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We are honored to bring you this collection of articles and extended abstracts from the Seventh 
International Conference on Computational and Mathematical Methods in Science and Engineering 
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2007.  The primary focus of CMMSE is on new ideas and interdisciplinary interaction in rapidly 
growing fields of computational mathematics, mathematical modeling, and applications.    
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finite difference and hybrid methods for ordinary and partial differential equations.  
  
We would like to thank the plenary speakers for their excellent contributions in research and 
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Abstract
The Black - Scholes model has been the option pricing standard  for three decades and 
continues to be even with its acknowledged deficiencies. One such deficiency is its 
dependence on Gaussian distributions. This article uses Mathematica's symbolic 
programming  language to implement an alternative model, one similar in structure to Black 
- Scholes, but based upon a more realistic non - Gaussian distribution.
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à 1. Introduction

In  the  literature  of  financial  instruments  and  especially  of  option  pricing,  the  Black-Scholes
model [1] is recognized as the basis of the interlocking  theory that ties together no-arbitrage  risk-
neutral  pricing  with  stochastic  calculus  applied  to  risky  assets  and  with  the  reduction  of  the
partial  differential  equation  (PDE)  for  financial  derivatives  to  the  well  known  heat  equation.
This  intersection  of the  established  fields,  mathematics  and  statistics,  has  given  a  well justified
and  prominent  position  to  the  Black-Scholes  pricing  of  European  options.  However  like  all
models,  the  Black-Scholes is  based upon  assumptions  which  represent  idealizations  that  do not
apply  well  to  all  the  markets.  The  two  most  important  of  these  assumptions  are:  first,  the
invariance  of the  volatility  Σ  or  annualized  standard  deviation  of the  returns  of the  underlying
equity.  The  second  assumption  is  the  stochastic  component  of  the  equity,   often  called  the
Wiener  process coefficient. There  has  therefore  been a  strong  need  for a  new model  capable of
better representing  the observed values and higher option prices.

It  has  long  been  known  [2]  that  the  volatility  is  stochastic  and  that  changes  in  its  value  can
significantly  alter  pricing.  In  those  markets  where  the  volatility  is  especially high,  such  as  the
Nasdaq  100  index  [www.Nasdaq.com] and  technology stocks,  the  Black-Scholes  formula  leads
to significant  underpricing.  One traditional  method [3] of dealing with this has been to introduce
another  stochastic equation  for the volatility that  involves further  stochastic calculus difficulties.
The  method  introduced  here  is  to  change  the  volatility  coefficient  or  Wiener  process  Ω.  The
assumption of lognormality   in  equity prices has led to the adoption of the Gaussian  distribution
N  for the  Wiener  process.  However the  very fat  tails  at  either  extreme  of the  stock distribution
suggest  non-Gaussian  distributions.  There  have  been  many  attempts  at  replacing  the  Gaussian
distribution  with  T distributions  [4 & 5],  stable distributions  [6] and  other  fractal  measures  [7].
Based upon earlier  work in the application  of maximum  entropy [8] to financial  evaluation,  it  is
apparent  that  entropy  can  generate  non-Gaussian  distributions.  Entropy  is  a  measure  of  the
missing  information  in  the  stochastic  behavior  of  a  market  variable.  The  work  described  here
extends  this  notion  by replacing  the  noise  process with  a  generalized  Wiener  process governed
by a  non-Gaussian  fat-tailed  Tsallis  distribution  of  index  q>1  associated  with  the  Tsallis  non-
extensive entropy.     

For the purposes of exposition we utilize the same notation and functional definitions as occur in
the original  work of Tsallis  [9] and  Borland  [10]. For consistency we replicate  these definitions
using the Mathematica code. 1



For the purposes of exposition we utilize the same notation and functional definitions as occur in
the original  work of Tsallis  [9] and  Borland  [10]. For consistency we replicate  these definitions
using the Mathematica code. 

à 2. Tsallis Entropy 

In  order  to  describe  Tsallis  or  non-extensive  entropy  we first  need  to  define  extensivity.  Given
two independent systems A and B, for which the joint probability density satisfies

pHA,BL = pHAL pHBL
the Tsallis entropy of this system satisfies

(2.1)Hq IA, BM = Hq IAM + Hq IBM + H1 - qL Hq IAM Hq IBM
From this result,  it is evident that the parameter  q is a measure of the departure from extensivity.
For an extensive system we take the limit as q -> 1,

HHA, BL = HHAL + HHBL 
The Tsallis  entropy HqHpL is a generalization  of the standard  Boltzmann-Gibbs entropy HHpL put
forward by Constantino Tsallis in 1988 [9]. These different versions of entropy are defined as

(2.2)
HHpL = -Ù pHxL â x

HqHpL =
1-Ù pqHxL â xHq-1L

Where  pHxL  denotes  the  probability distribution  of the  underlying  asset  at  maturity  and  q  is  the
real  parameter  associated  with  non-extensivity.  In  the  limit  as  q -> 1,  the  normal  Boltzmann-
Gibbs entropy is recovered. In this  paper  q is shown to have a financial  interpretation  consistent
with different levels of volatility and different markets.

à 3. Borland Model

The  purpose of this  article  is  to expand  upon and  implement  in  Mathematica  code the  contents
of Borland's  "A  theory  of non-Gaussian  option  pricing"  [10].  What  follows in  this  section  is  a
shortened  version  of  the  original  paper,  emphasizing  the  Feynman-Kac  perspective.  The
standard model for stock movement is

(3.1)â St = Μ St  â t + Σ St  â Ω, t r 0

St  represents the value of a stock S at time t,  its mean rate of drift by Μ and the returns'  variance

by  Σ2.  The  Ω  represents  a  zero-mean  Gaussian  process  with  variance  t,  i.e.  EAHâ ΩL2E = â t.
When  Μ  and  Σ  are  linear  functions,  the  Feynman-Kac  formula  yields  exact  solutions  for
functions of St. Since Μ and Σ are constants  here then the Feynman-Kac formula is applicable to
option pricing as demonstrated in the next section 4.
The Borland model for stock movement is

â St = JΜ + Σ2

2
Rq

1-q HWHtLL N St  â t + Σ St  â W

(3.2)â St = JΜ + Σ2

2
Rq

1-q HWHtLL N St  â t + Σ St Rq

1-q

2 HWHtLL â Ω

with the symbols as above. The driving noise W is a non-Gaussian statistical feedback process

â HWHtLL = R
1- q

2 HWHtLL â Ω

2



Clearly,  it  is  heavily  reliant  on  the  Gaussian  process  Ω.  When  q = 1,  W  reduces  to  Ω  and  the
standard  process  is  recovered.  To  more  closely  match  actual  returns  we  restrict  q > 1.  This
lower limit  insures  fat  tails  under  the  Tsallis  distribution.  The  upper  limit,  q < 5 � 3,  keeps the

variance  EAW2HtLE = 1H5-3 qL ΒHq,tL  convergent.  Using  the  definition  of  c(q)  found  in  [13],  the

Tsallis probability is now given by

(3.3)

Rq
1-q HWHtLL =

I1 - H1-qL ΒHq,tL HWHtLL2M 1

1-q

ZHq,tL
with ΒHq, tL = cHqL 1-q

3-q HH2 - qL H3 - qL tL -2

3-q

ZHq, tL = HH2 - qL H3 - qL cHqL tL 1

3-q

cHqL = Π
q-1

JGB 1
q-1

- 1
2

FN2 � JGB 1
q-1

FN2

 

Applying Feynman-Kac to the non-Gaussian  model means modifying equation  (3.2)  into a form
similar  to  (3.1).  This  requires  the  changing  of  a  variable,  a  transformation  of  the  discounted
stock  price  into  a  martingale  via  a  change  in  measure,  a  stochastic  integration  and  the
conversion back to S in the original measure.

Beginning with the discounted stock price

(3.4)

G = S ã-r t

where â G = KΜ - r + Σ2 Rq
1-q

2
O G â t + Σ G â W = Σ G Rq

1-q â z

with â z =
Μ -r + Σ2 Rq

1-q

2

Σ Pq

1-q

2

â t + â Ω

(3.5)â ln G =
Σ2

2
Pq

1-q â t + r Pq
1-q â z

Taking  the  stochastic  integration  of equation  (3.5)  using  the  Radon-Nikodym derivative  where
Rq is  a  function  of  W,  which  in  turn  depends  upon  St,  which  is  represented  in  terms  of  G  in
equation (3.4) yields

St = SH0L ExpBÙ0

t
Σ Rq

1-q

2 HW HzLL â z + Ù0

t Jr - Σ2

2
Rq

1-qHW HxLLN â xF
with Α = 1

2
 H3 - qL HH2 - qL H3 - qL cL q-1

3-q

and WHtL = Ù0

t
Rq

1-q

2 HW HzLL â z

 

and  Rq HW HΤLL  at  an  arbitrary  time  Τ  can  be  mapped  onto  Rq HW HTLL at  a  fixed  time  T  via  the

appropriate variable transformation  WHΤL =
ΒHTL
ΒHΤL WHTL. Then

   ST = SH0L ExpCΣ W HTL + r T - Σ2

2
 Α T

2

3-q + H1 - qL Σ2

2
 Ù0

T ΒHtL
ZHtL1-q

 W2HtL â tG
where Α = H3 - qL HH2 - qL H3 - qL cL q-1

3-q � 2 , Hence

 

(3.6)ST = SH0L ExpCΣ W HTL + r T - Σ2

2
 Α T

2

3-q I1 - H1 - qL ΒHTL W2HTLMG
Note that  once again,  when q = 1 the  standard  model is recovered. Note that  there  is a misprint
in [10] so that the first occurrence of Σ was missing from the two equations above.

3



à 4. Similarities Between the Black-Scholes and Borland Models

á Solutions to Stochastic Differential  Equations

Feynman-Kac Solution to Black-Scholes

In the Black-Scholes version of equation (3.1) Μ can be replaced by the risk-neutral  interest  rate
r, so that we now have 

(4.1)â St = Σ St  â Ω + r St  â t ,   t r 0

Here  we  implement  Lyasoff's  [11]  version  of  the  Feynman-Kac  option  pricing  formula.  The
European  option  as  a  function  of St  described  by equation  (4.1)  can  be  written  as  the  integral
representation of

(4.2)OptionPrice@t, St, KD = EAã-rt Max@St - K, 0D É S0 = S H0LE, t ³ 0,

(4.3)where St = S0 ã
Jr-

1

2
 Σ2N t + Σ Wt , t r 0

With  St  equal  to  the  stock  price  and  K  equal  to  the  strike  price,  then  for  a  Black-Scholes
European  call option on a non-dividend  paying asset the payoff function is Max@St - K, 0D  and
using equation (4.3) we can write this simply in Mathematica code as

BSCall@t_, s_, k_D :=

ã-r t

2 Π
 NIntegrateBMaxBs * ã

Jr-
Σ2

2
N t + Σ t y

- k, 0F * ã-
y2

2 ,

8y, -¥, ¥< , Method ® GaussKronrod, MaxRecursion ® 15,

WorkingPrecision ® 20, PrecisionGoal ® 10 F;
For the  specific set of values below, the  European  Black-Scholes call  on a  non-dividend  paying
stock is

So = 50; K = 40; r = 6 � 100; T = 6 � 10;
Σ = 3 � 10; BSCall@T, So, KD �� N

12.091

Feynman-Kac Solution to Borland

Since  neither  the  call  option  nor  Feynman-Kac  place  any  restrictions  on  the  stock  price  that
would exclude the non-Gaussian model, we can apply equation (3.6) to equation (4.2).

BorCall1@t_, s_, k_D :=
ã- r t

Z@q, tD

NIntegrateBMaxBs * ã
Σ W + r t -

Σ2

2
 Α t

2

3-q +H1-qL Α t
2

3-q  Β@q,tD 
Σ2

2
 W2

- k, 0F *

I1 - H1 - qL Β@q, tD W2M 1

1-q , 8W, -¥, ¥<, Method ® GaussKronrod,

MaxRecursion ® 15, WorkingPrecision ® 20, PrecisionGoal ® 10F;

For the set of values below, with Α dependent on q, the European non-Gaussian call is:

So = 50; K = 40; r = 6 � 100; T = 6 � 10; Σ = 3 � 10;
q = 1.15; Α = 1.06307; BorCall1@T, So, KD �� N

12.214

Interchanging  the strike  and  the stock prices in the payoff functions will exchange the call for a
put  option:  PayOff@St, KD = Max@K - St, 0D.  However,  for  the  purposes  of  simplicity  in  this
article,  we choose to demonstrate  only European  call functions for underlying  assets that  pay no
dividends  as  in  [10].  For  the  Borland  model,  just  as  for  the  standard  Gaussian  one,  modifying
the  results  to  include  dividend-paying  assets,  with  a  dividend  yield ∆,  by replacing  r  with  r - ∆
is a simple matter.

It  should  be noted  that  when  the  q ® 1,  equation  (3.2)  ®  equation  (4.1)  and  equation  (3.6)  ®
equation  (4.3).  In  other  words  as   q ® 1,  Tsallis  distribution  recovers  normal  distribution  and
Borland recovers the traditional  Black-Scholes model. By example,  for the specific set of values
below, with  Α  dependent  on  q  being  very close to  1,  the  European  Black-Scholes  call  and  the
European Borland call are equal.

4



Interchanging  the strike  and  the stock prices in the payoff functions will exchange the call for a
put  option:  PayOff@St, KD = Max@K - St, 0D.  However,  for  the  purposes  of  simplicity  in  this
article,  we choose to demonstrate  only European  call functions for underlying  assets that  pay no
dividends  as  in  [10].  For  the  Borland  model,  just  as  for  the  standard  Gaussian  one,  modifying
the  results  to  include  dividend-paying  assets,  with  a  dividend  yield ∆,  by replacing  r  with  r - ∆
is a simple matter.

It  should  be noted  that  when  the  q ® 1,  equation  (3.2)  ®  equation  (4.1)  and  equation  (3.6)  ®
equation  (4.3).  In  other  words  as   q ® 1,  Tsallis  distribution  recovers  normal  distribution  and
Borland recovers the traditional  Black-Scholes model. By example,  for the specific set of values
below, with  Α  dependent  on  q  being  very close to  1,  the  European  Black-Scholes  call  and  the
European Borland call are equal.

So = 50; K = 40; r = 6 � 100; T = 6 � 10;
Σ = 3 � 10; q = 1.000001; Α = 1.0000;

TableForm@88"BorlandCall", "BlackScholesCall"<,
8BorCall1@T, So, KD, BSCall@T, So, KD<<D �� N

BorlandCall BlackScholesCall

12.091 12.091

á Conversion to CDFs

Black-Scholes

The  Gaussian  and  the  non-Gaussian  pricing  models  can  also  be  expressed  in  the  form  of  the
difference  between  CDFs  of  functions  which  correspond  to  the  probabilities  of  the  stock  price
being  in  and  out  of the  money.  For  example,  the  standard  Black-Scholes  format  draws  on  two
ubiquitous  financial  functions:  "done"  and  "dtwo".  The  normal  CDF  of  done  is  related  to  the
probability of the  stock price  being in  the  money. Shaw [12] codes the  European  Black-Scholes
model for non-dividend paying assets very much like the following.

done@s_, Σ_, k_, t_, r_D :=

Hr * t + Log@s � kDL � HΣ * Sqrt@tDL + HΣ * Sqrt@tDL � 2;
dtwo@s_, Σ_, k_, t_, r_D := done@s, Σ, k, t, rD - HΣ * Sqrt@tDL;
BlackScholesCall@s_, k_, Σ_, r_, t_D :=

s * Η@done@s, Σ, k, t, rDD - k * Exp@-r * tD * Η@dtwo@s, Σ, k, t, rDD;
For the  specific set of values below, the  Black-Scholes European  call  on a  non-dividend  paying
asset is

So = 50; K = 40; r = 6 � 100; T = 6 � 10;
Σ = 3 � 10; BlackScholesCall@So, K, Σ, r, TD �� N

12.091

Borland

The non-Gaussian model for a non-dividend asset draws upon two functions: "NQ1" and "MQ".

NQ1@D1_, D2_, q_, t_D :=

NIntegrateBI1 - H1 - qL Β@q, tD x2M 1

1-q, 8x, D1, D2< F � Z@q, tD;
MQ@Α_, Σ_, D1_, D2_, q_, t_D := WithB8Β1 = Β@q, tD<,

NIntegrateBExpBΣ x -
Σ2

2
Α t

2

3-q I1 - H1 - qL Β1 x2MF 

I1 - H1 - qL Β1 x2M 1

1-q, 8x, D1, D2< F � Z@q, tDF;
This is similar to Black-Scholes in concept and form.
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BorCall3@s_, k_, Σ_, r_, t_, q_D :=

ModuleB8Α, s1, s2<, Α =
H3 - qL

2
HH2 - qL H3 - qL c@qDL q-1

3-q;

s1 = S1@Α, k, q, r, s, Σ, tD; s2 = S2@Α, k, q, r, s, Σ, tD;
s MQ@Α, Σ, s1, s2, q, tD - ã-r t k NQ1@s1, s2, q, tD F;

For the  specific set of values below, the  non-Gaussian  European  call  for a  non-dividend  paying
asset is

So = 50; K = 40; r = 6 � 100; T = 6 � 10; Σ = 3 � 10;
q = 1.15; BorCall3@So, K, Σ, r, T, qD �� N

12.214

We can reduce the NQ1 integral  for better speed and  more efficient execution. With  D1  and  D2

substituting as dummy values for the functions S1 and S2, the integral  becomes

NQ1HD1, D2, q, tL = ã- r T K
ZHq,TL  ÙD1

D2 I1 - H1 - qL ΒHq, tL Wt
2M 1

1-q â Wt

Two assumptions  must  be  met  to  achieve  the  desired  results  from  the  integration.  The  first  is

that  Β - Β q 's  imaginary  part  is  not  zero  (dropping  some  arguments  for  clarity).  Since  q  is

always greater  than  1, the first assumption is verified. The second assumption requires the upper
limit  of integration  to  be  larger  than  the  lower  limit,  specifically D2 > D1.  This  assumption  is
always satisfied when q is  not  equal  to one and  when the  following parameters  are  not  equal  to
zero: Α, Β, Σ, r or T. Therefore

IntegrateBI1 - H1 - qL B x2M 1

1-q, 8x, D1, D2<,
Assumptions ® : D2 > D1 , ImB B - B q F ¹ 0>F

2 F1

1

2
,

1

q - 1
;

3

2
; -B Hq - 1L D2

2 D2 - 2 F1

1

2
,

1

q - 1
;

3

2
; -B Hq - 1L D1

2 D1

Using the Hypergeometric2F1 functions

NQ@D1_, D2_, q_, t_D := WithB8Β1 = Β@q, tD<,
D2 * Hypergeometric2F1B1

2
,

1

-1 + q
,
3

2
, -D22 H-1 + qL Β1F - D1 *

Hypergeometric2F1B1
2
,

1

-1 + q
,
3

2
, -D12 H-1 + qL Β1F � Z@q, tDF;

BorlandCall@s_, k_, Σ_, r_, t_, q_D :=

ModuleB8Α, s1, s2<, Α =
H3 - qL

2
HH2 - qL H3 - qL c@qDL q-1

3-q;

s1 = S1@Α, k, q, r, s, Σ, tD; s2 = S2@Α, k, q, r, s, Σ, tD;
s MQ@Α, Σ, s1, s2, q, tD - ã-r t k NQ@s1, s2, q, tDF;

On average the hypergeometric version is faster:

So = 50; K = 40; r = 6 � 100; T = 6 � 10; Σ = 3 � 10; q = 1.01;

TableForm@
88"Borland: Hypergeometric version", "Borland: NIntegrate version"<,
Mean@Table@8Timing@BorlandCall@ððDD, Timing@ BorCall3@ððDD< & ��

8So, K, Σ, r, T, q<, 8500<DD<D
Borland: Hypergeometric version Borland: NIntegrate version

0.00503 Second

12.0986

0.008502 Second

12.0986

à 5. The Option Greeks
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à

5. The Option Greeks

A commonly used and  powerful mathematical  tool in  assessing  an  option's  risk  is its  sensitivity
to  changes  either  in  market  conditions  or  in  the  underlying  asset  itself.  An  arsenal  of  five
distinct  tools  has  been  developed  based  upon  these  sensitivities.  Four  correspond  to  the  first
derivatives  of the  option  with  respect  to:  stock  price  (Delta),  time  (Theta),  interest  rates  (Rho)
and  volatility  (Vega).  Theta  actually  is  the  negative  of the  first  derivative  with  respect  to  time.
Vega is commonly referred to as either Lambda or Kappa. The fifth, Gamma, is calculated as the
second derivative with respect to the stock price. Collectively these five are known as the Greeks
for obvious reasons.  Once again,  we modified Shaw's [12] code to accommodate the case of non-
dividend paying assets.

The Black-Scholes Greeks

BlackScholesCallDelta@s_, k_, Σ_, r_, t_D =

D@BlackScholesCall@s, k, Σ, r, tD, sD;
BlackScholesCallTheta@s_, k_, Σ_, r_, t_D =

- D@BlackScholesCall@s, k, Σ, r, tD, tD;
BlackScholesCallRho@s_, k_, Σ_, r_, t_D =

D@BlackScholesCall@s, k, Σ, r, tD, rD;
BlackScholesCallVega@s_, k_, Σ_, r_, t_D =

D@BlackScholesCall@s, k, Σ, r, tD, ΣD;
BlackScholesCallGamma@s_, k_, Σ_, r_, t_D =

D@BlackScholesCall@s, k, Σ, r, tD, 8s, 2<D;
For a  specific set of values, the  Greeks associated with  the  European  Black-Scholes call  options
are

So = 50; K = 40; r = 6 � 100; T = 6 � 10; Σ = 299 � 1000;
TableForm@88"Gaussian", "Distribution"<,

greeks = 8"Delta", "Theta", "Rho", "Vega", "Gamma"<,
Through@ToExpression@StringJoin@"BlackScholesCall", ðD & ��

greeksD@So, K, Σ, r, TDD<D �� N

Gaussian Distribution

Delta Theta Rho Vega Gamma

0.89153 -3.74597 19.4956 7.20964 0.016075

The Borland Greeks

A similar  arsenal  has been created for the non-Gaussian  model. In addition Borland [10] defines
a “ new Greek" - Upsilon - as the option's first derivative with respect to q. 

BorlandCallDelta@s_, k_, Σ_, r_, t_, q_D =

D@BorlandCall@s, k, Σ, r, t, qD, sD;
BorlandCallVega@s_, k_, Σ_, r_, t_, q_D =

D@BorlandCall@s, k, Σ, r, t, qD, ΣD;
BorlandCallTheta@s_, k_, Σ_, r_, t_, q_D =

- D@BorlandCall@s, k, Σ, r, t, qD, tD;
BorlandCallRho@s_, k_, Σ_, r_, t_, q_D =

D@BorlandCall@s, k, Σ, r, t, qD, rD;
BorlandCallGamma@s_, k_, Σ_, r_, t_, q_D =

D@BorlandCall@s, k, Σ, r, t, qD, 8s, 2<D;
BorlandCallUpsilon@s_, k_, Σ_, r_, t_, q_D =

D@BorlandCall@s, k, Σ, r, t, qD, qD;
For a  specific set of values,  the  Greeks associated with  the  European  non-Gaussian  call  options
are 7



For a  specific set of values,  the  Greeks associated with  the  European  non-Gaussian  call  options
are

So = 50; K = 40; r = 6 � 100; T = 6 � 10; Σ = 299 � 1000; q = 1.01;

TableForm@88"Non-Gaussian", "Distribution"<,
greeks = 8"Delta", "Theta", "Rho", "Vega", "Gamma", "Upsilon"<,
Through@ToExpression@StringJoin@"BorlandCall", ðD & �� greeksD@
So, K, Σ, r, T, qDD<D �� N

Non-Gaussian Distribution

Delta Theta Rho Vega Gamma Upsilon

0.891386 -3.76197 19.4868 7.24104 0.0160282 0.757974

à 6. Graphical Results - The Options and Their Greeks

The  results  in  this  article  are  visual  and  fall  into  two main  categories.  The  first  deals  with  the
options  themselves  and  their  relationship  to  various  parameters:  strikes,  expiration  time,
volatility  and  q,  etc.  The  images  in  the  first  section  generally  compare  the  standard  Gaussian
model against  the non-Gaussian  model. The second category deals primarily  with the traditional
five Greeks and Upsilon as defined in section 5. 

á The Options     

20 30 40 50 60 70 80
Strike

0

5
10

15

20

25
30

l
l

a
C

Call Price

Figure 1 demonstrates  two sets  of  Calls  over a range of  Strike  Prices,  one generated by Black-
Scholes and one by the non-Gaussian  model.  S(0),  abbreviated  as S0,  is  set to  50,  r = 0.06  and
T = 0.6. For the B-S case (solid  blue) q = 1 and Σ = 0.3. For the non-Gaussian  case (dashed red)
q = 1.5 and Σ = 0.299.
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Call Price Difference

Figure 2 demonstrates  two sets of Call  Price Differences over a range of Strike Prices: Borland -
BlackScholes.  S0 = 50, r = 0.06. The solid  blue line represents time  T = 0.6. Borland  is calculated
using q = 1.5 and Σ = 0.297; BS is calculated using Σ = 0.3. For the dashed red line, time T = 0.05,
Borland using q = 1.5 and Σ = 0.41; BS using Σ = 0.3.

The  image  directly  above  demonstrates  that  the  fatter  tails  of  a  Tsallis  distribution  (q = 1.5)
allows  for  greater  probabilities  of  a  call  going  either  deep  in-the-money  or  deep  out-of-the-
money.
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The  image  directly  above  demonstrates  that  the  fatter  tails  of  a  Tsallis  distribution  (q = 1.5)
allows  for  greater  probabilities  of  a  call  going  either  deep  in-the-money  or  deep  out-of-the-
money.
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Figure 3 demonstrates  Call  Options  versus q  for  two different  expiry times  and for  three distinct
strikes.  The left column  is calculated with t = 0.06, the right  column  with t = 0.05.  The three rows
represent  K = 45  (in-the-money),  K = 50  (at-the-money)  and  K = 55  (out-of-the-money),  all  with
S0 = 50, r = 0.06  and Σ = 0.299.
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Figure  4  demonstrates  Call  Prices  vs  Volatility  and  Call  Prices  vs  Time-to-Maturity  for  three
strikes.  Black  lines  represent  in-the-money  calls  (top),  K = 45.  Blue  represents  at-the-money
(middle),  K = 50. Red represents out-of-the-money  (bottom),  K = 55 all  with S0 = 50 and r = 0.06.
Solid lines represent Black-Scholes. Dashed lines represent Borland with q = 1.5.
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Figure  5  demonstrates  the  five  traditional  Greeks  -  Delta  JD = ∆c

∆S
N,Theta  JΘ = - ∆c

∆T
N,  Vega

JV = ∆c

∆Σ
N,  Rho  JΡ = ∆c

∆r
N  and  Gamma  JG = ∆D

∆S
N.  Solid  blue  lines  represent  Black-Scholes  and

dashed  red  lines  represent  Borland  with  q = 1.5.   For  the  "new"  Greek  Upsilon  J¡ = ∆c

∆q
N  the

dashed  line  represents    Borland  with  q = 1.1.  The  solid  lines  represent,  in  order,  Borland  with
q = 1.3 (red), q = 1.4 (green), q = 1.45 (blue) and q = 1.5 (black).  All  are calculated over a range of
Stock Prices with K = 50, r = 0.06, T = 0.4 and Σ = 0.300

à 7. Conclusion 

It  has  long  been  observed  that  the  Black-Scholes  model,  while  adequate  in  describing  stable
markets,  is  no  longer  reliable  for  highly  volatile  markets  and  that  it  has  become necessary  to
introduce  additional  stochastic  volatility  models  to  account  for  this.  Here  we  offer  another
solution that  posits the observed variability as a function of the non-extensive parameter  q. This
additional  parameter  allows  an  explanation  of  the  moneyness  bias  in  modern  markets.
Furthermore  the  need  for  proper  hedging  in  volatile  markets  is  often  poorly  modeled  by
traditional  measures  of  the  greeks.  Here  we  show  that  values  of  q ¹ 1  can  accommodate  the
extreme  sensitivity  for  option  prices  close to  maturity  and  the  strike  value  by providing  greeks
that  reflect  this  observed responsiveness.  Lastly  both  the  option  prices  and  their  greeks  can  be
determined rapidly using Mathematica's  Integrate[] function. 
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1 Introduction

Let us consider a linear system of equations Ax = b, with A ∈ Rn×n. Then, solving this
system with some direct method, in floating point arithmetic, we get an approximation
x̂(0) to the solution. Iterative refinement is a well established and studied technique to
improve the accuracy of the computed solution x̂(0) of the linear system Ax = b. This
process can be summarized in the following algorithm

Algorithm Iterative refinement

Input A, b, nTol, xTol

Compute an approximation to the solution of Ax = b: x̂(0)

k = 0; x(−1) = ∞
While k ≤ nTol and ‖x̂(k) − x̂(k−1)‖ ≥ xTol do

Compute the residual r(k) = b−Ax̂(k)

Solve the system A y(k) = r(k): ŷ(k)

Update the solution x̂(k+1) = x̂(k) + ŷ(k)

k = k + 1
End-While
Output x̂(k)
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It is necessary to compute the residual with extra precision to avoid the errors
produced by cancellation of significant figures. For more details in this technique see,
for example [12] and [7].

The usual method to solve a linear system of equations Ax = b is Gaussian elim-
ination. So, in the literature it has been considered the study of iterative refinement
using Gaussian elimination from several points of view: convergence (see [7], [15], [18]
and [19]), stability (see [17] and [12]) and error analysis (see [14] and [19]).

The main purpose of this work is to study the convergence of iterative refinement
using Neville elimination. This method is an alternative procedure to Gaussian elim-
ination to transform a square matrix A into an upper triangular matrix U . Neville
elimination makes zeros in a column of the matrix A by adding to each row a multi-
ple of the previous one. Here we only give a brief description of this procedure (for
a detailed and formal introduction of it we refer to [10]). If A ∈ Rn×n, the Neville
elimination procedure consists of at most n− 1 steps:

A = A(1) → Ã(1) → A(2) → Ã(2) → · · · → A(n) = Ã(n) = U.

On one hand, Ã(t) is obtained from the matrix A(t) by moving to the bottom the rows
with a zero entry in column t, if necessary, to get that

ã
(t)
it = 0, i ≥ t ⇒ ã

(t)
ht = 0, ∀h ≥ i.

On the other hand, A(t+1) is obtained from Ã(t) making zeros in the column t below
the main diagonal by adding an adequate multiple of the ith row to the (i + 1)th for
i = n − 1, n − 2, . . . , t. If A is nonsingular, the matrix A(t) has zeros below its main
diagonal in the first t− 1 columns. It has been proved that this process is very useful
with totally positive matrices, sign-regular matrices and other related types of matrices
(see [8] and [3]).

A real matrix is called totally positive if all its minors are nonnegative. Totally
positive matrices arise in a natural way in many areas of Mathematics, Statistics,
Economics, etc. Specially, their application to approximation theory and Computer
Aided Geometric Design (CAGD) is of great interest. For example, coefficient matrices
of interpolation or least square problems with a lot of representations in CAGD (the
Bernstein basis, the B-spline basis, etc.) are totally positive. Some recent applications
of such kind of matrices to CAGD can be found in [13], [5] and [16]. For applications
of totally positive matrices to other fields see [8].

In [6], [11], [9] and [10] it has been proved that Neville elimination is a very useful
alternative to Gaussian elimination when working with totally positive matrices. In
addition, there are some studies that prove the high performance computing of Neville
elimination (see [2]).

Then, taking into account the convenience of using Neville elimination with totally
positive matrices and that, as far as we know, no study of the convergence of the
iterative refinement through Neville elimination exists, the main goal of this work is to
perform that task.
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Let A be a n× n nonsingular matrix, in [1] it has been proved that the computed
solution x̂ of Ax = b by Neville elimination satisfies

(A + H)x̂ = b, (1)

with H verifying different bounds depending on the matrix A. Considering (1) and the
system

(A + Hk)ŷ(k) = r(k), (2)

we will study the convergence of the iterative refinement. We will prove that in the
general case the procedure converges if

‖Hk‖ ≤
1

2‖A−1‖
. (3)

In the case that A is a totally positive matrix and taking into account that it can be
proved that

‖H‖ ≤ 61
16

γn ‖A‖, (4)

with γn :=
nu

1− nu
, where u is the unit of roundoff, we deduce that the following condi-

tion on A ensures the convergence of the iterative refinement using Neville elimination:

61
16

γn ‖A‖ ‖A−1‖ <
1
2
. (5)

We point out that (4) is of the same kind as the bounds obtained by de Boor and
Pinkus in [4] for Gaussian elimination.

The bound (5) depends on the condition number of the matrix A as every equivalent
bound corresponding to Gaussian method. But, in contrast to most of the equivalent
bounds for this method, our bound does not depend on the growth factor of the elimi-
nation procedure.
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Abstract

In this paper, a mathematical model of the static pantograph/catenary inter-
action for high speed railways. Also, a High Performance Computing Algorithm
associated to the model has been developed to obtain the solution of the static
equilibrium equation of the pantograph/catenary system after an exhaustive study
of the tradictionl mechanical approach based on a set of coupled strings. In order
to obtain an adequate behaviour in the pantograph/catenary system, it is nec-
essary the existence of adequate conditions in the line, and this requires a very
precise mechanical calculus. The resulting stiffness matrix has a high sparsity de-
gree. This circumstance can be exploited into two senses: less memory storage
requeriments, and the use of suitable methods for solving the static equilibrium
equation as projection methods.

Key words: high performance computing, interaction pantograph/catenary, static
equilibrium equation, sparse linear algebra libraries

1 Introduction

The evolution in the transport market resulting from the globalization of the econ-
omy, the increasing deregulation of the markets, the competition on the base of a
customer service, the growing environmental concerns, and the need to ensure a long
term operational profitability consistent with prevailing economic reality are driving to
a radical change (structural and cultural) in the railway sector, centered on innovative
approaches to business and services, conducive to a future-oriented and market-driven
posture in the global transportation marketplace.

The survival in the ever evolving and highly competitive transport market, implies a
continuous search for the roots of excellence enabling railway operators and supplying
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industry to achieve a world-class profile. This quest for excellence has to cover the
entire range of business activities, beginning with market demand and ending with
customer satisfaction. It will entail the need for an integrated development and timely
deployment of the adequate organizational, technological and skill infrastructures.

Thus, the fulfillment of this strategy needs new construction concepts, among them,
the development of more performant coupled pantograph/ catenary systems and a wide
utilization of new technologies.

Furthermore, the multitude of electrification systems currently in use throughout
Europe and subsequently the massive capital investment that would be necessary in or-
der to implement any sort of European wide harmonised solution, preclude to envisage
any major change in this field in the foreseeable future. A detailed study of electrifica-
tion systems and catenary/pantograph technology considering economic aspects may
be found in [4].

During the recent last years, passengers transportation by railway has experienced
a considerable increase in some European countries (Germany, France, Spain, ...). For
that reason, reaching of higher velocities in railways has become a very important
target. In that scenario, the pantograph/catenary system, with its dynamic behaviour,
becomes a crucial component (see [5, 2, 3]), because at high speed it is very difficult to
guarantee the permanent contact of the pantograph head and contact the wire, more
over without the increasing of noise and wear.

In order to obtain an adequate behaviour in the pantograph/catenary system, it
is necessary the existence of adequate conditions in the line, and this requires, among
other aspects, a very precise mechanical calculus. Recent investigations have focused
on dynamical behaviour by dynamical simulations in order to allow a better interaction
of the pantograph and the catenary [3, 6]; in this paper we will follow a more traditional
approach, focusing in the catenary, modeled, as usual, by a set of coupled strings.

The best conditions in which the pantograph would obtain electric energy from the
line are when the contact wire is parallel to the ground, and then, an important problem
is to determine the exact length of the droppers in order to allow the contact wire to
acquire the correct shape. So, our objective is the development of a technique which
allows us to implement a high precision calculation algorithm, and thus to develop a
software tool to design high quality catenaries.

In this work, a High Performance Computing (HPC) Algorithm has been developed
for solving the static equilibrium equation of the pantograph/catenary interaction in
order to obtain good performances.

This paper is structured as follows. In Section 2, the catenary model is described.
Section 3 introduces some aspects on High Performance Computing. Section 4 presents
the standard linear algebra libraries BLAS and SPARSKIT. In section 5 the experi-
mental results are presented. Finally, some conclusions and future work guidelines are
outlined.
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 Figure 1: A span of catenary

2 The catenaty model

The conventional catenary electrification system is designed for heavy-traffic mainline
operation and it is useful for train speeds well above 200 kph. For such high-speed op-
eration an essentially constant contact force must be maintained between the overhead
contact-wire and the locomotive’s pantograph power-collecting apparatus.

As we have previously indicated, in this paper we will use a classical model of
the catenary wire appearing in railways, so we consider the catenary composed from
a reduced range of elements, such as carrier, droppers, contact wire and compensation
arms (see Figure 1). The droppers are supporting the contact wire in order to obtain a
horizontal line. The interval between two compensation arms will be called the span.

In this section an introduction to the problems related to the study of railways
catenaries is outlined. After that, the modelization of the carrier, the contact wire,
the droppers and the compensation arm is carried out. Finally, the static problem is
defined.

2.1 Problems to consider in the mechanical study of railway catenar-
ies

A span of catenary is composed by three types of cables (see Figure 1): the carrier, the
droppers and the contact wire. The carrier is fixed at the supports, while the contact
wire is upheld by the compensation arm.

In the mechanical study of the catenary system, three differents problems can be
considered:

• The calculation of the droppers length: This problem consists on the deter-
mination of the droppers length for obtaining an adecuate position in the contact
wire, as parallel to the ground, as parabolic shape, in order to compesate the
difference of stiffness between the supports and the center. This problem requires
a study of the static forces in the wires.

• The static problem: It consists on the determination of the static position of
the catenary when a force is applied. This allows to know the variation of the
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stiffness along the line.

• The dynamic problem: This allows to simulate the behaviour of the pantograph-
catenary in time.

In the study of the last two problems, a discretization using FEM (Finite Element

Methods) must be used. In order to be able to deal with a great number of variables,
some method for getting adecuate computational efficiency is required.

2.2 Modelization of the carrier and contact wire

The carrier and the contact wire can be considered as a pretensed beam. Under this
assumption, the following Euler-Bernouilli equation is used:

p

g
ÿ = −EIyIV + Txy′′ − p, (1)

Where p is the uniform load of the wire, Tx is the horizontal tension of the wire,
E is the elastic module, g represents the gravity force and I the diametral moment of
inertia.

Equation 1 allows us to discretize the system using FEM in order to obtain the
stiffness matrix and the static equation of an element of the wire with a length of l:

kq = r,

In this case, each node has two variables: the vertical position yi and the angle θi
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. (4)

In the case that we do not consider the bending stiffness (see Figure 2), the cables
are considered as a pretensed string, then each node has a variable, that is, the vertical
position yi. In this case, the system is represented as

k =
Tx

l

[

1 −1
−1 1

]

, r =

[

−
pl
2

−
pl
2

]

, q =

[

yi

yj

]

. (5)
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Figure 2: String elements

2.3 Modelization of the droppers

The droppers can be considered as an elastic bar with a length of l, which are de-
formated from an initial length l0 by an initial load F . The stiffness matrix, the
independent term and the vector variables are:

k =
EA

l

[

1 −1
−1 1

]

, r =

[

EAl0
l

−
EAl0

l
− P

]

=

[

EA − F

−EA + F − P

]

, q =

[

yi

yj

]

, (6)

where P is the weight of the dropper and A the cross area. The initial load F is
known by the static analysis of the forces.

The droppers only can work in a traction mode. Their effect of the opposite case
is not considered.

2.4 Modelization of the campensation arm

The effect of the compensation arm can be considered as an spring with a vertical force
fbover the contact wire:

fb = r0 + (yh − yA)kb, (7)

being kb the apparent stiffness of the compensation arm, yA is the dynamic position
of the holding point, yh is the static position of the holding point, a known data, and
ro is the weight of the cable that supports the compensation arm.

2.5 The static problem

In the static problem the static position of the system is determined when we apply
a vertical force over the contact wire. So, it is necessary to configurate the stiffness
matrix K and the independent term R of the system and then solving the lineal system
for the position of the nodes Q of the cables:
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Figure 3: Model of Catenary. Notation

KQ = R. (8)

Once the equilibrium position of the system is obtained, it is needed to check if all
droppers work in a traction mode. In an affirmative case the problem is solved, but in
the negative case, the stiffness matrix and the independent term must be reconfigured
in order to eliminate the terms of the droppers that do not work, obtaining the new
position and repeating this problem until all droppers work in a traction mode.

2.6 Discretization process

The carrier and the contact wires are discretized according to a finite element method
(FEM), from left to right in a progressive way ([7, 8, 9, 10]. First, inner nodes of the
carrier are numbered obtaining s elements and np droppers (os1, os2, osnp). Making the
same numeration for the contact wire, s+h− 2 elements are obtained (the numeration
of droppers for the contact wire is oh1, oh2, ..., ohnp) (see Figure 3).

Considering the conections between nodes (see Figure 4 and 5) the stiffness matrix
K is conjugate.

From a general point of view, the stiffnes matrix has the following structure

(

K11 K12

K21 K22

)(

Y1

Y2

)

=

(

R1

R2

)

(9)

where K11 ∈ Rnl×nl, K12 ∈ Rnl×na, K21 ∈ Rna×nl and K22 ∈ Rna×na, being nl

the number of free nodes and na the number of nodes subjected to constrains. Y1

represents the unknows in this equation and Y2 are the boundary conditions.

Operating by blocks, the following pair of equations are obtained

21



Figure 4: Nodes linked by means of two string elements.

Figure 5: Nodes linked by means of two string elements and one elastic bar element.

K11Y1 + K12Y2 = R1, (10)

K21Y1 + K22Y2 = R2. (11)

From this pair of equations, only the first one has interest in order to calculate the
unknows Y1. Actually, the final system of equations to be solved is

K11Y1 = R1 − K12Y2. (12)

In 12, all terms except Y1 are known.

One example of K11 matrix is shown in Figure 6. This matrix has a high degree of
sparsity. So, a good treatment of the storage space, and the application of a suitable
method to solve sparse systems lead us to the High Performance Computing approach,
aim of this paper.

3 High Performance Computing Approach

In order to solve a mathematical problem in a efficient way on a computer, the following
steps are involved [13]
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Figure 6: Example of stiffness matrix (test 4)

1. Making a mathematical model of the problem, translating the problem into a
mathematical language, eg. ordinary differential equations.

2. Finding or developing constructive methods for solving the mathematical model,
that is, a literature search to find what methods are available for the problem.

3. Identifying the best method from a numerical point of view.

4. Implementing on the computer the numerically effective method identified in the
previous step.

In general, the developed software has to be a high-quality mathematical software
which guarantees a good solution to the problem. This high quality mathematical
software should have the following features: Power and flexibility, easily read and
modified, portability, robustness, efficient and economic in use of storage.

The two last points are specially important in the problem solved in this work.
In particular, the sparsity and simmetry of the stiffness matrix has been exploted,
improving the efficiency of the implementation and dramatically reducing the memory
storage requirements.

Finally, a High Performance Implementation (HPI) has to take into account the
features of current architectures like, for example, cache memory. These features are
particularly important when rebuilding the traditional algorithms to a block-oriented
implementations. Block-oriented algorithms reduce drastically the data flow between
main memory and secondary memory enhancing the performance of the final imple-
mentation. These HPI have been carried out by using BLAS and SPARSKIT standard
linear algebra libraries.

The BLAS [11](Basic Linear Algebra Subroutines) library includes subroutines for
common linear computations such as dot-products (BLAS-I), matrix-vector multipli-
cation (BLAS-II), and matrix-matrix multiplication (BLAS-III).

Sparse matrices appear on a lot of current problems in science and engineering.
Due to that fact, an intensive research is being carried out in this area producing lot
of storage schemes and methods to deal with sparse matrices. SPARSKIT [12] is a
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software packet which allows us to work with different storage schemes (COO, CSR,
CSC, etc) and iterative methods for solving sparse systems of equations. This packet
is divided into several modules for conversion of storage scheme (FORMAT module),
basic linear algebra operations over sparse matrices (BLASSM and MATVEC module),
system of equations solvers (ITSOL module), etc.

4 Experimental Results

In this section, the experimental results obtained with the new HPC implementation
of the algorithm for solving the static equilibrium equation are presented.

The test battery used in the experiments is shown in Table 1

Test nv np nps nph lv

1 10 10 1 2 59

2 15 11 1 2 64

3 3 15 1 1 64

4 10 10 10 10 59

Table 1: Test Battery

Where nv is the number of sections, np is the number of droppers, nps represents
the number of elements between droppers in the carrier, nph is the number of elements
between droppers in the contact and lv is the length of the section.

The experiments have been carried out in a Pentium III-650MHz with Red Hat
Linux V. 7.2 operating system. The experimental platform has 385 MBytes of RAM
memory and a cache memory of 256 KBytes. BLAS and SPARSKIT libraries have
been compiled in this machine in order to obtain better performances.

Test 1 to 3 are low dimension problems used to verify the results, and test 4 is a
more realistic example (see Figure 6). Thanks to the sparse storage scheme used in this
work, the amount of used memory has been considerably decreased. This reduction in
the storage space compared with the original algorithm is summarized in Table 2. In
Table 2, N represents the number of nodes and nz the number of non-zero elements in
the stiffnes matrix.

Test N nz % Reduction of memory

1 332 1157 98,95

2 542 1902 99,35

3 98 366 96,20

4 2202 6767 99,86

Table 2: Reduction of memory requirements

The execution time has also been drastically reduced. Table 3 shows the execution
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time for the different tests and the percentage of time reduction with respect to the
original implementation

Test Number of iterations Execution time (msecs) % Reduction of memory

1 27 6,379 98,94

2 15 20,124 99,67

3 24 1,389 99,04

4 57 228,58 *

Table 3: Reduction of execution time

The test 4 could not be executed by using the original implementation.

5 Conclusions and Future Work

In this work a High Performance Computing Algorithm has been developed for solving
the static equilibrium equation of the pantograph/catenary system of High Speed Rail-
ways. This new approach is based on the implementation philosophy of High Quality
Sotfware.

The experimental results show that the HPC resulting algorithm provides spectac-
ular reduction in the memory requirements as well as in execution time.

By using BLAS and SPARSKIT standard linear algebra libraries, two secondary
objectives, but not less important, are achieved, i.e., portability and efficiency.

This work is the initial point of a lot of computational efforts in order to apply
the HPC philosophy to different algorithms developed by the authors [17] following
tradicional implementations. So, the future work could be outlined in the following
points:

• Consider the solution of the static equilibrium equation when the spans contains
different number of droppers and these are not equispaced.

• To extent this work considering the stitched catenary.

• To deal with the dynamical problem with guarantees.

• According to the results obtained for the dynamical problem, think about par-
allel implementations on shared memory platforms based on threads [14] or on
distributed memory platforms based on MPI [15] and using the standard library
PETSC [16].

The obtained algorithms will be used by RENFE, the Spanish Railway Company,
in the design of high speed railways (AVE program).
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Extended Abstract

In control and systems theory, delay systems or systems with memory (hysteresis) have
played an important role for many years because of the early realizations by Minorsky and
others [34, 35, 36, 27, 28, 38] that feedback design based on dynamics wherein one ignores
any delays may fail catastrophically to stabilize or control a system in which delays or
hysteresis are present in the dynamics. This is true whether the hysteresis is a fundamental
part of the underlying dynamics or a part of the input or control operator. For the latter
there is a growing body of literature [5, 6, 7, 26, 33, 45] on the Preisach and related theories
for hysteretic control input such as arises in smart material systems [16, 18, 41]. Here we
shall focus on the delays or hysteresis arising in the fundamental dynamics of the systems
to be stabilized or controlled. In particular we consider viscoelastic materials that are
polymeric in nature. This includes a wide range of materials of current importance such as
(rubber or silicone based) filled elastomers and all types of biotissue (soft tissue, ligaments,
cartilage, etc.).

The mathematical modelling of viscoelasticity (sometimes also loosely referred to as
hysteresis) in materials using ideas from elasticity has attracted the attention of a large
number of investigators over the past century. Among significant contributors (see the
many references in [17, 19, 20, 22, 23, 32, 37, 39, 42, 44, 46, 47]) have been some of the
true giants from the fields of engineering and material sciences. One of the most widely
used empirical models for viscoelasticity in materials is the Boltzmann convolution law
[12, 20, 22, 23, 46], one form of which is given in equation (1)

σ(t) = ge(ε(t)) + CD ε̇(t) +
∫ t

−∞
Y (t− s)

d

ds
gv (ε(s), ε̇(s)) ds, (1)

where ε is the infinitesimal strain, Y is the convolution memory kernel, and ge and gv are
nonlinear functions accounting for the elastic and viscoelastic responses of the elastomers,
respectively; for summaries and further references, see Chapter 2 of [23] as well as [12].
This form of model, when incorporated into force balance laws, results in integro-partial
differential equations which are most often phenomenological in nature as well as being
computationally challenging both in simulation and control design. This stress-strain law
implies that the stress depends not only on the current strain and strain rate but also on the
history of the strain and the strain-rate. It is very important to note that the stress-strain
law (1) contains various standard internal strain or internal variable formulations as special
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cases. The anelastic displacement field (ADF) models of Lesieutre [30, 31] for composite
materials exhibiting both elastic and anelastic displacement fields are formulated on the
assumption that the host elastic material contains anelastic materials with internal strains
ε1 which are elastic strain driven. That is, the constitutive laws have the form

σ(t) = Eε(t)− E1ε1(t), (2)

where the internal strain is given by

ε̇1(t) +
1
τ
ε1(t) = c2ε(t), ε1(0) = 0, (3)

or equivalently,

ε1(t) =
∫ t

0
c2e

− t−s
τ ε(s)ds.

Several generalizations of this formulation exist, e.g., Johnson, et al., [24, 25], suggest that
the internal strain is strain rate driven, i.e.,

ε̇1(t) +
1
τ
ε1(t) = c2ε̇(t). (4)

The Boltzmann-type law (1) (under appropriate assumptions on the past memory from −∞
to 0) corresponds to an internal strain model of the form

ε̇1(t) +
1
τ
ε1(t) =

d

dt
gv(ε(t), ε̇(t)), ε1(0) = 0. (5)

This form is often chosen since one finds that neither (3) nor (4) provide laws that readily
describe experimental data, especially in the cases of filled elastomers, biotissues and other
molecular polymers.

Fung, in his extensive efforts [23] with biomechanics and biotissue, develops and presents
the quasi-linear viscoelastic constitutive equation

Sij(t) =
∫ t

−∞
Gijkl(t− τ)

∂S
(e)
kl [Ē(τ)]

∂τ
dτ, (6)

where Sij is the Kirchoff stress tensor, Ē is the Green’s strain tensor, Gijkl is a reduced
relaxation function, and S

(e)
kl is the “elastic” stress tensor. For the scalar components Gijkl,

Fung proposes the reduced relaxation function G(t) given in the form

G(t) =
{

1 + C[E1(
t

τ2
)−E1(

t

τ1
)]

}
[1 + c ln(

τ2

τ1
)]−1. (7)

Here E1(z) =
∫∞
z

e−t

t dt, C represents the degree to which viscous effects are present, and
τ1 and τ2 represent fast and slow viscous time phenomena. We note that the internal strain
variable formulation (2), (5) is equivalent to the constitutive relationship proposed by Fung
if one considers an approximation of the relaxation function G by a sum of exponential
terms. Various internal strain variable models are investigated in [1] and a good agreement
is demonstrated between a two internal strain variable model (e.g., of the form σ = Eε −
E1ε1 − E2ε2) and undamped simulated data based on the Fung kernel G.

Since its introduction, this quasi-linear viscoelastic (QLV) theory of Fung has been ap-
plied successfully in stress-strain experiments to several types of biological tissue. A benefit
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to using (6) as a constitutive equation is that, unlike simpler models for viscoelasticity, it
allows for the consideration of a continuous spectrum (e.g., see the discussions in [23]) of
relaxation times and frequencies (this is also true of the probabilistic-based internal variable
approach developed in [13] and described below). (The need for a continuum of relaxation
times in certain materials was observed many years ago [21, 40, 43, 47].) While Fung’s
theory has been successfully employed for fitting hysteretic stress-strain curves, for control
applications one is interested in using it in a full dynamical model. Unfortunately, the QLV,
as presented by Fung, leads to exceedingly difficult computations within full dynamical par-
tial differential equations, especially in estimation and control problems. This motivated
the development of the internal variable approach described in [1, 13, 30] (which permits
discrete approximation to a continuum) in attempts to approximate well the correspond-
ing dynamic responses even in cases where the stress-strain curves alone do not produce
adequate approximations – see [23].

The probabilistic based internal variable alternative [13] to Fung’s kernel involves a
parameter dependent kernel with a continuous distribution of parameters and internal vari-
ables. In the case of a finite combination of Dirac δ distributions, one obtains a finite
summation of exponential functions as the approximation kernel (see the discussions be-
low). This method can be extended to allow for consideration of a continuous spectrum of
relaxation times and frequencies by utilizing absolutely continuous parameter distributions
in place of the δ distributions.

The internal variable approach to overcome both conceptual and computational chal-
lenges is consistent with the belief that hysteresis is actually a manifestation of the presence
of multiple scales in a physical or biological material system that is frequently modelled
(and masked) with a phenomenological representation such as an hysteresis integral for the
macroscopic stress-strain constitutive law. The internal variable modelling leads to an ef-
ficient computational alternative for the corresponding integro-partial differential equation
models. In addition, it provides a “molecular” basis for the models (for a comparison of
models of viscoelastic damping via hysteretic integrals versus internal variable representa-
tions, see [12] and the references therein).

Our own interest in viscoelasticity in polymeric materials has been motivated by projects
in our Industrial Applied Mathematics Program with at least two of our industrial partners:
The Lord Corporation and Medacoustics, Inc. The collaborations with polymer scientists
and engineers at Lord involved the dynamic modelling of filled rubbers which experimen-
tally exhibit both significant hysteresis and nonlinearity in tensile and shear deformations
as depicted in the sample stress-strain curves in Figure 1. The efforts with engineers at
Medacoustics used some of the viscoelastic models we have investigated in attempts to un-
derstand the propagation of arterial stenosis induced shear waves in composite biotissue in
a sensor development and characterization project.

In some of our earlier efforts [14, 15], the models for hysteretic damping in elastomers
employed a phenomenological Boltzmann-type constitutive law of the form (1). As ex-
plained in [11, 14], our nonlinear materials undergoing large deformations required the use
of finite (as opposed to infinitesimal) strain theories [39]. However, since the nonlinearity
between the stress and finite strain is an unknown to be estimated (using inverse problem
algorithms) and since the finite strain can be expressed in terms of known nonlinearities
as a function of the infinitesimal strain (at least in the problems of interest here), one can
effectively formulate the problem as one of estimating the unknown nonlinearity between
stress and infinitesimal strain (see [14]). Hence one can develop models for stress in terms of
infinitesimal strain. Our previous efforts as summarized in [11] have shown, through com-
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Figure 1: Experimental stress-strain curves for (1) unfilled, (2) lightly filled and (3) highly
filled rubber in tensile deformations.

parison with experimental data, that the best fit to filled elastomer data occurs when ge

and gv are cubic, along with Y as a distribution of decaying exponentials. We subsequently
[9, 10, 11] developed nonlinear models based on stick-slip “molecular” ideas of Johnson
and Stacer [24] and Doi and Edwards [19] which resulted in a form for ge, gv and Y in
(1) that matched the empirical findings reported in [11, 14, 15]. These models allow for
multiple relaxation times present in polymer strands of composite materials within a virtual
compartmental model of entangled chemically cross-linked/physically constrained system of
long chain “molecules”. While accounting for multiple relaxation parameters, these models
do not include physically or chemically based parameters in representations of the polymer
strands.

In the current review, we summarize the historical development of hysteresis laws out-
lined above and briefly outline two recent advances: (i) a new constitutive model [4] that has
been developed which combines the virtual stick-slip continuum “molecular-based” ideas of
Johnson and Stacer [24] with the Rouse bead chain (see Figure 2) ideas as described in
Doi and Edwards [19]; (ii) a two dimensional version [8, 29] of a model that accounts for
stenosis driven shear wave propagation in biotissue.

Figure 2: Representation of vectors for a bead-spring polymer molecule.

The new molecular-based constitutive model, in which polymer chains are treated as
Rouse type strings of interconnected beads (a reasonable approximation for many materi-
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als), permits the incorporation of many important physical parameters (such as tempera-
ture, segment bond length, internal friction, and segment density) in the overall hysteretic
constitutive relationship. Its form is similar to that developed in [11, 10] and does have the
general form (1) of Boltzmann type, even though the kernel is not of convolution type.

In the discussions of the biotissue efforts, we recount an internal variable formulation of
Boltzmann type hysteresis laws to investigate the propagation of stenosis generated waves in
biotissue where it has been demonstrated that a viscoelastic (as opposed to an elastic) for-
mulation is important and that waves generated in a two-dimensional cylindrical geometry
with inner radius partial occlusions can be readily modelled and simulated.

The early models and the nonlinear extensions of the Boltzmann law did not provide
insight into the underlying mechanisms for tensile and/or shear deformations in filled rubber
or biotissue. This is not unexpected since the approaches described above are based on
pseudo-phenomenological formulations. We then ([10, 11]) turned to a different approach
based on molecular arguments which, as we shall see, lead precisely to the class of models
based on a Boltzmann hysteresis formulation. As usual, one begins with force and moment
balance and seeks constitutive laws for the viscoelastic stress term σvisco in

σ(t; τ) = σelast(ε, ε̇) + σvisco(ε1(·)),
where ε = ∂u

∂x is the infinitesimal strain and ε1 is an “internal strain” variable on which
σvisco depends in an hysteretic manner. As described above, we found that a reasonable
description of the data of interest could be given with the typical stress-strain relationship

σ(t) = ge(ε(t), ε̇(t)) +
∫ t

0
γe−

t−s
τ

d

ds
gv(ε(s), ε̇(s))ds,

where τ is a relaxation parameter, gv is defined with cubic polynomials and ge = ĝe(∂u
∂x) +

CD
∂2u
∂t∂x . We have already observed that this expression is equivalent to

σ(t) = g̃e(ε(t), ε̇(t)) + γε1(t; τ), (8)

where, for a given “relaxation parameter” τ, the internal strain ε1(t; τ) satisfies (5). In
fact, we found that highly filled rubbers required multiple relaxation times τ1, τ2 in an
approximation to (7) to obtain good model fits to the data. As one might expect, molecular
based formulations, where microscopic relaxation parameters vary across the population of
molecules in the material, lead to internal dynamics of the form (5),(8) that involve multiple
values of τ . When combined with a Prohorov metric framework (see [2, 3]) for uncertainty in
internal dynamics, these ideas lead to the computational models we have used. Indeed, the
molecular based approach leads to a general class of models with uncertainty or randomness
in the stress

σ(t, x; P ) = g̃e(ε(t, x), ε̇(t, x)) + γ

∫

T
ε1(t, x; τ)dP (τ), (9)

where P is a probability distribution over the set T of possible relaxation parameters, and
ε1(t; τ) satisfies, for each τ ∈ T ,

ε̇1(t, x; τ) +
1
τ
ε1(t, x; τ) = ε̇(t, x)h(ε(t, x)).

For the reptation model derivation in [10], one begins with the Doi/Edwards [19]
stick-slip molecular models as embodied in the continuous tube reptation models of John-
son/Stacer [24] wherein polymer materials such as rubber are postulated to be composed of
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two types of molecules. In tensile deformations, one denotes by L(t) the length of chemically
cross-linked or CC molecules, while `(t) denotes the length of physically constrained or PC
molecules. To use stick-slip models in continuum simulations of reptation in rubbers, one
considers networks of “cells” or boxes of parallel-sided CC boxes and PC boxes with sides
of length (principal stretches)

λc = 1 + ε = 1 +
∂uc

∂x
, λp = 1 + ε1 = 1 +

∂up

∂x
,

respectively. Here uc denotes the deformations of the CC box and up denotes the defor-
mations of the PC box. Using a linear stick-slip assumption as in [24], and strain energy
densities based on experiments of Young and Danik (see [9, 11] for details), one obtains as
a limit of PC response to step tensile deformations of the CC molecules, the ε, ε1 coupled
dynamics

ε̇1 +
1
τ
ε1 = ε̇

1 + ε1

1 + ε
.

However, if one replaces the linear assumption of [9] by a nonlinear stick-slip hypothesis
(which is the basis of the work in [10]), one obtains a more general nonlinear, dynamical
relationship between ε and ε1 given by

ε̇1 +
1
τ
ε1 = ε̇f((1 + ε1)/(1 + ε)).

Expansion and truncation of higher order terms lead to equations of the form

ε̇1 +
1
τ
ε1 = ε̇(α0 + α1ε + α2ε

2 + α3ε
3), (10)

which are of the same form as the internal variable model (5),(8) with gv a cubic polynomial.
For the corresponding contributions to σ from the strain energy densities of Young-Danik/
Johnson-Stacer with the nonlinear stick-slip hypothesis, one obtains a contribution to the
rate independent strain gs

v (after expanding f in a Taylor series and dropping higher order
terms) of the form

gs
v(ε, ε1) = gcubic(ε) + γ1ε1,

where ε1 is as before (i.e., the internal strain satisfying (10)). Thus, the total stress-strain
relationship can be written in the form (9). If the measure P of (9) has atoms at τ1 and
τ2, (i.e., the measure is composed of Dirac measures concentrated at τ1 and τ2), then the
constitutive law leads precisely to the model

σ(t, x; P ) = g̃e(ε(t, x), ε̇(t, x)) + γ1ε1(t, x; τ1) + γ2ε2(t, x; τ2),

which was used in the data fits in [1, 11].
Summary
In the presentation we will expand the details of the history and results from ideas

ranging from Boltzmann to Doi-Edwards/Stacer-Johnson to Fung as outlined above. We
then report on two recent efforts in the modelling of viscoelastic polymers. First, we outline
a new constitutive model which combines the “molecular-based” ideas of Johnson and Stacer
with the Rouse bead chain ideas and explain its relation to the Boltzmann phenomenological
models. Second, we discuss a two-dimensional version of an internal variable model that
accounts for shear wave propagation in biotissue and the model’s relationship to the Fung
kernel model. A brief summary of these two presentations is:
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(i) A Stick-Slip/Rouse Hybrid Model:
We give a brief outline of a new constitutive model; more details of the derivation can be

found in the report [4]. We model a polymer material undergoing directional deformation
by assuming it is composed of two virtual compartments as depicted in Figure 3. One

Figure 3: PC molecule entrapped by the surrounding constraining tube.

compartment consists of a constraining tube which is a macroscopic compartment containing
both CC (chemically cross-linked) and PC (physically constrained) molecules. The other
compartment is microscopic in nature and consist of those PC molecules aligned with the
direction of the deformation. These molecules will at first “stick” to the constraining tube
and be carried along with its motion, but will very quickly “slip” and begin to “relax” back
to a configuration of lower strain energy. In the model derivation to obtain the constitutive
law one computes the contributions of both “compartments” to the overall stress of this
polymer material undergoing deformations.

(ii) Stenosis-Driven Shear Wave Propagation in Biotissue:
In a second discussion, we turn to recent results on the viscoelastic models for prop-

agation of stenosis-driven biotissue waves mentioned above. Specifically we report on two
dimensional models that employ an internal variable approach to model wave propagation.
To motivate this, we recall [1] that coronary artery disease (CAD) is caused by atheroscle-
rosis, the gradual accumulation of plaque along the walls of an artery. This buildup, known
as a stenosis, restricts the flow of blood, leading to a decrease in the oxygen supply to the
heart muscle. It is well known that arterial stenoses produce sounds due to turbulent blood
flow in partially occluded arteries. In principle, turbulent normal wall forces exist at and
downstream from an arterial stenosis, exerting pressure on the wall of the artery which
then causes a small displacement in the surrounding body tissue. The goal is to model the
propagation of the wave generated from the stenosis to the chest wall, and ultimately, to
create an inverse problem methodology which can be utilized to determine the location of
an arterial stenosis. We also discuss comparison of the viscoelastic model to an elastic one
as well as present typical simulations for a biologically motivated example.
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Abstract

We are interested in the use of functional quantization method with low discrep-
ancy points. Two different sampling techniques with respect to Time Discretization
Method and Eigenfunction Expansion Truncation Method are discussed. We apply
our new algorithm to price European and Asian style derivatives. Numerical re-
sults from function quantization method with low discrepancy points are compared
to Monte Carlo simulation and Quasi-Monte Carlo simulation results.

Key words: Functional Quantization, low discrepancy points, Monte Carlo,
Quasi Monte Carlo.

1 Introduction

Generally, there are two ways to approximate a stochastic process Xt, where Xt is as-
sumed to be the Brownian motion because of our interest in derivative pricing. These
two different ways are: time discretization method and eigenfunction expansion trunca-
tion method. The discretization method is done by discretizing time interval [0, T ] into
equal subintervals. The idea behind the second method is Karhunen-Loéve expansion
of Gaussian process. Specially speaking, Karhunen-Loéve eigenbasis and corresponding
eigenvalues of Brownian motion admit a closed form. This particular method has been
extensively explored by Gilles Pagés and Jacques Printems, they used product quan-
tizers to numerically solve option pricing problems. Our goal is to use low discrepancy
points instead of product quantizers. We apply our new algorithm to Asian and Eu-
ropean options, and we get competitive result compared to the method using product
quantizers.
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2 Time Discretization method

We discuss the time discretization techniques with respect to the application for Asian
options. We consider continuous Asian call option defined on [0, T ] with initial asset
price S(0), strike price K, constant risk-free rate r and volatility σ. The asset price
can be formulated as:

S(X(t)) = S(0) exp(r−σ2/2)t+σX(t) .

The payoff depends on the whole path of the asset price process, which is

f(X(·)) = max

(

1

T

∫ T

0

S(X(t))dt − K, 0

)

e−rT .

The price of Asian call option is computed as

I = E(f(X(·)))
Here X(t) is a Brownian motion defined on [0, T ], then we discretize the time interval
[0, T ] to s subintervals equally: tk = kT

s , k = 1, 2, . . . , s. After time discretization, we
can approximate X(t) at each discretized time by

X(tk) =

√

T

s
(Z1 + . . . + Zk).

where Z1, . . . , Zs are i.i.d standard normal distributed random variables. For purpose
of simulation, we can sample X(tk) by,

Xi(tk) =

√

T

s
(zi,1 + zi,2 + · · · + zi,k). zi = (zi,1, . . . , zi,s).

Here the {zi}n
i=1

can be any sequence of points in Rs. For example, {zi}n
i=1

maybe
i.i.d standard normal random variables, the inverse of uniformly distributed low dis-
crepancy sequence on [0, 1]s, e.g. Sobol’ sequence, Halton sequence, or centralized
Voronoi quantizers. i means the ith simulated path. The choice of a good sequence of
points is an activate research topic. For option pricing, this method will be suitable for
European call and put option since the payoff depends only on X(T ). However, for a
continuous Asian option where the payoff depends on the whole path of the asset price
process, there is significant discretization error.

We assume the payoff function fD,s : Rs → R, where fD,s means payoff function
for discretization method with s discretized time intervals. Then, the Asian call option
pricing I is approximately computed as

I = E(f(X(·))) ≈ ID,s,n = E(fD,s(X(·))) =

n
∑

i=1

fD,s (Xi(t1), . . . , Xi(ts)) wi.

where

fD,s(X(·)) = max

(

1

s

s
∑

k=1

S(X(tk) − K, 0

)

e−rT .
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In this equation, n means the number of asset paths and wi means the weight function
which can be chosen as wi = 1

n . We can see from above that fD,s is a s−dimensional
function. This method admits time discretization error.

3 Eigenfunction Expansion Truncation Method

In the above method the accuracy and convergence will be affected by discretization
error. In the second method, which is called functional quantization method studied
by Professor Gilles Pagés, we can ignore discretization error for one moment, however,
we focus more on truncation error.

The basic principle under this idea is the Karhunen-Loéve expansion of Gaussian
process, here, we consider about Brownian motion X(t) defined on [0, T ]. We expand
X(t) based on its eigenfunction and eigenvalue got from Karhunen-Loéve expansion of
X(t), which is

X(t) =
∞

∑

j=1

Zj

√

λjej(t), Zj ∼ i.i.d N(0, 1).

The above expansion has infinitely many eigenvalues and eigenfunctions, and for
numerical computation purpose, we have to truncate it at some level, say, truncate it
as d dimensional expansion, which is

X(t) =

∞
∑

j=1

Zj

√

λjej(t) ≈
d

∑

j=1

Zj

√

λjej(t).

Specifically for Brownian motion on [0, T ], the Karhunen-Loéve eigenfunction and
its eigenvalues admit a closed form given by

ej(t) =

√

2

T
sin

(

π

(

j − 1

2

)

t

T

)

, λj =

(

T

π(j − 1/2)

)

, j ≥ 1.

Having the above close form expansions, we can sample X(t) by choosing some
standard normal distributed random variable which can either be generated by simple
random number generator or be transformed from some low discrepancy sequence by
normal inverse function. For i = 1, 2, · · · , N , we have

Xi(t) ≈
d

∑

j=1

zij

√

λjej(t), zi = (zij) = (zi1, zi2, · · · , zid), zij ∼ i.i.d N(0, 1).

then, we can evaluate the Brownian motion X(t) at any time t by

Xi(tk) ≈
d

∑

j=1

zij

√

λjej(tk), zi = (zij) = (zi1, zi2, · · · , zid), zij ∼ i.i.d N(0, 1).

Here we can use functional quantization based technique to simulate the stock path.
With the above sampled Brownian motion path, we can solve the above Asian option
problem. .
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4 Numerical Experiments

We test the above algorithm on European style option and Asian style option. For Eu-
ropean option, we do not need to use time discretization technique because the payoff
of European option only depends on the state at expiration date. We use pseudo-
random sequence, Vander Corput sequence and randomized Vander Corput sequence
for Monte Carlo and Quasi-Monte Carlo simulation, then we use the same sequence on
functional quantization based method, our numerical test shows that functional quan-
tization method using low discrepancy points is the fastest method to approach the
true value. For Asian option, we use both of the time discretization method and func-
tional quantization method. For time discretization techniques, we use middle point
rule and rectangular rule. Our numerical results show that functional quantization
method using low discrepancy points, and with middle point rule discretization tech-
nique are the most efficient compared to Monte Carlo simulation using pseudo random
sequence, Quasi-Random sequence(Sobol’), and functional quantization method using
pseudo random sequence.
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Abstract

In this talk, First, An ε-uniform computational technique will be presented
for singularly perturbed two-point boundary-value (BVP) problems of reaction
diffusion type with natural boundary conditions. This technique combines a cubic
spline scheme and classical difference scheme. In the inner region, we are using
cubic spline approximation for solution at mesh points, whereas in outer region,
classical difference scheme is used. This variable mesh scheme is applied on well-
known piecewise shishkin mesh. This hybrid scheme is generalized for problems
having Robin type boundary conditions. Also, Techniques to find global solution
and normalized flux of the problems with natural boundary conditions will be
presented. Detailed error analysis is provided and various numerical example are
taken to show the efficiency of these techniques.
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lems, Cubic spline, Global Solution, Normalized Flux.
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Abstract

In this paper, we have considered singularly perturbed two-point boundary-value (BVP)
problems of convection diffusion type. A variable mesh hybrid scheme is proposed for these types
of problems. This scheme combines a cubic spline scheme and mid-point scheme. In the inner
region, the convective term is approximated by three-point differences by spline approximation
of solution at mesh points, whereas in outer region the mid-point approximations are used
for convective term and the classical central difference scheme is used for the diffusive term.
The first-order derivative in the left boundary point is approximated by the cubic spline. This
scheme is applied on the boundary layer resolving Shishkin mesh. In order to show the second-
order ε-uniform convergence of the scheme, a numerical example is taken. Maximum errors
and computational order of convergence are obtained for various values of the perturbation
parameter ε and the number of mesh points N .

Key words: Singular perturbation problems, cubic spline, mid-point scheme, piece-wise uni-
form mesh, uniform convergence.

MSC 2000: 65L10

1 Introduction

Singular perturbation problems (SPPs) arise often in applied areas like fluid mechanics, chemical
reactor theory, quantum mechanics, etc. The solution of these problems has a multiscale character,
it has two components, one slowly varying and another fastly varying in some parts of the domain
of interest, which creates difficulties in solving these problems numerically. Basically, the classical
finite difference/element schemes fail to capture the steep gradients in the boundary layer regions.
Therefore, special attention is required for the numerical approximations of these problems. For a
detailed discussion on the analytical and numerical treatment of SPPs we may refer the reader to
the books of O’Malley [7], Doolan et al. [1], Roos et al. [8] and Miller et al. [3].

In this article, we propose a hybrid numerical scheme for the following singularly perturbed
two-point BVP:

Lu ≡ εu′′(x) + a(x)u′(x) = f(x), x ∈ D = (0, 1) (1.1)
−a(0)u′(0) = −f(0), u(1) = β, (1.2)
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where ε > 0 is a small parameter, a and f are sufficiently smooth functions such that a(x) ≥
α > 0, x ∈ D = [0, 1]. Under these assumptions, the BVP (1.1-1.2) has a unique solution u(x) ∈
C2(D)

⋂
C1(D) exhibiting a weak boundary layer at x = 0, see for example [8].

The application of second order cubic spline difference scheme on whole domain using Shishkin
mesh may result in oscillations in the coarser region due to involvement of three-point approxima-
tions of convective term in the scheme for smaller values of ε. Whereas, the use of midpoint scheme
in whole domain results in oscillation free scheme but with first order convergence rate. In order to
retain the second order convergence of cubic spline scheme together with non-oscillating behavior
of mid-point scheme, we club these two schemes by taking cubic spline scheme in inner region and
mid-point scheme in outer region. The value of the transition parameter σ0 is chosen in such a way
that the resultant hybrid scheme is second order ε-uniformly convergent through out the domain.
More precisely, we take σ0 = 2/α.

The convection-diffusion BVP (1.1-1.2) has been studied earlier by Natesan et al. [5, 6, 9]. In
all these articles, the BVP is solved by using a domain decomposition method. The domain of the
differential equation is divided into non-overlapping subdomains and the differential equation is
solved on each subdomain with suitable conditions at the interfaces of the domain. These methods
are suitable for parallel computers, indeed, in [9], the numerical scheme is implemented in a parallel
machine. Bawa et al. have derived difference schemes for SPPs using cubic splines in [2].

In the following section K and C denote generic positive constants independent of nodal points,
mesh size and the perturbation parameter ε.

2 The Continuous Problem

As the proposed scheme can be generalized easily for problems containing reactive terms, we study
the analytical behavior of the solution of the following BVP, which will be used to derive error
bounds for the derivatives of the solution.

Lu ≡ εu′′(x) + a(x)u′(x)− b(x)u(x) = g(x, ε), x ∈ Ω (2.1)

B0u(0) ≡ b(0)u(0)− a(0)u′(0) = −g(0, ε), B1u(1) ≡ u(1) = β. (2.2)

Definition 2.1 A function g(x, ε) is said to be of Class(K, j), if the derivatives of g with respect
to x satisfy

| g(i)(x, ε) |≤ K[1 + ε−i exp(−αx/ε)], 0 ≤ i ≤ j, x ∈ Ω

Lemma 2.2 [3]. Let v be a smooth function satisfying B0v(0) ≥ 0, B1v(1) ≥ 0 and Lv(x) ≤
0,∀x ∈ Ω. Then v(x) ≥ 0,∀x ∈ Ω.

Lemma 2.3 [3]. Let v be a smooth function. Then, we have the following uniform stability esti-
mate

| v(x) |≤ C[| B0v(0) | + | B1v(1) | +max
y∈Ω

| Lv(y) |], ∀x ∈ Ω.

Lemma 2.4 Let g ∈ Class(K, 0). Then the solution y of (2.1-2.2) satisfies

| y(i)(x) |≤ C, i = 0, 1.

Proof. The proof can be seen in [6].

43



Lemma 2.5 [6] Let g ∈ Class(K, j). Then the solution y of (2.1-2.2) satisfies

| y′′(0) |≤ C and | y(i)(0) |≤ Cε−i+1, i = 3(1)j + 1.

Theorem 2.6 Let g be of Class(K, j). Then the solution y of (2.1-2.2) satisfies

| y(i)(x) |≤ C[1 + ε−i+1 exp(−αx/ε)], i = 2(1)j + 1, x ∈ Ω.

Proof. Refer [6] for the proof.

Corollary 2.7 If u(x) is the solution of (1.1-1.2) and a, b and f are in Cj(Ω), then u satisfies

| u(i)(x) |≤ C[1 + ε−i+1 exp(−αx/ε)], i = 1(1)j + 1, x ∈ Ω.

3 The Discrete Problem

In this section, first, we derive the cubic spline scheme on variable meshes, and then propose the
hybrid scheme. Finally, we provide the piece-wise uniform Shishkin meshes for the SPP (1.1-1.2).

3.1 Cubic Spline Difference Scheme

Let the mesh points of Ω = [0, 1] be

x0 = 0, xi =
i−1∑

k=0

hk, hk = xk+1 − xk, xN = 1, i = 1, 2, . . . , N − 1. (3.1)

We derive the difference scheme in the following.
For given values u(x0), u(x1), · · · , u(xN ) of a function u(x) at the nodal points x0, x1, . . . , xN ,

there exists an interpolating cubic spline S(x) with following properties:

(i) S(x) coincides with a polynomial of degree three on each subinterval [xi, xi+1], i = 0, . . . , N−1;

(ii) S(x) ∈ C2[0, 1];

(iii) S(xi) = u(xi), i = 0, . . . , N .

The cubic spline can be given by

S(x) =
(xi+1 − x)3

6hi
Mi +

(x− xi)3

6hi
Mi+1 +

(
u(xi)− h2

i

6
Mi

)(
xi+1 − x

hi

)
+

+
(

u(xi+1)− h2
i

6
Mi+1

)(
x− xi

hi

)
, xi ≤ x ≤ xi+1, i = 0, · · · , N − 1 (3.2)

where Mi = S′′(xi), i = 0, · · · , N .
The first derivative of S(x) is given by

S′(x) = −Mi
(xi+1 − x)2

2hi
+ Mi+1

(x− xi)2

2hi
+

u(xi+1)− u(xi)
hi

− (Mi+1 −Mi)
6

hi,

xi ≤ x ≤ xi+1, i = 0, · · · , N − 1. (3.3)
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and the second derivative is

S′′(x) = Mi
(xi+1 − x)

hi
+ Mi+1

(x− xi)
hi

. (3.4)

For the one sided limit of the first derivative, from (3.3), we have

S′(xi−) =
hi−1

6
Mi−1 +

hi−1

3
Mi +

u(xi)− u(xi−1)
hi−1

, (3.5)

and
S′(xi+) = −hi

3
Mi − hi

6
Mi+1 +

u(xi+1)− u(xi)
hi

. (3.6)

From (3.2) and (3.4), the functions S(x) and S′′(x) are continuous on Ω and for S′(x) to be
continuous at the interior nodes xi, we have from (3.5)-(3.6), the following well-known ’continuity
condition’:

hi−1

6
Mi−1 +

(
hi + hi−1

3

)
Mi +

hi

6
Mi+1 =

(
ui+1 − ui

hi

)
−

(
ui − ui−1

hi−1

)
, i = 1, · · · , N − 1. (3.7)

This equation ensures the continuity of the first order derivative of the spline S(x) at the interior
nodes.

For obtaining second order approximations of the first order derivatives at the nodal points in
terms of approximate values ui of u(x) at xi, we do the following.

Taking usual Taylor series expansion for y around xi, and neglecting the third and forth order
terms, we get the following approximations for ui+1 and ui−1

ui+1 ' ui + hiu
′
i +

h2
i

2
u′′i , (3.8)

ui−1 ' ui − hi−1u
′
i +

h2
i−1

2
u′′i . (3.9)

Multiplying (3.9) by h2
i /h2

i−1 and subtracting from (3.8), we get the following approximation for
u′i:

u′i '
1

hihi−1(hi−1 + hi)
[h2

i−1ui+1 + (h2
i − h2

i−1)ui − h2
i ui−1] (3.10)

Multiplying (3.9) by h2
i /h2

i−1 and adding it to(3.8), we get the following approximation foru′′i :

u′′i '
2

hihi−1(hi−1 + hi)
[hi−1ui+1 − (hi−1 + hi)ui + hiui−1] (3.11)

Also, we have

u′i+1 ≈ u′i + hiu
′′
i , (3.12)

u′i−1 ' u′i − hi−1u
′′
i . (3.13)

Using the expressions for u′i and u′′i from (3.10) and (3.11)respectively, and putting them in (3.12),
we get the following approximation for u′i+1:

u′i+1 '
1

hihi−1(hi + hi−1)
[(h2

i−1 + 2hihi−1)ui+1 − (hi−1 + hi)2ui + h2
i ui−1] (3.14)
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Similarly, using the expressions for u′i and u′′i from (3.10)and (3.11)respectively, and putting them
in(3.13) , we get the following approximation for u′i−1:

u′i−1 '
1

hihi−1(hi + hi−1)
[−h2

i−1ui+1− (hi−1 +hi)2ui− (hi−1 +hi)2ui− (h2
i +2hihi−1)ui−1] (3.15)

Substituting
εMj = −a(xj)u′j + f(xj), j = i, i± 1, (3.16)

in (3.7) and using (3.10),(3.14),(3.15) for the first order derivatives,we get the following system
which gives the approximations u1, u2, · · · uN−1 of the solution u(x) at x1, x2, · · · xN−1:





[ −3ε

hi−1(hi + hi−1)
− 2hi−1 + hi

2(hi + hi−1)2
ai−1 − hi

hi−1(hi + hi−1)
ai +

h2
i

2hi−1(hi + hi−1)2
ai+1

]
ui−1

+
[

3ε

hihi−1
− 1

2hi
ai−1 +

hi − hi−1

3hihi−1
− 1

2hi−1
ai+1

]
ui+

+
[ −3ε

hi(hi + hi−1)
− h2

i−1

2hi(hi + hi−1)2
ai−1 +

hi−1

hi(hi + hi−1)
ai +

2hi + hi−1

2(hi + hi−1)2
ai+1

]
ui+1 =

[
hi−1

2(hi + hi−1)

]
fi−1 + fi +

[
hi

2(hi + hi−1)

]
fi+1.

(3.17)
Now, using expressions (3.5) and (3.6) for approximation of the first derivative at boundary

points, we obtain by following:
[
−3εa0

h2
0

− a2
0

h0
− a0a1

2h0

]
u0 +

[
3εa0

h2
0

+
a2

0

h0
+

a0a1

2h0

]
u1 =

[
3ε

h0
+ a0

]
f0 +

a0

2
f1 (3.18)

Finally, the equations (3.17) and (3.18) constitute the system of linear algebraic equations, which
gives the approximations u0, u1, · · · , uN of the solution u(x) at x0, x1, · · · , xN .

3.2 Piece-wise uniform Shishkin mesh

The cubic spline difference scheme derived in the previous subsection 3.1 is on variable meshes and
it is a more general one. For SPPs one need finer mesh in the boundary layer regions and coarse
mesh in the regular region which can be easily obtained v iz. the piece-wise uniform Shishkin mesh.
More precisely, the domain Ω is divided into two subintervals as

Ω = [0, σ) ∪ [σ, 1],

for some σ such that 0 < σ ≤ 1/2. On the subinterval [0, σ) a uniform mesh with N/2 mesh–
intervals is placed, where [σ, 1− σ] has a uniform mesh with N/2 mesh intervals. It is obvious that
the mesh is uniform when σ = 1/2, and it is fitted to the problem by choosing σ be the following
function of N, ε and σ0

σ = min
{

1
2
, σ0ε ln N

}
, (3.19)

where σ0 > 0 is a constant. Further, we denote the mesh size in the regions [0, σ) as h(1) = 2σ/N ,
and in [σ, 1] by h(2) = 2(1− σ)/N .
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3.3 The hybrid scheme

As the use of the second-order cubic spline scheme derived in Section 3.1 in the whole domain gives
satisfactory results only when the values of ε and N are compatible, i.e., when N−1 ≤ ε, and it is
difficult to get uniform convergence. Therefore, taking advantage of its higher order convergence
and uniform convergence of the mid-point scheme, we propose the following hybrid scheme, where
cubic spline scheme is used only in the boundary layer region and mid-point scheme in the outer
region.

More precisely, the hybrid scheme is given as





LNui ≡ r−i ui−1 + rc
i ui + r+

i ui+1 = q−i fi−1 + qc
i fi + q+

i fi+1, i = 1, · · · , N/2− 1,

LNui ≡ r−i ui−1 + rc
i ui + r+

i ui+1 = fi+1/2, i = N/2, · · · , N − 1
(3.20)

along with the following equations corresponding to the boundary points





BN
0 ui ≡ rc

0u0 + r+
0 u1 = qc

0f0 + q+
0 f1,

BN
1 ui ≡ uN = β,

(3.21)

for i = 1, · · · , N/2− 1





r−i =
−3ε

hi−1(hi + hi−1)
− 2hi−1 + hi

2(hi + hi−1)2
ai−1 − hi

hi−1(hi + hi−1)
ai +

h2
i

2hi−1(hi + hi−1)2
ai+1

rc
i =

3ε

hihi−1
− 1

2hi
ai−1 +

hi − hi−1

3hihi−1
− 1

2hi−1
ai+1;

r+
i =

−3ε

hi(hi + hi−1)
− h2

i−1

2hi(hi + hi−1)2
ai−1 +

hi−1

hi(hi + hi−1)
ai +

2hi + hi−1

2(hi + hi−1)2
ai+1;

q−i =
hi−1

2(hi + hi−1)
; qc

i = 1; q+
i =

hi

2(hi + hi−1)
,

(3.22)
and for i = N/2, · · · , N − 1





r−i =
2ε

hi−1(hi + hi−1)
; rc

i =
−2ε

hi−1(hi + hi−1)
− 2ε

hi(hi + hi−1)
− ai+1/2

hi
;

r+
i =

2ε

hi(hi + hi−1)
+

ai+1/2

hi
;

(3.23)

and 



rc
0 = −3εa0

h2
0

− a2
0

h0
− a0a1

2h0
; r+

0 =
3εa0

h2
0

+
a2

0

h0
+

a0a1

2h0
;

qc
0 =

3ε

h0
+ a0; q+

0 =
a0

2
;

(3.24)

The tri-diagonal system of linear algebraic equations (3.20-3.21) can be solved by any existing
codes.
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3.4 Truncation Error

Here, we derive the truncation error for the difference scheme proposed in Section 3.3. The discrete
stability analysis, and error estimates will be carried out in our forthcoming article [4].

For i = 1, · · · , N/2− 1, the truncation error of the hybrid scheme is given by

τi,u = [r−i u(xi−1) + rc
i u(xi) + r+

i u(xi+1)]− [q−i f(xi−1) + qc
i f(xi) + q+

i f(xi+1)]. (3.25)

Using the differential equation (1.1) for f in the above expression, we get

τi,u = [r−i u(xi−1) + rc
i u(xi) + r+

i u(xi+1)]− [q−i (εu′′(xi−1) + ai−1u
′(xi−1)) +

+qc
i (εu

′′(xi) + aiu
′(xi)) + q+

i (εu′′(xi+1) + ai+1u
′(xi+1))]. (3.26)

Now, making use of the Taylor series expansion, we have

u(xi−1) = u(xi)− hi−1u
′(xi) +

h2
i−1

2!
u′′(xi)−

h3
i−1

3!
u(iii)(xi) +

h4
i−1

4!
u(iv)(xi) + · · · ,

and

u(xi+1) = u(xi) + hiu
′(xi) +

h2
i

2!
u′′(xi) +

h3
i

3!
u(iii)(xi) +

h4
i

4!
u(iv)(xi) + · · ·

Using the values of u(xi−1), u(xi+1) in (3.26), we have

τi,u = T0,iu(xi) + T1,iu
′(xi) + T2,iu

′′(xi) + T3,iu
(iii)(xi) + T4,iu

(iv)(xi) + h.o.t., (3.27)

where

T0,i = r−i + rc
i + r+

i ,

T1,i = −hi−1r
−
i + hir

+
i − (q−i ai−1 + qc

i ai + q+
i ai+1),

T2,i =
h2

i−1

2!
r−i +

h2
i

2!
r+
i + ε(q−i + qc

i + q+
i )− (

hi−1q
−
i ai−1 − hiq

+
i ai+1

)
,

T3,i = −h3
i−1

3!
r−i +

h3
i

3!
r+
i − ε(q−i hi−1 − q+

i hi) +
(

h2
i−1

2!
q−i ai−1 +

h2
i

2!
q+
i ai+1

)
,

T4,i =
h4

i−1

4!
r−i +

h4
i

4!
r+
i + ε(q−i

h2
i−1

2!
+

h2
i

2!
q+
i )−

(
h3

i−1

3!
q−i ai−1 − h4

i

4!
q+
i ai+1

)
.

It can be easily seen that

T0,i = T1,i = T2,i = T3,i = 0, T4,i = −3ε

(
h3

i + h3
i−1

hi + hi−1

)[
1
4!
− 1

2!6

]
.

Thus, we have

τi,u = −3ε

(
h3

i + h3
i−1

hi + hi−1

) [
1
4!
− 1

2!6

]
u(iv)(xi) + O(N−3). (3.28)

For i = N/2, · · · , N − 1, we can proceed in similar manner to show that

τi,u = −ε

(
hi − hi−1

3

)
u(iii)(xi) +

2ε

4!

(
h3

i + h3
i−1

hi + hi−1

)
u(iv)(xi) + O(N−3). (3.29)
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The truncation error at the boundary point x0 is given by

τ0,u = rc
0u(x0) + r+

0 u(x1)− qc
0f0 − q+

0 f1 (3.30)

Again using (1.1), and the Taylor series expansion for u(x1), the truncation error at x0 can be given
as

τ0,u = −3εh2
0

(
1
4!
− 1

2!6

)
u

(iv)
0 (x0) + O(N−3). (3.31)

Using the bounds of the solution obtained in Section 2, one can prove the following proposition.

Proposition 3.1 Let u(x) and ui be respectively the solutions of (1.1-1.2) and (3.20-3.21). Then,
the local truncation error satisfies the following bounds:

|τi,u| ≤ CN−2σ2
0 ln2 N, for 0 ≤ i < N/2,

|τi,u| ≤ C(N−2ε + N−ασ0), for N/2 ≤ i ≤ N − 1, and h(2) ≥ √
ε,

|τi,u| ≤ C(N−1ε + N−ασ0), for N/2 ≤ i ≤ N − 1 and h(2) <
√

ε.

4 Numerical Experiments

To show the accuracy of the present method, here we have implemented it on the following exam-
ple. The results are presented in the form of tables with maximum point–wise errors and rate of
convergent, and figures showing the maximum point-wise error in the loglog scale.

Example 4.1 Consider the following convection-diffusion Neumann BVP:

εu′′(x) + (1 + 2x)2u′(x) = −(x3 + exp(−x)), x ∈ (0, 1)
−u′(0) = −1, u(1) = 0.

To calculate the maximum point-wise error and rate of convergence, we use the double mesh
principle. We calculate the numerical solution UN on ΩN and the numerical solution ŨN on the
mesh Ω̃N where the transition parameter is now given by

σ̃ = min
{

1
2
, σ0ε ln(N/2)

}
.

Define the double mesh differences to be

GN
ε = max

xj ∈Ω
N
ε

|UN (xj)− U2N (xj)|, and GN = max
ε

GN
ε ,

where UN (xj) and U2N (xj) respectively denote the numerical solutions obtained using N and 2N
mesh intervals. Further, we calculate the parameter-robust orders of convergence as

p = log2

(
GN

ε

G2N
ε

)
and p

uni
= log2

(
GN

G2N

)
.

The numerical results for the present example are presented in Table 1. The maximum point-wise
errors are plotted in Figure 1.
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5 Discussion

In this paper, we proposed a hybrid scheme for the numerical solution of convection dominated
two-point boundary-value problems. This scheme consists of both the cubic spline and mid-point
schemes. This scheme is applied on a layer resolving Shishkin mesh. In the boundary layer region,
where the mesh is fine, the cubic spline scheme is used. In the outer region, i.e., in the coarse mesh
region, the mid-point scheme is used. Truncation errors are derived. The numerical results reveal
the second-order ε-uniform convergence of the scheme throughout the domain.
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Table 1: Maximum point-wise errors EN
ε , rate of convergence p and ε uniform errors EN for

Example 4.1.

