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Chapter 1

Finite arithmetic and error analysis

1 Introduction

While real numbers may have a representation using an infinite number of digits, the amount of
memory available in a computer is finite. Thus, a restriction for representing and handling real
numbers must apply. Numbers in computers are stored using two main formats:

• Integer format, which allows an exact storing of a finite set of integer numbers.

• Floating point format, allowing the exact storing of a finite set of rational numbers.

1.1 IEEE 754 standard

The standard floating point representation commonly implemented in today processors is the IEEE
754 format.

The first IEEE 754 norm dates to 1985, where only the binary representation was implemented.
Its fundamental formats were single and double precision formats. In 2008, a second version was
introduced, extending the previous one to deal with decimal representation and a further quadruple
precision binary representation. These five basic formats, with their main parameters, are shown
in Table 1.1. These parameters will be explained along the chapter.

Apart from these basic formats, other less commonly used are available such as the extended
precision and the extensible precision format, allowing for further accuracy in number representa-
tion.

Before the establishment of IEEE 754 standard, FPU’s (Floating Point Units) or math co-
processors were optional integrated circuits added to the motherboard which, together with the
main processors, were in charge of floating point operations. These operations were particular to
each operative system and compilators.

After IEEE 754 arrival, the math co-processors became standard. Nowadays, these processors
compute both basic operations, like summing, and more complex operations, such as trigonometric
functions evaluation. However, most current processors implement only the 1985 standard, being
the 2008 version implemented via software.

Apart from defining the storing format and rounding rules for floating point representation,
the IEEE 754 standard also deals with the main arithmetic operations, the conversion between
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6 Finite arithmetic and error analysis

Binary formats Decimal formats
parameter binary32 binary64 binary128 decimal64 decimal128

precision (p) 24 53 113 16 34
emax +127 +1023 +16383 +384 +6144

Table 1.1: Main parameters in the IEEE 754 basic formats

different formats, and the exception rules. IEEE 754 does not specify integer representation, but
for its role as exponents in floating point representation.

1.2 Binary and decimal representation

Every real number has a decimal representation and a binary representation (and, indeed, a repre-
sentation based on any positive integer greater than 1). Instead of representation, we sometimes
use the word expansion.

In particular, the representation of integer numbers is straightforward, requiring an expansion
in nonnegative powers of the base. For example, consider the number

(71)10 = 7×101 +1×100,

and its binary equivalent

(1000111)2 = 1×26 +0×25 +0×24 +0×23 +1×22 +1×21 +1×20.

Non-integral real numbers have digits (or bits) to the right of the decimal (or binary) point.
These expansions may be finite or nonterminating. For example, 11/2 has the expansions

11
2

= (5.5)10 = 5×100 +5×10−1,

and
11
2

= (101.1)2 = 1×22 +0×21 +1×20 +1×2−1.

Both of these expansions terminate. However, the number 1/10, which obviously has the finite
decimal representation (0.1)10, does not have a finite binary representation. Instead, it has the
nonterminating expansion

1
10

= (0.0001100110011 . . .)2 = 1×2−4 +1×2−5 +0×2−6 +0×2−7 +1×2−8 +1×2−9 + · · ·

Note that this representation, although nonterminating, is repeating. The fraction 1/3 has nonter-
minating expansions in both binary and decimal:

1
3
= (0.333 . . .)10 = (0.010101 . . .)2.

Rational numbers always have either finite or periodic expansions. For example,

1
7
= (0.142857142857 . . .)10.
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In fact, any finite expansion can also be expressed as a periodic expansion. For example, 1/10 can
be expressed as

1
10

= (0.09999 . . .)10.

However, we will use the finite expansion when it does exist. Irrational numbers always have
nonterminating, non-repeating expansions. For example,

√
2 = (1.414213 . . .)10, π = (3.141592 . . .)10, e = (2.718281 . . .)10.

Definition 1 A decimal floating point representation of a nonzero real number, x, is a represen-
tation of the type

x = σ× (x̄)10×10n,

where σ = ±1 is the sign, x̄ ∈ R is the mantissa, and n ∈ Z is the exponent. Similarly, a binary
floating point representation of a nonzero real number, x, is a representation of the type

x = σ× (x̄)2×2e.

The representation is said to be normalized if

• In the decimal case, the mantissa, satisfies (1)10 ≤ x̄ < (10)10.

• In the binary case, the mantissa, satisfies (1)2 ≤ x̄ < (10)2.

The significant digits of a number are the digits of the mantissa not counting leading zeros. Thus,
for normalized numbers, the number of significant digits is the same that the number of digits in
the mantissa.

The precision of a representation is the maximum number, p, of significant digits that can be
represented. For a normalized representation, the precision coincides with the number of digits in
the mantissa.

The precision may be finite, if p < ∞, or infinite, if there is no limit to the number of digits in the
mantissa.

Example 1.1 Normalization and significant digits. For the number x = 314.15, the normalized
decimal floating point representation has

σ =+1, x̄ = 3.1415, n = 2,

so the representation has 5 significant digits. The binary number x = (10101.11001)2 has the
normalized representation (1.010111001)2×24, with 10 significant digits.

The number x = (101.001101)2 = (5.203125)10 has the normalized floating point decimal repre-
sentation with

σ =+1, x̄ = 5.203125, n = 0,

while the normalized binary floating point representation has

σ = (1)2, x̄ = (1.01001101)2, e = (2)10 = (10)2.
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Thus, the number of significant digits is 7 for the decimal representation, and 9 for the binary
representation. �

Example 1.2 Precision of a representation. Suppose that, for a binary representation, we use p
digits in the mantissa. If the representation of a given number, x, can be normalized, then it will
have the form

x =±1.b1b2 . . .bp−1×2e.

Since it can not have leading zeros, the precision of the representation is p. Now, suppose that the
representation of x can not be normalized, and that it is of the form

x =±0.0 . . .0b j . . .bp−1×2e.

where b j 6= 0 and j ≤ p−1. Then, the precision of the representation is p− j. �

1.3 Conversion from decimal to binary and vice versa

Binary to decimal conversion is straightforward, as we are so familiar with decimal representation.
For example,

(1101011.101)2 = 26 +25 +23 +21 +20 +2−1 +2−3 = (107.625)10.

Decimal to binary conversion is performed in two steps. First, converting the integer part of
the number. Second, converting its fractional part. The algortihm is as follows:

1. Integer part. We sequentially divide by 2 and keep the remainders as the digits in base 2. We
first write the last quotient (1, in the example) and then the remainders, from right to left:

Quotients 107 53 26 13 6 3 1

Remainders 1 1 0 1 0 1
←−

2. Fractional part. We sequentially multiply by 2 and subtract the integer part. The binary
digits are the remainders, written from left to right:

Fractional 0.625 0.25 0.5 0

Integer 1 0 1

−→

The final result is (107.625)10 = (1101011.101)2, as expected.

2 Integer representation

As already mentioned, the IEEE 754 standard does not specifically deal with integer representa-
tion. However, since the exponent of the floating point representation is an integer, we shall give
some notions on their binary representation.
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Binary Unsigned IEEE 754
0000 0 Reserved
0001 1 −6
0010 2 −5
0011 3 −4
0100 4 −3
0101 5 −2
0110 6 −1
0111 7 0
1000 8 1
1001 9 2
1010 10 3
1011 11 4
1100 12 5
1101 13 6
1110 14 7
1111 15 Reserved

Table 1.2: Four bits integer representations

For m-bits unsigned integers, we may represent 2m numbers, those in the range of integer
numbers between (00 . . .00)2 = (0)10 and (11 . . .11)2 = (2m−1)10. Table 1.2 shows the example
m = 4.

For m-bits signed integers, there are several representation estrategies. We shall focus in the
representation used in the IEEE 754 standard.

This standard uses the biased representation: numbers are represented consecutively, running
increasingly from the smallest negative number to the largest positive number. Since the first and
the last exponent values are reserved for special cases (e.g. infinity or NaN symbols), there are
2m−2 representable numbers, those in the range

[
−2m−1 +2,2m−1−1

]
.

Thus, the IEEE 754 representation of x is the same that the representation of the unsigned
integer x+b, where b = 2m−1−1 is the bias of the representation.

3 IEEE 754 floating point binary representation

The IEEE 754 floating point binary representation of a number x 6= 0 is given by

x = σ× x̄×2e.

• The first bit is for the sign, σ, which stores 0 for positive numbers, and 1 for negative
numbers.

• The exponent, e, is a signed integer following the IEEE 754 biased representation, in which
the largest and the smallest exponents are reserved for special cases.
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sign exponent (8 bits) mantissa (23 bits)

Figure 1.1: Single precision representation (32 bits).

• The mantissa is normalized1, that is, 1 ≤ x̄ < (10)2. In the binary representation the nor-
malization implies that the first digit must be 1, and then it is unnecessary to store it. In this
way, a bit is saved. This is known as the hidden bit technique.

Numbers may be stored in bit-strings of 32 bits (single precision), 64 bits (double precision),
and 128 bits (quadruple precision).

3.1 Single precision (32 bits)

In single precision, numbers are stored as x = σ× (1.a1a2 . . .a23)×2e. The 32 bits are distributed
in the following way: 1 bit for the sign, 8 bits for the exponent, and 23 bits for the mantissa.
Observe that, due to the hidden bit, the actual precision of this representation, for normalized
numbers, is p = 24.

Since we have 8 bits for the exponent, this means that there is room for 28 = 256 binary num-
bers. The smallest, (00000000)2, is reserved to represent zero and other denormalized numbers.
The largest, (11111111)2, is reserved for the infinity (Inf) and Not-a-Number (NaN) symbols.

The exponent bias is 2m−1−1= 127, and thus the exponent take the integer values in [−126,127].
Introducing the notation emin = −126 and emax = 127, we may check that one advantage of this
technique is that the inverse of a normalized number having the minimum exponent is always
smaller than the largest number,

1
x̄×2emin

=
1

x̄×2−126 =
1
x̄
×2126 < 2127,

since x̄≥ 1 due to the hidden bit. Thus, no overflow may take place.

Moreover, the biased representation is more efficient for number comparison. When compari-
son between two numbers take place, first the exponents are compared, and only in the case they
coincide, their mantissas are compared too.

Example 1.3 Compute the single precision IEEE 754 binary representation of the number (−118.625)10.

The mantissa. For the fractional part of the mantissa, we get

Fractional : 0.625 0.25 0.5 0
Integer : 1 0 1

and therefore, we store (0.101)2. For the integer part, we obtain

Quotients : 118 59 29 14 7 3 1
Remainders : 0 1 1 0 1 1

and thus we store (1110110)2. The complete mantissa is written as

(1110110.101)2.

1There are exceptions, as we shall see.
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sign exponent (11 bits) mantissa (52 bits)

Figure 1.2: Double precission precision representation (64 bits).

The result is easy to check:

1×26+1×25 +1×24 +0×23 +1×22 +1×21 +0×20 +1×2−1 +0×2−2 +1×2−3 = 118.625.

Following the IEEE standard, we normalize the mantissa as

1110110.101 = 1.110110101×26,

which is stored as
11011010100000000000000.

Recall that due to the hidden bit technique, the first 1 is omitted.

The exponent. The bias is 2m−1− 1 = 127. The base 10 biased exponent is then 6+ bias =
6+127 = 133. Computing its binary representation

Quotients : 133 66 33 16 8 4 2 1
Remainders : 1 0 1 0 0 0 0

we get (10000101)2.

The sign. Since the number is negative, the sign bit is 1.

Therefore, the answer is

sign exponent mantissa
1 10000101 11011010100000000000000

�

3.2 Double precision (64 bit)

In this case, numbers are stored as x = σ× (1.a1a2 . . .a52)×2e. The 64 bits are distributed in the
following way: 1 bit for the sign, 11 bits for the exponent, and 52 bits for the mantissa. It has
therefore a precision p = 53 for normalized numbers, taking into account the hidden bit.

The 11 bits for the exponent give room for 211 = 2048 binary numbers, distributed in the
interval [−1022,1023], the bias being 1023. The smallest and the largest exponents are reserved
for special cases, like in the single precision case.

3.3 Special values

We discuss here the single precision special values. The corresponding double precision excep-
tions are analogous. As mentioned in the previous subsections, the special values are stored in the
largest and smallest exponent values.

• The largest exponent is e = (11111111)2. This exponent is reserved for:
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– Infinity. All the mantissa digits are zeros. It is due to overflow.

Value sign exponent mantissa
+∞ 0 11111111 00000000000000000000000
−∞ 1 11111111 00000000000000000000000

– NaN (Not a Number). The mantissa is not identically zero. There are two kind: QNaN
(Quiet NaN), meaning indeterminate, and SNaN (Signaling NaN) meaning invalid oper-
ation. Attempts to compute 0/0, 00, or similar expressions result in NaN.

Value sign exponent mantissa
SNaN 0 11111111 10000000000000001000000
QNaN 1 11111111 00000010000000010000000

• The smallest exponent is e = (00000000)2. This exponent is reserved for:

– Zero. Since the hidden bit takes the value 1, it is not possible to represent the zero as
a normalized number. The following representations are used

Value sign exponent mantissa
+0 0 00000000 00000000000000000000000
−0 1 00000000 00000000000000000000000

– Denormalized numbers2. The hidden bit is assumed to be zero, and the exponent value
is assumed to take the smallest possible value, that is (00000001)2, although it is still
represented with 00000000. For example,

sign exponent mantissa
0 00000000 00001000010000000001000
1 00000000 01000100000000000010000

The advantage of introducing denormalized numbers is that, since the hidden bit is
zero, numbers smaller than the smallest normalized number may be represented, fill-
ing thus the gap between zero and the smallest normalized number. However, these
numbers have less significant digits (lower precision) than the normalized numbers,
since they have leading zeroes (at least, the hidden bit).
Another difference with respect to normalized numbers is in number distribution:
while normalized numbers have a logarithmic distribution, denormalized numbers
have a linear distribution.

Example 1.4 Compute the base 10 value and the precision representation of the number

sign exponent mantissa
0 00000000 00010110000000000000000

Since the exponent is 00000000 and the mantissa is not identically zero, the number is denor-
malized. Thus, the exponent is emin = −126, and the hidden bit is 0. Therefore, it represents the
number

(0.0001011)×2−126,

2Also known as subnormal numbers, in IEEE 754-2008.
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with precision p = 24−4 = 20. In decimal base, is given by

(2−4 +2−6 +2−7)×2−126 ≈ 1.0102×10−39.

�

Observe that the smallest single precision normalized number, Rmin, is, in absolute value,

sign exponent mantissa
0 00000001 00000000000000000000000

that is, (1.00 . . .00)×2−126, which is larger than the largest denormalized number (0.11 . . .11)×
2−126, writen as

sign exponent mantissa
0 00000000 11111111111111111111111

Example 1.5 Compute the smallest denormalized numbers in single and double precision.

In single precision, it is

sign exponent mantissa
0 00000000 00000000000000000000001

representing, in binary base

(0.00000000000000000000001)×2−126 = 2−23×2−126 = 2−149 ≈ 1.4013×10−45,

which has a precision p = 1. Similarly, in double precision we get

(2−52)×2−1022 = 2−1074 ≈ 4.9407×10−324.

�

3.4 Accuracy

We have two main ways of measuring the accuracy of floating point arithmetics:

• The machine epsilon, ε, which is the difference between 1 and the next number, x> 1, which
is representable.

• The largest integer, M, such that any other positive integer, x≤M, is representable.

Machine epsilon in single and double precision. The single precision normalized representation
of 1 is the 24 binary digits number

(1.0 . . .︸︷︷︸
22

0)2×20.

If we add a normalized number with exponent smaller than −23, then the resulting number will
have a mantissa with more than the 24 permitted digits. Thus, the smallest normalized number, ε,
such that 1+ ε > 1 in single precision is 1.×2−23. Indeed, we have

1+ ε = (1.0 . . .0)2×20 +(1.0 . . .0)2×2−23 = (1.0 . . .01)2×20.



14 Finite arithmetic and error analysis

Decimal Binary Mantissa Exp Representation

represented 25 digits 1.+23 bits

1 000. . .001 1.00. . .000 0 Exact

2 000. . .010 1.00. . .000 1 Exact

3 000. . .011 1.10. . .000 1 Exact

4 000. . .100 1.00. . .000 2 Exact
...

...
...

...
...

16777215 011. . .111 1.11. . .111 23 Exact

M = 224→ 16777216 100. . .000 1.00. . .0000 24 Exact

16777216 100. . .001 1.00. . .0001 24 Rounded

16777218 100. . .010 1.00. . .0010 24 Exact

16777220 100. . .011 1.00. . .0011 24 Rounded

16777220 100. . .100 1.00. . .0100 24 Exact
...

...
...

...
...

Table 1.3: Single precision floating point integer representation

That is, for single precision, we get ε = 2−23 ≈ 1.19×10−7. In a similar way, we get for double
precision ε = 2−52 ≈ 2.22×10−16.

Largest integer. The largest integer is M = 2p. Let us justify this statement using Table 1.3 for
single precision. The arguments for double precision follow the same line.

As shown in Table 1.3, all numbers smaller than M = 224 admit a normalized exact representa-
tion in single precision.

For M = 224, the last digit may not be stored, but since this digit is zero, following the rounding
rules, see Subsection 3.5, M is rounded to the closest number finishing in zero. Thus, in this case,
there is no loss of digits and the representation is exact.

However, for the next number the last digit is one, and rounding leads to a cutting off of this
digit, implying no exact representation. From this number on, some integers are represented in an
exact form and some others are not. Since in decimal base we have

M = 224 = 16777216,

we deduce that all the six-digits integers are stored exactly.

A similar argument for double precision representation shows that

M = 253 = 9007199254740992

is the largest integer. Thus, integers up to 15 digits are stored exactly.

Overflow and underflow

Since for any given precision there are a maximum and a minimum storable positive numbers,
some procedure must be followed if these barriers are violated. When operations lead to numbers
larger than the maximum storable number, an overflow is produced. The IEEE 754 format may
support this result assigning the symbols ±∞, and usually, aborting the execution.
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On the contrary, if some operations lead to a number which is smaller than the minimum
positive number, an underflow is produced. Then two results are possible. That the number lies in
the range of denormalized numbers, so it is still representable (although with a loss of precision),
or that it is even smaller than the smaller positive denormalized number. In this case, the number
is rounded to zero. In both cases, execution continues.

3.5 Rounding

When operations lead to a number for which the mantissa contains more digits than the precision
of the representation, the number must be approximated by another representable number. For
instance, let us consider the base 10 number

x =±d0.d1d2 . . .×10n =±
( ∞

∑
k=0

dk10−k
)
×10n, (1.1)

with dk = 0,1, ...,9, for all k, and d0 6= 0. For a precision p, the digits dp,dp+1, . . . must be dropped
from the representation, possibly implying a modification of the last representable digit, dp−1.

In the norm IEEE 754 we have four procedures to approximate x:

• Round up: taking the closest representable larger number.

• Round down: taking the closest representable smaller number.

• Round towards zero (truncation): replacing the non representable digits by zero.

• Round to nearest representable digit (rounding).

The most usual procedures are truncation and rounding. We explain them in some detail.

Decimal representation

In this case, x is given by formula (1.1). We have, for a precision of p digits,

• Truncation:
x∗ =±d0.d1d2 . . .dp−1×10n.

• Rounding:

x∗ =


±d0.d1d2 . . .dp−1×10n if 0≤ dp ≤ 4,
±
(
d0.d1d2 . . .dp−1 +10−(p−1)

)
×10n if 5 < dp ≤ 9,

±
(
d0.d1d2 . . .dp−1 +10−(p−1)

)
×10n if dp = 5, and dp+k > 0 for some k > 0,

nearest number ending in even if dp = 5, and dp+k = 0 for all k > 0.

