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Abstract 

In recent years, the development and demand of multimedia product grows 

increasingly fast, contributing to insufficient bandwidth of network and storage of 

memory device. Therefore, the theory of data compression becomes more and 

more significant for reducing the data redundancy to save more hardware space 

and transmission bandwidth. In computer science and information theory, data 

compression or source coding is the process of encoding information using fewer 

bits or other information-bearing units than an unencoded representation. 

Compression is useful because it helps reduce the consumption of expensive 

resources such as hard disk space or transmission bandwidth. In this paper, we 

briefly introduce the fundamental theory of image compression in chapter 1, two 

typical standards - JPEG and JPEG 2000 will be described in chapter 2. Finally, the 

newly proposed image compression algorithm – Shape Adaptive image 

Compression will be introduced in chapter 3. 

 

1.  Introduction to Image Compression Fundamentals 

Image compression is an application of data compression that encodes the 

original image with few bits. The objective of image compression is to reduce the 

redundancy of the image and to store or transmit data in an efficient form. Fig 1.1 

shows the block diagram of the general image storage system. The main goal of such 

system is to reduce the storage quantity as much as possible, and the decoded image 

displayed in the monitor can be similar to the original image as much as can be. The 

essence of each block will be introduced in the following sections. 



 

Fig. 1.1 General Image Storage System 

 

1.1 Color Specification 

    The Y, Cb, and Cr components of one color image are defined in YUV color 

coordinate, where Y is commonly called the luminance and Cb, Cr are commonly 

called the chrominance. The meaning of luminance and chrominance is described as 

follows 

� Luminance: received brightness of the light, which is proportional to the total 

energy in the visible band. 

� Chrominance: describe the perceived color tone of a light, which depends on 

the wavelength composition of light chrominance is in turn characterized by two 

attributes – hue and saturation. 

1. hue: Specify the color tone, which depends on the peak wavelength of the 

light 

2. saturation: Describe how pure the color is, which depends on the spread or 

bandwidth of the light spectrum 

The RGB primary commonly used for color display mixes the luminance and 

chrominance attributes of a light. In many applications, it is desirable to describe a 

color in terms of its luminance and chrominance content separately, to enable more 

efficient processing and transmission of color signals. Towards this goal, various 

three-component color coordinates have been developed, in which one component 

reflects the luminance and the other two collectively characterize hue and saturation. 

One such coordinate is the YUV color space. The [Y Cb Cr]
T
 values in the YUV 

coordinate are related to the [R G B]
T
 values in the RGB coordinate by 
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    Similarly, if we would like to transform the YUV coordinate back to RGB 

coordinate, the inverse matrix can be calculated from (1.1), and the inverse transform 

is taken to obtain the corresponding RGB components. 

 

1.2 Spatial Sampling of Color Component 

 

Fig. 1.2 The three different chrominance downsampling format 

 

    Because the eyes of human are more sensitive to the luminance than the 

chrominance, the sampling rate of chrominance components is half that of the 

luminance component. This will result in good performance in image compression 

with almost no loss of characteristics in visual perception of the new upsampled 

image. There are three color formats in the baseline system:  

� 4:4:4 format: The sampling rate of the luminance component is the same 

as those of the chrominance. 

� 4:2:2 format: There are 2 Cb samples and 2 Cr samples for every 4 Y 

samples. This leads to half number of pixels in each line, but the same 

number of lines per frame. 

� 4:2:0 format: Sample the Cb and Cr components by half in both the 

horizontal and vertical directions. In this format, there are also 1 Cb 

sample and 1 Cr sample for every 4 Y samples.  

At the decoder, the downsampled chrominance components of 4:2:2 and 4:2:0 

formats should be upsampled back to 4:4:4 format. 

 



1.3 The Flow of Image Compression Coding 

What is the so-called image compression coding? Image compression coding is 

to store the image into bit-stream as compact as possible and to display the decoded 

image in the monitor as exact as possible. Now consider an encoder and a decoder as 

shown in Fig. 1.3. When the encoder receives the original image file, the image file 

will be converted into a series of binary data, which is called the bit-stream. The 

decoder then receives the encoded bit-stream and decodes it to form the decoded 

image. If the total data quantity of the bit-stream is less than the total data quantity of 

the original image, then this is called image compression. The full compression flow 

is as shown in Fig. 1.3. 

 

Fig. 1.3 The basic flow of image compression coding 

 

The compression ratio is defined as follows: 

 
1

2

n
Cr

n
= ,  (1.2) 

where n1 is the data rate of original image and n2 is that of the encoded bit-stream. 

 

    In order to evaluate the performance of the image compression coding, it is 

necessary to define a measurement that can estimate the difference between the 

original image and the decoded image. Two common used measurements are the 

Mean Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR), which are 

defined in (1.3) and (1.4), respectively. f(x,y) is the pixel value of the original image, 

and f’(x,y)is the pixel value of the decoded image. Most image compression systems 

are designed to minimize the MSE and maximize the PSNR. 
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The general encoding architecture of image compression system is shown is Fig. 

