way. This iterative process
allows us to find a good input parameter set, but it involves high computational cost due to
the large amount of simulations required. Therefore, it is essential to speed up the execution
keeping the accuracy of the prediction. For this reason, an implementation of the Two-Stage
methodology has been developed using High Performance Computing techniques.

Since the GA fits the Master/Worker paradigm, an MPI implementation has been
developed. At the first stage, the master node generates an initial random population which
is distributed among the workers. Then, the workers simulate each individual and evaluate
the fitness function. The errors generated by the workers are sent to the master which
sorts the corresponding individuals by their error before applying the genetic operators and
producing a new population.

This iterative process is repeated a fixed number of times. The last iteration (gener-
ation) contains a population from which the best individual is taken as the best solution,
and then it is used in the Prediction stage.

Since every simulation can be carried out in a parallel way, the individual whose simu-
lation takes longer determines the elapsed time for that particular generation. In order to
shorten simulation times, FARSITE has been analyzed with profiling tools such as OmpP[6]
and gprof [7] to determine which regions of the code could be parallelized with OpenMP.
The result of such analysis determined the particular loops that could be parallelized using
OpenMP pragmas. The results of such parallelization have been presented in [8]. The par-
allelized loops represents about 60% of one iteration execution time. It means that 40% of
the iteration execution time is sequential and it implies that the speed up is not linear, but
is limited by such sequential part. Figure 2 sketches the implemented Hybrid MPI-OpenMP
scheme.

3 TAC-Two-Stage prediction scheme

One critical point when dealing with a real hazard is the response time. In order to be
operative, any forecast system must release its predictions previously to the forecast event.
Therefore, it is crucial to be able to keep the execution time of any prediction scheme
inside a determined time bounds. In the case of the Two-stage prediction approach, the
most time consuming element is the Calibration stage. This stage is an iterative process
where at each iteration a wider set of forest fire spread simulations must be executed. Thus,
assuming that all simulations are run using a single core (serial execution) and also assuming
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Figure 2: Hybrid MPI-OpenMP master/worker prediction scheme

that there are enough cores in the system to execute all populations members in parallel,
the simulation that lasts longer will determine the duration of the corresponding iteration.
When extrapolating this fact to all GA iterations, one comes out with a total calibration
execution time equal to the sum of the larger simulation time existing at each iteration.
Therefore the total execution time of the GA (ttotal) could be evaluated using equation 2,
where NGen is the number of generations performed of the GA, tInd stands out from the
execution time of a given individual and PGen is the set of individuals (population) at the
genth generation.

ttotal =

NGen∑
Gen=1

maxGen(tInd) | ∀Ind ∈ PGen (2)

This problem is not dismissible because as it has been stated in previous works [9] the
execution time of a single simulation on the same map and with the same simulation time
horizon can vary from seconds to several minutes or even hours depending on the input
settings of the fire spread simulator. However, if one wants to be able to deliver forest fire
spread predictions within certain time ranges, we need to include to the system the ability
of anticipating the simulation execution time when a certain input settings are fitted to
the simulator without running that simulation. This ability would enable the capacity of
limiting the total execution time of the GA by limiting the execution time of each individual
iteration.

Since this knowledge is not directly available from the direct analysis of the underlying
input data values, we rely on the characterization methodology described on [9]. For a
given topographic area, this methodology has the ability to assess in advance the execution
time of the forest fire spread simulation associated to a certain input parameter settings.
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Class Cores Time limits

A 1 0 < ts ≤ tmaxGen

B 2 tmaxgen < ts ≤ 1.42 ∗ tmaxGen

C 4 1.42 ∗ tmaxGen < ts ≤ 1.81 ∗ tmaxGen

D 8 1.81 ∗ tmaxGen < ts ≤ 2.1 ∗ tmaxGen

Table 1: Time limit classes for a time constraint of tmaxgen

This methodology takes advantage of the artificial intelligence field to generate a decision
tree, which is able to classify the individuals of a new generated population into time
classes. This classification is based on the serial version of the FARSITE simulator and,
therefore, it was not able to exploit multi-core architecture. As it has been stated in the
previous section, FARSITE has been parallelized using OpenMP pragmas. The parallelized
part of FARSITE represents approximately 60% of the total execution time, meanwhile
40% of the execution time corresponds to a sequential part, which cannot be reduced by
the implemented parallelization. Therefore, equation 3 expresses the theoretical minimum
execution time we could obtain using this parallelization as a function of the number of
cores (NCores), where ts stands for the execution time of the serial version.

tpar(NCores) = 0.4 ∗ ts +
0.6

NCores
∗ ts (3)

Furthermore, dealing with strict real time constraints implies to set up a time limit to the
Calibration Stage and, consequently, to each GA iteration. Therefore, applying the FAR-
SITE multi-threaded version and stating that the (tpar(NCores)) determines the maximum
GA iteration time exploiting the parallel FARSITE version, one can state the maximum
serial time permitted to accomplish a generation limit time (tpar(NCores)) depending on the
number of cores (see equation 4).

ts =
tpar(NCores) ∗NCores

0, 6 + 0, 4 ∗NCores
(4)

Therefore, assuming a maximum GA generation time of tmaxGen and four available core
allocation configurations: 1, 2, 4 and 8 cores per FARSITE simulation, one would be able
to define four time execution classes with their respective time limits as is shown in table
1. At that point, the above mentioned characterization methodology based on decisions
tree to assess in advance the serial execution time of a given FARSITE execution, could be
redefined to be able to classify the individuals of a GA population according to the new time
limit classes, which are associated to the number of core available to run the simulation.
Therefore, the core allocation scheme become time constraint aware. That means, that the
number of cores allocate to a given parallel FARSITE simulation will ensure to fit in with
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Ignition Point 7-22-2012 12h
Real 7-22-2012 20h
Real 7-23-2012 13h

Jonquera FARSITE LCP

Figure 3: La Jonquera forest fire

the predetermined deadlines. This Time Aware Classification (TAC) approach is called
TAC-Two-Stage Prediction Scheme. Under this scheme, any serial FARSITE simulations
whose estimated prediction time goes beyonds the time limit 2.1 ∗ tmaxgen, will not be
executed because there no exist any core allocation configuration that could guarantee to
deliver the corresponding simulation result on time.

In the next section, the proposed Time Aware Classification is tested on a real case to
verify the ability of this proposal to cope with the real needs of wildfire analyst during a
real hazard.

4 Study case

The Mediterranean area is one of the European regions most affected for forest fires during
high risk seasons. The selected study case corresponds to a region within the Mediterranean
coast that is affected for forest fires almost every year. In particular, we used a fire that
occurred in La Jonquera (North-East of Catalonia, Spain) in July 2012. This hazard dev-
astated near 13,000ha and two people died. Figure 3 shows the burn area associated to
this forest fire for two different time instants during the fire occurrence. The computing
platform used to test the proposed scheme consists of two PowerEdge C6145 nodes. Each
node has 4 AMD OpteronTM6376 of 16 cores with 128GB of DDR3 1600 MHz.

In order to evaluate the Two-Stage prediction scheme including TAC, we have self-
imposed a calibration time of 3 hours. In fact, this deadline is based on the fire perimeters
acquisition frequency provided by the Terra and Aqua NASA’s satellites after being pro-
cessed by EFFIS (European Forest Fire Information System)[10].

As it has been previously described, the Calibration stage implements a GA to reduce
the prediction inaccuracy due to the input data uncertainty. The GA population size has
been set-up to 64 individuals and the GA has been iterated ten times. Therefore, since the
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Figure 4: Execution tracing of calibration stage allocating one core per individual

calibration stage has been limited to last 10800 seconds, the maximum execution time of
one GA iteration is limited to 1080 seconds. Then, assuming the best executing scenario
where all GA individual are executed in parallel, the maximum serial time that should
be executed at each GA iteration should last 1080 seconds. However, as it is shown in
figure 4, when no time aware mechanism is introduced to the GA Calibration-stage, the
unpredictable nature of GA population members, generates GA total execution time that
widely exceeds the self-imposed time constraints. In particular, the total time is 30485
seconds what represents almost tree times the predefined time limit (10800 seconds). The
execution trace depicted in figure 4 has been obtained from running the complete prediction
system using a master/worker scheme with 8 workers, each one having eight core assigned.
Therefore, the total number of cores used for this case is 64 cores and each one executes
a single serial FARSITE simulation. As we can observe, this scheme is seriously penalized
when one individual simulation lasts more than 1080 seconds, as it happens, for example
at iteration 5. In this case, worker 7 has 8 serial simulations allocated, each one running
on a single core. One of these simulations lasts 3600 seconds, limiting the corresponding
GA iteration to this time. The proposed Two-Stage prediction scheme with Time Aware
Classification (TAC-Two Stage) exploits the FARSITE OpenMP paralellization together
with the Time Aware Classification described in section 3, to accomplish the predefined
time constraints. In the case study, the time of each GA iteration has been set up to 1080

c©CMMSE ISBN: 978-84-616-9216-3Page 110 of 1485
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Class Cores Time limits

A 1 0 < ts ≤ 1080

B 2 1080 < ts ≤ 1547

C 4 1547 < ts ≤ 1966

D 8 1966 < ts ≤ 2273

Table 2: Time limit classes for a for a time constraint of 1080 seconds.

seconds. Then, assuming that the computational platform has enough cores to be able to
run all GA individuals (64 individuals) in parallel, independently on the number of cores
allocated to each one, the maximum parallel time of one simulation is limited by 1080
seconds. Then, substituting the values in equations 3 the resulting equation corresponds to
equation 5 and, consequently, the resulting serial time depending on the number of cores
allocates is the one stated in equation 6.

1080 = 0.4 ∗ ts +
0.6

NCores
∗ ts (5)

ts =
NCores ∗ 1080

0, 6 + 0, 4 ∗NCores
(6)

Therefore, the resulting time limits from the serial times allowed to be executed depending
on the number of cores used are the ones shown in table 2. Any execution of the forest fire
simulator, which estimated serial execution time lasts more than 2273 seconds will be killed
and, consequently, eliminated from the calibration process. In order to keep the population
size constant, those killed individuals are replaced by new individuals at run time for not
to penalize the GA search. The previous assumption of using enough cores to be able to
run all simulations in parallel in one GA iteration, should be also accomplish when running
the same experiment but using the TAC-Two-Stage prediction scheme. For that reason,
the number of workers has been duplicated to be able to use 128 cores. In figure 5, we
can see the GA evolution and the execution of the individuals for all generations taking
into account the number of cores allocated to each one. As wider the line is, more cores
are used for the corresponding FARSITE simulation. For example, at the first iteration,
the worker labeled worker 1 has assigned one single FARSITE simulation using 8 cores,
meanwhile worker 9 has assigned 4 FARSITE simulations running on 2 cores each. As we
can observed, the self-imposed limit of 10800 seconds for the Calibration stage has been
accomplished. However, one concern that could arise from this approach is directly related
to the error achieved at the end of the calibration stage. Since individuals that are classified
as too long (more than 2273 seconds for this particular case) are discarded and substituted
for new individual, one can be upset about the loss of diversity in the GA population and
how it affect to the final result. However, as it is shown in figures 6, where the error
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evolution through time is depicted for both approaches, not using TAC and including TAC
in the prediction scheme, the final result is almost the same in terms of error and, as it is
desired, the time has been controlled from 30485 to 10121 seconds. Therefore, to be able to
assess in advance an interval execution time (class) for any FARSITE simulation, enables
the Two-Stage prediction system the capacity of classifying the GA individual according
to their estimated elapsed time. This feature permits to include core allocation strategies
with the aim to accomplish real time constraints. This preliminary experiments show the
viability of this proposal giving light to new point to explore such as the inclusion of a
resource manager, which keeps track of having a good efficiency of the system.

5 Conclusions

In this work we describe time-aware parallel forest fire spread prediction scheme. The pro-
posed TAC-Two-Stage prediction approach exploits the implemented multi-thread FAR-
SITE version to fit the prediction time within a present time limit. To achieve such a goal,
a time-aware core allocation strategy has been included in the basic Two-Stage prediction
scheme, which is able to estimate in advance the maximum execution time of a given simu-
lation and, consequently, determine at run time, how many core allocates to each simulation
to accomplish the desired time constraints. This improvement enables the system to be able
to deliver prediction results under real time constraints provided by the forest fire manage-
ment services. The proposed strategy has been proven using a real forest fire that took
place on Catalonia on July 2012. This preliminary results denote the ability of the system
to bound the total prediction time to the predefined time limit without loosing accuracy
compared to the prediction results provided by the system without incorporating any time-
aware strategy. The described time-aware core allocation strategy relies on the ability of
having an accurate classification and, on the fact that all simulations can be executed on
parallel. Current work is performed to improve efficiency by keeping time constraints when
the computational platform has not enough core to ensure the whole parallelism within one
GA iteration.

The time-aware core allocation policy has been implemented with the capability to
change the generation time constraint during the calibration execution what enables new
possibilities to the system such as apply strategies to avoid any idle time in the worker
processes and incorporate the ability to dynamically either enlarge or shrink the populations
size as it is needed to ensure the time constraints.
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Abstract

A mathematical model to simulate drug delivery from a vicoelastic erodible matrix
is presented in this paper. The drug is initially distributed in the matrix which is
in contact with water. The entrance of water in the material changes the molecular
weight and bulk erosion can be developed depending on how fast is this entrance and
how fast degradation occurs. The viscoelastic properties of the matrix also change in
the presence of water as the molecular weight changes. The model is represented by
a system of quasi linear partial differential equations that take into account different
phenomena: the uptake of water, the decreasing of the molecular weight, the viscolestic
behaviour, the dissolution of the solid drug and the delivery of the dissolved drug.
Numerical simulations illustrating the behaviour of the model are included.

Key words: dissolution, diffusion, molecular weight, bulk erosion, vicoelastic poly-
mers, IMEX method

1 Mathematical model

We consider a biodegradable viscoelastic polymeric matrix, Ω ⊆ R2, with boundary ∂Ω
and containing a limited amount of drug. The matrix enters in contact with water and
as the water diffuses into the matrix, a hydratation process, that modifies the viscoelastic
properties of the polymer, takes place. The molecular weight decreases and the drug starts
to dissolve.
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In [13] a system that describes the sorption of water, by a loaded erodible matrix and
the release of drug was proposed. However the viscoelastic properties of the matrix were not
considered. In this paper we present a general model, which generalizes the model in [13],
by considering the viscoelastic behaviour of the polymer (see for instance [1],[2], [6],[10],
[14], [16]).

We consider a system of partial differential equations (PDE’s) that describe the whole
process: the entrance of water into the polymer and its consumption in the hydrolysis
process; the decreasing of the molecular weight; the evolution of the stress and strain; the
dissolution and the diffusion of the dissolved drug. The system reads

∂CW
∂t

= ∇ · (DW∇CW ) +∇ · (Dv∇σ)− kCWM in Ω× (0, T ],

∂M

∂t
= −kCWM in Ω× (0, T ],

∂σ

∂t
+
E(M)

µ(M)
σ = −E(M)

∂CW
∂t

in Ω× (0, T ],

∂CS
∂t

= −kdisCSnCAnCWn in Ω× (0, T ],

∂CA
∂t

= ∇ · (D(M)∇CA) + kdisCSnCAnCWn in Ω× (0, T ].

(1)

In (1) CW , CS and CA represent the concentration of water, solid drug and dissolved drug
in the polymeric matrix, respectively, M is the molecular weight of the polymer and σ is
the stress response to the strain exerted by the water molecules.

The first diffusion-reaction equation of (1) describes the diffusion of water into the
matrix and its consumption in the hydrolysis. In this equation DW represents the diffusion
tensor of water in the polymeric matrix. We consider an isotropic medium where the
diffusion tensors are diagonal with equal diagonal elements. For example, DW = DW I,
where I is the 2 × 2 identity matrix. The viscoelastic opposition to the water entrance is
represented by ∇· (Dv∇σ) where Dv is a viscoelastic diffusion tensor. This term states that
the polymer acts as a barrier to the diffusion of water into the polymeric matrix. The term
−kCWM represents the consumption of water in the hydrolysis of the polymer([7]).

Since the water diffuses into the polymeric matrix the molecules of water react with the
polymer and the bounds between the polymeric chains are broken leading to a decrease in
the molecular weight of the matrix. This process is described by the second equation of (1)
([13]).

We assume that the viscoelastic behaviour of the polymer can be modelled by Maxwell
fluid model

∂σ

∂t
+
E

µ
σ = E

∂ε

∂t
, (2)

where E represents the Young modulus of the material, µ is its viscosity and ε is the strain
produced by the water molecules. We assume that the strain and the concentration of water
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are proportional, that is, there k1 > 0 such that ε = k1CW . As the polymer acts as a barrier
to the entrance of the water, then σ and ε are of opposite sign, and a minus sign should be
considered in the right hand side of (2) ([7]).

Based on the results presented for instance in [1], [2], [6], [10], [14] and [16], we assume
that the Young modulus and the viscosity depend on the molecular weight. In fact the
Young modulus varies significantly in a biodegradable polymeric matrix due to the het-
erogeneous nature of the hydrolysis reaction that leads to the cleavages of the polymeric
chains. As the degradation processes evolves, the Young modulus decreases ([12]). More-
over a functional relation between the viscosity and the molecular weight represented by
Mark-Houwink equation ([11]) is applied. The expressions used to represent the behaviours
of E(M) and µ((M)) are E(M) = E0M

α and µ(M) = µ0M
β where E0, µ0, α and β are

constant ([11, 12]).
The evolution in time of the solid drug is described by the fourth equation of (1)

where kdis is the dissolution rate, CSn is the normalized concentration of solid drug in the
polymeric matrix, CAn is the difference between the dissolved drug concentration and its
maximum solubility (CAmx), normalized by CAmx, CWn is the normalized concentration of

water (
CW
CWout

). In this last expression CWout is the concentration of water outside of the

polymeric matrix. The evolution of the concentration of dissolved drug in the matrix is
defined by the last equation of (1) where Fick’s law and the dissolution source were taken
into account.

As the degradation occurs the molecular weight decreases and the permeability of the
polymer increases. This leads to an increasing of the diffusion coefficient ([15]) that can be
represented by

D(M) = DAe
k̄
M0−M

M0 ,

where DA is the diffusion coefficient of the drug in the non hydrolyzed polymer, M0 is its
initial molecular weight and k̄ is a positive constant.

System (1) is completed with the initial conditions

CW (0) = 0 in Ω,

σ(0) = σ0 in Ω,

M(0) = M0 in Ω,

CS(0) = CS0 in Ω,

CA(0) = 0 in Ω,

(3)

where σ0 represents the initial stress of the polymer and CS0 is the initial concentration of
solid drug in the polymeric matrix.

Degradation of the polymeric matrix can be one of the two types: surface and bulk.
Surface degradation occurs because degradation is faster than the entrance of water in
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the system. In this case the cleavage of polymeric chains occurs mainly in the outermost
polymeric layers. Bulk degradation occurs when the degradation is slower than the water
uptake. The entire system is rapidly hydrated and polymeric chains are cleaved through all
the polymeric structure ([15]).

In what follows we assume that bulk degradation occurs and that the physical domain
maintained during all diffusion process. The entrance of water occurs due to the difference
of concentrations in the polymer and in the water. Then the system (1) and the initial
conditions are coupled with the following boundary condition{

J · η = Ac(CW − CWout) on ∂Ω× (0, T ],

CA = 0 on ∂Ω× (0, T ],
(4)

where J represents the flux defined by J = −DW∇CW − Dv∇σ, η is the unit outward
normal to ∂Ω, Ac is the permeability constant and CWout denotes the water concentration
out of the polymeric matrix.

The aim of this paper is to present a numerical method to solve (1), (3) and (4) and
to study the qualitative behaviour of the numerical solution. In Section 2 Implicit-Explicit
method (IMEX) is introduced and its convergence is numerically studied. The qualitative
behavior of the solution is analyses in Section 3. Finally in Section 4 we present some
conclusions.

2 Numerical method

In this section we introduce a finite difference method to solve (1), (3), (4). Let Ω be the
square (0, L) × (0, L), where L represents the thickness of the polymer. We fix h > 0 and
we define in Ω the grid

Ωh =
{

(xi, yj), i, j = 0, . . . , N, x0, y0 = 0, xN , yN = L,

xi − xi−1 = h, yj − yj−1 = h, i, j = 1, . . . , N
}
.

By Ωh and ∂Ωh we represent the mesh nodes of Ωh that are in Ω and on the boundary
∂Ω, respectively. Let uh and vh be grid functions defined in Ωh. To discretize the spatial
derivatives we introduce the second order finite difference operator

D∗
x

(
a(vh)D−xuh

)
(xi, yj) =

1

h

(
a(Ah,xvh(xi+1, yj))D−xuh(xi+1, yj)−a(Ah,xvh(xi, yj))D−xuh(xi, yj)

)
,

where D−x denotes the backward finite difference operator with respect to the x-variable
and Ah,x is the following average operator

Ah,xvh(x`, yj) =
1

2

(
vh(x`, yj) + vh(x`−1, yj)

)
.
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The finite difference operator D∗
y

(
b(vh)D−yuh

)
(xi, yj) is defined analogously considering

the backward finite difference operator with respect to the y-variable, D−y, and the average
operator Ah,y. If B is a diagonal matrix with entries a and b we use the following notation

∇∗
h.
(
B(vh)∇huh

)
= D∗

x

(
a(vh)D−xuh

)
+D∗

y

(
b(vh)D−yuh

)
.

In [0, T ] we consider the following time grid{
tn, n = 0, . . . ,M∆t, t0 = 0, tM∆t

= T, tn − tn−1 = ∆t, n = 1, . . . ,M∆t

}
.

By D−t we denote the backward finite difference operator with respect to the variable t.
Let pnh(xi, yj) stands for an approximation of p(xi, yj , tn).

To solve numerically the initial boundary value problem (1), (3), (4) we consider the
IMEX method defined by

D−tC
n+1
W,h = ∇∗

h.
(
DW∇hCn+1

W,h

)
+∇∗

h.
(
Dv∇hσnh

)
− kCnW,hMn

h in Ωh

D−tM
n+1
h = −kCn+1

W,hM
n
h in Ωh

D−tσ
n+1
h +

E0(Mn+1
h )α

µ0(Mn+1
h )β

σnh = −E0(Mn+1
h )αD−tC

n+1
W,h in Ωh

D−tC
n+1
S,h = − kdis

CS0CAmxCWout
CnS,h(CAmx − CnA,h)Cn+1

W,h in Ωh

D−tC
n+1
A,h = ∇∗

h.
(
D(Mn+1

h )∇hCn+1
A,h

)
+

kdis
CS0CAmxCWout

Cn+1
S,h

(
CAmx − CnA,h

)
Cn+1
W,h in Ωh

(5)
for n = 0, . . . ,M∆t − 1, 

C0
W,h = 0 in Ωh

σ0
h = σ(0) in Ωh

M0
h = M(0) in Ωh

C0
S,h = CS(0) in Ωh

C0
A,h = 0 in Ωh

(6)

and 
Jn+1
h .η = Ac(C

n+1
W,h − CWout) on ∂Ωh

Cn+1
A,h = 0 on ∂Ωh,

(7)

where

Jn+1
h = −DWDηC

n+1
W,h −DvDησ

n
h ,
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and Dη is the boundary operator

Dηvh(xi, yj) =


−Dxvh(x0, yj), i = 0
D−xvh(xN , yj), i = N
−Dyvh(xi, y0), j = 0
D−yvh(xi, yN ), j = N

for (xi, yj) ∈ ∂Ωh.

3 Qualitative behaviour of the model

In this section we illustrate the influence of the parameters on the behaviour of the model.
The values of the parameters are present in Table 1 and some of them were obtained from
[13]. We start by analyzing numerically the convergence properties of the numerical scheme.

Parameter Value Parameter Value
DA 5.94× 10−2

Dv 2× 10−2

DW 4.61× 10−2

k 1× 10−2

σ0 5× 10−2

CAmx 2.184× 10−2

CS0 288.42× 10−2

β 0.7
∆t 1× 10−4

E0 1× 10−3

µ0 1× 10−1

kdis 4.6× 10−2

M0 8.3× 10−2

CWout 5.55× 10−1

Ac 1× 10−2

α 0.2
L 1
h 0.01

Table 1: Parameter values used for the simulation.

Table 2 contains the errors for CW and CA defined by

Error(C) = max
n=1,...,M∆t

max
Ωh

|Cnh − C
n
h|,

where C = CW , CA and C
n
h is a reference solution obtained with a fine grid defined by

∆t = 10−5 and h = 0.001.

h Error(CW ) Error(CA)

0.01 0.0048 5.1432× 10−8

0.005 0.0032 4.8043× 10−8

0.004 0.0029 4.4917× 10−8

0.002 0.0017 2.9373× 10−8

Table 2: Errors for different step-sizes in space.
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The results of Table 2 suggest the convergence of the IMEX method.

Let the mass of water and drug, inside the matrix, be defined by

Mi(t) =

∫
Ω
Ci(t)dxdy,

where i = W,A, for t ∈ [0, T ]. A numerical approximation for Mi(t) is computed with the
trapezoidal rule.
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Figure 1: Influence of Dv on the mass of the water.

In Figure 1 we plot the dependence on the viscoelastic diffusion coefficient Dv of the
mass of water. We observe that the polymer acts as a barrier to the entrance of water
into the polymer. In other words, the non Fickian flux −Dv∇σ decreases the Fickian flux,
−DW∇CW . According to this description an increase in Dv leads to a decrease of MW .

The influence of the Young modulus E on MW is presented in Figure 2 (left). near
t = 2. It is well known that the crosslink density of the polymer is proportional to the
Young modulus E. Consequently as this constant increases the resistance of the polymer
to the entrance of water also increases leading to a decreasing of the mass of water.

The influence of the polymer degradation rate, k, is presented in Figure 2 (right). As
expected, if the degradation rate increases, then the delivery rate of the dissolved drug also
increases.

The behaviour of the mass of dissolved drug is presented in Figure 3, for different
thickness of the polymer. We observe that the maximum value of the mass of dissolved
drug in thinner polymers is higher and less time is required to achieve this maximum.

In Figure 4 the mass of water inside the polymer, for different values of L, is plotted.
In the thinner polymer more time is required for the mass to reach the steady state. We
also observe that the value of the steady state in the polymer with L = 0.1 is 0.0555 while
in the polymer with L = 0.5 is 0.2769.
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Figure 2: Mass of water for different E’s (left); concentration of dissolved drug CA for
different k (right).
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Figure 3: Mass of dissolved drug inside the polymer with L = 0.1 (left) and L = 0.5 (right).
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Figure 4: Mass of water inside the polymer with L = 0.1 (left) and L = 0.5 (right).
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Figure 5: Concentration of water for different times.
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Figure 6: Concentration of solid drug for different times.
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Figure 5 illustrates the behavior of the concentration of water into the polymeric matrix
at different times. We observe that the concentration increases as time increases and the
behavior is homogeneous since the diffusion coefficient is constant.

The concentration of solid drug and dissolved drug, respectively, at different times are
shown in Figures 6 and 7. Te regions where the concentration of water is higher, correspond
to regions where the concentration of solid drug is lower. We also note that when the
concentration of solid drug decreases, the concentration of dissolved drug increases.
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Figure 7: Concentration of dissolved drug for different times.

4 Conclusions

In this paper we describe a process of sorption of a solvent by a biodegradable polymeric
matrix, when bulk erosion occurs, and the simultaneous release of a drug. Numerical results
that highlight the whole process are presented. These results are physically sound. The
influence of the crosslinking density of the polymer is shown to delay the drug release. In fact
a larger Young modulus exerts a larger opposition to the solvent penetration. Bulk erosion
which is governed by the degradation rate speeds up the release of drug. The dependence
on the dimensions of the matrix is also illustrated.

The theoretical study of the initial boundary value problem (1), (3) and (4) will be
object of a future work. We intent also to analyse the occurrence of surface degradation.
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Abstract

In this paper we study and compare the performance of approximate confidence
intervals for a given parametric function based on different asymptotic approaches when
sampling from partially non-regular log-exponential models. Specifically, we consider
Wald-Type, Score and Likelihood-Ratio-Test intervals.
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1 Introduction

In this paper we consider partially non-regular log-exponential models. On the one hand, the
term partially non-regular was proposed by Dubinin and Vardeman [3] to deal with para-
metric models involving regular and non-regular estimators for inferential purposes. On the
other hand, the term log-exponential models refers to positive random variables such that
the logarithm transformation allows us to apply results from the two-parameter exponen-
tial distribution. In this setting the point is that, unlike regular models extensively studied
in the literature, the mixture of regular and non-regular estimators leads to complications
with respect to inferential purposes. Recently, Barranco-Chamorro and Jiménez-Gamero
[2] got approximations to the moments and the different possibilities for the limiting distri-
butions of the maximum likelihood estimator (MLE) of a given parametric function when
sampling from these distributions. In this work we study other asymptotic approaches to
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deal with inferential issues in these models. Specifically, we consider Wald-Type, Score
and Likelihood-Ratio-Test methods to obtain asymptotic intervals of a given parametric
function. The performance of these methods is compared through simulations.

Next we introduce some notation and a brief summary of results in the two-parameter
exponential distribution. Our results are also applicable to the Pareto and Power-Function
distributions.
Definition 1. A random variable X follows a two-parameter exponential distribution,
E(θ, σ), if its probability density function is

f(x) =
1
σ

e−(x−θ)/σI[θ,+∞)(x), (θ, σ) ∈ Θ = IR× IR+. (1)

θ is a location parameter that also determines the support of the distribution and σ is a
scale parameter.

Given a simple random sample of size n from (1), the MLEs of θ and σ are θ̂n = X(1) =
min1≤i≤n{Xi} and σ̂n = X̄ −X(1).

θ̂n is non-regular for inferential purposes whereas σ̂n is regular.
For a real-valued function of the MLEs, h, sufficiently smooth, h(θ̂n, σ̂n), we got the

limiting distribution (ld) of h(θ̂n, σ̂n) in [2]. It is given in the following theorem.
Theorem 1. (Limiting distributions of h(θ̂n, σ̂n).) Let h be a parametric function admitting
a first order Taylor expansion at (θ, σ) ∈ Θ. If D2h(θ, σ) 6= 0 at (θ, σ) then

√
n

τ̂n

{
h(θ̂n, σ̂n)− h(θ, σ)

}
L−→ Z, where Z ∼ N(0, 1), (2)

D2h(θ, σ) denotes the first partial derivative of h with respect to σ evaluated at a given
(θ, σ) ∈ Θ, i.e. D2h(θ, σ) = (∂/∂σ)h(θ, σ), and τ̂n is a consistent estimator of σD2h(θ, σ).

2 Methods

In this section we study and compare the performance of approximate confidence intervals
for a given parametric function based on different asymptotic approaches. Specifically, we
consider Wald-Type, Score and Likelihood-Ratio-Test intervals.

Wald-type intervals From result given in Theorem 1, this method proposes the following
100(1− γ)% asymptotic confidence interval for h(θ, σ)(

h(θ̂n, σ̂n)− z1−γ/2
τ̂n√
n

, h(θ̂n, σ̂n) + z1−γ/2
τ̂n√
n

)
, (3)

where τ̂n = σ̂n|D2h(θ̂n, σ̂n)| and z1−γ/2 denotes the (1 − γ/2)th quantile of the N(0,1)
distribution.

We highlight that (4) is easy to apply.
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Score Intervals Let us denote by ĥn = h(θ̂n, σ̂n). Note that Wald-type intervals pro-
posed in (3) are based on ∣∣∣∣∣ ĥn − h

ŝe(ĥn)

∣∣∣∣∣ ≤ z1−α/2 (4)

where ŝe(ĥn) is the estimated standard error of ĥn.
The score method proposes to use the standard error of ĥn, se(ĥn), instead of the es-

timated standard error of ĥn, ŝe(ĥn). In this way, the use of Slutsky lemma is avoided in
Theorem 1 to get approximate confidence intervals. The basis of this method is given in
the following theorem.

Theorem 2. If D2h(θ, σ) 6= 0 at (θ, σ) then
√

n

σD2h(θ, σ)

{
h(θ̂n, σ̂n)− h(θ, σ)

}
L−→ Z, where Z ∼ N(0, 1). (5)

The score interval involves the solution in h of∣∣∣∣∣ ĥn − h

se(ĥn)

∣∣∣∣∣ ≤ z1−α/2 (6)

Intervals based on Likelihood Ratio Testing (LRT) This method considers a hy-
pothesis test of the form

H0 : h(θ, σ) = h0, h0 ∈ IR

H1 : h(θ, σ) 6= h0

The LRT statistic is given by

Λh =

sup
(θ,σ)

n∏
i=1

f(θ,σ)(Xi)

sup
(θ,σ)with h(θ,σ)=h0

n∏
i=1

f(θ,σ)(Xi)

In order to apply this method, we need to know the MLE of (θ, σ) under the constraint
proposed in H0, h(θ, σ) = h0. This MLE is denoted by (θ̂h, σ̂h).

In this context, the question is: Which is the limiting null behaviour of λh = 2 lnΛh?
The novel result is

λh
L−→ χ2

k, k = 1, 2. (7)

That is, the limiting distribution is a chi-square distribution whose degrees of freedom, k,
depends on the gradient vector of h, ∇h, at (θ0, σ0), with (θ0, σ0) a vector of parameters
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satisfying the constraint proposed in H0, h(θ0, σ0) = h0. It is possible to invert the LRT to
do interval estimation. So by inverting (7), we have that{

h0 : λh ≤ χ2
k, 1−α

}
(8)

is an approximate (1− α) confidence set for the parametric function h(θ, σ).
We highlight that the problem proposed in (7) and (8) is not obvious.

3 Applications and Conclusions

Applications of these models can be seen in [4] and [2]. We highlight: lifetime distributions
of interest in engineering, income distributions, population statistics, and for modelling
some characteristics of IP traffic in the Internet. As for parametric functions of practical
interest we give results for the estimation of quantiles, Lorenz curve and Gini index when
sampling from these models.

Finally, we point out that other applications can be carried out. In order to apply
these results the condition D2h(θ, σ) 6= 0 is extremely important so that the proposed
approximations are good.
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Abstract

In the paper A general spline differential quadrature method based on quasi-interpo-
lation, J. Comput. Appl. Math. (2014), http://dx.doi.org/10.1016/j.cam.2014.02.006,
a boolean sum differential quadrature method (DQM) was proposed by combining an
spline interpolation operator having a fundamental function with minimal compact sup-
port and a spline quasi-interpolation operator exact on the space of polynomials repro-
duced by the first one. It is a general framework that provides results that differ from
the ones obtained by defining specific schemes with a structure which depends on the
degree of the B-spline to be considered. The main drawback of these boolean sum DQMs
is that the number of evaluation points increases fastly with the degree of the B-spline
due to the use of a quasi-interpolation operator. In this communication we propose a
different construction avoiding this problem and derive explicit results for low degree
B-splines.

Key words: differential quadrature, B-spline, interpolation

1 Spline differential quadrature method based on quasi-in-
terpolation

In [1] a general spline Quadrature Differential Method (QDF) was proposed by combining
interpolation and quasi-interpolation. If Mn denotes the B-spline of order n ≥ 2 centered at
the origin, the (compactly supported) fundamental function Ln of the interpolation operator
L has the form

Ln =
∑
j∈J

cjMn (2 · −j)
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for some cj ∈ R, J being a finite subset of Z. It satisfies the interpolation conditions
Ln (j) = δj,0, j ∈ Z, δ being the Kronecker sequence.

Since the Laurent polynomials Φk (z) :=
∑

j∈ZMn (2j + k) z2j , k = 0, 1, have no
common zeros in C\{0}, it follows that (see [4]) any finite sequence c satisfying the identity

Φ0

∑
j∈Z

c2je2j + Φ1

∑
j∈Z

c2j+1e2j+1 = 1

provides such a function Ln. The notation e0(z) := 1, and ek(z) := zk, k ≥ 1 is used. The
following result on symmetric functions Ln with a small support was proved in [1].

Proposition 1 For each n ≥ 4, let J := {−dn, . . . , dn} where

dn :=

{
brc − 2, for n even,
brc − 1, for n odd,

and brc denotes the integer part of r ∈ R. Then, there are coefficients aj, 0 ≤ j ≤ 2dn such
that the function

Ln = a0Mn (2 ·+dn) + · · ·+ a2dnMn (2 · −dn)

satisfies the interpolation conditions

L (j) = δj,0, j ∈ Z.

It follows that

suppLn ⊂

{ [
−n

2 + 1, n2 − 1
]
, for n even,[

−n
2 + 3

4 ,
n
2 −

3
4

]
, for n odd.

For a given function f defined on the real line, the spline

Ln (f) :=
∑
i∈Z

f (i)L (· − i)

interpolates f at the integers. The operator Ln, as well as its scaled version Ln,h (f) :=∑
i∈Z f (hi)L

( ·
h − i

)
, does not reproduce the space Pn−1 of the polynomials of degree at

most n− 1. So, in order to obtain QDMs useful in practice, it is necessary to increase the
polynomial reproduction of the operator Ln, and this is achieved by considering discrete
quasi-interpolation based on Mn. A such discrete quasi-interpolant Qnf for a given function
f is a linear combination of integer translates of Mn. It can be written as

Qnf =
∑
i∈Z

f (i) qn (· − i) ,

c©CMMSE ISBN: 978-84-616-9216-3Page 132 of 1485



D. Barrera, P. González, F. Ibáñez, M. J. Ibáñez

with qn :=
∑m

j=−m γjMn (· − j) for some coefficients γj such that Qp = p when p ∈ Pn−1. In
general, the compactly supported function qn does not satisfy the interpolation conditions.

Let us suppose that Qn is a quasi-interpolation operator exact on Pn−1. Then, the
order of approximation of Ln is increased by forming the boolean sum Ln ⊕ Q of Ln and
Qn, defined by the expression Ln⊕Qn = Ln +Qn−LnQn. This new operator inherits the
interpolation properties of Ln, the exactness of Qn, and produces Cn−2 (R) functions.

Therefore, the interpolation operator In := Ln + Qn − LnQn was used to derive new
QDMs.

In order to define the interpolation operator In, we need to choose a quasi-interpolation
operator Qn exact on Pn−1. We will adopt a classical procedure (see [5]) to derive the unique
quasi-interpolation operator whose coefficient linear form µn uses uniquely the knots iniside
the support of Mn. The starting point is the expansion (see [6, p. 15])

s (x) =
∑
k∈Z

ckMn (x− k)

in terms of the integer translates of the B-spline Mn of a arbitrary spline s with integer of
half-integer knots depending on the order of the spline. The coefficients ck are linear forms
involving the central factorial numbers (cfn for short) of the first kind. Explicitly (see [3,
equality (6.2.7)]),

ck =
n−1∑
j=0

(n− 1− j)!
(n− 1)!

t (n, n− j) s(j) (k) ,

where the cfn t (n, k) are defined as follows (see [3, p. 421]):

x[n] :=

n∑
k=0

t (n, k)xk,

with

x[0] := 1, x[1] := x, and x[n] := x

n−1∏
k=1

(
x+

n

2
− k
)
, n ≥ 2.

Equalities for s and ck lead to the differential quasi-interpolation operator exact on Pn−1

Dn (f) :=
∑
i∈Z

n−1∑
j=0

(n− 1− j)!
(n− 1)!

t (n, n− j) f (j) (i)

Mn (· − i) ,

and the relationship between derivatives and central differences (see Proposition 6.1.1 in
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[3]) produces the following discrete quasi-interpolation operator:

Qn (f) :=
∑
i∈Z

n−1∑
j=0

(n− 1− j)!
(n− 1)!

t (n, n− j)

j! n−1∑
k=j

1

k!
δkf (i) t (k, j)

Mn (· − i)

=
∑
i∈Z

n−1∑
j=0

t (n, n− j)(
n−1
j

)
n−1∑
k=j

δkf (i)

k!
t (k, j)

Mn (· − i) .

This was the quasi-interpolation operator used in combination with Ln to approximate the
derivatives in the QDM.

2 Spline based Differential Quadrature without quasi-inter-
polation

The main drawback of these boolean-sum based DQMs is that the number of evaluation
points in the expressions that approximate the derivatives at the knots increases fastly
with the degree of the B-spline due to the use of a quasi-interpolation operator to achive
an interpolation operator that reproduces the polynomials in the spline space. Then, we
propose a direct construction of the spline interpolant in the space

Vn :=

∑
j∈J

cjMn (2 · −j) : cj ∈ R


having two useful properties in practice: (a) The fundamental function Ln of the interpo-
lation operator is again a compactly supported function with a small support, but larger
than the corresponding one in the construction done in [2] and (b) Ln is symmetric.

As proved in [4], the existence of a solution to

Φ0

∑
j∈Z

c2je2j + Φ1

∑
j∈Z

c2j+1e2j+1 = 1

is equivalent to the requirement that the polynomials Ψ (z) and Ψ (−z), where Ψ (z) :=∑
j∈ZMn (j) zj , have no common zeros in C \ {0}. Moreover, the equation involving the

Laurent polynomials Φ0 and Φ1 is equivalent to the identity

d (z) Ψ (z) + d (−z) Ψ (−z) = 2,

where d (x) :=
∑

j∈Z djz
j . In other words, any sequence (dj)j∈Z satistying the equation

above provides the fundamental function L̃n of an interpolation operator L̃n. The main
problem is to determine a sequence (dj)j∈Z such that L̃n reproduces the polynomials in

c©CMMSE ISBN: 978-84-616-9216-3Page 134 of 1485
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Pn−1. Since the B-spline Mn is a continuous function of compact support such that its
Fourier transform M̂n satisfies the conditions M̂n (0) = 1 and M̂n (π) 6= 0, and

M̂ (β)
n (2πα) = 0, α ∈ Z \ {0} , 0 ≤ β ≤ n− 1,

then (see [4]) the operator L̃n is exact on Pn−1 if and only if

d (1) = 2, d(β) (−1) = 0, 0 ≤ β ≤ n− 1.