Example 1.6 Round the following numbers in decimal base:

number precision truncation rounding
1.999953 5 1.9999 2.000
2.433309 4 2.433 2.433
2.433500 4 2.433 2.434
2.434500 4 2.434 2.434

�
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Binary representation

In this case, the number takes the form

x =±1.b1b2 . . .×2e =±
( ∞

∑
k=0

bk2−k
)
×2e,

with bk = 0,1 for all k. For a precision p (including the hidden bit), we have

• Truncation:
x∗ =±1.b1b2 . . .bp−1×2e.

• Rounding:

x∗ =


±1.b1b2 . . .bp−1×2e if bp = 0,
±
(
1.b1b2 . . .bp−1 +2−(p−1)

)
×2e if bp = 1 and bp+k = 1 for some k > 0,

nearest number ending in 0 if bp = 1 and bp+k = 0 for all k > 0.

Example 1.7 Round the following numbers in binary base:

number precision truncation rounding
1.1111 3 1.11 10.0
1.1101 3 1.11 1.11
1.0010 3 1.00 1.00
1.0110 3 1.01 1.10

Let us explain the roundings of the last two numbers. For both, we have bp = b3 = 1, and bp+k = 0
for all k > 0 (only k = 1, in this example). Then, we round both numbers to the nearest repre-
sentable number ending in zero, that is, we look for the nearest number with b2 = 0. For 1.0010
this is clearly 1.00. For 1.0110, the possibilities are x∗1 = 1.00 and x∗2 = 1.10, and we have

|x− x∗1|= 1.0110−1.0000 = 0.0110, |x− x∗2|= 1.1000−1.0110 = 0.0010.

To convince yourself of the last substraction, write it as

20 +2−1− (20 +2−2 +2−3) =
1
2
− 1

4
− 1

8
=

1
8
= 2−3.

�

Let us finish this section by comparing the approximation results obtained by truncation and
by rounding for the binary representation of precision p. If truncating, we have

|x− x∗t |=
( ∞

∑
k=p

bk2−k
)
×2e ≤ 2−(p−1)2e,

where we used the formula for summing a geometric series. For rounding to the nearest, we have
an even better behavior since the rounded value, x, is always, at worst, halfway between the two
nearest representable numbers. Thus,

|x− x∗r | ≤
1
2

2−(p−1)2e = 2−p2e. (1.2)

Therefore, the largest error we may have by truncating is twice the largest error made by rounding.
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Example 1.8 Let x = (1.1001101)2. We approximate by

• Truncation to 5 binary digits, x∗t = (1.1001)2. Then

|x− x∗t |= (0.0000101)2 = 2−5 +2−7 = 0.0390625.

• Rounding to 5 binary digits, x∗r = (1.1010)2. In this case

|x− x∗r |= (0.0000011)2 = 2−6 +2−7 = 0.0234375.

�

4 Error

Rounding errors due to finite arithmetic are small in each operation. However, if we concatenate
many operations these errors may aggregate and propagate along the code variables. The result
can be a large error between the exact solution and the computed solution. This effect is known as
numerical instability.

Example 1.9 For the sequence sk = 1+2+ . . .+ k, for k = 1,2, . . ., if we compute

xk =
1
sk

+
2
sk

+ . . .+
k
sk
,

the exact result is
xk = 1 for all k = 1,2, . . .

However, in single precision we get

k x∗k |xk− x∗k |
101 1.000000 0.0
103 0.999999 1.0×10−7

106 0.9998996 1.004×10−4

107 1.002663 2.663×10−3

�

Definition 2 The absolute error due to approximating x by x∗ is defined as ea = |x− x∗|, while the
relative error of the same approximation is given by

er =
|x− x∗|
|x|

.

The relative error is scale-independent, and therefore more meaningful than the absolute error,
as we may check in the following example.
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Example 1.10 Compute the absolute and relative errors corresponding to approximating x by x∗:

x x∗ ea er

0.3×101 0.31×101 0.1 0.333...×10−1

0.3×10−3 0.31×10−3 0.1×10−4 0.333...×10−1

0.3×104 0.31×104 0.1×103 0.333...×10−1

�

Example 1.11 Compute estimates for the relative errors of truncation and rounding approxima-
tions. We have

|x− x∗t |
|x|

=

(
∑

∞
k=p bk2−k

)
×2e(

∑
∞
k=0 bk2−k

)
×2e

=
∑

∞
k=p bk2−k

∑
∞
k=0 bk2−k .

Since b0 = 1, the number in the denominator is larger than one. Thus,

|x− x∗t |
|x|

<
∞

∑
k=p

bk2−k ≤ 2−(p−1) = ε,

where ε is the machine epsilon. Similarly to (1.2), and using the above argument, we get

|x− x∗r |
|x|

< 2−p =
ε

2
.

�

Definition 3 We say that x∗ approximates x with p significant digits if p is the largest nonnegative
integer such that

|x− x∗|
|x|

≤ 5×10−p.

Example 1.12 Let us find the significant digits in the following cases:

x∗ = 124.45 approximates x = 123.45 with p = 2 significant digits, since

|x− x∗|
|x|

=
1

123.45
= 0.0081≤ 0.05 = 5×10−2.

x∗ = 0.0012445 approximates x = 0.0012345 with p = 2 significant digits, since

|x− x∗|
|x|

=
0.00001

0.0012345
= 0.0081≤ 0.05 = 5×10−2.

x∗ = 999.8 approximates x = 1000 with p = 4 significant digits, since

|x− x∗|
|x|

=
0.2

1000
= 0.0002≤ 0.0005 = 5×10−4.

�



Chapter 2

Nonlinear equations

1 Introduction

In this chapter, we study numerical methods to compute approximations to the roots or zeros of
nonlinear equations of the type

f (x) = 0, (2.1)

where f : R→ R is a continuous function. In general, solutions of (2.1) can not be expressed in
explicit form. Moreover, even if this is possible, it is seldom useful due to the complexity of the
expression involved.

The numerical methods we study are of iterative nature. Starting from an initial approximation,
and using some algorithms, we produce a sequence of approximations that, hopefully, converge to
the solution.

Iterative methods must be stopped at some point, after a finite number of iterations. Thus, in
general, we only obtain approximations to the solutions we look for. In addition, the rounding
errors generated by the evaluations of f (x) also limit the precision of any numerical method of
approximation.

With some methods, like bisection method, it is enough to know the initial interval containing
the solution to ensure the convergence of the sequence generated by the algorithm. However, other
methods, although faster, are more sensible to the initial guess for starting the algorithm. Thus,
we normally use an hybrid method in which one starts, say, with the bisection method to locate
the solution and the we apply a finer method, like Newton’s method, to approximate further the
solution.

1.1 Order of convergence and stopping criterion

In the lines above we introduced some concepts which deserve to be detailed. Numerical meth-
ods for root approximation are iterative methods, that is, by means of an algorithm we define a
sequence

x0,x1, . . . ,xk, . . .

such that limk→∞ xk = α. Then, due to the continuity of f we may infer

lim
k→∞

f (xk) = f (α) = 0.

19
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The order of convergence of a method is related to the intuitive idea of speed of convergence of
the sequence with respect to k, which a useful concept for algorithm comparison.

Definition 4 Let us suppose that the sequence xk converges to α ∈ R. We say that xk converges to
α with order of convergence p if

lim
k→∞

|xk−α|
|xk−1−α|p

6= 0, and finite.

In the particular cases

• p = 1, we say that the convergence is linear,

• p = 2, the convergence is quadratic.

A numerical method is said to be of order p if the corresponding sequence converges to the solution
with order of convergence p.

The sequence generated by the algorithm is, in general, infinite. Thus, a stopping criterion (or
test) is needed to break the sequence at some point. The most crude criterion is that of setting
a maximum number of iterations. Such criterion does not provide any information about the
accuracy of the approximation. Most usual criterion are based on, for some small tolerance ε > 0,

• The absolute difference between two consecutive iterations,

|xk− xk−1|< ε.

• The relative difference between two consecutive iterations,

|xk− xk−1|
|xk|

< ε.

• The residual at iteration k,
| f (xk)|< ε.

In practice, a combination of these criterion may be used. For instance, a maximum number of
iterations together with a difference test, in order to prevent infinite loops (because ε is too small)
or, simply, too long execution times.

2 The bisection method

For root approximation, one usually starts collecting qualitative information like the number of
roots or their approximate location. This information can be gathered inspecting the graph of
f (x), which is normally a very useful tool to determine the number of roots and to enclose them
in some suitable intervals.
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Example 2.1 Consider the equation
x2

4
= sin(x).

In Figure 2.1 the graphs of y = x2/4, and y = sin(x) are plotted. By inspection, we may determine
that the unique positive root, α, lies in the interval (1.8,2), being α≈ 1.9. �
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Figure 2.1: Plots of y = x2/4, and y = sin(x).

The following theorem may be used to deduce whether the interval [a,b] contains, at least, one
root of the equation f (x) = 0.

Theorem 2.1 (Intermediate value) Assume that the function f (x) is continuous for all x ∈ [a,b],
with f (a) 6= f (b), and that k is an intermediate value between f (a) and f (b). Then, there exists
ξ ∈ (a,b) such that f (ξ) = k.

In particular, if f (a) f (b)< 0 then the equation f (x) = 0 has, at least, one root in the interval
(a,b).

The bisection method makes a systematic use of the intermediate value theorem. Suppose that
f (x) is continuous in the interval [a0,b0], and that f (a0) f (b0) < 0. In what follows, we shall
determine a sequence of nested intervals Ik = [ak,bk] such that

(a0,b0)⊃ (a1,b1)⊃ (a2,b2)⊃ ·· ·

all of them containing the root of the equation. These intervals are recursively determined as
follows. Given Ik = (ak,bk), we compute the middle point

mk =
ak +bk

2
= ak +

1
2
(bk−ak), (2.2)

and f (mk). The way of expressing mk by the right hand term in (2.2) has the advantage of mini-
mizing the rounding error when computing the middle point.

We may assume that f (mk) 6= 0 since, otherwise, we already found the root. The new interval
is defined as

Ik+1 = (ak+1,bk+1) =

{
(mk,bk) if f (mk) f (ak)> 0,
(ak,mk) if f (mk) f (ak)< 0.
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From this definition it follows that f (ak+1) f (bk+1) < 0, and therefore the interval Ik+1 also con-
tains a root of f (x) = 0.

After n iterations of the bisection method, the root lies in the interval (an,bn), of length
2−n(b0− a0). That is, if we take mn as an approximation to the root of f (x), then we have an
estimate for the absolute error

|α−mn|< 2−(n+1)(b0−a0). (2.3)

In each step, a binary digit is gained in the accuracy of the approximation. Thus, finding an interval
of length δ containing a root takes around log2((b0−a0)/δ) evaluations of f (x).

The expression (2.3) implies that the bisection method has a linear order of convergence.
Clearly, the stopping criterion should be based on the absolute error between two iterations, which
allows us to determine the number of iterations needed to achieve the prescribed tolerance, see
Exercise ??.

Example 2.2 The bisection method applied to the equation f (x) = 0, with f (x) = x2/4− sin(x),
and I0 = (1.8,2) gives the following sequence of intervals [ak,bk],

k ak bk mk f (mk)

0 1.8 2 1.9 −0.0438
1 1.9 2 1.95 0.0217
2 1.9 1.95 1.925 −0.0115
3 1.925 1.95 1.9375 0.0050
4 1.925 1.9375 1.93125 −0.0033
5 1.93125 1.9375 1.934375 0.0008

Table 2.1:

Thus, after six iterations, we get α∈ (1.93125,1.934375), an interval of length 0.2×2−6 ≈ 0.003.
�

The execution time required by the bisection method is proportional to the number of evalu-
ations of f (x) and, therefore, the convergence is slow. But independent of the function smooth-
ness. For smooth functions, for instance differentiable functions, other methods such as Newton’s
method give a faster convergence.

3 Newton’s method

The only information used by the bisection method is the sign of f (x) on the extremes of the
intervals generated by the method. When the function is smooth, more efficient methods may be
devised by taking advantage not only of the values of f (x) in each iteration but also those of its
derivatives.

Let f : [a,b]→ R be a differentiable function, and consider its approximation by the tangent
line to f at the point xk ∈ (a,b), given by

y(x) = f (xk)+ f ′(xk)(x− xk).
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Figure 2.2: Geometric meaning of Newton’s method. In each step, the root of the tangent is
computed as an approximation to the root of the function.

If we fix xk+1 such that y(xk+1) = 0, that is, such that it is an approximation to a root of f (x), we
get

xk+1 = xk−
f (xk)

f ′(xk)
, k ≥ 0, (2.4)

whenever f ′(xk) 6= 0. The expression (2.4) is known as method of Newton and it corresponds to
computing the zero of f (x) locally replacing f (x) by its tangent at xk.

Note that to initialize Newton’s method a first approximation or guess, x0, is needed. This
choice can be tricky since the method does not converge, in general. In practice, a initial guess
may be obtained using the bisection method or by directly inspecting the graph of f (x).

If x0 is suitably chosen, and α is a single zero (i.e., f ′(α) 6= 0) then Newton’s method is con-
vergent. Moreover, if f ′′(x) is continuous, it may be proven that the convergence is quadratic, see
Exercise ??.

The usual stopping criterium for Newton’s method and, in general, for all fixed point based
methods that we shall study in Section 4, is the absolute difference between two consecutive
iterands

|xk+1− xk|< ε, (2.5)

for a given tolerance ε > 0. Like in the bisection method, in practice, we also limit the maximum
number of iterations to avoid infinite loops.

Newton’s method can be easily extended to deal with systems of nonlinear equations. Thus, if
f : Ω⊂ RN → RN is given by 

f1(x1,x2, . . . ,xN) = 0,
f2(x1,x2, . . . ,xN) = 0,
...
fN(x1,x2, . . . ,xN) = 0,

then the Newton’s method to solve f(x) = 0, where x = (x1,x2, . . . ,xN) and f = ( f1, . . . , fN), is as
follows: given x0 ∈ A, for k = 0,1, . . . and till convergence, we define

xk+1 = xk−
(
Jf(xk)

)−1f(xk),

where Jf(xk) is the Jacobian matrix of f(x) evaluated in xk, that is(
Jf(xk)

)
i j =

∂ fi

∂x j
(xk).
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As we already noticed for scalar functions, f ′(xk) must be nonzero. Similarly, for vector functions
the Jacobian matrix must have a well defined inverse, i.e. det

(
Jf(xk)

)
6= 0 must hold. For the

stopping criterium, we replace (2.5) by

‖xk+1−xk‖< ε,

where ‖y‖=
(

∑
N
i=1 yi

)1/2 is the Euclidean norm of y.

Example 2.3 Newton’s method applied to the equation f (x) = 0, with f (x) = x2/4− sin(x), and
x0 = 1.8. Compare to Table 2.1 produced with the bisection method.

k xk f (xk)

0 1.8 -0.16384
1 1.94 0.01543
2 1.9338 9.e-05
3 1.933753765 3.e-09
4 1.933753762827021 -1.e-16

Table 2.2:

�

4 The fixed point method

In this section we introduce a general class of iterative methods used for root approximations as
well as for other applications.

We say that a function g : [a,b]→ R has a fixed point α in the interval [a,b] if g(α) = α. The
fixed point method is based on the iteration

xk+1 = g(xk), k ≥ 0, (2.6)

where x0 is an initial guess to be provided.

The fixed point method is of great generality and gives raise to the introduction of particular
algorithms when the function g is specified. For instance, if we want to approximate a zero of
f : [a,b]→ R using the fixed point method, we just have to define g(x) = x+ f (x), so if α is a
fixed point of g then it is also a root of f . However, there is not a unique way to set this equivalence,
as we show in the following example.

Example 2.4 The equation x+ ln(x) = 0 may be written, for example, as

(i) x =− ln(x), (ii) x = e−x, (iii) x =
x+ e−x

2
.

Notice that each of these equations lead to a different fixed point scheme, see Exercise ??. �

A graphic interpretation of the fixed point method is shown in Figure 2.3. As it can be observed,
in some cases the method is not convergent even for a initial guess arbitrarily close to the root.
Therefore, we need to find some conditions which ensure the convergence of the method.
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(a) xk+1 = e−xk , with x0 = 0.3
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(b) xk+1 =
√

xk, with x0 = 0.01

Figure 2.3: Examples of fixed point iterations: convergent (left), and divergent from the closest
root (right)

Theorem 2.2 (Contractive map) Let g be a function defined in the interval [a,b] ⊂ R and x0 ∈
[a,b] be an initial guess for the fixed point iteration defined in (2.6). Suppose that

1. g(x) ∈ [a,b] for all x ∈ [a,b],

2. g is differentiable in [a,b],

3. There exists a positive constant γ < 1 such that |g′(x)| ≤ γ for all x ∈ [a,b].

Then g has a unique fixed point α ∈ [a,b], and the sequence xk defined by (2.6) converges to α at
least with linear order of convergence. More precisely,

lim
k→∞

|xk+1−α|
|xk−α|

= |g′(α)|.

Assume, in addition, that for some integer number p > 1, the function g is p+1 times continuously
differentiable, and that g(n)(α) = 0 for n = 1, . . . , p− 1, and g(p)(α) 6= 0. Then, the order of
convergence is p:

lim
k→∞

|xk+1−α|
|xk−α|p

=
|g(p)(α)|

p!
.

As already introduced for Newton’s method, see (2.5), the stopping criterium for the fixed point
method is usually based on the absolute difference between two consecutive iterations, plus the
usual limitation in the maximum number of iterations.

Remark 2.1 Newton’s method can be deduced from the fixed point method by taking

g(x) = x− f (x)
f ′(x)

.



26 Nonlinear equations

Since Newton’s method is quadratic, we may explore whether the result on the order of conver-
gence stated in Theorem 2.2 may be improved. The answer is given in Exercise ??.

Example 2.5 Fixed point method applied to the equation g(x) = 0, with g(x) = x+ f (x), f (x) =
x2/4− sin(x), and x0 = 1.8. Observe that function g is not contractive in the interval (1.8,2), but
it is in an interval centered at zero. Thus, although farer away, the fixed point method converges
to that root.

k xk f (xk)

0 1.8 -0.16384
1 1.6 -0.32861
2 1.3 -0.53813
3 0.7 -0.54771
4 0.2 -0.20759
5 0.01 -0.01404
6 0.00005 -5.e-05
7 0.0000000006 -6.e-10

Table 2.3:

However, with the simple change g(x) = x− f (x), the fixed point method converges to the correct
root:

k xk f (xk)

0 1.8 -0.16384
1 1.96 0.04042
2 1.923 -0.01358
3 0.937 0.00430
4 1.932 -0.00139
5 1.934 0.00044
6 1.9336 -0.00014
7 1.93378 0.00004
8 1.93374 -0.00001
9 1.933757 4.e-05
10 1.933752 1.e-05

Table 2.4:

Compare to Tables 2.1 and 2.2. �

5 The secant method

One of the main drawbacks of Newton’s method is that we need to evaluate the derivative of the
function in the points defined by the sequence of iterations. In some occasions, this is not possible
due to the partial knowledge of the function, for instance at a finite number of points, as in a data
sample of some physical magnitude.
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Figure 2.4: One iteration of Newton’s method (left) and the secant method (right) for
f (x) = x4−0.5.

The secant method is a variant of Newton’s method in which we approximate f ′(x) by the
incremental quotient. Since

f ′(x) = lim
y→x

f (x)− f (y)
x− y

,

we may approximate f ′(xk−1) by

f ′(xk−1)≈
f (xk−1)− f (xk−2)

xk−1− xk−2
.

In this way, we obtain the following iterative scheme. Given two initial guesses x0 and x1, we take,
for k = 2,3 . . .,

xk = xk−1− f (xk−1)
xk−1− xk−2

f (xk−1)− f (xk−2)
, (2.7)

whenever f (xk−1) 6= f (xk−2).

When the secant method is convergent, the term |xk−1− xk−2| becomes very small, and there-
fore the quotient (xk−1− xk−2)/( f (xk−1)− f (xk−2)) will be determined with a poor numerical
accuracy since if the approximations xk−1, xk−2 are close to α, then the rounding error may be
large.

However, an error analysis allows us to infer that, in general, the approximations satisfy
|xk−1− xk−2| � |xk−1−α| and, therefore, the main contribution to the rounding error comes from
the term f (xk−1).

