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Abstract

This paper presents an environmental dispatch algorithm in a hydrother-
mal system and addresses the problem of minimization of emissions of
SO2 and NOx caused by the operation of thermal plants. Several models
have been used to represent the emissions function. In this paper we first
construct a quadratic model for both emissions: E(P ) = α + βP + γP 2

where P is the power generated and the parameters were computed via
the least square criteria from several tests at thermal plants. We shall see
that the problem consists in the minimization of a functional F (z) within
the set of piecewise C1 functions that satisfy boundary conditions and
non-holonomic inequality constraints. An optimal control technique is
applied and Pontryagin’s theorem is employed. The algorithm proposed
is easily implemented using the Mathematica c© Package and is applied
to a sample system to illustrate the results obtained. Key words: Emis-

sions, Optimization, Control Problem, Hydrothermal MSC 2000: 49J24

1 Introduction

Electric power systems are traditionally operated in such a way that the total
fuel cost is minimized regardless of the emissions produced. Subsequent to the
coming into force of the Kyoto Protocol of the UNO Framework Agreement
on Climatic Change on February 16 2005, increasing requirements aimed at
environmental protection have given rise to the need for alternative strategies.
For our hydrothermal problem, it is well known (Table I) that the most im-
portant pollutant emissions are: sulphur dioxide (SO2) and, to a lesser degree,
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oxides of nitrogen emissions (NOx).

Table I. Emissions of 1000 Mw thermal plant (thousands of Tn/year).

Pollutant Coal Oil Gas
Particles 5 0.8 0.5

SO2 150 60 0.015
NOx 23 25 13
CO 0.25 0.009 −

Henceforth, we shall refer to coal- and oil-fired thermal plants, considering
those that employ gas to a lesser extent, since they pollute much less. In this
study, we shall minimize the emissions of SO2 and NOx, the reactions of which
we shall now go on to analyze.

Sulphur dioxide (SO2). This is formed by the combustion of the S
present in the coal and fuel oil in percentages that vary between 0.1 and 5%.
SO2 is a colorless gas that is an irritant at concentrations above 3 ppm. SO2

may form SO3 in the atmosphere as a result of photochemical action, as well
as owing to the catalysis of particles in suspension. Together with atmospheric
humidity, SO2 makes up between 5 and 20% of urban aerosols, thus increasing
the corrosive power of the atmosphere, reducing visibility and provoking acid
rain. It is thought that more than 90% of the production of sulphur oxides
in the northern hemisphere is anthropogenic in origin, the global amount of
yearly emissions being 100 − 1000 GKg. More than 50% of SO2 is produced
in thermal power plants, the main reactions being:

S+O2−→SO2 2SO2+O2+[cat] −→ 2SO3

2SO2+2H2O+O2+[cat] ∗−→ 2H2SO4 SO3+H2O−→H2SO4

Fe and Mn chlorides and sulphates acting as a catalyser in (*).
Oxides of Nitrogen (NOx). The emission of oxides of nitrogen is even

more difficult to control and avoid than that of suphur oxides. NOx refers to all
the existing oxides of Nitrogen, although the major percentage corresponds to
NO, approximately 90%. Almost all the remaining 10% is NO2, since N2O is
present in insignificant amounts. NO is a colorless, odorless gas that is toxic at
high concentrations and is present in the air at less than 0.50 ppm. Although
its tolerance by human beings at low concentrations is acceptable, it is never-
theless a precursor of NO2 and therefore partly responsible for photochemical
pollution. Around 67% of NOx emissions (total emissions 25− 99GKg/year)
are anthropogenic in origin, of which more than 90% originate in high temper-
ature combustions, from both stationary and mobile sources. The majority
of the chemical reactions of these compounds lead to the obtaining of HNO3,
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which falls as acid rain. The main reactions of nitrogen (both from the air as
well as that present in fuel) are:

N2+O2−→ 2NO NO+1
2O2−→NO2 NO2+O3−→NO3+O2

O+O2−→O3 NO+O3−→NO2+O2 NO3+NO2−→N2O5

N2O5+H2O−→ 2HNO3

These emissions are currently regulated (Official Journal of the European
Communities, Directive 2001/80/CE of the European Parliament and the
Council of 23 October 2001), and limit values are imposed on SO2 and NOx

emissions from large combustion facilities.
For all the above reasons, we consider the minimization of SO2 and NOx

presented in this paper to be of vital importance. The problem basically
consists in finding, given a hydrothermal system composed of thermal and
hydraulic plants (in which pollutant emissions may have been reduced to a
certain degree by means of other procedures, such as desulfurization of the fuel,
fluid bed combustion, selective catalytic reduction - SCR procedure -, etc.), the
powers that the plants must generate for the SO2 and NOx emissions from the
thermal plants in the system during a certain time interval to be minimum,
bearing in mind the numerous system constraints. The paper is organized
in the following way. In Section 2, the emission of pollutants is modelized by
means of the measurements carried out at the thermal plants. Subsequently, in
Section 3, we set out the corresponding mathematical problem and, in order to
simplify its exposition, we do so in two steps: first considering one single hydro-
plant to then go on to generalize to n hydro-plants. Section 4 summarizes
the mathematical fundaments employed in the solution of the problem and
the obtaining of the optimum solution. Finally, the results obtained in an
example are presented in Section 5 and the conclusions reached in this study
are discussed in Section 6.

2 Emissions Model

Several models have been used to represent the emissions function [1]. In this
paper we construct a quadratic model for both emissions: E(P ) = α + βP +
γP 2, where E is the unit emission and P is the power generated, and the
parameters were computed via the least square criteria from several tests at
thermal plants.

From an optimization viewpoint, the model commonly employed in power
plants is that of fuel cost - power, the fuel cost usually being considered a
smooth curve that may be approximated by a second degree polynomial. In
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contrast, the unit emission of pollutant - power is not usually employed; en-
vironmental departments are usually content to control the emitted pollution
by means of continuous measurements at the stack outlet. Therefore, a study
was first carried out to test whether this relation is actually maintained appre-
ciably constant by each plant and operating conditions. Measurements were
carried out for 3 weeks with the data supplied by the company HC (Asturias,
Spain). We shall estimate the unit emission E and the existing realtion in each
plant to the generated power P , studying whether this may be approximated
by another second degree polynomial in a similar way to the fuel cost.

The unit emission E
(

Kg.
h

)
is calculated knowing:

- The Net Consumption NC, obtained by multiplying the net specific
consumption curve R of the plant (data supplied by the manufacturer) by P .

R
(

Kcal
hKw

) · P (Mw) → NC
(

Kcal
h

)

- The average amount of coal EQ consumed at the plant.
- The concentration C of the pollutant as a function of the power P , which

is obtained by continuous measurement at the stack outlet.
- The production of smoke S for the average amount of coal consumed.
We thus obtain the unit emission of pollutant

NC
(

Kcal
h

) · 1
EQ

(
Kg

Kcal

)
· S

(
m3

Tn

)
· C (mg

m3

) → E
(

Kg
h

)

Given that the power at which this pollution is emitted is known, it is possible
to build point graphs like those in Fig. 1 (for NOx) or Fig. 2 (for SO2) and to
perform the least square approximation over these. Data was collected over 3
weeks, for both SO2 and NOx, and was comprised of some 150 measurements
per week, the r2 (correlation ratio) obtained always being higher than 0.96.
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Figure 1. Least square approximation to NOx emissions (week 1).
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Figure 2. Least square approximation to SO2 emissions (week 1).
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Figure 3. Comparison between three weeks.

