Página web del curso

Ejercicio

Dada la función $f(x,y)=x^{3}+y^{3}$, calcular una aproximación de

  1. El gradiente $\nabla f(x,y)$
  2. La matriz Hessiana $\mathrm{Hess} f(x,y)$

para $(x_0,y_0)=(1,2)$ con $h_{x}=h_{y}=0.1$.

Gradiente $\nabla f(x,y)$

El Gradiente viene dado por $$ \nabla f=\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right) $$

Y el gradiente exacto se calcularía calculando primero las derivadas parciales

$$\frac{\partial f}{\partial x} = 3x^2 \quad \frac{\partial f}{\partial y}=3y^2$$

que para el valor $(x_0,y_0)=(1,2)$

$$\left(\frac{\partial f}{\partial x}\right)_{(1,2)} = 3(1)^2=3 \quad \left(\frac{\partial f}{\partial y}\right)_{(1,2)}=3(2)^2=12$$

Y por lo tanto

$$\nabla f(x,y)_{(1,2)}=(3,12).$$

Calculemos ahora una aproximación. La primera componente del vector será:

$$ \begin{align*} \frac{\partial f}{\partial x}\approx & \dfrac{f\left(x_{m}+h_{x},y_{n}\right)-f\left(x_{m}-h_{x},y_{n}\right)}{2h_{x}}=\dfrac{f\left(1+0.1,2\right)-f\left(1-0.1,2\right)}{2\left(0.1\right)}=\\[0.3cm] = & \dfrac{\left(\left(1+0.1\right)^{3}+\left(2\right)^{3}\right)-\left(\left(1-0.1\right)^{3}+\left(2\right)^{3}\right)}{2\left(0.1\right)}=\\[0.3cm] = & \dfrac{9.331-8.729}{0.2}=\dfrac{0.602}{0.2}=3.01\\ \end{align*} $$

Y la segunda componente

$$ \begin{align*} \frac{\partial f}{\partial y}\approx & \dfrac{f\left(x_{m},y_{n}+h_{y}\right)- f\left(x_{m},y_{n}-h_{y}\right)}{2h_{y}}=\dfrac{f\left(1,2+0.1\right)-f\left(1,2-0.1\right)}{2\left(0.1\right)}=\\[0.3cm] = & \dfrac{\left(\left(1\right)^{3}+\left(2+0.1\right)^{3}\right)-\left(\left(1\right)^{3}+\left(2-0.1\right)^{3}\right)}{2\left(0.1\right)}=\\[0.3cm] = & \dfrac{10.261-7.859}{0.2}=\dfrac{2.401}{0.2}=12.01\\ \end{align*} $$

Por lo tanto $$ \nabla f(1,2)\approx (3.01,12.01)$$

Matriz Hessiana $\mathrm{Hess} f(x,y)$

La matriz hessiana exacta para una función de dos variables viene dada por $$ H = \left( \begin{array}{cc} \dfrac{\partial^{2}f}{\partial x^{2}} & \dfrac{\partial^{2}f}{\partial x\partial y}\\ \dfrac{\partial^{2}f}{\partial y\partial x}& \dfrac{\partial^{2}f}{\partial y^{2}} \end{array} \right) $$

Como

$$\frac{\partial f}{\partial x} = 3x^2 \quad \frac{\partial f}{\partial y}=3y^2$$

Se tiene que

$$ \frac{\partial^{2}f}{\partial x^{2}} = 6x \quad \frac{\partial^{2}f}{\partial y^{2}}=6y $$$$ \dfrac{\partial^{2}f}{\partial x\partial y} = 0 \quad \dfrac{\partial^{2}f}{\partial y\partial x} = 0 $$

Para funciones suficientemente regulares, como es este caso, por el teorema de Schwarz, las derivadas cruzadas son iguales.