Observe that formula (2.7) should not be simplified to

xk =
xk−2 f (xk−1)− xk−1 f (xk−2)

f (xk−1)− f (xk−2)
,

because this formula could lead to cancellation errors when xk−1 ≈ xk−2 and f (xk−1) f (xk−2)> 0.
Even formula (2.7) may not be safe since, when f (xk−1)≈ f (xk−2), we could face division by zero
or by numbers close to zero, leading to overflow. For these reasons, the most convenient form for
the iterations is

sk−1 =
f (xk−1)

f (xk−2)
, xk = xk−1 +

sk−1

1− sk−1
(xk−1− xk−2),

where the division by 1− sk−1 takes place only if 1− sk−1 is large enough.
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Finally, it can be proven that the order of convergence of the secant method is lower than that of
the Newton’s method, and is given by p = (1+

√
5)/2≈ 1.618. The stopping criterion is similar

to that introduced for Newton’s method.

Example 2.6 Secant method applied to the equation f (x)= 0, with f (x)= x2/4−sin(x), x0 = 1.8,
and x1 = 2. Compare to Tables 2.1, 2.2 and 2.4 produced with the other methods introduced in
this chapter.

k xk f (xk)

0 1.8 -0.16384
1 2 0.09070
2 1.92 -0.00661
3 1.9335 -0.00022
4 1.933754 6.e-07
5 1.933753 -5.e-11

Table 2.5:

�



Chapter 3

Interpolation and approximation

In solving mathematical problems, we often need to evaluate a function in one or several points.
However, there may arise drawbacks, such as:

• It can be expensive, in terms of processor use or time execution, to evaluate a complicated
function.

• It may happen that we only have the value of a function at a finite set of points, like when
sampling some physical magnitude.

A possible strategy to overcome these difficulties is to replace the complicate or partially unknown
function by another, simpler function, which can be efficiently evaluated. These simpler functions
are usually chosen among polynomials, trigonometric functions, rational functions, etc.

1 Interpolation

Definition 5 Interpolating a given function, f , with another function, f̃ , consists on, given the
following data:

• n+1 different points x0, x1, . . . , xn,

• n+1 values of f at those points, f (x0) = ω0, f (x1) = ω1, . . . , f (xn) =,ωn,

find a simple function, f̃ , such that f̃ (xi) = ωi, with i = 0,1, . . . ,n.

The points x0, x1, . . . ,xn are called nodes of interpolation, and the function f̃ is called inter-
polant of f in x0, x1, . . . ,xn.

In what follows, we shall consider three types of interpolants:

29
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• Polynomial interpolant, of the type

f̃ (x) = a0 +a1x+a2x2 + . . .+anxn =
n

∑
k=0

akxk.

• Trigonometric interpolant, of the type

f̃ (x) = a−Me−iMx + . . .+a0 + . . .+aMeiMx =
M

∑
k=−M

akeikx,

where M = n/2 if n is odd, and M = (n− 1)/2 if n is even. Recall that i denotes the
imaginary unit, and that eikx = cos(kx)+ isin(kx).

• Piecewise polynomial interpolant, of the type

f̃ (x) =


p1(x) if x ∈ (x̃0, x̃1)
p2(x) if x ∈ (x̃1, x̃2)
. . .

pm(x) if x ∈ (x̃m−1, x̃m)

where x̃0, . . . , x̃m form a partition of the interval containing the interpolation nodes, (x0,xn),
and pi(x) are polynomials.

2 Polynomial interpolation: the Lagrange polynomial

We seek for a polynomial interpolant (replacing the notation f̃ by Pn)

Pn (x) = a0 +a1x+a2x2 + · · ·+anxn, (3.1)

satisfying
Pn (x0) = ω0, Pn (x1) = ω1, Pn (x2) = ω2, . . . Pn (xn) = ωn. (3.2)

Evaluating the expression (3.1) in the nodes of interpolation and equating to the values ωi, we
get that the conditions (3.2) are equivalent to the polynomial coefficients being solution of the
following system of linear equations

1 x0 x2
0 · · · xn

0
1 x1 x2

1 · · · xn
1

...
...

...
. . .

...
1 xn x2

n · · · xn
n




a0
a1
...

an

=


ω0
ω1
...

ωn

 .

The coefficient matrix

A =


1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1
...

...
...

. . .
...

1 xn x2
n · · · xn

n

 ,

is of the Vandermonde type, with determinant given by

det(A) = ∏
0≤l≤k≤n

(xk− xl) .
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Clearly, since the interpolation nodes are different, we have det(A) 6= 0, and therefore the system
has a unique solution, that is, there exists a unique polynomial Pn satisfying (3.2).

Such polynomial, Pn, is called the Lagrange interpolation polynomial in the points x0,x1, . . . ,xn

relative to the values ω0,ω1, . . . ,ωn.

If the number of nodes, n, is large, solving the linear system may be expensive. However,
there exist alternative methods which allows us to compute the Lagrange polynomial in a more
efficient way. Among them, those using the Lagrange fundamental polynomials, and the divided
differences.

2.1 Lagrange fundamental polynomials

It is a fundamental result that for each i = 0,1, . . . ,n, there exists a unique polynomial `i of degree
up to n such that `i (xk) = δik, where δik denotes the Kronecker’s delta1. Such polynomial is given
by

`i (x) =
n

∏
j = 0
j 6= i

x− x j

xi− x j
. (3.3)

The polynomials `0, `1, . . . , `n are called Lagrange fundamental polynomials of degree n. Observe
that these polynomials only depend upon the interpolation nodes, xi, and not on the values, ωi.
That is, the fundamental polynomials are not interpolants, but a useful tool to build them.

Definition 6 The Lagrange polynomial interpolant in x0,x1, . . . ,xn relative to ω0,ω1, . . . ,ωn is
given by

Pn (x) = ω0`0 (x)+ω1`1 (x)+ · · ·+ωn`n (x) . (3.4)

Clearly, since in the node xi the only nonzero fundamental polynomial is `i(x) (taking the value
one in xi), we have

Pn(xi) = ωi,

for i = 0, . . . ,n, and then Pn(x) satisfies the interpolation conditions (3.2).

Example 3.1 Consider, for i = 0,1,2, the nodes xi = i and the values ωi = f (xi), with f (x) =
1/(x+1). We have

`0(x) =
x− x1

x0− x1

x− x2

x0− x2
=

x−1
−1

x−2
−2

=
1
2
(x−1)(x−2),

and, similarly, we obtain

`1(x) =−x(x−2), `2(x) =
1
2

x(x−1).

Therefore

P2(x) =
1
2
(x−1)(x−2)− 1

2
x(x−2)+

1
6

x(x−1).

�
1δik = 0 if i 6= k, δik = 1 if i = k.
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Figure 3.1: f (x) = 1/(x+1), and its degree two Lagrange interpolant.

Computing the Lagrange polynomial in this way has a drawback: once the degree n polynomial
is obtained, if the approximation is not good enough and we need to increase de degree of the
interpolant, we have to redo all the computations again. To circumvect this difficulty, we shall use
Newton’s method of divided differences.

2.2 Divided differences

We may rewrite the Lagrange interpolation polynomial as

Pn(x) = c0 + c1(x− x0)+ c2(x− x0)(x− x1)+ · · ·+ cn(x− x0) · · ·(x− xn), (3.5)

where c0, . . . ,cn are constants to be determined. For x = x0 we have Pn(x0) = c0, and also, due to
the interpolation conditions, Pn(x0) = ω0. Therefore, c0 = ω0.

Dividing the expression (3.5) by (x− x0) and taking into account that c0 = ω0, we get

Pn(x)−ω0

x− x0
= c1 + c2(x− x1)+ · · ·+ cn(x− x1) · · ·(x− xn), (3.6)

and evaluating in x = x1 we deduce

c1 =
Pn(x1)−ω0

x1− x0
=

ω1−ω0

x1− x0
.

Following this idea, we divide the expression (3.6) by (x− x1) to get

1
x− x1

(Pn(x)−ω0

x− x0
− ω1−ω0

x1− x0

)
= c2 + c3(x− x2)+ · · ·+ cn(x− x2) · · ·(x− xn),

and, evaluating in x = x2, we deduce

c2 =
1

x2− x1

(
ω2−ω0

x2− x0
− ω1−ω0

x1− x0

)
.

Simple arithmetics lead us to write

c2 =

ω2−ω1

x2− x1
− ω1−ω0

x1− x0
x2− x0

.
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Summarizing, and introducing the usual divided differences notation, we have

c0 = [ω0] = ω0,

c1 = [ω0,ω1] =
ω1−ω0

x1− x0
,

c2 = [ω0,ω1,ω2] =

ω2−ω1

x2− x1
− ω1−ω0

x1− x0
x2− x0

.

The key observation is that we may write the second order divided differences , [ω0,ω1,ω2], using
only the first order divided differences, [ω1,ω2] and [ω0,ω1]. Indeed,

[ω0,ω1,ω2] =
[ω1,ω2]− [ω0,ω1]

x2− x0
.

From these observations, we define the

• Divided differences of order 0,

[ωi] = ωi for i = 0,1, . . . ,n. (3.7)

• Divided differences of order k (k = 1, . . . ,n),

[ωi,ωi+1, . . . ,ωi+k] =
[ωi+1, . . . ,ωi+k]− [ωi,ωi+1, . . . ,ωi+k−1]

xi+k− xi
, (3.8)

for i = 0,1, . . . ,n− k.

Once the divided differences corresponding to some interpolation problem have been computed,
the Lagrange interpolation polynomial of degree n is computed as follows.

Formula of Newton. The Lagrange interpolant polynomial of degree n is given by

Pn (x) =[ω0]+ [ω0,ω1] (x− x0)+ [ω0,ω1,ω2] (x− x0)(x− x1)+ · · ·+ (3.9)

+[ω0,ω1, . . . ,ωn] (x− x0)(x− x1) · · ·(x− xn−1) .

The main advantage of this formulation is that the Lagrange polynomials of successive order
may be computed recursively,

Pn (x) = Pn−1 (x)+ [ω0,ω1, . . . ,ωn] (x− x0)(x− x1) · · ·(x− xn−1) .

Remark 3.1 If the interpolation values ω0,ω1, . . . ,ωn are obtained from a function, f , the nota-
tion f [x0,x1, . . . ,xn] is often used in place of [ω0,ω1, . . . ,ωn]. In such case, Newton’s formula is
written as

Pn (x) = f [x0]+ f [x0,x1] (x− x0)+ f [x0,x1,x2] (x− x0)(x− x1)+ · · ·+
+ f [x0,x1, . . . ,xn] (x− x0)(x− x1) · · ·(x− xn−1) . (3.10)



34 Interpolation and approximation

Example 3.2 Consider again the data of Example 3.1, that is, for i = 0,1,2, the nodes xi = i and
the values ωi = 1/(i+1). We have

[ωi] =
1

i+1
,

[ω0,ω1] =
ω1−ω0

x1− x0
=

1
2 −1
1−0

=−1
2
,

[ω1,ω2] =
ω2−ω1

x2− x1
=

1
3 −

1
2

1−0
=−1

6
,

[ω0,ω1,ω2] =
[ω1,ω2]− [ω0,ω1]

x2− x0
=
−1

6 +
1
2

2
=

1
6
.

Then, the Lagrange polynomial is

P2(x) = 1− 1
2

x+
1
6

x(x−1).

If we add new data at the point x3 = 3, with value ω3 = 1/4, we only have to compute the divided
differences

[ω2,ω3] =
ω3−ω2

x3− x2
=

1
4 −

1
3

1−0
=− 1

12
,

[ω1,ω2,ω3] =
[ω2,ω3]− [ω1,ω2]

x3− x1
=
− 1

12 +
1
6

2
=

1
24

,

[ω0,ω1,ω2,ω3] =
[ω1,ω2,ω3]− [ω0,ω1,ω2]

x3− x0
=

1
24 −

1
6

3
=− 1

24
,

to obtain the Lagrange polynomial of degree 3,

P3(x) = 1− 1
2

x+
1
6

x(x−1)− 1
24

x(x−1)(x−2).
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Figure 3.2: f (x) = 1/(x+1), and two of its Lagrange interpolants.
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2.3 Error estimation

The next result allows us to estimate the error made when replacing f by its Lagrange polynomial
interpolant, Pn.

Theorem 3.1 Suppose that

• f : [a,b]→ R is n+1 times continuously differentiable in [a,b].

• x0,x1, . . . ,xn ∈ [a,b]

• ωi = f (xi), for i = 0,1, . . . ,n.

Then, for all x ∈ [a,b] we have

| f (x)−Pn (x)| ≤ max
y∈[a,b]

∣∣∣ f (n+1) (y)
∣∣∣ |(x− x0)(x− x1) · · ·(x− xn)|

(n+1)!
.

In the most usual case in which the nodes are equi-spaced, that is, xi = xi−1 + h, for some
constant h > 0, the error estimate is simplified to

max
x∈[a,b]

| f (x)−Pn(x)| ≤
max

x∈[a,b]

∣∣ f (n+1) (x)
∣∣

4(n+1)
hn+1,

where we used the estimate (see Exercise ??)

|Πn
i=0(x− xi)| ≤

hn+1

4
n! (3.11)

Unfortunately, we can not deduce from this estimate that the error tends to zero when the polyno-
mial degree tends to infinity, even if hn+1/(4(n+1)) tends to 0, since the derivatives f (n)(x) could
tend to infinity at some points. In fact, there exist examples showing that the limit could be even
infinite.

3 Piecewise polynomial interpolation

As shown in the previous section, when the number of nodes for the Lagrange interpolation in-
creases, the following happens:

• The degree of the polynomial interpolant increases, involving the formation of oscillations.

• The approximation does not necessary improves. For improvement, all the derivatives of
the interpolated function must be uniformly bounded.

One way to avoide this situation is introducing the so-called piecewise polynomial functions. Al-
though some regularity is lost with this technique, we ensure that the error will decrease as the
number of interpolation nodes increases.
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A degree n polynomial is uniquely determined by its values at n+1 different points. Thus, the
interpolation by degree zero piecewise polynomials (constantwise polynomials) is that in which
the polynomials, in this case constants, are determined in each node by, for instance,

f̃ (x) =


ω0 if x ∈ [x0,x1),
ω1 if x ∈ [x1,x2),
. . .
ωn−1 if x ∈ [xn−1,xn),
ω0 if x = xn.

Observe that if ωi 6= ωi+1 then f̃ is discontinuous at xi+1.

Similarly, the degree one piecewise polynomial interpolation (linearwise polynomials) is that
in which the polynomials, in this case straight lines, are determined by two consecutive nodes,

f̃ (x) = ωi +(ωi+1−ωi)
x− xi

xi+1− xi
if x ∈ [xi,xi+1],

for i = 0, . . . ,n−1. In this case, f̃ is continuous, but its first derivative is, in general, discontinuous
at the nodes.

Together with the constantwise and linearwise interpolation, the interpolation with piecewise
polynomials of order three (cubic splines) are the most important in this family of interpolants.
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Figure 3.3: Left: constantwise interpolation. Right: linearwise interpolation.

3.1 Spline interpolation

The problem of interpolation by splines of order p (or degree p) consists on finding a function f̃
such that:

1. f̃ is p−1 times continuously differentiable in [x0,xn].

2. f̃ is a piecewise function given by the polynomials f̃0, f̃1, . . . , f̃n−1 defined, respectively, in
[x0,x1] , [x1,x2] , . . . , [xn−1,xn], and of degree lower or equal to p.

3. The polynomials satisfy the interpolation condition: f̃0 (x0) = ω0, . . ., f̃n (xn) = ωn.
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It can be proven that, for each p≥ 1, this problem has, at least, one solution. These solutions, f̃ , are
called spline interpolant of degree p in the points x0,x1, . . . ,xn relative to the values ω0,ω1, . . . ,ωn.
The most common spline is the degree p = 3 spline, also known as cubic spline.

Particularizing the above conditions to the case p = 3 we see that the cubic spline must satisfy:

1. f̃ is twice continuously differentiable in [x0,xn].

2. Each polynomial f̃0, f̃1, . . . , f̃n−1 defining the pieces of f̃ are of degree ≤ 3.

3. The polynomials satisfy the interpolation condition: f̃ (x0) = ω0,. . ., f̃ (xn) = ωn.

Let us see how to calculate these polynomials. We do it in five steps.

Step 1: Since the second order derivative of f̃ is continuous in [x0,xn] we have, in particular,

ω′′0 = f̃ ′′0 (x0) ,
ω′′1 = f̃ ′′0 (x1) = f̃ ′′1 (x1) ,
ω′′2 = f̃ ′′1 (x2) = f̃ ′′2 (x2) ,
· · · · · · · · ·
ω′′n−1 = f̃ ′′n−2 (xn−1) = f̃ ′′n−1 (xn−1) ,
ω′′n = f̃ ′′n−1 (xn) ,

where ω′′i denotes the unknown value of f̃ ′′(xi).

Step 2: The polynomials f̃i are of degree ≤ 3. Hence, f̃ ′′i are of degree ≤ 1, that is, straight
lines or constants, with values ω′′i and ω′′i+1 at the extremes of the interval [xi,xi+1], respectively.
Therefore, we have for i = 0, . . . ,n−1,

f̃ ′′i (x) = ω
′′
i

xi+1− x
hi

+ω
′′
i+1

x− xi

hi
, with hi = xi+1− xi.

Step 3: Integrating each of these polynomials with respect to x, we get

f̃ ′i (x) =−ω
′′
i
(xi+1− x)2

2hi
+ω

′′
i+1

(x− xi)
2

2hi
+ ci,

where ci is an unknown integration constant. A new integration leads to

f̃i (x) = ω
′′
i
(xi+1− x)3

6hi
+ω

′′
i+1

(x− xi)
3

6hi
+ai (xi+1− x)+bi (x− xi) , (3.12)

where ai and bi are unknown integration constants such that ci =−ai +bi.

Step 4: We determine the constants ai and bi using the interpolation conditions:

f̃i (xi) = ωi f̃i (xi+1) = ωi+1.

For i = 0, . . . ,n−1, we have

ai =
ωi

hi
−ω

′′
i

hi

6
, bi =

ωi+1

hi
−ω

′′
i+1

hi

6
. (3.13)

Step 5: If we plug the expressions (3.13) of ai and bi in formula (3.12), we see that the only
quantities which need to be determined are the values ω′′i , for i= 0, . . . ,n. Using that the interpolant
f̃ is twice continuously differentiable in [x0,xn], we have that at the interior nodes it must hold

f̃ ′i (xi+1) = f̃ ′i+1(xi+1), i = 0, . . . ,n−2,



38 Interpolation and approximation

giving us the following n−1 linear equations

hi

6
ω
′′
i +

hi+1 +hi

3
ω
′′
i+1 +

hi+1

6
ω
′′
i+2 =

ωi

hi
−
( 1

hi+1
+

1
hi

)
ωi+1 +

ωi+2

hi+1
.

For the full determination of the n+1 values ω′′i we still need two additional equations.

There are several strategies to determinate this system of equations, leading each of them to
different variants of cubic splines. For instance, if we fix the value of two unknowns, let us say
ω′′0 = ω′′n = 0, the variant is known as natural spline, and the rest of values ω′′i , i = 1, . . . ,n−1 are
the unique solution of the linear system

Hω
′′
in = 6d, (3.14)

where ω′′in = (ω1, . . . ,ωn), d = (∆1−∆0, . . . ,∆n−1−∆n−2), with ∆i = (ωi+1−ωi)/hi, and

H =


2(h0 +h1) h1 0 · · · 0 0

h1 2(h1 +h2) h2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2(hn−3 +hn−2) hn−2
0 0 0 · · · hn−2 2(hn−2 +hn−1)

. (3.15)

Step 6: Finally, once the value of ω′′ is determined, we use formula (3.12) together with (3.13) to
define the splines in each subinterval [xi,xi+1], for i = 0, . . . ,n−1.