1.4. The fundamental theory and concept of each functional block will be introduced 

in the following sections. 



 

Fig. 1.4 The general encoding flow of image compression 

 

1.3.1 Reduce the Correlation between Pixels 

    Why an image can be compressed? The reason is that the correlation between 

one pixel and its neighbor pixels is very high, or we can say that the values of one 

pixel and its adjacent pixels are very similar. Once the correlation between the pixels 

is reduced, we can take advantage of the statistical characteristics and the variable 

length coding theory to reduce the storage quantity. This is the most important part of 

the image compression algorithm; there are a lot of relevant processing methods being 

proposed. The best-known methods are as follows: 

� Predictive Coding: Predictive Coding such as DPCM (Differential Pulse 

Code Modulation) is a lossless coding method, which means that the 

decoded image and the original image have the same value for every 

corresponding element. 

� Orthogonal Transform: Karhunen-Loeve Transform (KLT) and Discrete 

Cosine Transform (DCT) are the two most well-known orthogonal 

transforms. The DCT-based image compression standard such as JPEG is a 

lossy coding method that will result in some loss of details and 

unrecoverable distortion. 

� Subband Coding: Subband Coding such as Discrete Wavelet Transform 

(DWT) is also a lossy coding method. The objective of subband coding is to 

divide the spectrum of one image into the lowpass and the highpass 

components. JPEG 2000 is a 2-dimension DWT based image compression 

standard. 

    The details of these transform coding methods will be described in the chapter 2. 

 

1.3.2 Quantization 

    The objective of quantization is to reduce the precision and to achieve higher 

compression ratio. For instance, the original image uses 8 bits to store one element for 

every pixel; if we use less bits such as 6 bits to save the information of the image, 

then the storage quantity will be reduced, and the image can be compressed. The 

shortcoming of quantization is that it is a lossy operation, which will result into loss of 

precision and unrecoverable distortion. The image compression standards such as 



JPEG and JPEG 2000 have their own quantization methods, and the details of relevant 

theory will be introduced in the chapter 2. 

 

1.3.3 Entropy Coding 

    The main objective of entropy coding is to achieve less average length of the 

image. Entropy coding assigns codewords to the corresponding symbols according to 

the probability of the symbols. In general, the entropy encoders are used to compress 

the data by replacing symbols represented by equal-length codes with the codewords 

whose length is inverse proportional to corresponding probability. The entropy 

encoder of JPEG and JPEG 2000 will also be introduced in the chapter 2. 

 

2 An Overview of Image Compression Standard 

In this chapter, we will introduce the fundamental theory of two well-known 

image compression standards –JPEG and JPEG 2000. 

 

2.1 JPEG – Joint Picture Expert Group 

Fig. 2.1 and 2.2 shows the Encoder and Decoder model of JPEG. We will 

introduce the operation and fundamental theory of each block in the following 

sections. 

Fig. 2.1 The Encoder model of JPEG compression standard 



 

Fig. 2.2 The Decoder model of JPEG compression standard 

 

2.1.1 Discrete Cosine Transform 

    The next step after color coordinate conversion is to divide the three color 

components of the image into many 8×8 blocks. The mathematical definition of the 

Forward DCT and the Inverse DCT are as follows: 

Forward DCT 
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Inverse DCT 
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    The f(x,y) is the value of each pixel in the selected 8×8 block, and the F(u,v) is 

the DCT coefficient after transformation. The transformation of the 8×8 block is also 

a 8×8 block composed of F(u,v). 

    The DCT is closely related to the DFT. Both of them taking a set of points from 

the spatial domain and transform them into an equivalent representation in the 

frequency domain. However, why DCT is more appropriate for image compression 

than DFT? The two main reasons are: 

1. The DCT can concentrate the energy of the transformed signal in low 

frequency, whereas the DFT can not. According to Parseval’s theorem, the 



energy is the same in the spatial domain and in the frequency domain. 

Because the human eyes are less sensitive to the low frequency component, 

we can focus on the low frequency component and reduce the contribution 

of the high frequency component after taking DCT. 

2. For image compression, the DCT can reduce the blocking effect than the 

DFT. 

    After transformation, the element in the upper most left corresponding to zero 

frequency in both directions is the “DC coefficient” and the rest are called “AC 

coefficients.” 