ε Number of mesh points N

16 32 64 128 256 512 1024 2048
10−0 2.4092e-3 1.1589e-3 5.6619e-4 2.7960e-4 1.3891e-4 6.9227e-5 3.4557e-5 1.7264e-5

1.0558 1.0334 1.0179 1.0093 1.0047 1.0024 1.0012
10−2 1.1338e-3 1.2896e-4 3.8017e-5 3.0810e-5 1.7304e-5 8.3840e-6 3.8425e-6 1.7205e-6

3.1362 1.7622 0.3032 0.8323 1.0454 1.1256 1.1593
10−4 2.6484e-3 6.8858e-4 1.7263e-4 4.2598e-5 1.0332e-5 2.4250e-6 5.2827e-7 9.3387e-8

1.9434 1.9959 2.0188 2.0437 2.0910 2.1986 2.5000
10−6 2.6687e-3 6.9728e-4 1.7630e-4 4.4196e-5 1.1054e-5 2.7623e-6 6.8981e-7 1.7206e-7

1.9363 1.9837 1.9961 1.9994 2.0006 2.0016 2.0033
10−8 2.6689e-3 6.9737e-4 1.7634e-4 4.4212e-5 1.1061e-5 2.7657e-6 6.9145e-7 1.7286e-7

1.9363 1.9836 1.9959 1.9990 1.9997 1.9999 2.0000
10−10 2.6689e-3 6.9737e-4 1.7634e-4 4.4212e-5 1.1061e-5 2.7657e-6 6.9146e-7 1.7288e-7

1.9363 1.9836 1.9959 1.9990 1.9997 1.9999 1.9999
10−12 2.6689e-3 6.9737e-4 1.7634e-4 4.4212e-5 1.1061e-5 2.7657e-6 6.9146e-7 1.7288e-7

1.9363 1.9836 1.9959 1.9990 1.9997 1.9999 1.9999
EN 2.6689e-3 1.1589e-3 5.6619e-4 2.7960e-4 1.3891e-4 6.9227e-5 3.4557e-5 1.7264e-5
puni 1.2035 1.0334 1.0179 1.0093 1.0047 1.0024 1.0012
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Figure 1: Plots of Maximum Point-wise Error for Example 4.1.
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Abstract 
 
Distributed environments are touching newer heights; becoming more useful, popular and 
complex with the emergence of technologies like peer-to-peer computing, autonomic computing, 
pervasive computing and Grid computing. Grid computing is emerging as the new paradigm to 
provide collaborative and resource sharing environment over multiple geographically distributed 
environments. These technologies aim to enable large resource sharing. Due to the heterogeneous 
and dynamic nature of resources, we need to develop highly distributed and extensible framework 
for resource management. This paper presents an algorithm for Grid Resource Management based 
on deadlock detection mechanism used in operating systems. The proposed algorithm aims to 
achieve the major objectives like: fairness of resource distribution among nodes, scalability, 
flexibility and simplicity. A prototype implementation of the algorithm is also presented in the 
paper. 
 
Keyword: Distributed environments, Grid computing, Resource Management, Resource 
Allocation Graph (RAG) 

 

1.  Introduction  
 
Grid infrastructures and computing environments have progressed significantly in the 
past few years [1]. Grid is a distributed system involving heterogeneous resources located 
in different geographical domains that are potentially managed by different organizations. 
In Grid systems many users run their application at the same time and compete for the 
finite number of resources.  
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1. Schematic view of Resource Pool  
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The key problem here is to find the node that offer the desired type and amount of 
resources like cpu, memory, disk space etc. – required by a user to start and complete the 
execution of its application. Owing to the heterogeneous environment of the Grid, it has 
large set of resources. These resources can be represented by resource pool as shown in 
the Figure 1.   
 
These resources are represented as R1, R2, R3, R4 and R5. Categorization may be done 
as CPU, Memory, Printer, Disk Space, and Monitor.  A user may request as many 
resources as it requires to carry out its designated task. Apparently, the number of 
resources requested may not exceed the total number of resources available in the system. 
For example, a process can not request three printers if the system has only two. If a 
system has two CPUs, then the resource type CPU has two instances. If a user requests an 
instance of a resource type, the allocation of any instance of the type will satisfy the 
request. If it does not, then the instances are not identical, and the resource type classes 
have not been defined properly. For example, a system may have two printers; both may 
be defined to be in the same resource class, if no one cares which printer prints the output. 
However, if one printer is on the ninth floor and other is in the basement, then the people 
of ninth floor may not see both printers as equivalent, and separate resource classes may 
need to be defined for each printer. 
 
Deadlock is one of the most serious problems in multitasking concurrent programming 
systems [2]. Consider a simple case study of an organization: In an organization 
thousands of employees work for a shift and they need some resources for specific 
amount of time. Suppose a user U1 uses the memory for half a day and in between this 
half day user U4 need, the same memory. So, to use the memory user U4 has to wait or 
U1 and U4 may have to compete for the memory at the same time. Once they are 
competing a condition occurs which is known as deadlock. Deadlock can be described 
through a Resource Allocation Graph (RAG) [3]. It can be shown that, if the graph 
contains no cycles, then no process in the system is deadlock. If the graph does not 
contain a cycle, then a deadlock may exist. Suppose that process P3 requests an instance 
of resource type R2. Since no resource instance is currently available, a request edge 
P3→ P2 is added to the graph (Figure 2). At this point, two minimal cycles exist in the 
system: P1→R1→P2→R3→P3→R2→P1 and P2→R3→P3→R2→P2.   Processes P1, P2, P3 
are deadlocked. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Resource Allocation Graph (RAG) with Deadlock 
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Deadlock is constant problem often offsetting the advantages of resource sharing [4]. A 
set of threads is deadlocked if each thread is waiting for an event that can only be 
generated by another thread in the set [5]. Detecting the deadlock is one of the major 
problems in Grid Computing [6].  When a deadlock is detected message is propagated to 
whole cycle of the deadlock as described in the Section 3.1.  Some algorithms for 
deadlock detection are described in following sections. 
 

2.   Deadlock Detection Algorithms 
 

2.1 Assessment Algorithm 

This algorithm is used for finding out whether or not a system is in assessing state. It can 
be described as follows: 

I. Initialize Start := Open and Finish [i] := False  
  for i =1,2,…,n. 

II. Let Start and Finish be vectors of length v and n, respectively.  
III. Find an i such that both 

a. Finish[i] = False 
b. Requirei <= Start 

      If no such i exists, go to step IV 
IV. Start := Start + Allotment; 

Finish[i] := True; 
Go to step II. 

V. If Finish[i] = True for all i, then calculate that the system is in safe state. 
 

This algorithm may require an order of v*n2 operations to decide whether the state is safe. 
 

2.2 Demand Resource Algorithm 
 

Let Requesti  be the request vector for user  Pi. If Requesti [j] = k, then user Pi wants k 
instances of resource type Rj. When a request for resources is made by user Pi, the 
following actions are taken: 
 

a. If Requesti  <= Requirei, go to step b. Otherwise, raise an error condition, since the 
user has exceeded its maximum. 

b. If Requesti  <= Requirei, go to step c. Otherwise Pi must wait, since resources are 
not available. 

c. Have the system pretend to have allotment  the request resources to user Pi  by 
modifying the state as follows: 

Open :=Open – Requesti; 
Allotment := Allotmenti + Requesti; 
Requirei := Requirei - Requesti; 
 

If the resulting resource allocation state is safe, the transaction is completed and user Pi is 
allocated the resources. However, if the new state is not assess, then Pi must wait for 
Requesti  and the old resource-allocation state is restored. 
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3.  Proposed  Approach and Data Structures for the Algorithm 
 
Based on the above algorithms the proposed approach and data structures for the 
algorithms are as follows. When a new user enters into the system, it must declare the 
maximum number of instances of each resource type that it may need. This number may 
not exceed the total number of resources in the system. When a user requests a set of 
resources, the system must determine whether the allotment of these resources will leave 
the system in assess state. If it will, the resources are allocated; otherwise, the user must 
wait until some other user releases enough resources. 
Several data structures must be maintained to implement the algorithm. These data 
structures encode the state of the resource-allocation system. Let n be the number of users 
in the system and v be the number of resource types. We need the following data 
structures. 
 

• Open: A vector of length v indicates the number of available user of each type. If 
available [Resource j] = k, there are k instances of resource type Rj open. 

• Max: An n*v matrix defines the maximum demand of each user. If Max [i, j] = k, 
then user Qi may request at most k instances of resource type Rj. 

• Allotment: An n*v matrix defines the number of resources of each type currently 
allocated to each user. If Allocation [i,j] = k, then user Qi is currently allocated k 
instances of resource type Rj. 

• Require: An n*v matrix indicates the remaining resource need of each user. If 
require [i,j] = k, then user Qi may need k more instances of resource type Rj to 
complete its task. Note that Require [i,j] = Max [i,j] – Allotment [i,j]. 

 
 

3.1 Type of messages 
 
• Inadequate number of resources: Once the user request for resources, if 

resources are not available then popup message is generated “inadequate number 
of resources”. 

• Over allocation of resources: If available resources are less then or equal to zero 
then ‘over allocation of resources’ message is popped up.  

• Failed to satisfy the Customer: the message ‘failed to satisfy’ the customer is 
popped up when the requested resources are not available. 

• Satisfy the Customer: If not failed to satisfy the customer then the message 
generated is “satisfy the customer”. 

• State is Safe: Once the customer is satisfied the ‘state is safe’. 
• State is Unsafe: If the Customer is not satisfied the ‘state is unsafe’. 
 

 
4. Implementation Details  
 

We have considered the standard C library function, malloc. Initially implementation of 
this algorithm is done using ‘C’ programming language. Five cases are considered i.e. 
‘failed to allocate the existing resources’, ‘failed to allocate the available resources’, 
‘state is safe’, ‘state is unsafe’, and ‘overallocation of resource’.  In order to do this we 
need to declare the argument count (argc) and the array of strings (argv).  We have used 
two 1-dimensional arrays and two 2-dimensional arrays, as pointers, and use malloc call 
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later to make them into arrays with actual storage. The pseudocode of the proposed 
algorithm is given below. 
 

4.1  The pseudocode for the proposed Deadlock Detection Algorithm 
 

procedure Deadlock Detection Algorithm (nr, nc, argc, argv) 
 {Enter the number of resource ,number of customer for the computation, argc (argument 
count), argv (array of strings)} 
          var 
             nr, nc, ii, jj, existing_resourrces, available_resources, current_allocation, 
requested_resources, done=0, trials=0, freed=0 
  begin 
      Step 1:  nr, nc; { PLEASE SPECIFY THE NUMBER OF    
                               RESOURCES AND NUMBER OF CUSTOMERS} 

Step 2:        if (! (existing_resources)  || (! (available_resources) ||(! (current_allocation) ||  
         (! (requested_resources) then  //if Resources are not present 
                 failure: “inadequate number of resources”  //Message pop up  

     Step 3:        for ii :=0 to< nr do 
how many of existing_resources exists?  

     available_resources [ ]= existing_resources [ ]  
Step 4:        for ii:=0 to < nc 

{tell me about the resources for customers} 
{how many of resources are currently allocated to customer} 

available_resources[ ] -= current_allocation[ ] [ ] 
 //available_resources =   available_resources – current_allocation 

if available_resources [ ] <  0 
{overallocation of resources} 
exit (1) 
else 
how many maximum of resources would customer like to have? 
Requested_resource[ ] [ ] -= current_allocation [ ] [ ] 
//Requested_resources = Requested_resources-current_allocation 

      Step 5:          while (!done) 
do 
trials =0; 
freed = 0; do begin 
for ii := 1 to <nc 
if requested_resources  
 {trials++; 
   failed = 0;  
for jj := 1 to < nr 
if requested_resources [ ] [ ] > available_resources [ ] [ ] 
{failed = 1 
failed to satisfy the customer} 
break; 

      Step 6:                       if (!failed) { 
{ free++; 
for jj := to < nr 
{ available_resources [ ] += current_allocation [ ] [ ] 
//available_resources = available_resources + current_allocation 
} 
free (requested_resources) ; 
requested_resources [ ] = NULL; 
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{satisfying customer} 
      Step 7:                     if (trials = = 0) { 

{the state is safe} 
                 exit (0); 
      Step 8:                 if (freed = = 0) 

{the state is unsafe} 
exit(1); 

    end; {Deadlock Detection Algorithm} 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

1. User Initiates the Algorithm 
2. If  (!Available_Resources) || (!Existing_Resources ) || 

(!Current_Allocation) || (!Requested_Resources) then  
“EXIT”  
Message pop up, “inadequate number of resources” 

3. For the number_of_resources 
Available_Resources[ ] = Existing_Resourecs [ ] 

4. For the number_of_customers 
If available_resources<0 

Msg “Overallocation of resources” 
Else 
How many maximum of resources would customer like to 
 have? 
Requested_Resources [ ]-= Current_Allocation [ ] 

5. While (!done) 
If Requested_Resources [ ] > Available_Resources [ ] 
Msg ”Failed to satisfy the customer” 

6. if(!failed) 
Messge pop up,  “satisfying the customer” 

7. State is Safe 
8. State is Unsafe 
9. Exit 

 
 

Figure 4. Detail Description of Execution of the Algorithm Shown in Figure 3. 
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Figure 3. An Example of Execution of Algorithm 
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5. Conclusion 
 
 We have proposed a Deadlock Detection Algorithm, in Grids which is well suited for 
applications such as Resource Management in Grids. Deadlock Detection algorithm is 
capable of meeting the identified requirements and the approach is workable. By 
implementing the Algorithm proposed above in Grid Computing, we can establish a 
Fairness, Scalability, Flexibility and Simplicity in Resource Management.  Figure 3. 
shows example of execution of the algorithm. Figure 4. Shows the detail description of 
the execution of the algorithm. 
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Abstract 
 

The Grid is computing and data management infrastructure, which provides the electronic underpinning for 
a global society in business, government and research. To realize the global grid environment we need a 
standard architecture to cope up the heterogeneity and the interoperatability The middleware component is 
of extreme importance while building the Grid environment, as the majority of the Grid specific features 
are implemented using the Grid middleware. The grid middlewares act as glue between the grid resource 
components and the application components. The Globus, Condor, Nimrod/g, Alchemi are the popular 
middlewares. The comparative analysis of these middlewares let the grid community know the choices 
available.  
 
Keywords: Grid computing, Middleware, Globus, Nimrod/g, Alchemi, Condor 
 
 
1. Introduction 

 Grids are becoming platforms for high-performance and distributed computing [7]. A Grid 
benefits users by permitting them to acces0s heterogeneous resources, such as machines, data, 
people and devices that are distributed geographically and organizationally. They allow users to 
execute compute intensive problems whose computational requirements cannot be satisfied by a 
single machine. Grid Computing has emerged as a new and important field and can be visualized 
as an enhanced form of Distributed Computing. With the advent of new technology, it has been 
realized that paralleling sequential applications could yield faster results and sometimes at a lower 
cost [2]. 

Grid computing is the next generation IT infrastructure that promises to transform the way 
organizations and individuals compute, communicate and collaborate [8][9]. It offers untapped 
processing cycles from networks of computers spanning vast geographical boundaries. Sharing in 
a Grid is not just a simple sharing of files but of hardware, software, data, and other resources [6]. 
Thus a complex yet secure sharing is at the heart of the Grid. 

2. Grid Components 
The various components s that are necessary to form a Grid are as follows. 

 
2.1 Grid Fabric 

 This consists of all the globally distributed resources that are accessible from anywhere on the 
Internet. These resources could be computers (such as PCs or Symmetric Multi-Processors) 
running a variety of operating systems (such as UNIX or Windows), storage devices, databases, 
and special scientific instruments such as a radio telescope or particular heat sensor [17]. 

59



2.2 Core Grid middleware 
This offers core services such as remote process management, co-allocation of resources, 

storage access, information registration and discovery, security, and aspects of Quality of Service 
(QoS) such as resource reservation and trading. These services abstract the complexity and 
heterogeneity of the fabric level by providing a consistent method for accessing distributed 
resources. 

2.3 User-level Grid middleware 
 User level middleware utilizes the interfaces provided by the low-level middleware to provide 

higher-level abstractions and services. This includes application development environments, 
programming tools, and resource brokers for managing resources and scheduling application tasks 
for execution on global resources. 
 

 
Fig 2.2 Grid components [17] 

2.4 Grid applications and Portal 
Grid applications are typically developed using Grid-enabled languages and utilities such as 

HPC++ or MPI. An example application, such as parameter simulation or a grand-challenge 
problem, would require computational power, access to remote data sets, and may need to interact 
with scientific instruments. Grid portals offer Web-enabled application services, where users can 
submit and collect results for their jobs on remote resources through the Web [17]. 

 

3. Grid Middleware 
Grids have middleware stacks, which are a series of cooperating programs, protocols and agents 

designed to help users access the resources of a Grid[28]. Grid Middleware refers to the security, 
resource management, data access, instrumentation, policy, accounting, and other services 
required for applications, users, and resource providers to operate effectively in a Grid 
environment. Middleware acts as a sort of 'glue' which binds these services together. 
 
Formally Grid middleware can be define [23] as: 

60



“A mediator layer that provide a consistent and homogeneous access to resources managed 
locally with different syntax and access methods” 

Till today several implementation of Grid middleware have been achieved. These 
implementations have well identified basic services. These middleware implementations are now 
moving their focus from proprietary/ adhoc solutions to standard based solutions. The brief 
overview of the some popular middleware’s Globus, Alchemi, and Condor is discussed in this 
section. 

3.1 Globus 
The Globus [27] toolkit is designed to enable people to create computational Grids. It has been 

developed over several years chiefly at the Argonne National Laboratory Illinois USA. As an open 
source project any person can download the software, examine it, install it and hopefully improve 
it. By this constant stream of comments and improvements, new versions of the software can be 
developed with increased functionality and reliability. In this way the Globus project itself will be 
on going with constant evolution of the toolkit [27]. 

3.1.1 Globus Pyramids 
Globus Toolkit has three pyramids of support built on top of a security infrastructure, as 

illustrated. They are:  
• Resource management 
• Data management 
• Information services 

All of these pyramids are built on top of the underlying Grid Security Infrastructure (GSI). This 
provides security functions, including single/mutual authentication, confidential communication, 
authorization, and delegation. 
 

 
 

Fig3.1 Globus pyramids [24] 
Resource management 

The resource management pyramid provides support for: 
• Resource allocation 
• Submitting jobs: Remotely running executable files and receiving results 
• Managing job status and progress 

 
Information services 

The information services pyramid provides support for collecting information in the Grid and 
for querying this information, based on the Lightweight Directory Access Protocol (LDAP). 
 
Data management 
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The data management pyramid provides support to transfer files among machines in the Grid 
and for the management of these transfers. [24] 

3.1.2 Components of Globus Toolkit 
For each pyramid previously presented, Globus provides a component to implement resource 
management, data management, and information services. The various Components are: 
GRAM, MDS, GridFTP and GSI.   
 

 
Fig 3.2 System overview of Globus [24] 

 
3.1.2.1 Grid Security Infrastructure (GSI) 

GSI provides elements for secure authentication and communication in a Grid. The 
infrastructure is based on the SSL protocol (Secure Socket Layer), public key encryption, and 
x.509 certificates. For a single sign-on, Globus add some extensions on GSI. It is based on the 
Generic Security Service API, which is a standard API promoted by the Internet Engineering Task 
Force (IETF). 
These are the main functions implemented by GSI are: 
Single/mutual authentication, Confidential communication, Authorization, Delegation 
 
3.1.2.2 Grid Resource Allocation Manager (GRAM) 

GRAM is the module that provides the remote execution and status management of the 
execution. When a client submits a job, the request is sent to the remote host and handled by the 
gatekeeper daemon located in the remote host. Then the gatekeeper creates a job manager to start 
and monitor the job. When the job is finished, the job manager sends the status information back 
to the client and terminates [24]. GRAM contains the following elements: 
globusrun command, Resource Specification Language (RSL), gatekeeper daemon, job 
manager, forked process, Global Access to Secondary Storage (GASS) 
 
3.1.2.3 Monitoring and Discovery Service (MDS) 

MDS provides access to static and dynamic information of resources. Basically, it contains the 
following components: 
Grid Resource Information Service (GRIS), Grid Index Information Service (GIIS), 
Information Provider, MDS client 

 
3.1.2.4 GridFTP 

GridFTP provides a secure and reliable data transfer among Grid nodes [24]. 
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3.2 Alchemi 
Alchemi is an open-source .Net based Enterprise Grid computing framework developed by 
researchers at the GRIDS lab, in the Computer Science and Software Engineering Department at 
the University of Melbourne, Australia. It allows you to painlessly aggregate the computing power 
of networked machines into a virtual supercomputer and to develop applications to run on the grid 
with no additional investment and no discernible impact to users. It has been designed with the 
primary goal of being easy to use without sacrificing power and flexibility.  

3.2.1 Architecture 
Alchemi follows the master-worker parallel programming paradigm [14] in which a central 
component dispatches independent units of parallel execution to workers and manages them. This 
smallest unit of parallel execution is a grid thread, which is conceptually and programmatically 
similar to a thread object (in object-oriented sense) that wraps a "normal" multitasking operating 
system thread.  

3.2.2 Alchemi components 
Alchemi has the following components designed for the grid construction: 
• Manager 
• Executor 
• Owner  
• Cross Platform Manger 
 

 
Fig. 4.4 Alchemi architecture [1] 

 
3.2.2.1 Manger 

The Manager manages the execution of grid applications and provides services associated with 
managing thread execution. The Executors register themselves with the Manager, which in turn 
keeps track of their availability. Threads received from the Owner are placed in a pool and 
scheduled to be executed on the various available Executors. Threads are scheduled on a Priority 
and First Come First Served (FCFS) basis, in that order.  
 
3.2.2.2 Executor 

The Executor accepts threads from the Manager and executes them. An Executor can be 
configured to be dedicated, meaning the resource is centrally managed by the Manager, or non-
dedicated, meaning that the resource is managed on a volunteer basis via a screen saver or by the 
user. For non-dedicated execution, there is one-way communication between the Executor and the 
Manager. Thus, Alchemi’s execution model provides the dual benefit of: 
• Flexible resource management i.e. centralized management with dedicated         execution vs. 

decentralized management with non-dedicated execution; and 
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• Flexible deployment under network constraints i.e. the component can be deployment as non 
dedicated where two-way communication is not desired or not possible (e.g. when it is behind 
a firewall or NAT/proxy server). 

Thus, dedicated execution is more suitable where the Manager and Executor are on the same 
Local Area Network while non-dedicated execution is more appropriate when the Manager and 
Executor are to be connected over the Internet. 
 
3.2.2.3 Owner 

Grid applications created using the Alchemi API are executed on the Owner component. The 
Owner provides an interface with respect to grid applications between the application developer 
and the grid. Hence it “owns” the application and provides services associated with the ownership 
of an application and its constituent threads. The Owner submits threads to the Manager and 
collects completed threads on behalf of the application developer via the Alchemi API [1]. 
 
3.2.2.4 Cross-Platform Manager 

The Cross-Platform Manager, an optional sub-component of the Manager, is a generic web 
services interface that exposes a portion of the functionality of the Manager in order to enable 
Alchemi to manage the execution of platform independent grid jobs (as opposed to grid 
applications utilizing the Alchemi grid thread model). Jobs submitted to the Cross-Platform 
Manager are translated into a form that is accepted by the Manager (i.e. grid threads), which are 
then scheduled and executed as normal in the fashion described above.  

3.3 Condor 
Condor is a high-throughput distributed batch computing system. Condor is a sophisticate job 

scheduler developed by the condor research project at the university of Wisconsin-Madison 
Department of Computer science. Users submit their serial or parallel jobs to Condor, Condor 
places them into a queue, chooses when and where to run the jobs based upon a policy, carefully 
monitors their progress, and ultimately informs the user upon completion [6]. 

3.3.1 Condor architecture 
Condor’s key activities - job-resource allocation, job startup and execution, and metadata 

collection and display – are kept separate, allowing compartmentalization of Condor into clearly 
defined components, distributed amongst submission site, central manager and execution site, as 
illustrated in figure: [5] 
Central Manager: For every condor pool a single central manager is responsible for collecting 
resource characteristics and usage information (i.e. accounting) 

 
Fig. 4.8 Condor Architecture [5] 
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from all machines in the pool and enforcing community policies [5]. It is based on this collected 
information, and on user priorities, that job execution requests can be matched to suitable 
resources for execution during a negotiation cycle.  
 Submit Machine: This system client allows users to submit jobs to a local virtual ‘queue’ 
(scheduler - schedd). The scheduler will request resource allocations for its jobs from the central 
manager during a negotiation cycle [5]. Once a resource has been allocated to a job, the scheduler 
will spawn a shadow daemon responsible for managing the remote execution that job. 
 Execute Machine: The execute machine, represented by the startd daemon, runs jobs on behalf of 
clients [5]. It advertises its capabilities and usage information - as well as requirements and 
preferences upon a match - to the central manager, and manages the local execution of the job (via 
a spawned starter daemon), whilst protecting resource owner policies (e.g. a job may be vacated if 
the user touches the keyboard). 

3.3.2 Condor daemons 
A Condor workstation (machine) [21] runs two Condor daemons, the scheduler daemon Schedd 

and the starter daemon Startd. One Condor machine is designated to run Central Manager (CM), 
which consists of two daemons, the Negotiator and the Collector. The Condor daemons cooperate 
with each other by exchanging messages. The tasks of the daemon are: 
• The Schedd [21][26] maintains a queue of jobs submitted on its machines, prioritizes them and 

controls the remote startup of these jobs. The requirements of each job are stored in a job 
context. 

• The Startd monitors [21][26] the state of its machines, advertises its resources towards the 
CM, handles the startup and monitors the execution of a job submitted at another machine. 

• The Collector [21][26] gathers information of the machines in the pool. The information, 
which is sent by the Schedd (job queue information), the Startd (machine state and resources), 
and the Negotiator (machine properties), is stored in a machine context. 

• The Negotiator [15][16] prioritizes the machines, and matches contexts of jobs and contexts of 
available machines. 

3.4 Nimrod-G 
Nimrod-G is a tool for automated modeling and execution of parameter sweep applications 

(parameter studies) over global computational Grids. It provides a simple declarative parametric 
modeling language for expressing parametric experiments. A domain expert can easily create a 
plan for a parametric experiment and use the Nimrod-G system to deploy jobs on distributed 
resources for execution [19]. It uses novel resource management and scheduling algorithms based 
on economic principles. Specifically, it supports user-defined deadline and budget constraints for 
schedule optimizations and manages supply and demand of resources in the Grid using a set of 
resource trading services 

3.4.1 Architecture 
Nimrod-G has been developed as a Grid resource broker based on the GRACE framework. It 

leverages services provided by Grid middleware systems such as Globus, Legion, and the GRACE 
trading mechanisms. The middleware systems provide a set of low-level protocols for secure and 
uniform access to remote resources; and services for accessing resources information and storage 
management. The modular and layered architecture of Nimrod-G is shown in Figure 4.2.  
The key components of Nimrod-G resource broker consist of: 
• Nimrod-G Clients, which can be: 

o Tools for creating parameter sweep applications. 
o  Steering and control monitors, and 
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o  Customized end user applications (e.g., Active Sheets). 
• The Nimrod-G Resource Broker, that consists of: 

o A Task Farming Engine (TFE), 
o A Scheduler that performs resource discovery, trading, and scheduling, 
o A Dispatcher and Actuator, and 
o Agents for managing the execution of jobs on resources. 

The Nimrod-G broker architecture leverages services provided by lower-level different Grid 
middleware solutions to perform resource discovery, trading, and deployment of jobs on Grid 
resources [19]. 

3.5 Grid Middleware Characteristics 
The various characteristics, which the grid middleware’s should have, are: 
• Transparency:  The grid middleware should provide the users an environment where they are 

unaware of the underlying complexities like where the resources are located, who is the owner 
of that particular resource.  

• Robustness: As the very nature of the grid, they need to operate in very dynamic environment. 
The virtual organizations are constructed dynamically at run time depending upon the 
requirement of a particular application. The chances of the failure of the grid nodes increase; 
the middleware should be able to deal with the faults. It should be able to dynamically relocate 
the load if a node becomes unavailable. 

• Security: The grid spans over a large geographical area and multiple organizations, which 
dynamically collaborate at run time. Every organization has its own security policies, 
authentication mechanisms and security requirements. The middleware must take care of these 
security policies so that the integrity and the confidentiality of these organizations are 
maintained. 

• Persistency: The middleware should be able to mange the states and keep track of them, so 
that the user can retrieve the desired information, like how much the job is completed, how 
long will it still take to finish the job etc, at any time.  

• Scalability: the middleware should scale the grids in a very nice manner as the grids are the 
talk of the day, and they are expanding.  

• Ease to use/ program: The middleware should provide the users an environment where they 
can write code very easily so that it can be run on grid environment. The programming 
environment should be easy to learn.  

 

  
Fig4.9 Nimrod/G Layered Architecture [19] 
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4. Comparative analysis of Middlewares 
As discussed in the problem statement, the middlewares are compared on the basis of following 

characteristics: 

4.1 Category 
The category defines whether the middleware is user level or core middleware. The globus, 

alchemi, condor are core middlewares where as the nimrod/G is a user level middleware. 
Nimrod/g requires a core middleware for it’s functioning. Here we use it with the globus. 

4.2 Security 
Security is key to the grid environment. The globus has GSI pyramid for the security. It uses 

Public Key infrastructure and X.509 certificates for the authentication purposes. The Alchemi has 
role-based security. The manager is configured to support anonymous or non-anonymous 
Executors. The Alchemi administrator configures user, group and permission. In Nimrod/G there 
is as such no security mechanisms. It uses the security provided by the low-level middleware 
services. Condor provides high support for authorization, authentication, encryption. When the 
condor is installed the default configuration setting include none of them. The administrator, 
through the use of macros, enables these features. 

4.3 Architecture 
The globus follows the hourglass model, in which the core functionalities are in the center. It 

has a layered and modular architecture. Each module and layer focuses on a particular aspect. The 
alchemi has hierarchal, master slave architecture. It has a centralized manager and the executors, 
which connect to this manager. Condor too has a hierarchal architecture. The nimrod/g has a 
component based layered architecture. These components interact with each other to deliver the 
functionality. 

4.4 Scalability  
Scalability indicates the ability of a system to increase total throughput under an increased load 

and when hardware or software resources are added. The globus is very close to the hardware. The 
scalability is direct result. It can scale till Internet. Alchemi has a centralized manger so the load 
on the manger increases if the grid is expanded to a large extent. Similarly in the condor the 
centralized architecture limits the scalability. Nimrod/G is extensible enough to use the underlying 
middleware services. 

4.5 Programming environment 
Globus provides the replacement libraries for UNIX & C libraries, Special MPI library (MPICH 

–G), CoG (Commodity Grid) kits in Java, Python, CORBA, Matlab, Java Server Pages, Perl and 
Web Services. The Alchemi uses the Grid multithreaded model for the execution of the 
applications. The condor has support for the C, Java, and MPI environment. The Nimrod provides 
a parametric language to describe the executable written in C or java. 

4.6 Run Time Platform 
The run time platform for the globus is the unix like platforms and the windows. The Alchemi 

run on the windows environment having .net framework installed. The Condor has support for 
both widows and unix platforms. The run time platform plays an important role. As if a user 
familiar with linux environment cannot use the alchemi.  
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4.7 Ease of use/Understand 
The globus is very close to hardware level. It uses the complex calls and the commands to run 

the jobs and it operates on the command line interface. So it is not user friendly. The alchemi has a 
graphical interface and offers the simple API to use the environment. The condor too works only 
on command line interface and user need to learn commands to operate. 

4.8 Scheduling policy 
Globus does not have its own scheduler it uses the above layer functionalities for the 

scheduling. The Condor Scheduling policy is Performance centric i.e. it tries to maximize the 
throughput of overall system. The nimrod/g has market driven scheduling policy i.e. it uses the 
economical principles. Alchemi has system centric Scheduling policy 

4.9 Type of applications 
The condor is used for high throughput computing applications. The nimrod/g is used for 

scientific parametric sweep applications. The Globus and Alchemi are used for the applications 
requiring large computations. 

4.10  Implementation Technologies 
These all are open source projects. The Globus has been implemented using C and java 

technologies. The Alchemi has been implemented using the C#, perl. The Condor has been 
implemented using C and java. The above comparison is summarized in the table given next.  
 
5. Conclusion 

This paper provides the introduction to the grid computing. It emphasizes the importance of the 
middleware components, discusses the major grid middleware technologies At last, the 
comparative analysis between these middleware has  been  done on the basis of various factors. 
This paper provides, the in depth detail of the Grid Middleware that act as an interface between 
the resources and the applications. This paper provides the architectural and philosophical 
differences, between these middleware technologies and thus educates the grid community about 
the choices available. 
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Abstract

In this paper, the new short-term problems that are faced by a generation com-
pany in a deregulated electricity market are addressed and a optimization algorithm
is proposed. Our model of the spot market explicitly represents the price of elec-
tricity as an uncertain exogenous variable. We consider a very complex problem
of hydrothermal optimization with pumped-storage plants, so the problem deals
with non-regular Lagrangian and non-holonomic inequality constraints. To obtain
a necessary minimum condition, the problem was formulated within the framework
of nonsmooth analysis using the generalized (or Clarke’s) gradient and the Nons-
mooth Maximum Principle. The optimal control problem is solved by means of an
algorithm implemented in the commercial software package Mathematica. Results
of the application of the method to a numerical example are presented.

Key words: Nonsmooth Analysis, Control Problem, Electricity markets
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1 Introduction

Over the last decade, the electricity industry has experienced significant changes in
terms of deregulation and competition. In this paper, we focus on the problem that a
generation company faces when preparing its offers for the day-ahead market. Several
methods have been proposed for simulating competitive generation markets. Most of
these models [1] can be categorized into two major groups: models that represent all the
generation companies and models that focus on a particular generation company. Two
approaches can be adopted to represent spot market auctions when only one company
is considered: price modeled as an exogenous variable and price modeled as a function
of the demand supplied by the firm under study. In the former, the price of electricity
does not depend on the company’s decisions. This can be acceptable if the company is
small enough. These models can again be classified into two sub-groups, depending on
whether they use a deterministic [2] or probabilistic [3] price representation.
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In this paper, we only represent the operation of one company in detail, includ-
ing each of the company’s generation units. Our model of the spot market explicitly
represents the price of electricity as an uncertain exogenous variable. We represent gen-
eration units at a high level of detail and our model distinguishes individual generation
units and considers inter-temporal constraints such as hydro reserves. In addition, we
also consider pumped-storage hydro-plants.

The Spanish activity rules [4] have been used as a reference model for the market.
The day-ahead market in the Spanish wholesale electricity market is organized as a set
of twenty-four simultaneous hourly auctions. The simple bid format consists of a pair
of (hourly) values: quantity q[MWh] and price p[euro/MWh]. The utility company
that inspires our paper, HC, controls approximately only 7% of all the electricity that
is generated. So, we consider our company as a price-taker, and under this assumption,
the volatility of the spot market price of electricity is represented by a stochastic model.
Price forecasting techniques in power systems are relatively recent procedures [5] [6].
Although the problem of constructing the probability distribution exceeds the purpose
of this paper, we suggest the following simplified approach based on [7]. The idea is to
search for past spot market sessions that can be considered similar to the session that
the company is about to face. To identify the days, we classify the entire collection of
sessions (using clustering techniques) according to the values of an explanatory variable.
The most relevant information about the current session for our problem is the vector
of 24 prices that has resulted from the day-ahead market clearing. Once a group
of S similar days has been identified, the company can assume that the probability
distribution for the market session under study is completely defined by these past
S market sessions (probability distributions with finite support). If we now focus on a
particular auction, it is easy to understand that the S quantities and S prices decided by
the company for that hour constitute the offer curve (nondecreasing) that the company
must submit to that auction.

This paper addresses a very complex problem of hydrothermal optimization with
pumped-storage plants. In this kind of problem (see the previous paper [8]), the La-
grangian is piecewise continuous and we consider constraints for the admissible gen-
erated power. Hence, this paper considers non-regular Lagrangian and non-holonomic
inequality constraints (differential inclusions). To obtain a necessary minimum condi-
tion, the problem is formulated within the framework of nonsmooth analysis [9] using
the generalized (or Clarke’s) gradient and the Nonsmooth Maximum Principle. This
characteristic distinguishes our work from all the above.

2 Statement of the Problem

In this section the optimization problem of one company is described, the objective
function of which can be defined as its profit maximization. Let us assume that our
hydrothermal system accounts for n hydro-plants and m thermal plants: the (Hn−Tm)
problem.

Let Ψi : Di ⊆ R+ −→ R+ (i = 1, . . . ,m) be the cost functions (euro/h) of the m
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thermal plants. The most usual cost function of each generator can be represented as
a quadratic function:

Ψi(Pi(t)) = αi + βiPi(t) + γiP
2
i (t); i = 1, ..., m

where Pi(MW ) is the power generated, and we consider the thermal plants to be
constrained by technical restrictions of the type

Pi min ≤ Pi(t) ≤ Pi max; i = 1, ..., m, ∀t ∈ [0, T ]

[0, T ] being the optimization interval. In prior studies [10], it was proven that the
problem with m thermal plants may be reduced to the study of a hydrothermal system
made up of one single thermal plant, called the thermal equivalent : the (Hn − T1)
problem. We shall denote as the equivalent minimizer of {Ψi}m

1 , the function Ψ :
D1 + · · ·+ Dm → R defined by

Ψ(P (t)) = min
m∑

i=1

Ψi(Pi(t)); Pmin ≤ P (t) ≤ Pmax

with P (t) the power generated by said thermal equivalent.
We assume that our system accounts for n hydro-plants that have a pumping

capacity. The mapping H : ΩH −→ R

H(t, z1(t), . . . , zi(t), . . . , zn(t), ż1(t), . . . , żi(t), . . . , żn(t)) = H(t, z(t), ż(t))

is called the function of effective hydraulic contribution and is the power contributed
to the system at the instant t by the set of hydro-plants, zi(t) being the volume that is
discharged up to the instant t by the i-th hydro-plant, żi(t) the rate of water discharge
at the instant t by the i-th hydro-plant, and ΩH ⊂ [0, T ] × Rn × Rn the domain of
definition of H.

We say that ż = (z1, . . . , zn) is admissible for H if zi belong to the class Ĉ1[0, T ]
(the set of piecewise C1 functions), and (t, z(t), ż(t)) ∈ ΩH , ∀t ∈ [0, T ]. The volume bi

that must be discharged up to the instant T is called the admissible volume of the i-th
hydro-plant. Let b = (b1, . . . , bn) ∈ Rn be the vector of admissible volumes. In a general
model, with hydraulic coupling between the n hydro-plants, we call Hi(t, zi(t), żi(t)) :
ΩHi = [0, T ]×R×R −→ R the function of effective hydraulic contribution by the i-th
hydro-plant, being

H(t, z(t), ż(t)) =
n∑

i=1

Hi(t, zi(t), żi(t))

Besides, we consider Hi(t, zi(t), żi(t)) to be bounded by technical constraints

Hi min ≤ Hi(t, zi(t), żi(t)) ≤ Hi max; i = 1, · · · , n, ∀t ∈ [0, T ]

Throughout the paper, no transmission losses will be considered; a crucial aspect
when addressing the optimization problem from a centralized viewpoint. From the
perspective of a generation company, and within the framework of the new electricity
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market, said losses are not relevant, since the generators currently receive payment for
all the energy they generate in power plant bars.

Let us assume that the cost function Ψ : R+ −→ R+ satisfies Ψ′(x) > 0, ∀x ∈ R+,
i.e. it is strictly increasing. This constraint is absolutely natural: it reads more cost
to more generated power. Let us assume as well that Ψ′′(x) > 0, ∀x ∈ R+, i.e. it is
strictly convex. The models traditionally employed meet this constraint.

Let us assume that the function Hi is strictly increasing with respect to the rate of
water discharge żi, i.e. ∂Hi/∂żi > 0 (more power to a higher rate of water discharge)
and that [∂Hi/∂zi]żi=0 = 0. Let us also assume that ∂2Hi/∂ż2

i < 0, i.e. Hi is concave
with respect to żi. The real models meet these three constraints. In addition, pumped-
storage plants are considered, and in this kind of problem, the derivative of Hi with
respect to żi (∂Hi/∂żi) presents discontinuity at żi = 0, which is the border between
the power generation zone (positive values of żi) and the pumping zone (negative values
of żi). In the real models, it is verified that H+

ż ≤ H−
ż . In the (Hn − T1) problem, the

objective function is given by revenue minus cost during the optimization interval [0, T ]

F (P, z) =
∫ T

0
[p(t)(P (t) + H(t, z(t), ż(t)))−Ψ(P (t))] dt

Revenue is obtained by multiplying the total production (thermal and hydraulic) of the
company by the clearing price p(t) in each hour t. Cost is given by Ψ, the cost function
of the thermal equivalent, where P (t) is the power generated by said plant. With this
statement, our objective functional in continuous time form is

max
P,z

F (P, z) = max
P,z

∫ T

0
L(t, P (t), z(t), ż(t))dt (2.1)

with L(t, P (t), z(t), ż(t)) = p(t)(P (t) + H(t, z(t), ż(t)))−Ψ(P (t)), on the set

Ω =



z ∈

(
Ĉ1[0, T ]

)n
|

zi(0) = 0, zi(T ) = bi

Hi min ≤ Hi(t, zi(t), żi(t)) ≤ Hi max, ∀t ∈ [0, T ]
∀i = 1, . . . , n



 (2.2)

3 The (H1 − T1) Problem

We begin the development in this section by presenting the simple problem with one
pumped-storage hydro-plant (i = 1). In the (H1−T1) problem, we have z = z and our
objective functional is

F (P, z) =
∫ T

0
L(t, P (t), z(t), ż(t))dt

with L(t, P (t), z(t), ż(t)) = p(t)(P (t) + H(t, z(t), ż(t)))−Ψ(P (t)) on the set

Ω =
{

z ∈ Ĉ1[0, T ] | z(0) = 0, z(T ) = b
Hmin ≤ H(t, z(t), ż(t)) ≤ Hmax, ∀t ∈ [0, T ]

}
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where L(·, ·, ·, ·) and Lz(·, ·, ·, ·) are the class C0 and Lż(t, P, z, ·) is piecewise continuous
(Lż(t, P, z, ·) is discontinuous in ż = 0). The problem involves non-holonomic inequal-
ity constraints (differential inclusions) and the previous assumptions guarantee that:
Lżż(t, P, z, ż) < 0; Lż(t, P, z, ż) > 0. We also assume that

H(t, b, ż(t)) ≤ H(t, z(t), ż(t)) ≤ H(t, 0, ż(t)), ∀z ∈ Ω

These suppositions are fulfilled in all real hydrothermal problems, and bearing in mind
the weak influence of z(t), (H(t, b, ż) ' H(t, z, ż) ' H(t, 0, ż)), it is reasonable to
substitute the restriction: Hmin ≤ H(t, z(t), ż(t)) ≤ Hmax by others of the type: Hmin ≤
H(t, b, ż); H(t, 0, ż) ≤ Hmax. Thus, it is reasonable to substitute Ω by

Ω∗ =
{

z ∈ Ĉ1[0, T ] | z(0) = 0, z(T ) = b
Hmin ≤ H(t, b, ż); H(t, 0, ż) ≤ Hmax, ∀t ∈ [0, T ]

}

The solution to the problem in Ω∗ will be very close to that obtained with the set Ω, the
advantage being that the mathematical treatment of sets of type Ω∗ is much simpler
than of those of type Ω. We shall focus in the present paper on the development of
the applications of Optimal Control Theory (OCT) and nonsmooth analysis to this
problem. Let us term as the coordination function of z ∈ Ω∗ the function in [0, T ],
defined by:

Yz(t) = Lż(t, P (t), z(t), ż(t))−
∫ t

0
Lz(s, P (s), z(s), ż(s))ds

denoting by Y+
z (t) and Y−z (t) the expressions obtained when considering the lateral

derivatives of L with respect to ż. Let us now see the fundamental result, which is the
basis for elaborating the optimization algorithm. We present the problem considering
the state variables to be z(t) and P (t) and the control variables u1(t) = ż(t) and
u2(t) = Ṗ (t). The optimal control problem is thus:

max
u1(t),u2(t)

∫ T

0
L(t, P (t), z(t), u1(t))dt; with

{
ż = u1; Ṗ = u2

z(0) = 0, z(T ) = b

u1(t) ∈ Θ = {x | Hmin ≤ H(t, b, x);H(t, 0, x) ≤ Hmax} ; u2(t) ∈ (−∞,∞)

We shall use the nonsmooth version of Pontryagin’s Minimum Principle (PMP) [9] as
the basis for proving this theorem.

Theorem 1 (Theorem of Coordination). If (z∗, P ∗) ∈ (Ĉ1, C1) is a solution
of our problem, then ∃K ∈ R+ such that:

i) If ż∗(t) = 0 =⇒ Y+
z∗(t) ≤ K ≤ Y−z∗(t)

ii) If ż∗(t) 6= 0 =⇒ Yz∗(t) is




≥ K if H(t, b, ż∗(t)) = Hmin

= K if Hmin < H(t, z∗(t), ż∗(t)) < Hmax

≤ K if H(t, 0, ż∗(t)) = Hmax

and Ψ̇ (P ∗(t)) = p(t)

We shall call this relation

Lż(t, P (t), z(t), ż(t))−
∫ t

0
Lz(s, P (s), z(s), ż(s))ds = K ∈ R+, ∀t ∈ [0, T ] (3.1)
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the coordination equation for z(t), and the positive constant K will be termed the
coordination constant of the extremal.

Note. It is very important to stress that the problem is thus easily broken down
into the two sub-problems: Thermal and Hydro. In the thermal sub-problem, the power
P (t) of the equivalent thermal plant is distributed (as we see in [10]) between the m
thermal plants, and so is completely resolved. In the next section, we consider once
more the general problem (Hn − T1) with n hydro-plants, which is the problem to be
solved.

4 Generalization to the (Hn − T1) Problem.
The Optimization Algorithm

In this section, we present an algorithm of the numerical resolution of the problem of
optimization of a hydrothermal system that involves n hydro-plants. The associated
variational problem is related to solving a boundary-value problem for a system of
differential equations. The algorithm uses a particular strategy related to the method
of cyclic coordinate descent (CCD). The CCD method minimizes a function cyclically
with respect to the coordinate variables. With our method, a problem of the type
Hn − T1 could be solved (under certain conditions) if we start out from the resolution
of a sequence of problems of the type H1−T1. The algorithm for the Hn−T1 problem
carries out several iterations and at each j-th iteration calculates n stages, one for each
hydro-plant. At each stage, it calculates the optimal functioning of a hydro-plant, while
the behavior of the rest of the plants is assumed fixed. For every z = (z1, . . . , zn) ∈ Ω,
we consider the functional F i

z defined by

F i
z(P, vi) =

∫ T

0

[
p(t)(P (t) + H i

z(t, vi(t), v̇i(t)))−Ψ(P (t))
]
dt

with H i
z(t, vi, v̇i) = H(t, z1, . . . , zi−1, vi, zi+1, . . . , zn, ż1, . . . , żi−1, v̇i, żi+1, . . . , żn)

where H i
z represents the power generated by the hydraulic system as a function of

the rate of water discharge and the volume turbinated by the i-th plant, under the
assumption that the rest of the plants behave in a definite way. We call the i-th
minimizing mapping the mapping φi : Ω −→ Ω, defined in the following way: for every
z ∈ Ω

φi(P, z1, . . . , zi, . . . , zn) = (P ∗, z1, . . . , z
∗
i , . . . , zn)

where (P ∗, z∗i ) minimizes F i
z. If we set Φ = (φn ◦ φn−1 ◦ · · · ◦ φ2 ◦ φ1) and

(P j , zj) = Φ(P j−1, zj−1)

beginning with some admissible (P 0, z0), we construct a sequence of (P j , zj) via suc-
cessive applications of {φi}n

i=1 and the algorithm will search

lim
j→∞

(P j , zj)
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It is simple to justify the convergence of the algorithm in a finite number of steps,
simply by considering the following solution set:

{z | F (P, z)− F (Φ (P, z))< ε}
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Fig. 1. The Optimization Algorithm.

The application of every φi involves solving a problem of the type (H1−T1). To obtain
the optimum operating conditions of the hydro-plant, we shall use the coordination
equation (3.1). To undertake the approximate calculation of the solution, expressed in
Theorem 1, we use a similar numerical method to those used to solve differential equa-
tions in combination with an appropriate adaptation of the classical shooting method.

Step 1) Approximate construction of zK (the adapted Euler method).
The problem will consist in finding for each K the function zK that satisfies

zK(0) = 0, and the conditions of Theorem 1. From the computational point of view,
the construction of zK can be performed with the use of a discretized version of Equa-
tion (3.1). The approximate construction of each zK , which we shall call z̃K , is carried
out by means of polygonals (Euler’s method). In general, the construction of żK must
be carried out by constructing and successively concatenating the extremal arcs and
boundary arcs until completing the interval [0, T ].

Step 2) Construction of a sequence {Kj}j∈N such that zKj (T ) converges to b (the
adapted shooting method).
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Varying the coordination constant K, we would search for the extremal that fulfils
the second boundary condition zK(T ) = b. The procedure is similar to the shooting
method used to resolve a two-point boundary value problem (TPBVP). A number of
methods exist for solving these problems, including shooting, collocation and finite
difference methods. Among the shooting methods, the Simple Shooting Method (SSM)
and the Multiple Shooting Method (MSM) appear to be the most widely known and
used methods. We implemented a SSM and obtained good results. Effectively, we may
consider the function ϕ(K) := zK(T ) and calculate the root of ϕ(K) − b = 0, which
may be realized approximately using elemental procedures. The secant method was
used in the present paper, and the algorithm shows a rapid convergence to the optimal
solution for a wide range of Kmin and Kmax.

5 Application to a Real Hydrothermal System

A computer program was written (using the Mathematica package) to apply the re-
sults obtained in this paper to a real power system. As an example, we shall use the
hydrothermal system that the electricity company HC has in Asturias (Spain), which
is made up of 2 classic thermal plants: Aboño (with two groups of 360 and 543 of
power (Mw) respectively) and Soto (with two groups of 254 and 350 of power (Mw)
respectively) and 9 hydro-plants. For our optimization problem, we shall only use the 3
variable-head (the generation is function of z and ż) hydro-plants of the utility company
HC : Salime, Tanes (pumped-storage) and La Barca. We do not consider the remaining
hydro-plants, because they are run-of-river type (without reservoir) and power gen-
eration is not controllable. Let us see the models of different subsystems used in our
study. For the cost functions, we use a second-order polynomial

Ψi(Pi(t)) = αi + βiPi(t) + γiP
2
i (t)

The hydro-network has the three hydro-plants on different rivers, so the rate of dis-
charge at the upstream plant does not affect the behaviour at the downstream plants:
the hydraulic system has no hydraulic coupling. We use a variable head model and the
i-th function of effective hydraulic generation Hi (for a conventional hydro-plant) is
given by

Hi(t, zi(t), żi(t)) = Ai(t)żi(t)−Biżi(t)zi(t)− Ciż
2
i (t); żi(t) ≥ 0

where Ai(t), Bi and Ci are the coefficients

Ai(t) =
1
Gi

Byi(S0i + t · ii); Bi =
Byi

Gi
; Ci =

Bti

Gi

For the pumped-storage plant, Hi is defined piecewise, taking in the pumping zone
(żi(t) < 0): M ·Hi(t, zi(t), żi(t)). The parameters that appear in this formula are: the
efficiency G in (m4/h.Mw), the natural inflow i in (m3/h), the initial volume S0 in
(106m3), and the coefficients By in (10−7m−2) and Bt in (10−5hm−2), parameters that
depend on the geometry of the reservoir.
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Let us consider the construction of the scenario structure for the day-ahead market
problem faced by the company HC in the Spanish spot market. In particular, the
market session of February 15th 2006 is considered as the current session. The past
market sessions [4] that are considered relevant range from February 1st to February
14th. Table I presents the results of the clustering analysis performed on this range of
days. The classification provided by the S-means algorithm for S = 4 (four clusters) is
presented below.

Table I. Clustering Analysis.

Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Day W Th F Sa S M T W Th F Sa S M T W

Cluster 4 4 4 1 2 3 4 4 4 4 1 2 3 4 4

As can be seen, the four day types provided by the clustering analysis are quite rea-
sonable: Cluster 1 and Cluster 2 corresponds to low-price days (Saturdays and Sun-
days, respectively), Cluster 3 includes one type of weekday: Mondays, and Cluster 4
comprises the other type of weekdays. This analysis suggests considering eight sce-
narios (eight realizations) for the day-ahead market problem faced by the company on
February 15th. We consider short-term hydrothermal scheduling (24 hours) with an
optimization interval [0, 24] and we consider a discretization of 24 subintervals. The
total optimal hydro and thermal power generation for the company HC are shown in
Figure 2-a and Figure 2-b respectively. The eight scenarios considered are presented in
both figures.
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Fig. 2. (a) Optimal hydro-power. (b) Optimal thermal-power.

The solution yields the optimal offers that the company must submit to each of the day-
ahead market auctions. Figure 3-a shows the offers corresponding to the 4th auction
for the total optimal thermal-power, and for the eight possible realizations. The 8
quantities and 8 prices for that hour constitute the offer curve (nondecreasing) that the
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company must submit to that auction.
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Fig. 3. (a) Thermal-offers. (b) Hydro-offers.

These results can be easily analyzed. Figure 3-a shows that the offer curve obtained
for the 4th hourly auction is quite flat, thus making the company rather uncertain
about the amount of energy that it will finally sell. This is confirmed by Figure 2-b,
in which the company’s eight possible levels of sales for the 4th hour are very different.
However, it is not possible to construct an offer curve (nondecreasing) for the company’s
optimal hydro-power. Figure 3-b shows the offers corresponding to the 12th auction
for the total optimal hydro-power, and for the eight possible realizations. It is easy to
understand that this behaviour is due to the inter-temporal constraints for the hydro-
plants, besides the pumped-storage character of some of the hydro-plants (the optimal
hydro-solution of one of the auctions influences the rest of the auctions). Therefore, we
suggest that the optimal offers that the company must submit, for the hydro-plants,
must be a half value of the optimal hydro-power generation that we present in Figure
2-a.
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Abstract

In the paper, we solve the pricing problem for American options in Markov-
modulated Lévy models. The early exercise boundaries and prices are calculated
using a generalization of Carr’s randomization for regime-switching models. An ef-
ficient iteration pricing procedure is developed. The computational time is of order
m2, where m is the number of states, and of order m, if the parallel computations
are allowed. The payoffs, riskless rates and class of Lévy processes may depend on
a state. Special cases are stochastic volatility models and models with stochastic
interest rate; both must be modelled as finite-state Markov chains.

Key words: regime-switching, Lévy processes, American options, stochastic in-
terest rates, stochastic volatility
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1 Introduction

Different pricing problems in regime switching models were considered in a number
of papers. In the majority of publications, Markov-modulated (geometric) Brownian
motion models are studied. For closed form solutions for perpetual lookback options,
see [11]. Perpetual American put in the geometric Brownian motion model coupled
by a two-state Markov chain was studied in [13]. In [9], a pricing procedure for the
American put with finite time horizon was designed, for GBM modulated by a two
state chain, under assumption that the early exercise boundary in one state is below
the early exercise boundary in the other state. For further references, see the op. cit.
The results for switching models with jumps are scarce due to technical difficulties,
although the literature on pricing of American options under processes with jumps is
fairly extensive by now – see, e.g., [1]-[8], [14], [15] and the bibliography therein. In [2],
the perpetual American put in regime-switching Lévy models with phase-type jumps is
studied. The technique of the paper relies on the special elegant structure of this class
of models and a simple explicit structure of the payoff function. It is not clear how to
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generalize the technique of the cited paper for more general classes of payoff functions
and processes.

In [7], [8], closed form solutions for perpetual American and real options are ob-
tained under uncertainty modelled as a monotone function of a process with i.i.d.
increments. As an application of the technique, explicit recurrent formulas for Carr’s
randomization under Lévy processes are derived. These models of uncertainty exhibit
mean-reverting and switching features, switches being endogenous in the sense that
the characteristics of the price process change as the price arrives in another region
of the state space. In the paper, we extend the method of [5]-[8] coupling (monotone
functions of) Lévy processes by an exogenous finite-state Markov chain, and construct
regime-switching models with both endogenous and exogenous switching. Note that
not only the parameters of the process but the interest rate and payoff functions are
allowed to depend on the state of the Markov chain. Thus, we allow for jumps in the
payoff, interest rate, volatility (and other parameters of the price process or the type
of the process), and jumps in the price process itself.

In the case of perpetual American options, the optimal exercise rules can be viewed
as natural extensions of the record-setting news principles in [4] and universal bad news
principle in [8] to regime switching models; these principles are applied in each state of
the Markov chain assuming that the value functions in all other states are given. Then
the equation for the exercise boundary and explicit analytical expression for the value
function are as simple as in the no-regime-switching case. After that, we prove that
the resulting system of equations for the exercise boundaries and option values in all
states can be easily solved using the iteration method. If the transition rates are small,
iterations converge very fast. Finally, we prove that in the limit, the optimal exercise
rule and option value obtain. In the case of American options with finite time horizon,
we reduce to a sequence of perpetual American options. The solution of options in the
sequence is similar to [5], [6], [7], [15] but simpler even for the non-switching case. Also,
we improve the scheme in op.cit. allowing for time steps of varying sizes; in op.cit., the
time grid was equally spaced.

2 PRELIMINARIES

2.1 Lévy processes and Expected Present Value operators

The moment generating function of a Lévy process can be represented in the form
E

[
ezXt

]
= etΨ(z); the function Ψ is called the Lévy exponent. The latter naturally

appears when one calculates the action of the infinitesimal generator of Xt, denoted L,
on exponential functions: Lezx = Ψ(z)ezx. As a basic example, we will use the process
which appeared in [10] for the first time:

Ψ(z) =
σ2

2
z2 + bz +

c+z

λ+ − z
+

c−z

λ− − z
; (1)

the results are valid for Lévy processes satisfying the (ACP)-property.
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Let T ∼ Exp(q). Then

Ex[g(XT )] := qEx

[∫ +∞

0
e−qtg(Xt)dt

]
.

Introduce the normalized resolvent or expected present value operator: EPV-operator
of a stochastic process X:

Eg(x) = qEx

[∫ +∞

0
e−qtg(Xt)dt

]
.

This operator calculates the EPV of a stream qg(Xt). Applying E to g(x) = ezx and
using the equality E

[
ezXt

]
= etΨ(z), we obtain that E acts on exponential functions as

the multiplication operator by the number q(q−Ψ(z))−1. To ensure that the expectation
is finite, it is necessary and sufficient that the real part of q − Ψ(z) is positive. Since
(q − L)ezx = (q − Ψ(z))ezx, we conclude that q−1(q − L) and E are mutual inverses.
To make this statement precise, we need to specify function spaces between which
q−1(q−L) and E act. We will also need the normalized EPV-operators of the supremum
process X̄t = sup0≤s≤t Xs and the infimum process Xt = inf0≤s≤t Xs. These EPV-
operators act as follows:

E+g(x) := qEx

[∫ ∞

0
e−qtg(X̄t)dt

]
, E−g(x) := qEx

[∫ ∞

0
e−qtg(Xt)dt

]
.

Evidently, E+g(x) = Ex[g(X̄T )] and E−g(x) = Ex[g(XT )], where T is the exponential
random variable introduced at the beginning of this subsection. It is straightforward
to check that E+ and E− also act on an exponential function ezx as multiplication
operators by numbers, which we denote κ+(z) and κ−(z), respectively:

E+ezx = κ+(z)ezx, E−ezx = κ−(z)ezx. (2)

These numbers are κ+(z) = E
[
ezX̄T

]
, κ−(z) = E

[
ezXT

]
. Note that to simplify the

notation, we suppress the dependence of the EPV-operators E , E± and numbers κ±(z)
on q (and on the process X).

2.2 Wiener-Hopf factorization

The Wiener-Hopf factorization formula reads:

E[ezXT ] = E[ezX̄T ]E[ezXT ], ∀ z ∈ iR.

Equivalently, ∀ z ∈ iR
q/(q −Ψ(z)) = κ+(z)κ−(z). (3)

Applying E , E+ and E− to g(x) = ezx and using (2)-(3), we obtain the third version of
the Wiener-Hopf factorization formula:

Eg(x) = E+E−g(x) = E−E+g(x). (4)

By linearity, (4) holds for linear combinations of exponents and integrals of exponents,
hence for wide classes of functions. Equation (4) means that the normalized EPV-
operator of a Lévy process admits a factorization into a product of the normalized
EPV-operators of the supremum and infimum processes.
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2.3 Example

For the Lévy process with the characteristic exponent (1), the Wiener-Hopf factors are

κ+(z) =
∏

l=1,2

β+
l

β+
l − z

, κ−(z) =
∏

l=1,2

β−l
β−l − z

,

where β−2 < λ− < β−1 < 0 < β+
1 < λ+ < β+

2 are the roots of the “characteristic
equation” q −Ψ(β) = 0. EPV-operators acts as follows

E+u(x) =
∑

l=1,2

a+
l β+

l

∫ +∞

0
e−β+

l yu(x + y)dy,

E−u(x) =
∑

l=1,2

a−l (−β−l )
∫ 0

−∞
e−β−l yu(x + y)dy,

where a±1 , a±2 > 0 come from the decomposition of κ±(z) into the sum of simple frac-
tions.

3 CARR’S RANDOMIZATION IN REGIME-SWITCHING
MODELS

Let λjk be the transition rate from state j to state k. The riskless rate in state j is qj .
The infinitesimal generator of the driving Lévy process X

(j)
t in state j is denoted by

Lj , and the Lévy exponent of the process X
(j)
t – by Ψj . We assume that a switch from

state j to state k and a jump of X
(j)
t do not happen simultaneously, a.s. However, we

may produce simultaneous switches and jumps playing with different payoff functions
in different states of the Markov chain.

Consider the American option with the payoff Gj(Xt) in state j and time horizon T .
Here and below, we assume that an index j means that Xt evolves as X

(j)
t−τj , where τ j is

the last moment of a switch to the state j, starting at the point, where switch happened.
Assume that all functions Gj are continuous, non-increasing and change sign; then, at
sufficiently low levels of the stochastic factor, in some states (possibly, not all), it may
be optimal to exercise the option. The standard example is Gj(x) = Kj −Bje

x, where
Kj and Bj are positive. Kj can be interpreted as the strike price in state j, and Bk/Bj

as a jump factor in the stock price at a moment of a switch from state j to state k. For
simplicity, we assume that if the discount rate q is sufficiently large, then each payoff
Gj(X

(j)
j ) can be represented as the EPV of some stream:

Gj(x) = Ex
j

[∫ +∞

0
e−qtgj(X

(j)
t )dt

]
, (5)

where the function gj = gq,j is continuous, non-increasing, positive in a neighborhood of
−∞, and changes sign. The subscript j in Ex

j means that the expectation is calculated
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assuming that Xt will follow the Lévy process X
(j)
t and there will be no switches. If

|Gj(x)| grows as x → ∞ then (5) imposes certain restrictions on the Lévy exponents
Ψj . For instance, if Gj and their derivatives G

(s)
j , s ≤ 2, satisfy the bound

|g(x)| ≤ C(eσ−x + eσ+x), (6)

where σ− ≤ 0 ≤ σ+, then (5) can be satisfied with any q > max{Ψj(σ−),Ψj(σ+)}
and gj = (q − Lj)Gj provided Ψj(z) are defined for z ∈ [σ−, σ+]. For each state j, the
option owner needs to find a stopping time τj ≤ T , which maximizes

Vj(t, x) = Ej,x




∫ τj

0
e−(qj+Λj)t

∑

k 6=j

λjkVk(t,Xt)dt


 + Ej,x

[
e−τj(qj+Λj)Gj(Xτj )+

]
.

to approximate the optimal stopping problem with finite time horizon by sequences of
optimal stopping problems with infinite time horizon. A sequence of optimal stopping
problems with infinite time horizon is determined by a partition 0 = t0 < t1 < · · · <
tN = T of the interval [0, T ], and a “staircase” x = hs, ts < t ≤ ts+1, s = 0, 1, . . . , N−1,
which approximates the early exercise boundary. In the regime-switching version, we
need to introduce a staircase for each state j: x = hs

j , ts < t ≤ ts+1, s = 0, 1, . . . , N − 1.
In the case of put-like options, Gj are non-increasing functions, which change sign, and
in Carr’s approximation, the option is exercised when the state j staircase is reached
or crossed from above, in state j; in the case of call-like options, Gj are non-decreasing
functions, which change sign, and in Carr’s approximation, the option is exercised when
the state j staircase is reached or crossed from below, in state j.

Let vs
j (x) be the approximation to the option value Vj(ts, x) in state j, at time ts,

and set qs
j = ∆−1

s + qj + Λj . Assume that the approximations vs+1
i,∗ on the next time

step are known for all i, and, for a given j, the approximations vs
k,∗, k 6= j, are known.

We assume that these functions are continuous and satisfy bound (6). For s = N ,
vN
j,∗(x) = Gj(x)+ are known and satisfy bound (6). We can interpret vs = (vs

j )
m
j=1 as

the value of the option to swap the stream (∆−1
s vs+1

j,∗ (Xt))m
j=1 for the instantaneous

payoff (Gj(Xt))m
j=1; the value function, stream and payoff are functions on Rm, the

state space of the regime switching process Xt.
For s = N − 1, N − 2, . . . , we need to choose a stopping time, τ s

j so that vs
j (x) is

maximized, and we will show that τ s
j is the hitting time of a semi-infinite interval of

the form (−∞, hs
j ]. The corresponding free boundary problem is

(qs
j − Lj)vs

j (x) = ∆−1
s vs+1

j,∗ (x) +
∑

k 6=j

λjkv
s
k,∗(x),

vs
j (x) = Gj(x), (7)

for x > hs
j and x ≤ hs

j , respectively. We replaced Gj(x)+ in (7) with Gj(x) because
the stream ∆−1

s vs+1
j,∗ (Xt) +

∑
k 6=j λjkv

s
k,∗(Xt) is non-negative, hence, it is non-optimal

to exercise the option unless Gj(Xτs
j
) > 0.

Note that we do not use a scheme which is implicit w.r.t. vs
j but explicit w.r.t.

vs
k, k 6= j, that is, the scheme with vs+1

k,∗ , k 6= j, in the RHS, because this scheme is less
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accurate than the scheme which is implicit w.r.t. all vs
j . However, the latter requires

more iterations. If the transition probabilities λjk are small, the number of iterations
on each time step is small for both schemes.

3.1 Solution of the sequence of perpetual options

For each s = N − 1, N − 2, . . ., we find the set of optimal exercise boundaries {hs
j}m

j=1

in three steps. First, we derive a system for the optimal exercise boundaries and
option values {vs

j}m
j=1 assuming that the option values are sufficiently regular. Then

we construct an iteration procedure, which converges to a solution of this system. We
use the procedure to prove that this solution is sufficiently regular, and that it gives
optimal exercise rules and option values. Finally, we prove that the solution is unique.

Introduce ṽs
j = vs

j − Gj , ṽs
k,∗ = vs

k,∗ − Gk, g̃j =
∑

k 6=j λjkGk − (qj + Λj − Lj)Gj .
Assume that functions Gj and their derivatives up to order 2 satisfy bound (6); then
functions gs

j = (qs
j −Lj)Gj are well-defined. We choose ∆s sufficiently small so that qs

j

is sufficiently large in the sense that for j = 1, 2, . . . , m,

qs
j −Ψj(σ) > 0, ∀ σ ∈ [σ−, σ+]. (8)

Using qs
j and Lj in place of q and L, we define the EPV-operators Es

j , Es,−
j , Es,+

j .

Theorem 3.1 Let the following conditions hold:

(i) ∆s and the Lévy exponents Ψj satisfy (8);

(ii) gs
j = (qs

j − Lj)Gj are non-decreasing functions that change sign, and Gj(+∞) =
−∞;

(iii) g̃j are continuous non-decreasing functions, and g̃j(−∞) < 0;

(iv) for s = l + 1 and all k, functions ṽs
k,∗ are known;

(v) for some j, functions ṽl
k,∗ in states k 6= j are known.

Then for the same j and s = l,

a) function g̃s
j =

∑
k 6=j λjkṽ

s
k,∗ + ∆−1

s ṽs+1
j,∗ + g̃j is a non-decreasing continuous function

satisfying bound (6); in addition,

g̃s
j (−∞) < 0 < g̃s

j (+∞) = +∞; (9)

b) function w̃s
j := Es,+

j g̃s
j is continuous. It increases and satisfies (9), therefore equation

w̃s
j (h) = 0 has a unique solution, denote it hs

j,∗;

c) the hitting time of (−∞, hs
j,∗], τ−(hs

j,∗), is a unique optimal stopping time;

d) Carr’s approximation to state-j option value is

vs
j,∗ = (qs

j )
−1Es,−

j 1(hs
j,∗,+∞)w̃

s
j + Gj ;

e) ṽs
j,∗ = vs

j,∗ − Gj is a positive non-decreasing function that admits bound (6) and
satisfies ṽs

j,∗(+∞) = +∞; it vanishes below hs
j,∗ and increases on [hs

j,∗,+∞).
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3.2 Iteration procedure

For s = N , the state-j option value is known: vN
j,∗(x) = Gj(x)+, and the state-j exercise

boundary hn
j,∗ is a unique root of the equation Gj(h) = 0, j = 1, 2, . . . , m. In the

regime-switching version of Carr’s randomization procedure, we need to calculate the
(approximations to the) exercise boundaries hs

j,∗ and option values vs
j,∗, j = 1, 2, . . . , m,

for s = l < N , assuming that for l + 1 ≤ s ≤ N and j = 1, 2, . . . , m, hs
j,∗ and vs

j,∗
are known. In the non-switching case, we were able to derive explicit formulas for the
(Carr’s approximations to the) exercise boundaries and option values on step s in terms
of the option values on the previous step. Here, in the regime-switching case, we cannot
derive explicit analytical formulas but we can design an efficient iteration procedure
instead. For each s = n − 1, n − 2, . . . and j = 1, 2, . . . , m, we construct sequences
{hsn

j }∞n=0 and {vsn
j }∞n=0, such that the limits

h̄s
j = lim

n→+∞hsn
j , v̄s

j = lim
n→+∞ vsn

j (10)

are the optimal exercise boundary, hs
j,∗, and option value, vs

j,∗ (in the switching analog
of Carr’s randomization procedure, at time step s and in state j). Thus, for each s,
we need to introduce an additional cycle in n; and inside the cycle in n, we will use
additional cycles in j = 1, 2, . . . , m.

Fix s < N . Below, we formulate the iteration procedure for ws
j,∗, w̃s

j,∗, hs
j,∗, vs

j,∗
and ṽs

j,∗. Calculate

ws
0j = −Es,+

j (qs
j − Lj)Gj = qs

j (Es,−
j )−1Gj ,

set vs0
j = 0, hs0

j = +∞, j = 1, 2, . . . , m, and for n = 1, 2, . . . , define, step by step, in the
interior cycle in j = 1, 2, . . . , m,

(i) functions w̃sn
j = wsn

j + ws
0j , where

wsn
j = Es,+

j


∑

k 6=j

λjkv
s,n−1
k + ∆−1

s vs+1
j,∗


 ;

(ii) hsn
j , a solution of the equation w̃sn

j (h) = 0;

(iii) functions

vsn
0j = (qs

j )
−1Es,−

j 1(−∞,hsn
j ](−ws

j0),

vsn
1j = (qs

j )
−1Es,−

j 1(hsn
j ,+∞)w

si
j ,

vsn
j = vsn

1j + vsn
0j ,

ṽsn
j = vsn

j −Gj .

Theorem 3.2 Let conditions (i)–(iii) of Theorem 3.1 hold. Then ∀ s = N − 1, N −
2, . . ., j = 1, 2, . . . , m and n = 1, 2, . . .
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Table 1: Parameters of the processes

m σ b c− λ− c+ λ+

1 0.25 -0.03 0.02 -5 0.015 10
2 0.15 -0.02 0.01 -4 0.01 12
3 0.2 -0.02 0.15 -4.5 0.1 13

a) w̃sn
j is continuous increasing function that changes sign, hence, hsn

j is well-defined;

b) ws,n+1
j > ws,n

j , hsn
j < hs,n−1

j , and vsn
j > vs,n−1

j on [hsn
j , +∞);

c) ṽsn
j (x) = 0, x ≤ hsn

j , and ṽsn
j increases on [hsn

j , +∞);

d) sequences {hsk
j }+∞

k=1 and {vsk
j }+∞

k=1 are bounded from below and above, respectively;
hence, there exist finite limits (10);

e) limits (10) are the optimal time-step-s-state-j exercise boundary, hs
j,∗, and option

value, vs
j,∗; the latter is positive;

f) function ṽs
j,∗ = vs

j,∗−Gj is continuous; it satisfies (6), vanishes below hs
j,∗, increases

on [hs
j,∗,+∞), and ṽs

j,∗(+∞) = +∞.

3.3 Numerical example

The generator of the Markov chain is


−0.03 0.01 0.02
0.015 −0.025 0.01
0.015 0.03 −0.045


 .

In Table 1, we list parameters of processes in different states. Riskless rates: q1 =
0.05, q2 = 0.055, q3 = 0.045; payoff functions: G1(x) = 2−ex, G2(x) = 2.5−2ex, G3(x) =
3− 1.5ex. Numerical experiments demonstrate that the method is sufficiently accurate
even for a very long time interval τ = 50 with more than 150 time steps. In the example
below, we divided interval [0, 25] into 25 subintervals using the geometric progression
with the first term 0.005, then we used the uniform spacing ∆s = ∆25 till t = 15, and
after that, the uniform spacing with ∆s = 2 ∗ ∆25 till t = 50.1186. Close to expiry,
state-1 boundary seems lower than Figure 1 and Table 2 show because it drops down
rather fast, and the part adjacent to 0 almost coincides with the vertical axis. hj,∗(0+)
denote the limit of the early exercise boundary at expiry. The limits are calculated
using the following theorem, which generalizes the result in [5], [15] for Lévy processes.

Theorem 3.3 Let (j, x) be in the money region, that is, Gj(x) > 0, but

0 < (qj + Λj − Lj)(−Gj)(x) +
∑

k 6=j

λjkGk(x)+
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Figure 1: Early exercise boundaries hj,∗(τ) for τ ≤ 50 to expiry. Parameters are in
Table 1. Crosses: hj,∗(0). Dash-dotted lines: early exercise boundaries for the perpetual
option. Solid lines: early exercise boundaries.

+
∫ +∞

−∞
(−Gj(x + y))+Fj(dy). (11)

Then there exists τ0 = τ0(j, x) such that for each τ ∈ (0, τ0), it is not optimal to exercise
the option as XT−τ = (j, x).

Here Fj(dy) is the state-j Lévy density. In our example, (11) has a unique solution, and
it follows from Theorem 3.3, that this solution is not larger than the limit of the early
exercise boundary at expiry. We cannot prove that it is the limit and not just an upper
bound but the numerical results shown below support the claim that the solution is
the limit. In this example, hj,∗(0+) is strictly below hj,∗(0) for each j, which is caused
by the interaction of three factors: the stock pays dividends because qj −Ψj(1) > 0 in
this example; each Lévy process X

(j)
t has the non-trivial positive jumps component; at

a moment of a jump, the payoff may jump up. We will analyze the interaction among
these three factors in a separate publication.
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4 Conclusion

In the paper, we derived the iteration procedure for the American put with finite the
horizon in Markov-modulated Lévy models. The procedure does not use any apriori
assumption on the relative location of the early exercise boundaries in different states.
The riskless rates, payoff functions and Lévy processes depend on a state. Lévy pro-
cesses are assumed to satisfy the (ACP)-property, and payoff functions can be more
general than for the standard put and call options. The procedures are efficient if the
transition rates are not large w.r.t. the riskless rates. The CPU time is of order m2,
where m is the number of states; if parallel computations are used, then the CPU time
is of order m. Numerical example show that the method is accurate for options of
different maturities. Method can be applied to stochastic interest models and stochas-
tic volatility models; both must be modelled as finite state Markov chains. Jumps at
moment of switching can be used to model a mean-reverting component of the price
process; this component may correlate with the stochastic interest rate and volatility.

The method of the paper admit extension in several directions: approximation
of the standard stochastic interest rate/volatility models (with possible switching) by
models constructed in the paper; credit risk models; optimal exercise with learning the
current state; real options, especially, with strategic interactions; and other.
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ANALYSIS OF THE PML METHOD APPLIED TO SCATTERING PROBLEMS AND
THE COMPUTATION OF RESONANCES IN OPEN SYSTEMS.

JAMES H. BRAMBLE,JOSEPH E. PASCIAK, AND SEUNGIL KIM

Abstract: In this talk, I shall consider the application of the so-called perfectly matched layer
(PML) to acoustic and electromagnetic scattering problems as well as discuss how PML can be used
to reformulate problems of computing resonances in open systems.

One of the main difficulty with the numerical approximation of scattering problems is that such
problems are posed on unbounded domains with a boundary condition at infinity given by either the
Sommerfeld condition or, in the case of electromagnetics, the Silver-Müller condition. There are
numerous approaches for dealing with the boundary condition at infinity, e.g., truncating the domain
and applying an approximate boundary condition, truncating the domain and using boundary inte-
gral techniques, using infinite element techniques, or truncating the domain and using a ficticious
absorbing boundary layer (PML). A discussion of these approaches can be found in [1, 2, 8, 9, 12]
and the included references. Computational evidence suggests that the PML approach is competi-
tive and effective. Moreover, it is simple to implement in any suitably general code developed for
bounded domain computations.

For scattering problems, the PML method has a long history starting from papers by Bérenger [1,
2]. The original approach involed the introduction of additional variables so that the equations could
be split in an appropriate way. Subsequently, PML formulations were developed which avoided this
splitting [6, 13]. Chew and Weedon [6] provided significant insight into the understanding of PML
by viewing the method as a complex coordinate shift.

One can view the PML process as two distinct steps. First, a PML problem is posed on the infi-
nite domain whose solution coincides with that of the original problem on a finite domain (region
of interest) while decaying rapidly (exponentially) outside. It is this decay that allows one to trun-
cate the problem to a bounded domain not much larger than the domain of interest and to apply
any convenient boundary condition on the resulting ficticious boundary. Many authors have studied
applications of PML showing the existence and uniqueness of solutions for the truncated problem
and its exponential convergence to the infinite domain PML problem (on the region of interest)
[5, 7, 10, 11]. However, existence and uniqueness results alone are not enough to guarantee stable
numerical approximation. In [4, 5], we show that under appropriate conditions on the PML param-
eters, the PML method leads to continuous and discrete systems which satisfy inf-sup conditions
with uniform constants independent of the truncation domain size and mesh size. Such estimates
are necessary to conclude stable and convergent numerical approximation and will be presented in
this talk.

I will also consider the application of PML to the problem of computing resonances in open
systems, specifically, acoustic resonances. Resonances are related to improper eigenfunctions for
the Helmholtz operator satisfying an outgoing boundary condition. They are improper in the sense
that they grow exponentially at infinity. We shall see that the application of PML converts the reso-
nance problem to a standard eigenvalue problem (still on an infinite domain). This new eigenvalue

1
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problem involves an operator which resembles the original Helmholtz equation transformed by a
complex shift in coordinate system. Our goal will be to approximate the shifted operator first by
replacing the infinite domain by a finite (computational) domain with a convenient boundary con-
dition and second by applying finite elements on the computational domain. I will give theorems
which show that the first of these steps leads to eigenvalue convergence to the desired resonance
values and are free from spirious computational eigenvalues provided that the size of computational
domain is sufficiently large. The analysis of the second step is classical (see [3] and the included
references).

I will conclude the talk with numerical results for PML applied to scattering problems and the
resonance problem. These results will show that PML leads to an effective solution technique for
both of these problems.
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Abstract 

We derive and discuss a general complex symmetric form of the most 
general Jordan block representation and propose various examples in 
physics and chemistry where this extension appears necessary. 
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1. Introduction 
The query whether Jordan blocks of Segrè characteristics larger than one should appear 
in normal Jordan form representations of extended quantum dynamical formulations 
has been perceived many times in the past decades, see e.g. [1,2] and references 
therein. The question has to be elucidated a bit further. Jordan block representations of 
nilpotent operators are of course commonly used in quantum mechanics e.g. step 
operators in angular momentum algebra as well as annihilation and creation operators 
in second quantization. Here we focus on a different theme.  
 
The Hamiltonian, or Liouvillian, of a dynamical system generally serves two purposes: 
they represent a measurable observable, the energy, and simultaneously they generate 
the time evolution of the system. In standard quantum mechanics the Hamiltonian-
Liouvillian is by definition self-adjoint yielding real eigenvalues (with the Segrè 
characteristic equal to one) and unitary time evolution, see e.g. [3]. Within this 
framework it is clear that no Jordan blocks could or should come into view. 
 
However, original advances in non-selfadjoint extensions of Hamiltonian/Liouvillian 
dynamics, [4,5] calls for the immediate incorporation of general classical canonical 
forms of the Jordan type [1,6]. In these extended applications, the possible occurrence 
of degeneracies, with Segrè characteristics larger than one, would result in an unwanted 
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computational breakdown - usually considered as a numerical accident brought forward 
by the self-orthogonality of the transformed vectors.  
 
In the next section we will take into account the form of a complex symmetric 
representation, which is commensurate with the non-self-adjoint extensions mentioned 
above. We will suggest some examples in chemistry and physics where the spectral 
map promotes Jordan block formations. In the final section the group theoretical 
structure of the transformations indicating further interesting organizations within a 
biological frame will be presented. 
  

2. The complex symmetric form of the Jordan block 
Since complex symmetric representations are routine in the majority of non-selfadjoint 
quantum treatments, e.g. complex scaling applications [4], it is important to know that a 
complex symmetric matrix invokes no constraint on the general secular problem. 
Gantmacher [7] proved that every square matrix is similar to a symmetric matrix and 
that every symmetric matrix is orthogonally similar to an explicitly given normal form.  
 
The author has for many years considered situations in which particular complex 
symmetric forms have been employed, see e.g. Ref. [8]. Particular applications concern 
proton transfer processes and dynamics and quantum correlations in condensed matter 
systems, see e.g. Refs. [1,9]. The specific symmetric matrix of dimension m derived 
and used, see Refs. [1, 6] has a very simple and useful structure defined by 

Q

 

   Qkl = (δkl −
1
m

) e
i π
m

(k + l−2)
; k, l =1,2,..m                 (1) 

 
In other words one can prove that 
 
      Q = B−1JB                   (2) 
 
with J defined as  
 

 

    

J =

0 1 0 . 0
0 0 1 . .
. . . . 0
. . . . 1
0 . . . 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

                  (3) 

 
and where the unitary matrix  that connects the standard Jordan form J with Q 
becomes 

B
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B =
1
m

1 ω ω 2 . ω m−1

1 ω 3 ω 6 . ω 3(m−1)

. . . . .

. . . . .
1 ω 2m−1 ω 2(2m−1) . ω (m−1)(2m−1)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

;   ω = e
iπ
m     (4) 

 
 
The form can be generalized to various powers Qr, i.e. 
 

  Qkl
r = ωr (k+ l−2)[δkl − (Rr )kl ];  k,l = 1,2,..m                 (5) 

 
 

  

(R r )kl =

1
m

sin( πr(l−k )
m )

sin( π (l−k )
m )

  k ≠ l

         r
m         k = l

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 
         (6) 

3. The group structure – an example  
To see how the transformation above lends itself to an interesting structure we consider 
again the transformation formula Eq. (1-4) above. Not only does the unitary 
transformation B show that a complex symmetric matrix is similar to a real matrix that 
display the standard Jordan form, but it does further exhibit interesting properties as a 
simple example will demonstrate. First we introduce a simple notation that will display 
the cyclic structure incorporated in B. Let us e.g. denote the simple column 
(ω, ω3, ω5, ····,ω2�−1)† , for an arbitrary n, with the symbol (n)† where n≤m. Choosing 
m=12 we can write for √12 B the symbolic form 
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or simply 
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              (8) 

 
Note that the columns (2, 12), (3, 11), (4, 10), (5,9), and (6.8) are related by the 
operation of multiplying the complex conjugate with a minus sign. The 2-cycle is here 
simply (i,-i). In general this relation is connected with the columns s,  for 1<s≤n/2, and 
n+2-s. The 2-cycle is always (i,-i) if n is even. The rows have a similar symmetry, i.e. 
for m=12 the rows (1,12), (2,11), (3,9)…. (6,7) are complex conjugate of each other or 
generally row s, for 1<s≤n/2, and n+1-s are complex conjugate of each other. For m 
odd the middle cycle is (1,-1). One might speculate what would be the consequence for 
the appearance of a large prime number m=p occurring above, since the only 
“repetitive vector” would be in the middle containing sub-blocks of (1,-1). 
 
The present structure suggests tempting interpretations in the biological field, e.g. 
proton correlations in DNA, the origin of the screw like symmetry of the double helix 
and possible long term correlations of the smallest microscopic self-organizing units 
co-operating in vivo systems, see e.g. Ref. [10] for some more detailed suggestions and 
associated time evolutionary consequences. It is indeed an invigorating feature that 
Jordan blocks appear as fundamental units in an extended quantum description that also 
incorporates characteristics of the special and general theories of relativity [11].    
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in affine term structure models
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Abstract

We propose three analytic approximation methods for numerical valuation of the guar-
anteed annuity options in deferred annuity pension policies. The approximation methods
include stochastic duration approach, Edgeworth expansion and analytic approximation
in affine diffusions. The payoff structure in the annuity policies is similar to a quanto call
option written on a coupon bearing bond. To circumvent the limitations of the one-factor
interest rate model, we model the interest rate dynamics by a two-factor affine interest
rate term structure model. The numerical accuracy and computational efficiency of these
approximation methods are analyzed. We also investigate the value sensitivity of the
guaranteed annuity option with respect to different parameters in the pricing model.

JEL classification: G13; G23

Keywords: Guaranteed annuity option, affine term structure models, coupon-bond options,
stochastic duration, Edgeworth approximation, affine approximation

1. Introduction
A guaranteed annuity option (GAO) provides the policyholder the right to either receive
at retirement an assured accumulated funds or a life annuity at a fixed rate. This is one
of the many examples of minimum return guarantees (embedded options) in life insurance
policies. Pension-type policies with GAO’s were popular in UK retirement saving contracts
in the 1970’s and 1980’s. Between 1975 and 1985, UK interest rates were at a high level
(typically above 10%). It was then generally perceived that the GAO’s have insignificant
value since these options are deeply out-of-the-money. However, for pension-type contracts
having a long term, which may last for 30 years or more, the change in financial and other
variables may cause the embedded GAO to become an uncontrollable liability. There are
a number of factors that contribute to the acute increase in the value of these GAO’s.
First, the current UK interest rates stay at lower level so that the annuity value becomes
higher. Second, the accumulated equity value of these contracts may increase substantially
with a strong return in the stock market. Third, the improvement of mortality compared

� Corresponding author. Tel: 852-2358-7418; fax: 852-2358-1643. E-mail address:
maykwok@ust.hk
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to the anticipated mortality assumption when these contracts were written. Due to the
significant increase in liabilities in these pension-type contracts, Equitable Life (a leading
UK insurance firm) had to close for new business. Detailed accounts of the issues faced by
the issuance of GAO’s can be found in the review articles by O’Brien (2001) and Wilkie
et al . (2004).

There have been numerous works on the pricing and hedging of GAO’s using the
option valuation approach. Boyle and Hardy (2003) provide an insightful review on the
issues of pricing, reserving and hedging GAO’s under interest rate risk, equity risk and
mortality risk. Pelsser (2003) shows how to construct a replicating portfolio of interest rate
swaptions that replicates the GAO. The swaption is seen to mimick the type of interest
rate exposure faced by the GAO issuer. However, his swaption replication technique still
faces problems with the equity risk and mortality risk. When the equity return increases,
the hedger has to acquire more swaptions for hedging.

The payoff structure of the GAO resembles a quanto call option written on a coupon-
bearing bond. The “quanto” feature appears since the payoff is in units of “stock” (like
units of foreign currency) rather than in cash. The moneyness of the option is entirely
dependent on the interest rate risk. Ballotta and Haberman (2003a) apply the one-factor
Ho-Lee model and Vasicek model to price GAO in unit-linked deferred annuity contracts
that are purchased on the grant date by a single premium [with later extension to include
stochastic mortality effects (Ballotta and Haberman (2003b))]. However, an one-factor
interest rate model would implicitly imply that all future interest rates are perfectly corre-
lated. Since pension policies are long term contracts, it is generally known in the literature
that a two-factor interest rate model performs much better in hedging long-term interest
rate derivatives.

In this paper, we employ a two-factor interest rate model of the affine class (Dai and
Singleton, 2000) to characterize the stochastic interest rate movement. Similar to Ballotta-
Haberman framework (2003a), we do not incorporate the insurance company expenses,
tax effects and pre-retirement death benefits into our model. Also, the mortality risk is
assumed to be unsystematic and independent of the equity and interest rate risks. Under
the simplicity of the one-factor interest rate model, Ballotta and Haberman (2003a) are able
to apply the decomposition technique of Jamshidian (1989) on pricing options on coupon-
bearing bonds, thanks to the observation that the annuity option payoff can be written as
the payoff generated by a portfolio of zero-coupon bond options with appropriate strike
prices. However, since the interest rates become correlated under the two-factor interest
rate model, the Jamshidian decomposition technique cannot be applied.

There will be no closed form analytic price formula for the GAO when the interest
rate dynamics is modeled by a two-factor interest rate model. However, several analytic
approximation methods are known in the literature for pricing bond options or swaptions
under multi-factor affine interest rate models. One method uses a single zero-coupon bond
as a proxy for the original coupon-bearing bond. The approximation error is minimized
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by choosing the maturity of the zero-coupon bond equal to the stochastic duration (Cox
et al ., 1979; Wei, 1997) of the coupon-bearing bond. Another method makes use of the
Edgeworth approximation of the probability distribution of the value of the coupon-bearing
bond (Collin-Dufresne and Goldstein, 2002). The third method approximates the condi-
tional distributions of the risk factors in affine diffusions. The exercise probability of the
annuity option is approximated through an approximation of the exercise region. This is
achieved by the linearization of the exercise region, whose boundary is approximated by
a hyperplane. One then compute the relevant probabilities needed for pricing options on
coupon-bearing bonds by the same numerical method used in the pricing of options on
zero-coupon bonds (Singleton and Umantsev, 2002). We adopt and modify these analytic
approximation methods for numerical valuation of the GAO in deferred annuity pension
policies. The numerical accuracy and computational efficiency of these approximation
schemes are compared, and the impact of different parameter values in the pricing model
on the GAO value are investigated.

The paper is organized as follows. In the next section, we present the model setup
of the GAO and the formulation of the multi-factor affine interest rate model. Nice ana-
lytic tractability of the affine term structure model for finding present values of annuity
payments are demonstrated. In Section 3, we discuss the method of minimum variance
duration. The GAO is priced under the measure associated with the numeraire that is
related to the annuity payment paid at τ -period after retirement. A judicious analytic
approximation is made in the expectation calculations so that closed form formula can be
obtained. The pricing error between the exact and approximate solutions is minimized by
choosing τ such that the variance of the value of the future stream of annuity payments
normalized by the price of the τ -maturity bond is minimized. In Section 4, we illustrate
how to perform the Edgeworth expansion of the distribution of the annuity value at the
maturity of the policy. Under the affine diffusion assumption, the bond prices are expo-
nential affine functions of the risk factors. The moments of the annuity value are also
exponential affine so that the coefficients can be solved through the solution of a system
of Ricatti equations. In Section 5, we apply the affine approximation approach to the
valuation of GAO. Section 6 reports the numerical experiments that were performed to
compare the numerical accuracy and computational efficiency of the minimum variance
duration approach, Edgeworth series approximation and affine approximation. Pricing
behaviors of the GAO are also examined. The last section summarizes and concludes the
main results of the paper.

2. Model setup of the guaranteed annuity option
The payoff structure of a guaranteed annuity option (GAO) is similar to a call option on
a coupon bond, where the “coupons” are the future stream of annuity payments and the
“maturity of the bond” is related to the mortality of the policyholder. Besides the interest
rate risk as in usual options on a coupon bond, the GAO also has exposure in equity risk
and mortality risk. The equity risk arises since the payoff is in units of stock rather than
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in cash so that the payoff is essentially in the form of a quanto option (the equity risk
in GAO resembles the exchange rate risk in quanto option). For the mortality risk, we
assume that it is independent of the financial risk so that it is diversifiable. It is quite
acceptable to use deterministic mortality for valuing options dependent on death of the
policyholder (Boyle and Hardy, 2003).

We consider a single premium equity-linked policy whose policy’s maturity date is
T . The maturity date T coincides with the retirement age R of the policyholder. The
premium is invested in equity whose value St is assumed to follow a Geometric Brownian
process. We let aR(t) denote the market value at time t of a life annuity of one dollar per
annum starting at age R. Let npR denote the probability that a person aged R survives
n years and DT+n(t) denote the market value of the unit par default free zero-coupon
bond at time t with maturity date T + n. Also, we let ω denote the maximum age in the
mortality table. By constructing a portfolio of default free bonds that match exactly with
the expected cash flows of the annuity, the value of annuity aR(T ) is given by

aR(T ) =
ω−R−1
∑

n=0

npRDT+n(T ) = 1 +
ω−R−1
∑

n=1

npRDT+n(T ), (2.1)

since 0pR = DT (T ) = 1. Provided that the policyholder survives to maturity T , he either

receives ST or
ST

g
aR(T ) at T , whichever has a high value. Here, g is called the guaranteed

conversion rate (say, g = 9). When the policyholder exercises the GAO, the equity fund
ST is used to purchase an annuity of ST /g. The value of the GAO at maturity T is then
given by

terminal value of GAO =
ST

g
(aR(T ) − g)+, (2.2)

where x+ = max(x, 0). By assuming deterministic mortality rates, the payoff of the form
(aR(T )− g)+ resembles an option on a coupon bond with strike g and coupon payment of
amount npR at time T + n, n = 0, 1, · · ·. The factor ST /g behaves like the exchange rate
factor in a quanto option. The GAO has two types of financial risk exposure: interest rate
risk and equity risk.

When the interest rate dynamics is modeled by an one-factor short rate model, it is
relatively straightforward to obtain closed form formula for the GAO using the Jamshidian
decomposition technique for coupon bearing bond (Boyle and Hardy, 2003; Ballotta and
Haberman, 2003a). Unfortunately, the one-factor assumption of the short rate would
imply full correlation of all future interest rates. Such feature invites criticism when the
one-factor short rate model is employed to price long term interest rate derivatives. In this
paper, we use the multi-factor affine term structure framework to model the interest rate
derivatives. The affine framework has become more popular due to its analytic tractability
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and flexibility. Also, the multi-factor affine model can be easily calibrated through fitting
of the current term structure of traded bond prices.

