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Abstract

In this paper the authors present a necessary condition for minimum of a

functional J(z) :=
∫

T

0
L(t, z(t), z′(t))dt in the case in which the function

L is continuous but not of class C1. This situation arises in problems of
optimization of hydrothermal systems with pumped-storage plants. In
such problems, the function Lz′(t, z, ·) is discontinuous in z′ = 0, which
is the borderline point between the power generation zone (z′ > 0) and
the pumping zone (z′ < 0). The problem can be naturally formulated in
the framework of nonsmooth analysis, using the generalized (or Clarke’s)
gradient.
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1 Introduction

Many problems in pure and applied mathematics deal with nondifferentiable
data. In this paper, we present a necessary condition for minimum of a func-
tional J

J(z) :=

∫ T

0

L(t, z(t), z′(t))dt (1.1)

where the Lagrangian L(·, ·, ·) : [0, T ]× R × R → R and Lz(·, ·, ·) are the class
C0 and the function Lz′(t, z, ·) is piecewise continuous.

This situation arises in a variety of problems of hydrothermal optimization
[1] in which the hydroplants have a pumping capacity [2]. The problem consists
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in minimizing the cost of fuel needed to satisfy a certain power demand during
the optimization interval [0, T ]. Said cost may be represented by the functional

J(z) :=

∫ T

0

Ψ
[
Pd(t) − H(t, z(t), z′(t))

]
dt (1.2)

on
Ω := {z ∈ AC[0, T ] | z(0) = 0 ∧ z(T ) = b}

For AC[0, T ] we denote the set of absolutely continuous functions from [0, T ] to
R, Pd is the power demand, H is the function of effective hydraulic generation,
z(t) the volume that is discharged up to the instant t by the hydroplant,
z′(t) the rate of water discharge at the instant t by the hydraulic plant, b is
the volume of water that must be discharged during the entire optimization
interval and Ψ is the cost function of the equivalent thermal plant [3].

In this kind of problem, the derivative of H with respect to z′ (Hz′)
presents discontinuity at z′ = 0, which is the point at which a sudden change
of Hz′ is produced, as it is the border between the power generation zone
(positive values of z′) and the pumping zone (negative values of z′).

By classical results of Calculus of Variations, if L ∈ C1 then a minimizer
q ∈ C1 (strong or weak) satisfies,∀t ∈ [0, T ], the Euler–Lagrange equation

Lz′(t, q(t), q
′(t)) = Const. +

∫ t

0

Lz(x, q(x), q′(x))dx

It is natural to extend classical necessary conditions for minimizers to the case
with integrands having low regularity. Over the last quarter century there has
been remarkable progress in the theoretical analysis of nonsmooth functions,
primarily motivated by optimization. Clarke’s introduction of his generalized
gradient in 1973 (see [4]) pioneered a rapid development, recently presented
in detail in Loewen and Rockafellar [5].

Here we show that our problem can be naturally formulated in the frame-
work of nonsmooth analysis. The main contribution of our work is the in-
troduction, by the first time, of a necessary condition for minimum for the
resolution of the problem of hydrothermal optimization, using the Clarke’s
gradient. Moreover, we have developed a simple algorithm for resolving the
problem. Said algorithm was implemented using the Mathematica package
and as an example of its practical application, we resolve a real problem of
hydrothermal optimization that involve pumped-storage plants.

2 Statement of the Problem

Consider a function f(x) : R
n −→ R and a point x ∈ R

n. The classical gradient
of f at x is defined only when f is differentiable at x, but nondifferentiable
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objective functions arise naturally and frequently in optimization problems.
We introduce some preliminary ideas of a new generalized theory of dif-

ferentiation, the main ideas of which are inspired by the work of Clarke [4].
The nonsmooth analysis works with locally Lipschitz functions that are

almost everywhere differentiable (the set of points at which f fails to be differ-
entiable is denoted Ωf ). Let f(x) : R

n −→ R be Lipschitz near x, and suppose
S is any set of Lebesgue measure 0 in R

n. Consider any sequence xi converging
to x while avoiding both S and points at which f is not differentiable, and
such that the sequence of the gradients ∇f(xi) converges.

The generalized (or Clarke’s) gradient ∂f can be calculated as a convex
hull of (almost) all converging sequences of the gradients

∂f(x) = co {lim∇f(xi) : xi −→ x, xi /∈ S, xi /∈ Ωf} (2.1)

It is essential that at the points of smoothness of f(x) the generalized gradient
coincides with gradient, and for a convex function with its subgradient.

