

Figure S1. Location of the study regions in Sweden (SWE), Germany (GER) and Spain (Catalonia, CAT; Asturias, AST) (N=number of orchards).

Functional composition metrics

To overcome potential effects of highly correlated traits in the RaoQ calculations, we initially conducted principal coordinate analyses (PCoA) on the standardized trait data (Devictor et al.; 2010). The axes obtained in the PCoA were used to build a Euclidean distance matrix that we used for the RaoQ calculations.

Model selection procedures

When the null model was among the selected models, no variable was considered to be a good predictor of the response variable. Relative importance of a variable was calculated as the sum of the Akaike weights of this variable over all the selected models including this variable (Anderson & Burnham, 2004). To be conservative, explanatory variables were only considered important if their confidence intervals did not overlap with zero and their relative importance was greater than 0.5. Finally, we calculated a likelihood-ratio-based R^2 of the best models as a measure of explanatory power.

REFERENCES

- Anderson, D. & Burnham, K. (2004) Model selection and multi-model inference. Second. NY: Springer-Verlag, 63.
- Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W. & Mouquet, N. (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. *Ecology Letters*, 13, 1030–1040.

Table S1. Cultivars and local and landscape (1-km-radius) features in low-intensity (LI) and high-intensity (HI) apple orchards in Sweden, Germany, Asturias and Catalonia. Means are followed by SD and ranges are in parentheses.

	Swe	den	Germ	any	Astur	ias	Catal	onia				
Distance between nearest orchards (km)	4.6=	±4.9	3.7±	5.3	2.1±1	.0	3.0±2	2.7				
	(0.3-	18.2)	(0.8-3	0.8)	(1.3-5	.4)	(0.7-1	2.3)				
Management (n)*	HI	LI	HI	LI	HI	LI	HI	LI				
	14	14	15	14	0	25	14	14				
Cultivars	Aroma, A Ingrid Mari	Amorosa, e, Rubinola	Braeburn		Braeburn		Regona		Regona		Gala, G	olden
Orchard size (ha) ^a	15.8±11.1	3.7±3.7	1.0±0.6	0.9±0.6	3.06	⊧4.1	1.7±1.1	2.4±2.8				
Local variables												
Flower diversity	1.6±0.5	1.7±0.5	2.0±0.5	2.1±0.5	2.1±	0.5	1.9±0.4	2.0 ± 0.4				
(Shannon's index)	(0.3-2.2)	(1.0-2.6)	(1.0-2.8)	(1.0-2.9)	(0.9-3.2)		(0.9-2.5)	(1.4-2.8)				
Agri-environmental structure cover (m ²) ^b	182.1±188.5	359.7±285.0	144.2±174.7	163.3±152.5	99.8±79.2		211.4±252.8	234.3±184.7				
	(0-630)	(0.0-835.0)	(0.0-528.0)	(0.0-410.2)	(0.0-2	40.0)	(0.0-800.0)	(0.0-600.0)				
Landscape variables ^c												
% Orchard cover	15.4±12.2	11.2±12.8	34.1±16.4	26.9±11.6	8.6±	3.6	41.6±30.5	32.5±31.1				
	(1.5-39.7)	(0.1-42.0)	(7.3-63.7)	(3.4-51.5)	(1.9-1	4.6)	(0.0-97.1)	(0.0-94.3)				
% Pollinator-friendly habitat cover ^d	7.0 ± 6.3	10.5±10.1	2.9 ± 2.0	3.9±2.9	9.1±	4.4	1.4 ± 3.4	7.4±14.5				
	(0.3-18.4)	(0.9-39.3)	(0.4-6.4)	(0.8-11.3)	(2.0-1	7.0)	(0.0-12.2)	(0.0-43.2)				
% Forest cover	14.3 ± 14.1	19.7±14.2	19.3±17.3	18.6±15.9	12.4±	10.3	1.0±2.0	2.6±3.3				
	(0-41.2)	(0.0-41.8)	(4.2-55.4)	(1.2-50.4)	(0.5-3	37.5)	(0.0-6.0)	(0.0-8.4)				
% Arable land cover	40.9±32.7	29.6±19.3	20.9±12.8	27.2±16.4	1.0±	0.7	51.8±29.2	51.0±34.0				
	(1.6-96.0)	(0.5-63.2)	(3.6-56.7)	(4.2-54.4)	(0.0-	2.4)	(0.0-99.4)	(0.0-96.7)				
% Grassland cover	4.97±5.89	8.65±9.79	11.9±5.6	14.4±6.1	47.3±	14.5	0.6±0.9	1.3±2.7				
	(0.0-15.7)	(0.0-37.1)	(3.5-22.7)	(4.3-26.5)	(18.0-	71.0)	(0.0-3.0)	(0.0-7.5)				