Multi-factor affine term structure model

Let rt denote the short rate. The risk neutral processes of rt and the �-component vector
of risk factors xxx(t) are governed by

rt = aaa(t)T xxx(t) + bbb(t)

dxxx(t) = µµµ(xxx, t)dt + σ(xxx, t)dZZZ(t), (2.3)

where the parameter function

aaa(t) =

⎛

⎜

⎜

⎝

a1(t)
a2(t)

...
a�(t)

⎞

⎟

⎟

⎠

is a deterministic �-component vector function, b(t) is a scalar function and

µµµ(xxx, t) =

⎛

⎜

⎜

⎝

µ1(xxx, t)
µ2(xxx, t)

...
µ�(xxx, t)

⎞

⎟

⎟

⎠

and σ(xxx, t) =

⎛

⎜

⎝

σ11(xxx, t) · · · σ1m(xxx, t)
...

...
σ�1(xxx, t) · · · σ�m(xxx, t)

⎞

⎟

⎠

are the drift rate vector and volatility matrix for xxx(t). Also, the m components in the
random vector

ZZZ(t) =

⎛

⎜

⎜

⎝

Z1(t)
Z2(t)

...
Zm(t)

⎞

⎟

⎟

⎠

are independent Wiener processes under the risk neutral measure Q. Under certain con-
ditions on µµµ and σ, the time-t value of the zero-coupon bond maturing at time T has the
following exponential affine form (Dai and Singleton, 2000)

DT (t) = exp(−AAAT (t)T xxx(t) − BT (t)), (2.4a)

where AAAT (t) and BT (t) are governed by a system of Ricatti differential equations. To be
more precise on the functional dependence, DT (t) is a function of xxx, t and time to maturity
T − t, AAAT (t) is a function of T − t while BT (t) is a function of both t and T − t. The
volatility vector of the bond price is given by

σσσD(xxx, t;T ) =

⎛

⎜

⎜

⎝

σD,1(xxx, t;T )
σD,2(xxx, t;T )

...
σD,m(xxx, t;T )

⎞

⎟

⎟

⎠

= −σ(xxx, t)T AAAT (t). (2.4b)
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For the equity fund, its time-t value under the risk neutral measure Q is modeled by

dSt

St
= (r − q)dt + σσσS(t)T dZZZ, (2.5)

where q is the constant dividend yield and σσσS(t)T = (σS,1(t) σS,2(t) · · · σS,m(t)) is the
vector of equity volatilities.

Risk neutral valuation of GAO value

Under the risk neutral measure Q, the time-t value V (S,xxx, t) of the GAO is given by the
risk neutral expectation of the payoff at time T times the probability of survival of the
policyholder over the next T − t years. The probability of survival is given by T−tpR−(T−t)

since the policyholder reaches age R in T − t years later. We assume that the company
has well diversified the sale of annuity products so that the mortality risk can be taken to
be independent of the financial risk under the risk neutral measure Q. Given the terminal
payoff defined in Eq. (2.2), we then have

V (S,xxx, t) = T−tpR−(T−t)EQ

[

e
−
∫ T

t
ru du ST

g
(aR(T ) − g)+

]

= T−tpR−(T−t)

{

EQ

[

e
−
∫ T

t
ru du ST

g

ω−R−1
∑

n=1

npRDT+n(t)1{aR(T )>g}

]

−
(

1 − 1
g

)

EQ

[

e
−
∫

T

t
ru du

ST1{aR(T )>g}

]}

. (2.6)

It will be illustrated that the above expectation calculations can be simplified by the
method of change of numeraire.

Let Fn(S,xxx, t) denote the time-t value of a security that pays ST DT+n(T ) at time T

so that Fn(S,xxx, t)/g gives the time-t value of the annuity payment at time T +n. By using
the equity fund value St as the numeraire, we obtain

Fn(S,xxx, t) = EQ

[

e
−
∫

T

t
ru du

STDT+n(T )
]

= Ste
−q(T−t)EQS [DT+n(T )], (2.7)

where QS is the measure associated with the numeraire St. In a similar manner, the
expectation of the second term in Eq. (2.6) can be expressed as

EQ

[

e
−
∫ T

t
ru du

ST1{aR(T )>g}

]

= Ste
−q(T−t)EQS

[

1{aR(T )>g}
]

= Ste
−q(T−t)PQS [aR(T ) > g], (2.8)
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where PQS [A] denotes the probability of event A occurring under the measure QS . To
compute the expectation of the first term in Eq. (2.6), it is more appropriate to choose
Fn(S,xxx, t), n = 1, 2, · · · , ω − R, as the numeraire. Let QFn denote the measure associated
with the numeraire Fn. We then have

EQ

[

e
−
∫

T

t
ru du ST

g

ω−R−1
∑

n=1

npRDT+n(T )1{aR(T )>g}

]

=
ω−R−1
∑

n=1

npR

g
Fn(S,xxx, t)PQFn

[aR(T ) > g]. (2.9)

In our subsequent discussion, we limit the multi-factor affine term structure model
to the Gaussian type model, where the volatility matrix σ(xxx, t) defined in Eq. (2.3) is a
function of t only. For a Gaussian type model, the bond price volatility vector becomes

σσσD(t;T ) = −σ(t)T AAAT (t).

Stochastic differential equations

Under the risk neutral measure Q, the stochastic differential equation (SDE) of DT (t) is
given by

dDT (t)
DT (t)

= rt dt + σσσD(t;T )T dZZZ.

Using the Girsanov Theorem, the SDE of DT (t) under the measure QS is given by

dDT (t)
DT (t)

= [rt + σσσD(t;T )T σσσS(t)] dt + σσσD(t;T )T dZZZQS , (2.10)

where ZZZQS is a vector of Brownian processes under QS . The SDE of Fn(S,xxx, t) under the
risk neutral measure Q is given by

dFn

Fn
= rt dt + [σσσS(t) + σσσD(t;T + n) − σσσD(t;T )]T dZZZ

= rt dt +
{

σσσS(t) + σ(t)T [AAAT (t) −AAAT+n(t)]
}T

dZZZ. (2.11)

Next, we would like to solve for Fn(S,xxx, t). We consider ln
DT+n(t)
DT (t)

, whose dynamics

under QS is given by

d

(

ln
DT+n(t)
DT (t)

)
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=
{

σσσS(t)T [σσσD(t;T + n) − σσσD(t, T )] − 1
2
(

‖σσσD(t;T + n)‖2 − ‖σσσD(t;T )‖2
)

}

dt

+ [σσσD(t;T + n) − σσσD(t;T )]T dZZZQS

=
{

[σσσS(t) − σσσD(t;T )]T [σσσD(t;T + n) − σσσD(t;T )] − 1
2
‖σσσD(t;T + n) − σσσD(t;T )‖2

}

dt

+ [σσσD(t;T + n) − σσσD(t;T )]T dZZZQS . (2.12)

The solution to Fn(S,xxx, t) is readily found to be

Fn(S,xxx, t) =
DT+n(t)
DT (t)

Ste
−q(T−t)

exp

(

∫ T

t

[σσσS(u) − σσσD(u;T )]T [σσσD(u;T + n) − σσσD(u;T )] du

)

. (2.13)

Lastly, the SDE of xxx under QFn can be deduced to be

dxxx = {µµµ(xxx, t) + σ(t) [σσσS(t) + σσσD(t;T + n) − σσσD(t;T )]} dt + σ(t)dZZZQFn

=
{

µµµ(xxx, t) + σ(t)σσσS(t) + σ(t)σ(t)T [AAAT (t) −AAAT+n(t)]
}

dt + σ(t)dZZZQFn
, (2.14)

where ZZZQFn
is a vector of Brownian processes under the measure QFn .

Under the Gaussian type affine term structure model, the bond prices are lognormally
distributed [see Eq. (2.4a,b)]. Since the future annuity payment stream can be visualized
as a portfolio of discount bonds and the density of the sum of lognormal distributions has
no closed form representation, so there is no closed form analytic solution to the GAO
value under the multi-factor affine term structure model. In the next three sections, we
explore three different analytic methods for finding approximate solution to V (S,xxx, t).

3. Method of minimum variance duration
We adopt the idea of minimum variance duration similar to that proposed by Munk (1999).
The minimum variance duration approach has been shown to give highly accurate approx-
imation solution to an option on coupon bearing bond under the multi-factor interest rate
model. The minimum variance duration may be considered as an extension of the concept
of stochastic duration. Recall that the stochastic duration of a coupon bearing bond in a
multi-factor diffusion model is defined to be the time to maturity of the zero-coupon bond
with the same relative volatility as that of the coupon bearing bond (Wei, 1997).

The solution of the GAO value may be sought by pricing under the measure associated
with the numeraire corresponding to the security that pays ST aR(T ) at T . However,
the pricing under such measure is not analytically tractable. Instead, we consider an
alternative numeraire that corresponds to the security that pays ST DT+τ (T ) at maturity
time T . Here, τ represents the time to maturity of the underlying bond at time T . Later,
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we illustrate how to choose the parameter τ such that the error in the approximate solution
is minimized in some sense. Let Fτ (S,xxx, t) denote the time-t value of such security and
QFτ denote the pricing measure when Fτ (S,xxx, t) is used as the numeraire. Under QFτ , the
time-t value of the GAO is given by [see Eqs. (2.6) and (2.9)]

V (S,xxx, t) = T−tpR−(T−t)EQ

[

e
−
∫ T

t
ru du

ST

(

aR(T )
g

− 1
)+
]

= T−tpR−(T−t)Fτ (S,xxx, t)EQFτ

[

(

aR(T )
gDT+τ(T )

− 1
DT+τ(T )

)+
]

. (3.1)

Nice analytic tractability can be achieved if we set
aR(T )

gDT+τ (T )
be some constant K. Here,

K is judiciously chosen to be the mean of
aR(T )

gDT+τ(T )
under QFτ . The analytic approximate

solution to V (S,xxx, t) is taken to be

Va(S,xxx, t) = T−tpR−(T−t)Fτ (S,xxx, t)EQFτ

[

(

K − 1
DT+τ (T )

)+
]

, (3.2a)

where

K = EQFτ

[

aR(T )
gDT+τ(T )

]

. (3.2b)

The remaining procedures include (i) the derivation of closed form analytic expression for
Va(S,xxx, t), (ii) the determination of the parameter τ such that the pricing error |V (S,xxx, t)−
Va(S,xxx, t)| is minimized based on the minimization of variance.

Approximate price formula

First, K can be readily found to be

K =
1
g

ω−R−1
∑

n=0

npREQFτ

[

DT+n(T )
DT+τ (T )

]

=
1
g

Ste
−q(T−t)

Fτ (S,xxx, t)

ω−R−1
∑

n=0

npREQS [DT+n(T )]

=
1

gFτ (S,xxx, t)

ω−R−1
∑

n=0

npRFn(S,xxx, t). (3.3)

Next, the expectation in Eq. (3.2a) is found to be

EQFτ

[

(

K − 1
DT+τ (T )

)+
]

= KPQFτ

[

DT+τ(T ) >
1
K

]

− Ste
−q(T−t)

Fτ (S,xxx, t)
PQS

[

DT+τ (T ) >
1
K

]

. (3.4)
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By combining Eqs. (3.3) and (3.4) together, we obtain

Va(S,xxx, t) = T−tpR−(T−t)

{

ω−R−1
∑

n=0

npRFn(S,xxx, t)
g

PQFτ

[

DT+τ (T ) >
1
K

]

− Ste
−q(T−t)PQS

[

DT+τ (T ) >
1
K

]}

. (3.5)

Similar to Eq. (2.11), the dynamics of ln
DT+τ (t)
DT (t)

under QFτ is found to be

d

(

ln
DT+τ (t)
DT (t)

)

=
{

[σσσS(t) − σσσD(t;T )]T [σσσD(t;T + τ ) − σσσD(t;T )]

+
1
2
‖σσσD(t;T + τ )− σσσD(t;T )‖2

}

dt

+ [σσσD(t;T + τ ) − σσσD(t;T )]T dZZZQFτ
. (3.6)

The mean of lnDT+τ(T ) under QFτ and QS are obtained as follows:

EQFτ
[lnDT+τ (T )] = c(τ ) +

v2(τ )
2

+ ln
[

DT+τ (t)
DT (t)

]

(3.7a)

EQS [ln DT+τ (T )] = c(τ ) − v2(τ )
2

+ ln
[

DT+τ(t)
DT (t)

]

, (3.7b)

where

c(τ ) =
∫ T

t

[σσσS(u) − σσσD(u;T )]T [σσσD(u;T + τ ) − σσσD(u;T )] du

v2(τ ) = var [lnDT+τ(T )] =
∫ T

t

‖σσσD(u;T + τ ) − σσσD(u;T )‖2 du.

Also, we may express Fn(S,xxx, t) and K in the following forms:

Fn(S,xxx, t) =
DT+n(t)St

DT (t)
e−q(T−t)+c(n)

K =
e−c(τ)

gDT+τ(t)

ω−R−1
∑

n=0

npRDT+n(t)ec(n) =
e−c(τ)

gDT+τ (t)
aR(t).

Here, the quantity

aR(t) =
ω−R−1
∑

n=0

npRDT+n(t)ec(n)
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can be interpreted as the equity-risk-adjusted annuity. Now, it becomes readily to compute
the two probability values in Eq. (3.4) and obtain

PQFτ

[

DT+τ(T ) >
1
K

]

= N

⎛

⎝−
ln 1

K − ln DT+τ (t)
DT (t) − c(τ ) − v2(τ)

2

v(τ )

⎞

⎠ = N(d)

and

PQS

[

DT+τ(T ) >
1
K

]

= N(d − v(τ )),

where

d =
ln

aR(t)
gDT (t)

+
v2(τ )

2
v(τ )

.

Finally, the analytic expression for Va(S,xxx, t) is found to be

Va(S,xxx, t) = T−tpR−(T−t)Se−q(T−t)

[

aR(t)
gDT (t)

N(d) − N(d − v(τ ))
]

. (3.8)

Determination of τ using minimization of variance duration

The error in the approximation of V (S,xxx, t) by Va(S,xxx, t) is quantified by EQFτ
[|Y |], where

Y =
(

aR(T )
gDT+τ(T )

− 1
DT+τ(T )

)+

−
(

K − 1
DT+τ (T )

)+

. (3.9)

Following a similar approach as proposed by Munk (2000), the pricing error is minimized

by choosing τ so as to minimize the variance of
daR(t)
aR(t)

− dDT+τ (t)
DT+τ (t)

. That is, the optimal

value of τ is given by

τ ∗ = argmin
τ≥0

∥

∥

∥

∥

var QFτ

(

daR(t)
aR(t)

− dDT+τ (t)
DT+τ (t)

)∥

∥

∥

∥

. (3.10)

We present the justification of the above argument, then followed by the derivation of the
analytic procedures to obtain τ ∗.

Let m̂ = min
(

aR(T )
gDT+τ(T )

,K

)

and ̂M = max
(

aR(T )
gDT+τ(T )

,K

)

. The following three

events are mutually exclusive and exhaustive:

E1 =
{

1
DT+τ (T )

≥ ̂M
}

, E2 =
{

m̂ <
1

DT+τ(T )
< ̂M

}

and E3 =
{

1
DT+τ (T )

≤ m̂

}

,
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and from which we deduce that

EQFτ
[|Y |] = EQFτ

[

|Y |1E1

]

+ EQFτ

[

|Y |1E2

]

+ EQFτ

[

|Y |1E3

]

.

Each of the above expectation calculations is analyzed below.

(i) EQFτ

[

|Y |1E1

]

= 0 since Y becomes zero when E1 occurs.

(ii) EQFτ

[

|Y |1E2

]

≤ {EQFτ
[|Y |]PQFτ

[E2]}1/2 and PQFτ
[E2] has a smaller value when

aR(T )
gDT+τ(T )

stays closer to its mean K. This occurs when var QFτ

(

aR(T )
gDT+τ(T )

)

is

minimized.

(iii)
EQFτ

[

|Y |1E3

]

= EQFτ

[∣

∣

∣

∣

aR(T )
gDT+τ(T )

− K

∣

∣

∣

∣

1E3

]

≤
{

EQFτ

[

(

aR(T )
gDT+τ(T )

− K

)2
]

PQFτ
[E3]

}1/2

=
{

var QFτ

(

aR(T )
gDT+τ(T )

)

PQFτ
[E3]
}1/2

.

Therefore, one can minimize the pricing error by minimizing var QFτ

(

aR(T )
gDT+τ(T )

)

over

the choice of τ . However, the minimization procedure appears to be intractable due
to the complex expressions for aR(T ) and DT+τ(T ). Instead, we attempt to minimize

the relative change of value in
aR(T )

DT+τ(T )
, which can be measured by the variance of

daR(t)
aR(t)

− dDT+τ (t)
DT+τ (t)

.

Under the risk neutral measure Q, the dynamics of aR(t) and DT+τ (t) are given by

daR(t)
aR(t)

= rt dt + σσσa(t;T )T dZZZ

dDT+τ(t)
DT+τ(t)

= rt dt + σσσD(t;T + τ )T dZZZ,

where the volatility vector of annuity σσσa is given by

σσσa(t;T ) =
ω−R−1
∑

n=0

npRDT+n(t)
aR(t)

σσσD(t;T + n).

For an one-factor interest rate model, it is readily seen that the solution to τ ∗ defined in
Eq. (3.10) is given by

σσσa(t;T ) = σσσD(t;T + τ ∗), (3.11)

12

110



which is just the stochastic duration of the annuity (Wei, 1997). For the general multi-

factor case, the minimization of var QFτ

(

daR(t)
aR(t)

− dDT+τ (t)
DT+τ (t)

)

leads to the following non-

linear algebraic equation for τ :

[σσσa(t;T ) − σσσD(t;T + τ )]T
∂σσσD(t;T + τ )

∂τ
= 0. (3.12)

Two-factor Gaussian model

We illustrate how to compute Va(S,xxx, t) using the two-factor Gaussian interest rate model
(G2++) as an example. For the G2++ model, the interest rate rt is given by

rt = x1,t + x2,t + b(t) (3.13a)

where the dynamics of the risk factors are governed by

dx1 = −κ1x1 dt + σ1 dZ1

dx2 = −κ2x2 dt + σ2(ρ dZ1 +
√

1 − ρ2 dZ2). (3.13b)

Here, b(t) is a function which is determined by fitting the current interest rate term struc-
ture and ρ is the correlation coefficient between the risk factors. For Gaussian type models,
one of the drawbacks is the possibility of negative interest rates. For the G2++ model,
the corresponding solution of AAAT (t) and BT (t) as defined in Eq. (2.4a) are found to be

AAAT (t) =

(

1−e−κ1(T−t)

κ1

1−e−κ2(T−t)

κ2

)

, (3.14a)

and

BT (t) = − ln
DT (0)
Dt(0)

− σ2
1

κ1

(

1 − e−2κ1t

2κ1

)[

1 − e−2κ1(T−t)

2κ1

]

− σ2
2

κ2

(

1 − e−2κ2t

2κ2

)[

1 − e−2κ2(T−t)

2κ2

]

− ρσ1σ2

(

1
κ1

+
1
κ2

)(

1 − e−(κ1+κ2)t

κ1 + κ2

)[

1 − e−(κ1+κ2)(T−t)

κ1 + κ2

]

+
(

σ2
1

κ1
+

ρσ1σ2

κ2

)(

1 − e−κ1t

κ1

)[

1 − e−κ1(T−t)

κ1

]

+
(

ρσ1σ2

κ1
+

σ2
2

κ2

)(

1 − e−κ2t

κ2

)[

1 − e−κ2(T−t)

κ2

]

. (3.14b)
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Once AAAT (t) and BT (t) are known, the bond prices DT+n(t) and aR(t) can be determined.
It remains to find c(τ ) and v2(τ ) for the G2++ model. The corresponding volatility vector
σσσD(t;T ) is given by

σσσD(t;T ) = −

⎛

⎜

⎝

σ1
κ1

[1 − e−κ1(T−t)] + ρσ2
κ2

[1− e−κ2(T−t)]
σ2

√
1−ρ2

κ2
[1 − e−κ2(T−t)]

0

⎞

⎟

⎠
. (3.14c)

Suppose the stochastic component of the equity fund value St under the risk neutral
measure is σS dZS , where dZS dZ1 = ρS1 dt and dZS dZ2 = ρS2 dt, then

dSt

St
= (r − q)dt + σσσT

S dZZZ, (3.15a)

where the volatility vector σσσS is given by

σσσT
S =
(

σSρS1 σSρS2 σS

√

1 − ρ2
S1 − ρ2

S2

)

. (3.15b)

For the G2++ model, we obtain

c(τ ) =
∫ T

t

[σσσS − σσσD(u;T )]T [σσσD(u;T + τ ) − σσσD(u;T )] du

=
σ2

1

κ1

(

1 − e−κ1τ

κ1

)[

1 − e−2κ1(T−t)

2κ1

]

+
σ2

2

κ2

(

1 − e−κ2τ

κ2

)[

1 − e−2κ2(T−t)

2κ2

]

+ ρσ1σ2

(

2 − e−κ1τ − e−κ2τ

κ1κ2

)[

1 − e−(κ1+κ2)(T−t)

κ1 + κ2

]

−
(

σ2
1

κ1
+

ρσ1σ2

κ2
+ σ1σSρS1

)(

1 − e−κ1τ

κ1

)[

1 − e−κ1(T−t)

κ1

]

−
[

σ2
2

κ2
+

ρσ1σ2

κ1
+ σ2σS(ρS1ρ + ρS2

√

1 − ρ2)
](

1 − e−κ2τ

κ2

)[

1 − e−κ2(T−t)

κ2

]

, (3.16)

and

v2(τ ) =
∫ T

t

‖σσσD(u, T + τ ) − σσσD(u, T )‖2 du

= σ2
1

(

1 − e−κ1τ

κ1

)2 [1 − e−2κ1(T−t)

2κ1

]

+ 2ρσ1σ2

(

1 − e−κ1τ

κ1

)(

1 − e−κ2τ

κ2

)

[

1 − e−(κ1+κ2)(T−t)

κ1 + κ2

]

+ σ2
2

(

1 − e−κ2τ

κ2

)2 [1 − e−2κ2(T−t)

2κ2

]

. (3.17)
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4. Edgeworth expansion
From Eq. (2.6), the calculation of the GAO value amounts to the determination of
PQFn

[aR(T ) > g], n = 0, 1, 2, · · · (note that QFn becomes QS when n = 0). Let π(n)(a) de-
note the density function of aR(T ) under the measure QFn . We estimate PQFn

[aR(T ) > g]
by performing a cumulant expansion of π(n)(a). The cumulants of a distribution are related
to the moments of a distribution. The first two cumulants of a distribution are simply the
mean and variance of the distribution, and there exists an one-to-one relationship between
moments and cumulants. Let m

(n)
j and c

(n)
j denote the jth moment and jth cumulants of

π(n)(a). It is well known that (Collin-Dufresne and Goldstein, 2002)

c
(n)
1 = m

(n)
1 , c

(n)
2 = m

(n)
2 − (m(n)

1 )2, c
(n)
3 = m

(n)
3 − 3m

(n)
1 m

(n)
2 + 2(m(n)

1 )3, etc. (4.1)

We would like to approximate PQFn
[aR(T ) > g] in terms of the first three cumulants. Also,

we illustrate how to find the first three moments by solving a system of Ricatti equations.
By virtue of Eq. (2.6), we then obtain an approximate price formula of the GAO value
based on the Edgeworth expansion of π(n)(a).

1. Approximation of PQFn
[aR(T ) > g] in terms of cumulants

Let Π(n)(λ) denote the characteristic function of aR(T ) under QFn , where

Πn(λ) = EQFn
[eiλaR(T )] =

∫ ∞

−∞
eiλaπ(n)(a)da. (4.2)

The cumulants are defined as the coefficients of a Taylor series expansion of the loga-
rithm of the characteristic function, where

ln Π(n)(λ) =
∞
∑

j=1

cj
(iλ)j

j!
. (4.3)

By taking the Fourier inversion of Π(n)(λ) and keeping cumulants only up to the third
order, we obtain

π(n)(a) =
1
2π

∫ ∞

−∞
e−iλaΠ(n)(λ)dλ

=
1
2π

∫ ∞

−∞
exp

(

−iλa + iλc
(n)
1 − c

(n)
2

2
λ2 − i

c
(n)
3

6
λ3 + o(λ3)

)

dλ

≈ 1
2π

∫ ∞

−∞
exp

(

−i(a − c
(n)
1 )λ − c

(n)
2

2
λ2

)(

1 − ic
(n)
3

6
λ3

)

dλ.

After some tedious integration procedure, we obtain

π(n)(a) ≈

⎡

⎣

1
√

c
(n)
2

− c
(n)
3 (a − c

(n)
1 )

2(c(n)
2 )5/2

+
c
(n)
3 (a − c

(n)
1 )3

6(c(n)
2 )7/2

⎤

⎦n

⎛

⎝

a − c
(n)
1

√

c
(n)
2

⎞

⎠ , (4.4)
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where n(x) =
1√
2π

e−x2/2. Furthermore, we deduce that

PQFn
[a(T ) > g] =

∫ ∞

g

π(n)(a)da

≈ N(z1) +
c
(n)
3

6(c(n)
2 )3/2

(z2
1 − 1)n(z1), (4.5)

where

z1 =
c
(n)
1 − g
√

c
(n)
2

.

2. Determination of the moments of aR(T ) under the measure QFn

We would like to find the jth moment of aR(T ) under the measure QFn as defined by

m
(n)
j = EQFn

[a(T )j ]. (4.6)

Note that

a(T )j =

[

ω−R−1
∑

n=0

npRDT+n(T )

]j

=
ω−R
∑

n1,n2,···,nj=0

(n1pR n2pR · · · njpR)[DT+n1(T )DT+n2(T ) · · ·DT+nj (T )]

so that

m
(n)
j =

ω−R−1
∑

n1,n2,···,nj=0

(n1pR n2pR · · · njpR)

EQFn

[

exp

(

−
j
∑

k=1

[

AAAT+nk(T )T xxx(T ) + BT+nk(T )
]

)]

. (4.7)

The moments are seen to have the exponential affine form. For nice analytical
tractability associated with the Gaussian type models, we assume that the drift term
µµµ(xxx, t) takes the linear form

µµµ(xxx, t) = µµµ0(t) + µ1(t)xxx,

where µµµ0(t) is a �-component vector and µ1(t) is a �×� matrix. The expectation term
in Eq. (4.7) can be evaluated by solving a system of Ricatti equations.
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By following the standard evaluation procedures in affine term structure models, we
obtain

EQFn

[

exp

(

−
j
∑

k=1

AAAT+nk(T )T xxx(T ) − BT+nk(T )

)]

= exp
(

−GGGT (t)T xxx(t) − G0
T (t)
)

(4.8)

where GGGT (t) and G0
T (t) have dependence on n1, n2, · · · , nj and n, and they satisfy the

following systems of Ricatti equations.

(i) dGGGT (t)
dt

+ µ1(t)T GGGT (t) = 000

GGGT (T ) =
j
∑

k=1

AAAT+nk(T ); (4.9)

(ii) dG0
T

dt
+ GGGT (t)T

{

µµµ0(t) + σ(t)σS(t) + σ(t)σ(t)T [AAAT (t) −AAAT+n(t)]
}

=
1
2
GGGT (t)T σ(t)σ(t)T GGGT (t)

G0
T (T ) =

j
∑

k=1

BT+nk(T ). (4.10)

Let ΦT (t) be the solution to the following system of differential equations

dΦT (t)
dt

= −µ1(t)T ΦT (t)

ΦT (T ) = I (4.11)

where ΦT (t) is a � × � matrix and I is the �× � identity matrix. It can be shown that

ΦT (t) = exp

(

∫ T

t

µ1(u)T du

)

. (4.12)

Now, the closed form solution to GGGT (t) and G0
T (t) can be expressed in terms of ΦT (t) as

follows

GGGT (t) = ΦT (t)GGGT (T ) =
j
∑

k=1

exp

(

∫ T

t

µ1(u)T du

)

AAAT+nk(T ) (4.13a)

G0
T (t) = G0

T (T ) +
∫ T

t

GGGT (u)T

{

µµµ0(u) + σ(u)σσσS(u)

+ σ(u)σ(u)T

[

AAAT (u) −AAAT+n(u) − GGGT (u)
2

]}

du. (4.13b)
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Two-factor Gaussian model

We illustrate how to compute GGGT (t) and G0
T (t) using the two-factor Gaussian interest rate

model defined by Eqs. (3.13a,b) and the equity fund dynamics defined by Eqs. (3.15a,b).
The volatility matrix σ(t) is given by

σ(t) =
(

σ1 0 0
σ2ρ σ2

√

1 − ρ2 0

)

so that

σ(t)σ(t)T =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

.

The solution to ΦT (t) is found to be

ΦT (t) =
(

e−κ1(T−t) 0
0 e−κ2(T−t)

)

while AAAT (t) and BT (t) are given by Eqs. (3.14a,b).

Finally, the solution to GGGT (t) and G0
T (t) are given by

GGGT (t) =
(

GT,1(T )e−κ1(T−t)

GT,2(T )e−κ2(T−t)

)

where GT (T ) =
(

GT,1(T )
GT,2(T )

)

, (4.14a)

and

G0
T (t) = G0

T (T ) + σ1σSρS1GT,1(T )
(

1 − e−κ1(T−t)

κ1

)

+ σ2σS(ρS1ρ + ρS2

√

1 − ρ2)GT,2(T )
(

1 − e−κ2(T−t)

κ2

)

− σ2
1GT,1(T )

[

1 − e−κ1n

κ1
+

GT,1(T )
2

](

1 − e−2κ1(T−t)

2κ1

)

− σ2
2GT,2(T )

[

1 − e−κ2n

κ2
+

GT,2(T )
2

](

1 − e−2κ2(T−t)

2κ2

)

− ρσ1σ2

[

GT,1(T )
(

1 − e−κ2n

κ2

)

+ GT,2(T )
(

1 − e−κ1n

κ1

)

+ GT,1(T )GT,2(T )
] [

1 − e−(κ1+κ2)(T−t)

κ1 + κ2

]

. (4.14b)

5. Affine approximation approach
Unlike the Edgeworth expansion approach, Singleton and Umantsev (2002) propose to
approximate the probability of exercising the option PQFn

[aR(xxx, T ) > g] through an ap-
proximation of the exercise region itself. They show that if all the future cashflows are
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positive, then the boundary of the in-the-money region {aR(xxx, T ) > g} is a concave surface.
Their method involves the linearization of the exercise boundary by fitting a hyperplane
βββ

T
xxx = 1 that approximates the exercise boundary aR(xxx, T ) = g. The probability of exer-

cising PQFn
[aR(xxx, t) > g] is then approximated by either PQFn

[βββT
xxx > 1] or PQFn

[βββT
xxx < 1]

(whose choice depends on the location of the exercise region). For the Gaussian type mod-
els, βββ

T
xxx(T ) = β1x1(T ) + · · · + β�x�(T ) is normally distributed whose mean and variance

are given by βββ
T
µµµxxx and βββ

T
σxxxβββ, where µµµxxx and σxxx are the conditional mean vector and

covariance matrix of xxx(T ) given xxx(t) under QFn .

Fitting algorithm

Consider a two-factor interest rate model with two risk factors, the fitting algorithm in-
volves the following steps.

1. Choose a level of significance α (say, 1%), then find the two values x2,α/2 and x2,1−α/2

such that

PQFn
[x2,α/2 < x2(T ) < x2,1−α/2] = 1 − α.

2. Once x2,α/2 and x2,1−α/2 are known, solve for x1,α/2 and x1,1−α/2 so that the two
points (x1,α/2, x2,α/2) and (x1,1−α/2, x2,1−α/2) fall on the exercise boundary: a(xxx, T ) =
g.

3. Fit a hyperplane (a line in the case of a two-factor interest rate model)

β1x1 + β2x2 = 1

to the two points determined in Step 2 by solving for the parameters β1 and β2 through

βββ =
(

β1

β2

)

=
(

x1,α/2 x2,α/2

x1,1−α/2 x2,1−α/2

)−1 ( 1
1

)

.

Choose the appropriate region {βββTxxx > 1} or {βββTxxx < 1} so as to approximate the
exercise region {aR(xxx, t) > g}.

6. Numerical results
In this section, we present our numerical experiments that were performed to compare
the numerical accuracy and computational efficiency of the three analytic approximation
methods. Also, we explore how the GAO value depends on the guaranteed conversion rate
g and various correlation coefficients in the pricing model.

In our numerical calculations, we use the following set of parameter values in the
pricing model (unless otherwise specified).
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Parameters in the equity and interest rate models

St = 100, q = 5%, σS = 10%, κ1 = 0.77, κ2 = 0.08,

σ1 = 2%, σ2 = 1%, ρ = −0.7, ρS1 = 0.5, ρS2 = 0.5.

Current yield curve, Y (T ) = r0 + 0.04(1 − e−0.2T ) where r0 is taken to assume different
constant values.

Mortality data

retirement age = 65, maximum age = 100

n 1 2 3 4 5 6 7
nPR 0.9871 0.9730 0.9578 0.9411 0.9229 0.9029 0.8808

n 8 9 10 11 12 13 14
nPR 0.8567 0.8304 0.8018 0.7708 0.7374 0.7015 0.6632

n 15 16 17 18 19 20 21
nPR 0.6226 0.5798 0.5351 0.4889 0.4414 0.3934 0.3454

n 22 23 24 25 26 27 28
nPR 0.2981 0.2523 0.2088 0.1684 0.1319 0.0998 0.0725

n 29 30 31 32 33 34 35
nPR 0.0503 0.0330 0.0203 0.0115 0.0059 0.0027 0.0011

Other parameters

g = 9, time to expiry = T − t = 15,

significant level in the affine approximation = 0.01,

100, 000 trial runs are performed in each Monte Carlo simulation,

Edgeworth expansion is taken up to the third order.
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Computational efficiency and numerical accuracy

In a typical run in the numerical calculations of the GAO value at a given value of r0,
the following computer running times (in minutes) for various methods are recorded in
Table 1. Since tedious iterative calculations are required to calculate the higher order
moments in the Edgeworth expansion method, our experience shows that even only up
to the third order expansion, the running time required by the Edgeworth expansion is
longer than that of the Monte Carlo simulation with 100, 000 trials. Since closed form
formulas are available in the minimum variance duration method, the required running
time is significantly shorter than that of the other numerical methods.

method Monte Carlo simulation Edgeworth expansion affine approximaton min. var. duration

running time 0.4305 1.136 0.1812 0.0016

Table 1 Comparison of computer running time (in minutes) of various numerical methods
that compute the GAO value.

In Table 2, we list the numerical results of GAO value obtained by various numerical
methods at different choices of r0 in the assumed functional form of the yield curve. The
agreement between the numerical values is quite well acceptable.

r0% Monte Carlo Simulation Edgeworth expansion affine approximation min. var. duration

0.5 11.7750 11.8161 11.7913 11.8100
1.0 9.7568 9.7502 9.7412 9.7714
1.5 7.8952 7.8479 7.8529 7.8958
2.0 6.1543 6.1293 6.1418 6.1946
2.5 4.6735 4.6199 4.6313 4.6860
3.0 3.3793 3.3408 3.3464 3.3911
3.5 2.3257 2.2999 2.3044 2.3273
4.0 1.5116 1.4897 1.5057 1.5008
4.5 0.9222 0.8942 0.9310 0.9008
5.0 0.5201 0.4922 0.5439 0.4984

Table 2 Comparison of numerical results of GAO value obtained by various numerical
methods.

We also explore the pricing errors of the three analytic approximation methods. Using
the Monte Carlo results as the benchmark, we calculate the GAO value at 100 different
value of r0 (r0 = 0.1%, 0.2%, · · · , 10%) and compute the percentage error of each analytic
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approximation method. The variation of the percentage error with respect to
a

gDT (t)
is

plotted in Fig. 1. The pricing error is typically less than 1% when
a

gDT (t)
> 1 (the annuity

option is currently in-the-money) while the accuracy deteriorates when
a

gDT (t)
falls below

1. Similar behaviors on numerical accuracy are exhibited in swaption calculations using
the affine approximation method (Singleton and Umantsev, 2002) and minimum variance
duration method (Munk, 1999).

Pricing behaviors of the guaranteed annuity option

We investigate the pricing behaviors of the GAO with respect to various parameters in the
pricing model. In Fig. 2, we plot the GAO value against g at varying values of T − t. The
curves exhibit consistency with the intuition that the GAO value should be a decreasing
function of g. The rate of decrease of GAO value is higher at a lower value of g. Also,
the GAO has a higher value when the policyholder enters the contract closer to retirement
(smaller value of T − t). This is related to the time value of money since smaller T − t

means shorter time horizon over which the annuity payments are discounted. This effect
counteracts the usual theta effect of option value, which implies that a longer-lived option
usually has a higher value.

Our GAO pricing model assumes that the interest rate dynamics is governed by two
risk factors (G2++ model). Therefore, there are 3 correlation coefficients in the model,
namely, the correlation coefficient ρ between the interest rate risk factors, the correlation
coefficients ρS1 and ρS2 between the stock price process and the risk factors. In Fig.
3, we plot the GAO value against ρ with different sets of values of ρS1 and ρS2. In the
analytic approximation price formula, the functional dependence of the GAO value on these
correlation coefficients appears to be so highly complicated that any theoretical analysis is
intractable. From the plots in Fig. 3, it is quite disquieting to observe that the GAO value
is highly sensitive to the correlation coefficients. Similar phenomena of price sensitivity to
the correlation coefficient have also been reported by Ballotta and Haberman (2003).

7. Conclusions
Since there is no closed form analytic price formula for a guaranteed annuity option when
the interest rate dynamics is modeled by a multi-factor short rate model, the numerical
valuation of the guarantee in deferred annuity pension policies is resorted to either Monte
Carlo simulation or analytic approximation methods. In this paper, we construct three
analytic approximation methods for effective valuation of the annuity option value when
the interest rate dynamics is modeled by a multi-factor affine term structure model. The
method of minimum variance duration starts with a judicious analytic approximation so
that closed form formula can be obtained. The pricing error is minimized by choosing
the period τ of a reference bond such that the variance of the value of the annuity pay-
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ment normalized by the price of the (T + τ )-maturity bond is minimized. The Edgeworth
expansion method seeks the Edgeworth approximation of the probability distribution of
the annuity value at option’s maturity. In the affine approximation, the exercise prob-
ability of the annuity option is approximated through the approximation of the concave
exercise boundary by a hyperplane. When these three analytic approximation methods
are compared in terms of numerical accuracy and computational efficiency, the method
of minimum variance duration seems to have the best performance among them. When
the annuity option is in-the-money or slightly out-of-the-money, the pricing error of these
approximation methods are within a few percentage points. Though the three-term Edge-
worth expansion demonstrates sufficient accuracy, the computational time required is even
longer than that of the Monte Carlo simulation method using 100, 000 simulation paths.

Our numerical studies showed that the value of the annuity option is highly dependent
on the guaranteed conversion rate of the annuity and the correlation coefficients among
the risk factors. As future works, one may use a more accurate model to characterize
the equity return process, like the use of stochastic volatility model or regime switching
model. Also, we may incorporate stochastic mortality effects and other market factors
(tax, expenses, etc.) into the pricing model.
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Abstract 
This work studies the analysis of the resistant capacity of cable nets 
for the stabilization of slopes. Two tests have been carried out, one 
with a distributed longitudinal load and the other with distributed 
transversal load, in order to simulate in situ the working conditions of 
these systems. Tensile tests were also carried out on the cable 
elements of the network in order to obtain the non-linear mechanical 
properties. On the one hand, the proposed numerical procedure uses 
the finite element method (FEM) and it takes into account the material 
and geometrical non-linearities due to the geometrical change in the 
cable net substructure. On the other hand, the cable network is 
modelled by one-dimensional beam elements with joints between 
them by means of multibody coupling. The laboratory tests only 
provide information about the strain and maximum resistance, but they 
do not establish a relationship between the values of stresses of each 
net element. These data have been obtained through the computational 
simulation by FEM. A reliable model of the interaction of the flexible 
contour beam with the cable network enables the achievement of more 
efficient solutions in the design analysis. Finally, we compare the 
structural behaviour of the numerical and experimental results by 
means of the equivalent elastic modulus and the equivalent Poisson’s 
ratio. Reasonable agreement between the predicted results by FEM 
and test observations was found. 
 
Key words: Finite element analysis; cable networks; Material and 
geometrical non-linearities; Soil stabilization; 
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1. Introduction 
On gentle slopes, erosion blankets, both natural and man-made, or hydro-seeding can 
be employed to hold soil and seed in place until vegetation gets established. These 
lightweight products may not be enough to control erosion caused by high water 
velocities associated with steep slopes. Where steeper slopes and high water velocities 
prevail, a wire mesh and a cable net slope protection system may be used [1-2]. Wire 
mesh and cable net slope protection have been in use for more than 50 years along 
highways to control rockfall on actively eroding slopes. The present work studies these 
last flexible systems of slopes’ surface stabilization, the levelling of grounds and loose 
materials by the finite element method (FEM) as well as the analysis and a subsequent 
comparison with the experimental results. 
 
The cable network systems provide: (a) control of the erosion; (b) covering; (c) 
fastening of the ground and (d) surface stabilization. The system works like a lightly 
tightened continuous surface that receives from the ground the loads due to the earth 
pressure on the cable networks and it transmits them to the head of the anchorages, 
which at the same time transmit them to the stable area of the hillside or slope. 
 
Once the system object of the study has been described, the most important 
characteristics in the numerical simulation will be discussed. Next, we shall carry out 
an analysis of the obtained results and to conclude we shall do a comparison of 
numerical results with the experimental tests. Finally we shall analyse the causes of the 
possible discrepancies present between the experimental and numerical results. 

2. Mathematical model  
The finite element method is used to model the cable network and the boundary 
structure. Approximation of the structure by a discrete number of finite size straight 
and curved elements, connected at nodes, is a quite natural simulation since the original 
cable network consists of turns made of elements and curves. According to stiffness 
properties the structural system is divided in several substructures (one per wire). 
Therefore, the resolution of this problem implies the simultaneous study of two non-
linearities [3]: (1) material non-linearity (elastoplastic behaviour in this case), and (2) 
geometrical non-linearity or large displacements. 
 
The most straightforward way to create the mathematical model of a cable network 
with a flexural contour structure is to include the cable and the beam elements in a 
common system of equations in general matrix form. If load P is applied at the nodes of 
the original undeflected structure, an unbalanced resultant force is produced: 

PFR −= (1)
where F is the vector of internal forces at nodes and P is the vector of external forces at 
nodes. R is a non-linear function with respect to the displacements of the structure. In 
order to find the equilibrium state geometry, Eq. (1) has to be solved, using relevant 
numerical methods [4]. According to the Newton-Raphson method we calculate the 
correction of the solution at every iteration cycle: 

( ) iii RKd 1−
=  (2)
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where iK  is the stiffness matrix of the structure. The new geometry after cycle i is 
determined by the vector of nodal co-ordinates: 

iii duu +=+1  (3)
Nodal displacements produce elastoplastic elongation [3] of the cable elements and 
change of the tension and bending forces according to axial and flexural stiffness. 
Therefore stiffness matrix K and unbalanced force R have to be updated for every 
iteration cycle according to the current geometry. Convergence of the described method 
is usually rapid near the equilibrium state, but may be disturbed if elements of the 
stiffness matrix vary significantly or if the initial geometry is inappropriate. 
 
2.1. Plasticity 
The plastic behaviour is characterized by irreversibility of stress paths and the 
development of permanent (i.e. non-recoverable) deformation (or strain), known as 
yielding (or plastic flow). A hardening plastic material model provides a refinement of 
the ideal plastic material model. In this model, it is assumed that the yield stress 
depends on some parameter κ (e.g. plastic strain pε ), called the hardening parameter. 
The general yield criterion is expressed in the form [5]: 

( ) 0, =κσ ijF  (4)
After initial yielding, the stress level at which further plastic deformation occurs may 
be dependent on the current degree of plastic straining, known as strain hardening [5]. 
Thus, the yield surface will vary (i.e. expand) at each stage of plastic deformation. If 
the subsequent yield surfaces are a uniform expansion of the original yield surface, the 
hardening model is said to be isotropic. The behaviour is initially linear elastic with 
slope E (Young’s modulus) until onset of yielding at the uniaxial yield stress Yσ . 
Thereafter, the material response is elasto-plastic with the local tangent to the 
curve, TE , called the elasto-plastic tangent modulus, continually changing. 
 
At some stress level σ in the plastic range, if the load is increased to induce a stress of 
σd , it results in a corresponding strain εd . This increment of strain contains two 

parts: elastic edε (recoverable) and plastic pdε (non-recoverable) [3,5]: 

T
epe E

d
d

E
ddddd ==+=

ε
σσεεεε ,,  

(5)

The strain-hardening parameter, H, is defined by [6-7]: 

E
E

E

d
d

d
d

d
dH

T

T
ep

−
=

−
==

11
ε
ε
ε
σ

ε
σ  

 
(6)

The element stiffness for the linear elastic portion is, say [ ]eK  [6-7]: 

[ ] [ ] [ ][ ]∫=
b

a

x

x

eTe dxBDBK  
(7) 

where [ ]eD  is the linear elasticity matrix ( EDe = for the uniaxial case). When the 
element deforms plastically, [ ]eD  reflects the decreased stiffness. This is computed, for 
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uniaxial material behaviour, by the following procedure. The increment in load 
dF causes an incremental displacement du : 

( ) p
e

pe
exxe dHAdAdFddhdhdu εσεεε ==+== ,  (8) 

where eh is the length and eA the area of cross-section of the element. The effective 
stiffness is: 

( ) ( )⎥⎦
⎤

⎢
⎣

⎡
+

−=
+

==
HE

E
h
AE

ddh
dHA

du
dFE

e

e
pe

e

p
eep 1

εε
ε

 
(9) 

The element stiffness for the plastic range becomes [5-7], 

[ ] [ ] [ ][ ]dxBDBK
b

a

x

x

epTep ∫=  
(10)

where [ ]epD  is the material stiffness in the plastic range. For the uniaxial 
case epep ED = . Eq. (7) is valid when Yσσ < and Eq. (10) is valid for Yσσ > . Note that 

Yd σσσ −=  when Yσσ > . 
 
2.2. Large displacements 
Whether the displacements (or strains) are large or small, equilibrium conditions 
between internal and external ‘forces’ have to be satisfied. Thus, if the displacements 
are prescribed in the usual manner by a finite number of nodal parameters ar , we can 
obtain the necessary equilibrium equations using the virtual work principle [7]: 

( ) ∫ =−=Ψ
V

T fdVBa 0
rrr σ  (11)

where Ψ once again represents the sum of external and internal generalized forces, and 
in which B is defined from the strain definition εr as: 

adBd rr
=ε  (12)

The bar suffix has now been added for, if displacements are large, the strains depend 
non-linearly on displacement, and the matrix B is now dependent on ar . We see that it 
can be conveniently write: 

( )aBBB L
r

+= 0  (13)

in which 0B  is the same matrix as in linear infinitesimal strain analysis and only LB  
depends on the displacement. In general, LB will be found to be a linear function of 
such displacements. 
 
Clearly the solution of Eq. (11) will have to be approached iteratively. If, for instance, 
the Newton-Raphson process is to be adopted we have to find the relation between adr  
and Ψd . Thus taking appropriate variations of Eq. (11) with respect to adr  we have [6]: 
 

∫ ∫ =+=Ψ
V V

T
TT adKdVdBdVBdd rrr σσ  (14)

and using equation εσ
rr dDd =  and Eq. (12) it is obtained: 

adBDdDd rrr
== εσ  
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and taking into account the Eq. (13), it is verified that LdBBd =  . Therefore, 

∫ +=+=Ψ
V

T
L adKadKadKdVdBd rrrr

σσ  (15)

where 

∫ +==
V

L
T KKdVBDBK 0  

in which 0K  represents the usual, small displacements stiffness matrix and the 
matrix LK  is due to the large displacements, and are given by [7]: 

∫=
V

T dVBDBK 000 ,      ( )∫ ++=
V

T
LL

T
LL

T
L dVBDBBDBBDBK 00  (16)

To summarize, Eq. (15) can be expressed globally as: 
( ) adKadKKKd TL

rr
=++=Ψ σ0  (17)

where TK  represents the total, tangential stiffness, matrix. Newton-type iteration can 
once more be applied precisely in order to solve the final non-linear problem. 
 
2.3. Multibody coupling by joints 
One of the major areas of nonlinear analysis is the solution of problems in which 
separate bodies or structures may come in contact with each other. Several methods 
have been developed to handle such problems and, in this paper, the multibody 
coupling has been adopted [7-8]. 
 
Often it is desirable to have two (or more) rigid bodies connected in some specified 
manner. For example, in our case, each turn in the cable network is hooked to another. 
Both turns are treated as flexible non-linear bodies and it is necessary to consider 
coupling among them in order to obtain the global structural behavior of the network. 
This type of interconnection is commonly referred to as a joint. When generating our 
model, we define the relationships among different degrees of freedom by using 
elements to connect the nodes. 
 
In this work, we use a joint which is a linear connection where one body may freely 
move around the other but relative translation is prevented (see Fig. 1 below). Thus 
each turn may not translate relative to another in any direction. If a full translation 
constraint is imposed a simple relation may be introduced as [7]: 

0( ) ( )a b
jC x x= − =
r rr r  (18)

where a and b denote two rigid bodies. 
 

3. Geometrical model 
Several geometrical models were analyzed in this work. In order to carry out a right 
numerical simulations, it is necessary to reproduce accurately both the geometrical and 
mechanical characteristics of the system object of study. In the present work, the 
characteristics of meshes are shown in Fig. 2. 
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Fig.1. Couplings among turns of the cable network. 

 

 
Fig. 2. Geometrical model of a cable network. 

4. Finite element model and analysis 
Based on the geometrical model of a piece of cable network (see Fig.2) the finite 
element model was built, following a four-step process. Firstly, the definition of 
mechanical properties is based on real tests. Secondly, the selection of the element 
types, formulations and physical properties was made. Thirdly, the geometrical model 
was meshed. Finally, loads and boundary conditions were applied and the model was 
solved. 
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4.1. Mechanical properties 

The mechanical properties of the high strength steel such as its Young’s modulus, its 
yield stress and its ultimate stress have been obtained by means of the experimental 
results from direct tensile tests carried out to these wires. In this way, for the 3 mm 
diameter wire the mechanical characteristics obtained are shown in Table 1. 

 
Table 1. Mechanical properties of the 3 mm diameter wire. 

Stress [MPa] Strain Young’s Modulus 
[MPa] 

0.000 0.0000  
1,101.328 0.0056 196,906 
1,482.037 0.0093  
1,794.777 0.0139  
1,826.427 0.0300  

 
4.2. Element types and meshing 

The element used in this study is a quadratic (3-node) beam element with six degrees of 
freedom at each node (include translations in the x, y, and z directions and rotations 
about the x, y, and z directions) and it includes stress stiffness terms [3,9], since for its 
characteristics is the most appropriate for the problem. This is an one-dimensional 
element well-suited for large rotation and large strain nonlinear applications as in this 
work. This element is based on Timoshenko beam theory and shear deformation effects 
are included. In this work a extremely fine mesh has been used in order to obtain a 
good accurateness. This mesh has an element size of 1 millimetre, giving rise to a mesh 
of approximately 70,000 elements (see Fig. 3). 

 
Fig. 3. Finite element mesh and boundary conditions: (a) entire mesh for the direct 
tensile test (left), (b) entire mesh for the cross tensile test (middle) and (c) detail of a 
connection (right). 
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4.3. Loads and boundary conditions 

Two different boundary conditions have been applied in the numerical model: 

• On the one hand, in order to simulate the direct tensile test, several boundary 
conditions have to be imposed in the finite element model (see Fig. 3(a)). 
Firstly, at the lower side of the mesh, displacements in directions x, y and z, are 
constrained. Secondly, at the left and right sides, displacements in directions x 
and z are constrained, in order to allow the displacement in vertical direction y. 
Finally, at the upper side, the displacement in z direction is constrained and it is 
imposed a displacement in y direction of 60 mm. 

• On the other hand, the cross tensile test requires different boundary conditions 
(see Fig. 3(b)). In the first place, at the upper and lower sides, displacements in 
directions z and y are constrained, allowing the displacement in direction x. 
Secondly, at the left side, displacements in directions x and z are constrained. 
Finally, at the right side, a displacement in direction x of 60 mm is imposed. 

5. Non-linear analysis of cable networks 
A non-linear analysis was performed taking into account the geometrical and material 
non-linearities: large displacements and plasticity. 
 
The solution controls were also adjusted to improve convergence. Thus the parameter 
time was set to the value of one, corresponding to the value of maximum displacement 
applied (60 mm), the geometrical non-linearity was activated, the inertial effects were 
not included, the number of equilibrium iterations was specified and the convergence 
tolerance values of displacements were delimited as well as the time step for the 
analysis. In this work, the total number of iterations in order to get convergence was 
about 160. 

6. Analysis of results and discussion 
On the one hand, we show the von-Mises stresses obtained by FEM for the direct 
tensile test and the cross tensile test (see Fig. 4). On the other hand, we show the 
experimental patent device with the cable networks used in the Cantabria University 
laboratory in order to determine the experimental results (see Fig. 5). 
 
Graphs representing both the numerical and experimental results are shown in Fig. 6, in 
order to get the longitudinal and transversal equivalent elastic moduli by means of a linear 
fitting from data. The values obtained are: 

1) From the direct tensile test (longitudinal equivalent elastic modulus): 
• Numerical simulation: 1,690.6 kN/m. 
• Experimental test:  1,886.3 kN/m. 

2) From the cross tensile test (transversal equivalent elastic modulus): 
• Numerical simulation: 319.9 kN/m. 
• Experimental test:  222.47 kN/m. 
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Fig. 4. Detail of von-Mises stresses (Pa) for the direct tensile test (left) and for the cross 
tensile test (right). 
 

Fig. 5. The cable network tested: direct tensile test (left) and cross tensile test (right). 
 
In order to simulate the membrane behaviour of the cable networks, it is necessary to 
calculate the relationship between the longitudinal and transversal stresses for the two 
types of tests: direct tensile test and cross tensile test. The quotient of the transversal stress 
divided by the longitudinal stress are named equivalent Poisson’s ratio: 

yeq
xy

x

σ
μ

σ
=  

(19)

Fig. 7 shows the eq
xyμ  calculated by linear fitting from experimental and numerical data for 

the direct tensile test and cross tensile test. The values obtained are: 
1) From the direct tensile test (longitudinal equivalent elastic modulus):  
(a) numerical simulation: 0.33; (b) experimental test: 0.217 
2) From the cross tensile test (transversal equivalent elastic modulus):  
(a) Numerical simulation: 0.4437; (b) experimental test: 0.4721 
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Fig. 6. Stress vs. strain curves obtained from the numerical simulation by FEM and 
from experimental test: (a) direct tensile test (left) and (b) cross tensile test (right). 
 

Fig. 7. Equivalent Poisson´s ratio: (a) direct tensile test (left) and (b) cross tensile test 
(right). 

7. Conclusions 
A method for modelling static behaviour of cable networks has been developed and 
verified here. The equilibrium equations of elasto-plastic network are derived in the 
incremental form. The procedure can serve as an alternative tool in order to avoid 
expensive physical tests in the laboratory of different configurations and geometries of 
cable networks. From the results obtained, the following conclusions can be drawn: 
 

• In the first place, the finite element method (FEM) has been shown as suitable 
tool in the modelling and analysis of singular structures, such as the complex 
structural behaviour of cable networks with strong non-linearities. 

• The definition of the cable network geometry is very cumbersome using a finite 
elements analysis program. For this reason, a three-dimensional parameter 
design program was used in order to design the turn appropriately as well as the 
entire assembly of the cable network. 

 

134



CMMSE 2007 
 

• We have compared the numerical results with the experimental ones. The 
following aspects are observed: 

 A good agreement between the longitudinal equivalent moduli for both 
techniques: numerical and experimental. 

 A small deviation in the value of the transversal equivalent moduli, due to 
the Bauschinger effect [5] in turns, residual stresses, etc. 

 A good performance is observed with respect to the equivalent Poisson’s 
ratios. 

 
Finally, in view of the obtained results for both tests, it can be considered that a 
numerical simulation like this one can provide accurately results that will help us to 
understand the behaviour of these stabilization systems. In future works, it would be 
necessary to take into account other local phenomena in turns such as the effects due to 
residual stresses, the hysteresis of materials, etc. 
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Abstract

A relevant problem in network design is how to construct or improve a complex
network in order to optimise some structural properties. In this work we study
this design problem when we deal with efficiency and vulnerability and we present
some characterisation of the extremal networks and improvements. Finally we
apply these result to the optimal improvement of the Spanish and German airport
networks.
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1 Introduction

In the last years, much progress has been made to describe the complex structure of
real world networks [1, 2, 3, 9, 10]. Complex networks have applications in fields rang-
ing from biology (which include issues such as metabolic pathways, genetic regulatory
networks or protein folding) to the Internet or the World Wide Web and other techno-
logical systems, as well as the study of social or economic relationships, to name a few.
Hence a detailed analysis of the underlying network is central for the understanding of
the modelled complex system [1, 9]. The investigation of such issues must necessarily
embrace a diversity of viewpoints that include different complementary aspects of the
network structure.

There are several mathematical parameters that give structural properties of the
network, but in this work we will consider the efficiency and vulnerability as main
analysis tools. If G = (V, E) is a complex network with n nodes and m links, it is
considered that the performance of G is a single function Φ(G) > 0 that measures the
behaviour of G. Some examples of the performance of a network G are the characteristic
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path length of the network L(G), the mean flow-rate information over G, but we will
use the efficiency E+(G), defined (see [6, 7]) as

E+(G) =
1

n(n− 1)

∑

i6=j∈V

1
dij

, (1)

where dij stands for the shortest distance between the nodes i and j. This concept
plays the role of measuring its ability for the exchange of information and its response
for the spread of perturbations in diverse applications [3, 4].

Another important parameter is the vulnerability (as the opposite concept to ro-
bustness) which is related with the ability of a network to avoid malfunctioning when
a fraction of its constituents is damaged due to random failures or intentional attacks
[5, 7]. There are several different approaches in the literature to measure the vulnerabil-
ity of a complex network [4, 5] but, in general, they can be divided in two types. On the
one hand we find the static vulnerability which analyses the response of the structural
properties of the networks when some of its nodes or links are removed, while, on the
other hand, the dynamical vulnerability is considered to measure the redistribution of
flow in the network when a failure or attack occurs.

In this paper we will consider static vulnerability related to structural properties of
the complex network that allows us to spot its critical components in order to improve
the security. In [5], an axiomatic description of the robustness is presented and some
candidates for vulnerability functions are proposed based on the network regularity.
Roughly speaking, a vulnerability function is a normalised function v(G) intrinsic to
the topology of G that increases if we remove some components of the network. In [5]
it is considered that the vulnerability is related to the node regularity and the number
of alternative links that can balance a random or intentional attack. The basic idea
is that the more similar the nodes are, the more robust the network is, assumed that
we had fixed the number of links and nodes in the network. Hence, in addition to the
number of nodes and links, also the dispersion of the degree distribution should play a
central role in the vulnerability of the network, and it was introduced the vulnerability
function V1(G) of a network G = (V, E) with n nodes and m links as

V1(G) = exp
(

M − a

n
+ n−m− 2 +

2
n

)
, (2)

where M = max{gr(vi); i ∈ V }, a = min{gr(i); i ∈ V } and gr(vi) is the degree of
node i ∈ V . This definition can be computed easily and gives a good estimation of the
robustness of a complex network but the fact that only the nodes of extremal degrees
are considered makes it not as sharp as desirable from a statistical point of view. To
avoid this problem, a sharper estimator of the regularity of the degree distribution must
be considered, leading to the vulnerability function V2(G) given by

V2(G) = exp
(

σ

n
+ n−m− 2 +

2
n

)
, (3)

137



where n is the number of nodes of G, m stands for the number of links and σ denotes
the standard deviation of the degree distribution, i.e.

σ =

(
1
n

∑

i∈V

(
gr(vi)− 2m

n

)2
)1/2

. (4)

Once that we have fixed some quantitative parameters for the properties of the
network, it is natural to ask how a network must be designed or improved to get the
best possible result, possibly with a given set of constrains. For example, if we had the
chance to reinforce the airline network of a country by adding a new link between two
airports, it would be desirable to know which airports we should connect in order to
optimize the efficiency of the whole network.

In this work we present some results regarding the optimal design of networks with
respect to efficiency and vulnerability and also, how to improve a given network to
optimise those parameters. The approaches for optimising vulnerability and efficiency
are rather different since the problems have different nature. While we get a complete
characterisation of the extremal network for the vulnerability function, the case of
efficiency function is much deeper and we present some approximation algorithms that
we apply to the optimal improvement of the Spanish and German airport networks.

2 Extreme networks for vulnerability and efficiency

In this section we consider the set of all connected networks G with n nodes and m links
and we find the extreme graphs for vulnerability and efficiency. That is, we find those
networks with maximal vulnerability, with minimal vulnerability and with maximal
efficiency for a given number of nodes n and links m.

When dealing with a vulnerability function we work with definition V2(·), since for
definition V1(·) the results are straightforward. On the other hand, for efficiency, we
use the additive definition E+(·) given by Latora and Marchiori (see [6, 7]), but note
that since there is a relationship between the different definitions for the efficiency, we
can transfer the results from one to the other.

Our first result is about vulnerability and its extreme values. We will use the
following inequality.

Proposition 2.1 Let G = (V, E) be a network with n > 1 nodes and m links and let
gr = (gr(v1), ..., gr(vn)) its degree vector. Then

n∑

i=1

gr(vi)
2 = ‖gr‖2 ≥ 4m2

n
. (5)

Note that we have the equality in (5) for the K-regular graphs, simply by the
equality case in Cauchy-Schwartz inequality. By using this result we can characterise
the minimal vulnerability networks with a given number of nodes and links, as the
following result shows.
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Theorem 2.2 Let G = (V, E) be a network with n > 1 nodes and m links and let
gr = (gr(v1), ..., gr(vn)) its degree vector. Then G has the minimum vulnerability if
its degree vector is the most parallel to the vector (1, . . . , 1), that is, G is the closest
network to the K-regular one with m links. Hence, the degree vector for G is of the

form (a, . . . , a, b), a, b ≤ n− 1, with
n∑

i=1

gr(vi) = 2m.

Similarly, by using some geometric arguments in Rk, we have a result that charac-
terises the network with maximum vulnerability.

Theorem 2.3 Let G = (V, E) be a network with n > 1 nodes and m links and let gr =
(gr(v1), ..., gr(vn)) its degree vector. Then G has the maximum vulnerability if its degree
vector is the most parallel to the vector (n−1, 1, . . . , 1), that is, G is the closest network
to the Star. Hence, the degree vector for G is of the form (n− 1, . . . , n− 1, a, 1, . . . , 1),

a ≤ n− 1, with
n∑

i=1

gr(vi) = 2m.

When dealing with extremal networks for the efficiency function, a first analysis
should include the local structure of the graph. By using this approach the degree vector
is the natural tool and we show that for the networks having a node with maximum
degree there is a simple formula for the efficiency function:

Theorem 2.4 Let G be a simple network with n > 1 nodes and m links. If there exists
a node with maximum degree (i.e. gr(vi) = n− 1) then

E+(G) =
m

n(n− 1)
+

1
2
.

Note that last theorem shows that we have the upper equality in [4, theorem 2.2] for
the simple networks with a node with maximum degree. As a consequence we deduce
that for a network G (with n > 1 nodes) to have maximum efficiency it is enough that
G has the n-Star as a subgraph or another K-complete bipartite subgraph.

We find also an inequality for efficiency in terms of the maximum degree of the
network (not necessarily equal to n− 1).

Proposition 2.5 Let G = (V,E) be a a network with n > 1 nodes and m links. Let
vk ∈ V be the node with maximum degree in the network (not necessarily equal to n−1),
gr(vk) = a. Then dij ≤ n−a+1 for every vi, vj ∈ V, where dij is the minimum distance
between vi and vj. Furthermore,

E+(G) ≥ 2m(n− a)
n(n− 1)(n + 1− a)

+
1

n + 1− a
.
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3 Optimal improvement of complex network

A major problem in network design is spotting the critical element to be added to a
given (real-life) complex network that gets the best possible network for some parame-
ters. By cost restrictions, the elements to be added to the network (nodes or links)
are usually limited and hence the problem of finding the optimal improvement of the
network is related to a discrete and conditioned critical points problem which is hard
to solve by direct methods. In this section we will consider such problems when we
want to get an optimal improvement of the network that maximises its robustness (i.e.
minimises some vulnerability function) or maximises its performance (i.e. the efficiency
function) and we will give some computationally effective criteria to determine these
conditioned critical points.

If we consider a complex network G and we want to add a single link ` such that
we get a network G′ = G∪{`} with minimal vulnerability or maximal efficiency, a first
naive approach leads us to compute all possible improvements of type G∪{`} and spot
the optimal, but in real networks this can be computationally non-effective. Note, for
example, that if we want to locate the improvement of a complex network with n nodes
which has maximal efficiency, an exhaustive analysis of all possible candidates uses an
algorithm of computational complexity of order n7, which is far from being effective
when dealing with real networks with thousand (or million) of nodes. Therefore it is
necessary to develop new strategies of design that reduce the complexity of locating
the critical component to be added in order to get effective tools for the network
optimisation.

Locating the critical single link ` that gets the most robust improvement G∪{`} of a
network G is related to the degree of the nodes to be linked. If we want to minimise the
vulnerability function V1(G∪{`}), it is straightforward that the optimal design strategy
is to decrease the range of the degree distribution of G by adding a link joining the
node of minimal degree with other node which has no maximal degree. If we consider
the vulnerability function V2(·), we could think that the same idea should work, but
since this vulnerability function uses the whole degree distribution, it can be checked
that this is not the optimal strategy for network improvement. Despite this fact, the
optimal computationally effective strategy is also related to the minimal degree of the
nodes involved as the following result shows.

Theorem 3.1 Let G = (V,E) be a graph and `0 = {vi0 , vj0} such that vi0 , vj0 ∈ V and
`0 /∈ E. Then the following assertions are equivalent:

(i) G′ = G ∪ {`0} has minimal vulnerability V2(·) among all improvements G ∪ {`}.
(ii) γ(vi0 , vj0) = min {γ(vi, vj); {vi, vj} /∈ E}, where γ(vi, vj) = gr(vi) + gr(vj).

Note that the computational complexity to find the minimum of γ(vi, vj) directly
is of order n4, while the exhaustive computation of the optimal improvement of type
G ∪ {`} has complexity n5.
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Locating the maximal efficiency improvement of type G ∪ {`} is, by far, a much
more complicated problem. In this case, it is clear that the addition of a single link `
to a network G can produce deep changes in its geodesic structure. We could naively
expect that the optimal improvement occurs when we link the most distant nodes, but
it is easy to find simple example where this idea fails. Actually, it seems that there is
no other clear-enough criterium for locating the improvement of the network with max-
imal efficiency. As an alternative approach, we propose to give other computationally
effective method that gives an approximation of the optimal improvement. If we want
to get a near-optimal improvement of type G ∪ {`} we have to mix two different facts:

(i) Nodes to be mixed have to be far in order to produce a significant increase in the
efficiency.

(ii) The new link should produce the biggest change in the geodesic structure of the
network. Note that this geodesic sensitivity is related again to the degree of the
nodes involved.

However, these conditions do not, by themselves, guarantee that a certain edge will
provide the greatest, or close to the greatest, efficiency increase. The following graphs
show the increase in efficiency in the Spanish and German airport networks when a
single link is added, against the sum of the degrees of the nodes connected. It can
be seen that linking nodes already close always has a small impact on efficiency, while
picking distant nodes may have a larger effect, but it may as well not be the case.
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So, while choosing the two most connected nodes does not always bring the highest
efficiency, at least we know we have to take two of the most connected, and preferably
distant, nodes. There is a bound to how much the efficiency can increase when adding
a single edge, based on their initial distance and their degrees. Therefore, a suitable
course of action to find the best edge would be to sort the possible edges to be added
according to distance and node degree and run through them in decreasing order,
testing the change in efficiency and stopping when the bound ensures that we have
already come across the best choice. The graphs above suggest that this best choice
will actually be one of the first pairs to be tested.
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Abstract

Criteria for optimally placing points on sets in Euclidean space for numerical
computation is a difficult and old problem. Placing points to minimize energy
provides a physical model and intuition. Placing points to minimize discrepancy
appeals to ideas from goodness-of-fit for distributions. This talk shows that energy
and discrepancy are essentially the same concept. The relationship to of energy
and discrepancy

Key words: capacity, cubature, discrepancy, distribution, energy, equilibrium
measure, inner product, kernels, invariance, minimizer, norm, numerical integra-
tion, positive definite, potential field, Riesz kernel, reproducing Hilbert space, signed
measure

1 Introduction

The problem of uniformly distributing points on some compact set in d ≥ 1 dimensional
Euclidean space with positive d dimensional Hausdorf measure, is an interesting and
difficult problem. A physically motivated solution is to treat the points as electrostatic
charges and place them so that an electrostatic energy is minimized. Another approach
to spreading points uniformly, developed initially for the d-dimensional unit cube, is
the discrepancy defined by Weyl [15]. The discrepancy measures the sup-norm of
the difference between the uniform distribution and the empirical distribution of the
points, and is known in the statistics literature as a Kolmogorov-Smirnov statistic [1].
Besides energy and discrepancy, other distance-based measures of even spread include
the fill distance (mesh norm, sphere covering radius) and the separation distance (sphere
packing distance). See [6, 11, 14] and the references cited therein, for general discussions
of these concepts.

143



2 Energy and Discrepancy

Measures of quality placement of points arise from the numerical analysis and
statistics literatures, where this is known as the design problem. The JMP statistical
package [12] offers minimum energy, minimum discrepancy, and sphere packing designs
among its options for space-filling designs. In some cases, these quality measures can
be related to energy, discrepancy and the other measures of even spread. For example,
it is known that certain minimum energy type points on the unit interval are good
for polynomial interpolation, (see [2, 13] and the references cited therein) and that
discrepancy provides a tight upper bound on the numerical integration error [10].

The literature surrounding energy, discrepancy and other measures of even spread
have developed mostly independently of each other. The purpose of this talk is to make
the connection between the two. Specifically, we show that energy and discrepancy are
equivalent under rather broad conditions. This implies that numerical integration error
has a tight bound in terms of energy.

The work presented here arose out of the authors’ work on different aspects of
energy, discrepancy and numerical integration error [3, 4, 5, 7, 8, 9]. We have observed
similar ideas arising in the energy and discrepancy literatures, often using different
terminology and notations, and we believe that having these connections made explicit
would facilitate a deeper understanding of these concepts and future research.

2 Summary of Results

The main points of this talk are summarized in Tables 1-2. These tables list key
concepts, and their interpretations in the energy, discrepancy and numerical integration
error literatures. In this article, we demonstrate connections between these concepts.

References

[1] R. B. D’Agostino, M. A. Stephens (eds.), Goodness-of-Fit Techniques, Marcel
Dekker, New York, 1986.

[2] S. B. Damelin, Marcinkiewicz-Zygmund inequalities and the numerical approxi-
mation of singular integrals for exponential weights: methods,results and open
problems, some new, some old, J. Complexity 19 (2003) 406–415.

[3] S. B. Damelin, P. Grabner, Numerical integration, energy and asymptotic equidis-
tributon on the sphere, J. Complexity 19 (231–246).

[4] S. B. Damelin, J. Levesley, X. Sun, Energies, group invariant kernels and numerical
integration on compact manifolds, submitted for publication (2006).

[5] S. B. Damelin, J. Levesley, X. Sun, Energy estimates and the Weyl criterion on
compact homogeneous manifolds, in: Algorithms and Approximation V, Springer-
Verlag, 2007.

144



S
t
e
v
e
n

B
.
D

a
m
e
l
in

a
n
d

F
r
e
d

J
.
H

ic
k
e
r
n
e
l
l

3

Table 1: Outline of the Equivalence Between Energy, Discrepancy, and Numerical Integration Error
X ∈ Rd belongs to a suitable (large) class of measurable sets

Concept Energy Discrepancy Numerical Integration Error

Symmetric, positive definite
kernel function K defined on
X

2

K(x,y) defines energy be-
tween two unit charges located
at x,y ∈ X

K(x,y) defines an inner prod-
uct between two probability
measures with unit probabili-
ties at x and y respectively

K(x,y) is the reproducing ker-
nel for a Hilbert space, H(K),
of integrands, i.e., K(·,y) is
the representer for function
evaluation at y

Signed measure µ : X → R,
Q(µ) =

∫

X
dµ(x); M(K) a

linear space of signed measures

µ represents a charge distribu-
tion on X , Q(µ) is the total
charge

〈µ, ν〉
M(K)

=
∫

X
2 K(x,y) dµ(x)dν(y),

Q(µ) is the total measure of
the domain X

∫

X
f(x) dµ(x) for f ∈ H(K) is

a continuous linear functional
on H(K)

Function fµ : X → R given by
fµ =

∫

X
K(·,y) dµ(y);

H(K) is a linear space of func-
tions

fµ represents the potential
field induced by µ

〈fµ, fν〉H(K)

=
∫

X
2 K(x,y) dµ(x)dν(y)

E(µ)
=

∫

X
2 K(x,y) dµ(x)dµ(y)

E(µ) represents the energy of
the charge distribution µ

E(µ) = ‖µ‖
2

M(K)
E(µ) = ‖fµ‖

2

H(K)

D(ν;µ) =
∫

X
2 K(x,y)

× d(µ − ν)(x)d(µ − ν)(y)
D(ν;µ) =

√

E(µ − ν) D(ν;µ) is the discrepancy of
the measure ν compared to the
measure µ

D(ν;µ) = sup
‖f‖

H(K)
≤1

∣

∣

∫

X
f(x) dµ(x)

−

∫

X
f(x) dν(x)

∣

∣
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Table 2: Outline of the Equivalence Between Energy, Discrepancy, and Numerical Integration Error, continued
X ∈ Rd belongs to a suitable (large) class of measurable sets

Concept Energy Discrepancy Numerical Integration Error

µe,K, with normalization
Q(µe,K) = 1, defined by
∫

X
K(x,y) dµe,K(y)

= 1/CK ,
where CK is the capacity of X

µe,K is the equilibrium mea-
sure, which produces a con-
stant potential field over the
domain; Q(µ) = 1 implies
E(µ) = E(µe,K)

+E(µ − µe,K)

µe,K ⊥ ν for any measure ν

with Q(ν) = 0; CKµe,K is the
representer of the total charge
linear functional Q(·)

If Q(ν) = 1, then
sup

‖f‖
H(K)

≤1
∣

∣

∫

X
f(x) dµe,K(x)

−

∫

X
f(x) dν(x)

∣

∣

=
√

E(ν) − E(µe,K)

µmin,K , with normalization
Q(µmin,K) = 1, defined by
µmin,K = argminQ(µ)=1 E(µ)

µmin,K is the energy mini-
mizer ; when µe,K exists, then
µmin,K = µe,K

[3, 4, 5] establish upper bounds
on numerical integration er-
rors (in terms of minimizers)
by energies.

µP = 1

n

∑

z∈P
δz, where P is a

set of n points in X

E(µP ) is the energy of a set
of point charges with equal
charge at each point and total
charge of unity

µP is the empirical distribu-
tion, and D(µP ;µ) measures
how well µP approximates µ

sup
‖f‖

H(K)
≤1

∣

∣

∫

X
f(x) dµ(x)

−
1

n

∑

z∈P
f(z)

∣

∣ = D(µP ;µ);
sup

‖f‖
H(K)

≤1
∣

∣

∫

X
f(x) dµe,K(x)

−
1

n

∑

z∈P
f(z)

∣

∣

=
√

E(µP ) − E(µe,K)
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Abstract 
In the last decade the progress in the areas of chaos and fractals 
revealed subtle relationships with the fractional calculus. Nonetheless, 
it is generally excluded from standard courses in mathematics, partly 
because many mathematicians are unfamiliar with its nature and its 
applications. One particular purpose of this paper is to discuss the 
usefulness of fractional-order calculus in financial markets. Even there 
is an increasing interest in the development of the new paradigm 
another purpose is to encourage the usage of this mathematical idea in 
other scientific areas by means of a historical apologia for 
development of the fractional calculus. 
 
Key words: Fractional Calculus, Finance 
 

1. Introduction 
The theory of fractional calculus goes back to the beginning of the theory of differential 
calculus but its inherent complexity postponed the application of the associated 
concepts. 
In fact, fractional calculus is a natural extension of the classical mathematics. Since the 
beginning of the theory of differential and integral calculus, mathematicians such as 
Euler and Liouville investigated their ideas on the calculation of non-integer order 
derivatives and integrals. Perhaps, the subject would better be called integration and 
differentiation of arbitrary order. 
In spite of the work that has been done in the area, the application of fractional 
derivatives and integrals has been scarce until recently. However, in the last years, the 
advances in the theory of chaos revealed relations with fractional derivatives and 
integrals, motivating a renewed interest in this field. 
The basic aspects of the fractional calculus theory can be addressed in references [22]. 
In what concerns the application of the concepts can be mentioned research about 
damping [5,18] , chaos and fractals [19,21]. 
Regarding the adoption of this concept in other scientific areas I outline that several 
researchers has been inspired to paying attention to the new possibility. 
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In special case of the applications involving financial markets only some researchers 
around the world has been interested by this tool [29]. 
Therefore, although this work is still giving its first steps and, consequently, many 
aspects remain to be investigated, I consider that it will be able possible a greater 
interest in this field. 
This paper is divided as follows. In section 2, I outline the origins of fractional calculus 
to doing permissible an historical apologia for the development. In the section 3 will be 
presented several approaches of mathematical formulation. Section 4 is devoted to the 
financial markets application possibility. Finally, in section 5 will be presented the 
conclusions and outlook 

2. Origins and Historical Apologia  

Leibniz when asked about what if n be ½ in 
n

n

xd
yd  said [28]: “Some day it would lead to 

useful consequences”. 
In 1730 Euler mentioned interpolating between integral orders of a derivative. In 1812 
Laplace defined a fractional derivative by means of an integral and in 1819 there 
appeared the first discussion of a derivative of fractional order in a calculus written by 
Lacroix. 
Lacroix expressed its nth derivative (for n ≤ m) in terms of Legrende’s symbol Г for the 
generalized factorial as follow: 
 

nmnm
n

n
x

nm
m

x
nm

m
xd

yd −−

+−Γ
+Γ

=
−

=
)1(

)1(
!)(

!  

 
Thus, starting with the function y = xm  replaced n with ½ and let m = 1, obtaining the 
derivative or order ½ of the function x : 
 

 

xx
xd

yd
π
2

)2/3(
)2( 2/1

2/1

2/1
=

Γ
Γ

=  

 
It was Liouville who made the first major study of fractional calculus. The Liouville’s 
first definition of a derivative of arbitrary order ν involved an infinite series. Here the 
series need to be convergent for some ν. The Liouville’s second definition was able to 
give a fractional derivative of x -a whenever both x and a are positive. Based on the 
definite integral related to the gamma integral of Euler can be to calculate the integral 
formula to x –a. Note that in the integral 
 

∫
∞

−−

0

1 dueu uxa  

 
if we change the variables t = x u , then  
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But, 
 

( ) ∫
∞

−−=Γ
0

1 dteta ta  

 
Therefore, this yields the integral formula 
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−−−
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Consequently, by analogy to equation (1), 
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The   term in the last equation suggests the need to broaden the theory to include 
complex numbers. 

( )ν1−

Indeed in terms of contemporary definitions, the modern theory of fractional calculus is 
intimately connected with the theory of operators. In classical calculus the symbol  
is often used fr the nth derivative operador ( for n ≥ 0) while, less commonly,  is 
used for the antiderivative ( or integral ) operador. 

n
xD

1−
xD

A convenient notation described by Davis [28] was the following: if υ is a positive real 
number,  denotes differentiation of order υ of the function f  along the x-axis. 
Similarly, the operator   will denote integration of order υ of the function f  
along the x-axis. 

)(xfDxc
ν

)(xfDxc
ν−

In fractional calculus there is no geometric interpretation of integration or 
differentiation of arbitrary order. Because this, the subscripts c and x are here called 
terminals of integration instead of limits of integration. This avoid unnecessary 
confusion. 
In 1884 Laurent published what is now recognized as the definitive paper in the 
foundation of fractional calculus. By means the Cauchy’s integral formula for complex 
valued analytic functions and a simple change of notation to employ a positive υ rather 
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than a negative υ will now yield Laurent’s definition of integration of arbitrary order 
υ>0 : 

( ) ( ) ( )∫ −− −
Γ

=
x

c
xc dttftxxfD 11)( νν

ν
 

 
The appropriatte definition of differentiation of arbitrary order is to integrate up to a 
point from which the desired result can be obtained by convencional differentiation.  
Let be  ρν −=m  where for conveniente, m is taken to be the least integer greater than υ 
and 0 < ρ ≤ 1. 
Observe that, 

)()( xfDxfD m
xcxc

ρν −=  
Thus, 

[ ] ( ) ( ) ( )
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Indeed, since the foundation  of the differential and integral calculus the generalization 
of the concept of derivative and integral to a non-integer order has been the subject of 
several approaches. Due to this reason there are various definitions which are proved to 
be equivalent and their use should be encouraged by the researchers in different 
scientific areas. They will be presented in the following section. 
Besides, to bear in mind this purpose I suggest in this paper an investigation involving 
an application in financial market using the fraccional calculus idea. The suggestion 
will be presented in the section 4. 
 
 
 

3. Mathematical Formulation - Different Approaches 
 
It is clear that many mathematicians contributed to the history of fractional calculus and 
were trying to solve a fundamental problem as well as they understood. 
Each researcher due to this reason looking for a definition and therefore different 
approaches to lead to various definitions of differentiation and antidifferentiation of 
non-integer orders which are proved to be equivalent. Some definitions of derivatives 
can be summarized and will be shown in Table 1.  
Equally a table can be written for different and equivalent integrals definition. 
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Table 1: Definition of derivatives of arbitrary order 
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Likewise other researchers have been important and contributed with owner approach 
and definition as well as Fourier, Laplace, Riemann, Grunwald-Letnikov. 
Although all this can be equivalent definitions , from the one specific point of view, 
that is to say for a specific application some definitions seem more attractive. 
The problem of to investigate an application in finance will be the matter of the next 
section. 
 
 

4. Application in Finance 
 
The problem of estimating capital asset price volatility is good for risk management. 
The dynamics in financial markets demand full time complete and more accurate 
modelling. 
Although a good number of works has been published about financial markets, most of 
do not use the fractional calculus like tool. [1,3,4,6,7,14,15,16,32]. Nevertheless, some 
investigation in finance using fractional diffusion equation has been studied by Scalas 
et al [23]. 
In this section , I propose a simple model based on the following discussion: It is well- 
know that commonly occur a significant change in capital flow when the investors has 
at any moment a minimum risk perception changes. 
In this way it seems to me that is reasonable to imagine that the capital flow invested, 
denoted 

dt
d λ  ,can be proportional  to this risk perception changes denoted ( ). 0yy −
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Mathematically, 
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Can be written, 
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⎛ λ  

 
Note that the an increasing in the risk perception can to stimulate a reduction in the 
capital injection. This is the meaning of minus signal in above equation. Thus, 
 

( )yyC
dt
d

−= 0
λ  

and 

( )
dtC

yy
d

=
−0

λ  

Now, integrating both sides, 
 

( )∫∫ −−=
0

0

21
0

0

yT

dyydtC λ  

or, 

( )∫ −−=
0

0

21
0

y

dyyK λ  

where  TCK =  
 
Here we can to observe that  ( )yF=λ  where λ  is the amount of capital of return and 
y  represent the risk perception. 
To bear in mind this fact, we can notice  ( ) dyyFd '=λ  
If we change variables  and to 0y y x and t, and replace 'F  by  the integral equation 
becomes 

f

( ) ( )∫ −−=
x

dttftxK
0

21  

 
From now the problem is to determine the function . This can be done multiplying  
the last equation by 

f

( )21
1
Γ  in order to obtain 

 

( ) ( ) ( ) ( ) ( )xfDdttftxK
x

x
21

0
0

21

21
1

21
−− =−

Γ
=

Γ ∫  
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Consequently, 
 

( )xfKDx π=21
0     (*) 

 
I outline that of  the general Laurent’s definition of derivative let us now consider the 
derivative of order 21 of the constant K . Using  we can notice ρν −= mDD
 

( ) ( ) ( ) ( ) ( ) ( )
ν

ρρ
ρν

νρρρρρρ
−

−
−

−Γ
=

Γ−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Γ
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

Γ
= ∫ xK

m
xpKxK

dx
ddtKtx

dx
dKD

m

m

mx

m

m

x 1!
!1

0

1
0  

 
In particular case where 21=ν  we haven, 
 

( )
212121

0 21
−− =

Γ
= xKxKKDx

π
(**) 

 
Therefore, from (*) and (**) can be concluded 
 

( )
x

Kxf
π

=  

 
This curious results show similarity with the solution to the tautochrone problem solved 
by Abel [28]. 
Of course , there are limitations to the model proposed. For instance, I am essentially 
considering the single asset in isolation.  
The estimation of other unknown parameters is not treated here 
Perhaps the quadratic order for 

dt
d λ  could be better adjusted. 

This work is still living its first steps and consequently, many aspects remain to be 
investigated.  
 
 

5. Conclusions  
 
The recent progress in the area of chaos reveals promising aspects for future 
developments and application of the theory of fractional calculus in various scientific 
areas. In this paper the treatment of fractional calculus has been suggestive rather than 
rigorous in order to rescue the interest to the reader and at the same time to provide a 
hint of its potential in many scientific areas. In special case of the financial markets 
some preliminary works has been proposed. A simple model system involving risk and 
capital return based on the fractional order concepts are simple to implement and reveal 
a good alternative way of prediction in financial markets.  

154



CMMSE 2007 
 

Besides, in accordance to the nature of this conference this paper have also contributed 
to the interdisciplinary feature involving fractional calculus applied in finance systems 
by means of modeling, presentation and discussion  about  capital flow when the 
investors has at any moment a minimum risk perception changes. 
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Abstract

The explicit analytical expressions of the optimal approximation solutions for
the symmetric Procrustes problems of the linear matrix equation AXB = C are
derived, with the projection theorem in Hilbert space , the quotient singular value
decomposition (QSVD) and the canonical correlation decomposition (CCD) being
used.
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1 Introduction

The least-squares problems of linear matrix equations are called Procrustes problems(cf.
Higham,1988 and Andersson and Elfving, 1997). The unconstrained and constrained
least squares problems have been of interest for many applications, including particle
physics and geology , inverse Sturm-Liouville problem [11], inverse problems of vibra-
tion theory [6], control theory, digital image and signal processing, photogrammetry,
finite elements, and multidimensional approximation [8]. Penrose(cf. [2], [13] ) first
considered the linear matrix equation

AX = B (1.1)

and obtained its general solution and least-squares solution by making use of the Moore-
Penrose generalized inverse, then Sun[14] obtained the least-squares solution and the
related optimal approximation solution of Eq. (1.1) when X is a real matrix. When X
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is constrained to be a real symmetric matrix , the least-squares solution of (1.1) was
derived by Higham and Sun respectively in 1988([12] and [15]) , and Sun also obtained
the related symmetric optimal approximation solution of Eq. (1.1) in [15].

In this paper , the following linear matrix equation

AXB = C (1.2)

are considered . Fausett and Fulton[8] and Zha[18] considered the unconstrained least-
squares problems of Eq. (1.2), Eric Chu[4] and Dai Hua[5] obtained the general ex-
pressions for the symmetric solution of Eq. (1.2) by using the general singular value
decomposition of matrices (GSVD), and the symmetric and skew-symmetric least-
squares solutions of Eq. (1.2) have been derived by Deng, Hu and Zhang[7]. But
it remains unsolved about the optimal approximation solutions for the symmetric and
skew-symmetric Procrustes problems of this equation. Therefore in the following, we
will consider the optimal approximation solutions of the symmetric least squares prob-
lems of Eq. (1.2). We always suppose that Rm×n is the set of all m× n real matrices,
SRn×n and ORn×n are the sets of all symmetric and orthogonal matrices in Rn×n,
respectively, A ∗ B represent the Hadamard product of A and B, and ‖Y ‖F denotes
the Frobenius norm of a real matrix Y , defined as

‖Y ‖2
F =< Y, Y >=

∑

i,j

y2
ij ,

here the inner product is given by < A, B >= trace(AT B), and Rm×n become a Hilbert
space with the inner product.

Problem I. Given matrices A ∈ Rm×n,B ∈ Rn×p,C ∈ Rm×p and Xf ∈ Rn×n, let

SE = {X|X ∈ SRn×n, ‖AXB − C‖F = min}. (1.3)

Then find Xe ∈ SE , such that

‖Xe −Xf‖F = min
X∈SE

‖X −Xf‖F . (1.4)

We first introduce some results about the quotient singular value decomposition
(QSVD) and the canonical correlation decomposition (CCD)of matrices , as soon as
the projection theorem on Hilbert space, which are essential tools for the Problem , see
[3],[9], [10] and [16] for details.

The QSVD is a simple form of the GSVD. The QSVD of a pair of matrices (A,BT )
is as follows.

QSVD Theorem. Let A ∈ Rm×n, B ∈ Rn×p. Then there exist orthogonal
matrices U ∈ ORm×m, V ∈ ORp×p and a nonsingular matrix Y ∈ Rn×n such that

A = UΣ1Y
−1, BT = V Σ2Y

−1, (1.5)

where

Σ1 =




Ir′ 0 0 0
0 S 0 0
0 0 0 0




r′

s′

m− r′ − s′
,

r′ s′ t′ n− k′
(1.6)
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Σ2 =




0 0 0 0
0 Is′ 0 0
0 0 It′ 0




p + r′ − k′

s′

t′
,

r′ s′ t′ n− k′
(1.7)

k′ = rank(AT , B), r′ = k′ − rank(B),

s′ = rank(A) + rank(B)− k′, S = diag(σ1, · · · , σs′),

σi > 0(i = 1, · · · , s′), t′ = k′ − r′ − s′.

When A and BT are of full column rank, i.e. r(B) = r(A) = n, then r′ = 0, s′ = n, k′ =
n, and

Σ1 =
(

S
0

)
n

m− n
, Σ2 =

(
0
Is′

)
p− n

n
.

n n
(1.8)

The canonical correlations decomposition of the matrix pair (AT , B) is given by
the following theorem.

CCD Theorem. LetA ∈ Rm×n, B ∈ Rn×p, and assume that g = rank(A), h =
rank(B), g ≥ h. Then there exist a orthogonal matrix Q ∈ ORn×n and nonsingular
matrices XA ∈ Rm×m, XB ∈ Rp×p such that

AT = Q[ΣA, 0]X−1
A , B = Q[ΣB, 0]X−1

B , (1.9)

where ΣA ∈ Rn×g and ΣB ∈ Rn×h are of the forms:

ΣA =




Ii 0 0
0 Λj 0
0 0 0
0 0 0
0 ∆j 0
0 0 It




, ΣB =
(

Ih

0

)
, (1.10)

with the same row partitioning, and

Λj = diag(λi+1, . . . , λi+j), 1 > λi+1 ≥ . . . ≥ λi+j > 0,
∆j = diag(δi+1, . . . , δi+j), 0 < δi+1 ≤ . . . ≤ δi+j < 1,
λ2

i+1 + δ2
i+1 = 1, . . . , λ2

i+j + δ2
i+j = 1, i.e.,Λ2

j + ∆2
j = I,

Here,
i = rank(A) + rank(B)− rank[AT , B],
j = rank[AT , B] + rank(AB)− rank(A)− rank(B),
t = rank(A)− rank(AB), g = i + j + t.

Following is the projection theorem (cf. [16]).

Lemma 1.1 Let H be a Hilbert space, M be a subspace of H, andM⊥ be the orthogonal
complement subspace of M. For a given H ∈ H, if there exists an M0 ∈ M such that
‖H −M0‖ ≤ ‖H −M‖ holds for any M ∈ M, then M0 is unique and M0 ∈ M is the
unique minimization vector in M if and only if (H −M0)⊥M, i.e.,(H −M0) ∈M⊥.
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2 The main results

In this section, the explicit expression for the solution of Problem I is derived. Without
loss of generality, we suppose that rank(A) ≥ rank(B).

Instead of considering the solution of Problem I, we will find a matrix C0, and then
transform Problem I to the following equivalent problem.

Problem I0. Given matrices A ∈ Rm×n,B ∈ Rn×p,C0 ∈ Rm×p and Xf ∈ Rn×n,
let

SE0 = {X|X ∈ SRn×n, AXB = C0}. (2.11)

Then find Xe ∈ SE0 , such that

‖Xe −Xf‖F = min
X∈SE0

‖X −Xf‖F . (2.12)

First we use the projection theorem on Rm×p.

Theorem 2.1 Given A ∈ Rm×n, B ∈ Rn×p, C ∈ Rm×p, let X0 be one of the symmetric
least-squares solutions of the matrix equation (1.2) and define

C0 = AX0B, (2.13)

then the matrix equation

AXB = C0, (2.14)

is consistent in SRn×n, and the symmetric solution set SE0 of the matrix equation
(2.13) is the same as the symmetric least-squares solution set SE of the matrix equation
(1.2).