It should be noted that data were taken during plant shut-down, measurements
that confirm the form of the curve when approaching low power (unusual in
ordinary functioning). We may thus conclude that a quadratic model is ap-
preciated that relates pollutant emissions with the generated power, in which
the parameters that are obtained are also appreciably similar in the different
observations carried out at the same plant. Although, of course, operating
conditions such as meteorological conditions, temperature of the fumes at the
boiler outlet or operating conditons in the burners exert a greater or lesser
influence on the production of pollution, in a first approximation we may
modelize the sum of SO2 and NOx by

Ψ(P ) = α + βP + γP 2

3 Statement of the Hydrothermal Problem

We consider a hydrothermal system with m thermal power plants and n hydro-
plants (Hn−Tm Problem). The hydrothermal problem consists in minimizing
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the emissions of SO2 and NOx of thermal plants to satisfy a certain power de-
mand during the optimization interval [0, T ]. Although diverse authors have
previously addressed this problem using varied techniques, such as, for in-
stance, neural networks [2], calculus of variations [3], or linear programming
[4], they introduce notable simplifications in the modelization of the system
so as to facilitate its solution. In this paper, however, we shall modelize the
system in all its details, formulating and resolving a complex mathematical
problem. The first step, already presented in previous papers [5-6] and funda-
mental in the setting out of the problem, is to substitute the m thermal power
plants by one single thermal power plant, called the thermal equivalent.

In the present paper, we first of all consider a simple hydrothermal system
with 1 hydro-plant and m thermal power plants that have been substituted
by their thermal equivalent (H1−T1 Problem). We shall next go on to discuss
the general case with n hydro-plants (Hn−T1 Problem). The H1−T1 problem
is to minimize the functional

F (P ) =
∫ T

0
Ψ(P (t))dt

where Ψ is the emissions function of the thermal equivalent and P (t) is the
power generated by said plant at the instant t. Moreover, the following equi-
librium equation of active power will have to be fulfilled

P (t) + H(t, z(t), z′(t)) = Pd(t), ∀t ∈ [0, T ]

where Pd(t) is the power demand and H(t, z(t), z′(t)) is the power contributed
to the system at the instant t by the hydro-plant, z(t) being the volume that
is discharged up to the instant t by the plant, and z′(t) the rate of water
discharge of the plant at the instant t.

Taking into account the equilibrium equation, the problem reduces to
calculating the minimum of the functional

F (z) =
∫ T

0
Ψ

(
Pd(t)−H

(
t, z(t), z′(t)

))
dt

If we assume that b is the volume of water that must be discharged during
the entire optimization interval [0, T ], the following boundary conditions will
have to be fulfilled

z(0) = 0, z(T ) = b

For the sake of convenience, we assume throughout the paper that these are
sufficiently smooth and are subject to the following additional assumptions:
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Let us assume that the function of emissions Ψ : R+ −→ R+ satisfies
Ψ′(x) > 0, ∀x ∈ R+ and is thus strictly increasing. This constraint is ab-
solutely natural; it reads more pollutant to more generated power. Let us
assume as well that Ψ′′(x) > 0, ∀x ∈ R+ and is therefore strictly convex. The
models traditionally employed meet this constraint.

Let us assume that the function of effective hydraulic generation H(t, z, z′) :
ΩH = [0, T ]×R+×R+ −→ R+ is strictly increasing with respect to the rate of
water discharge z′, i.e., Hz′ > 0. Let us also assume that H(t, z, z′) is concave
with respect to z′, i.e., Hz′z′ ≤ 0. The real models meet these two restrictions;
the former means more power to a higher rate of water discharge. We see
that we only admit non-negative thermal power P (t) and we shall only admit
non-negative volumes z(t) and rates of water discharge z′(t).