This result is used to derive QDMs for B-splines of low degree. For example, when
n = 5,

Ψ (z) =
1

384
z−2 +

19

96
z−1 +

115

192
+

19

96
z +

1

384
z2

and we look for a Laurent polynomial d (z) =
∑7

j=−7 djz
j , dj = d−j , satisfying all the

conditions above.
The following solution is obtained:

d0 =
440801

350208
, d1 =

22140839

35487744
, d2 = − 231233

1400832
, d3 = − 5020187

35487744
,

d4 =
29215

700416
, d5 =

1861277

106463232
, d6 = − 8383

1400832
, d7 =

8383

106463232
.

Therefore,

L5 =

7∑
j=−7

djM5 (2 · −j)

and
L̃5f =

∑
i∈Z

f (i)L5 (· − i) ,

from which the following DQM results:

f ′ (i) ' − 8383

47316992
(f (i+ 4)− f (i− 4)) +

3767029

212926464
(f (i+ 3)− f (i− 3))

− 32434753

212926464
(f (i+ 2)− f (i− 2)) +

160182545

212926464
(f (i+ 1)− f (i− 1)) .

It is a formula exact on P4. The corresponding one constructed in [2] from L5 also uses
the values of f at i = −5, 5. Moreover, it can be proved that∣∣∣∣f ′ (i)− (L̃5f)′ (i)∣∣∣∣ ≤ 0.017326

∥∥∥f (5)∥∥∥
∞,[i−4,i+4]

and ∣∣f ′ (i)− (L5f)′ (i)
∣∣ ≤ 0.018503

∥∥∥f (5)∥∥∥
∞,[i−4,i+4]

where ‖g‖∞,I := maxx∈I |g (x)|, and so the new construction provides also a better result
with respect the constant in the error estimates.

c©CMMSE ISBN: 978-84-616-9216-3Page 135 of 1485



On spline-based differential quadrature

References
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Abstract

In this work we present a procedure to obtain a transient C1 surface on a polygo-
nal domain Ω which interpolates certain data set and solves numerically a parabolic or
hyperbolic second or fourth-order PDE problem considered in this domain. For each
instant time considered, the approximation space is in the C1-quadratic spline space,
constructed from an α-triangulation of Ω and its associated Powell-Sabin subtriangula-
tion. That is, using the well known method of lines, we can obtain a system of EDOs
in time that, once properly discretized and approximated, permits us to obtain a quite
smooth numerical approximation of the original PDE.

Key words: transient PDEs, interpolating PS-splines, Powell-Sabin FE

1 Introduction

In this work we present a procedure to obtain a C1-surface on a polygonal domain Ω ⊂ R2,
depending on time, that also solves the corresponding Galerkin variational formulation of
a transient PDE problem up to fourth-order. The approximation space is that of C1-
quadratic splines constructed from the Powell-Sabin subtriangulation associated with an
α-triangulation of Ω. We will also use the appropriate interpolation conditions, both on the
interior of the domain or over some points on the boundary, in order to take into account
the initial and the boundary conditions of each of these problems.
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2 Notation and preliminaries

Let Ω ⊂ R2 be a polygonal domain (an open polygonal connected set) and let us consider
the Sobolev space H2(Ω), whose elements are (classes of) functions u defined on Ω such

that their partial derivatives (in the distribution sense) ∂γu ≡ ∂|γ|u
∂xγ1∂yγ2 up to second order

(|γ| := γ1 + γ2 ≤ 2) belong to L2(Ω).

We will denote 〈·〉 the usual Euclidean norm and 〈· , ·〉 the Euclidean inner product in
R2 and we consider in H2(Ω) the usual inner semi-products defined as

(u, v)m :=
∑
|γ|=m

∫∫
Ω
∂γu · ∂γv, m = 0, 1, 2;

the seminorms

|u|m := (u, u)1/2
m =

 ∑
|γ|=m

∫∫
Ω

(∂γu)2

1/2

, m = 0, 1, 2;

and the norm

‖u‖ =

(
2∑

m=0

|u|2m

)1/2

=

∑
|γ|≤2

∫∫
Ω

(∂γu)2

1/2

.

Given α ≥ 1, let T be an α-triangulation of Ω, i. e., a triangulation that satisfies the
condition 1 ≤ RT /2rT ≤ α for all closed triangles T ∈ T , RT and rT being respectively the
radii of the circumscribed and inscribed circles of T , (see e. g. [10]), and let VT be the set
of all the nodes of T .

We will consider the associated Powell-Sabin subtriangulation T ′ of T (see e. g. [8]),
which is obtained by joining the centre ΩT of the inscribed circle of each interior triangle
T ∈ T to the vertices of T and to the centres ΩT ′ of the inscribed circles of the neighbouring
triangles T ′ ∈ T . When T has a side lying on the boundary of Ω, the point ΩT is joined to
the mid-point of this side, to the vertices of T and to the centres ΩT ′ of the inscribed circles
of the neighbouring triangles T ′ ∈ T . Hence, all the micro-triangles inside any T ∈ T have
the incenter of T as a common vertex.

It is well known ([9]) that given the values of a sufficiently smooth function f (defined
on Ω) and all its first partial derivatives at all the points of VT , there exists a unique S in

S1
2 (Ω, T ′) =

{
S ∈ C1(Ω) : S|T ′ ∈ P2(T ′) ∀T ′ ∈ T ′

}
,

where P2(T ′) stands for the space of polynomials of total degree at most two over T ′, such
that the values of S and all its first partial derivatives coincide with those of f at all the
points of VT .
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Domingo Barrera, Pedro González, Antonio Palomares, Miguel Pasadas

3 Resolution of parabolic and hyperbolic second or fourth-
order boundary value problems

In this section we formulate and solve numerically both parabolic or hyperbolic second
and fourth-order boundary-value problems. These type of transient PDEs arise in a great
variety of physical and engineering situations: electric, potential, fluids and elasticity theory
(within the study of thin plates), among many others.

3.1 Formulation of the considered problems

Problem 3.1 Consider the following boundary-value problems in a bounded polygonal do-
main Ω ⊂ R2, with boundary Γ ≡ ∂Ω

−∂u
∂t + τ2 ∆2u− τ1 ∆u = f, t > 0 in Ω

u (t, ·) = φ (t, ·) , τ2
∂u

∂n
(t, ·) = τ2 ψ (t, ·) , t ≥ 0 on Γ

u (0, ·) = u0 (·) , on Ω

(1)


−∂2u
∂t2

+ τ2 ∆2u− τ1 ∆u = f, t > 0 in Ω

u (t, ·) = φ (t, ·) , τ2
∂u

∂n
(t, ·) = τ2 ψ (t, ·) , t ≥ 0 on Γ

u (0, ·) = u0 (·) , ∂
∂tu (0, ·) = u1 (·) , on Ω

(2)

with sufficiently regular functions f, φ, ψ, u0, u1 (see for example [4]) and τ1, τ2 ≥ 0 are
real non negative numbers not vanishing simultaneously.

For solving numerically any of these two types of transient PDE problems in a finite
temporal interval [0, T ] ⊂ R (with T > 0), we will apply a general Galerkin procedure to
their corresponding variational formulation: consider v ∈ H2

0 (Ω) and multiply both sides

of the corresponding PDE, denoting ∂
(1)
t (·) ≡ ∂(·)

∂t or ∂
(2)
t (·) ≡ ∂2(·)

∂t2
, depending on which

Problem (1) or (2) we are considering. Integrating now any of them in the domain Ω ⊂ R2

(with l = 1, 2, depending on the problem considered)∫∫
Ω

(
−∂(l)

t u+ τ2∆2u− τ1 ∆u
)
v =

∫∫
Ω
f (t, ·) v .

It will suffice to apply the appropriate Green formulae to obtain

ϕ(v) (t) :=

∫∫
Ω
f (t, ·) v

= −∂(l)
t

∫∫
Ω
u (t, ·) v +A(u (t, ·) , v)
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where they appear the following bilinear form

A(u (t, ·) , v) :=
∫∫

Ω (τ2 ∆u (t, ·) ∆v + τ1 〈∇u (t, ·) ,∇v〉)

≡ τ1(u (t, ·) , v)1 + τ2(∆u (t, ·) ,∆v)0

(3)

and the linear one (depending on the function f)

ϕ (v) (t) :=

∫∫
Ω
f (t, ·) v ≡ (f (t, ·) , v)0. (4)

So that we can consider now the corresponding variational formulation of the problems
(1) or (2), as follows:

Problem 3.2 To find u (t, ·) ∈ Vt such that

u(0, ·) = u0(·), (l − 1)
∂u

∂t
(0, ·) = (l − 1)u1(·), (5)

and for each t ∈ ]0, T [ (l = 1 or 2, depending on the problem (1) or (2) considered)

∂
(l)
t

∫∫
Ω
u (t, ·) v = A(u (t, ·) , v)− ϕ (v) (t) , ∀v ∈ H2

0 (Ω) (6)

where

Vt ≡
{
u (t, ·) ∈ H2(Ω) : u (t, ·)|Γ = φ (t, ·) , ∂u

∂n
(t, ·)|Γ = ψ (t, ·)

}
. (7)

3.2 General settings

Now, let us suppose that we have an appropriate α-triangulation T of Ω, with its associated
Powell-Sabin subtriangulation T ′, D1 = (ai1)k1i1=1 a set of points of T in ∂Ω containing all

the nodes on this boundary and D2 = (bi2)k2i2=1 a set of points on ∂Ω containing all the
boundary nodes of T ′ that are not geometrical corners of ∂Ω but in such a way that there
is at least one point of D2 in the interior of every segment of the subtriangulation T ′ lying
on the ∂Ω, so that we can ensure that every element in

H0 ≡
{
v ∈ S1

2(Ω, T ′) : v (ai1) = 0 = ∂
∂nv (bi2) ,

i1 = 1, . . . , k1, i2 = 1, . . . , k2

}
will also be in H2

0 (Ω), see [6] for the details.
In this setting, consider then the so called method of lines for the variational formulation

(5)–(6)–(7) of any of the Problems (1) or (2), with

β
(1)
i1

(t) = φ(t, ai1), ∀t ∈ [0, T ] , i1 = 1, . . . , k1, (8)

and
β

(2)
i2

(t) = ψ(t, bi2), ∀t ∈ [0, T ] , i2 = 1, . . . , k2. (9)
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3.3 Computations

Let N = dim(S1
2(Ω, T ′)) = 3n (where n is the number of total nodes of the triangula-

tion T ) and we consider the usual Hermite basis {Bi}Ni=1 of S1
2(Ω, T ′). Suppose also that

{Bi1}
k1
i1=1 are the basis functions associated with the degree of freedom v 7→ v(ai1), for

i1 = 1, . . . , k1 and {Bi2+k1}
k2
i2=1 the basis functions associated with the data v 7→ ∂v

∂n
(bi2),

for i2 = 1, . . . , k2.
It is easy to check that if we denote k := k1 + k2 then {Bi+k}N−ki=1 is a basis of H0, and

hence, we could express

ũ (t, ·) =

k1∑
i1=1

β
(1)
i1

(t)Bi1 (·) +

k2∑
i2=1

β
(2)
i2

(t)Bi2+k1 (·) +
N−k∑
i=1

ci (t)Bi+k (·) . (10)

So that, if we take v = Bj+k, for some j ∈ {1, . . . , N − k} (with l = 1 or 2 depending on
the problem considered), we have from (6)

∂
(l)
t

∫∫
Ω
ũ (t, ·) Bj+k = A(ũ (t, ·) , Bj+k)− ϕ (Bj+k) (t) .

So, developing a little bit more these expressions we get that the vector c (t) = (ci (t))N−ki=1

is the solution of the linear system of ordinary differential equations

B ∂
(l)
t c (t)−A c (t) = b (t) , (11)

with the matrices A,B ∈ RN−k,N−k

A = (A (Bi+k, Bj+k))1≤i,j≤N−k ; B =
(
(Bi+k, Bj+k)0

)
1≤i,j≤N−k

and the components of the vector b (t) ≡ (bj (t))>1≤j≤N−k ∈ RN−k are defined by

bj (t) = −

(
k1∑
i1=1

β
(1)
i1

(t) A (Bi1 , Bj+k) +

k2∑
i2=1

β
(2)
i2

(t) A (Bi2+k1 , Bj+k) + ϕ(Bj) (t)

)N
j=k+1

.

Clearly, the coefficient matrices A and B are symmetric, banded (this is due to the fact
that each Bi has local support), and positive definite.

Concerning the initial conditions associated to this system of ordinary differential equa-
tions (11) in both problems (1) and (2), we just remember that evaluating (10) at time t = 0
we get, taking into account (8) and (9),

ũ (0, ·) =

k1∑
i1=1

β
(1)
i1

(0)Bi1 (·) +

k2∑
i2=1

β
(2)
i2

(0)Bi2+k1 (·) +
N−k∑
i=1

ci (0)Bi+k (·)

=

k1∑
i1=1

φ(0, ai1)Bi1 (·) +

k2∑
i2=1

ψ(0, bi2)Bi2+k1 (·) +

N−k∑
i=1

ci (0)Bi+k (·)
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and just in the case of the hyperbolic problem (2)

∂

∂t
ũ (0, ·) =

k1∑
i1=1

(
β

(1)
i1

)′
(0)Bi1 (·) +

k2∑
i2=1

(
β

(2)
i2

)′
(0)Bi2+k1 (·) +

N−k∑
i=1

c′i (0)Bi+k (·)

=

k1∑
i1=1

∂

∂t
φ(0, ai1)Bi1 (·) +

k2∑
i2=1

∂

∂t
ψ(0, bi2)Bi2+k1 (·) +

N−k∑
i=1

c′i (0)Bi+k (·) .

So, if we want that any or both of these two initial conditions could be well approximated
by the so denoted quadratic spline functions ũ0, ũ1 ∈ S1

2 (Ω, T ′) so that we could write

ũ (0, ·) = ũ0 (·) ' u0 (·) ,
∂

∂t
ũ (0, ·) = ũ1 (·) ' u1 (·) (12)

it will suffice to take the appropriate coefficients {ci (0)}N−ki=1 and {c′i (0)}N−ki=1 in order to
verify (12) for the unique ũ0, ũ1 ∈ S1

2 (Ω, T ′) interpolating u0, u1 in the sense that their
values and that of their first partial derivatives coincide in all the nodes of the triangulation
T considered (see [8] or [9]).
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Abstract

In this paper the scheme to approximate univariate functions via fluctuationlessness
theorem applied on the nested remainder term of Taylor decomposition of an ana-
lytic function. We extend the general scheme to multivariate functions by using one
dimensional Taylor expansion not to the independent variables but to a parameter char-
acterizing directional changes in the function values. Certain remarks are given on the
subject.

Key words: Fluctuationlessness theorem, Nested Taylor decomposition, Remainder
term, matrix representation of a function, Approximation of functions, Multivariate
approximation

1 Introduction

Many papers [1-3] from our working group are written about the possibility of using Taylor
series remainder term evaluation via fluctuation free integration in the univariate integra-
tion of the functions even for the cases where Taylor polynomials present very poor approx-
imation quality. What we have done there is now considered not only for integration but
function approximation. We had already proposed an approach to approximate a univariate
function by using Taylor’s expansion and utilizing the fluctuation free integration approx-
imation for the explicit expression of Taylor’s remainder term. Moreover in a new article
we have proposed a new addition to this method by adding a nested Taylor decomposition
applied to the integrand of the remainder term. In this work we develop a similar method
for approximating functions of many variables. What we produce here is applicable to the
multivariate integration even though there seem to exist a lot of geometrical limitations
which urge us to develop a more comprehensive algorithm to that end.
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2 Multivariate Taylor Decomposition

Let x = (x1, x2, ..., xN ) lie in the ball B with center a = (a1, a2, ..., aN ) and f be a real-
valued function defined on the closure B having all continuous partial derivatives up to and
including (k+ 1)th order at every point. Now Taylor’s theorem for a single variable can be
applied to f(v(t)) by expanding it about t = 0 up to the kth term and evaluating it at t = 1
It is clear that in our present work this formulation will only be applied for two variables

f (x) = f (v(1)) = f
(
x(0)

)
+

k∑
i=1

1

i!

dif (v(t))

dti

∣∣∣∣
t=0

+

∫ 1

0
dt

(1− t)k

k!

dk+1f (v(t))

dtk+1
(1)

To proceed further, the chain rule for several variables is to be applied to the ith derivative
of f (v(t))

di

dti
f (v(t)) =

di

dti
f
(
x(0) + t

(
x− x(0)

))
=

∑
|σ|=i

(
i
σ

)(
x− x(0)

)σ
(Dσf)

(
x(0) + t

(
x− x(0)

))
(2)

Corresponding notations can be found in [1]. Now, using the equality given by (1) f(x)
can be written as the sum of a kth degree Taylor polynomial Pk(x) and a remainder term
Rk(x); namely

f (x) = Pk (x) +Rk (x) (3)

where

Pk (x) = f
(
x(0)

)
+

k∑
|σ|=1

(
x− x(0)

)σ
σ!

(Dσf)
(
x(0)

)
(4)

and

Rk (x) =
∑
|σ|=k+1

k + 1

σ!

(
x− x(0)

)σ
×
∫ 1

0
dt(1− t)k (Dσf)

((
x− x(0)

)
t+ x(0)

)
(5)

This remainder term will be modified to a more convenient form so that the Fluctuation-
lessness Theorem can be easily applied. For this purpose a weight function is to be defined

wk(t) ≡ (k + 1)(1− t)k, k = 0, 1, 2, ... (6)
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This allows (5) to be reformulated as

Rk(x) =
∑
|σ|=k+1

(x− x(0))σ

σ!

∫ 1

0
dtwk(t)

× (Dσf)
((

x− x(0)
)
t+ x(0)

)
(7)

Letting,

Ik,σ(x) =

∫ 1

0
dtwk(t) (Dσf)

((
x− x(0)

)
t+ x(0)

)
(8)

the remainder term becomes

Rk(x) =
∑
|σ|=k+1

(x− x(0))σ

σ!
Ik,σ(x) (9)

3 Fluctuationlessness Theorem

The fluctuation free matrix representation approximation is based on a theorem which was
conjectured and proven by M. Demiralp. This theorem states that the matrix representation
of an algebraic operator which multiplies its argument by a scalar multivariate function, is
identical to the image of the independent variables’ matrix representations over the same
space via the same basis set, under that multivariate function, when the fluctuation terms
are ignored. This is in fact the multivariate counterpart of the fluctuationlessness theorem
for univariate functions, which was conjectured and proven by the same author.

The details about the theorem for the univariate case were given in previous works
of our group. Here we give the extension to the multivariate case in order to emphasize
on the generality of the theorem without depending on the multivariance except certain
extensions in the mathematical objects, even though we are not going to use this extended
form in the analysis here. Let g be a multivariate function defined over a rectangular
hyperprism, say [ a1, b1 ]×· · ·× [ an, bn ] where n is the number of the independent variables,
and analytic throughout its domain. We define u (x1, ..., xn) = [u1 (x1) , u2 (x2) , ... ]

T such
that ui (x1, ..., xn)’s are orthonormal basis functions of the Hilbert space from which the
function g is chosen. We can define the algebraic function multiplication operator ĝ whose
action on its operand is the multiplication with the value of g (x1, ..., xn). We can also define

a matrix representation operator, M̂ (ĝ), which maps from the function operator ĝ to an
infinite matrix defined as the following inner product matrix

M̂ (ĝ) ≡
(
u, ĝuT

)
(10)

where the (i, j)-th component of the image matrix is defined as the inner product∫
V
dVw (x1, ..., xn)ui (x1, ..., xn) g (x1, ..., xn)uj (x1, ..., xn) . (11)
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The arguments being the matrix representation of the variables x1,...,xn we can write the
above approximation as

M̂ (ĝ) ≈ g (X1, ...,Xn) (12)

where Xs are the matrix representations of x̂s. As n goes to infinity the approximation
becomes an exact equality.

Even though we never distinguished the composite function matrix representations, we
can give the following equation for the composite function say f (g (x)) derived from the
univariate functions f(x) and g(x) at the fluctuationlessness limit

M̂
(
f̂ (ĝ)

)
≈ f

(
M̂ (ĝ)

)
(13)

which may be used instead of the expression in terms of universal matrix (the matrix
representation of the independent variable)

M̂
(
f̂ (ĝ)

)
≈ f (g (X)) . (14)

(13) may give better approximation results since (14) uses the two nested fluctuation-
lessness application while (13) skips the inner one.

4 Nested Taylor Formulation

Consider now the Taylor decomposition of a function f(x) as the sum of an n1-th Tay-
lor Polynomial around a point x1 and a remainder term expressed in integral form. All
throughout this work the necessary continuity conditions will be assumed to hold [4,5].

f (x) =

n1∑
j=0

f (j) (x1)

j!
(x− x1)j +

1

n1!

∫ x

x1

dt1 (x− t1)n1 f (n1+1) (t1) , n1 = 0, 1, . . . (15)

The next step is the second Taylor decomposition of the function appearing in the integral
above. The function f (n1+1) (t1) is expanded around yet another point (call it x2) and
another remainder term expressed once again in integral form.

f (n1+1) (t1) =

n2∑
j=0

f (n1+1+j) (x2)

j!
(t1 − x2)j +

1

n2!

∫ t1

x2

dt2 (t1 − t2)n2 f (n1+n2+2) (t2) (16)

These will yield the following expansion for f(x)

f (x) =

n1∑
j=0

f (j) (x1)

j!
(x− x1)j +

1

n1!

∫ x

x1

dt1 (x− t1)n1

n2∑
j=0

f (n1+1+j) (x2)

j!
(t1 − x2)j

+
1

n1!n2!

∫ x

x1

dt1

∫ t1

x2

dt2 (x− t1)n1 (t1 − t2)n2 f (n1+n2+2) (t2) (17)
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Now let us proceed with the polynomial parts of the Taylor expansions. We make following
definitions.

P (1)
n1

(x) ≡
n1∑
j=0

f (j) (x1)

j!
(x− x1)j (18)

P
(2)
n1+n2+1 (x) ≡

n2∑
j=0

f (n1+1+j) (x2)

n1!j!

∫ x

x1

dt1 (x− t1)n1 (t1 − x2)j (19)

we will now deal with the integral appearing in the expression of P (2). To this end a change
of variable can be done by replacing t1 with t1 + x2. So the following turns out to be true∫ x

x1

dt1 (x− t1)n1 (t1 − x2)j =

∫ x−x2

x1−x2
dt1 (x− x2 − t1)n1 tj1 (20)

Now (20) can be expressed as the sum of two integrals∫ x−x2

0
dt1 (x− x2 − t1)n1 tj1 +

∫ 0

x1−x2
dt1 (x− x2 − t1)n1 tj1 (21)

Starting with the first of these integrals we can make another change of variable by replacing
t1 with (x− x2) t1 to obtain∫ x−x2

0
dt1 (x− x2 − t1)n1 tj1 = (x− x2)n1+j+1

∫ 1

0
dt1 (1− t1)n1 tj1

= (x− x2)n1+j+1 β (n1 + 1, j + 1)

= (x− x2)n1+j+1 Γ (n1 + 1) Γ (j + 1)

Γ (n1 + j + 2)
=

n1!j!

(n1 + j + 1)!
(x− x2)n1+j+1(22)

Now, for the second integral∫ 0

x1−x2
dt1 (x− x2 − t1)n1 tj1 = −

∫ x1−x2

0
dt1 (x− x2 − t1)n1 tj1

= − (x1 − x2)j+1
∫ 1

0
dt1 (x− x2 − (x1 − x2) t1)n1 tj1

= − (x1 − x2)j+1 (x− x2)n1

∫ 1

0
dt1

(
1− x1 − x2

x− x2
t1

)n1

tj1(23)

The integral appearing in the last form of (9) can be expressed as∫ 1

0
dt1

(
1− x1 − x2

x− x2
t1

)n1

tj1 =
j!

(j + 1)!
2F1

(
−n1, j + 1; j + 2;

x1 − x2
x− x2

)
(24)
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where 2F1 is for the Gauss Hypergeometric Function. And we can express the remainder
term as

R(2)
n1,n2

≡ 1

n1!n2!

∫ x

x1

dt1

∫ t1

x2

dt2 (x− t1)n1 (t1 − t2)n2 f (n1+n2+2) (t2) (25)

This can be decomposed to certain univariate integrals each of which can be approximately
evaluated by using the fluctuationless theorem.

5 Concluding Remarks

This nested Taylor formulation can easily be applied to the multivariable form described
over here, the argument being a vector of two variables. By fetching through a nested
decomposition the main purpose is to be able to obtain a better approximation compared
to a regular Fluctuationlessness approximation of multivariate functions.
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Abstract

In this paper we present a quasi-analytical method to calculate the optimal enzyme
concentrations in a chemical process by considering the minimization of the operation
time. The resulting constrained optimal control problem is solved using Pontryagin’s
Minimum Principle. Our method allows us, first, to obtain the generalized solution of
a n-step system with an unbranched scheme and bilinear kinetic models and with non-
equal catalytic efficiencies of the enzymes. Second, we discuss in detail the sensitivity
analysis of these catalytic parameters.

Key words: Optimal Control, Chemical Process, Sensitivity Analysis
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1 Introduction

Let us consider an unbranched metabolic pathway composed of n irreversible reaction steps
converting substrate x1 into product p. An explicit solution for the simplest case, i.e.
n = 2, can be found in [1], while for longer pathways, the authors solved the optimization
problem numerically. The solution is obtained quasi-analytically in [2], though with the
constraint of considering only the case of n = 3 with two intermediate compounds. [3]
present several theoretical results over qualitative properties of the solution for the general
case of n steps. These authors prove that the optimal enzyme concentration profile is of the
“bang-bang” type, though they do not present the analytical solution. In a previous paper
[4], we extended the theoretical analysis of [1], [2] and [3], presenting the quasi-analytical
solution for the more general case of n steps and assuming equal catalytic efficiencies of
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the enzymes (ki = 1). We considered the minimization of the transition time in [4]. This
transition time is defined by a improper integral running until infinite time. Given that
this model is somewhat unreal, in this paper we shall consider a more realistic situation in
chemistry or biology. Moreover, we shall substantially extend the theoretical analysis of [4]
to consider nonequal catalytic efficiencies ki.

Sensitivity analysis (SA), on the other hand, investigates the relations between param-
eters of a model and a property of the outcome. Classically (see, for example, [5]), SA is
performed by the partial derivatives of the outcome with respect to its parameters. When a
closed-form equation describes the relationship between the independent variables and the
dependent variable, this SA is easy to perform. This is precisely the major advantage of our
method: it allows us to obtain the partial derivatives of the concentration of the compounds
xi with respect to the catalytic efficiencies of the enzymes ki.

2 Statement of the Problem

2.1 Model formulation

Let us consider the following unbranched metabolic pathway composed of n irreversible
reaction steps converting substrate x1 into product p:

x1
u1→ x2

u2→ x3
u3→ · · · → xn−1

un−1→ xn
un→ p (1)

where x1(t) is the substrate concentration at time t, p(t) the concentration of the final
product at time t, xi(t) (i = 2, . . . , n) the concentration of the intermediate compounds at
time t, and ui(t) (i = 1, . . . , n) the concentration at time t of the enzyme catalyzing the i-th
reaction. The model of the reactions in (1) can then be described by the set of differential
equations: 

ẋ1 = −k1u1x1 x1(0) = 1, x1(t) ≥ 0
ẋ2 = k1u1x1 − k2u2x2 x2(0) = 0, x2(t) ≥ 0
ẋ3 = k2u2x2 − k3u3x3 x3(0) = 0, x3(t) ≥ 0
· · ·
ẋn = kn−1un−1xn−1 − knunxn xn(0) = 0, xn(t) ≥ 0

(2)

In a previous paper [4], we assumed equal catalytic efficiencies of the enzymes (ki = 1).
In this paper, we shall substantially generalize the study to consider nonequal catalytic
efficiencies.

2.2 Objective function

Our goal is to convert substrate x1 into product p as fast as possible and several cost
functions may be considered. The transition time, τ (defined in [6]), is used in [1], [2] and
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[4]. This transition time is defined by a time integral running until infinite time:

min
u1,...un

τ = min
u1,...un

∫ ∞
0

1

x1(0)
(x1(0)− p(t))dt (3)

In this paper, we shall consider a more realistic situation in biology where the product
p(t) need not be fully synthesized, but rather synthesized to a defined concentration. We
therefore minimize the operation time (to distinguish it from the transition time) defined
by specifying the final product concentration, e.g. p(tf ) = 0.9, with tf as the final time.
The objective function of the optimization problem may thus be defined as:

τ90 = min
u1,...un

tf = min
u1,...un

∫ tf

0
dt (4)

3 Optimal Solution

In this section, we present the solution to the optimal control problem (OCP) defined in
the previous section:

min
u(t)

∫ tf

0
F (t,x(t),u(t)) dt (5)

subject to satisfying:

ẋ(t) = f (t,x(t),u(t)) (6)

x(0) = x0 (7)

u(t) ∈ Ω, 0 ≤ t ≤ tf (8)

where F ≡ 1 is the objective function, x = (x1(t), ..., xn(t)) ∈ Rn is the state vector, with
initial conditions x0, u ∈ Rn is the control vector, Ω denotes the set of admissible control
values and t is the operating time, which starts from 0 and ends at tf (value to minimize).
The state variables must satisfy the state equation (6) with given initial conditions. In
this statement, we consider the final state to be free. Let H be the Hamiltonian function
associated with the problem

H(t,x,u, λ) = F (t,x,u) + λ · f (t,x,u) (9)

where λ = (λ1(t), ..., λn(t)) ∈ Rn is called the costate vector. The classical approach involves
the use of Pontryagin’s Minimum Principle [7], which results in a two-point boundary value
problem (TPBVP). In order for u ∈ Ω to be optimal, a nontrivial function λ must necessarily
exist, such that for almost every t ∈ [0, tf ]:

ẋ = Hλ; x(0) = x0 (10)
·
λ = −Hx; λ(tf ) = 0 (11)

min
u∈Ω

H(t,x,u, λ) (12)
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We now present the solution to the optimal control problem defined above using Pontryagin’s
Minimum Principle [7]. The fundamental result to obtain may be summarized as follows:

Theorem 1. There exists a set of switching times {t1, t2, ..., tn−1}, (with 0 < ti < tj ,
for i < j) which partition the optimization interval as:

[0, t1) ∪ [t1, t2) ∪ ··· ∪ [tn−2, tn−1) ∪ [tn−1, tf ] (13)

such that the optimal profile of the i-th enzyme is of the bang-bang type and satisfies:

u∗i (t) =

{
1 for t ∈ [ti−1, ti)
0 for t /∈ [ti−1, ti)

; i = 1, . . . , n (14)

with t0 = 0 and tn = tf . In each interval [ti−1, ti], i = 1, . . . , n, the optimal metabolite
concentration is given by:

x1(t) =

{
e−k1t i = 1
e−k1t1 i > 1

(15)

xj(t) =



j−1∏
h=1

(1− e−kh(th−th−1)) · e−kj(tj−tj−1) j = 2, . . . , i− 1

j−1∏
h=1

(1− e−kh(th−th−1)) · e−kj(t−ti−1) j = i

i−1∏
h=1

(1− e−kh(th−th−1)) · (1− e−ki(t−ti−1)) j = i+ 1

0 j = i+ 2, . . . , n

(16)

We have thus solved the problem quasi-analytically. The optimal solution has been ob-
tained analytically for all the intervals [0, t1)∪ [t1, t2)∪ ··· ∪[tn−1, tf ]. The calculation of the
switching times t1, t2, . . . , tn−1 and the value of tf is the only one that is not carried out
analytically or exactly.

4 Examples

Using the results presented in the previous section, we developed a program using the
Mathematica package that allows us to obtain the optimal solution.

4.1 Example 1: Optimal solution

Let us consider the following values for the nonequal catalytic efficiencies ki:

k1 = 10; k2 = 10; k3 = 9; k4 = 9; k5 = 8; k6 = 7; k7 = 5; k8 = 3; k9 = 12 (17)

In Table I, we present the optimal solution for the cases n = 3, . . . , 9. Let us see the
switching times ti (i = 1, . . . , n), and the operation time τ = tn. Remember that ui is given
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by 1 in all the intervals (when it is active). Moreover, the substrate concentration, x1,
the concentrations of the intermediate compounds, x2, . . . , xn, and the concentration of the
final product, p, are immediately obtained in any interval using the formulas presented in
Theorem 1. Figure 1 shows the optimal solution for the case n = 9.

Table I. Switching times and operation time of the optimal solution.

n t1 t2 t3 t4 t5 t6 t7 t8 t9
3 0.3401 0.6803 1.0469 - - - - - -

4 0.3702 0.7404 1.1404 1.5404 - - - - -

5 0.3958 0.7917 1.2201 1.6485 2.1160 - - - -

6 0.4188 0.8376 1.2915 1.7453 2.241 2.7898 - - -

7 0.4440 0.8880 1.3698 1.8516 2.3792 2.9633 3.7150 - -

8 0.4755 0.9510 1.4677 1.9845 2.5512 3.1801 3.9942 5.1845 -

9 0.4821 0.9642 1.4883 2.0124 2.5874 3.2257 4.0529 5.2648 5.6817

Figure 1. Metabolite and product profile. Case n = 9.

4.2 Example 2: Differential SA

Sensitivity analysis (SA) investigates the effect of parameter change on the solution of
mathematical models, with more than a dozen SA techniques having been reported ([5]).
Differential SA will be employed in the present paper. In this case, the sensitivity coefficient,
φi, for a particular independent variable can be calculated from the partial derivative of the
dependent variable with respect to the independent variable. When an explicit algebraic
equation describes the relationship, the differential SA is easy to perform.
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Let us now see how the Differential SA of our problem can be performed immediately,
employing analytic formulas to do so (16). The sensitivity coefficient, φij , defined from the
partial derivative of the dependent variable xi (i = 1, . . . , n) with respect to kj (i = 1, . . . , i) :

φij =
dxi
kj

(18)

was calculated using the Mathematica package. A summary of the results is shown in Figure
2.

Figure 2. Sensitivity coefficients.

5 Conclusions

Our paper supposes the generalization of the optimal control problem that arises when
considering a linear unbranched chemical process with n steps. We provide a quasi-analytical
solution to the case of n steps by considering the minimization of the operation time and
non-equal catalytic efficiencies of the enzymes. Using our closed-form equation for the
optimal solution, the sensitivity analysis is very easy to perform.
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Abstract

In this paper, we present an enhanced auto optimization method to run the 3D-
Fast Wavelet Transform (3D-FWT) on the different NVIDIA GPU devices in a system.
The proposed method automatically selects the optimal block size and the number of
streams in order to reduce the total execution time, obtaining performances very close
to the optimal and decreasing the number of evaluations needed.

Key words: Autotuning engine, 3D-FWT, manycore GPUs, CUDA, streams.

1 Introduction

Over the last decade, general-purpose GPU computing [1][2] has evolved from being some-
thing of a curiosity into an extremely popular and immensely powerful HPC platform.
There are currently many APIs for programming GPUs, each with their advantages and
disadvantages, but getting optimal performance from the GPU is still a challenging task
that requires repetitive manual tuning.

NVIDIA has been a driving force in this process through the development of GPU-based
hadware for general computation and the parallel development of the CUDA programming
model [3].

The emergence of the Fermi GPU and the appearance of the new Kepler GPU [4] in the
market have been crucial for the incorporation of streams as a key factor in codes. A stream
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Figure 1: How streams are treated in Fermi and Kepler GPU architectures [4]

is a sequence of operations that execute in issue-order on the GPU. In the programming
model used for concurrency, CUDA operations in different streams may run concurrently, or
operations from different streams may be interleaved. One of the most difficult challenges
for the GPU architecture is finding an optimal scheduler to manage the workload composed
of different streams in a GPU.

The Fermi GPU architecture allows a concurrency execution of up to 16 streams, but
there is a single hardware queue and the streams must be multiplexed and serialized, as we
can observe on the left in Figure 1. This dependence can be alleviated by the rearrange-
ment of the kernels but this task becomes complex and the performance decreases as the
complexity of the programs increases.

The new Kepler GPU architecture introduces Hyper-Q, which enables up to 32 hardware
queues (Figure 1, right), allowing great flexibility to improve the performance without mod-
ifications to the source codes. In Kepler there are no inter-streams dependencies and each
stream is managed by its own hardware queue. Streams may proceed from a single CUDA
program or from other places in different MPI processes or POSIX threads (pthreads). In
this way, the concurrency is natural and does not require preprocessing. As the number
of cores increases, Hyper-Q gets more powerful, becoming a key factor in the scalability of
future generations of GPUs.

In [5][6] we proposed an autotuning architecture for the 3D-FWT on a cluster of mul-
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ticores+GPUs. The method analyzes the different nodes of the cluster, and detects the
number and type of CPUs and GPUs, the computer performance of the GPUs and CPUs
and the bandwidth of the interconnection network. The autotuning engine computes the
proportions at which the different video sequences are divided among the nodes in the
cluster.

Here, we present an enhanced optimization engine based on an optimal selection of the
number of streams and the block size for the 3D-FWT on each NVIDIA GPU available in
the system. A reduced number of evaluations are made in order to select the minimum
execution time.

The rest of this paper is organized as follows. Section 2 summarizes the implementation
of the 3D-FWT in CUDA. Section 3 analyses the incorporation of the availability of streams
to the 3D-FWT CUDA implementation. In section 4, the enhaced optimization technique
for a 3D-FWT on a single GPU system is described. Experimental results of this method
are discussed in Section 5. Finally, section 6 summarizes and introduces future work.

2 Parallelization on a manycore GPU in CUDA and OpenCL

This section briefly describes the characteristics of the software used in the experiments.
Our 3D-FWT implementations in CUDA and OpenCL [7] are based on the CUDA algo-
rithm described in [8]. We use simple source-to-source translation to convert the kernels of
the implementation of 3D-FWT on CUDA to OpenCL; although there are some differences
between CUDA and OpenCL in terminology, the model is similar and it was easy to trans-
form the kernels. Our 3D-FWT implementation in CUDA and OpenCL consists of three
main steps:

1. The host (CPU) allocates in the memory the first four video frames coming from a
.pgm file.

2. The first four images are transferred from main memory into video memory. The
1D-FWT is then applied to the first four frames over the third dimension to obtain
two frames for the detailed and reference videos.

3. The 2D-FWT is applied to the frame belonging to the detailed video, and, subse-
quently, to the reference video. Results are then transferred back to the main memory.

The whole procedure is repeated for all the input frames, adding two frames in each
iteration. Figure 2 summarizes how the entire process is implemented. In each iteration,
two frames are copied, to the first or the second half, depending on the iteration number. In
particular, the first iteration copies frames number 0, 1, 2 and 3 to obtain the first detailed
and reference video frames; the second iteration involves frames 2, 3, 4 and 5 to obtain the
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FRAME 0 FRAME 1 FRAME 2 FRAME 3 FRAME 4 FRAME 5 FRAME 2 FRAME 3

FRAME 0 FRAME 1 FRAME 2 FRAME 3 FRAME 4 FRAME 5 FRAME 6 FRAME 7

1-st step 2-nd step

FRAME H0 FRAME H1 FRAME G0 FRAME G1

1D-FWT program in time dimension

2D-FWT using tiling program

(4 frames are copied in global memory)
Host-Device copies

(2 frames are copied in global memory)
Host-Device copies

Device-Host copies
(2 frames are copied in a buffer in host memory)

Device-Host copies
(2 frames are copied in a buffer in host memory)

2D-FWT using tiling program

1D-FWT kernel in program dimension (interleaving)

FRAME H0 FRAME G0

(intermediate) (intermediate) (intermediate)

FRAME H1 FRAME G1 
(intermediate)

Figure 2: How 3D-FWT is implemented in OpenCL and CUDA using interleaved accesses
to video frames.

second detailed and reference video frames, and so on. Note that frames 4 and 5 occupy
the memory formerly assigned to frames 0 and 1, which requires an interleaved access to
frames in the second iteration.

3 3D-FWT on CUDA with streams

Up to now the main key factor in any CUDA implementation in order to reduce the execution
time has been the selection of the optimal block size. The possibility of the incorportation
of streams to the codes is another option to improve the execution times, but the selection of
the best number of streams is not a trivial task because it can depend on both the hardware
(the specific GPU used) and the software (the routine to execute). We have included in
our 3D-FWT implementation in CUDA, presented in section 2, the availability for using a
different number of streams. Figure 3 shows execution times for the 3D-FWT to process 256
frames of 512× 512 pixels on an NVIDIA Fermi Tesla C2075 (to the left) and an NVIDIA
Kepler Tesla K20c (to the right). The figure presents different series grouped by typical
block sizes and number of streams. Based on a previous work [9], we consider Daubechie’s
W4 mother wavelet [10] as an appropriate baseline function. This selection determines
the access pattern to memory for the entire 3D-FWT process and requires four elements
to calculate the output. Therefore, this sequence of 256 frames can use a maximum of 64
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Figure 3: Execution times for 256 frames of 512×512 pixels on Fermi GPU (left) and Kepler
GPU (right)

streams, where each stream processes at least 4 frames. A slight difference among execution
times is observed for different block sizes in both GPUs. In fact, the maximum difference
is about 16% in Fermi GPU and 6% in Kepler GPU. However, the speedups when using
several streams with respect to the execution with a single stream is in the range of 1.31 to
1.68 for the Fermi GPU and 1.28 to 1.56 for the Kepler GPU.