Example 3.3 We compute the natural cubic splines corresponding to the nodes xi = i, and to the
values ωi = i3, for i = 0,1,2,3,4. The node step size is constant, hi = 1. Thus,

∆i+1−∆i = ωi+1−2ωi +ωi−1 =


6 for i = 1,
12 for i = 2,
18 for i = 3.

The matrix H is given by

H =

4 1 0
1 4 1
0 1 4

 ,

and solving the system Hω′′in = 6d and imposing the natural conditions, we obtain (rounding)

ω
′′ = (0,6.4286,10.2857,24.4286,0).

Now we find ai and bi from (3.13), and plug these values in (3.12). Expanding the result in the
powers of x, we get

f̃0(x) =
15x3

14
− x

14
,

f̃1(x) =
9x3

14
+

9x2

7
− 19x

14
+

3
7
,

f̃2(x) =
33x3

14
−9x2 +

269x
14
− 93

7
,

f̃3(x) =−
57x3

14
+

342x2

7
− 2161x

14
+

1122
7

.

In Figure 3.4 we may visualize the result. �
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Figure 3.4: The function f (x) = x3 and its natural spline interpolant.

3.2 Error estimation

The next result provides us with an error estimate for piecewise polynomial interpolation. Observe
that, independently of the polynomial degree, we can narrow the error as much as we want by
choosing the distance between consecutive nodes small enough.

Theorem 3.2 Suppose that

• f : [a,b]→ R is p+1 times continuously differentiable in [a,b].

• x0,x1, . . . ,xn ∈ [a,b].

• ωi = f (xi), for i = 0,1, . . . ,n.

Let h̃ = max
i=0,...,n

hi. Then, for all x ∈ [a,b] we have

∣∣ f (x)− f̃ (x)
∣∣≤ ch̃p+1 max

y∈[a,b]

∣∣∣ f (p+1) (y)
∣∣∣ ,

where c is a constant independent of f , x and h̃.

Example 3.4 Consider the function f : [0,2π]→ R, f (x) = sin(x), and the nodes x j = 2π j/N,
with j = 0,1, . . . ,N. Then, h̃ = 2π/N, and

max
y∈[0,2π]

∣∣∣ f (p+1) (y)
∣∣∣≤ 1.

We deduce that the absolute error is bounded as∣∣sin(x)− f̃ (x)
∣∣≤ c

N p+1 ,

and therefore the order of convergence is p+1. �
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4 Interpolation with trigonometric polynomials

The usual objective of interpolating with trigonometric polynomials is periodic functions interpo-
lation, that is, interpolation of functions f : [a,b]→ R such that f (a) = f (b). For simplicity, and
without loss of generality2, we consider the interval [a,b] = [0,2π].

The interpolant, f̃ , must satisfy

f̃ (x j) = f (x j), where x j =
2π j

n+1
, for j = 0, . . . ,n,

and have the form, if n is even,

f̃ (x) =
a0

2
+

M

∑
k=1

(
ak cos(kx)+bk sin(kx)

)
, (3.16)

with M = n/2, while if n is odd

f̃ (x) =
a0

2
+

M

∑
k=1

(
ak cos(kx)+bk sin(kx)

)
+aM+1 cos((M+1)x), (3.17)

with M = (n−1)/2. Using the identity eikx = cos(kx)+ isin(kx) we may rewrite (3.16) and (3.17)
as

f̃ (x) =
M

∑
k=−M

ckeikx if n is even, f̃ (x) =
M+1

∑
k=−(M+1)

ckeikx if n is odd,

where

ak = ck + c−k, bk = i(ck− c−k), for k = 0, . . . ,M, cM+1 = c−(M+1) = aM+1/2.

Using the notation

f̃ (x) =
M+µ

∑
k=−(M+µ)

ckeikx,

with µ = 0 if n is even and µ = 1 if n is odd, the interpolation conditions are

f̃ (x j) =
M+µ

∑
k=−(M+µ)

ckeik jh = f (x j), j = 0, . . . ,n,

where h = 2π/(n+1).

To compute the coefficients ck we multiply (3.19) by e−imx j = e−im jh, with m ∈ Z, and sum
with respect to j,

n

∑
j=0

M+µ

∑
k=−(M+µ)

ckeik jhe−im jh
=

n

∑
j=0

f (x j)e−im jh. (3.18)

Using the identity
n

∑
j=0

ei jh(k−m) = (n+1)δkm,

2If the period is different, for instance T , the change of variable x = 2πt/T renders the function to 2π-periodic.
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we get
n

∑
j=0

M+µ

∑
k=−(M+µ)

ckeik jhe−im jh
=

M+µ

∑
k=−(M+µ)

ck(n+1)δkm = (n+1)cm.

Finally, from (3.18) we deduce (replacing m by k)

ck =
1

n+1

n

∑
j=0

f (x j)e−ik jh, k =−(M+µ), . . . ,M+µ.

We summarize these computations in the following definition.

Definition 7 Given f : [0,2π]→R, we define its discrete Fourier series in the nodes x j = jh, with
h = 2π/(n+1) and j = 0, . . . ,n by

f̃ (x) =
M+µ

∑
k=−(M+µ)

ckeikx, (3.19)

where ck =
1

n+1 ∑
n
j=0 f (x j)e−ik jh and with M = n/2 and µ = 0 if n is even, or M = (n−1)/2 and

µ = 1 if n is odd.

Example 3.5 Let f (x) be any function and consider the nodes x j = jh with h = 2π/3, for j =
0,1,2. That is, x0 = 0, x1 = 2π/3, x2 = 4π/3 and n = 2. Then µ = 0 and k =−1,0,1,

ck =
1
3
(

f (0)+ f
(2π

3
)
e−ik 2π

3 + f
(4π

3
)
e−ik 4π

3
)
,

therefore

c−1 =
1
3
(

f (0)+ f
(2π

3
)
ei 2π

3 + f
(4π

3
)
ei 4π

3
)

c0 =
1
3
(

f (0)+ f
(2π

3
)
+ f
(4π

3
))
,

c1 =
1
3
(

f (0)+ f
(2π

3
)
e−i 2π

3 + f
(4π

3
)
e−i 4π

3
)

Hence,

f̃ (x) =
1

∑
k=−1

ckeikx =
1
3

[(
f (0)+ f

(2π

3
)
ei 2π

3 + f
(4π

3
)
ei 4π

3
)
e−ix +

(
f (0)+ f

(2π

3
)
+ f
(4π

3
))

+
(

f (0)+ f
(2π

3
)
e−i 2π

3 + f
(4π

3
)
e−i 4π

3
)
eix
]

=
1
3

[
f (0)

(
1+ e−ix + eix)+ f

(2π

3
)(

1+ e−i(x− 2π

3 )+ ei(x− 2π

3 )
)

+ f
(4π

3
)(

1+ e−i(x− 4π

3 )+ ei(x− 4π

3 )
)]
.

Using the trigonometric identities, we finally deduce

f̃ (x) =
1
3

[
f (0)

(
1+2cos(x)

)
+ f
(2π

3
)(

1+2cos(x− 2π

3
)
)
+ f
(4π

3
)(

1+2cos((x− 4π

3
)
)]
.

�
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Figure 3.5: The function f (x) = x(x−2π) and its interpolant.

5 Approximation by the least squares method

We have seen that the Lagrange interpolation does not guarantee a better approximation when the
degree of the polynomial interpolant increases. This problem may be addressed by the composed
interpolation, such as piecewise polynomial interpolation. However, none of them is useful to
extrapolate information from the given data, that is, to generate new data value in points outside
the interval to which the interpolation nodes belong.

For this task, we shall use the approximation methods, in which the interpolation condition
f̃ (x j) = f (x j) is not necessarily satisfied.

Let us suppose that some data {(xi,yi), i = 0, . . . ,n} is given, where yi could represent the values
f (xi) of some function f in the nodes xi. For a given integer number m ≥ 1 (usually, m� n) we
look for a polynomial f̃ of degree m (and write f̃ ∈ Pm) satisfying the inequality

n

∑
i=0
|yi− f̃ (xi)|2 ≤

n

∑
i=0
|yi− pm|2,

for all polynomial pm ∈ Pm. If it does exist, f̃ is called the least squares approximation in Pm of
the data set {(xi,yi), i = 0, . . . ,n}. Observe that, unless m ≥ n, it is not possible to guarantee that
f̃ (xi) = yi for all i = 0, . . . ,n.

Setting
f̃ (x) = a0 +a1x+ ...+amxm,

where the coefficients a0, . . . ,am are unknown, the problem may be formulated as follows: find
a0,a1, . . . ,am such that

Φ(a0,a1, . . . ,am) = min
{bi,i=0,...,m}

Φ(b0,b1, . . . ,bm),

where

Φ(b0,b1, . . . ,bm) =
n

∑
i=0
|yi− (b0 +b1xi + . . .+bmxm

i )|2,

which is a minimization problem that can be handled by the usual techniques of differential cal-
culus.
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Let us solve the problem for the case m = 1, i. e., for a linear approximation polynomial (linear
regression, in Statistics terminology). In this case, we have

Φ(b0,b1) =
n

∑
i=0

(
y2

i +b2
0 +b2

1x2
i +2b0b1xi−2b0yi−2b1xiyi

)
.

The point (a0,a1) in which Φ attains its minimum is determined by

∂Φ

∂b0
(a0,a1) = 0,

∂Φ

∂b1
(a0,a1) = 0.

Computing these partial derivatives we obtain the conditions

n

∑
i=0

(
a0 +a1xi− yi

)
= 0,

n

∑
i=0

(
a0xi +a1x2

i − xiyi
)
= 0,

which can be reordered as

a0(n+1)+a1

n

∑
i=0

xi =
n

∑
i=0

yi,

a0

n

∑
i=0

xi +a1

n

∑
i=0

x2
i =

n

∑
i=0

xiyi.

This linear system of two equations with two unknowns has the solution

a0 =
1
D

( n

∑
i=0

yi

n

∑
j=0

x2
j −

n

∑
j=0

x j

n

∑
i=0

xiyi

)
,

a1 =
1
D

(
(n+1)

n

∑
i=0

xiyi−
n

∑
j=0

x j

n

∑
i=0

yi

)
,

where D = (n+ 1)∑
n
i=0 x2

i −
(

∑
n
i=0 xi

)2
. This is the least squares line or regression line, f̃ (x) =

a0+a1x, which is the best approximation by a straight line, in the least squares sense, of the given
data.

Example 3.6 Suppose that the execution time, t, of a code depends on an input parameter, j.
Running the code, we obtain the following data:

j 10 15 25 50 100
t 1 1.2 2 3.5 6

Applying the above calculations, we obtain the regression line

f̃ (t) = 0.5015+0.056t,

which allows us to extrapolate the execution times for other j-values.

�
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Figure 3.6: Regression line of the experimental data.

6 Approximation by orthogonal basis

In this section we shall deal with the case in which the function to approximate, f , is known in
the whole interval [a,b], and not simply in some of its points. Our aim is, given a function f
which could have a complicated expression, produce another similar function f̃ with a simpler
expression, such as a polynomial or a trigonometric function.

Like in Linear Algebra, in the theory of functions we may introduce spaces of functions, scalar
products (and hence distances and orthogonality relations), basis for such spaces, etc. In this
context, given two functions f ,g : [a,b]→ R, we shall use the scalar product

< f ,g >=
∫ b

a
f (x)g(x)dx.

6.1 Approximation with Legendre polynomials

Let us start with an example. The space of polynomials of degree up to two defined in the interval
[−1,1] is

P2 = {p(x) = a0 +a1x+a2x2 : a0,a1,a2 ∈ R, x ∈ [−1,1]}.

Obviously, any of these polynomials may be written as a unique linear combination of the poly-
nomials

p0(x) = 1, p1(x) = x, p2(x) = x2.

Indeed, we just write p(x) = a0 p0(x)+ a1 p1(x)+ a2 p2(x) for whatever the values of a0, a1, and
a2. As a consequence,

B2 = {p0(x), p1(x), p2(x)}

is a basis of P2. Like in Linear Algebra, when using orthogonal basis, we would like to find a
decomposition of the type

p(x) =
< p, p0 >

< p0, p0 >
p0(x)+

< p, p1 >

< p1, p1 >
p1(x)+

< p, p2 >

< p2, p2 >
p2(x), (3.20)

which, by now, is not possible since the basis B2 is not orthogonal. For example, we have

< p0, p2 >=
∫ 1

−1
x2dx =

2
3
6= 0.
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However, we may orthogonalize 3 the basis B2, getting in our example

{p0(x) = 1, p1(x) = x, p2(x) =
3x2−1

2
}, (3.21)

so, now, the decomposition (3.20) applies. Let us check it. One one hand,

< p, p0 >=
∫ 1

−1
(a0 +a1x+a2x2)dx = 2a0 +

2a2

3
,

< p, p1 >=
∫ 1

−1
(a0 +a1x+a2x2)xdx =

2a1

3
,

< p, p2 >=
∫ 1

−1
(a0 +a1x+a2x2)

3x2−1
2

dx =
8a2

30
.

On the other hand, it is easy to see that

< p0, p0 >= 2, < p1, p1 >=
2
3
, < p2, p2 >=

2
5
,

and therefore
< p, p0 >

< p0, p0 >
p0(x)+

< p, p1 >

< p1, p1 >
p1(x)+

< p, p2 >

< p2, p2 >
p2(x) =a0 +

a2

3
+a1x

+
2a2

3
3x2−1

2
= p(x).

Orthogonal polynomials of the basis given in (3.21) are called Legendre polynomials of order
two. In general, the degree n Legendre polynomials are defined by the formula

Ln(x) = (−1)n 1
n!2n

dn

dxn (x
2−1)n, n = 1,2, . . . ,

with L0(x) = 1, and satisfy

< Ln,Ln >=
∫ 1

−1
Ln(x)2dx =

2
2n+1

.

Moreover, they can be recursively obtained by means of the formula

Ln+1(x) =
2n+1
n+1

xLn(x)−
n

n+1
Ln−1(x), n = 1,2, . . . ,

with L0(x) = 1 and L1(x) = x.

Summarizing, any polynomial p(x), of degree lower or equal than n and defined in the interval
[−1,1] admits a decomposition in terms of the basis

Ln = {L0(x),L1(x), . . . ,Ln(x)}

through the formula

p(x) =
n

∑
j=0

< p,L j >

< L j,L j >
L j(x).

3A basis may be always orthogonalized by the Gram-Schmidt procedure.
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Similarly, any function f : [−1,1]→ R may be approximated in terms of Legendre polynomials
by means of the expression

f (x)≈ f̃ (x) =
n

∑
j=0

< f ,L j >

< L j,L j >
L j(x), (3.22)

where f̃ (x)is the polynomial approximating f (x).

In fact, if the function f satisfies certain regularity conditions, the infinite polynomial series is
an alternative representation of such function, that is

f (x) = lim
n→∞

n

∑
j=0

< f ,L j >

< L j,L j >
L j(x).

Finally, let us observe that if the function to be approximated is defined in an interval different
to [−1,1], we may always introduce a change of variables to move it to such interval. Indeed, if
f : [a,b]→ R, and x ∈ [a,b], we introduce the change

t =−1+2
x−a
b−a

→ x = a+
b−a

2
(t +1),

so now the corresponding function g(t) = f (a+ b−a
2 (t + 1)) is defined in [−1,1]. Then, if the

Legendre approximation is given by g̃(t), that of f is given by f̃ (x) = g̃(−1+2 x−a
b−a).

Example 3.7 Consider the exponential function, f (x) = ex and let us find its approximation by
Legendre polynomials of degree two. We have

< f ,L0 >=
∫ 1

−1
exdx = e− 1

e
,

< f ,L1 >=
∫ 1

−1
exxdx =

2
e
,

< f ,L2 >=
∫ 1

−1
ex 3x2−1

2
dx = e− 7

e
.

Then

ex ≈
e− 1

e
2

L0(x)+
3
e

L1(x)+
(
e− 7

e

)5
2

L2(x) =
e2−1

2e
+

3
e

x+
5(e2−7)

2e
3x2−1

2

=
33−3e2

4e
+

3
e

x+
15(e2−7)

4e
x2.

�

6.2 Approximation with Fourier series

The idea of the previous section of approximating complicated functions by a linear combina-
tion of simpler functions is not limited to the consideration of polynomials. The most important
example of non-polynomial functions defining a orthogonal basis are the trigonometric functions.
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Figure 3.7: Function f and its approximation.

The Fourier basis of functions defined in the interval [0,2π] is given by

F = {1,sin(x),cos(x),sin(2x),cos(2x), . . . ,sin(nx),cos(nx), . . .},

which can be written, using the exponential notation, as

F = {einx}n=∞
n=−∞.

It is easy to see that this basis is orthogonal with respect to the scalar product

< f ,g >=
∫ 2π

0
f (x)ḡ(x)dx,

where z̄ denotes the conjugate4 of the complex number z. Indeed, let us introduce the notation
φn(x) = einx and compute the scalar product of two different elements of the basis (n 6= m)

< φn,φm >=
∫ 2π

0
einxe−imxdx =

∫ 2π

0
ei(n−m)xdx =

1
i(n−m)

ei(n−m)x
∣∣∣2π

0

=
1

i(n−m)

(
cos((n−m)2π)+ isin((n−m)2π)− cos(0)+ isin(0)

)
=

1
i(n−m)

(1−1) = 0.

On the other hand, if n = m, we have

< φn,φn >=
∫ 2π

0
einxe−inxdx =

∫ 2π

0
1dx = 2π.

Therefore, given a periodic functions of period 5 2π, f : [0,2π]→ R, we may consider an
expression similar to (3.22) for the first 2M+1 elements of the basis F ,

f̃ (x) =
1

2π

M

∑
n=−M

< f ,φn > φn(x),

4Recall that if z = a+bi, then z̄ = a−bi, and if z = eai then z̄ = e−ai.
5If the period is different, for instance T , the change of variable x = 2πt/T renders the function to 2π-periodic.
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where we used that < φn,φn >= 2π. Like for the Legendre polynomials, the function f may be
represented as the infinite series

f (x) =
1

2π
lim

M→∞

M

∑
n=−M

< f ,φn > φn(x),

which is the so-called Fourier series of f . The coefficients

f̂n =
1

2π
< f ,φn >=

1
2π

∫ 2π

0
f (x)e−inxdx

are called Fourier coefficients of f , so that the series may be written as

f (x) =
∞

∑
n=−∞

f̂neinx.

Using trigonometric identities, it is also common to express this series in terms of sines and cosines

f (x) =
a0

2
+

∞

∑
n=1

ancos(nx)+bn sin(nx), (3.23)

where, for n = 0,1, . . .

an = f̂n + f̂−n =
1
π

∫ 2π

0
f (x)cos(nx)dx, (3.24)

bn = i( f̂n− f̂−n) =
1
π

∫ 2π

0
f (x)sin(nx)dx. (3.25)

Example 3.8 Let us consider again the situation of the Example 3.5 (see Figure 3.5) and let us use
the Fourier approximation, instead of the trigonometric interpolation, as we did in that example.
We have, for f (x) = x(x−2π)

f̂−1 =
1

2π

∫ 2π

0
x(x−2π)e−ixdx = 2,

f̂0 =
1

2π

∫ 2π

0
x(x−2π)dx =−2π2

3
,

f̂1 =
1

2π

∫ 2π

0
x(x−2π)eixdx = 2,

so

f̃ (x) = 2(e−ix + eix)− 2π2

3
= 4cos(x)− 2π2

3
.

�
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Figure 3.8: f (x) = x(x−2π), and its trigonometric interpolant and Fourier series.





Chapter 4

Numerical differentiation and
integration

In this chapter we introduce some methods for the numerical approximation of derivatives and
integrals of functions. Concerning the integration, as it is well known, there exist functions which
do not have an explicit representation of their primitives, while for many others the primitive have
a so complicated explicit expression that their exact evaluation is not practical.

Another usual situation is when the function to be differentiated or integrated is known only at
a finite number of points (not a whole interval), for instance, when the function is obtained through
experimental data sampling.