*No differences in local and landscape features between management types (ANOVA; all P>0.05). ^a Based on aerial photographs. ^b AES included hedgerows (trees and shrubs), forests (forest edges, riparian forests, tree plantations), fallow lands, orchard meadows, and semi-natural grasslands (including terraced field margins and embankments). ^c We used official digital maps of habitat types for Germany (LGL, 2016. ATKIS Digitales Landschaftsmodell, Baden-Württemberg, Basis-DLM Version 6.0. Landesamt für Geoinformation und Landentwicklung, Stuttgart) and Catalonia (Carreras, J., Diego, F., 2009. Catalan Habitats Cartography, 1:50,000. Departament de Medi Ambient i Habitatge, Generalitat de Catalunya, Barcelona), spatially explicit data from the Swedish Board of Agriculture (Integrated Administrative Control System, IACS) from year 2014, complemented with "Swedish ground covering data raster" from 2000 from the Swedish environmental protection agency (Naturvårdsverket) for Sweden, and a Geographic Information System created ad hoc for Asturias, based on the digitalization of habitat patches from 1:5000-scale orthophotographs (2014). ^d Pollinator-friendly habitats were defined based on expert knowledge, and included semi-natural grasslands, orchard meadows, hedgerows and shrubland.

Table S1. Cultivars and local and landscape (1-km-radius) features in low-intensity (LI) and high-intensity (HI) apple orchards in Sweden, Germany, Asturias and Catalonia. Means are followed by SD and ranges are in parentheses.

	Swe	den	Germ	any	Astur	ias	Catal	onia				
Distance between nearest orchards (km)	4.6=	±4.9	3.7±	5.3	2.1±1	.0	3.0±2	2.7				
	(0.3-	18.2)	(0.8-3	0.8)	(1.3-5	.4)	(0.7-1	2.3)				
Management (n)*	HI	LI	HI	LI	HI	LI	HI	LI				
	14	14	15	14	0	25	14	14				
Cultivars	Aroma, A Ingrid Mari	Amorosa, e, Rubinola	Braeburn		Braeburn		Regona		Regona		Gala, G	olden
Orchard size (ha) ^a	15.8±11.1	3.7±3.7	1.0±0.6	0.9±0.6	3.06	⊧4.1	1.7±1.1	2.4±2.8				
Local variables												
Flower diversity	1.6±0.5	1.7±0.5	2.0±0.5	2.1±0.5	2.1±	0.5	1.9±0.4	2.0 ± 0.4				
(Shannon's index)	(0.3-2.2)	(1.0-2.6)	(1.0-2.8)	(1.0-2.9)	(0.9-3.2)		(0.9-2.5)	(1.4-2.8)				
Agri-environmental structure cover (m ²) ^b	182.1±188.5	359.7±285.0	144.2±174.7	163.3±152.5	99.8±79.2		211.4±252.8	234.3±184.7				
	(0-630)	(0.0-835.0)	(0.0-528.0)	(0.0-410.2)	(0.0-2	40.0)	(0.0-800.0)	(0.0-600.0)				
Landscape variables ^c												
% Orchard cover	15.4±12.2	11.2±12.8	34.1±16.4	26.9±11.6	8.6±	3.6	41.6±30.5	32.5±31.1				
	(1.5-39.7)	(0.1-42.0)	(7.3-63.7)	(3.4-51.5)	(1.9-1	4.6)	(0.0-97.1)	(0.0-94.3)				
% Pollinator-friendly habitat cover ^d	7.0 ± 6.3	10.5±10.1	2.9 ± 2.0	3.9±2.9	9.1±	4.4	1.4 ± 3.4	7.4±14.5				
	(0.3-18.4)	(0.9-39.3)	(0.4-6.4)	(0.8-11.3)	(2.0-1	7.0)	(0.0-12.2)	(0.0-43.2)				
% Forest cover	14.3 ± 14.1	19.7±14.2	19.3±17.3	18.6±15.9	12.4±	10.3	1.0±2.0	2.6±3.3				
	(0-41.2)	(0.0-41.8)	(4.2-55.4)	(1.2-50.4)	(0.5-3	37.5)	(0.0-6.0)	(0.0-8.4)				
% Arable land cover	40.9±32.7	29.6±19.3	20.9±12.8	27.2±16.4	1.0±	0.7	51.8±29.2	51.0±34.0				
	(1.6-96.0)	(0.5-63.2)	(3.6-56.7)	(4.2-54.4)	(0.0-	2.4)	(0.0-99.4)	(0.0-96.7)				
% Grassland cover	4.97±5.89	8.65±9.79	11.9±5.6	14.4±6.1	47.3±	14.5	0.6±0.9	1.3±2.7				
	(0.0-15.7)	(0.0-37.1)	(3.5-22.7)	(4.3-26.5)	(18.0-	71.0)	(0.0-3.0)	(0.0-7.5)				