In the same way, Figure 4 shows execution times for 3D-FWT to process 256 frames of
1024× 1024 pixels on an NVIDIA Fermi Tesla C2075 (to the left) and an NVIDIA Kepler
Tesla K20c (to the right). There is small difference in the execution times for different
block sizes. The maximum difference is again about 16% in Fermi GPU and 6% in Kepler
GPU. The speedups when the number of streams varies is now between 1.28 and 1.58 for
the Fermi GPU, and 1.13 and 1.37 for the Kepler GPU.

These results demonstrate a considerable improvement of 3D-FWT execution times
with several streams, where an optimal selection of the number of streams is a key factor.

4 An enhanced autotuning engine for the 3D-FWT

We proposed an autotuning engine for the 3D-FWT in [5] and it was adapted to obtain
the maximum performance in a hybrid system with several manycore GPUs and multicore
CPU components [6]. The number and type of GPUs, and the number of cores in each node
is obtained, and the optimization engine computes the workload for each computational
component based on the computer performance of the 3D-FWT kernel. In this way, the
method automatically decides the quantity of work to scatter among the different platforms
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Figure 4: Execution times for 256 frames of 1024 × 1024 pixels on Fermi GPU (left) and
Kepler GPU (right)

of the CPU-GPU system.
This previous proposal performs an optimal selection of the block size in NVIDIA

GPUs, but as shown in the previous section, an optimal choice of the number of streams
to generate on each GPU device is also an important key. Therefore, an extension of the
autotuning methodology is necessary. The improved autotuning method for manycore GPU
and multicore CPU systems is shown in Algorithm 1. The method performs a fast analysis
for NVIDIA GPUs to obtain the best configuration for the GPU and determines the block
size and the number of streams through function f(block, stream).

The complete optimization algorithm for f(block, stream) is shown in Algorithm 2.
In general, f(block, stream) performs a search among a set of block sizes jointly with a
set of number of streams in order to find the configuration with the minimum execution
time. This search process is performed in a similar way as in [11] in order to reduce the
number of possible evaluations and, so, the installation time.

In [12], we empirically determined the optimal configuration for the 3D-FWT using
the CUDA occupancy calculator and following a simple set of heuristics [13] [14]. Such a
configuration consists of a different thread to compute every pair of G and H values in the
1D-FWT. Each thread requires 13 registers, and a block size of n needs 8n+8 bytes of shared
memory. Thus, the number of active thread blocks per multiprocessor requires a number of
registers and an amount of shared memory which must not exceed the maximum allowed
values for the NVIDIA GPUs. The proposed automatic function is based on the CUDA
occupancy calculator, and the routine computes the occupancy of each multiprocessor for
the block sizes (64, 128, 192, 256, 320, 384, 448, 512) recommended by the heuristics [13] [14]
in order to select all the block sizes that reach at least 60% occupancy of each multiprocessor
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Algorithm 1 Automatic optimization of 3D-FWT for manycore GPUs and multicore CPUs
systems
1: Detect automatically the available GPUs and CPUs in the system.
2: for each platform (GPU or CPU) do
3: if GPU is based on NVIDIA then
4: Select the CUDA implementation of 3D-FWT.
5: f(block, stream) calculates automatically the block size and the number of streams.
6: end if
7: if GPU is based on ATI then
8: Select the OpenCL version of 3D-FWT.
9: The work-group size is equal to CL DEVICE MAX WORK GROUP SIZE.

10: end if
11: if CPU then
12: Select the implementation with tiling and pthreads.
13: Fast analysis to obtain the optimal number of threads.
14: end if
15: Send one sequence to this platform to obtain the computer performance of the 3D-FWT

kernel.
16: end for
17: Send sequences in a proportion equal to the 3D-FWT kernel computer performance in each

GPU and CPU.

Algorithm 2 f(block, stream)
Require: Sequence of X frames with a resolution of n× n pixels
1: {Installation block sizes Set} = {Select automatically block sizes with Occupancy of each Mul-

tiprocessor >=60%}
2: {Installation streams Set} = {1 ≤ 2k ≤ X/4}
3: threshold = 10%
4: streams Set = Installation streams Set
5: best time = MAX
6: for each block size in Installation block sizes Set do
7: for each number of streams in streams Set do
8: Time = Execution 3D-FWT(block size, stream)
9: if Time ≤ best time then

10: best time = Time
11: best block size = block size
12: best number of streams = number of streams
13: end if
14: end for
15: Delete number of streams from streams Set if Time > best time+threshold
16: end for
17: return best time, best block size, best number of streams
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(line 1 of Algorithm 2). Obviously, the routine contains a table with the physical limits for
the GPUs, and the limit of the active thread blocks per multiprocessor is the minimum of
the maximum warps, registers and shared memory per multiprocessor.

Next, the Installation streams Set is composed of several number of streams, each a
power of two, between 1 and the frames’ number of the input sequence divided by four (X/4)
(line 2). In a first iteration (lines 6− 16), Algorithm 2 selects a first block size and obtains
execution times to process a sequence of frames with the 3D-FWT for the number of streams
contained in the streams Set, which is initialized with the Installation streams Set (line
4). Next, the function evaluates all execution times and obtains the minimum execution
time (best time). If the execution time for a number of streams is greater than the best time
plus a threshold (established to 10% in line 3), the number of streams of this execution is
not considered for the next evaluation of block size (line 15). For the next block sizes, the
analysis is only done for the number of streams selected in the previous iteration, so reducing
considerably the number of evaluations. Finally, the output is the minimum execution time
achieved by a block size and a streams’ number (line 17).

5 Experiments

In this section, we test the f(block, stream) for an NVIDIA Tesla K20 GPU with 2496
cores, an NVIDIA Fermi Tesla C2050 GPU with 448 cores and an old NVIDIA Tesla C870
GPU with 128 cores. We explain in detail the installation phase for the first GPU and the
results obtained for the other two GPUs. Results of the execution phase are analyzed for
the three GPUs, including a comparison with to a non-expert user and an expert user.

5.1 Installation phase

For an NVIDIA Tesla K20 GPU and a sequence of 256 frames of 1024 × 1024 pixels the
f(block, stream) is executed. In the installation stage Installation block sizes Set =
{128, 192, 256, 320, 384, 448, 512}, Installation streams Set = {1, 2, 4, 8, 16, 32, 64}, and
threshold = 10%. Table 1 shows execution time of 3D-FWT for different block sizes and
number of streams. Moreover, the last column of this Table shows the best time plus 10%
in each iteration with a different block size. For the first block size (128), streams Set is
equal to {1, 2, 4, 8, 16, 32, 64}. At the beginning of the second iteration, the best time is
414.73 msecs., therefore streams Set is reduced to {16, 32, 64} for the next block size (192).
In the following four iterations the stream Set is maintained at {16, 32, 64}. In the last
iteration, as the best time is 405.37 msecs., which has been obtained by a block size of 384
and 64 streams, the stream Set is reduced to {32, 64}. In this situation, the optimization
engine obtains the minimum execution time, reducing the number of executed evaluations
from the 56 total possible (7 tests for each block size in the the Installation block sizes Set
block sizes plus 7 evaluations of the block size 64 previously discarded in this phase) to 24.
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Our enhanced automatical method achieves the optimal configuration with a block size of
384 and 64 streams in 10.61 secs.

Table 1: Execution times (msecs.) of f(block, stream) for an NVIDIA Tesla K20 GPU
block size/streams 1 2 4 8 16 32 64 best time+10%

128 568.69 501.68 466.32 467.52 451.67 438.49 414.73 456.20
192 447.05 433.93 410.18 451.20
256 434.33 439.08 415.91 457.50
320 444.47 431.28 409.68 450.65
384 442.41 428.84 405.37 445.91
448 448.94 435.84 414.54 445.91
512 438.99 416.87 445.91

The f(block, stream) is executed for an NVIDIA Fermi Tesla C2050 GPU with 448
cores and a sequence of 128 frames with a resolution of 2048× 2048 pixels. Table 2 shows
the execution time of 3D-FWT for different block sizes and number of streams. The last
column shows the best time plus 10% in each iteration with a different block size. The
best time is 551.35 msecs. achieved by 384 block size and 8 streams. In this example, the
optimization engine obtains the minimum execution time, executing 50.00% of the total
evaluations in 14.33 secs.

Table 2: Execution times (msecs.) of f(block, stream) for an NVIDIA Fermi Tesla C2050
GPU

block size/streams 1 2 4 8 16 32 Best Time+10%
128 863.61 681.24 602.13 576.10 592.44 659.70 633.71
192 583.30 557.59 574.58 613.35
256 589.62 564.49 581.43 620.94
320 590.83 566.25 583.10 622.88
384 576.60 551.35 567.44 606.49
448 581.87 557.56 574.57 606.49
512 594.44 569.55 586.08 606.49

The f(block, stream) is executed for an NVIDIA Tesla C870 GPU and a sequence of
64 frames of 1024× 1024 pixels. Table 3 shows the execution time of 3D-FWT for different
block sizes and numbers of streams. For each block size, the best time plus 10% is also
shown. The best time, 201.81 msecs., which matches with the optimal configuration, is
obtained for the 192 block size and 16 streams. The execution installation time is 5.32 secs.
for this GPU.

5.2 Execution phase

In the installation phase, for a video sequence of 10 hours with 25 frames per second and a
resolution of 1024 × 1024 pixels, split into groups of 256 frames, the proposed autotuning
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Table 3: Execution times (msecs.) of f(block, stream) for an NVIDIA Tesla C870 GPU
block size/streams 1 2 4 8 16 Best Time+10%

64 220.89 220.27 219.71 218.58 216.46 238.11
128 209.59 209.15 208.44 207.33 205.17 225.69
192 206.08 205.56 204.93 203.86 201.81 221.99
256 212.41 212.11 211.24 210.16 207.96 221.99
512 224.30 223.90 222.92 221.66 218.91 221.99

engine selects block size 384 and 64 streams for the NVIDIA Tesla K20 GPU. In this way,
900, 000 frames are processed in 23.75 minutes by a non-expert user using the autotuning
engine, whereas, without our method, this user, who has no knowledge to properly select the
block size and the number of streams, would spend approximatelly 34.38 minutes (selecting
64 as the block size and 1 as the number of streams). On the other hand, an expert user,
who selects the optimal block size and establishes the number of streams to 32, which is
the number of hardware queues in a Tesla K20 GPU, would take 25.13 minutes. Therefore,
speedups of 1.45 and 1.06 are obtained with regard to a non-expert user and an expert user,
respectively.

For the NVIDIA Fermi Tesla C2050 GPU, a video sequence of 10 hours with 25 frames
per second and a resolution of 2048×2048 pixels, split into groups of 128 frames, is processed
in 64.61 minutes with our enhanced automatical method, while a non-expert user would
spend 107.73 minutes. An expert user, who selects 1 stream or 16 streams, which are the
numbers of theoretical streams allowed in concurrency and the hardware queues in a Fermi
Tesla C2050 GPU, would take 97.48 or 66.50 minutes. Speedups of our optimization engine
are 1.67 with regard to a non-expert user and 1.51 or 1.02, depending on the selection of 1
or 16 steams by an expert user.

For the NVIDIA Tesla C870 GPU, the 900, 000 frames, split into groups of 64 frames,
are processed by our autotuning engine in 47.30 minutes, while a non-expert user would
spend 52.57 minutes and an expert user 48.30 minutes. Speedups of our proposal are 1.11
and 1.02, respectively.

6 Conclusions and future work

We propose an extension of a previously proposed optimization engine to run the 3D-FWT
kernel automatically on integrated systems with different platforms such as multicore CPU
and manycore GPUs. This extension is based on an optimal selection of the block size and
the number of streams for an implementation of the 3D-FWT in CUDA. The autotuning
method perfoms a fast analysis for NVIDIA GPUs to obtain the best configuration which
achieves the minimum execution time for the GPU and determines the block size and the
number of streams, reducing the number of possible evaluations.
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Our proposed method obtains speedups of up to 1.45 for the NVIDIA Tesla K20, 1.67
for the Fermi Tesla C2050 and 1.11 for the Tesla C870 with regard to a user with no
knowledge in selecting the optimal block size and the number of streams. For expert users,
who select the optimal block size and know the architecture of the GPUs, the autotuning
engine achieves speedups ranging from 1.02 to 1.51 for the three GPUs.

We are to integrating the extension proposed here in the autotuning architecture for
the 3D-FWT on a cluster of multicores+GPUs previously proposed [5][6]. A comparison
between the new method and the previous proposal will be made. The methodology de-
scribed in this paper is applicable to other complex compute applications. Following this,
non expert users can obtain good performances in other applications. Our work is part of
the development of an image processing library oriented toward biomedical applications,
allowing users the efficient automatic execution of different routines.
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via Carlo Alberto 10, 10123 Torino, Italy

2 Istituto Superiore per la Protezione e la Ricerca Ambientale,
via Ca’ Fornacetta 9, 40064 Ozzano Emilia (BO), Italy

emails: berruti.alex@gmail.com, valentina.lamorgia@isprambiente.it,
ezio.venturino@unito.it, simone.zappala.00@gmail.com

Abstract

A model for the interactions of three hare species in the north-west of Italy is pro-
posed, based on ideas borrowed from the concept of herd behavior for modeling their
interactions. The possibility of the coexistence of all the species in the system through
persistent oscillations is discovered.
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1 Introduction

In this paper we consider the important problem of invasive speciers, which has been studied
already in [5], but in a much different setting. Moving from the case of American grey
squirrel (Sciurus carolinensis Gmelin, 1788) invading Europe and slowly outcompeting the
native red squirrel (S. vulgaris (Linnaeus, 1758)), we rather consider the problem of the
interplay of two species of hares in northern Italy, the the European hare, Lepus europaeus
(Pallas, 1778) and the indigenous mountain hare, Lepus timidus (Linnaeus, 1758).

While among squirrels we have studied the competition for tree seeds, which are the
main source of food for the squirrels, we consider here instead mainly the fight for the
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territory. In fact the European hare has been settling in the plains of the north, slowly
pushing away the native hare. Now the latter thrives at higher ground on the mountains and
partly in segregated areas, even from its own similar, with the territory in between occupied
by the invasive population. In fact, all these populations are mainly stantial. Furthermore
there is the phenomenon of coupling between these populations at the boundary of the
territories that they occupy to be taken into account. This gives rise to a hybrid species,
which in addition reproduces on its own. Figure 2 contains a map the current situation in
part of Piedmont (NW Italy).

Figure 1: Suitable habitats for the mountain and European hares in the Western Italian
Alps. The map is showing part of the Turin province, where the optimal habitat for the
European hare is mainly located in lowlands and valley bottoms (dark grey areas). On the
contrary, the optimal habitat for the mountain hare is located at the highest altitudes (light
grey areas). In-between, the medium grey, dashed areas actually identifies the zones where
sub-optimal habitats of the two species overlap (and where hybrids presumably thrive). The
habitat suitability is based on data provided by [3].

We propose a model to investigate the relationships among these species, and possibly
understand their future evolution. The system is based on the ideas first proposed in
[1, 2]. The approach indeed relies on the fact that the hares occupy different territories
and therefore among them the interactions can only occur at the border of their respective
habitats. This mathematically is modeled via square roots of the populations. In fact, if
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we assume that they are distributed over the territory, so that the number of individuals
occupying the outermost positions is proportional to the square root of the total population
size. This approach differs quite sensibly from the older concept of group defence expounded
in [6], which uses suitable assumptions on the shapes of the response functions, i.e. the
interactions terms. Note that the square root idea has been exploited also earlier in the
context of plankton dynamics, [4].

In the present context, we use these root terms only for accounting for the interspecific
interactions among the three hare populations.

The presentation is organised as follows. In the next Section we introduce the dynam-
ical system and its simplified version. Section 3 contains the equilibria analysis. A brief
discussion of the results concludes the investigation.

2 The model

Figure 2: A schematic illustration of the territory in which the three populations thrive,
whose interactions we intend to model. The European E hare occupies most of the flatland,
leaving the higher ground to the indigenous mountain hare population M . At the elongated
borderlines we find the hybrid population H.

We consider here the three hare populations, the European hare E, also known as brown
hare o European brown hare, Lepus europaeus (Pallas, 1778), the mountain hare M , Lepus
timidus (Linnaeus, 1758), and the hybrid hare H.

We summarize the basic assumptions underlying the ecosystem in consideration. For
the convenience of the reader, Figure 2 contains a schematic picture of the situation that we
want to model. The hare is essentially a “stantial” population. The E and M populations
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occupy different neighboring habitats so that they hardly directly compete. On the margins
of the territory occupied by E there are patches, usually at higher altitude, where the M
thrive. At the common, much elongated, boundaries of these different habitats for E and
M the two populations come in contact and they originate new individuals, of hybrid type,
H. The latter can further reproduce among themselves, as well as by coupling with both
confining populations E and M .

The fact that intermingling of these populations occur only on the boundary of the
regions of interest suggests us to model their interactions via square root fuctions, as recently
proposed in models for prey herd behavior, [2]. Recalling here the assumptions that led to
this herd defense model formulation, as they underlie also the ecosystem we are considering
here, we model the interactions occurring on the boundaries of their respective territories
as follows:

dE

dt
= rE

(
1− E

K

)
− ã
√
E
√
M − b

√
EH, (1)

dM

dt
= sM

(
1− M

L

)
− c̃
√
E
√
M − e

√
MH,

dH

dt
= qH − nH2 +

[
qM
√
M + qE

√
E −

(
g
√
E + f

√
M
)]
H + w̃

√
EM.

The first equation describes the evolution of the European hare. It grows logistically
with net reproduction rate r and carrying capacity K, and competes for resources with the
mountain hare population at rate ã. Since the environments in which these populations
live are only in part overlapping, the interactions are considered as if they were occurring
only for the animals living on the border of each environment. This is modeled via the
use of the square roots of these populations. The population E further competes with the
hybrid population at rate b. Note that again not the whole population E is involved in
the interspecific competition, but only the fraction of the population that resides on the
boundary, which is expressed once more by the square root term, [2]. Note also that the
root does not involve the hybrid population, because as we said, this population lives at the
intersection of the territories where M and E live, and this boundary zone can be thought
of as a thin and possibly long stripe. Therefore it resembles a one dimensional manifold, so
that it essentially coincides with its boundary. Therefore H is not really distributed over a
two-dimensional domain, but rather on a set of essentially long one-dimensional patches.

The second equation models the dynamics of the mountain hare. Again we have logistic
behavior, with net reproduction rate s. The carrying capacity L incorporates all the possible
fragmented habitats, with no communications in between, where the mountain hares find
refuge, after the invasion of the European hares. Competition in this case occurs once on the
neighboring territories where the European hare thrives, at rate c̃. Once more, this occurs
among the individuals that occupy the boundary of the environment of M that borders
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with the patches in which the E’s thrive, and the interaction involves only the part of the
M and E populations that are close to these boundaries. This is again expressed by the
square root terms. The interaction with the hybrid hare occurs again on the border, giving
rise once more to the square root term in M , at rate e.

For the hybrid hare instead, third equation, the dynamics is a bit more involved. Re-
production occurs again in a kind of logistic fashion, with net birth rate q and intraspecific
competition rate n. But hybrid hare offsprings are generated also via coupling of the hybrid
individuals with both mountain and European hares, at rates qM and qE respectively, keep-
ing in mind that again this can occur only on the common boundaries of their respective
habitats. In addition, although we can assume it to be a seldom occurrence, direct couplings
of European and mountain hare produce hybrid newborns, at rate w̃. Since these events
take place in the few locations where possibly these two populations interact, we assume
that the individuals involved are those living at the outskirt of their respective habitats,
and therefore model the couplings via the square root terms of both M and E populations.
Competition of the hybrid hare occurs with both E and M individuals, since the environ-
ment in which the hybrid hare lives borders both territories where E and M thrive. The
latter populations are therefore only “marginally” interested, as mentioned above, i.e. only
their fractions on the border of their habitats are involved, once again justifying the square
root terms.

Now ã, ẽ and w̃ as mentioned are very low rates, which actually get smaller and smaller
the higher the population H grows, since the latter represents a barrier among the M
and E populations, thereby diminishing the mutual interaction between the two stantial
populations that can occur only on the interface of their respective territories. In fact if the
M and E populations are separated by the habitat of the H’s, their mutual interactions
are impossible. Thus these are not really constant coefficients. It is the size of the hybrid
population at the interface that allows or prevents the interactions of E’s andM ’s. Therefore
the parameters ã, c̃ and w̃ must be rather functions of H. More specifically, they must
be decreasing functions of H. In fact, the smaller the H population is, the greater the
possibility of direct encounters between E’s and M ’s is and vice versa. We assume therefore
the functional forms of Holling type II terms, as follows

ã(H) =
a

m+H
, c̃(H) =

c

m+H
, w̃(H) =

w

m+H
.

Alternatively, one could simply assume that direct interactions among European and
mountain hares are impossible, i.e. for simplicity assume that ã = 0, ẽ = 0, w̃ = 0. The
model (1) would then be rewritten as

dE

dt
= rE

(
1− E

K

)
− b
√
EH (2)
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dM
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√
M
)]
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Let us substitute P =
√
E > 0, U =

√
M > 0 into (1), to get the singularity-free

systems
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and its simplified version

dP

dt
=
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dU

dt
=

1

2

[
sU

(
1− U2

L

)
− eH

]
dH

dt
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The Jacobian for the system (3) is

J =
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with J33 = q − 2nH + (qE − g)P + (qM − f)U − w
(m+H)2

PU , while for (4) it becomes

J =

 1
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0 −1
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0 1
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(
1− 3
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2
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−1

2e

(qE − g)H (qM − f)H J̃33

 . (6)

where now J̃33 = q − 2nH + (qE − g)P + (qM − f)U .

3 Equilibria

3.1 Particular cases

Both (3) and (4) share the origin E0 and possibly the coexistence E∗ = (P ∗, U∗, H∗)
equilibria. In addition, the simplified system (4) has also the the points E1 = (0,

√
L, 0),

E2 = (
√
K, 0, 0), E3 = (

√
K,
√
L, 0).
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The origin has the eigenvalue q > 0 in both models so it is unstable. Also the equilibria
E1 and E2 are always unstable, in view of the respective eigenvalues r > 0, and s > 0. For
E3 we find instead −r < 0, −s < 0 and q +

√
K(qE − g) +

√
L(qM − f), from which the

stability condition follows:

q +
√
KqE +

√
LqM <

√
Kg +

√
Lf. (7)

Therefore, the ecosystem survives, and in the simplified case in which direct competition
among the indigeneous and the invader populations are avoided, possibly only the subsystem
with no hybrid population thrives. But in this case the simplified system becomes less
plausible, since in the absence of H direct interactions between E and M should then
become possible and therefore should also be modeled in (4), i.e. giving back (3).

The equilibrium E3 occurs if the competition rates of the hybrid population with both
native and invaders are high enough, see (7). This condition is nonempty, as can be seen
in Figure 3, obtained for the parameter values r = 2.6, K = 12.6, a = 0, m = 1, b = 1.3,
s = 1.5, L = 20, c = 0, e = 0.8, q = 0.017, n = 0.9, qM = 0.02, qE = 0.2, g = 0.3,
f = 0.06, w = 0. Note also that the fact that there are three real eigenvalues for E3 makes
a Hopf bifurcation at this point impossible, i.e. no persistent oscillations can arise in the
neighborhood of this equilibrium.
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Figure 3: The hybrid hare-free equilibrium E3 for the model (4) is attained for the following
parameter values: r = 2.6, K = 12.6, a = 0, m = 1, b = 1.3, s = 1.5, L = 20, c = 0, e = 0.8,
q = 0.017, n = 0.9, qM = 0.02, qE = 0.2, g = 0.3, f = 0.06, w = 0.
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We have also analysed the relationship of the equilibria E3 and E∗ in the simplified
model (4). We observed a transcritical bifurcation, which taking as bifurcation parameter
qM , it occurs near the value q∗M ≈ 0.12, as it can be observed in Figure 4 for the parameter
values r = 2.6, K = 12.6, a = 0, m = 1, b = 1.3, s = 1.5, L = 20, c = 0, e = 0.8, q = 0.017,
n = 0.9, qE = 0.2, g = 0.3, f = 0.06, w = 0. Clearly, the coexistence equilibrium E∗

emanates from the hybrid hare-free equilibrium E3 as its coupling rate with the European
hare increases past the threshold value q∗M .
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Figure 4: Transcritical bifurcation between E3 and E∗ in model (4). The three hare popula-
tions are plotted against the model parameter qM . It is obtained for the following parameter
values: r = 2.6, K = 12.6, a = 0, m = 1, b = 1.3, s = 1.5, L = 20, c = 0, e = 0.8, q = 0.017,
n = 0.9, qE = 0.2, g = 0.3, f = 0.06, w = 0. This picture also clearly shows that the
coexistence equilibrium E∗ can be attained also for the model (4) for a value of qM past
the threshold q∗M ≈ 0.12.

3.2 Coexistence

The analysis of the coexistence equilibrium appears to be much more complicated.
But for the particular case (2), coexistence can be investigated with geometric argu-

ments. Solving the first two equilibrium equations in terms ofH, we find that these represent
two cylinders in the phase space, with axes parallel to the coordinate axes:

H1 =
r

b
P

(
1− P 2

K

)
, H2 =

s

e
U

(
1− U2

L

)
, (8)
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while the third equation gives a plane π,

H3 =
1

n
[q + P (qE − g) + U(qM − f)] . (9)

Clearly the latter has always a portion in the feasible region of the phase plane. The
intersection of the two cylinders exists always, and is an arc of a line ` joining the origin
with the point (

√
K,
√
L, 0). Thus, the intersection with the plane π may or may not exist,

depending on the inclinations of the latter, i.e. ultimately on its gradient. Moreover, even
when the intersection occurs, it could be a single point, or even two points.

A sufficient condition for the existence of a single intersection point can be obtained in
the case qE < g, qM < f , by requiring that the abscissae of the intersections of π with the
coordinate axes are smaller than the respective rescaled carrying capacities, namely

q

n(f − qM )
<
√
L,

q

n(g − qE)
<
√
K. (10)

Whenever conditions (10) hold, the uniqueness of the coexistence equilibrium is guaranteed.
The stability is difficult to assess analytically. But numerical simulations reveal that

the coexistence equilibrium can be attained at a stable level, see Figure 5. It is attained
for the parameter choice: r = 2.6, K = 12.6, a = 0.03, m = 1, b = 1.3, s = 1.5, L = 20,
c = 0.04, e = 0.8, q = 1.7, n = 0.9, qM = 0.2, qE = 0.5, g = 0.3, f = 0.06, w = 0.02. In
view of the fact that this is the only possible equilibrium in case of the full model (3), we
conjecture that, whenever locally asymptotically stable, it is also globally asymptotically
stable.

We have then tried to investigate also the possibility of existence of persistent sustained
oscillations, through repeated simulations involving all parameters, tracing all the popula-
tion levels for extended parameter ranges and over long periods of time. We were able to
find these limit cycles in several situations, presented here in Figures 6-8.

In Figure 9 we report instead a plot in the parameter space to investigate the ranges
for which persistent oscillations are possible. We draw in light color the situations for
which limit cycles exist, in terms of the reduced parameters f̃ = qM − f and g̃ = qE − g.
Note that the light stripes shoot off from the origin, showing that only for these parameter
combinations with opposite signs the oscillations can persistently arise.

4 Conclusions

The model presented indicates that it the three species cannot be wiped out, which from
the ecological and conservationist viewpoint is a good result. From the invading species
viewpoint instead it indicates that the elimination of the European hare has now become
impossible by natural means. The possible viable equilibria are the hybrid-hare free point
and coexistence. The former is stable if, as remarked, the competition rates of the hybrid
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hare with the remaining ones are sufficiently high. But as remarked in the text, the model
on which it relies becomes in this situation inadequate. We should then consider this
equilibrium as hardly possible. This implies that the hybrid hare is also persistent in this
environment.

The three species coexistence is possible not only at a stable level, but also through
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Figure 5: Coexistence equilibrium E∗ for the model (3) is attained for the following param-
eter values: r = 2.6, K = 12.6, a = 0.03, m = 1, b = 1.3, s = 1.5, L = 20, c = 0.04, e = 0.8,
q = 1.7, n = 0.9, qM = 0.2, qE = 0.5, g = 0.3, f = 0.06, w = 0.02.

Figure 6: Persistent oscillations for the model (1) are attained for the following parameter
values: r = 0.661577, s = 0.344058, q = 0.128513, K = 31.8568, L = 37.3244, n = 0.0032,
b = 1.34514, e = 2.1699, f = 0.981935, g = 1.08142, ã = 0, c̃ = 0, w̃ = 0.
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sustained oscillations for all the populations in the ecosystem, as demonstrated by our
extended numerical simulations.
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c©CMMSE ISBN: 978-84-616-9216-3Page 180 of 1485



Competition among European and mountain hares

systems, Nonlinear Analysis Real World Applications, 12 (2011) 2319-2338.

[3] Boitani L., Corsi F., Falcucci A., Maiorano L., Marzetti I., Masi M.,
Montemaggiori A., Ottaviani D., Reggiani G., Rondinini C., Rete Ecologica
Nazionale. Un approccio alla conservazione dei vertebrati italiani (National Ecological
Network. An approach to Italian vertebrates conservation), Università di Roma ”La
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Abstract

We investigate the influence of mosquito dynamics on vector borne diseases, and
apply the results to data collected for dengue fever epidemiology in Belo Horizonte.
Stochastic enhancement of deterministically transient oscillations is observed.

Key words: Dengue fever, mosquitos, fixed point analysis, dominant fequencies, pa-

rameter estimation, stochastic modelling, stochastic enhancement of transient behaviour

1 Introduction

Recently, models with various strains have been investigated to describe the complex be-
haviour of dengue fever epidemiology [4, 5, 12]. Some advances in understanding the ob-
served fluctuations in dengue fever have been made via simplified models of primary versus
secondary infection in simple reinfection models [27]. Here we combine the results from
human disease models in dengue fever with mosquito dynamics, as described by simpler
models before, an analyse actual data from one city in Brazil concerning mosquito abun-
dance, the ratio of total number of mosquitos versus infected mosquitos and the disease
cases of dengue fever in humans.
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Figure 1: The SIR model described as deterministical ordinary differential equation system. a) The

number of susceptibles changing with time, starting from arbitrary initial conditions, oscillates into

a stable fixed point, which can be calculated analytically. b) Same for the number of infected.

2 The SIR epidemic process as example

As a first example of an epidemiological process we consider the SIR system with the
differential equation system [22]

dS

dt
= αR−

β

N
S · I

dI

dt
=

β

N
S · I − γI

(1)
dR

dt
= γI − αR

with parameters γ = 1, α = 0.1 and β = 1.5 · γ and population size N = 100. In this
parameter region the system shows spiralling into the endemic fixed point S∗ = γ

β
N ,

I∗ = α

γ+α

(

1− γ

β

)

N , which is typical for many such systems. Hence we investigate this

example in more detail, and then transer the results to other models, including models with
reinfection and with human and mosquito coupled dynamics. In Fig. 1 we plot the number
of susceptibles and of infected against time, and in Fig. 2 we plot the state space, hence
S(t) and I(t).

With constant population size N = S + I + R we can reduce the ODE system to a
2 dimensional system and introducing densities x1 = S/N and x2 = I/N we obtain the
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Figure 2: The SIR state space plot for the same system as described in the previous figure shows

spiralling into the fixed point.

dynamic equations as
d

dt
x = f(x) (2)

with x = (x1, x2)
tr and f(x) given by f1(x1, x2) = α ·(1−x1−x2)−βx1 ·x2 and f2(x1, x2) =

βx1 · x2 − γ · x2. We can now linearize around the endemic fixed point x∗ and calculate for
initial conditions x(t0) close to the fixed point the approximate solution from the deviation
from the fixed point ∆x = x(t) − x∗. The approximation with linearized dynamics around
the endemic fixed point

d

dt
∆x =

df

dx

∣

∣

∣

∣

x
∗

∆x =

(

−α− βx∗
2

−α− βx∗
1

βx∗
2

βx∗
1
− γ

)

·

(

∆x1
∆x2

)

(3)

and abreviating ∆x = y(t) and Jacobian matrix A hence

d

dt
y = Ay (4)

with solution y(t) = eA(t−t0)y(t0) and after eigenvalue/eigenvector decomposition AT = TΛ,
resulting in complex eigenvalues λ1 = a+ iω and λ2 = a− iω with real part a and imaginary
part ω as functions of the transition rates,

y(t) = TeΛ(t−t0)T−1 y(t0) (5)

with time evolution matrix

TeΛ(t−t0)T−1 = ea(t−t0)

(

cos(ω(t− t0)) ·

(

1 0
0 1

)
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Figure 3: a) Approximation of time series of infected, b) approximation of state space plot by

linearized dynamics around the endemic fixed point.

(6)

+
1

ω
sin(ω(t− t0)) ·

(

1

2
(a11 − a22) a12

a21
1

2
(a22 − a11)

))

gives the green line in Fig. 3 as compared to the direct simulation of the SIR system as
red line. We will now investigate the same epidemiological system as a stochastic process
in order to analyse the influence of noise on the qualitative behaviour of the system.

3 The stochastic system

The SIR epidemiological system can be described as a stochastic process with a time de-
pendent Markov process, also called master equation, as

d

dt
p(S, I, t) =

β

N
(S + 1)(I − 1) p(S + 1, I − 1, t)

+γ(I + 1) p(S, I + 1, t)

+α(N − (S − 1)− I) p(S − 1, I, t) (7)

−

(

β

N
SI + γI + α(N − S − I)

)

p(S, I, t)

and can be simulated on a computer via the Gillespie algorithm [13, 14] via exponential
waiting times in epidemiological states and then stochastic transitions into other epidemi-
ological states.
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Figure 4: The stochastic SIR system shows continued oscillations around the deterministic fixed

point. a) Time series of the susceptibles, b) of infected and c) in state space of the stochastic system

in comparison with the deterministic SIR system.
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The stochastic system trajectory originally follows closely the deterministic trajectory,
Fig. 4, but while the deterministic trajectory spirals into a stable fixed point, the stochastic
trajectory still displays oscillation of a similar period length as the transients of the de-
terministic system. Hence the stochasticity enhances the fluctuations originating from the
transients of the deterministic system, a behaviour which can be observed in many popu-
lation biological systems [24, 25]. It is in epidemiology not only typical for the SIR system
but also holds in more extended system, like the reinfection model which we will show now
and also in a more extended model for vector borne diseases, as we will describe further
below.

4 Approximations of the stochastic system

The master equation approach becomes for large system sizes N very time consuming, hence
approximation schemes can help to speed up the analysis, which is especially important when
analyzing empirical data typically with many stochastic runs for various parameter sets [1].
Here we apply the Kramers-Moya approximation obtaining a Fokker-Planck equation, from
which we can sample individual realizations via a stochatic differential equation system
[15, 16, 17], see especially for epidemiological systems like the ones treated here [27] for
more details.

Fig. 5 shows the plots for the SIR systemcomparing the stochastic realization of the
exact method from Gillespies algorithm for master equations in comparison with the faster
Kramers-Moyal approximation leading to a Fokker-planck equation, which is the simulated
via a stochastic differential equation system in Euler-Maruyama scheme. As well the over
all dynamics as also the auto-correlations are well captured by the approximation.

5 The SIRI epidemic process

For a simple SIR-type model including reinfection, hence a simplest model in which primary
and secondary infections can be destinguished, we have the following differential equation
system

dS

dt
= αR−

β

N
S · (I + ̺ ·N)

dI

dt
=

β

N
S · (I + ̺ ·N) + θ

β

N
R · (I + ̺ ·N)− γI

(8)
dR

dt
= γI − αR− θ

β

N
R · (I + ̺ ·N)
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Figure 5: The stochastic SIR system in comparison of the exact Gillespie algorithm in green and

the faster Fokker-Planck approximation. a) Time series of the susceptibles, b) of infected and c) in

state space.
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Figure 6: Comparison between the Thailand dengue incidence data set and the stochastic reinfection

model SIRI simulation. Some of the qualitative features of the empirical data are already well

represented by this seemingly quit oversimplified model, but go well along the experiences with

Bayesian model comparison and its Occham’s razor property quantified in the Bayes factor.

which describes the dynamics of the mean values for the total number of susceptibles,
infected and recovered under the assumptions of mean field behaviour and homogeneous
mixing as it would be obtained from a stochastic model, hence mean values of products can
be replaced by products of means in the nonlinear contact term (β/N) I · S etc.

Due to the reinfection here we can in a simplest ansatz already include a distinction
between primary and secondary infection, primary infection being the transition from S to
I, and after recovery any secondary infection being the transition from R to I. The dis-
tinction between primary infection transitions and secondary ones can be easily performed
in the Gillespie algorithm, as well as in the Euler-multinomial approximation. We also suc-
ceded in tracing this information easily in the Kramers-Moyal approximation. For a first
model comparison between SIRI model output and the empirical data from severe dengue
incidences in Thailand, see Fig. 6.

While the purely deterministic model shows only a fixed point, the stochastic model
displays continued oscillations, of period length of roughly 7 years duration [27]. The model
can further be forced, without loss of qualitative behaviour in the main frequencies [23], by
a seasonal infection rate β(t) and thus shows the already quite complex behaviour as visible
in Fig. 6 and can roughly be compared with human severe dengue cases in Thailand. This
simnplest reinfection model is somehow an oversimplified version of more realistic multi-
strain models, as described in [4, 5, 6]. However, as a first model it can serve well, since
often data cannot capture all complexity of a system and the simplest possible model gains
most probability in a formal model comparison framework as provided e.g. by the Bayes
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factor [2], an Occham’s razor like feature. Only further statistical analyses along the lines
outlined in [1] can eventually give further insigths into more complex dynamical behaviour
as displayed in multi-strain models like deterministically chaotic attractors with positive
Lyapunov exponents. We will now look at possible models for mosquito borne diseases with
a similar Occhams razor approach, before more complex models can be treated in a similar
rigor as the here presented. the staring point are models like the ones earlier analyzed by
us [3] and [26].

6 The dynamics of mosquitos coupled with human infection

models

The simplest model where the coupling between mosquito infection dynamics and human
disease can be studied is the so called SISUV model [3] which after consideration of con-
stant human population size and constant mosquito population size only have two coupled
ordinary differential equations in the mean field case, or as stochastic model probability
functions with only two variables. This case can be treated to quite some extend analysti-
cally and exhibits strong separation of time scales which can also be treated analytically by
a center manifold analysis [3].

Here we present a stochastic system of SIRUV type, where the human disease model
is an SIR model, which is more realistic for most vector borne diseases (the system already
described and its deterministic version analyzed in detail in [3]). The disease vector part of
mosquito infection is exactly like in the simpler SISUV model. Like in the above analyzed
SIR system, also the SIRUV model shows deterministically a fixed point as attractor with
oscillations into it. These oscillations are again revisited by the stochastic system, even when
starting in the deterministic fixed point, see Fig. 7 for the enhanced stochastic oscillations
in infected humans and in infected mosquitos.

In the next section we will describe how to combine the above mentioned models for
human disease with reinfection [21, 22, 27] and the mosquito dynamics part from the pre-
viously investigated modquito models [3, 26].

7 The dynamics of mosquitos included in the reinfection

model

Now we include the dynamics of susceptible mosquitos U and infected mosquitos V , which
act as disease vectors, in the reinfection model for primary versus secondary infection in
dengue fever, as it was describe before. We use essentially the notation for vector dynamics
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Figure 7: Time series of the stochastic SIRUV model for the densities of infected humans and

infected mosquitos.

as described recently [3]. The model is given by the following differential equation system

dS

dt
= µ(N − S)−

β

M0

S · V − ̺βS

dI

dt
=

β

M0

(S + θR) · V + ̺β(S + θR)− (γ + µ)I

(9)
dR

dt
= γI − µR−

θβ

M0

RV − ̺θβR

dU

dt
= ψ − νU −

ϑ

N
UI

dV

dt
=

ϑ

N
UI − νV

where eventually the birth rate of mosquitos can be seasonally forced via

ψ(t) = ψ0 (1 + ψ1cos(ω(t+ ϕ))) (10)

leading to time dependent total number of mosquitos M(t) = U(t) + V (t) around a mean
value of M0. For further details on seasonal forcing in the mosquito dynamics see [26].
Under some conditions the dynamics of such systems can be simplified further by using a
time scale separation argument, namely that the life time of humans and that of mosquitos
in different in orders of magnitude, hence the mosquito infection dynamics is on a much
faster time scale than the human disease dynamics [3].
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Figure 8: Dengue fever cases in the city of Belo Horizonte for 18 years recorded weekly.

8 Separation of time scales leads to simplified model

Taking into account that the mosquito dynamics is fast compared to the dynamics of human
primary and secondary infection, hence

V (I(t)) =
ϑ

ν

I

N

1 + ϑ

ν

I

N

·M (11)

we obtain the simplified model

dS

dt
= µ(N − S)−

β

M0

S ·

ϑ

ν

I

N

1 + ϑ

ν

I

N

·M − ̺βS

(12)

dI

dt
=

β

M0

(S + θR) ·
ϑ

ν

I

N

1 + ϑ

ν

I

N

·M + ̺β(S + θR)− (γ + µ)I

with R = N−S−I in a human population of constant size N , and in the non-forced system
M = M0, cancelling out the M in the ODE system. It is expected that this system also
shows the stochastic amplification of transient oscillations of the deterministic model, as
we observed in the original SIRUV model, as initially described in [3]. We will now give a
first brief look into recently available data on mosquito abundance and the ratio of infected
mosquitos versus overall numbers of mosquitos and human disease curves.
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Figure 9: In the city of Belo Horizonte there were systematically mosquito traps placed since a

few years to capture mosquitos transmitting dengue fever. a) Total number of captured mosquitos

per week and b) total number of traps occupied (in red) and numbers of traps (pools) with infected

mosquitos (in black).

