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Abstract

In this paper we present a generalization of the classic Firm’s Profit Maximiza-
tion Problem, using the linear model for the production function, considering a
decreasing price wi(xi) = bi − cixi and maximum constraints for the inputs or,
equivalently, considering inputs that are in turn outputs in a economies of scale
with quadratic concave cost functions. We formulate the problem by previously cal-
culating the analytical minimum cost function in the quadratic concave case. This
minimum cost function will be calculated for each production level via the infimal
convolution of quadratic concave functions whose result is a piecewise quadratic
concave function.
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1 Introduction

Problems involving economies of scale (in production and sales) can often be formu-
lated as concave quadratic programming problems [1], [2]. Consider a case in which n
products are being produced, with xi being the number of units of product i and wi

being the unit production cost of product i. As the number of units produced increases,
the unit cost usually decreases. This can often be correlated by a linear functional

wi(xi) = bi − cixi (1)

where ci > 0. Thus, given constraints on production demands and the availability of
each product and using the classic linear production function model [3], [4], the Firm’s
Cost Minimization (FCM) problem [5], [6] can be written as:

C(y) = min
x

n∑
i=1

xiwi(xi)

s.t.
n∑

i=1
aixi = y; ai ̸= 0, i = 1, ..., n

0 ≤ xi ≤ Ui; i = 1, ..., n

(2)
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where y is the output. This is a concave minimization problem. As well as representing a
situation in which the inputs are acquired with a discount proportional to the amount,
the affine function model for the prices (1) can also be interpreted as dealing with
inputs that are in turn outputs of a prior production process of economies of scale
with a quadratic cost: xibi − cix

2
i . On the other hand, the linear production function

is presented in a natural way when the output is the result of the sum of the inputs
(ai = 1) or, in general, a specific fraction of each of these.

Similarly, when the Firm’s Profit Maximization (FPM) Problem is considered:

π(p,w) = max
x,y

(py −
n∑

i=1
xiwi(xi))

s.t.
n∑

i=1
aixi = y; ai ̸= 0, i = 1, ..., n

0 ≤ xi ≤ Ui; i = 1, ..., n

(3)

the economies of scale dictate that the profit per unit rises linearly with the number of
units produced. In this case, therefore, the problem becomes one of maximization of a
convex functional.

To solve the FPM problem, we formulate the problem by previously calculating the
analytical minimum cost function C(y) and then maximizing over the output quantity:

π(p,w) = max
y

(py − c(w,y)) = max
y

(py − C(y))

Concave programming [7], [8] constitutes one of the most fundamental and most widely
studied problem classes in deterministic nonconvex optimization. Concave program-
ming has a remarkably broad range of direct and indirect applications. Many of the
mathematical properties of concave programming are even identical to the properties
of linear programming. The goal in concave programming, or the concave minimization
problem (CPM):

globmin f(x)
s.t. x ∈ D

is to find the global minimum value that f achieves over D, where D is a nonempty,
closed convex set in Rn and f is a real-valued, concave function defined on some open
convex set A in Rn that contains D. The application of standard algorithms designed
for solving constrained convex programming problems will generally fail to solve CMP.
Accordingly, in this paper we shall present an algorithm specifically designed for the
problem we are going to solve that, as we shall see, presents very advantageous features.

To develop the algorithm which determines the optimal production level, we shall
make use of the infimal convolution operator. This operator is well known within the
context of convex analysis [9], [10] and [11]. However, convexity is only one desirable
property so as to be able to resort to differential techniques to tackle its calculation
and its use should definitely not be restricted to this context alone.