Proof. Let

L = {Z|Z = AXB, X ∈ SRn×n}. (2.15)

Then L is obviously a linear subspace of Rm×p.Because X0 is the symmetric least-
squares solutions of the matrix equation (1.2), from (2.13) we see that C0 ∈ L and

‖C0 − C‖F = ‖AX0B − C‖F

= minX∈SRn×n ‖AXB − C‖F

= minZ∈L ‖Z − C‖F .

Then by Lemma 1.1 we have

(C0 − C)⊥L or (C0 − C) ∈ L⊥.
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Next for all X ∈ SRn×n, AXB − C0 ∈ L, it then follows that

‖AXB − C‖2
F

= ‖(AXB − C0) + (C0 − C)‖2
F

= ‖AXB − C0‖2
F + ‖C0 − C‖2

F .

Hence, SE = SE0 , and the conclusion of the theorem is true. ¤
Now suppose A ∈ Rm×n, B ∈ Rn×p and the matrix pair (A,BT ) has the QSVD

(1.5), and partition UT CV into the following blocks matrix.

UT CV =




C11 C12 C13

C21 C22 C23

C31 C32 C33




r′

s′

m− r′ − s′

p + r′ − k′ s′ t′
, (2.16)

then the expression of C0 will be shown in the following theorem.

Theorem 2.2 Let A,B, C be given in Problem I, the matrix pair (A,BT ) have the
QSVD (1.5), and UT CV be partitioned by (2.16), then for any symmetric least-squares
solution X0 of the matrix equation (1.2) the matrix C0 defined by (2.13) can be deter-
mined by the following form.

C0 = UC∗V T , C∗ =




0 C12 C13

0 SX̂22 C23

0 0 0




r′

s′

m− r′ − s′

p + r′ − k′ s′ t′
, (2.17)

where

X̂22 = φ ∗ (CT
22S + SC22),

φ = (ϕkl) ∈ SRs′×s′ , ϕkl = 1
σ2

k+σ2
l
, 1 ≤ k, l ≤ s′.

(2.18)

Proof. From Theorem 2.1 in [7] we know that the symmetric least-squares solution
of the matrix equation (1.2) can be obtained using of the QSVD of matrix pair (A,BT )
and the general form of the solution is

X0 = Y




X ′
11 C12 C13 X ′

14

CT
12 X̂22 S−1C23 X ′

24

CT
13 (S−1C23)T X ′

33 X ′
34

X ′T
14 X ′T

24 X ′T
34 X ′

44


Y T , (2.19)

where X̂22 is given by (2.18) and X ′
11 ∈ SRr′×r′ , X ′

33 ∈ SRt′×t′ , X ′
44 ∈ SR(n−k′)×(n−k′),
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X ′
14 ∈ Rr′×(n−k′), X ′

24 ∈ Rs′×(n−k′), X ′
34 ∈ Rt′×(n−k′) are arbitrary matrix blocks.

Substituting (1.5),(2.19) into (2.13), we can easily obtain (2.17). ¤
Evidently, (2.17) shows that the matrix C0 in theorem 2.2 is dependent only on

the matrices A,B and C, but is independent on the symmetric least-squares solution
X of the matrix equation (1.2). Since C0 is known, from Theorem 2.1 we know that
Problem I is equivalent to Problem I0. In Problem I0, since SE0 6= ∅, we can derive
the general expression of of the elements of SE0 in the following theorem. In this
theorem, given A ∈ Rm×n, B ∈ Rn×p ,while C0 is given by (2.17),and assume that
g = rank(A), h = rank(B), the matrix pair (AT , B) has CCD (1.9).Notice that we
only state the result with g = h, because in the case g > h, the results of the theorem
and process of the proof are similar, only the partitions of the related matrices are more
complex.

Suppose X ∈ SE0 , then partition the symmetric matrix X∗ ≡ QT XQ into blocks
matrix,

X∗ = (Xkl)6×6, (2.20)

with the row numbers (and the related column numbers) of blocks are i, j, t, n − g −
j − t, j, t respectively, and Xkl = XT

lk, k, l = 1, 2, . . . , 6. Let E = XT
AC0XB and also

partition E into blocks matrix,

E = (Ekl)4×4, (2.21)

with the row numbers of blocks are i, j, t,m− g and the column numbers of blocks are
i, j, t, p− g respectively.

Theorem 2.3 In Problem I0, the general form of the elements of SE0 can be expressed
as X = QX∗QT , where X∗ has the form




E11 E12 E13 X14 X∗T
51 ET

31

ET
12 X22 X23 X24 X∗T

52 ET
32

ET
13 XT

23 X33 X34 X∗T
53 ET

33

XT
14 XT

24 XT
34 X44 X45 X46

X∗
51 X∗

52 X∗
53 XT

45 X55 X56

E31 E32 E33 XT
46 XT

56 X66




(2.22)

where X∗
51 = ∆−1

j (E21−ΛjE
T
12), X

∗
52 = ∆−1

j (E22−ΛjX22), X∗
53 = ∆−1

j (E23−ΛjX23),while
Xkk = XT

kk, 2 ≤ k ≤ 6, X14, X23, X24, X34, X45, X46 and X56 are arbitrary matrices with
the associated sizes.

Proof. Suppose X ∈ SE0 , then

AXB = C0. (2.23)

Substitute (1.9) into (2.23),we have
(

ΣT
A

0

)
X∗(ΣB, 0) = E, (2.24)
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then substitute (1.10),(2.20) and (2.21) into (2.24), it holds



X11 X12 X13 0
ΛjX21 + ∆jX51 ΛjX22 + ∆jX52 ΛjX23 + ∆jX53 0

X61 X62 X63 0
0 0 0 0


 =




E11 E12 E13 E14

E21 E22 E23 E24

E31 E32 E33 E34

E41 E42 E43 E44


 .(2.25)

Because the matrix equation (2.23) is consistent, therefore we can obtain some Xij

from (2.25) directly. Comparing with both sides of (2.25) , the expression (2.22) of X∗

can be derived according to the symmetric property of X∗. ¤
The following lemmas are needed for the main results.

Lemma 2.1 [17] For given J1, J2, J3 and J4 ∈ Rm×n,

Sa = diag(a1, . . . , am) > 0, Sb = diag(b1, . . . , bm) > 0,
Sc = diag(c1, . . . , cm) > 0, Sd = diag(d1, . . . , dm) > 0,

there exists a unique W ∈ Rm×n, such that

‖SaW − J1‖2
F + ‖SbW − J2‖2

F + ‖ScW − J3‖2
F + ‖SdW − J4‖2

F = min

and W can be expressed as

W = P ∗ (SaJ1 + SbJ2 + ScJ3 + SdJ4),

where

P = (pkl) ∈ Rm×n, pkl = 1/(a2
k + b2

k + c2
k + d2

k), 1 ≤ k ≤ m, 1 ≤ l ≤ n.

Lemma 2.2 For given J1, J2 and J3 ∈ Rs×s, Sa = diag(a1, . . . , as) > 0,Sb = diag(b1, . . . ,
bs) > 0, Sc = diag(c1, . . . , cs) > 0, there exists a unique symmetric matrix W ∈ SRs×s,
such that

µ ≡ ‖SaW − J1‖2
F + ‖SbW − J2‖2

F + ‖ScW − J3‖2
F = min,

and W can be expressed as

W = Φ ∗ (SaJ1 + JT
1 Sa + SbJ2 + JT

2 Sb + ScJ3 + JT
3 Sc), (2.26)

where

Φ = (φkl) ∈ Rs×s, φkl = 1/(a2
k + a2

l + b2
k + b2

l + c2
k + c2

l ), 1 ≤ k, l ≤ s.

Proof. For W ∈ SRs×s, it holds wkl = wlk (1 ≤ k, l ≤ s), and

µ =
∑s

k=1[(akwkk − J1kk)2 + (bkwkk − J2kk)2 + (ckwkk − J3kk)2]

+
∑

1≤k<l≤s[(akwkl − J1kl)2 + (alwkl − J1lk)2 + (bkwkl − J2kl)2

+(blwkl − J2lk)2 + (ckwkl − J3kl)2 + (clwkl − J3lk)2].
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Since the function µ is a continuous and differentiable function of 1
2s(s + 1) variables

wkl, hence µ obtains its minimum value at {wkl} when ∂µ
∂wkl

= 0, i.e.,

wkl =
akJ1kl + alJ1lk + bkJ2kl + blJ2lk + ckJ3kl + clJ3lk

a2
k + a2

l + b2
k + b2

l + c2
k + c2

l

, 1 ≤ k ≤ l ≤ s.

Therefore W can be expressed by (2.26). ¤
Finally we give the the optimal approximation solutions for the symmetric least-

squares problems of the linear matrix equation AXB = C, and we still suppose that
rank(A) = rank(B).

Theorem 2.4 Let matrices A,B, C and Xf be given in Problem I, suppose rank(A) =
rank(B), partition the matrix QT XfQ into blocks matrix

QT XfQ = (X(f)
kl )6×6, (2.27)

with the same row and column numbers as X∗ of (2.20). Then the unique solution Xe

of Problem I can be expressed as Xe = QX∗QT , and X∗ is equal to




E11 E12 E13 {X(f)
14 } X̄T

51 ET
31

ET
12 X̄22 X̄23 {X(f)

24 } X̄T
52 ET

32

ET
13 X̄T

23 {X(f)
33 } {X(f)

34 } X̄T
53 ET

33

{X(f)
41 } {X(f)

42 } {X(f)
43 } {X(f)

44 } {X(f)
45 } {X(f)

46 }
X̄51 X̄52 X̄53 {X(f)

54 } {X(f)
55 } {X(f)

56 }
E31 E32 E33 {X(f)

64 } {X(f)
65 } {X(f)

66 }




(2.28)

where X̄51 = ∆−1
j (E21 − ΛjE

T
12), X̄52 = ∆−1

j (E22 − ΛjX̄22), X̄53 = ∆−1
j (E23 − ΛjX̄23),

{X(f)
kl } =

1
2
(X(f)

kl + X
(f)T
lk ) = {X(f)

lk }T ,

X̄22 = Ψ ∗ [X(f)
22 + X

(f)T
22 + ∆−1

j Λj(∆−1
j E22 −X

(f)T
25 ) + (∆−1

j E22 −X
(f)T
25 )T Λj∆−1

j

+∆−1
j Λj(∆−1

j E22 −X
(f)
52 ) + (∆−1

j E22 −X
(f)
52 )T Λj∆−1

j ],

Ψ = (ψkl) ∈ Rj×j , ψkl =
1

2(1 + ( δi+k

λi+k
)2) + ( δi+l

λi+l
)2)

, 1 ≤ k, l ≤ j.

and

X̄23 = G ∗ [X(f)
23 + X

(f)T
32 + ∆−1

j Λj(∆−1
j E23 −X

(f)T
35 ) + ∆−1

j Λj(∆−1
j E23 −X

(f)
53 ),

G = (gkl) ∈ Ri×t, gkl =
1
2
λi+k, 1 ≤ k,≤ i, 1 ≤ l ≤ t.
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Proof. Suppose X ∈ SE = SE0 , by using (2.22) and (2.27), we have

‖X −Xf‖2
F = ‖X∗ −QT XfQ‖2

F

= (‖X33 −X
(f)
33 ‖2

F ) + (‖X44 −X
(f)
44 ‖2

F ) + (‖X55 −X
(f)
55 ‖2

F ) + (‖X66 −X
(f)
66 ‖2

F )

+(‖X14 −X
(f)
14 ‖2

F + ‖XT
14 −X

(f)
41 ‖2

F ) + (‖X24 −X
(f)
24 ‖2

F + ‖XT
24 −X

(f)
42 ‖2

F )

+(‖X34 −X
(f)
34 ‖2

F + ‖XT
34 −X

(f)
43 ‖2

F ) + (‖X45 −X
(f)
45 ‖2

F + ‖XT
45 −X

(f)
54 ‖2

F )

+(‖X46 −X
(f)
46 ‖2

F + ‖XT
46 −X

(f)
64 ‖2

F ) + (‖X56 −X
(f)
56 ‖2

F + ‖XT
56 −X

(f)
65 ‖2

F )

+(‖X22 −X
(f)
22 ‖2

F + ‖(∆−1
j (E22 − ΛjX22))T −X

(f)
25 ‖2

F +

‖∆−1
j (E22 − ΛjX22)−X

(f)
52 ‖2

F ) + (‖X23 −X
(f)
23 ‖2

F + ‖XT
23 −X

(f)
32 ‖2

F +

‖(∆−1
j (E23 − ΛjX23))T −X

(f)
35 ‖2

F + ‖∆−1
j (E23 − ΛjX23)−X

(f)
53 ‖2

F ) + α0,

(2.29)

where α0 is a constant.
According to (2.29), ‖X−Xf‖2

F = min if and only if each of the brackets in (2.29)
takes minimum. Notice that Xkk = XT

kk, k = 3, 4, 5, 6 and by making use of Lemma 2.1
and Lemma 2.2, the results of this theorem can be derived easily. ¤

Conclusions. Using the projection theorem in Hilbert space , the quotient singular
value decomposition and the canonical correlation decomposition , we have obtained the
explicit analytical expressions of the optimal approximation solutions for the symmetric
least-squares problems of the linear matrix equation AXB = C. In fact, we have also
obtained the explicit analytical expressions of the optimal approximation solutions for
the skew-symmetric least-squares problems of the linear matrix equation AXB = C ,
because of the limitation of the pages, we omit the content here, and we can design
new algorithms to solve the large scale least-square problems of linear matrix equation
AXB = C. These new results have generalized the work of Eric Chu [4], Dai Hua [5],
Higham [12] and Sun [15] in some aspects.
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Abstract

Level sets and fast marching methods are a widely used technique for problems
with moving interfaces. Chemical kinetics has been recently added to this family,
for the description of reaction paths and chemical waves in homogeneous media,
in which the velocity of the interface is described by a given field. A more general
framework must consider variable velocities due to inhomogeneities induced by
chemical changes. In this case, a constraint must be satisfied for the correct use
of fast marching method. We deduce an analytical expression of this constraint
when the Godunov scheme is used to solve the Eikonal equation, and we present
numerical simulations of a case which must be enforced to obey the constraint.

Key words: Chemical kinetics, Fast marching method, Godunov scheme
MSC 2000: AMS codes (optional)

1 Introduction

Recently the fast marching level set method of J. A. Sethian [1, 2] has been used in
chemical kinetics to solve fundamental problems such as simulating chemical waves [3],
finding reaction paths [4], calculating reaction trajectories [5] and computing tunneling
paths [6], among others, all of them recognized as fundamental challenges in Chemistry.

Fast Marching Methods (FMM) are especially suitable for tracking chemical inter-
faces whose velocity is defined by a funcion F (x, t), (x, t) ∈ IRn

× [0,+∞), which does
not change sign, that is, F (x, t) > 0 (or F (x, t) < 0) for all (x, t). In the cited works,
the function F is a given field which remains constant along the problem, assuming an
homogeneous or chemically isotropic medium. Unfortunatelly, this is not the general
case and the velocity field often depends on the position of the reaction interface itself.
Then, F must be calculated by solving a (system of) partial differential equation(s)
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simultaneously with the interface evolution problem. In this more general framework,
the FMM must be coupled to a static chemical problem which gives the instantaneous
velocity field and a CFL-like constraint for F must be taken into account.

In inhomogeneous or anisotropic chemical media, the mathematical model usually
consists in describing the evolution of a chemical magnitude u(x, y, t) in a 2D or 3D
domain Ω. To do this, one must be able to calculate the magnitude u(x, y, t) for a
given position of the interface Γ at a given time tn, and the velocity of (at least) all
the points of Γ at time tn. Then the FMM can obtain the new position of the interface
after a short interval of time ∆t, and start again for tn+1 = tn + ∆t.

The algorithm consits of a chemical part, where the solution un and the velocity
Fn are calculated in Ωn (characterized by Γn, i.e. changing in time) and a geometric
part, where the geometry is changed by moving the interface to its new position Γn+1.

In inhomogeneous problems, the velocity is renewed after each interval of time ∆t

by solving the chemical problem with a fixed interface. The consistency of the algorithm
is based on the assumption that ∆t is short enough to ensure that the velocity field
remains almost constant during this interval of time.

Here, we derive an explicit expression which acts as a CFL contraint from the
renewal of F and imposes a restriction for the FMM, concretely in the Godunov method,
which is the one used in [4–6].

2 The Fast Marching Method

2.1 Setup of the algorithm

Let {(xi, yj)}
Nx,Ny

i=1,j=1
be a rectangular space discretization of a two-dimensional domain

Ω. At time tn, the chemical interface Γn is given by a set of Nn
l nodes of Ω:

Γn = {(xn
l , yn

l )}
Nn

l

l=1
. (1)

Assume that F ≥ 0 (recall that the velocity does not change sign). The idea of the
FMM consists in describing the evolution of the interface –the front– by means of an
arrival time function φ(x, y) defined as the time it takes to the interface to arrive to
the point (x, y) ∈ Ω. At time tn, the interface is given by the points such that

φn(x, y) = tn. (2)

Starting from these points, the FMM provides the arrival time for t ≥ tn. At the end of
the FMM step, the arrival time is tn+1 and the position of the interface is given by the
points such that φn(x, y) = tn+1. In principle, φn(x, y) can be constructed beyond tn+1,
but its validity is subject to restrictions imposed by Fn, especially in inhomogeneous
media; in this case, φn(x, y) must be often reconstructed after each ∆t.

Three sets can be defined using the classical notation: (we omit the index n)

A = {(x, y) ∈ Ω/ φ(x, y) ≤ 0}: the front is or has been here;

C = {(x, y) ∈ Ω/ φ(x, y) > 0 and at least one of its neighbors is in A};
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F = {(x, y) ∈ Ω/ φ(x, y) > 0 and none of its neighborsis in A},

where A= Accepted points, C= Close points and F= Far points.
Numerically, the interface at time tn + ∆t is given by the points of Ω such that

|φn(x, y) − ∆t| < ǫ, (3)

where ǫ is a small tolerance of the width of the front that can be tuned to obtain a
“one-point width” front. Then, Γn is approximated by the set C; see Fig. 1.
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ACCEPTED CLOSE FAR

Figure 1: Accepted, Close and Far points for a nonconnected interface.

The level sets formulation consits in identifying the front with the zero level set of
a 3D surface W (x, y, t) whose evolution is described by the Hamilton-Jacobi equation

∂W

∂t
+ F |∇W | = 0. (4)

By definition, W (x, y, φ(x, y)) = 0. Taking the gradient of this expression yields ∇W +
Wt|∇W | = 0, and, using (4), we obtain the following equation for φ:

∇W − F |∇W |∇φ = 0. (5)

Eq. (5) shows that ∇W and ∇φ are colinear vectors, and that their modules are such
that |∇W | = F |∇W | |∇φ|. The arrival time function φ(x, y) is then given by the
eikonal equation

|∇φ| =
1

F
. (6)

The effectiveness of the FMM lies in the fact that φ is constructed in the upwind
direction (i.e. from low to high values of φ), in order to guarantee the increasing evolu-
tion of φ, according to that the time it takes to the front to arrive to a point depends
only on the history. The FMM step finishes as soon as a point (x, y) is found such that
φ(x, y) > ∆t + ǫ. The new front is then given by the new set C, and we return to the
chemical problem to obtain the solution and the new velocity at these points.
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2.2 FMM step: from t
n to t

n+1:

The FMM first initializes φ(x, y) and then corrects its values by solving (6) with an it-
erative process. The initialization must be done at least for the first time step, and can
be omitted in successive time steps if no reinitialization of φ is needed. The constraint
we present here is in fact a test which can enforce this reinitialization.

FMM algorithm

1.1 At all points of A, set φ = 0.

1.2 At all points of C (the interface), assign to φ the value of the time obtained by
dividing the distance from the point to the set A by the velocity of the interface
at this point: φ = d/F (see later a better way to do this step).

1.3 At all points of F, assign to φ the value +∞. These points are far and they don’t
have any influence in the correction of the points of C (upwind).

Once φ is initialized, the fast marching starts. The interface evolves point by point by
correcting the initial estimation by means of the following iterative process:

2.1 Obtain the point TRIAL (xT , yT ) from set C which has the smallest value of φ:
(xT , yT ) ∈ C and φ(x, y) ≥ φ(xT , yT ), ∀(x, y) ∈ C. See Fig. 2(a).

2.2 Test:

i. If φ(xT , yT ) > ∆t+ ǫ, φ has been constructed for all the points verifying (3).
Then the FMM step is finished and we return to the chemical problem.

ii. If not, there still exists points at which the interface will arrive at a time
lesser or equal to ∆t + ǫ and we have to continue.

2.3 Move (xT , yT ) to A (and delete it from C); its value is the definitive one because
it cannot be improved with this algorithm. See Fig. 2(b).

2.4 Move to C the neighbors of (xT , yT ) that are in F, because these points have now
a neighbor in A. See Fig. 2(c).

2.5 Actualize the value of φ at all the neighbors of (xT , yT ) that are in C, by solving
Eq. (6). See Fig. 3. This is the gordian knot of the FMM; see next section.

2.6 The interface has been moved one point; see Fig. 4. Goto 2.1.
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Figure 2: The interface is moved one point: (a) Find the point (xT , yT ). (b) Move
(xT , yT ) to A. (c) Move the neighbors of (xT , yT ) from F to C.
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Figure 3: Actualization of φ with the Godunov scheme in the neighbors of (xT , yT ) that
are in C: (a) the two neighbors; (b) First neighbor of (xT , yT ) and its respective neigh-
bors: the information comes only from the left. (c) Second neighbor: the information
comes in both directions, from the left and from above.

2.3 Godunov’s method

A suitable way to solve the eikonal equation in the context of the fast marching algo-
rtihm is the Godunov method [1], which is precisely the method used in [4–6]. The
Godunov method makes use of the following approximation of the gradient:

[

max (D−x
i,j φ, −D+x

i,j φ, 0)2 + max (D−y
i,j φ, −D

+y
i,j φ, 0)2

]

1/2

=
1

Fi,j
, (7)

where D−x
i,j φ = (φi,j − φi−1,j/∆x and D+x

i,j φ = (φi+1,j − φi,j)/∆x. The numerical
resolution of Eq. (7) is not trivial because unknown values must be compared a priori.
Typically, expensive iterative methods are used (Rouy-Tourin, 1992). Fortunately, we
can take advance from the upwind character of the Godunov approximation.

Before to explain the step 2.5 of the FMM algorithm, note that the step 1.2 is
equivalent to solve (7) with φ = 0 in the points of A and φ = +∞ in the points of F.
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Step 2.5: The actualization of φ at the neighbors of (xT , yT ) is done by solving Eq. (7)
by assigning to φ the value +∞ at the neighbors [of the neighbor of (xT , yT ) which is
being actualized] that are not in A. Once the calculation is done, the previous values of
φ at the neighbors of the neighbor of (xT , yT ) must by restituted. The neighbors that
are in A are used with their value and they remain unchanged.
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Figure 4: Next FMM step: (a) new position of the interface and localization of the new
point (xT , yT ); (b) and (c): steps 2.3 to 2.5 in this new situation.

How we do this? Assume a uniforme grid: h = ∆x = ∆y. Then Eq. (7) becomes

max (φi,j − φi−1,j, φi,j − φi+1,j , 0)2 + max (φi,j − φi,j−1, φi,j − φi,j+1, 0)2 =
h2

F 2

i,j

. (8)

These maxima cannot be calculated without knowing φi,j , which is precisely the un-
known of the equation. Let us replace maxima by minima,

max(φi,j − φi−1,j , φi,j − φi+1,j, 0) = φi,j − min(φi−1,j , φi,j, φi+1,j), (9)

max (φi,j − φi,j−1, φi,j − φi,j+1, 0) = φi,j − min(φi,j−1, φi,j, φi,j+1), (10)

and define the values

α1 = min(φi−1,j , φi+1,j) and α2 = min(φi,j−1, φi,j+1), (11)

which are known values, because they correspond to nodes of A or they have been
assigned to +∞ for this calculation. Then Eq. (7) is equivalent to

(φi,j − min(φi,j , α1))
2 + (φi,j − min(φi,j , α2))

2 =
h2

F 2

i,j

. (12)
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As we are actualizing φi,j, at least one of the neighbors of (xi, yj) must be in A, that
is, the information comes from at least one direction x or y, or from both directions:

• If the information comes only from direction x (respectively y), then we can
calculate min(φi,j , α2) = φi,j, because (xi, yj−1) and (xi, yj+1) are not in A, so φ

must be at +∞ in these points. The equation to solve is simply

φi,j = α1 +
h

Fi,j

(

Respectively, φi,j = α2 +
h

Fi,j

)

. (13)

• If the information comes fromboth directions, then there exists at least one neigh-
bor in each direction where the value of φ is lower than φi,j: α1,2 < +∞. This way,
φi,j can be dropped from minima calculations in (12) and minima calculations are
redundant. The Godunov equation becomes (φi,j −α1)

2 + (φi,j −α2)
2 = h2/F 2

i,j .
This can be rewritten as

φ2

i,j − (α1 + α2)φi,j +
1

2

(

α2

1 + α2

2 −
h2

F 2

i,j

)

= 0. (14)

Here ∆ = −(α1 − α2)
2 + 2h2/F 2

i,j cannot be negative, so the velocity must be

such that |α1 − α2|Fi,j ≤

√

2h. This is called a “classically allowed point” in [3].
When ∆ > 0, the higher root must be used to preserve the upwind.
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Figure 5: Actualization of the neighbors of the new point (xT , yT ). In this case there
are three neighbors to be actualized, each one with a different kind of neighborhood.

For the consistency of the FMM algorithm, a second upwind condition must be
verified by Eq. (14), which is that φi,j must be greater or equal than α1 and α2:

φi,j =
α1 + α2

2
+

1

2

√

∆ > α1,2, i.e. ∆ > 4

[

α1,2 −
α1 + α2

2

]

2

= (α1 − α2)
2,

and then

Fi,j <
h

|α1 − α2|
. (15)

This condition is more restrictive than the one deduced for “classically allowed points”,
and is consequently the one which must be used.

175



2.4 The Condition (15) is a constraint

By construction, the FMM is such that expression (15) is always verified during the
geometric part of the problem. Let us give a qualitative description of this fact.

 

P

P

2 P=

P

T

A

(b)(a)

 1

i

1

2

j

α

α
h

h

Figure 6: Numerical cell in the actualization of PA = (xi, yj).

Fig. 6 shows the numerical cell of a point PT = (xT , yT ) whose upper neighbor PA =
(xi, yj) is being updated. Assume that information comes in both directions, from the
left from P1 = (xi−1, yj) and from below from P2 = (xi, yj−1). The value of φ at PA

will depend on φ(P1) and φ(P2). The trial point PT must be P1 or P2; assume PT = P2.

In this case, α1 = φi−1,j and α2 = φi,j−1. The value α2 − α1 (which is positive,
because the front arrives first to P1) is the time elapsed between the arrivals of the
front to P1 and to P2: α2 − α1 is the time spent by the front in going from P1 to P2.
Note that the interface can be a not connected set, in such a way that it can arrive to
P2 from far from P1. For simplicity, assume that it is a connected set.

In terms of velocities, the value h/(α2 − α1) is the velocity at which the interface
covers the distance between P1,2 and PA in a time α2 −α1. The restriction (15) means
that Fi,j must be lower than this value. This, of course, makes sense, because Fi,j is
the value of the velocity of the interface at PA. Numerically, Fi,j is the value used to
actualize φi,j , that is, the value of F in the numerical cell of PA. It is then necessary
to Fi,j to be lower than the velocity at which the interface goes from P1 to P2; if not,
once in P1, the interface will arrive first to PA and then to P2, and this is not possible.

In terms of times, the time it takes to the interface to arrive to (xi, yj) coming from
its neighbors (located at a distance h) at a velocity Fi,j must be greater or equal than
the time spent in going from one neighbor to the other, |α1 −α2|. If this is not so, the
interface will arrive first to the point that is being actualized than to a neighbor which
is being used for this actualization, and this is an absurdity.

As we have seen, the FMM preserves the upwind during the geometric part of the
numerical resolution. But, during the chemical part of the problem, the velocity is
renewed and the expression (15) can be no longer satisfied. Let us show how.

The function Fn is defined as the velocity at the points of Γn at time tn; nothing
is said about the value of Fn outside the interface, and it may happen (especially in
inhomogeneous problems) that a velocity does not make sense outside the interface.
However, these values are used in the FMM, by extending Fn to a narrow band around
Γn (several methods can be used [7], e.g. the velocity at the nearest point of Γn). When
the FMM step has been done, and before the renewal of Fn, the interface is given by
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a new set of points

Γn+1 = {(xn+1

l , yn+1

l )}
Nn+1

l

l=1
.

The velocity at these points at time tn is called, actually, Fn
ext, an extention of Fn. The

condition (15) is still preserved for Fn
ext, but this can be false for the renewed velocity

Fn+1(Γn+1). In fact, the velocity at Γn+1 can be very different, depending on the
smoothness of the chemical processes: the velocity is not constant between time-steps
of size ∆t, and important changes may happen from one interval of time to the other
which can affect considerably the velocity:

Fn+1(Γn+1) 6= Fn
ext

(Γn+1).

From the chemical point of view, the velocity of the interface at a given point is
unique (recall that F does not change sign), but the numerical resolution makes use of
two values of the velocity at the points at which the arrival of the interface coincides
with the change of time-step: the extended value Fn

ext and the renewed value Fn+1.

The condition (15) can be not satisfied by Fn+1; there is no reason why Fn+1 could
be enforced to verify (15). In the cited works it is mentioned that “nonclassical points”
are simply deleted from the close or trial sets [4]. This may affect to the fidelity of the
simulation to the real chemical problem. Both the existence of real solutions of Eq. (7)
and the upwind condition (15) must be ensured by the algorithm.

It is in this way that the condition (15) acts as a constraint for φ. In fact, in
the algorithm we have proposed here, this condition must be introduced as a test for
the validity of φ for the next FMM step. If the condition is not satisfied, then the
reinitialization of φ is needed, or, in a more complicated way, an adaptive time-step
algorithm must be implemented. The refinement of the spatial mesh makes things
smoother, but it also contributes to render more demanding the condition (15).

3 A numerical example

We have considered a general situation in which a
chemical reaction takes place in a domain characterized
by the geometry described in the contiguous figure.

Assume that the chemical reactant interface ar-
rives to a region in which the substrate is chemically
inhomogeneous. Inhomogeneities can be due to differ-
ent properties of the substrate, but also to dynamical
effects induced by the reaction (electromagnetic effects,
temperature. . . ). The reactant can then evolve with
a different speed in different parts of the substrate.
Assume that the channel (with two entrances, A and
B) described by two nonreactive and noncatalytic obstacles, is a fast reactant region
(Fch = 1), compared to the rest of the substrate (Fs = 0.1). This figure shows the
(frequent) case in which the interface arrives first to one of the entrances (e.g., A).
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Inside the channel, the advance of the interface is faster than outside. Fig. 7 shows
that the arrival time at the most advanced point of the interface inside the channel is
lower than at the entrance B; see the two isolated points at (15,4.5,0.4).

Figure 7: The not-connected interface Γ when just entering into the channel (Fch = 1),
and at the other end, outside the channel (Fs = 0.1). Depicted is arrival time φ(x, y).
Narrow points are accepted points, boldface points are close points (which define the
interface, and in which the value of φ is provisional at this stage of the algorithm).

During the next FMM step, the interface will arrive approximately at the same time
to the entrance B from inside and outside of the channel. Level sets and fast marching
methods are especially suitable for this kind of situation in which topologycal changes
may appear during the evolution of the interface. This is a typical situation which can
be produced e.g. by four-well potentials as in [4] (see Fig. 1 therein).

Figure 8: Same as before, after a FMM step. The (definitive) arrival time at critical
points near (15,4.5) is larger than inside the channel, producing a large value of |α1−α2|.

Fig. 8 shows the precise instant in which both fronts of the interface encounter
each other. The interface Γ is given by two nonconnected sets of points (at least in the
region we are focusing on). The actualization of φ (step 2.5 of the FMM) may require
the use of close points located at different regions of the substrate, i.e. in regions of
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different velocities: outside the channel, the interface is just arriving (high arrival time),
whereas inside the channel the interface has a low arrival time. Then |α1−α2| becomes
large with respect to its typical value when points are all in the same region. When
the velocity is renewed, chemical processes can be such that F can adopt a large value;
the combination of these two effects can lead to a violation of the constraint.

It is important to note that even if the constraint (15) can be seen as a CFL-like
condition, where the value of a parameter (F ) is restricted by a space over time fraction,
it is not a CFL condition. Even if the space value is h (the space step), the time value
|α1 − α2| is absolutely not related to the time step of the algorithm.

Conclusion

In conclusion, we have derived a constraint for the Godunov scheme when it is used to
solve the Eikonal equation during the FMM, when this later is coupled to a chemical
problem in inhomogeneous media producing nonconstant velocity fields.
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Abstract 

This paper presents a study of a stochastic transshipment problem with random demands. 
In our model the random demand has not been replaced by its expectation but the 
probabilistic nature of the problem has been built into the problem formulation itself so 
that the system has the opportunity to take maximum advantage of the probability 
distribution of demand. Deterministic equivalent of the problem is obtained and an 
algorithm is developed for solving the same.  
 
Keywords: transshipment, random demand, 
global optimum, basic feasible solution. 
 
 
1. Introduction 
The standard transportation problem and its several variants including the 
stochastic transportation problems have been extensively studied and special 
methods developed for solving them. However, the transshipment problem with 
random demands seems to have remained unexplored so far. Interest in 
transshipment problem arises because transshipments are often required for 
effective supply chain management and better replenishment strategies [2,4,6]. 
Transshipments also occur in the military logistics where direct transportation of 
goods to destination may not be advisable for security reasons. Moreover, the 
demands in real life are usually uncertain and have to be treated as random 
variables. This creates considerable complications. The purpose of this paper is 
to study a stochastic transshipment problem in which the demands at various 
destinations are assumed to be independent discrete random variables with 
known probability distributions. In this study, the random demand has not been 
replaced by its expectation but, following the technique of Dantzig[1] the 
probabilistic nature of the problem has been built into the problem formulation 
itself so that the system has the opportunity to take maximum advantage of the 
probability distribution of demand. The stochastic transshipment problem is 
reduced to an equivalent deterministic transportation type linear programming 
problem and an algorithm is developed to solve the same.  
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2. Problem Formulation 
Consider a transshipment problem with m sources numbered 1, 2, ........ .., m and 
n sinks numbered m+1, m+2,..., m+n. The sequential numbering of sources and 
sinks is found convenient because in a transshipment problem every source and 
sink acts both as a shipping point as well as a receiving point of goods.  
Let, ai   = the quantity available at source i= 1,2,……..m, 
            bj   = the quantity demanded at sink   j= m+1,m+2,………….,m+n, 
 xij  = the quantity shipped from station i to j (i, j= 1,2,……,m+n), 
 cij  = the per unit shipment cost from station i to j (i, j= 1,2,……,m+n), 

ti    = quantity transshipped at the station i (i= 1,2,……,m+n), 
 li    = per unit transshipment cost (including unloading, reloading, and  
                     storage etc.) at the station i (i= 1,2,……,m+n),  
            sj  = revenue received (sale proceeds minus the handling costs like seller’s  
                     commission etc.) per unit of demand satisfied at sink Dj  

 
In the standard transshipment problem the objective is usually to minimize the 
total of transshipment and transportation costs. However, in our case we have no 
precise information concerning the demand bj, but that we know its probability 
distribution for each j. So, in order to take care of the randomness of demands, 
instead of minimizing the total cost, we take our objective as the maximization of 
the net expected revenue (i.e., total expected revenue minus the total costs of 
procurement, transshipment and transportation). This would cause a tug of war 
between maximizing the expected revenue and minimizing the costs of 
transportation and transshipment.  

 Mathematically, the problem may be stated as under: 

Problem P1:   Find xij so as to  

maximize        F  = ∑∑ ∑∑
+

=

+

=

+

=

+

+=
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        xij  ≥  0            …                  …                 …(2.4) 

∑
+

=

nm

1j

* indicates that the term j = i  is excluded from the sum.   

Here fj(sj, Yj) is a yet unknown function that describes the expected revenue from 
the destination j if a net total of Yj units are shipped to that destination. So the 
function F is a measure of the net expected revenue. 
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Constraints (2.2a) imply that the total quantity that leaves the source i ( = 1, 2, 
…, m) is equal to the quantity available plus the quantity transshipped and (2.2b) 
imply that the total quantity that leaves the sink i ( = m+1, m+2, …, m+n) is 
equal to the quantity transshipped. Similarly Constraints (2.3a) imply that the 
total quantity that arrives at the source j ( = 1, 2, …, m) is equal to the quantity 
that source transships and (2.3b) imply that the total arriving at the sink j (= m+1, 
m+2, …, m+n)  is equal to the demand at that sink plus the quantity that the sink 
transships.  
 
The transshipped quantities ti are unknown and generate -1 coefficients when 
brought over to left-hand side. So we impose an upper bound to (say) on the 
amount that can be transshipped at any point such that 
 
  ti≤ to     or    ti = to – xii  i = 1, 2, 3,….., m+n,         …(2.5) 
 
where xii is a nonnegative slack. After substituting (2.5) in (2.1) to (2.3) and on 
simplifying the original transshipment problem P1 is reduced to the following 
genuine transportation type linear programming problem. 
 
Problem P2: 

 Maximize           F   = 
1 1 1 1

( , )
m n m n m n m n

j j j ij ij i o
j m i j i

f s Y c x l t
+ + + +

= + = = =

− −∑ ∑∑ ∑                        …(2.6)
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                                  xij  ≥  0      i, j = 1, 2, 3,….., m+n,                             …(2.9)
                                   
where cii = -li and note that the * (asterisk) on the summations have disappeared 
due to the inclusion of xii.  
 
The upper bound to can be interpreted as the size of a fictitious stockpile at each 
of the sources and sinks which is large enough to take care of all transshipments. 
Obviously, to need not be larger than the total quantity required to be shipped. So, 

we take to= ∑
=

m

1i
ia  which ensures that to is not limiting. The unused stockpile at 

the station i=1, 2, ……..m+n,  if any,  will be absorbed in the slack xii. 
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Thus, the m×n order transshipment problem P1 has been converted into a direct 
shipment transportation problem P2 of order (m+n)× (m+n) which can have no 
more than 2(m+n)-1 variables different from zero. However, (m+n) of these non-
zero variables are the slack variables xii representing the unused stockpile and 
hence there are in fact no more than (m+n-1) variables of interest which are 
different from zero.   
 
As indicated earlier, the demands bj (j =m+1, m+2, …,m+n) are independently 
distributed discrete  random variables. Let the probability distribution of bj be as 
below: 
 

Demand bj b1j   < b2j   <     ………<    jH j
b  

Prob (bj=bhj) = phj 
 
Prob (bj≥ bhj) = π hj 
 

p1j 

π 1j=∑
=

jH

1h
hjp (= 1) 

p2j                   

π 2j=∑
=

jH

2h
hjp   

………… 
 
…………. 

jH j
p  

jHjH jj
p=π  

 
 However, the moment we treat bj as random variable, a new problem begins to 
rear its head. The constraints (2.8b) fail to make sense. To make the problem 
meaningful it has to be reformulated into an equivalent deterministic problem.  
 
3. Equivalent Deterministic Problem 
In the function fj(sj, Yj), note that Yj, the net quantity shipped to sink j, can be any 
amount between the lowest value b1j and the highest value jH j

b  in the probability 
distribution of the demand bj (j = m+1, m+ 2, …, m+n). 
 
If 0≤Yj ≤  b1j, then each of the Yj units shall be absorbed with probability j1π (= 1).  

Hence, the expected revenue is = sj j1π Yj. 

 
If b1j≤Yj ≤  b2j, then each unit upto b1j shall be absorbed with probability j1π  and 
each of the additional units (Yj - b1j) shall be absorbed with probability j2π . 
Hence, the expected revenue is = sj j1π  b1j + sj j2π  (Yj - b1j). 
 
In general, if bhj≤Yj ≤ bh+1,j, then the expected revenue is  
= sj{ j1π b1j + j2π  (b2j - b1j) + ……. j2π (bhj – bh-1,j) + jh ,1+π (Yj - bhj)}. 

 
Let us now break Yj into incremental units yhj (h = 1, 2,…Hj) as: 
                             Yj = y1j + y2j + y3j + …. + yhj + .… jH j

y                           …(3.1) 
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where    
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Relation (3.1) makes physical sense only if there exists some h = hj (say) such 
that all intervals below the hj

th interval are filled to capacity and all intervals 
above it are empty i.e. 
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Assuming for the time being that the conditions (3.3) hold, the total expected 

revenue from sink j is:    fj(sj, yj) = ∑
=

jH

h
hjhjj ys

1
π      

Substituting the value of fj(sj, yj) in (2.6), the net expected revenue is: 
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The third term on the right hand side is a constant that can now be ignored but 
adjusted in the end.  
Since we have to maximize F (or minimize –F), so, ignoring the constant term 
and treating both xij and yhj  as decision variables, the deterministic equivalent of 
the Problem P2 is:  

Problem P3:   Minimize      Z =∑∑
+

=

+

=

nm

1i

nm

1j
ijijxc +∑∑

+

= =

nm

i

H

h
hjhj

j

yd
1 1

                    …(3.4)                 

where dhj= -sj hjπ  

 Subject to  ∑
+

=

nm

1j
ijx             =  

⎩
⎨
⎧

++=
=+

nm,...1mit
m,.....,2,1ita

o

oi ...(3.5 )
...(3.5 )

a
b

          …(3.5) 

         ∑
+

=

nm

i
ijx

1
             = to,           j=1,2,…..,m        … (3.6 )a                                     

                    ∑∑
=

+

=

−
jH

h
hj

nm

i
ij yx

11
= to,     j= m+1,…, m+n       … (3.6 )b          …(3.6)

           xij, yhj  ≥  0 )h,j,i(∀        …(3.7)         
                                    yhj  ≤  Rhj  )j,h(∀                   …(3.8) 
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and subject to the additional stipulation that the constraints (3.3) are also 
satisfied. Fortunately, it turns out that (3.3) do not restrict our choice of optimum 
solution in any way. This we prove in the following theorem. 
 
Theorem 1  
A feasible solution to Problem P3 can always be improved if it violates any of the 
constraints (3.3). 
Proof 
Let (x*

ij, y*
hj) be a feasible solution to Problem P3 obtained on ignoring (3.3). The 

value of Z at this solution is: 

                               Z* = ∑∑
+

=

+

=

nm

1i

nm

1j

*
ijijxc + ∑ ∑

+

+= =

nm

mj

H

h
hjhj

j

yd
1 1

*  

Suppose that there exists some h = ho & j = jo such that 
0& *

,1
* ><

+ oooooo jhjhjh
yRy  

It is clearly a violation of the constraints (3.3).  
Now, we increase *

jh ooy  and decrease *
j,1h ooy

+
by equal amounts θ (> 0) such that 

the feasibility of the solution is not disturbed. The new value of the objective 
function becomes: Zo = Z* + θ )( *

,1
*

oooo jhjh
dd

+
−  

But )( *
,1

*
oooo jhjh

dd
+

− ≤  0, as hjπ  ≥  jh ,1+π for all h and j. 

Hence it follows that Zo ≤  Z* .    Q.E.D.  
 
This result shows that if an optimum solution to Problem P3 is obtained after 
ignoring (3.3), it shall suo moto satisfy (3.3). Thus, to solve problem P3, we may 
simply ignore the constraints (3.3). 
 
4. Preliminaries to the Solution of Problem P3 

1. It is assumed that the set of all feasible solutions of Problem P3 is regular 
(i.e. non-empty and bounded). 

2. Problem P3 is a transportation type linear programming problem with 
upper bound restrictions on some variables. So, its global minimum exists 
at a basic feasible solution of its constraints. 

3. We shall, hereinafter, call the constraints (3.5) through (3.7) as the 
original system and the constraints (3.5) through (3.8) as the bounded 
system.  As none of the constraints in the original system is redundant, a 
basic feasible solution to the original system shall contain 2(m+n) basic 
variables. For the capacitated system also, a basic feasible solution shall 
contain 2(m+n) basic variables and the same may be found by working on 
the original system provided that some of the non basic variables are 
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allowed to take their upper bound values[3]. 
4. The special structure of Problem P3, permits us to arrange it into an array 

as shown in table 1: 
 

Table 1 
x11 
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… 

x1m 
 

       c1m 

x1 m+1 
 

c1 m+1 

 
… 

x1 m+n 
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  .…… 
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   … 

……. 
    ……. 

……. 
……. 

… 
… 

……. 
……. 

……. 
……. 
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cm1    

 
… 
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cmm 

xm,m+1 
               cm,m+1 

 
… 

xm m+n 
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xm+1,1 
   

   cm+1,1  
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           cm+1m   

xm+1,m+1 
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xm+1 m+n 
 
            cm+1 m+n 

to 
 

……. 
……. 

 

… 
… 

……. 
……. 

……. 
……. 

… 
… 

……. 
……. 

……. 
……. 

xm+n,1 
 

cm+n 1    

 
… 

xm+n,m 
 

cm+n m    

xm+n,m+1 
 

cm+n m+1    

 
… 

xm+n m+n 
 

cm+n m+n    

 
to 

to … to y1 m+1     R1 m+1 

 
d1 m+1

 
… 

y1,m+n       R1,m+n 
 

             d1,m+n 
……. … ……. 
……. … ……. 

YH,m+1     RH,m+1 
 

              dH,m+1 

 
… 

YH,m+n     RH,m+n 
 

            dH,m+n 

 

to … to 

 

In the above table, there are (m+n) rows in columns j=1,2,….m and (m+n+H) 
rows in columns j=m+1,m+2,….m+n. Here H = max Hj, so that there shall be 
some empty boxes near the bottom of the table in columns j=m+1,m+2,….m+n. 
These empty boxes shall be crossed out.  

Absence of the row totals for yhj’s in the table indicates that there are no row 
equations for yhj variables. Besides, to obtain the column equations (3.6b), each 
yhj has to be multiplied by (-1). We have omitted (-1) from yhj boxes for 
convenience. 
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5.  Initial Basic Feasible Solution 
 
To start with, we fix the demands bj’s approximately equal to their expected 

values such that ∑∑
=

+

+=

=
m

1i
i

nm

1mj
j ab and also such that for all j except j = j*, each bj 

falls at the upper end of one of the intervals yhj into which the bj has been divided 

i.e. bj ∑
′

=

=
jh

1h
hjR for some jh′ ≤  Hj and for all j except j = j* (the bj can always be so 

chosen that it is done).  
With these fixed demands the upper portion (above the double line) of the Table 
1 resembles a (m+n)× (m+n) standard transportation problem for which an initial 
basic feasible solution with {2(m+n)-1} basic variables is obtained by any of the 
several available methods. Now, in each of the columns j=m+1,m+2,….m+n the 
values of the non basic yhj’s are entered at their upper bounds Rhj in turn h =1, 
2,…. until we have entered enough non basic yhj’s so that their sum over h is 
equal to bj. Obviously, we shall never have to enter yhj below its upper bound 
except in column j = j*, where the last nonzero entry will be yhj*≤Rhj*. This last 
entry and the {2(m+n)-1} basic xij’s found earlier, constitute the required initial 
basic feasible solution with 2(m+n) basic variables. In case the last non zero 
entry in column j* is also at its upper bound, then we take the last yhj entry of any 
column as our 2(m+n)th basic variable. 
 

6. Optimality criteria 
Let the simplex multipliers corresponding to the objective function Z (Problem 
P3) be ui and vj ),...,2,1,( nmji +=∀ . These are determined by solving the 
following equations.  

   
⎪⎭

⎪
⎬
⎫

=−

=++

hj

ij

y basicfor 0

 xbasicfor 0

jhj

jiij

vd

vuc
                          …(6.1) 

These are 2(m+n) linear equations in as many unknowns ui and vj and can be 
easily solved. Let the relative cost coefficients corresponding to the variables xij 
and yhj be ijδ  and hjλ . These are determined by solving the following equations:                

 ij

hj

for non basic x

for non basic y
ij ij i j

hj hj j

c u v

d v

δ

λ

= + + ⎫⎪
⎬= − ⎪⎭

                         …(6.2) 

 
It can be easily shown that for a given basic feasible solution (xij, yhj) of  the 
Problem P3, the value of the objective function Z is: 
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     Z= ( )
1 1 1 1 1 1 1

jHm n m n m n m m n m n

ij ij hj hj i i o i o j o
i j j m h i i m j

x y u a t u t v tδ λ
+ + + + +

= = = + = = = + =

⎧ ⎫
+ − + + +⎨ ⎬

⎩ ⎭
∑ ∑ ∑ ∑ ∑ ∑ ∑   

 

       =
1 1 1 1 1 1 1

( )
jHm n m n m n m m n m n

ij ij hj hj i i o i j
i j j m h i i m j

x y u a t u vδ λ
+ + + + +

= = = + = = = + =

⎧ ⎫
+ − + +⎨ ⎬

⎩ ⎭
∑ ∑ ∑ ∑ ∑ ∑ ∑     …(6.3) 

 
Here, ijδ = 0 for all basic xij and also the values of the non basic xij are zero. So, 
the first term on the r.h.s. of (6.3) vanishes. Similarly hjλ = 0 for the basic yhj, but 
as regards the values of non basic yhj’s - some are zero and the others are at their 
upper bounds. Hence, 

 Z = * *

1 1 1 1 1
( )

jHm n m m n m n

hj hj i i o i j
j m h i i m j

R u a t u vλ
+ + +

= + = = = + =

⎧ ⎫
− + +⎨ ⎬
⎩ ⎭

∑ ∑ ∑ ∑ ∑     …(6.4) 

Where ∑ * indicates the sum over those non basic yhj which are at their upper 
bounds. Now if the value of any one of the non basic variables xst or yrt is 
changed to:  

stx  = (xst +θ )     or       rty = (yrt ± θ ),  

with the other non basic variables remaining unaltered and the basic variables 
adjusted to maintain feasibility of the solution, then the improved value of Z shall 
be:  
                      Z  = Z +θ ijδ         or           Z  = Z ± θ hjλ ,        as the case may be.  
Note that we take plus sign if yrt = 0 and minus sign if yrt = Rrt.  
 
The objective function will improve iff Z  - Z < 0 i.e. 

(Z +θ ijδ ) - Z < 0     or      (Z ± θ hjλ ) - Z < 0 
⇒ θ ijδ  < 0     or   ± θ hjλ  < 0 
⇒    ijδ  < 0     or     ±  hjλ  < 0 

(Since in non degenerate case  θ > 0 and in degenerate case θ = 0  ⇒ Z  = Z). 
Thus, the current solution is optimum iff 

0 (  non basic x )

0 (  non basic y at zero level)

0 (  non basic y at upper bound)

ij ij

hj hj

hj hj

δ

λ

λ

⎫≥ ∀
⎪

≥ ∀ ⎬
⎪≤ ∀ ⎭

  …(6.5) 

 
If any of the optimality criteria (6.5) is violated, the current solution can be 
improved. The non basic variable which violates (6.5) most severely is selected 
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to enter the basis. The values of the new basic variables are found by applying 
the usual θ -adjustments. It should, however, be kept in mind that the coefficient 
of each yhj in the column equations (3.7b) is (-1). 
 
The variable to leave the basis is the one that becomes either zero or equal to its 
upper bound. If two or more basic variables reach zero or their upper bounds 
simultaneously then only one of them becomes non basic. Should it happen that 
the entering variable itself attains upper or lower bound (zero) without 
simultaneously making any of the basic variables zero or equal to its upper 
bounds, the set of basic variables remains unaltered; only their values are 
changed to allow the so-called entering variable to be fixed at its upper or lower 
bound. 
 
Termination of the process 
The process is bound to terminate with a finite number of iterations as it involves 
movement from one basic feasible solution to another basic feasible solution, and 
the number of basic feasible solutions is always finite. The author has tested the 
algorithm on several numerical examples.  
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Abstract

Third order analytical expressions for Barábasi-Albert networks efficiency are
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1 Introduction

Performance and stability are very important properties to characterise complex net-
works which have been widely studied [2,8,9,10,11,12,13,14,15,16,17,18]. Magnitudes
as efficiency [17], vulnerability [11] improvement [18] have been introduced and studied
in order to quantify these properties. Real networks, whose understanding is a primary
goal of the field of complex networks, may be formed for a huge number of nodes and
connections (of the order of hundred-thousand or even million)[3,5,19]. Therefore, cal-
culations in the modelled networks necessary to measure these or other magnitudes may
be computationally very expensive. For this reason, we consider of a great importance
the development of alternative “cheaper” approximations which lead to the calculation
estimation of relevant magnitudes. In this work we follow this guideline in networks
constructed following the Bárabasi and Albert (BA) network model [1], some of which
properties reproduce those of real networks. The special properties of the tree structure
allow obtaining analytic estimates of the efficiency and the improvement of Bárabasi
and Albert Networks. These estimates are used to obtain important conclusions which
show the advantages of the preferential attachment way of growth.
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We focus on the study of efficiency and improvement in BA networks. Efficiency
quantifies the performance of the network. If G = (V,E) is a complex network, its
efficiency is defined [17] as

E(G) =
1

n(n− 1)

∑
i6=j∈G

1
dij

, (1)

where di,j is the distance between the nodes i and j. Improvement measures the relative
variation of the efficiency of a network when a new element is added. It is defined [18]
as:

I(G, G∗) =
E(G∗)− E(G)

E(G)
, (2)

where G∗ is the network G with the addition of the new elements.
First of all we shall briefly introduce the BA model, whose most important case

leads to tree structure networks. Then we present some general properties of this kind
of networks, and making use of these results, we will finally obtain analytic expressions
for efficiency and improvement.

2 Barabási and Albert Model

Most real networks are created by successive addition of nodes. It is reasonable to
consider this addition to depend upon the network properties at the moment that a
new connection is created. The Barabási and Albert model (BA model) combines both
characteristics in the following way:

1. There is a periodic addition of nodes that are connected to the already present
ones: we begin with a small graph of m0 nodes. In every time step a new node
with m edges is introduced and connected.

2. The higher is the degree of an existing node, the higher is the probability of being
connected to the new node: the probability that the new node is linked to the
existing node i is

Π(ki) =
ki∑
j kj

(3)

where ki is the degree of node i. After t time steps a network with n = m0 + t
nodes and mt edges is obtained.

Networks constructed according to this model reproduce the aforementioned self-
similarity present in many real-world networks: the degree distribution of the system
follows a power law p(k) ∼ k−γ independently of the size of the network. Due to
this self-similar character, these networks are also called scale-free networks. The case
m = 1, in which new nodes connect to the network with one edge is one of the most
common. The resulting networks constructed this way have a tree structure.
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3 Some properties of networks with tree structure

As mentioned, due to the way of construction, BA networks with m = 1 have a tree
structure. In a connected network with such structure, there exist univocal relations
between the nodes degrees and the distances among them as it is explained. In figure
1.a) it is represented the node i of a tree type graph. The distance among first neigh-
bours of the same node is always 2 (it cannot be 1 because in that case there would
be a cycle and the network could not be a tree). Then, there are ki(ki − 1) length-two
distances which pass through node i. The sum over all nodes

∑n
i=1 ki(ki − 1) gives the

total number of distances 2 in the network.

Figure 1: a)Node i with degree ki = 4 of a tree type network. 12 length 2 distances pass
through it. b) The distance among first neighbours of i and j is 3.

In figure 1.b) it can be seen that each first neighbour of i (except node j) is
placed at a distance of 3 from every first neighbour of j and vice versa. Then, there
are (ki − 1)(kj − 1) length 3 distances which pass through i and j. If we sum over
all connected pair of nodes in the network, we obtain the total number of length 3
distances.

But the efficiency of a network is precisely the weighted sum of the distances among
its nodes, then if we know the number of distances until i-th order, we may obtain an
i-th order approximation of the efficiency. To make use of these properties we need
information about the network nodes degree.

4 Mean Field Theory

Barabási and Albert have also developed a method [4] that describes analytically the
evolution of BA Networks. In the mean-field theory it is assumed that the degree of
each node of the network evolves as a continuous variable with a rate of change

∂ki

∂t
= mΠ(ki). (4)

With the initial condition that node i was introduced at time ti, we obtain an
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analytical expression for the time dependence of the degree of node i given by

ki(t) = m

(
t

ti

)0.5

, (5)

where {k1, k2, ..., kn} is termed degree sequence. With this information of the degree
sequence and the mentioned tree structure properties we develop interesting results on
BA networks efficiency and vulnerability.

5 Upper and lower bounds for efficiency in BA networks

Combining the degree sequence with the properties of the tree structure showed in
section 2, third order lower and upper estimates for BA graphs are obtained. The
results are compared with empirical values obtained by computer simulation of the
same networks. That is represented in figure 2.

Figure 2: Efficiency of BA networks with m=1 vs number of nodes, n (dots). Upper
and lower estimates (lines)

BA networks with m = 1 with number of nodes ranging from 3 to 2300 are plotted.
Ten realisations are made for each size of network. They are compared with the upper
and lower analytic estimates (E+, E−) given by

E+(G) =
1

n(n− 1)

[
3∑

i=1

1
i
di − (n(n− 1)− d1 − d2 − d3)

1
4

]
, (6)

E−(G) =
1

n(n− 1)

[
3∑

i=1

1
i
di − (n(n− 1)− d1 − d2 − d3)

1
D

]
, (7)
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where di is the number of length i distances in the graph and D the diameter of the
graph. With these estimates we may approximate the values for the efficiency for larger
networks, whose size may not allow direct calculations. But more important is the trend
of the efficiency showed in the figure, which reveals new features of BA Networks.

6 Improvement on BA networks

In this section we study the improvement (2) of a network which growths following
the BA model with m = 1. The empirical values of the improvement and the analytic
ones are compared. In figure 3 empirical values of I(G, G∗) are shown, where G∗ is the
the graph which results from adding G a new node with a new edge. In figure 4 it is
represented the corresponding quantities ∂E+(G)

∂t and ∂E−(G)
∂t .

We observe in figures 3 and 4 that for large numbers of nodes the preferential
attachment leads to a conservation of the efficiency. As in the degree distribution, the
scale-free character arise.

Figure 3: Empirical improvement E(G∗)−E(G)
E(G) against n (dots). Numerical fitting (line).
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Figure 4: ∂E+(G)
∂t (dashed line) and ∂E−(G)

∂t (continuous line) against n.

When a new node is added to a network, the highest increase of the efficiency would
occur if the new node connects to the most connected existing node. On the other hand,
the network would become very vulnerable to a deliberate removal of that node, that
is, more sensible to an intentional attack. Therefore, the preferential attachment seems
to lead to a growth that balances the efficiency and the robustness against intentional
attacks to the network.
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Abstract

We propose an efficient storage scheme for sparse matrices with general sparsity
pattern. The new storage scheme utilizes a compression procedure to improve the
temporal and spatial locality of the data for sparse linear algebra operations e.g.,
matrix-vector product calculation. By accepting overhead for explicitly storing a
few zero entries, indirect access to the dense input vector is avoided. Furthermore,
it uses column reordering to minimize the auxiliary storage needed. Our proposal
is suitable for vector- as well as modern cache-based super-scalar architectures.
Preliminary numerical testing demonstrate the effectiveness of the new storage
scheme.

Key words: column compression, structural orthogonality, consecutive elements

1 Introduction

Computations involving sparse matrices arise frequently in problems in scientific and
engineering applications. For example, discretization of partial differential equations
using finite-difference or finite-element schemes give rise to matrix problems that are
large and a significant proportion of their entries are zero[5]. Solving such large-scale
problems satisfactorily on even the most advanced present day computers poses many
algorithmic and data management challenges. In this paper we focus on one of the fun-
damental computational kernels of sparse linear algebra, namely computing the product
of a sparse matrix A ∈ Rm×n with a dense vector x ∈ Rn. For example, sparse eigen
value computation methods such as the Jacobi-Davidson algorithm [2] require repeated
calculation of matrix-vector products (MVP). Efficient execution of MVP calculation
depends on the effective utilization of a priori known sparsity information by avoid-
ing operations on zero entries. As such, only the nonzero entries of the sparse matrix
are stored in contiguous locations of computer memory. The data storage schemes
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for sparse matrices are quite varied and some of the more specialized ones are natu-
rally derived from specific computational problems. A survey of more common storage
schemes can be found in [1]. The data structures for sparse matrices with arbitrary
sparsity pattern usually have two components – an array to store the nonzero data
values and auxiliary arrays to identify the row and column indices of those data values.
The Compressed Row Storage (CRS) is one of the popular storage schemes for repre-
senting sparse matrices with no special structure (e.g. banded). The shorter length
of the inner loop of MVP computation, however, causes performance degradation with
the CRS scheme on vector processors. Furthermore, most of these storage schemes also
involve indirect access to data elements. The main contribution of this paper is a new
proposal for storing sparse matrices. The important features of the new storage scheme
are as follows:

1. it uses structural orthogonality to pack the nonzero entries from different matrix
rows into a small number of dense vectors (that may store some zero) each of
dimension n,

2. there are no indirect access to the vector x in the calculation of the product Ax
and,

3. it uses column ordering to place the nonzero entries in each row of A into con-
tiguous locations and thereby reducing the auxiliary storage.

The paper is organized in 4 sections. After a brief introduction to the CRS we describe
the new storage scheme in Section 2. We provide algorithms for performing matrix-
vector multiplication using the storage schemes discussed in this section. Section 3
reports some preliminary experimental results for performing MVP calculation. Section
4 concludes the paper with notes on further research.

2 Representing Sparse Matrices

Efficient sparse matrix computations critically rely on effective utilization of sparsity
and other structural information. Known regularity of the sparsity pattern can be taken
advantage of when representing a sparse matrix on modern computers. Significant
savings in storage and computation can be realized, for example, for a banded sparse
matrix by storing the dense diagonals as long vectors. However, matrices with irregular
sparsity pattern need auxiliary storage to store the indices of the nonzero entries and
necessitate indirect access to the data. Indirect access implies additional data movement
which is order of magnitude slower than floating point operations. Also the irregular
access pattern to the elements often results in enough cache misses (in cache-based
machines) such that the overall performance of the sparse matrix algorithms on such
machines can become unacceptably low.

Throughout the paper we use the following example to illustrate the data structures
and algorithms for sparse matrix operations.
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A =



a11 0 a13 a14 0 0
0 a22 0 0 0 a26

a31 0 a33 0 a35 0
0 a42 0 a44 0 0

a51 0 a53 0 a55 0
0 a62 0 a64 0 a66



Figure 1: Sparsity pattern of a 6× 6 sparse matrix.

2.1 Compressed Row Storage

The CRS scheme is one of the most popular data structures for representing matrices
whose sparsity pattern have no known regular structure. This storage scheme can be
implemented using three arrays: value to store the nonzero entries, colind that stores
the column indices of the nonzero entries row-by-row, and rowptr that contains the
index of the first nonzero element of each row of the sparse matrix stored in colind
array.

In the CRS storage scheme the sparse matrix is compressed by moving the nonzero
entries in each row to the left as shown below. The data structures to store the ex-

A =



a11 a13 a14 0 0 0
a22 a26 0 0 0 0
a31 a33 a35 0 0 0
a42 a44 0 0 0 0
a51 a53 a55 0 0 0
a62 a64 a66 0 0 0



Figure 2: The sparse matrix after CRS compression.

ample matrix A under the CRS scheme is shown in Figure 2.1. It consists of 3 arrays
as mentioned before. Array value stores the nonzero entries in each row contigu-
ously, array colind stores the column indices of the nonzero entries of value, and
array rowptr indexes into colind array and stores the location of the first nonzero
entry in each row of A. For example, the nonzero entries in row i can be accessed by
value(rowptr(i)) ... value(rowptr(i+1)-1). Note that the CRS scheme stores
only the nonzero entries of A. Let nnz(A) denote the number of nonzero entries in
matrix A. The storage requirement in the CRS scheme for A ∈ Rm×n is therefore

memoryCRS = 2nnz(A) + m + 1.

Access to the nonzero entries of A is provided row-wise.
Computers that employ high-speed cache memory to improve the speed of data

access relies on reuse of data that are brought into the high-speed memory. Temporal
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value a11 a13 a14 a22 a26 a31 a33 a35 a42 a44 a51 a53 a55 a62 a64 a66

colind 1 3 4 2 6 1 3 5 2 4 1 3 5 2 4 6

rowptr 1 4 6 9 11 14 17

Figure 3: Compressed Row Storage (CRS) data structure

1. for i=1:n
2. for k=rowptr(i):rowptr(i+1)-1;
3. j = colind(k);
4. y(i) = y(i) + val(k)*x(j);
5. end
6. end

Figure 4: Matrix-vector multiplication y = Ax in CRS scheme.

locality is the property whereby a recently referenced data item is most likely to be
referenced again in the near future while spatial locality ensures that the data that
are stored close to each other in computer memory are most likely to be referenced
together. Both of these locality properties imply reuse. The code for MVP with the
CRS scheme as shown in Figure 4 depicts that the access to the elements of vector x
can be highly irregular resulting in poor spatial locality. A second difficulty for MVP
calculation using the CRS scheme is concerned with the need for indirect access to the
elements of vector x. To address the problem with indirect access Pinar and Heath
[4] propose column reordering to make the nonzero entries in each row contiguous.
Then each such block of nonzero entries can be stored as a unit such that only one
indirect access is needed per block compared with one indirect access per nonzero in
the CRS scheme. However, reordering of columns for arranging the nonzero entries in
contiguous location is NP-hard [4]. For our example matrix the permutation vector(

4 2 6 5 3 1
)

rearranges the columns so that most of the nonzero entries in
each row become contiguous. The column reordered matrix is shown in Figure 5.

2.2 Compressed Column Block Storage (CCBS)

The blocking procedure described above, when implemented in conjunction with the
CRS scheme, renders reduced indirect access. The implementation of this blocking
scheme, however, requires an additional array (of length the number of blocks of con-
secutive nonzero entries in the matrix) in addition to the auxiliary storage required in
the CRS scheme. The new storage scheme Compressed Column Block Storage (CCBS)

200



A =



a14 0 0 0 a13 a11

0 a22 a26 0 0 0
0 0 0a35 a33 a31

a44 a42 0 0 0 0
0 0 0 a55 a53 a51

9a64 a62 a66 0 0 0

 .

Figure 5: Columns are permuted to align the nonzero entries in each row.

that we propose here for representing sparse matrices does not need to store column
indices. Instead it stores the row index of each block of contiguous nonzero entries.

Two vectors (or rows) are said to be structurally orthogonal if they do not both
contain nonzero entries in the same column position. The central idea behind CCBS
scheme is to partition the rows of the sparse matrix A into p groups such that the rows
in each group are structurally orthogonal. A group of structurally orthogonal rows can
be “packed” into one dense row. Ideally, we would like to have the dense rows fully
packed i.e., with no zero entries. However, in practice this is unlikely to happen so that
we allow few zero entries explicitly stored. To illustrate this data structure we refer to
our example matrix shown in Figure 5. A structurally orthogonal partition of the rows
can be obtained as

Pr(A) = {{1, 2}, {3, 4}, {5, 6}}

where the numbers denote row indices. As can be easily verified the rows in each group
are structurally orthogonal and therefore can be packed into a dense row vector. The
resulting compressed matrix is shown in Figure 6 where matrix S represents the column

B = ST A =

 a14 a22 a26 0 a13 a11

a44 a42 0 a35 a33 a31

a64 a62 a66 a55 a53 a51

 where ST =

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 .

Figure 6: Matrix compressed via structurally orthogonal row partition.

compression defined by the row partition Pr(A). To represent the compressed matrix
we need two auxiliary arrays: one to store the row index of each block of contiguous
elements and the other to index into array value for the stored elements of A. In
Figure 7 value contains the actual elements of A, brind holds the row index of the
first entry of each “element block”, and brptr holds the index of the first entry of the
“element block” as located in value. Note that compressed matrix rows 1 and 2 contain
two zero entries which are explicitly stored in the data structure array value. Sample
code for computing the matrix-vector product in the new CCBS scheme is shown in
Figure 8. Variable ncolr represents the number of row vectors in the compressed
matrix.
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value a14 a22 a26 0 a13 a11 a44 a42 0 a35 a33 a31 a64 a62 a66 a55 a53 a51

brind 1 2 1 4 3 6 5

brptr 1 2 5 7 10 13 16 19

Figure 7: Compressed Column Block Storage (CCBS) data structure

1. blk = 1;
2. for l=1:ncolr;
3. j=1;
4. while j <= n
5. i=brind(blk);
6. for k=bptr(blk):bptr(blk+1)-1;
7. y(i) = y(i) + val(k)*x(j);
8. j = j+1;
9. end

10. blk = blk+1;
11. end;
12. end

Figure 8: Matrix-vector multiplication y = Ax in CCBS scheme.

The effectiveness of the CCBS storage scheme depends on the two preprocessing
steps: ordering of the columns so that the nonzero entries in each row are contiguous
and compressing the columns by computing a structurally orthogonal row partition.
For each block of elements in a compressed matrix row we need to store its row index.
Therefore, it is important that the column reordering step minimizes the number of
blocks of contiguous nonzero entries. As noted earlier this is a computationally hard
problem. The goal of the column compression step is to partition the rows into struc-
turally orthogonal groups that minimizes the number of zero entries in the rows of the
compressed matrix. Unfortunately, the general problem of structurally orthogonal par-
titioning of rows is also NP-hard [3]. However, for both the preprocessing steps good
heuristics are available [3, 4].
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3 Numerical Experiments

In this section we report very preliminary experimental results using the CCBS scheme
for computing MVP. The experiments have been performed with MATLAB 7.0.X on
Apple PowerBook G4 running OS-X operating system.

In our numerical testing we have used square matrices of dimension 10000 with
random sparsity pattern. The number of row groups in the structurally orthogonal
partition have been fixed at 10. The number of blocks per compressed row are varied
between 500 to 8000. Table 1 displays timing results for the two storage schemes. In
the table the column labeled “Blocks/Row” denotes the number of blocks of consecu-
tive nonzero entries per compressed matrix row and the column labeled “CCBS/CRS”
displays the ratio of the running times of CCBS and CRS schemes.

Table 1: Running Time For MVP calculation in CRS and CCBS Schemes.

Blocks/Row CCBS/CRS
500 .71
1000 .62
3000 .66
5000 .82
8000 .81

The running times reported are the averages over 5 random sparsity patterns at
each block size. It is clear that the CCBS scheme outperforms the CRS scheme. We
also emphasize that the CRS scheme used in the experiments are actually blocked
CRS scheme. Therefore, CCBS is expected to be much more efficient compared with
ordinary CRS storage.

4 Concluding Remarks

We have presented a new storage scheme for sparse matrices that exploits the sparsity
information to pre-compress the matrix before generating the data structure for storing
the nonzero entries and the sparsity pattern. Although experimental testing on prac-
tical test problems has not been realized, the limited test results do indicate that this
storage scheme is very promising. The CCBS scheme exhibits superior temporal and
spatial locality and avoids indirect referencing of the vectors. However, more thorough
theoretical analysis and extensive numerical testing are needed before full potential of
this new sparse matrix representation can be appreciated. Furthermore, investigation
into appropriate column ordering and row partitioning heuristics suitable for problems
encountered in practice constitutes another important research direction. All of the
above mentioned research questions are currently being studied.
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Abstract 
 
Here, it is attempt to present an efficient analytical and numerical method for solving linear 
differential algebraic equations(DAEs).  The modified form of asymptotic expansion is found 
to be fast and accurate. First we calculate matrix  such that if  for every 
integer

KD 0  det ≠KD
K  then we can achieve asymptotic expansion of linear DAEs, which gives an arbitrary 

order for solving linear DAEs. The analysis is accompanied by numerical example. 
 
Keywords: Asymptotic expansions, Differential algebraic equations. 
 
 
 
 
1. Introduction 
 
Consider the linear DAEs with variable matrix coefficients in theC  space  m

 
)()()()()( tftXtBtXtA =+& ,                                                                       (1)      

 
with an initial condition 
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                  ,                                                               (2) St∈
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variable in complex plane with a corner in zero ( -some positive constant ) and 

 and  are functions of 
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mmRB,A ×∈ mRf ∈ t . Suppose that  and  have 
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series in (3) after inserting instead of  into equation (1) leads to the linear system 
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where  and  are constant matrices ( KD KE 0 det ≠KD  ) solving the equation of (5) 
repeating the above procedure for higher order terms      ( L,3,2,1=K  ). We can get 
the arbitrary order power series of the solution for (1). This method will be very 
efficient when the coefficient matrices be analytic. In this article, the focus of study is 
on problems that are analytic on .  S
 
 
 
2. Analysis of the method  
 
Consider the linear DAEs of the form (1) that  is singular ( ) and  
is arbitrary matrix. At first we rewrite  such that all of the nonzero rows be up 
and zero rows be down such that 
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Here, if  then by using elementary operators on , we can obtain 
such that . 
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Because the coefficients of  are equal in two side of equations (8.a) and 
(8.b), so, 
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We can write two equations (10.a) and (10.b) in the matrix form as below 
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Now consider the two matrices of the form 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

4030

2010

BB
KAKA

DK   

and 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−+−
−⎥

⎦

⎤
⎢
⎣

⎡
=

−

−

=

−−− ∑
)(2

)(1

1 43

)1(23)1(11

2

)1(1 )()(

iK

iK
K

i ii

iiii

K

K
K X

X
BB

BAiKBAiK
f

f
E . 

 
By considering (11), we have  
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By using the Taylor expansion of , and , we have )(A t )(tB )t(f
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which it exactly is the first three term of Taylor series of solution. 
 
Remark: In this method if matrix  is ill condition then the Taylor series may be not 
convergent to exact solution. In this case it is prefer  to use partial or complete 
pivoting to get a better solution.  
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Abstract

We consider a mathematical model describing the bacterial growth of E. coli
and S. typhiurium when abandoned to chemicals. These bacteria form very inter-
esting patterns which can be simulated by using a system of three coupled differ-
ential equations. This non-linear system of partial differential equations presents
a challenge to accurate computation due to the presence of advection and widely
varying diffusion coefficients, as well as initial data with jumps.

We have used a straightforward idea, using in space finite differences and in time
a linearly-implicit approach to solve the non-linear coupled system. The diffusion
term is considered implicitly, whereas the nonlinear hyperbolic and reaction parts
are treated explicitly.

Key words: Linearly-Implicit – Bacterial growth – Chemotaxis – Pattern for-
mation

1 Introduction

Many organisms (bacteria for example) show a random walk if a chemical is present.
That is the density at each point changes slightly due to motion. This is called chemo-
taxis. Often this movement results in interesting spatial patterns. To explore these
patterns mathematical models of the biological process may be considered and inves-
tigated through computational simulations. Chemotactic behavior is determined by a
density-dependent diffusion term and is highly nonlinear. Hence, realistic models are
too difficult to be solved analytically, and we turn to numerical methods.

The models for this chemotaxis are time-dependent systems of partial differential
equations. Here we consider a system in two dimensions which contains three distinct
processes:

• reaction terms (for example: growth and death of cells)

• diffusion terms (random movement under some physical influence)
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• chemotaxis terms (directed motion in response to chemical concentration gradi-
ent)

The reaction term models the interaction between different components, e.g. consump-
tion of nutrients, growth or death of cells, release of chemoattractant, etc. The diffusion
term models a random walk each component performs. The chemotaxis term models
the directed motion of a component in response to the concentration gradient of another
component.

Additionally the initial data may be nonsmooth. In particular, the initial data
has jump discontinuities. This causes problems for many numerical methods which
generate oscillations on points where the data is discontinuous [6, 11, 15, 17].

We consider a mathematical model of a bacterial growth process. Here the ini-
tial data are discontinuous. Numerical schemes often develop inaccuracies for solv-
ing parabolic partial differential equations with nonsmooth data, e.g. high frequency
components. A well known property of parabolic partial differential equations is the
smoothing property. That is, for any positive time their solution is infinitely differen-
tiable even if the initial data is nonsmooth. Numerical methods are also expected to
have an analogous property. But numerical methods often develop inaccuracies when
the initial data is discontinuous. For more details, refer to [7, 8, 9, 10].

2 Bacteria and Model

Escherichia coli (E. coli) and Salmonella typhimurium (S. typhiurium) are the bacteria
considered in this paper. E. coli can, for example, be found in the human intestine
and S. typhimurium in poultry if it is incompletely cooked. Both physical mechanisms
of movement are essentially the same, as was first studied by H.C. Berg in 1983 [3].
These bacteria put themselves in motion by means of long hairlike appendages known
as flagella. If these appendages all rotate counter-clockwise, they join together, moving
the bacteria forward known as “run.” If the rotation is clockwise, instead of a forward
movement it turns around irregularly in one spot known as “tumbling.”

If a chemical is present the motion of the bacteria may be directed preferentially to-
wards lower or higher concentration of the chemical. If the bacteria moves preferentially
towards the lower concentration of the chemical, the chemical is called a chemorepel-
lent, otherwise a chemoattractant. The only difference between a chemoattractant and
a chemorepellent is the direction of motion. Therefore, for simplicity, only the case of
chemoattractant is considered in this paper.

In 1966 J. Adler [1, 2] performed experiments with E. coli. In laboratories, both E.
coli and S. typhimurium have been observed to form interesting one-dimensional and
two-dimensional patterns.

In the two-dimensional experiment a petri dish was equally covered with the same
chemoattracting “food.” The bacteria was set in the middle of the petri dish as a high
density inoculum. Here the bacteria split into two parts, one which remained at the
center of the petri dish and another one which moved outwards, forming an expanding
ring.
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If there was more than one kind of food, all chemoattracting to the bacteria, the
bacteria split into more than two parts. Here, one remained at the center of the petri
dish and the others formed expanding rings, each consuming one kind of food. The
number of rings matches the number of foods on the petri dish.

In 1991 Budrene and Berg [4] showed that a colony of E. coli or S. typhimurium
form interesting and regular patterns when abandoned to, or feeding on, intermediates
of the tricarboxylic acid (TCA) cycle. They discovered that succinate and fumarate
have the strongest effects. This substance we call the “stimulant” since it is the initiator
of the pattern. If the bacteria is exposed to or feeds on TCA it secretes aspartate, which
is a potent chemoattractant.

Budrene and Berg performed two different kinds of experiments, one where the
bacteria were placed in a liquid medium and the other where the bacteria were placed
on a semi-solid substrate (0.24% water agar/nutrient). Here we will only consider the
pattern formed in the semi-solid experiments. In these experiments a high density
inoculum of bacteria was placed on a petri dish. The petri dish contained a uniform
distribution of the stimulant in 0.24% water agar. The stimulant is in this case also
the main food for the bacteria. After a few days the bacteria had been through 25
to 40 generations. During this time the bacteria spread out from the inoculum and
covered then the whole petri dish with a stationary pattern. This pattern consists of
high density aggregates with small regions of nearly zero cell density. The patterns
formed by E. coli are more complex than the pattern of S. typhimurium which forms
concentric rings. These rings are either continuous or spotted. E. coli patterns include
sunflower spirals, radial spots, radial stripes and chevrons.

For both experiments (E. coli and S. typhimurium), initially succinate is dis-
tributed uniformly throughout the medium and an inoculum of bacteria is put at the
center of the medium. For E. coli a very low density bacterial population forms, which
then spreads outward from the initial inoculum. Within this bacterial population high
density rings of bacteria are seen. For S. typhimurium a swarm ring (high density ring
of energetically agile bacteria) forms and disperses outwards from the initial inoculum.
The bacterial density in this swarm ring increases until a special point, when it becomes
unstable and a percentage of the bacteria are left behind as aggregates which remain
full of energetically agile bacteria for a short period of time and then disband as the
bacteria combines again with the swarm ring. A clump of bacteria is left behind in the
aggregates original location; this is non-motile.

All patterns have the same building blocks of bacteria, aspartate, i.e. chemoat-
tractant and succinate, i.e. stimulant. An important role have the following biological
processes:

• diffusion of bacteria, aspartate and succinate

• proliferation of bacteria (includes reproduction and death of cells)

• secretion and uptake of aspartate by the bacteria

• consumption of succinate
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• chemotaxis of the cells up gradients of aspartate

There is no actual death of cells, but some cells become non-motile and stop partici-
pating in forming the pattern.

If we combine all these processes into a mathematical model, we derive a system
of three partial differential equations of the form

rate of change
of cell density
n

=
diffusion
of cells

+
chemotaxis
of cells to
aspartate

+
growth and
death of cells

rate of change
of aspartate
concentration c

=
diffusion
of
aspartate

+
production
of aspartate
by cells

−

uptake of
aspartate by
cells

rate of change
of succinate
concentration s

=
diffusion
of
succinate

−

uptake of
succinate by
cells

Here n denotes the bacterial cell density, c the aspartate concentration and s the suc-
cinate concentration.

Using functional forms for the box terms and expressions special for E. coli and
S. typhimurium which were also determined by experiments, we arrive at the following
mathematical model

∂n

∂t
= Dn∇

2n − α∇

[

n

(1 + c)2
∇c

]

+ ρn

(

δ
s2

1 + s2
− n

)

∂c

∂t
= Dc∇

2c + βs
n2

γ + n2
− nc

∂s

∂t
= Ds∇

2s − κn
s2

1 + s2
(1)

where α, β, γ, δ, ρ and κ are experimentally determined parameters. The domain Ω is
assumed to be compact. For more details, refer to [12, 14].

The initial condition is given as

n(x, y, 0) =

{

u0 if (x − x0)
2 + (y − y0)

2
≤ r

0 otherwise

c(x, y, 0) = 0

s(x, y, 0) = s0

where r denotes the width of the initial inoculum and (x0, y0) its center.
The boundary conditions are assumed to be

n(x, y, t) = 0

c(x, y, t) = 0

s(x, y, t) = s0

215



on the boundary δΩ. The domain Ω is assumed to be large enough such that the
bacteria never reaches the boundary.

3 Linearly-Implicit Approach

Mixed implicit-explicit methods are useful in applications as chemical reactions, pop-
ulation dynamics, biological environments, and enzyme reactions. There exist already
software for Linearly-implicit one-step methods, e.g. RODAS with LU-decomposition
[5] and ROWMAP [16], which uses Krylov-techniques for the solution of huge problems
which arise from semi-discretization of parabolic equations.

Various numerical methods are available to solve reaction-diffusion systems. One
could use, for instance, an implicit method that is unconditionally stable. This would
allow us to choose a larger time step for solving the system compared to an explicit
method. If one of the diffusion coefficients is very small or one of the reaction kinetics is
highly non-linear these methods may be very slow. If we use explicit methods and one
of the diffusion coefficients is huge, or one of the reaction parts is very stiff, this may
lead to spurious solutions and we may have a severe restriction on the time step. That
means we receive solutions which are dramatically different from the true solution and
if we choose a time step which does not satisfy the restriction we even have an instable
numerical method. Another idea could be a predictor-corrector approach where the
predictor consists of an explicit method to get an initial guess for the corrector which
is an implicit method. But also this approach is in our case very slow.

Our model is given by (1)

∂n

∂t
= Dn∇

2n − α∇

[

n

(1 + c)2
∇c

]

+ ρn

(

δ
s2

1 + s2
− n

)

∂c

∂t
= Dc∇

2c + βs
n2

γ + n2
− nc

∂s

∂t
= Ds∇

2s − κn
s2

1 + s2

with x ∈ (0, X), y ∈ (0, Y ) and t ≥ 0 where ∇
2 represents the Laplacian in two

dimensions. The grid spacing in x- and y-direction will be denoted by ∆x and ∆y,
respectively. We divide the length of the x-domain and y-domain into Nx and Ny

partitions, respectively, with X = Nx∆x and Y = Ny∆y. We denote the time by ∆t.

Discretizing this model with the approach of a linearly-implicit method results in
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the following if we assume ∆x = ∆y and Nx = Ny, so also X = Y :

uk+1

i,j − uk
i,j

∆t
= Dn

uk+1

i,j+1
+ uk+1

i,j−1
+ uk+1

i+1,j + uk+1

i−1,j − 4uk+1

i,j

∆x2

−
α

∆x2

[(

uk
i,j+1

− uk
i,j

(1 + vk
i,j)

2
− 2uk

i,j

vk
i,j+1

− vk
i,j

(1 + vk
i,j)

3

)

(

vk
i,j+1 − vk

i,j

)

+

(

uk
i+1,j − uk

i,j

(1 + vk
i,j)

2
− 2uk

i,j

vk
i+1,j − vk

i,j

(1 + vk
i,j)

3

)

(

vk
i+1,j − vk

i,j

)

+
uk

i,j

(1 + vk
i,j)

2

(

vk
i,j+1 + vk

i,j−1 + vk
i+1,j + vk

i−1,j − 4vk
i,j

)

]

+ρ uk
i,j

(

δ
(wk

i,j)
2

1 + (wk
i,j)

2
− uk

i,j

)

vk+1

i,j − vk
i,j

∆t
= Dc

vk+1

i,j+1
+ vk+1

i,j−1
+ vk+1

i+1,j + vk+1

i−1,j − 4vk+1

i,j

∆x2

+βwk
i,j

(uk
i,j)

2

γ + (uk
i,j)

2
− uk

i,jv
k
i,j

wi,jk + 1 − wk
i,j

∆t
= Ds

wk+1

i,j+1
+ wk+1

i,j−1
+ wk+1

i+1,j + wk+1

i−1,j − 4wk+1

i,j

∆x2

−κuk
i,j

(wk
i,j)

2

1 + (wk
i,j)

2

where the linear diffusion terms are discretized implicitly and the non-linear hyperbolic
part as well as the non-linear reaction terms are discretized explicitly. Here uk

i,j , v
k
i,j ,

and wk
i,j are numerical solutions of n, c, and s at x = i∆x, i = 1, . . . , Nx − 1, y =

j∆y, j = 1, . . . , Ny − 1 and t = k∆t, k > 0, respectively.

This can also be rewritten in the general form

(I − rlAl)v
k+1 = vk + ∆tFl(tk, x, uk, vk) + ∆tb

with

r1 = Dn
∆t

∆x2
r2 = Dc

∆t

∆x2
r3 = Ds

∆t

∆x2
.

The matrix Al ∈ R(N−1)×(N−1) with N − 1 = (Nx − 1)(Ny − 1) and Nx = Ny is
pentagonal

Al =















Dl −rlI

−rlI Dl −rlI
. . .

. . .
. . .

−rlI Dl −rlI

−rlI Dl














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with Dl ∈ R(Nx−1)×(Ny−1) given as

Dl =















1 + 4rl −rl

−rl 1 + 4rl −rl

. . .
. . .

. . .

−rl 1 + 4rl −rl

−rl 1 + 4rl















and I ∈ R(Nx−1)×(Ny−1) is the identity matrix.
We do not have variations in a1,2 and aN+1,N since we have no derivative boundary

conditions. The vector b contains the boundary conditions.
We get three independent systems. Since the matrices are not time dependent, we

can calculate the LU-decomposition of the matrices once and use the decomposition to
solve the linear system we get in each time step.

To calculate the LU-decomposition of our matrices we used the UMFPACK library
(Version 2.2), which stands for “Unsymmetric-pattern MultiFrontal PACKage.” This
software is freely available at the webpage

http://www.cise.ufl.edu/research/sparse/umfpack/

for educational and non-commercial purposes. It is a package for solving sparse linear
systems, Ax = b, where A is sparse and can be unsymmetric. It is written in ANSI
Fortran 77. There are options for choosing a good pivot order, factorizing a subsequent
matrix with the same pivot order and nonzero pattern as a previously factorized matrix,
and solving systems of linear equations with the factors. Iterative refinement, with
sparse backward error estimates, can also be performed. Single and double precision,
complex, and complex double precision (complex*16) routines are available.

For using the routines only the non-zero elements of the matrix must be stored
which is a huge difference than storing all values of the matrix. In our case, you only
need to store (4 + 3(Nx − 2)) for each matrix D ∈ R(Nx−1)×(Ny−1) and 2Nx(Nx − 1)
for all identity-matrices, that is in total Nx(4 + 3(Nx − 2)) + 2Nx(Nx − 1) instead of
(N − 1)2 = (Nx − 1)2(Ny − 1)2 elements.

4 Results

We did numerical simulations of the model (1). Once the simulations were done by
using a program written by Rebecca Tyson, who kind supplied the source code. She
considered exactly the same model in her PhD-thesis [12]. She used the CLAWPACK-
software which is freely available at the webpage

http://www.amath.washington.edu/˜rjl/clawpack.html .

Afterwards, we carried out the same simulations, on the same computational platform,
with our program. The input parameters were exactly the same.

The bacteria is assumed to be in the middle of the petri dish. The coordinates
(x0, y0) are given in the input file together with the length of the domain in x- and
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y-direction. The length is given as 30 cm in both direction. The center for the bacteria
was given as (x0, y0) = (10, 10).

The cell density u was set to the initial concentration u0 = 2 within a radius
of width = 2 cm from the center. The concentration of the chemoattractant (the
food of the bacteria) v was set to zero and the succinate concentration w was set to
w0 = 1. After some time there will be chemoattractant since the cells produce the
chemoattractant. The experiment was simulated until the end time tend = 5s was
reached. The maximal time was taken not so large that the bacteria never reaches the
domain boundary. This has the advantage of allowing simple zero boundary conditions
in the program. Together with the initial data u, v, and w were printed into file eleven
times. The coefficient were set as seen in Table 1. We used the same coefficient as
Rebecca Tyson does in her paper [13].

diffusion coefficient for cells Du 0.25

diffusion coefficient for chemoattractant Dv 1.0

diffusion coefficient for succinate Dw 1.0

chemotaxis coefficient α 2.25

production of chemoattractant β 0.2

saturation of production of chemoattractant γ 1.0

carrying capacity or yield coefficient δ 20.0

consumption of food κ 0.0

growth rate for cells ρ 0.01

Table 1: Input parameters

Since no analytical solution is known, we ran Rebecca Tyson’s program on a very
fine grid and considered this as the exact solution. We ran her program as well as ours
with different values for ∆x and ∆t = 1

2
∆x. Afterwards, we measured the errors in the

infinity-norm/L2-norm and calculated the rates as

r =
ln ei

ei+1

ln hi

hi+1

where ei is the error in the ith iteration and hi the step is the chosen spatial step width
∆x in the ith iteration.

In Table 2 we list the results from our program, and in Table 3 the results calculated
with the Tyson program.
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∆x ∆t = 1

2
∆x ||· ||1 rates ||· ||L2

rates

1 0.5 10.4279 11.1848

0.5 0.25 2.5598 2.0264 2.0361 2.4577

0.25 0.125 2.3785 0.1060 1.3058 0.6409

0.125 0.0625 2.2985 0.0494 0.8958 0.5437

Table 2: Errors and rates calculated with our program depending on the chosen values
for ∆x and ∆t

∆x ∆t = 1

2
∆x ||· ||1 rates ||· ||L2

rates

1 0.5 10.4097 11.2187

0.5 0.25 2.4958 2.0604 1.9682 2.5110

0.25 0.125 2.0315 0.2970 1.0685 0.8813

0.125 0.0625 1.7279 0.2335 0.6307 0.7606

Table 3: Errors and rates calculated with Rebecca Tyson’s program depending on the
chosen values for ∆x and ∆t

The rates are similar. They oscillate, which is common for the nonsmooth data
case. We used only a first-order accurate method for the discretization in time and
space whereas they used a second-order accurate method. Therefore, our rates are
slightly lower. The error in the L2-norm is better than the error in the ∞-norm which
is due to the oscillations. Therefore the rates in the L2-norm are better. Rebecca Tyson
claims in her PhD-Thesis [12] that “the convergence rate obtained for these solutions is
a satisfactory 2.22 for the cell density.” Here she used different parameters then those
listed in Table 1.

We also compared the CPU time needed for each program with the specified param-
eters. The simulations were carried out on a Gateway notebook with an Intel Pentium
Dual-Core processor with 1024 MB memory.

∆x ∆t = 1

2
∆x CPU time

1 0.5 0.140625

0.5 0.25 0.359375

0.25 0.125 2.406250

0.125 0.0625 21.484375

Table 4: CPU time needed by our program depending on the chosen values for ∆x and
∆t
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∆x ∆t = 1

2
∆x CPU time

1 0.5 0.234375

0.5 0.25 0.375000

0.25 0.125 2.078125

0.125 0.0625 16.875000

Table 5: CPU time needed by Rebecca Tyson’s program depending on the values for
∆x and ∆t

Her program is faster, but ours is much less complicated to understand and to
implement. Additionally our program is easier to generalize to a similar model or to
extend if the model changes. This has been the purpose of the present investigation.

If we plot our results for the cell density u, we get the pictures in Figure 1(a) with
our program and the pictures in Figure 1(b) with her program. For these plots we used
60 output points in each direction, that is in total 360,000 points.
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Figure 1: Results comparing our program and the Tyson program

References

[1] J. Adler, Chemotaxis in bacteria , Science 153 (1966) 708-716.

[2] J. Adler, Chemotaxis in bacteria , Ann. Rev. Biochem. 44 (1975) 341-356.

[3] S.M. Block, J.E. Segall, and H.C. Berg, Adaptation kinetics in bacterial
chemotaxis J Bacteriol. , J. Bacteriol. 154(1) (1983) 312-323.

[4] E.O. Budrene and H.C. Berg, Complex patterns formed by motile cells of
escherichia coli , Nature 349(6310) (1991) 630-633.

[5] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems , Springer-Verlag, Berlin, 1991.

221



[6] R.J. LeVeque, Wave propagation algorithms for multi-dimensional hyperbolic
systems , J. Comput. Phys. 131 (1997) 327–353.

[7] M. Luskin and R. Rannacher, On the Smoothing Property of the Crank-
Nicholson Scheme , Appl. Anal. 14 (1982) 117–135.

[8] M. Luskin and R. Rannacher, On the Smoothing Property of the Galerkin
Method for Parabolic Equations , SIAM J. Numer. Anal. 19 (1982) 93–113.