We may hence expound the mathematical problem in the following terms.
We shall call H1 − T1 the problem of minimization of the functional

F (z) =
∫ T

0
Ψ(Pd(t)−H(t, z(t), z′(t)))dt (3.1)

over the set of piecewise C1 functions
(
z ∈ Ĉ1[0, T ]

)

Θb = {z | z(0) = 0, z(T ) = b, 0 ≤ H(t, z(t), z′(t)) ≤ Pd(t), ∀t ∈ [0, T ]}
If the hydrothermal system accounts for n hydro-plants, the statement will be
the same taking z(t) = (z1(t), z2(t), . . . , zi(t), . . . , zn(t)) instead of z(t). We
shall call Hn − T1 the problem of minimization of the functional

F (z) =
∫ T

0
Ψ

(
Pd(t)−H(t, z(t), z′(t))

)
dt (3.2)

over the set of piecewise C1 functions
(
z ∈

(
Ĉ1[0, T ]

)n)

Θb =
{
z | zi(0) = 0, zi(T ) = bi, 0 ≤ H(t, z(t), z′(t)) ≤ Pd(t), ∀t ∈ [0, T ]

}

with i = 1, . . . , n.

4 Optimal Solution

Let us now see the fundamental result (the coordination theorem), which is the
basis for elaborating the optimization algorithm that leads to determination of
the optimal solution of the hydrothermal system. An optimal control technique
is applied and Pontryagin’s Minimum Principle [7] is employed. Let us consider
the functional (3.1).
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We present the problem considering the state variable to be z(t) and the
control variable u(t) = H (t, z(t), z′(t)). Moreover, as Hz′ > 0, the equation
u(t) − H (t, z(t), z′(t)) = 0 allows the state equation z′ = f(t, z, u) to be
explicitly defined. The optimal control problem is thus:

min
u(t)

∫ T

0
L(t, z(t), u(t))dt with





z′ = f(t, z, u)
z(0) = 0, z(T ) = b
u(t) ∈ Ω(t) = {x | 0 ≤ x ≤ Pd(t)}

with L having the form

L(t, z(t), u(t)) = Ψ(Pd(t)− u(t))

It can be seen that from the relations u(t) − H (t, z(t), z′(t)) = 0 and z′ =
f(t, z, u), we easily obtain

fz = −Hz

Hz′
; fu =

1
Hz′

Prior to seeing the theorem, we define the following function.
Definition 1. Let us term the coordination function of q ∈ Θb the func-

tion in [0, T ], defined as follows

Yq(t) = −Lz′(t, q(t), q′(t)) · exp
[
−

∫ t

0

Hz(s, q(s), q′(s))
Hz′(s, q(s), q′(s))

ds

]

Now, based on Pontryagin’s Minimum Principle, it is easy to prove the next
theorem.

Theorem 1. (The coordination theorem) If q ∈ Ĉ1 is a solution of
problem H1 − T1, then there exists a constant K ∈ R+ such that

i) If 0 < H(t, q(t), q′(t)) < Pd(t) =⇒ Yq(t) = K.
ii) If H(t, q(t), q′(t)) = Pd(t) =⇒ Yq(t) ≥ K.
iii) If H(t, q(t), q′(t)) = 0 =⇒ Yq(t) ≤ K.
If we did not have the constraints 0 ≤ H (t, z(t), z′(t)) ≤ Pd(t), we could

use the shooting method to resolve the problem. In this case, we would use
the coordination equation, ∀t ∈ [0, T ]

Yz(t) = −Lz′(0, z(0), z′(0)) = K (4.1)

Varying the initial condition of the derivative z′(0) (initial flow rate), we would
search for the extremal that fulfils the second boundary condition z(T ) = b
(final volume). However, we cannot use this method in our case, since, owing
to the restrictions, the extremals may not admit bilateral variations, i.e. they
may present boundary arcs. We use the same framework in the present case,
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but the variation of the initial condition for the derivative, which now need
not make sense, is substituted by the variation of the coordination constant
K. The problem will consist in finding for each K the function qK that
satisfies qK(0) = 0 and the conditions of the main coordination theorem, and
from among these functions, the one that gives rise to an admissible function
(qK(T ) = b).