Definition 1. Let F,G : R −→ R̄ be two functions of R in R̄ := R ∪ {+∞,−∞}.
We denote as the Infimal Convolution of F and G the operation defined below:

(F
⊙

G)(x) := inf
y∈R

{F (x) +G(y − x)}
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It is well known that (z(R, R̄),
⊙

) is a commutative semigroup. Furthermore, for every
finite set E⊂ N, it is verified that

(
⊙

i∈EFi)(K) = inf∑
i∈E

xi=K

∑
i∈E

Fi(xi)

When the functions are considered constrained to a certain domain,Dom(Fi) = [mi,Mi],
the above definition continues to be perfectly valid redefining Fi(x) = +∞ if x /∈
Dom(Fi). In this case, the definition may be expressed as follows:

(F1
⊙

F2)(ξ) := min
x1+x2=ξ

mi≤xi≤Mi

(F1(x1) + F2(x2)) = min
m1≤x≤M1

m2≤ξ−x≤M2

((F1(x) + F2(ξ − x))

2 Statement of the Generalized Problem

We first consider the FCM problem (2). Using (1) and making these changes in the
variables

aixi = zi; aiUi = Mi

bi
ai

= βi;
ci
a2i

= γi

the FCM problem may be re-written as follows:

C(y) = min
z

n∑
i=1

βizi − γiz
2
i

s.t.
n∑

i=1
zi = y

0 ≤ zi ≤ Mi; i = 1, ..., n

(4)

which makes C(y) the infimal convolution of the quadratic functions:

Fi(zi) := βizi − γiz
2
i

respectively constrained to the domains [0,Mi]; i.e.

C = F1
⊙

F2
⊙

. . .
⊙

Fn

In this paper we shall demonstrate that C(y) is piecewise concave such that the solution
to the FPM problem:

max
y

(py − C(y))

s.t.
n∑

i=1
zi = y

0 ≤ zi ≤ Mi; i = 1, ..., n

(5)

cannot be tackled by means of marginalistic techniques (coinciding of marginal cost
and price). In fact, the maximum profit will be obtained at a production level y∗ where
C is not differentiable, or at boundary values

y∗ = 0 or y∗ =

n∑
i=1

Mi
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3 The infimal convolution in the concave case

In this section we shall study the infimal convolution of two concave functions, which
is crucial as the basis for the optimization algorithm.

Lemma 1. Let F1 and F2 be concave functions with domains [m1,M1] and [m2,M2],
respectively. We shall consider the following four functions:

Ψ−
1 (x) := F1(x−m2) + F2(m2) with domain [m1 +m2,M1 +m2]

Ψ+
1 (x) := F1(x−M2) + F2(M2) with domain [m1 +M2,M1 +M2]

Ψ−
2 (x) := F2(x−m1) + F1(m1) with domain [m1 +m2,m1 +M2]

Ψ+
2 (x) := F2(x−M1) + F1(M1) with domain [M1 +m2,M1 +M2]

then
(F1

⊙
F2)(x) = min{Ψ−

1 (x),Ψ
+
1 (x),Ψ

−
2 (x),Ψ

+
2 (x)}

Proof. Due to the concavity of the functions involved, the minimum value of F1(x1)+
F (x2) constrained to x1 + x2 = ξ can only be achieved in those pairs (x1, x2) in which
only one of the components can be inside the corresponding domain of Fi. In other
words, the aforementioned minimum value can only be achieved in pairs of the following
form

(m1, ξ −m2), (m1, ξ −M2), (m2, ξ −m1) and (m2, ξ −M1)

Thus, for each value of ξ, we have that

(F1
⊙

F2)(ξ) = min{F1(ξ −m2) + F2(m2), F1(x−M2)+

+ F2(M2), F2(ξ −m1) + F1(m1), F2(ξ −M1) + F1(M1)}

�
Unfortunately, the operator of the infimal convolution does not preserve the con-

cave nature of the functions. In general, the result is a piecewise concave function. This
means that the infimal convolution of more than two functions cannot be obtained by
means of a simple reiteration of the aforestated lemma, but requires resorting to calcu-
lating the infimal convolution of several piecewise concave functions. To carry out this
calculation, we shall interpret a piecewise concave function as the minimum function
of several concave functions, preceding as shown in the following obvious lemma.