In both situations it is necessary to consider numerical methods to approximate these opera-
tions, independently of the complicated form the function may have.

1 Numerical differentiation

For a function f : (a,b) ⊂ R→ R continuously differentiable at a point x ∈ (a,b), the derivative
may be computed using the lateral limits

f ′(x) = lim
h→0

f (x+h)− f (x)
h

= lim
h→0

f (x)− f (x−h)
h

,

with h > 0. These expressions lead to the most basic approximations to the derivative: the forward
finite differences, given by

(δ+ f )(x) =
f (x+h)− f (x)

h
,

and the backward finite differences, given by

(δ− f )(x) =
f (x)− f (x−h)

h
,

where h > 0 is a small number.

For obtaining an error estimate, we just consider the Taylor’s expansion of f . If f ∈C2(a,b)
then

f (x+h) = f (x)+ f ′(x)h+
f ′′(ξ)

2
h2,

51
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where ξ ∈ (x,x+h). We then have

|(δ+ f )(x)− f ′(x)| ≤ ch,

for some constant c > 0 independent of h, and therefore, the forward finite differences approxima-
tion has a first order of convergence. A similar argument gives the same result for the backward
scheme.

It is possible to deduce a second order approximation having the same computational cost that
the backward and forward approximations. This is the so-called centered finite differences, given
by

(δ f )(x) =
f (x+h)− f (x−h)

2h
.

Taylor’s expansion of order three give us the identities

f (x+h) = f (x)+ f ′(x)h+
f ′′(x)

2
h2 +

f ′′′(ξ+)
6

h3, (4.1)

f (x−h) = f (x)− f ′(x)h+
f ′′(x)

2
h2− f ′′′(ξ−)

6
h3, (4.2)

where ξ+ ∈ (x,x+h) and ξ− ∈ (x−h,x). Subtracting both expressions we obtain,

(δ f )(x)− f ′(x) =
f ′′′(ξ+)+ f ′′′(ξ−)

12
h2,

from where we deduce
|(δ f )(x)− f ′(x)| ≤ ch2,

for some constant c > 0 independent of h.

Normally, the numerical differentiation of a function is implemented in a uniform mesh of an
interval, that is, for xi = a+ ih, with h=(b−a)/n and i running the indices i= 0, . . . ,n. In this case,
and for all the above schemes, the edge problem arises, due to the fact that the finite differences
can not be computed at one or both of the interval borders. Indeed, the forward differences may
not be evaluated at xn, since we need an additional node “xn+1” which, in general, is not available.
Similarly, the backward differences may not be computed at x0. Neither the centered differences
at x0 and xn.

We resort to interpolation to solve this problem. For instance, for centered differences, which
give an approximation of second order, we consider the Lagrange polynomial interpolant of degree
2 defined in the points x0,x1,x2, (see Newton’s formula (3.10), Chapter 3)

p(x) = f [x0]+ f [x0,x1](x− x0)+ f [x0,x1,x2](x− x0)(x− x1).

Differentiating and evaluating in x = x0 we obtain

f ′(x0)≈ p′(x0) = f [x0,x1]+ f [x0,x1,x2](x0− x1).

Taking into account that the mesh is uniform and replacing the divided differences expression, we
deduce

f ′(x0)≈
f (x1)− f (x0)

h
− f (x2)−2 f (x1)+ f (x0)

2h
=

1
2h

(
−3 f (x0)+4 f (x1)− f (x2)

)
.

A similar argument gives

f ′(xn)≈
1
2h

(
3 f (xn)−4 f (xn−1)+ f (xn−2)

)
.
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1.1 Higher order derivatives

Computing the second derivative, or higher order derivatives, is achieved composing the previous
schemes. For instance, a usual scheme for the second derivative is

f ′′(x)≈
(
δ+(δ− f )

)
(x) =

f (x+h)−2 f (x)+ f (x−h)
h2 .

Error estimates for the approximation are again obtained through the Taylor’s expansions given in
(4.1) and (4.2), but now adding those expressions. We obtain

f ′′(x) =
f (x+h)−2 f (x)+ f (x−h)

h2 − f ′′′(ξ+)− f ′′′(ξ−)
6

h,

from where
|
(
δ+(δ− f )

)
(x)− f ′′(x)| ≤ ch,

that is, the approximation is linear.

1.2 Numerical differentiation of functions of several variables

The previous procedure for approximating derivatives of functions of one variables may be ex-
tended naturally to functions of several variables. Let f : Ω ⊂ R2 → R a continuously differen-
tiable function and denote by (x,y) a point of Ω. The partial derivatives of f are given by

∂ f
∂x

(x,y) = lim
h→0

f (x+h,y)− f (x,y)
h

,

∂ f
∂y

(x,y) = lim
h→0

f (x,y+h)− f (x,y)
h

,

to which we may apply any of the previous finite differences schemes.

Through the partial derivatives, we define the gradient of f

∇ f (x,y) =
(

∂ f
∂x

(x,y),
∂ f
∂y

(x,y)
)
,

which provides the geometrical information of steepest increase and decrease directions of f .

For a vector field, F = (F1,F2) : Ω⊂ R2→ R2, we define the divergence of F by

divF(x,y) =
∂F1

∂x
(x,y)+

∂F2

∂y
(x,y).

Here, the physical interpretation is related to the measure of the difference between the outwards
and inwards flow trough the surface enclosing a control volume. Therefore, if the vector field has
sources the divergence is positive, and if it has sinks the divergence is negative.

Finally, the composition of the gradient and the divergence gives a second order operator -since
it has second order derivatives-, the Laplacian, given by

∆ f (x,y) = div∇ f (x,y) =
∂2 f
∂x2 (x,y)+

∂2 f
∂y2 (x,y).
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Let us show with an example how to compute the numerical approximations of these differen-
tial operators. Let Ω = (a,b)× (c,d), and consider the meshes of the intervals (a,b) and (c,d)
given by, respectively,

xi = a+ ih, with h =
b−a

n
, i = 0, . . . ,n

y j = c+ jh, with h =
d− c

m
, j = 0, . . . ,m.

Observe that, for simplicity, we assumed (b−a)/n = (d−c)/m. In general, the mesh step lengths,
denoted by hx and hy, may be different.

From these one-dimensional meshes we build a two-dimensional mesh for the rectangle Ω,
given simply by the points (xi,y j), i = 0, . . . ,n, j = 0, . . . ,m.

Now, the forward finite differences approximation is

∇ f (xi,y j)≈
1
h

(
f (xi+1,y j)− f (xi,y j), f (xi,y j+1)− f (xi,y j)

)
,

divF(xi,y j)≈
1
h

(
F1(xi+1,y j)−F1(xi,y j)+F2(xi,y j+1)−F2(xi,y j)

)
.

Observe the border problem at the upper border. A combination of forward and backward differ-
ences lead us to

∆ f (xi,y j) =
1
h2

(
f (xi+1,y j)+ f (xi−1,y j)+ f (xi,y j+1)+ f (xi,y j−1)−4 f (xi,y j)

)
,

with a border problem in all the borders.

(xi, yj) (xi+1, yj)(xi−1 , yj)

(xi, yj+1)

(xi, yj−1)

Figure 4.1: Nodes involved in the Laplacian discretization.

1.3 Approximation of differential equations

A differential equation is an equation involving derivatives of a function. In the usual situation,
the function itself is unknow, and the equation is used to determine it. For instance,

f ′(t) = 3t2 +1, t > 0, (4.3)

has the solution f (t) = t3+t+c, where c is a constant of integration. To fully determine f , a initial
condition is normally provided, e.g. f (0) = 2. With this condition, the constant of integration is
fixed c = 2.



4.2. Numerical integration 55

For a differential equation like (4.3), finding the solution f (t) is equivalent to finding a primi-
tive of its right hand side. Since, on one hand, primitives of functions are hard to compute, and on
the other, differential equations more complicated than (4.3) usually arise in applications, approx-
imated methods are needed to solve this type of problems.

The usual approach is to use forward or backward finite differences to discretize the problem.
If using forward differences, equation (4.3) is replaced by the so-called explicit Euler method,

f (ti+1) = f (ti)+ τ(3t2
i +1), i = 0,1, . . .

where ti = iτ, and τ > 0 is small. While, f using backward differences, equation (4.3) is replaced
by the implicit Euler method,

f (ti) = f (ti−1)+ τ(3t2
i +1), i = 1,2, . . .

Example 4.1 Linear differential equation.

The problem is: Given a ∈ R, g : [0,T ]→ R, and f (0) = f0 ∈ R, find f : [0,T ]→ R such that

f ′(t) = a f (t)+g(t), t ∈ (0,T ].

For instance, if g ≡ 0, then f (t) = eat f0. The explicit Euler method for this equation takes the
form, for i = 0,1, . . .

f (ti+1) = f (ti)+ τ(a f (ti)+g(ti)),

=(1+aτ) f (ti)+ τg(ti).

�

Example 4.2 General differential equation of first order.

The problem is: Given F : [0,T ]×R→ R, and f (0) = f0 ∈ R, find f : [0,T ]→ R such that

f ′(t) = F(t, f (t)), t ∈ (0,T ].

For instance, if F(t,x) = ax, then, like in the previous example, f (t) = eat f0. The explicit Euler
scheme is, for i = 0,1, . . .

f (ti+1) = f (ti)+ τF(ti, f (ti)). (4.4)

�

2 Numerical integration

In this section we introduce some classical formulas for the numerical integration of one-dimensional
continuous functions, f : (a,b)→ R. For the sake of brevity, we shall write

I( f ) =
∫ b

a
f (x)dx.
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Integration formulas for approximating I( f ) are called simple if the approximation takes place
in the whole interval (a,b), and composite if, before the application of the formula, we split the
interval (a,b) in a given number, n, of subintervals

Ii = [xi,xi+1], with i = 0, . . . ,n−1,

where xi = a+ ih, for i = 0, . . . ,n, and h = b−a
n . We use that

I( f ) =
n−1

∑
i=0

∫
Ii

f (x)dx,

and then we apply the approximation formula in each subinterval.

Two criterion are used to measure the approximation quality. If the formula is simple, we say
that its degree of accuracy is r if for any polynomial of degree r, pr(x), the result of using the
approximation formula is the exact value of I(pr).

For composite formulas, the usual criterion of order of convergence (also termed approximation
order) is used, taken with respect to the subintervals size.

2.1 Middle point formula

The middle point formula is the simplest formula. We approximate the value of f in (a,b) by its
middle point value,

Imp( f ) = (b−a) f
(a+b

2

)
,

where mp stands for middle point.

For an error estimate, we use Taylor’s expansion. Assuming that f is once continuously differ-
entiable in (a,b), we get

f (x) = f
(a+b

2

)
+ f ′

(a+b
2

)(
x− a+b

2

)
+

f ′′(ξ)
2

(
x− a+b

2

)2
,

with ξ ∈ (a,b). Then

I( f ) = Imp( f )+ f ′
(a+b

2

)∫ b

a

(
x− a+b

2

)
dx+

f ′′(ξ)
2

∫ b

a

(
x− a+b

2

)2
dx

= Imp( f )+
f ′′(ξ)
24

(b−a)3. (4.5)

Therefore, since the estimate depends upon the second derivative of f , we deduce that the formula
has an accuracy degree r = 1.

The corresponding composite formula is

Ic
mp( f ) = h

n−1

∑
i=0

f
(xi + xi+1

2

)
, (4.6)

where c means composite. Using an argument like (4.5) we deduce

I( f )− Ic
mp( f ) =

b−a
24

f ′′(ξ)h2,

where ξ ∈ (a,b), and therefore, the approximation order is quadratic.
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2.2 Trapezoidal formula

It is obtained approximating the function by the Lagrange polynomial interpolant of order 1. Thus,

It( f ) =
∫ b

a

(
f (a)+

f (b)− f (a)
b−a

(x−a)
)

dx =
b−a

2
(

f (a)+ f (b)
)
.

The error is

I( f )− It( f ) =−(b−a)3

12
f ′′(ξ),

where ξ ∈ (a,b). The degree of accuracy is then r = 1, like for the middle point formula.

The corresponding composite formula is given by

Ic
t ( f ) =

h
2

n−1

∑
i=0

(
f (xi)+ f (xi+1)

)
, (4.7)

and like for the middle point formula, the approximation order is quadratic:

I( f )− Ic
t ( f ) =−b−a

12
f ′′(ξ)h2,

where ξ ∈ (a,b).

2.3 Formula of Simpson

It is obtained approximating the function by the Lagrange polynomial interpolant of order 2. The
formula is

Is( f ) =
b−a

6
(

f (a)+4 f
(a+b

2

)
+ f (b)

)
.

The error is

I( f )− Is( f ) =− 1
16

(b−a)5

180
f (4)(ξ),

where ξ ∈ (a,b). Thus, the degree of accuracy of Simpson’s formula is r = 3

The corresponding composite formula is given by

Ic
s ( f ) =

h
6

n−1

∑
i=0

(
f (xi)+4 f

(xi + xi+1

2

)
+ f (xi+1)

)
, (4.8)

and using Taylor’s expansion we readily see that the approximation order if four:

I( f )− Ic
s ( f ) =−b−a

2880
f (4)(ξ)h4,

where ξ ∈ (a,b).

2.4 Higher order formulas

The previous formulas for numerical integration to approximate I( f ) use Lagrange polynomial
interpolants of different degree to approximate the function, and then integrate exactly these poly-
nomials.
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Figure 4.2: Middle point (left), trapezoidal (center), and Simpson (right).

n {x̄i} {ᾱi}
1 {±1/

√
3} {1}

2 {±
√

15/5,0} {5/9,8/9}
3

{
±(1/35)

√
525−70

√
30,

{
(1/36)(18+

√
30,

±(1/35)
√

525+70
√

30
}

(1/36)(18−
√

30
}

4
{

0,±(1/21)
√

245−14
√

70,
{

128/225,(1/900)(322+13
√

70,

±(1/21)
√

245+14
√

70
}

(1/900)(322−13
√

70
}

Table 4.1: Nodes and weights for the Gauss formula for the first values of n.

In general, we may define the approximation

Iapp( f ) =
∫ b

a
Πn f (x)dx,

where Πn f is the Lagrange polynomial interpolant of degree n in the nodes of a given mesh , xi,
i = 0, . . . ,n−1. Computing this integral, we obtain

Iapp( f ) =
n

∑
i=0

αi f (xi),

where

αi =
∫ b

a
`i(x)dx, i = 0, . . . ,n,

being `i the i−th Lagrange fundamental polynomial of degree n, as introduced in (3.3). Thus, the
approximation will have an accuracy degree of, at least, r = n.

2.5 Formula of Gauss

Inspired by the expression

Iapp( f ) =
n

∑
i=0

αi f (xi), (4.9)

we may inquire if there exist choices of the weights, αi, and of the nodes, xi, such that the corre-
sponding accuracy degree is higher than the given by Lagrange interpolants.
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To simplify the exposition, we shall restrict ourselves to the interval (−1,1), having on mind
that, once the nodes x̄i and the weights ᾱi are found relative to this interval, we may change to a
generic interval (a,b) by means of the change of variables

xi =
a+b

2
+

b−a
2

x̄i, αi =
b−a

2
ᾱi.

The answer to the above question is provided by Legendre polynomials of degree up to n+1,
already introduced in Subsection 6.1 of Chapter 3.

It may be proven that the highest accuracy degree for the approximation (4.9) is r = 2n+1, and
that it can be obtained by the formula of Gauss, with nodes and weights determined as follows

x̄i = zeros of Ln+1(x),

ᾱi =
2

(1− x̄2
i )
(
L′n+1(x̄i)

)2 , i = 0, . . . ,n.

The weights are all positive, and the nodes belong to the interval (−1,1). Table 2.5 gives these
nodes and weights for the cases n = 1,2,3,4.

If f is 2n+2 times continuously differentiable, then the error of the approximation is given by

I( f )− Ig( f ) =
22n+3((n+1)!)4

(2n+3)((2n+2)!)3 f (2n+2)(ξ),

where ξ ∈ (−1,1).

Example 4.3 We integrate the function f (x) = sin(x) in the interval [0,π], whose exact results is
I( f ) = 2. For the middle point, trapezoidal and Simpson’s formula, we use the composite versions,
with n = 20. For the Gauss formula, we just take five points, corresponding to the zeros of the
Legendre polynomial of degree 5 (n = 4, in Table 2.5). The following table shows the absolute
error of each approximation.

Method Middle point Trapezoidal Simpson Gauss
Abs. error 2.0576e-03 4.1140e-03 4.2309e-07 1.1028e-07

�





Chapter 5

Systems of linear equations

Our objective in this chapter is to devise methods, exact or approximate, to find the solutions to
linear systems of equations having the same number of equations than of unknowns. The problem
is, given the numbers ai j and b j for i, j = 1,2, . . . ,n find the numbers x1,x2, . . . ,xn satisfying the n
linear equations

a11x1 +a12x2 + . . .+a1nxn = b1,
a21x1 +a22x2 + . . .+a2nxn = b2,

...
...

an1x1 +an2x2 + . . .+annxn = bn.

Here, A = (ai j)
n
i, j=1 is the coefficient matrix, b = (bi)

n
i=1 is the independent term, and x = (xi)

n
i=1

is the vector of unknowns. Using matrix notation, the system takes the form

Ax = b.

Numerical methods to solve linear systems may be classified in two main classes: direct meth-
ods and iterative methods.

Direct methods compute the solution in a finite number of steps, if an infinite precision arith-
metic is used. In practice, a finite precision arithmetic is normally used, introducing rounding
errors which may greatly affect to the solution. Direct methods are useful to solve small systems
of equations or large unstructured systems. The basic methods of this type are Gauss method,
Gauss-Jordan method and the related LU factorization.

Iterative methods define a sequence of approximate solutions converging to the exact solution.
In this case, in addition to rounding errors, truncation errors due to the realization of a finite
number of iterations, arise. These methods are specially useful when the system is large and the
coefficient matrix has a suitable structure allowing to certain simplifications or approximations.
The basic methods of this type are the method of Jacobi and the method of Gauss-Seidel.

1 Direct methods

1.1 The method of Gauss

Gauss method consists on transforming the original system to obtain another in which the co-
efficient matrix is upper triangular. This is done by suitable linear combinations of the system

61
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equations, which do not alter the solution of the system.

In this transformation, only the coefficient matrix and the independent vector play a role. We
introduce the extended matrix

[A|b] =


a11 a12 a13 . . . a1n b1
a21 a22 a23 . . . a2n b2
a31 a32 a33 . . . a3n b3

...
...

...
. . .

...
...

an1 an2 an3 . . . ann bn


The method has two main steps:

1. Triangulation. The equivalent system is obtained operating on the rows to produce zeros
under the main diagonal, by the linear combinations

ri→ ri +λr j, j 6= i,

where ri is the i-th row. A variant of the method uses the so-called pivoting technique, in
which the position of rows may be also interchanged,

ri↔ r j.

Once the matrix has been rendered to the upper triangular form, we get a system of the type

Ux = b′

where U has the form

U =


u11 u12 u13 . . . u1n

0 u22 u23 . . . u2n

0 0 u33 . . . u3n
...

...
...

. . .
...

0 0 0 . . . unn

 .

2. Backward substitution. The i-th system equation, for i = 1,2, . . . ,n, is given by

uiixi +uii+1xi+1 + · · ·+uinxn = b′i.

Since we are assuming det(A) 6= 0, and we know that the linear transformations leave the
determinant invariant, we have that

Π
n
i=1uii = det(U) = det(A) 6= 0,

implying that uii 6= 0 for all i = 1, . . . ,n. Then the equivalent system is easyly solved starting
from the last row and proceeding upwards, that is, for i = n,n−1, . . . ,1, we set

xi =
b′i−uii+1xi+1−·· ·−uinxn

uii
=

1
uii

(
b′i−

n

∑
j=i+1

ui jx j

)
. (5.1)
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Example 5.1 Solve, using Gauss method, the linear system:

2x +3y −z = 5,
4x +4y −3z = 3,
−2x +3y −z = 1.