9 Empirical data on dengue fever in humans and in mosquitos

In the city of Belo Horizonte in Minas Gerais in Brazil, we obtained human disease curves
for dengue fever over a period of 18 years, see Fig. 8. There are also mosquito capturing
experiments running, which will finish the 4th year collection of data by the end of May
2014, see Fig. 9. The first inspection of these data shows large fluctuations as well in
the human disease curve, which vary from year to year significantly, as also in the overall
number of mosquitos M , Fig. 9 a), and in the ratio of dengue virus infected mosquito pools
and overall detected pools of mosquitos, Fig. 9 b), hence the ratio V/M . As opposed to
other studies, here number of mosquitos in the pools are relatively low with many pools of
only one mosquito. Earlier studies used much larger pool sizes due to financial restrictions
of the dengue virus testing capacities.

The mosquito capturing study is still ongoing, and more results on the fluctuations in
the mosquito dynamics versus the disease dynamics will be available only later. However,
we can obtain first indications on basic features to be used in the modelling approach, such
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as the ratio of infected to overall mosquitos. On a limited basis, also stochastic spatially
extended models will be possible, since some of the data are collected with recording of
collection locations, in ways of stochastic modelling indicated in [22] and recently [29].
Further approximation methods of the computationally demanding stochastic models can
be applied as initially investigated in [28], see also [18, 19, 20].
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Abstract

In this paper we present a mathematical model to describe the evolution of glioma
cells taking into account the viscoelastic properties of brain tissue. A theoretical stability
analysis gives information to design protocols which efficiency is illustrated by a number
of numerical simulations.

Key words: Glioma, viscoelastic behaviour, chemotherapy, numerical simulation.

1 Introduction

Cancer is a complex disease which leads to the uncontrolled growth of abnormal cells,
destruction of normal tissues and invasion of vital organs. Extensive research has been
done to model cancerous growth, however the understanding of malignant gliomas is much
less complete, mostly because migration of gliomas represent a very challenging problem
from a mathematical viewpoint.

Gliomas are diffusive and highly invasive brain tumors. Median untreated survival
time for high grade gliomas ranges from 6 months to 1 year and even lower grade gliomas
can rarely be cured. Theorists and experimentalists believe that inefficiency of treatments
results from the high mobility of glioma cells, which is partly driven by the mechanical
properties of brain tissue.

The first model to measure the growth of an infiltrating glioma was provided by Murray
in the early 90s ([19]). He formulated the problem as a conservation law where the rate
of change of tumor cell population results from mobility and net proliferation of cells. An
equation of type

∂c

∂t
= ∇.(D̃∇c) + f(c) in Ω× (0,∞) (1)
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was used, where Ω ⊂ R
n, n = 1, 2, 3, is the glioma domain, c(x, t) denotes the tumor cell

density at location x and time t, f(c) denotes net proliferation of tumor cells (generally
assumed to be exponential, f(c) = ρ c where the net proliferation rate ρ is constant), D̃ is
the diffusion tensor and ∇ defines the spatial gradient operator.

The partial differential equation (1), of parabolic type, was established combing the
mass conservation law with Fick’s law for the mass flux JF ,

JF = −D̃∇c . (2)

It is well known that that Fickian approach gives rise to infinite speed of propagation
which is not physically observable. To avoid the limitation of Fickian models an hyperbolic
correction has been proposed in different contexts (see [1], [6], [9], [10], [15], [17], and [20]).

The aim of this paper is to establish a class of non Fickian models that take into account
the viscoelastic behavior of the brain tissue and to present a stable numerical method for
this class of models. A simplified version of this model was considered [2] using a simple
geometry. To apply the modeling approach to specific patients a more realistic look at the
brain geometry and structure is necessary. In this case we can follow [23] where a complex
geometry of the brain and a space dependent diffusion coefficient were considered to reflect
the observation that glioma cells exhibit higher motility in the white matter than in grey
matter ([14]).

We observe that the most popular treatments used to combat gliomas are chemotherapy
and radiotherapy. Chemotherapy involves the use of drugs to disrupt the cell cycle and to
block proliferation. Tracqui et al. [24] incorporated chemotherapy by introducing cell death
as a loss term. If G(t) defines the rate of cells death then, assuming a loss proportional to
the tumour cells density, equation (1) is replaced by

∂c

∂t
= ∇.(D̃∇c) + f(c)−G(t)c in Ω× (0, T ] , (3)

where

G(t) =

{

k, when chemotherapy is being administered
0, otherwise .

(4)

Here k describes the rate of cell death due to exposure to the drug. The main question
is how to define k and the periods of chemotherapy applications that lead to control the
glioma mass.

2 A viscoelastic model

The brain tissue presents a viscoelastic behaviour that can be described by the Voigt-Kelvin
model ([13], [16], [18]). In this section we present a class of non Fickian models to describe
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the space and time evolution of glioma cancer cells, combining the diffusion process with
the viscoelastic properties of the brain tissue.

Several authors have studied the diffusion in a viscoelastic medium ([5], [7], [8] and
[22]), using a modified diffusion equation of type

∂c

∂t
= ∇.(D̃∇c) +∇.(D̃v∇σ) + f(c) in Ω× (0,∞), (5)

where σ represents the stress exerted by the medium on the diffusing molecules and D̃

represents a diagonal tensor with positive entries.
Even if studies of glioma growth have essentially addressed biochemical and genetic

factors, recent biomedical research has highlighted the role of mechanical properties. Our
aim in this paper is the modelling and analysis of glioma growth under the effect of the
rheological properties of the brain tissue.

Investigators have observed that the stiffness of extracellular matrix can either increase
or decrease the diffusion of migration cells. These observations are explained by the fact
that extracellular matrix stiffness induce complex biochemical phenomena that depend on
the type of diffusive cells and microenvironment properties.

In [25] the authors observed in vitro migration of fibroblasts from soft to stiff regions of
extracellular matrix. Following this paper we consider equation (5) where D̃v is a diagonal
tensor with negative entries.

We assume that the viscoelastic behaviour of the brain tissue is described by the Voigt-
Kelvin model

∂σ

∂t
+ βσ = α1ǫ+ α2

∂ǫ

∂t
, (6)

where ǫ stands for the strain. Equation (6) is based on a mechanistic model which is
represented by a spring and a dashpot in parallel, connected with a free spring. In (6) the
viscoelastic characteristic time β is given by β = E0+E1

µ1
, and α1 =

E0E1
µ1

, α2 = E0 where E1

is the Young modulus of the spring element, µ1 represents the viscosity and E0 stands for
the Young modulus of the free spring (see [13], [16], [18]).

If we assume that the strain ǫ satisfies ǫ = λc where λ is a positive constant (see [5], [7]
and [8]), from (6) we obtain

∂c

∂t
= ∇.(D∇c) +

∫ t

0
ker(t− s)∇.(Dv∇c(s)) ds + f(c) in Ω× (0,∞) , (7)

where D = D̃ + λα2D̃v , Dv = λ(α1 − βα2)D̃v and ker(s) = e−βs .

According to [11] and [12] we will consider the following assumptions: glioma cells are
of two phenotypes - proliferation (state 1) and migratory (state 2); in state 2 cells randomly
move but there is no cell fission; in state 1 cancer cells do not migrate and only proliferation
takes place with rate ρ; a cell of type 1 remains in state 1 during a time period and then

c©CMMSE ISBN: 978-84-616-9216-3Page 199 of 1485



How can mathematical modeling allow to control glioma growth?

switches to a cell of type 2; β1 is the switching rate from state 1 to 2; a cell of type 2 remains
in state 2 during a time period and then switches to a cell of type 1; β2 is the switching
rate from state 2 to 1.

Let u(x, t) and v(x, t) represent the density of migratory and proliferation cells at x

and t, respectively. The dynamics of glioma cells is then described by















∂u

∂t
= ∇.(D∇u) +

∫ t

0
ker(t− s)∇.(Dv∇u(s)) ds − β1u+ β2v in Ω× (0, T ],

∂v

∂t
= ρv + β1u− β2v in Ω× (0, T ],

(8)

whereD andDv denote square matrices of order n. The set of equations (8) is complemented
with initial conditions

u(0) = u0, v(0) = v0 in Ω ,

where u0 and v0 define the initial spatial distribution of malignant cells, and boundary
conditions

J.η = 0 on ∂Ω, (9)

where ∂Ω denotes the boundary of Ω, η represents the exterior unit normal to the brain

region and the non Fickian flux J is given by J(t) = −D∇u(t)−

∫ t

0
e−β(t−s)Dv∇u(s) ds .

Condition (9) means that the glioma is located inside of the brain and the cancer cells do
not cross the pia mater.

We will assume that D = [dij ] and Dv = [dv,ij ] are diagonal matrices with diagonal
entries di and dv,i such that

0 < di, dv,i in Ω, i = 1, . . . , n. (10)

If we consider the mass of glioma cells in Ω, M1(t) =

∫

Ω
(u(t) + v(t)) dx we showed in

[4] that M1(t) ≤ eρtM1(0) , assuming the positivity of u, which means that mass M1(t) of
cancer cells at time t depends on the initial mass, on time t and on the proliferation rate ρ.

To avoid the positivity assumption on u we consider the mass related functional
M2(t) = ‖u(t)‖2 + ‖v(t)‖2 , where ‖.‖ denotes the usual L2 . In this case we deduce that

M2(t) ≤ e2max{
β2−β1

2
,
β1−β2

2
+ρ,−β}tM2(0) . (11)

If the tumor density is largen than 1 then an upper bound for M1(t) can be deduced from
an estimate of M2(t) . We observe that we can not select parameters β1, β2, ρ such that
M2(t) is bounded in time. We also remark that inequality (11) allow us to conclude the
stability of the proposed mathematical model with respect to perturbations of the initial
conditions in [0, T ], for fixed T > 0.

c©CMMSE ISBN: 978-84-616-9216-3Page 200 of 1485



J. R. Branco, J. A. Ferreira, P. Oliveira

3 Chemotherapy: control of the glioma growth

In this section we study the behaviour of the glioma mass when chemotherapy is considered
and we establish criteria to define protocols that lead to the decreasing of the tumor mass.
All the results of this section were carefully analyzed in [3].

To take into account the chemotherapy effect, the viscoelastic model for glioma growth
(8) is modified as follows















∂u

∂t
= ∇.(D∇u) +

∫ t

0
ker(t− s)∇.(Dv∇u(s)) ds− β1u+ β2v −G(t)u in Ω× (0, T ],

∂v

∂t
= ρv + β1u− β2v −G(t)v in Ω× (0, T ],

(12)
where G(t) is defined by (4).

Considering E(t) = M2(t) + ‖

∫ t

0
ker(t− s)

√

Dv∇u(s) ds‖2 , it can be proved that

E′(t) ≤ 2max
{β2 − β1

2
−G(t),

β1 − β2

2
+ ρ−G(t),−β

}

E(t) . (13)

From (13) some conditions on the parameters, that lead to a decreasing of M2(t) , can be
established:

1. If the net proliferation rate is greater than the switching proliferation rate

ρ > β2 − β1 , (14)

and the total amount of death cells until time t due to chemotherapy effect is such
that

(β1 − β2

2
+ ρ

)

t <

∫ t

0
G(s) ds <

(β2 − β1

2
+ β

)

t , (15)

then we can conclude that M2(t) decreases.

From (15) we conclude that the difference between the net and switching proliferation
rates should be less than the viscoelastic characteristic time, that is,

ρ− (β2 − β1) < β. (16)

If no viscoelastic effects are considered (β = 0) we deduce from (15) that

∫ t

0
G(s) ds,

which measures in some sese the intensity of the treatment, should be smaller.
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2. Otherwise, if the net proliferation rate is less than the switching proliferation rate

ρ < β2 − β1 (17)

and the total amount of death cells until time t, due to chemotherapy effect, is such
that

(β2 − β1

2

)

t <

∫ t

0
G(s) ds <

(β1 − β2

2
+ ρ+ β

)

t , (18)

then we conclude that M2(t) decreases. Again we observe that the parameter β has
influence on the admissible threshold of the chemotherapy treatment.

We note that condition (18) implies

ρ− (β2 − β1) > β . (19)

When chemotherapy is applied, conditions (15) and (18) can be used to determine an
effective dosage that induces a rate k of cell death due to the exposure to the drug that
allows to control the total tumor mass. Obviously the value of k depends of the protocol of
chemotherapy. The typical bang-bang protocol corresponds to treatment which alternate
maximum doses of chemotherapy with rest periods when no drug is administered, as defined
by (4) and illustrated in Figure 1.

t

k

Figure 1: Chemotherapy protocol.

4 A fully discrete model

In this section we present a stable method to obtain numerical approximations for the
density of proliferation and migratory glioma cells. We show that the method preserves the
qualitative behaviour of the initial boundary value problem studied in the last section.

We assume that n = 2, Ω is the square [0, L] × [0, L] and H = (h1, h2) with hi >

0, i = 1, 2. In Ω we introduce the spatial grid ΩH = {(x1,i, x2,j), i = 0, . . . , Nh1 , j =
0, . . . , Nh2} ,where xℓ,i = xℓ,i−1 + hℓ, i = 1, . . . , Nhℓ

, xℓ,0 = 0, xℓ,Nhℓ
= L, for ℓ = 1, 2.

By ∂ΩH we represent the set of boundary points. We introduce the following auxiliary
points xℓ,−1 = xℓ,0 − hℓ, xℓ,Nhℓ

+1 = xℓ,Nhℓ
+ hℓ, ℓ = 1, 2.
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Let wH = (uh, vH) represent a semi-discrete aprocimation of w = (u, v) . To simplify

the presentation we use the notation wi,j = wH(x1,i, x2,j). We discretize
∂

∂x1
(a

∂u

∂x1
), a is a

scalar functions, using the usual second order finite difference discretization

∇∗
h1
(âH∇h1uH)(x1,i, x2,j) =

1

h1

(

ai+1/2,jD−x1ui+1,j − ai−1/2,jD−x1ui,j

)

, (20)

where ai±1/2,j = a(x1,i±
h1
2 , x2,j) andD−x1 denotes the usual backward finite difference oper-

ator in x1 direction. The second order finite difference discretization ∇∗
h2
(b̂H∇h2uH)(x1,i, x2,j)

to discretize
∂

∂x2
(b

∂u

∂x2
) is defined analogously.

In [0, T ] we introduce the grid {tn, n = 0, . . . ,M} with tn = tn−1 + ∆t, n = 1, . . . ,M,

t0 = 0, tM = T. To compute numerical approximations for u and v in (x1,i, x2,j) at time level
tn, u

n
H(x1,i, x2,j), v

n
H(x1,i, x2,j), respectively, we introduce the fully discrete initial boundary

value problem


















































D−tu
n+1
H =

∑

i=1,2

∇∗
hi
(di∇hi

un+1
H ) + ∆t

n+1
∑

ℓ=1

ker(tn+1 − tℓ)
∑

i=1,2

∇∗
hi
(dv,i∇hi

uℓH)

−(β1 +G(tn+1)u
n+1
H + β2v

n+1
H in ΩH ,

D−tv
n+1
H = (ρ− β2 −G(tn+1))v

n+1
H + β1u

n+1
H in ΩH ,

n = 0, . . . ,M − 1,

(21)

u0H = u0, v0H = v0 in ΩH , (22)

Dηx1
un+1
H (x1,i, x2,j) = 0, i = 0, Nh1 , j = 0, . . . , Nh2 ,

Dηx2
un+1
H (x1,i, x2,j) = 0, i = 0 . . . , Nh1 , j = 0, Nh2 ,

(23)

where

Dηx1
un+1
H (x1,i;x2,j) = Dd1,ηx1

uH(x1,i;x2,j) + ∆t

n+1
∑

l=1

ker(tn+1 − tl)Ddv,1,ηx1
ulH(x1,i;x2,j) ,

(24)
and Da,ηx1

uH(x1,i;x2,j) is defined by

1

2

(

a(x1,i+1/2;x2,j)D−x1u
n+1
H (x1,i;x2,j) + a(x1,i−1/2;x2,j)D−x1u

n+1
H (x1,i;x2,j)

)

,

for a = d1, dv,1 , being Da,ηx2
uH(x1,i;x2,j) defined analogously.

We now study the stability of the discrete scheme (21), (22) and (23). It’s easy to prove
that

min{1, 1 −∆tαn+1}E
n+1
H ≤ En

H , n = 0, . . . ,M, (25)
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where

En
H = Mn

H +
∑

i=1,2

‖∆t

n
∑

ℓ=0

ker(tn − tℓ)

√

d̂v,i,HD−xi
uℓH‖2hi

,

Mn
H = ‖unH‖2H + ‖vnH‖2H represents a discretization of M2(t) and

αn = 2∆tmax
{β2 − β1

2
−G(tn), ρ+

β1 − β2

2
−G(tn)

}

.

From (25) we deduce the stability inequality

En+1
H ≤

n+1
∏

ℓ=1

1

min{1, 1 − αℓ∆t}
E0

H , (26)

provided that

1−∆t αℓ > 0 , for all ℓ . (27)

When G is defined by (4), if the administered dosage of drug is fixed such that

β2 − β1

2
> k, ρ+

β1 − β2

2
> k , (28)

then condition (27) holds provided that time step size ∆t satisfies

∆t <
1

αβ
, (29)

where

αβ = 2max
{β2 − β1

2
,
β1 − β2

2
+ ρ

}

.

In this case (26) can be rewritten as follows

En+1
H ≤

1
(

1− 2∆tαβ

)(n+1)
E0

H ,

and consequently

En+1
H ≤ e

2(n+1)∆t

1−2∆tαβ E0
H , (30)

which means that the numerical scheme (21), (22), (23) is conditionally stable under the
condition (29) provided that the coefficients βi, i = 1, 2, and ρ satisfy (28).
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5 Numerical results

In this section we illustrate the behaviour of (21), (22) and (23). We consider a homogeneous
square domain Ω = [0, 15 cm]× [0, 15 cm], growth rate ρ = 0.012 /day and switching param-
eters β1 = 10−6/day and β2 = 0.036/day . These values are physiological and have been
obtained from [21]. According to [18] the initial condition is defined by 105 cells/cm2 prolif-
eration tumor cells located at the middle point of the domain, E0 = 3156Pa, E1 = 6E0 and
µ = 8.9×10−4 Pa·s .We also consider an isotropic behaviour with d̃11 = d̃22 = 0.004 cm2/day

and d̃v,11 = d̃v,22 = −10−14 /Pa · day (which leads to d11 = d22 ∼ 0.004 cm2/day and
dv,11 = dv,22 = 0.001 cm2/day2) and parameter λ = 1 cm2 .

Let us consider that the chemotherapy treatment is defined by (4) and applied with a
protocol as illustrated in Figure 1. Conditions (15) are used to compute a profile for G(t)
that lead to control the total tumor mass. We consider a 24h dosage and different rest
periods. In Table 1 we show the minimum value of k.

Protocol kmin [./day]

each 7 days 0.224

each 14 days 0.448

Table 1: kmin as (15), for a protocol of 24 consecutive hours of chemotherapy .

In Figure 2 we compare glioma masses for tree patients: one untreated and two sub-
mitted to chemotherapy starting at day 7 and with 7 and 14 rest periods, respectively. The
values of k were computed using conditions (15). We observe a significant reduction of
glioma masses when compared to glioma’s untreated patient. The results presented in this
figure show the effectiveness of our approach to define chemotherapy protocols.
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Figure 2: Glioma masses M1(t) for 200 days.
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In Figure 3 we plot the numerical solutions at day 104 for E0 = 3156Pa Solutions are
presented in a logarithmic scale, which means that the contour plots represent the power
of 10 of the density of tumor cells. For both cases we also present the distribution of pro-
liferation cells for two patients submitted at chemotherapy protocol with a 24h dosage and
14 days of rest period (dosage at days 7, 21, 35, 49, etc). Values of k were computed using
conditions (15) according to the weaker restriction. We observe a more intensive spreading
when Young modulus (of the free spring) increases. This conclusion is in agreement with
experimental results as stated in [25].
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Figure 3: Distribution of proliferation cells results at day 104 (E0 = 3156Pa).

6 Conclusions

In this paper we studied a mathematical model to describe the evolution of glioma cells with
and without chemotherapy. The model was established combining a mass conservation law
with a non Fickian mass flux that takes into account the viscoelastic behaviour of the brain
tissue described by the Voigt-Kelvin model.

We deduced estimates that allowed to define sufficient conditions on the parameters
that lead to control the glioma mass.

A fully discrete scheme was defined and the stability of such scheme was analyzed.

Numerical experiments suggest that our approach is a promising one. The behaviour of
the mass of glioma cells was illustrated under the conditions deduced for the chemotherapy
protocols.
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Abstract

The demand for high accuracy and efficiency in lattice energy minimization chal-
lenges modern theoretical methods. This is for instance crucial for organic crystal struc-
ture prediction. We review the applicability of ab-initio and semi-empirical approaches
on various gas phase and solid state databases. It is demonstrated that London disper-
sion corrected Density Functional Theory (DFT-D) is very accurate with deviation from
the references of only 0.5-1.5 kcal/mol (5-10%). While DFT-D can in principle distin-
guish between different polymorphs, the computational demand e.g. to screen a huge
number of structures is too high for routine application. This task can be carried out
by semi-empirical methods. A dispersion corrected Density Functional Tight-Binding
(DFTB-D) Hamiltonian shows promising results. The mean absolute deviations are ap-
proximately 2-3 time larger than for DFT-D at a speedup of two orders of magnitude.
The results show how the semi-empirical method can be used complementary to ab-initio
computations for pre-screening of numerous structures or to compute thermodynamic
properties of large systems.

Key words: Dispersion Correction, Non-Covalent Interaction, Organic Crystals,
Tight-Binding, Semi-Empirical MO, Density Functional Theory

1 Introduction

In order to accurately model molecules both in the gas and solid phase, the correct treatment
of inter- and intramolecular interactions is mandatory. Due to a variety of applications the
theoretical progress is an active research field.1,2,3,4,5,6,7,8 While the short-ranged intramolec-
ular forces can be described by semi-local density functionals (and approximations thereof),
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Figure 1: Left: A schematic view on the accuracy–computational cost ratio for different
methods is given. The accuracy is exemplary given for the calculation of organic crystal
lattice energies. Wavefunction theory methods (WFT) are expected to give the correct
result in principle but can not be applied routinely. The gap between force fields and DFT-
D is highlighted. Right: A typical molecular crystal with an electron density isosurface
(calculated via DFT) is shown. The dominant intra- and intermolecular interactions are
highlighted. Reprint from Ref.4.

for gas phase dimers, supramolecular host-guest complexes, and organic crystals the long-
range (non-covalent) forces are crucial. Most important of these intermolecular forces are
the hydrogen bonding and van-der-Waals (vdW) interactions.9 All local and non-local inter-
actions are in principle described by high level quantum chemical methods. Although some
efforts are made to apply localized versions of these methods, they are not applicable to very
large complexes or to molecular crystals.10 The mainly used alternatives are purely empirical
potentials (force fields) and London dispersion corrected Density Functional Theory (DFT-
D).11 The non-local correlation can be incorporated by different means. G. Beran proposed
a fragment-based hybrid many-body interaction model, which is capable to calculate lat-
tice energies with chemical accuracy.12,2 We recently demonstrated the predictive power of
the semi-classical DFT-D3 scheme for molecular complexes and organic solids13,14,15. We
calculated lattice energies of organic crystals with an accuracy of 1 kcal/mol.3,16 Similarly
accurate results are obtained with the Tkachenko-Scheffler (TS) Many-Body-Dispersion cor-
rection (MBD)17,18 and E. Johnson’s exchange dipole model (XDM)19. These methods have
already been used in the field of crystal structure prediction.20 Very recently, we combined
a density functional tight-binding method with the D3 dispersion correction and evaluated
the method on various benchmark sets.4 In Figure 1, we show a typical molecular crystal
and the (estimated) statistical accuracy of different methods. Wavefunction theory methods
(WFT) are expected to give the correct result in principle but can not be applied routinely.
On the other hand, empirical force fields have a too low accuracy and can only be used in an
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on-the-fly parametrization scheme.21 DFT-D is the method of choice if an accuracy of about
1 kcal/mol is needed. For pre-sceening techniques, semi-empirical models like DFTB-D3
can be conducted with accuracy of 2 to 3 kcal/mol.

Here, we want to put the possible multi-level approach into perspective. In section 2,
we describe the utilized methods with focus on the London dispersion correction. We give
a summary of the computational details in section 3. We compare and discuss the results
of ab-initio DFT methods with different semi-empirical approaches on various benchmark
sets (section 4). Finally, we conclude in section 5 with a short summary and outlook.

2 Method

At short distances, standard (semi local) density functionals can describe the effective elec-
tron interactions rather well. These interactions are closely related to change in the electron
density and can therefore be modeled in a local expansion. However, non-local electron cor-
relation cannot be described in this way. Therefore, the density functionals have to be
corrected. The electron correlation between two fragments A and B at long distances rAB

can be connected to their dynamic polarizabilities at imaginary frequencies α(iω) (Casimir-
Polder relation)22,23

EAB
corr(rAB →∞) = EAB

disp = − 3

π

∫ ∞
0

αA(iω)αB(iω) dω × 1

rAB
6
. (1)

The correct 1/r6 limit can not be described by semi-local density functionals, because the
overlap of the electron density decays exponentially. This long range electron correlation,
a.k.a. London dispersion interaction, can be added to the (semi-) local correlation captured
by the density functional:

Etotal = Edft + Edisp (2)

The standard DFT-D3 correction calculates the London dispersion energy in an atom-
pairwise fashion

Edisp =− 1

2

∑
n=6,8

N∑
i,j

sn
Cij
n

‖rij‖n + f(Rij
0 )

n , (3)

where Cij
6/8 are the leading order dipole–dipole and dipole–quadrupole dispersion coefficients

and rij is the distance between the atom pairs i, j.24 The s6 scaling coefficient is set to
unity to ensure the correct long-range behavior. The Becke-Johnson25 rational damping
function f(Rij

0 ) is used to match the long- and medium-range dispersion contribution from
D3 with the semi-local correlation captured by the density functional.26 The C6 dispersion
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coefficients depend geometrically on the molecular environment and are pre-calculated by
time-dependent DFT and utilizing the Casimir-Polder relation.

Complementary to the full ab-initio DFT calculations, we also utilize the Density Func-
tional Tight-Binding method DFTB3. This method is based on a third-order expansion of
the Kohn-Sham total energy with respect to charge density fluctuations. The arising matrix
elements are modified by a self-consistent charge (SCC) redistribution. The modification
corresponds to an on-site repulsion for short distances and to a Coulomb interaction at
long distances with correct Coulomb limit. In the latest version an additional damping of
the pair interactions involving hydrogen atoms is included. This significantly improves the
description of hydrogen bonded systems and proton transfer.27,28,29,30 We abbreviate this
SCC-DFTB3 method as DFTB throughout the article. Similar to the DFT methods, the
DFTB Hamiltonian has to be augmented with a London dispersion correction. Because the
charge density of the DFTB method is (mainly due to its minimal basis) not very accurate,
it is ideal to use a correction scheme which does not explicitly depend on the electronic
structure.4,31 The D3 correction solely uses the geometry information to calculate the dis-
persion energy. Because of its small numerical complexity, the D3 correction is ideally suited
for a coupling with inherently fast electronic structure methods.

3 Computational Details

We calculate the PBE32 (DFT) energy in large basis sets (def2-QZVP33 and 1000 eV
PAW34) using the TURBOMOLE 6.435 and the VASP 5.336,37 program suitye, respec-
tively. The DFTB Hamiltonian with full third-order correction and self consistent charges
(SCC) is computed via the dftb+ standalone. We use the most recent Slater-Koster files
provided by the group of M. Elstner. The hydrogen containing pair potentials are damped
with an exponent of 4.2, which is the recommended value for proton transfers.27,29,30 The
PM6-DH2, PM7, and OM2 energies are calculated with the Mopac 2012 program38 and
the MNDO 7.0 program39,40, respectively. The Brillouin zone is sampled with a Γ centered
grid with at least 0.05 Å−1 k-points, generated via the Monkhorst-Pack scheme.41 The Lon-
don dispersion correction D3 is used in the Becke-Johnson damping variant via the dftd3

code.24 The crystal geometries are optimized with fixed unit cell with the approximate nor-
mal coordinate rational function optimizer ANCOPT42,43 until the atomic forces are below
10−4 au. For all other benchmarks the standard single-point energy approach was applied.
In the X40 test set, systems including Br or I are excluded, and the Fe-containing complex
in the S12L set is also disregarded due to missing Slater-Koster files.
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4 Results

In order to validate the proposed PBE-D3 and DFTB-D3 method, we apply them to various
standard databases and compare the results with the corresponding reference energies, non-
dispersion corrected methods, and other semi-empirical methods. As prototypical density
functional the widely used non-empiric PBE functional is used. Other generalized gra-
dient approximated density functionals perform similar, while hybrid functionals perform
slightly better.13,16 Additionally to the DFTB model, we conduct the PM6, PM7, and OM2
methods as widely used semi-empirical Hartree-Fock approximation by neglect of diatomic
differential overlap (NDDO).44 We investigate the benchmark sets S22 (small gas phase
dimers45), S66x8 (medium sized gas phase dimers at eight center-of-mass distances46), X40
(halogenated gas phase dimers47), L7 (large gas phase dimers and trimers48,49), S12L (large
host-guest complexes50), and X23 (organic molecular crystals19,17,18). These data points
are partially published elsewhere, see e.g.3,4,14,48,13. The results are summarized in Table 1.

Table 1: Mean absolute deviation (MAD), mean deviation (MD), and standard devia-
tion (SD) of the dissociation and lattice energies for various benchmark sets are shown.
Data are given for uncorrected as well as dispersion corrected (suffix D3) methods. All
values are in kcal/mol and a positive MD denotes on average overbinding.

Method MAD MD SD MAD MD SD MAD MD SD

S22 S66x8 X40
PBE 2.61 -2.58 3.74 1.52 -1.49 2.24 0.98 -0.92 1.89
PBE-D3 0.58 0.11 0.79 0.35 0.24 0.48 0.48 0.31 0.59
DFTB 3.50 -3.50 4.23 2.17 -2.17 2.54 2.12 -1.09 2.99
DFTB-D3 0.95 -0.80 1.56 0.79 -0.24 1.14 1.66 0.14 2.56
PM6 3.41 -3.41 4.22 2.00 -2.00 2.50 2.41 -2.41 3.70
PM6-DH2 0.39 -0.15 0.53 0.52 -0.26 0.80 1.63 -1.50 3.16
PM7 0.77 0.04 0.91 0.73 -0.13 0.96 1.69 -1.01 3.22
OM2-D3 0.93 -0.86 1.44 0.78 -0.44 1.19 — — —

L7 S12L X23
PBE 15.59 -15.59 17.93 23.75 -23.75 28.50 11.70 -11.70 6.10
PBE-D3 1.58 0.26 1.63 2.01 1.21 2.53 1.07 0.43 1.34
DFTB 14.15 -14.15 15.95 19.79 -19.79 22.11 12.29 -12.29 13.58
DFTB-D3 1.74 1.31 2.28 5.90 4.60 7.99 2.48 -0.22 2.87
PM6 10.93 -10.93 12.84 14.36 -14.36 16.64 — — —
PM6-DH2 3.34 3.34 4.74 7.21 7.21 8.63 — — —
PM7 7.61 7.61 8.33 17.51 17.51 21.07 — — —
OM2-D3 2.36 -0.72 2.70 5.55 5.54 7.81 — — —

The failure of the non-dispersion corrected methods for these (non-covalently) bound
systems is apparent. PBE, DFTB, and PM6 significantly underbind all molecular and
periodic systems. This is not surprising as they are mainly bound by non-local correlation,
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which cannot be captured by the utilized method. Augmenting the methods with the D3
dispersion correction (DH2 is a combined D2 dispersion correction and empirical hydrogen
bonding correction and PM7 intrinsically has an empirical dispersion correction), reduces
all MADs significantly. PBE-D3 has the lowest MAD with very accurate energies for all
systems. The larger systems have slightly larger deviations, but this is due to the larger
absolute interaction energy. The MAD of 1.1 kcal/mol for the molecular crystals X23 should
be pointed out, it is below the estimated experimental error of 1.2 kcal/mol.3 The dispersion
corrected semi-empirical methods have MADs approximately a factor 2-5 larger. On the
other hand, they are about two orders of magnitude faster. They also profit from the
dispersion correction, but perform worse for the hydrogen bonded systems with the more
complicated intermolecular electrostatic and induction. This is not surprising as this is the
most crucial point for all semi-empirical approximations and can be seen at the larger MADs
for the X40 set of halogenated dimers. Comparing the different semi-empirical methods, the
dispersion corrected density functional tight-binding model DFTB-D3 seems to yield the
most stable results. The MAD below 1 kcal/mol for the S66x8 set and of 2.5 kcal/mol for the
X23 crystals is remarkable. The PM6-DH2 and OM2-D3 methods can also be recommended.
However, its performance for the larger L7 and S12L systems is slightly worse than for the
well balanced DFTB-D3. While PM7 has small MADs close to its fit sets S22 and S66x8,
the results for the larger systems are far worse and it should be used with care.
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Figure 2: Correlation between the calculated DFTB, DFTB-D3, PBE, and PBE-D3 lattice
energies with the experimental reference values. The gray shading denotes the experimental
uncertainty of approximately 1.2 kcal/mol. Reprint from Ref.4.

In Figure 2, we show the correlation between the calculated and reference lattice en-
ergies on the X23 set of organic crystals. Here, we focus on the dispersion corrected and
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uncorrected PBE and DFTB methods. The uncorrected models neglect a main contribution
to the lattice energy as shown by the large deviations from the references. This is efficiently
corrected with the D3 dispersion correction. PBE-D3 and DFTB-D3 seem to be well suited
to describe both gas and solid phase systems. The linear correlation coefficient is 0.98 and
0.94, respectively.

5 Conclusion

We presented and evaluated different electronic structure methods with focus on dispersion
corrected DFT and semi-empirical methods. The MAD of the PBE-D3 scheme for binding
energies is below 1 kcal/mol for the smaller benchmark systems S22, S66x8, and X40,
approximately 2 kcal/mol for the larger L7 and S12L systems, and below the experimental
error of 1.2 kcal/mol for the lattice energies of the X23 crystals. While DFT-D has the best
accuracy, it is computationally too demanding for the screening of numerous structures.
Semi-empirical methods can fill this gap, as shown by the small MADs of DFTB-D3, i.e.
0.9, 0.8, 1.7, 1.7, 5.9, and 2.5 kcal/mol for the S22, S66x8, X40, L7, S12L, and X23 test
sets. PM6-DH2 can also be recommended, however, the errors for the larger systems are
significantly larger compared to DFTB-D3.

Interestingly, the relative errors for both the molecular dimers and the molecular crystals
are very similar. The constantly good performance of the PBE-D3 and DFTB-D3 methods
demonstrates their robustness. A combined usage of both methods seems to be ideal for
the challenging task of organic crystal structure prediction. Another possible application is
the calculation of sublimation energies, combining the electronic energy from PBE-D3 with
the free energy correction from DFTB-D3. This multi-level approach is already routinely
done for gas phase systems, but could be extended without modification to the solid state.
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This article is about methodological aspects of traffic theory. In this article we
considered new and old model of traffic flow and their advantages and disadvantages.
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1 Introduction

In the 20s of the 20th century in industrialized countries began the process of motorization.
Vehicles are becoming more affordable, comfortable and increasing traffic flow should be
controlled. Therefore, the scientists faced the task of investigating the behavior of traffic
flow and the development of methods for the prediction and management.

Created in 20th century traffic flow theory divided into microscopic and macroscopic.
(1) Microscopic approach considers the behavior of individual pairs of cars, moving

one after another without overtaking. This approach is called microscopic. This approach
developed Grindshields [1], Pipes [3], Newell [5] and others.

(2) The macroscopic approach considers the traffic flow as a whole. The first macro-
scopic model was obtained Grindshields [2], later-model Lighthill - Whitham [7], etc.

Over the past 80 years have created many variants of models (1) - (2). Considered
one of the main model is car-following model. However, in some cases in the car-following
model jumps are observed basic characteristics of vehicular traffic called ”breakdown phe-
nomenon”.In their studies these phenomena encountered Pipes [4], Newell [6], Herman [10],
Gazis [8], Rothery [9 ], etc.
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2 About Kerner’s three-phase traffic theory

In 00s years of the 21th century was devised Kerner’s three-phase traffic theory [11], with
which the author claims [12, page.v], we can explain and predict the spatiotemporal empir-
ical features of traffic breakdown.

Let’s review three main concepts of the theory.

Free traffic flow, [12, page 257] is usually observed, when the vehicle density in traffic
is small enough The flow rate increases in free flow with increase in vehicle density, whereas
the average vehicle speed is a decreasing density function. The increase in the flow rate
with the density increase in free flow has a limit. At the associated limit (maximum) point
of free flow, the flow rate and density reach their maximum values while the average speed
has a minimum value that is still possible in free flow., [12, page 255] - Congested traffic
can be defined as a state of traffic in which the average speed is lower than the minimum
average speed that is still possible in free flow.

Front of traffic pattern, [12, page 257] is either a moving or motionless region within
which one or several of the traffic variables change abruptly in space (and in time, when
the front is a moving one). There are downstream front and upstream front of the traffic
pattern. The downstream pattern front, [12, page 257] separates the pattern from other
traffic patterns downstream. The up stream pattern front, [12, page 257] separates the
pattern from other traffic patterns upstream.

Wide moving jam, [12, page 262] In three-phase theory, the following definition [J] of
the wide moving jam traffic phase in congested traffic is made. A wide moving jam is a
moving jam that maintains the mean velocity of the downstream jam front? even when the
jam propagates through any other traffic states or bottelnecks. This is the characteristic
feature [J] of wide moving jam phase.

Narrow moving jam, [12, page 259] is a moving jam, which consists of jam fronts only.
Narrow moving jams are associated with the synchronized flow phase.

Synchronized flow phase, [12, page 261] in three-phase theory, the following definition [S]
of the synchronized flow phase in congested traffic is made. In contrast to the wide moving
jam phase, the downstream front of the synchronized flow phase does not maintain the mean
velocity of the downstream front. In particular, the downstream front of synchronized flow
is often at a bottleneck. In other words, synchronized flow does not exhibit the characteristic
jam feature [J].

The term synchronized flow reflects the following features of this phase of the traffic:

1) The continuous flow without significant delays which often occur within a wide
moving cluster.

2) There is a tendency to synchronize speeds in the stream. Furthermore, there is a
tendency to synchronization of vehicles on each of the lanes of the road (the formation of
groups of vehicles) in a synchronized stream.
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Synchronized flow unlike widely moving jam does not retain its average speed at the
downstream front.

Bottleneck, [12, page 255] The breakdown phenomenon leading to the onset of traffic
congestion occurs mostly at a highway bottleneck. On average the speed is lower and density
is greater within this disturbance than these traffic variables are in free flow outside of the
disturbance.

Three-phase traffic theory makes the assumption that in addition to free traffic flow
phase has two phase of congested traffic: synchronized flow and wide moving jam. Thus,
there are three phases in a three-phase traffic theory: free flow (F); synchronized flow (S);
wide moving jam (J).

Let’s review the methodology of the theory (p. 103). Spatiotemporal measurements
of the traffic flow features are taken on different highways in different countries for long
period of time. In that data clear features of intense traffic flow structure are found as
well as generic features. On the next stage microscopic and macroscopic criteria are defined
for different phases of the three phase theory, common for different structures of traffic ,
common structures are defined for only intense traffic phase, certain choice of parameters is
valid for each phase. Examples of such class of structures for intense traffic with common
qualitative spatiotemporal features are structures , appearing in bottleneck.

Therefore, empirical data lie at the base of Kerner theory without mathematical formu-
lation and models [11, . 87] about density, intensity, averaged velocity which were collected
with detectors. Formulations given in [11], don’t have algorithm on how to identify re-
viewed objects, therefore the conclusions can’t have serious consequences. This probably
prompted the author to expand his ideas in [12].

3 Flow as the composite of collective and individual

Description of traffic flow behavior via measuring density, intensity and averaged velocity is
clearly not sufficient for such a complicated process, what factually Kerner [11] tries to state,
using the modern data monitoring. Classic models simplifying traffic flow as dependency
between velocity and intensity, well proven in hydrodynamic as example, are not valid for
traffic, where dozens of particles interact (not millions) on each kilometer of lane, who also
have their own pattern of behavior. For sure the base concept in traffic is the concept
of dynamic clearance limit which represents untouched space for the vehicle on the road.
The simplest model of dynamic dimension is quadratic dependency on velocity [1] with
coefficients dependent on several indicators of low formalized complex human nature - this
is how the society obeys to God and not mechanics of Newton. With the first approach
these coefficients can be considered as constants, velocity is the recommended value for the
concrete conditions of the flow, dynamic clearance limit is the size of the region equal to
one lane, that is necessary for vehicles’ safe movement.
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Therefore, dynamic dimension limit helps to divide the road space on cells in order to
define the flow connection correctly as the percent of busy cells on given speed mode [13].
Current state of the driver can be taken as probability to move to neighboring cell within
period of time. This approach unites determinate and episodic models that were widely
presented in the history of traffic.