Lemma 2. Let the function

F (x) =


F1(x) if x ∈ [m1,M1]
... ... ...

Fk(x) if x ∈ [mk,Mk]

be piecewise concave (concave in each interval [mk,Mk]). Thus,

F (x) = min
i∈{1,...k}

Fi(x)

where, we have redefined each function Fi(x) as

Fi(x) :=

{
Fi(x) if x ∈ [mi,Mi]
∞ if x /∈ [mi,Mi]

, i = 1, ...k
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Once redefined in this way, the calculation of the infimal convolution of two piecewise
concave functions requires a combinatorial exploration that is reflected in the following
theorem.

Theorem 1. Let F (x) := min
i∈A

(Fi(x)) and G(x) := min
i∈B

(Gi(x)), then:

(F
⊙

G)(t) = min
(i,j)∈A×B

(Fi
⊙

Gj)(t)

Proof.

(F
⊙

G)(t) = min
x

(F (t− x) +G(x)) = min
x

(min
i∈A

(Fi(t− x)) + min
j∈B

(Gj(x)))

= min
x

( min
(i,j)∈A×B

(Fi(t− x) +Gj(x))) =

= min
(i,j)∈A×B

(min
x

(Fi(t− x) +Gj(x))) = min
(i,j)∈A×B

(Fi
⊙

Gj)(t)

�
This theorem justifies the construction of the infimal convolution of the two func-

tions defined piecewise as the minimum function of all the possible infimal convolutions
of ”pairs of pieces”.

Now, bearing in mind the associative nature of the infimal convolution operation,
the infimal convolution may be calculated by means of a recursive process, carrying out
n operations of infimal convolution considering the following recurrence:

H1
⊙

H2
⊙

· · ·
⊙

Hn = (H1
⊙

H2
⊙

· · ·
⊙

Hn−1)
⊙

Hn

4 Algorithm and complexity

In this section we analyze the computational complexity of the previously proposed
recursive algorithm for calculating the analytical solution for the piecewise concave
quadratic functions. We first analyze the calculation of the minimum of a set of piece-
wise quadratic functions.

4.1 Algorithm

Let G be a quadratic function and let F be a piecewise quadratic function:

F (x) =


F1(x) if x ∈ [m1,M1]
... ... ...

Fk(x) if x ∈ [mk,Mk]

considering Fj(x) := ∞ if x /∈ [mj ,Mj ] and G(x) := ∞ if x /∈ [m̃, M̃ ]. Hence,

F (x) = min
i∈A={1,...k}

Fi(x)

The calculation of the infimal convolution

(F
⊙

G)(x) = min
i
((Fi

⊙
G)(x))
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is carried out in two phases:

PHASE (1) Calculation of Fi
⊙

G for each i
PHASE (2) Calculate min

i
(Fi

⊙
G)(x)

4.2 Computational Complexity

The nature of the underlying problem in the calculation of the infimal convolution of
piecewise concave functions suggests that the computational complexity of the algo-
rithm is exponential seeing as it entails exploring all the combinations of intervals of
concavity of the functions involved. In certain cases, this is effectively so; however, we
shall see that the complexity is polynomial in some other cases.

Theorem 2. Let {Fi}ni=1, where Fi(x) := βix−γix
2, with γi > 0, with the same do-

main [0,M ]. If Fi(x) ̸= Fj(x) for all 0 ̸= x ∈ [0,M ], then the computational complexity
of the algorithm is cubic in order; i.e. T ∈ O(n3).

5 Example

A program that solves the FPM problem was written using the Mathematica package
and was then applied to one example using the previously developed model for the cost
function

C(y) = min
z

n∑
i=1

βizi − γiz
2
i

and maximum constraints for the n = 4 inputs.

max
x,y

(py −
n∑

i=1

(
βizi − γiz

2
i

)
)

s.t.
n∑

i=1
zi = y

0 ≤ zi ≤ Mi; i = 1, ..., n

The data on the inputs is summarized in Table 1.