From the computational point of view, the construction of qK can be
performed with the same procedure as in the shooting method, with the use
of a discretized version of the coordination equation (4.1). The exception is
that at the instant when the values obtained for z and z′ do not obey the
constraints, we force the solution qK to belong to the boundary until the
moment when the conditions of leaving the domain (established in Theorem
1) are fulfilled.

Having resolved the H1− T1 problem, we now generalize the study to the
Hn − T1 problem. Let us assume that a hydrothermal system accounts for
n hydro-plants. The problem of optimization of a hydrothermal system that
involves n hydro-plants is highly complicated, since the associated variational
problem is related to solving a boundary-value problem for a system of dif-
ferential equations. We now present an algorithm of its numerical resolution
using a particular strategy related to the cyclic coordinate descent method [8].
With this method, a problem of the type Hn − T1 could be solved, under cer-
tain conditions, if we start out from the resolution of a sequence of problems
of the type H1 − T1.

Let the function G : Rn → R, G ∈ C1(Rn), and x = (x1, . . . , xj , . . . , xn).
The idea behind the coordinate descent method is to use the coordinate axes
as descent directions. The method sequentially searches for the minimum of G
in all the directions ej . Descent with respect to the xj coordinate means that
G(x1, . . . , xj , . . . , xn) is minimized with respect to xj , while the rest remain
fixed.

Now we adapt the finite-dimensional version of this algorithm to our func-
tional. The algorithm for the Hn−T1 problem carries out several iterations and
at each k-th iteration calculates n stages, one for each hydro-plant. At each
stage, it calculates the optimal functioning of a hydro-plant, while the behav-
ior of the rest of the plants is assumed fixed. For every q = (q1, . . . , qn) ∈ Θb,
we consider the functional F i

q defined by

F i
q(zi) =

∫ T

0
Ψ

(
Pd(t)−H i

q(t, zi(t), z′i(t))
)
dt

with

H i
q(t, zi, z

′
i) = H(t, q1, . . . , qi−1, zi, qi+1, . . . , qn, q′1, . . . , q

′
i−1, z

′
i, q

′
i+1, . . . , q

′
n)
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where H i
q represents the power generated by the hydraulic system as a function

of the rate of water discharge and the volume turbined by the i-th plant, under
the assumption that the rest of the plants behave in a definite way. We call
the i-th minimizing mapping the mapping Φi : Θb −→ Θb, defined in the
following way: for every q ∈ Θb

Φi(q1, . . . , qi, . . . , qn) = (q1, . . . , q
∗, . . . , qn)

where q∗ minimizes F i
q. Beginning with some admissible q0 = (q0

1, . . . , q
0
n), we

construct a sequence of qk via successive applications of {Φi}n
i=1. If we set

Φ = (Φn ◦ Φn−1 ◦ · · · ◦ Φ2 ◦ Φ1) =⇒ qk = Φ(qk−1)

the algorithm will search
lim

k→∞
qk

Under appropriate conditions in the admissible set (bounded derivatives), the
convergence of the above algorithm may be assured using Zangwill’s global
convergence theorem of algorithms [8].

5 Example

A program that solves the optimization problem was elaborated using the
Mathematica c© package and was then applied to one example of a hydrother-
mal system made up of 3 thermal plants and 3 hydro-plant of variable head.
The emissions function Ψi for each thermal plant is a quadratic model, the
sum of the two aforementioned emissions (SO2 and NOx)

Ψi(P ) = αi + βiP + γiP
2

and we consider Kirchmayer’s model for the transmission losses: li ·P 2, where
li is termed the loss coefficient. The data are summarized in Table II.

Table II: Coefficients of the thermal plants.

Plant i αi βi γi li
1 0 5.475 0.013 0.00010
2 0 5.150 0.010 0.00007
3 0 5.765 0.015 0.00015

The units for the coefficients are: αi in (Kg/h),βi in (Kg/h.Mw), γi in
(Kg/h.Mw2), and li in (1/Mw). We construct the equivalent thermal plant
as we saw in [5-6], obtaining: αeq = 757.193; βeq = 3.63155; γeq = 0.00561797.