4 Cluster as a steady state of a connected chain of follow the
leader

Model of one lane connecting movement takes us to the system of lineal differential equations
in ideal alternative.

xn+1(t) − xn(t) = fn(
·
xn(t)) (1)

where f - the safety function, the dynamic dimension. Human factor in the right part
is considered in different ways of that approach: (a) delay of argument - time for the driver
to validate the information; (b) precision with which the distance to the car moving ahead
was evaluated [8, 10, etc.].. Modern tendencies in car systems take it to the state where
”occasional variations of human behavior” become of low importance while the cars are
getting ”smarter”.

With very generic assumptions [14] it is correct to state stability of equal chain spread if
the leader follows with equal velocity. As a result in canalized traffic the sequence of equally
set vehicles, moving with equal velocity is found - it cluster, where density statement is
correct, and velocity is one value function from density in case of monotonous functions of
dynamic clearance limit [17].

Praising hydrodynamic approach in traffic, military terminology can be widely used - as
Kerner does, used along with downstream front, upstream, etc. Interaction of waves can be
defined via different methods, one of which is local - analog to conditions of Gugono-Renkin
and takes in reviewed case to the system ODE with changing architecture [17], [16].

5 Cluster models of multiband movement

Red Color - holy color for inhabitants former USSR at of that time all atheism. A jumble
of notions produced in two red books [11], [12] will try to systematize. Thus, the cluster
is sustainable formation of the vehicles flow is evenly spread of particles having a constant
speed at a fixed density [15]. Cluster remains in unchanging configuration unless enters
interaction with other clusters or if disrupted geometry of the road. Interaction of the
clusters described by a system of ordinary differential equations - it is one of the variants of
behavior of a totally connected movement. In this ”front line” depending on the intensity
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of the flow on the leading front of outsider and the trailing front of the leading can shuffle
in any direction.

·
x =

v2ρ2 − v1ρ1
ρ2 − ρ1

(2)

Model (2) - analog of the Hugoniot-Rankine, v2 = v2(ρ2), v1 = v1(ρ1), [17].

Multiband movement further comprises overtaking procedure and its variations: over-
taking, temporizing - quick follow close behind the with slow speed slow, humility - to
slow the rapid integration according to (2), follow - slow to fast integration with a totally
connected movement, which is an alternative to lag [16].

The general problem of cluster modeling reduces to the following. There is some initial
configuration of the cluster length li, density yi, ”fronts” - borders [ai, bi], i = 1, ..., n on
several bands X(i), j = 1, ...,m. During the movement more rapid clusters overtake slow and
starts the process of interaction based on a set of the above procedures. The purpose of the
study is to evaluate the configurations of the cluster fields and numerical flow characteristics.
In particular, the presence of bottlenecks.

Cluster model of motion is a special case of general deterministic-stochastic approach,
assuming a totally connected behavior [17].

6 Conclusion

In the works of Daganzo [18] is the initial attempt to break a vicious circle: at first intro-
duced weakly defined macrocharacteristics - density and velocity, and then for them issued
fanciful equations in partial derivatives, which in turn is necessary to investigate numeri-
cally, ie using finite difference schemes. Schreckenberg and Nagel [19] continued the work
renunciation of of attempts describing the behavior traffic through the classical and gener-
alized solutions PDEs, forming a reasonable statement immediately at a discrete level - it is
announced to us the theory of cellular automata [19] finally, a modern agent-based modeling
, armed with supercomputers, claims to describe the behavior of hundreds of thousands of
vehicles in parallel. This is the other extreme - the polar opposite to the fans to evaluate
performance in uncertain fashion equations of mathematical physics. If not limited by a
finite set of parameters and transparent rules of behavior models, it is not possible to es-
timate the number of different variants of behavior of socio-technical system, for example,
hundreds of thousands of cars on the road network of the metropolis, agent-based modeling
so well in only two cases: long to simulate in a tiny place, or the entire road network, but a
very short time. As time has shown, military terminology physicists - wave fronts, etc. also
can not do. Optimum inspires rapid development of information and communication tech-
nologies that reduce the number of degrees of freedom considered STS. Therefore, restricting
freedom of choice and the chaos of thoughts drivers on the one hand and surgically gently
introducing new approaches to modeling with measurable (and not smearing) parameters,
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you can achieve success in managing and saturated traffic flow on the street and complex
road networks.

7 Mathematical problems of of modern approaches to mod-
eling traffic

We formulate basic directions of mathematical research

(7.1) The standardization of procedures for creating multilevel model of of the road
network

(7.2) Circular planar graphs: regular and quasiregular network

(7.3) Monotone wander around the ring networks: rules, numerical characteristics and
dynamics of congested traffic

(7.4) Cluster model for regular periodic networks. Compressible and rigid clusters

(7.5) Management at networks. Optimization of traffic on the specified criteria

All of the above corrections are sources strictly set of mathematical problems related
to the different sections: the theory of dynamical systems, Markov processes, the theory of
differential equations, the theory of functions [15], [13], [14].

Furthermore, it seems obvious to use these approaches to the fields of natural sci-
ences and engineering, non-road. Large intersection viewed from cellular automata theory
(Komvey etc.), some models of biological areas. Computer implementation and research of
such problems leads to problems of parallel computing, and other methods of increasing the
efficiency of computer algorithms.
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Abstract

In this paper an extension of the quickest path problem is addressed in which an
additional parameter is added representing energy at the nodes. This energy is needed to
transmit the items through the quickest path. The aim of this constrained quickest path
problem is to obtain a quickest path whose nodes are able to support the transmission of
a message of known size. After formulating the problem, the computational performance
of an algorithm developed to solve this constrained quickest path problem is assessed.

Key words: quickest path, energy constraint, shortest path
MSC 2000: 90B10, 90B18

1 Introduction

The quickest path problem (QPP) consists of finding a path in a directed network to trans-
mit a given amount of items from an origin node to a destination node with minimal
transmission time, when the transmission time depends on both the traversal times of the
arcs, or lead time, and the rates of flow along arcs, or capacity. The QPP can be viewed
as a variant of the well-known shortest path problem (SPP), but it is worth pointing out
that the quickest path depends on both the characteristics of the network and the amount
of items to be transmitted. The QPP was first proposed by Moore [10] to model flows of
convoy-type traffic. Then, it was proposed by Chen and Chin [5] in the context of mod-
eling transmission problems in communication networks. Later, Martins and Santos [9]
approached the QPP as a special minsum-maxmin bicriteria path problem. Several polyno-
mial time solution algorithms have been proposed in the literature based on transforming
the original problem in solving either a shortest path problem in an enlarged network or a
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sequence of shortest path problems [3, 5, 9, 11, 13, 15]. Furthermore, several variants and
extensions of the QPP have been considered. Pascoal et al. [12] provide a survey on the sub-
ject. Calvete and del-Pozo [2] dealt with the QPP when items are transmitted in batches of
variable size. Hamacher and Tijandra [7] propose the model in a special evacuation problem
where evacuees may use only a single path or tunnel from their initial position. Cĺımaco et
al. [6] develop an algorithm to compute K quickest paths in the context of internet packet
routing. Calvete, del-Pozo and Iranzo [3] propose algorithms to compute the quickest path
whose reliability is not lower than a given threshold. To deal with uncertain or imprecise
coefficients, Calvete [1] proposes to introduce interval coefficients and take into account the
decision maker’s preference, whereas Ruzika and Thiemann [14] propose a discrete scenario
technique.

In this paper we address the quickest path problem with energy constraints (EQPP)
introduced by Calvete, del-Pozo and Iranzo [4]. In this variant of the QPP, an additional
parameter is associated to nodes, which can be referred to as the battery energy available
to transmit items. The aim of the EQPP is to obtain a quickest path whose nodes are
able to support the transmission of a message of size σ. In [4] a polynomial time algorithm
based on solving shortest path problems in properly defined networks is proposed, whose
computational performance is assessed in this paper. Sections 2 and 3 formally set out the
quickest path problem and the quickest path problem with energy constraints, respectively.
Section 4 goes on to assess the computational performance of the algorithm.

2 Mathematical formulation of the quickest path problem

Let G = [N ,A] be a directed network without multiple arcs and self loops, where N denotes
the set of nodes and A the set of directed arcs. Let n be the number of nodes and m the
number of arcs. Let s and t be two distinguished nodes in the network called, respectively,
origin and destination and σ the amount of items to be sent from node s to node t. Each
arc a = (u, v) ∈ A has two associated parameters: a capacity c(u, v) ≥ 0, which represents
the maximum number of items that can flow from node u to node v through arc (u, v) per
unit of time, and a lead time l(u, v) ≥ 0, which represents the time required for the items to
traverse the arc (u, v). We assume that there are r different capacities c1 < c2 < . . . < cr.

A simple path or loopless path P from node s to node t is a sequence of nodes and
arcs P = (s = u1, u2, . . . , uk = t) such that ui ∈ N , i = 1, . . . , k, ui 6= uj if i 6= j, and
(ui, ui+1) ∈ A, i = 1, . . . , k − 1. In the paper, we use the term path in place of simple or
loopless path for short as well as the term s − t path in place of a path from s to t. The
lead time along path P is

l(P ) =
∑

(u,v)∈P

l(u, v)
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The capacity of the path is

c(P ) = min
(u,v)∈P

c(u, v)

The transmission time required to send σ items from s to t along the path P is

TP (σ) = l(P ) +

⌈
σ

c(P )

⌉
, (1)

where d·e denotes the ceiling function, i.e., dxe is the smallest integer not less than x.

Let P be the set of s− t paths in network G. We assume that P 6= ∅. The QPP can be
formulated as finding an s− t path so that

min
P

TP (σ)

s.t. P ∈ P

3 Mathematical formulation of the quickest path problem
with energy constraints

Now, we assume that nodes represent transmitters/receivers and each node u ∈ N has an
associated parameter bu which represents a limited energy battery. When π ∈ (0, c(u, v)]
items are transmitted from node u to node v, the available energy at node u decreases by
a constant amount which depends on both the distance between nodes u and v and the
capacity c(u, v), but which is independent of π. For notational convenience, let us assume
that the distance between nodes u and v is proportional to the lead time l(u, v) and the
proportionality constant is 1. Therefore, the transmission energy required at node u to
transmit π ∈ (0, c(u, v)] items through the arc (u, v) is:

ω(u, v) = αc(u,v)l
β(u, v)

where αc(u,v) are constants verifying 0 < αc1 < αc2 < . . . < αcr and β is a parameter which
depends on the network.

Let P = (s = u1, u2, . . . , uk = t) ∈ P. Let bu(σ, P ) denote the residual energy at node
u after transmitting σ items through the path P . Hence,

bu(σ, P ) =

{
bu − ω(ui, ui+1)

⌈
σ

c(P )

⌉
if u = ui, i = 1, . . . , k − 1

bu otherwise

From now on we assume without loss of generality that

bu − ω(u, v)

⌈
σ

c(u, v)

⌉
> 0,∀(u, v) ∈ A (2)
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If an arc does not meet the condition, this arc can be removed from the network since
it will not be used in the transmission.

A path P ∈ P is said to be feasible with respect to the transmission of a message of
size σ if bu(σ, P ) > 0, ∀u ∈ P . That is to say, the feasibility of a path is measured through
the availability of its nodes to transmit the whole message. The EQPP can be formulated
as:

min
P

TP (σ)

s.t. bu(σ, P ) > 0, u ∈ N
P ∈ P

In order to solve the problem, Calvete, del-Pozo and Iranzo [4] propose to use the al-
gorithm EQPA based on successively solving shortest path problems in properly defined
networks Gj , j = 1, . . . , r. Essentially, the network Gj maintains the arcs of G with capacity
greater or equal cj which would be able to transmit the message of size σ.

4 Computational performance of the algorithm EQPA

In order to analyze the performance of the algorithm, we have generated a set of test
problems using a modified version of NETGEN [3, 8]. The skeleton provided by NETGEN
is used. Lead time and capacity coefficients are generated from uniform distributions in the
range [1, 50]. There are four main problem groups defined by the number of nodes n = 1000
and n = 5000 and the number of arcs m = 10n and m = 20n. For each problem group, we
generate problems having r = 10 and r = 20 distinct capacities. For this purpose, first the
required number of capacities are generated from the corresponding uniform distribution.
Then, we assign to each arc one of the capacities generated with a uniform probability.

For each arc (u, v) ∈ A, the coefficient αc(u,v) is assumed to be proportional to its
capacity, with proportional constant α = 0.001. For each node u ∈ N , bu is obtained multi-

plying b = max
(u,v)∈A

αc(u, v)lβ(u, v)
⌈

5000
c(u,v)

⌉
by a random number in the interval [.75, 1.25].The

parameter β takes the value 2. For assessing the effect of the number of items which are
sent, a quickest path for σ = 1000, 5000, 20000 and 50000 is computed in each problem.
For these values of σ, approximately 100%, 96%, 70% and 44% of the total number of arcs
m in the original network verify (2). The numerical experiments have been performed on a
PC Intel Pentium D CPU at 3.0 GHz having 3.2 GB of RAM under Ubuntu Linux 10.04.
The code has been written in C++, GCC 4.4.3.

Tables 1 to 4 summarize the results of the experiment for each problem group. The
upper part of each Table displays the results for r = 10. The results for r = 20 are shown in
the lower part. The first column shows the network considered. Depending on the value of
σ, the remaining columns provide the transmission time of the shortest path with respect
to the lead time in the corresponding network. The symbol ‘-’ means that the shortest path
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obtained has a capacity greater than cj if the network considered is Gj and therefore must
not be taken into consideration. The letters ‘NF’ refer to non feasible, that is to say, there
are no s − t paths in the network considered. The two last rows in each part of the Table
indicate the optimal solution and the CPU time in seconds invested in solving the problem.

It is worth pointing out that the CPU time needed to solve the problems is negligible
(less than a second for all problems). As expected, when the value of σ increases, the
actual number of arcs in each network decreases and the number of networks with no s− t
paths increases. Note also that, unlike the QPP, when σ increases the optimal solution of
the EQPP is not necessarily an s − t path with larger capacity, since the available energy
at nodes limits the feasible s− t paths.
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Table 1: n = 1000, m = 10000

r = 10 σ
1000 5000 20000 50000

G1 - - - NF
G2 147 897 1730 NF
G3 113 504 939 -
G4 110 456 841 1995
G5 111 433 790 1868
G6 - - - NF
G7 - - - NF
G8 127 408 720 NF
G9 148 367 618 NF
G10 NF NF NF NF

Optimal solution 110 367 618 1868
CPU time (seconds) 0.01 0 0 0
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G12 - 478 823 NF
G13 - 501 834 NF
G14 - - 838 NF
G15 149 414 845 NF
G16 193 412 NF NF
G17 218 495 NF NF
G18 NF NF NF NF
G19 NF NF NF NF
G20 NF NF NF NF

Optimal solution 144 412 823 3048
CPU time (seconds) 0 0.01 0 0
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Table 2: n = 1000, m = 20000

r = 10 σ
1000 5000 20000 50000

G1 - - - 5050
G2 93 593 1149 2815
G3 112 541 1017 NF
G4 - - 899 NF
G5 136 482 875 NF
G6 153 475 833 NF
G7 167 467 NF NF
G8 192 473 NF NF
G9 NF NF NF NF
G10 NF NF NF NF

Optimal solution 93 467 833 2815
CPU time (seconds) 0 0 0 0

r = 20 σ
1000 5000 20000 50000

G1 - NF NF NF
G2 - 5057 NF NF
G3 - - - NF
G4 - - - -
G5 - - - 4239
G6 93 593 1149 2833
G7 - NF NF NF
G8 132 NF NF NF
G9 NF NF NF NF
G10 NF NF NF NF
G11 NF NF NF NF
G12 NF NF NF NF
G13 NF NF NF NF
G14 NF NF NF NF
G15 NF NF NF NF
G16 NF NF NF NF
G17 NF NF NF NF
G18 NF NF NF NF
G19 NF NF NF NF
G20 NF NF NF NF

Optimal solution 93 593 1149 2833
CPU time (seconds) 0 0.01 0.01 0.01
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Table 3: n = 5000, m = 50000

r = 10 σ
1000 5000 20000 50000

G1 - - 10057 25070
G2 - - - -
G3 168 1293 2543 6297
G4 122 596 1122 NF
G5 134 563 1039 2469
G6 - - - 1971
G7 145 455 800 1894
G8 180 480 821 1918
G9 355 612 NF NF
G10 NF NF NF NF

Optimal solution 122 455 800 1894
CPU time (seconds) 0.02 0.01 0.01 0.01

r = 20 σ
1000 5000 20000 50000

G1 543 5043 10057 25057
G2 - - - -
G3 - - - -
G4 159 1159 2270 5603
G5 - - - NF
G6 128 821 1612 NF
G7 - - - NF
G8 - - - 2600
G9 107 536 1012 2492
G10 - - - 2294
G11 114 460 845 2071
G12 - - 857 2016
G13 - - 831 1986
G14 133 443 801 1941
G15 153 453 847 NF
G16 209 466 755 NF
G17 NF NF NF NF
G18 NF NF NF NF
G19 NF NF NF NF
G20 NF NF NF NF

Optimal solution 107 443 755 1941
CPU time (seconds) 0.03 0.02 0.01 0.02
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Table 4: n = 5000, m = 100000

r = 10 σ
1000 5000 20000 50000

G1 - - 20052 NF
G2 - - - 12543
G3 - - - -
G4 151 1151 2262 5595
G5 106 606 1162 2828
G6 - - - NF
G7 - - - NF
G8 102 477 894 NF
G9 223 428 NF NF
G10 NF NF NF NF

Optimal solution 102 428 894 2828
CPU time (seconds) 0.02 0.03 0.03 0.03

r = 20 σ
1000 5000 20000 50000

G1 - - 20057 NF
G2 - - - 12544
G3 - - - -
G4 206 1706 3373 -
G5 157 1157 2268 5601
G6 139 958 - 4595
G7 - - - 2828
G8 - - - -
G9 - - - -
G10 91 466 883 2133
G11 103 463 863 2063
G12 105 451 836 1992
G13 113 446 816 1933
G14 - - - -
G15 122 412 737 1709
G16 139 370 626 1396
G17 149 364 602 1374
G18 186 391 635 1406
G19 NF NF NF NF
G20 NF NF NF NF

Optimal solution 91 364 602 1374
CPU time (seconds) 0.05 0.06 0.05 0.04
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Abstract

In the pricing of fixed rate mortgages with prepayment and default options we
introduce jump-diffusion models for the house price evolution. These models take into
account sudden changes in the price (jumps) during bubbles and crisis situations in real
state markets. After posing the models based on partial integro-differential equations
(PIDE) problems for the contract, insurance and coinsurance, we propose appropriate
numerical methods to solve them.

Key words: Fixed-rate mortgages, jump-diffusion models, complementarity problems,
numerical methods

1 Introduction

A mortgage is a financial product in which the borrower obtains funds by using a risky asset
as collateral, usually a house. The loan is reimbursed through monthly payments until the
cancelation of the debt at maturity date. Thus, the mortgage value is understood as the
discounted value of the future monthly payments (without including a possible insurance
on the loan by the lender) and the underlying stochastic factors are the house price and
the interest rate. In this work we follow [11, 4], where early prepayment is allowed at
any time and default can occur at any monthly payment date. In both previous papers a
lognormal process is assumed for the house price evolution so that the this value evolves
continuously. However, in certain situations, such as during the relatively recent bubble or
crisis phenomena in real state markets, the consideration of the standard lognormal process
is no longer so realistic. Thus, it becomes necessary to consider jump-diffusion models to
account with sudden changes in the value of the house and this is the main innovative point
of the present work.
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In the forthcoming sections we briefly describe the pricing model under consideration
as well as the mortgage contract related aspects. Next, we consider the numerical solution
techniques and finally we present some numerical results allowing to compare the case
without jumps and two different jump-diffusion models here proposed.

2 Mathematical modelling

In order to model the evolution of the house value at time t, Ht, we consider the following
stochastic differential equation (SDE):

dHt = (µ− δ)Ht dt + σHHt dX
H
t + d

(
Nt∑
i=1

Yi

)
, (1)

where µ, δ and σH denote house appreciation average rate, the dividend yield provided by
(hiring or using) the house and the house price volatility, respectively, while dXH

t repre-
sents a Wiener process for the house price. Moreover, in the jump part of the model (Nt)t≥0

denotes a Poisson process with parameter λ̃ and (Yi) represents a sequence of square inte-
grable, independent and identically distributed random variables, so that XH

t , Nt and (Yi)
are independent. In order to complete the model definition, we specify the distribution of
jump sizes by using either a Merton [9] or a Kou [8] model. More precisely, under Merton
model (Yi) are taken from the lognormal distribution LN(µj , γ2

j ), with density function

νm(y) =
1

yγj
√

2π
exp

(
−(log y − µj)2

2γ2
j

)
, (2)

where µj and γj are the mean and the standard deviation of the jump size, respectively,
whereas under Kou model (Yi) follows a distribution with the log-double-exponential density

νk(y) =

{
qα2y

α2−1, y < 1
pα1y

−α1−1, y ≥ 1,
(3)

where p, q, α1 and α2 are positive constants such that p + q = 1 and α1 > 1. Note that p
and q represent the probabilities of upward and downward jumps, respectively.

Under a risk neutral probability measure, we can obtain the equivalent SDE:

dHt = (rt − δ)Htdt+ σHHtdX
H
t + d

(
Nt∑
i=1

Yi

)
. (4)

Additionally, we assume that the interest rate follows the CIR following process [4]:

drt = κ(θ − rt)dt+ σr
√
rtdX

r
t , (5)
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where κ denotes the speed of mean reversion to the long term rate θ and σr denotes a
volatility parameter. Wiener processes XH

t and Xr
t could be correlated with correlation

coefficient ρ (i.e. dXH
t dX

r
t = ρdt) to incorporate possible correlation between interest rate

and house price.

2.1 Partial integral differential equation (PIDE) formulation

By using a dynamic hedging technique, in the case without jumps a PDE model for pricing
any asset depending on house price and interest rate is posed in [4]. In the here treated
jump-diffusion models for the house price, if we assume that the value of any asset depending
on house price and interest rate is given by Ft = F (t,Ht, rt), then the function F satisfies
the following partial integral differential equation (PIDE):

∂tF +
1
2
σ2
HH

2∂HHF + ρσHσrH
√
r∂HrF +

1
2
σ2
rr∂rrF + (r − δ)H∂HF+

κ(θ − r)∂rF − rF +
∫ ∞

0
λ̃ [F (t,Hy, r)− F (t,H, r)−H(y − 1)∂HF (t,H, r)] ν(y)dy = 0, (6)

where subindexes in ∂ indicate partial derivatives and ν(y) = νm(y) for Merton model,
whereas ν(y) = νk(y) for Kou one. Since ν is a probability density function then∫ ∞

0
ν(y)dy = 1.

Moreover, we can compute the expectations for Merton and Kou models

Em[Yi] =
∫ ∞

0
yνm(y)dy = eµj+γ2

j /2, Ek[Yi] =
∫ ∞

0
yνk(y)dy =

pα1

α1 − 1
+

qα2

α2 + 1
.

Therefore, the PIDE (6) can be written in the form

∂tF +
1
2
σ2
HH

2∂HHF + ρσHσrH
√
r∂HrF +

1
2
σ2
rr∂rrF + (r − δ − λ̃κ̃)H∂HF+

κ(θ − r)∂rF − (r + λ̃)F + λ̃

∫ ∞
0

F (t,Hy, r)ν(y)dy = 0,(7)

where
κ̃ = eµj+γ2

j /2 − 1 or κ̃ =
pα1

α1 − 1
+

qα2

α2 + 1
− 1

for Merton or Kou models, respectively.
Note that with respect to the PDE model in [4], there is an additional integral term

in the equation due to the presence of jumps. This term makes the PIDE more difficult to
solve than the corresponding PDE.
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2.2 Mortgage contract

Following the same notation as in [4], the equal monthly payments dates are denoted by Tm,
m = 1, ...,M , where M is the number of months. Assuming T0 = 0, let ∆Tm = Tm − Tm−1

be the duration of month m, c the fixed contract rate and P (0) the initial loan (i.e. the
principal at t = T0 = 0), then the fixed mortgage payment (MP ) is given by:

MP =
(c/12)(1 + c/12)MP (0)

(1 + c/12)M − 1
. (8)

For m = 1, ...,M , the unpaid loan just after the (m− 1)th payment date is

P (m− 1) =
((1 + c/12)M − (1 + c/12)m−1)P (0)

(1 + c/12)M − 1
, (9)

If tm = t − Tm−1 denotes the time elapsed at month m (which starts at t = Tm−1), let
τm = ∆Tm− tm be the time until Tm. This change of variable transforms equation (7) into
another one associated with an initial value problem. More precisely, the mortgage value
to the lender during month m, V (τm, H, r), satisfies the PIDE

−∂τmF +
1
2
σ2
HH

2∂HHF + ρσHσrH
√
r∂HrF +

1
2
σ2
rr∂rrF+

(r − δ − λ̃κ̃)H∂HF + κ(θ − r)∂rF − (r + λ̃)F + λ̃

∫ ∞
0

F (τm, Hy, r)ν(y)dy = 0, (10)

for 0 ≤ τm ≤ ∆Tm, 0 ≤ H < ∞, 0 ≤ r < ∞. We clarify a certain abuse of notation: if F
denotes the solution of (7) and F the solution of (10) then F (τm, H, r) = F (Tm− τm, H, r).

Next, we take into account the prepayment and default options. The option to default
only happens at payment dates when the borrower does not pay the amount MP . The
option to prepay can be exercised at any time during the life of the loan. In the case of
prepayment the borrower fully amortizes the mortgage at time τm by paying the following
amount (which includes the total remaining debt plus an early termination penalty):

TD(τm) = (1 + Ψ)(1 + c(∆Tm − τm))P (m− 1), (11)

where Ψ denotes the prepayment penalty factor.
The mortgage pricing problem starts from the value of the mortgage at maturity (t =

TM ), just before the last payment, given by:

V (τM = 0, H, r) = min(MP,H), (12)

while at the other payment dates (1 ≤ m ≤M − 1), it is given by

V (τm = 0, H, r) = min(V (τm+1 = ∆Tm+1, H, r) +MP,H). (13)
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If the borrower defaults, which occurs when the mortgage value is equal to the house
value, the lender will lose the promised future payments, unless an insurance against default
covering a fraction of the loss has been taken. This insurance contract has no value for the
borrower, as it is part of the lender’s portfolio [11]. In order to obtain the value of the
insurance to the lender, denoted by I(τm, H, r), we must solve equation (10) with suitable
payment date conditions. We assume that in case of default the insurer accepts to pay a
fraction γ of the currently unpaid balance to up to a maximum indemnity, Γ. Therefore,
depending if default occurs or not, the insurance value at the maturity of the loan is

I(τM = 0, H, r) =

 min(γ(MP −H),Γ) (Default)

0 (No default)
(14)

At earlier payment dates (1 ≤ m ≤M − 1), the value of the insurance is

I(τm = 0, H, r) =

 min(γ[TD(τm = 0)−H],Γ) (Default)

I(τm+1 = ∆Tm+1, H, r) (No default)
(15)

The fraction of the potential loss not covered by the insurance is the coinsurance. At
each payment date, the coinsurance is the difference between the values of the potential loss
and the insurance coverage. In order to price the coinsurance, CI(τm, H, r), equation (10)
must be solved again with suitable coinsurance conditions. At maturity, we consider

CI(τM = 0, H, r) =

 max((1− γ)(MP −H), (MP −H)− Γ) (Default)

0 (No default)
(16)

while at earlier payment dates (1 ≤ m ≤M − 1), we consider

CI(τm = 0, H, r) =

 max((1− γ)[TD(τm = 0)−H], [TD(τm = 0)−H]− Γ) (Default)

CI(τm+1 = ∆Tm+1, H, r) (No default)
(17)

At origination, the equilibrium condition explained in [4] needs to be satisfied in order
to avoid arbitrage. Formally,

V (τ1 = ∆T1, Hinitial, rinitial; Ψ, c) + I(τ1 = ∆T1, Hinitial, rinitial; Ψ, c) = (1− ξ)P (0). (18)

The contract rate is adjusted by using the same iterative process as in [4].

2.3 The free boundary problem under jump-diffusion models

The option to prepay the loan at any time gives rise to a free boundary problem, in which not
only the mortgage price is obtained but also the regions where it is optimal to fully amortize
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the loan or not. Both regions are separated by a free boundary (optimal prepayment
boundary). If we consider the following nonlocal linear operator:

LjV = ∂τmV −
1
2
σ2
HH

2∂HHV − ρσHσrH
√
r∂HrV −

1
2
σ2
rr∂rrV −

(r − δ − λ̃κ̃)H∂HV − κ(θ − r)∂rV + (r + λ̃)V − λ̃
∫ ∞

0
V (τm, Hy, r)ν(y)dy(19)

then the free boundary problem can be posed in terms of the linear complementarity one:

LjV ≤ 0, (TD(τm)− V (τm, H, r)) ≥ 0, (LjV )(TD(τm)− V (τm, H, r)) = 0. (20)

In the region V = TD it is optimal for the borrower to prepay, otherwise LjV = 0 and we
are inside the region where we continue to pay the loan without prepayment.

3 Numerical solution

The PIDE is initially posed on an unbounded domain, so that we approximate it by a
bounded domain formulation and we impose boundary conditions. Note that the domain
of integration in the integral term also needs to be localized. We introduce the following
changes of variables and notation:

x1 =
H

H∞
, x2 =

r

r∞
, x̄ = log x1, η = log(y) (21)

where both H∞ and r∞ are sufficiently large suitably chosen real numbers. Let Ω =
(0, x∞1 ) × (0, x∞2 ), with x∞1 = x∞2 = 1. Then, let us denote the Lipschitz boundary by
Γ = ∂Ω such that Γ =

⋃2
i=1(Γ−i ∪ Γ+

i ), where:

Γ−i = {(x1, x2) ∈ Γ | xi = 0}, Γ+
i = {(x1, x2) ∈ Γ | xi = x∞i }, i = 1, 2.

Next, taking into account the new variables we write the equation (10) in divergence
form in the bounded domain. As in [11], we consider the case ρ = 0. Thus, the initial-
boundary value problem for the insurance and coinsurance can be written in the form:
Find J : [0,∆Tm]× Ω→ R such that

∂J

∂τm
+ ~v · ∇J −Div(A∇J) + lJ − λ̃

∫ ηmax

ηmin

J̄(τm, x̄1 + η, x2)ν̄(η)dη = f in (0,∆Tm)× Ω (22)

∂J

∂x1
= g1 on (0,∆Tm)× Γ+

1(23)

∂J

∂x2
= g2 on (0,∆Tm)× Γ+

2(24)

where J = I, CI and the appropriate initial condition for each month is given by the
equations (14) and (15) when we are pricing the insurance and by the equations (16) and
(17) in the case of valuing the coinsurance.
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Furthermore, for the complementarity problem associated with the mortgage value
during month m, we can pose the following mixed formulation:

Find V : [0,∆Tm]× Ω→ R satisfying the partial differential equation

∂V

∂τm
+ ~v · ∇V −Div(A∇V ) + lV − λ̃

∫ ηmax

ηmin
V̄ (τm, x̄1 + η, x2)ν̄(η)dη + P = 0, (25)

the complementarity conditions

V ≤ TD, P ≥ 0, P (TD − V ) = 0, (26)

the boundary conditions

∂V

∂x1
= 0 on (0,∆Tm)× Γ+

1 , (27)

∂V

∂x2
= 0 on (0,∆Tm)× Γ+

2 , (28)

and the initial condition for each month, given by the equations (12) or (13).
For both problems, the involved data is defined as follows

A =
( 1

2σ
2
Hx

2
1 0

0 1
2σ

2
r
x2
r∞

)
, ~v =

(
(σ2
H − x2r∞ + δ + λ̃κ̃)x1

(1
2σ

2
r − κ(θ − x2r∞))/r∞

)
, l = x2r∞ + λ̃. (29)

Remark 3.1 Note that the differential term of the PIDE is computed in the domain [0, x∞1 ]×
[0, x∞2 ], using the discrete grid: 0 = x10 , x11 , · · · , x1q = x∞1 . Since log(x10) = −∞, we
choose ηmin = log(x11) and ηmax = log(x1q) as it is proposed in [6].

Under Merton model, the function ν̄ is given by

ν̄(η) = ν̄m(η) =
1

γj
√

2π
exp

(
−(η − µj)2

2γ2
j

)
, (30)

whereas under Kou model

ν̄(η) = ν̄k(η) =

{
qα2e

α2η, η < 0
pα1e

−α1η, η ≥ 0.
(31)

Once the localization procedure has been carried out, we consider a Lagrange-Galerkin
discretization based on a Crank-Nicolson scheme introduced in [2, 3]. Thus, we define the
characteristics curve through x = (x1, x2) at time τ̄m, X(x, τ̄m; s), which satisfies:

∂

∂s
X(x, τ̄m; s) = ~v(X(x, τ̄m; s)), X(x, τ̄m; τ̄m) = x. (32)

c©CMMSE ISBN: 978-84-616-9216-3Page 244 of 1485



Fixed-Rate Mortgages under jump-diffusion models

For N > 1 let us consider the time step ∆τm = ∆Tm/N and the time mesh points
τnm = n∆τm, n = 0, 1

2 , 1,
3
2 , . . . , N . The material derivative approximation by characteristics

method is given by:
DF

Dτm
=
Fn+1 − Fn ◦Xn

∆τm
,

where F = CI, I , V and Xn(x) := X(x, τn+1
m ; τnm). In view of the expression of the velocity

field the components of Xn(x) can be analytically computed:

Xn
1 (x) = x1 exp

(
−
(
σ2
H + δ +

σ2
r

2κ
− θ + λ̃κ̃

)
∆τm

)
×

exp
((
−x2r∞
κ

− σ2
r

2κ2
+
θ

κ

)
(exp(−κ∆τm)− 1)

)
Xn

2 (x) =
(
− σ2

r

2κr∞
+

θ

r∞

)
(1− exp(−κ∆τm)) + x2 exp(−κ∆τm)

Next, we consider a Crank-Nicolson scheme around
(
X(x, τn+1

m ; τm), τm
)

for τm = τ
n+ 1

2
m .

So, for n = 0, . . . , N − 1, the time discretized equation for F = I, CI, V and P = 0 can be
written as follows:

Find Fn+1 such that:
Fn+1(x)− Fn(Xn(x))

∆τm
− 1

2
Div(A∇Fn+1)(x)− 1

2
Div(A∇Fn)(Xn(x))+

1
2

(l Fn+1)(x) +
1
2

(l Fn)(Xn(x))− λ̃
∫ ηmax

ηmin
F̄n(x̄1 + η, x2)ν̄(η)dη = 0, (33)

where F̄n(x̄1 + η, x2) = Fn(ex̄1+η, x2). Note that the integral term is evaluated at the pre-
vious time step, thus avoiding the presence of a full matrix in the linear systems associated
to the fully discretized problem [5, 10].

Next, we can write a variational formulation for the semi-discretized problems and use
piecewise quadratic Lagrange finite elements for spatial discretization. In order to deal
with the nonlinearities in the free boundary problem associated to prepayment option, we
implement the ALAS algorithm proposed in [7] and explained in detail in [4] for the case
without jumps in the house price.

In order to approximate the integral term that appears in the PIDE due to the presence
of jumps we use a suitable numerical integration procedure. More precisely, we use the
classical composite trapezoidal rule with m+ 1 points in the following way:∫ ηmax

ηmin

F̄n(x̄1 + η, x2)ν̄(η)dη ≈

h

2

F̄n(x̄1 + ηmin, x2)ν̄(ηmin) + F̄n(x̄1 + ηmax, x2)ν̄(ηmax) + 2
m−1∑
j=1

F̄n(x̄1 + kj , x2)ν̄(kj)

 ,
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where kj = ηmin+ jh for j = 1, ...,m− 1 and h = ηmax−ηmin
m .

4 Numerical results

In order to solve the fixed rate mortgage valuation problem, we need to specify a set of
parameters related to the stochastic models, contract characteristics and insurance. Most
of them are based on the existent literature (see [1] and [11], for example) and are shown in
Table 1. Moreover, concerning the numerical methods employed to solve the problem, we
consider the parameters collected in Table 2. In order to compare the results obtained with
Merton and Kou models we need that the density functions of the normal distribution and
of the double-exponential distribution match. For this purpose, we consider the parameters
involved in the jump-diffusion models which are proposed in [6]

House price and interest rate models data
Steady state spot rate, θ 10 %

Speed of reversion, κ 25 %
House service flow, δ 7.5%

House price volatility, σH 5%
Interest rate volatility, σr 5%

Parameter of Poisson process, λ̃ 0.1
Mean of jump size (Merton), µj -0.1

Standard deviations of jump size (Merton), γj 0.45
Probability of upward jump (Kou), p 0.3445

Parameter (Kou), α1 3.0465
Parameter (Kou), α2 3.0775

Contract specifications
Loan maturity (years) 15

Initial value of the house, Hinitial 100000
Spot interest rate, rinitial 8 %
Ratio of the loan to value 95 %

Initial estimate for contract rate, c0 10%
Prepayment penalty, Ψ 5%

Arrangement fee, ξ 0%
Insurance

Guaranteed fraction of total loss, γ 80%
Cap, Γ 20%Hinitial

Table 1: Fixed parameters in the mortgage valuation model
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In Table 3 we show a comparison between the contract values without and with jumps
for the house price. In the presence of jumps we take into account Merton and Kou models.
As expected, in the absence of jumps the value of the contract is higher than with jumps
whereas the value of the insurance and the coinsurance are lower. Note that the presence
of jumps increases uncertainty in the house price, thus depreciating the mortgage price.

We also note that the prepayment region is located in the part of the domain with lower
rates and higher house prices as in the case without jumps [4], which results reasonable from
the financial point of view: in this part it is better to fully prepay the loan and refinance
at lower market interest rates if necessary.

Computational domain
H∞ 200000
r∞ 40 %

Finite elements mesh data
Number of elements 576

Number of nodes 2401
Time discretization

Time steps per month 30
ALAS algorithm

Parameter β 10000

Table 2: Numerical resolution and jump-diffusion model parameters

Contract rate Contract value Insurance Coinsurance
c V I CI

Without jumps 9.0839% 94549 449 112
Merton model 14.4301% 91730 3270 2402

Kou model 14.2355% 92090 2910 2092

Table 3: Comparison of the values obtained without and with jumps for the house value
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Cáceres, Spain, Universidad de Extremadura

2 School of Mathematics, Alan Turing Building, Manchester M13 9PL, UK, University of
Manchester

emails: ccalvo@unex.es, william.parnell@manchester.ac.uk

Abstract

This paper is concerned with the estimation of the effective thermal conductivity of
a transversely two phase composite. We derive a straightforward way to construct the
Hashin-Shtrikman bounds from first principles in conductivity and taking into account
the microstructure of the problem that it is governed by spheroidal statistics. That
the shape of the inclusions and their distribution can be specified independently is of
great utility in composite design. This case covers a multitude of composites used in
applications by taking various limits of the spheroid, including both layered media and
long unidirectional composites. Of specific interest is the fact that the corresponding Hill
tensors can be derived analytically. We exhibit the implementation of the constructions
with several examples.

1 Extended abstract

Let us consider a two phase composite material occupying a domain Ω ⊂ RN and ε > 0 a
parameter taking its values in a sequence which goes to zero. The composite is described
by the properties of its two phases Ω1

ε and Ω2
ε, with thermal conductivity tensors K1, K2

and volume fractions φ1 and φ2 respectively. The microstructure of the mixture whose size
is represented by ε, is determined by the geometric arrangement of the phases Ω1

ε and Ω2
ε

satisfying Ω1
ε ∪Ω2

ε = Ω, Ω1
ε ∩Ω2

ε = ∅. The problem governing the steady state temperature
Tε is given by the following linear elliptic problem with Dirichlet boundary conditions
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{
−div (Kε(x)∇Tε) = f in Ω
Tε = 0 on ∂Ω

(1)

where we have denoted by f the internal source term and by Kε the thermal conductivity
of the composite, that satisfies

Kε(x) =

{
K1(x) if x ∈ Ω1

ε

K2(x) if x ∈ Ω2
ε
, Kε(x) = K1(x)χΩ1

ε
(x) + K2(x)χΩ2

ε
(x)

We will assume that the two phase materials are transversely isotropic, i.e., there exist
κr1, κ

r
2, such that Kr

ij = κr1Θij + κr2δi3δj3, with Θij = δij − δi3δj3 , r = 1, 2.

Our aim in this paper is to estimate the effective properties of the composite for a
sufficiently small ε, i.e. when the microstructure is getting finer. However, a detailed
knowledge of this kind o problem is too difficult and it is usual characterize the composite
by its macroscopic effective properties, represented by a two order conductivity tensor K∗.
There are different methods to treat this problem. One of them is the homogenization
theory, that passing to the limit as ε tends to zero, gives an homogenized limit problem that
has the advantage that the matrix coefficients are constants, and then permits one determine
the effective or average properties of the mixture. Indeed, there are some well known results
that characterize its eigenvalues due to L. Tartar ([9], [5]) for the N -dimensional case, or in
a two dimensional setting, to Lurie & Cherkaev ([2]).