 

2.1.2 Quantization in JPEG 

    Quantization is the step where we actually throw away data. The DCT is a 

lossless procedure. The data can be precisely recovered through the IDCT (this isn’t 

entirely true because in reality no physical implementation can compute with perfect 

accuracy). During Quantization every coefficients in the 8×8 DCT matrix is divided 

by a corresponding quantization value. The quantized coefficient is defined in (2.3), 

and the reverse the process can be achieved by the (2.4). 
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    The goal of quantization is to reduce most of the less important high frequency 

DCT coefficients to zero, the more zeros we generate the better the image will 

compress. The matrix Q generally has lower numbers in the upper left direction and 

large numbers in the lower right direction. Though the high-frequency components 

are removed, the IDCT still can obtain an approximate matrix which is close to the 

original 8×8 block matrix. The JPEG committee has recommended certain Q matrix 

that work well and the performance is close to the optimal condition, the Q matrix for 

luminance and chrominance components is defined in (2.5) and (2.6). 

 

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

YQ

 
 
 
 
 
 =
 
 
 
 
  
 

 (2.5) 



 

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99
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 (2.6) 

 

2.1.3 Zigzag Scan 

    After quantization, the DC coefficient is treated separately from the 63 AC 

coefficients. The DC coefficient is a measure of the average value of the original 64 

image samples. Because there is usually strong correlation between the DC 

coefficients of adjacent 8×8 blocks, the quantized DC coefficient is encoded as the 

difference from the DC term of the previous block. This special treatment is 

worthwhile, as DC coefficients frequently contain a significant fraction of the total 

image energy. The other 63 entries are the AC components. They are treated 

separately from the DC coefficients in the entropy coding process. 

 

 

Fig. 2.3 The zigzag scan order 

 

2.1.4 Entropy Coding in JPEG 

2.1.4.1 Differential Coding 

The mathematical representation of the differential coding is: 

 Diffi = DCi − DCi-1 (2.7) 

0 1 5 6 14 15 27 28 

2 4 7 13 16 26 29 42 

3 8 12 17 25 30 41 43 

9 11 18 24 31 40 44 53 

10 19 23 32 39 45 52 54 

20 22 33 38 46 51 55 60 

21 34 37 47 50 56 59 61 

35 36 48 49 57 58 62 63 



 

Fig. 2.4 Differential Coding 

We set DC0 = 0. DC of the current block DCi will be equal to DCi-1 + Diffi . 

Therefore, in the JPEG file, the first coefficient is actually the difference of DCs. 

Then the difference is encoded with Huffman coding algorithm together with the 

encoding of AC coefficients. 

 

2.1.4.2 Zero-Run-Length Coding 

    After quantization and zigzag scanning, we obtain the one-dimensional vectors 

with a lot of consecutive zeroes. We can make use of this property and apply zero-run 

-length coding, which is variable length coding. Let us consider the 63 AC 

coefficients in the original 64 quantized vectors first. For instance, we have: 

 

 57, 45, 0, 0, 0, 0, 23, 0, -30, -16, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ..., 0 (2.8) 

 

We encode then encode the vector (2.8) into vector (2.9). 

 

 (0,57) ; (0,45) ; (4,23) ; (1,-30) ; (0,-16) ; (2,1) ; EOB (2.9) 

 

The notation (L,F) means that there are L zeros in front of F, and EOB (End of Block) 

is a special coded value means that the rest elements are all zeros. If the last element 

of the vector is not zero, then the EOB marker will not be added. On the other hand, 

EOC is equivalent to (0,0), so we can express (2.9) as (2.10). 

 

 (0,57) ; (0,45) ; (4,23) ; (1,-30) ; (0,-16) ; (2,1) ; (0,0) (2.10) 

 

We give a special case that L is larger than 15. (2.11) is another example. 

 

 57, eighteen zeroes, 3, 0, 0, 0, 0, 2, thirty-three zeroes, 895, EOB (2.11) 

 

The JPEG Huffman coding restricts the number of previous zero(s) within 15 because 

the length of the encoded data is 4 bits. Hence, we can encode (2.11) into (2.12). 

 



 (0,57) ; (15,0) ; (2,3) ; (4,2) ; (15,0) ; (15,0) ; (1,895) ; (0,0) (2.12) 

 

(15,0) is a special coded value which indicates that there are 16 consecutive zeroes. 

Therefore, the both of the values 18 and 33 are converted to 15. 

 

Now back to the example (2.8). The right value of the bracket is called category, and 

the left value of the bracket is called run. We can encode the category by looking up 

table 2.1 which is specified in the JPEG standard. For example, 57 is in the category 6 

and the bits for the value is 111001, so we encode it as 6,111001. The full encoded 

sequence of (2.8) is as (2.13). 

 

(0,6,111001);(0,6,101101);(4,5,10111);(1,5,00001);(0,4,0111);(2,1,1);(0,0) (2.13) 

 

Table 2.1 Table of the category and bit-coded values 

Category Values Bits for the value 

1 -1,1 0,1 

2 -3,-2,2,3 00,01,10,11 

3 -7,-6,-5,-4,4,5,6,7 000,001,010,011,100,101,110,111 

4 -15,...,-8,8,...,15 0000,...,0111,1000,...,1111 

5 -31,...,-16,16,...31 00000,...,01111,10000,...,11111 

6 -63,...,-32,32,...63 000000,...,011111,100000,...,111111 

7 -127,...,-64,64,...,127 0000000,...,0111111,1000000,...,1111111 

8 -255,..,-128,128,..,255 ... 