First, we triangulate the extended matrix. We start producing zeros in the first column, below the
pivot 2.

r1
r2

r3

 2 3 −1 5
4 4 −3 3

−2 3 −1 1

 r′1 = r1

r′2 = r2− 4
2 r1

r′3 = r3− −2
2 r1

In the next step we produce zeros in the second column, below the pivot −2,

r′1
r′2
r′3

 2 3 −1 5
0 −2 −1 −7
0 6 −2 6

 r′′1 = r′1
r′′2 = r′2
r′′3 = r3− 6

−2 r′2

Thus, we obtained the upper triangular matrix

r′′1
r′′2
r′′3

 2 3 −1 5
0 −2 −1 −7
0 0 −5 −15

 .

Once the extended matrix is triangular, we apply the backward substitution to solve the system,
i.e., we start solving from the last equation up. In equation form, we have

2x +3y −z = 5,
−2y −z = −7,

−5z = −15,

and computing the solution is already straightforward. �

Pivoting

When triangulating, in the first transformation, we produce zeros below a11. In the second step,
we repeat the operation below a′22, and so on. These elements, aii, are the pivots. There are two
variants of the Gauss method, according to how we deal with pivots:

• Gauss partial pivoting, in which rows are interchanged so as to get the element with maxi-
mum absolute value as pivot.

• Gauss total pivoting, where both rows and columns may be interchanged. In this case, we
must pay attention to columns interchange, since it also involves the interchanging of the
corresponding unknowns.

Using partial pivoting is compulsory when some element of the diagonal, aii, vanishes or is small
in absolute value. The reason is that in the triangulating process we divide by the pivot some of
the coefficient matrix elemnts. Of course, division by zero is undefined. But also, division by a
small number should be avoided, since it may cause large rounding errors.
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Example 5.2 Solve, using partial pivoting, the system

x +y −z = 0,
2x +y +z = 7,
3x −2y −z = −4.

We choose the pivot in the first column by selecting the element with largest absolute value, and
produce zeros below it: 1 1 −1 0

2 1 1 7
3 −2 −1 −4

⇔ r1
r2
r3

 3 −2 −1 −4
2 1 1 7
1 1 −1 0

 r′1 = r1

r′2 = r2− 2
3 r1

r′3 = r3− 1
3 r1

In the next step, we see that the maximum of the pivot and of the elements below it, max(7/3,5/3),
is just the pivot 7/3, so we do not need to interchange rows.

r′1
r′2

r′3


3 −2 −1 −4

0 7
3

5
3

29
3

0 5
3 −2

3
4
3


r′′1 = r′1
r′′2 = r′2

r′′3 = r3− 5/3
7/3 r′2

Thus, we obtained the upper triangular matrix

r′′1
r′′2

r′′3


3 −2 −1 −4

0 7
3

5
3

29
3

0 0 −13
7 −39

7

 ,

and we finish applying backward substitution. �

1.2 The method of Gauss-Jordan

We use the same ideas than in the Gauss method, but to get a diagonal system, instead of a trian-
gular system. To do this, the same kind of operations are performed on the extended matrix. We
beguin with an example.

Example 5.3 Solve the following system by the Gauss-Jordan method.

2x +3y −z = 5,
4x +4y −3z = 3,
−2x +3y −z = 1.

We write the extended matrix and divide the first row by the pivot 2.

r1
r2
r3

 2 3 −1 5
4 4 −3 3
−2 3 −1 1

 r′1 = r1/2

Then we produce zeros below the pivot of the first column,

r′1

r2
r3

 1 3
2 −1

2
5
2

4 4 −3 3
−2 3 −1 1

 r′1

r′2 = r2−4r′1
r′3 = r3− (−2)r′1
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We repeat the operation with the second row, dividing by the pivot −2,

r′1

r′2
r′3

 1 3
2 −1

2
5
2

0 −2 −1 −7
0 6 −2 6

 r′′2 = r′2/(−2)

and then produce zeros below and above the pivot,

r′1

r′′2

r′3


1 3

2 −1
2

5
2

0 1 1
2

7
2

0 6 −2 6


r′′1 = r′1− (3/2)r′′2

r′′2

r′′3 = r′3−6r′′2

Finally, we repeat these operations with the third row, dividing now by −5.

r′′1

r′′2

r′′3


1 0 −5

4 −11
4

0 1 1
2

7
2

0 0 −5 −15


r′′′3 = r′′3/(−5)

and produce the corresponding zeros above the pivot,

r′′1

r′′2

r′′′3


1 0 −5

4 −11
4

0 1 1
2

7
2

0 0 1 3


r′′′1 = r′′1 − (−5/4)r′′′3

r′′′2 = r′′2 − (1/2)r′′′3

r′′′3

The equivalent system is then  1 0 0 1
0 1 0 2
0 0 1 3

 ,

and the solution is given by the independent term.

�

The method of Gauss-Jordan also admits the partial and total pivoting strategies. This method
is specially useful for solving many systems which share the same coefficient matrix but that have
different independent terms. Therefore, it is also adequate to compute the inverse of a matrix.

Computing the inverse of a matrix by the Gauss-Jordan method

If it does exist, the inverse of a square matrix, A, of order n, is another square matrix of order n,
denoted by A−1, which satisfies AA−1 = A−1A = I, where I denotes the identity matrix (of order
n, in this case).

If we denote the columns of A−1 by c1,c2, . . . ,cn, and those of the identity matrix as e1,e2, . . . ,en,
then we may write

A−1 = (c1c2 . . .cn) , I = (e1e2 . . .en) .

Since AA−1 = I, we have
A(c1c2 . . .cn) = (e1e2 . . .en) ,
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and rewritting as
Ac1 = e1, Ac2 = e2, . . . , Acn = en

we see that the columns of A−1 are the solutions to n systems having A as the coefficient matrix,
and the columns of I as independent terms. If we solve simultaneously these n systems, the
solutions will be the columns of A−1. We apply the Gauss-Jordan method to accomplish this task.

The procedure has the following steps:

1. Consider the matrix n×2n given by [A|I], i. e., the row concatenation of A and I.

2. Operating by rows, transform A to get I in the left hand side of the matrix [A|I]. Then, the
resulting right hand side matrix is the inverse of A, that is, we get after the transformation
the matrix

[
I|A−1

]
.

3. Check that AA−1 = I = A−1A.

Example 5.4 Compute the inverse of

A =

 3 2 3
2 1 1
3 1 1

 .

We start writing the extended matrix [A|I] and dividing the first row by the pivot 3,

r1
r2
r3

 3 2 3 1 0 0
2 1 1 0 1 0
3 1 1 0 0 1

 r′1 = r1/3

Next, produce zeros below the pivot,

r′1

r2
r3

 1 2
3 1 1

3 0 0

2 1 1 0 1 0
3 1 1 0 0 1

 r′1

r′2 = r2−2r′1
r′3 = r3−3r′1

Repeat for the second row, dividing by the pivot −1
3 .

r′1

r′2

r′3


1 2

3 1 1
3 0 0

0 −1
3 −1 −2

3 1 0

0 −1 −2 −1 0 1

 r′′2 = r′2/(−1
3)

And produce zeros,

r′1

r′′2
r′3

 1 2
3 1 1

3 0 0

0 1 3 2 −3 0
0 −1 −2 −1 0 1

 r′′1 = r′1− (2/3)r′′2

r′′2
r′′3 = r′3− (−1)r′′2

Repeat with the third row, producing zeros above the pivot

r′′1
r′′2
r′′3

 1 0 −1 −1 2 0
0 1 3 2 −3 0
0 0 1 1 −3 1

 r′′′1 = r′′1 − (−1)r′′′3
r′′′2 = r′′2 −3r′′′3
r′′′3 = r′′3
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Since the left sub-matrix is the identity matrix, the procedure finishes. The resulting right sub-
matrix is A−1. [

I|A−1]=
 1 0 0 0 −1 1

0 1 0 −1 6 −3
0 0 1 1 −3 1


We check it,

AA−1 =

 3 2 3
2 1 1
3 1 1

 0 −1 1
−1 6 −3

1 −3 1

=

 1 0 0
0 1 0
0 0 1

= I,

and

A−1A =

 0 −1 1
−1 6 −3

1 −3 1

 3 2 3
2 1 1
3 1 1

=

 1 0 0
0 1 0
0 0 1

= I.

�

1.3 LU factorization

In the LU factorization method the objective is to decompose the original coefficients matrix A
into a product of an upper triangular matrix, U , and a lower triangular matrix, L, so we get

A = LU.

For some matrices, this decomposition is not possible unless we permute its rows. Then, in gen-
eral, there always exists a decomposition of the type

PA = LU,

where P is a permutation matrix. In addition, if A is invertible, then it admits an LU factorization
if and only if all its leading principal minors are nonzero.

Since, if it does exist, the LU factorization is not unique, the following additional condition is
assumed,

lii = 1 for i = 1,2, . . . ,n.

Let us consider the system of equations

Ax = b,

and assume that A admits an LU factorization. The steps to solve this system by LU factorization
are the following

1. Compute the factorization A = LU . Since Ax = b, we get LUx = b.

2. Solve Ly = b by forward substitution, to obtain y.

3. Solve Ux = y by backward substitution, to obtain x.
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Backward substituion was introduced in the formula (5.1) as a final step for the Gauss method. For-
ward substituion is a similar procedure to solve a system with a lower triangular matrix, L = (li j).
In this case, the solution is given by

xi =
bi− li1x1−·· ·− lii−1xi−1

lii
=

1
lii

(
bi−

i−1

∑
j=1

li jx j

)
.

Example 5.5 Solve the following linear system by LU factorization.

x +y +z = 1,
−x +y = 0,

−2y +2z = −4.

1. Factorization. We use the method of Gauss. In the first step, we produce zeros below a11.

r1
r2
r3

 1 1 1
−1 1 0

0 −2 2

 r′1 = r1
r′2 = r2 − (−1/1) r1
r′3 = r3 − 0/1 r1

The multipliers (in this example −1 and 0), written in bold face, are the elements of L. In
the new matrix we construct, we place the multipliers replacing the zeros we created in the
step before. We Repeat the procedure producing zeros below the next pivot

r′1
r′2
r′3

 1 1 1
−1 2 1

0 −2 2

 r′′1 = r′1
r′′2 = r′2
r′′3 = r′3 − (−2/2) r′2

And we obtain the matrix storing simultaneously L and U . 1 1 1
−1 2 1

0 −1 3

 .

The matrices L and U are

L =

 1 0 0
−1 1 0

0 −1 1

 U =

 1 1 1
0 2 1
0 0 3


2. Forward substitution. We solve the system Ly = b, being b = (1,0,−4) the independent

term of the system. We easily get y = (1,1,−3).

3. Backward substitution We solve the system Ux = y to get the final solution, x. The result is
x = (1,1,−1).

�
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2 Iterative methods

Like for other iterative methods already introduced in previous chapters, iterative methods for solv-
ing linear systems of equations define a sequence of vectors, x(k), which are expected to converge
to the solution, x, of the given linear system, i.e.

lim
k→∞

x(k) = x,

with x satisfying Ax = b.

These methods are, in general, more efficient than direct methods for solving large systems of
equations with sparse1 coefficient matrices. The reason is that they are based just on matrix-vector
multiplication, and that only the nonzero elements of the coefficient matrix need to be stored. In
normal situations, iterative methods give acceptable approximations with few iterations, and have
the advantage of being more robust to rounding errors than direct methods .

However, unlike direct methods, it is in general not possible to know in advance the number
of operations needed to attain the solution (up to a prescribed error bound), and thus to know the
execution time needed to get an approximation with a prescribed error tolerance. In addition, they
also need some parameter prescription which is not present in direct methods.

Given an initial guess, x(0), an iterative method produce a sequence of approximations, x(k), for
k = 1,2, . . ., by some predefined algorithm, which is stopped when some criterion based on, for
instance, the absolute difference between two iterations, is reached.

The classic linear iterative methods are based on rewriting the problem Ax = b as

x = Bx+ c,

where B is an n×n matrix and c is a column vector of dimension n. Taking x(0) as an initial guess,
we produce the sequence by the recursive formula

x(k) = Bx(k−1)+ c

for k = 1,2, . . . The matrix B is called the iteration matrix, and must satisfy

det(I−B) 6= 0, (5.2)

that is, I−B must be invertible. The vector c is called the iteration vector.

2.1 Method of Jacobi

In this method, to deduce the matrix B, we consider the decomposition A = L+D+U , where

L =


0 0 · · · 0

a21 0 · · · 0
...

...
. . .

...
an1 an2 · · · 0

 , D =


a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

 , U =


0 a12 · · · a1n

0 0 · · · a2n
...

...
. . .

...
0 0 · · · 0

 ,

and we assume that D is invertible, i.e. aii 6= 0 for all i = 1, . . . ,n. We deduce, after some algebra,

x =−D−1 (L+U)x+D−1b = (I−D−1A)x+D−1b.
1A sparse matrix is a matrix in which most of the elements are zero.
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This formula motivates the Jordan’s iterative scheme

x(k) = BJx(k−1)+ cJ (5.3)

with the iteration matrix and vector given by, respectively,

BJ = I−D−1A, cJ = D−1b.

Observe that we have D(I−BJ) = A, implying det(D)det(I−BJ) = det(A) 6= 0, and therefore
neither D or I − BJ may be singular (have zero determinant), explaining condition (5.2). The
component-wise expression of formula (5.3) is simply

x(k)i =
1
aii

(
bi−

i−1

∑
j=1

ai jx
(k−1)
j −

n

∑
j=i+1

ai jx
(k−1)
j

)
.

Example 5.6 Solve the system

10x1 −x2 +2x3 = 6,
−x1 +11x2 −x3 +3x4 = 6,
2x1 −x2 +10x3 −x4 = 11,

3x2 −x3 +8x4 = 15,

(5.4)

by Jacobi’s method, starting at x(0) = 0. Use the stopping criterion ‖x(k)−x(k−1)‖∞ < 0.01.

We first check that det(A) 6= 0 (left to the reader). Then we compute the iteration matrix and
vector:

BJ = I4×4−


1
10 0 0 0
0 1

11 0 0
0 0 1

10 0
0 0 0 1

8




10 −1 2 0
−1 11 −1 3
2 −1 10 −1
0 3 −1 8

=


0 1

10
−2
10 0

1
11 0 1

11
−3
11

−2
10

1
10 0 1

10

0 −3
8

1
8 0

 ,

cJ =


1

10 0 0 0
0 1

11 0 0
0 0 1

10 0
0 0 0 1

8




6
6
11
15

=


6

10
6

11
11
10
15
8

 .

Finally, we implement the iterations (5.3).

A more graphical way to deduce and implement Jacobi’s method is the following. First, rewrite
the system solving for x1 the first equation, for x2 the second, etc. We get

x1 = (6+ x2−2x3)/10,
x2 = (6+ x1 + x3−3x4)/11,
x3 = (11−2x1 + x2 + x4)/10,
x4 = (15−3x2 + x3)/8,

(5.5)

Then, for k ≥ 1, Jacobi’s method is just

x(k)1 = (6+ x(k−1)
2 −2x(k−1)

3 )/10,

x(k)2 = (6+ x(k−1)
1 + x(k−1)

3 −3x(k−1)
4 )/11,

x(k)3 = (11−2x(k−1)
1 + x(k−1)

2 + x(k−1)
4 )/10,

x(k)4 = (15−3x(k−1)
2 + x(k−1)

3 )/8.
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For the first iteration, we have

x(1)1 = (6+ x(0)2 −2x(0)3 )/10 = 0.6,

x(1)2 = (6+ x(0)1 + x(0)3 −3x(0)4 )/11 = 0.545,

x(1)3 = (11−2x(0)1 + x(0)2 + x(0)4 )/10 = 1.1,

x(1)4 = (15−3x(0)2 + x(0)3 )/8 = 1.875.

We check the stopping criterion,

‖x(1)−x(0)‖∞ = max
1≤i≤4

(
‖x(1)i −x(0)i ‖∞

)
= max(0.6,0.545,1.1,1.875) = 1.875 > 0.01.

Since the stopping criterion is not satisfied, we proceed with further iterations until the sixth iter-
ation, when the stopping criterion is satisfied. We have

x(6) = (0.369,0.153,1.240,1.979)

with ‖x(6)−x(5)‖∞ = 0.007 < 0.01. Thus, x(6) is our approximate solution, that we may compare
with the exact solution

x = (0.368,0.154,1.239,1.972).

�

2.2 Method of Gauss-Seidel

In this case, to deduce the iteration matrix, B, we use the same decomposition than for the Jacobi
method, but from (L+D+U)x = b, we write (L+D)x =−Ux+b, and then

x =−(L+D)−1Ux+(L+D)−1b.

Thus, we define the iterative scheme

x(k) = BGSx(k−1)+ cGS, (5.6)

with
BGS =−(L+D)−1U, cGS = (L+D)−1 b. (5.7)

Observe that, in this method, both L+D and I−BGS must be non-singular. The component-wise
expression is now

x(k)i =
1
aii

(
bi−

i−1

∑
j=1

ai jx
(k)
j −

n

∑
j=i+1

ai jx
(k−1)
j

)
.

Example 5.7 Solve the system (5.4) by the Gauss-Seidel’s method, starting at x(0) = 0, and using
the stopping criterion ‖x(k)−x(k−1)‖∞ < 0.01.

Like in the Jacobi’s method, we must first check that both L+D and I−BGS are invertible.
This task is left to the reader. For using the vector form (5.6) of the method, we must first compute
(L+D)−1 and then use it for defining the matrix and vector iterators (5.7). Instead, we do it by
showing the graphical form.
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We start rewriting the system as in (5.5). The difference with Jacobi’s method is that once one
of the components has been computed, it enters in the computation of the next component, without
waiting till the next iteration

x(k+1)
1 = (6+ x(k)2 −2x(k)3 )/10,

x(k+1)
2 = (6+ x(k+1)

1 + x(k)3 −3x(k)4 )/11,

x(k+1)
3 = (11−2x(k+1)

1 + x(k+1)
2 + x(k)4 )/10,

x(k+1)
4 = (15−3x(k+1)

2 + x(k+1)
3 )/8.

Performing the iterations, we see that at the fourth the stopping criterion is satisfied. We get

x(4) = (0.369,0.154,1.239,1.972)

with ‖x(4)− x(3)‖∞ = 0.009 < 0.01. Observe that, compared to the Jacobi’s method, the Gauss-
Seidel’s method has saved two iterations. �

2.3 Convergence of iterative methods

We present two ways for checking the convergence. The first is particular to the Jordan’s and
Gauss-Seidel’s methods. The second applies to any iterative method of the form x(k) =Bx(k−1)+c.
We start with some difinitions.

Definition 8 Let A be a square matrix.

• A is diagonally strictly dominant by rows if

|aii|>
n

∑
j = 1
j 6= i

∣∣ai j
∣∣ , for i = 1,2, . . . ,n.

• A is diagonally strictly dominant by columns if

|aii|>
n

∑
i = 1
i 6= j

∣∣ai j
∣∣ , for j = 1,2, . . . ,n.

A is positive definite, if it is symmetric, that is, A = AT , and

xT Ax > 0 for all x 6= 0.

Remark 5.1 Sylvester’s criterion: A symmetric matrix is definite positive if its leading principal
minors are all positive. The k-th leading principal minor of a matrix is the determinant of its
upper-left k× k sub-matrix. For instance, for

A =

 2 2 0
2 5 −1
0 −1 3

 ,
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we have that A is symmetric, and

det(a11) = 2 > 0, det
(

a11 a12
a21 a22

)
= 6 > 0, and det(A) = 16 > 0.

Thus, A is definite positive.

We have the following convergence result.

Theorem 5.1 Consider the system Ax = b.

• If A is diagonally strictly dominant by rows or columns then the methods of Jacobi and
Gauss-Seidel converge for any initial guess.

• If A is positive definite then the method of Gauss-Seidel converges for any initial guess.