We now extend that study to integral functionals, which will be taken over
the σ-finite positive measure space (T,ℑ, µ) = [0, T ] with Lebesgue measure.
L∞(T, Y ) denotes the space of measurable essentially bounded functions map-
ping T to Y , equipped with the usual supremum norm, with Y the separable
Banach space Y = R × R.

We are also given a closed subspace X of L∞(T, Y )

X =

{
(s, v) ∈ L∞(T, Y ) for some c ∈ R, s(t) = c +

∫ t

0

v(τ)dτ

}

and a family of functions ft : Y −→ R (t ∈ T) with ft(s, v) = L(t, s, v). We
define a function f on X by the formula

f(s, v) =

∫ T

0

L(t, s(t), v(t))dt

Note that for any (s, v) in X, we have f(s, v) = J(s). With (ŝ, v̂) a given
element of X (so that v̂ = (d/dt)ŝ), we assume that the integrand L is mea-
surable in t, and so that for some ε > 0 and some function k(·) in L1 [0, T ] one
has

|L(t, s1, v1) − L(t, s2, v2)| ≤ k(t) ||(s1 − s2, v1 − v2)||

for all (si, vi) in (ŝ(t), v̂(t)) + εB. Then the next formula holds.
Theorem 1. Under the hypotheses described above, f is Lipschitz in a

neighborhood of (ŝ, v̂) and one has

∂f(ŝ, v̂) ⊂

∫ T

0

∂L(t, ŝ(t), v̂(t))dt (2.2)
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If in addition L is regular, then equality holds. So that if ξ ∈ ∂f(ŝ, v̂), we
deduce the existence of a measurable function ξt = (r(t), p(t)) such that

(r(t), p(t)) ∈ ∂L(t, ŝ(t), v̂(t)) a.e.

(where ∂L denotes generalized gradient with respect to (s, v)) and where, for
any (s, v) ∈ X, one has

< ξ, (s, v) >=

∫ T

0

< ξt, (s, v) > dt =

∫ T

0

[r(t)s(t) + p(t)v(t)] dt

If ξ = 0 (as when J attains a local minimum at ŝ) then 0 ∈ ∂f(ŝ, v̂), it then
follows easily (lemma Dubois-Reimond [6]) that p(·) is absolutely continuous
and that r = p′ a.e. In this case then we have a nonsmooth version (generalized
subgradient version) of the Euler-Lagrange equation

(p′(t), p(t)) ∈ ∂L(t, ŝ(t), ŝ′(t)) a.e. (2.3)

3 A Necessary Condition

We assume the following notations throughout the paper:

L+

z′(t, z, z′) := Lz′(t, z, z′+); L−

z′(t, z, z′) := Lz′(t, z, z′
−
)

U
+
z (t) = L+

z′(t, z(t), z′(t)) −

∫ t

0

Lz(τ, z(τ), z′(τ))dτ

U
−

z (t) = L−

z′(t, z(t), z′(t)) −

∫ t

0

Lz(τ, z(τ), z′(τ))dτ

With the above definitions we can demonstrate the next result (necessary
condition for minimum).

Theorem 2. Let q ∈ Ω := {z ∈ AC[0, T ] | z(0) = 0 ∧ z(T ) = b}. If q is

minimum of J on Ω then ∃K ∈ R such that

{
U

+
q (t) = U

−

q (t) = K if q′(t) 6= 0

U
+
q (t) ≥ K ≥ U

−

q (t) if q′(t) = 0
(3.1)

Proof.
It is easy to see that the hypotheses of the theorem 1 are satisfied for the

functional (1.1). Bearing in mind that the function Lz′(t, z, ·) is discontinuous
in z′, we have, using (2.1), that the Clarke’s gradient is

∂L(t, q(t), q′(t)) =
(
Lz, [L

−

z′ , L
+

z′ ]
)

a.e.
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so the equation (2.3) is

(p′(t), p(t)) ∈
(
Lz, [L

−

z′ , L
+

z′ ]
)

a.e.
{

p′(t) = Lz(t, q(t), q
′(t)) =⇒ p(t) = K +

∫ t

0
Lz(τ, q(τ), q′(τ))dτ

p(t) ∈ [L−

z′ , L
+

z′ ]

Then, we have

L−

z′ ≤ K +

∫ t

0

Lz(τ, q(τ), q′(τ))dτ ≤ L+

z′

L−

z′ −

∫ t

0

Lz(τ, q(τ), q′(τ))dτ ≤ K ≤ L+

z′ −

∫ t

0

Lz(τ, q(τ), q′(τ))dτ

U
+
q (t) ≥ K ≥ U

−

q (t)