9 -511,..,-256,256,..,511 ... 

10 -1023,..,-512,512,..,1023 ... 

11 -2047,...,-1024,1024,...,2047 ... 

 

The first two values in bracket parenthesis can be represented on a byte because of the 

fact that each of the two values is 0,1,2,...,15. In this byte, the higher 4-bit (run) 

represents the number of previous zeros, and the lower 4-bit (category) represents the 

the value which is not 0.  

 

The JPEG standard specifies the Huffman table for encoding the AC coefficients 

which is listed in table 2.2. The final step is to encode (2.13) by using the Huffman 

table defined in table 2.2. 

 

 

 



Table 2.2 Huffman table of AC coefficients 

run/category code length code word 

0/0 (EOB) 4 1010 

15/0 (ZRL) 11 11111111001 

0/1 2 00 

...   

0/6 7 1111000 

...   

0/10 16 1111111110000011 

1/1 4 1100 

1/2 5 11011 

...   

1/10 16 1111111110001000 

2/1 5 11100 

...   

4/5 16 1111111110011000 

...   

15/10 16 1111111111111110 

 

The encoding method is quite easy and straight forward. For instance, the code (0,6) 

is encoded as 1111000, and the code (4,5) is encoded as 1111111110001000. The final 

bit-stream stored in the JPEG file for example (2.8) is as (2.14). 

 

 1111000 1111001 , 111000 101101 , 1111111110011000 10111 ,  

11111110110 00001 , 1011 0111 , 11100 1 , 1010  (2.14) 

 

2.2 JPEG 2000 

The JPEG standard has been used for many years and provided satisfactory 

quality for the users, but the quality of JPEG can not fulfill the advanced requirement 

for image coding today. JPEG 2000 outperforms JPEG in many aspects, the major 

features of the JPEG 2000 standard is outlined as follows: 

� High compression efficiency 

� Lossless color transformation 

� Region-of-Interest Coding 

� Lossless and lossy compression 

� Random code stream access and processing 

� Error resilience 



Fig. 2.5 and 2.6 show the Encoder and Decoder architecture of JPEG 2000. We 

will introduce the operation and theory of each block in the following sections. 

 

Fig 2.5 The encoder architecture of JPEG 2000 

 

 

Fig 2.6 The decoder architecture of JPEG 2000 

 

2.2.1 Color Space Conversion 

Instead of using the Irreversible Color Transform, JPEG 2000 adopts the 

Reversible Color Transform (RCT), which is a modified YUV color transform that 

does not contribute to quantization errors, so it is fully reversible. Proper 

implementation of the RCT requires that numbers are rounded as specified that cannot 

be expressed exactly in matrix form. The transformation is: 
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 ; Ur B G= −  ; Vr R G= −  (2.15) 

The Inverse transformation can be obtained by (2.16). 
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2.2.2 Discrete Wavelet Transform 

    Although the DCT-based image compression algorithms such as JPEG have 



provided satisfactory quality, it still leaves much to be desired. Thus, the new 

DWT-based image compression algorithms such as JPEG 2000 became increasingly 

popular. DWT (Discrete Wavelet Transform) is an application of subband coding; thus, 

before introducing DWT, we briefly describe the theory of subband coding. 

 

Subband Coding 

    In subband coding, the spectrum of the input is decomposed into a set of 

bandlimitted components, which is called subbands. Ideally, the subbands can be 

assembled back to reconstruct the original spectrum without any error. Fig. 2.7 shows 

the block diagram of two-band filter bank and the decomposed spectrum. At first, the 

input signal will be filtered into lowpass and highpass components through analysis 

filters. After filtering, the data amount of the lowpass and highpass components will 

become twice that of the original signal; therefore, the lowpass and highpass 

components must be downsampled to reduce the data quantity. At the receiver, the 

received data must be upsampled to approximate the original signal. Finally, the 

upsampled signal passes the synthesis filters and is added to form the reconstructed 

approximation signal. 

    After subband coding, the amount of data does not reduce in reality. However, 

the human perception system has different sensitivity to different frequency band. For 

example, the human eyes are less sensitive to high frequency-band color components, 

while the human ears is less sensitive to the low-frequency band less than 0.01 Hz and 

high-frequency band larger than 20 KHz. We can take advantage of such 

characteristics to reduce the amount of data. Once the less sensitive components are 

reduced, we can achieve the objective of data compression. 