Example 5.8 Let us consider the matrix

A =

 2 1 0
2 5 −1
0 −1 3

 ,

and check the assumption of Theorem 5.1. Since A is not symmetric, it can not be definite positive.
Thus, we check if it is diagonally strictly dominant. For the first row, we have

|a11|= |2|> |1|+ |0|= |a12|+ |a13|,

while for the first column we have

|a11|= |2|= |2|+ |0|= |a21|+ |a31|.

Thus, the matrix is not diagonally strictly dominant neither for rows or for columns. However,
notice that Theorem 5.1 gives sufficient conditions. The iterative schemes could converge for this
matrix, but it does not necessarily converge. �

Observe that the general iterative scheme we are studying,

x(k) = Bx(k−1)+ c, (5.8)

is just a fixed point method like the studied in Chapter 2 for finding zeros of nonlinear functions.
There, we defined the iterative scheme xk = g(xk−1), where g is a differentiable function, and
stated several sufficient conditions for convergence, among which the contractivity of g, which
is verified ig g′(x) < 1. In the context of the scheme (5.8), we have g′ = B (in an n-dimensional
sense) and then, the contractivity is fulfilled if “B < 1” in some sense to be precised.

Definition 9 The spectral radius of a square matrix, B, of oder n, is given by

ρB = max
i=1,...,n

|λi| ,

where λi are the eigenvalues of B.
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Now we may make precise the above idea of “B < 1”.

Theorem 5.2 Given a linear system in the form x = Bx+ c, the corresponding iterative method
(5.8) is convergent if and only if ρB < 1.

Example 5.9 In this example we study the convergence of the Gauss-Seidel’s method for the
system Ax = b, for any b ∈ R3, and with

A =

 3 1 1
1 2 −1
3 1 3

 .

In the Gauss-Seidel’s method we have BGS =−(L+D)−1U , which gives

BGS =−(L+D)−1U =−


1
3 0 0

−1
6

1
2 0

− 5
18 −1

6
1
3


 0 1 1

0 0 −1
0 0 0

=

 0 −1
3 −1

3

0 1
6

2
3

0 5
18

1
9

 .

The eigenvalues, λi, for i = 1,2,3 of the matrix BGS are determined as the roots of the character-
istic polynomial, defined as p(λ) = det(BGS−λI). Thus, we have to solve

p(λ) =

∣∣∣∣∣∣∣
0−λ −1

3 −1
3

0 1
6 −λ

2
3

0 5
18

1
9 −λ

∣∣∣∣∣∣∣= 0

which is simplified to

p(λ) = λ

(
1
6
+

5
18

λ−λ
2
)
= 0.

Therefore,
λ1 = 0, λ2 = 0.57, λ3 = 0.29.

Since all the eigenvalues are smaller than one, we deduce from Theorem 5.2 that the Gauss-Seidel
iterative scheme is convergent for this matrix. �

Theorem 5.3 (Speed of convergence) Let B be the iteration matrix of a convergent iterative method,
and x its exact solution. Suppose that ρ(B)< 1. Then,

‖x(k)−x‖ ≤ ρ(B)k

1−ρ(B)
‖x(1)−x(0)‖. (5.9)

Remark 5.2 The bound (5.9) provied us with an estimate for the number of iterations needed to
get an error smaller than a specified tolerance. Indeed, we get this if

ρ(B)k

1−ρ(B)
‖x(1)−x(0)‖< tol =⇒ k >

1
log(ρ(B))

log
((1−ρ(B))tol
‖x(1)−x(0)‖

)
. (5.10)

Example 5.10 For the matrix of Example 5.9, and b = (0,1,0), compute the number of iterations
needed to get an error, in the Euclidean norm, smaller than tol = 0.001 when starting at x(0) = 0.
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We have ρ(BGS) = 0.57. The first iteration is

x(1) = cGS = (L+D)−1b =
(
0,

1
2
,−1

6
)
.

Thus, ‖x(1)−x(0)‖2 = 1/(2
√

10). Using the bound (5.10), we get

k >
1

log(ρ(BGS))
log
((1−ρ(GS))tol
‖x(1)−x(0)‖

)
≈ 10.509.

Thus, 11 iterations are enough to obtain the specified tolerance.

�

3 Approximation of partial differential equations

A partial differential equation (PDE) is an equation involving derivatives of a function of two or
more variables, for instance

∂u(t,x)
∂t

− ∂2u(t,x)
∂x2 = 0, (5.11)

where u : (0,T )× (0,L)→ R. Like for differential equations, the problem is to find the function
u which satisfies the PDE ((5.11) in our example) together with some conditions which allow to
determine uniquely the solution to the problem. There are two type of conditions:

• The initial condition, that is, an equation establishing how u(t,x) is at starting time,

u(0,x) = u0(x), for all x ∈ (0,L).

• The boundary condition. Since we have second order derivatives in x, we need two con-
ditions to determine the corresponding constants of integration. There are many boundary
conditions one can prescribe. The most common are:

u(t,0) = u(t,L) = 0, for all t ∈ (0,T ) (Dirichlet boundary condition),

∂u(t,0)
∂x

=
∂u(t,L)

∂x
= 0, for all t ∈ (0,T ) (Neumann boundary condition).

PDE’s are a very important topic in Physics and Engineering, and most of the times approxi-
mated methods must be used to solve them.

Introducing backward differences in time in (5.11), we find the time discretization

u(ti+1,x) = u(ti,x)+ τ
∂2u(ti+1,x)

∂x2 ,

where τ is the time step of the time mesh, that is, ti+1− ti = τ. Using centered differences for the
second order derivative, we get

u(ti+1,x j) = u(ti,x j)+
τ

h2

(
u(ti+1,x j−1)−2u(ti+1,x j)+u(ti+1,x j+1)

)
.

Thus, if we want to determine u at time ti+1 from its previous state at time t = ti, we must solve

−ru(ti+1,x j−1)+(1+2r)u(ti+1,x j)− ru(ti+1,x j+1) = u(ti,x j), (5.12)



76 Systems of linear equations

where r = τ/h2. If the nodes of (0,L) are x0,x1, . . . ,xm, then the above equation (5.12) only can
be evaluated for x1, . . . ,xm−1 (the interior nodes). In the boundary nodes, x0 = 0 and xm = L, we
use the boundary conditions. For instance, for Dirichlet boundary conditions, we set u(x0, ti) =
u(xm, ti) = 0 for all i.

Introducing the notation b j = u(ti,x j), and y j = u(ti+1,x j), we rewrite (5.12) together with the
boundary conditions as the linear system of equations

1 0 0 0 · · · 0 0 0 0
−r 1+2r −r 0 · · · 0 0 0 0
0 −r 1+2r −r · · · 0 0 0 0
...

...
...

... · · ·
...

...
...

...
0 0 0 0 · · · −r 1+2r −r 0
0 0 0 0 · · · 0 −r 1+2r −r
0 0 0 0 · · · 0 0 0 1





y1
y2
y3
...

ym−2
ym−1
ym


=



b1
b2
b3
...

bm−2
bm−1
bm


(5.13)

It is possible to show that the matrix of this system is non-singular and, in fact, definite positive.
This system can be solved with any of the methods we have described in this chapter.



Chapter 6

Optimization

The central problem in the theory of Optimization is the development of mathematical tools to, on
one hand, deduce the existence of minima and/or maxima of applications f : Ω ⊂ RN → R, and,
on the other hand, to devise numerical algorithms providing approximations to such points.

The most fundamental classification of optimization problems divide them in problems with-
out constraints, and problems with constraints. Constraints are usually formulated in terms of
functional restrictions limiting the points belonging to Ω.

Observe that maximizing a function, f , is equivalent to minimizing the function − f . Thus, we
shall only deal with the minimization problem, understanding that all the results we may obtain
are directly translated to the maximization problem.

1 Definition of an optimization problem

An optimization problem may be sketched as follows: a physical or control variable must be
chosen to optimize (minimize or maximize) a physical criterion, such as the energy, a technical
criterion, like accuracy, duration, etc., or an economical criterion, like cost, productivity, etc.,
always considering the natural constraints affecting to the variable (must be positive, integer, ...)

We introduce in the following lines some terminology and notation commonly used in opti-
mization problems. An optimization problem consists of:

1. A criterion (or cost, or objective), f , mapping the space of decision variables, Ω ⊂ RN , to
R,

f : Ω→ R.

2. The constraints. In general, not all the elements of Ω are admissible as solutions since some
constraints, determining the space of solutions, must be satisfied. These constraints arise in
applications in different forms, which may be present simultaneously:

(a) Equality constraints
φ(y) = 0, (6.1)

where φ : Ω⊂RN →Rm, with m < n. We say that the solution is subject to m equality
constraints, φi(y) = 0, for i = 1, ...,m.

77
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(b) Inequality constraints
ψ(y)≤ 0, (6.2)

where ψ : Ω⊂ RN → Rp, with p < n, and (6.2) means ψ j(y)≤ 0 for j = 1, ..., p. We
say that the solution is subject to p inequality constraints.

(c) Set constraints. Equality and inequality constraints are particular cases of constraints
given as set constraints, of the type y ∈ S, where S⊂Ω is a given set.

In any case, the constraints determine a subset U ⊂ Ω, called set of admissible points, given as
U = {y : y satisfy the constraints}. The minimization problem consists, then, in finding u ∈U
such that

f (x)≤ f (y) for all y ∈U. (6.3)

If such x does exist, we say that it is a minimum of f in U , and that f (x) is the minimum value of
the minimization problem.

In general, we have not on hand mathematical techniques for solving any minimization problem
in the whole set U , i.e. for finding a global minimum of (6.3). Thus, we normally restrict ourselves
to finding a local minimum x̄ ∈U , i.e., to solve

f (x̄)≤ f (y) for all y ∈U ∩B,

where B is a neighborhood of x̄. Clearly, a global minimum is always a local minimum, being the
reciprocal not true, in general.

Sometimes, we shall use the following short notation to refer to a minimization problem:{
min f (x)
x ∈C, φ(x) = 0, ψ(x)≤ 0.

Example 6.1 Linear programming.

Important problems in Economy and Engineering are formulated in terms of a linear program-
ming problem: {

min f (x) = cT x
x ∈ Rn, Ax≥ b,

where c ∈ RN is a row vector, x ∈ RN is a column vector, A is a m× n matrix, and b ∈ RN is a
column vector.

The first linear programming problem, dating to 1944, was introduced to formulate the diet
problem. We have a stock of n types of food products x1, . . . ,xn, and m parameters related to
quantities of vitamins, proteins, etc. contained in such food. We define

• ai j, the quantity of parameter i contained in product j,

• b j, the minimum necessary quantity of parameter j in each ration, and

• c j, the unitary cost of product j.

Thus, the minimum cost ration, given by x j units of product j and satisfying the constraints of
minimum content of parameter i is the solution of

min
n
∑
j=1

c jx j

x j ≥ 0, j = 1, ...,n,
n
∑
j=1

ai jx j ≥ bi, i = 1, ...,m.
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�

2 Optimization without constraints

2.1 Necessary and sufficient conditions for a local minimum

Given a function f : RN →R twice continuously differentiable, the procedure used in Differential
Calculus to find points of minimum is the following:

1. Solve the system of equations for the critical points, i.e., find x∗ ∈RN such that ∇ f (x∗) = 0,
or in expanded form,

∂ f
∂x1

(x∗) = 0, . . . ,
∂ f
∂xn

(x∗) = 0. (6.4)

Equations (6.4) are the so-called first order optimality conditions.

2. Evaluate the Hessian matrix of f , H f , at the critical points, and check whether the matrix is
positive definite. That is, check if the symmetric matrix

H f (x∗) =


∂2 f (x∗)

∂x2
1

∂2 f (x∗)
∂x1∂x2

· · · ∂2 f (x∗)
∂x1xN

∂2 f (x∗)
∂x2x1

∂2 f (x∗)
∂2x2

· · · ∂2 f (x∗)
∂x2xN

...
...

...
...

∂2 f (x∗)
∂xN∂x1

∂2 f (x∗)
∂x2∂xN

· · · ∂2 f (x∗)
∂2xN


is definite positive.

If this is the case, then x∗ is a point of local minimum for f , that is, there exists a radius ρ > 0 such
that

f (x∗)≤ f (x) for all x ∈ Bρ(x∗).

Let us see why this program is justified.

Theorem 6.1 (Necessary conditions for local minimum) Let f be a twice continuously differ-
entiable function and assume that x∗ is a local minimum. Then ∇ f (x∗) = 0 and H f (x∗) is positive
semidefinite.

Proof. Let v ∈ RN be a given vector. Taylor’s theorem implies

f (x∗+ tv) = f (x∗)+ t∇ f (x∗)T v+
t2

2
vT H f (x)v+o(‖t‖2).

Since x∗ is a local minimum, we have f (x∗+ tu)≥ f (x∗), for t small enough. Then, dividing by t,
we get

∇ f (x∗)T v+
t
2

vT H f (x)v+o(‖t‖)≥ 0. (6.5)

Setting t = 0 and v=−∇ f (x∗) we deduce ‖∇ f (x∗)‖= 0, i.e., ∇ f (x∗) = 0. Now, using this identity
in (6.5), dividing by t and taking t = 0, we obtain

1
2

vT H f (x)v≥ 0.
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�

Condition (6.4), although necessary, is not sufficient for x∗ being a point of minimum of f . So
it is to say, there exist critical points of f which are not minimum. To ensure that a critical point is
actually a minimum we use the following result.

Theorem 6.2 (Sufficient conditions for a local minimum) Let f be a twice continuously differ-
entiable function and assume that x∗ is a critical point of f and that H f (x∗) is positive definite.
Then, x∗ is a local minimum of f .

Proof. Let v ∈ RN be a nonzero given vector. For t small enough, Taylor’s theorem implies

f (x∗+ tv) = f (x∗)+
t2

2
vT H f (x)v+o(‖t‖2).

Since H f (x∗) is positive definite, there exists a number λ > 0 such that

vT H f (x)v > λ‖v‖2 > 0.

Then

f (x∗+ tv)− f (x∗) =
t2

2
vT H f (x)v+o(‖t‖2)> λ

t2

2
‖v‖2 +o(‖t‖2)> 0,

for all t 6= 0 small enough. �

Example 6.2 Observe that Taylor’s theorem tell us that a function with a local minimum in x∗ is,
in a neighborhood of x∗, bounded from below by a paraboloid. For instance, assume x∗ = 0 is
a minimum of a two-dimensional function (n = 2). Taking e = (x1,x2) and neglecting the term
o(‖e‖2), we get

f (x1,x2)≈ f (0,0)+ x1
∂ f
∂x1

(0,0)+ x2
∂ f
∂x2

(0,0)+
1
2

(
∂2 f
∂x2

1
(0,0)x2

1 +
∂2 f
∂x2

2
(0,0)x2

2

+2
∂2 f

∂x1∂x2
(0,0)x1x2

)
= f (0,0)+

1
2

(
∂2 f
∂x2

1
(0,0)x2

1 +
∂2 f
∂x2

2
(0,0)x2

2 +2
∂2 f

∂x1∂x2
(0,0)x1x2

)
> f (0,0)+λ(x2

1 + x2
2),

for some λ > 0, since H f (0) is positive definite. �

Although, in general, a function may have many local minima, and the differential method
does not tell us which of them is the global minimum, there is an important exception: when the
function is convex, and defined in a convex set.

Definition 10 We say that a set Ω⊂RN is convex if for all x, y ∈Ω, and for all µ ∈ [0,1] we have

µx+(1−µ)y ∈Ω.

We say that a function f : Ω⊂ RN → R is convex if for all x, y ∈Ω and for all µ ∈ [0,1] we have

f (µx+(1−µ)y)≤ µ f (x)+(1−µ) f (y).
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Figure 6.1: Example of convex and non-convex sets in R2.

It is not difficult to prove that if Ω ⊂ RN is convex and bounded, and if f : Ω→ R is convex and
differentiable, then f can have, at most, one critical point which, if it does exist, corresponds to a
global minimum of f .

Recall that a function f : Ω⊂RN →R with the Hessian H f (x) positive definite for all x ∈Ω is
a convex function, see the Appendix.

Example 6.3 Let Ω=(−a,a)⊂R, an interval centered at a> 0, which is clearly a convex set, and
f (x) = x2, which is a convex function since f ′′(x)> 0. Thus, the unique critical point 0 ∈ (−a,a)
is a global minimum.

In the same interval, the function g(x) = e−x is also convex, since g′′(x) > 0. However, the
are not critical points of g in (−a,a), and the above statement does not give any clue about the
minima of g. Observing the graph of g, we see that it has not minima in this interval, since it is a
decreasing function. If the interval is redefined to [−a,a], then it has a unique global minimum,
attained at the border x = a, which is not a critical point. �

Finding the exact solution of the first order optimality conditions, (6.4), is not always possible.
Thus, as in previous chapters, we consider iterative methods to approximate the solution.

Example 6.4 Let us consider a differentiable function, f , defined in R. The optimality conditions
of first order reduce to finding x∗ ∈ R such that

f ′(x∗) = 0.

Using Newton’s method for approximating zeros of nonlinear functions, see formula (2.4) in Chap-
ter 2, the approximation algorithm for the critical points of f is given by

xk+1 = xk−
f ′(xk)

f ′′(xk)
, for k = 1,2, . . .

where x0 is an initial guess. Clearly, a necessary condition for convergence is f ′′(x) 6= 0 in the set
of iterands. In fact, if we look for a minimum, we must have f ′′(x) > 0 in a neighborhood of the
solution. Thus, convexity or positive definiteness. �

2.2 Method of Newton

Newton’s method for finding minima of functions f :RN→R is deduced from Taylor’s expansion,
given by formula (A.34). Let us consider the second order approximation, that is, neglect the term
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o(‖e‖2). We get

f (x)≈ f (xk)+∇ f (xk)
T (x− xk)+

1
2
(x− xk)

T H f (xk)(x− xk), (6.6)

where H f is the Hessian matrix. To find an approximation of a critical point of f , we differentiate
the right hand side term of (6.6) with respect to x j, for j = 1, . . . ,n, and equate to zero. We obtain
the system of linear equations

∇ f (xk)+H f (xk)(x− xk) = 0,

where, writing xk+1 for the solution, we deduce

xk+1 = xk− (H f (xk))
−1

∇ f (xk). (6.7)

Observe that in Newton’s minimization method, like in the corresponding method to find zeros
of nonlinear functions, the initial guess, x0, must be close enough to the minimum to achieve
convergence. Thus, we should initially check that the matrix H f (x0) is positive definite.

Example 6.5 Let f (x,y) = 1
m(x

m+ηym), where m > 1 is an integer number and η∈R is positive.
Thus, f (x,y)> 0 for all (x,y) 6= (0,0) and f (0,0) = 0, that is (0,0) is a global minimum. We have

∇ f (x,y) = (xm−1,ηym−1), H f (x,y) = (m−1)
(

xm−2 0
0 ηym−2

)
.

Then, (
H f (x,y)

)−1
∇ f (x,y) =

1
m−1

(
x2−m 0

0 1
η

y2−m

)(
xm−1

ηym−1

)
=

1
m−1

(
x
y

)
.

Therefore, using the notation x = (x,y), Newton’s method gives the iterative formula

xk+1 = xk−
1

m−1
xk =

m−2
m−1

xk.

First, observe that if m = 2 and therefore f is a parabolid, Newton’s method converges in the first
step, since we directly get x1 = 0 for any initial guess x0 we may choose. If m 6= 2, we may solve
the above iterative formula to get

xk+1 =
(m−2

m−1

)k+1
x0→ 0 as k→ ∞,

for any x0 ∈R2, since (m−2)/(m−1)< 1. Therefore, the method converges for any power m > 1
if function f , and for any initial guess. However, observe that if m is very large then the quotient
(m−2)/(m−1) is very close to one, and the convergence will be slow. �

Since computing the inverse of a matrix is normally an expensive calculation, when using
Newton’s method we solve, instead of (6.7), the following system

H f (xk)y = ∇ f (xk), (6.8)

and then, we write xk+1 = xk− y. An additional advantage of having a positive definite Hessian
matrix is that it admits a Cholesky factorization, that is, there exists a lower triangular matrix, L,
with positive diagonal, such that H f (xk) = LLT . Then, once the factorization has been computed,
we may solve the system (6.8) by forward substitution.
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Stopping criterion and error estimation

Since Newton’s method searches for a critical point, a reasonable criterion for stopping the itera-
tions could be

‖∇ f (xk)‖ ≤ τr‖∇ f (x0)‖, (6.9)

with τr ∈ (0,1), capturing in this way the gradient norm decrease. However, if ‖∇ f (x0)‖ is small,
it could be not possible to satisfy (6.9) in the floating point arithmetics, and therefore the iterations
would not terminate. A more exigent criterion, and also safer, is based on a combination of the
absolute and relative errors, i.e.