*No differences in local and landscape features between management types (ANOVA; all P>0.05). ^a Based on aerial photographs. ^b AES included hedgerows (trees and shrubs), forests (forest edges, riparian forests, tree plantations), fallow lands, orchard meadows, and semi-natural grasslands (including terraced field margins and embankments). ^c We used official digital maps of habitat types for Germany (LGL, 2016. ATKIS Digitales Landschaftsmodell, Baden-Württemberg, Basis-DLM Version 6.0. Landesamt für Geoinformation und Landentwicklung, Stuttgart) and Catalonia (Carreras, J., Diego, F., 2009. Catalan Habitats Cartography, 1:50,000. Departament de Medi Ambient i Habitatge, Generalitat de Catalunya, Barcelona), spatially explicit data from the Swedish Board of Agriculture (Integrated Administrative Control System, IACS) from year 2014, complemented with "Swedish ground covering data raster" from 2000 from the Swedish environmental protection agency (Naturvårdsverket) for Sweden, and a Geographic Information System created ad hoc for Asturias, based on the digitalization of habitat patches from 1:5000-scale orthophotographs (2014). ^d Pollinator-friendly habitats were defined based on expert knowledge, and included semi-natural grasslands, orchard meadows, hedgerows and shrubland.

Table S3. List of pollinator species and morphospecies and their abundances (total number of individuals surveyed) in each region (SWE = Sweden, GER = Germany, AST = Asturias, CAT= Catalonia).