[9] R. Rannacher, Finite Element Solution of Diffusion Problems with Irregular
Data , Numer. Math. 43 (1984) 309–327.

[10] R. Rannacher, Discretization of the Heat Equation with Singular Initial Data ,
Zeit. Ang. Math. Meth. (ZAMM) 62 (1982) 346–348.

[11] G.D. Smith, Numerical Solution of Partial Differential Equations: Finite Differ-
ence Methods , Oxford University Press, New York, 1985.

[12] R.C. Tyson, Pattern formation by E. coli - mathematical and numerical investi-
gation of a biological phenomenon , PhD thesis, University of Washington, 1996.

[13] R.C. Tyson, L.G. Stern and R.J. LeVeque, Fractional step methods applied
to a chemotaxis model , J. Math. Biol. 41 (2000) 455–475.

[14] R.C. Tyson, S.R. Lubkin, and J.D. Murray, A minimal mechanis for bac-
terial pattern formation , Proceedings of the Royal Society B: Biological Sciences
266(1416) (1999) 299-304.

[15] B.A. Wade, A.Q.M. Khaliq, M. Siddique, and M. Yousuf, Smoothing with
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Abstract

In this paper, we propose a family of Backward Differentiation Formulas (BDFs)for
the direct solution of the general stiff second order initial value problems (IVPs)
of the form y′′ = f(x, y, y′). The method is derived by the interpolation and collo-
cation of the assumed approximate solution and its second derivative at x = xn+j

,j = 1, 2, ..., k − 1 and x = xn+k respectively, where k is the step number of the
method. The interpolation and collocation procedures lead to a system of (k+1)
equations, which are solved to to determine the unknown coefficients. The result-
ing coefficients are used to construct the approximate continuous solution from
which Multiple Finite Difference Methods (MFDMs) are obtained and simultane-
ously applied to provide a direct solution to IVPs. Two specific methods for k = 2
and k = 3 are used to illustrate the process. Numerical examples are given to show
the efficiency of the method.
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1 Introduction

The general second-order ordinary differential equation of the form

y′′ = f(x, y, y′), (1)

y(a) = y0, y′(a) = δ0

is encountered in several areas of engineering and science such as circuit theory, con-
trol theory, chemical kinetics, and biology. In practice, problem (1) is solved by first
reducing it to a system of first-order differential equations and then applying the various
methods available for solving systems of first order IVPs. This approach is extensively
discussed in the literature and in this paper we cite just a few notable ones such as
Lambert[8], [9], Brugnano and Trigiante[2], Onumanyi et al [11], [10], Fatunla[4]. In
particular, BDFs are well known for their effectiveness in solving stiff IVPs Gear[5] . Al-
though there has been tremendous success with this approach, it has certain draw backs.
For instance, computer programs associated with the methods are often complicated es-
pecially when incorporating subroutines to supply the starting values for the methods
resulting in longer computer time and more human effort.

In the past decades, considerable attention has been devoted to solving (1) directly
without first reducing it to a system of first order differential equations. In particular,
the focus has mostly been concentrated on solving directly the special form of (1) given
by y′′ = f(x, y) since it occurs frequently in mechanical systems without dissipation. In
this area, Twizell and Khaliq[13], proposed a class of p-stable two-step higher-derivative
formulas for the special second-order initial-value problems. Yusuph and Onumanyi[14]
proposed two new LMMs of order 4 associated with the standard Numerov method which
were applied to solve the special form of (1) directly. We also cite the works of Simos[12],
Fatunla[4], and Lambert[8].

Several methods have also been proposed in the literature for solving the general
form (1) directly without first reducing it to an equivalent first-order system. For in-
stance, Hairer and Wanner[6] proposed Nystrom type methods for (1) and stated order
conditions for determining the parameters of the methods. Other methods of the Runge-
Kutta type considered in the literature for solving (1) are due to Chawla and Sharma[3]
and Henrinci[7]. Awoyemi[1] considered multiderivative methods of the LMM type and
stated that the direct application of those methods to non-stiff problems of the form (1)
saves computer time and human effort. In Awoyemi[1] the methods were implemented
as predictor - corrector methods and the Taylor Series algorithm was used to supply
the starting values. While the methods yielded good results, the disadvantage in this
approach is that the Taylor series algorithm involves higher order partial derivatives that
are tedious to obtain.
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In this paper, we propose a family of BDFs of steps k = 2 and k = 3 which are
implemented on stiff IVPs of the form (1) without the need for either predictors or
starting values from other methods.

The paper is organized as follows. In section two, we derive an approximation for
y(x) which is continuous. Section three is devoted to the specification of the methods and
how the MFDMs are obtained and simultaneously applied to (1). Numerical examples
are given in section four to show the efficiency of the method. Finally, the conclusion of
the paper is discussed in section five.

2 The derivation method

We seek an approximation of the form

y(x) ≈ y(x) =
k∑

j=0

ιjΥj(x) (2)

where Υj(x) ’s are assumed polynomial basis functions and ιj ’s are unknown coeffi-
cients to be determined by imposing the following conditions.

y (xn+j) = yn+j, j = 0, · · · , k − 1 (3)

y′′ (xn+k) = fn+k (4)

Hence, equations (3) and (4) lead to a system of (k+1) equations which is solved to
obtain ιj ’s .Our k-step continuous BDF is constructed by substituting the the values of
ιj ’s into equation (2). After some manipulation, our method is expressed in the form

y(x) =
k−1∑
j=0

αj(x)yn+j + h2βk(x)fn+k (5)

which is applied directly to provide the solution to (1). In particular, we seek a
solution on

πN : a = x0 < x1 < x2 < ... < xn < xn+1 < ... < xN = b
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h = xn+1 − xn , n = 0, 1, . . . N

where πN is a partition of [a, b] and h is the constant step-size of the partition of πN .

In the next section, we specify the methods.

3 Specification of the Methods

We obtain 2 methods for k = 2 and k = 3 with the following specifications:

Case: k=2

Υj(x) = xj , i = 0, · · · , 2.

We also express αj(x) and βj(x) as functions of t where t = (x − xn+1)/h in what
follows:

α0(t) = −t ; α1(t) = (1 + t)

β2(t) = 1
2
(t + t2)

The following 2-step BDF is obtained by evaluating (5) at x = xn+2

yn+2 − 2yn+1 + yn = h2fn+2

An additional Equation and derivatives are obtained by imposing that

y′(x) = δ(x) , y′(a) = δ0

In particular, to start the initial value problem for n = 0, we obtain the following
equation from y′(a) = δ0.

hδ0 = yn+1 − yn − h2

2
fn+2

It is worth noting that the derivatives are provided by δ(xn+τ ), τ = 1, 2 as follows:

hδn+1 = −yn + yn+1 + h2

2
fn+2

hδn+2 = −yn + yn+1 + 3h2

2
fn+2
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Case: k=3

Υj(x) = xj , i = 0, · · · , 3.

We also express αj(x) and βj(x) as functions of t where t = (x − xn+2)/h in what
follows:

α0(t) = 1
12

(4t + 3t2 − t3) ; α1(t) = 1
6
(−10t− 3t2 + t3)

α2(t) = 1
12

(12 + 16t + 3t2 − t3) ; β3(t) = h2

12
(2t + 3t2 + t3)

The following 3-step BDF is obtained by evaluating (5) at x = xn+3

2yn+3 − 5yn+2 + 4yn+1 − yn = h2fn+3 (6)

Equation (6) can be used with the following additional methods:

−2yn + 5yn+1 − 4yn+2 + yn+3 = −h2fn

which is obtained from (5) by numbering the grid points from the right to the left
with a negative step-size and

hδ0 = −5
3
yn + 7

3
yn+1 − 2

3
yn+2 + h2

6
fn+3

is obtained from y′(a) = δ0.

It is worth noting that the derivatives are provided by δ(xn+τ ), τ = 1, · · · , 3 as follows:

hδn+1 = − 5
12

yn − 1
6
yn+1 + 7

12
yn+2 − h2

12
fn+2

hδn+2 = 1
3
yn − 5

3
yn+1 + 5

3
yn+2 + h2

6
fn+3

hδn+3 = 7
12

yn − 13
6
yn+1 + 19

12
yn+2 + 11h2

12
fn+3

It is vital to note that the resulting specific case of y(x) evaluated at xn+k can be
used as a continuous numerical integrator directly and singly in the conventional way
on overlapping sub-intervals. However, a better approach is to derive MFDMs from the
evaluation of y(x) and the first derivative function δ(x) at specified points. The MFDMs
obtained are applied to simultaneously provide values for y1, · · · , yk without looking for
any other methods to provide the starting values. Hence, this is an improvement over
the use of (5) evaluated at xn+k singly for IVPs. We proceed by explicitly obtaining
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initial conditions at xn+k, n = 0, k, · · · , N − k using the computed values y(xn+k) = yn+k

and δ(xn+k) = δn+k over sub-intervals [x0, xk], · · · , [xN−k, xN ] which do not overlap (see
[14]). In addition to providing the starting values, the method also provides an accurate
approximation to y′(x) using δ(x).

4 Numerical examples

In this section, we give 2 examples to illustrate the efficiency of the methods. We find
absolute errors of the approximate solution in πN . The computations were carried out
using our written Mathematica code in Mathematica 5.2 (see tables 1 to 4) .

Example 4.1.
y′′ + 1001y′ + 1000y = 0, y(0) = 1, y′(0) = −1

Exact : y(x) = e−x

Example 4.2.
y′′ + 102y′ + 200y = 0, y(0) = 1, y′(0) = −2

Exact : y(x) = e−2x

x y y Error

0.0 1.0000000000 1.0000000000 0.000000
0.1 0.904837418035959473 0.904543399638336964 2.94018× 10−4

0.2 0.818730753077981887 0.818173598553347147 5.57155× 10−4

0.3 0.740818220681717853 0.740066941293423763 7.51279× 10−4

0.4 0.670320046035639371 0.669399772406962778 9.20274× 10−4

0.5 0.606530659712633379 0.605501145850122934 10.29514× 10−4

0.6 0.5488116360940265 0.547685220660996208 11.26415× 10−4

0.7 0.496585303791409593 0.495405051428370057 11.80252× 10−4

0.8 0.449328964117221563 0.448101587862691275 12.27376× 10−4

0.9 0.406569659740599131 0.405327333668655853 12.42326× 10−4

1.0 0.367879441171442334 0.366624888659087 12.54553× 10−4

Table 1: Absolute Errors, ‖y − y‖, for Example 4.1, Case k = 2, where y(x) = e−x
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x y y Error

0.0 1.0000000000 1.0000000000 0.000000
0.1 0.818730753077981887 0.816535433070866112 2.19532× 10−3

0.2 0.670320046035639371 0.666141732283464538 4.17831× 10−3

0.3 0.5488116360940265 0.543474486948973822 5.33715× 10−3

0.4 0.449328964117221563 0.443189286378572688 6.13968× 10−3

0.5 0.367879441171442334 0.361550989243710718 6.32845× 10−3

0.6 0.301194211912202147 0.294824454215837548 6.36976× 10−3

0.7 0.246596963941606528 0.240514319493515893 6.08264× 10−3

0.8 0.201896517994655377 0.196125223275308577 5.77129× 10−3

0.9 0.165298888221586555 0.159996554702243365 5.30233× 10−3

1.0 0.135335283236612702 0.130467702915348038 4.86758× 10−3

Table 2: Absolute Errors, ‖y − y‖, for Example 4.2, Case k = 2, where y(x) = e−2x

x y y Error

0.0 1.0000000000 1.0000000000 0.000000
0.1 0.904837418035959473 0.904848530444377274 1.11124× 10−5

0.2 0.818730753077981887 0.818788243555019512 5.74905× 10−5

0.3 0.740818220681717853 0.740910321998192245 9.21013× 10−5

0.4 0.670320046035639371 0.670360829978287053 4.07839× 10−5

0.5 0.606530659712633379 0.606505357852192261 2.53019× 10−5

0.6 0.5488116360940265 0.548764377514921797 4.72586× 10−5

0.7 0.496585303791409593 0.496566369066338086 1.89347× 10−5

0.8 0.449328964117221563 0.449371845425690263 4.28813× 10−5

0.9 0.406569659740599131 0.406649327717074182 7.96680× 10−5

1.0 0.367879441171442334 0.367908853058919316 2.94119 ×10−5

1.1 0.332871083698079539 0.332826522546983571 4.45612× 10−5

1.2 0.301194211912202147 0.301119953271358253 7.42586× 10−5

Table 3: Absolute Errors, ‖y − y‖, for Example 4.1, Case k = 3, where y(x) = e−x
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x y y Error

0.0 1.0000000000 1.0000000000 0.000000
0.1 0.818730753077981887 0.818894645941277943 1.63893× 10−4

0.2 0.670320046035639371 0.671157167530224008 8.37121× 10−4

0.3 0.5488116360940265 0.550155440414506724 13.43804× 10−4

0.4 0.449328964117221563 0.449968231809354257 6.39268× 10−4

0.5 0.367879441171442334 0.367517875200228694 3.61566× 10−4

0.6 0.301194211912202147 0.300437595640151045 7.56616× 10−4

0.7 0.246596963941606528 0.246312289173206311 2.84675× 10−4

0.8 0.201896517994655377 0.202533535807732123 6.37018× 10−4

0.9 0.165298888221586555 0.166444586543129613 11.45698× 10−4

1.0 0.135335283236612702 0.135829954803814967 4.94672× 10−4

1.1 0.110803158362333875 0.11023920371426179 5.63955× 10−4

1.2 0.0907179532894125273 0.0896631588239585397 10.54795× 10−4

Table 4: Absolute Errors, ‖y − y‖, for Example 4.2, Case k = 3, where y(x) = e−2x
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5 Conclusions

We have proposed Two specific methods for k = 2 and k = 3 for solving stiff second-
order IVPs directly without first adapting the second order IVP to an equivalent first
order system. An essential ingredient in the method involves the way in which it is
applied. For instance, we proceed by explicitly obtaining initial conditions at xn+k, n =
0, k, ..., N − k using the computed values y(xn+k) = yn+k and δ(xn+k) = δn+k over
sub-intervals [x0, xk], · · · , [xN−k, xN ] which do not overlap. We have demonstrated the
efficiency of the methods on two stiff problems and the results are given in tables 1 and
2 (case k = 2) and tables 3 and 4 (case k = 3). Our future research will be focused on
studying the stability properties of these methods and applying them as Boundary value
methods to solve both initial and boundary value problems.
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Abstract

A numerical method is devised for solving singularly perturbed turning point boundary
value problems having two boundary layers. The proposed method is composed of B-spline
collocation on piecewise uniform mesh of Shishkin type. Some theoretical bounds are given
for the derivative of analytical solution. The method is shown to be unconditionally stable
and accurate of order O(∆x)2. An extensive amount of analysis has been carried out to prove
the uniform convergence with respect to singular perturbation parameter. Several numerical
experiments have been included to support the theoretical results and to demonstrate the
efficiency of the method.
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1 Introduction

Singularly perturbed problems arises in various field of Physics and Engineering such as fluid

flows at high Reynolds numbers, heat and mass transfer with high peclet numbers [10][12],

drift-diffusion equation of semiconductor device modeling [17] and magneto-hydrodynamics duct

problems at high Hartman numbers [9]. The solution of singular perturbation problems pos-

sesses steep gradients in narrow layer regions of the domain depending upon the nature of the

convection coefficient, as the singular perturbation parameter ε approaches zero. Therefore in

order to tackle such oscillations we need to derive a method using a class of special piecewise-

uniform mesh, called Shishkin mesh, where half the mesh points are concentrated in the layer

regions. For further discussions, reader may refer to Doolan et. al. [5] Farrell et. al. [6] Miller
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et. al. [14] and Roos et al. [19].

In particular, singularly perturbed turning point problems received much attention in the lit-

erature due to the complexity involved in finding uniformly valid asymptotic expansions unlike

non-turning point problems. In this paper, we consider the following singularly perturbed two-

point boundary value problem with a turning point at x = 0:

Lu(x) ≡ εu′′(x) + a(x)u′(x)− b(x)u(x) = f(x), x ∈ Ω = (−1, 1), (1.1a)

u(−1) = A, u(1) = B, (1.1b)

where ε is a small perturbation parameter satisfying 0 < ε << 1, A and B are given constants,

a, b and f are sufficiently smooth functions. Moreover,

a(0) = 0, a′(0) ≤ 0. (1.2)

|a(x)| ≥ a0 > 0, 0 < |x| ≤ 1. (1.3)

b(x) ≥ 0, b(0) > 0. (1.4)

b(x) ≥ b0 > 0, x ∈ Ω̄ = [−1, 1], (1.5)

|a′(x)| ≥
∣∣∣∣
a′(0)

2

∣∣∣∣ , x ∈ Ω̄ = [−1, 1]. (1.6)

Under these assumptions (1.2)- (1.6), the turning point problem (1.1) possesses a unique

solution having twin boundary layers at x = −1 and x = 1 i.e., at both end points [2].

Abrahmsson [1] derived a priori estimates for solution of singular perturbation problems with a

turning point. Berger et. al.[2], Wasow [23] and O’Malley [16] studied qualitative aspects of these

problems. Farrell [7] gave the sufficient conditions for uniform convergence of a difference scheme

for these turning point problems. Sun and Stynes used Galerkin finite element methods on

various piecewise uniform meshes for such problems [20]. Clavero et. al. presented a uniformly

convergent finite difference method for such problems with turning points [3], whereas, Surla

and Uzelac [22] solved them by taking a linear combination of the two spline difference schemes.

Kadalbajoo and Patidar [11] proposed a numerical method based on cubic spline approximation

with nonuniform mesh for the singularly perturbed two-point boundary value problems having

a turning point. In this paper, we propose a B-spline collocation method to solve problems of

type (1.1) with piecewise uniform mesh of Shishkin type.

This paper is organized as follows. In Section 2 we present some analytical results for continuous

turning point problem (1.1). In Section 3 we use B-spline collocation method to solve the problem

with Shishkin mesh. The derivation of uniform convergence is given in Section 4. Some numerical

examples have been solved and the results are presented in Section 5. Finally, discussion and

conclusion is given at the end of the paper in Section 6. Throughout the paper we use C as a

generic positive constant independent of ε and mesh parameter.
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2 Continuous Problem

In this section explicit bounds for the solution of turning point problem (1.1) and its derivative

are derived. We divide the interval Ω̄ into three subintervals as Ω1 = [−1,−τ ], Ω2 = [−τ, 1− τ ]

and Ω3 = [1− τ, 1] such that Ω̄ = Ω1 ∪Ω2 ∪Ω3, where τ is the width of boundary layer defined

in next section.

Let us for any given function g(x) ∈ Ck(Ω̄) (k a nonnegative integer), ||g||k is defined by

||g||k =
k∑

i=0

maxx∈Ω̄|g(i)(x)|.

Lemma 2.1. Minimum Principle Let y(x) ∈ C2(Ω̄), satisfying y(±1) ≥ 0, such that Ly(x) ≤
0,∀x ∈ Ω. Then y(x) ≥ 0,∀x ∈ Ω̄.

Lemma 2.2. If u(x) is the solution of the problem (1.1), then ∀ε > 0 we have

||u(x)||0 ≤ ||f ||0
b0

+ max(|A|, |B|), ∀x ∈ Ω̄.

Proof. Let us define φ(x) = ||f ||0/b0 + max(|A|, |B|). Now applying the lemma 2.1 to

comparison functions φ(x)± u(x) we get the required estimate immediately.

Theorem 2.1. If u(x) is the solution of turning point problem (1.1) and a, b and f ∈ Cm(Ω̄),m >

0, then the bounds

|ui(x)| ≤ C[1 + ε−iexp(−η(x + 1)/ε)], i = 1, · · · ,m + 1, x ∈ Ω1,

|ui(x)| ≤ C[1 + ε−iexp(−η(1− x)/ε)], i = 1, · · · ,m + 1, x ∈ Ω3,

are valid for any τ > 0. Here η and C are generic positive constants independent of ε and x.

Proof. Following the approach given by Kellog et. al.[13] and Miller et. al.[14] , the

bounds for the derivatives are obtained.

Further we show that u(x) is smooth near turning point x = 0 if β = b(0)/a′(0) < 0, (see

Abrahamsson [1]).

Theorem 2.2. Suppose β < 0. If u(x) is the solution of ( 1.1) and satisfies all conditions from

( 1.2) to ( 1.6), let a, b and f ∈ Cm(Ω̄),m > 0. Then we have

|u(i)(x)| ≤ C, i = 1 · · ·m, ∀x ∈ Ω2,

for sufficiently small τ > 0.

Proof. For the proof one can see [2].

The following theorem provides bounds for the smooth and singular components of the solution

u of the turning point problem (1.1).
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Theorem 2.3. Suppose the solution u of the turning point problem (1.1) has the decomposition

u = v + w,

where, for all i, 0 ≤ i ≤ 3, the smooth component satisfies

|v(i)(x)| ≤ C[1 + ε−(i−2)(exp(−a0(1 + x)/ε) + exp(−a0(1− x)/ε))], ∀x ∈ Ω̄,

and the singular component satisfies

|w(i)(x)| ≤ Cε−i(exp(−a0(1 + x)/ε) + exp(−a0(1− x)/ε)), ∀x ∈ Ω̄.

Proof. The proof follows by approach as given in Miller et. al.[14]

3 Discrete Problem

In this section, third-degree B-splines are used to construct collocation method to turning point

problem (1.1) discussed in section 1 with nonuniform mesh Ω̄N of Shishkin type. Shishkin mesh

is defined as follows:

3.1 Shishkin Mesh

Consider N = 2m with m ≥ 3, be a positive integer and let τ be the width of boundary layer.

Therefore, for a given N and ε, the interval Ω̄ = [−1, 1] be divided into three subintervals

Ω1 = [−1,−1 + τ ], Ω2 = [−1 + τ, 1− τ ] and Ω3 = [1− τ, 1] such that Ω̄ = Ω1 ∪ Ω2 ∪ Ω3.

The transition parameter τ is given by

τ ≡ min{1
4
,Kε log N}, K ≥ 1

min{a0, b0} .

Thus transition parameter τ depends on both ε and N . The value of constant K depends on

the particular scheme being used. Define

h̃ =





h1 = hi = 4τ/N, if i = 1, 2, · · ·N/4,

h2 = hi = 4(1− τ)/N, if i = N/4 + 1, · · · 3N/4,

h3 = hi = 4τ/N, if i = 3N/4 + 1, · · ·N .

(3.1)

where N is the no. of discretization points and the set of mesh points Ω̄N = {xi}N
i=0 with

xi =





−1 + (4τ/N)i, if i = 0, 1, 2, · · ·N/4,

(−1 + τ) + (4(1− τ)/N)(i−N/4), if i = N/4 + 1, · · · 3N/4,

(1− τ) + (4τ/N)(i− 3N/4), if i = 3N/4 + 1, · · ·N ,

(3.2)

i.e. the finite interval [−1, 1] is partitioned into N finite elements by the partition π : −1 = x0 <

x1 < x2 < · · · < xN = 1, where h̃ is the piecewise uniform mesh spacing.
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3.2 Methodology of B-spline Collocation

We assume X is a linear subspace of L2(Ω̄), the space of all square integrable functions defined

on Ω̄. For i = −1, 0, . . . , N + 1, the cubic B-splines are defined by the following relation[18]

φi(x) =
1
h̃3





(x− xi−2)3, xi−2 ≤ x ≤ xi−1,

h̃3 + 3h̃2(x− xi−1) + 3h̃(x− xi−1)2 − 3(x− xi−1)3, xi−1 ≤ x ≤ xi,

h̃3 + 3h̃2(xi+1 − x) + 3h̃(xi+1 − x)2 − 3(xi+1 − x)3, xi ≤ x ≤ xi+1,

(xi+2 − x)3, xi+1 ≤ x ≤ xi+2,

0, otherwise.

(3.3)

Each φi(x) is a continuously differentiable, piecewise cubic on π and φi(x) ∈ X. Reader can find

detailed description of B-spline functions in [18], [15] and [21]. Now suppose the approximate

solution of Eq. (1.1) is given by

U(x) =
N+1∑

i=−1

ciφi(x), (3.4)

where ci are unknown real coefficients. Here we have introduced two extra cubic B-splines, φ−1

and φN+1 to satisfy the boundary conditions. Therefore, we have

LU(xi) = f(xi), 0 ≤ i ≤ N , (3.5)

and

U(x0) = A, U(xN ) = B. (3.6)

On solving the collocation equations (3.5), and putting the values of B-spline functions φi and

of derivatives at mesh points Ω̄N , we obtain a system of (N + 1) linear equations in (N + 3)

unknowns

(6ε− 3aih̃− bih̃
2)ci−1 + (−12ε− 4bih̃

2)ci

+ (6ε + 3aih̃− bih̃
2)ci+1 = fih̃

2, 0 ≤ i ≤ N . (3.7)

The given boundary conditions become

c−1 + 4c0 + c1 = A, (3.8)

and

cN−1 + 4cN + cN+1 = B. (3.9)

Thus by the Eqs. (3.7), (3.8) and (3.9) we obtain a (N+3)×(N+3) system with (N+3) unknowns

{c−1, c0, . . . , cN+1}. Now eliminating c−1 from first equation of (3.7) and from equation (3.8),

we find

(−36ε + 12a0h̃)c0 + 6a0h̃c1 = f0h̃
2 −A(6ε− 3a0h̃− b0h̃

2). (3.10)

Similarly, eliminating cN+1 from the last equation of (3.7) and from (3.9), we get

6aN h̃cN−1 + (−36ε + 12aN h̃)cN = fN h̃2 −B(6ε + 3aN h̃− bN h̃2). (3.11)
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Thus we are lead to a system of (N + 1) linear equations in (N + 1) unknowns

TxN = dN . (3.12)

Where xN = (c0, c1, . . . , cN )T are the unknown real coefficients with right hand side dN =
(f0h̃

2 −A(6ε− 3a0h̃− b0h̃
2), f1h̃

2, . . . , fN−1h̃
2, fN h̃2 −B(6ε + 3aN h̃− bN h̃2))T . The coefficient

matrix T is given by

2
666666666666666664

−36ε + 12a0h̃ 6a0h̃ 0 0 . . . 0

6ε− 3a1h̃− b1h̃2 −12ε− 4b1h̃2 6ε + 3a1h̃− b1h̃2 0 . . . 0

..

.
..
.

..

.
..
. . . .

..

.

0 0 6ε− 3aih̃− bih̃
2 −12ε− 4bih̃

2 6ε + 3aih̃− bih̃
2 0

.

..
.
..

.

..
.
..

.

..
.
..

..

.
..
.

..

.
..
.

..

.
..
.

0 . . . 0 6ε− 3aN−1h̃− bN−1h̃2 −12ε− 4bN−1h̃2 6ε + 3aN−1h̃− bN−1h̃2

0 . . . 0 0 −6aN h̃ −36ε− 12aN h̃

3
777777777777777775

It is easily seen that collocation matrix T is strictly diagonally dominant and hence nonsingular.

Since T is nonsingular, we can solve (3.12) for c0, c1, . . . , cN and substitute into the boundary

conditions (3.8) and (3.9) to obtain c−1 and cN+1. Hence the method of collocation using a basis

of cubic B-splines applied to problem (1.1) has a unique solution U(x) given by (3.4).

4 Derivation for Uniform Convergence

In this section we deduce that the present collocation method has a uniform convergence of

order two with Shishkin mesh in maximum norm.

Theorem 4.1. Let u ∈ C4[−1, 1] be the solution of problem (1.1) and let U be the cubic B-

spline collocation approximate on the piecewise uniform mesh. Then for N sufficiently large

(independently of ε), we have

sup
0<ε≤1

||U − u||Ω̄ ≤ CN−2(lnN)2.

Proof. The solution U of the discrete problem is decomposed in an analogous manner as

that of the continuous solution u. Thus U = V +W , where V is the solution of the inhomogeneous

problem given by

LV = f, V (−1) = v(1), V (1) = v(1),

and W is the solution of the homogeneous problem

LW = 0, W (−1) = w(1), W (1) = w(1).

To show the proposed collocation method is ε-uniform, here we consider only the subinterval

[−1, 0]. In the same way, one can obtain similar estimate in the subinterval [0, 1]. Here we use

de Boor [4] and Hall [8] spline interpolation error estimates to derive ε-uniform error estimate.
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By using de Boor-Hall error estimates and doing some simplification we are lead to the following

ε-uniform error estimate

sup
0<ε≤1

||U − u||Ω̄ ≤ Ch2
c max

Ω̄
|u′′|, (4.1)

where hc = max{h1, h2, h3}. Now the ε-uniform convergence estimate is obtained on each

subinterval Ωi = (xi−1, xi),∀i = 1, 2 . . . N/2, separately. Each finite subinterval Ωi is covered by

four cubic B-splines, therefore the B-spline collocation approximation U of u, on Ωi, is given by

U = ci−2φi−2 + ci−1φi−1 + ciφi + ci+1φi+1,

and it is obvious that on Ωi

|U(x)| ≤ max
Ωi

|u(x)|, (4.2)

and by above ε-uniform error estimate (4.1), it is easy to see that

|U(x)− u(x)| ≤ Ch̃2 max
Ωi

|u′′(x)|. (4.3)

Now from Theorems 2.1, 2.2, and Eq. (4.3) on Ωi, we have

|U(x)− u(x)| ≤ C
h̃2

ε2
. (4.4)

Also, using Theorem 2.3, Eqs. (4.2) and (4.3), on Ωi, we have

|U(x)− u(x)| = |V (x) + W (x)− v(x)− w(x)|,
≤ |V (x)− v(x)|+ |W (x)|+ |w(x)|
≤ Ch̃2 max

Ωi

|v′′(x)|+ 2 max
Ωi

|w(x)|,

≤ C(h̃2 + e−a0(1+xi)/ε). (4.5)

Now the required ε- uniform estimate depends on whether Kε log N ≥ 1/4 or Kε log N ≤ 1/4.

In the first case 1/ε ≤ C log N and the mesh is uniform with mesh spacing h̃ = 2/N . Therefore

the ε- uniform estimate easily follows at once from Eq. (4.4).

In the second case Kε log N ≤ 1/4, therefore we have τ = Kε log N . Then h̃ = 4τ/N for i

satisfies 1 ≤ i ≤ N/4 in the boundary layer region. Therefore

h̃

ε
=

4τ

Nε
= CN−1 log N, 1 ≤ i ≤ N/4,

thus the results immediately follows combining this with Eq. (4.4). On the other hand, if i

satisfies N/4 < i ≤ N/2 in no boundary layer region then τ ≤ 1 + xi and so

e−a0(1+xi)/ε ≤ e−a0τ/ε = e−a0K log N = N−a0K = N−2,

whenever K = 2/a0 in the definition of transition parameter τ . Using this in (4.5), we get

the required result. In a similar manner, one can obtain a similar estimate for the subinterval

[0, 1]. Thus the method is uniformly convergent of order two in the discrete maximum norm.

239



5 Numerical Experiments and Results

In this section, we give some numerical experiments to validate theoretical results. Both of the

following examples [11] exhibits a turning point at x = 1/2.

Example 1. This example corresponds to the following singularly-perturbed turning point

problem:

εu′′(x)− 2(2x− 1)u′(x)− 4u(x) = 0, x ∈ (0, 1), (5.1a)

u(0) = 1, u(1) = 1, (5.1b)

whose exact solution is given by

u(x) = e−2x(1−x)/ε. (5.2)

For every ε the computed maximum pointwise errors are estimated by

EN
ε = max

xi∈Ω̄N

|u(xi)− UN (xi)|, (5.3)

where UN denotes the numerical solution obtained by using N finite elements. Furthermore,

the ε- uniform order of convergence is obtained by

pε,N =
log(EN

ε /E2N
ε )

log2
. (5.4)

The numerical results are presented in Table 1 with piecewise uniform mesh.

Example 2. Now we consider the following nonhomogeneous turning point problem :

εu′′(x)− 2(2x− 1)u′(x)− 4u(x) = 4(4x− 1), x ∈ (0, 1), (5.5a)

u(0) = 1, u(1) = 1, (5.5b)

which has the analytical solution given by

u(x) = −2x + 2e−2x(1−x)/ε + e−2x(1−x)/εerf((2x− 1)/
√

2ε)/erf(1/
√

2ε), (5.6)

whereas the maximum pointwise errors and numerical order of convergence are calculated as in

Example 1. The numerical results are displayed in Table 2.

6 Discussions and Conclusions

We have proposed a B-spline collocation method to solve singularly perturbed two-point bound-

ary value problems with a turning point exhibiting twin boundary layers. Numerical results

presented in Table 1 and Table 2 show that for a fixed value of ε, the pointwise errors decrease

whereas the order of convergence increases, in general, as the number of mesh points increases.

It has been found that pointwise errors are minimum near to the turning point. Also, it is

noticed that maximum pointwise errors are observed near the transition point due to the abrupt

changes in the mesh size.

It has been seen that exact and numerical solutions with uniform mesh are identical for most
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of the region of the domain except in the boundary layer regions. Thus the present method is

second order accurate and numerical results support the theoretical estimates. This method is

shown to be uniformly convergent and independent of mesh parameters. The proposed method

gives more accurate results than many of other boundary layer resolving finite difference meth-

ods. Also this method produces the solution at any point in the domain, whereas the finite

difference methods gives the solution only at the chosen mesh points.
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Table 1: Maximum pointwise errors and numerical order of convergence for example 1 with

Shishkin mesh
ε ↓ N=16 N=32 N=64 N=128 N=256 N=512 N=1024

20 3.6801E-3 1.0922E-3 2.9794E-4 7.7844E-5 1.9897E-5 5.0300E-6 1.2645E-6
1.7525 1.8741 1.9364 1.9680 1.9840 1.9920

2−4 4.4364E-2 2.7484E-2 1.3777E-2 6.4524E-3 2.6386E-3 9.0787E-4 3.0787E-4
0.6908 0.9963 1.0943 1.2901 1.5392 1.5602

2−8 4.2182E-2 2.6684E-2 1.3506E-2 5.9281E-3 2.4642E-3 8.9815E-4 3.1380E-4
0.6606 0.9824 1.1879 1.2665 1.4561 1.5171

2−12 4.2334E-2 2.6746E-2 1.3535E-2 5.9425E-3 2.3628E-3 8.9004E-4 3.1297E-4
0.6625 0.9826 1.1875 1.3306 1.4086 1.5078

2−14 4.2343E-2 2.6752E-2 1.3537E-2 5.9433E-3 2.3632E-3 8.9015E-4 3.1301E-4
0.6625 0.9827 1.1876 1.3306 1.4086 1.5079

...
...

...
...

...
...

...
...

2−28 4.2347E-2 2.6754E-2 1.3538E-2 5.9437E-3 2.3633E-3 8.9016E-4 3.1302E-4
0.6625 0.9827 1.1876 1.3306 1.4087 1.5078

2−32 4.2347E-2 2.6753E-2 1.3538E-2 5.9432E-3 2.3629E-3 8.9021E-4 3.1233E-4
0.6625 0.9827 1.1877 1.3307 1.4083 1.5111

Table 2: Maximum pointwise errors and numerical order of convergence for example 2 with

Shishkin mesh
ε ↓ N=16 N=32 N=64 N=128 N=256 N=512 N=1024

20 3.1243E-3 7.7599E-4 1.9368E-4 4.8401E-5 1.2000E-5 3.0249E-6 7.562E-7
2.0094 2.0023 2.0006 2.0000 2.0000 2.0000

2−4 2.9938E-1 1.2030E-1 2.6798E-2 6.5282E-3 1.6217E-3 4.048E-4 1.0118E-4
1.3154 2.1664 2.0374 2.0091 2.0023 2.0003

2−8 3.4851E-1 1.7793E-1 8.2282E-2 3.5436E-2 1.1722E-2 6.7302E-3 4.4969E-3
0.9699 1.1127 1.2154 1.5960 0.8005 0.5817

2−12 3.5433E-1 1.8311E-1 8.6111E-2 3.9396E-2 1.5134E-2 5.6777E-3 2.1892E-3
0.9524 1.0884 1.1281 1.3803 1.4144 1.3749

2−14 3.5463E-1 1.8338E-1 8.6312E-2 3.9607E-2 1.5327E-2 5.8550E-3 2.0149E-3
0.9515 1.0872 1.1238 1.3696 1.3884 1.5390

...
...

...
...

...
...

...
...

2−28 3.5473E-1 1.8346E-1 8.6379E-2 3.9677E-2 1.5397E-2 5.9144E-3 1.9647E-3
0.9512 1.0868 1.1224 1.3696 1.3884 1.5390

2−32 3.5472E-1 1.8346E-1 8.6379E-2 3.9678E-2 1.5393E-2 5.9147E-3 1.9702E-3
0.9512 1.0868 1.1249 1.3661 1.3799 1.5860
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Abstract

The problem of water wave generation and attenuation by wind is proposed by
numerically calculating the turbulent air flow over a third order Stokes wave train.
Most existing works Townsend [11], Gent & Taylor [4] uses a turbulent flow closer
model of one equation type and assumed the flow to be aerodynamically rough
to avoid the difficulties arising from the viscous sublayer. However, air flows over
water waves are known to be aerodynamically transitional Snyder et al. [10]. Thus,
in this investigation we shall adopt Sajjadi’s [9] roughness parameter to circumvent
this difficulty.

The turbulence model adopted for this investigation is based on the two equa-
tion closer scheme proposed by Saffman & Wilcox [7], and is used to simulate
turbulent flow within and outside the viscous sublayer over steep nonlinear surface
waves.

The linearized turbulent flow equations for small (yet finite) wave slope are
solved numerically up, and including, the third order in wave steepness, taking
into account the dynamical and kinematical boundary conditions at wave free sur-
face. The resulting PDEs are first decomposed into a system of ODEs and solved
numerically using the Multiple Shooting Method as described in Ascher et al. [1].

The main aim of the present investigation is to calculate the vertical structure
of wind field, the perturbation pressure as well as the fractional rate of energy input
from wind to nonlinear surface waves and hence calculate the energy transfer to
a third-order Stokes wave as well as the growth rate due to turbulent shear flow
flowing over it. The results show good agreement with computations of Conte &
Miles [3] and also supports the recent theoretical investigation of Sajjadi [9].

Key words: Air-Sea Interactions, Turbulence Model, Third-Order Stokes Waves.

1 Introduction

Despite of the large amount of research conducted over the last sixty years, still the
mechanism by which ocean waves are generated by wind is not fully understood. For
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example, when energy is transferred by wind to the ocean, it is still not known what
percentage of energy and momentum go into waves and what percentage go into cur-
rents.

Earlier theories Miles [6], in which the interaction of the atmospheric turbulence
and wave fields was neglected, have provided some explanation of the physics of the
air flow over water waves. Recent works (Belcher & Hunt [2], Sajjadi [8, 9]) have
provided a more detailed physical mechanism for this processes, in particular, they
have shown that the surface pressure is extremely sensitive to the turbulence closure
schemes adopted. However, the equations of motion which govern the turbulent air
flow over water waves are not amenable to analytical solutions and therefore must be
solved numerically.

In the present contribution, a numerical model is constructed for turbulent air flow
over steep water waves. The water wave is represented by a third order Stokes wave
and turbulence model adopted for the air flow over such waves is taken from the two
equation model originally proposed by Saffman & Wilcox [7].

Since the boundary layer above water waves is not large compared to the wave
amplitude, the boundary conditions cannot be prescribed on the mean undisturbed
surface. Thus, orthogonal curvilinear coordinates are adopted and the equations of
motion and the boundary conditions (BCs) are transformed into this coordinate system.
The resulting equations and the BCs, in the new coordinates, are then expressed in
perturbation expansions with respect to the wave slope, up to and including the third
order in wave steepness.

The perturbation equations consists of a set of coupled ordinary differential equa-
tions, with respect to the vertical coordinate, which are solved numerically using the
multiple shooting method as described by Ascher et al. [1].

2 Formulation of the Problem

We consider motion of an incompressible air flow over water waves, and refer the equa-
tions to Cartesian coordinates (x, y, z) in which the y-axis is measured vertically up-
wards from the undisturbed water surface.

If ũi = (ũ, ṽ, w̃) are the local components of flow velocity in Eulerian frame of
reference at a point in Cartesian coordinates (x, y, z), then the Navier-Stokes equations
may be cast in the form

∂ũi
∂xj

= 0, ρ
(

∂ũj

∂t + ũj
∂ũi
∂xj

)
= − ∂p̃

∂xi
+ ∂

∂xj

{
µ

(
∂ũi
∂xj

+ ∂ũj

∂xi

)}
, (1)

where ρ, p̃ and µ are respectively the air density, the pressure and the dynamic viscosity.
We will consider a fully developed turbulent flow of a third order Stokes wave

ys = a cos κx + 1
2a2κ cos 2κx + 3

8a3κ2 cos 3κx +O(a4κ3) (2)

in a frame of reference moving with the wave with a speed c in the positive x-direction,
where κ = 2π/λ is the wave number, λ the wavelength and a the amplitude.
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Decomposing the instantaneous velocity fields and the pressure into mean and fluctu-
ating components according to ũi = Ui + ui and p̃ = P + p, then upon substitution
into (1), followed by time averaging we obtain the Reynolds-averaged Navier-Stokes
equations

∂Ui
∂xi

= 0, ρUj
∂Ui
∂xj

= − ∂P
∂xi

+ ∂
∂xj

{
µ

(
∂Ui
∂xj

+ ∂Uj

∂xi

)
− ρuiuj

}
(3)

In equation (3), ρuiuj are the unknown Reynolds stresses which must be provided
through a closure scheme. Here, we follow the closure model suggested by Saffman &
Wilcox [7] and express the Reynolds stresses as

−ρuiuj = 2ρεSij − 2
3ρEδij , Sij = 1

2

(
∂Ui
∂xj

+ ∂Uj

∂xi

)
, E = 1

2uiuj (4)

where ε is a scalar eddy viscosity, Sij is the mean rate of strain tensor, and E is the
specific turbulent kinetic energy.
Hence, the two-dimensional governing equations for the turbulent flow over Stokes wave
may be cast in their final form as

∂Ui
∂xi

= 0, Uj
∂Ui
∂xj

= − ∂P
∂xi

+ ∂
∂xj

{2(ν + ε)Sij} , P = 1
2P + 2

3E (5a)

where ν = µ/ρ represents the kinematic viscosity. The turbulent closure (kinetic energy
E and pseudo-vorticity ω) equations are

Uj
∂E
∂xj

= E
(
b1

√
2SijSij − b2ω

)
+ ∂

∂xj

{
(ν + b3ε) ∂E

∂xj

}
(5b)

Uj
∂ω2

∂xj
= ω2

(
b4

√
∂Ui
∂xj

∂Ui
∂xj

− b5ω
)

+ ∂
∂xj

{
(ν + b3ε)∂ω2

∂xj

}
, (5c)

where ε = E/ω.

3 Equations in Curvilinear Coordinates

In the problem posed here, the boundary layer thickness is small compared with the
wave amplitude. Thus, it is not satisfactory to apply the surface boundary conditions
at the mean water level (y = 0). Hence to circumvent this difficulty a reference frame,
moving with the wave, is chosen and use is made of a system of orthogonal curvilinear
coordinates in which the wave surface is a coordinate line. Therefore, we define

x = ζ − Re[iae(iκ(ζ+iη))], y = η − Re[ae(iκ(ζ+iη))]

To third order in (aκ), the coordinate η = 0 corresponds to the free surface ys given
by (2). The Jacobian of the transformation may be expressed as

J = ∂(ζ,η)
∂(x,y) =

{
1 + 2aκe−κη cos κζ + (aκ)2e−2κη + (aκ)3e−3κη

}−1 (6)

correct to the third order.
Non-dimensionalizing the governing equations, given in section §2, such that the veloc-
ities are scaled with respect to the friction velocity U∗ and the length is scaled with
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respect to ν/U∗. Thus the equations of motion can be written in (ζ, η) coordinates
system as follows:
Continuity:

J
{

∂
∂ζ

(
J−

1
2 u

)
+ ∂

∂η

(
J−

1
2 v

)}
= 0 (7)

where u and v are the mean mean velocities in the ζ and η directions, respectively.
u-Momentum:

∂
∂ζ

(
J−1uu

)
+ ∂

∂η

(
J−1uv

)
+ J−2 (u2+v2)

2
∂J
∂ζ + J−1 ∂p

∂ζ =
∂
∂ζ

{
J−1ε̂

[
∂
∂ζ

(
J

1
2 u

)
+ ∂

∂η

(
J

1
2 v

)]}
− ∂

∂η

{
J−1ε̂

[
∂
∂η

(
J

1
2 u

)
− ∂

∂ζ

(
J

1
2 v

)]}
(8)

Here ν = µ/ρ is the kinematic viscosity, ε = E/ω is the turbulent viscosity and ε̂ = ν+ε.
v-Momentum:

∂
∂ζ

(
J−1uv

)
+ ∂

∂η

(
J−1vv

)
+ J−2 (u2+v2)

2
∂J
∂ζ + J−1 ∂p

∂η =
∂
∂ζ

{
J−1ε̂

[
∂
∂ζ

(
J

1
2 u

)
+ ∂

∂η

(
J

1
2 v

)]}
+ ∂

∂η

{
J−1ε̂

[
∂
∂ζ

(
J

1
2 u

)
− ∂

∂η

(
J

1
2 v

)]}
(9)

Turbulent Kinetic Energy:

J−
1
2 u∂E

∂ζ + J−
1
2 v ∂E

∂η − J−1E{b1

√
2SijSij − b2ω}

− ∂
∂ζ

{
(ν + b3ε̂)∂E

∂ζ

}
− ∂

∂η

{
(ν + b3ε̂)∂E

∂η

}
= 0 (10)

Pseudo-vorticity Equation:

J−
1
2 u∂ω2

∂η + J−
1
2 v ∂ω2

∂ζ − J−1ω2{b4

√
Sω − b5ω}

− ∂
∂ζ

{
(1 + b6Eω−1)∂ω2

∂η

}
− ∂

∂η

{
(1 + b6Eω−1)∂ω2

∂η

}
= 0 (11)

The stress terms in (10) and (12a) are given by

2SijSij = R2
t +R2

n =
{

∂
∂ζ

(
J

1
2 u

)
− ∂

∂η

(
J

1
2 v

)}2
+

{
∂
∂η

(
J

1
2 u

)
+ ∂

∂ζ

(
J

1
2 v

)}2
(12a)

where

εRt = −uv = ε
{

∂
∂ζ

(
J

1
2 u

)
− ∂

∂η

(
J

1
2 v

)}
(12b)

εRn = −u2 + 2
3E = v2 − 2

3E = ε
{

∂
∂ζ

(
J−

1
2 u

)
− ∂

∂η

(
J−

1
2 v

)}
(12c)

are the tangential (εRt) and the normal (εRn) components of Reynolds stresses in the
orthogonal curvilinear coordinates, and

Sω = SijSij + 1
2J2

{
∂
∂ζ

(
J−

1
2 u

)
− ∂

∂η

(
J−

1
2 v

)}2
(12d)
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The constants b1 to b6 in the transport equations (10) and (12a) are taken from Saffman
& Wilcox [7] and their values are

b3 = b6 = 1
2 , b1 = 0.3, b2 = b2

1, b4 = b1

{
b5
b2
− 4b6

b1
K2

}
, K = 0.41, and 5

3 < b5
b2

< 2.

Boundary Conditions: At η = η∞, which we typically take to be 10m above the water
surface, the boundary conditions are

u = 1
K ln(1 + η) + B − c, v = P = 0, E = 1

b1
, ω = 1

Kb1η (13)

whilst on the water surface (η = 0) the boundary conditions are

u = −cJ−
1
2 (0), v = E = 0, ω = Q

(
U∗z0

ν

)
J−1(0)/b1 (14)

The constant B in (14) depends on the nature of the surface. z0 is the the roughness
length and U∗ is the friction velocity. Here, Q is the universal function defined by

Q
(

U∗z0
ν

)
=


6.26

[ln
(

U∗z0
ν

)
+ 2.38]2

(Smooth and transitional)

1.44
[ln

(
U∗z0

ν

)
+ 0.68]2

(Rough)
(15)

3.1 Linearized Perturbation Equations

We expand u, v, P, E, ω and J in order of wave steepness aκ as

u(ζ, η) = U0(η) + aκU1(η)eiKζ + (aκ)2U2e
2iKζ + (aκ)3U3e

3iKζ +O(aκ)4

v(ζ, η) = aκV1(η)eiKζ + (aκ)2V2e
2iKζ + (aκ)3V3e

3iKζ +O(aκ)4

P (ζ, η) = aκP1(η)eiKζ + (aκ)2P2e
2iKζ + (aκ)3P3e

3iKζ +O(aκ)4

E(ζ, η) = E0(η) + aκE1(η)eiKζ + (aκ)2E2e
2iKζ + (aκ)3E3e

3iKζ +O(aκ)4

ω(ζ, η) = Ω0(η) + aκΩ1(η)eiKζ + (aκ)2Ω2e
2iKζ + (aκ)3Ω3e

3iKζ +O(aκ)4

J(ζ, η) = 1 + aκJ1(η)eiKζ + (aκ)2J2e
2iKζ + (aκ)3J3e

3iKζ +O(aκ)4

Here λ is wave length, κ = 2π
λ is the wave number, K = νκ

U∗
, J1(η) = 2e−Kη, J2(η) =

2e−2Kη and J3(η) = 2e−3Kη. Substituting these expansions into the partial differential
equations (7) – (12a), and the boundary conditions and equating the coefficients of
O(1), O(aκ) and O(aκ)2 terms, we get the following system of ordinary differential
equations.
To O(1) the equations of motion are
u-Momentum:

(1 + E0Ω−1
0 )d2U0

dη2 +
{

d
dη (1 + E0Ω−1

0 )
}

dU0
dη = 0 (16a)

Turbulent Kinetic Energy:

(1 + b3E0Ω−1
0 )d2E0

dη2 +
{

d
dη (1 + b3E0Ω−1

0 )
}

dE0
dη +

(
b3Ω0 − b1

dU0
dη

)
E0 = 0 (16b)
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Pseudo-vorticity:

(1 + b6E0Ω−1
0 )d2Ω2

0
dη2 +

{
d
dη (1 + b6E0Ω−1

0 )
}

dΩ2
0

dη +
(
b5Ω0 − b4

dU0
dη

)
Ω2

0 = 0 (16c)

The boundary conditions are given by U0 = 1
K ln(1+η∞)+B−c, E0 = 1

b1
, Ω0 = 1

Kb1η∞

(typicallyfew meters above the wave) and U0 = −c, E0 = 0, Ω0 = Q
(

U∗z0
ν

)
J−1

1 (0)/b1.
on the water surface (η = 0).
Similarly the O(aκ) equations are given by
Continuity:

dV1
dη + 2iK

(
U1 − 1

2U0J1

)
= 0 (17a)

u-Momentum:

(1 + E0Ω−1
0 )d2U1

dη2 +
{

d
dη (1 + E0Ω−1

0 )
}

dU1
dη −

{
K2(1 + E0Ω−1

0 ) + iKU0

}
U1

−iKP1 +
{

iK d
dη (1 + E0Ω−1

0 )− dU0
dη

}
V1 + d

dη

{
(E0Ω−1

0 − E0Ω−2
0 Ω1)dU0

dη

}
−1

2K2(1 + E0Ω−1
0 )U0J1 − 1

2J1
d
dη (1 + E0Ω−1

0 )dU0
dη − 1

2J1(1 + E0Ω−1
0 )d2U0

dη2

+1
2U0(1 + E0Ω−1

0 )d2J1
dη2 = 0 (17b)

v-Momentum:

(1 + E0Ω−1
0 )d2V1

dη2 + 2
{

d
dη (1 + E0Ω−1

0 )
}

dV1
dη −

{
K2(1 + E0Ω−1

0 ) + iKU0

}
V1

−dP1
dη −

1
2U2

0
dJ1
dη + iK

(
dU0
dη

) (
E1Ω−1

0 − E0Ω−2
0 Ω1

)
−iKJ1

{
U0

d
dη (1 + E0Ω−1

0 ) + (1 + E0Ω−1
0 )dU0

dη

}
= 0 (17c)

Turbulent Kinetic Energy:

(1 + b3E0Ω−1
0 )d2E1

dη2 +
{

d
dη (1 + b3E0Ω−1

0 )
}

dE1
dη

−
{

K2(1 + E0Ω−1
0 ) + iKU0 − b1

dU0
dη + b2Ω0

}
E1

+b3(E1Ω−1
0 − E0Ω−2

0 Ω1))d2E0
dη2 +

{
b3

d
dη (E1Ω−1

0 − E0Ω−2
0 Ω1))− V1

}
dE0
dη

+
{

b1
dU1
dη + 1

2b1U0
dJ1
dη −

1
2b1J1

dU0
dη + b2Ω0J1 − b2Ω1 + iKV1

}
E0 = 0 (17d)

Pseudo-vorticity:

Ω0(1 + b6E0Ω−1
0 )d2Ω1

dη2 +
{

Ω0
d
dη (1 + b6E0Ω−1

0 )+

2(1 + b6E0Ω−1
0 )

dΩ0

dη

}
dΩ1

dη
−

[
K2(1 + b6E0Ω−1

0 )Ω0 + b4Ω0
dU0

dη
− 3

2
b5Ω2

0

−iKU0Ω0 + d
dη

{
(1 + b6E0Ω−1

0 )dΩ0
dη

}]
Ω1 + b6E1Ω−1

0
d2Ω2

0
dη2 +

b4Ω2
0

dU0
dη

dU1
dη − V1

dΩ2
0

dη + b5Ω3
0J1 − 1

2b4Ω2
0J1

dU0
dη = 0 (17e)
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The respective boundary conditions at η = η∞ are U1 = V1 = P1 = E1 = Ω1 = 0 and
and on η = 0, U1 = 1

2cJ1(0), V1 = E1 = 0 and Ω1 = Q
(

U∗z0
ν

)
J1(0)/b1.

The O(aκ)2 and O(aκ)3 equations may be derived in the same way as the lower order
ones. However, these equations are very lengthy and thus are not presented here.

3.2 Numerical Methods

We transform the independent variable η to ξ using the substitution ξ = ln(1 + η). We
then seperate the real and imaginary parts and put the system in a normal form. The
resulting boundary value problem with a system of 54 first order nonlinear ordinary
differential equations are solved numerically using the Multiple Shooting Method as
described by Ascher et al. [1].

4 Results

The wave-perturbation pressure p is proportional to the wave steepness aκ and may be
expressed as

p = ρwc2
[

aκ
σ1

(α1 + iβ1) eiKζ + (aκ)2

σ2
(α2 + iβ2) e2iKζ + (aκ)3

σ3
(α3 + iβ3) e3iKζ

]
(18)

where c =
√

g
κ(1 + (aκ)2 is the wave phase velocity, σn (n = 1, 2, 3) are the frequencies

of the first, second and third harmonics and ρw is the water density. The total energy
transfer parameter from the wind to the wave is given by

β = β0 + aκβ1 + (aκ)2β2 + (aκ)3β3 (19)

which is related to fractional growth of wave per radian ζa. The energy transfer pa-
rameter, β, is related to the total energy of the water wave, E, by

(κcE)−1 ∂E
∂t = sβ

(
U1
c

)2
(20)

where s = ρa

ρw
, ρa being the air density and U∗ the wind friction velocity, and U1 = U∗

K .
The present turbulent closure model adopted here automatically produces a logarithmic
mean velocity for the wind, which agrees exactly with the following analytical profile

U = U1 ln
(

η
η0

)
, η � η0 (21)

Thus, we adopt the following formulation for the energy transfer rate

β = −π
w′′

c

w′3
c

(∫ ∞

ηc

e−ww2 dη

)2

(22)

where w = U(η)/U1 and the suffix c indicates evaluation at the critical height at which
U = c. Hence, after calculating u(ζf , η) = U(η) at a fixed value of ζ, namely ζ = ζf ,
we substitute the result in (22) and evaluate the integral numerically using Gauss-
Laguerre quadrature. In (22), ηc is given by ηc = Ω

(
U1
c

)2
ec/U1 , where Ω = gη0/U2

1
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Figure 1: Variation of β with c/U1 for Ω = 3 × 10−3. –♦–, Computation of Conte &
Miles [3]; +++, Present computation.

is the dimensionless Charnock’s constant, and g is the acceleration due to gravity.
In comparing our results with the numerical simulations of Conte & Miles [3], we
have considered the transitional flow, for which U∗η0/ν = 0.25 for three values of Ω =
3×10−3, 10−2 and 2×10−2. Figure 1 shows the plot of β against c/U1 for Ω = 3×10−3.
As can be seen from the figure the result of the present computation agrees well with
Conte & Miles in the narrow range 6 ≤ c/U1 ≤ 9 where Miles [6] formulation is expected
to become important Phillips [5, §4.3]. For c/U1 < 6 however, the present calculated
result are smaller compared with Conte & Miles’ values. Similarly, for c/U1 > 9 the
result is larger than theirs. The reason for this may be attributed to the fact that Miles’
critical layer is moving farter (for smaller values) and closer (for the larger values) to the
wave surface as c/U1 decreases (for smaller values) and increases (for larger values) from
the narrow range. Also, Conte & Miles’ model is an inviscid laminar model and hence
does not account for the effect of turbulence, particularly as U1 increases and thus c/U1

decreases. In figure 2 we consider the transitional air flow for which Ω = 10−2. As can
be seen from this figure the agreement between the present computations and Conte &
Miles’ is in excellent agreement for c/U1 ≤ 3 and also in a narrow region 6 ≤ c/U1 ≤ 7.
However, for a fully rough flow, Ω = 2× 10−2, where the effect of turbulence becomes
more important, we observe the result of the present computation is higher, over the
entire range of c/U1, compared with that of Conte & Miles, as shown in figure 3. This
is, of course, to be expected as Miles’ model neglects the interaction of turbulent air
flow with waves. Finally, in figure 4 the fractional growth of the wave per unit radian,
ζa/s, is plotted against U1/c for all values of Charnock’s constant considered. Also, for
comparison, the results of computation by Conte & Miles is also plotted. As can be
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Figure 2: Variation of β with c/U1 for Ω = 10−2. –♦–, Computation of Conte &
Miles [3]; +++, Present computation.

0

2

4

6

8

10

12

0 2 4 6 8 10 12

β

c/U1

Conte & Miles
♦ ♦ ♦

♦
♦

♦

♦

♦

♦
♦ ♦ ♦

♦
Present Result++++++++++++++++++++++++++++++++++++++++++++++++++

+

Figure 3: Variation of β with c/U1 for Ω = 2 × 10−2. –♦–, Computation of Conte &
Miles [3]; +++, Present computation.

253



0.0001

0.01

1

100

10000

0.1 1

ζa/s

U1/c

♦
♦♦♦♦♦♦♦

♦

♦

♦
Ω = 2× 10−2

+
++++++

+
+

+
Ω = 3× 10−3

�
��������

�
�

�

�

××××××××××××××××××××××××××××××××××××××××××××××××××

××××××××××××××××××××××××××××××××××××××××××××××××××

××××××××××××××××××××××××××××××××××××××××××××××××××

44444444444444444444444444444444444444444444444444

44444444444444444444444444444444444444444444444444

44444444444444444444444444444444444444444444444444

??????????????????????????????????????????????????

??????????????????????????????????????????????????

??????????????????????????????????????????????????

?

Figure 4: Variation of ζa/s with U1/c for Ω = 3 × 10−3,Ω = 10−2 and Ω = 2 × 10−2.
Symbols, Computation of Conte & Miles [3]; solid lines, Present computation.

seen from this figure these is a very good agreement between the present computations
and that of Conte & Miles [3]. We remark that the results indicate that there is very
little sensitivity to the choice of Charnock’s constant, Ω, used, particularly in the region
where turbulence is dominant. This is because in the presence of turbulence, the critical
layer moves much closer to the surface and hence there will be insignificant contribution
to the wave growth.

5 Conclusions

A numerical model for generation and growth of a third-order Stokes wave by a tur-
bulent shear flow is proposed. The turbulence model adopted here is based on two
equation model proposed by Saffman & Wilcox [7]. The governing equations for tur-
bulent flow over a third-order Stokes wave are solved numerically up and including the
third order in wave steepness.
From the results of computation, the energy transfer parameter from wind to wave as
well as the wave growth per unit radian are calculated for a range of nondimensional
wind parameters. The present results are compared with the earlier computation of
Conte & Miles [3] and favorable agreement is achieved.

ACKNOWLEDGEMENTS

This work was supported by the Office of Sponsored Program and Department of
Mathematics, Embry-Riddle Aeronautical University.

254



References

[1] U.Ascher, R.Matheij and R.Russel, Numerical Solution of Boundary Value
Problems for Ordinary Differential Equations, SIAM, Philadelphia, PA, 1995.

[2] S.E. Belcher and J.C.R.Hunt, Turbulent shear flow over slowly moving waves,
J. Fluid Mech. 251 (1993) 109–148.

[3] S.Conte and J.W. Miles, On the numerical investigation of the Orr-
Sommerfeld equation, J. Soc. Indust. Appl. Math. 7 (1959) 361–366.

[4] P.R.Gent and P.A.Taylor, A Numerical Model of Flow above Water Waves,
J. Fluid Mech. 77 (1976) 105–128.

[5] O.M.Phillips, The Dynamics of the Upper Ocean, Cambridge University Press,
1977.

[6] J.W.Miles, On the generation of waves by shear flows, J. Fluid Mech. 3 (1957)
185–204.

[7] P.G. Saffman and D.C.Wilcox, Turbulence model predictions for turbulent
boundary layers, AIAA J. 12 (1974) 541–546.

[8] S.G. Sajjadi, On the growth of a fully non-linear Stokes wave by turbulent shear
flow. Part 2. Rapid distortion theory, Math. Engng. Ind. 6 (1998) 247–260.

[9] S.G. Sajjadi, Interaction of Turbulence due to Tropical Cyclones with Surface
Waves, Adv. Appl. Fluid Mech. (2007) In press.

[10] R.L. Snyder, F.W.Dobson, J.A. Elliot and R.B. Long, Array measurement
of atmospheric pressure fluctuations above surface gravity waves, J. Fluid Mech.
102 (1974) 1–59.

[11] A.A.Townsend, Flow in a deep turbulent boundary layer over a surface distroted
by water waves, J. Fluid Mech. 55 (1972) 719-735.

255



Proceedings of the International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2007
Chicago, 20–23 June 2007.

Sampling with prolates

Tatiana Levitina1 and Erkki J. Brändas2
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Abstract

The Filter diagonalization technique using exact eigenfunctions of the finite
Fourier transform is discussed and improved. A previously developed computa-
tional method based on the Walter-Shen sampling formula is advanced and ex-
tended.

Key words: Fourier transform, filter diagonalization, spectral analysis, prolates,
sampling theorem.

MSC 2000: 94A20, 42A99, 44A20, 33C90, 33F05

1 Introduction

The present work continues a series of publications [1, 2, 3] on a modification of the
Filter–diagonalization technique. Invented originally by Neuhauser and coworkers [4, 5,
6], this technique was later significantly developed (see, e.g. [7, 8, 9, 10]) and nowadays
is one of the most popular and efficient tools for spectral analysis of complex quantum
systems.

2 Filter Diagonalization Technique

In spite of the enormous variety of modifications, the basic idea of the Filter Diago-
nalization Technique remains unchanged. At first the auto–correlation function of the
system is formed as C(t) =< Ψ(0)|Ĥ|Ψ(t) >, with Ψ(t) being a wave packet, that
evolves in accordance with the time–dependent Schrödinger equation:

∂ϕ

∂t
(~x, t) = −iĤϕ(~x, t), i.e. ϕ(~x, t) = e−iĤtϕ(~x, 0);

above Ĥ stands for the system Hamiltonian.
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The auto–correlation function is assumed to be a sum of sinusoids of unknown
frequencies — eigenvalues of the Hamiltonian. In order to detect and compute such
frequencies located at a selected interval (ω∗−Ω, ω∗+ Ω), one filters C(t), suppressing
the contribution of harmonics that are situated outside this interval. Spectral estima-
tion of the resulting filtered part of the auto–correlation function is then formulated as
a linear algebra eigenvalue problem

U~bk = ωkW~bk, (1)

for a pair of small matrixes, which entries are expressed through the short–time (−T, T )
segments of the auto–correlation function convolved with a filter. For the detailed and
comprehensive survey of the Filter Diagonalization technique we address the reader to
reference [11].

3 Filtering with Prolates

The present modification differs from the others by the choice of filtering functions,
namely the eigenfunctions of the Finite Fourier Transform, i.e. defined by the equation

√
c∫

−
√

c

exp(ix y)ψl(c, y) dy = µl(c)ψl(c, x) , x ∈ [−
√
c,
√
c].

These functions are in several aspects superior in comparison with all other filters (see
[1, 2, 3] and the references therein). In what follows we shall also refer to them as
prolates as is the practice among the signal processing community.

We first scale and squeeze prolates so that they may fit the time- and frequency-
intervals of interest:

θl(ω) = ψl

(√
T

Ω
ω

)
ΞΩ, ΞΩ =

{
1, ω ∈ (−Ω,Ω),
0, ω ∈ (−∞,−Ω) ∩ (Ω,∞),

Θl(t) = ψl

(√
Ω
T
t

)
,

preserving ΩT = c.
Convolved with the Fourier transform of the auto–correlation function, prolates

θl(ω) eliminate completely the contribution of the Hamiltonian Ĥ spectrum from out-
side the interval (ω∗ − Ω, ω∗ + Ω), while for the spectrum located inside this interval
the eigenvalue problem (1) arises, where matrix entrances have the appearance

Wsl = (−1)s+l Ωµsµl

4π2T

∞∫
−∞

∞∫
−∞

eiω
∗(t−τ) C(t− τ) Θs(t) Θl(τ) dτ dt (2)

Usl = (−1)s+l Ωµsµl

4π2T

∞∫
−∞

∞∫
−∞

eiω
∗(t−τ)C(t− τ) Θs(t)

{
ω∗Θl(τ)− i

dΘl (τ)
dτ

}
dτ dt.
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We transform the double integrals in infinite limits to the following expressions:

Wsl =
(−1)l+s

4π2
µl µs

Ω
T

∫ ∞

−∞
eiω

∗t c(t) Υsl(t) dt,

Usl =
(−1)l+s

4π2
µl µs

Ω
T

∫ ∞

−∞
eiω

∗t c(t) ζ sl(t) dt,

where functions Υsl(t) and ζ sl(t) are the convolutions of prolates:

Υsl(t) =
∫ ∞

−∞
Θs (t+ τ) Θl(τ) dτ ,

ζ sl(t) =
∫ ∞

−∞
Θs (t+ τ)

{
ω∗Θl(τ)− i

dΘl (τ)
dτ

}
dτ ,

which allows us to convert the infinite integrals to the finite ones:

Υsl(t) = (−1)l 2π T
µs µl Ω

∫ Ω

−Ω
ei ω tθs (ω) θl(ω) dω,

ζ sl(t) = (−1)l 2π T
µs µl Ω

∫ Ω

−Ω
ei ω tθs (ω) θl(ω)[ω∗ − ω] dω,

4 Sampling for Integration of Matrix Entries

To avoid the necessity to recompute Υsl(t) and ζ sl(t) at a fine integration grid, we offer
to interpolate these functions using special sampling formulas obtained recently by
Walter and Shen [12], since both Υsl(t) and ζ sl(t) are Ω-band limited. In [3] we showed
that the sampling formula in Ref. [12] works for these functions perfectly inside the
interval (−T, T ), despite that they are (−2T, 2T )–time concentrated; besides only few
samples of Υsl(t) and ζ sl(t) are required, see estimates in [3]. However our calculations
show that at the points of [−2T,−T ]

⋃
[T, 2T ] both functions Υsl(t) and ζ sl(t) differ

essentially from zero, which means that they can not be efficiently expressed here as
a linear combination of squeezed ψl(c, y), as the latter are mostly concentrated on
the interval [−T, T ]. Yet one should not give up of sampling with prolates. Indeed,
according to our estimates in [3], both Υsl(t) and ζ sl(t) are highly concentrated in
[−2T, 2T ], which together with that they are Ω–band limited, makes these functions a
perfect object for sampling via ψl(2c, y).

Preliminary calculations show the perfect correspondence between the sampling
formula and the functions Υsl(t) and ζ sl(t) at the whole range [−2T, 2T ]. Since outside
this interval both Υsl(t) and ζ sl(t) are practically zero, the outer integrals in the right
hand side of (2) should be truncated to [−2T, 2T ]. The truncation error εtr does not
exceed then

εtr ≤
2 ‖C(t)‖∞

|µp|

[
π
√
c

(
1− |µp|2

2π

)]1/2

, p = min{l, s},

that is an invisibly small value, provided l, s� 2c/π.
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Note that the number of required samples is 2 times larger than that for sampling
on the interval [−T, T ]. The numerical procedure used to calculate the prolates as
well as all integrals of them has been described in detail in [13]. It allows calculation
of prolates in a wide range of parameter ”c” variation and guaranties the prescribed
accuracy of all supplementary calculations.
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[3] T.V. Levitina and E.J. Brändas, Int. J. of Comp. Math., (accepted for publishing).

[4] D. Neuhauser, J. Chem. Phys., Vol. 93, 2611 (1990).

[5] M.R. Wall and D. Neuhauser, J. Chem. Phys., Vol. 102, 8011 (1995).

[6] J.W. Pang and D. Neuhauser, Chem. Phys. Lett., Vol. 252, 173 (1996).

[7] V.A. Mandelshtam and H.S. Taylor, J. Chem. Phys., Vol. 107, 6756 (1997).

[8] J. Chen, V. A. Mandelstham and A. J. Shaka, J. Magn. Reson., Vol. 146, 368
(2000).

[9] V. A. Mandelshtam, Prog. in Nucl. Magn. Reson. Spec, Vol. 38, 159 (2001).

[10] R. Santra, J. Breidbach, J. Zobeley, and L.S. Cederbaum, J. Chem. Phys.,
Vol. 112 (21), 9243 (2000).

[11] V.A. Mandelshtam, Progress in Nuclear Magnetic Resonance Spectroscopy,
Vol. 38, 159 (2001).

[12] G. G. Walter and X. Shen, Journal of Sampling Theory in Signal and Image
Processing , Vol. 2, N. 1, 25 (2003).
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Abstract 

Diffusion tensor imaging (DTI) based tractography enables selective reconstruction of specific 
white matter pathways in human brain. The various DTI techniques have been used to 
investigate white matter abnormalities and alternations in amnestic mild cognitive impairment 
(MCI) and Alzheimer’s disease (AD). Region-of-interest (ROI) and voxel based 
morphometric (VBM) analyses have been popular approaches so far although there are 
potential limitations with these methods. In this study, we estimated the white matter 
abnormalities of the cingulum in participants with MCI compared with age-matched controls 
using DTI tractography and statistical analysis of diffusivity measures, namely mean 
diffusivity (MD) and fractional anisotropy (FA) indices, mapped as geodesic pathways to 
establish the correspondence across individual subjects. The preliminary result illustrates 
localized micro structural whiter matter changes within the left posterior cingulum which is in 
agreement with previously proposed clinical studies. This demonstrates taht the proposed 
method is feasible and may be useful of early AD assessment. 
 
Key words: Mild cognitice impairment, diffusion tensor imaging, tractography, geodesic 
distances 
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Abstract

Recently several nonlinear Black-Scholes equations were widely used to model
option price when transaction cost is considered. Due to the complicity the an-
alytical solution to such model is seldom available, so numerical method is fairly
important and necessary. In this paper, an unconditionally stable high order com-
pact finite difference scheme is proposed. The compact algorithm is fourth-order
accurate in both the temporal and spatial dimensions. Except for price of option,
the new algorithm also computes the hedging delta ∂V

∂S
as well. Two numerical

examples are presented to demonstrate the accuracy and efficiency of the proposed
scheme.

Key words: High Order Compact, Black Scholes, Option Pricing, Transaction
Cost

1 Introduction

In the past several decades, stock option was one of the most popular financial deriva-
tives which was widely and successfully used to hedge risk in financial world. Many
types of options are available to buyers, to name a few, such as European Call(Put)
option, American Call(Put) option, Exotic option, Bermuda option, etc, and those op-
tions are currently traded throughout the world. However accurately pricing an option
was not easy until in 1973, Black and Scholes published their famous Black-Scholes
model in [3]. In an idealized financial market, the price of an European option can
be obtained by analytically solving the Black-Scholes equation. but this is not very
useful in practice, as mentioned in [6] and [17] because the Black-Scholes model had
been derived under some very restrictive assumptions, such as frictionless, liquid and
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complete market. In the real financial market, the traders actually work in a different
environment: transaction costs arising [1],[2],[4] and [5]; market is incomplete, etc. Le-
land firstly noticed and proposed a modified nonlinear Black-Scholes model to deal with
transaction costs in [8]. In 1973 Boyle and Vorst modified the volatility in the original

Black-Scholes model with σ = σ0(1 + c µ

σ0

√

∆t
)

1

2 in [4]. Some other modifications to σ

also had been proposed recently, such as in [12], Parás and Avellaneda replaced σ with

σ0(1 + Asign(VSS))
1

2 .
A more complicated model has been proposed by Barles and Soner in [2], which

will be discussed in more details in the next section.
As one can see, analytical solution to nonlinear Black-Scholes equation is seldom

available. So we have to rely on numerical approaches such as binomial approxima-
tions, Monter-Carlo methods, finite element method and finite difference method to
get accurate option price. Our goal here is to obtain unconditionally stable high order
compact finite difference scheme for solving nonlinear Black-Scholes equation.

The rest of the paper is organized as follows. In section 2 a nonlinear Black-Scholes
equation is introduced and reformulated, and an explicit treatment for the nonlinear
term is introduced so finally a linear convection-diffusion equation is obtained. Some
previous high order compact methods for solving linear convection-diffusion equation
are summarized in section 3, which is followed by the description of our compact high
order finite difference scheme in section 4. Two numerical examples are presented
to illustrate the high order and efficiency of the new algorithm in section 5. Some
conclusion remarks and possible future works are discussed in the final section.

2 Mathematical model

In this section, we consider the model

Vτ +
1

2
σ(VSS)2S2VSS + ρSVS − ρV = 0 (1)

where the nonlinear volatility is defined as σ = σ0(1 + Φ(e(ρ(τ0−τ))a2S2VSS), ρ is the
risk-free interest rate, τ0 is the maturity and a is a constant relating to transaction costs.
Note that in (1) the function Φ is defined as the solution of the following initial-value
problem:

Φ′(x) =
Φ(x) + 1

2
√

xΦ(x) − x
for x 6= 0. (2)

with initial condition Φ(0) = 0.
The terminal condition for (1) is given by: V (S, τ0) = V0(S) for S ≥ 0, where τ0 is

the excise time, E is strike price. The boundary conditions for (1) are given as

V (0, τ) = 0, for 0 ≤ τ ≤ τ0

V (S, τ) ∼ S − Eeρ(τ−τ0), when S → ∞ (3)

To transform the problem (1) into a convection-diffusion problem and to avoid
possible degeneration at S = 0, a variable transformation is used [6]. Let x(S) = ln( S

E
),
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t(τ) = 1

2
σ2

0
(τ0 − τ), and u = e−x V

E
, then (1) can be reformulated into

ut − (1 + Φ[e(Kt+x)a2E(uxx + ux)])(uxx + ux) − Kux = 0 (4)

where x ∈ (−∞,∞), 0 ≤ t ≤ T =
σ2

0
τ0
2

, K = 2ρ

σ2

0

. The reformulated problem is

associated with the following initial and boundary conditions:

u(x, 0) = u0(x) = max(1 − e−x, 0), (5)

u(x, t) = 0 (x → −∞), (6)

u(x, t) ∼ 1 (x → +∞). (7)

In the next two sections we will focus on the numerical methods for solving a
convection-diffusion equation in the form of (4). Once the numerical solution to (4) is
obtained, we can do an inverse transformation to compute the option price.

3 Review of previous methods

Solving (4) involves the solution of (2), so any implicit algorithm is very complicated
and inefficient, since the function Φ is not explicitly defined. One widely used approach
is to treat the term Φ explicitly then (4) becomes a convection-diffusion equation with
constant coefficients, which can be solved efficiently by some implicit algorithm. Nu-
merical tests shown that the explicit treatment of the nonlinear term σ will not effect
the algorithm’s overall stability.

Thus, equivalently we can just focus on the numerical methods for solving the
following one dimensional time dependent convection-diffusion equation:

ut = βuxx + λux (8)

where β and λ are constants and some corresponding boundary and initial conditions
are given as well.

Several high order compact scheme had been developed to solve equation (8) in
the past several decades, such as [7], [16] and [18]. These schemes approximate spatial
differential with high order accuracy and result in compact thus efficient computation,
but failed to handle time derivative in an efficient and accurate way. So far the highest
order in temporal dimension is only third order. Further more, some stability issues
arise because the time derivative has not been carefully handled.

A family of fourth-order finite difference schemes for solving (8) has also been
proposed by Rigal in [13],[14] and [15] as well. These schemes are defined as follows:

(1 + C)Dtu
n
j = (

1

2
+ A1)βD+D−un

j + (
1

2
+ A2)βD+D−un+1

j

+λ(
1

2
+ B1)D0u

n
j + λ(

1

2
+ B2)D0u

n+1

j (9)

where Dt,D0,D+ and D− are some basic difference operators while Ai,Bi and C are
some parameters which will be chosen such that the highest order truncation error can
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be eliminated thus the resulted scheme is fourth order accurate(basically to eliminate
highest order term in Taylor series) and compact. It is obvious that the resulted schemes
are higher order and compact but one can also easily see, that the highest possible order
in temporal dimension is still third order, and the stable region is considerably small
as well.

4 Higher order compact scheme

To take advantage of Padé approximation and Richardson extrapolation, and achieve
unconditional stability, a new scheme is proposed in this paper. In stead of solving a
single convection-diffusion equation, we convert the original problem (8) to a system
of two equations by introducing a new unknown function v(x, t) = ux(x, t), so ut =
βuxx + λv. Now apply ∂

∂x
to both sides of the new equation, we obtain uxt = βuxxx +

λuxx. Since uxt = vt and uxxx = vxx, the original convection-diffusion equation can be
converted to the following equivalent system:

ut = βuxx + λv (10)

vt = βvxx + λuxx (11)

If there is a reaction term f(u) in the original equation (8), we can modify (11)
and still obtain a similar system

ut = βuxx + λv + f(u)

vt = βvxx + λuxx +
∂f

∂u
v (12)

To be complete, (11) and (12) have to be equipped with corresponding boundary
and initial conditions. For u(x, t), the initial and boundary conditions are already been
give as u(x, 0) = u0(x), u(0, t) = b0(t) and u(1, t) = b1(t) respectively. Assume that
the u0(t) is smooth enough, one can derive the initial condition for v(x, t) by taking
derivative of u(x, t) with respect to x then letting t → 0, so v(x, 0) = u0

′(x).
Unlike the initial condition,, it is difficult to obtain an analytical expressions of the

boundary conditions for v(x, t). Here we propose a compact fourth order approximation
to solve this issue.

Notice that usually we can not derive an analytical boundary conditions for v(x, t),
so a compact fourth order numerical approximation is proposed here to approximate
v(0, t) and v(1, t). Define the difference operator ∆x as ∆xui = ui+1−ui−1

2h
. Assume

the grid is uniform, i.e., the interval [0, 1] is divided into N subintervals and h =
1.0
N

. As defined early, v(h, t) = ∂u
∂x

(h, t) ≈
u(2h,t)−u(0,t)

2h
= ∆x

2h
u(h, t) is a second order

approximation, which can be improved to fourth oder if ∆x is replaced by ∆x

1+
1

6
δ2
x

.

Therefore, v(h, t) = ∆x

2h(1+
1

6
δ2
x)

u(h, t), which implies that (1 + 1

6
δ2
x)v(h, t) = ∆x

2h
u(h, t),

i.e. 1

6
v(2h, t) + 2

3
v(h, t) + 1

6
v(0, t) = 1

2h
(u(2h, t) − u(0, t)), from which we can obtain a

fourth order approximation: v(0, t) = 3

h
(u(2h, t)−u(0, t))−4v(h, t)−v(2h, t). Similarly,

we can approximate boundary condition v(1, t) as v(1, t) = 3

h
(u(1−h, t)−u(1−2h, t))−

4v(1 − h, t) − v(1 − 2h, t).
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Many Padé approximation based higher order efficient schemes which can be used
to solve the reaction-diffusion system (11) and (12), such as [9],[10] and [11]. Without
loss of generality, we combine (11) and (12) by considering a more general equation

ut = βuxx + f(u, v)

vt = βvxx + λuxx + g(u, v) (13)

Here the term λv is included in the general function f(u, v) so in the first equation
there is only one diffusion term βuxx.

The new algorithm starts from the standard second order Crank-Nicolson scheme,

un+1

i − un
i

∆t
=

1

2
(

β

h2
δ2

xun+1

i +
β

h2
δ2

xun
i + fn+1

i + fn
i )

vn+1

i − vn
i

∆t
=

1

2
(+

λ

h2
δ2

xun+1

i +
λ

h2
δ2

xun
i +

β

h2
δ2

xvn+1

i +
β

h2
δ2

xvn
i + gn+1

i + gn
i ) (14)

where fn+1

i = f(un+1

i , vn+1

i ), fn
i = f(un

i , vn
i ), gn+1

i = g(un+1

i , vn+1

i ), and gn
i = g(un

i , vn
i ),

the standard central difference operator δ2
x defined by δ2

xui = ui+1−2ui+ui−1, however
(uxx)i ≈

1

h2 (ui+1 − 2ui + ui−1) gives only second order approximation to uxx. One way
to improve the above approximation to fourth order is Padé approximation: (uxx)i ≈

δ2
x

h2(1+
1

12
δ2
x)

.

If we apply Padé approximation in (14), the following fourth order compact scheme
is obtained

un+1

i − un
i

∆t
=

1

2
(β

δ2
x

h2(1 + 1

12
δ2
x)

un+1

i + β
δ2
x

h2(1 + 1

12
δ2
x)

un
i + fn+1

i + fn
i )

vn+1

i − vn
i

∆t
=

1

2
(+λ

δ2
x

h2(1 + 1

12
δ2
x)

un+1

i + λ
δ2
x

h2(1 + 1

12
δ2
x)

un
i

+β
δ2
x

h2(1 + 1

12
δ2
x)

vn+1

i + β
δ2
x

h2(1 + 1

12
δ2
x)

vn
i + gn+1

i + gn
i ) (15)

which is second order in time and fourth order in space. Multiply 1 + 1

12
δ2
x to both

sides, the new scheme can be rewritten as

(1 +
δ2
x

12
−

βrx

2
δ2

x)un+1

i = (1 +
δ2
x

12
+

βrx

2
δ2

x)un
i +

∆t

2
(1 +

δ2
x

12
)(fn+1

i + fn
i ) (16)

(1 +
1

12
δ2

x −
βrx

2
δ2

x)vn+1

i = (1 +
1

12
δ2

x +
βrx

2
δ2

x)vn
i + λ

rx

2
δ2

x(un+1

i + un
i )

+
∆t

2
(1 +

1

12
δ2

x)(gn+1

i + gn
i ) (17)

where rx = ∆t
h2 .

One can easily show that the truncation error of (16) and (17) is in the form of
C1∆t2+C2∆t4+C3h

4. Therefore the Richardson extrapolation can be used here to im-

prove the method to fourth order in time. Let w∆t = (u∆t, v∆t) and w
∆t

2 = (u
∆t

2 , v
∆t

2 )
represent the solutions obtained by using time step-size ∆t and ∆t

2
, respectively, we
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can set the final solution as w = 4w
∆t
2 −w∆t

3
to eliminate the term ∆t2, which is fourth

order accurate in both the temporal and spatial dimensions.
Note that Eq.(16) and (17) contain both un+1

i and vn+1

i (explicitly or implicitly in
fn+1

i and gn+1

i ). It is not efficient if both equations are simply linearized and using
Newton’s method, so an efficient alternating direction iterative algorithm is proposed
here.

Denote the solutions to (16) and (17) after k iterations by un+1

i

(k)
and vn+1

i

(k)

respectively. To get un+1

i

(k+1)
and vn+1

i

(k+1)
, We first expand fn+1

i = f(un+1

i , vn+1

i ) by

f(un+1

i , vn+1

i ) = f(un+1

i

(k)
, vn+1

i

(k)
) +

∂f

∂u
(un+1

i

(k)
, vn+1

i

(k)
)(un+1

i − un+1

i

(k)
) (18)

and insert it into (16), then solve the following (19) for un+1

i

(k+1)

(1 +
1

12
δ2

x −
βrx

2
δ2

x −
∆t

2
(1 +

1

12
δ2

x)Ĵi
n+1

(k)

)un+1

i = (1 +
1

12
δ2

x +
βrx

2
δ2

x)un
i

+
∆t

2
(1 +

1

12
δ2

x)(f(un+1

i

(k)
, vn+1

i

(k)
) − Ĵn+1

(k)

i un+1

i

(k)
+ f(un

i , vn
i )) (19)

where Ĵn+1
(k)

i = ∂f
∂u

(un+1

i

(k)
, vn+1

i

(k)
).

Once un+1

i

(k+1)
is available, we proceed to expand gn+1

i = g(un+1

i , vn+1

i ) by

g(un+1

i , vn+1

i ) = g(un+1

i

(k+1)
, vn+1

i

(k)
) +

∂g

∂v
(un+1

i

(k+1)
, vn+1

i

(k)
)(vn+1

i − vn+1

i

(k)
) (20)

then insert it into (17). We thus obtain the following equation

(1 +
1

12
δ2

x −
βrx

2
δ2

x −
∆t

2
(1 +

1

12
δ2

x)J̃n+1
(k)

i )vn+1

i = (1 +
1

12
δ2

x +
βrx

2
δ2

x)un
i

+
∆t

2
(1 +

1

12
δ2

x)(f(un+1

i

(k)
, vn+1

i

(k)
) − J̃n+1

(k)

i un+1

i

(k)
+ f(un

i , vn
i )). (21)

where J̃n+1
(k)

i = ∂g
∂v

(un+1

i

(k+1)
, vn+1

i

(k)
). Solve it we can get vn+1

i

(k+1)
. The two steps

are repeated alternatively till convergent.

5 Numerical results

5.1 Case 1: Linear Convection-Diffusion equation

We first test our new scheme by solving an 1D convection-diffusion equation. Our goal
for this numerical test case is to show that the new algorithm is fourth order accurate
in both time and space. In this example, we consider the following equation

∂u

∂t
=

1

2

∂2u

∂x2
+

1

2

∂u

∂x
, x ∈ (0, 1), t ∈ (0, 1]

u(x, 0) = ex, x ∈ [0, 1]

u(0, t) = et, u(1, t) = e1+t, t ∈ (0, 1] (22)
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Table 1:

∆t 0.2 0.1 0.05 0.025 0.0125

e1 3.1458E-003 7.8855E-004 1.9723E-004 4.9313E-005 1.2329E-005

Logr(
e1(∆t)

e1(
∆t

2
)
) - 1.9961 1.9993 1.9999 2.0000

e2 7.2118E-006 3.8724E-007 2.3334E-008 1.4282E-009 8.7867E-011

Logr(
e2(∆t)

e1(
∆t

2
)
) - 4.2195 4.0527 4.0301 4.0228

Table 2:

h 0.1 0.05 0.025 0.0125 0.00625

e3 4.4151E-007 2.7251E-008 1.6907E-009 1.0831E-010 2.6539E-012

Logr(
e3(h)

e3(
h

2
)
) - 4.0181 4.0106 3.9644 5.3509

for which the exact solution is known as u(x, t) = et+x.
First, let v(x, t) = ∂u

∂x
, then the equivalent system of two reaction-diffusion equa-

tions is

ut =
1

2
uxx +

1

2
v

vt =
1

2
vxx +

1

2
uxx (23)

with the following initial and boundary conditions:

u(x, 0) = ex , v(x, 0) = ex for x ∈ (0, 1) (24)

u(0, t) = et, u(1, t) = e1+t, for t ∈ (0, 1). (25)

Note the boundary conditions for v(x, t) are derived in the previous section.
The data in Table 1 shows the maximum errors between the calculated and exact

solutions at T = 1. e1 is the maximum error for a small and fixed h = 0.0001 while ∆t

is varying. It clearly shows that when ∆t is reduced by a factor of r, e1 is reduced by
a factor about r2, i. e., the algorithm is second oder accurate in time. e2 is the same
as e1 except that Richardson extrapolation is used. One can easily see that when ∆t

is reduced by a factor of r, e2 is reduced by a factor about r4, i.e., the algorithm with
Richardson’s extrapolation is fourth oder accurate in time.

The data in Table 2 shows the maximum errors between the calculated and exact
solutions at T = 1. e3 is the maximum error for a small and fixed ∆t = 0.0001 while h

is different. Again, the reason we use a very small value of ∆t is to make sure that the
dominated error is from h. It clearly shows that when h is reduced by a factor of r, e3

is reduced by a factor about r4, i. e., the algorithm is fourth oder accurate in space.
The data in Table 3 shows that the algorithm with Richardson’s extrapolation is

fourth order accurate in both time and space. e4 is the maximum error with ∆t = h

both been reduced by a factor of r, and we can see that e4 is reduced by a factor about
r4.
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Table 3:

∆t = h 0.1 0.05 0.025 0.0125 0.01

e4 3.1866E-007 1.9885E-008 1.2336E-009 7.6730E-011 3.1560E-011

Logr(
e4(h)

e4(
h

2
)
) - 4.0023 4.0107 4.0069 3.9814

5.2 Case 2: Nonlinear Black-Scholes equation

We solve the reformulated nonlinear Black-Scholes equation (4) with initial condition
(5) and boundary conditions (6)-(7). The derivation and reformulation of the model
were briefly discussed early in section 1 and section 2. The nonlinearity is treated
explicitly, see [6]. The ODE (2) is solved for future use by high order numerical method
and the solution is plotted in Fig. (1). More details can be found in both [2] and [6].
Note that the initial data for the nonlinear Black-Scholes equation (4) is continuous
but not differentiable at x = 0, so cubic spline interpolation was used to smooth the
initial data, and the original data and smoothed initial data are plotted in Fig. (2).
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Figure 1: Numerical solution to the ODE (2)

Fig.(3) shows the influence of the transaction costs on the price of the European
Call option. The nonlinear Black-Scholes equation (4) is solved by the proposed high
order compact scheme for different transaction costs: a = 0.0, 0.01, 0.02 and 0.03, while
other model parameters are fixed as: σ0 = 0.2, ρ = 0.1, E = 100 and T = 0.02.
One can see that for the same pay-off function, when transaction costs a increase, the
corresponding option prices also increase. Not surprisingly, the lowest price curve is
the case when a = 0.0, .i.e, no transaction costs charged.
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Figure 2: Comparison between original and smoothed initial conditions. (a) Original
initial data which is non-differentiable at x = 0, (b) Smoothed initial data which is
differentiable at x = 0

6 Conclusions

An efficient fourth-order numerical algorithm based on the Padé approximation and
the Richardson’s extrapolation had been derived in this paper. The algorithm was
mainly derived to provide fast, accurate and robust option pricing with transaction
cost is taken into account, however it can also be used to solve any convection-diffusion-
reaction problem, especially for the problem with nonlinear reaction term. One possible
argument to the algorithm is that, instead of solving a single convection-diffusion-
reaction equation, this algorithm actually solves a system of two reaction-diffusion
equations. This is not true, at least if the problem is Black-Scholes equation. It is well
known that v(s, t) = ∂u

∂s
is nothing but the Greeks Delta, which means the number of

shares one should hold and needs to be calculated during trading. Therefore nothing
is wasted by solving an additional equation. Numerical results also show that the
new algorithm performs significantly better than many other classical schemes such
as Crank-Nicolson, forward time central space, and R3A, R3B, R3C in [15]. More
precisely,

1. High order accuracy: It is fourth order in both time and space;

2. Compact Scheme: In each time step, each iteration involves solving a tridiago-
nal system, and boundary condition approximation(fourth order) only involves
solutions on 3 grid points;

3. Strong stability and non-oscillatory condition therefore no restrict on time step.
This is extremely useful when the problem is solved on a long time interval;

4. Greeks Delta is automatically calculated with higher order accuracy, no additional
work is needed.
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Figure 3: Option prices for different transaction cost

In the future, the authors plan to extend the algorithm to deal with higher dimensional
nonlinear Black-Scholes equations, with different parameters, and conduct stability
analysis.
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Abstract

An ultradiffusion is a process which is isomorphic to a parameterized diffusion
along a characteristic temporal trajectory. They are motivated by the realization
that in many systems exogenous sources of uncertainty enter only certain com-
ponents of the dynamics. The value function associated with ultradiffusion pro-
cesses are characterized as the solution to ultraparabolic equations. We consider
the arithmetic-average Asian option as a prototypical example of an ultradiffusion
processes.
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1 Introduction

An ultradiffusion is a processes which is isomorphic to a parameterized diffusion along
a characteristic temporal trajectory; they are motivated by the realization that in many
systems exogenous sources of uncertainty enter only certain components of the dynamics
(cf. [7], [11], [17]). The value function of an ultradiffusion process is characterized as
the solution to an ultraparabolic equation. Ultraparabolic equations evidence multiple
temporal variables and are parabolic along characteristic directions. In this paper, we
consider as a prototypical example the valuation problem for the arithmetic-average
Asian option.

Historically, an interest in ultradiffusion processes and ultraparabolic equations
arose relative to the works of Kolmogorov [12], [13] and Uhlenbeck and Ornstein [21] in
connection with Brownian motion in phase space and Chandrasekhar [3] with respect to
the theory of boundary layers. Unlike parabolic equations, however, neither the strong
maximum principle nor interior a priori estimates, for example, hold for ultraparabolic
equations (cf. [8], [6], [19], [20], [22], [14], [18]).