Besides the homogenization techniques, the use of expressions defining bounds for phy-
sical properties of a mixture has been studied extensively by several authors ([1], [4], [7],[8]),
because give the possible range of variation for such properties. In the conductivity setting,
the Maxwell principle for the conductivity of a host material containing a suspension of
spheres, is the most known work ([3]). When the only information about the microstruc-
ture are the volume fraction φr and the conductivity tensor Kr regarding to the r-th phase,
r = 0, 1, . . . , n, the effective conductive tensor K∗ for a microstructure of arbitrary sym-
metry (isotropic or anisotropic) can be estimated by the Voigt KV ([8]) and the Reuss KR

([7]) bounds, as follows

KR
ij ≤ K∗

ij ≤ KV
ij , (KR)−1

ij =
n∑

r=0

φr(Kr)−1
ij , KV

ij =
n∑

r=0

φrKr
ij .

The Voigt-Reuss bounds only depend on the phase volume fraction and are independent of
any characteristic of the symmetry of the microstructure. Therefore, they are usually two
wide to be of predictive interest. Using a variational principle, better results were obtained
by Hashin & Shtrikman ([1]), who provided the tightest possible range of variation for the
property of interest without information about the distribution of the phases. In the case
of an statistically isotropic two-phase composites (Kr = κrI where I denotes the second
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order identity tensor), the Hashin-Shtrikman bounds for the effective thermal conductivity
are given by

(KHS)− =
K0K1 + 2K0(K0φ1 + K1φ0)

2K0 + K0φ0 + K1φ1
, (KHS)+ =

K0K1 + 2K1(K0φ1 + K1φ0)

2K1 + K1φ1 + K0φ0
,

Derivations of the Hashin-Shtrikman bounds have been improved and revised by many au-
thors since they were originally devised ([10], [11]). In particular, Ponte-Castañeda & Willis
([6]), introducing a comparison material and under additional microstructure information
represented by a two-point correlation function, derived a more general expression for n
types inclusion phases that could be select independently of their spatial distribution.

However, in general these bounds use to appear in the literature to be merely stated
(not derived) and it is often unclear how to construct such bounds when the material
is not of simple type (e.g. isotropic spheres inside an isotropic host phase). For this
reason, our aim in this work is to derive a direct way of constructing the Hashin-Shtrikman
bounds for transversely isotropic composites from first principles in the thermal conductive
setting. That is, given the volume fractions, thermal conductivity properties, spheroidal
shapes of phases of the composite and their spatial distribution, we construct a procedure
by which the Hashin-Shtrikman bounds could be obtained in a straightforward manner
using the correct tensor basis set and the appropriate expressions for the Hill tensors. In
particular in this respect, assuming homogeneous temperature conditions in the far field and
by using the associated Green tensor, we exploit completely the uniformity of the Hill tensor,
obtaining explicit expression derived for spheroidal inclusions and distributions instead of
others given in integral form. We also exhibit the implementation of the constructions with
several examples and compare them with the homogenized results obtained for a periodic
composite.
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Abstract

We consider the 6-degree polynomial whose roots provide the fixed points of the op-
erator associated to the (α, c)-family of iterative methods. We analyze the bifurcations
of these roots in the (α, c)-plane and we show, in the bifurcation diagrams, which are
the ranges of parameters α and c for which they are real or complex.

Key words: polynomial roots, bifurcation diagrams.

1 Introduction

Iterative methods are needed for solving most of the nonlinear equations because they are
difficult or impossible to solve exactly by means of analytical methods. When they are
applied on polynomials, they give rise to rational functions whose behaviors are not well
known except in a narrow area. A possible way to extend these regions is by studying the
dynamical behavior of the rational functions. In some previous papers, we focus on this
second option and we have started with the dynamical study of Chebyshev-Halley family([2],
[3], [4]), the King’s family [1], the c-family [5] and, finally, the (α, c)-family which includes
Chebyshev-Halley [7] and c−families.
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The (α, c)-family is a two-parametric third-order class of iterative methods defined by:

zn+1 = zn −
(

1 +
1

2

Lf (zn)

1− αLf (zn)
+ cLf (zn)2

)
f (zn)

f ′ (zn)
, (1)

where

Lf (z) =
f (z) f ′′ (z)

f ′ (z)2

and α and c are complex parameters. As we pointed before, this family includes Chebyshev-
Halley family for c = 0 and c-family when α = 0.

In the study that we are conducting, we note that the dynamical behavior of this
family is much more complicated because it includes two parameters. We apply this family
on quadratic polynomials p (z) = z2 + a. For this polynomial, the operator Mp (z, α, c, a)
associated to (1) is a rational function depending on three complex parameters: a, α and c.

Due to the Scaling Theorem is verified, we can obviate the parameter a and the operator
Mp (z, α, c, a) is conjugated to:

Op(z, α, c) = z3
(1 + z)4 (−2 + 2α− z) + 4c (1 + z (2− 2α+ z))

(1 + z)4 (2αz − 1− 2z) + 4cz3 (1 + z)2 − 8αcz4
. (2)

As we have said, iterative methods are used for finding roots of a nonlinear equation
and, from a dynamical point of view, these roots are some of the fixed points of the operator
associated with the method.

From this dynamical point of view, our main interest lies in finding the fixed points of
the operator (2) and to study their behavior. For this operator we obtain the following fixed
points: 0,∞ (that coincides with the roots of the polynomial after applying the Möebius
map, see [6] for example), z = 1, that it is a strange fixed point, and six more strange fixed
points that are the roots of a symmetric 6-degree polynomial.

In this paper we find analytically the exact roots of this 6-degree polynomial. We
classify them in the (α, c)−plane, dividing the plane in different regions depending on the
number of real and complex roots they contain and we study the bifurcations of these roots
when crossing the boundaries of different regions. We also show the bifurcation diagrams
for different values of the parameter α, where real roots are depicted. Observe that, as we
find regions of the plane (α, c) where all roots are real, we can determine real values of these
parameters for which the iterative method converges to non desired real points that are not
solutions of our problem.

2 Calculus of the fixed points

The fixed points satisfy Op (z, α, c) = z. The relation Op (z, α, c)− z writes as:

Op (z, α, c)− z = −z(z − 1)
P (z, α, c)

(1 + z)4(2αz − 1− 2z) + 4cz3(1 + z)2 − 8αcz4
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where P (z, α, c) is the 6-degree polynomial:

P (z, α, c) = z6+(7− 2α) z5+(19− 8α+ 4c) z4+(26− 12α+ 8c− 8αc) z3+(19− 8α+ 4c) z2+(7− 2α) z+1.
(3)

The roots of this polynomial are strange fixed points of the operator associated to the
class of iterative methods. So, we are interested in finding these roots in the (α, c)-plane.

We can observe that P (z, α, c) is a symmetric polynomial; then, as z = 0 is not a root,
we can apply the change of variables

y = z +
1

z
, (4)

that transforms the equation P (z, α, c) = 0 into the cubic one

y3 + (7− 2α) y2 + (16− 8α+ 4c) y + (12− 8α+ 8c− 8αc) = 0. (5)

Following Cardano’s method we first eliminate the square term by the substitution

y = w − (7− 2α)

3
, (6)

obtaining the reduced form of the equation:

w3 + pw + q = 0, (7)

where

p =
1

3
(− (−1 + 2α)2 + 12c), q =

−2

27
(−1 + 2α)3 + 18 (1 + 4α) c.

By applying the change w = u+ v, we observe that u3 and v3 are the solutions of the
quadratic equation

w2 + qw − p3

27
= 0. (8)

Then,

u3, v3 =
−q ±

√
q2 + 4p3

27

2
⇒ u, v =

3

√
−q ±

√
∆

2
,

where

∆ = q2 +
4p3

27
=

16

27
c
(

2α (−1 + 2α)3 + c
(
−1 + 40α+ 32α2 + 16c

))
.

The sign of ∆ determines the character (real or complex) of the roots.
� If ∆ > 0, equation (7) has one real root and a pair of complex conjugate roots. The

real root w0 is:

w0 = u+ v =
1

3
3
√
f(a, c) +

1

3
3
√
g(a, c),
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with

f (α, c) = (−1 + 2α)3 + 18 (1 + 4α) c+ 6
√

3
√
c
(
2α (−1 + 2α)3 + c (−1 + 40α+ 32α2 + 16c)

)
g (α, c) = (−1 + 2α)3 + 18 (1 + 4α) c− 6

√
3
√
c
(
2α (−1 + 2α)3 + c (−1 + 40α+ 32α2 + 16c)

)
and the corresponding real solution of (5) is:

y0 =
(2α− 7)

3
+

1

3
3
√
f(α, c) +

1

3
3
√
g(α, c).

The expressions for the complex roots are:

w1 =
−1

6
( 3
√
f(α, c) + 3

√
g(α, c)) + i

√
3

6
( 3
√
f(α, c)− 3

√
g(α, c)),

w2 =
−1

6
( 3
√
f(α, c) + 3

√
g(α, c))− i

√
3

6
( 3
√
f(α, c)− 3

√
g(α, c))

and the corresponding complex solutions of (5) are:

y1 =
(2α− 7)

3
− 1

6
( 3
√
f(α, c) + 3

√
g(α, c)) + i

√
3

6
( 3
√
f(α, c)− 3

√
g(α, c))

and

y2 =
(2α− 7)

3
− 1

6
( 3
√
f(α, c) + 3

√
g(α, c))− i

√
3

6
( 3
√
f(α, c)− 3

√
g(α, c)).

� If ∆ = 0, equation (7) has two real roots, one of them double. Their expressions are:

z0 = 2 3

√
−q

2
=

3q

p

z1 = z2 = 2− 3

√
−q

2
= −3q

2p
.

If q = p = 0, then z = 0 is a triple root. In this case, the corresponding solutions of (5)
are:

y0 =
(2α− 7)

3
+

3q

p

and

y1 = y2 =
(2α− 7)

3
− 3q

2p
.

� If ∆ < 0, equation (7) has three real roots whose real expressions are, in a trigono-
metric form:

wk = 2

√
−p

3
cos

(
1

3
arccos

(
−q
2

√
−27

p3

)
+

2kπ

3

)
, k = 0, 1, 2.
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Figure 1: Curves C− and C+.

Let us notice that the curve C defined by

2α (−1 + 2α)3 + c
(
−1 + 40α+ 32α2 + 16c

)
= 0,

corresponding to ∆ = 0, divides the (α, c)−plane into regions corresponding to ∆ > 0 and
∆ < 0. We denote by C− and C+ the lower and upper branches of the curve C, respectively
(see Figure 1). Summarizing, the solutions of equation (5) are:

y1 (α, c) =
1

3
(2α− 7) +

1

3

(
3
√
f (α, c) + 3

√
g (α, c)

)
y2 (α, c) =

1

3
(2α− 7)− 1

6

(
3
√
f (α, c) + 3

√
g (α, c)

)
− i
√

3

6

(
3
√
f (α, c)− 3

√
g (α, c)

)
y3 (α, c) =

1

3
(2α− 7)− 1

6

(
3
√
f (α, c) + 3

√
g (α, c)

)
+ i

√
3

6

(
3
√
f (α, c)− 3

√
g (α, c)

)
.

Undoing the change of variables (4), the six roots of the polynomial (3) are obtained
by solving the quadratic equation z2 − z, y + 1 = 0, whose solutions are

z± =
y ±

√
y2 − 4

2
. (9)

That is, the six roots of (3) obtained by substituting y1, y2 and y3 in (9) are:

z1 (α, c) =
y1 (α, c) +

√
y1 (α, c)2 − 4

2
, z2 (α, c) =

y1 (α, c)−
√
y1 (α, c)2 − 4

2
,

z3 (α, c) =
y2 (α, c) +

√
y2 (α, c)2 − 4

2
, z4 (α, c) =

y2 (α, c)−
√
y2 (α, c)2 − 4

2
, (10)

z5 (α, c) =
y3 (α, c) +

√
y3 (α, c)2 − 4

2
, z6 (α, c) =

y3 (α, c)−
√
y3 (α, c)2 − 4

2
.
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3 Bifurcations of the fixed points

In this section, we realize a complete study of the evolution of the six roots in the (α, c)−plane,
that is, we analyze how they bifurcate as parameters α and c vary.

Above results have divided the (α, c)−plane into two regions separated by the curves
C− , C+ and the axis c = 0. In the orange region (Figure 1) as ∆ < 0, equation (7) has
three real roots and in the blue region, as ∆ > 0, equation (7) has one real root and a pair
of complex ones. Then, these curves are bifurcation curves. But we have also to undo the
change (9) in order to obtain the six solutions of (3); then, the real roots can originate a
pair of complex roots if y2 − 4 < 0. Therefore, we make y = 2 and y = −2 in order to find
all bifurcation curves.

Let us consider

y1 (α, c) = 2⇒ 1

3
(−7 + 2α) +

1

3

(
3
√
f (α, c) + 3

√
g (α, c)

)
= 2.

Then, the hyperbola

C(α) =
2 (−5 + 2α)

2− α
is obtained. We consider the two branches of this curve and we denote by C1 the branch
for α < 2 and C2 the branch for α > 2.

Similarly, making y1 (α, c) = −2 we obtain 216αc = 0 and the curves c = 0 and α = 0
are also bifurcation curves. The same separating curves appear by considering y2 (α, c) = ±2
and y3 (α, c) = ±2.

In Figure 2 the different regions separated by the bifurcation curves are shown. The
fixed points can change from complex to real, or vice versa, when they cross these curves.
We also show the number of real or complex roots in each region.

Now, let us analyze these bifurcations. We consider different fixed values for the pa-
rameter α and we vary the value of the parameter c, so that all regions are covered. In the
bifurcation diagrams the roots z1, z2, z3, z4, z5 and z6 defined in (10) are depicted in red,
yellow, magenta, orange, green and blue, respectively (Figures 3 to 7).

i) α = −1. There are 6 real roots for negative values of c below the curve C1. For
c = −14/3 this curve is crossed; z5 and z6 reach the value 1 and become a pair of complex
conjugate roots; after the bifurcation there are 4 real roots and two complex roots. When
the value of c arrives to 0, another bifurcation occurs: the real roots z3 and z4 reach the value
−1 and become a pair of complex conjugate roots, the pair of complex roots z5 and z6 take
the value −1 and continue as a pair of complex conjugate roots. Then, at the bifurcation
point we have the roots z1 = −0.208712, z2 = −4.79129, z3 = z4 = z5 = z6 = −1 and after
the bifurcation there are two real roots (z1 and z2) and four complex roots. The bifurcation
diagram is shown in Figure 3a.

ii) α = −0.01. We consider this value for α in order to cover the little red region near
the origin in Figure 2. The bifurcation diagram is the same as in the case above up to the
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Figure 2: Zones in the plane (α, c) defined by the curves C1, C−, C+, C2, and the coordinate axes.

curve C−. Then, we have 6 real roots for negative values of c below the curve C2 and 4 real
roots and two complex roots after crossing it. When the value of c arrives to 0, another
bifurcation occurs and after the bifurcation there are 2 real roots (z1 and z2) and 4 complex
roots. In this case, the curve C− is reached for c = 0.0195915. Now, we enter the red region
where there are 6 real roots and, increasing the value of c, we reach the curve C+ for the
value c = 0.0677085. After this bifurcation, z1 and z3 become a pair of complex roots and
z2 and z4 become another pair of complex roots; z5 and z6 remain real roots. So, there a
are 4 complex and 2 real roots after the bifurcation. The bifurcation diagram for negative
values of c is similar to the previous case; we show in Figure 3b the detail of the bifurcation
diagram for −0.3 ≤ c ≤ 0.3.

iii) α = 0.01. The bifurcation diagram is shown in Figure 4a. For negative values of c
below the curve C1, we have 4 real roots and a pair of complex roots. Increasing the value
of c we reach the curve C1 finding a bifurcation: on the curve the roots are z1 = −0.145898,
z2 = −6.85412 , z3,4 = −0.98999± 0.141138i, z5 = z6 = 1. After the bifurcation z5 and z6
become a pair of complex roots; so, there are two real and four complex roots.

We find a second bifurcation when we reach the curve C− for the value c = −0.0203924.
At this bifurcation point both pairs of complex conjugated roots become a double pair of
complex numbers and after the bifurcation we continue having 2 real roots and 4 complex
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(b) α = −0.01 and −0.3 ≤ c ≤ 0.3.

Figure 3: Bifurcations diagrams for α < 0

roots.

A third bifurcation occurs when crossing the curve c = 0. On the α axis we have
z1 = −0.385419, z2 = −2.59458, z3 = z4 = z5 = z6 = −1. The four complex roots
have become −1 (their real part become −1 and the imaginary part become 0). After the
bifurcation z3 and z4 continue real while z5 and z6 become complex roots (see the detail of
this bifurcation in Figure 4b). After this bifurcation we have 4 real and 2 complex roots
corresponding to the yellow zone.

The last bifurcation we find in this direction is produced for c = 0.0576924 when the
curve C+ is reached. The roots z2 and z4 converge to the value −2 and become a pair of
complex conjugated roots. Similarly, the roots z1 and z3 converge to the value −0.5 and
become a pair of complex conjugated roots. Then, on the curve we have a pair of complex
roots and two pairs of real double roots and after the bifurcation there are 6 complex roots.

iv) α = 0.6. The difference of moving c in this case from the case before occurs when
crossing the α axis. We have 2 real and 4 complex roots for c < 0 and we have 6 complex
roots for c > 0. For c = 0 the roots are −1 with multiplicity 4 and the pair of complex
z5,6 = 1

10(−9±
√

19i). At this bifurcation, the real roots z1 and z2 reach the value −1 and
become a pair of complex roots; the complex roots z3 and z4 take the value −1 but after
the bifurcation they continue being complex; finally, the complex roots z5 and z6 continue
being complex. Therefore, for c > 0, there are 6 complex roots. The bifurcation diagram is
shown in Figure 5.

v) α = 1. Starting with negative values of c the two first bifurcations are similar to the
previous case. Now, we continue increasing the valor of c up to value c = 0. For this value
of c we have two complex roots and a real root −1 with multiplicity 4. There are a pair of
complex roots whose imaginary part becomes 0 and the real part becomes −1 but after the
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Figure 4: Bifurcation diagrams for α = 0.01.

bifurcation they remain complex and the two real roots that reach the value −1 become a
pair of complex roots. Therefore, after this bifurcation, for c > 0, there are six complex
roots. As we only depict the real roots, the bifurcation diagram is similar to the diagram
of Figure 5.

vi) α = 1.5. At the point (1.5,−8) the curves C1 and C− intersect. There are four real
and two complex roots below this point.

At the bifurcation point the real roots z3 and z4 reach the value 1 and become a pair
of complex roots and the complex roots z5 and z6 also take the value 1 but they continue
complex after the bifurcation. The rest of behavior as c increases is the same as the case
above and the bifurcation diagram is also similar to that of Figure 5 and we do not show it.

vii) α = 1.9. We consider a value lower than 2 in order to cross the curve C1 from the
violet to the dark green zone, being that α = 2 is one asymptote of the curve C1. In the
violet region z3 and z4 are complex and the rest of the roots are real.

Increasing the value of c the curve C1 is reached for c = −24. At this bifurcation point
the pair of complex z3 and z4 become real and after the bifurcation there are 6 real roots.

Now, we reach the curve C− for c = −11.45225; at the bifurcation point there are two
double real roots that become pairs of complex conjugate roots after the bifurcation; then,
after crossing C− there are 2 real and 4 complex roots. Now, as we are to the left of the
asymptote c = 2, increasing the value of c from this point we find the same bifurcations as
the case before. The bifurcation diagram is shown in Figure 6a.
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Figure 5: α = 0.6

viii) α = 2.25. The bifurcations for negatives values of c are as in the case for α = 1.9.
But now, once the α axis is crossed, where there are 6 complex roots, we reach the curve
C2 for c = 4. At the bifurcation point the roots z1 = z2 = 1 and after the bifurcation there
are 2 real and 4 complex roots. The bifurcation diagram is shown in Figure 6b.

ix) α = 3. For negative values of c we have the same bifurcation as the case before. For
the c = −2 we pass directly to the region with 4 real and 2 complex roots. When arriving to
the value c = 0, we find another bifurcation: the roots z1 and z2 have reached the value −1
and the complex z3 and z4 take also the value −1. After the bifurcation, the roots z1 and
z2 become a pair of complex conjugate roots and z3 and z4 continue being complex; then,
there are 2 real roots and 4 complex roots. The bifurcation diagram is shown in Figure 7a.

x) α = 4. We find the same bifurcation as the case before when crossing from the dark
green zone to the cyan zone for c = −37.3452. In this case, increasing the value of c we
cross the curve C+ for the value c = −4.59229. After this bifurcation we have 6 real roots.
For the value c = −3 the curve C2 is crossed. After this bifurcation, the real roots z3 and
z4 become a pair of complex roots. So, we have 2 real and 4 complex roots.

For c = 0, we have another bifurcation: z1 and z2 take the value −1 and become a
pair of complex roots. The complex z3 and z4 take the value −1 at the bifurcation point
but they continue being complex for positive values of c. Therefore, for c > 0 there are 2
real and 4 complex roots. In Figure 7b we show the part of the bifurcation diagram for
−6 ≤ c ≤ 2. For values around c = −37.3452 we have a similar diagram as in the Figure 7a
for values around c = −23.4375.

4 Final remarks

If we look carefully the above diagrams we can observe the bifurcations for different values
of c. For example, for positive values of c two behaviors are distinguished:
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Figure 6: Bifurcations diagrams for α around 2.

• For c > 27
256 there are two real and four complex roots if α < 0 or α is at the right of

the curve C2.

• If 0 < c < 27
256 there are two real roots for α < 0 at the left of the curve C−, six real

roots when α < 0 at the right of the curve C−, four of which remain for α > 0. All
the roots become complex when α is between the curves C+ and C2 and two of them
become real for α at the right of the curve C2.

A similar analysis can be obtained for negative values of c. This analysis will help us to
select the members of the class of (α, c) iterative methods to find the real roots of a nonlinear
equation, in terms of their stability and reliability.
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Abstract

The use of high performance computing systems to help making the right investment
decisions in financial markets is an open research field where multiple efforts have being
carried out during the last few years. Specifically, the HJM model has a number of
features that make it well suited for implementation on massively parallel architectures.
This paper presents a MultiCPU and MultiGPU implementation of the HJM model
that improve both the response time and throughput. The experimental results reveal
that the proposed architectures achieve good speed up and scalability, and optimize the
power consumption and cost/performance ratio.

Key words: Heterogeneous Computing, MultiGPU, financial applications.

1 Introduction

Simulation is getting increasingly important in financial markets as one of the best tech-
niques for improving the accuracy of investments. Also in this environment, the shorter the
time in getting to an accurate assessment, the better. A microsecond or nanosecond faster
than the rest of the players can lead to create market instead of just being on the market.

Financial simulations based on Monte Carlo methods have been used for many years
thanks to their intrinsic parallelism. A Monte Carlo method is an algorithm that solves a
problem through the use of statistical sampling to obtain numerical results [11]; typically
it is necessary to run simulations many times over in order to obtain the distribution of an
unknown probabilistic entity.
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Monte Carlo methods have a number of properties that make then especially suitable
for implementation on massively parallel environments [9, 2]. These include the data in-
dependence, that enable domain-based parallelization, with a high degree of parallelism, ie
can generate a large number of fine-grained tasks or a few coarse-grain tasks. This prop-
erty greatly favours the application scalability, while allowing an adequate distribution of
the workload in both homogeneous and heterogeneous environments, which has a large im-
pact on the final performance. Also the overhead due to synchronization or communication
between processes or threads is minimal.

Specifically this work address the optimization of financial applications that allow a
prediction of risk over time, for financial derivative products, particularly in multi-value
environments. The selected model is the Heath Jarrow Morton (HJM) framework [7, 8].
Therefore, this paper presents a new and efficient implementation of the HJM Model, which
has a high computational cost, in highly scalable, heterogeneous and cross-platform environ-
ments. In particular optimization techniques and code parallelization used in homogeneous
environments (multicore architectures) as well as in heterogeneous environments (GPUs).

The HJM Model used in this paper is based on Monte Carlo methods. These methods
have been widely used over time in many different fields, financial, engineering and scien-
tific. For instance, [5] presents an implementation of a Monte Carlo model to estimate the
current value of an European option for future purchase in the financial derivatives market,
based on the Black-Scholes model. The implementation was done in four very different
computer systems: A multicore with shared memory, a cluster with MPI, a CUDA program
running on a GPU and a cluster of FPGAs where the most time consumed computations
were implemented in VHDL. Similarly [12] presents the design and implementation of a
parallel version of a Monte Carlo method in a FPGA-based supercomputer, called Maxwell,
of Edinburgh University [3]. The FPGA-based implementation is compared with other
environments with various GPUs and conventional processors.

On the other hand, [1] also uses clusters of CPUs and GPUs to implement the calcula-
tion of the price of European options. They compare different systems and implementations
in terms of performance and power consumption. Many financial applications rely on solv-
ing systems of sparse linear equations. As for example, [6] proposes the design of a number
of iterative methods for solving equations, based on the Krylov subspace on GPU architec-
tures. In this work, the proposed approaches are validated by solving the partial differential
equations of the Black-Scholes model.

As far as we know this is the first paper where the HJM model is implemented on a
massively parallel architecture, like the proposed in this paper. Additionally, this paper pro-
poses a study of the performance of this kind of applications in heterogeneous environments,
from two different points of view: the improvement of performance (both response time and
throughput) and scalability, as both are important in financial applications. Finally, a study
on the power consumption and cost of these architectures is also shown.
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2 Interest Rate Models

During the past three decades, derivatives have become increasingly important in the world
of finance. A derivative can be defined as a financial instrument whose value depends on
the values of other, more basic underlying variables. Very often the variables underlying
derivatives are the prices of traded assets. Some major developments have occurred in the
theoretical understanding of how derivative asset prices are determined, and how these prices
change over time, led to the use of advanced mathematical methods. Models and numerical
procedures based on the original Black-Scholes assumptions [4] are straightforward. However
they have simplistic approaches and assumptions when tackling exotic options.

Therefore a number of alternative new models have since been introduced to attempt to
solve this problematic. These models, such as the Hull White, the Vasicek, the Cox Ingersoll
and Ross model, incorporate a description of how interest rates change through time. For
this reason, they involve the building of a term structure, typically based on the short term
interest rate rt. The main advantage of these methods lies in the possibility of specifying rt
as a solution to a Stochastic Differential Equation. This allows, through Markov theory, to
work with the associated Partial Differential Equation and to subsequently derive a rather
simple formula for bond prices. This makes them widely suited for valuing instruments such
as caps, European bond options and European swap options.

However, they have some limitations and all lead to the same drawback when solving
interest rate products: the fact that they use only one explanatory variable (rt ) to construct
a model for the entire market. It proves insufficient to realistically model the market
curve, which appears to be dependent on all the rates and their different time intervals.
Consequently, these models cannot be used for valuing interest rate derivatives such as
American-style swap options and structures notes, as they introduce arbitrage possibilities.

2.1 Heath-Jarrow-Morton (HJM) framework

The most straightforward solution to the above problem should include the use of more
explanatory variables: long and medium term rates. The Heath Jarrow Morton framework
uses one representative short term rate, a middle term rate, and finally a long term interest
rate [7, 8]. It chooses to include the entire forward rate curve as a theoretically infinite di-
mensional state variable. Unlike other models, this model can match the volatility structure
observed today in the market, as well as at all future times.

The Heath-Jarrow-Morton framework is a general framework to model the evolution
of interest rates. It describes the behaviour of the future price (in time) of a zero coupon
bond B(t, T ) paying 1 unit of currency at time T, and it provides a consistent framework
for the pricing of interest rate derivatives. The model is directly calibrated to the currently
observed yield curve, and is complete in the sense that it does not involve the market price
of interest rate risk.

c©CMMSE ISBN: 978-84-616-9216-3Page 267 of 1485



Optimizing Financial Applications on Heterogeneous Architectures

The key aspect of HJM lies in the recognition that the drifts of the no-arbitrage evolution
of certain variables can be expressed as functions of their volatilities and the correlations
among themselves, so no drift estimation is needed. HJM-type models capture the full
dynamics of the entire forward rate curve. In practice however, we will not work with a
complete, absolutely continuous discount curve B(t, T ), but will instead construct our curve
based on discrete market quotes, and will then extrapolate the data to make it continuous.
Given the zero-coupon curve B(t, T ), there exists a forward rate F (t, u) such that:

dF (t, T ) = µ(t, T )dt+ σ(t, T )dWtPt (1)

The HJM model has the serious disadvantage that it cannot be represented as re-
combining trees. In practice, this means that it must be implemented using Monte Carlo
Simulations. Therefore, it has a very high computation time so it is important to use high
performance architectures to minimize response times.

3 Graphics Processing Unit (GPU)

The GPU used in this work is a NVIDIA Tesla Kepler K20, with GK110 microarchitec-
ture. The goal of the Kepler architecture focuses, not only on performance, but also on
efficiency and programmability. It comprised 7.1 billion transistors, with 13 SMX Steaming
Multiprocessor which contains 192 CUDA cores each one, so it has 2496 CUDA cores. It
has a peak performance of 1.17 and 3.52 TFlops on double and single precision operations
respectively. It also has 5 GBytes of GDDR5 memory, with a bandwidth of 208 GBytes per
second. The architecture presents two new important features:

• Dynamic Parallelism, enables the Kepler GK110 GPU to dynamically spawn new
threads by adapting to the data without going back to the host CPU. This effectively
allows more of a program to be run directly on the GPU, as kernels now have the
ability to independently launch additional workloads as needed. Any kernel can launch
another kernel and can create the necessary streams, events, and dependencies needed
to process additional work without the need for host CPU interaction.

• Hyper-Q, enables multiple CPU cores to launch work on a single GPU simultane-
ously. This feature allows 32 simultaneous hardware managed connections between
the host and the GPU. Hyper-Q allows connections for CUDA streams, MPI processes
and even threads from within a process. Legacy MPI applications were created to run
on multi-core, and thereby, the amount of work in each MPI process is insufficient to
fully occupy the GPU. One solution is to issue multiple MPI processes to concurrently
run on the GPU, but it can produce false dependencies among them. Hyper-Q re-
moves false dependency bottlenecks and increases speed at which MPI processes can
be moved from the host to the GPU.
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4 Optimization of the HJM Model

4.1 Analysis and Optimization of Sequential Code

The starting point is a sequential code that implements a multidivise prediction risk values
model based on HJM [10], using a Monte Carlo method. This code was implemented in
C++ language with the Intel MKL library. On this version a code profile using gprof and
Valgrind has been done. The profile has been performed both with and without MKL
to verify the impact of this library on performance. This profile shows that the 41.67%
of the runtime is spent in a function of the MKL library which executes a exponential
function. The remaining time is consumed mainly in other vector operations. Specifically
the operators, a set of functions that performs simple operations on all the elements of
several vectors that are calculated in a step of the simulation.

Another remarkable aspect is that the use of MKL library has a significant effect on
performance, provided that use Intel processors. The execution time is reduced by 48%,
reaching a speedup of 1.92 compared to the version without MKL. This improvement comes
from both optimizations performed in the own library and the fact that it uses multi-
threading, thus it is taking advantage of all processors in the system (two in this study).

Likewise Valgrind revealed a large number of memory conflicts due to the compiler
uses memory areas are mapped to the same cache blocks. This produces Cache Jamming,
consisting of two variables is constantly overwritten in the cache, resulting in a large number
of replacements and thereby causing a strong performance degradation. Changing the
memory allocation scheme of the variables involved this effect has been eliminated.

Finally, since the application uses several arrays with a large number of double-precision
data (as many as the number of paths), the effect of the cache in the application performance
has studied. Thus, the runtime has been measured on a processor with the same architecture
and clock frequency, but a size of second-level cache (L2), which is 3 times higher per core.
The results shows that the improvements, for commonly used sizes, are around 6%, in the
response time.

4.2 Replacing MKL Library

The previous section showed that the use of the MKL library has a strong impact on
application performance. However, it also has two major problems: the cost is very high and
only takes advantage on Intel processors limiting code portability. Therefore, it is proposed
to search an open source solution, to replace the functions of MKL used: exponential and
division of floating point numbers in double precision. Alternatively, an approach based
on SLEEF (SIMD Library for Evaluating Elementary Functions), an open source library,
and AVX instructions is proposed. Two different approaches have been developed, the first
based on a single thread and using vector instructions, and the second using multi-threading.
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The version that uses only SLEEF with AVX instructions, down time with respect
to the original version without MKL, but nonetheless takes around 20% more than using
MKL. This is because SLEEF are using a single thread, while MKL adjusts the number of
threads to data size. If a version SLEEF and multi-threading in the same areas of MKL is
used, a very close result is obtained only 3% worse. MKL uses highly optimized routines
with details of the processor architecture that are not public, so you get exactly the same
performance is a non trivial task. This analysis shows an interesting conclusion: MKL can
be replaced by an alternative open source without losing performance just allowing generate
a more portable and less economic cost code.

4.3 CUDA Implementation

A first aspect to analyse is the communication between CPU and GPU as it is one of the
main bottlenecks in the Host-Device programming model. The application is iterative, thus
it performs a series of calls to CUDA kernels, one for each step of the simulation. The kernels
execute the most most computational cost operations, such as exponential and division of
floating point numbers in double precision, on large data vectors which are independent
from each other.

A detailed analysis of the data dependencies between successive iterations shows that
the results of the partial vector operations, performed at each simulation step, are not
needed until the end of the execution, and hence they are always stored in the memory of
the GPU. This has a double impact on performance: synchronization points between CPU-
GPU are avoided and the transfer of information between the two devices is minimized. This
is implemented through the use of CUDA streams. Each call to a CUDA operation is queued
into a stream and the application can continue executing on the CPU asynchronously. The
stream manages the execution of CUDA kernels while the CPU is computing the control
structures and queues new CUDA kernels operations. The CPU waits for the GPU only
when reading the final results, rather than once per transaction.

Figure 1(a) shows the execution flow of the synchronous case. When a CUDA operation
is running on the GPU, the processor remains idle waiting until it ends. The processor idle
time, could request new work to the GPU or perform independent CPU tasks which do
not require pending results. On the other hand, 1(b) shows how the CPU queues a CUDA
task in a special buffer, the stream and continues running other part of the code. The
synchronization is only needed when a transfer of input data or results is essential.

Once the migration to he improvement obtained in response times was not as good as
expected. This behaviour is explained because the operating system did not have the driver
loaded in persistent mode, ie, the driver is only loaded into memory when a process needs
to access the GPU. This causes the driver initialization time to accumulate the response
time of the application. The solution was to load the driver in persistence mode to always
remain in memory.
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(a) Synchronous CPU-GPU Execution (b) Asynchronous CPU-GPU Execution

Figure 1: Synchronous vs. Asynchronous CPU-GPU execution with CUDA

Another overhead in the time is the CUDA initialization where the CUDA driver creates
the memory maps, initializes registers and contexts, and finally loads the code into the
GPU (Figure 2(a)). All of these steps (except the last, of course) may be made prior to the
execution of the application. To solve this problem a Client-Server architecture has been
designed, based on UNIX Domain Sockets (Figure 2(b)). The Server initializes the GPU and
is listening on a socket, awaiting execution requests coming from the Clients. The Clients
must know the specific port to communicate with the Server, and through this port sends
the name of the file containing the kernel to be run. The Server runs the kernel on the GPU
and returns the result to the Client. With this architecture, initialization is performed only
once, at boot time of the machine. Thus the individual processes prevent overload time.
The NVIDIA K20 GPU has an initialization time of about 100 ms. The execution times
of kernels in this application are about 40 ms. It is therefore evident that the overhead
introduced by the initialization has a strong impact on the application response time.

Finally, it is important to highlight that the implementation is Multi-CPU and Multi-
GPU, ie, supports the execution of a single job on multiple GPUs in parallel. This can be
specified as an input parameter to specify the maximum number of GPUs that can be used
in each run. In the case of using more than one GPU workload is distributed statically, ie
the workload is distributed at the beginning of the execution. Moreover, the distribution is
homogeneous, i.e. the workload is evenly distributed among all the GPUs in the system.
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(a) Without Server: one initialization per pro-
cess

(b) With Server: one initialization at machine
boot

Figure 2: Execution model with and without Server

5 Experimental Results

This section presents a set of experimental results. The main objectives of these experi-
ments are to perform an study of the performance of the proposed approach, varying some
parameters of the test cases used, such as the number of paths executed; and to analyse
in depth the performance of Multi-GPU environment, both in terms of response time of a
single instance of the problem, and when the task throughput.

The experiments have been developed on a Intel server with a dual Intel Sandy Bridge
E5-2620 processors with 6 cores each one, at 2 GHz. The server has hardware support for 24
threads, 15 MB of L3 cache memory and 16 GB of DDR3 main memory. The system runs
a Ubuntu 10.04 Linux operating system, and has the CUDA 5 and Intel MKL Library. The
server comprises two NVIDIA Kepler K20 GPUs with 2496 cores, 5 DDR5 GB of memory,
with a peak performance of 3.52 TFlops on single precision and 1.17 TFlops on double
precision operations. Each GPU has its own dedicated PCI-express 3.0 bus between the
GPU and the CPU, to avoid collisions in the access to the bus.

All results presented in this section refer to the implementation in double precision,
since in the initial requirements are considered the most interesting. The metric used in
all cases is the response time, defined as the total execution time since the application
is launched until results are obtained. Therefore includes both computing time, such as
communication between CPU and GPU, for initialization, reading and writing operands
and results. The times are always expressed in milliseconds to allow a better comparison.
The results presented are always the average obtained from 10 independent runs.
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Figure 3: Speedups of Single and Multi GPU systems vs. Xeon processor

Table 1: Response Times and Speedups
Number of Paths Xeon Single Multi Speedup Single GPU Speedup Multi GPU Speedup Multi GPU

Processor GPU GPU vs. Xeon vs. Xeon vs. SingleGPU

10000 2000 115 193 17.39 10.36 0.60
20000 2600 140 212 18.57 12.26 0.66
30000 4000 180 230 22.22 17.39 0.78
40000 5000 220 250 22.73 20.00 0.88
50000 6400 260 260 24.62 24.62 1.00
60000 7500 320 280 23.44 26.79 1.14
70000 8800 360 290 24.44 30.34 1.24
80000 10000 400 300 25.00 33.33 1.33
90000 11200 440 320 25.45 35.00 1.38
100000 12500 500 350 25.00 35.71 1.43

To evaluate the performance of the application, two kinds of experiments have been
developed. The first experiment analyses the behaviour of the application’s response time
in a heterogeneous system. To do this, three different environments and implementations
have been used:

• Multi-Thread application running on a multiprocessor with 12 cores.

• Single GPU, a heterogeneous Host+CUDA application running on a single GPU.

• MultiGPU, a heterogeneous Host+CUDA application, running on two GPUs.

In these scenarios, several tests were performed by changing the size of the problem,
which is determined by the number of paths to evaluate. The metric used is the total
response time of the application, including the communication time between CPU and
GPU. Finally, the speedups of heterogeneous environments are computed. The results are
presented in the table 1.
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Figure 4: Throughput of different configurations

The first result that is important to highlight is the large reduction in response times
that occurs when using the heterogeneous system, as can be seen in Figure 3(a). On the
other hand, Figure 3(b), presents the behaviour of the speedups of the heterogeneous envi-
ronments compared with the multiprocessor as problem size increases. In that figure, it can
be seen that bellow 50.000 paths the speedup of the single GPU is significantly higher than
MultiGPU. This behaviour is because the workload is too small and then the advantages of
using two GPUs simultaneously can not improve the overhead to manage them. However,
as the workload grows, the benefits of using two GPUs in parallel outperform this overhead,
and this behaviour becomes more noticeable as the problem size grows.

The second experiment the metric used is not the response time of a single instance of
the problem, but the throughput of the system, ie the number of tasks that can be completed
in a certain time interval. Therefore multiple independent instances of the same problem
are running simultaneously. In the case of Xeon multiprocessor these instances are not
parallelized (ie, each job runs on a single core, so it can run 12 instances simultaneously).
Figure 4 shows the throughput results obtained in all these available systems, as the number
of paths increases. It can to be noticed that the environment with higher throughput is
the Multi GPU, but using each GPU independently on a single instance of the problem.
Furthermore, it is interesting to highlight that only one K20 GPU performs more operations
per second than 12 Xeon cores running independent simulations.

Finally, the results achieved in the throughput with the GPUs, have a significant eco-
nomic impact both the cost and power consumption. With the use of a single server with
two E5-2620 processors and two GPU cards K20 performing simulations in parallel, it is
possible to replace 10 servers without GPU. Therefore, it can be highlight that the hetero-
geneous architecture achieves a savings of 3.75 times in the power consumption as well as
an initial investment in equipment 5.45 times lower.
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6 Conclusions and Future Work

The most important and general conclusion to highlight is that the financial models based
on Carlo methods, such as the HJM, have qualities that make them especially suitable
for implementation on massively parallel architectures, especially in Multi-GPU platforms.
Indeed, the massive data parallelism along with data independence allows to squeeze the
full potential of the GPUs. Furthermore, these model minimize communication between
CPU and GPU, that is one of the major bottle-necks in this architecture. Finally, this data
independence also allows a balanced distribution of workload and offers excellent properties
with regard to scalability.

This suitability is proven in the experimental results of response times and throughput
presented in this paper. To summarize, it is noteworthy that a heterogeneous architecture
with an NVIDIA Kepleer K20 GPU can achieve a speedup of more than 18 over the best
version on CPU. Furthermore it has been shown that this architecture provides excellent
scalability: the higher the workload, the better the speeup is, reaching up to 25 in the
experiments presented in this paper. Finally, it is worth mentioning the low consumption
of these architectures, as well as its excellent cost/performance ratio.