 0 ( )H ω 1( )H ω

 

Fig 2.7 Two-band filter bank for one-dimension subband coding and decoding 

 

Now back to the discussion on the DWT. In two dimensional wavelet transform, 

a two-dimensional scaling function, ( , )x yφ , and three two-dimensional wavelet 

function ( , )H x yψ , ( , )V x yψ  and ( , )D x yψ , are required. Each is the product of a 

one-dimensional scaling function φ(x) and corresponding wavelet function ψ(x). 

 ( , ) ( ) ( )x y x yφ φ φ=     ( , ) ( ) ( )H x y x yψ ψ φ=  

                  ( , ) ( ) ( )V x y y xψ φ ψ=   ( , ) ( ) ( )D x y x yψ ψ ψ=   (2.17) 



where Hψ measures variations along columns (like horizontal edges), Vψ responds 

to variations along rows (like vertical edges), and Dψ corresponds to variations along 

diagonals. 

    Similar to the one-dimensional discrete wavelet transform, the two-dimensional 

DWT can be implemented using digital filters and samplers. With separable 

two-dimensional scaling and wavelet functions, we simply take the one-dimensional 

DWT of the rows of f (x, y), followed by the one-dimensional DWT of the resulting 

columns. Fig. 2.8 shows the block diagram of two-dimensional DWT 

. 
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( , , )D
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( , , )VW j m nψ

( , , )H
W j m nψ

( , , )HW j m nφ

Fig. 2.8 The analysis filter bank of the two-dimensional DWT 

 

    As in the one-dimensional case, image f (x, y) is used as the first scale input, and 

output four quarter-size sub-images  Wφ , HWψ , VWψ , and DWψ  as shown in the 

middle of Fig. 2.9. The approximation output ( , , )H
W j m nφ  of the filter banks in Fig. 

2.8 can be tied to other input analysis filter bank to obtain more subimages, producing 

the two-scale decomposition as shown in the left of Fig. 2.9. Fig. 2.10 shows the 

synthesis filter bank that reverses the process described above. 
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Fig. 2.9 Two-scale of two-dimensional decomposition 
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Fig. 2.10 The synthesis filter bank of the two-dimensional DWT 

 

2.2.3 Quantization in JPEG 2000 

To reduce the number of bits needed to represent the transform coefficients, the 

coefficient ab(u,v) of subband b is quantized to value qb(u,v) using (2.18) 
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where the quantization step size is 
11

2 1
2

R bb b
b

ε µ−  
∆ = + 

 
  (2.19) 

 

Rb is the nominal dynamic range of subband b, andεbandμb are the number of bits 

allotted to the exponent and mantissa of the subband’s coefficients, respectively.  

 

The nominal dynamic range of subband b is the sum of the number of bits used 

to represent the original image and the analysis gain bits for subband b. 

Quantization operation is defined by the step size Δb, the selection of the step 

size is quite flexible, but there are a few restrictions imposed by the JPEG 2000 

standard. 

1. Reversible wavelets: when reversible wavelets are utilized in JPEG 2000, 

uniform deadzone scalar quantization with a step size of Δb =1 must be used. 

2. Irreversible wavelets: when irreversible wavelets are utilized in JPEG 2000, 

the step size selection is restricted only by the signaling syntax itself. The step 

size is specified in terms of an exponentεb, 0≦εb＜2
5
 , and a mantissaμb , 

0≦μb＜2
11

 . 

 

2.2.4 EBCOT in JPEG 2000 

Embedded Block Coding with Optimized Truncation (EBCOT) is adopted for the 



entropy coding of JPEG 2000. The EBCOT can be divided into two steps: Tier-1 and 

Tier-2 as shown in Fig. 2.11. The Tier-1 part is composed of the context formation and 

Arithmetic Coding. The Tier-1 encoder divides the input DWT coefficients into 

separate code blocks and encodes each block into block-based bit-stream. After Tier-1 

coding operation, the Tier-2 truncates the embedded bit-stream to minimize the 

embedded bit-stream. The theory of context formation, arithmetic coding and 

rate-distortion control will be described in the next sections. 

 

Fig. 2.11 The block diagram of EBCOT 

2.2.4.1 Context Formation 

The objective of context formation is to generate the context decision pairs for 

the arithmetic coder. We introduce some relevant concept in advance. 

� Bit-plan scanning: The decimal DWT coefficients can be converted into signed 

binary format, so the DWT coefficients are decomposed into many 1-bit planes. 

Take one DWT coefficient for example, a bit is called significant after the first 

bit ‘1’ is met from MSB to LSB, and the bits ‘0’ before this bit ‘1’ are 

insignificant, as shown in Fig. 2.12. 

n

MSB

LSB

n
Sign

coding

order

  

Fig. 2.12 Bit-plan scanning and the significant and insignificant bits 

The scanning order of the bit-plane is shown as Fig. 2.13. Each element of the 

bit-plane is called a sample, and four vertical samples can form one column stripe. 