The outline of this paper is as follows. In section 2, we define the valuation problem
in the Black-Scholes framework; this example serves as a basis for subsequent compari-
son. In section 3, the Asian option is introduced as the expectation of an ultradiffusion
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process and its value function is seen to satisfy an ultraparabolic equation. The repre-
sentation of the ultradiffusion as a parameterized diffusion is considered in section 4. In
section 5, we consider a fully stochastic approximation of the ultradiffusion as the limit
of vanishing viscosity diffusions in the context of the so-called viscosity formulation.
Finally, in section 6, the viability framework is briefly introduced which approximates
the ultradiffusion in a deterministic context.

2 Black-Scholes Framework

As a benchmark, we consider the Black-Scholes option pricing framework in which we
model the motion of a stock price St by geometric Brownian motion

d St

St
= r ds + σ dBt , (2.1)

for all t > 0, such that S0 = S, volatility σ > 0, and risk-free rate of return r > 0. We
associate with (2.1) the infinitesimal generator A given by

A(t) u(t, S) =
1
2
σ2 S2 ∂

2u

∂S2
(t, S) + r S

∂u

∂S
(t, S) (2.2a)

which applies along the (trivial) characteristic direction of the evolutionary operator

H(S) u(t, S) =
∂u

∂t
(t, S) . (2.2b)

The value function associated with (2.1), payoff ψ(S), and discounting factor r, is then

u(t, S) = E {exp [−r · (T − t)] · ψ(ST)} . (2.3)

In the context of option pricing, the valuation (2.3) represents the present value or price
of an European-style option exercised at T > 0; upon exercise, the contract delivers
to the option holder a payoff amount ψ(S). In particular, the value function can be
characterized as the unique solution to the terminal-value parabolic equation

H(S) u(t, S) + A(t) u(t, S)− ru(t, S) = 0 on [0, T )× (0,∞) , (2.4a)

such that
u(T, S) = ψ(S) on [0,∞) . (2.4b)

Approximation techniques dealing with valuations problems relative to diffusion pro-
cesses are found in Marcozzi [16].

3 Asian Options

In contrast to the preceding section, Asian options evidence dependence on the path-
history of the underlying stochastic process. To this end, we suppose that the payoff
for the Asian option depends on the arithmetic average, or

ς(t) =
∫ t

0
Sτ dτ ,
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in which case we consider the ultradiffusion process

d ςt = St dt , (3.1a)

d St

St
= r dt+ σ dBt , (3.1b)

for all t > 0. The prefix “ultra” refers to the presence of multiple time variables and
will be explained subsequently.

We associated with (3.1) the infinitesimal generator, depending now upon the tem-
poral pair (t, ς), such that

A(t, ς) u(t, ς, S) =
1
2
σ2 S2 ∂

2u

∂S2
(t, ς, S) + r S

∂u

∂S
(t, ς, S) , (3.2a)

which applies along the characteristic direction of the evolutionary operator, which is
now

H(S) u(t, ς, S) =
∂u

∂t
(t, ς, S) + S

∂u

∂ς
(t, ς, S) . (3.2b)

Indeed, the key idea is that in both (2.2) and (3.2) the temporal operator H is hyper-
bolic.

Along with the ultradiffusion process (3.1), payoff ψ(ς, S), and discounting factor
r, we define the value function as

u(t, ς, S) = E {exp [−r · (T − t)] ·ψ(ςT , ST ) } . (3.3)

That is, the valuation (3.3) represents the present value or price of an arithmetic-
average Asian option exercised at T > 0, which delivers to the option holder a payoff
amount ψ(ςT , ST ) dependent upon the path-history ςT of the asset St. In particular, the
value function (3.3) can be characterized as the unique solution to the terminal-value
ultraparabolic equation

H(S) u(t, ς, S)+ A(t, ς) u(t, ς, S)− r u(t, ς, S) = 0 on [0, T )× (0,∞)× (0,∞) , (3.4a)

subject to the terminal condition

u(T, ς, S) = ψ(ς, S) on [0,∞)× (0,∞) . (3.4b)

Approximation techniques dealing with valuations problems relative to ultradiffusion
processes are found in Marcozzi [17].

4 Parametric Representation

We may also use the defining characteristic of ultradiffusion processes, namely their
equivalence to a parametric family of diffusion processes, in order to value an Asian
option. To this end, we effect a change to the characteristic time ξ such that the ultrad-
iffusion (3.1) becomes a ς-indexed family of diffusion processes along the characteristic
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direction (1, S) in the (t, ς)-temporal plane. To this end, for each value of the state
variable S, we define the so-called characteristic time ξ such that

ξ = t+
ς

S
, (4.1)

in which case it follows from the scaling property of Brownian motion that

d Sξ = r Sξ dξ + σ Sξ dBξ , (4.2)

for all ξ > 0 (cf. [10, Lemma II.9.4]). Note that by (4.1), it follows that

d ς = S d ξ = S dt ,

in which case we implicitly recover (3.1a). Significantly, the infinitesimal generator
associated with the parameterized diffusion (4.2) with respect to the state variable S
does not change and is

Aς(ξ) u(ξ, S) =
1
2
σ2 S2 ∂

2u

∂S2
(ξ, S) + r S

∂u

∂S
(ξ, S) , (4.3a)

and operates along the characteristic time direction ξ subject to the evolutionary op-
erator behavior generated by

H(S) u(ξ, S) =
∂u

∂ξ
(ξ, S) . (4.3b)

With respect to ξ and (4.1), the r-discounted value function becomes

uς(ξ, S) = E {exp [−r · (Γ − ξ)] · ψς(SΓ)} , (4.4)

where ψς(S) = ψ(ς, S) and Γ = T + ς/S. In particular, we characterize the value func-
tion uς as the unique solution to the parameterized terminal-value parabolic equation

H(S) uς(ξ, S) + Aς(ξ) uς(ξ, S)− r uς = 0 a.e. on [0,Γ)× (0,∞) , (4.5a)

such that
uς(Γ, S) = ψς(S) on (0,∞) , (4.5b)

(cf. [2, §III.2.15]). We remark that for a given ς , solving (4.5), is significantly simplier
than solving (3.4) and lies within the Black-Scholes framework of section 2.

In the context of ultradiffusion processes (3.1), the variable t is referred to as
(standard) time, ς as parametric time, ξ as the characteristic time, (t, ς) as the temporal
pair, and S as the state variable. That is, the state variable S evolves within the (t, ς)-
plane equivalently: (i) according to the ultradiffusion (3.1) or (ii) according to the
ς-indexed diffusion (4.2) along the characteristic curve (4.1). As an ultradiffusion,
the value function (3.3) satisfies an ultraparabolic equation (3.4), whereas the value
function (4.4) relative to the parametric diffusion representation (4.2) is characterized
as the unique solution to the parameterized parabolic equation (4.5). The “ultra” prefix
then refers, in both the diffusion process and parabolic operator, to evolution in the
temporal (t, ς)-plane.
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5 Viscosity Approximation

One may consider the approximation of ultradiffusions as the limit of vanishing viscosity
diffusion processes. That is, we considering the fully stochastic approximation of (3.1)
by an ε-perturbed diffusion

d ς(t) = St dt+ ε dB
(1)
t , (5.1a)

d St

St
= r dt + σ dB

(2)
t , (5.1b)

for all t > 0, as ε → 0+, where (B(1), B(2)) is an R2-valued Brownian motion (cf. [5,
§VI.8]). In this case, the infinitesimal generator of the state variables (ς, S) takes the
form

Aε(t) u(t, ς, S) =
1
2
σ2 S2 ∂

2u

∂S2
(t, ς, S) +

1
2
ε2
∂2u

∂ς2
(t, ς, S) (5.2a)

+r S
∂u

∂S
(t, ς, S) + S

∂u

∂ς
(t, ς, S)

and evolves along the (trivial) characteristic direction of the evolutionary operator

H(ς, S) u(t, ς, S) =
∂u

∂t
(t, ς, S) . (5.2b)

Along with the approximation process (5.1), payoff ψ(ς, S), and discounting factor
r, we define the value function as

uε(t, ς, S) = E {exp [−r · (T − t)] · ψ(ς, S)} . (5.3)

In particular, the value function (5.3) relative to the diffusion (5.2) can be characterized
as the unique solution to the terminal-value perturbation parabolic equation

H(ς, S) uε(t, ς, S)+Aε(t) uε(t, ς, S)−ruε(t, ς, S) = 0 on [0, T )×(0,∞)×(0,∞) , (5.4a)

subject to the terminal condition

uε(T, ς, S) = ψ(ς, s) on [0,∞)× (0,∞) , (5.4b)

for all ε → 0+. We note, however, that while so-called viscosity solutions formalize
this approximation of the ultradiffusion, in general viscosity solutions lack the requisite
regularity for the construction of robust numerical procedures (cf. [9], [4]). Indeed, in
viscosity formulations, one typically needs to numerically solve the advection dominated
equation (5.4) in order to value (3.3) via (5.3) as ε → 0+, which is a much more
significant challenge than solving (3.4) or (4.4) directly (cf. [16]).
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6 Viability Solutions

Conversely, one may also approximate the ultradiffusion within a fully deterministic
framework of viability solutions. Viability techniques formulate the tychastic optimal
control problem as a deterministic dynamical game such that

d ς(t) = St dt (6.1a)

d St

St
= r dt+ εi σ

√
∆ , (6.1b)

where ∆ > 0 and εi ∈ [−1, 1], for i ∈ V and V ⊂ N sufficiently large. In this case, the
process is purely deterministic with evolutionary component

H u(t, ς, S) =
∂u

∂t
(t, ς, S) + rS

∂u

∂ς
(t, ς, S) + (εi σ

√
∆ + r)S

∂u

∂S
(t, ς, S) . (6.2a)

In order to obtain the value function, one would optimize the deterministic control
problem over a set of perturbations εi subject to certain viability constraints (cf. [1]).
Significantly, the tychastic formulation does not converge to the stochastic problem as
card(V ) → ∞ and ∆ → 0+.
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Abstract 

While some physics educators have included computing in courses and 
have developed specialized courses for over 40 years, computational 
physics education has only slowly made inroads into the broader physics 
education community.  There has been a recent surge in interest in a more 
global approach to computational physics education that offers promise 
for computing to finally take an important role in the education of 
undergraduate physicists.  In this presentation I will review some 
developments in computational physics education and present examples 
from the program at Illinois State University. 
 
Key words: undergraduate education, computational physics 
 

1. Introduction 
The use of computing in physics teaching has been practiced at least since the 1960's, with, 
for example, the pioneering work of Alfred Bork1.  My department joined the fray in the 
mid-1970's2 when a wave of new specialized computing-based physics courses were 
developed at many institutions across the nation.  The 1980's saw an expansion of 
computational physics course offerings, the emergence of several influential textbooks 
such as those by Koonin3 and Gould and Tobochnik4, as well as a groundbreaking 
conference, the Conference on Computers in Physics Instruction in 1988.  This conference 
served to bring together a wide variety of proponents of computational methods in physics 
education covering uses in introductory courses, laboratories, computer-aided-instruction, 
courses devoted to computational methods, as well as computation-based curricular 
modifications.  The proceedings5 from this conference can still serve as a valuable 
reference for those interested in why and how to develop computational physics modules, 
classes, and curricula.  I count myself as one attendee strongly influenced by this meeting 
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such that, with several enthusiastic departmental colleagues, our department developed a 
computational physics curriculum6,7 in the 1990's - in parallel with similar developments at 
other institutions in that decade and into the present one. 
 
Although many individuals have developed course materials and advocated for 
computational physics education over these four decades, and journals such as the 
American Journal of Physics, Computers in Physics, and Computing in Science and 
Engineering (CiSE) have provided outlets for new developments, the field has never really 
had a professional “home”.  In the current decade, this situation appears to be changing.  
With special sessions at the American Physical Society (through the Forum on Education) 
March Meeting in 2004, the American Association of Physics Teachers (AAPT) summer 
meeting in 2006, a topical conference sponsored by AAPT to be held in July 2007, and a 
Gordon conference planned for 2008, there is new momentum in the field. 
 
In this presentation I will give a brief overview of some developments in computational 
physics education and then present one model for a successful program developed at 
Illinois State. 
 
  

2. Computational Physics Education  
First, it is worth noting what is meant by computational physics education (CPE).  CPE 
differs from computer science and computer engineering education in that CPE focuses on 
only those applications of computing that are relevant to the solution of physics problems.  
For the purposes of this presentation, we exclude applications of computing in laboratory 
instrumentation and in computer-aided-instruction (in which the teacher authors software 
to aid student learning), leaving primarily the use of numerical methods to solve intractable 
equations in physics, the broad domain of computational modeling and simulation, and 
scientific visualization.  Perhaps the key point is that students learn to apply the tools of 
CPE to learn physics and to model and solve problems in physics.  
 
The tools of CPE have changed significantly from the early days of Fortran programs on a 
mainframe computer.  Today one has access to wide array of programming languages, 
graphics/visualization suites, web-based tools, and comprehensive analysis packages, to be 
utilized on an equally broad array of hardware from laptops to workstations to grid 
networks to massively parallel supercomputers.  Based on the discussion at the AAPT 
special session in 2006, the main languages used are C/C++, Fortran, Python, and Java.  
Participants appeared to split roughly equally between the Mathematica and Matlab/Maple 
comprehensive packages that provide programming, symbolic math, and visualization 
capabilities.  A wealth of new ideas of how to use these tools in educating physics students 
is evident in the articles and web-extras published in a special issue8 of CiSE. 
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While the tools have improved markedly, the basic function of CPE has changed 
remarkably little over the decades.  In a 1963 article on the subject, Bork1 presents several 
reasons for using computation in physics courses, including (1) “The modern computer 
makes workable problems which were for all practical purposes impossible only a few 
years ago”, (2) “The 'feel' of numbers promotes understanding of analytic relations", and 
(3) “using numerical analysis permits the consideration of material beyond the students' 
analytic ability”.  Similarly, Martin et al6 articulated in 1991 three guiding principles for 
their program: (1) “Students should be in command of the technology, not the other way 
around”, (2) “The computer should enhance the student's acquisition of broad problem-
solving skills, and (3) “The computer should stimulate: (a) a re-ordering and broadening of 
the subject matter taught; (b) build physical intuition; and (c) enable the student to pursue 
independent study.”  All these ideas, and more, are still part of the argument for CPE.  In a 
recent article, Landau9 goes even further and argues that CPE presents a superior model for 
teaching physics generally: “presenting physics within a scientific problem-solving 
paradigm is a more effective and efficient way to teach physics than the traditional 
approach.”  In his model computational science provides both elements of its own and a 
bridge between the three disciplines of computational physics: application physics, 
mathematics, and computer science. In the article he presents a detailed concept map of the 
complex interactions between these sub-areas. 
 
All of the above cited articles, and many more, point out one other justification for CPE:  
practicality.  Bork1 cites a comment by Courant: “the vital task is ... to inject the awareness 
of the potentialities of modern computing into the general education of talented and open-
minded scientists.”  Even in 1963 it was clear to those with vision that computational 
science would be a critical aspect of doing science in the future - and that future is 
certainly here.  Study after study (see for example the American Institute of Physics 
Statistical Research Center website10) have shown the importance of computational 
modeling and programming skills both in physics research careers and in the variety of 
careers available to those with one or more physics degrees.  As Chonacky11 comments, 
“Contemporary sciences and engineering practices are cross-disciplinary; these people not 
only compute but also use computation as a common interface between their respective 
contributions to cross-disciplinary projects.”  Computational science and engineering is 
simply a part of the scientific and engineering landscape in the 21st century. 
 
One might reasonably ask why it should be necessary to provide justification for CPE at 
all.  To many, the above arguments may appear nearly self-evident.  Yet, during the 
discussion at the 2006 AAPT conference, and reflected in some of the articles in the 
special edition of CiSE, it is clear that there is still something of a divide between those 
seeking to encourage CPE and those, for lack of a better phrase, who are proponents of a 
“traditional analytic-plus-laboratory” mode of physics education (note that even strong 
advocates of contemporary active learning approaches to physics education can still be 
“traditionalists” regarding CPE).  After presenting results of a significant survey of physics 
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department Chairs and faculty indicating strong agreement about the role of computational 
physics in practicing physicists' lives and in course preparation, Fuller12 reports responses 
to one telling question that suggest that physics educators have not yet translated this idea 
into their courses.  In response to a question asking what percentage of faculty utilize 
computational assignments in their courses, “fewer than 20 percent of the physics faculty 
... include computations in their grading.”  Thus, CPE supporters still have their work cut 
out for them. 
 
Such constraints aside, a considerable amount has been achieved.  Landau9 lists five US 
universities and colleges with undergraduate degree programs in computational physics, 
and another four with non-degree specializations (minor, concentration, option, etc.) 
offered.  An additional four institutions offer computational science degrees, with another 
11 providing some sort of specialization in that interdisciplinary area.  Other departments 
are adding computation to the physics curriculum through focused courses or by 
integrating computing into existing courses, as the lists of presentations at the recent 
conferences demonstrate.  It is this momentum that provides evidence that CPE is finally 
coming-of-age. 
 
  

3. One model: Illinois State University  
The physics department at Illinois State has gone through several phases of development of 
CPE.  While each department will have its unique set of strengths and educational goals, 
and will therefore develop in its own way, it may be of value to know how others have 
solved common problems during their evolution.  Other examples and models can be 
found in the literature, including the references cited in this article. 
 
The first phase in our development was the creation in the mid-1970's of a single course, 
Computers in Physics, designed for junior/senior physics majors.  As a single-instructor 
course offered mainly to interested students, there were no issues of acceptance by 
colleagues.   
 
The next phase began in the late 1980's when a core of three faculty who utilized 
computational methods in their research began to discuss the possibility of integrating 
computing into various physics classes6.  The original motivation was two-fold: the 
recognition that practicing scientists need computational skills and the fact that our 
fledgling undergraduate research program often involved computational tasks for students.  
Initially limited to courses taught by the three originators, by the mid-1990's new faculty 
hires had brought several more computationally-oriented physicists to the department and a 
full integration of computing into post-introductory physics majors courses was achieved.  
This integration was accomplished using a consensus-determined “skills matrix”, which 
outlined the computational skills to be introduced at various levels in the curriculum.  This 
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project was partially supported by an NSF grant.  While there was some departmental 
resistance to this process, open discussion and consensus-building, combined with the 
fortunate situation of a preponderance of computational researchers in the department, 
allowed the process to move relatively smoothly. 
 
The third phase in CPE development was spurred by input from graduates of the 
computationally integrated curriculum, who were quite enthusiastic about their abilities to 
build and solve computational models, expertise that served them well in both graduate 
school and in technical jobs.  We also felt that the new program would help with major 
recruitment, a significant problem in the late 1990's in physics departments across the 
country.  Funding from the NSF ILI/LLD program allowed us to construct a degree 
sequence to give interested students even deeper experience with computational physics.  
After surveying high school students on their interest in such a program we selected the 
title “Computer Physics” for the degree, since these pre-college students identified the 
word 'computational' with performing complicated mathematical computations and not 
with computers.   
 
3.1 Computational integration in physics courses 
 
The Illinois State University physics department offers four degree sequences:  physics, 
computer physics (CP), physics teacher education (PTE), and engineering physics (a 3/2 
program with partner engineering universities).  Most courses taken primarily by majors in 
these four sequences have a computational component.  Only our first two introductory 
physics classes do not, mainly because they also act as service courses for other 
departments.  Majors are first introduced to graphical data analysis with scientific graphics 
software and to Mathematica in the first-semester freshman “introduction to the discipline” 
class.  This is followed by simple programming assignments in a lab format in the third-
semester introductory course, in which the students write simple finite-difference codes 
(both Euler and a second order leapfrog method) to solve some mechanics problems and a 
basic Monte Carlo simulation for an optics problem.  As the students progress further in 
their physics courses, more sophisticated computational methods are introduced, following 
our original idea of a “skills matrix”, as mentioned above.  For example, in the 
intermediate electromagnetism course, before students have taken a differential equations 
class, they solve Laplace's equation using an over-relaxation algorithm.  Solving Laplace's 
equation on a grid in this way helps students understand the mathematical and physical 
properties of electrostatic potentials, and visualizing the results as contour, raster, and 
surface plots further develops physical intuition.  In the senior-level quantum physics class, 
students compute matrix elements for a double well potential and use the QL algorithm to 
compute eigenvalues and eigenfunctions, a problem that would be beyond their 
mathematical expertise to work out analytically. 
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Our philosophy of computational integration lies somewhere in-between Landau's9 
“computational physics--education”, in which students use black-box computational 
methods to help them learn physics and his “computational--physics education”, which 
implies that computation and physics are more fully merged.  Our students learn the 
algorithms in enough depth that they can understand their relation to the physics, but not at 
a deep level.  Students do write the code, bust most instructors prefer to provide strategic 
chunks of code for students to construct their programs around.  In this way graduates in 
all our degree sequences leave our department with some expertise in computing and, 
according to student evaluation comments, a better understanding of the physics. 
 
3.1 The computer physics degree sequence 
 
Realizing that students are learning some computation in their physics courses, we are able 
to provide a degree sequence with the addition of several specialty courses .  CP majors 
take a Programming for scientists course (currently C and Fortran) and a Hardware and 
software course (an introduction to computer architecture) from the Information 
Technology department.  From the physics department, they begin with PHY 318 Methods 
of computational science, covering basic algorithm development, analysis, and 
implementation, PHY 388 Advanced computational physics, a projects course team-taught 
by three faculty each presenting a specific advanced project, and PHY 390 Computational 
research in physics, a semester capstone computational research project.  In addition, one 
senior elective is required and computation-based courses Nonlinear dynamics and 
Molecular dynamics are available to meet that need.  CP majors therefore take five courses 
not required of regular physics majors, and we are frequently asked “what physics do they 
lose?”  Our usual response is that they gain as much physics as they “lose”, but the 
following courses required for physics majors are not required for CP majors:  second 
semester chemistry, senior level electromagnetism, senior advanced lab, and a second 
senior elective.  While our experimental colleagues may decry the loss of the senior lab, in 
point of fact the analysis techniques for simulation data often coincide with those for 
laboratory data so that deficit is not as great as it may appear.   
 
Example topics from the PHY 318 methods course include ODE solution of triatomic 
molecule dynamics using a predictor-corrector algorithm, Monte Carlo simulation of the 
Ising model, and discrete Fourier transform analysis of NMR data.  All algorithms are 
presented both theoretically and via physics or physical chemistry example systems.  The 
projects course PHY 388 involves three one-third semester projects, the topics selected by 
the participating faculty each semester.  Examples in recent semesters include finite 
element analysis of thermal conduction, neural network predictors for both physics (the 
geomagnetic AE index) and financial time series, application of the split-operator method 
to time dependent wave functions, and a Monte Carlo simulation of photon scattering from 
a turbid medium.  The capstone project course PHY 390 allows students wide latitude in 
selecting topics: all they need is a faculty member willing to advise them on the project.  
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These projects have ranged from specific investigations based on faculty research to 
completely independent projects developed by students.  In the latter category is included a 
study of the fractal dimension of congressional district boundaries, implementation of a 
grid computer using MPI in order to perform a simulation of magnetospheric plasma 
dynamics, design and implementation of a cellular automaton to model flocking and 
schooling vortices observed in bird and insect populations, and a project on nonlinear 
optimization of a stock portfolio by a CP major with some background in finance courses.  
 
The new degree program, initiated in 1999, rapidly grew to serve a similar number of 
majors as our other degree sequences, as shown in Figure 1.   
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Figure 1. Numbers of graduates in four degree sequences indicating the 

rapid growth of the Computer Physics degree program. 
 
Despite the statistics of small numbers, this nonetheless shows strong performance and 
indicates that we are satisfying a student need.  However, our original thought that the 
Computer Physics (CP) degree might be a recruitment tool did not pan out.  Figure 2 
indicates that few freshmen enter as CP majors, yet a significant fraction graduate with that 
degree.  Thus, incoming majors in other sequences (primarily the physics/engineering 3/2 
program) are transferring into the CP program.  In this sense, the CP program adds 
flexibility for our majors and essentially acts as a retention tool, helping the department 
maintain a healthy stream of graduates. 
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Figure 2. Distribution of declared physics major sequence for incoming 

freshmen, incoming transfer students, and outgoing  graduates, 
2000-2007. 

 
In a five-year assessment of the CP sequence performed in 2005, surveyed students 
reported high satisfaction with the specialized CP courses in the physics department, with 
somewhat lower satisfaction with the two information technology classes particularly the 
computer architecture course, which students reported as not being very challenging (we 
continue to pursue other options with our colleagues in that department).  When asked 
about the utility of the various courses to their current job or graduate student position, the 
PHY 390 capstone research course earned highest marks from CP alumni.  Written 
comments suggesting that the capstone course's open structure, which essentially asks 
students to generate an interesting problem, design a computational model to solve it, and 
bring the project to some sort of closure, was useful for both graduate-school bound 
students and those moving directly into the job market -- perhaps an a posteriori 
justification for our programmatic guiding principles of putting the students “in command 
of the technology” and that computing should “enable the student to pursue independent 
study.” 
 
About 35% of CP majors, in the first five years of the program, continued on to graduate 
school, with 50% in physics, the remaining 50% in other technical fields including 
electrical and computer engineering, materials engineering, and environmental science.  
This percentage is somewhat lower than the graduate school-bound students in the physics 
major sequence, which has been near 40% in recent years.  For those students who took 
jobs directly after graduation, more than 35% went to computing-related positions, 40% to 
other engineering jobs, and the remainder to a mix of technical and nontechnical business 
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positions.  Of the CP graduates employed in the computer area, a handful indicated that 
they had started their own businesses that involved computing.  Statistically, the CP 
graduates do not look significantly different than their physics degree counterparts except 
for a somewhat higher percentage going into non-physics graduate study and more of the 
directly employed working in computing-related positions. 
 
  

4. Conclusions 
After four decades of computational physics education development by a relatively small 
group of committed educators, there  appears to be a sort of “critical mass” emerging.  
Whether the recent increase in collaboration, conferences, and publications will result in 
permanent changes in the education of future physicists remains to be seen, but given the 
rapid growth of computational physics in the research arena, and the growing number of 
young faculty with expertise in this area, perhaps this is one educational innovation that 
will, in fact, become an intrinsic part of future physics curricula. 
 
At Illinois State we count our experiment with CPE as a success, both the integration of 
computational methods and assignments into physics courses and the separate degree 
sequence.  Physics, engineering physics, and even physics teacher education alumni have 
reported that they are ahead of their graduate student and workplace peers in the 
computational area, allowing them to seize opportunities not as easily available to their 
colleagues, or simply to feel more secure in their knowledge.  The CP degree appears to be 
an attractive alternative to the engineering physics 3/2 program and to the physics degree 
to those students with the interest and the knack for computational science, and the added 
flexibility acts as a retention tool for some majors not satisfied with those more traditional 
programs.  Finally, our research rationale for CPE has been a success since the CP program 
meshes synergistically with our undergraduate research effort.  
 
A department considering implementation of CPE in some form currently has a wealth of 
resources available to assist in the process.  I have hinted in this article at some of the 
potential pitfalls and recommend learning the experiences of other departments beginning, 
for example, with the references herein cited.  Our department's experience was relatively 
smooth partly due to the significant proportion of computational physicists on the faculty, 
but also because of our departmental culture of open discussion (and argument) of 
proposed changes -- a useful sieve for separating feasible goals from those that will not 
work. 
 
Acknowledgements 
The author would like to thank his colleagues in curriculum development at Illinois State 
University: George Skadron, Robert Young, Hiroshi Matsuoka, Rainer Grobe, Q. Charles 
Su, and Jean Standard for many years of fresh ideas and practical implementations. 

287



CMMSE 2007 
 

  

References 
[1] See, e.g., ALFRED M. BORK, A physics independent study course with computers, 

Am. J. Physics 31 (1963) 364-368. 
[2] CHARLES P. FRAHM AND ROBERT D. YOUNG, PSI for low-enrollment junior-senior 

physics courses, Am. J. Physics 44 (1976) 524-526. 
[3] STEVEN KOONIN, Computational physics, Benjamin/Cummings, 1985. 
[4] HARVEY GOULD AND JAN TOBOCHNIK, An introduction to computer simulation 

methods, Addison-Wesley, Reading MA, 1987. 
[5] EDWARD F. REDISH AND JOHN S. RISLEY (EDS.), The conference on computers in 

physics instruction: proceedings, Addison-Wesley, Redwood City CA, 1990. 
[6] RICHARD F. MARTIN JR., GEORGE SKADRON AND ROBERT D. YOUNG, Computers, 

physics and the undergraduate experience, Computers in Physics 5 (1991) 302-
310. 

[7] RICHARD F. MARTIN JR. AND SHANG-FEN REN, Broadening the Physics Degree:  A 
New Bachelor’s Degree in Computational Physics at Illinois State University, 
Forum on Education of the American Physical Society, Spring Newsletter (1988) 
12. 

[8] Computation in physics courses, special issue of Computing in Science and 
Engineering 8 (2006) 11-58; associated web extras are available at the CiSE 
website http://www.computer.org/portal/site/cise/. 

[9] RUBIN LANDAU, Computational physics: a better model for physics education?, 
Computing in Science and Engineering 8 (2006) 22-30. 

[10] American Institute of Physics Statistical Research Center, 
http://www.aip.org/statistics/ 

[11] NORMAN CHONACKY, Has computing changed physics courses?, Computing in 
Science and Engineering 8 (2006) 4-5. 

[12] ROBERT G. FULLER, Numerical computation in US undergraduate physics 
courses, Computing in Science and Engineering 8 (2006) 16-21. 

288



Proceedings of the International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2007
Chicago, 20–23 June 2007.

Exponential fitted Runge-Kutta methods of collocation
type

based on Gauss, Radau and Lobatto traditional methods.

J. Mart́ın Vaquero1 and J. Vigo-Aguiar1

1 Departamento de Matematica Aplicada, Universidad de Salamanca, 37008,
Salamanca, Spain

emails: jesmarva@usal.es, jvigo@usal.es

Abstract

Several exponential fitting Runge-Kutta methods of collocation type are derived
as a generalization of the Gauss, Radau and Lobatto traditional methods of two
steps. The new methods are capable of the exact integration (with only round-
off errors) of differential equations whose solutions are linear combinations of an
exponential and ordinary polynomials. Theorems of the truncation error reveal
the good behavior of the new methods for stiff problems. Numerical examples
underscore the efficiency of the proposed codes, especially when they are integrating
stiff problems.

Key words: Runge-Kutta methods, collocation type, exponential fitting, stiff
problems

MSC 2000: 34A45, 65L06.

1 Introduction

The numerical integration of ordinary differential equations has been one of the prin-
cipal concerns of numerical analysis. In the early 1950s, after the pioneering work of
Curtiss and Hirschfelder [1], it was realized that there was an important class of or-
dinary differential equations which presented a severe challenge to numerical methods
available at that time. These problems have become known as stiff systems. Stiff
problems (and highly oscillatory problems) are very common problems in many fields
of the applied sciences (see [2], for example): atmosphere, biology, combustion, con-
trol theory, dynamics of missile guidance, dispersed phases, electronic circuit theory,
fluids, heat transfer, chemical kinetics, lasers, mechanics, molecular dynamics, nuclear,
process industries, process vessels, reactor kinetics, ...

289



Although there has been much controversy about the mathematical definition (see
[3]), and in fact, there is no good mathematical definition of the concept of stiffness,
we can say that a problem

y′(x) = g(x, y(x)), y(x0) = y0 , (1)

(where y = [y1, . . . , ym], and g = [g1, . . . , gm], y0 = [y1
0, . . . , y

m
0 ], x ∈ R) is stiff if its

Jacobian (in a neighborhood of the solution) has eigenvalues λi that verify max|Reλi|
min|Reλi| À 1

(usually, it is considered that maxReλi < 0). Stiff systems are considered difficult
because explicit numerical methods designed for non-stiff problems are forced to use
very small step sizes increasing in this way the computational work. Looking for better
methods for solving these systems, Curtiss and Hirschfelder [1] discovered the Backward
Differentiation Formulae (BDF). Since then, a great effort has been made in order to
obtain new numerical integration methods with strong stability properties desirable for
solving stiff systems. For a survey on stiffness of ODE’s see [4] or [5].

A great number of schemes based on modifications of the classical BDF formulae
have appeared. Among them, we may mention DIFSUB [6] or LSODE [7], VODE [8],
which uses the so-called Fixed Leading Coefficient BDF methods, DASSL [9], which is
also indicated for solving differential algebraic equations, MEBDF (see [10]), which con-
siders two predicted values to compute a new corrected approximation to the solution
using a modified multistep formula, A-BDF [11], which is a one-parameter family that
is a generalization of the classical BDF codes, and exponential fitting BDF schemes
(EF-BDF) as in [12], [13], [14] or [15].

Implicit Runge-Kutta methods are another kind of formulae very common with
stiff problems. Radau [4], STRIDE [16] or [17], DIRK [16], SDIRK, Gauss, Lobatto,
Rosenbrock, modified schemes [18], ..., have frequently been used with those kind of
numerical problems.

In recent years, another kind of schemes has appeared with good results. Such
methods are called exponential fitting and some examples could be [19] (in that paper
exponential fitting methods are applied for the first time to stiff problems) or [20].

In this paper, we are going to derive exponential fitting Runge-Kutta methods
of collocation type through the Gauss, Radau and Lobatto traditional integrators.
This is, we will impose both kind of conditions: the exact integration of differential
equations whose solutions are linear combinations of an exponential with parameter A
and ordinary polynomials and the order conditions imposed to the traditional Runge-
Kutta methods.

The paper is organized as follows. In section 2, we construct several exponential
fitted versions of the well-known classical collocation methods. In section 3, an analysis
of the converge of these new methods is made. Finally, in section 4 we show, with
different test numerical examples, the efficiency of the proposed codes, especially when
they are integrating stiff problems.
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2 Derivation of the methods

Let us consider, first, the scalar initial-value problem of the form

y′(x) = f(x, y(x)), x ∈ [x0, xf ], y(x0) = y0, (2)

and assume that the function f : [x0, xf ]×R → R satisfies all the necessary requirements
for the existence of a unique solution.

For the description of EFRK methods we use the classical Butcher notation [22]

yn+1 = yn + h
s∑

i=1

bif(xn + cih, ui), (3)

ui = yn + h
s∑

j=1

aijf(xn + cjh, uj),

with i = 1, . . . , s and the coefficients are displayed as a Butcher array:

c1 a11 . . . a1s

c2 a21 . . . a2s

...
...

. . .
...

cs as1 . . . ass

b1 . . . bs

Then, we will choose ci the values of the classical Runge-Kutta methods, but, now, the
new coefficients ai,j , bi are those such that

y(xn + cih) = y(xn) + h

s∑

j=1

aijf(xn + cjh, y(xn + cjh)), (4)

y(xn + h) = y(xn) + h
s∑

i=1

bif(xn + cih, y(xn + cih) (5)

when y(x) belongs to the space < 1, x, . . . , xs−1, eλx >.
Case A: Derivation of the new exponential fitting Gauss method of 2-stages.
The weights ci of the new Gauss method are the same as in the traditional method:

c1 = 1
2−

√
3

6 and c2 = 1
2 +

√
3

6 . But, ai,j , bi are those such that (4) and (5) when y(x) = 1,
y(x) = x, y(x) = eλx.

In this way the new exponential fitting method can be written as

1
2 −

√
3

6 −6−6e(−3+
√

3)bλ/6+(−3+
√

3)bλe
√

3bλ/3

6bλ(−1+e
√

3bλ/3)
c1 − a11

1
2 +

√
3

6
e(−3+

√
3)bλ/6(6+e(3+

√
3)bλ/6(−6+(3+

√
3)bλ))

6bλ(−1+e
√

3bλ/3)
c2 − a21

e(−3+
√

3)bλ/6(1−e
bλ+e(3+

√
3)bλ/6bλ)

bλ(−1+e
√

3bλ/3)
1− b1
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λ̂ being the parameter λh in the method.
Case B: Derivation of the new exponential fitting RadauIIA method of 2-stages.
The weights ci of the new RadauIIA method are, then, the same as in the traditional

method: c1 = 1
3 and c2 = 1. The ai,j are those such that (4) and when y(x) = 1,

y(x) = x, y(x) = eλx. And, in this case, b1 = a21, b2 = a22

So, in this way the new exponential fitting method can be written as
1
3

3−3e−bλ/3−bλe2bλ/3

3bλ−3bλe2bλ/3

1
3 − a11

1 e−bλ/3(1+e
bλ(−1+bλ))

bλ(−1+e2bλ/3)
1− a21

a21 a22

Case C: Derivation of the new exponential fitting LobattoIIIA method of 2-stages.
The weights ci of the new LobattoIIIA method are c1 = 0 and c2 = 1. The ai,j are

those such that (4) and when y(x) = 1, y(x) = x, y(x) = eλx. And, as with RadauIIA,
b1 = a21, b2 = a22.

So, in this way the new exponential fitting method can be written as

0 0 0

1 1+e
bλ(−1+bλ)

bλ(−1+ebλ)
1− a21

a21 a22

Vectorial examples are more interesting than scalar ones. With vectorial examples
we only have to change λ by a matrix A, 1 by the identity matrix and we need to
consider B

C = BC−1. In that case the eigenvalues of the parameter should have a
negative real part since positive exponentials give inaccuracies.

3 Convergence of the exponential fitting Runge-Kutta
methods

In this section we will study the consistency and stability properties of the new methods.
Since they can be written as Runge-Kutta algorithms they are zero-stable and we only
need to study consistency and absolute stability of these formulas.

3.1 Consistency of the exponential fitting BDF-Runge-Kutta meth-
ods

If we want to know the local truncation error of the methods in a classical way, we need
to consider the Runge-Kutta algorithms and study the order conditions following the
theory of elementary differentials (the Fréchet derivatives) and rooted trees (see [22]
chapter five, for example).

The local truncation error of a Runge-Kutta method with constant coefficients is
given by (formula (5.47) in [22])

LTE =
hp+1

(p + 1)!

∑

r(t)=p+1

α(t)[1− γ(t)ψ(t)]F (t) + O(hp+2) (6)
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being α(t) the number of essentially different ways of labelling the nodes of the tree t
with the integers 1, 2, . . . , r(t). An easy way of computing α(t) is

α(t) =
r(t)!

σ(t)γ(t)
,

where the order r(t), symmetry σ(t) and density γ(t) of a tree t are defined as in [22],
p. 164.

The function F is defined on the set T of all trees as in (5.39) in [22] (see Table
5.2 and the definition of the Mth. Fréchet derivative, p. 158, too) and the relations
between y(q) and all elementary differentials of order q is the following theorem (see
Butcher [23]):

Theorem 3.1 Let y′ = f(y), f: Rm → Rm. Then

y(q) =
∑

r(t)=q

α(t)F (t).

Finally ψ(t) depends on the elements of the Butcher array as in [22], p. 167: for
i = 1, 2, . . . , s, s + 1 define on the set T of all trees the functions ψi by

ψi(τ) =
s∑

j=1

aij

ψi([t1t2 . . . tM ]) =
s∑

j=1

aijψj(t1)ψj(t2) . . . ψj(tM ),

then, ψ(t) := ψs+1(t).

Now, we can study the local truncation error of the exponential fitting Runge-Kutta
methods in a similar way to [24].

Theorem 3.2 The leading term of the local truncation error of the new exponential
fitting Gauss-2s is

h5(CH24 + CH5)
4320

,

where
CH24 = −λ3y′′ + 5λ2f2

y y′ + 10λ(fyyffy − f3
y )y′,

CH5 = (fyyyyf
3 + 2fyyyfyf

2 − 6f2
yyf

2 + 4fyyf
2
y f + 6f4

y )y′.

Proof 3.3 i) The only one condition of a Runge-Kutta method to be consistent (at
least) is

∑s
i=1 bi = 1 + O(λ̂) (again λ̂ is the parameter λh in the method). In this case∑s

i=1 bi = 1.
ii) One method with order greater than one has to verify 2

∑s
i=1 bici = 1, in this

case

2
2∑

i=1

bici = −2
√

3e(−3+
√

3)bλ/6 − 2
√

3e(3+
√

3)bλ/6 + (3 +
√

3)λ̂ + (−3 +
√

3)e
√

3bλ/3

3λ̂(−1 + e
√

3bλ/3)
,
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whose Taylor series are 1 + bλ3

2160 + O(h5). Then, one part of the local truncation error
is h2

2 y(2)(xn)(− bλ3

2160 + O(h5)).
iii) The two conditions of a third-order method are

3
s∑

i=1

bic
2
i = 1 + O(h)

and

6
s∑

i=1,j=1

biaijcj = 1 + O(h).

In this case

3
s∑

i=1

bic
2
i = 1 +

λ̂3

1440
+ O(h5)

and

6
s∑

i=1,j=1

biaijcj = 1− λ̂2

144
+

λ̂3

720
+ O(h4).

Then,
h3

3!

∑

r(t)=3

α(t)[1− γ(t)ψ(t)]F (t) =
h3

3!
λ̂2

144
f2

y f + O(h6),

we are considering the scalar problem and the notation as in [22].
iv) We study the four conditions to be a fourth-order method and we got that

h4

4!

∑

r(t)=4

α(t)[1− γ(t)ψ(t)]F (t) =
h4

4!

(
3

λ̂

54
fyyffyf − λ̂

18
f3

y f

)
+ O(h6).

v) Finally, when we studied the conditions to be a fifth-order method and we got
that they are not satisfied

h5

5!

∑

r(t)=5

α(t)[1− γ(t)ψ(t)]F (t) =
h5

5!
C5 + O(h6)

where
C5 =

1
36

(fyyyyf
4 + 6fyyyfyf

3)− 1
24

(4f2
yyf

3 + 4fyyf
2
y f2)−

−1
9
(fyyyfyf

3 + 3fyyf
2
y f2) +

1
6
(fyyf

2
y f2 + f4

y f).

If we add the leading terms of local truncation error that we got in i) to v) and
simplify we get total expression of the local truncation error.

Theorem 3.4 The leading term of the local truncation error of the new exponential
fitting Radau-2s is

h4(λ2y′′ + (−4λf2
y − fyyyf

2 + fyyffy + 3(fyfyyf + f3
y ))y′)

216
.
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Proof 3.5 i) The condition to be a consistent method is satisfied since
∑s

i=1 bi = 1.
ii) The method has at least first-order because 2

∑s
i=1 bici = 1− bλ2

108 +O(h3). Then,
one part of the local truncation error is h2

2 y(2)(xn)( bλ
2

108 + O(h3)).
iii) The method has order bigger than two because

h3

3!

∑

r(t)=3

α(t)[1− γ(t)ψ(t)]F (t) =
h3

3!
−λ̂

9
f2

y f + O(h5).

iv) We studied the four conditions to be a forth-order method but they are not
satisfied

h4

4!

∑

r(t)=4

α(t)[1−γ(t)ψ(t)]F (t) =
h4

4!

(−1
9

(fyyyf
3 + fyyffyf) +

1
3
(fyfyyf

2 + f3
y f)

)
+O(h5).

Theorem 3.6 The leading term of the local truncation error of the new exponential
fitting Lobatto-2s is

h3(λy′′ − y′′′)
12

.

Proof 3.7 i) The condition to be a consistent method is satisfied since
∑s

i=1 bi = 1.
ii) While in the condition of a first-order method, we got 2

∑s
i=1 bici = 1− bλ6 +O(h3).

Then, one part of the local truncation error is h2

2 y(2)(xn)(bλ6 + O(h3)).
iii) And we get that the method has order two because

h3

3!

∑

r(t)=3

α(t)[1− γ(t)ψ(t)]F (t) =
h3

3!
−1
2

(fyyf
2 + f2

y f) + O(h5).

3.2 Absolute stability of the exponential fitting BDF-Runge-Kutta
methods

The classical definitions of absolute stability regions and A-stability were stated for
linear multistep methods with constant coefficients. The stability properties of the
proposed methods are analyzed to demonstrate their relevance especially in the inte-
gration of stiff oscillatory problems. In this section the definitions are extended to
exponential fitting methods. The way is very similar to that used in [25] to extend
those definitions.

In [25] Coleman and Ixaru studied the stability properties of existing exponential
fitting methods that integrate exactly the problem

y′′(x) = g(x, y(x)), (7)

when y(x) = exp(±ikx), but when they want to study their stability properties, they
apply the method to the test equation

y′′(x) = −w2y(x), (8)
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and then, they plot their regions of stability on the µ − θ plane (being µ = wh and
θ = kh).

In our case, we shall consider, first the test problem

y′(x) = Ay(x), (9)

while we introduce in the method the estimated parameter A∗, so the weights are
bi(A∗h) and aij(A∗h).

We are going to this analysis considering that there exist a nonsingular matrix Q
such that

Q−1AQ = Λ = diag[λ1, ..., λm],

and
Q−1A∗Q = Λ∗ = diag[λ∗1, ..., λ

∗
m].

If Q−1A∗hQ = Λ∗h, Λ∗ = diag[λ∗1, ..., λ
∗
m], as bi(A∗h) and aij(A∗h) depend only

on eA∗h, Id and A∗h, then we have that Q−1bi(A∗h)Q = bi(Λ∗h) and Q−1aij(A∗h)Q =
aij(Λ∗h) and the system can be coupled.

So we can reduce to consider as a test problem the very famous Dahlquist’s equation

y′(x) = µy(x), y0 = 1, z = hµ, (10)

where Re(µ) < 0, with µ = λ + ν. That is, we have introduced the value λ in the
method while the true solution depends on the exponential of µ. And we are going to
calculate the set

S = {z ∈ C; | R(z) |≤ 1} ,

called the stability domain of the method, where R(z), the stability function of the
method, is that proposed by Hairer and Wanner in [4]:

R(z) = 1 + zbt(Id− zA)−11,

being bt = (b1, . . . , bs), A = (aij)s
i,j=1 and 1 = (1, . . . , 1)t, or (see [4], [26] or [27]), they

are both the same (see [4], Proposition 3.2, p. 41)

R(z) =
det(Id− zA + z1bt)

det(Id− zA)
.

Again, as we mentioned in [28], [15], [29] or [30], it is impossible to plot regions of
absolute stability. However we can fix u = hλ with different real and complex values
and plot in the complex plane the values of νh that makes the method absolute stable.

We can begin showing some regions of absolute stability of the Gauss-2s and Radau-
2s method when λh ∈ R−. Since the methods approach to the classical methods when
λh → 0, then both methods are A-stable in this case and when λh → −∞, the regions
of absolute instability are smaller and smaller, this means that the error (when we
calculate the parameter on the method) can be bigger and the method continues being
stable for the problem. We have shown some of these regions in Figure 1.
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(a) λh → 0. EF-Gauss-2s method. (b) λh = −0.1. EF-Gauss-2s method.
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(c) λh = −1. EF-Gauss-2s method. (d) λh = −7. EF-Gauss-2s method.
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(e) λh → 0. EF-Radau-2s method. (f) λh = −0.1. EF-Radau-2s method.
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(g) λh = −1. EF-Radau-2s method. (h) λh = −5. EF-Radau-2s method.

Figure 1: Absolute stability regions (in grey) of the exponential fitting Gauss-2s and
Radau-2s methods. The parameters in the method are real. Horizontal and vertical
axes represent Re(µh) and Im(µh).
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The behavior of the regions of these methods when λh ∈ C− is very similar as we
can see in Figure 2, where we have shown some stability regions of the Radau-2s and
Lobatto methods. Again, when ah → −∞ (a being the real part of λ), the regions
of absolute instability are smaller and smaller. We can check in this figure that if we
choose λ1h = a + ib ∈ C− a, b ∈ R and λ2h = a − ib, then the regions of absolute
stability were symmetric.

4 Numerical examples

In other papers (see [31], [32], [33], [34], [35] or [30], for example), the chosen parameter
has been a matrix, so two big open questions appeared in this field: which is the best
way to calculate the exponential matrix and which is the best procedure to choose the
parameter for the methods.

In this case, we have used scalar parameters λh ∈ R− in the method.
We are going to suppose that the IVP is

y′(x) = g(x, y(x)), y(x0) = y0 , (11)

(where y = [y1, . . . , ym], and g = [g1, . . . , gm], y0 = [y1
0, . . . , y

m
0 ], x ∈ R). The steps to

calculate the parameter λh ∈ R− are the following:
1) In the first three steps we take the coefficients of the classical methods.
2) We are going to suppose, now, that we want to calculate yn+1 and we have

calculated yn, yn−1, yn−2 and yn−3.

Since
yi

n−3yi
n−1+3yi

n−2−yi
n−3

h3 ≈ (yi
n)′′′ and

2yi
n−5yi

n−1+4yi
n−2−yi

n−3

h3 ≈ (yi
n)′′, then λih =

yi
n−3yi

n−1+3yi
n−2−yi

n−3

2yi
n−5yi

n−1+4yi
n−2−yi

n−3
≈ (yi

n)′′′
(yi

n)′′′ . Then, we choose λh = maxλih.

3) Since positive parameters or very negative values could give inaccuracies, if
λh ≥ 0, then we have taken the weights aij , bi and ci of the classical methods. Finally,
if λ ≤ −100, then we have taken λ = −100.

Problem 1, the first stiff problem is known as Robertson equation (see, for exam-
ple, [4]),

y′1(x) = −0.04y1(x) + 104y2(x)y3(x),
y′2(x) = 0.04y1(x)− 104y2(x)y3(x)− 3107y2

2(x),
y′3(x) = 3107y2

2(x),
y1(0) = 1, y2(0) = 0, y3(0) = 0, 0 ≤ x ≤ 40.

(12)

We have compared the numerical results of the traditional Radau-2s (of two steps)
with constant step length and the EF-Radau-2s in Table 1.

The methods are in Mathematica and we used an Intel Pentium 4 with 1.40 GHz.
We can observe that the error is smaller with the new algorithm, but te CPU Time (in
seconds) is smaller, too. The reason is that the new scheme needed less iterations of
the Newton’s method to solve the nonlinear equation.

Problem 2, the second stiff problem is known as Oregonator (see, for example,
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(a) λh = −1 + 4i. EF-Lobatto-2s method. (b) λh = −1− 4i. EF-Lobatto-2s method.

0 2 4 6 8
-6

-4

-2

0

2

4

6

0 2 4 6 8
-6

-4

-2

0

2

4

6

(c) λh = −3 + 12i. EF-Lobatto-2s method. (d) λh = −3− 12i. EF-Lobatto-2s method.
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(e) λ = −1 + 4i. EF-Radau-2s method. (f) λh = −1− 4i. EF-Radau-2s method.
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(g) λh = −3 + 12i. EF-Radau-2s method. (h) λh = −3− 12i. EF-Radau-2s method.

Figure 2: Absolute stability regions (in grey) of the exponential fitting Radau-2s and
Lobatto-2s methods. The parameters in the method are complex. Horizontal and
vertical axes represent Re(µh) and Im(µh).

299



Step length Method Error CPU Time (sec)
h = 0.1 Radau-2s 2.745× 10−9 11.677

EF-Radau-2s 7.8288× 10−10 8.972
h = 0.05 Radau-2s 3.6865× 10−10 23.574

EF-Radau-2s 1.8237× 10−10 18.226
h = 0.025 Radau-2s 9.778× 10−11 46.147

EF-Radau-2s 2.1101× 10−11 35.911

Table 1: Numerical errors in the integration of problem 1.

[4]),
y′1(x) = 77.27(y1(x)(1− 8.375× 10−6y1(x)− y2(x)) + y2(x)),
y′2(x) = 1

77.27 (−(1 + y1(x))y2(x) + y3(x)) ,
y′3(x) = 0.161(y1(x)− y3(x)),
y1(0) = 1, y2(0) = 2, y3(0) = 3, 0 ≤ x ≤ 30.

(13)

We have compared the numerical results of the traditional Radau-2s with constant
step length and the EF-Radau-2s in Table 2.

Step length Method Error CPU T Method Error CPU T
h = 0.01 Radau-2s 0.46543 238.624 EF-Radau-2s 0.46509 195.701
h = 0.005 Radau-2s 0.054777 437.018 EF-Radau-2s 0.054663 364.755
h = 0.0025 Radau-2s 0.006649 796.856 EF-Radau-2s 0.006618 667.239

Table 2: Numerical errors in the integration of problem 2.

Problem 3, we integrate the nonlinear IVP proposed by Frank and van der
Houwen (from CWI) [36] or Kaps [37]





y′1(x) = −1002y1(x) + 1000y2
2(x),

y′2(x) = y1(x)− y2(x)(1 + y2(x)),
y1(0) = 1, y2(0) = 1,

(14)

with solution
y1(x) = e−2x, y2(x) = e−x,

the Jacobian of the right-hand side of this problem at the initial point has the eigen-
values λ1 = −1004, λ2 = −1.00199, then we can consider that this problem is stiff.

In table 3 we have compared the results obtained at point x = 5 with Gauss-2s
and EF-Gauss-2s, using different step lengths.
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Abstract

We propose a functional pattern recognition approach to the problem of iden-
tifying the topographic profiles of glacial and fluvial valleys, using a functional
version of support vector machines for classification. We compare a proposed func-
tional version of support vector machines with functional generalized linear models
and their vectorial versions: generalized linear models and support vector machines
that use the original observations as input. The results indicate the benefit of our
proposed functional support vector machines and, in more general terms, the ad-
vantages of using a functional rather than a vectorial approach.

Key words: Digital elevation models, functional data analysis, functional gen-
eral lineal model, support vector machines, topographic profiles
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1 Introduction

Geomorphology is the science that studies landforms in the Earth’s crust and the pro-
cesses that form them. Valleys, which are principally shaped by the erosional activity
of glaciers and rivers, are classified in two main classes in terms of their shape [1]–
U-shaped valleys and V-shaped valleys. U-shaped valleys, which have typically been
formed by glaciers, have steeply sloped sides and a central concave part. V-shaped
valleys, which are formed by rivers, usually have gentler slopes and narrower, more
angular bases. Another type of fluvial river valley also exists, which is characterized by
a flat rather than angular base.

Geomorphology experts have traditionally distinguished between different types of
valleys on the basis of visual analyses of the topographical profiles of the valleys, contour
maps, and aerial photographs. Another way to study and compare valley shapes is to
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simulate the topographic profiles using mathematical models, e.g., catenary functions
[2]; [12], power law regression models [11]; [3] or generalized power law [8]. However,
since these models are overly simple and fail to reflect the precise shapes of the real
profiles, this leads to error in reproducing the landforms and in differentiating between
the different types of valleys. For this reason, and also given the recent advent of
models capable of simulating valley erosion and evolution, more advanced techniques
with a statistical focus are being used to describe and compare topographic profiles, as
follows:

1. Pre-defined non-linear regression models with a parametric focus, from which the
models with the best goodness-of-fit are chosen [5].

2. Functional data analysis [9], which applies two distinct strategies [4], namely, an
unsupervised approach that clusters profiles and interprets the clusters in terms
of the majority elements (e.g. the U shape), and a supervised approach that
constructs predictive models of the profiles based on scalar covariables (elevation,
etc.).

We propose a new machine-learning philosophy approach based on functional tech-
niques, which involved the construction of an expert system, trained using a supervised
approach, with artificially constructed theoretical profiles that enables the system to
determine the nature of new real profiles. Since real profiles rarely fall into one mor-
phological group or another, this system also indicates the degree of belongingness of
a profile to a particular group (i.e., the a posteriori probability of membership in a
particular group).

To implement this approach, we used functional pattern recognition models, specif-
ically functional generalized linear models [6] (functional 0-1 regression and logistic
regression, [7]), as also a functional version of the support vector machines [10] in the
functional space generated by a set of basic functions.

Although in this initial research phase, we use just two morphological groups,
the method can be easily extended to include more groups using multiclass functional
pattern recognition techniques (to be the subject of a future article).

Our article is structured as follows:

1. Firstly we describe functional pattern recognition techniques, including the func-
tional generalized linear model, particular cases of this model used in this work,
and the proposed functional pattern recognition support vector machines.

2. Next we describe the details of the application problem, as also the results of
the application of the above techniques to the data-smoothed functional versions.
These results are compared with the results obtained from applying the vectorial
versions of the same techniques to the original scalar data.

3. The final section describes our conclusions.
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2 Application to the Identification of Valley Profiles

2.1 Training and Test Samples

In order to evaluate the capacity of the functional support vector machines to discrimi-
nate between the different types of valley profiles, simulated profiles and real profiles for
glacial valleys and fluvial valleys were used. In an initial phase, simulated profiles were
generated in order to train the expert system, whereas the real profiles were reserved
to test the behavior of the system. This system can later be enriched by incorporating
real profiles whose morphology is known in the training sample.

The type of profiles considered in this initial research phase were U-shaped and
V-shaped, although the method can incorporate other types of profiles (to be studied
in future research).

The training sample should include the full range of profiles in similar conditions as
in reality, in other words, with observations subject to noise and in different positions.
The profiles generated were contaminated with Gaussian noise with mean zero for both
the U-shaped and V-shaped valleys, the slope of one of the two branches of the profiles
were modified from the origin—with a view to reflecting the asymmetry observed in
reality—by assigning a lower value to one than the other.

In order to simulate the U-shaped profiles, catenary functions were used, expressed
as follows [12]:

y = b0 + b1 cosh (x/b1) + ε (1)

where y is the vertical distance and x the horizontal distance from (0, 0) in the coor-
dinate system, where b0 and b1 are coefficients, and where ε ∼ N

(
0, σ2

)
is an additive

term of error used to simulate deviations from the real profiles with respect to the
catenary function. The coefficient b1 determines how quickly the catenary opens up.

Figure 1 shows some of these catenaries, all with the same extremes but with
different depths.

In order to represent the V-shaped profiles, the general power model (GPL) [5] was
used, expressed as follows:

y = α |x− x0|β + y0 + ε (2)

The parameter β provides a direct measure of the profile curvature, with values
near 1 corresponding to V-shaped profiles and values near 2 corresponding to U-shaped
profiles.

The term (x0, y0) provides an estimate of the location of the minimum of the profile.
Figure 2 shows various V-shaped profiles for the particular case of a minimum

located at the origin of the coordinates. The additive term for noise, as in the catenaries,
is a normal distribution with a zero mean.

The real profiles used to evaluate the goodness-of-fit of the system were extracted
from a digital elevation model (DEM) with a resolution 30 meters representing Sierra
Nevada, a mountain range located in southern Spain with some of Spain’s most im-
portant skiing slopes. The graph on the left of Figure 3 depicts the DEM, discretized
in altitude intervals of 100 meters, for altitudes varying between 410 meters and 1999
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Figure 1: Sample of catenaries used to simulate the U-shaped profiles.
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Figure 2: Profiles simulated to train for V-shaped valleys.
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Figure 3: DEM of Sierra Nevada, showing two profiles, one U-shaped and the other
V-shaped (left). The real U-shaped and V-shaped profiles extracted from (and marked
in) the DEM (right).

meters. The graph on the right of Figure 3 depicts two profiles extracted from the
model, one corresponding to a glacial valley and the other corresponding to a fluvial
valley (note that the coordinates are normalized in order to facilitate comparison).

In total, 137 training profiles (54 V-shaped and 83 U-shaped) and 25 test profiles
(13 V-shaped and 12 U-shaped) were obtained (Figure 4).

Any differences in location of the center of the curves may imply differences in the
profiles that are based solely on the relative position of the center of the profile and
not on its U or V shape. For example, two mildly asymmetric V-shaped profiles could
be considered to be very different if their centers are not properly aligned.

To simultaneously compare profiles on the basis of valley shape and not valley
size, a similar scale is needed. For this reason, all the training and test profiles were
normalized for the X and Y axes, the former in the interval [−1 1] (with the minimum
at zero), and the latter in [0 1].

The training and test profiles were smoothed using a cubic B-splines basis with 30
breaks (32 basic functions). A number of different options for the number of breaks were
evaluated producing similar results. Figure 4 shows the profiles that were registered as
functional data in the manner described.

2.2 Results

Once the test and training profiles had been registered as functional data, the following
techniques were used to construct the functional pattern recognition model: functional
linear regression with a 0 − 1 response variable, functional logistic regression, and
functional support vector machines with linear and Gaussian kernels.

The parameters for the models (regularizer and Gaussian kernel parameter for the
functional support vector machines, and regularizer for the functional logistic regres-
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Figure 4: Artificial U and V profiles (137) in the training sample (left), and real profiles
(25) in the test sample (right).

Error Rate
Model Train Test

Vectorial Linear 0.01 0.20
Vectorial Logistic 0.00 0.24
Vectorial SVM Linear kernel 0.00 0.08
Vectorial SVM Gaussian kernel 0.00 0.08
Functional Linear 0.00 0.16
Functional Logistic 0.00 0.12
Functional SVM Linear kernel 0.00 0.04
Functional SVM Gaussian kernel 0.00 0.04

Table 1: Classification error rate for the training and test samples for the compared
models.
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sion) were selected using 10-fold cross-validation.
The results obtained are depicted in Table 1, which shows, for reference purposes,

the results obtained using vectorial versions of the above models applied to the scalar
observations of the profiles (from which the functional versions were constructed).

As can be observed, there were no training errors in any of the cases (except for the
vectorial linear model), probably because of the theoretical nature of the training data
and the relatively low level of noise. Nonetheless, in the test sample of real profiles, it
can be observed how the functional model results improved significantly on the results
produced by the vectorial versions of the same models. Likewise, of the functional
models, the functional support vector machines produced the best results, irrespective
of the kernel used (at least for this problem).

An analysis of the errors would indicate that these are associated with profiles that
are genuinely difficult to classify as either U-shaped or V-shaped, which, in turn, would
indicate the need to extend the typology to other classes not covered by these two main
shapes (this will be the subject of future research).

3 Conclusions

In this work we evaluated the suitability of functional data analysis techniques for
the morphological classification of the topographic profiles of U-shaped and V-shaped
valleys.

From the results obtained it can be deduced that the functional techniques are an
improvement on the vectorial techniques in terms of distinguishing between the two
profile types, and that very satisfactory results can be obtained simply by training the
system using simulated profiles. The functional models that produced the best results
were the proposed functional support vector machines.

In this initial phase, the models were trained using only simulated profiles. How-
ever, on a gradual basis, these models will be further enriched with real profiles once
their morphological characteristics have been established.

Future research will include the application of the methodology to a larger number
of morphological groups using a multiclass pattern recognition approach, and enrich-
ment of the model by means of the inclusion of derivatives of the profiles as functional
covariables.
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Abstract

Because the pricing equations in Levy models contain integrals, it is difficult to
develop rapid numerical methods for solving them. Although the integrals are not
periodic, the standard evaluation methods use the FFT, and therefore require large
computational regions to ensure accuracy. In earlier work we developed efficient
methods for pricing options in two Levy models, the Merton model and the Kou
double exponential model. The methods rely on the fact that in those models the
density functions for the jump distributions satisfy ordinary or partial differential
equations, so differential methods can be used to evaluate the integrals. In this
paper we present effective numerical methods for pricing options in another Levy
model that has been shown to work particularly well in actual market conditions,
the Variance Gamma model. We also provide numerical results.

Key words: Option pricing, Variance Gamma

1 Introduction

The Black Scholes pricing model does not produce the heavy tails and asymmetry
that one sees in practice. That is, large price movements occur more often than the
Black Scholes model predicts, and log scaled upward and downward movements are
not equally likely. These and other problems have led to the development of alternate
pricing models. A common assumption is that in addition to the standard continuous
Black Scholes process, the process the asset price follows has a component with jumps.
Such processes are called jump processes.

The earliest jump model is due to Merton [12] who assumes the process the asset
follows is the sum of the Black Scholes process and a jump process with lognormally
distributed jumps with constant parameters. Other models which combine a local
volatility function with a jump process have also been used for pricing options (An-
dersen and Andreasen, [3]). Kou [8] has suggested a model with double exponential
distribution for the log jump size. Models where the process is a pure jump process
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and there is no continuous component have also been developed. For example, Madan,
Carr, and Chang [9] more recently proposed what they call a Variance Gamma model.
This model has been shown to be especially well suited for modeling in current market
conditions, and is the model we are considering in this paper.

Some of these jump models are analytically tractable. For example, in the Merton
model there is an analytic formula for European option prices in terms of Black Sc-
holes prices, and there are formulas for certain option prices in the Kou and Variance
Gamma models. But though analytic formulas exist for pricing certain options, nu-
merical methods are required for pricing the most common ones, especially when the
option payoffs are path dependent.

Most numerical methods for finding option prices involve solving partial integro-
differential equations (PIDEs). In particular, in an early paper Amim [2] used sim-
ple but expensive tree methods to price European options. Later others (D’Halluin
Forsyth and Vetzal,[6], [7]) implemented more sophisticated methods for evaluating
vanilla European options, barrier options, and American options, and provided conver-
gence results. These partial integro-differential equations have also also been solved by
Matache, von Petersdorff and Schwab [10], Cont and Voltchkova [5] among others.

We note that combining a standard discretization method for the differential terms
with a straightforward quadrature method for evaluating the integral term is costly
since the integral must be approximated at each point of the mesh used for discretizing
the the differential terms. However, it is possible to reduce the expense of evaluating
the integral at all points of the computational grid by making an exponential change
of variables. This converts the integral term into a correlation integral which can be
evaluated at all mesh points simultaneously using the Fast Fourier Transform. This
approach has often been used [2], [7].

One difficulty with Fourier methods is that they assume the function being eval-
uated is periodic. Since the integrals are not periodic, it is necessary to extend the
computational region, which is expensive, especially in higher dimensions. Fourier
methods are also slow to converge if the probability density is not smooth, as it is in
the Kou double exponential model and in the Variance Gamma model.

In earlier work we [10], [4], presented a different and more efficient class of methods
based on the fact that the integrals often satisfy differential equations which can be
solved more rapidly than the integrals can be accurately evaluated by quadrature, even
using Fourier methods.

In particular, we used the fact that at any moment of time the integral in the
Merton PIDE is equal to a translation of a solution of a heat equation with initial
values equal to the solution of the PIDE at that time. The evaluation time τ of the
solution of the heat equation is half the variance of the jump process, and the translation
amount is the expected value of the jump process. Therefore, we could evaluate the
correlation integral by solving the heat equation numerically. Since the variance of
the Poisson process is normally small we didn’t need many time steps to solve the
heat equation very accurately. The fact that Fourier methods are more expensive than
usual differential methods for solving the heat equation meant that our methods were
sometimes significantly faster. The methods we developed also extend to problems with
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similar density functions.

The method we developed for evaluating the convolution integral in the Kou double
exponential model uses the fact that after a linear change of variables the integrand
is separable. Specifically, after the change of variables the value of the integral at a
point x can be expressed as the product of an exponential function of x and an integral
where x only appears as the lower or upper limit of integration. Therefore the integral
can be evaluated at all n points of the grid using only Cn operations, where C is a
small number. The evaluation the integral can also be viewed as the solution of a first
order ordinary differential equation. Again, our technique for evaluating the correlation
integrals in the Kou model can be extended to evaluating the integrals in other similar
models.

In this paper we extend the methods we have developed for pricing in the Kou
model to pricing in the Variance Gamma model. The idea is that except very near the
origin one can approximate the Variance Gamma density by a function that is piecewise
the product of a linear function with the exponential with the same exponent as in the
Variance Gamma density. That is, one can decompose the computational region into
several subregions, and in each subregion one can approximate the Variance Gamma
density by the product of the exponential term in the density and a different linear
function. Once one has chosen the subregions, finding the best approximation only
requires a few operations per region. Our numerical experiments demonstrate that one
can achieve a very good approximation using around 4 or 5 subregions, so the cost of
this part of the calculation is negligible.

The primary advantage of using such an approximation is that it greatly reduces
the cost of evaluating the correlation integral. As in our method for pricing in the Kou
model, one can evaluate the correlation integrals at each point of the computational
mesh at a cost of just a few operations per mesh point.

An important issue in our methods is how to choose the approximating linear func-
tion. More precisely, it is necessary to find a good method for choosing the subregions.
Finding the optimal subregions reduces to a a nonlinear least squares problem that in
some cases could prove expensive to solve. On the other hand, as one might expect,
having the nodes equally spaced does not produce extremely good results. We have
chosen an intermediate method.

The Variance Gamma density cannot be well approximated by products of poly-
nomials and exponentials very near the origin. Therefore, in a small region around
each mesh point we must evaluate the integral directly by quadrature. This region only
consists of a few mesh points, so the cost of this part of the calculation is small. It
is important to note that although the Variance Gamma density is unbounded at the
origin, the integrand of the correlation integral is always bounded.

An important advantage of our method is that it is not necessary to evaluate the
integral terms using a uniform mesh, nor does one obtain increased speed by requiring
the number of mesh points to be a power of 2. In particular, it should be possible
to use a very nonuniform grid when solving the pricing equation for digital options,
concentrating the mesh points near the payoff discontinuity. This cannot be done as
efficiently using Fourier methods.
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The organization of this paper is as follows. In section 2 we present the pricing
PIDE and discretization method for the differential terms, in the next section we present
our method for evaluating the integrals in the equation, and in the last section we
present results of numerical experiments.

2 Pricing PIDE in the VG model

A Variance Gamma process is an infinite activity process of the form

X(t, σ, θ, ν) = b(γ(t, 1, ν), θ, σ)

where γ(t, 1, ν) is a unit mean gamma process and b(t, θ, σ) = θt+σW (t) is a Brownian
motion with drift θ and volatility σ. W (t) is a standard Brownian motion, and ν is the
variance of the gamma distributed time. If r is the risk free interest rate and q is the
dividend rate, the risk neutral process for the price S of a risky asset is

S(t) = S(0)e(r−q+ω)t+X(t).

Here

ω =

∫

∞

−∞

(1 − ey) k(y)dy, (2.1)

where k(y) is the Levy measure

k(y) =
e−λpy

νy
for y > 0 and k(y) =

e−λn|y|

ν|y|
for y < 0

with

λp =

√

θ2

σ4
+

2

σ2ν
−

θ

σ2

λn =

√

θ2

σ4
+

2

σ2ν
+

θ

σ2
.

The constant ν is a measure of the activity level, and λm and λp determine the expo-
nential rates of decay of the density on the left and the right [9].

Under these assumptions European option prices V (S, τ) satisfy the PIDE

Vτ + (r − q + ω)SVS +

∫

∞

∞

[V (Sey, τ) − V (S, τ)] k(y)dy = rV. (2.2)

Before solving the equation we first make the standard exponential change of variables
S = ex and reverse time (t = T − τ):

Vt − (r − q + ω)Vx =

∫

∞

−∞

[V (x + y, t) − V (x, t)] k(y)dy − rV. (2.3)

We then discretize the differential and integral terms. Suppose {xi} are the dis-
cretization points, h is the space step, and V n = (V n

0
, V n

1
, V n

2
, , , V n

M ), n = 1, , , , ,N are
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the the solution values at the nth time step. Following [1] we let ω(h) =
∫

y>h
(1 − ey)k(y)dy, and using (2.1) rewrite (2.3):

Vt−(r−q+ω(h))Vx =

∫

∞

−∞

[V (x + y, t) − V (x, t)] k(y)dy−

∫

y≤h

(ey
−1)Vxdy−rV. (2.4)

We have chosen to discretize the differential terms using the Crank Nicolson scheme.
Thus, at the nth time step we let

V n+1

i − V n
i

∆t
= a

V n+1

i+1
− V n+1

i−1

2h
+ a

V n
i+1

− V n
i−1

2h
−

r

2

(

V n
i + V n+1

i

)

+ I(V n)

where ∆t is the time step, a = q − r − ω(h), and I(V n) is our approximation to the
integrals in (2.4) at the n time step.

Boundary values are needed at the edges of the computational domain. When
pricing call options it is common to assume that V n

0
= 0 for all n, and V n

M = SM−Ke−rtn

where K is the strike price, SM = exM is the asset value at the upper edge of the
computational region, and tn is the time at the nth time step. For a put we assume
V n

0
= Ke−rtn and V n

M = 0.

At each time step the above equations and boundary conditions give rise to a
tridiagonal linear system of equations, which can be solved at a cost of 5M operations
per point at the first time step, and 3M operations at succeeding ones.

The Crank Nicolson scheme is in general second order accurate in h, but the above
scheme is explicit in the integral and only first order accurate in ∆t. In order to try to
achieve second order accuracy in ∆t we have have used Richardson extrapolation. We
note that several authors have solved the pricing PIDE using schemes that are implicit
in the integral. In particular Wang et al. [13] used a semi Lagrangian discretization
of the differential terms, and both Picard iteration and BiCGstab method to solve the
implicit equations. We also note that when one is pricing European options one can
can use an operator splitting method originally suggested by Andersen and Andreasen
We used this method when we priced options in the Kou model [11], but although it
is formally second order accurate we did not find the method to perform consistently
better than extrapolation. Since our primary contribution is a rapid and accurate
method for evaluating the integral we have not yet implemented an implicit method,
nor have we priced any American or other exotic options. In future work we will address
such issues.

At each time step one must also approximate the integral at all the points {xi}.
Most schemes for evaluating the integral rely on the fact that it is a correlation integral,
and use a Fourier method. However, because the integral is not periodic, one must
extend the computational region in order to avoid ”wrap around” effects. This increases
the cost of the calculation.

In the next section we present a more efficient method for evaluating the integrals.
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3 Evaluation of the Integral Terms

In this section we present our method for approximating the integrals in the Variance
Gamma pricing equation:

∫

0

−∞

(V (x + y) − V (x)) C
e−λn|y|

|y|
dy+

∫

∞

0

(V (x + y) − V (x)) C
e−λpy

y
dy−Vx(x)

∫ h

−h

(ey
− 1) k(y)dy

= I−(x) + I+(x) + VxIh

We first show how to approximate I+(x). By the further change of variables s = x + y

I+(x) can be written

I+(x) =

∫

∞

x

(V (s) − V (x))
e−λ(s−y)

(s − y)
ds

For any x and ǫ this integral can be decomposed into a part Iǫ(x) near x, and the
remaining part Ir(x):

I+(x) =

∫ x+ǫ

x

(V (s) − V (x))
e−λ(s−x)

(s − x)
ds +

∫

∞

x+ǫ

(V (s) − V (x))
e−λ(s−x)

(s − x)
ds

For ǫ, xM > 0 the interval [ǫ, xM ] can be decomposed into NP subregions [ǫ = a0, a1], [a1, a2], , [aNP−1, aNP =

xM ], and on each subregion [ai, ai+1] the function e−λpx

x
can be approximated by the

product of the exponential eλpx and a linear function, bix + ci. The approximations
need not be continuous from one subinterval to the next.

With these approximations one can approximate the integral Ir(x) =
∑

i I
r
i (x)

where

Ir
i (x) =

∫ x+ai+1

x+ai

(V (s) − V (x)) (bi(s − x) + ci)e
−λ(s−x)ds

= eλx

[

bi

∫ x+ai+1

x+ai

V (s)se−λsds + (ci − bix)

∫ x+ai+1

x+ai

V (s)e−λsds

]

−eλxV (x)

[

bi

∫ x+ai+1

x+ai

se−λsds + (ci − bix)

∫ x+ai+1

x+ai

e−λsds

]

The last two integrals in the above equation can be evaluated analytically.
The other two integrals can be approximated at all M mesh points at a cost

of O(M) operations. For example, suppose we have approximated the first integral
∫ xj+ai+1

xj+ai
V (s)e−λsds at x = xj . To evaluate the integral at x = xj+1 we use the

approximation
∫ xj+1+ai+1

xj+1+ai

V (s)e−λsds =

∫ xj+ai+1

xj+ai

V (s)e−λsds

−
(V (xj+1 + ai+1) + V (xj + ai+1)

2λ

(

e−λ(xj+1+ai+1)
− e−λ(xj+ai+1)

)

+
V (xj+1 + ai) + V (xj + ai)

2λ

(

e−λ(xj+1+ai)
− e−λ(xj+ai)

)
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Thus, to compute the integral at the next mesh point we only need add and subtract
two terms. The exponentials in the above formulas can be stored and reused. The
second integral can similarly be approximated at a point xj+1 from its values at xj.

To evaluate I+ we must extend the solution V (x) beyond the edge of the compu-
tational region. When pricing a call, for x large we set the option value to ex

−Ke−rt,
and for x ≤ x0 we set it to 0. For puts we set option values to 0 for x large, and
Ke−rt

− ex for x ≤ x0. We assume that the computational region is large enough so
these asymptotic approximations are sufficiently accurate.

We use essentially the same method to approximate I−(x) at all mesh points.

We also need to evaluate the integral Iǫ(x). We always chose ǫ to be an integer
number of mesh widths, ǫ = mh. (In our calculations we have generally chosen m =
M/50 mesh widths.) On the interval [xj +h, xj + ǫ], we approximate the integral using
direct quadrature. Finally, we note that by Taylor series approximations (see [1]) one
can show that the term

∫

y≤h
(V (x + s) − V (s) − Vx(es

− 1))k(s)ds = O(h2), and can
therefore be neglected in the calculation.

It follows that the entire calculation is linear in the number of discretization points
M . We also note that in our quadrature formulas truncation errors are due to approx-
imating V (x) by it’s average value between mesh points, i.e. we integrate e−λx and
xe−λx analytically.

An important issue in our method is the choice of the linear functions bix+ci. When
the nodes {ai} are prescribed beforehand we generally choose {bi, ci}i = 1, , ,NP − 1
so that

u(b1, c1, , , , , , bNP−1, cNP−1) =

NP−1
∑

i=1

∫ ai+1

ai

(

bis + ci −
1

s

)

2

e−λsds = min

If no other conditions are imposed this implies that for each 1 ≤ i ≤ NP − 1

∂u

∂bi

= 2

∫ ai+1

ai

s

(

bis + ci −
1

s

)

e−λsds = 0 (3.1)

and
∂u

∂ci

= 2

∫ ai+1

ai

(

bis + ci −
1

s

)

e−λsds = 0. (3.2)

The above NP − 1 two by two linear systems of equations determine {bi} and {ci}.

We also performed calculations where we required the approximations be continu-
ous from one interval to the next. Continuity implies

bixi+1 + ci = bi+1xi+1 + ci+1, (3.3)

which in turn implies the values of {bi} determine the values of {ci} for i = 2, , ,NP −1.
We also require

∂u

∂bi

= 2

∫ ai+1

ai

s

(

bis + ci −
1

s

)

e−λsds = 0 for i = 1, 2, , ,NP − 1. (3.4)
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and
∂u

∂c1

= 2

∫ ai+1

ai

(b1s + c1 − 1) e−λsds = 0. (3.5)

This set of equations (3.3)- (3.5) gives rise to a block lower bidiagonal matrix equation
easily solved by LU decomposition. However, as one might expect, we always obtained
more accurate solutions when we did not impose continuity.

We also performed calculations where the nodes {ai} were not specified a priori.
That is, for fixed NP − 1 we found 3NP − 4 numbers b1, ci1 ≤ i ≤ NP − 1, and
aj , 2 ≤ j ≤ NP − 1 such that

v(bi, ci, ai) =

M−1
∑

i=1

∫ ai+1

ai

(

bis + ci −
1

s

)

2

e−λsds = min (3.6)

and
biai+1 + ci = bi+1ai+1 + ci+1. (3.7)

Because the nodes {ai} are not given this problem is nonlinear.
By (3.7) the values of {ci} i = 2, , ,NP − 1 can be expressed in terms of the values

of {bi, ai} and c1. Therefore, we can view v as a function of the 2NP − 2 variables
{bi}1 ≤ i ≤ NP − 1, {ai}, 2 ≤ i ≤ NP − 1.

To determine values of the variables we use the fact that at the minimum of v its
derivatives with respect to all them are 0:

∂v

∂bi

=
∂v

∂ai

=
∂v

∂c1

= 0. (3.8)

In our numerical experiments we solved this system of equations by a modified damped
Newton’s method. We note that for a given interpolation domain [ǫ, xM ] and value of
λ the above calculations need only be performed once, i.e. the approximations do not
depend on the values of any other financial parameters. However, the calculations are
much more expensive than ones where nodes are specified.

We also note that it may also be possible to approximate the Variance Gamma
density with other functions. Another possibility is having the approximating function
be piecewise the product of a quadratic with an exponential. If one makes such an
approximation one can still evaluate the correlation integral at a cost of a few operations
per meshpoint, although the constant will be larger. However one should be able to use
a smaller number of subregions, and this would decrease the cost of the calculation.

4 Numerical Results

In this section we report on results of numerical experiments we performed. We note
that the only way in which our method differs from others is in the way that we
evaluate the integrals. We therefore first performed calculations to test the accuracy
of our quadrature method.

We first tested our method on the function V (x) = x for which the the integral
∫ b

a
(V (x + s) − V (x)) eλs

s
ds can be evaluated analytically. Since V (x + s) − V (x) = s,
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at any point x the value of the integral is
∫ b

a
e−λsds = −

1

λ

(

e−λb
− e−λa

)

. Furthermore,
when using our quadrature formula on this function there is no truncation error, so
errors are only due to interpolating the density function. In these experiments we let
a = .01535 and b = 6.139.

Results of our calculations are given in Table 1. In the table NP is the number of
subregions, and λ is the exponent in the density (We assumed that λp = λn = λ. The
numbers in the last column are errors, which were the same at all quadrature points.
In these and other experiments we always let C = 1, when λ was 5 we used the nodes
ai = ǫ+ i/ds2.33 and when λ was 10 (or 15) we let ai = ǫ+ i/ds2.53 where ds = xM −x0.
We used M = 200 quadrature points to perform the calculation.

Table 1: Evaluation of Integral with V (x) = x

NP ǫ λ error

2 5. .246 9.89E-6
3 5. .246 8.28E-6
4 5. .246 1.70E-6

2 10. .246 4.89E-6
3 10. .246 2.34E-6
4 10. .246 9.61E-7
5 10. .246 5.94E-7

2 5. .123 3.34E-5
3 5. .123 1.78E-5
4 5. .123 8.97E-6
5 5. .123 6.41E-6

3 5. .062 5.78E-4
4 5. .062 4.26E-5
5 5. .062 2.43E-5

From these results we see that using 4 subregions or panels for interpolating provides
a reasonable level of accuracy, and increasing the number does not change the results
significantly. Choosing ǫ smaller, of course, decreases the level of accuracy, but also
decreases the cost of the calculation for a given value of h.

We next tested our method of evaluating the integral with V (x) equal to the payoff
values for a call with strike K = 100, that is V (x) = ex

− K if ex
≥ K, and V (x) = 0

otherwise. We compared the results with the exact values of the integral, which can
be expressed in terms of the exponential integral function. (We used MATLAB to
determine the values.) Results are given in Table 2. In this table M is the number of
discretization points and S = ex is the asset price at which we evaluated the integral.
In this eample we always used NP = 4 subregions for interpolating the VG density,
and integrated over the interval [.00674,5.43], We let ǫ = .0691 This ǫ corresponds to
m=2 for M=100, to m=4 for M=200, m=8 for M=400, and m=16 for M=800. The
exact values of the integral for λ = 5. are 21.650 at S = 100. and 23.815 at S = 110.
For λ = 15.0 the value of the integral is 6.2572 at S = 100.0.
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Table 2: Evaluation of Integral with V (x) = x

M S λ error

100 100. 5 2. 21.730 0.080
200 100. 5 4. 21.671 0.021
400 100. 5 8. 21.657 0.006
800 110. 5 16. 21.651 0.001

100 110. 5 2. 23.742 0.0027
200 110. 5 4. 23.626 0.0011
400 110. 5 8. 23.819 0.0004
800 110. 5 16. 23.816 0.0001

100 100. 15 2. 6.316 0.059
200 100. 15 4. 6.279 0.022
400 100. 15 8. 6.264 0.007
800 110. 15 16. 6.259 0.002

These results show that see that the method is almost second order accurate, and we
can achieve this level of accuracy using relatively few panels.

We also performed calculations where we used nodes determined by solving (3.8).
It turned out that although these optimal nodes provided better results, the results
were not significantly different. That is, they were usually only better, by a (linear)
factor of 4, and the convergence rate was essentially the same.

In our final set of experiments we priced the European call and put options with
λn = λp = 5, r = .1, T = 1,K = 100 at S = 100. Almendral and Oosterlee [1] priced
the call option using a fine mesh, and determined the price to be 15.131. We obtained
the same result. The price of the put is 5.6147. In our calculations we again chose
ǫ = .0691, but used NP = 5 subregions for interpolating, and used extrapolation with
respect to ∆t. The numbers in the second column are the number of time steps in the
finer mesh, and the numbers in the third column are the computed values.

Table 3: Evaluation of Call
M nt Comp. vale error rate

100 30 15.205 0.074 .
200 60 15.153 0.022 3.4
400 120 15.137 0.006 3.8
800 120 15.132 0.001 4.0

Table 4: Evaluation of Put
M nt Comp. value error rate

100 30 5.6509 0.0362 .
200 60 5.6220 0.0073 4.9
400 120 5.6168 0.0021 3.5
800 240 5.6152 0.0005 4.1

Figure 1 is the graph of the call price.
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Abstract
A Green's function-based approach is proposed for obtaining solu-
tion to a variety of terminal-boundary value problems stated for
the Black-Scholes equation that simulates the valuation of Euro-
pean option pricing. It is shown that analytic representations of
required Green's functions can be constructed allowing a closed
form solution to the considered problems.

Key words: Black-Scholes equation, Green's function method

1. Introduction

A linear backward in time parabolic type partial di�erential equation, which is re-
ferred to as the Black-Scholes equation [1], is widely used in the �eld of �nancial
engineering in nowadays for quantitative and qualitative analysis of option pricing
problems. Green's function-based methods are traditionally used in partial di�er-
ential equations. They could also be productive for the Black-Scholes equation, but
a limited number of computer-ready representations of Green's functions for this
equation represents a considerable obstacle.

This study aims at the development of a Green's function-based analytic approach to
a class of terminal-boundary value problems stated for the nonhomogeneous Black-
Scholes equation

@V (S; t)

@t
+
�2S2

2

@2V (S; t)

@S2
+ rS

@V (S; t)

@S
� rV (S; t) = �(S; t) (1)

As an example, we consider a problem stated for Eq (1) in the semi-in�nite strip-
shaped region 
=(S1<S<S2)�(T >t>�1) of the S; t-plane.
Let a terminal condition be given by

V (S; T ) = '(S) (2)

323



while the Dirichlet type boundary conditions

V (S1; t) = A(t) and V (S2; t) = B(t) (3)

be imposed on the edges S=S1 and S=S2 of the 
 region.

In the above problem setting, V =V (S; t) is the price of the derivative product, '(S)
is the pay-o� function of a given derivative problem at the expiration time T , with
S and t being the share price of the underlying asset and time, respectively. The
parameters � and r represent the volatility of the underlying asset and the risk-free
interest rate, respectively.

It is evident that upon introducing of a new unknown function v(S; t)

V (S; t) = v(S; t)+
S�S1
S2�S1

[B(t)�A(t)] +A(t) (4)

the terminal-boundary value problem in Eqs (1)-(3) reduces to

@v(S; t)

@t
+
�2S2

2

@2v(S; t)

@S2
+ rS

@v(S; t)

@S
� rv(S; t) = F (S; t) (5)

v(S; T ) = f(S) (6)

with the homogeneous boundary conditions imposed as

v(S1; t) = 0 and v(S2; t) = 0 (7)

In view of the relation in Eq (4), the right-hand side functions F (S; t) and f(S) in
Eqs (5) and (6) are expressed in terms of the right-hand sides �(S; t) and �(S) of
Eqs (1) and (2) as

F (S; t) = �(S; t) +
S�S1
S2�S1

[r (B(t)�A(t))+A0(t)�B0(t)]

�A0(t) + rA(t) + rSA(t)�B(t)
S2�S1

and

f(S) = '(S)� S�S1
S2�S1

[B(T )�A(T )]�A(T )

As it follows from the qualitative theory of partial di�erential equations [2], the
solution to the problem setting in Eqs (5)-(7) can be written as the following sum
of two integral representations

v(S; t) =

S2Z
S1

G(S; t; eS)f( eS)d eS + TZ
t

S2Z
S1

G(S; t� et; eS)F ( eS; et)d eSdet (8)

whereG(S; t; eS) is the Green's function to the homogeneous terminal-boundary value
problem corresponding to that in Eqs (5)-(7).
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Thus, to obtain a computer-friendly analytic solution to the terminal-boundary value
problem posed by Eqs (1)-(3), one ought to have a compact form of the Green's
function G(S; t; eS). The derivation procedure for such a form is described in detail
in the next section.

2. Construction of the Green's function

Our approach to the construction of Green's function 
ows out from the procedure
which was developed earlier [3] for problems in applied mechanics. It is based on
a combination of two classical methods of applied mathematics. These are: the
method of integral Laplace transform that is widely implemented in the heat and
mass transfer, for example, and the method of variation of parameters traditionally
used for �nding general solution for linear high-order ordinary di�erential equations.
In going through the procedure, we consider the terminal-boundary value problem

@v(S; t)

@t
+
�2S2

2

@2v(S; t)

@S2
+ rS

@v(S; t)

@S
� rv(S; t) = 0 (9)

v(S; T ) = f(S) (10)

v(S1; t) = 0 and v(S2; t) = 0 (11)

Recall [2] that the solution to the above problem can be written in terms of the
Green's function G(S; t; eS) to the homogeneous problem corresponding to that in
Eqs (5)-(7) as

v(S; t) =

S2Z
S1

G(S; t; eS)f( eS)d eS (12)

This representation is used, in the present study, to actually derive the Green's
function G(S; t; eS). The emphasis is put, in our study, on the parabolic type single-
parameter equation forward in time

@u(x; �)

@�
=
@2u(x; �)

@x2
+(c�1)@u(x; �)

@x
�cu(x; �) (13)

which traditionally [4, 5] arises from Eq (9) by introducing new independent variables
x and �

x = lnS and � =
�2

2
(T� t) (14)

The parameter c in (13) is de�ned in terms of r and � as c = 2r=�2. Hence,
Eq (13) has, in contrast to the Black-Scholes equation, constant coe�cients. This
signi�cantly simpli�es the situation.

Upon introducing the variables x and � in compliance with the relations of Eq (14),
the terminal-boundary value problem of Eqs (9)-(11) transforms into the following
initial-boundary value problem

u(x; 0) = f(ex) (15)
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u(a; �) = 0 and u(b; �) = 0 (16)

for the equation in (13) posed on the semi-in�nite strip-shaped region (a < x <
b)�(0<� <1) in the x; � -plane, where

a = lnS1 and b = lnS2

Applying the Laplace transform

U(x; s) = Lfu(x; �)g =
Z 1

0
e�s�u(x; �)d�

to the setting in Eqs (13), (15) and (16), we obtain the following boundary value
problem

d2U(x; s)

dx2
+(c� 1)dU(x; s)

dx
� (s+c)U(x; s) = �f(ex) (17)

U(a; s) = 0; U(b; s) = 0 (18)

for the Laplace transform U(x; s) of u(x; �).

In compliance with the method of variation of parameters, the general solution to
Eq (17) is found as

U(x; s) =

xZ
a

e�(x��)

2!

�
e(��x)!� e(x��)!

�
f(e�)d�

+M(s)e(�+!)x +N(s)e(��!)x (19)

where the parameter ! is de�ned as ! =
p
s+ �, while the parameters � and � are

expressed as

� =
1� c
2

and � =

�
1 + c

2

�2
Satisfaction of the boundary conditions of Eq (18) yields the system of linear alge-
braic equations  

e(�+!)a e(��!)a

e(�+!)b e(��!)b

!
�
 
M(s)
N(s)

!
=

 
0

	(s)

!
(20)

in M(s) and N(s), where

	(s) = �
bZ
a

1

2!

h
e(��!)(b��) � e(�+!)(b��)

i
f(e�)d�

Solving the system in (20), we obtain

M(s) =

bZ
a

e(��!)ae�(b��)
h
e(��b)! � e(b��)!

i
2!
�
e(a�b)! � e(b�a)!

� f(e�)d�
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and

N(s) = �
bZ
a

e(�+!)ae�(b��)
h
e(��b)! � e(b��)!

i
2!
�
e(a�b)! � e(b�a)!

� f(e�)d�

Upon substituting these in (19), the latter reads as

U(x; s) =

xZ
a

e�(x��)

2!

�
e(��x)!� e(x��)!

�
f(e�)d�

+

bZ
a

e�(x��)
h
e(x�a)!�e(a�x)!

ih
e(��b)!�e(b��)!

i
2!
�
e(a�b)! � e(b�a)!

� f(e�)d�

which can be expressed in a single-integral form

U(x; s) =

bZ
a

e�(x��)

2!
�
e(a�b)! � e(b�a)!

�
�
n
e[(x+�)�(a+b)]!+e[(a+b)�(x+�)]!

�e[(a�b)+jx��j]!�e[(b�a)�jx��j]!
o
f(e�)d�

Transforming the factor e(a�b)!� e(b�a)! in the denominator as

e(a�b)!� e(b�a)!=�e(b�a)!
h
1�e2(a�b)!

i
we rewrite the above representation for U(x; s)

U(x; s) =�
bZ
a

e�(x��)

2!e(b�a)!
�
1� e2(a�b)!

�
�
n
e[(x+�)�(a+b)]!+e[(a+b)�(x+�)]!

�e[(a�b)+jx��j]!�e[(b�a)�jx��j]!
o
f(e�)d� (21)

The immediate inverse Laplace transform of U(x; s) is problematic if the latter is
kept in its current form. Therefore, we adjust it �rst by representing the factor
1=[1�e2(a�b)!] in the integrand in (21) as the sum of the geometric series

1

1� e2(a�b)!
=

1X
n=0

e2n(a�b)!

whose common ratio e2(a�b)! is clearly less than one. This transforms (21) into

U(x; s) =

bZ
a

e�(x��)

2!

1X
n=0

n
e�[�jx��j�2(n+1)(a�b)]!
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+e�[jx��j�2n(a�b)]! � e�[2b�(x+�)�2n(a�b)]!