Table 1. Example data.

i 1 2 3 4

βi 1 2 3 4

γi -0.01 -0.03 -0.03 -0.01

Mi 10 15 4 2

Applying the aforementioned algorithm, we have that the infimal convolution

C = (F1
⊙

F2
⊙

F3
⊙

F4)

is a piecewise quadratic function:

C(y) =


y − 0.01y2 if 0 ≤ y ≤ 10
−14 + 2.6y − 0.03y2 if 10 ≤ y ≤ 25
−61.5 + 4.5y − 0.03y2 if 25 ≤ y ≤ 29
−80.64 + 4.58y − 0.01y2 if 29 ≤ y ≤ 31
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Finally, considering different values of the price p, we calculate the solution to the FPM
problem

max
y

(py − C(y))

The results are summarized in Table 2.

Table 2. Solution y∗.

p 2 1 1
2 5

y∗ 25 10 0 31

As already mentioned, despite having the analytical cost expression, C(y), the optimum
level of output cannot be obtained via marginalistic techniques; i.e. ∂C(y)/∂y coincides
with the price p. The maximum profit is always obtained with a level of output y∗ in
which either C is not differentiable or y∗ is one of the extreme values of the interval
[0,

∑n
i=1Mi].
In fact, for p = 2 → y∗ = 25 and for p = 1 → y∗ = 10, the solution is obtained

from angle points of C(y), whereas, as we have already seen, for p = 1/2 → y∗ = 0, i.e.
production is not profitable, and for p = 5 → y∗ = 31, the maximum is produced at
the technical maximum.

6 Conclusions

Concave quadratic problems often arise involving economies of scale. In this paper
we present an algorithm for calculating the analytical solution for the classic firm’s
cost minimization problem in the case of economies of scale, with n inputs, maximum
constraints for the inputs and a general output y (i.e. a family of monoparametric prob-
lems). The algorithm uses the infimal convolution of piecewise concave functions. For
the firm’s profit maximization problem, the solution cannot be obtained using deriva-
tives and our method calculates the exact solution, without any kind of simplification,
searching non-differentiable points of the analytical formulae of the cost or extreme
values of the output.

References

[1] C. A. Floudas and V. Visweswaran, Quadratic Optimization, Handbook of
Global Optimization (R. Horst and P.M. Pardalos, Editors), Kluwer Academic
Publishers, (1994), 217-270.

[2] C. A. Floudas and P.M. Pardalos, Eds., Encyclopedia of Optimization,
Kluwer Academic Publishers, 2001.

[3] G. A. Jehl and P. J. Reny, Advanced Microeconomic Theory (2nd Edition),
Boston: Addison-Wesley, 2001.

[4] D. G. Luenberger, Microeconomic Theory, McGraw-Hill, 1995.



The Profit Maximization Problem in Economies of Scale

[5] H. R. Varian, Intermediate Microeconomics, W.W. Norton & Company, 7th
Edition, 2005.

[6] W. Nicholson, Microeconomic theory: basic principles and extensions, South-
Western/Thomson Learning, 2002.

[7] H. P. Benson, Concave minimization: Theory, applications and algorithms, in
Horst, R. and Pardalos, P.M. (eds.), Handbook of Global Optimization, Kluwer,
Dordrecht, (1995), 43-148.

[8] H. P. Benson, Deterministic algorithms for constrained concave minimization:
A unified critical survey, Naval Research Logistics, 43 (1996), 765-795.

[9] J. J. Moreau, Inf-convolution, sous-additivit e, convexit eriques, J. Math. Pures
et Appl. 49 (1970), 109-154.

[10] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton,
1970.

[11] T. Stromberg, The operation of infimal convolution, Diss. Math. 352 (1996).


