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1. Introduction

In a previous paper [6], the authors expound a classic problem of calculus of variations for a
simple hydrotermal system that accounts for m thermal stations without transmission losses and
one hydroplant. Once the thermal equivalent [7] has been found, the equilibrium equation of
active power may be eliminated. On the one hand, this constraint generates unknown multiplier
functions and, on the other, complicates the calculus of the optimal solution.

In hydrotermal systems with transmission losses we cannot solve for the thermal power in the
equilibrium equation and thus eliminate the constraint. To avoid this problem, in this paper we
develop a valid method for complex hydrothermal systems that accounts for m thermal stations
with transmission losses and n hydroplants.
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Figure 1. Schema of the method.

The method commences by making the cost functional assume the transmission losses. It hence
becomes a non-quadratic functional, which complicates the construction of the thermal equiva-
lent. We therefore approximate said functional by means of Least-Squares fit to a new quadratic
functional and thus obtain the thermal equivalent from the latter. It is thus possible to newly
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eliminate the equilibrium equation constraint. We then go on to generalize the method employed
in [6] to obtain the optimal solution to the case of n hydroplants. Finally, we recover the optimal
solution with the technique developed in this paper (Fig. 1).

2. Description of the Problem

Let us assume that a hydrothermal system consists of m thermal plants and n hydroplants.
The cost function of the i-th thermal plant: F; : D; C R — R.

The function of effective contribution of the i-th thermal plant: ¢, : D; — R.

The function of losses of the i-th thermal plant: [;(x) = x — ¢;(x).

The function of effective hydraulic contribution: H : Qg — R.

The power demand: Py : [0,T] — R. The optimization interval [0,T).
The vector of admissible volumes: D = (b1, ..., b,) € R™

The generalized hydrothermal problem I' = H,,-T,,,{ Py, { F}, ; }1*, H, 7}
T m
min J (Y1, -y Ymy 215 - - -5 2Zn) = min/ Z Fi(y;(t))dt satisfying:
0 =1

(1) the equilibrium eq.: Y~ ¢;(1i(t)) + H(t, 21(t), ..., 2u(t), 21 (1), ..., 2, (1)) = Pu(t), Vt € [0,T]
i=1
(2) the restrictions on the admissible volume: z;(0) =0, z(T) =0b; (i=1,...,n)
3. Elimination of the concept of losses and Construction of Equivalent Thermal

From the mathematical point of view, the concept of transmission losses is superfluous and can be
circumvented by means of an adequate modification of the cost functions for the thermal plants.

Theorem. Consider the problems

I =H, T, {Ps {F. ¢}y H, b} and T =H, T, {Py{(Fo¢"), Id}7 H b}
with bijective functions of effective contribution ¢, : D; — D;. Then:
I) (P,..., Py, Zj) is a solution of T if (¢p,0 Py,...,¢,, 0 Py, a) is a solution of T
II) the functions of losses in problem T are tdentically equal to zero.

Example. The cost function that has systematically been used is a second-order polynomial:
Fi(z) = a; + B;x + v,2% Tt is also usual to consider the function of losses [;(z) = by - 22,
(Kirchmayer’s formula, where b;; is termed the coefficient of losses).

Once the losses have been incorporated in the functionals Fy(z) = (Fjo¢;)(x), we approximate by
means of second degree polynomials, and obtain: F}(z) ~ iy + B, + V@2 Now we substitute



the problem with m thermal plants (H,, — Ty,) with an equivalent problem (H, —T1) with a single
thermal plant: the equivalent thermal plant [7].

H
So, the variational problem has a constraint (the equilibrium equation): y(t)+ H(t, 7(75), Z'(t)) =
Py(t), Vt € [0,T] which can be omitted, together with the unknown function y(¢), thus yielding
the classic variational problem of minimizing the functional:

T
HE) = Jeeza) = [ (Patt) = H Z 0. Z0)
0
— — —
with the boundary conditions: Z (0) = 6), Z(T)=1b

The value of the unknown y(¢) that disappears in the new formulation can be recovered once
—

the values of the other unknowns Z are established. To define the partial contribution of each
of these, we use the distribution functions [7], obtained from W. Once the distribution has been
carried out and the optimal power without losses found: P, P, ..., P,, we obtain the optimal
power solution of the original problem: ¢; o Py, ..., ¢ o P,,.

Test. Next, we present a Test that demonstrates how the method developed contributes an
approximate solution that is almost coincident with the original problem. As an example, we
shall use the thermal system of Asturias (Spain).

4. The (H, — T1) Problem. Constructing the Solution

The problem of optimization of a hydrothermal system which involves various hydroplants is highly
complicated. One should not forget that the associated variational problem is related to solving
a boundary-value problem for a system of differential equations. We have developed an algorithm
of its numerical resolution prompted by the so-called method of cyclic coordinate descent. We
will now see how a problem of the type (H, — T) could be solved under certain conditions if we
start out from the resolution of a sequence of problems of the type (H; — 71) [6].

N1 2 i i+1 o
1 ¢« —0 . .
S ——
2 ——— 7 .
Qik Diyq Qit1k Qnk
k — * —
S———
// D,
k+1 — .1 .
Q1,k+1 Dies
1 i i+1 fan
S, S S S
\l
] — = — =
lim. | o Qs Qe P, Quy .Qp

Figure 2. Descending subsequences.



We define ®;(z1, ..., Ziy ooy 2n) = (215 0y Ziy ooy 2n), With (21, ..., Z;, ..., 2,) & vector that provides the
minimum of .J on fixing all the components except for the i-th.

Theorem. If the functional J is convex in €2, and, in certain topology:

i) the mappings ®; are continuous, Vi =1,...,n and i) the descending subsequences (Fig. 2) S
are convergents, Vi = 1,...,n, then every descending subsequence converges to a solution of the
problem.

The solution of the problem will be constructed as the limit of a minimizing sequence. If the
conditions of the theorem are fulfilled, thi_s> sequence provides us with an approximation of the

solution. Beginning with some admissible Q° = (z1, ..., 2, ), we construct a sequence via successive
and iterative applications of ®;, ®,, ..., ®,. The application of every ®; involves solving a problem

H
of the type (Hy —T3). If we set ® = (@, 0P, 10-+-0 By0 1), the solution will be: lim &* <Q0> .

From the algorithmic and computational point of view, we get the iteration process that at each
stage calculates the optimal functioning of a hydraulic power station, while the behavior of the
rest of the stations is assumed fixed.

5. Example. A computer program (Mathematica) was written to apply the results obtained in
this paper to a real power system.

6. Conclusions

In this paper, we have developed a valid method for complex hydrothermal systems that notably
simplifies their optimization. A test is used to prove that the error made in the approximate
solution is insignificant, since the fuel cost is practically the same. A major advantage of our
method with respect to those previously employed is that it reduces the optimization of a system
with m thermal plants and n hydraulic plants to the resolution of a succession of problems with one
thermal plant and one hydraulic plant, (H; —77), a problem easily resolved from the computational
viewpoint. We elaborate an algorithm that presents several advantages with respect to classic
algorithms, such as: ease of implementation, rapid convergence, the convergence depends very
little on the initial values, and minimum memory requirements (the program was developed on a
PC with the Mathematica package).
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