Para $(x_0,y_0)=(1,2)$

$$ \left(\frac{\partial^{2}f}{\partial x^{2}}\right)_{(1,2)} = 6(1)=6 \quad \left(\frac{\partial^{2}f}{\partial y^{2}}\right)_{(1,2)}=6(2)=12 \quad \left(\frac{\partial^{2}f}{\partial x\partial y}\right)_{(1,2)}=\left(\frac{\partial^{2}f}{\partial y\partial x}\right)_{(1,2)}=0 $$

Y por lo tanto

$$ H = \left( \begin{array}{cc} 6 & 0 \\ 0 & 12 \end{array} \right) $$

Calculemos ahora una aproximación. Tenemos que $$ \begin{align*} \frac{\partial^{2}f}{\partial x^{2}}& \approx \dfrac{f\left(x_{m}+h_{x},y_{n}\right)-2f\left(x_{m},y_{n}\right)+f\left(x_{m}-h_{x},y_{n}\right)}{h_{x}^{2}}=\\[0.3cm] &= \dfrac{f\left(1+0.1,2\right)-2f\left(1,2\right)+f\left(1-0.1,2\right)}{\left(0.1\right)^{2}}=\\[0.3cm] & = \dfrac{\left(\left(1+0.1\right)^{3}+\left(2\right)^{3}\right)-2\left(\left(1\right)^{3}+\left(2\right)^{3}\right)+\left(\left(1-0.1\right)^{3}+\left(2\right)^{3}\right)}{\left(0.1\right)^{3}}=\\[0.3cm] &= \dfrac{9.331-18+8.729}{0.01}=\dfrac{0.06}{0.01}=6\\ \end{align*} $$

Y $$ \begin{align*} \frac{\partial^{2}f}{\partial y^{2}} & \approx\dfrac{f\left(x_{m},y_{n}+h_{y}\right)-2f\left(x_{m},y_{n}\right)+f\left(x_{m},y_{n}-h_{y}\right)} {h_{y}^{2}}=\\[0.3cm] &=\dfrac{f\left(1,2+0.1\right)-2f\left(1,2\right)+f\left(1,2-0.1\right)}{\left(0.1\right)^{2}}=\\[0.3cm] & =\dfrac{\left(\left(1\right)^{3}+\left(2+0.1\right)^{3}\right)-2\left(\left(1\right)^{3}+\left(2\right)^{3}\right)+\left(\left(1\right)^{3}+\left(2-0.1\right)^{3}\right)}{\left(0.1\right)^{2}}=\\[0.3cm] & = \dfrac{10.261-18+7.859}{0.01}=\dfrac{0.12}{0.01}=12\\ \end{align*} $$

Calculemos solo una derivada cruzada puesto que son iguales. Usemos también fórmulas centradas

$$ \frac{\partial^{2}f}{\partial y\partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) = \frac{\partial f'_x}{\partial y} \approx \dfrac{f'_x\left(x_{m},y_{n}+h_{y}\right)-f'_x\left(x_{m},y_{n}-h_{y}\right)} {2h_{y}} $$

Teniendo en cuenta que $$ f'_x\left(x_{m},y_{n}+h_{y}\right) \approx \dfrac{f\left(x_{m}+h_{x},y_{n}+h_{y}\right)-f\left(x_{m}-h_{x},y_{n}+h_{y}\right)}{2h_{x}} $$

y que $$ f'_x\left(x_{m},y_{n}-h_{y}\right) \approx \dfrac{f\left(x_{m}+h_{x},y_{n}-h_{y}\right)-f\left(x_{m}-h_{x},y_{n}-h_{y}\right)}{2h_{x}} $$

tenemos que $$ \frac{\partial^{2}f}{\partial y\partial x}\approx \frac{f\left(x_{m}+h_{x},y_{n}+h_{y}\right)-f\left(x_{m}-h_{x},y_{n}+h_{y}\right)-f\left(x_{m}+h_{x},y_{n}-h_{y}\right)+f\left(x_{m}-h_{x},y_{n}-h_{y}\right)}{4\,h_x\,h_y} $$

Y para el punto dado es

$$ \dfrac{f(1+0.1,2+0.1)-f(1-0.1,2+0.1)-f(1+0.1,2-0.1)+f(1-0.1,2-0.1)}{4(0.1)(0.1)}= $$

tenemos

$$ =\dfrac{(1.1^3+2.1^3)-(0.9^3+2.1^3)-(1.1^3+1.9^3)+(0.9^3+1.9^3)}{4(0.1)^2}= $$

Y operando con 3 decimales

$$ =\dfrac{10.592-9.990-8.190+7.588}{0.04}=\dfrac{0}{0.04}=0 $$

Y por lo tanto, la matriz Hessiana aproximada es

$$ H \approx \left( \begin{array}{cc} 6 & 0 \\ 0 & 12 \end{array} \right) $$