Given $f(x,y)=x^{3}+y^{3}$, compute an approximation of
for $(x_0,y_0)=(1,2)$ with $h_{x}=h_{y}=0.1$.
The gradient is $$ \nabla f=\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right) $$
We compute the exact gradient calculating the partial derivatives of $f$
that for the point $(x_0,y_0)=(1,2)$
$$\left(\frac{\partial f}{\partial x}\right)_{(1,2)} = 3(1)^2=3 \quad \left(\frac{\partial f}{\partial y}\right)_{(1,2)}=3(2)^2=12$$And finally
$$\nabla f(x,y)_{(1,2)}=(3,12).$$Let us compute an approximation. The first component of the gradient would be
And the second component
$$ \begin{align*} \frac{\partial f}{\partial y}\approx & \dfrac{f\left(x_{m},y_{n}+h_{y}\right)- f\left(x_{m},y_{n}-h_{y}\right)}{2h_{y}}=\dfrac{f\left(1,2+0.1\right)-f\left(1,2-0.1\right)}{2\left(0.1\right)}=\\[0.3cm] = & \dfrac{\left(\left(1\right)^{3}+\left(2+0.1\right)^{3}\right)-\left(\left(1\right)^{3}+\left(2-0.1\right)^{3}\right)}{2\left(0.1\right)}=\\[0.3cm] = & \dfrac{10.261-7.859}{0.2}=\dfrac{2.401}{0.2}=12.01\\ \end{align*} $$Thus
$$ \nabla f(1,2)\approx (3.01,12.01)$$The exact Hessian matrix of a two variable function is $$ H = \left( \begin{array}{cc} \dfrac{\partial^{2}f}{\partial x^{2}} & \dfrac{\partial^{2}f}{\partial x\partial y}\\ \dfrac{\partial^{2}f}{\partial y\partial x}& \dfrac{\partial^{2}f}{\partial y^{2}} \end{array} \right) $$
As
$$\frac{\partial f}{\partial x} = 3x^2 \quad \frac{\partial f}{\partial y}=3y^2$$And the second partial derivatives are
$$ \frac{\partial^{2}f}{\partial x^{2}} = 6x \quad \frac{\partial^{2}f}{\partial y^{2}}=6y $$$$ \dfrac{\partial^{2}f}{\partial x\partial y} = 0 \quad \dfrac{\partial^{2}f}{\partial y\partial x} = 0 $$That for the point $(x_0,y_0)=(1,2)$
$$ \left(\frac{\partial^{2}f}{\partial x^{2}}\right)_{(1,2)} = 6(1)=6 \quad \left(\frac{\partial^{2}f}{\partial y^{2}}\right)_{(1,2)}=6(2)=12 \quad \left(\frac{\partial^{2}f}{\partial x\partial y}\right)_{(1,2)}=\left(\frac{\partial^{2}f}{\partial y\partial x}\right)_{(1,2)}=0 $$And finally
$$ H = \left( \begin{array}{cc} 6 & 0 \\ 0 & 12 \end{array} \right) $$Let us compute an approximation. Using the second order partial derivative formula we already have
And $$ \begin{align*} \frac{\partial^{2}f}{\partial y^{2}} & \approx\dfrac{f\left(x_{m},y_{n}+h_{y}\right)-2f\left(x_{m},y_{n}\right)+f\left(x_{m},y_{n}-h_{y}\right)} {h_{y}^{2}}=\\[0.3cm] &=\dfrac{f\left(1,2+0.1\right)-2f\left(1,2\right)+f\left(1,2-0.1\right)}{\left(0.1\right)^{2}}=\\[0.3cm] & =\dfrac{\left(\left(1\right)^{3}+\left(2+0.1\right)^{3}\right)-2\left(\left(1\right)^{3}+\left(2\right)^{3}\right)+\left(\left(1\right)^{3}+\left(2-0.1\right)^{3}\right)}{\left(0.1\right)^{2}}=\\[0.3cm] & = \dfrac{10.261-18+7.859}{0.01}=\dfrac{0.12}{0.01}=12\\ \end{align*} $$
Let us compute the cross partial derivatives. We will calculate only one because, under certain conditions specified by Schwarz Theorem (met in this case), the partial cross derivatives are equal. Let us use centered formulas
$$ \frac{\partial^{2}f}{\partial y\partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) = \frac{\partial f'_x}{\partial y} \approx \dfrac{f'_x\left(x_{m},y_{n}+h_{y}\right)-f'_x\left(x_{m},y_{n}-h_{y}\right)} {2h_{y}} $$And taking into account
and
we have
For the given point
that is
And using three decimal digits
And the approximate Hessian matrix is