If q′(t) 6= 0, then L+

z′ ≡ L−

z′ and U
+
q (t) = U

−

q (t) and in such a case

U
+
q (t) = U

−

q (t) = K

¤

This theorem 2 allows the extremals qK to be constructed in a simple way:

i) For each K we construct qK , where qK satisfies the conditions (3.1)
of theorem 2 and the initial condition qK(0) = 0. In general, the construc-
tion of q′K cannot be carried out all at once over all the interval [0, T ]. The
construction must necessarily be carried out by constructing and successively
concatenating the extremal arcs (q′(t) 6= 0) and arcs where the plant neither
it generates neither it pumps (q′(t) = 0) until completing the interval [0, T ].
This is relatively simple to implement, with the use of a discretized version of
the equations (3.1).

ii) K is calculated such that qK ∈ Ω. The procedure is similar to the shoot-
ing method used to resolve second-order differential equations with boundary
conditions. Effectively, we may consider the function ϕ(K) := qK(T ) and cal-
culate the root of ϕ(K) − b = 0, which may be realized approximately using
elemental procedures like the secant method.

In some cases, for example, with functionals L(t, z′) with Lz′(t, ·) strictly
increasing, the functional is convex, and the above condition is also sufficient
for minimum. This situation arises in a hydrothermal system (see functional
(1.2)) with a hydroplant (fixed head) whose power production H is a lineal
function of the rate of water discharge (m·z′(t)) and whose power consumption
during pumping is also a lineal function of the amount of water pumped (M ·
z′(t)). The proof of the next theorem is easy, using the previous theorem 2.
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Theorem 3. Let Ψ ∈ C1[R], Ψ′ strictly increasing, Pd ∈ C[0, T ], and

L(t, z′(t)) := Ψ(Pd(t) − H(z′(t))), with

H(x) :=

{
m · x if x ≥ 0
M · x if x ≤ 0

; (0 < m < M)

If K > 0 and
[

K
M

, K
m

]
⊂ Ψ′[R], then qK(t) :=

∫ t

0
ωK(s)ds with

ωK(t) :=






0 if Ψ′−1(K
m

) > Pd(t) > Ψ′−1( K
M

)

Ψ′−1(K
m

) − Pd(t)

−m
if Ψ′−1(K

m
) ≤ Pd(t)

Ψ′−1( K
M

) − Pd(t)

−M
if Pd(t) ≤ Ψ′−1( K

M
)

provides the minimum value of J on

ΩK := {z ∈ AC[0, T ]|z(0) = 0 ∧ z(T ) = qK(T )}

The meaning of this proposition can be seen in figure 1. We call Pth(t) :=
Pd(t) − H(t, z′(t)) the optimal power generated by the thermal equivalent. It
is easy to see that Pth(t) is constant in the interior arcs of the extremal, and

Pth(t) =

{
Ψ′−1(K

m
) if Ψ′−1(K

m
) ≤ Pd(t)

Ψ′−1( K
M

) if Pd(t) ≤ Ψ′−1( K
M

)

0 T t

P t
th

( )

w
K

( )t

Y
-1
( )K/m´

Y
-1
( )K/M

P t
d

( )
´

Figure 1. Meaning of Theorem 3.
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4 Application to a Hydrothermal Problem

Let us now see a problem of a hydrothermal nature whose solution may be con-
structed in a simple way taking into account the above theorem 1. A program
that resolves the optimization problem was elaborated using the Mathematica
package and was then applied to one example of hydrothermal system made
up of 8 thermal plants and a hydraulic pumped-storage plant of variable head.

We consider the functional (1.2). The cost function that has systematically
been used is a second-order polynomial

Ψi(x) = αi + βix + γix
2

Table I: Coefficients of the thermal plants.

Plant i αi βi γi bii

1 (Aboño 1) 1227.83 17.621 0.01325 0.000103

2 (Aboño 2) 743.78 20.842 0.00211 0.000072

3 (Soto 2) 77.72 21.277 0.00286 0.000172

4 (Soto 3) 1615.35 16.676 0.01659 0.000100

5 (Narcea 2) 2248.16 -7.984 0.17026 0.000353

6 (Narcea 3) 1459.44 21.569 0.01489 0.000121

7 (Lada 3) 1625.43 6.347 0.09803 0.000220

8 (Lada 4) 2155.62 17.745 0.01982 0.000097

It is also usual to consider the function of losses li(x) = bii · x
2, (Kirchmayer’s

model) where bii is termed the loss coefficient.
As an example, we shall use the thermal system of the company HC in