The 16 column stripes in the horizontal direction can form a full stripe. 
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Fig. 2.13 Context formation scanning sequence for one bit-plane 

 

� The context window: The context window of JPEG 2000 is shown in Fig. 

2.14, the “curr” is the sample which is to be coded, and the other 8 samples 

are its neighbor samples. The samples 1d, 3d, 6d, and 8d are the diagonal 

ones. The samples 2v and 7v are the vertical ones. The samples 4h and 5h are 

the horizontal ones. 

 

Fig. 2.14 The context window of JPEG 2000 

 

� Three coding passes: refer to Fig 2.14 

2. Significance Propagation Pass (pass1): Scanning all insignificant samples 

which have at least one of the neighbors become significant to determine 

whether it will become significant at current bit plane. 

3. Magnitude Refinement Pass (pass2): The coefficients-bits have become 

significant in previous bit-plane will be coded in pass2. 

4. Cleanup Pass (pass3): The remained coefficients rejected by pass1 and 

pass2 are coded in pass3. 

 

� Four Types of coding operations for Arithmetic coding 

1. Zero Coding (ZC): This coding method is used to code the new significance. 

The context is determined according to the significance of the neighbors. The 



context assignment table for zero coding is defined in Table 2.3. 

 

Table 2.3 Context assignment table for zero coding 

LL and LH subbands HL subband HH subband 

ΣΣΣΣH ΣΣΣΣV ΣΣΣΣD ΣΣΣΣH ΣΣΣΣV ΣΣΣΣD ΣΣΣΣ(H+V) ΣΣΣΣD 

Context 

Label 

2 x x x 2 x x ≥≥≥≥3 8 

1 ≥≥≥≥1 x ≥≥≥≥1 1 x ≥≥≥≥1 2 7 

1 0 ≥≥≥≥1 0 1 ≥≥≥≥1 0 2 6 

1 0 0 0 1 0 ≥≥≥≥2 1 5 

0 2 x 2 0 x 1 1 4 

0 1 x 1 0 x 0 1 3 

0 0 ≥≥≥≥2 0 0 ≥≥≥≥2 ≥≥≥≥2 0 2 

0 0 1 0 0 1 1 0 1 

0 0 0 0 0 0 0 0 0 

 

2. Sign Coding (SC): This coding method is used to code the sign samples 

right after the corresponding coefficient is identified significant. The context 

is determined by the sign of the four neighbors in the vertical and horizontal 

directions. There are two relevant tables defined in Table 2.4 and 2.5, 

respectively: (a) Sign contribution of the H and V neighbors for sign coding. 

(b) Context assignment table for sign coding. The value of the decision can 

be obtained form sign bit XOR bitD = ⊕  

 

Table 2.4 Sign contribution of the H and V neighbors for sign coding 

Sign Distribution Significant (+) Significant (-) Insignificant 

Significant (+) 1 0 1 

Significant (-) 0 -1 -1 

Insignificant 1 -1 0 

 

 

 

 

 

 

 



 

Table 2.5 Context assignment table for sign coding 
Horizontal 

Contribution 

Vertical 

Contribution 
Context Label XOR bit 

1 1 13 0 

1 0 12 0 

1 -1 11 0 

0 1 10 0 

0 0 9 0 

0 -1 10 1 

-1 1 11 1 

-1 0 12 1 

-1 -1 13 1 

 

3. Magnitude Refinement (MR): The context depends on the significance of 

its neighbors and whether it is the first time for refinement. The context is 

determined by the summation of the significance state of the horizontal, 

vertical, and diagonal neighbors.  

 

Table 2.6 Context assignment table for magnitude refinement 

ΣΣΣΣH + ΣΣΣΣV + ΣΣΣΣD 1
st
 refinement for this coefficient Context label 

X False 16 

≥≥≥≥1 True 15 

0 True 14 

 

4. Run-Length Coding (RLC): This coding method is used to reduce the 

average number of symbols needed to be coded. RLC must satisfy the 

following two condition: 

1. Four consecutive coefficients in the same stripe must be insignificant.  

2. All consecutive neighbors for the four coefficients must be insignificant. 

 

Only one context is needed when all the four samples are insignificant. If any 

one of the four samples becomes significant, more than one context is needed to 

indicate the location of the significant. 