In Multi-GPU environments, the workload is the key parameter when deciding if the
application runs on a single GPU or use several in parallel. The experimental results for
the HJM model show that the use of the two GPUs in parallel is profitable from a workload
paths 50,000. In more complex models with a higher cost of computation, this value can
vary substantially.

Future work includes providing the MultiGPU environment with a load balancing mech-
anism that allows a heterogeneous distribution between GPUs with different performance.
Likewise, other accelerator architectures such as Intel Xeon Phi will be explored.
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Abstract

The estimation of high quantile is a typical requirement in many areas of application
such as insurance and finance. Techniques based on Peaks-over-Threshold (PoT) with
parametric and non-parametric novel methods based on residual coefficient of variation.
This improvement is applicable at least to market risk, since the existence of three mo-
ments can be assumed in market risk.

Key words: Risk analysis, High quantile, Value-at-Risk, Tail index, Heavy tails,
Peaks over Thresholds

1 Introduction

In financial mathematics and financial risk management, the value at risk (VaR) is a widely
used in Advanced Measurement Approach (AMA) for risk measure. For instance, on a spe-
cific portfolio of financial assets, the VaR at level of risk α shows that there is a probability
α that the portfolio will fall in value by more than the VaR over a one day period if there
is no trading. The extreme value theory (EVT) has two main approaches: Block maxima
models and Threshold exceedance models. The first uses as parametric model the general-
ized extreme value distribution (GEV) and the second the generalized Pareto distribution
(GPD). The financial markets provide many data sets where the two approaches may be
compared estimating high quantile. Some semi-parametric models based on bias reduction
techniques for heavy tails trough the use of an adequate bias-corrected tail index estimator
are considered. A new non-parametric tool based on the residual coefficient of variation is
also analyzed. This paper focuses on value-at-risk for log-returns arising in modeling ex-
tremes of four data sets in the field of finance, widely documented and studied that can be
considered with heavy-tail. Applying extreme value statistics in finance requires accurate
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estimators on extreme value indices that can be around zero. New parametric models can
still be of high interest for the analysis of extreme events, if associated with appropriate
statistical inference methodologies, for instance, the full-tails gamma distribution. Remark
that, from computational point of view, improved the VaR estimation requires advanced
methodologies for high quantile estimation and the current methods consists in to consider
statistical models for the extreme values.

2 Techniques for VaR estimation

The main challenge in EVT is to compute the tail index, ν and the optimal threshold, u
needed in PoT methodologies. Remark that, some parametric models considered detects the
tail index with shape parameter, denoted by ξ = −1/ν. The methodology to model extreme
values uses PoT, it is based in the theorem of Pickands-Balkema-DeHaan, see McNeil, et
al. (2005). From this result, this methodology is used by many authors for modeling
exceedances in several fields such as finance and environmental science, for instance Coles
(2001). Several techniques have been developed to search for the optimal threshold to link
a GPD, such as Hill-plot or ME-plot. This theoretical methodology shows some surprises
in practical applications. For instance, Dutta and Perry (2006) observed, in an empirical
analysis of operational risk, that even when Pareto distribution fit the data it may result in
unrealistic capital estimates (sometimes more than 100% of the asset size). To contribute
for a solution to these problems it is necessary to use other alternative models to the GPD,
but it requires certain properties that allow them to be treated as queuing models, it is the
case of FTG, see Castillo et al. (2012).

The probability density function of the full-tails gamma (FTG) is given by

f (x; ν, σ, θ) = θν (x+ σ)ν−1 exp (−θ (x+ σ)) /Γ (ν, σθ) (1)

where Γ (ν, ρ) is the upper incomplete gamma function, see Abramowitz y Stegun (1972),
the range of x is (0,∞) and ν ∈ R, θ > 0, σ > 0. The tail index is ν, in fact the value of
ξ = −1/ν. Remark that for σ fixed, if θ tends to zero, the FTG distribution corresponds
to Pareto distribution. The reason that FTG is most appropriate is that the financial data
have heavy tails but they have some moments, see Shyriaev (1999). The existence of at least
three moments allows us to develop new techniques for extreme values more satisfactory in
practice. Furthermore, it should be consider the exponential tails as a first hypothesis, see
Castillo et al. (2014).

A new non-parametric tool based on the residual coefficient of variation is described
below. This method is applied to the case of generalized Pareto distribution (GPD). Let X
be a continuous non-negative random variable (r.v.) with distribution function F (x). For
any threshold, t > 0, the r.v. of the conditional distribution of threshold exceedances X − t
given X > t, denoted by Xt = (X − t | X > t), is called the residual distribution of X over
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t. The quantity M(t) = E(Xt) is called the residual mean and V (t) = var (Xt)the residual
variance. The residual coefficient of variation is given by CV (t) ≡ CV (Xt) =

√
V (t)/M(t),

like the usual CV, the function CV (t) is independent of scale. If CV (t) is constant then
the distribution of X is a GPD, see Gupta and Kirmani (2000). Remark that, the residual
CV for GPD, provided ξ < 1/2, is a constant given by CV 2 (t) = 1/(1− 2ξ).

The coefficient of variation can be used also as a measure of non normality. The most
popular measure of non normality nowadays is the kurtosis, defined for distributions with
four finite moments. The next Proposition shows that the kurtosis can be obtained with
the coefficient of variation.

Proposition 1 Given a symmetric random variate x with respect to zero, the excess kur-
tosis is

ku [x] + 3 =
E
[
x4
]

E [x2]2
= 1 + cv[x2]2,

therefore the kurtosis is a function of coefficient of variation of x2.

Finally, the non-parametric CV methodology to compute a tail index estimation corre-
sponds to a computational approach based on to search the value of coefficient of variation
that minimizes the distance between its confidence interval under hypothesis of constant
tail index and the CV-plot. This non-parametric methodology provides both the tail index
and the optimal threshold This methodology combined with Pareto as the model for the
tail is denoted by CVm and some examples are showed in Table 3. The last methodol-
ogy considered is denoted by GPm and it consists in a semi-parametric method for high
quantiles estimation based on the parametric model from Pareto and with a non-parametric
techniques of bias-corrected Hill estimator, see Gomes and Pestana (2007).

3 Financial data analysis

To compare the different techniques four sets of finance data are considered, collected over
the same period: from January 4,1999 through November 17,2005. Those sets of data were
the Euro-USA dollar (EUSD) daily exchange rates and the daily closing values of the Dow
Jones Industrial Average In (DJI), Microsoft Corp. (MSFT), and International Business
Machines Corp. (IBM) stocks. The assumption that financial data have heavy tail can lead
to conclusions far removed from reality, in Figure 1 the CV-plot of EUSD shows that the
shape parameter can be negative (residual CV less than 1), so a heavy tail it isn’t the best
option.

The Table 3 shows an brief of the results of the study. The cases GPD and, FTG
corresponds to model the whole data as the corresponding parametric model and GEV to
model the month maximums. In front of to consider the new methodology CVm and the
alternative GPm. DJI and EUSD data analysis shows that the tail of data is not a heavy
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Figure 1: CV-plot of the absolute value of negative tail of log-returns for DJI and EUSD
data. Dotdash and dotted line correspond to the 95% confidence interval of a exponential
and uniform distribution, respectively.

99,9% ξ 99,9% ξ
DJI GPD 0,055 0,00 EUSD GPD 0,033 0,00

FTG 0,050 -0,60 FTG 0,026 -0,17
CVm 0,040 0,04 CVm 0,016 -0,16
GPm 1,917 0,30 GPm 1,172 0,25

Table 1: A high quantile, shape value ξ for some methodology and data sets: DJI and
EUSD.

tail, in fact, the results suggests that the tail distribution has available all the moments.
IBM and MSFT data have splits and they have been worked with and without them. Most
interesting results, from applied point of view, are obtained using POT with this advanced
methodologies to search optimal threshold and improved parametric models for tails as the
FTG.

4 Conclusions

After analyzing the data set of this study the following conclusions emerge. Given that
EVT is very sensitive to outliers one must be very careful to analyze market data. In
practical applications it is recommended to consider the data from different points of view
and not be limited to a single technique. The market data, once corrected for splits, is
well fitted by models with semi-heavy tails that has few finite moments, as certain authors
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claim. When evaluating risks, it is better to study separately the positive and negative tails
of the distribution and not doing it together. Thus the coefficient of variation is a more
appropriate tool than the kurtosis to assess the weight of the tails.
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Abstract

In this work, we design an algorithmic method to associate combinatorial structures
with finite-dimensional Malcev algebras. In addition to its theoretical study, we have
performed the implementation of procedures to construct the digraph associated with
a given Malcev algebra (if its associated combinatorial structure is a digraph) and,
conversely, a second procedure to test if a given digraph is associated with some Malcev
algebra.

Key words: Digraph, Combinatorial structure, Malcev algebra, Combinatorial oper-
ations, Algorithm.

MSC 2000: 17D10, 05C25, 05C20, 05C85, 05C90, 68W30, 68R10.

1 Introduction

Research on non-associative algebras is very extensive due to both its own theoretical rel-
evance and its applications to many different fields, like Engineering, Physics or Applied
Mathematics. Within these algebras, we will study Malcev algebras. These algebras were
introduced by A. I. Malcev [6] as tangent algebras of analytic Moufang loops. They are
related to alternative algebras in the same way that Lie algebras are related to associative
algebras: if A is an alternative algebra, then the algebra A− with the operator [a, b] = ab−ba
is a Malcev one. However, many general questions about these algebras have not been solved
at present by means of traditional techniques, such as obtaining the classification of Malcev
algebras.

c⃝CMMSE ISBN: 978-84-616-9216-3Page 282 of 1485



Malcev algebras and combinatorial structures

Currently, Graph Theory has become an essential tool to solve a wide range of problems
in different research fields. In this way, we think that graphs and simplicial complexes (its
generalization to higher dimensions) may be used to study non-associative algebras and
solve open problems like the above-mentioned problem of classifying Malcev algebras.

The main goal of this paper is to start studying the link between combinatorial struc-
tures and Malcev algebras. More concretely, we pursue the generalization of the research
started in [1] and developed in [2, 3, 4] to the case of Malcev algebras instead of considering
Lie algebras.

2 Preliminaries

For a general overview on Malcev algebras and Graph Theory, the reader can consult [7, 5].
We only consider finite-dimensional Malcev algebras over the complex number field C.

Definition 1 A Malcev algebra g is a vector space with a second bilinear inner composition
law ([·, ·]) called the bracket product or commutator, which satisfies

1. [X,Y ] = −[Y,X], ∀X ∈ g; and

2. [[X,Y ], [X,Z]] = [[[X,Y ], Z], X] + [[[Y,Z], X], X] + [[[Z,X], X], Y ], ∀X,Y, Z ∈ g.

The second constraint is named the Malcev identity.

Given a basis {ei}ni=1 of g, its structure (or Maurer-Cartan) constants are defined by
[ei, ej ] =

∑
chi,jeh, for 1 ≤ i < j ≤ n.

Note 1 Since we are considering a field of characteristic different from 2, the first con-
straint in Definition 1 is equivalent to [X,X] = 0,∀X ∈ g.

Definition 2 Given a Malcev algebra g, its center is Z(g) = {X ∈ g | [X,Y ] = 0, ∀Y ∈ g}.

Definition 3 A graph is a ordered pair G = (V,E), where V is a non-empty set of vertices
and E is a set of unordered pairs (edges) of two vertices. If the edges are ordered pairs of
vertices, then the graph is named digraph.

3 Associating combinatorial structures with Malcev algebras

Let g be an n-dimensional Malcev algebra with basis B = {ei}ni=1. The structure constants
are given by [ei, ej ] =

∑n
k=1 c

k
i,jek. In virtue of the skew-symmetry of the bracket product

and Note 1, the pair (g,B) can be associated with a combinatorial structure built according
to the following steps, which are similar to those introduced in [1]
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a) Draw vertex i for each ei ∈ B.

b) Given three vertices i < j < k, draw the full triangle ijk if and only if (cki,j , c
i
j,k, c

j
i,k) ̸=

(0, 0, 0). Then, the edges ij, jk and ik have weights cki,j , c
i
j,k and cji,k, respectively.

b1) Use a discontinuous line (named ghost edge) for edges with weight zero.

b2) If two triangles ijk and ijl with 1 ≤ i < j < k < l ≤ n satisfy cki,j = cli,j , draw
only one edge between vertices i and j shared by both triangles; see Figure 1.

c) Given two vertices i and j with 1 ≤ i < j ≤ n and such that cii,j ̸= 0 (resp. cji,j ̸= 0),
draw a directed edge from j to i (resp. from i to j), as can be seen in Figure 2.

Figure 1: Full triangle and two triangles
sharing an edge.

Figure 2: Directed edges.

4 Theoretical results

This section is devoted to state some general results on the association between Malcev
algebras and combinatorial structures. We start considering some general properties aris-
ing from this association and corresponding to topological properties of the combinatorial
structure.

Proposition 1 Let G be the combinatorial structure associated with a Malcev algebra g. If
v is an isolated vertex of G, then the basis vector ev ∈ g associated with v belongs to the
center Z(g).

Proposition 2 Let G be the combinatorial structure associated with a Malcev algebra g.
Each connected component of G is associated with a Malcev subalgebra of g. Moreover, if
G is non-connected, then g is the direct sum of the Malcev subalgebras associated with the
connected components of G.
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Next, we have studied the particular case in which there are no full triangles in the com-
binatorial structure (i.e. a weighted digraph). Let us note that this assertion is equivalent
to consider a Malcev algebra g with basis B = {ei}ni=1 and law

[ei, ej ] = cii,jei + cji,jej , 1 ≤ i < j ≤ n. (1)

Proposition 3 If G is a connected digraph with 3 vertices associated with a Malcev algebra,
then G must be isomorphic to some of the configurations shown in Figure 3.

Figure 3: Connected digraphs with 3 vertices associated with Malcev algebras.

Note 2 Some of the configurations shown in Figure 3 require particular restrictions on the
structure coefficients in order to assure its association with Malcev algebras.

Corollary 1 The connected digraphs with 3 vertices shown in Figure 4 cannot be contained
in a digraph associated with a Malcev algebra of any given dimension (i.e. they are forbidden
configurations).

Figure 4: Forbidden configurations in digraphs associated with Malcev algebras.
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5 Algorithmic procedures

In this section we present two algorithms dealing with converse questions: the first is devoted
to obtain the digraph associated with a given Malcev algebra starting from its law; whereas
the second provides a test to determine if a weighted digraph is associated with a Malcev
algebra or not.

5.1 Algorithm to obtain the digraph associated with a Lie algebra

Under the same notation as in Section 4, we consider an n-dimensional Malcev algebra g with
basis Bn. Hence, we are considering a law consisting only of brackets [ei, ej ] = cii,jei + cji,jej
to avoid full triangles and deal only with digraphs.

We have designed the following algorithm to obtain the digraph associated with g,
structured in four steps

1. Computing the bracket product between two arbitrary basis vectors in B.

2. Evaluating the bracket between two vectors expressed as a linear combination of vec-
tors from basis B.

3. Imposing the Malcev identity and solving the corresponding system of equations.

4. Drawing the digraph associated with the Malcev algebra g.

To implement the algorithm, we use the symbolic computation package MAPLE 12,
loading the libraries linalg, GraphTheory and Maplets[Elements]. The first two libraries
allow us to apply commands of Linear Algebra and Graph Theory, respectively; whereas
the last is used to display a message so that the user introduces the required input in the
first subroutine, devoted to define the law of the algebra g.

5.2 Algorithm to decide if a digraph is associated with a Malcev algebra

We show an algorithmic procedure to determine if a given digraph is associated or not with
a Malcev algebra. The algorithm consists of the following two steps

a) Generating the law candidate to be a Malcev algebra using in reverse the construction
in Section 3.

b) Checking if the Malcev identities are satisfied for this law.

To implement the algorithm, we need load the libraries GraphTheory and DifferentialGeometry.
The first library activates commands related to Graph Theory; whereas the second provides
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some simplifications to translate the digraph in a vector space with a bilinear bracket prod-
uct.

More concretely, we start defining the vector space associated with the digraph by using
a routine which receives as inputs the list V with the vertices of the digraph and the set E
with its directed, weighted edges. As outputs, we obtain a vector space with basis {ei}ni=1

where ei corresponds to vertex i from the list V, and the non-zero brackets coming from the
weighted edges in the set E.
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Abstract

HEVC standard achieves double compression efficiency compared with H.264/AVC
at the cost of a huge computational complexity. Parallelizing HEVC encoding is an
efficient approach to fulfil this high computational requirement. The parallelization
approaches considered in HEVC (such as Slices, Tiles, WPP) rely on creating picture
partitions that can be processed concurrently. This paper focuses on the realization of
a parallel architecture design of heterogeneous platforms composed by a GPU plus a
multi-core CPU to take advantages of these techniques. Experimental results outper-
form WPP in terms of speed-up and coding efficiency. Moreover, the proposed parallel
method obtains an overall speed-up of more than 4x in an Intel quad-core CPU and a
NVIDIA GPU with negligible quality loss compared to the non-parallel version.

Key words: HEVC, Parallelization, GPU, Multicore, heterogeneous computing

1 Introduction

Recently, the new High Efficiency Video Coding (HEVC) standard [1] has been established
by the Joint Collaborative Team on Video Coding (JCT-VC), an expert group proposed
by the ISO/IEC Moving Expert Group (MPEG) and ITU-T Video Coding Expert Group
(VCEG). HEVC was initially conceived with the purpose of achieving a highly efficient
performance for delivering high quality multimedia services over bandwidth-constrained
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networks, but also to give support to formats beyond HD resolution, such as the new 4K
and 8K formats. This standard is based on a well-known block-based hybrid video coding
architecture as well as its predecessor H.264/MPEG4 part 10 - Advanced Video Coding
(AVC) [2], which it outperforms in terms of bitrate reduction at the same quality [3].
Among others, HEVC includes multiple new coding tools, namely highly flexible quad-tree
coding block partitioning which includes new concepts as Coding Unit (CU), Prediction
Unit (PU) and Transform Unit (TU) [3, 4].

All these improvements imply a considerable increase of the encoding time. Fortunately,
this computational cost can be efficiently reduced by adapting the sequential encoding al-
gorithm to parallel architectures. Over the last few years the computation industry has
tended towards including several processing units in a single shared chip. Furthermore, in
terms of massive data computations, there are also devices called Graphic Processing Units
(GPUs). These devices, also referred as many-core, are highly parallel and they are nor-
mally used as co-processors to assist the Central Processing Unit (CPU). CPUs and GPUs
have different instruction set architectures, forming what it is known as a heterogeneous
computing platform [5].

As a support to this parallelism, HEVC addresses a special emphasis on a hardware
friendly design and parallel-processing architectures. These parallelization approaches are
Tiles [6] and Wavefront Parallel Processing (WPP) [7] that will be depicted in Section
2. Basically, these parallelization approaches rely on creating picture partitions that break
some dependencies for prediction, CABAC context modelling, and/or slice header overhead.
As a result, coding losses may appear.

At this point, this paper proposes a GPU-based algorithm that makes use of this device
in order to efficiently parallelize the motion estimation carried out in the HEVC inter-
prediction algorithm. Furthermore, this algorithm can be combined, in turn, with multiple
coarse-grained parallelization techniques such as the aforementioned ones in a heterogeneous
architecture. In fact, this paper shows the results provided by a combination of the WPP
algorithm and this GPU-based proposal.

These two algorithms are tested comparing their results with the ones provided by the
HEVC Test Model (HM) [8], outperforming them in terms of speed-up and coding efficiency;
moreover, compared with the sequential version of HEVC, speed-up is increased up to 4.53x
in a quad-core CPU (4 threads plus SMT) with negligible Rate Distortion (RD) penalty.

The remainder of this paper is organized as follows: Section 2 includes a technical back-
ground of the new HEVC standard while Section 3 identifies the related work which is being
developed about the topic. Section 4 introduces our proposed architecture. Experimental
results are shown in Section 5. Section 6 concludes the paper and includes some lines of
action as future work.
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2 Technical background

As mentioned in the previous section, the main target of HEVC is to achieve lower bitrates
for video streams while maintaining the same quality. In order to make this possible, HEVC
introduces new coding tools with respect to its predecessor, H.264/AVC; all of them make
it possible to notably increase coding efficiency. One of the most important changes affects
the picture partitioning. HEVC dispenses with the terms Macro-Block (MB) and Block for
the ME and the transform, respectively, and introduces three new concepts: CU, PU and
TU. This structure leads to a flexible coding to suit the particularities of the frame. Each
picture is partitioned into square regions of variable size called CUs, which replace the MB
structure of previous standards. Each CU, whose size is limited from 8x8 to 64x64 pixels,
may contain one or several PUs and TUs. To fix the size of each CU, first of all a picture
is divided into 64x64 pixels areas, which are called Coding Tree Units (CTU), and then,
each CTU can be partitioned into 4 smaller sub-areas of a quarter of the original area. This
partitioning can be performed with each sub-area recursively until it has a size of 8x8 pixels,
as shown in Figure 1.

For intra-picture prediction, a PU uses the same 2Nx2N size as of the CU to which it
belongs, allowing it to be split into quad NxN PUs only for CUs at the minimum depth
level. Therefore the PU size ranges from 64x64 to 4x4 pixels. For inter-picture prediction,
several non-square rectangular block shapes are available in addition to square ones, allowing
eight different PU sizes (2Nx2N, 2NxN, nx2N, NxN, 2NxU, 2NxD, nLx2N, nRx2N). The
prediction residual obtained in each of the PUs is transformed using the Residual Quad Tree
(RQT) structure, which supports various TU sizes from 32x32 to 4x4. For the transform
coding of intra prediction 4x4 PU residuals, an integer approximation of the Discrete Sine
Transform (DST) is used instead.

HEVC checks most of the PUs (Inter and Intra modes) to decide whether it should split
a CU or not by choosing the best RD case. Furthermore, in the case of Inter Prediction, for
each of these PU partitions an ME algorithm is called. This wide range of possibilities makes
HEVC much more computationally expensive than its predecessor, H.264/AVC. HEVC
introduces changes in other modules too, such as Intra Prediction (where a total of 35
different coding modes can be selected), the PU modes (it introduces asymmetric modes),
new image filters or new transform sizes, among others. As expected, the selection of the
optimal partitioning for each CU/PU/TU is an intensive time-consuming process due to
the huge number of combinations that have to be evaluated in order to achieve the best
performance.

With the aim of reducing this huge complexity, the new HEVC codec also includes new
parallelization techniques such as tiles [6] and WPP [7] among slices. On the one hand,
tiles are square or rectangular shape partitions where dependencies are broken across tile
boundaries [6], making it possible to process them independently, taking into account that
coding losses may appear. The in-loop filters (deblocking and SAO), however, can still

c©CMMSE ISBN: 978-84-616-9216-3Page 290 of 1485



Accelerating HEVC using heterogeneous platforms

Figure 1: CTU quadtree structure partitioning.

cross these boundaries. The number of tiles and their location can be defined for the entire
sequence or changed from picture to picture. On the other hand, WPP allows the creation
of picture partitions (normally rows) that can be processed in parallel, whereas entropy
encoding and prediction are allowed to cross partitions in order to minimize coding losses.
Nevertheless, coding dependencies make it necessary to have a delay of at least two CUs
between consecutive rows in a similar way as segmentation does in a computer architecture
[7, 9]. For this reason, not all the processes can start encoding these rows at the same time,
which involves a low CPU utilization at the beginning and at the end of a frame, incurring
in the so-called “ramping inefficiencies”. Both techniques are depicted in Figure 2.

Tiles and WPP have different merits and disadvantages. While WPP is generally well
suited for the parallelization of the encoder and the decoder due to its high number of
picture partitions with low compression losses, the amount of parallelism with tiles is not
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(a) Tiles partitioning (b) WPP partitioning

Figure 2: Partitioning and processing order of tiles (a) and WPP (b)

fixed, as the number of regions in which a frame is divided may vary. Additionally, WPP
does not introduce artifacts at partition boundaries as is the case for Tiles. In order to
simplify the implementation, it is not possible to use Tiles and WPP simultaneously in the
same compressed video sequence.

In either case, these approaches need parallel architectures to exploit their potential and,
hence, reduce the computational complexity of HEVC. In this respect, new architectures
are being introduced in high-performance computing composed of multi-core CPUs and
GPUs. A multi-core processor is composed of several processors sharing the same chip, while
GPUs are composed of hundreds of similar simple processing cores which are designed and
organized with the goal of achieving high performance. These cores are grouped in stream
processors that perform Single Instruction Multiple Data (SIMD) operations which are
suitable for arithmetic intensive applications. In the particular case of NVIDIA, a powerful
GPU architecture called the Compute Unified Device Architecture (CUDA) [10] has been
developed. The main feature of these devices is a large number of processing elements
integrated into a single chip at the expense of a significant reduction in cache memory.

3 Related work

As far as related work in the literature is concerned, in the past, there have been many
approaches focusing on accelerating different modules of the H.264/AVC encoding algorithm
by means of parallel computing [11, 12, 13]. On the contrary, in the framework of HEVC, the
first parallel approaches were focused on reducing the complexity of the decoding algorithm;
in [9], the authors improve the WPP approach included in the HM reference software [8].
The idea consists of once there are no available rows in the current picture, the next one
starts being processed. In this way, the ramping inefficiencies of WPP can be mitigated
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by overlapping the execution of consecutive pictures. This proposal was called Overlapped
Wawefront (OWP). As a limitation, search areas need to be constrained to the region of
the reference frame that has been already reconstructed.

In the context of this paper, which is more focused on the encoder side, there are not
many approaches. OWF might work for the encoder, but no results were given in [9]. Yu
et al. proposed in [14] a parallel candidate list in order to parallelize the motion vector
prediction, but the proposal is not standard compliant. Later, in [15], the authors reduced
the encoding time up to 13 times by using a 64-core architecture, which is far more expensive
than the one used in this paper. Finally, Wang et al. proposed in [16] a scheme similar to
the one proposed in this paper based on a GPU plus multi-core CPU, but the major lack
of this paper lies in the fact that they did not use the reference software HM [8] and, thus,
the RD results are worse due to the fact that not all coding tools were implemented [16].

4 Proposed algorithms

As seen before, parallelization is possible in both the encoder and the decoder by using the
algorithms defined in the standard. Nonetheless, these are designed to be executed in a
multi-core CPU, taking advantage of the capabilities that multiple threads may offer, but
not taking into account other devices. Heterogeneous architectures such as the ones formed
by the association of a multi-core CPU and a GPU are utilized in this paper, making use
of the immeasurable power they can provide. The joint of a GPU-based motion estimation
algorithm and the standard WPP is proposed in the following subsections.

4.1 GPU-based inter prediction algorithm

As motion estimation is the most resource intensive operation on the encoder side [3], this
algorithm aims to reduce the time spent on the CPU by performing these searches on a
GPU device. Nevertheless, taking into account that data transfers between host and GPU
are highly time-consuming, these operations are performed asynchronously. In this way,
time spent on Integer Motion Estimation (IME) is negligible compared with the default
search algorithm.

As soon as a Group of Pictures (GOP) starts being processed, it is possible to transfer
the original frames that will be encoded to the device, making them available for subsequent
uses. Later on, these frames are updated with their reconstructed version when they are
encoded (and decoded in-loop) in order to correctly carry out motion estimation on the
device.

When the encoder starts processing a slice, the host queues the execution of two con-
secutive kernels that perform the integer motion estimation of every Prediction Unit (PU)
partition in the first Coding Tree Unit (CTU). The first kernel executes the required oper-
ations to calculate the Sum of Absolute Differences (SAD) residuals across a search area in
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the reference frame, while the second one determines which one of them may offer the best
possible result.

This algorithm relies on the fact that every PU size established by the standard is
divisible by four, and taking into account the nature of the SAD operation, it is possible to
calculate the residual information of a PU partition from the composition of its 4x4 SAD
partitions.

Following this approach, the previously mentioned kernel distributes a device thread
per sample in the reference search area. Every thread is responsible for calculating all the
4x4 SAD blocks in a CTU, taking as motion vector its position in the search area. Once
these blocks are calculated, all the running threads put them together to obtain the PU
partitions in which a CTU might be divided. From another point of view, the results of
this step would be equivalent to a full-search algorithm performed for every PU partition.

At this point, the second kernel performs a reduction algorithm over the residual data
obtained from the first one, so that the result of the GPU algorithm is an only table contain-
ing the best Motion Vector (MV) for every PU partition, which is copied asynchronously to
the host. After the transfer is finished, motion search operations related to the next CTU
are then issued to the device.

By the time the host needs to perform the motion estimation of the CTU, integer MVs
should be ready to be queried, only being necessary to perform fractional motion estimation
of the PU partitions which have not been skipped by the encoder.

4.2 Joint algorithm: WPP + GPU-based inter prediction

As a consequence of the computational limit of a single processor, the idea of having multiple
cores in the same chip was successfully introduced some time ago. One of its most relevant
benefits is that a parallel application can achieve speed-up values in direct proportion to
the number of cores. This, along with the wide existence of this kind of devices, motivated
the JCT-VC to include parallelism in HEVC, which was carried out by breaking some
dependencies while trying to provide as much coding efficiency as possible.

In our heterogeneous architecture, both the multi-core CPU and the GPU algorithms
are independent. While tiles or WPP perform a coarse-grained parallelization of the whole
encoding process, our GPU-based algorithm carries out the IME operation. This indepen-
dence makes it possible to combine both algorithms in a single proposal, obtaining, hence,
higher speed-up values at the expense of a negligible increment in coding efficiency losses.

As WPP can achieve similar speed-ups with regard to tiles [9] without breaking as many
dependencies (and hence, obtaining better coding efficiency results), this is the algorithm
taken as the basis of our joint algorithm.

As depicted in the Figure 3, a single GPU device can carry out the integer motion
estimation of multiple threads and, hence, multiple CTUs. Therefore, it is necessary to
queue several kernels into the GPU. In this way, the device is fully utilized, lowering idle

c©CMMSE ISBN: 978-84-616-9216-3Page 294 of 1485



Accelerating HEVC using heterogeneous platforms

Figure 3: Joint algorithm applied to WPP with 4 threads.

times. In addition, the GPU can process different kernels independent of the CPU, so this
one can continue processing other modules concurrently.

5 Performance evaluation

In order to ensure a common framework, JCT-VC defined a document in [17] where test
conditions are set out to homogenize comparisons between experiments. Therefore, this
performance evaluation has been carried out in accordance with these guidelines.
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Table 1: Speed-up and coding efficiency results of the GPU-based proposal.

Speed-up BD-rate (%)
Class A 1.12 -0.2
Class B 1.12 0.7
Class C 1.14 0.0
Class D 1.11 -0.2
Class F 1.10 0.9

The sequential algorithm of HM version 10.0 [8] has been used as the reference algorithm
to calculate the corresponding speed-up and coding efficiency values. The proposed GPU-
based algorithm has been isolatedly tested in order to calculate its influence in the overall
processing time. Later, the results of WPP and the joint algorithm are presented.

Random Access has been the chosen configuration to carry out the evaluation, as it
is the most widely used configuration in real scenarios, but any other configuration might
work with our proposed algorithm as well. No other changes were made to the default
parameters provided by the reference software.

All measurements have been performed on a quad-core Intel Core i7-2600 CPU running
at 3.40GHz and a NVIDIA GTX 560 Ti GPU running 384 CUDA cores at the frequency of
1.6 GHz. Consequently, tests have been carried out with 2 and 4 threads, as well as 4 plus
Simultaneous MultiThreading (SMT), enabling the processor to execute 8 threads.

To start with, Table 1 shows the results of the proposed GPU-based algorithm. As
can be seen, performing the IME operation on the GPU involves accelerating the encoding
process by 1.12x while incurring in very low coding efficiency losses (due to MVs prediction),
or even improving it in some cases. This is because the proposed algorithm performs a more
exhaustive search. We would like to emphasize that these results are the theoretical limit
of the integer ME, as the GPU has already calculated every MV when the host needs to
perform ME. In other words, the IME is performed in virtually perfect time.

On the other hand, Table 2 depicts a comparison between the results provided by the
joint proposal (WPP + GPU) and the ones provided by WPP itself. Both algorithms have
been executed with 2, 4 and 4 plus SMT threads, showing that the proposal can reach speed-
up values close to the ones from a parallel efficient algorithm, (i.e. threads are almost fully
utilized), providing that the frame size is large enough to exploit the available parallelism.

These results also show that combining both WPP and the GPU-based algorithm sur-
pass the results of WPP in terms of speed-up, reaching values up to 4.33x average (for class
A) compared with 3.92x, respectively. Moreover, this increase has a negligible impact of
1.3% BD-rate in terms of coding efficiency. As can be seen, these results can be connected
with the ones from Table 1, as the difference in speed-up and BD-rate compared with the
GPU-based algorithm itself stands at around 1.10x and 0.3%, respectively (compared with
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Table 2: Speed-up and BD-rate results comparison between WPP and our joint proposal.

Speed-up
BD-rate (%)

2 threads 4 threads 4 th. + SMT
WPP Joint WPP Joint WPP Joint WPP Joint

Class A
Traffic 1.88 1.99 3.37 3.56 3.90 4.12 0.7 0.9
PeopleOnStreet 1.89 2.17 3.35 3.85 3.95 4.53 0.7 0.1

Class B

Kimono 1.89 2.13 3.36 3.80 3.80 4.31 1.2 1.7
ParkScene 1.88 2.01 3.33 3.56 3.70 3.97 0.7 0.7
Cactus 1.89 2.07 3.31 3.65 3.72 4.13 1.1 1.4
BasketballDrive 1.90 2.22 3.40 3.98 3.76 4.43 1.5 5.0
BQTerrace 1.88 2.00 3.31 3.53 3.79 4.06 1.2 0.1

Class C

BasketballDrill 1.80 2.00 2.73 3.09 2.72 3.09 1.4 1.1
BQMall 1.81 1.96 2.83 3.11 2.83 3.09 1.5 2.3
PartyScene 1.78 1.91 2.70 2.94 2.71 2.96 0.6 0.2
RaceHorses 1.78 2.09 2.79 3.30 2.84 3.35 0.8 0.8

Class D

BasketballPass 1.67 1.88 1.75 2.01 1.75 2.01 0.9 0.9
BQSquare 1.60 1.66 1.84 1.92 1.84 1.92 1.3 1.3
BlowingBubbles 1.59 1.66 1.80 1.91 1.80 1.90 0.9 0.6
RaceHorses 1.63 1.85 1.81 2.10 1.81 2.10 0.9 0.4

Class F

BasketballDrillText 1.79 1.97 2.71 3.05 2.70 3.05 1.4 0.7
ChinaSpeed 1.86 2.12 3.15 3.54 3.28 3.74 0.8 -2.3
SlideEditing 1.80 1.86 3.13 3.24 3.33 3.46 1.0 3.9
SlideShow 1.80 1.92 3.00 3.21 3.24 3.45 2.2 6.7

Class A 1.88 2.08 3.36 3.71 3.92 4.33 0.7 0.5
Class B 1.89 2.08 3.34 3.70 3.75 4.18 1.1 1.8
Class C 1.79 1.99 2.77 3.11 2.78 3.13 1.1 1.1
Class D 1.62 1.76 1.80 1.99 1.80 1.98 1.0 0.8
Class F 1.81 1.97 3.00 3.26 3.14 3.43 1.3 2.3
Average 1.80 1.98 2.85 3.15 3.08 3.41 1.0 1.3

1.12x and 0.2%). This means that the device is almost fully utilized, taking advantage of
its potential.

6 Conclusion and future work

In this paper, we have designed an efficient parallel framework of the HEVC encoder on a
multi-core CPU plus GPU platform. A coarse-grained parallelization of the whole encod-
ing process is made on a multi-core CPU, while the GPU carries out the ME operation.
Comparing our approach to WPP, our experiments show that the proposed joint algorithm
achieves better performance in terms of speed-up with negligible coding efficiency losses.
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Ongoing work will focus on using multiple GPUs and parallelizing other modules, as well
as considering other architectures such as Intel Xeon Phi [18].
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Abstract

We provide an error analysis of the operator splitting method of the operator
splitting of the Godunov and Strang type applied to the Burgers-Huxley equation,
ut +αuux − ϵuxx = β(1− u)(u− γ)u. The major task is to prove the convergence rates
for the two splitting methods in Sobolev spaces.

We split the equations into linear and nonlinear parts and show that the operator
splitting methods have the correct convergence rates in Hs(R), where Hs(R) is the
Sobolev space and s is an arbitrary nonnegative integer.

We numerically apply the operator splitting methods to the Burgers-Huxley equation
for the split step size ∆t.

Key words: Operator splitting, Burgers-Huxley equation, nonlinear.

1 Introduction

In this paper, we study the Burgers-Huxley equation which is given in the following form,

ut + αuux − ϵuxx = β(1− u)(u− γ)u, (1)

where x ∈ R, t > 0, α, β ≥ 0 , 0 < ϵ ≤ 1 and 0 < γ < 1. There are many numerical methods
which have been studied to compute approximate solutions to Burgers-Huxley equation.
The idea of operator splitting, (see [2], [3], [6], [7], [8], [9], [10], [11], [13], [14] and [15]), is
widely used for the approximation of partial differential equations. The basic idea is based
on splitting a complex problem into simpler sub-problems, each of which is solved by an
efficient method. One of the reasons for the popularity of operator splitting is the use of
dedicated special numerical techniques for each of the equations.
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Assume the time T > 0 is fixed and consider a general partial differential equation

ut = C(u), t ∈ [0, T ], u(0) = u0, (2)

where C(u) is a differential operator between some normed spaces, say X, and assume u0
and solution u(t) are in X. We assume that the Taylor series expansion is valid for u(t),
which results in

u(t) = u(0) + tut(0) +O(t2). (3)

If we replace the second term in the above series with (2) we get

u(t) = u(0) + tC(u0) +O(t2). (4)

Furthermore, assume C(u) can be written as a sum of more elementary operators, say

C(u) = A(u) +B(u), (5)

which yield
u(t) = u0 + t(A(u0) +B(u0)) +O(t2). (6)

The operator splitting method is built up as follows: Fix a positive and small time step ∆t,
and discretize the time with n steps such that tn ≤ n∆t. Instead of solving equation (2)
directly, we solve the two subequations

vt = A(v)

wt = B(t), (7)

for each time step, and concantenate the solutions. The simplest form for an operator
splitting solution of (2) is formed solving the first subequation using the solution from the
second subequation as initial condition when solving at each time step. Writing out this
procedure gives,

un+1 = eA∆t(eB∆t(un)) = eA∆t ◦ eB∆t(un) = [eA∆t ◦ eB∆t]n(u0), (8)

where un is the operator splitting solution at time tn, and eAt(v0) and eBt(w0) are the exact
solution operators of the above subequations at time t with initial data v0 and w0. This is
the well-known Lie-Trotter splitting method.

Other and more sophisticated methods for an operator splitting solution of (2) are
created by solving two subequations for different split step sizes, and compose the solution
operators in a more complicated way. By solving one of subequations for half the step size
composed with the solution of the other subequation for a full time step, we obtain the
famous Strang splitting method, which is given as

un+1 = eA∆t/2(eB∆t(eA∆t/2(un)))

= eA∆t/2 ◦ eB∆t ◦ eA∆t/2(un) = [eA∆t/2 ◦ eB∆t ◦ eA∆t/2]n(u0). (9)

c⃝CMMSE ISBN: 978-84-616-2723-3Page 301 of 1485
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We hope that both (8) and (9) converge towards the correct solution of (2), when the time
step ∆t tends to 0, that is,

u(t) = lim
∆t→0

[eA∆t ◦ eB∆t]n(u0) = lim
∆t→0

[eA∆t/2 ◦ eB∆t ◦ eA∆t/2]n(u0). (10)

Formally, Lie-Trotter splitting (8) converges as

∥un − u(tn)∥X ≤ O(∆t), (11)

while the Strang splitting (9), converges as

∥un − u(tn)∥X ≤ O((∆t)2). (12)

The major task in what follows is to prove the convergence rates for the two operator
splitting methods in Sobolev spaces. The main idea of the framework [11] is to use a
standard argument from error estimation of numerical methods. We find an estimate of the
local error, which is the error after performing one step with the operator splitting method,
before we add up all the local errors from each step. This yield the global error, which is
what we are after.

The keypoint in the new approach in [5] is to use error terms for numerical quadratures,
to use the Peano kernel theorem for estimating the local errors in Hs(R), where Hs(R) is
the Sobolev space where s is an arbitrary nonnegative integer. In addition, a Taylor series
expansion and a variation of parameters formula are used to obtain the local estimates.
These foundations yield an estimation of the local error which is delicate and elegant, and
which involve the error forms in combination with differential calculus and estimation tools
in Hs(R).

We will investigate the Lie-Trotter splitting numerically for the given Burgers-Huxley
equation. We will numerically check the convergence rates for the split step size ∆t, in
addition with other aspects for the numerical methods.

Applying the operator splitting method to (1), and splitting it into two subequations
gives

vt = A(v) = ϵvxx (13)

wt = B(w) = β(1− w)(w − γ)w − αwwx (14)

The analysis relies on a well-posedness theory for (1) in Hs(R). For simplicity, we list
the well-posedness requirements for (1) in addition with the assupmtions for u0 and u(t),
([1]),([4]).