Asturias (Spain), which is made up of 8 thermal plants. The data of the plants
is summarized in Table I. The units for the coefficients are: αi in ($/h), βi in
($/h.Mw), γi in ($/h.Mw2), and the loss coefficients bii in (1/Mw). For the
fuel cost model of the equivalent thermal plant, we use the quadratic model

Ψ(P (t)) = αeq + βeqP (t) + γeqP (t)2

We construct the equivalent thermal plant as we saw in [3], obtaining

αeq = 9377.2($/h); βeq = 19.2616($/h.Mw); γeq = 0.00175314($/h.Mw2)

We use a variable head model and the hydro-plant’s active power generation
Ph is different depending on the positivity or negativity (pumping) of the rate
of water discharge. The power production Ph of the hydroplant (variable head)
is function of z(t) and z′(t) and its power consumption during pumping is a
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lineal function of the amount of water pumped (M · z′(t)). Hence the function
Ph is defined piecewise as

Ph(t, z(t), z′(t)) :=

{
A(t) · z′(t) − B · z(t) · z′(t) if z′(t) > 0

M · z′(t) if z′(t) ≤ 0

where A(t) and B are the coefficients

A(t) :=
By

G
(S0 + t · i); B =

By

G

In the variable-head models, the term −B · z(t) · z′(t) represents the negative
influence of the consumed volume, and reflects the fact that consuming water
lowers the effective height and hence the performance of the station. So, the
function of effective hydraulic generation is

H(t, z(t), z′(t)) :=

{
Ph(t, z(t), z′(t)) − bllP

2
h (t, z(t), z′(t)) if z′(t) > 0

Ph(t, z(t), z′(t)) if z′(t) ≤ 0

where bll is the loss coefficient.

The values for the coefficients of the hydroplant are:

the efficiency G: G = 526315(m4/h.Mw)
the restriction on the volume b: b = 1.1 · 107(m3)
the natural inflow i: i = 3.1313 · 105(m3/h)
the loss coefficient bll: bll = 0.00015(1/Mw)
the initial volume S0: S0 = 200 · 108(m3)
the coefficient By By = 149.5 · 10−11(m−2)

where By is a parameter that depends on the geometry of the tanks. We also
consider M = (1.1) · A(0) (h.Mw/m3), that is the factor of water-conversion
of the pumped-storage unit.

An optimization interval of T = 24 h. was considered, with a discretization
of 24·4 subintervals. The secant method was used to calculate the approximate
value of K for which qK(T ) − b = 0. In 8 iterations:

|qK(T ) − b| < 10−6(m3)

for K = 1358.252465 · 10−6.

The Table II presents the optimal solution and the power demand for
t = 0, 1, . . . , 24 (h). The figure 2 presents the optimal hydro-power Ph (Mw)
and the figure 3 presents the optimal thermal-power Pth (Mw) and the power
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demand Pd (Mw). We can see that the optimal thermal-power remains con-
stant in all the instants in which pumping takes place (the conditions of the-
orem 3 are satisfied). The cost of the optimal solution is $ 918276 and the
CPU time used was 10.0 sec.

Table II: Optimal solution and power demand.

t Pd Pth Ph

0 1480 1433.3 47.0

1 1316 1316 0

2 1171 1171 0

3 839 839 0

4 388 669.2 -281.2

5 410 669.2 -259.2

6 765 765 0

7 1175 1175 0

8 1347 1340.3 6.7

9 1430 1397.4 32.8

10 1524 1462.8 61.8

11 1560 1488.0 72.8

12 1522 1461.3 61.2

t Pd Pth Ph

13 1489 1438.2 51.2

14 1515 1456.4 59.2

15 1539 1473.1 66.5

16 1534 1469.6 65.1

17 1540 1473.8 66.9

18 1574 1497.7 77.3

19 1616 1527.3 90.0

20 1584 1504.6 80.4

21 1582 1503.2 79.8

22 1613 1525.0 89.2

23 1590 1508.7 82.3

24 1480 1431.6 48.8

6 12 18 24

t

-300

-200

-100

P
h

100

Figure 2. Optimal hydro-power Ph.
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P
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Figure 3. Optimal Pth and Pd.

5 Conclusions

In this paper we present the resolution of a problem of hydrothermal optimiza-
tion with pumped-storage plants. The problem can be naturally formulated in
the framework of nonsmooth analysis. We use, by the first time, the Clarke’s
gradient for the resolution of this problem and we obtain a necessary condition
for minimum.
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