 

Fig. 2.15 Current coding bits and their neighbors for RLC operation 
 

2.2.4.2 Arithmetic Coding 

The decision and context data generated from context formation is coded in the 

arithmetic encoder (AE). The arithmetic encoder used by JPEG 2000 standard is a 

binary adaptive MQ coder. The basis of the binary arithmetic coding is a recursive 

probability interval subdivision process. Since it is a binary AE, there are only two 

sub-intervals. With each decision, the current probability interval is subdivided into 

two sub-intervals. If the value of decision is 1 then it means that it is More Possible 

Symbol (MPS). Otherwise, the value of decision is 0 and it means that it is Less 

Possible Symbol. The data distribution is shown in Fig. 2.16. The probability of MPS 

and LPS is represented by the gray interval and the white interval, respectively. The 

basic operation of the arithmetic encoder is calculating the new MPS and LPS 

according to the context and the decision form context formation. Because the AE of 

EBCOT is an adaptive encoder, the intervals of MPS and LPS will dynamically 

change with the value of decision. For example, if the context and the decision are 

equal to the value of MPS, then code MPS; otherwise, code LPS. The process is 

shown in Fig. 2.17 .The operation stops until all context and decision are coded. 

 

Fig. 2.16 The probability distribution of the MPS and LPS 



 

Fig. 2.17 The MPS and LPS of the arithmetic encoder  

 

2.2.4.3 Rate Distortion Optimization 

    Each coding from tier-1 is a candidate truncation point of a code-block and the 

coding pass information is packaged into data units called packets in tier-2 coding. 

For meeting a target bit-rate or transmission time, the packaging process imposes a 

particular organization of coding pass data in the output code-stream. The rate-control 

assures that the desired number of bytes used by the code-stream while assuring the 

highest image quality possible. 

 

3 Shape-Adaptive Image Compression 

Both the JPEG and JPEG 2000 image compression standard can achieve great 

compression ratio, however, both of them do not take advantage of the local 

characteristics of the given image effectively. Here is one new image compression 

algorithm proposed by Huang [4], it is called Shape Adaptive Image Compression, 

which is abbreviated as SAIC. Instead of taking the whole image as an object and 

utilizing transform coding, quantization, and entropy coding to encode this object, the 

SAIC algorithm segments the whole image into several objects, and each object has 

its own local characteristic and color. Because of the high correlation of the color 

values in each image segment, the SAIC can achieve better compression ratio and 

quality than conventional image compression algorithm. 

The architecture of the shape-adaptive image compression is shown in Fig. 3.1. 

There are three parts of operation. First, the input image is segmented into boundary 

part and internal texture part. The boundary part contains the boundary information of 

the object, while the internal texture part contains the internal contents of the object 

such as color value. The two parts of the object is transformed and encoded, 

respectively. Finally, the two separate encoded data will be combined into the full 



bit-stream, and the processing of shape-adaptive image compression is finished. The 

theory and operation of each part will be introduced in the following sections. 

 

Fig. 3.1 The block diagram of shape-adaptive image compression 

 

3.1 Boundary Description and Compression 

First we obtain the boundary of the each object from the given image by means 

of image segmentation algorithm. Secondly, the boundary must be divided into two 

parts, and each part forms a non-closed boundary. We can make use of a second order 

polynomial to approximate the non-closed boundary. The equation of the second order 

polynomial is represented in (3.1) and (3.2). The original and the approximate curve 

are shown in Fig. 3.1. 

 2
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Fig. 3.1 The original boundary s3(k) and the approximate 2
nd

order curve yk. 

    After the approximation of the boundary obtained, we express the coordinate of 

each points in the approximation as a complex number so the two dimensional data 



can be transformed into one dimensional data. The mathematical expression is in 

(3.3). 

 ( ) ( ) ( )s k x k jy k= +  for k = 0, 1, 2, ..., K−1 (3.3) 

s(k) can be transformed into frequency domain by means of Fourier descriptor. The 

frequency components are expressed by a(u), and the forward transform is 
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In order to reduce the amount of data required to save the boundary, we truncate 

the less necessary high-frequency components. However, this may result in distortion, 

and the recovery boundary will be closed as shown in Fig. 3.2. 

 

Fig. 3.2 Distortion due to truncation of high frequency data 

 

In Ref. [4], the author proposes an effective method to solve the distortion 

problem. The steps of the moehod is shown in Fig. 3.3 and listed as follows: 

1. Record the coordinate of two end points of the non-closed boundary. 

2. Shift the boundary points linearly according to the distance on the curve between 

the two end points. 

3. Add a boundary segment which is odd-symmetric to the original one, and 

transform the two-dimensional data into one-dimensional complex number. 

4. Transform the one-dimensional complex data from spatial domain into frequency 

domain. 

   

 

Fig. 3.3 The steps to solve the non-closed problem 

Odd-symmetry property of DFT: 

 ( ) ( )DFT
s k a u− − →− − . (3.5) 

Therefore, if the signal s(k) is odd-symmetric, its DFT a(u) is also odd-symmetric. 