‖∇ f (xk)‖ ≤ τr‖∇ f (x0)‖+ τa,

where τa is a tolerance for the absolute error. Of course, in addition to these criterion, one also
adds a limit to the maximum number of iterations.

We finish this section with a convergence result.

Theorem 6.3 Assume the following conditions:

• f is three times continuously differentiable

• x∗ is a critical point of f

• H f (x∗) is positive definite.

Then, if x0 is close enough to x∗, the iterations of Newton’s method (6.7) converge quadratically
to x∗, i.e., for some constant λ > 0,

‖xk+1− x∗‖ ≤ λ‖xk− x∗‖2.

2.3 The gradient method

In the gradient method, also known as descent method, we search for directions for which, when
passing from iterand xk to xk+1, the value of f decreases, i.e. we have f (xk+1)< f (xk).

We define the iterative scheme
xk+1 = xk +αkdk, (6.10)

where dk is the direction in the step k and αk > 0 is the length of the corresponding step. From
Taylor’s expansion of first order, we get

f (xk+1) = f (xk +αkdk)≈ f (xk)+αk 〈∇ f (xk),dk〉 ,

and therefore, to get the steepest descent, we take the opposite direction to ∇ f (xk), that is

dk =−∇ f (xk), (6.11)

and then
f (xk+1)≈ f (xk)−αk‖∇ f (xk)‖2 ≤ f (xk),

since αk > 0. Therefore, from (6.10) we obtain

xk+1 = xk−αk∇ f (xk). (6.12)
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For choosing the step length, we define the function φ : R→ R given by φ(α) = f (xk +αdk)
and search for αk minimizing φ. Observe that we have reduced the n-dimensional minimization
problem to a one-dimensional problem, which can be solved, for instance, by Newton’s method.

In practice, instead of minimizing φ, it is often preferred to minimize an interpolator of φ. For
instance, since we have the data

φ(0) = f (xk), φ(1) = f (xk +dk), and φ
′(0) = 〈−dk,dk〉< 0,

we can take an approximation of φ(α), for α ∈ [0,1], by the quadratic polynomial

q(α) = φ(0)+φ
′(0)α+(φ(1)−φ(0)−φ

′(0))α2,

whose global minimum may be easily computed. On one hand, if φ(1)−φ(0)−φ′(0)< 0, then the
minimum of q belongs to the border of the interval [0,1], and we take α = 1 (α = 0 is not allowed,
since then the iterations stop, see (6.10)).

On the other hand, if φ(1)−φ(0)−φ′(0)> 0, then φ has the local minimum given by

αL =
−φ′(0)

2(φ(1)−φ(0)−φ′(0))
> 0,

so we take α = min{1,αL}.
An inherent property of the gradient method is that the trajectory followed by the iterands is

zig-zagging. Indeed, if αk is the exact minimum of φ(α) then, using the chain rule, we obtain

0 = φ
′(αk) = 〈∇ f (xk +αkdk),dk〉=−〈∇ f (xk+1),∇ f (xk)〉 ,

where we used (6.10) and (6.11). Thus, ∇ f (xk) and ∇ f (xk+1) are orthogonal.

Stopping criterion and error estimation

Like for Newton’s method, a reasonable stopping criterion is obtained by combining the absolute
and relative errors of ∇ f ,

‖∇ f (xk)‖ ≤ τr‖∇ f (x0)‖+ τa,

where τr ∈ (0,1) is a tolerance for the relative error and τa is a tolerance for the absolute error.

In general, the gradient method has not good convergence properties. Depending on the func-
tion, the method can be very slow. We illustrate this fact with an example.

Example 6.6 Consider the function f (x) = a
2 x2, with a ∈ (0,1), having the unique critical point

at x∗ = 0. An easy computation for the step α = min{1,αL} shows that αL = 1/a, so we must take
α = 1. Then, the iterations (6.12) take the form

xk+1 = xk− f ′(xk) = (1−a)xk,

so we can expect only linear convergence:

|xk+1− xk|= a|xk− x∗|.

Moreover, we obtain by recursion that xk = (1− a)kx0, and therefore, if a is close to zero, the
convergence is extremely slow. �
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Figure 6.2: Descent trajectories for xk and f (xk).

3 Constrained optimization

The choice of a method to solve a constrained optimization problem depends on the type of con-
straints operating in the problem: equality, inequality, or set restrictions.

In this section we shall introduce two methods which are particularly important. The method
of Lagrange multipliers and the penalty method. The first is used for equality and inequality
constraints, while the second operates for any kind of restriction.

3.1 Lagrange multipliers. Equality constraints

The Lagrange multipliers method allows us to use the optimization techniques already studied for
problems without constraints to problems with constraints. Let as recall the problem formulation.

Given a differentiable objective function f : Ω⊂RN →R, and a set of differentiable functions
φi : Ω⊂RN→R, for i = 1, . . . ,m, with m < n, find a minimum x∗ of f in Ω satisfying the equality
constraints φi(x∗) = 0 for all i = 1, . . . ,m. We have the following result.

Theorem 6.4 (Necessary conditions for constrained problems) Suppose that x∗ is a point of
the set

U = {x ∈Ω : φi(x) = 0, 1≤ i≤ m} ⊂Ω, (6.13)

such that the m vectors ∇φi(x∗) ∈RN , with i = 1, . . . ,m, are linearly independent. Then, if f has a
local minimum at x∗ relative to the set U, there exist m numbers λi(x∗), such that

∇ f (x∗)+λ1(x∗)∇φ1(x∗)+ . . .+λm(x∗)∇φm(x∗) = 0. (6.14)

The numbers λi(x∗) are called Lagrange multipliers.

Although Theorem 6.4 provide us with a criterion to decide if a point x∗ may be a constrained
minimum, it does not give any idea of how to calculate it.

The most common tool used to find such a point is the Lagrangian function. Let us denote by λ

to the vector (λ1, . . . ,λm), by φ : RN →Rm to the function φ(x) = (φ1(x), . . . ,φm(x)), and consider
the function L : RN×Rm→ R given by

L(x,λ) = f (x)+λ
T

φ(x) = f (x)+
m

∑
i=1

λiφi(x).
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If (x∗,λ∗) is a minimum of L (without constraints) then ∇(x,λ)L(x∗,λ∗) = 0, i.e., the optimality
conditions with respect to x

∇ f (x∗)+
m

∑
i=1

λ
∗
i ∇φi(x∗) = 0, (6.15)

and with respect to λ

φi(x∗) = 0, i = 1, . . . ,m, (6.16)

must hold. Observe that (6.16) is, precisely, the constraint condition (6.13), and that (6.15) is the
condition (6.14). We deduce that any x∗ such that (x∗,λ∗) is a critical point of L(x,λ) is a candidate
to be a minimum for the constrained problem.

Example 6.7 Let f (x1,x2) =−x2 and φ(x1,x2) = x2
1+x2

2−1 (n= 2, m= 1). The set of constraints
is, then, the circumference

U = {(x1,x2) ∈ R2 : x2
1 + x2

2 = 1}.

The Lagrangian function is given by

L(x1,x2,λ) =−x2 +λ(x2
1 + x2

2−1).

The critical points are determined by

0 =
∂L
∂x1

(x∗,λ∗) = 2λx1,

0 =
∂L
∂x2

(x∗,λ∗) =−1+2λx2,

0 =
∂L
∂λ

(x∗,λ∗) = x2
1 + x2

2−1.

Solving, we get x∗1 = 0, x∗2 =±1 and λ∗ = 1/2x∗2. �

We finish this section making explicit the sufficient conditions of second order for a constrained
minimum with equality restrictions.

Theorem 6.5 (Sufficient conditions for constrained problems) Let x∗ ∈ U, with U the set of
constraints given by (6.13) and λ ∈ Rm such that (6.14) holds. Suppose that the Hessian ma-
trix of L, with respect to x, given by

H(x∗) = H f (x∗)+λ
T Hφ(x∗)

is positive definite in the set M = {y ∈ Rm : ∇φ(x∗)T y = 0}. Then x∗ is a constrained minimum of
f in the set U.

Observe that in the previous example, we have

H(x∗) =
(

0 0
0 0

)
+λ

∗
(

2 0
0 2

)
, M = {(y1,y2) ∈ R2 : x∗2y2 = 0}.

Therefore, H(x∗) is positive definite only for x∗= (0,1). The other critical point of the Lagrangian,
(0,−1), corresponds to a constrained maximum.
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3.2 The penalty method

Like in the Lagrange multipliers method, the penalty method consists on transformin a constrained
problem to a problem without constraints. However, in this case the constraints may be far more
general than just of equality. According to the notation given in the introduction, the problem is
stated as

min
x∈S

f (x). (6.17)

The idea of the penalty method is replacing the objective function, f (x), by another function

f (x)+ cP(x) (6.18)

and solving the unconstrained problem for the new function. To do this, we take c as a positive
constant and a function P satisfying the conditions (P):

1. P is continuous in Ω,

2. P(x)≥ 0 for x ∈Ω, and

3. P(x) = 0 if and only if x ∈ S.

Example 6.8 Suppose that S is given by m inequality constraints,

S = {x ∈ RN : φi(x)≤ 0, i = 1, . . . ,m}.

An example of penalty function is

P(x) =
1
2

m

∑
i=1

max(0,φi(x))2.

In Figure 6.3 we can see an example of function cP(x) in the one-dimensional case, with φ1(x) =
x−b and φ2(x) = a−x. For c large, the minimum of function (6.18) must lie in a region where P is
small. Thus, by increasing c we expect that the corresponding points of minimum will approximate
the set S and, if they are close to each other, they will also minimize f . Ideally, when c→ ∞, the
solution to the penalty problem converges to the solution of the constrained problem (6.17). �
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Figure 6.3: Function cP(x) for several values of c.

The procedure to solve the constrained problem (6.17) by the penalty method is as follows: Let ck
be a sequence such that, for all k = 1,2, . . ., satisfy the conditions (C):
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• ck ≥ 0

• ck+1 > ck,

• limk→∞ ck = ∞.

Define the functions
q(c,x) = f (x)+ cP(x). (6.19)

For each k, assume that the problem minq(ck,x) has a solution, xk. We have the following result.

Theorem 6.6 Let xk be a sequence generated by the penalty method. Then, any limit point of the
sequence is the solution of the constrained minimization problem (6.17).

Observe that the problem (6.19) may be solved, for instance, by Newton’s method. In the proof of
this theorem we shall use the following auxiliary result.

Lemma 1 For all k = 1,2, . . ., we have

q(ck,xk)≤ q(ck+1,xk+1), (6.20)

P(xk)≥ P(xk+1), (6.21)

f (xk)≤ f (xk+1). (6.22)

In addition, if x∗ is a solution of the constrained problem (6.17) then

f (x∗)≥ q(ck,xk)≥ f (xk). (6.23)

Proof. We have

q(ck+1,xk+1) = f (xk+1)+ ck+1P(xk+1)≥ f (xk+1)+ ckP(xk+1)

≥ f (xk)+ ckP(xk) = q(ck,xk),

proving (6.20). We also have

f (xk)+ ckP(xk)≤ f (xk+1)+ ck+1P(xk+1), (6.24)

f (xk+1)+ ck+1P(xk+1)≤ f (xk)+ ck+1P(xk). (6.25)

Adding (6.24) to (6.25) we get

(ck+1− ck)P(xk+1)≤ (ck+1− ck)P(xk),

proving (6.21). Moreover,

f (xk)+ ckP(xk)≤ f (xk+1)+ ckP(xk+1),

and using (6.21) we get (6.22). Finally, if x∗ is solution of (6.17) then P(x∗) = 0, and therefore

f (x∗) = f (x∗)+ ckP(x∗)≥ f (xk)+ ckP(xk)≥ f (xk),

proving (6.23).�
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Proof of Theorem 6.6. Suppose that x̄ is a limit point of some subsequence of xk, denoted by x̄k.
By continuity, we have

lim
k→∞

f (x̄k) = f (x̄). (6.26)

Let M the minimum value corresponding to problem (6.17). According to Lemma 1, the sequence
of values q(ck,xk) is not decreasing and bounded by M. Therefore, there exists a q∗ ∈ R such that

lim
k→∞

q(ck, x̄k) = q∗ ≤M. (6.27)

Subtracting (6.26) from (6.27) we get

lim
k→∞

ckP(x̄k) = q∗− f (x̄). (6.28)

Since P(x̄k) ≥ 0 and ck → ∞, (6.28) implies limk→∞ P(x̄k) = 0. Using the continuity of P, this
implies P(x̄) = 0, and hence x̄ satisfies the constraint x̄ ∈ S. Finally, using (6.23) we deduce
f (x̄k)≤M, and then f (x̄) = limk→∞ f (x̄k)≤M. �

Example 6.9 Minimize f (x,y) = x2 +2y2 in the set S = {(x,y) ∈ R2 : x+ y ≥ 1}. We define the
differentiable penalty function

P(x,y) =
{

0 if (x,y) ∈ S,
(x+ y−1)2 if (x,y) ∈ R2\S,

ck = k, and qk(x,y) = f (x,y)+ckP(x,y). Observe that function P satisfies conditions (P), and that
the sequence ck satisifes conditions (C). In practice, we would apply a numerical method such
as the gradient method to solve the unconstrained minimization of qk. In this example, we shall
compute the exact solution. We start computing the critical points.

If (x,y) ∈ S is a critical point of qk then

∇qk(x,y) = (2x,4y) = (0,0).

However, the unique solution to this equation is (0,0) /∈ S. Therefore, we disregard this point. If
(x,y) ∈ R2\S is a critical point of qk then

∇qk(x,y) = (2(1+ k)x+2ky−2k,2kx+2(2+ k)y−2k) = (0,0),

with the unique solution given by

(x∗k ,y
∗
k) =

( 2k
3k+2

,
k

3k+2

)
,

and since x∗k + y∗k = 3k/(3k+2)< 1, we have indeed (x∗k ,y
∗
k) ∈ R2\S, for any k = 1,2, . . . Finally,

the exact minimum of f is obtained taking the limit k→ ∞, which gives (x∗,y∗) = (2/3,1/3) ∈ S.

�





Appendix. Some fundamental
definitions and results

Let x ∈ Rn. The Euclidean norm of x is defined as

‖x‖=
( n

∑
i=1

x2
i

)1/2
,

and the `∞ norm of x is given by
‖x‖∞ = max

i=1,...,n
|xi|.

A square matrix, A, of order n is and ordered collection of numbers, ai j ∈ R, for i, j = 1, . . . ,n,

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

 .

We often use the notation A = (ai j), when the order of the matrix is clear from the context.

The transpose of A, denoted by AT , is another matrix obtained interchanging the rows and
columns of A, that is

AT =


a11 a21 · · · an1
a12 a22 · · · an2

...
...

...
...

a1n a2n · · · ann

 .

A square matrix, A, is symmetric if A = AT . A square matrix, A, is positive definite if A is sym-
metric and

xT Ax > 0 for all x ∈ Rn, x 6= 0.

If the inequality is not strict, A is said to be positive semidefinite.

Vector norms induce matrix norms in the following way:

‖A‖= max
x 6=0

‖Ax‖
‖x‖

.

The characteristic polynomial of a square matrix of order n is a polynomial, P, of degree n,
which is invariant under matrix similarity (linear combinations of rows and columns),

P(λ) = det(A−λIn),
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where In is the identity matrix of order n. The n roots of the characteristic polynomial, λi, for
i = 1, . . . ,n, are called the eigenvalues of A, which may be real or complex numbers. If A is
symmetric, then λi ∈ R, for all i = 1, . . . ,n. In addition, if A is definite positive then λi > 0, for all
i = 1, . . . ,n. The spectral radius, ρ, of A is given by the maximum eigenvalue in absolute value,
that is,

ρ = max
i=1,...,n

|λi|.

Let Ω ⊂ Rn be an open set, and f : Ω→ R be twice continuously differentiable. The partial
derivative of f with respect to xi, evaluated at a point x ∈Ω, is denoted as

∂ f
∂xi

(x).

Partial derivatives of higher order are defined by composition of partial derivatives of first order.
For instance

∂2 f
∂xi∂x j

(x)

is the second partial derivative of f with respect to xi and x j, evaluated in x. An important property
of second partial derivatives is that they are independent of the order of derivation, i.e.

∂2 f
∂xi∂x j

(x) =
∂2 f

∂x j∂xi
(x). (A.29)

The gradient of f in x is the vector

∇ f (x) =
(

∂ f
∂x1

(x), . . . ,
∂ f
∂xn

(x)
)
.

The second order partial derivatives of f are often collected into a matrix, called the Hessian of f ,

H f (x) =


∂2 f
∂x2

1
(x) . . . ∂2 f

∂x1∂xn
(x)

∂2 f
∂x2∂x1

(x) . . . ∂2 f
∂x2∂xn

(x)
...

...
...

∂2 f
∂xn∂x1

(x) . . . ∂2 f
∂x2

n
(x)

 . (A.30)

Due to (A.29), the Hessian matrix is symmetric. The trace of the Hessian of f , i.e. the sum of the
elements of the main diagonal, is called the Laplacian of f in x, and denoted as ∆ f (x). That is,

∆ f (x) =
n

∑
i=1

∂2 f
∂x2

i
(x). (A.31)

We say that a set Ω⊂ Rn is convex if for all x, y ∈Ω, and for all t ∈ [0,1]

tx+(1− t)y ∈Ω.

A function f : Ω⊂ Rn→ R is convex in the convex set Ω if, for all x,y ∈Ω, and for all t ∈ [0,1],

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y).



Appendix 93

f is called strictly convex if the above inequality is strict for all x 6= y and t ∈ (0,1).

If f is twice continuously differentiable then it is convex in the convex set, Ω, if and only if
H f (x) is positive semidefinite for all x ∈Ω.

Let Ω⊂Rn be an open set, and f : Ω→Rm be a vector function, f = ( f1, . . . , fm), continuously
differentiable. The Jacobian matrix of f is the m×n matrix given by

J f (x) =


∂ f1
∂x1

(x) . . . ∂ f1
∂∂xn

(x)
∂ f2
∂x1

(x) . . . ∂ f2
∂xn

(x)
...

...
...

∂ fm
∂x1

(x) . . . ∂ fm
∂xn

(x)

 . (A.32)

If m = n then the Jacobian of f is a square matrix, whose determinant is called the Jacobian
determinant of f in x, usually denoted as |J f (x)|. Also, in the case m = n, the trace of J f (x) has a
name, the divergence of f(x), denoted by div f (x). That is,

div f(x) =
n

∑
i=1

∂ fi

∂xi
(x). (A.33)

For a real function f : Ω→R, the composition of the gradient and the divergence gives the Lapla-
cian,

∆ f (x) = div
(
∇ f (x)

)
.

Taylor’s expansion is an useful tool we shall often use.

Theorem 1.7 (Taylor) Let f be twice continuously differentiable in a neighborhood of a point
x∗ ∈ Rn. Then , for all e ∈ Rn with ‖e‖ small enough, we have

f (x∗+ e) = f (x∗)+∇ f (x∗)T e+
1
2

eT H f (x)e+o(‖e‖2). (A.34)

Recall that a neighborhood of radius ρ centered in x∗ is the set Bρ(x∗) = {x ∈ Rn : ‖x− x∗‖< ρ}
(an n−dimensional ball). The notation o(t2) (small o) means

lim
t→0

o(t2)

t2 = 0.
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