�e�[(x+�)�2a�2n(a�b)]!
o
f(e�)d� (22)

and the inverse Laplace transform of the above can be accomplished in the term-by-
term manner. This yields the solution u(x; �) to the initial-boundary value problem
in Eqs (13), (15) and (16) in the form

u(x; �) = L�1fU(x; s)g

=

bZ
a

e�(x��)e���

2
p
��

1X
n=0

(
exp

 
� [jx��j+2(n+1)(a�b)]

2

4�

!

+exp

 
� [jx��j�2n(a�b)]

2

4�

!
�exp

 
� [2b�(x+�)�2n(a�b)]

2

4�

!

� exp
 
� [(x+�)�2a�2n(a�b)]

2

4�

!)
f(e�)d�

which converts to a more compact form by rearranging the summation in the above
series. This yields

u(x; �)=

bZ
a

e�(x��)e���

2
p
��

1X
m=�1

(
exp

 
� [jx��j+2m(a�b)]

2

4�

!

� exp
 
� [2b�(x+�)�2m(a�b)]

2

4�

!)
f(e�)d�

The solution v(S; t) to the setting in Eqs (9)-(11) can be attained by the backward
substitution of the variables x, � and � with S, t and S, respectively, in compliance
with the relations in Eq (14). With � and � replaced with the original parameters
r and � of the Black-Scholes equation, we obtain v(S; t) in the form

v(S; t) =

S2Z
S1

exp
�
� r��2=2

�2
ln(S= eS)� (r+�2=2)2

2�2
(T�t)

�
� eSp2�(T�t)

�
1X

m=�1

(
exp

 
� [ln(S=

eS)+2m ln(S1=S2)]2
2�2(T� t)

!

� exp
 
� [ln(S

2
2=S

eS)�2m ln(S1=S2)]2
2�2(T� t)

!)
f( eS)d eS

which can be transformed, by combining the logarithmic components in the series
factor. This yields

v(S; t) =

S2Z
S1

exp
�
� r��2=2

�2
ln(S= eS)� (r+�2=2)2

2�2
(T�t)

�
� eSp2�(T�t)
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�
1X

m=�1

(
exp

 
� [ln(SS

2m
1 =

eSS2m2 )]2

2�2(T� t)

!

� exp
 
� [ln(S

2(m+1)
2 =S eSS2m1 )]2

2�2(T� t)

!)
f( eS)d eS (23)

Thus, in view of the integral representation in (12), the kernel

G(S; t; eS) = exp
�
� r��2=2

�2
ln(S= eS)� (r+�2=2)2

2�2
(T�t)

�
� eSp2�(T�t)

�
1X

m=�1

(
exp

 
� [ln(SS

2m
1 =

eSS2m2 )]2

2�2(T�t)

!
�exp

 
� [ln(S

2(m+1)
2 =S eSS2m1 )]2

2�2(T� t)

!)
(24)

of the integral form for v(S; t) in Eq (23) represents the Green's function to the
homogeneous setting corresponding to that in Eqs (9)-(11).

The series in the above representation converges at a high rate. This implies that,
in computing values of G(S; t; eS), any accuracy level required for real applications
can be attained by appropriately truncating its series to the M -th partial sum as

G(S; t; eS) � exp
�
� r��2=2

�2
ln(S= eS)� (r+�2=2)2

2�2
(T�t)

�
� eSp2�(T�t)

�
MX

m=�M

(
exp

 
� [ln(SS

2m
1 =

eSS2m2 )]2

2�2(T � t)

!
�exp

 
� [ln(S

2(m+1)
2 =S eSS2m1 )]2

2�2(T � t)

!)
(25)

A multi-parameter numerical experiment has been conducted to develop practical
recommendations as to the choice of the truncation parameter M in Eq (25). Ap-
proximate values of G(S; t; eS) were computed, with a wide range of the parameters
r, �, S1 and S2 observed. The experiment strongly suggests that M � 5 is a su�-
cient condition for obtaining values of G(S; t; eS) from Eq (25) accurate to the sixth
decimal place. This allows the form from Eq (25) to be practically used in valuating
this Green's function.

3. Illustrative examples

Clearly, with the compact computer-friendly series expansion of the Green's function
G(S; t; eS) that we just derived, the integral representation in Eq (8) delivers a closed
analytic form solution v(S; t) to the problem in Eqs (5)-(7), while Eq (4) brings the
solution V (S; t) to the nonhomogeneous terminal-boundary value problem in Eqs
(1)-(3) that we started with.

In Figure 1, we depict a pro�le of the Green's function G(S; t; eS) shown in Eq (25),
where the parameters in the problem statement were chosen as: r= 0:06; � = 0:8;
S1 = 1:0; S2 = 5:0; T = 2:0; the source point was �xed as eS = 2:0, while the series
was truncated at M=5.
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Figure 2 exhibits the solution v(S; t) to the statement in Eqs (9)-(11), where r=0:06;
�=0:8; S1=1:0; S2=5:0; T = 2:0; while the right-hand side function in the terminal
condition of Eq (10) is chosen as

f(S) = 5

"�
S � S1 + S2

2

�2
+ 2

#
and the truncation parameter of the series in Eq (25) is �xed as M=5.

4. Other Green's functions

The proposed technique for the construction of computer-friendly representations
of Green's functions is also productive in other problem settings for the Black-
Scholes equation. To illustrate this assertion, we consider, as an example, a terminal-
boundary value problem on the semi-in�nite strip-shaped region 
 = (0 < S <
D)�(T >t>�1) with boudary conditions imposed as

jv(0; t)j <1 and
@v(D; t)

@S
= 0 (26)

Upon implementing the approach developed in this study, we obtain the following
compact expression

G(S; t; eS) = 1eS
�
SeS
��
exp

 
���

2

2
(T�t)

!

�

8><>: 1

�
p
2�(T�t)

264exp
0B@�

h
ln(S= eS)i2
2�2(T�t)

1CA+exp
0B@�

h
ln(S eS=D2)i2
2�2(T�t)

1CA
375

� �
 
S eS
D2

!��
e�

2�2(T�t)=2 erfc

 
�

2

q
2�2(T�t)� ln(S eS=D2)p

2�2(T�t)

!9=; (27)

for the Green's function to the homogeneous problem corresponding to that in Eqs
(9), (10) and (26). The parameters � and � are expressed in terms of the parameters
r and � from the governing equation in (1) as

� =
�2=2�r
�2

and � =

 
�2=2�r
�2

!2
and where erfc(�) stays for a special function that is referred to in literature as
the complementary Gauss error-function. Subroutines for e�ective valuation of this
function represent in nowadays an inalienable part of every computer software. This
makes the expression in (27) readily computable and attractive therefore for practi-
cians working in the �eld of �nancial engineering.

For the homogeneous terminal-boundary value problem corresponding to that in Eqs
(9) and (10) posed on the semi-in�nite strip-shaped region 
= (0 <S <D)�(T >
t>�1) with boudary conditions imposed as

jv(0; t)j <1 and v(D; t) = 0
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the Green's function is obtained in the form

G(S; t; eS) = 1eS
�
SeS
��
exp

 
���

2

2
(T�t)

!

�

8><>: 1

�
p
2�(T�t)

264exp
0B@�

h
ln(S= eS)i2
2�2(T�t)

1CA�exp
0B@�

h
ln(S eS=D2)i2
2�2(T�t)

1CA
375

Concluding remarks

Compact analytic representations of Green's functions can be obtained for a variety
of terminal-boundary value problems for the Black-Scholes equation within the scope
of the present study. They are easily accessible for both theoretical analysis and
numerical work in the �eld and can readily be used in solving a variety of problems
settings in �nancial engineering.
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Abstract

An Hierarchical (H)-matrix is a hierarchical sparse data structure. H-matrices
can be used to represent full or sparse matrices arising from integral equations or
differential equations. The corresponding H-matrix arithmetic based on the H-
matrix format defines approximate H-matrix operations with a time complexity
almost optimal. Previously we have used these approximations as precondition-
ers for iterative solvers for diverse applications. In this paper, we apply these
H-matrix preconditioners for solving the invariant probability distribution in dy-
namical systems. The experimental results show that the H-matrix preconditioners
are effective to solve the problem.
Key words: Hierarchical matrices, dynamical systems, invariant probability distri-

bution

1 Introduction

Hierarchical-matrices (H-matrices) and the corresponding hierarchical-matrix arith-
metic was introduced and developed in [1, 2, 6, 8]. Since then, the H-matrix approach
has been applied to solve the linear systems arising from integral equations, partial
differential equations[1, 3, 11, 12], etc.

The difference of H-matrices from the ordinary matrices is that H-matrices use
a hierarchical tree structure to represent a hierarchical partitioning of a matrix and
each block that is not partitioned further is represented either by a low rank matrix
(Rk-matrix) or a full matrix.

The corresponding hierarchical-matrix arithmetic includes operations such as H-
matrix addition, H-matrix multiplication, H-matrix inversion, and H-matrix LU fac-
torization, which approximate the corresponding ordinary matrix operations. The
hierarchical-matrix arithmetic takes advantage of those low rank blocks in the H-matrix
representation and uses approximation to achieve the optimal computation complexity
of O(n loga n). The fixed-rank H-matrix arithmetic keeps the rank of Rk-matrix blocks
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below a fixed constant k, and the adaptive-rank H-matrix arithmetic adjusts the rank
of Rk-matrix blocks to maintain certain accuracy in approximation.

H-matrices are suitable to represent certain full and sparse matrices. For a full
matrix, its H-matrix can be constructed based on the underlying geometric information
of the problem. Approximation is needed to represent some full blocks as low rank Rk-
matrices[6].

For a sparse matrix, algebraic approaches [7, 10] can be used to represent it in
the H-matrix format. Algebraic approaches are based on Heavy Edge Matching[9],
Nested Dissection[5] or Bisection and they do not need the geometric information of
the problems. They can work on the matrix graphs directly and the off diagonal blocks
with only zero entries are represented as Rk-matrices with rank 0.

The H-matrix approach provides an approximate but cheap way to perform matrix
operations. It can be used to build preconditioners in iterative methods to solve large
scale systems of linear equations.

The problem considered in this paper is to compute the invariant probability dis-
tribution p, in the dynamic system xt+1 = f(xt), where f is the shift function. To get
p results in solving a dense system. Instead of solving the dense system directly, we use
algebraic H-matrix construction approach to partition and convert the dense matrix
into an H-matrix, which needs much less storage. Then H-matrix arithmetic is applied
to the H-matrix to obtain the H-matrix-LU factors, which are used as preconditioners
in iterative methods. The numerical results show that the H-LU preconditioners are
cheap to calculate, yet they speed up the convergence of GMRES greatly.

The paper is organized as follows: Section 2 is an introduction to H-matrices and
H-matrix arithmetic; In Section 3 we introduce the dynamic system and describe the
approach we used to construct a H-matrix; finally in Section 4 we present the numerical
results.

2 H-matrix and H-matrix arithmetic

The structure and definition of H-matrices is based on the index cluster tree TI and
the block index cluster tree TI×I .

2.1 Index Cluster Tree and Block Cluster Tree

An index cluster tree TI defines a hierarchical partition tree over an index set I =
(0, . . . , n− 1). TI has the following properties: its root is I; any node i ∈ TI either is a
leaf or has children S(i); the children of a node are pairwise disjoint. So the leaves of
TI form a partition over I.

A block cluster tree TI×I is a hierarchical partition tree over the product of index
set I × I. TI×I is constructed based on TI and the admissibility condition: its root is
I × I; if s× t in TI×I satisfies the admissibility condition, then it is an Rk-matrix leaf
and the corresponding block is represented in the Rk-matrix format; else if #s < Ns or
#t < Ns, it is a full-matrix leaf and the corresponding block is represented in the full
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matrix format; otherwise s×t has children on the next level and its children (subblocks)
are defined as S(s× t) = { i× j | i, j ∈ TI and i ∈ S(s), j ∈ S(t) }.

Ns is a constant used to control the size of the leaf blocks in order to maintain the
efficiency of the H-matrix arithmetic. Usually we choose Ns ∈ [10, 100].

An admissibility condition is used to determine whether a block should be ap-
proximated by an Rk-matrix. Different admissibility conditions can be used in the
construction of H-matrices. The papers [1, 2, 6] give further details on adapting the
admissibility condition to the underlying problem or the cluster tree.

Given TI×I , an H-matrix H can be defined as follows: H shares the same tree
structure with TI×I ; the data are stored in the leaves; for each Rk-matrix leaf s× t ∈
TI×I , its corresponding block Hs×t is a Rk-matrix; and full matrix leaves satisfy that
#s < Ns or #t < Ns.

Fig. 1 shows an example of TI , TI×I and the corresponding H-matrix.

  {0 1}X{0 1}  {0 1}X{2 3}  {2 3}X{0 1}  {2 3}X{2 3}

{0}  {1}  {2}  {3}

  {0 1} {2 3}

{0}X{0} {0}X{1} {1}X{0} {1}X{1}

{0 1 2 3}X{0 1 2 3}{0 1 2 3}

(a) (b) (c)

RK RK

  0    1    2    3 

0

1

2

3

Figure 1: (a) is TI , (b) is TI×I and (c) is the corresponding H-matrix. The dark blocks
in (c) are Rk-matrix blocks and the white blocks are full matrix blocks.

2.2 H-matrix Arithmetic

H-matrix Arithmetic is based on the block tree structure and Rk-matrices.
Rk-matrices are the basic building blocks of H-matrices. An m × n matrix M is

called an Rk-matrix if rank(M) ≤ k and it is represented in the form of a matrix
product M = ABT , where A is m × k and B is n × k. The storage of a Rk-matrix
is of O(k(m + n)). The multiplication of a Rk-matrix with another matrix yields a
Rk-matrix. But the addition of two Rk-matrix gives a R2k-matrix. Truncated Singular
Value Decomposition (SVD) [1, 6] can be used to add two Rk-matrices together and
gives an approximate sum which is a Rk-matrix.

The following is an introduction of the operations that are defined in the H-matrix
arithmetic[1, 2]. Because of the hierarchical tree structure of H-matrices, these oper-
ations are defined recursively, starting from the root of the cluster tree until reaching
the leaves. The multiplication of a H-matrix with a vector gives a vector and no ap-
proximation is needed. The addition of two H-matrices with the same block cluster
gives the approximate sum with the same block tree structure. Truncated SVD is used
to add two Rk-matrix block to maintain the low rank.

The multiplication of two H-matrices gives an approximate result with the same
tree structure. Hierarchical conversion is used to approximate an H-matrix by a Rk-
matrix.

335



The inversion of an H-matrix is based on Gauss-Jordan elimination, except that
the ordinary matrix operations are replaced by the H-matrix operations.

H-LU factorization factors a H-matrix and generates approximate LU factors in the
H-matrix format. First a H-matrix triangular solve is defined, which solves an upper
or a lower triangular system in the H-matrix format. Then the H-LU factorization of
H-matrix [

A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
(1)

is obtained by the following steps:

• first recursively call H-LU factorization applied to A11 and we get L11 and U11;

• second use a H-matrix triangular solver to solve A12 = L11U12;

• third using a H-matrix triangular solver to solve A21 = L21U11;

• finally recursively callingH-LU factorization to factor A22−HL21∗HU12 = L22U22.

if A11 or A22 is a full matrix block, then the LU-factorization for full matrices
is called. Analogously H-Cholesky factorization can be defined. The computational
complexity of theH-matrix arithmetic strongly depends on the structure of TI×I . Under
fairly general assumptions on the block cluster tree TI×I the complexity of H-matrix
operations is O(n logα n) [6, 8].

Mostly H-matrix operations only give approximate results, so we can not use them
to solve the problem directly. But they are suitable for constructing preconditioners in
iterative methods. The candidate of H-matrix preconditioners are H-matrix inverses,
H-LU factors and H-Cholesky factors. Among them, H-inverses are most expensive
to compute, so usually we use H-LU factors, or H-Cholesky factors if the matrices are
symmetric.

3 Model problem

3.1 Model problem

The problem is to find the invariant probability distribution p in the following dynamic
system:

xt+1 = f(xt), x ∈ [0, 1], f(x) ∈ [0, 1]. (2)

To discretize (2), [0, 1] is divided into n subintervals of equal length l = 1/n. In our
case f is defined as f = αx(1− x), where α is a constant. So for each x ∈ [xi, xi+1], f
maps x to some interval: f(x) ∈ [xj , xj+1].

A matrix A = [aij ] can be constructed, where ai,j is the probability that function f
maps x ∈ [xj , xj+1] to the interval [xi, xi+1]. Matrix A has the following properties: A is
sparse and nonsymmetric and

∑
j aij = 1. Fig. 2 shows an example of the distribution

of nonzero entries in matrix A.
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Figure 2: The distribution of nonzero entries in A. The black dots represent nonzero
entries.

Each entry pi in the invariant probability distribution vector p is the probability
that x ∈ [xi, xi + 1], and Ap = p.

So to get p, we need to solve the following system:

(A− I)p = 0, where eT p = 1, (3)

where e is a vector of 1’s.
The system (3) is singular. To avoid solving the singular system, we solve the

following nonsingular linear system:

(A + eeT − I)p = e. (4)

The system (4) is nonsingular, but it is full. But most entries of (A + eeT − I)
are 1’s, which means some of its blocks can be represented exactly in Rk-matrices of
rank 1. So we use iterative methods with H-matrix preconditioners to solve the above
system.

3.2 H-matrix construction

To build H-matrix preconditioners for solving (4), first we need to represent matrix
(A + eeT − I) in the H-matrix format. (A + eeT − I) is nonsymmetric, so the algebraic
H-matrix construction approaches which are based on the matrix graphs can not be
applied directly.

We choose the algebraic H-matrix construction based on bisection.
So the process to construct an H-matrix H for (4) based on bisection works in the

following way: the root of H is I × I; for each node in H if it corresponds to a block of
rank 1, then it is a leaf and the block is represented in Rk-matrix format; otherwise if
the number of rows or columns of the block is ≤ Ns, the node is a leaf and the block
is represented in full matrix format; otherwise the block is split into four subblocks of
roughly equal size and the node has four children.

The above process can represent A+ eeT − I exactly as an H-matrix. Fig. 3 shows
an example of a H-matrix representation of matrix A + eeT − I with 8 rows and 8
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columns. In this example, Ns = 1 and the blank blocks represented Rk-matrices of
rank 1 and the blocks with dots inside represent full matrix blocks.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 27

R R 

R 

R 

R 

R 

R R R 

R 

R R 

R 

R 

R 

R 

R 

R 

R 

R 

R 

R 

Figure 3: An example of the H-matrix representation of matrix A + eeT − I. Letter R
indicate Rk-matrix blocks.

4 Experimental Results

In this section, we present the numerical results of applying the H-matrix approach to
solve the system (4).

To solve the problem, we first represent the matrix of (4) in the H-matrix format.
Then we compute H-LU factors, which are used as the preconditioners for GMRES.

In our experiment, we use the fixed-rank H-matrix arithmetic, since it gives better
overall performance than the adaptive H-matrix arithmetic. In the fixed-rank H-matrix
arithmetic, we set k = 4. That means the rank of the RK-matrix blocks is remained
≤ 4. We also set the constant Ns = 40 to control the size of the leaf block in the
H-matrix format.

The size of the problems tested is 1024, 8192, 65536 and 261344 respectively. The
experiments were carried out on a dual processor computer with 64-bit Athlon 6
4200++ CPUs and 3GB of memory.

To see the computation complexity at each stage in solving the problem, we split the
total time that is needed to solve the problem into two parts: the time to compute H-
LU preconditioners (set-up time) and the time of GMRES iteration (GMRES iteration
time). Fig. 4 shows the set-up time, the time of the GMRES iteration, and the total
time.

Based on Fig. 4, the set-up time contributes to a major portion of the total time,
compared the time of GMRES iteration. Yet the time of computing H-LU precondi-
tioners increases almost linearly as we increase the size of the problem, even though
(4) is a dense system. That means the H-matrix arithmetic is efficient to compute the
preconditioners to solve these systems.
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Fig. 5 shows the convergence rates. As the size of the problem increases, we can
see the convergence rates decrease gracefully.

Based on above results, we can see that H-LU preconditioners are cheap to compute
yet they speed up GMRES iterative method greatly.
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Abstract 

This is a template for the proceedings of CMMSE 2007, with instruction 

for authors and some sample text. There are some requirements for the 

spectral analysis using FFT (a minimum length of timeseries, continuous 

rate of sampling), and this prevents from its use with a number of data in 

various fields of engineering and natural sciences. To overcome these 

problems, we present the “Normperiod” Code.  This code is based on the 

Lomb Normalized Periodogram and it permits the analysis of 

discontinuous or non-equidistant time series without prior interpolations. 

It is also very simple, it can be easily modified, it can be used in the 

analysis of both very short and very long time series and it also permits 

the determination of the statistical significance of obtained results. The 

efficiency of this code is demonstrated on the basis of two examples: (1) 

the spectral analysis of a steel bridge vibration record due to a passing 

train and (2) the spectral analysis of Kremasta Dam reservoir level 

fluctuations over a period of 37 years.  

 

 

Key words: spectral analysis, unevenly spaced data, Lomb periodogram, 

fortran code 

 

1. Introduction 

The most common spectral analysis technique is Fourier Transforms and more 

specifically the algorithm of Fast Fourier Transforms (FFT; [1]). Since FFT was 

developed mainly for digital signal processing purposes the algorithm was adjusted to the 

characteristics of digital signals, i.e. hundreds or even thousands equally-spaced values, a 

small signal-to-noise ratio etc.   

 

However, in certain cases the requirements of this technique (a certain minimum number 

of data, constant sampling rate) are not satisfied for various reasons (interruptions in 
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sampling or irregularities in the records to be analyzed are common). Additionally, in 

numerous cases data are collected non-automatically, at irregular intervals; for instance 

geodetic, astronomic, geological, volcanological, climatological data etc [2], [3]. This 

makes necessary an alternative technique for spectral analysis.  Such a technique that 

could easily be applied to non-equidistant data was proposed by [4] about thirty years 

ago.  

 

In this study we are based on the Lomb algorithm and present the “Normperiod” code, a 

code that can analyze short and long irregularly spaced time series.  This code also 

permits estimation of the statistical significance of the obtained results. The effectiveness 

of the code is demonstrated on the basis of two case studies. 

   

2. The Lomb Normalized Periodogram 

[4] and later [5] developed an algorithm for the spectral analysis of both evenly and 

unevenly data, as well as of short time series. This algorithm, known as the ‘Lomb 

normalized periodogram (LNP)’, is based on the least-squares fitting of a periodic 

polynomial to the available data and leads to a spectrogram.  What is known as 

“amplitude” in the FFT spectrum is in our case is named “LNP”, it corresponds to a 

normalized amplitude and for a specific period T is defined by  
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where the parameter τ  is defined by the equation 
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and N number of data points 

 ti time at which the displacement i was measured 
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This process is repeated for all values of T, and hence a spectrogram is produced. In 

addition, the significance level of LNP (i.e. of the normalized amplitude) is defined by 

equation 

])1(1ln[

1

0
Npz −−−=         (5) 
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where z0 power level above which the value P(T) of the LNP is statistically 

significant with (1-p)*100% confidence level. 

p significance level 

N number of data points. 

 

Two basic advantages of this code are first, that results are rather insensitive to 

limitations of the Nyquist frequency, if the spectrogram is based on non-equally spaced 

data.   And second, because it is based on least-squares and eq. (1) the LNP values can be 

produced even with a short times series, since this equation permits a very high 

redundancy. 

 

3. The “Normperiod” code 

“Normperiod” code was developed on the basis of the procedure proposed by [4]. It 

computes (a) the value P(T) of the periodogram using eq. (1) and (b) the value of P(T) for 

a (1-p)*100% confidence level using eq. (5). 

 

The code is written in Fortran programming language, runs in DOS environment and 

efforts were made in order to be easily modifiable by potential users.   

 

The INPUT consists of two files written in simple format and the values of four 

parameters ; the total length N of the time series to be analyzed, the total time interval tr 

covered by the time series, the desired confidence level p (i.e. 95%) and the value for the 

parameter named “fratio”, an integer taking values 1, 2, 3.. which defines how many 

times higher than the Nyquist frequency fc the user desires to compute the periodogram 

(for more information see [6]).  

 

The total number of frequencies fi at which the periodogram is determined and is given 

by the formula [1] 

 

Np = 
2

4* Nfratio
                                           (6) 

 

where N is the length of the time series 

 

The interval between two consecutive frequencies for the calculation of the periodogram 

is equal to 

 

fstep = 
p

rr

N

tt

N
fratio

4

1
* −

                    (7) 

 

The output file contains the values of the frequency spectrum of the time series. It 

consists of two columns representing the frequency f and the corresponding 

343



CMMSE 2007 

 

dimensionless value P(T) of the LNP (power of spectrum). The format of the output file 

permits a spectrum plot when exported into a graphic environment. Further details can be 

found in [6]. 

 

The application and effectiveness of the Lomb periodogram is highlighted in the 

following case studies. 

 

4. Case study 1: Spectral Analysis of the RTS monitoring record of a railway 

bridge  

In order to investigate the response of the midspan of a 30m long steel railway bridge in 

Central Greece under dynamic loads (passing trains) we carried out a number of 

experiments. Using GPS (Global Positioning System) and RTS (robotic total station) 

technology, we recorded the movements of a control point located on the middle span of 

the bridge before, during and after a passing train.  

 

Data used in this study consist of RTS recordings of the vertical movements-response of 

the bridge to a passing train (Fig.1a).  

 

 

 
 

 

Fig. 1 (a) Vertical displacements recorded by robotic theodolite (RTS) at the deck of a 

short-span railroad bridge in central Greece. (b) The corresponding frequency spectrum 

using the “Normperiod” code. Straight line represents the 95% confidence level. A 

dominant frequency of 0.45Hz is revealed. Frequencies at the left edge of spectrum are 

not statistically significant (edge effect; [1]) 
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What is evident is that this time series consists of three parts: a first and third part 

indicating very small amplitude, apparent displacements before and after the passing of 

the train (i.e. when no displacement of the bridge is expected). These parts of the time 

series reflect and define the measurement noise and the accuracy level in our data.  And a 

middle section indicating a significant oscillation with duration of several tens of 

seconds. Analysis of this last section can permit to define the dynamic characteristics of 

this structure. 

 

Spectral analysis was not possible using FFT, for the available time series was too short 

(approximately 120 values). Zero padding could be used, but it would lead to biased 

results, unacceptable for this particular case. Furthermore, data were not sampled at a 

constant rate, and hence any transformation of the available time series to a new one, 

based on interpolation techniques would lead to additional noise. For this reason we used 

the method of the Lomb Normalized Periodogram and the “Normperiod” code. The result 

of this spectral analysis is shown in Fig. 1b. A dominant frequency equal to 0.45Hz was 

revealed. This frequency probably corresponds to the interaction between train and bridge 

deck [8]. 

 

5. Case study 2: Spectral Analysis of the fluctuations of the Kremasta Dam 

reservoir level  

Dams deform in response to changes in their reservoir load, and the spectral analysis of 

the fluctuations of the reservoir levels is important to understand dam dynamics [9], [7]. 

In this study we present the results of the analysis of the Kremasta dam (Greece), one of 

the major earthen dams in Europe.   Available data consisted of the daily values of the 

reservoir level along a period of 37years. The total length of the reservoir level data set 

was 13944  values, but this long record contained gaps of about 1.5% of its total length.  

Spectral analysis was based on LNP and the periodogram was calculated using the 

“Normperiod” code. Only the peaks that were detected above the 95% confidence level 

were assumed as statistically significant. Spectral analysis of the reservoir level 

fluctuations revealed > 10 statistically significant frequencies. The period corresponding 

to one year representing the annual change of water was prevailing (fig.2b).  

 

Since the percentage of gaps was small, as noticed above, we computed the spectrum of 

these data using FFT and interpolations. For comparison, both FFT and LNP spectra are 

shown in Fig.2. Results for both methods were almost the same for main frequencies, 

certifying the accuracy of “Normperiod” results, but the FFT results were more noisy. 
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Fig. 2  Spectral analysis of the Kremasta Dam reservoir level values: (a) FFT spectrum. 

Periods with values between 8 months and 9.5 years were detected, (b) Lomb 

periodogram.  More than 10 significant frequencies were detected with values between 

the range 1yr – 8.6yrs. In both spectra the period of 1 year is prevailing. 

 

6. Conclusions 

The case studies presented above indicate that the “Normperiod” code, based on the LNP, 

has an important merit. It can effectively and easily analyze both short and very long, 

evenly and non-evenly spaced, as well as discontinuous time series providing information 

about their spectral characteristics as well as the statistical significance of the results.  

This new code is available free of charge and can be used in various fields of engineering 

[10] and natural sciences. 
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Abstract 
A fundamental problem in computer aided geometric design (CAGD) 
and computational science and engineering (CSE) is the efficient 
computation of all roots of a system of nonlinear polynomial equations 
in  variables that are contained within an -dimensional box. This 
paper presents algorithms to bound solution sets of systems of polyno-
mial inequalities and equations using the expansion of a multivariate 
polynomial into Bernstein polynomials, and this expansion is used to 
find tight bounds for the range of the polynomial over a given box. 
The presented techniques to solve such problems rely on expansion 
and subdivision. Then, the Bernstein expansion, and tight bounds for 
the range of the polynomial are used to present algorithms for 
solutions of a system of polynomial inequalities and equations, and to 
solve constrained convex optimization problems involving 
polynomials. In order to isolate all of the roots within the given 
domain, we use the tighter bounds, subdivision, and implement an 
existence test. The numerical example dealing with the enclosure of 
the solution set of systems of polynomial inequalities and equations, 
and the solution of constrained convex optimization problems are 
presented. 

n n

 
Key words: Bernstein polynomials; CAD; CAGD; CAM; CSE, 
constrained convex optimization; geometric modeling; polynomial 
inequalities; polynomial equations range enclosure; robust stability; 
solid modelling 
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1. Introduction 
Systems of polynomial inequalities and equations appear in difference branches of 
science and engineering, e.g. for example, in geometric intersection computations for 
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computer aided geometric design (CAGD), computer aided design (CAD), computer 
aided manufacturing (CAM); chemical equilibrium problems; chemical combustion 
and kinematics; and control and robust stability in electrical science, etc., for 
application area details see Morgan [1]. A fundamental problem in the systems of 
polynomial inequalities and equations is the efficient computation of all solutions to a 
system of nonlinear polynomial inequalities and equations within some finite domain. 
Specifically, this problem arises in many different applications for example, in 
CAGD/CAD/CAM: it is often necessary to identify all characteristic points of an 
intersection curve between two surfaces, in order to trace out all of the branches of the 
curve; if the surfaces are piecewise rational polynomial, we must solve a system of 
nonlinear polynomial equations in order to identify these points; in feature recognition: 
computing the medial axis transform requires the determination of branch points, which 
can frequently be formulated as the solution set of a polynomial system; and in robotic 
motions: computing distance functions and extremum, in arranging distributive systems 
in complex mechanical platforms, etc. The methods for the solution of such a system 
can be classified as methodologies based on elimination theory, continuation, and 
subdivision. The methods based upon elimination theory for constructing Gröbner 
bases rely on symbolic computations which are inherently computationally expensive 
(i.e. for example solution of Problem 1 discussed later in Section 3 by a symbolic 
computation based method will take about 7200 seconds) for polynomials. Hence, these 
are unsuitable for larger problems. Additionally, the methods based upon elimination 
theory and continuation exhaustively computes more information than is really needed. 
For example they determine all complex solutions of the system though in applications 
often only the solutions in a given area of interest (i.e. within a box) are desired. The 
subdivision based methods apply a domain splitting approach that starts with the box of 
interest, and these algorithms sequentially splits the box of interest it into subboxes 
eliminating infeasible boxes by using bounds for the range of the polynomials under 
consideration over each of them and ending up with a union of boxes that contains all 
solutions to the system which lie within the given box. The methods utilizing this 
approach shall include interval computation techniques as well as the methods that 
apply the expansion of a multivariate polynomial into Bernstein polynomials. 
Theoretically, any interval computation method for solving a system of nonlinear 
equation (e.g. Hansen [2]; Jaulin et al. [3]; Kearfott [4]; and Neumaier [5]) can be 
applied to a polynomial system. The techniques specially designed for polynomial 
systems are more efficient in computing time. Therefore, in the present work we 
investigate a subdivision based method. Among the existing algorithms, the subdivision 
methods are used in-practice because of their performance and efficiency. The Interval 
Projected Polyhedral (IPP) algorithm (Sherbrooke and Patrikalakis [6]; Patrikalakis and 
Maekawa [7]) is most widely used in-practice. Sherbrooke and Patrikalakis [6], 
Patrikalakis and Maekawa [7], use Bernstein expansion sequences of bounding boxes 
for solutions of the nonlinear polynomial systems of equations. They have presented 
two methods: the first method projects control polyhedra onto a set of coordinate planes 
and the second exploits linear programming. But, neither have they explored the 
relationship between the Bernstein coefficients on neighboring subboxes, nor any 
existence test for a box to contain a solution that might have improved the 
computational efficiency of the algorithm. Furthermore, they formulate the 
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]

optimization problem by simply a linear programming problem (LPP). The LPP can be 
solved efficiently, but in the absence of a functional analysis the solution can not be 
guaranteed to a global maximum/minimum and only local maxima/minima can be 
computed. 
 
In this paper, we describe techniques for computing all real solutions to a system of  
nonlinear polynomial equations in  unknowns over an -dimensional rectangular 
domain. We use Bernstein expansion, and incorporate the relationship between the 
Bernstein coefficients on neighboring subboxes in all the algorithms. Additionally, 
from ‘real analysis’ we include an existence test (Neumaier [5]) for a box to contain a 
solution. As for the optimization problem, we use convex analysis (Rockafellar [8]; 
Magaril-Ilyaev and Tikhomirov [9]) and treat the optimization problem as a problem of 
convex optimization (Bertsekas et al. [10]; and Boyd and Vandenberghe [11]) that 
guarantees the computation of a global maximum/minimum. 

n
n n

 
The remaining of the paper is organized as follows: Section 2 briefly presents the 
mathematical preliminaries that are essential to present our work. The theoretical 
background to enclose the solution set of a system of polynomial inequalities is 
presented in Section 3. And, also we present the Bernstein expanded and interval 
subdivision algorithm (BEIS). 4. Section 4 presents the enclosing of the solution set of 
a system of polynomial equations, and Bernstein expanded projected polyhedron 
algorithm (BEPP) is presented. The constrained convex optimization is explained in 
Section 5, and the Bernstein expanded convex optimization (BECO) algorithm is 
presented. Section 6 concludes the paper by identifying some future applications, and 
scope of research. Comprehensive theoretical details and a thorough treatment of the 
results of this paper can be found in Sharma and Sha [12]. 
   

2. Preliminaries  
Following [7], Farin [13], and Garloff [14]; let a polynomial  with real coefficients 
be given, 

p

( ) ∑
=

=
l

0i

i
i xaxp                  (1) 

where  is a real number, and  is integer powered. It is of interest to know the range 
of  over an interval , i.e., 

ia ix
p [ ba,

[ ]( ) ( ) [ ]{ }ba,ba, ∈= x;xpp .                (2) 
We can assume without loss of generality that [ ]ba,  is the ‘unit interval ’. 
Now, we present  as a linear combination of the Bernstein polynomials of the same 
degree, 

[0,1=U ]
p

( ) l,...,0i,x1x
i
l

B ili
i =−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −                 (3) 

and i.e., 
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( ) ( )∑
=

=
l

0i
ii xBbxp .                 (4) 

In Equation (4) the coefficients  are the ‘Bernstein coefficients’, and are treated as 
weighted sums of the coefficients of 

ib
p , 

∑
=

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
i

0j
ji l,...,0i,a

j
l
j
i

b .                (5) 

Using a difference scheme derived from de Casteljau algorithm these coefficients are 
computed efficiently. The bounds for the range of  over U  are computed directly 
from Bernstein coefficients utilizing range enclosing property; 

p

( ) [ ]il
0ii

l
0i bmax,bminUp ==⊆ .                (6) 

Similarly, we formulate this property by introducing the control points l,...,0i,
b
l
i

i

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
, 

as the convex hull property, 

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⊆

⎭
⎬
⎫

⎩
⎨
⎧

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
l,...,0i:

b
l
i

convxUx:
xp

x

i

                 (7) 

where  denotes the convex hull of  (i.e. convex set that is smallest, and 
contains ). For practical implementation these bounds are improved by subdividing 
(i.e. the number of divisions is decided with iterative method, and with user specified 
tolerance) the interval, and the same procedure is applied over the divided subintervals. 
The important steps in subdivision algorithm are given in Fig. 1. Then  is 
contained in the union of the individual convex hulls of the control points on the 
subdivided intervals. The Bernstein coefficients of on subdivided intervals are 
calculated from those on U  by implementing a recursive arithmetic algorithm (i.e. 
derived from de Casteljau algorithm). Since, the algorithm is recursive, Bernstein 
coefficients are computed efficiently. The sequential lower and upper bounds computed 
in the recursive algorithm converge with quadratic convergence (i.e. to  and 

). We obtain the Bernstein coefficients  of the derivative of 

Sconvx S
S

( )Up

p

( )Upmin
( )Upmax '

ib p  by simply 
forming forward difference of its Bernstein coefficients, 

( ) 1l,...,0i,bblb i1i
'
i −=−= + .               (8) 

For the multivariate case, the Bernstein polynomials are defined as the product of the 
univariate Bernstein polynomials, 

( ) ( ),xB,...,xB nn1i                  (9)  
where  is the number of variables in the multivariate polynomial. Now, we assign all 
indices of the univariate case multiindices (i.e. 

n
( )Tn1 i,...,ii = , as vectors and where all 
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the  elements are positive integers) in multivariate case. The division of multiindices 
 and  is computed element wise, 

n
i l

T

n

n

1

1

l
i

,...,
l
i

:
l
i

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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⎠
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⎝
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⎠
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⎛
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⎠
⎞

⎜
⎝
⎛ .                         (10) 

For any , its multipower decomposition is expressed as, nR∈x

∏
=

=
n

1

ii x:x
τ

τ
τ                           (11) 

and for the -fold summation, we use, n

∑∑∑
===

=
nl

0ni

1l

01i

l

0i
,...,:                          (12) 

and define the generalized binomial coefficients by, 

∏
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ n

1 i
l

:
i
l

τ τ

τ .                           (13) 

 
i. Start.  

Number of subdivisions = 1l + , 

Subdivided intervals =  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
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⎜
⎝
⎛

+
−

−⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
−

+ babbabaa ,
1l

,...,
1l

, , 

If the root is computed, go to (ii). 
If the root is not computed, 
Number of subdivisions = )1l.(2 + , 

Subdivided intervals =  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
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⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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⎛
+
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

+ babbabaa ,
)1l.(2

,...,
)1l.(2

, , 

If the root is computed, go to (ii). 
If the root is not computed, 
Number of subdivisions = )1l.(3 + , 

Subdivided intervals =  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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−⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

+ babbabaa ,
)1l.(3

,...,
)1l.(3

, , 

If the root is computed, go to (ii). 
If the root is not computed, 
Compute the left-most root of the derivative polynomial, and go to (ii). 

ii. Stop.  Fig. 1. 
The subdivision algorithm for interval. 

 
Now, the set U  is a unit box of dimension , n

[ ]nu 0,1= .                        (14) 
The Bernstein coefficients form an  dimensional array (i.e. patch), and the n  variate 
polynomial 

n
p  of degree  is represented as in the form of Equation (1) 

using transformation of Equation (9). The Bernstein polynomials are given by Equation 
(2). Furthermore, as in Equation (8), we obtain the Bernstein coefficients of the partial 

( T
n1 l,...,ll = )
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derivatives of  by forming forward differences of the Bernstein coefficients of  in 
the direction that corresponds to the co-ordinate direction. 

p p

 

3. Enclosing the solution set of a system of polynomial inequalities: Bernstein 
expanded and interval subdivision algorithm 
Following Prasolovand Leites [15], and Borwein and Erdelyi [16], let us consider a 
system of polynomial inequalities, i.e., 

( ) k,...,1i,0xpi =〉  and                         (15) Xx∈
where the  variate polynomials  and the  dimensional box n ip n X  are given, and it is 
desired to find the solution set ∑  (i.e. set of vectors  that satisfies Equation (15)) of 
the sytem. Additionally, to present practical implementation, let a box, 

x

⎥⎦
⎤

⎢⎣
⎡××⎥⎦

⎤
⎢⎣
⎡=

n

n

1

1
q,q...q,qQ                                  (16) 

and a univariate polynomial, 

( ) ( )∑
−

=
m

0i

i
i xa,xp qq                          (17) 

be given with coefficients dependent on parameters  and , i.e., n1 q,...,q T
n1 )q,...,q(=q

( ) ( )
( )

∑
=

=
kl

0i

ik
ik qαα q .                            (18) 

The parametric vector q  is varying inside . Now the problem is to determine -
stablity (i.e. a polynomial is -stable if all its zeros lie inside the prescribed subset  
of the complex plane) region of the polynomial (i.e. Equation (17) in the given 
parametric box , i.e., 

Q D
D D

Q
( ){ }Dx,,xp:Q ∉∀≠∈ ϕqq                (19) 

where ϕ  is a null set. Now, we present the Bernstein expanded and interval subdivision 
(BEIS) algorithm. To start the computation we need a approximation of the solution set 

. For numerical purpose we define inner and outer approximations. The inner 
approximation (
∑

I∑ ) is defined as the union of subboxes of Q  on which all the 
polynomials  are positively valued. Similarly, the outer approximation ( ) is 

defined as the union of subboxes of  on which all the polynomials  are negatively 
valued. Then, the regions are clipped sharply to generate the boundary (

ip O∑

Q *
ip

∑δ ). The 
boundary ( ∑δ ) is defined by the union of subboxes of Q  on which the polynomials 

 are positively valued, but on which at least there is one polynomial that is negative 
valued. The positivity of a polynomial is checked by the sign of its Bernstein 
coefficients using the range enclosing property (i.e. the set 

ip

I∑  consists of the subboxes 
on which the Bernstein coefficients of all the polynomials  are positive) as given in 
Equation (6).  

ip
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The above-mentioned algorithm, and all other algorithms of the present work have 
been implemented in C++ using its object-oriented features on a Silicon GraphicsTM* 
OriginTM* 200 workstation.  
 
Problem 1: From the application of stability criteria (Abdallah et al. [17]), we consider 
the following system of polynomial inequalities for the three positive parameters 

, and the conditions are, 321 x,x,x

( ) 0x.x 2
21 〉                        (20) 

( ) 01xxxx.x 3
2

3121 〉−−++−                                   (21) 

( ) ( ) 0x4x4xx2x.xx.x 3
2

3
3

313121 〉+++−−          (22) 

( ) ( ) ( ) 321
2

213
2

21
3

21 x.x.x2x.x4x.x.xx.x +−− ( ) ( ) 32
2

32
3

3221 x.x2x.x5x.x2x.x4 ++++  

( ) ( ) 0x4x4x 3
2

3
3

3 〉−−                           (23) 

( ) 232
2

32121 x4x.x4x.xx2x.x −−−− ( ) 02x3x2 3
2

3 〉−++                   (24) 
with , , and [ ]90,130∈1x [ 1,3−∈2x ] [ ]0,30∈3x . In less than a second, the Bernstein 
expansion provides an inner approximation of the solution set. To visualize the solution 
set we select  = 110. The set of feasible and unfeasible regions (i.e. region bounded 
by the closed curve is feasible, and the region outside of closed curve is unfeasible) for 
inner approximations of parameters , and  for this parametric value (i.e.  =110) 
is shown in Fig. 2. 

1x

2x 3x 1x

 
Set of Feasible Values
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m
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Fig. 2. The set of feasible values for the parameters , and  for = 110. 2x 3x 1x

 

4. Enclosing the solution set of a system of polynomial equations: Bernstein 
expanded projected polyhedron algorithm 
Following [15], let us consider a system of equations, i.e., 
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( ) k,...,1i,0pi ==x ; ; and Q∈x ( ),...,y,x=x ,         (25) 
where ,...,y,x  depend upon the number of variables, and again the  are polynomials 
in  variables and Q  is an -dimensional box. These types of polynomial system of 
equations are important in many applications areas of engineering sciences (e.g. CAGD 
- geometric intersection computations; chemical and mechanical kinematics - chemical 
equilibrium problems, combustion, and kinematics, etc.). Now, we present the 
Bernstein expanded projected polyhedron (BEPP) algorithm. The important steps in 
solution algorithm for system of polynomial equations are given in Fig. 3. 

ip
n n

 
Problem 2: From the area of CAGD ([6]), we consider the problem of computation of 
significant points of a planar algebraic curve. This problem in computer aided design 
deals with the discovery and subsequent tracing of all branches of an implicit algebraic 

curve . The computation of ‘turning points (i.e. where ( ) 0y,xpi = 0
x
pp =
∂
∂

=  or 

0
y
pp =
∂
∂

= )’ or ‘critical points (i.e. where 0
y
p

x
p

=
∂
∂

=
∂
∂ )’ is important in solving this 

problem,  Sakkalis and Farouki [18]. Let us find the critical points of, 
( ) v.u140v.u96v128v64y,xp 2234 +−+−= 422 u96v75v.u140v.u96v139 −+−+−  

036u165u313u276 23 =−+−+ .                       (26) 
After the partial differentiation the polynomial reduces to two simultaneous equations 
which are solved. Now, this problem has nine solutions. All these solutions are 
computed within a tolerance of . The computational results are shown in Table 1. 
The details and a figure of the curve can be found in [12]. 

1010−

 
Table 1. Computational results for Problem 2. 

Computational features 

Tolerance =  1010− Steps in interval subdivision (ref. Fig. 1) = 3 

Number of solutions = 9 Number of existence tests performed = 30 
Number of boxes = 3367 Computational time (in seconds) = 90 

 

5. Constrained convex optimization 
 
Following [10], and [11], a constrained optimization problem is defined as, 

( )xfmin
Mx∈

                           (27) 

where the set M  of the feasible solutions is given by inequality and equality 
constraints, 

( ) 1i n,...,1i,0xg =≤ ,                                                 (28) 
( ) 2j n,...,1j,0xh == ,                                                 (29) 

Xx∈ .                                                                           (30) 
Here  is a subset of , D nR X  is a box in , and , , and  are real valued 
functions within the domain . 

D f ig jh
D
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i. Start.  
a. Implement affine parametric transformation from interval [ ]ba,  to the ‘unit interval [ ]0,1=U ’. 
b. Transform the basis of functions from ‘monomial’ to ‘Bernstein’. 
c. Utilize ‘the linear precision property’ of the ‘Bernstein polynomial’ as given in Equation (3). 
d. Subdivide the interval using algorithm (ref. Fig. 1). 
e. Univariate case: Create the graph, and convex hull of the function ( ) k,...,1i,0pi ==x . Then, the 
graph will be a Bézier curve, 

 ( ) ( ) ( )∑
= ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
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i

tp
t

tp  where 1t0 ≤≤ , and 
T

B
ib,

l
i

⎟
⎠
⎞

⎜
⎝
⎛

 are the control points. 

 The problem of finding roots of the polynomial is treated as a problem of finding the intersection of the 
convex hull of Bézier curve with the parameter axis. 
 Test the sign of the polynomials ip  on the subboxes that have been obtained by subdivision (ref. Fig. 1) 
by using Bernstein expansion. Retain the regions of subboxes with positive signs, discard the regions of
subboxes with negative signs, and sharply define the boundary. Discard the subboxes which cannot contain a 
solution by applying the existence test (i.e. if a univariate continuous function f  has a sign change at the 

endpoints of an interval then this interval contains a zero of  f ; Neumaier, 1990).  

 Scale the subboxes so that it will become [ ]0,1 using affine parameter transformation and go back to Step 
1. 
 Compute the intersection of the Bézier curve with the parameter axis. 
 Go to step (ii). 
f. Two variables, and multivariate case: Create the graph, and convex hull of the function 

( ) k,...,1i,0po
i ==x , and Vk,...3,2,1o = ; where Vk is the number of variables. Then, the individual 

graph for each variable will be a Bézier surface, 
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t,sop  where 1s0 ≤≤ , 1t0 ≤≤ , and 
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l
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l
i
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⎛

 are the control points. 

 The problem of finding roots of the polynomial consists of three steps: find the intersection of surfaces with 

co-ordinate plane, project the control points of ( )t,sop  onto co-ordinate planes, and for each co-ordinate plane 

construct the D2  convex hulls. Intersection of the convex hull with the horizontal axis is the root. 
 Test the sign of the polynomials ip  on the subboxes that have been obtained by subdivision (ref. Fig. 1) 
by using Bernstein expansion. Retain the regions of subboxes with positive signs, discard the regions of
subboxes with negative signs, and sharply define the boundary. Discard the subboxes which cannot contain a 
solution by applying the existence test (i.e. if a univariate continuous function f  has a sign change at the 

endpoints of an interval then this interval contains a zero of  f ; Neumaier, 1990).  

Scale the subboxes so that it will become [ ]0,1 using affine parameter transformation and go back to Step 
1. 

 Compute the intersection of the convex hull with the horizontal axis. 
ii. Stop. 

 Fig. 3. The solution algorithm for system of polynomial equations. 
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The examples of these types of problems can be found in engineering science, e.g., 
chemical science: pooling and blending; multi-component separation; phase stability 
analysis; and parametric modeling and simulation; aircraft science: weight allocation in 
aircraft engines. We are interested in the optimization problems in which the objective 
and constraint functions are all multivariate polynomials. In engineering sciences it is 
important to compute the global minimum/maximum rather than only local 
minima/maxima. In general, the optimization problems are tackled with a purely 
numerical procedure, and numerical optimization procedure is viewed as a black box. 
Though, functional analysis of ( )xf can provide a better insight into the behaviour of 

, but it is not done in-practice frequently. It can be argued that the optimization 
problems resulting from practical applications are often very complex with large 
number variables and constraints, and hence functional analysis may be mathematically 
complicated. This is really not true. A simple procedure can be explored for functional 
analysis of  that will avoid mathematical complexities. And, functional analysis of 

 will reveal whether the 

( )xf

( )xf
( )xf ( )xf  is a convex function, or a concave function or a 

highly non-linear function. If ( )xf  is a convex function then the optimization problem 
of Equations (27) – (30), can be reformulated as a convex optimization problem. And, 
there are advantages in that, and these are: Basic computational advantages: problem 
can then be solved, very reliably and efficiently using interior-point methods or other 
special methods for convex optimization, and these solution methods are reliable 
enough to be embedded in a computer-aided design or analysis tool, or even a real-time 
reactive or automatic control system;  and theoretical advantages: the associated dual 
problem, for example, often has an interesting interpretation in terms of the original 
problem, and sometimes leads to an efficient or distributed method for solving it, [11]. 
 
Following, [10], and [11]; an optimization is called a convex optimization problem if 
the objective and constraint functions are convex, and this means that they satisfy the 
inequality,  

( ) ( ) ygxgyxg iii ( )βαβα +≤+                         (31) 

for all  and all nR∈y,x α , β R∈  with 0,0,1 ≥≥=+ βαβα . To transform the 
problem as defined in Equations (27) – (30) to the problem of convex optimization, we 
use lower and upper bounds of convex functions, [8] and [9]. Now, let us define, 

( ) ( ) ( )xfxfxf UBLB ≤≤                          (32) 
( )xfmin

Nx∈
                           (33) 

where , MN ⊆ ( ) ( )( )xUBfSxLBfS EEEN −−≡ , =E  domain space of , = 

domain space of , and 

( )xf ( )xLBfSE

( )xfLB ( ) =xUBfSE  domain space of ( )xfUB . Now, we present the 

Bernstein expanded convex optimization (BECO) algorithm. The important steps in 
solution algorithm for system of polynomial equations are given in Fig. 4. 
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i. Start.  

a. Define the optimization problem, ( )xfmin
Mx∈

, ( ) 1i n,...,1i,0xg =≤ , 

( ) 2j n,...,1j,0xh == , and Xx∈ . 

b. Implement affine parametric transformation from given domain intervals [ ]ba,  etc., to the ‘unit 

interval [ ]0,1=U ’. 
c. Transform the basis of functions from ‘monomial’ to ‘Bernstein’. 
d. Utilize ‘the linear precision property’ of the ‘Bernstein polynomial’ as given in Equation (3). 
e. Subdivide the domain intervals using algorithm (ref. Fig. 1). 
f. Univariate case: 

Define  ( ) ( ) ( )xfxfxf UBLB ≤≤ , and ( )xfmin
Nx∈

, where MN ⊆ . 

Define clipped constrained solution domain, ( ) ( )( )xUBfSxLBfS EEEN −−≡ , =E  domain 

space of ( )xf , ( )xLBfSE = domain space of ( )xfLB , and ( ) =xUBfSE  domain space of 

( )xfUB .  
Solve the convex optimization problem with convex solution methods (i.e. gradient descent 
method, infeasible start Newton method, primal-dual interior-point methods). In our 
implementation we have used primal-dual interior-point methods. 
Go to step (ii). 

g. Two variable or multivariable case: 
Compute affine lower and upper bound functions as the solution of a linear programming (LP) 
problem.  
Integrated these bounded functions, and partition the problem into subproblems by subdivision. 
Define clipped constrained solution domain for each subdivided problem,

( ) ( )

 ( )xUBfSxLBfS EEEN −−≡ , =E  domain space of ( )xf , ( )xLBfSE = domain space of 

( )xfLB , and ( ) =xUBfSE  domain space of ( )xfUB .  

Solve the convex optimization problem with convex solution methods (i.e. gradient descent
method, infeasible start Newton method, primal-dual interior-point methods). In our 
implementation we have used primal-dual interior-point methods. 
Go to step (ii). 

ii. Stop. 
Fig. 4. The solution algorithm for cconstrained convex optimization problem. 

 
Problem 3: From the area of aircraft science (Golinski, [19]), we consider the 
minimization problem, 

( )xfmin , 

( ) ( ) ( )( 2
3

2
21 x3333.3.x.x7854.0xf = ) ( ) ( )( )2

7
2

613 xx.x5080.10934.43x9334.14 +−−+  

( ) ( )( ) ( ) ( )( )2
75

2
64

3
7

3
6 xxxx7854.0xx4770.7 +++                     (34) 

subjected to eleven constraints that are rewritten in polynomial forms. Additionally, the 
constrained bounds on the seven variables are given. The computed minimum value of 

 is at 2994.7852346761.   The computational results are shown in Table 2. The 
details can be found in [12]. 
( )xf

 
 

358



CMMSE 2007 
 

Table 2. Computational results for Problem 3. 
Computational features 

Tolerance =  1010− Steps in interval subdivision (ref. Fig. 1) = 3 

Number of solutions = 1 Number of subproblems as LP created = 1, 20, 000 
Computational time(in seconds) = 450 

 

6. Conclusions 
In this work, we have presented algorithms that are formulated to determine real roots. 
However, by substitution of  for  in equations and then splitting each equation 
into real and imaginary parts shall allow the computation of complex roots. Also, we 
have only considered the so called balanced system of equations, and the algorithms 
may be extended to systems of  equations in  unknowns (

ivu + x

m n nm ≠ ). These over and 
under determined systems appear in the computation of singularities on a planar 
implicit algebraic curve and in engineering design. These problems shall require a 
constrained formulation or multiple axis projection of polyhedra in the BEPP method. 
The use of Bernstein expansion requires efficient memory allocation because space 
required grows exponentially with the number of variables. Now, we have to explore a 
method that will improve memory allocation for larger number of parameters. We have 
implemented our algorithms in ‘floating point arithmetic (FPA)’ that guarantee only 
moderate tolerance (i.e. around  - ), and the rounding errors appearing in 
the calculation cannot be controlled. A implementation in ‘interval arithmetic (IA)’ 
using ‘rounded interval arithmetic (RIA)’, ([2], and [3]), shall allow us to control 
rounding errors to compute ‘result within a guaranteed accuracy’ with high tolerance 
(i.e. around  - ). The detailed analysis of efficiency and complexity of the 
algorithms has not been addressed in this work. Also, the relative merits of our methods 
and other existing techniques can be studied for a comparative study. Our future work 
shall go in this direction, and currently this is under investigation. 
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Abstract

In this paper, we extend a method for reduced order model derivation for fi-
nite dimensional systems developed by Rowley to infinite dimensional systems.
The method is related to standard balanced truncation, but includes aspects of
the proper orthogonal decomposition in its computational approach. The method
is also applicable to nonlinear systems. The method is applied to a convection
diffusion equation.

Key words: balanced truncation, proper orthogonal decomposition, infinite di-
mensional systems

1 Introduction and Overview

In this work, we formally extend Rowley’s balanced POD algorithm [8] to the infi-
nite dimensional case. The resulting algorithm is a POD-type procedure to design an
approximate balanced transformation of an infinite dimensional linear system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t),
(1)

over a Hilbert space X with inner product (·, ·). We assume the linear operator A :
D(A) ⊂ X → X generates an exponentially stable C0-semigroup eAt, and the operators
B : U → X and C : X → Y are bounded and finite rank. We also assume the input
and output spaces are finite dimensional; specifically U = Rm and Y = Rp.

Model reduction via balanced truncation is performed by first determining a bal-
anced realization in which the controllable and observable states of (1) coincide. Then,
the balanced model is truncated based on the eigenvalues of the product of the observ-
ability and controllability Gramians by eliminating the states corresponding to modes
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that are difficult to control and observe. Specifically, define the controllability and
observability operators B : L2(0,∞;U) → X and C : X → L2(0,∞;Y ) by

Bu =
∫ ∞

0
eAtBu(t) dt, [Cx](t) = CeAtx.

The adjoint operators B∗ : X → L2(0,∞;U) and C∗ : L2(0,∞;Y ) → X are given by

[B∗x](t) = B∗eA
∗t, C∗y =

∫ ∞

0
eA

∗tC∗y(t) dt.

The controllability and observability Gramians, LB ∈ L(X) and LC ∈ L(X), are
defined by

LBx = BB∗x =
∫ ∞

0
eAtBB∗eA

∗tx dt, LCx = C∗Cx =
∫ ∞

0
eA

∗tC∗CeAtx dt.

The eigenvalues of LCLB ∈ L(X) are equal to the squares of the singular values of the
Hankel operator H : L2(0,∞;U) → L2(0,∞;Y ) defined by

[Hu](t) = [CBu](t) =
∫ ∞

0
CeA(t+s)Bu(s) ds.

An important fact is that that the Hankel singular values are independent of the chosen
coordinate system, or system realization.

The coordinate change that balances the system—the balancing transformation—
produces observability and controllability Gramians that are equal and diagonal. In
the infinite dimensional setting, the Gramians are equal to a diagonal operator on `2,
the space of square summable sequences; see [5, 7] and the review in [4]. The Hankel
singular values are then ordered from greatest to least, and the states corresponding to
the “small” singular values are truncated to produce a low order model. This method
is rather standard and known in the literature (see, e.g., [9]).

The balanced POD algorithm determines a truncated approximate balancing trans-
formation Tr : Rr → X and its left inverse Sr : X → Rr (i.e., SrTr = Ir). To obtain
a low order model, approximate the solution x(t) of the linear system (1) by Galerkin
projection as

x(t) ≈ xr(t) = TrSrx(t) = Tra(t), where a(t) = Srx(t). (2)

Substituting this approximate solution into the linear system yields the reduced order
model

ȧ(t) = Ara(t) +Bru(t), a(0) = a0,

y(t) = Cra(t),
(3)

where Ar = SrATr, Br = SrB, Cr = CTr, and a0 = Srx0.
We may apply this Galerkin projection to obtain low order models of more general,

in fact nonlinear, systems. For example, suppose the model takes the form

ẋ(t) = Ax(t) + F (x(t)) +Bu(t) +Dw(t), x(0) = x0,

y(t) = Cx(t) + Ew(t),
(4)
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where F is a nonlinear operator and w is a disturbance. Design the approximate
balancing transformation about the linearized system and use the approximation for
the solution (2) to obtain the model

ȧ(t) = Ara(t) + Fr(a(t)) +Bru(t) +Drw(t), a(0) = a0,

y(t) = Cra(t) + Erw(t),
(5)

where Ar, Br, Cr, and a0 are as above, Dr = SrD, Er = E, and Fr(a) = SrF (Tra).

2 Formal Derivation of the Algorithm

We now give a formal derivation of the balanced POD algorithm for the infinite dimen-
sional setting described above. We do not attempt to rigorously justify the derivation;
in some cases we simply proceed by analogy with the finite dimensional case. Conver-
gence analysis of the algorithm is left for future work.

The complete algorithm is presented in Section 3 below. One possible numerical
implementation of the algorithm is given in Section 3.1.

2.1 Special Forms of the Gramians

One of the main components of the balanced POD algorithm is to compute approximate
factors of the Gramians using simulation data. This is possible because of the special
form of the Gramians.

Given the specific assumptions regarding the input and output operators, B and
C, in Section 1, we can write them in the form

Bu =
m∑

j=1

bjuj , Cx = [ (c1, x), . . . , (cp, x) ]T ,

where u = [u1, . . . , um ]T ∈ U , and each bj and cj are in X.
This allows us to rewrite the Gramians. First, define the functions wj(t) = eAtbj ,

for j = 1, . . . ,m. Then wj is the solution of the evolution equation

ẇj(t) = Awj(t), wj(0) = bj .

The controllability operator B : L2(0,∞;U) → X defined above takes the form

Bu =
∫ ∞

0
eAtBu(t) dt =

∫ ∞

0

m∑
j=1

wj(t)uj(t) dt,

and its adjoint operator B∗ : X → L2(0,∞;U) is easily computed to be

[B∗x](t) = [ (w1(t), x), . . . , (wm(t), x) ]T .

Therefore, the controllability Gramian LB = BB∗ ∈ L(X) is given by

LBx =
∫ ∞

0

m∑
j=1

wj(t)(wj(t), x) dt.
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To treat the observability Gramian, we need the adjoint operator C∗ ∈ L(Y,X)
given by

C∗y =
p∑

j=1

cjyj ,

where y = [ y1, . . . , yp ]T ∈ Y . We follow a similar procedure as used for B and define
zj(t) = eA

∗tcj , for j = 1, . . . , p. Then zj is the solution of the adjoint equation

żj(t) = A∗zj(t), zj(0) = cj .

The adjoint of the observability operator C∗ : L2(0,∞;Y ) → X takes the form

C∗y =
∫ ∞

0
eA

∗tC∗y(t) dt =
∫ ∞

0

p∑
j=1

zj(t)yj(t) dt

and the operator C : X → L2(0,∞;Y ) is given by [Cx](t) = [ (z1(t), x), . . . , (zp(t), x) ]T .
Therefore, the observability Gramian LC = C∗C ∈ L(X) is

LCx =
∫ ∞

0

p∑
j=1

zj(t)(zj(t), x) dt.

2.2 The Empirical Gramians

The Gramians can be approximated using time snapshots of the states wi(t) and zi(t).
Specifically, we approximate the time integrals with the quadratures

LBx =
∫ ∞

0

m∑
i=1

wi(t)(wi(t), x) dt ≈ Ln1
B x =

m∑
i=1

n1∑
j=1

α2
jwi(tj)(wi(tj), x),

LCx =
∫ ∞

0

p∑
i=1

zi(t)(zi(t), x) dt ≈ Ln2
C x =

p∑
i=1

n2∑
k=1

β2
kzi(tk)(zi(tk), x).

Here, {α2
j} and {β2

k} are quadrature weights corresponding to the sets of quadrature
points {tj} and {tk}; different quadrature points and weights can be used for each wi

and zi if desired. Since wi are zi are solutions to linear evolution equations, they are
continuous in time and therefore have a well defined value at the quadrature points. The
approximate Gramians Ln1

B ∈ L(X) and Ln2
C ∈ L(X) are called empirical Gramians.

Following Rowley in the finite dimensional case, we factor the empirical Gramians.
Define “vectors” of weighted snapshots

w̃ = [α1w1(t1), . . . , αn1w1(tn1), . . . , α1wm(t1), . . . , αn1wm(tn1) ]T ∈ XN1 , (6)

z̃ = [β1z1(t1), . . . , βn2z1(tn2), . . . , β1zp(t1), . . . , βn2zp(tn2) ]T ∈ XN2 , (7)

where N1 = mn1, N2 = pn2, and Xq = X × · · · ×X (q times). These vectors allow the
empirical Gramians to be written as Ln1

B = PP ∗ and Ln2
C = Q∗Q, where the operators
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P : RN1 → X and Q : X → RN2 are defined by

Pa =
N1∑
i=1

aiw̃i, Qx = [ (z̃1, x), . . . , (z̃N2 , x) ]T ,

and their adjoint operators P ∗ : X → RN1 and Q∗ : RN2 → X are given by

P ∗x = [ (w̃1, x), . . . , (w̃N1 , x) ]T , Q∗a =
N2∑
i=1

aiz̃i.

Note that P and Q and their adjoints depend on the quadrature points and weights;
however, we suppress this dependence for notational simplicity.

2.3 The Approximate Balanced Transformation

Recall that the eigenvalues of the product of the Gramians can be used to compute a
balancing transformation for the linear system. The balanced system is then truncated
to form a reduced order model. We approximate the product of the Gramians L =
LCLB using the empirical Gramians, i.e., L ≈ Ln = Ln2

C Ln1
B . Using the above factors,

we have Ln = Q∗QPP ∗. Following Curtain and Zwart ([6, Lemma 8.2.9, pages 401–
402]), it is easy to show that Ln is compact and that the nonzero eigenvalues of Ln are
equal to the squares of the nonzero singular values of QP .

The operator QP is a bounded linear mapping from RN1 to RN2 ; therefore, it can
be represented as an N2 × N1 matrix Γ with entries Γij = (z̃i, w̃j). Let the singular
value decomposition of Γ be given by

Γ = UΣV ∗ = [U1 U2]
[
Σ1

0
0
0

][
V ∗1
V ∗2

]
= U1Σ1V

∗
1 , (8)

where Σ1 ∈ Rs×s is diagonal and invertible, s = rank(Γ), U∗1U1 = Is = V ∗1 V1, and Is is
the identity matrix in Rs×s.

In the finite dimensional case, Rowley showed that an approximate balancing trans-
formation is given by the operators T1 : Rs → X and S1 : X → Rs defined by

T1 = PV1Σ
−1/2
1 , S1 = Σ−1/2

1 U∗1Q.

In this paper, we assume the same is true for the infinite dimensional setting and leave
theoretical analysis of the algorithm for future work due to size restrictions.

The operators T1 : Rs → X and S1 : X → Rs have the representations

T1a =
s∑

j=1

ajϕj , S1x = [ (ψ1, x), . . . , (ψs, x) ]T ,

where the (primary) balanced POD modes {ϕi} and the adjoint balanced POD modes
{ψi} are given by[

ϕ1, . . . , ϕs ]T = Σ−1/2
1 V ∗1 w̃,

[
ψ1, . . . , ψs ]T = Σ−1/2

1 U∗1 z̃.
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As in the finite dimensional case, the primary and adjoint balanced POD modes are
biorthogonal, i.e., (ψi, ϕj) = δij . To see this, note S1T1a = [ (ψi, ϕj) ]a for any a ∈ Rs.
Also, by definition,

S1T1a = Σ−1/2
1 U∗1QPV1Σ

−1/2
1 a = Isa.

Thus, [ (ψi, ϕj) ] = Is, or (ψi, ϕj) = δij .
The approximate balancing transformations are truncated by picking r < s and

setting

Tra =
r∑

j=1

ajϕj , Srx = [ (ψ1, x), . . . , (ψr, x) ]T .

Thus, only the first r primary and adjoint balanced POD modes need to be computed.
Also, we have SrTr = Ir, and the modes can be computed by

[ϕ1, . . . , ϕr ]T = Σ−1/2
r V ∗r w̃, [ψ1, . . . , ψr ]T = Σ−1/2

r U∗r z̃, (9)

where Σr, Ur, and Vr are appropriate truncations of Σ1, U1, and V1.

3 The Balanced POD Algorithm

The construction of the operators Tr and Sr as shown above completes the balanced
POD algorithm. As outlined in Section 1, we use these transformation to obtain the
reduced order model (3). The complete procedure can be summarized as follows:

1. Approximate the solutions wj of the differential equations

ẇj(t) = Awj(t), wj(0) = bj , (10)

for j = 1, . . . ,m, where Bu =
∑m

j=1 bjuj .

2. Approximate the solutions zj of the adjoint differential equations

żj(t) = A∗zj(t), zj(0) = cj , (11)

for j = 1, . . . , p, where Cx = [ (c1, x), . . . , (cp, x) ]T .

3. Form the matrix Γ, where Γij = (z̃i, w̃j), and the weighted snapshot vectors w̃
and z̃ defined in (6) and (7), respectively.

4. Compute the singular value decomposition of Γ as in (8), choose r < rank(Γ),
and form the first r primary and adjoint balanced POD modes defined in (9):

[ϕ1, . . . , ϕr ]T = Σ−1/2
r V ∗r w̃, [ψ1, . . . , ψr ]T = Σ−1/2

r U∗r z̃,

where Σr, Ur, and Vr are appropriate truncations of Σ1, U1, and V1.

5. Use the modes to form the matrices in the reduced order model (3):

Ar = SrATr = [ (Aϕj , ψi) ] ∈ Rr×r,
Br = SrB = [ (bj , ψi) ] ∈ Rr×m,
Cr = CTr = [ (ϕj , ci) ] ∈ Rp×r,
a0 = Srx0 = [ (x0, ψ1), . . . , (x0, ψr) ]T ∈ Rr.

(12)
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3.1 Finite Dimensional Galerkin Approximations

The algorithm presented above is flexible since we may use any procedure to approx-
imate the solutions wi and zi of the linear differential equations (10) and (11). We
describe the balanced POD algorithm with Galerkin approximations.

Let W1 = span{ξj}k
j=1 ⊂ D(A) and W2 = span{ηj}`

j=1 ⊂ D(A∗) be finite dimen-
sional subsets of X. We compute the solutions of the primary and adjoint differential
equations by the finite dimensional Galerkin approximations

wα(t) ≈
k∑

j=1

rjα(t)ξj , zβ(t) ≈
∑̀
j=1

sjβ(t)ηj ,

for α = 1, . . . ,m and β = 1, . . . , p. Here, k is the same for each α and ` is the same for
each β; this is not necessary in general, but it does simplify the resulting algorithm.
Using these Galerkin approximations, the balanced POD algorithm becomes:

1. Form the k × k matrices M̃k = [ (ξj , ξi) ] and Ãk = [ (Aξj , ξi) ]. Approximate the
Galerkin coefficient vectors rα = [ r1α, . . . , rmα ]T by solving the equations

M̃kṙα(t) = Ãkrα(t), M̃krα(0) = [ (bα, ξi) ], α = 1, . . . ,m. (13)

2. Form the `× ` matrices M̂` = [ (ηj , ηi) ] and Â` = [ (A∗ηj , ηi) ]. Approximate the
Galerkin coefficient vectors sβ = [ s1β , . . . , spβ ]T by solving the equations

M̂`ṡβ(t) = Â`sβ(t), M̂`sβ(0) = [ (cβ, ηi) ], β = 1, . . . , p.

3. Define the weighted snapshot coefficient matrices R ∈ RN1×k and S ∈ RN2×` by

R = [α1r1(t1), . . . , αn1r1(tn1), . . . , α1rm(t1), . . . , αn1rm(tn1) ]T ,
S = [β1s1(t1), . . . , βn2s1(tn2), . . . , β1sp(t1), . . . , βn2sp(tn2) ]T .

Then the weighted snapshot vectors w̃ and z̃ defined in (6) and (7), respectively,
are approximated by

w̃ ≈ R[ ξ1, . . . , ξk ]T , z̃ ≈ S[ η1, . . . , η` ]T .

Also, the matrix Γ is approximated by Γ̂ = SNRT , where the `× k matrix N is
given by N = [(ηi, ξj)].

4. Compute the singular value decomposition of Γ̂ as in (8) and choose r < rank(Γ̂).
Then the first r primary and adjoint balanced POD modes are approximated by[

ϕ1, . . . , ϕr ]T ≈ Σ−1/2
r V ∗r R[ ξ1, . . . , ξk ]T ,[

ψ1, . . . , ψr ]T ≈ Σ−1/2
r U∗r S[ η1, . . . , η` ]T ,

where Σr, Ur, and Vr are appropriate truncations of Σ1, U1, and V1. Let Φ =
Σ−1/2

r V ∗r R ∈ Rr×k and Ψ = Σ−1/2
r U∗r S ∈ Rr×`. Then for each i,

ϕi ≈
k∑

j=1

Φijξj , ψi ≈
∑̀
j=1

Ψijηj .
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5. Substitute the approximate modes into the reduced order model matrices (12):

Ar = [ (Aϕj , ψi) ] ≈ Ψ[ (Aξj , ηi) ]ΦT ,

Br = [ (bj , ψi) ] ≈ Ψ[ (bj , ηi) ],
Cr = [ (ϕj , ci) ] ≈ [ (ξj , ci) ]ΦT ,

a0 = [ (x0, ψ1), . . . , (x0, ψr) ]T ≈ Ψ[ (x0, η1), . . . , (x0, η`) ]T .

3.2 Comparison to the Finite Dimensional Algorithm

The Galerkin method presented above gives one way to compare the infinite dimensional
balanced POD algorithm presented here which we term “balance POD then discretize”
with the finite dimensional POD algorithm applied to a discretization of an infinite
dimensional system which we call “discretize then balance POD”.

In the “discretize then balance POD” approach, one applies the Galerkin method
(or some other discretization scheme) to the linear system (1) to obtain the ordinary
differential equation system (13) in step 1 above along with the finite dimensional
output equation yk = C̃krα, where C̃k = [ (ξj , ci) ]. Finite dimensional balanced POD
is then performed on this system to obtain a reduced order model.

If certain conditions are satisfied, the “balance POD then discretize” approach
presented here produces the same reduced order model as the “discretize then balance
POD” approach outlined above. It can be checked that the following conditions are
sufficient:

• The Galerkin subspaces W1 and W2 must be equal (therefore, k = `).

• The Galerkin scheme must satisfy Ã∗k = Âk.

• The same quadrature points and weights are used.

• The inner product for the finite dimensional balanced POD must be weighted by
the matrix M̃k, i.e., (a, b) = aT M̃kb.

In this case, the matrix ΦT is produced by the finite dimensional balanced POD algo-
rithm, and the same reduced order model results from both approaches.

We note that certain problems and numerical schemes may not satisfy the first two
conditions above. For example, if the domain of A does not equal the domain of A∗, the
first condition may be difficult or impossible to satisfy. Also, certain Galerkin schemes
may not satisfy the duality property required in the second condition; for an example
with a delay equation, see [3]. In these cases, the “discretize then balance” approach
may not produce an actual approximate balancing transformation.

4 Numerical Results

All numerical results in this section are for the convection diffusion equation

wt(t, x) = µwxx(t, x)− κwx(t, x) + b(x)u(t),

y(t) =
∫ 1

0
c(x)w(t, x) dx,

w(t, 0) = 0, w(t, 1) = 0, w(0, x) = w0(x).
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with µ = 0.1 and κ = 1. The functions b(x) and c(x) are piecewise constant with
b(x) = 1 when 0.1 < x < 0.3, c(x) = 1 when 0.6 < x < 0.7, and both are zero
otherwise. The linear operators are defined as

Aw = µwxx − κwx, D(A) = H2 ∩H1
0 , A∗w = µwxx + κwx, D(A∗) = D(A).

The solutions of the primary and dual linear systems were approximated with
standard piecewise linear finite elements using equally spaced nodes. The solutions were
integrated over 0 ≤ t ≤ 2 using Matlab’s ode15s solver with default error tolerances.
The quadrature points were chosen as the time points returned from ode15s and the
trapezoid rule was used for the quadrature weights. Time refinement was performed
by decreasing the error tolerances of the ODE solver.

We compare the results of the balanced POD algorithm with standard balancing
computations. We focus on the Hankel singular values and the balancing modes since
these are used to construct the reduced order model. For this example problem, the
two approaches give identical results when refined until convergence. In the balanced
POD computations, spatial refinement was more important for convergence than time
refinement. This is not surprising since the solutions of the primary and dual linear
systems are not highly variable in time.

In Figure 1, we show the first 20 approximate Hankel singular values for standard
balancing and for balanced POD. The methods produce identical results. For each
computation, we used 256 equally spaced finite element nodes. The singular values
are converged — further refinement in space (and in time for balanced POD) produces
little change. The remaining singular values are below machine precision. The first 5
singular values contain over 99.99% of the “energy” or information in the dataset.

0 5 10 15 20
10!20

10!15

10!10

10!5

100

Figure 1: Approximate Hankel singular values for standard balancing (squares) and
balanced POD (x).

In Figures 2 and 3, we show primary and adjoint balanced POD modes. All modes
are converged and standard balancing produces identical results, as it should for this
example. In general, the higher numbered modes are slower to converge under refine-
ment with both standard balancing and balanced POD. For these computations, 128
equally spaced finite element nodes were used.
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Figure 2: Balanced POD mode 1 (left) and mode 2 (right).
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Figure 3: Fifth adjoint balanced POD mode.

5 Conclusions and Future Work

In this paper, we extended Rowley’s balanced POD algorithm to infinite dimensional
systems. In addition, we compared finite and infinite dimensional algorithms and gave
conditions when balanced POD “commutes” with discretization. Preliminary numerical
results for the convection diffusion equation indicate convergence of the algorithm by
comparing the balanced POD with standard balancing computations.

This method shows promise for reduced order model design. In particular, it is
computationally tractable for infinite dimensional systems, even if approximating finite
dimensional systems have very high dimensions. Additionally, it is applicable even if
matrices from approximating systems are not available. One only needs to be able to
approximate solutions of standard and dual linear systems. Moreover, there is potential
to use error estimators for the solutions of the linear equations to show where to refine
to improve accuracy.

We point out, however, that balanced POD may not be feasible for: 1) systems
with solutions that decay slowly to zero or are highly oscillatory in time because they
may need a large number of time quadrature points, or 2) systems that have a large
number of inputs.
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In a future paper, we will complete the convergence analysis of this method. In
addition, we will compare this approach with balanced truncation methods using large
scale matrix Lyapunov solvers (see [1, 2] and the references therein). Even in the case
that matrix solvers perform better, balanced POD may still be preferable due to the
advantages listed above. Future work includes extending this approach to systems with
unbounded input and output operators.
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Abstract

A system of partial differential equations modeling the attraction of a pop-
ulation of cells to a biochemical concentration in its environment is considered.
The system incorporates convective and diffusive effects, either of which may dom-
inate. A numerical method is presented that allows for both possible features,
and is monotone and conservative. An efficient implementation of the method in
a 2-dimensional setting is described. This includes the use of fast Fourier trans-
form methods to solve the linear systems that arise in the algorithm. Key words:

chemotaxis,convection,diffusion,fast Fourier transform

1 A model chemotaxis system

We consider a system of two equations

ut +∇ · (uξ(v)∇v) = ∇ · (κ∇u) + g(u, v, x, y, t),
vt = ∇ · (σ∇v) + f(u, v, x, y, t),

(1)

which is to hold for (x, y) ∈ Ω, t > 0, for a bounded domain Ω, together with Neumann
boundary conditions ∂u/∂ν = ∂v/∂ν = 0 on the boundary ∂Ω of Ω (∂/∂ν denotes the
outer normal derivative along the boundary). In the first equation, ξ(v) is function of
v that describes the chemotactic sensitivity of the cells u to a biochemical v. Systems
of this form were originally proposed in a seminal paper by Keller and Segel [3].

A numerical scheme for solving (1) has been proposed and analyzed in [5]. As-
suming Ω = (0, 1) × (0, 1) is a (non-dimensionalized) rectangle in the plane, we set
xi = i∆x, i = 0, 1, . . . ,Mα and yj = j∆y, j = 0, 1, . . . ,Mβ, where Mα, Mβ are the
number of subdivisions in the x and y directions and ∆x = 1/Mα, ∆y = 1/Mβ. The
approach uses control volumes Ri,j = [xi−1, xi] × [yj−1, yj ] with cell centers (xi, yj).
With un+1

i,j ≈ u(xi, yj , tn+1) and vn+1
i,j ≈ v(xi, yj , tn+1) the scheme has the general form

un+1
i,j = Ci,j({vn+1}, {un}) + ∆κ

i,j{un+1}+ ∆t gn+1
i,j (un+1

i,j , vn+1
i,j ),

vn+1
i,j = vn

i,j + ∆σ
i,j{vn+1}+ ∆t fn+1

i,j (un+1
i,j , vn+1

i,j ),
(2)
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where ∆κ
i,j{un+1} ≈ ∇ · (κ∇u), ∆σ

i,j{vn+1} ≈ ∇ · (σ∇v) that are standard 5 or 9
point stencils (cf. [2]), gn+1

i,j (un+1
i,j , vn+1

i,j ) = g(un+1
i,j , vn+1

i,j , xi, yj , tn+1) and similarly
fn+1

i,j (un+1
i,j , vn+1

i,j ) = f(un+1
i,j , vn+1

i,j , xi, yj , tn+1). The term Ci,j({vn+1}, {un}) is an ap-
proximation of the convective term ∇ · (uξ(v)∇v) based on the use of characteristics.
It can be written as a sum Ci,j({vn+1}, {un}) =

∑1
k,m=−1 M i,j

k,mun
i+k,j+m and is describe

more completely below.
Due to the implicit way diffusion is handled and the properties of the multipliers

M i,j
k,m the scheme preserves positivity of solutions under very mild assumptions on f

and g. Thus, if un
i,j ≥ 0 and vn

i,j ≥ 0 then un+1
i,j ≥ 0 and vn+1

i,j ≥ 0. It is also conservative
in the sense that in the absence of sources or sinks it conserves mass. These and other
properties are treated more completely in [5], where v is considered known a priori.
The properties just mention extend easily to the present case.

An expanded version of the term Ci,j({vn+1}, {un}) =
∑1

k,m=−1 M i,j
k,mun

i+k,j+m, in
conservative form, is given as follows. Assuming vn+1 = {vn+1

i,j } is known, we define
values, which are related to the characteristics associated with the left hand side of the
first equation in (1), by (see [5] for details)

θx
i,j = −∆t

∆x

(ξ(vn+1
i+1,j) + ξ(vn+1

i,j )
2

)(vn+1
i+1,j − vn+1

i,j

∆x

)
θy
i,j = −∆t

∆y

(ξ(vn+1
i,j+1) + ξ(vn+1

i,j )
2

)(vn+1
i,j+1 − vn+1

i,j

∆y

)
.

These formulas are valid at interior points. Special cases in the formulas below that
occur along the boundaries of the domain must be accounted for

Assuming these values of θx
i,j , θy

i,j satisfy |θx
i,j | ≤ 1, |θy

i,j | ≤ 1, and

1 ≥ max{0, θx
i−1,j} −min{0, θx

i,j}, 1 ≥ max{0, θy
i,j−1} −min{0, θy

i,j},

for all i, j, we compute in order

ai,j = min{0, θx
i,j}, Ai,j = max{0, θx

i,j},
bi,j = min{0, θy

i,j}, Bi,j = max{0, θy
i,j},

Sab
i,j = ai,jbi,j , SaB

i,j = ai,jBi,j−1, SAb
i,j = Ai−1,jbi,j , SAB

i,j = Ai−1,jBi,j−1,

and

Ex,n
i,j = ai,ju

n
i,j + Ai,ju

n
i+1,j , Ey,n

i,j = bi,ju
n
i,j + Bi,ju

n
i,j+1,

Vn
i,j = Sab

i,ju
n
i,j + SaB

i,j+1u
n
i,j+1 + SAb

i+1,ju
n
i+1,j + SAB

i+1,j+1u
n
i+1,j+1.

Then

Ci,j({vn+1}, {un}) =
1∑

k,m=−1

M i,j
k,mun

i+k,j+m

= un
i,j + Ex,n

i,j − Ex,n
i−1,j + Ey,n

i,j − Ey,n
i,j−1 + Vn

i,j − Vn
i,j−1 − Vn

i−1,j + Vn
i−1,j−1

This implicitly defines the matrix C({vn+1}, {un}). In addition to its theoretical im-
portance, the conservative form of this term provides efficiencies in its computation.
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2 Discretizations of Poisson’s Equation in 2-D

Since the method (2) is partly implicit, efficient methods are needed to solve the re-
sulting linear systems. These are closely related to finite difference approximations of
Poisson’s equation, −∇·(κ∇u) = g, which are well-known and can be derived in several
ways. If homogeneous Neumann boundary conditions are used (as we intend to do)
then 0 is an eigenvalue of algebraic multiplicity 1, and the Fredholm alternative applies.
This is also true in the discrete version of the problem.

Let δxui,j = ui+1,j − ui,j , δyui,j = ui,j+1 − ui,j , and

δxyui,j = ui+1,j+1 + ui,j − ui+1,j − ui,j+1.

In terms of these differences the standard 5-pt stencil is

−
( κ

(∆x)2
(δxui,j − δxui−1,j) +

κ

(∆y)2
(δyui,j − δyui,j−1)

)
= gi,j . (3)

and the 9-pt stencil is

−
[ κ

(∆x)2
(δxui,j − δxui−1,j) +

κ

(∆y)2
(δyui,j − δyui,j−1)+

1
12

( κ

(∆x)2
+

κ

(∆y)2
)
(δxyui,j − δxyui,j−1 − δxyui−1,j + δxyui−1,j−1)

]
= gi,j

(4)

The discrete problems associated with these stencils are linear systems which can
be presented in different ways (cf. Chapter 6 of [1] and Chapter 4 of [6]). A standard
presentation of either system involves a (N × N) block tridiagonal matrix, with N =
MαMβ, and (N ×1) column vectors u and g whose entries are the values of u(x, y) and
g(x, y) at the cell centers (xi, yj). We assume these values are stored in the vectors u, g
so that the value at (xi, yj) is the i+(j−1)Mα entry of the column vector. We consider
two alternatives to the standard presentation, each of which has certain advantages.
In one case we use Kronecker products (cf. [6]) and the column vectors u and g; in
the other case we use matrix versions of these vectors. Using the notational device
described in §1.1 of [6], we let uα×β = [ui,j ], be the (Mα × Mβ) matrix version of u,
where ui,j ≈ u(xi, yj). Similarly gα×β = [gi,j ] is the matrix version of the column vector
g.

The matrices associated with the stencils in either case will be given in terms of
matrices Aα and Aβ that are (Mα ×Mα) and (Mβ ×Mβ) versions of the tridiagonal
matrix

A =



1 −1

−1 2
. . .

. . . . . . . . .
. . . 2 −1

−1 1


. (5)

If A is (M × M) and u = [uj ], g = [gj ] are (M × 1) column vectors then Au = g
is a cell-centered finite volume approximation of the 1-dimensional Poisson problem
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−uxx = g(x), subject to homogeneous Neumann boundary conditions. It’s not difficult
to see that scheme (3) can be written as

κ

(∆x)2
Aαuα×β +

κ

(∆y)2
uα×βAβ = gα×β .

Using basic properties of Kronecker products (cf. [6]), and the fact that Aβ is symmetric,
this matrix-matrix equation can be written as the matrix-vector system

[
κ

(∆x)2
(Iβ ⊗Aα) +

κ

(∆y)2
(Aβ ⊗ Iα)]u = g.

It somewhat harder to show that scheme (4) can be written in the form

κ

(∆x)2
Aαuα×β +

κ

(∆y)2
uα×βAβ − 1

12

( κ

(∆x)2
+

κ

(∆y)2
)
Aαuα×βAβ = gα×β ,

Since wα×β = Aαuα×βAβ is the matrix-matrix equivalent to of the matrix-vector prod-
uct w = (Aβ ⊗Aα)u it follows that (4) can also be written as

[
κ

(∆x)2
(Iβ ⊗Aα) +

κ

(∆y)2
(Aβ ⊗ Iα)− 1

12

( κ

(∆x)2
+

κ

(∆y)2
)
(Aβ ⊗Aα)]u = g.

3 The connection with the discrete cosine transform

There are several discrete trigonometric transform pairs that can be computed in the
framework of fast Fourier transforms. Here we establish a connection between the
matrices arising in our descretizations and one of these transform pairs.

Let A be the (M ×M) tridiagonal matrix given in (5). It can be shown that the
eigenvalues λk and eigenvectors vk ∈ RM for A are

λk = 2(1− cos(kπ
M )) = 4 sin2( kπ

2M ), vk = [cos(
(j−1

2 )kπ

M )], k = 0, . . . ,M − 1.

These vectors are the discrete analogs of the continous eigenfunctions v(x) = cos(kπx).
In fact, vk

j = cos(kπxj). A routine calculation shows that (vk)T vm = 0, k 6= m, and
(vk)T vk = 1

2M if k > 1 or M if k = 0. Thus, if u ∈ RM then

u = 1
2a0v

0 +
M−1∑
k=1

akv
k if and only if ak = 2

M uT vk = 2
M

M∑
j=1

uj cos(
(j−1

2 )kπ

M )

In this case the components of u = [uj ] are given by

uj = eT
j u = 1

2a0 +
M−1∑
k=1

akv
k
j = 1

2a0 +
M−1∑
k=1

ak cos(
(j−1

2 )kπ

M )

Notice that since v0 is the column vectors of ones, 1
2a0 is the mean value of u. This is

the discrete analog of the continuous case.
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The identities above show that u = [uj ] and a = [ak] are a discrete cosine transform
pair. They are a slightly modified version of the Discrete Cosine Transform II pair

yk =
M∑

j=1

xj cos(
(j−1

2 )kπ

M ) xj = 2
M

(
1
2y0 +

M−1∑
k=1

yk cos(
(j−1

2 )kπ

M )
)

that is consider in [6].
Let V = [v0, v1, . . . , vM−1] be the (M ×M) matrix whose columns are the eigen-

vectors of A, and Λ = diag(λ0, . . . , λM−1) be the corresponding diagonal matrix of
eigenvalues, so that A = V ΛV −1 is the eigen-decomposition of A. Also let D̃ be
the diagonal matrix defined in terms of it inverse by D̃−1 = diag(2, 1, . . . , 1), and set
D−1 = M

2 D̃−1. From the remarks above it follows that

V T V = D−1 and V T = D−1V −1.

Furthermore, the relationships between the Discrete Cosine Transform II pair x and y
can be written as the matrix vector products

y = V T x and x = 2
M V D̃y = V Dy.

It follows that the fast trigonometric transforms given as Algorithms 2.4.6 and 2.4.7
in [6] are 2.5M log2 M algorithms for computing y = V T x and x = V Dy respectively,
assuming M is a power of 2.

4 Fast Poisson Solvers

As shown in section 2, a discretization of the 2-dimensional Poisson equation, −∇ ·
(κ∇)u = g, subject to Neumann boundary conditions, that uses a 5 point stencil,
results in a matrix problem of the form

κ[mα(Iβ ⊗Aα) + mβ(Aβ ⊗ Iα)]u = g (6)

where Aα is an (Mα×Mα) version of the matrix A defined in (5), Aβ is an (Mβ ×Mβ)
version, mα = 1/(∆x)2, mβ = 1/(∆y)2, and u, g are column vectors of length N =
MαMβ. In this matrix-vector formulation we have used the fact that Aβ is symmetric.

Let Vα, Λα, Dα (resp. Vβ, Λβ , Dβ) be the matrices corresponding to Aα (resp. Aβ)
as defined in section 3 so that

AαVα = VαΛα, V T
α Vα = D−1

α , AβVβ = VβΛβ, V T
β Vβ = D−1

β .

To clarify the indexing we will assume

Vα = [vα
j,k], vα

j,k = cos(
(j−1

2 )(k−1)π

Mα
), 1 ≤ j, k ≤ Mα,

Λα = diag(λα
1 , . . . , λα

Mα
), λα

k = 4 sin2( (k−1)π
2Mα

), 1 ≤ k ≤ Mα.
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with the same convention also used for Vβ, Λβ.
Since Aα and Aβ are symmetric, it also follows that

V T
α Aα = ΛαV T

α , V T
β Aβ = ΛβV T

β ,

or equivalently
V T

α Aα

(
V T

α

)−1 = Λα, V T
β Aβ

(
V T

β

)−1 = Λβ .

We use these versions of the eigenvalue decompositions of Aα and Aβ to obtain forward
and inverse discrete cosine transforms, as will be seen below. From these identities and
the properties of Kronecker products it follows that

[V T
β ⊗ V T

α ](Iβ ⊗Aα)[
(
V T

β

)−1 ⊗
(
V T

α

)−1] = (Iβ ⊗ Λα),

[V T
β ⊗ V T

α ](Aβ ⊗ Iα)[
(
V T

β

)−1 ⊗
(
V T

α

)−1] = (Λβ ⊗ Iα).

Thus the change of variables

f = [V T
β ⊗ V T

α ]g, w = [V T
β ⊗ V T

α ]u

results in the diagonal system

κ[mα(Iβ ⊗ Λα) + mβ(Λβ ⊗ Iα)]w = f (7)

Using fα×β and wα×β , to denote the matrix analogs of the column vectors f, w this
system can alternatively be written as

κ(mαΛαwα×β + mβwα×βΛβ) = fα×β

which is readily solved entry-wise:

(
wα×β

)
i,j

=

(
fα×β

)
i,j

κ(mαλα
i + mβλβ

j )
.