 ( ) ( ) ( ) ( )DFT
s k s k a u a u= − − → = − − . (3.6) 

Since the expanded data is odd symmetric to the original data, we can obtain the 

symmetric part from the original boundary by (3.6). Therefore, the odd symmetric 

part is useless and can be truncated, and the boundary can achieve compression of the 

boundary segments successfully. The frequency data can be encoded with entropy 

coding algorithm afterward. 

 
 |a(u)| 

0 K 2K−2 

DC-term is zero  

Fig. 3.4 The new boundary segment and its Fourier descriptor 

 

3.2 Shape-Adaptive Transform Coding 

After the internal texture of one image segment is obtained, we can take DCT of 

the data of the internal texture. The theory of conventional N-by-N DCT is described 

in section 2.1.1. However, the height and width of one image segment are usually not 

equal. Hence, we redefine the DCT as Eq. (3.7) and (3.8): 

Forward Shape-Adaptive DCT 
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Inverse Shape-Adaptive DCT 
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where W and H are the width and height of the image segment, respectively. M is the 

length of the DCT coefficients. 

 

The F(u,v) is called the Shape-Adaptive DCT coefficient, and the DCT basis is 



 ,

2 ( ) ( ) (2 1) (2 1)
'( , ) cos cos

2 2*
x y

C u C v x u y v
u v

W HH W

π π
ω

+ +   
=       

 (3.9) 

Because the number of points M is less than or equal to H×W, we can know that 

the H×W bases may not be orthogonal. We can obtain the M orthogonal bases by 

means of Gram-Schmidt process. After obtaining the orthogonal bases, we can take 

Shape-Adaptive DCT afterward. 

 

3.3 Shape-Adaptive Quantization 

After the transform coefficients are obtained, we quantize the coefficients to 

compress the data. Because the length of the coefficients of the arbitrary shape is not 

fixed, the quantization table for JPEG in (2.4) and (2.5) must be modified. Huang [4] 

propose the unfixed quantization array as follows: 

 ( ) ,     for 1,2,...,
a c

Q k Q k Q k M= + =  (3.10) 

where the two parameters Qa and Qc are the slope and the intercept of the line, 

respectively. And M is the length of the DCT coefficients. 

Each DCT coefficient F(k) is divided by the corresponding quantization array 

Q(k) and rounded to the nearest integer as (3.11): 
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3.4 Shape-Adaptive Entropy Coding 

Before introducing the theory of Shape-Adaptive entropy coding, here is one 

problem must be solved. Because the variation of color around the boundary is large, 

if we truncate these high frequency components, the original image may be corrupted 

by some unnecessary noise. 

In Ref. [4], the author proposes a method to solve this problem. Since most of the 

variation is around the boundary region, we can divide the internal texture segments 

into internal part and boundary region part. 

    The way to divide the image segment is making use of morphological erosion. 

For two binary image set A and B, the erosion of A by B, denote A B, is defined as 

 { }| ( )zA B z B A= ⊆�  (3.12) 

where the translation of set B by point z = (z1, z2), denoted (B)z, is defined as 

 { }( ) | ,    for zB c c b z b B= = + ∈  (3.13) 

 That is, the erosion of A by B is the set of all points z such that B which is 

translated by z is contained in A. Base on the definition described above, we erode the 



shapes of image segments by a 5×5 disk-shape image and we get the shape of the 

internal region. Then we subtract it from the original shape and we get the shape of 

boundary region. The process is illustrated in Fig. 3.5. 

 

Fig. 3.5 Divide the image segment by morphological erosion 

 

After transforming and quantizing the internal texture, we can encode the 

quantized coefficients and combine these encoded internal texture coefficients with 

the encoded boundary bit-stream. The full encoding process is shown in Fig. 3.6. 

 

Fig. 3.6 Process of Shape-Adaptive Coding Method 
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4 Conclusion and Future Work 

The DCT-based image compression such as JPEG performs very well at 

moderate bit rates; however, at higher compression ratio, the quality of the image 

degrades because of the artifacts resulting from the block-based DCT scheme. 

Wavelet-based coding such as JPEG 2000 on the other hand provides substantial 

improvement in picture quality at low bit rates because of overlapping basis functions 

and better energy compaction property of wavelet transforms. Because of the inherent 

multi-resolution nature, wavelet-based coders facilitate progressive transmission of 

images thereby allowing variable bit rates. 

We also briefly introduce the technique that utilizes the statistical characteristics 

for image compression. The new image compression algorithm called Shape- 

Adaptive Image Compression, which is proposed by Huang [5], takes advantage of 

the local characteristics for image compaction. The SAIC compensates for the 

shortcoming of JPEG that regards the whole image as a single object and do not take 

advantage of the characteristics of image segments.  

However, the current data compression methods might be far away from the 

ultimate limits. Interesting issues like obtaining accurate models of images, optimal 

representations of such models, and rapidly computing such optimal representations 

are the grand challenges facing the data compression community. Image coding based 

on models of human perception, scalability, robustness, error resilience, and 

complexity are a few of the many challenges in image coding to be fully resolved and 

may affect image data compression performance in the years to come. 
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