Hypothesis 1 (Local well-posedness). For a fixed time T , there exists R > 0such that for
all u0 in Hk(R) with ∥u0∥R, there exists a unique strong solution u in C([0, T ],Hk) of (1).
In addition, for the initial data u0 there exists a constant K(R, T ) < ∞, such that

∥ũ(t)− u(t)∥Hk ≤ K(R, T )∥ũ0 − u0∥Hk
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for two arbitrary solutions u and ũ, corresponding to two different initial data ũ0 and u0.

The requirement in (15) is the same as requering that u0 is local Lipschitz continuous. The
last hypothesis requires that the solution and the initial data are bounded in the Sobolev
spaces.

Hypothesis 2 (Boundedness). The solution u(t) and the initial data u0 of (1) are both in
Hk(R), and are bounded as

∥u(t)∥Hk ≤ R < ρ and ∥uo∥Hk ≤ C < ∞, (15)

for 0 ≤ t ≤ T .

We define the following set of integers, which we keep fixed throughout this section,

s ≥ 1, p = s+ 2l − 1, , q = p− l (16)

where l ≥ 2.

We will use the following theorem and lemmas to estimate the local error for the Lie-
Trotter splitting for the Burgers-Huxley equation.

Theorem 1 (Peano Kernel theorem) If f is in Cn+1([a, b]) and I is a quadrature rule that
integrates all p in Pn exactly,then

E(f) = I(f)−
∫ b

a
f(x)dx =

1

n!

∫ b

a
fn+1(t)K(t)dt. (17)

where K(t) = Ex((x− t)n+) is the Peano kernel.

Lemma 2 If u is in Hs(R) for s ≥ 1 , then u is in L∞(R) . Moreover,

∥u∥L∞ ≤ 1√
2
∥u∥H1 ≤ Cs∥u∥Hs , (18)

where Cs depends only on s.

Lemma 3 The space Hs(R) is a Banach algebra for s ≥ 1. In particular, if u, v are in
Hs(R) for s ≥ 1, then

∥uv∥Hs ≤ Cs∥u∥Hs∥u∥Hs ,

where where Cs depends only on s.
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4 Regularity results for Burgers-Huxley Equation

We will present and prove several results to estimate the local error for the Lie-Trotter
splitting for the Burgers-Huxley equation. We need to show that there exists a small time
step ∆t for the solutions eAt(v0) and eBt(w0) in a Sobolev spaces.

4.1 Results for the Nonlinear Part

Lemma 5 For p and q in (16) assume the solution eBt(w0) = w(t) of (14) with initial data
w0 in Hp(R), satisfies ∥eBt(w0)∥Hq ≤ α for 0 ≤ t ≤ ∆t. Then eBt(w0) is in Hp(R) and in
particular

∥eBt(w0)∥Hq ≤ ecβt∥w0∥Hp , (19)

where β and c is independent of w0 and ∆t.

Lemma 6 Assume ∥w0∥Hk ≤ K for some k ≥ 1 . Then there exists t̄(K) > 0 such that
∥eBt(w0)∥Hk ≤ 2K for 0 ≤ t ≤ t̄(K) .

Proof 1 By doing the same calculations as in the proof of Lemma (5) with k instead of p
and using the bound for u0 in Hk(R), we arrive with the following inequality

∥w(t)∥Hk

d

dt
∥w(t)∥Hk ≤ c∥w(t)∥4Hk , (20)

which simplifies to

d

dt
∥w(t)∥Hk ≤ c∥w(t)∥3Hk . (21)

By comparing with the solution of the differential equation y′ = cy3 , we see that if we want
∥eBt(w0)∥Hk ≤ 2K , we must integrate the above inequality a time t̄ which is dependent on
the bound K.

To prove the convergence rates of the Lie-Trotter splitting, we need to expand eBt(w0)
using the Taylor series expansion. Thus, eBt(w0) needs to be continuous, such that the
expansions are valid. The following lemma proves the sufficient continuity.

Lemma 7 If ∥w0∥Hs+2 ≤ C for s ≥ 1 , then there exists t̄ depending on C, such that the
solution w(t) of the (14) is C2([0, t̄],Hs).

Proof 2 Let t be in [0, t̄], with t̄ from Lemma (6), and define

w̃(t) = w0 + tB(w0) +

∫ t

0
(t− s)dB(w(s))[B(w(s))]ds, (22)
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where dB(.)[.] is the Fréchet derivative. Calculating the second derivative of w̃, gives

w̃tt = dB(w(s))[B(w(s))]

= −3β2B(w) + 2β(1 + γ)wB(w)− βγB(w)− αwB(w)x − αB(w)wx (23)

from which we have that w̃ is in C2([0, t̄], Hs). To prove that w = w̃, we must show that the
two functions satisfies the same differential equation and the same initial conditions. By
differentiation (14) with respect to t, we get

wtt = B(w)t = (−βw3 + β(1 + γ)w2 − βγw − αwwx)t

= −3βw2wt + 2β(1 + γ)wwt − βγwt − αwtwx − αwwxt

= w̃tt,

which shows that w and w̃ satisfies the same equation. From the definition of w̃, we see that
w̃(0) = u0 and w̃t(0) = B(u0) = wt. Thus we have shown that w = w̃.

8 Stability in Hs space

Lemma 9 Let u1, ũ1 be the Lie-Trotter splitting solution with initial data u0, ũ0 in Hs.
Then

∥u1 − ũ1∥Hs ≤ eL∆t∥u0 − ũ0∥Hs , (24)

where L = Kmax{∥u1∥Hs , ∥ũ1∥Hs}

Proof 3 Since the linear part preserves the Hs norm, we only need to compare nonlineari-
ties in Lie-Trotter splitting solutions. The nonlinear term has Lipshitz constant L which is
bounden by Lemma (6). Finally, Gronwall’s Lemma implies the bound in (24).

10 Local error in Hs space

Lemma 11 Let s ≥ 1 be an integer and hypothesis 2 holds for k = s + 2 for the solution
u(t) = e(A+B)∆t(u0) of (1). If the initial data u0 is in Hs+2(R), then the local error of the
Lie-Trotter splitting (8) is bounded in Hs(R) by

∥eA∆t(eB∆t(u0))− e(A+B)∆t(u0)∥Hs ≤ C∆t2, (25)

where C only depends on ∥u0∥Hs+2 .
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12 Global error in Hs space

Theorem 2 Suppose that the exact solution u(·, t) of Equation (1) is in Hs+2 for 0 ≤
t ≤ T . Then Lie-Trotter splitting solution un has first order global error for ∆t < ∆̄t and
tn = n∆t ≤ T ,

∥un − u(·, tn)∥Hs ≤ G∆t, (26)

where G only depends on ∥u0∥Hs+2 and T.

13 Numerical results

By applying the Lie-Trotter splitting to Burgers-Huxley equation, we obtain the two sube-
quations

vt = A(v) = ϵvxx

wt = B(w) = β(1− w)(w − γ)w − αwwx

which are solved subequently for small time steps ∆t.
We will use the Chebyshev Differentiation Matrices for the first and the second deriva-

tive of u in (13) and (14). For the second part (nonlinear part), we apply the semi-implicit
RK scheme.

We consider the Burgers-Huxley equation with α = β = 1, γ = 0.5 and initial and
boundary conditions in the following form [16]

u(x, 0) = sin(πx), 0 ≤ x ≤ 1

u(0, t) = 0, 0 ≤ t ≤ T. (27)

The time step length ∆t = 0.001 is used for the numerical experiment. The Figure 1 and
Figure 2 show the layer behaviour of the problem at different values of time t and ϵ.
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Figure 1: Computed solutions of Burgers-Huxley equation for different values of ϵ at T= 0.2.
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Figure 2: Computed solutions of Burgers-Huxley equation for different values of time at
ϵ = 2−9.
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Abstract

In this work we approximate the solution of a two-point boundary value singularly
perturbed system with two parabolic equations of reaction-diffusion type, coupled in the
reaction term. This class of problems typically exhibits two overlapping boundary layers
at both end points of the spatial domain. The numerical scheme combines the backward
Euler method to discretize in time and a hybrid finite difference scheme, defined on a
special nonuniform mesh, to discretize in space. The hybrid scheme uses two finite
difference operators which yield a full discrete monotone scheme. A truncation error
argument is used to proved that the numerical method is uniformly convergent in the
discrete maximum norm, having first and third order of convergence in time and space,
respectively. A test example is showed, which illustrates the order of convergence of the
numerical method.

Key words: singular perturbation, parabolic reaction-diffusion systems, special nonuni-
form mesh uniform convergence, high order method
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1 Introduction

In this paper we consider 1D parabolic singularly perturbed boundary value problems of
type 

Lεu ≡ ∂u
∂t

+ Lx,εu = f , (x, t) ∈ G = Ω× (0, T ] ≡ (0, 1)× (0, T ],

u(0, t) = 0, u(1, t) = 0, ∀t ∈ [0, T ],
u(x, 0) = 0, ∀x ∈ Ω,

(1)
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where ε = (ε1, ε2)T is the singular perturbation parameter with 0 < ε1 ≤ ε2≤ 1, f(x, t) =
(f1(x, t), f2(x, t))T , and the differential operator Lx,ε is defined by

Lx,ε ≡

(
−ε1

∂2

∂x2

−ε2
∂2

∂x2

)
+ A, A =

(
a11(x, t) a12(x, t)
a21(x, t) a22(x, t)

)
.

We assume that the data problem are smooth functions and enough compatibility are
satisfied to guarantee the regularity of the solution of (1). In our analysis we need that the
continuous and discrete problems satisfy a comparison principle and then we also assume
that

ai1 + ai2 ≥ 0, aii > 0, i = 1, 2,
aij ≤ 0 if i 6= j.

The exact solution u has two overlapping boundary layers at x = 0 and x = 1 of width
O(
√

εi ln(1/εi)), i = 1, 2 (see [5, 9]). Then, to obtain good approximations for any value
of the diffusion parameter ε, uniformly convergent methods (see [5, 7, 8, 9] and references
therein) are necessary.

In [5, 9] the backward Euler method and central differences on a Shishkin mesh are
used to approximate problem (1) and it is proved that the numerical method is a first order
uniformly convergent scheme. In the general case of different diffusion parameters, up to
our knowledge, central differences has been only used to approximate problem (1). Here we
are interested into constructing a numerical method on a special mesh to solve (1), giving
higher order convergence for the space variable than this one associated to the classical
central difference scheme. In the steady version of problem (1) high order schemes have
been designed and analyzed in the literature. We can refer to [2], where an almost third
order uniformly convergent finite difference scheme, on a piecewise uniform Shishkin mesh,
was designed to solve a reaction-diffusion coupled system when ε1 = ε2, which was extended
in [3] to the general case ε1 6= ε2. Some of the finite difference operators of those paper are
used in this work.

Henceforth, C denotes a generic positive constant independent of ε and also of the
discretization parameters N and M . We only use the (discrete) maximum norm ‖f‖D =
maxx∈D |f(x)|, ‖f‖D = max{‖f1‖D , ‖f2‖D} with f = (f1, f2)T .

2 Uniform convergence of the numerical scheme

Before analyzing the convergence of the numerical scheme, it is necessary to dispose of
appropriate bounds of the derivatives of the solution of (1). The asymptotic behavior of
the solution, with respect to the diffusion parameters, is related to the exponential boundary
layer functions

Bεi(x) = e−x/
√

εi + e−(1−x)/
√

εi , i = 1, 2.
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In [1, 5] it is proved that

|u(0,k0)
i (x, t)| ≤ C(1 + Bε2(x)), i = 1, 2, 0 ≤ k0 ≤ 3,

|u(k,0)
1 (x, t)| ≤ C(1 + ε

−k/2
1 Bε1(x) + ε

−k/2
2 Bε2(x)), 1 ≤ k ≤ 6

|u(k,0)
2 (x, t)| ≤ C(1 + ε

−k/2
2 Bε2(x)), k = 1, 2,

|u(k,0)
2 (x, t)| ≤ C(1 + ε−1

2 (ε(2−k)/2
1 Bε1(x) + ε

(2−k)/2
2 Bε2(x))), 3 ≤ k ≤ 6.

(2)

To define the numerical scheme, the first step is to construct the mesh, which is denoted
by ḠN,M = Ω̄N × ω̄M , where ω̄M = {tk = kτ, 0 ≤ k ≤ M, τ = T/M} and M is a positive
integer. Here a modified Shishkin mesh (see [6, 10]) is defined, which uses two transition
parameters given by

σ2 = min {1/4, 4
√

ε2 lnN}, σ1 = min {σ2/2, 4
√

ε1 lnN}, (3)

and the grid condenses in the layer regions.
Using a suitable generating function ℵ, the grid points are given by xj = ℵ(j/N), j =

0, 1, . . . , N/2, with ℵ ∈ C1[0, 1/2] and N = 8k, with k a positive integer.
We first consider the case when σ2 6= 1/4. Then, we extend the definition of the

Vulanović-Shishkin type mesh for the case of a two point boundary value problem with a
single equation (see [6, 10]), by using

ℵ(z) =


8zσ1, if z ∈ [0, 1/8],
p1(z − 1/8)3 + 8σ1(z − 1/8) + σ1, if z ∈ [1/8, 1/4],
p2(z − 1/4)3 + p3(z − 1/4) + σ2, if z ∈ [1/4, 1/2],

(4)

where the value of p1, p2 and p3 are calculated by imposing that ℵ(1/4) = σ2, ℵ(1/2) = 1/2
and the mesh is symmetric with respect to the mesh point 1/2.

Imposing that ℵ(z) be an increasing function, that hj ≥ hj−1 for j = 2, . . . , N/2 (since
the layer is at x=0), where hj = xj − xj−1, j = 1, 2, . . . , N , it follows that

p1 = 83(σ2 − 2σ1), p2 = 64(1/2− 7σ2 + 10σ1), p3 = 24σ2 − 40σ1, (5)

and it must be satisfied the condition

1/2− 7σ2 + 10σ1 ≥ 0. (6)

Then, it holds that hj ≤ CN−1 for j = 1, . . . , N and

|hj+1 − hj | ≤

{
CN−2√ε2 lnN, for j = N/8, . . . , N/4− 1,

CN−2, for j = N/4, . . . , N/2− 1.
(7)
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Otherwise, we have that 1/2 < 1/2 + 10σ1 < 7σ2 ≤ 28
√

ε2 lnN and therefore ε
−1/2
2 ≤

56 ln N . If either (6) does not hold or σ2 = 1/4, we change the definition of the mesh, taking

ℵ̃(z) =
{

8zσ1, if z ∈ [0, 1/8],
83(1/2− 4σ1)(z − 1/8)3 + 8σ1(z − 1/8) + σ1, if z ∈ [1/8, 1/2],

(8)

that satisfies the same conditions as before.
On the previous Vulanović-Shishkin meshes, we define a finite difference scheme. The

values of the numerical solution for the initial time t = 0 and at x = 0 and x = 1 are defined
by

U(xj , 0) = U(0, tn) = U(1, tn) = 0, for j = 0, . . . , N and n = 0, . . . ,M.

At the interior points, we consider a hybrid finite difference operator LN,M = (LN,M
1 , LN,M

2 )
defined by

LN,M
i U(xj , tn) = QN,M

i (fi(xj , tn)), i = 1, 2, (9)

for j = 1, . . . , N − 1 and n = 1, . . . ,M , where

LN,M
i U(xj , tn) ≡ QN,M

i (D−
t Ui(xj , tn)) + LN,M

x,i U(xj , tn),

D−
t is the backward finite difference, LN,M

x,i is defined as

LN,M
x,i U(xj , tn) = r−,n

i,j Ui(xj−1, tn) + rc,n
i,j Ui(xj , tn) + r+,n

i,j Ui(xj+1, tn)
+QN,M

i (ai,3−i(xj , tn)U3−i(xj , tn)),
(10)

and

QN,M
i (Z(xj , tn)) = q1

i,jZ(xj−1, tn) + q2
i,jZ(xj , tn) + q3

i,jZ(xj+1, tn), i = 1, 2. (11)

The coefficients r∗,ni,j with ∗ = {−, c,+} of the scheme are given by

r+,n
i,j = −2εi/(hj+1(hj + hj+1)) + q3

i,jai,i(xj+1, tn),
r−,n
i,j = −2εi/(hj(hj + hj+1)) + q1

i,jai,i(xj−1, tn),
rc,n
i,j = q1

i,jai,i(xj−1, tn) + q2
i,jai,i(xj , tn) + q3

i,jai,i(xj+1, tn)− r−,n
i,j − r+,n

i,j ,

(12)

which depend on the value of qk
i,j , k = 1, 2, 3. We use different values, depending on the

equation and the ratio between the diffusion and the discretization parameters, in order that
the matrix associated to the scheme be an M-matrix and hence the scheme is monotone.
Concretely, we consider the following sets of values: CD = {q1

i,j = q3
i,j = 0, q2

i,j = 1}
corresponds to the standard central difference approximation; HS corresponds to the choice
of a HODIE (High Order via Differential Identity Expansion) scheme [6], for which

q1
i,j =

1
6

(
1−

h2
j+1

hj(hj + hj+1)

)
,

q3
i,j =

1
6

(
1−

h2
j

hj+1(hj + hj+1)

)
,

q2
i,j = 1− q1

i,j − q3
i,j .
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Using these two set of values, the hybrid scheme on the Vulanović-Shishkin mesh gen-
erated by ℵ(z) is defined taking

HS, if xj ∈ (0, σ1) ∪ (1− σ1, 1), and i = 1, 2,

CD, if xj ∈ [σ1, σ2) ∪ (1− σ2, 1− σ1], h2
max

(
‖a11‖Ḡ +

1
τ

)
≥ 6ε1, and i = 1,

HS, if xj ∈ [σ1, σ2) ∪ (1− σ2, 1− σ1], h2
max

(
‖a11‖Ḡ +

1
τ

)
< 6ε1, and i = 1,

HS, if xj ∈ [σ1, σ2) ∪ (1− σ2, 1− σ1], and i = 2,

CD, if xj ∈ [σ2, 1− σ2], H2
max

(
‖a11‖Ḡ +

1
τ

)
≥ 6ε1, and i = 1,

HS, if xj ∈ [σ2, 1− σ2], H2
max

(
‖a11‖Ḡ +

1
τ

)
< 6ε1, and i = 1,

CD, if xj ∈ [σ2, 1− σ2], H2
max

(
‖a22‖Ḡ +

1
τ

)
≥ 6ε2, and i = 2,

HS, if xj ∈ [σ2, 1− σ2], H2
max

(
‖a22‖Ḡ +

1
τ

)
< 6ε2, and i = 2,

where hmax = max
N/8+1≤j≤N/4

hj , Hmax = max
N/4+1≤j≤N/2

hj . It is easy to prove that

rc,n
i,j > 0, r−,n

i,j ≤ 0, r+,n
i,j ≤ 0, rc

i,j + r−i,j + r+
i,j > 0 qk

i,j ≥ 0, k = 1, 2, 3. (13)

On the Vulanović-Shishkin mesh generated by ℵ̃(z), we consider the following operators

HS, if x̃j ∈ (0, σ1) ∪ (1− σ1, 1), and i = 1, 2,

CD, if x̃j ∈ [σ1, 1− σ1], H̃2
max

(
‖a11‖Ḡ +

1
τ

)
≥ 6ε1, and i = 1,

HS, if x̃j ∈ [σ1, 1− σ1], H̃2
max

(
‖a11‖Ḡ +

1
τ

)
< 6ε1, and i = 1,

HS, if x̃j ∈ [σ1, 1− σ1], and i = 2,

where H̃max = max
N/8+1≤j≤N/2

h̃j . In this case, if M ≤ CN2/ ln2 N , then the set HS suffices

so that (13) is true for the coefficients of the second equation in the region [σ1, 1− σ1].
In [1] the following Theorem giving the uniform convergence of the hybrid scheme is

proved. The proof is based on a stability and a truncation error argument, that uses the
estimates of the derivatives given in (2).

Theorem 1. Assume that M ≤ CN2/ ln2 N . Let u be the solution of problem (1) and U
the solution of the monotone numerical method (9) on the mesh (4) when (6) holds and on
the mesh (8) in other case. Then, the error at the grid points satisfies

‖U− u‖ḠN,M ≤ C(M−1 + CN−2 min{ε2, N
−2M}+ N−4 ln4 N + MN−5 ln3 N).

Remark 2. Note that if M ≤ CN , the scheme is a first order in time and almost third
order in space uniformly convergent scheme.
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3 Numerical results

In this section, we show the numerical results obtained for a test problem. The initial and
boundary conditions are zero, the reaction matrix is given by

A =
(

2(x2 + 1) + sin(πx) cos(πx)− 2
−4x ex+1

)
,

and the right-hand side is f(x, t) = (x(1− x), tx)T .
In all tables we show the results for two pairs of values of the diffusion parameters ε1

and ε2. In the first case, ε1 = 2−20 and ε2 = 2−14; then σ2 < 1/4, σ1 < σ2/2 and there
exist two overlapping boundary layer, but the restriction (6) does not hold. In the second
one, ε1 = 2−22 and ε2 = 2−17 and therefore σ2 < 1/4, σ1 < σ2/2, again there exist two
overlapping boundary layer, but the restriction (6) holds.

The exact solution is unknown and we use a variant of the two-mesh principle (see [4]
for a justification of this method) to approximate the maximum pointwise errors. Then, we
calculate {Ûn

j }, the numerical solution on the mesh {(x̂j , t̂n)} containing the original mesh
points and its midpoints, i.e.,

x̂2j = xj , j = 0, . . . , N, x̂2j+1 = (xj + xj+1)/2, j = 0, . . . , N − 1,

t̂2n = tn, n = 0, . . . ,M, t̂2n+1 = (tn + tn+1)/2, n = 0, . . . ,M − 1.

The maximum errors at the mesh points of the coarse mesh are approximated by computing
the following two-mesh differences

di,N,M = max
0≤n≤M

max
0≤j≤N

|Un
i,j − Û2n

i,2j |, i = 1, 2,

and the orders of convergence are calculated by

qi =
log(di,N,M/di,2N,2M )

log 2
, i = 1, 2. (14)

Table 1 displays the maximum two-mesh differences doubling the values of N and M ;
from it we deduce the first order of convergence in agreement with Theorem 1.

To see the influence of errors associated to the space discretization on the global error,
we calculate the following orders of convergence

q∗i =
log(di,N,M/di,2N,4M )

log 2
, q∗∗i =

log(di,N,M/di,2N,8M )
log 2

, i = 1, 2. (15)

Tables 2 and 3 display the maximum two-mesh differences in these cases; from them,
we observe second and third order of convergence, respectively, according with the ratio
of the time step size. These results confirm the high order approximation in space of the
numerical scheme (9), according with Theorem 1.

c©CMMSE ISBN: 978-84-616-2723-3Page 315 of 1485



Carmelo Clavero, José Luis Gracia

Table 1: Maximum two-mesh differences and orders of convergence

N=32 N=64 N=128 N=256 N=512 N=1024
M=8 M=16 M=32 M=64 M=128 M=256

ε1 = 2−20 d1,N,M 1.951E-3 1.046E-3 5.434E-4 2.771E-4 1.399E-4 7.030E-5
q1 0.899 0.944 0.972 0.986 0.993

ε2 = 2−14 d2,N,M 1.626E-3 8.688E-4 4.672E-4 2.468E-4 1.271E-4 6.456E-5
q2 0.904 0.895 0.921 0.957 0.978

ε1 = 2−22 d1,N,M 2.034E-3 1.086E-3 5.638E-4 2.873E-4 1.451E-4 7.288E-5
q1 0.905 0.946 0.973 0.986 0.993

ε2 = 2−17 d2,N,M 1.660E-3 8.807E-4 4.672E-4 2.468E-4 1.272E-4 6.456E-5
q2 0.914 0.915 0.921 0.957 0.978

Table 2: Maximum two-mesh differences and orders of convergence

N=32 N=64 N=128 N=256 N=512 N=1024
M=8 M=32 M=128 M=512 M=2048 M=8192

ε1 = 2−20 d1,N,M 1.951E-3 5.429E-4 1.399E-4 3.524E-5 8.827E-6 2.208E-6
q∗1 1.845 1.956 1.989 1.997 1.999

ε2 = 2−14 d2,N,M 1.626E-3 4.672E-4 1.271E-4 3.253E-5 8.182E-6 2.049E-6
q∗2 1.799 1.877 1.966 1.991 1.998

ε1 = 2−22 d1,N,M 2.034E-3 5.641E-4 1.451E-4 3.654E-5 9.150E-6 2.289E-6
q∗1 1.851 1.959 1.990 1.997 1.999

ε2 = 2−17 d2,N,M 1.660E-3 4.671E-4 1.271E-4 3.254E-5 8.183E-6 2.049E-6
q∗2 1.829 1.877 1.966 1.991 1.998
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Abstract

Decision-making mechanisms for on-line allocation of computer node slots in HPC
clusters are commonly based on simple knowledge-based systems comprised of individ-
ual sets of if-then rules. In contrast with previous works where these rules were designed
using expert knowledge, an evolutionary learning algorithm is introduced in this paper
that discovers the most appropriate knowledge base for a given load scenario. The
proposed approach optimizes the quality of service and the number of node reconfig-
urations along with the energy consumption. An experimental study has been made
using actual workloads from the Scientific Modelling Cluster at Oviedo University, and
statistical evidence was found supporting the adoption of the new learning system.

Key words: Energy-efficient cluster computing; Multi-criteria decision making; Evo-
lutionary algorithms

1 Introduction

High Performance Computing clusters have become a very important element in both sci-
entific and industrial communities because they are an excellent platform for solving a
wide range of problems through parallel and distributed applications [5]. Nowadays, HPC
clusters are, in fact, the main architecture for supercomputers (as shown in Top500 ar-
chitecture distribution1) due to the high performance of commodity microprocessors and
networks, to the standard tools for high performance distributed computing, and to the
lower price/performance ratio [39].

1November 2013 — TOP500 Supercomputer Sites, http://www.top500.org/lists/2013/11/
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Nevertheless, this high performance comes at the price of consuming large amounts of
energy. According to the U.S. Environmental Protection Agency [35], the consumption of
data centers in USA was estimated at 61 billion kilowatt-hours (kWh) in 2006 for a total
electricity cost of about $4.5 billion.

Large energy consumptions combined with notably increasing electricity prices in both
EU [15] and USA [12] also have an important economical impact for IT companies, driving
up power and cooling costs and forcing them to reduce operation costs [11, 34].

The environmental impact of the high energy consumption is also very significant. The
EPA 2011 projected CO2 emissions were 67.9 million metric tons [35]. Gartner estimates
that the ICT industry accounts for 2 percent of global CO2 emissions, a figure equivalent
to aviation [19].

This environmental and economical impact is the main bottleneck constraining the
expansion of supercomputing and data centers and, therefore, a powerful motivation to
maximize the efficiency of clusters. Moreover, a side effect of reducing the energy consump-
tion of clusters is the reduction in heat dissipation, what can increase reliability. Also,
it produces a cascade effect reducing the consumption of auxiliary devices such as Power
Supply Units, power distribution, cooling, lighting and building switchgear, what further
encourages to look for energy efficiency in cluster computing [14].

Many methods have been proposed within the field of energy-efficient cluster computing
following both static and dynamic approaches. An example of static approach is the devel-
opment of low-power CPUs such as the IBM PowerPC A2 of IBM Blue Gene/Q [21, 25],
or the use of GPUs and Intel Xeon Phi coprocessors. On the other hand, dynamic ap-
proaches adapt the cluster to its resource requirements at every given moment, thus saving
energy when not needed [36]. An example is the Dynamic Voltage and Frequency Scaling
(DVFS) technique, which reduces CPU voltage and frequency when the CPU is idle or
under-used. This technique was used in [23, 22, 17, 29, 6, 20, 24, 7]. Other examples are
the software frameworks to develop energy-efficient applications, such as [1, 32, 16, 28, 37],
energy-efficient job schedulers [41, 40] and thermal-aware methods [3, 33].

However, the most relevant technique for this paper is the adaptive resource cluster,
which consists mainly in switching on and off cluster compute nodes, adapting to the re-
quested resources at every moment and, therefore, saving energy. This technique was first
introduced in [31] for Load-Balancing clusters, and was also used in [8, 13, 4, 27, 18, 30]
and in VMware vSphere2 and Citrix XenServer hypervisors 3.

Recently it has also been applied to HPC clusters in [2, 10] or [38]. In these works,
the decision-making mechanism for determining the adequate resources (e.g. number of
compute node slots) at every moment is based on a simple Knowledge-based System (KBS)

2VMware Distributed Power Management Concepts and Use,
http://www.vmware.com/files/pdf/Distributed-Power-Management-vSphere.pdf

3Citrix XenServer - Efficient Server Virtualization Software,
http://www.citrix.com/products/xenserver/overview.html

c©CMMSE ISBN: 978-84-616-9216-3Page 319 of 1485



A. Cocaña-Fernández, J. Ranilla, L. Sánchez

comprised of an individual set of if-then rules. The KBS constantly monitors requested,
idle and available resources. The rule base governing this system is made to depend on
certain configuration parameters such as the time of inactivity to shutdown nodes. These
parameters are tuned by hand, according to the experience of the administrator.

According to our own experience, these systems are not location-agnostic. In order to
obtain the best energy saving, both the set of rules defining the system and the parameters
on which the rules depend must be optimized for the actual load scenario.

Otherwise, the results would either interfere with the desired operation of the cluster
or would not save as much energy as it could be possible. Because of this, we propose
a cluster management system, that works with both OGE/SGE and PBS/TORQUE Re-
source Management Systems (RMS), whose decision-making mechanism shares the same
rule set proposed in [10], as we consider it the soundest, but whose numerical parameters
are obtained by means of a multiobjective evolutionary algorithm in a machine learning
approach. The purpose of the learning is to fine-tune the KBS to the expected cluster
activity, while complying with the preferences of the administrator in all QoS, energy saved
and node reconfigurations.

The remainder of the paper is as follows. Section 2 explains the architecture of the
solution proposed. Section 3 explains the learning algorithm used. Section 4 shows the
experimental results. Section 5 concludes the paper and discusses the future work.

2 Architecture

The solution proposed consists on a service and an administration dashboard, coupled with
a Database Management System, and deployed over an HPC cluster running a Resource
Management System such as OGE/SGE or PBS/TORQUE. The underlying architecture of
these clusters combines a master node and several computing nodes. Cluster users access
the master node through a remote connection such as SSH and they submit jobs to the RMS.
The RMS schedules jobs execution and when dispatched, jobs are assigned slots among the
compute nodes, which are the ones actually running the job. Each slot represents a resource
in the cluster, and depending on the RMS configuration the size of the resource ranges from
a single CPU core to an entire host.

Figure 1 provides a high-level overview of the system components. The mission of the
EEClusterd service is to periodically synchronize with the system status using various com-
ponents and applications, and then use the Knowledge-based System to make decisions on
whether any reconfiguration of the compute nodes must be performed. The administration
dashboard is a Web application that displays current cluster status (nodes, queues, jobs,
users), statistics, charts... and also allows the cluster administrator to switch on/off nodes
manually and configure the system.
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Figure 1: System components overview

2.1 Synchronization

The synchronization task of the service collects and keeps updated records of the RMS and
of every compute node. RMS data includes the cluster parallel environments (OGE/SGE),
queues, hosts, users, and completed, queued and running jobs. The service retrieves this
information through the RMS connector, which uses multiple command line applications
including qhost (hosts data in OGE/SGE), pbsnodes (hosts data in PBS/TORQUE), qconf
(queues and parallel environments), qacct (users and jobs), qstat (current running and
queued jobs), and also the PBS/TORQUE accounting records for completed jobs and the
/etc/passwd file for user data. Regarding hosts, the Host Information Retrieval module
collects data of CPUs (/proc/cpuinfo), memory (/proc/meminfo), GPUs(through NVIDIA
System Management Interface), Intel MIC devices (micinfo), PSUs power consumptions
(through IPMI cards), and also the MAC address.

2.2 Power Management

The Power Management module is the responsible for switching on/off the nodes appointed
by the Knowledge-based System. This can be done either using Ethernet cards or IPMI
cards (Intelligent Platform Management Interface). With Ethernet cards, the power on
order is carried out by sending the Ethernet WOL (Wake On Lan) magic packet using the
ether-wake application. It is important to point out that not all compute nodes will neces-
sarily be in the same network, so the Power Management module must choose the correct
network interface when sending the magic packet. This is configured in the dashboard. In
order to shutdown a node, this can be done by simply executing the command poweroff.
Another important remark is that for WOL to work, it must be enabled in the Ethernet
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card, or it will ignore the packet. In order to assure that a powered off host can be powered
on again, prior to each power off, the ethtool is used to enable WOL. If the host has an
IPMI card the Power Management module can use it to power it on/off. This is done using
tools such as ipmiutil.

2.3 Knowledge-based System

The key component of this architecture is a KBS implementing the decision-making mech-
anism that determines how many of the cluster resources must be on at every moment. At
the core of the KBS, a set of if-the rules govern the behavior of the Power Management
module. In this work, the same set of rules proposed in [10] are used, as mentioned before.
These rules depend on a set of configuration parameters that are arguably flexible enough
to match most of the desired cluster behaviours. This Knowledge-based System system can
be expressed as:

− if srunning + sstarting < smin then power on (smin − (srunning + sstarting)) slots

− if tavg > tmax or nqueued > nmax then power on 1 slot

− if tavg < tmin or nqueued < nmin then power off 1 slot

− for each h in hosts do
if ih > imax then power off host h

Where srunning and sstarting are the number of slots currently running and starting.
smin is the minimum number of slots required to run each of the queued jobs, that is, the
maximum requested slots of an individual job among the queued ones. stotal are the cluster
total slots (running and powered off). tavg is the average waiting time for the queued jobs,
and tmax and tmin are, respectively, the maximum and minimum average waiting time for
the queued jobs. nqueued is the number of queued jobs, and nmax and nmin are the maximum
and minimum number of queued jobs before an action is performed. Finally, ih is the time
that the host h has been at idle state and imax is the maximum time that a host can be at
idle state.

A particular instance of the Knowledge-based System can, therefore, be expressed as a
combination of five parameters: (tmin, tmax, nmin, nmax, imax).

2.4 Node selection

Once determined how many slots must be powered on/off, the next step is determine which
specific nodes will be reconfigured. It is important to remark that only idle nodes would
be powered off. The selection process involves two values: the node efficiency and the node
timestamp of the last timed out.
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The first one is calculated as GFLOPS
Watts , and the latter indicates the time of the last failure

to power on/off upon request. In the first place, hosts are split by whether they succeeded
or failed to comply with the last order. Those that succeeded are sorted according to their
efficiency so that powered-on nodes are the most efficient and powered-off nodes are the least
efficient ones. Conversely, those that failed are sorted according to the timestamps of their
failures; those with the earliest values are always chosen. This mechanism allows the system
to continuously iterate through the potentially malfunctioning nodes, thus increasing the
possibility of finding a repaired one.

3 Evolutionary learning for multicriteria decision making

As mentioned before, the advantage of the Knowledge-based System detailed earlier is the
ability to adapt to any desired working mode for the cluster due to the many configuration
parameters that rule its operation. However, this ability to adapt comes with the problem
of actually finding the right set of values to match the desired working mode. Firstly, the
huge amount of value combinations makes an exhaustive search infeasible. Secondly, the
optimal configuration involves, as many real world problems, multiple conflicting objectives
instead of a single one. Because of this, there is not optimal solution but rather a set of
optimal solutions (known as Pareto-optimal solutions or the Pareto Efficient Frontier) [9].

Multiobjective evolutionary algorithms (MOEAs) are widely regarded as an efficient
method for finding Pareto-optimal solutions, from which an expert human can pick the
preferred one [26]. In our research the chosen MOEA is the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [9], through its implementation in the MOEA Framework4. Every
individual solution (tmin, tmax, nmin, nmax, imax) that the algorithm finds, is evaluated by
a running a simulation of the cluster with a determined workload so that the values for
the multiple objectives are calculated. A description of NSGA-II can be found elsewhere
and will not be repeated here; in the following of this section the definition of the specific
multiobjective fitness function used in the problem at hand is given.

The fitness function consists in three conflicting criteria: the quality of service, the
energy saved and the number of node reconfigurations. For a given set of n jobs, where the
j-th job (j = 1 . . . n) is scheduled to start at time tschj , but effectively starts at time tonj

and stops at time toffj , the quality of service in a HPC cluster reflects the amount of time
that each job has to wait before is assigned its requested resources. Once the job starts its
execution, it will not be halted, thus we focus only on its waiting time. Because jobs do
not last the same amount of time, their waiting in the queue is better expressed as a ratio
considering their execution time. Finally, due to the potential existence of outlier values,
the 90 percentile is used instead of average:

4MOEA Framework, a Java library for multiobjective evolutionary algorithms,
http://www.moeaframework.org/
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QoS = min

{
p : ||{j ∈ 1 . . . n :

tonj − tschj

toffj − tonj
≤ p}|| > 0.9n

}
(1)

where ||A|| is the cardinality of the set A.

The energy saved is measured as the sum of the amount of seconds that each node
has been powered off. Let c be the number of nodes, let state(i, t) be 1 if the i-th node
(i = 1 . . . c) is powered at time t and 0 otherwise. Lastly, let the time scale be the lapse
between tini=minj{schj} and tend= maxj{toffj}. Then,

Energy saved = c · (tend− tini)−
c∑

i=1

∫ tend

tini
state(i, t)dt. (2)

The node reconfigurations is the number of times that a node has been powered on or
off. Let nd(i) the number of discontinuties of the function state(i, t) in the time interval
t ∈ (tini, tend):

Reconfigured nodes =
c∑

i=1

nd(i) (3)

4 Experimental results

The experimental setup is based on actual workloads from the Scientific Modelling Cluster
of the University of Oviedo spanning 22 months, with a total of 2907 jobs. For both training
and testing, a cluster simulator has been developed so that every model can be evaluated
in the three criteria described in the previous section.

Three solutions have been tested using this simulator and the workloads: a) a basic
model, b) the rule model proposed in [10], with its parameters manually configured by the
administrator, and c) the learning mechanism proposed in this paper, using a NSGA-II
algorithm. The holdout method was used for validation, with a 70-30% split in training
and test.

The administrator preferences for the experiment are based upon a lexicographic or-
dering of the three criteria: the administrator always seeks the best QoS and the amount
of energy saved is used only to break ties in QoS. In turn, the number of reconfigurations
also serves to break ties in QoS and energy saving.

First, the basic model (labelled “Single rule” in Tables 1 and 2) consists on the alloca-
tion of as many compute node slots as are required to run all queued jobs, shutting down
every idle node whenever the decision mechanism is triggered. Second, five different manual
configurations were tested for the model in [10], intended to give different weights to QoS,
energy and reconfigurations. Third, the machine learning approach (labelled “Rules NSGA-
II”) was applied to the same data. As shown in the aforementioned Tables 1 and 2, none of
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the manual configurations neither the basic model was competitive with the machine learn-
ing approach. The experimentation shows that finding manually a suitable configuration
for the multi-rule model is an infeasible task due to the large number of combinations.

Lastly, the Pareto Efficient Frontier obtained in this experiment is represented in Figure
2. The chosen configuration, marked with a black dot in the figure, achieves optimal QoS
and also saves energy while keeping acceptable node reconfigurations, thus complying with
the previously declared preferences. Observe that many different balances between energy
consumption, QoS and reconfigured nodes can be obtained from this set of solutions, and
also that none of the manually found sets of parameters is part of the set of Pareto-optimal
configurations.

Training set
QoS Energy saved(s) Reconfigurations

Single rule 157.80 1.26E+09 2755
Rules (0, 60, 0, 5, 3600) 112.00 1.29E+09 2047
Rules (0, 300, 0, 10, 3600) 184.10 1.29E+09 2023
Rules (0, 60, 0, 5, 7200) 103.30 1.29E+09 1945
Rules (0, 60, 0, 0, 14400) 93.66 1.28E+09 1845
Rules NSGA-II 0.00 8.54E+08 81

Table 1: Experiment results for the training set

Test set
QoS Energy saved(s) Reconfigurations

Single rule 80.16 4.22E+08 2504
Rules (0, 60, 0, 5, 3600) 48.62 4.25E+08 1538
Rules (0, 300, 0, 10, 3600) 77.43 4.26E+08 1512
Rules (0, 60, 0, 5, 7200) 22.34 4.23E+08 1386
Rules (0, 60, 0, 0, 14400) 2.92 4.19E+08 1216
Rules NSGA-II 0.00 1.88E+08 47

Table 2: Experiment results for the test set

5 Concluding remarks and future work

An evolutionary learning algorithm has been designed that is able to optimize the param-
eters defining the rules in the KBS that drives the Power Management module of a HPC
cluster. The new procedure has been tested with actual workloads captured at the Scientific
Modelling Cluster at Oviedo University. It has been found that expert knowledge is not
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Figure 2: Pareto Efficient Frontier obtained in the experiment

enough for fine-tuning this system; the learning system was able to produce a combination
of parameters that improved the initial solution in the three criteria, at the same time: QoS,
energy saving and node reconfiguration.

One might wonder whether this approach is general enough for being applied to different
scenarios, and what the expected gain would be in those cases. Further work is needed to
provide a sound answer to this question. On the one hand, it is clear that the KBS is
highly dependent on the expected profile of the workload. On the other hand, for those
cases where the load does not follow a regular pattern, the improvement over the simpler
schemes might not be relevant enough.

Lastly, it is remarked that the structure of the rule base is not currently part of the
learning process. Also in future works, different parametric definitions of the rule base will
be explored, including an extended learning algorithm that not only tunes the parameters
defining the rules but fully learns the linguistic definition of the rule base.
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