L. Bayón; J.M. Grau; M.M. Ruiz and P.M. Suárez 11

We use a complex variable head model, and for each hydro-plant the active
power generation Phi (variable head) is a function of zi(t) and z′i(t)

Phi(t, zi(t), z′i(t)) :=
Ri

Gi
(Si + t · ni) · z′i(t)−

Ri

Gi
· zi(t) · z′i(t)

In variable head models, the negative term represents the negative influence
of the consumed volume and reflects the fact that consuming water lowers
the effective height and hence the performance of the plant. We consider the
transmission losses for the hydro-plant to be also expressed by Kirchmayer’s
model. Hence, the function of effective hydraulic generation is

Hi(t, zi(t), z′i(t)) := Phi(t, zi(t), z′i(t))− liP
2
hi(t, zi(t), z′i(t))

For the n hydro-plants without hydraulic coupling, we consider

H(t, z(t), z′(t)) =
n∑

i=1

Hi(t, zi(t), z′i(t))

Taking the function min{Hmax, Pd(t)} as the upper limit for H(t, z(t), z′(t))
at any instant, technical constraints of the type Ph(t, z(t), z′(t)) ≤ Ph max =⇒
H(t, z(t), z′(t)) ≤ Hmax may also be considered in the set Θb. The data of
the hydro-plants are summarized in Table III. The units for the coefficients
of the hydro-plant are: the efficiency Gi in (m4/h.Mw), the constraint on the
volume bi in (106m3), the loss coefficient li in (1/Mw), the natural inflow ni

in (106m3/h), the initial volume Si in (109m3), the coefficient Ri (a parameter
that depends on the geometry of the tanks) in (10−12m−2) and the maximum
hydraulic generation Phi max in (Mw).

Table III. Hydro-plant coefficients.

Plant Gi bi li ni Si Ri Phi max

1 526315 20 0.00031 10.18 200. 149.5 120
2 496221 35 0.00029 10.99 150. 144.5 120
3 555315 50 0.00028 1.019 450. 150.2 290

We consider a short-term hydrothermal scheduling (24 hours) with an opti-
mization interval [0, 24] and we consider a discretization of 96 subintervals.
The optimal power for the hydro-plants, Ph(t), is shown in Fig. 4, and the
optimal power for the three thermal plants, Pth(t), in Fig. 5. As can be seen
in Fig. 4, the power generated by hydro-plant 3 is limited by its technical
maximum Ph max = 290. Hydro-plants 1 and 2, however, are limited by their
technical minimum Ph min = 0. The algorithm of coordinate descent shows a
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rapid convergence to the optimal solution. The secant method was used to
calculate the value of K, given by the coordination theorem, for each hydro-
plant. In the example, we need 4 iterations and the time required by the
program was 115 s on a personal computer (Pentium IV/2GHz).
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Fig. 4. Optimal power for the hydro-plants.
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Fig. 5. Optimal power for the thermal plants.

As can be seen in Fig. 5, the power generated by thermal plant 3 is the lowest,
due to it being the plant that pollutes the most and that also has the highest
transmission losses.

6 Conclusions

This paper presents an environmental dispatch algorithm in a hydrothermal
system and solves the problem of minimization of emissions of SO2 and NOx

caused by the thermal plants based on Pontryagin’s Minimum Principle and
an algorithm related to the cyclic coordinate descent method. The chemical
problem was modelized in the utmost detail and this leads us to a difficult-
to-solve mathematical problem: the problem of minimization of a functional
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within the set of piecewise C1 functions that satisfy boundary conditions and
non-holonomic inequality constraints. We have developed a novel application
of familiar mathematical techniques, and simulation results show that the pro-
posed method has enough efficiency for its practical application in a problem
that will be of tremendous importance in the years to come.
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