Of course division by zero must be avoided and a strategy for selecting a unique solutions
should be employed. Clearly the denominators mαλα

i +mβλβ
j are the eigenvalues of the

matrix [mα(Iβ ⊗Aα) + mβ(Aβ ⊗ Iα)], and the zero eigenvalue appears when i = j = 1.
The Fredholm alternative in this case requires

(
fα×β

)
1,1

= 0 for a solution to exist.
Assuming this is the case, there is a 1-parameter family of solutions,

(
wα×β

)
1,1

∈ R.
The choice

(
wα×β

)
1,1

= 0 picks out the solution with mean value zero.
To see how the matrices wα×β , fα×β are related to the matrices uα×β , gα×β we

use the following property of Kronecker products. Since (assuming A is (n × n), B is
(m×m)) A⊗B = (A⊗ Im)(In ⊗B), and

y = (In ⊗B)x ⇔ ym×n = Bxm×n, z = (A⊗ Im)y ⇔ zm×n = ym×nAT

it follows that
z = [A⊗B]x ⇔ zm×n = Bxm×nAT .
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Hence
fα×β = V T

α gα×βVβ, wα×β = V T
α uα×βVβ.

Since V T
α Vα = D−1

α and V T
β Vβ = D−1

β , it follows that if wα×β = V T
α uα×βVβ then

uα×β =
(
V T

α

)−1
wα×βV −1

β = VαDαwα×βDβV T
β .

This observation leads to the following algorithm (a fast Poisson solver) for solving (6):

fα×β = V T
α gα×βVβ,(

wα×β

)
i,j

=

(
fα×β

)
i,j

κ(mαλα
i + mβλβ

j )
,

uα×β = VαDαwα×βDβV T
β .

(8)

The first and third steps above are 2-dimensional discrete cosine and discrete inverse co-
sine transforms, which can be computed by using the fast versions of the corresponding
1-dimensional transforms.

If the finite difference approximation of Poisson’s equations uses a 9 point stencil
then the matrix-vector equation has the form

κ[mα(Iβ ⊗Aα) + mβ(Aβ ⊗ Iα)− 1
12(mα + mβ)Aβ ⊗Aα)]u = g (9)

Again using a property of Kronecker products we find

[V T
β ⊗ V T

α ](Aβ ⊗Aα)[
(
V T

β

)−1 ⊗
(
V T

α

)−1] = (Λβ ⊗ Λα)

Thus the same change of variables that was used above results in the diagonal system

κ[mα(Iβ ⊗ Λα) + mβ(Λβ ⊗ Iα)− 1
12(mα + mβ)(Λβ ⊗ Λα)]w = f,

or
κ
(
mαΛαwα×β + mβwα×βΛβ − 1

12(mα + mβ)Λαwα×βΛβ

)
= fα×β .

Solving for the components of wα×β we obtain

(
wα×β

)
i,j

=

(
fα×β

)
i,j

κ
(
mαλα

i + mβλβ
j −

1
12(mα + mβ)λα

i λβ
j

) .

Implicitly this shows that the eigenvalues of the discrete system (9) are

κ
(
mαλα

i + mβλβ
j −

1
12(mα + mβ)λα

i λβ
j

)
.

As with the 5 point stencil, 0 is an eigenvalue of algebraic multiplicity 1. The same
remarks that were made above apply also to this case. We note that all other eigenvalues
are positive. This can be shown by considering the function

h(x, y) = ax + by − 1
12(a + b)xy, (a, b > 0),

and finding extreme values of the square [0, 4]× [0, 4]. Clearly λα
i , λβ

j ∈ [0, 4].
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5 Solution of the Method Equations

Our goal in this section is to describe an efficient algorithm for solving the approxi-
mate chemotaxis system (2). Throughout we use u, v, h, . . . to denote column vectors
and uα×β , vα×β , hα×β , . . . to denote the corresponding matrix representations of these
column vectors as in previous sections

5.1 A special case

If f(u, v, x, y, t) is actually independent of u then the system (2) can be solved sequen-
tially, first for vn+1 and then for un+1:

vn+1
i,j −∆σ

i,j{vn+1} −∆t fn+1
i,j (vn+1

i,j ) = vn
i,j

un+1
i,j −∆κ

i,j{un+1} −∆t gn+1
i,j (un+1

i,j , vn+1
i,j ) = Ci,j({vn+1

i,j }, {un
i,j})

In these equations the approximate Laplacians may be given in terms of 5-pt or 9-
pt stencils. In the linear case, f = f(x, y, t), the system for vn+1 becomes a simple
modification of the discrete Poisson equation

vn+1
i,j −∆σ

i,j{vn+1} = hi,j

where hi,j = vn
i,j +∆t fn+1

i,j is an array of known values. Thus a matrix-vector equation
of the form (in the case of a 5-pt stencil)

v + σ∆t[mα(Iβ ⊗Aα) + mβ(Aβ ⊗ Iα)]v = h (10)

must be solved for v = vn+1. This system can be solved by essentially the same
algorithm as given in (8). The only modification is that the eigenvalues used in the
second step are now 1 + σ∆t(mαλα

i + mβλβ
j ).

In the nonlinear case we will need to solve a system of the form

v + σ∆t[mα(Iβ ⊗Aα) + mβ(Aβ ⊗ Iα)]v −∆t f(v) = h.

where now the matrix representation of h is hα×β = [vn
i,j ] and f(v) is the column vector

whose associated matrix is f(v)α×β = [f(vn+1
i,j , xi, yj , tn+1)].

Let

Mσ = I + σ∆t[mα(Iβ ⊗Aα) + mβ(Aβ ⊗ Iα)], or
Mσ = I + σ∆t[mα(Iβ ⊗Aα) + mβ(Aβ ⊗ Iα)− 1

12(mα + mβ)Aβ ⊗Aα)],

depending on whether a 5 or 9 point stencil is used. Clearly the solution of the equation
Mσv = h can be obtained via the fast Poisson solver process as described above for
(10). In the present case we need to solve Mσv −∆t f(v) = h and Newton’s method
can be used for this purpose. It is readily seen that this problem fits into the standard
framework for which local convergence can be proven (cf. [4]).

Define
F(v) = Mσv −∆t f(v)− h,
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so that the system we need to solve is F(v) = 0. It easy to see that

F ′(v) = Mσ −∆tD(v)

where D = diag(d1, . . . , dN ), N = MαMβ, is a diagonal matrix whose vector of diagonal
entries d has the equivalent matrix representation

dα×β = [
∂f

∂v
(vi,j , xi, yj , tn+1)].

Thus applying Newton’s method to this problem we obtain

Mσδv −∆tD(v(k))δv = F ′(vk)δv = F(v(k)) = Mσvk −∆t f(vk)− h,

v(k+1) = v(k) − δv.

Since the change of variables used to diagonalize Mσ in general does not preserve
the diagonal structure of D(v(k)) an efficient solution of the linear system for the Newton
increment δv cannot proceed along these lines. However an iterative approach can be
used that makes use of the efficiency of a fast Poisson solver. (Alternatively, an inexact
Newton method could be used.) Consider the iterative scheme

Mσ(δv)(p+1) −∆tD(v(k))(δv)(p) = Mσvk −∆t f(vk)− h. (11)

Clearly the iteration matrix for this scheme is ∆t (Mσ)−1D(v(k)). Since the eigenvalues
of Mσ are all bounded below by 1, with equality for one of the eigenvalues, the spectral
radius of (Mσ)−1 is ρ((Mσ)−1) = 1. And, since D(v(k)) is diagonal,

ρ(D(v(k))) = max{|d1|, . . . , |dN |} = max
i,j

∣∣∣∂f

∂v
(v(k)

i,j , xi, yj , tn+1)
∣∣ ≤ ‖fv‖∞.

Hence the iterative scheme (11) will convergence if ∆t < 1/‖fv‖∞. An efficient scheme
that can be used in computing the iterates (δv)(p) is described in section ?? below.

5.2 The general case

In the general scheme (2) cannot be solved sequentially since the values {vn+1
i,j } will

depend on {un+1
i,j }. We suggest a iterative scheme that can be used to solve this coupled

system. Let Mσ be defined as before and set

Mκ = I + κ∆t[mα(Iβ ⊗Aα) + mβ(Aβ ⊗ Iα)], or
Mκ = I + κ∆t[mα(Iβ ⊗Aα) + mβ(Aβ ⊗ Iα)− 1

12(mα + mβ)Aβ ⊗Aα)],

depending on whether a 5 or 9 point stencil is used. Set

F(u, v) = Mσv −∆t f(u, v)− h,

where now f(u, v)α×β = [f(ui,j , vi,j , xi, yj , tn+1)], and again hα×β = [vn
i,j ]. Next we set

G(u, v) = Mκu−∆t g(u, v)− C(v),
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where g(u, v)α×β = [g(ui,j , vi,j , xi, yj , tn+1)], and C(v)α×β = [Ci,j({v}, {un})]. The ap-
proximations un+1, vn+1 at the next time step are solutions of the couple nonlinear
system F(u, v) = 0, G(u, v) = 0. An iterative scheme that can be used to solve this
system is: u(0) = un, and for k = 0, 1, . . .

F(u(k), v(k+1)) = 0, G(u(k+1), v(k+1)) = 0. (12)

Solving the first equation can be done in essentially the same way as for the special
system considered in the previous subsection, and once v(k+1) has been determined the
same is true of the second. Convergence of this iteration scheme is discussed below.

5.3 Convergence of the Iteration Scheme

In this subsection we show that the iteration scheme (12), which is a nonlinear version of
Gauss-Seidel iteration, converges under rather standard conditions on the time step ∆t
and the Lipschitz’s constants for the nonlinear terms. We assume there are constants
Lf and Lg such that the real-valued functions f , g satisfy

|f(u1, v1, x, y, t)− f(u2, v2, x, y, t)| ≤ Lf (|u1 − u2|+ |v1 − v2|),
|g(u1, v1, x, y, t)− g(u2, v2, x, y, t)| ≤ Lg(|u1 − u2|+ |v1 − v2|),

for all u1, u2, v1, v2 ∈ [0,∞), (x, y) ∈ Ω and t ≥ 0.
Consider two successive iterates v(k) and v(k+1) which satisfy F(u(k−1), v(k)) = 0

and F(u(k), v(k+1)) = 0, respectively, or equivalently

Mσv(k) = ∆t f(u(k−1), v(k)) + h

Mσv(k+1) = ∆t f(u(k), v(k+1)) + h.

Subtracting and using the Lipschitz continuity of f gives

‖v(k+1) − v(k)‖ ≤ ∆t Lf‖ (Mσ)−1 ‖
(
‖u(k) − u(k−1)‖+ ‖v(k+1) − v(k)‖

)
.

Thus, with Kσ
f = Lf‖ (Mσ)−1 ‖ we find

‖v(k+1) − v(k)‖ ≤
∆t Kσ

f

1−∆t Kσ
f

‖u(k) − u(k−1)‖, (13)

provided of course that ∆t Kσ
f < 1.

For the next step we also need to assume

‖C(v(k+1))− C(v(k))‖ ≤ ∆t LC‖v(k+1) − v(k)‖,

for a constant LC . This is a reasonable assumption given the make-up of the entries
Ci,j(v(k)), if we assume a fixed grid. If u(k) and u(k+1) satisfy G(u(k), v(k)) = 0 and
G(u(k+1), v(k+1)) = 0, respectively, then

Mκ(u(k+1) − u(k)) = ∆t
(
g(u(k+1), v(k+1))− g(u(k), v(k))

)
+ C(v(k+1))− C(v(k)).
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Let Kκ
g = Lg‖ (Mκ)−1 ‖ and KC = LC‖ (Mκ)−1 ‖. Then proceeding as before we find

‖u(k+1) − u(k)‖ ≤ ∆t Kκ
g

(
‖u(k+1) − u(k)‖+ ‖v(k+1) − v(k)‖

)
+ ∆t KC‖v(k+1) − v(k)‖,

and hence

‖u(k+1) − u(k)‖ ≤
∆t (Kκ

g + KC)
1−∆t Kκ

g

‖v(k+1) − v(k)‖, (14)

provided that ∆t Kκ
g < 1. Combining (13) and (14) gives

‖u(k+1) − u(k)‖ ≤
∆t (Kκ

g + KC)
1−∆t Kκ

g

∆t Kσ
f

1−∆t Kσ
f

‖u(k) − u(k−1)‖,

Shifting the index in (14) and combining with (13) shows the same estimate is valid for
the sequence {v(k)}∞k=1. Therefore, a standard argument shows that if

∆t (Kκ
g + KC)

1−∆t Kκ
g

∆t Kσ
f

1−∆t Kσ
f

< 1

then there are vectors un+1, vn+1 such that (v(k), u(k)) → (un+1, vn+1), as k →∞, and
F(un+1, vn+1) = G(un+1, vn+1) = 0.
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Abstract 
 
      In this paper, we propose a new mathematical model for aquatic populations, 
based on a modified version of the Leslie-Gower scheme. This model incorporates 
mutual interference in all the three populations, an extra mortality term in middle 
population (zooplankton) and also taking into account the toxin liberation process of 
TPP population. We investigate the dynamical behavior of the model system and 
observe the role of mutual interference and TPP by considering  the Holling type II 
functional response of toxin liberation process. The computed bifurcation diagrams 
and two-dimensional parameter scans suggest that chaotic dynamics is robust to 
changes in changes against rates in toxin production by phytoplanktons as it exists in 
large range of θ  values. Many forms of complex dynamics are observed, including 
period-doubling bifurcation with period-halving bifurcation cascade, saddle –node 
bifurcation. Our study suggests that toxic substances released by TPP population may 
act as bio-control by changing the state of chaos to order and extinction of predator 
species and mutual interference also induces chaos and acting as both stabilizing as 
well as destabilizing factors.  
 
Keywords: Chaotic dynamics, mutual interference, toxin producing phytoplankton, 
aquatic system, functional form. 
 
 
1. Introduction 
 

Chaotic dynamics play an important role in continuous time models for ecological 
systems.  There is some evidences   that the real time evolution of species involving 
two or three species in a food chain could be characterized by chaotic attractors as 
observed in many natural food-chains [3, 12,  17, 19, 20]. Upadhyay and Rai [20] 
produced new examples of a chaotic population system in a simple tri-trophic food 
chain with Holling type II functional responses. Aziz- Alaoui [3] revisited the 
Upadhyay and Rai’s model and found that the chaotic dynamics is observed via 
sequences of period-doubling bifurcation of limit cycles which however suddenly 
break down and reverse giving rise to a sequence of period-halving bifurcation 
leading to limit cycles.  Upadhyay and Chattopadhyay [18] modified the model of 
Upadhyay and Rai [20], by introducing an extra mortality term in middle predator and 
interpret the system for aquatic environment consisting of TPP-Zooplankton-Molluscs 
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food chain model.  They observe that increasing the strength of toxic substance 
released by TPP population reduce the propensity of chaotic dynamics and changing 
the state of chaos to limit cycles and finally settled down to stable focus.  

A number of studies have investigated the effect of mutual interference on the 
population dynamics.  DeAngelis et al. [6] studied the dynamical properties of a 
continuous -time autonomous model system incorporating their interference model. 
This model was taken up by Hwang [13] to establish that the periodic orbits, if it 
exists, are unique. The models considered for interference have different 
mathematical expressions and different conceptual foundations [2]. From theoretical 
studies, and from some empirical evidence, a consensus has emerged to consider that 
interference has a stabilizing influence on population dynamics [5], although Hassell 
and May [11] pointed out that there was an upper limit on the interference constant 
beyond which the dynamics become unstable. Motivated from the above studies, we 
show that chaotic behaviour as described by Upadhyay and Rai [19, 20] could be 
controlled by an  auto-control  mechanism.  

In this paper, we propose a new model of aquatic ecological system by 
introducing mutual interference in all the three populations, an extra mortality term in 
zooplankton population and also taking into account the toxin liberation pr ocess of 
TPP population. This model generalizes the several other known models in the 
literature like Upadhyay and Rai model [19, 20] and Hastings and Powell model [12]. 
Our study shows that chaotic dynamics is observed via sequences of period-doubling 
bifurcation of limit cycles. It also shows that chaotic dynamics is robust to changes in 
rates of toxin release.  One of main objectives of our study is to examine the role of 
mutual interference parameters ( 3,2,1, =imi ) and the parameter θ , the rate of toxin 
release by TPP population on the chaotic dynamics of the model system in response to 
different types of toxin release functions )( 11 xf , which represents the toxin liberation 
process of TPP population.                                                                                                                

This paper is organized as follows:  In the next Section, we present the details of 
the model system. The methodology used is presented in Section 3, which helps us to 
select the biologically realistic parameter values to perform simulation experiments. 
Numerical results are summarized in Section 4 and some important conclusions are 
discussed in Section 5.  

 
2. The Model System 

 
     Consider a situation where a prey population 1x is predated by individuals of 
population 2x . The population 2x , in turn serves as a favourite food for individuals of 
population 3x . This inte raction is represented by the following system of a simple 
prey - specialist predator - generalist predator interaction:  
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where 0>im  for  3,2,1=i ,  cwwwwbaa ,,,,,,,, 3210121 θ  and 43210 ,,,, DDDDD >0, 
)('

+∈ RCf i  for i = 1, 2, 3. 
The parameters mi for i=1, 2, 3 are mutual interference parameters that model the 
intraspecific competition among predators when hunting for prey                                
[4, 7, 8, 9, 10].  
     In this model, TPP population (prey) of size x1 serves as the only food for the 
specialist predator (zooplankton) population of size x2. This zooplankton  population, 
in turn, serves as a favorite food for the generalist predator (mollusks) population of 
size x3.  In this model, ,,,,,,,, 3210121 cwwwwbaa 43210 ,,,, DDDDD  and θ   are 
positive constants. The equations  for rate of change of population  size for prey  and 
specialist predator have been written following the Volterra scheme that is, predator 
population dies out exponentially in  the absence of its lone prey. The interaction 
between this predator x2 and the generalist predator x3 is modeled by the modified 
version of the Leslie -Gower scheme where the loss in a predator population is 
proportional to the reciprocal of per capita availability of its most favorite food. 1a is 
the intrinsic growth rate of the prey population x1, 2a is the intrinsic death rate of the 
predator population x2 in the absence of the only food x1, c measures the rate of self-
reproduction  of generalist predator x3 , w0, w1, w2, 3w are the maximum values which 
per capita growth rate can attain. 1b measures the strength of intra-specific competition 
among the individuals of the prey species x1. 0D  and 1D  quantify the extent to which 
environment provides protection to the prey x1 and may be thought of as a refuge or a 
measure of the  effectiveness of the prey in evading a predator’s attack. 2D  is the 
value of x2 at which per capita removal rate of x2 becomes 22w . 3D  represents the 
residual loss in 3x population due to severe scarcity of its favourite food x2. For 

,11 =m  the coefficient )/( 010 Dxw + , of the third term on the right hand side of eq. 
(1a) is obtained by considering the probable effect of the density of the prey’s 
population on predators attack rate. If this coefficient is multiplied by  x1 (the prey 
population at any instant of  time), it gives the attack rate on the prey per predator. 
Denote ),/()( 01101 Dxxwxp +=  when, ,)(, 011 wxpx →∞→  which is the maximum 
that it can reach.  Some aquatic or ganisms condition their medium by releasing 
substances that stimulate growth of species, which have similar genetic make -up. 
Sparse populations rarely provide sufficient opportunities for social interaction 
necessary for reproduction. Here )( 11 xf represents the toxin liberation process of TPP 
population for which the mortality of zooplankton increases and as a result, the 
grazing pressure of zooplankton on TPP population decreases. We assume that 
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andf The parameter θ   is the rate of toxin release by TPP 

population. Equations (1a -1c) describe the proposed model system. 
 
    It is easy to see that the functions 3,2,1, =igi  in (1a-1c) are continuous on 3

+R , in 

which  ),0[ ∞=+R . Clearly, when 1≥im  the functions 
k

i

x
g
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∂

 are continuous on 3
+R . 

Following Erbe et al.[7], we obtain conditions under which the solutions of  (1a-1c) 
form a dynamical system. The question of the solutions of  (1a-1c) forming a 
dynamical system needs further investigation especially when the parameters im  are 
sub-linear ( 10 << im ). 
     We now state the following assumptions, which will be verified in respect of our 
model sys tem  to conclude that the solutions of (1a-1c) form a dynamical system 
when the interference parameters im  for i= 1, 2,3 are sublinear. 
(H1) there exists functions hj continuous on 3

+R   where  
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     As in Erbe  et al.[ 7], we consider the following change of variables for (1a-1c)  
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Clearly the transformation (2) transforms the sublinear system (3c) into (3b) in which 
no sublinearities are present. Biologically, this amounts to requiring that the mutual 
interferences are not too strong. 
      
 The above discussions may be summarized as follows. 
 
Theorem 2.1 Consider the system of equations (1a-1c) in which 0)0( ≥ix , 

10 << im , for i=1, 2, 3. Assume that the assumptions (H1), (H2) and (H3) hold. 
Then, the solutions of the system equations (1a-1c) form a dynamical system in the 
sense of Nemytskii and Stepanov [15] provided the mutual interference parameters 
satisfy the following inequalities: 

,
2
1,

2
1

21 ≥≥ mm and  132 ≥+mm . 

 
3.  Methods of investigation 
 
The model system presented above are multi-parameter system. Model parameters are 
selected in accordance with a method given  in upadhyay et al. [19, 20]. A few 
hundred parameter  combinations (choosing two at a time) are possible.  This is 
simply not feasible for any one to scan the system in all the parameter spaces.  
Application of non-linear dynamics is unison with the knowledge of biology of the 
system enables one to choose parameter combinations for simulation experiments.  
The most crucial part of the present methodology is the following conjecture: 
 
Two coupled Kolmogorov systems in oscilla tory mode would yield either cyclic 
(stable limit cycles and quasi-periodic) or chaotic solutions depending on the strength 
of coupling between the two.  
 
In the present case, the set of parameter values for which the system admits  a limit 
cycle solution is found to be  
 

.0.2,95.0,95.0,10,10,0.1,03.0
,003.0,10,55.0,10,0.2,0.1,0.1,05.0,0.2

321433

22112011

=======

=========

mmmDDwc

DwDwawba θ
 

 
There is one more important aspect of these simulation experiments i.e., choosing the 
step size for the variation of a system parameter from a parameter combination within 
the chosen range. It depends on the nature of the parameter concerned: whether it is a 
slow varying or fast varying one. 
        The most useful way to study such a dynamical system is to monitor the 
amplitude (maxima) of the subsequent oscillations as the control parameter of the 
system is varied.  A small change in parameter values may lead to a bifurcation: an 
abrupt, qualitative change in the dynamics. 
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4. Numerical Results  
 
      In order to better understand  the dynamics of the model system, we turn to 
numerical simulations. Computer simulations were performed on MATLAB for the 
system equation (1a -1c). The search for chaos was carried out using the Physics 
Academy Software (AIP, New York) ODE workbench package. Our primary interest  
is to explore the occurrence of chaotic dynamics in the mode l system. We try to 
observe the role of toxin producing phytoplankton on the chaotic dynamics in such 
ecosystems. We also examine the role of mutual interference parameter im  and the 
parameter θ , the rate of toxin  release by TPP population on the chaotic dynamics of 
the model system.  
     Model system is integrated numerically using six-order Runge -Kutta method along 
with predictor corrector method. It is observed that the model system (1a-1c) has a 
chaotic solution at the following set of parameter values (see Fig. 1)   
 

.0.0,0.2,0.1,0.1
,0.20,0.1,03.0,0.10,405.0,0.10
,0.2,0.1,0.10,0.1,06.0,93.1

321

33221

120011

====

======
======

θmmm

DwcDwD
waDwba

         (9) 

 
To confirm the existence of chaos, the dynamics of the model system is studied by 
constructing bifurcation diagrams. For Holling type II functional response form for 
toxin liberation process, we have plotted the successive maxima of top predator 3x  as 
a function of the parameter θ  (rate of toxin substances release by TPP population) 
keeping other parameters fixed as given in eqn. (9) for model system (1a-1c). The 
figures 2(a-b) are representing the bifurcation diagrams of model system (1a-1c) with 

)( 11 xf  as Holling type II functional response. These figures show clearly the 
transition from chaos to order  through sequences of period-halving bifurcation. 
Therefore, for the model system, it is observed that, increase of value of toxic 
substances released by TPP population  has a stabilizing effect. The blow –up 
bifurcation diagram (see Fig. 2b) show that the model system possesses rich variety of 
dynamical behaviour for bifurcation parameter θ in the ranges [0, 0.07] for Holling 
type II functional response.  A period –doubling cascade  is observed. After the 
accumulation point, the behaviour settles down onto a chaotic attractor. When θ, the 
bifurcation parameter is decreased, new periodic orbits are created.  Two different  
bifurcations are involved. First, period-doubling bifurcations that are easily identified 
in  the main period doubling cascade  but also within each periodic window. Second, 
saddle –node bifurcations,  creating  one stable limit cycle and one unstable  periodic 
orbit, both having  the same period, may be identified  at the beginning of each 
periodic window. Here, the most observable  periodic  windows are  the one  
associated  with the main  period-doubling cascade and the other associated with the 
saddle-node bifurcation inducing  the  stable period-1  limit cycle.  Two co-existing 
period-doubling cascades are then observed.   
    Dynamical behavior of model system (1a-1c) depending on the results of 
bifurcation diagrams given in figs 2 is presented in table 1. We have observed stable 
focus, different order limit cycles and strange chaotic attractor in the different ranges 
of θ , the rate of toxic substance released by TPP.  From the table 1, it is observed that 
for the model system, the increase of value of toxic substances released by TPP has a 
stabilizing effect. Model system also shows the extinction of the predator species for 

388



  

higher values of θ. These observations indicate that to maintain the order of an 
ecosystem functioning, Holling type II functional form for toxin liberation process is 
more appropriate.     
      Now, we have investigated the role of mutual interference parameters on the 
dynamics of trophic system in detail. The values of mutual interference parameters 
were chosen on the basis of the values reported in Katz [14].  We have observed 
stable focus, limit cycles and chaotic dynamics phenomena in the model system by 
changing the mutual interference parameters im , i=1, 2, 3 and the rate of toxin release 
by TPP population θ , in the fixed range  for different cases.  We have also reported 
the function error or argument domain error, the region in the parameter space where 
no dynamics is observed.  In this domain, the values of mutual interference 
parameters are not conducive for simulation experiment i.e., in real situation, no 
species can attain these values of mutual interference.  Our approach is first  to fix 1m  
and 2m  then vary 3m  in the interval [1, 3] and θ  in the interval [0,1) and then observe 
the exchange of states (stability - limit cycle - period doubling – chaos) in the model 
system for three different  cases of ).,,( <=>im   
 
The results for model system (1a -1c) are summarized below: 
 
Case I: When 0>im  

(A) For 
)(

1
)(),IItypeHolling(

)(
)(

32
22

41

1
11 Dx

xf
Dx

x
xf

+
=

+
= . (see Table 3)  

(i) For 1m = 2m =1.05 and 10,0.35.1 3 ≤≤≤≤ θm . 
Chaos exists at some discrete points. For example, chaos exists for 

)55.0,25.2(),5.0,25.2(),55.0,0.2(),5.0,0.2(),45.0,0.2(),4.0,75.1(),( 3 =θm . Rest of the 
points  it shows the limit cycle attractor. 
(ii) For 0.221 == mm  and 10,31 3 ≤≤≤≤ θm . 
From the simulation, it is found that in most of the cases, 2x  becomes extinct and 

),( 31 xx rests on stable focus for higher values of θ . For lower values of θ , all the 
three populations rests on stable focus and limit cycle attractor in the phase plane. It is 
also observed that for  75.1,5.1,25.121 == mm  and for whole range of the parameter 
space ),( 3 θm (i.e., 10,31 3 ≤≤≤≤ θm ), the model system (1a-1c) predicts no 
dynamics. The simulation results show function error or argument domain error. 
These values of mutual interference parameters are not conducive for the simulation 
experiment i.e., in real life  situation, no species can attain these values  of mutual 
interference. 
 
Case II: When 1=im (i.e., )1321 === mmm . 

(A) For 
)(

1
)(),IItypeHolling(

)(
)(

32
22

41

1
11 Dx

xf
Dx

x
xf

+
=

+
= , .10 ≤≤ θ  

Chaos exists in the interval .25.00 ≤≤ θ  For ]4.0,3.0[∈θ , and ]7.0,45.0[∈θ , we 
obtain the limit cycle and stable focus behaviour respectively. For rest values of  

]0.1,8.0[∈θ , ),( 32 xx becomes extinct and 1x rests on a stable focus but  at θ  = 0.75, 
only 3x  becomes extinct and other species rests on stable focus.  Fig. 3 shows the 
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chaotic behaviour of the model system (1a-1c) in the domain 
.35.00,25.275.0 3 ≤≤≤≤ θm  

 
Case III: When 0<im  
In this case, chaos does not exist at all. The domain in which we perform the two 
dimensional scans are   

and 10 ≤≤ θ .  
 

We obtain only function error in this domain except for .95.021 == mm We also did 
the simulation for the above values of 21, mm and ),( 3 θm in the domain 

)10,325.0( 3 ≤≤≤≤ θm . Results are presented in the tabular form in table 4. From 
the tables, it is observed that the mutual interference also stabilize  the system.  From 
table 4, it is found that for 75.0,5.0,25.021 == mm  and 3m in the range [1, 3] and θ 
in the range [0, 1], the dynamics is settled on stable focus. For  95.021 == mm  and in 
whole range of 3m  and θ , stable focus and limit cycles are observed.  
 
Case IV: (New Adventure) 
 
On the experimental basis, by looking the conditions of the Theorem 2.1, we have 
taken different combination of the mutual interference parameters and observed its 
influence on the dynamics of the model system (1a -1c). The results are reported in 
table 2. We observed only function error. These values of mutual interference 
parameters are not conducive for the simulation experiment i.e., in real life situations; 
no species can attain these values of mutual interference parameters. 
 
 
5. Conclusions 
 
    In this paper, we have attempted to answer the question does mutual interference   
and   toxic substances released by TPP always stabilize the prey-predator dynamics in 
aquatic environment. Our simulation experiments suggest that the answer is definite  
‘yes’.  From the tables, it is observed that for different values of mutual interference 
parameters in different ranges, dynamics of the model system is also influenced by the  
functional form of toxin liberation process.  For )3,2,1(1 =< imi , from table 4,  no 
dynamics was observed  (i.e., represented by function error in the tables) in the range  

75.025.0 ≤≤ im ,  but if we take any one of the interference parameters value near 1, 
we observe the system dynamics on stable focus. In this case (Holling type II 
functional response), the top predator becomes extinct as 3m  reaches 1.  For 1>im , 
most of the time, dynamics rests on stable limit cycle or stable focus. From tables (3), 
it is found that for 05.121 == mm (i.e. near 1) and 3m  in the range [1, 3], system 
dynamics settled on limit cycle attractor. In this case, model system also supports 
chaotic dynamics only at few discrete points. But for ,221 == mm and 3m  in the range 
[1, 3], mostly system dynamics settled on stable focus and middle predator becomes 
extinct for all the three form of functional responses.  These results show that the 
interaction between predators is a stabilizing factor, one could thus argue that 
evolution has selected species of predators that have values close to 1, but smaller 

75.0,5.0,25.0;95.0,75.0,5.0,25.0 321 === mmm
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than 1. This could be an explanation of why Arditi and Akcakaya [1] found in many 
sets of his experimental data, im  was close to 1.  
    From the tables and 2D scan diagram, it was also observed that the model system 
supports chaotic dynamics for .1≥im  It is caused by deterministic changes in system 
parameters not by exogenous stochastic influences. In this case, the ecological 
systems are not able to lock themselves onto a fully developed chaotic state. Since it 
is constantly influenced by exogenous stochastic fluctuations [16], it is forced to leave 
the chaotic state as initial condition changes.  We also observe from bifurcation 
diagrams is that chaotic dynamics is robust to changes in changes against rates in 
toxin production by phytoplankton as it exist for large range of θ  value.  Period 
doubling bifurcations seem to be responsible for this kind of dynamical behaviour. 
The study suggests that toxic substances release by TPP plays an important role  in 
the termination of planktonic  blooms which is of great importance  to human  health, 
ecosystems, environment and fishery. It may also act as biological control by 
changing chaos to order and has stabilizing contribution to aquatic systems.  
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Table 1. Dynamical behavior (DB) of model system depending on the results of 
bifurcation diagrams given in fig. 2. Pi - limit cycle of period i for (i = 2, 3, 4, 5, 6), SF – 
stable focus, LC – limit cycle, LP – long period, SCA – strange chaotic attractor, EX- 
Extinction. 

  
Results of model 1 for 

Holling type II: 
)()( 4Dxxxf +=  

104 =D  
     =θ                        DB 
0.001-0.0111           SCA 
0.0112                       P6 
0.0113-0.0115          P5 
0.0116-0.0123          P4 
0.0124-0.059           SCA 
0.06                           LP 
0.061                         P6 
0.062-0.068              P4 
0.07-0.16                  P2 
0.17                           LP 
0.18-0.39                  LC 
0.4-0.6                      SF 
0.7                             EX 

 
 

Table 2.  Dynamical behaviour of the model system (1a-1c) depending on the results of  the  
Theorem 2.1. The values of the common parameters are same as given in table 2. The mutual 
interference parameters )3,2,1(, =imi  and θ  varies in the given ranges. 
 

Values of im  
 

2 3

( ) 0 0.5 and
this violates 0

ia m

m m

< <

+ ≥
 

Values of 
θ  in  

10 ≤≤ θ  

Dynamical Behaviour 

)(
)(

41

1
11 Dx

x
xf

+
=  

(i) 35.0,45.025.0 321 === mmm  0-1.0        Function Error         

(ii) 25.0,25.025.0 321 === mmm  0-1.0        Function Error         

(iii) 45.0,25.045.0 321 === mmm  0-1.0       Function Error  

(iv) 45.0,45.035.0 321 === mmm  0-1.0        Function Error  
(v) 5.0,45.035.0 321 === mmm   0-1.0       Function Error  
 
 (b) .5.0;5.00 321 ==<< mmm  

  

.45.0,4.0,35.0,3.0,25.0,2.0,1.01 =m  0-1.0        Function Error  
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Table 3. Simulation experiments of model system (1a-1c) with )( 11 xf as Holling type II 
functional response. The values of the common parameters used in the model system are  
same as given in table 2 with 0.104 =D . 

].1,0[rangetheinvariesand),3,2,1(1parametersceinterferenmutualThe θ=> imi  

 
 
 

 
 
 

Values of 

21 mandm  
3m  in 

31 3 ≤≤ m  

Values of θ  in  
10 ≤≤ θ  

Dynamical behaviour 

 
 
 
 

05.121 == mm  

1.5 
 
1.75 
 
 
 
 
2.0 
 
 
 
 
 
 
2.25 
 
 
 
 
 
2.5 
 
2.75 
 
3.0 

0-0.0001; 0.002-1.0 
0.0002-0.001 
0; 0.0004-0.001 
0.0001-0.0003; 0.002-0.0095 
0.01 -0.085; 0.095-0.35; 0.65-1.0 
0.09; 0.5-0.6 
0.4 
0-0.0002; 0.0005-0.0008 
0.0003-0.0004; 0.0009-0.007 
0.0075-0.02 
0.025-0.25 
0.3-0.4; 0.6-0.65 
0.45 -0.55 
0.7-1.0 
0-0.002 
0.003; 0.02-0.088; 0.095-0.25 
0.0035-0.015;0.09; 0.3-0.45 
0.5-0.55 
0.6-0.7 
0.75 -1.0 
0-0.02; 0.3-0.75 
0.025-0.29; 0.77 -1.0 
0.085, 0.095-0.28; 0.8 -1.0 
0.09, 0.3-0.75 
0.35 -0.42; 0.7– 0.75 
0.44 - 0.66; 0.8-1.0 

Function Error 
Limit cycle 
Function Error 
Limit cycle 
Function Error 
Limit cycle 
Chaos 
Limit cycle 
Function Error 
Limit cycle 
Function Error 
Limit cycle 
Chaos 
Function Error 
Limit cycle 
Function Error 
Limit cycle 
Chaos 
Limit cycle 
Function Error 
Limit cycle 
Function Error 
Function Error 
Limit cycle 
Limit cycle 
Function Error 

25.121 == mm  1.0-3.0  0-1.0 Function Error 

5.121 == mm  1.0-3.0 0-1.0  Function Error 

75.121 == mm  1.0-3.0 0-1.0  Function Error 

0.221 == mm  1.0 
1.25 -2.0 
2.25 
 
2.5 
 
2.75 
 
 
3.0 

0 -1.0 
0 -1.0 
0-0.1 
0.15 -1.0 
0 - 0.4 
0.45 – 1.0 
0 –0.5  
0.55 – 0.6 
0.65 -1.0 
0 – 0.5 
0.55 -0.85 
0.86 – 1.0 

x1 SF ; (x2, x3) extinct 
(x1, x3) SF; x2 extinct  
(x1, x2,  x3) SF 
(x1, x3) SF; x2 extinct  
(x1, x2,  x3) SF 
(x1, x3) SF; x2 extinct  
(x1, x2,  x3) SF 
(x1, x2,  x3) Limit cycle 
(x1, x3) SF; x2 extinct  
(x1, x2,  x3) SF 
(x1, x2,  x3) Limit cycle 
(x1, x3) SF; x2 extinct  
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           Table 4.  Simulation experiments of model system (1a-1c) with )( 11 xf as Holling type II 
functional response. The values of the common parameters used in the model system are 
same as given in table 2 with 0.104 =D .  The mutual interference parameters θand3m  
varies in the ranges [0.25,3] and [0, 1] respectively. 

 
 

 
 
 
 
 
 
 

 

Values of 
21 mandm  

3m  in 
325.0 3 ≤≤ m  

Values of θ  in  
10 ≤≤ θ  

Dynamical behaviour 

25.021 == mm  0.25- 0.75 
1.00- 3.0 

0 –1.0  
0-1.0 

Function Error 
Stable Focus 

5.021 == mm  0.25-0.75  
1.0-3.0 

0-1.0 
0-1.0 

Function Error 
Stable Focus 

75.021 == mm  0.25-0.75  
1.0-3.0 

0-1.0 
0-1.0 

Function Error 
Stable Focus 

95.021 == mm  0.25 
 
 
 
 
0.5-0.75 
 
 
1.0 
 
 
1.25-2.25 
 
2.5 
 
 
 
 
 
 
 
2.75 
 
3.0 
 
 

0-0.004 
0.005-0.009 
0.01-0.1 
0.2-0.4 
0.45-1.0 
0 -0.15 
0.2-0.4 
0.45-1.0 
0-0.15 
0.2-0.7 
0.75-1.0 
0-0.15 
0.2-1.0 
0-0.0002 
0.0003-0.0004 
0.0005-0.0006 
0.0007-0.0009 
0.001-0.006 
0.007-0.02 
0.03-0.15 
0.2-1.0 
0- 0.15 
0.2-1.0 
0-0.24 
0.25-1.0 

Limit cycle  
Function Error 
Limit cycle  
Stable Focus 
Function Error 
Limit cycle  
Stable Focus 
Function Error 
Limit cycle  
Stable Focus 
(x1, x2)SF, x3 extinct 
Limit cycle  
Stable Focus 
Limit cycle  
Function Error 
Limit cycle  
Function Error 
Limit cycle  
Function Error 
Limit cycle  
Stable Focus 
Integration Error 
Stable Focus 
Integration Error 
Stable Focus 
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Fig. 1. Phase plane diagram for model system (1a-1c) depicting chaotic 
attractor for 0=θ , other parameter are same as given in eq. (9).                                                                                   
                                                                                                                         

                                                                                                                          

               
Fig. 2. (a) Bifurcation diagram as a function of θ  for model sy stem with )( 11 xf of Holling type II. (b) 

Blown up bifurcation diagram of (a) in the range 2.00 ≤≤ θ . Here, z stands for 3x  in model 
system (1a-1c).                                                  

chaos
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a

 
Fig. 3.  Model system. 2D scan diagram  between ),( 3 θm  parameter space for Holling type II functional responses 
with the parameter values  

1 1 22, 0.05, 0.55,a b w= = = 4 10.0, 0.003.D θ= =  other parameters  are same as given  in 
eq. (9).                    
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Abstract

Recently the authors have presented a nonlinear explicit scheme suitable for
numerically solving first-order initial-value problems (IVP) of the form y′ = f(y).
The algorithm is based on the local approximation of the function f(y) by a second-
order Taylor expansion where the resulting approximated differential equation is
then solved without local truncation error. In this paper we proposed an improved
approximation based on a Chebyshev interpolation polynomial of second degree
taken at the Chebyshev-Gauss-Lobato points.

Key words: initial value-problems, nonlinear methods, Chebyshev approxima-
tion

MSC 2000: 65L05

1 Introduction

Many authors have worked on numerical methods suitable for solving initial value
problems of special types in ordinary differential equations. Such problems are stiff
problems, singularly perturbed problems, or problems whose solution y(x) or the first
derivative of the solution y ′(x) contain singularities on the interval of integration.

We will consider the autonomous scalar initial-value problem given by

y ′ = f(y), y(a) = y0 , (1)

where y, f(y) ∈ R , and x ∈ [a, b] ⊂ R , and it is assumed that the solution is unique.
The conventional explicit one-step method for (1) is given by yn+1 = α yn +hΦf (yn, h),
where Φf (yn, h) is the incremental function, and the subscript f on the right hand side
indicates that the dependence of Φ on yn is through the function f . The selected step
size h is such that for the mesh points we have xj = a + j h , j = 0, . . . , k. Typical
examples of the above scheme are the linear one-step methods or the Runge-Kutta
methods (which are essentially substitution methods)[1].
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Nonlinear multistep methods are usually designed for dealing with unconventional
problems for which the classical schemes generally perform poorly [2], [4], [5], [6], [7],
[8], [9]. On the contrary, some of the nonlinear schemes specifically designed for singular
problems do not perform well on non-singular problems [9]. In this paper we propose a
non-linear scheme suitable for IVPs, based on the local approximation of the function
f(y) by a Chebyshev approximation. Some numerical experiments confirm the well
performance of the method.

2 Approximation by a truncated Chebyshev series expan-
sion

Recently the authors have presented in [7] an approach for handling some type of
special problems. This scheme was based on the approximation of the right hand side
of the differential equation by a second-order Taylor expansion and the use of an exact
procedure for solving the approximated problem. In this paper we propose a similar
approach, but this time we consider instead of the Taylor polynomial an interpolation
polinomial of second degree based on the Chebyshev-Gauss-Lobatto nodes [10].

We show this approximation that will be used in the next section for the develop-
ment of the numerical scheme.

Let be a function f(y) defined on an interval named [yn, yn+1]. The transformation
given by

y = yn +
hy

2
(1 + α)

where hy = yn+1 − yn introduces a new variable α ∈ [−1, 1] and the function

f̄(α) = f(yn +
hy

2
(1 + α))

may be approximated by means of a truncated series of Chebyshev polynomials in the
form [11]

f̄(α) =
2∑

k=0

′′
ak Tk(α) (2)

where Tk(α) is the Chebyshev polynomial of fist kind of degree k, the double primes
indicate that both the first and last terms in the summation are to be halved, and

ak =
2∑

j=0

′′
f̄(αj) Tk(αj) ,

where

αj = cos(θj) , j = 0, 1, 2 (3)

and

θj =
(n− j)π

n
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are the so-called Chebyshev-Gauss-Lobatto points.
In Fig. 1 we can see the absolute errors in the approximation of the function

f(y) = cos2(y) on the interval [yn, yn+1] = [π/4, π/4 + 0.1] using the second-order
Taylor polynomial about yn (red line) and by the interpolating polinomial of second
degree given by the right hand side in (2) (blue line).

0.8 0.82 0.84 0.86 0.88

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Figure 1: Absolute errors in the approximation by second-degree polynomials: Taylor
(dashed line) and Chebyshev (solid line).

3 A non-linear explicit one-step scheme

Suppose we have solved numerically the problem in (1) up to a point xn, and assuming
the localization hypothesis yn = y(xn), we want to obtain an approximate value for
the solution at the point xn+1 = xn + h, that is, yn+1 ' y(xn+1). For this purpose
we consider the approximation of the function f(y) on the interval [yn, yn+1] using the
procedure in the above section. In this way we obtain

f(y) =
2∑

k=0

′′
ak Tk(α)

where

ak =
2∑

j=0

′′
f

(
yn +

1
2

hy (1 + αj)
)

Tk(αj) , (4)

with the αj as in (3).
The value yn+1 is not known, and we provide it by means of the Euler method,

that is,
yn+1 = yn + h f(yn)
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and so hy takes the form hy = h f(yn).
With the above settings the approximated differential equation reads

y ′ =
2∑

k=0

′′
ak Tk

(
2(y − yn)
h f(yn)

− 1
)

(5)

where now the ak are given by

ak =
2∑

j=0

′′
f

(
yn +

1
2

h f(yn)(1 + αj)
)

Tk(αj) ,

that is, we have approximated on [xn, xn+1] the differential equation in (1) by the
differential equation in (5) which is of Riccati type of the form

y ′ = a + b y + c y2 (6)

where a, b, c are certain constants which depend on h and yn through f . Explicitly
these constants reads

a =
(h2f2

n + 3hynfn + 2y2
n)fn − 4(y2

n + hfnyn)fn+1/2 + (hfnyn + 2y2
n)fn+1

f2
n h2

b =
−(3fnh + 4yn)fn + 4(fnh + 2yn)fn+1/2 − (fnh + 4yn)fn+1

f2
n h2

c =
2(fn − 2fn+1/2 + fn+1)

f2
n h2

where fn, fn+1/2, fn+1 are abbreviations for

fn = f(yn) , fn+1/2 = f(yn +
h

2
fn) , fn+1 = f(yn + hfn) .

We can solve on the interval [xn, xn+1] the problem in (6) with the initial condition
y(xn) = yn exactly, that is to say, without local truncation error, by considering the
difference scheme

yn+1 =





yn − 2 tan(hS)
(b + 2c yn) tan(hS)− 2S

f(yn) , ∆ > 0 ,

yn − 2 tanh(hS)
(b + 2c yn) tanh(hS)− 2S

f(yn) , ∆ < 0 ,

yn − 2h

b h + 2 c h yn − 2
f(yn) , ∆ = 0

(7)
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where

∆ = 4 a c− b2 , S =
1
2

√
|∆| .

Inserting the above values of a, b, c in (7) we obtain the numerical scheme. After
applying this scheme we get an approximation for the true solution of (1) at xn+1 given
by yn+1 ' yn+1 . Repeating the procedure along the nodes on the integration interval
a discrete solution for the problem in (1) is formed.

4 Local truncation error

In order to obtain the expression for the local truncation error we proceed as in [1]. Let
u(x) be an arbitrary function defined in [a, b] sufficiently differentiable, and we consider
the functional L associated with the method in (7) defined by

L(u(x), h) = u(x + h)− (u(x)−Ψu) , (8)

where

Ψu =





2 tan(hSu)
(bu + 2cu yn) tan(hSu)− 2S

u′(x) , ∆u > 0 ,

2 tanh(hSu)
(bu + 2cu yn) tanh(hSu)− 2Su

u′(x) , ∆u < 0 ,

2h

bu h + 2 cu h yn − 2
u′(x) , ∆u = 0

with

∆u = 4 au cu − b2
u , Su =

1
2

√
|∆u| ,

The constants au , bu , cu are similar to those in (6) but with yn and f(y(x)) substituted
by u(x) and u ′(x) respectively.

After expanding in Taylor series about x the right hand side in (8) we obtain that

L(u(x), h) =





(
1
6

u(3)(x)− u′′(x)2

4u′(x)

)
h3 +O(h4) , ∆u = 0 ,

−u′′(x)2

6u′(x)
h3 +O(h4) , ∆u 6= 0 ,

which indicates that the method has second order.
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5 Stability analysis

As the numerical method in (7) is exact when the right hand side of the differential
equation is a polynomial up to second degree on y, the method is trivially A-stable.

In fact, if we apply the method to the scalar Dahlquist test problem given by

y′(x) = λ y(x) , Re(λ) < 0 ,

we obtain the difference equation

yn+1 = exp(λh) yn ,

where the stability function is given by R(λh) = exp(λ h), from which it is deduced
not only A-stability but in fact a stronger property of L-stability (see [12]).

6 Numerical results

6.1 A non linear equation

The first example to be considered is the IVP given by

y′(x) = cos2(y(x)) , y(0) =
π

4
,

whose exact solution is y(x) = arctan(x + 1). We have integrated this problem on the
interval [0, π] taking different values for the constant stepsize h. In Table 1 the results
for this problem with the new method are shown, compared with those in [7]. The
errors have been obtained as the absolute errors at the final point on the integration
interval

Eend = |y(xend)− yNI | ,
where NI refers to the number of steps used in the integration.

NI Eend (Method in [7] ) Eend (New Method)

25 2.4234× 10−6 1.3669× 10−8

50 2.9198× 10−7 9.5624× 10−10

100 3.5822× 10−8 6.2627× 10−11

200 4.4358× 10−9 3.9959× 10−12

400 5.5187× 10−10 2.5468× 10−13

800 6.8824× 10−11 2.2870× 10−14

Table 1: Errors for y′(x) = cos2(y(x)) , y(0) = π/4

A plot of the absolute errors for NI = 200 is shown in Fig. 2.
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Figure 2: Absolute errors for Problem 6.1, NI = 200.

6.2 A singular problem

As a second example we consider the IVP given in by

y′ = 1 + y2 , y(0) = 1 , x ∈ [0, b] , (9)

The theoretical solution is y(x) = tan(x + π/4), which becomes unbounded in
the neighborhood of the singularity at x = π/4 ' 0.785398163397448, and so the
conventional numerical integrators result inefficient. This problem has been used as
numerical test for different integrators intended for numerically solving singular initial
value problems [2], [3], [4], [5], [6], [9]. As the right hand side of the differential equation
is a polynomial in y of second degree, our method integrates the problem exactly, that
is, without local truncation error.

In Table 2 we have compared for different step sizes the results of our newly devel-
oped scheme with those obtained by Odekunle el al. [9] with an inverse Runge-Kutta
scheme of order four, and with the results obtained in [7]. There are small differences
between the results with the method in this paper an the results in [7], but these meth-
ods are clearly better for this problem and we observe the ability of both methods
to overpass the singularity. The absolute errors were obtained at the point x = 0.8.
Note that the smaller the step size is the bigger is the error, due to round off error
considerations.

6.3 A singularly perturbed problem

The last example corresponds to the singularly perturbed IVP taken from [13]

ε y′(x) = (x− 1) y(x) , y(0) = 1 ,
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h Odekunle [9] Method in [7] NewMethod

0.050000 3.1× 10−4 1.2× 10−12 6.0× 10−13

0.025000 1.8× 10−5 1.3× 10−12 3.2× 10−12

0.012500 2.7× 10−6 3.5× 10−12 4.9× 10−12

0.010000 3.8× 10−6 1.9× 10−12 1.9× 10−12

0.006250 2.3× 10−5 1.0× 10−11 1.2× 10−11

0.003125 7.2× 10−5 1.5× 10−11 1.9× 10−11

Table 2: Absolute errors at x = 0.8 for y′ = 1 + y2 , y(0) = 1

which has exact solution given by

y(x) = exp
(

x(x− 2)
2 ε

)
.

We have considered ε = 0.001 so that the solution drops quickly from its initial value of 1
to very small values and near the final point goes from very small values to 1, exhibiting
O(ε)-thick layers near the initial and the final point on the integration interval. Note
that in this case the function is f(x, y) which implies a change in the algorithm, instead
of (4) we have to consider the coefficients

ak =
2∑

j=0

′′
f

(
xn +

1
2

h (1 + αj), yn +
1
2

hy (1 + αj)
)

Tk(αj)

and f(xn, yn) instead of f(yn).
In Fig. 3 we have plotted the numerical solution for a really small range, joining

the discrete points. Table 3 shows the errors obtained with the method in [7] and with
the new method in this paper. The errors presented in this table are defined as

Emax = max
xj∈[0,2]

{|y(xj)− yj |} ,

where NI refers as usual to the number of time steps.
We note that near x = 0 the new method performs very well, although the problem

exhibits an initial layer there. Fig. 4, where the absolute errors along the integration
interval have been plotted, shows this feature.
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Abstract 
Preconditioned Krylov subspace methods are usually considered to be 
the methods of choice for solving large systems of linear equations 
arising from practical scientific and engineering modeling and 
simulations, such as in the electromagnetic applications. Due to its 
easy implementation and potential for parallelism, the block diagonal 
preconditioner is often used to accelerate the convergence rate of 
Krylov iterative methods. However, in some special electromagnetics 
computations, the block diagonal preconditioner actually slows down 
the Krylov subspace convergence. We propose to use singular value 
decomposition to stabilize the inverse of the blocks, which is 
generated from the multilevel fast multipole algorithm. Experimental 
results show that the new preconditioned iteration scheme converges 
faster compared with the standard block diagonal preconditioner and 
reduces the overall CPU time. 
 
Key words: Krylov subspace methods, Singular Value Decomposition 
(SVD), Block diagonal preconditioner, Multilevel fast multipole 
algorithm (MLFMA) 
MSC2000: 65F10, 65R20, 65F30, 78A45 
 

1. Introduction 
In computational electromagnetics, we use hybrid volume and surface integral 
equations to model three-dimensional (3D) arbitrarily shaped dielectric and conducting 
objects. The computed solution has applications in radar cross-section (RCS) prediction 
for coated targets, printed circuit, and microstrip antenna analysis. The hybrid integral 
equation can be discretized into a linear system of the form 

         
bAx =                                                              (1) 
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by using the method of moments (MoM) [8, 14, 16, 22], where the coefficient matrix A  
is a large dense complex valued matrix for large targets in electromagnetic scattering. 
 

The complex linear equation (1) can be solved by using direct solution methods 
or iterative solution methods. In this paper, our attention is on using efficient iterative 
methods. In particular, we use the biconjugate gradient (BiCG) method which is one of 
the Krylov methods as our iterative solver [1, 9, 18]. 
 
   Let  be the number of unknowns of the equation (1). The complexity of 
BiCG type iterative methods is , where  indicates the number of 
iterations and  is the computational cost of a matrix vector product operation, which 
accounts for the major cost of Krylov methods. We use the fast multipole method 
(FMM) to reduce the computational complexity of the matrix vector product operation 
from  to  [7, 17]. Furthermore, with the multilevel fast multipole 
algorithm (MLFMA) this complexity can be reduced to  [6, 13, 20]. 

N
)( 2NNO iter iterN

2N

)( 2NO )( 5.1NO
)log( NNO

 
 In order to further reduce the computational cost for solving the linear system 
(1), we can apply a carefully constructed preconditioning technique to equation (1) to 
accelerate the convergence rate of Krylov methods in the form of  
  

bMAxM 11 −− =                                                  (2) 
 
where 1−M  is a nonsingular matrix of order N . Our primary goal is to choose a robust 
and efficient preconditioner 1−M  to make the new linear system (2) much easier to 
solve and to reduce the overall CPU time.  
 
 Recently, the development and practice of efficient preconditioning techniques 
in iteratively solving dense linear systems has been the subject of growing interest [3, 4, 
5, 11, 12]. The difficulty in constructing an efficient preconditioner for this class of 
dense linear system is that the global coefficient matrix A  is not explicitly available in 
the MLFMA implementation. So, in the MLFMA, the block diagonal preconditioner 
has been more popular [13, 20, 23] because we can easily construct the block diagonal 
preconditioner from the small block diagonal submatrices, which are available 
explicitly. The ILUT preconditioner and sparse approximate inverse (SAI) 
preconditioner are reported to be more efficient, but more complex, preconditioning 
techniques in this application [3, 10, 11, 12]. 
 
 Some cases arising from electromagnetic scattering problems show a bad 
convergence behavior with the block diagonal preconditioning [10]. We try to figure 
out what causes this bad convergence behavior. It is our suspicion that the LU 
factorizations of the individual blocks are not stable due to the ill-conditioning of some 
blocks. We intend to stabilize the block diagonal preconditioner by using singular value 
factorization (SVD) on each individual block instead of using the LU factorization. In 
our numerical experiments, we choose the BiCG method as an iterative solver 
combined with the different preconditioning strategies. These preconditioning 
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strategies under comparison are (a) no preconditioner, (b) standard block diagonal 
preconditioner, and (c) SVD stabilized block (SVDB) preconditioner. Our numerical 
results show that the SVDB preconditioning technique coupled with the BiCG method 
accelerates the convergence rate of some difficult cases compared with the standard 
block diagonal preconditioner.  
  

2. Discretization of Hybrid Integral Equation and MLFMA  
The hybrid integral equation approach combines the volume integral equation (VIE) 
and the surface integral equation (SIE) to model the scattering and radiation by mixed 
dielectric and conducting structures [14, 19]. The VIE is applied to the material region 
(V) and the SIE is enforced over the conducting surface (S). The integral equations can 
be formally written as follows: 
 

),()}(),()(),({ tantan rErJrrLrJrrL inc
VVSS −=′⋅′+′⋅′   ,Sr∈  

),()(),()(),( rErJrrLrJrrLE inc
VVSS −=′⋅′+′⋅′+−    ,Vr∈  

 
where  stands for the excitation field produced by an instant radar, the subscript 
‘‘tan’’ stands for taking the tangent component from the vector it applies to, and , 

, is an integral operator that maps the source  to electric field and it is 
defined as: 

incE

ΩL
),( VS=Ω ΩJ )(rE

 
. )(),()()(),( 2 Ω′′⋅′∇∇+=′⋅′ ΩΩ′

−
Ω ∫ drJrrGkIirJrrL bbS ωμ

 
Here  is the 3D scalar Green’s function for the 

background media and 
|)|4/(),( || rrerrG rrikb ′−=′ ′− π

1−=i . We note that J  is related to   in the above integral 
equations by 

VJ
EiJ bV )( εεω −= . This results in a very general model as all the volume 

and surface regions can be modeled properly. The advantage of this approach is that in 
the coated object scattering problems, the coating material can be inhomogeneous, and 
in the printed circuit and microstrip antenna simulation problems the substrate can be of 
finite size. The simplicity of the Green’s function in both the VIE and the SIE has an 
important impact on the implementation of the fast solvers. However, the additional 
cost here is the increase in the problem size since the volume that is occupied by the 
dielectric material is meshed. This results in larger memory requirement and longer 
solution time in solving the corresponding matrix equation. But this deficiency can be 
overcome by applying fast integral equation solvers such as the MLFMA [6]. 

 
 Using the method of moments (MoM), the hybrid integral equations are 
discretized into a matrix equation of the form as the form  
 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
V

S

V

S

VVVS

SVSS

U
U

a
a

ZZ
ZZ  ,                                        (3) 
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where  and  stand for the vectors of the expansion coefficients for the surface 
current and the volume function, respectively [13, 14], and the matrix elements can be 
generally written as  

Sa Va

 
.)(),(()( 2 Ω′−

Ω′Ω

Ω ′⋅′∇∇+Ω′⋅Ω= ∫∫ lbjbjl frrrGkIdrfdiZ χωμ ）  

 
The material function 1)( =′rχ  if Ω′  is a surface patch, and )1/( −= bεεχ  if Ω′  

is a volume cell. The coefficient matrix arising from discretized hybrid integral 
equations is nonsymmetric. Once the matrix equation (3) is solved by numerical matrix 
equation solvers, the expansion coefficients and can be used to calculate the 
scattered field and the radar cross section (RCS). In antenna analysis problems the 
coefficients can be used to retrieve the antenna’s input impedance and to calculate the 
antenna’s radiation pattern. In the following, we use 

Sa Va

A  to denote the coefficient matrix 
in the Equation (3), , and  for simplicity. TVS aax ],[= TVS UUb ],[=

   
 The basic idea of the FMM is to convert the iteration of element-to-element to 
the interaction of group-to-group. Using the addition theorem for the free-space scalar 
Green’s function, the matrix-vector product  can be written as [6, 7] Ax
 

,)( xVVxAAAx sfND Λ++=                                            (4) 
 
where  , , and  are sparse matrices. In fact, the dense matrix fV Λ sV A  can be 
structurally divided into three parts,    and ,DA ,NA .sfF VVA Λ=   is the block 
diagonal part of 

DA

A ,  is the block near-diagonal part of NA A , and  is the far part of FA A . 
Here the terms “near” and “far” refer to the distance between groups of elements.  
 
 In FMM, those elements in  are not explicitly computed and stored. Hence 
they are not numerically available. It can be shown that with optimum grouping, the 
number of nonzero elements in the sparse matrices in equation (3) are all on the order 
of , and hence the operation count to perform Ax  is  [7]. But if the above 
process is implemented in multilevel, the total cost can be further reduced to be 
proportional to  for one matrix-vector multiplication.  

FA

5.1N )( 5.1NO

NN log
 

3. SVD Stabilized Block Preconditioner 
There are two things we need to consider in order to choose an efficient preconditioner 
for solving the large dense linear system. One is to make the preconditioned matrix 

AM 1−  as close to the identity matrix I  as possible, and the other is to choose a 
preconditioner which is not too expensive to construct and has a potential to be 
parallelizable. 
 By using the block diagonal preconditioner, we construct a preconditioner 1−M  
from the block diagonal submatrix , and apply the block diagonal preconditioner DA
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1−M  to the linear system (1). That is, . Here,  is a block diagonal 
submatrix like in equation (4) consisting of several block submatrices such as 

, . Each individual block can be decomposed independently by an LU 
factorization in the form of

bMAxM 11 −− = DA

,1A L,2A mA

)1( miULA iii ≤≤=  and the linear system for each block  
will be solved as .  The block diagonal preconditioner 

iA

iiii bxUL = 1−M  is of m 
independently inverted submatrix ,  where , so . 
It provides us a convenient structure to parallelize the preconditioner, because we can 
distribute the jobs into different processor for each block [13, 15, 20].  

,1
1
−A L,1

2
−A ,1−

mA 11 )( −− = iii ULA 11 −− = DAM

 
 Our previous studies shows that block diagonal preconditioner sometimes fail to 
improve the ill-conditioned linear systems in this application [10]. To alleviate the 
problem, we test the shift of the diagonal entries, and in some cases the convergence 
becomes more slowly than the block diagonal preconditioner without a diagonal shift. 
We suspect that some of these blocks may be ill-conditioned or close to singular. Their 
LU factorizations may not be stable, in the sense that large size entries are created in 
the inverse LU factors. SVD is known to be a very powerful technique for dealing with 
matrices that are either singular or else numerically very close to singular. In many 
cases when LU factorization fails to give satisfactory results, SVD may tell us what the 
problem is or how to solve it [2]. The computational and memory cost of SVD of large 
matrices may be expensive. To avoid this, we apply SVD to each small block 
submatrix )1( miAi ≤≤ . By using SVD,  can be decomposed into three matrices as 
following [2, 15, 21, 24] 

iA

 
H

iiii VUA ⋅Σ⋅= ,                                                     (5) 
 
where  and  are orthogonal matrices, and all the singular values are stored in the 

diagonal of  as , 
iU iV

iΣ ],...,,[ 21 ki diag σσσ=Σ kσσσ ≥≥≥ K21 , k  is the size of the block . iA

The inverse of  is computed as . To stabilize the inverse, 
we replace some small singular values of 

iA H
iiii UVA ⋅Σ⋅= −− 11

iΣ  by a larger value. This can be done with a 
threshold strategy. Given a threshold value ε , if there exists an integer j  such that 

εσ >j , but εσ ≤+1j ( ), then for every l (kj ≤≤1 klj ≤< ), we set εσ =l .  

Then we have the updated , and the stabilized 
inverse of  is computed as: 

],...,,,...,,[ 21 εεσσσ ji diag=Σ
−

iA

                                                                              (6) H
iiii UVA

1
1

−−
− Σ=

 
 The computational procedure is given in Algorithm 3.1, in which, ε  is a user 
provided parameter.  
 
ALGORITHM 3.1 Computing the SVD stabilized block preconditioner from the block 
diagonal submatrices (  is the size of block ) ik iA

411



CMMSE 2007 
 

 
0. For mi ,...,1=  (where m is the number of blocks) Do 
1. Obtain the ith  block iA  from DA  and run the SVD subroutine to get iU , iΣ , and 

H
iV . 

2. For each block, set the correct threshold ε  and find the correct rank j , then for 
every ) , we set ( ikljl ≤< εσ =l . 

3. Compute the H
iU  and HH

i . i VV )(=

4. Get 
1−−

Σ i by computing jσ/1 ( kj ≤≤1 ). 

5. Compute an SVD stabilized block as H  iiii UVA
1

1
−−

− Σ=
6. EndDo 
 

The following explains how to choose the correct threshold value to update the 
singular values of each block in Algorithm 3.1. In our experiment, we use a static 
strategy to update the singular values, which means to choose a global threshold for 
every block. For a comparison, we can also compute some characteristics for each and 
every block during SVD thresholding, such as the mean value of all the singular values 
for each block or choosing the threshold . (bounderrorki _)/( 1 ⋅= σσε iε  is the threshold 
for the ith  block, and  is bounderror _ 30.1 −e ). This can make the threshold more 
reasonable when the singular values are quite different in different blocks. Both 
methods have the same purpose, which is to make the SVD stabilized block inverse 
better conditioned than the block diagonal one. Because we know that  

 
       (  is the column size of block Ai)              (7) kiAcond σσ /)( 1= k
 

where 1σ  is the largest singular value of the block  andiA kσ  is the smallest one. By 
using our updating strategies, the condition number of each block will be reduced to 

, which means the inverse of that block will be more stable. We expect this 
stabilization will make the new preconditioner more effective than the block diagonal 
preconditioner. 

εσ /1

 
Of course, there is always a trade-off between stability and accuracy. Choosing 

a large threshold value produces a more stable, but less accurate inverse, while 
choosing a smaller threshold having the opposite effect. 
 

4. Numerical Tests and Analysis 
In this section, we present a few numerical experiments to demonstrate the efficiency 
of the SVD stabilized block preconditioner for accelerating the BiCG iterations. All 
cases are tested using one processor of an HP Superdome cluster at the University of 
Kentucky. The processor has 2 GB local memory and runs at 1.5 GHz. The code is 
written in Fortran 77 and is run in single precision. We examine the convergence 
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behavior based on the number of preconditioned iterations and some theoretical facts 
(such as the condition number).  
 
 To demonstrate the performance of our preconditioned BiCG solver, we 
calculate the RCS of different conducting geometries with and without coating. The 
geometries considered include plates, spheres, and pipes (see Table 1). The mesh size 
for all the test structures are about one tenth of a wavelength. 
 

Here are the explanations of the notations shown in the tables with numerical 
data and in some figures. 
• precond: the preconditioner used with the BiCG method: 

ºNONE: no preconditioner; 
ºBLOCK: the block diagonal preconditioner ; 
ºSVDB: the SVD stabilized block preconditioner. 

• level: the number of levels used in the MLFMA. 
• ε : the threshold value used to update the singular values in Algorithm 3.1 (static 
strategy). 
• itnum: the number of (preconditioned) BiCG iterations. 
• itcpu: the CPU time in seconds for the iteration phase. 
• Condition#: the condition number of each block. 
 

For the class of the problems we tested, the block diagonal preconditioner can 
improve the BiCG convergence only in the P3C case. In the remaining three other cases, 
the block diagonal preconditioner actually hampers the BiCG convergence. Except for 
the sphere case, SVDB preconditioner can reduce the BiCG iteration steps and the total 
iteration CPU time compared with the BiCG solver without a preconditioner. 
 

Table 1: Information about the matrices used in the experiments (all length units are in λ0, 
the wavelength in free-space) 
cases level unknowns matrices nonzeros target size and description 

A  2,005,056P1C 4 1,416 

DA  66,384

Dielectric plate over conducting 
plate 
2.98824×2×0.1 
Frequency=0.2GHz 

A  223,502,500R5C 6 14,950 

DA  607,838

Conduction pipe with 4 dielectric 
coating rings inside, 
36×3.86236×3.87 
Frequency=5GHz 

A  10,160,640,0
00

P3C 7 100,800 

DA  3,571,808

Antenna array 
Array size: 22.25×22.25 
Frequency=0.3GHz 

A  116,640,000S2C 4 10,800 

DA  555,200
Large conduction sphere 
5×5×5 
Frequency=0.3GHz 

 
Table 2 and Fig. 1 show that the SVDB preconditioner is very efficient in case 

the geometry is a plate. We also find that the larger static threshold we choose, the less 
number of iterations we need. But not all the computed solutions are correct. From 
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Fig.1 (b), we can find that the solution of using mean value as the threshold is not 
correct. So, there should be a range to choose the threshold. If we choose the threshold 
beyond this range, we get false convergence or even no convergence at all.  

 
Table 2: Numerical data of the P1C case                  Table 3: Numerical data of the R5C case 

 
 precond ε  itnum itcpu 

NONE        - 445 478.83
BLOCK        - 2000 2012.60

6.0e-3 174 184.00
7.0e-3 75 79.82SVDB 
8.0e-3 46 49.12

precond ε  itnum itcpu 

NONE         - 1013 45.75
BLOCK         - 1319 59.94

Mean 
value

45 2.04

10.0 557 25.82
15.0 467 21.52

 
SVDB 

20.0 400 18.05

 
 

 
 
 
 
 

Fig. 1 shows the solutions of the P1C case using none preconditioner, block 
diagonal preconditioner, and SVDB preconditioner. Fig. 2 shows the solution of the 
R5C case and Fig.3 shows that of the S2C case. From these three figures we see that 
the RCS of the SVDB preconditioners for the S2C and R5C cases are much closer to 
the exact solution compared with the block diagonal preconditioner.   

 
Table 4: Numerical data of the P3C case                  Table5: Numerical data of the S2C case 

 
 

 
 
 
 
 

precond ε  itnum itcpu 

NONE         - 2000 5892.03
BLOCK         - 1101 3257.47

0.15 416 1072.81
0.20 359 930.66SVDB 
0.25 289 733.48

precond ε  itnum itcpu 

NONE    - 320 264.98
BLOCK    - 2000 1965.15

1.50 1365 1331.31
2.00 798 786.38SVDB 
2.50 340 331.00

 
Table 6 shows us some properties of the individual block in the P1C case, such 

as the largest and smallest singular values, the condition number for each block, and the 
condition number after applying SVD with threshold. The threshold we use in this table 
to update the singular value is 15. Generally, we hope our preconditioned linear system 
has smaller condition number than the original one.  

 
Table 6: The singular values and condition number of some blocks for the 
P1C case. 
Block largest 

singular 
value 

Smallest 
singular 
value 

Condition # 
 

Condition# after 
SVD (static) 

1A  952.8143 7.406 128.6543 63.52089 

9A  1625.496 7.043 230.7880 108.3664 

17A  1724.973 22.09911 78.05623 78.05623 

25A  697.4736 8.50674 81.99069 46.49824 

32A  952.8133 7.40594 128.6553 63.52089 
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         (a)                                                                   (b) 
Fig. 1. P1C case. (a) Convergence history comparison. (b) The solution accuracy  
 

 
(a)                                                                   (b) 

Fig. 2. R5C case. (a) Convergence history comparison. (b) The solution accuracy 
 

 
        (a)                                                                    (b) 
Fig. 3. S2C case. (a) Convergence history comparison. (b) The solution accuracy 
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5. Conclusions  
We proposed a preconditioning technique based on the SVD stabilization of the block 
diagonal submatrices in the MLFMA. This SVD stabilized block preconditioner is 
easily constructed and also can be parallelized.  

The standard block diagonal preconditioner is not robust and inefficient to solve 
the dense linear system arising from the combined hybrid integral formulation of 
electromagnetic scattering problem. We conducted a few numerical tests to show that 
the SVD stabilized block preconditioner is effective in solving some electromagnetic 
scattering problems. We also performed comparison for the block diagonal 
preconditioner, SVD stabilized block preconditioner, and none preconditioner. 

Our numerical results indicate that the SVD stabilized block preconditioner can 
work more efficient than the standard block diagonal preconditioner in every case we 
tested. It also reduces the CPU time for these cases. We introduced two strategies to 
choose the threshold values for generating the SVD stabilized preconditioner. The RCS 
results show that the static strategy works quite well for plate case. 
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Abstract

This paper proposes a new parallel symmetric successive over-relation (PSSOR)
preconditioner by a multi-type partition technique. It then proves that the PSSOR
preconditioner is symmetric and positive-definite and equivalent to a SSOR pre-
conditioner using a special ordering called the multi-type ordering. Thus, the
PSSOR preconditioner can be effectively applied to the preconditioned conjugate
gradient method (PCG), and can be analyzed under the framework of the classical
SSOR theory. Numerical tests on an anisotropic model problem show that with
the PSSOR preconditioner, PCG can have a much faster rate of convergence and a
better parallel performance than with the red-black SSOR preconditioner. More-
over, the PSSOR preconditioner is shown numerically to have a condition number
nearly equal to that of the sequential SSOR preconditioner when the anisotropic
ratio is large enough.

Key words: preconditioned conjugate gradient, SSOR, domain decomposition
MSC 2000: AMS 65Y05 (65F10)

1 Introduction

The symmetric successive over-relaxation (SSOR) preconditioner is often used in en-
gineering and scientific computing due to its simplicity in implementation [5, 7, 13].
It is known that the effects of the SSOR preconditioner on the convergence rate of
the preconditioned conjugate gradient method (PCG) depends on the ordering of the
mesh points on which a finite element or finite difference approximation to an ellip-
tic boundary value problem is defined. The natural ordering usually results in the
fastest convergence rate, but is difficult to implement in parallel. The red-black (or
multicolor) ordering can overcome this difficulty, but seriously degrades the conver-
gence rate of PCG compared to the natural ordering. To develop efficient parallel
SSOR preconditioners, several other parallel orderings were proposed, which include
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the wavefront ordering [2], the local column-wise ordering [8], the many-color ordering
[6], and domain decomposition orderings [3, 9, 10]. On current MIMD parallel com-
puters, however, it is only domain decomposition orderings that were found to lead to
more effective parallel SSOR preconditioners than the red-black SSOR preconditioner
[9].

Recently, a new mesh domain partition and ordering, called the multi-type partition
and ordering, was proposed and applied to define a new block parallel SOR (BPSOR)
method [12]. The BPSOR method was shown to have the same asymptotic convergence
rate as the corresponding sequential block SOR method if the coefficient matrix of the
block linear system is “consistently ordered”. In particular, three particular multi-type
orderings are proposed based on strip and block mesh partitions, which lead to three
effective BPSOR methods for solving the five-point like linear systems (in 2D) and the
seven-point like linear systems (in 3D). In the point form, BPSOR is reduced to the
PSOR method (a point parallel SOR method by mesh domain partitioning proposed
in [11]). Obviously, the symmetric BPSOR (SBPSOR) method can be defined in the
same way as the SSOR method is defined [13]. A new symmetric parallel SOR (PSSOR)
preconditioner is then well defined by one iteration of SBPSOR with an initial guess
of zero. This paper intends to give the PSSOR preconditioner a general mathematical
formulation and to present a numerical study on its effect on the convergence rate of
the PCG method. In particular, it proves that the PSSOR preconditioner is symmetric
and positive-definite (SPD) if the coefficient matrix of the linear system is SPD. It also
proves that the PSSOR preconditioner is equivalent to the SSOR preconditioner using
the multi-type ordering. As a result, the analysis of the PSSOR preconditioner can be
done within the framework of the classic SOR theory [13].

To study the numerical behaviors of the PSSOR preconditioner, two particular
PSSOR preconditioners – the 2-type and 3-type PSSOR preconditioners – are con-
structed for a linear system arising from a five-point like finite difference approxima-
tion to a simple anisotropic model problem. Their condition numbers are calculated
directly for several small model problems by MATLAB, demonstrating that the 2-type
and 3-type PSSOR preconditioners can have a much smaller condition number than the
red-black SSOR preconditioner. In the 2-type case, the PSSOR preconditioner is found
to have a condition number nearly equal to that of the sequential SSOR preconditioner
for a large anisotropic ratio. Hence, the PSSOR preconditioner is expected to have the
same effect as the sequential SSOR preconditioner on the convergence of PCG.

Finally, the PCG using the PSSOR preconditioner for solving the anisotropic model
problem was implemented on a MIMD parallel computer (the SGI Origin 2000 at
the University of Wisconsin-Milwaukee) to investigate the parallel performance of the
PSSOR preconditioner. Numerical results show that with the PSSOR preconditioner,
PCG has a much faster convergence rate and much better parallel performance than
with the red-black SSOR preconditioner. They also confirm that in the case of a large
anisotropic ratio, the PCG using the 2-type PSSOR preconditioner has the same rate of
convergence as the PCG using the sequential SSOR preconditioner. In the case of the
grid size h = 1/517, a speedup of 12 was obtained for the 2-type PSSOR preconditioner
on the 16 processors of the SGI Origin 2000.
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The remainder of the paper is organized as follows: Section 2 introduces the multi-
type partition and the related block linear system. Section 3 defines and analyzes the
PSSOR preconditioner. Section 4 presents a condition number analysis to the 2-type
and 3-type PSSOR preconditioners for solving the model problem. Finally, the parallel
performance of the PCG using the PSSOR preconditioner is studied in Section 5.

2 The multi-type partition

Let the linear system Au = f arise from a finite element or finite difference approxi-
mation to an elliptic boundary value problem with mesh domain Ωh. Here A denotes
a SPD and consistently ordered matrix with entries aij . If aij 6= 0 with i 6= j, mesh
point i is said to be connected to mesh point j. Two subdomains of Ωh are said to
be connected if at least two of their mesh points are connected. It is assumed that
p processors of a large scale MIMD parallel computer are requested to implement the
PCG for solving the linear system in parallel.

To define the multi-type partition, the mesh domain Ωh is partitioned into p disjoint
subdomains, Ωh,j for j = 1, 2, . . . , p, such that each subdomain is only connected to its
neighboring subdomains. The mesh points of each subdomain are then grouped into
t different types according to the following three criterions: (i) connected types must
be adjacent; (ii) no adjacent types are the same type; and (iii) every interior type has
at least one adjacent type located in a neighboring subdomain. Here t is a positive
integer determined by the connection information among neighboring subdomains. It
is clear that t is less than or equal to the number of neighboring subdomains. Thus,
the multi-type partition with t types, which is also referred to as the t-type partition,
is obtained.

Let Ωi
h,µ denote the ith type of subdomain µ for µ = 1, 2, . . . , p and i = 1, 2, . . . , t.

When these tp type subdomains are ordered in the natural ordering (i.e., from i = 1 to
t for each µ from 1 to p), the linear system Au = f can be written in the block matrix
form with

u =




U1

U2
...
Up


 , Uµ =




U1
µ

U2
µ
...
U t

µ


 , f =




F1

F2
...
Fp


 , Fµ =




F1
µ

F2
µ
...
F t

µ


 , (1)

A =




A11 A12 · · · A1p

A21 A22 · · · A2p
...

...
. . .

...
Ap1 Ap2 · · · App


 , Aµµ =




A11
µµ A12

µµ · · · A1t
µµ

A21
µµ A22

µµ · · · A2t
µµ

...
...

. . .
...

At1
µµ At2

µµ · · · Att
µµ


 , (2)
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and Aµν =








0 0 · · · 0
A21

µν 0 · · · 0
...

. . . . . .
...

At1
µν · · · At,t−1

µν 0


 for µ < ν,




0 A12
µν · · · A1t

µν

0 0
. . .

...
...

...
. . . At−1,t

µν

0 0 · · · 0




for µ > ν.

(3)

Here U i
µ denotes a sub-vector of u defined on the subdomain Ωi

h,µ, Aii
µµ is the sub-matrix

of A defined on Ωi
h,µ, and Aij

µν with µ 6= ν and i 6= j is the sub-matrix that indicates
the connection of Ωi

h,µ with Ωj
h,ν . Clearly, if Ωi

h,µ is not adjacent to Ωj
h,ν with µ 6= ν

and i 6= j, then Aij
µν = 0. In particular, it can be claimed that Aij

µν = 0 for all i ≤ j if
µ < ν and for all i ≥ j if µ > ν. This gives the form of Aµν with µ 6= ν in (3).

3 The PSSOR preconditioner

Let Dµ and Lµ be the diagonal and strictly lower triangular matrices, respectively,
satisfying Aµµ = Dµ − Lµ − LT

µ for µ = 1, 2, . . . , p. Here T denotes the transpose of a
matrix. The block matrix A is split into the sum

A = D −B −BT −N −NT , (4)

where D and B are two block diagonal matrices defined by

D = diag(D1, D2, . . . , Dp) and B = diag(L1, L2, . . . , Lp), (5)

and N is a strictly lower block triangular matrix defined by

N = −




0 0 · · · 0
A21 0 · · · 0
...

. . . . . .
...

Ap1 · · · Ap(p−1) 0


 . (6)

Based on the sum in (4), the PSSOR preconditioner is defined by

M =
1

ω(2− ω)
[D − ω(B + NT )]D−1[D − ω(BT + N)], (7)

where the relaxation parameter ω ∈ (0, 2).
If ω = 1, the PSSOR preconditioner can be simplified as

M = [D −B −NT ]D−1[D −BT −N)], (8)

which is called the parallel symmetric Gauss-Seidel preconditioner.
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Theorem 1 If the matrix A defined in (2) is symmetric and positive-definite, so
is the PSSOR preconditioner M . Here M is defined in (7).

Proof: Set R̄ = [D − ω(B + NT )]D−1[D − ω(BT + N)]. Since M = 1
ω(2−ω)R̄, one

only needs to show that R̄ is SPD .
Clearly, R̄ is symmetric. From (5) it can be seen that D consists of the main

diagonal entries of A, which are positive since A is positive-definite. Thus, xT Dx > 0
and xT D−1x > 0 for nonzero vector x.

Set Λ = D − ω(BT + N). It is clear that xT Λx = xT ΛT x. From (4) it can follow
that Λ + ΛT = (2− ω)D + ωA. Hence, for any nonzero vector x, and ω ∈ (0, 2),

xT Λx =
1
2
xT (Λ + ΛT )x =

1
2
[(2− ω)xT Dx + ωxT Ax] > 0.

Thus, the vector y defined by y = Λx is not zero if x 6= 0. Hence, for any nonzero
vector x,

xT R̄x = xT [D − ω(B + NT )]D−1[D − ω(BT + N)]x
= xT ΛT D−1Λx = yT D−1y > 0.

This proves that R̄ is positive-definite. The proof is completed.
Since M is SPD, the inverse of M exists and can be found as below:

M−1 = ω(2− ω)[D − ω(BT + N)]−1D[D − ω(B + NT )]−1. (9)

In application, the solution of Mz = r, z = M−1r, is found as one iteration of
the symmetric BPSOR method with an initial guess of zero. Here each symmetric
BPSOR iteration contains two half-iterations: the first one is the BPSOR method and
the other one is the BPSOR method using the reverse order, which is also called the
backward BPSOR method. In fact, from [12] it is known that the BPSOR method has
the following iterative expression

u(k+1) = [D − ω(B + NT )]−1[(1− ω)D + ω(BT + N)]u(k)

+ ω[D − ω(B + NT )]−1r, k = 0, 1, 2, . . . , (10)

where u(0) is an initial guess. By reversing the ordering that is used in implementing
each BPSOR iteration, it is easy to obtain the backward BPSOR iterative expression
in the form

u(k+1) = [D − ω(BT + N)]−1[(1− ω)D + ω(B + NT )]u(k)

+ ω[D − ω(BT + N)]−1r, k = 0, 1, 2, . . . . (11)

With u(0) = 0, the first BPSOR iterate u(1) = ω[D − ω(B + NT )]−1r. Then, one
backward BPSOR iteration starting at u(1) immediately gives the solution of Mz = r.

The pt type subdomains {Ωi
h,µ} of the t-type partition can also be ordered from

µ = 1 to p for each value of type i from 1 to t while the original ordering is retained
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within each type subdomain. Such an ordering is called the multi-type ordering. In
the multi-type ordering, the sub-vectors {U i

j} are reordered in the form

û =




Û1

Û2
...
Ût


 with Ûi =




U i
1

U i
2
...
U i

p


 .

Clearly, there exists a permutation matrix, P , such that û = Pu with u being given
in (1). In terms of P , the reordered linear system by the multi-type ordering can be
expressed as Âû = f̂ with Â = PAP T , û = Pu, and f̂ = Pf . Thus, the SSOR precon-
ditioner using the t-type ordering, which is also called the t-type SSOR preconditioner,
can be obtained as below:

M̂ =
1

ω(2− ω)
[D̂ − ωL̂]D̂−1[D̂ − ωL̂T ], (12)

where D̂ and L̂ are diagonal and strictly lower triangular matrices, respectively, satis-
fying Â = D̂ − L̂− L̂T .

Theorem 2 If M and M̂ are the PSSOR preconditioner and the t-type SSOR
preconditioner defined in (7) and (12), respectively, then there exists a permutation
matrix P such that

M̂ = PMP T . (13)

Proof: Clearly, there exists the permutation matrix P such that û = Pu. In terms
of P , it is easy to see that D̂ = PDP T . With u(0) = 0, the first BPSOR iterate u(1)

for solving Au = f becomes

u(1) = ω[D − ω(B + NT )]−1f.

Multiplying the above expression by P from the left-hand side and using the identities
P T P = I, Pf = f̂ , and PDP T = D̂ give that û(1) = ω[D̂ − ωP (B + M)P T ]−1f̂ . On
the other hand, since û(0) = Pu(0) = 0, the first SOR iterate for solving the reordered
linear system Âû = f̂ becomes û(1) = ω[D̂−ωL̂]−1f̂ . Combining these two expressions
of û(1) yields the identity

[D̂ − ωP (B + NT )P T ]−1f̂ = [D̂ − ωL̂]−1f̂ for all nonzero vector f̂ .

From the above identity it follows that [D̂−ωP (B+NT )P T ]−1 = [D̂−ωL̂]−1, which can
be simplified as L̂ = P (B +NT )P T . Thus, combing it with PDP T = D̂ and P T = P−1

gives

[D̂ − ωL̂]D̂−1[D̂ − ωL̂T ] = P [D − ω(B + NT )]D−1[D − ω(BT + N)]P T .

Multiplying both sides of the above identity by the constant 1/[ω(2 − ω)] yields M̂ =
PMP T . This completes the proof.
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4 PSSOR preconditioners for an anisotropic model prob-
lem

A simple anisotropic model problem is given by
{ −(auxx + buyy) = f(x, y) in Ω,

u = 0 on ∂Ω.
(14)

where a and b are positive constants with a ≥ b, Ω = (0, 1) × (0, 1), and ∂Ω denotes
the boundary of Ω. By the five-point finite difference formula, the model problem can
be approximated as the following linear system

2(1 +
b

a
)uij − (ui+1,j + ui−1,j)− b

a
(ui,j+1 + ui,j−1) =

h2

a
fij , (15)

where i, j = 1, 2, . . . , n − 1, h = 1/n with n > 1, fij = f(ih, jh), uij denotes an
approximation of the solution u(ih, jh), and ui0 = uin = u0i = uni = 0 for i =
0, 1, 2, . . . , n.

In the 2-type ordering (t = 2), the coefficient matrix A of (2) becomes a tridiagonal
block matrix in the form

A =




A11 A12

A21 A22
. . .

. . . . . . Ap−1,p

Ap,p−1 App




with Aµµ =
[

A11
µµ A12

µµ

A21
µµ A22

µµ

]
, (16)

Aµ,µ+1 =
[

0 0
A21

µ,µ+1 0

]
and Aµ+1,µ = AT

µ,µ+1.

For the model problem (15), it can be found that

A11
µµ = B, A12

µµ = −cI, A21
µ,µ+1 = −cI,

A22
µµ =




B −cI

−cI B . . .
. . . . . . −cI

−cI B




, B =




α −1

−1 α
. . .

. . . . . . −1
−1 α




,

where α = 2(1 + b/a), c = b/a, I is an (n − 1) × (n − 1) identity matrix, B is an
(n − 1) × (n − 1) tridiagonal matrix, A22

µµ is an ` × ` block matrix if Ω2
h,µ contains `

mesh lines, and µ = 1, 2, . . . , p.
In the 3-type partition, the block matrix A of (2) becomes a five-diagonal block

matrix with nonzero entries lying on the main diagonal, the second off-diagonal, and
the (m̃ + 1)th off-diagonal. For example, for p = 4, the block matrix A has the form

A =




A G H 0
GT A 0 H
HT 0 A G
0 HT GT A


 with A =




A11 A12 0
A12T

A22 A23

0 A23T
A33


 , A11 = α, (17)
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Figure 1: Comparison of the condition numbers of the PSSOR preconditioners with
that of the sequential and red-black SSOR preconditioners for the model problem (15)
with h = 1/7. The left plot for a = b = 1, and the right plot for a = 10, b = 1.

A22 =




α −1 0 0
−1 α 0 0
0 0 α −c
0 0 −c α


 , A33 =




α −1 −c 0
−1 α 0 −c
−c 0 α −1
0 −c −1 α


 ,

A23 =




−c 0 0 0
0 −c 0 0
−1 0 0 0
0 0 −1 0


 , A12 = [−1 0 − c 0],

G is a 9× 9 matrix with only three nonzero entries given by g31 = g74 = g95 = −1, and
H is a 9× 9 matrix with only three nonzero entries given by h51 = h82 = h93 = −c.

With the two matrix forms of A given in (16) and (17), the two sequential SSOR
preconditioners can be constructed, respectively, according to the formula M = (D −
ωL)D−1(D − ωLT ), where D is the diagonal matrix of A and L is the strictly lower
triangular matrix such that A = D−L−LT . Similarly, the 2-type and 3-type PSSOR
preconditioners can also be constructed by formula (7). Furthermore, the red-black
matrix form of A can be obtained by reordering the matrix A of (16) in the red-black
ordering. Then, the red-black SSOR preconditioner can be constructed.

From the PCG theory [4] it is known that the effect of a preconditioner M on the
convergence rate of the PCG method can be studied directly by evaluating the condition
number of M−1A. The smaller the condition number, the faster the convergence rate
[4]. For the model problem with h = 1/7, the condition numbers of the above four
preconditioners were calculated on MATLAB, and reported in Figure 1.

Figure 1 shows that the 2-type and 3-type PSSOR preconditioners have much
smaller condition numbers than the red-black SSOR preconditioner, while the SSOR
preconditioner has the smallest condition number. Hence, the PSSOR preconditioner
is more effective than the red-black SSOR preconditioner while the sequential SSOR
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Figure 2: Convergence dependence of
the PCG using the PSSOR precondi-
tioner on the number of processors and
the anisotropic ratio a/b.

Figure 3: Parallel performance of the
PCG using the PSSOR preconditioner.
The dash lines indicate the total inter-
processor data communication time.

preconditioner is the most effective among them. From the right plot (with a = 10 and
b = 1) of Figure 1 it can be seen that the 2-type PSSOR preconditioner has the same
condition number as the SSOR preconditioner. Figure 1 also shows that the condition
number is a quadratic function of ω. Hence, for each preconditioner, there exists an
optimal value of ω at which the smallest condition number is reached.

5 Parallel performance of PSSOR preconditioner

To demonstrate the parallel performance of the PCG using the PSSOR preconditioner,
numerical experiments were made on a MIMD parallel computer (the SGI Origin 2000
computer at the University of Wisconsin-Milwaukee, which has 16 R12000 400 MHz
processors) for the model problem (15) with f = 1.0 and h = 1/517. Four anisotropic
ratios a/b set by a = 1, 10, 100, 1000 for b = 1 were considered. All the numerical
tests used an initial guess of zero, and the same iteration stop rule in which the rela-
tive residue norm is less than 10−6. In addition, the optimal values of the relaxation
parameter ω were used in these tests, which were determined by experiments.

The parallel program was written in Fortran 77 and MPI (the Message Passing
Interface) [1]. The program was compiled using the optimization level O2. The CPU
time was measured by the MPI function MPI Wtime, which returns the wall time in
seconds. All calculations were done with double precision. The sequential PCG method
using the SSOR preconditioner was implemented on one processor of the computer by
using a sequential F77 program, where the F77 function etime() was used to measure
the CPU time.

Figure 2 shows that the PCG using the PSSOR preconditioner can have a faster
convergence speed for a larger value of the ratio a/b. Also, it shows that the number of
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Figure 4: Convergence comparison of
the PCG using the PSSOR precondi-
tioner with the PCG using the red-
black SSOR preconditioner.

Figure 5: Parallel performance com-
parison of the PCG using the PSSOR
preconditioner with the PCG using the
red-black SSOR preconditioner.

processors has less effects on the convergence rate for a larger anisotropic ratio of a/b.
Figure 3 displays the parallel performances of the PCG using the PSSOR precondi-

tioner. It shows that the total CPU time is a linear decreasing function of the number
of processors. Compared to the total CPU time, the time consumed by interprocessor
data communication is very small. A speedup of 12 was obtained on the 16 processors
compared to the sequential PCG using the sequential SSOR preconditioner.

Figures 4 and 5 compare the parallel performance of the PCG using the 3-type
PSSOR preconditioner with that of the PCG using the red-black SSOR preconditioner.
Here a = 10 and b = 1. The block partitions of two by two, three by three and four
by four blocks were used in the tests implemented on four, nine and sixteen processors,
respectively. From these two figures it can be seen that the PSSOR preconditioner ac-
celerated the convergence speed of PCG (in terms of the total number of PCG iterations
determined by the iteration stop rule) for about 3 to 6 times compared to the red-black
SSOR preconditioner, confirming that the PSSOR preconditioner is much more effec-
tive than the red-black SSOR preconditioner. Moreover, the PSSOR preconditioner
reduced the total CPU time of the PCG using the red-black SSOR preconditioner by
a factor of 3 to 6 on both calculation and interprocessor data communication. In ad-
dition, these two figures also show that the 2-type PSSOR preconditioner was more
effective than the 3-type PSSOR preconditioner in improving the convergence rate and
parallel performance of PCG.
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Abstract

In this paper we propose a new quadrature rule via approximating Fourier
coefficients of variable transformed integrand with multidimensional integration
lattice. The error analysis is derived for the proposed rule. A comparison is done
between the new rule and the periodizing transformation methods. It shown that
the new rule improves the periodizing transformation methods. In the last part of
the paper, we also present a quadrature rule for weighted integrals whose integrand
is in Banach space and we show it is semi-optimal.
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