	Species	Pollinator group	SWE	GER	AST	CAT	Total
1	Andrena bicolor	bees	0	0	5	0	5
2	Andrena cineraria	bees	0	16	0	0	16
3	Andrena dorsata	bees	0	0	10	0	10
4	Andrena flavipes	bees	0	1	10	1	12
5	Andrena fulva	bees	20	3	1	0	24
6	Andrena haemorrhoa	bees	50	12	4	0	66
7	Andrena helvola	bees	4	0	0	0	4
8	Andrena humilis	bees	0	0	1	0	1
9	Andrena jacobi	bees	0	3	0	0	3
10	Andrena lathyri	bees	0	0	1	0	1
11	Andrena leptopyga	bees	0	0	1	0	1
12	Andrena limata	bees	0	0	0	2	2
13	Andrena minutula	bees	0	0	4	0	4
14	Andrena nigroaenea	bees	17	0	15	2	34
15	Andrena nitida	bees	0	3	1	0	4
16	Andrena pilipes	bees	0	0	8	0	8
17	Andrena sp.	bees	26	36	1	13	76
18	Anthophora plumipes	bees	0	0	0	8	8
19	Apis mellifera	bees	1004	1418	1247	2733	6402
20	Bombus hortorum	bees	0	1	0	0	1
21	Bombus hypnorum	bees	4	0	0	0	4
22	Bombus lapidarius	bees	6	15	0	0	21
23	Bombus pascuorum	bees	3	19	12	2	36
24	Bombus pratorum	bees	2	6	14	0	22
25	Bombus sp.	bees	11	7	2	0	20
26	Bombus terrestris	bees	88	60	90	40	278
27	Eucera nigrilabris	bees	0	0	1	7	8
28	Halictus crenicornis	bees	0	0	1	0	1
29	Halictus scabiosae	bees	0	0	2	0	2
30	Halictus sp.	bees	0	0	2	0	2
31	Halictus tumulorum	bees	0	0	14	0	14
32	Lasioglossum calceatum	bees	0	0	2	0	2
33	Lasioglossum fulvicorne	bees	0	0	1	0	1
34	Lasioglossum morio	bees	0	0	1	0	1
35	Lasioglossum pallens	bees	0	0	5	0	5
36	Lasioglossum pauxillum	bees	0	0	8	0	8
37	Lasioglossum punctatissimum	bees	0	0	3	0	3
38	Lasioglossum sp.	bees	0	5	0	0	5
30	Lasioglossum zonulum	bees	0	0	1	0	1

I	40	Nomada succincta	hees	0	0	1	0	1
	40 //1	Osmia aurulanta	hees	0	1	0	0	1
	11 12	Osmia hicornis	bees	0	1	2	0	3
	42	Osmia comuta	bees	0	1 2	2	18	20
	43	Osmia cornula	bees	0	ے ۱	0	10	20
	44	Osmia sp.	bees	0	1	0	0	1
	45		bees	0	0	0	8	8
	46	Agrypnus murinus	beetles	0	0	1	0	1
	47	Cantharis sp.	beetles	0	0	2	28	30
	48	Curculionidae	beetles	6	0	0	0	6
	49	<i>Meligethes</i> sp.	beetles	0	0	0	1	1
	50	Oedemera nobilis	beetles	0	0	1	0	1
	51	Oxythyrea funesta	beetles	0	0	12	18	30
	52	Ragonycha fulva	beetles	0	0	1	0	1
	53	Tropinota squalida	beetles	0	0	0	11	11
	54	Cheilosia pagana	hoverflies	0	0	1	0	1
	55	Episyrphus balteatus	hoverflies	0	1	9	7	17
	56	Eristalinus aeneus	hoverflies	0	0	0	1	1
	57	Eristalis arbustorum	hoverflies	0	0	2	0	2
	58	Eristalis interrupta	hoverflies	0	0	1	0	1
	59	Eristalis pertinax	hoverflies	15	0	0	0	15
	60	Eristalis similis	hoverflies	0	0	15	0	15
	61	<i>Eristalis</i> sp.	hoverflies	0	0	110	1	111
	62	Eristalis tenax	hoverflies	0	0	143	71	214
	63	Eupeodes corollae	hoverflies	0	0	9	2	11
	64	Helophilus hybridus	hoverflies	0	0	0	2	2
	65	Helophilus pendulus	hoverflies	0	0	1	0	1
	66	Helophilus sp.	hoverflies	0	0	1	2	3
	67	Helophilus trivitattus	hoverflies	0	0	0	2	2
	68	Melanostoma mellinum	hoverflies	4	0	°	0	10
	69	Melanostoma scalare	hoverflies	1	0	0	24	25
	70	Meliscaeva auricollis	hoverflies	0	0	10	0	10
	71	Neoascia podagrica	hoverflies	0	0	1	0	1
	72	Platycheirus albimanus	hoverflies	0	0	1	0	1
	72	Platycheirus noltatus	hoverflies	3	0	0	0	3
	73 74	Rhingia campostris	hoverflies	3	1	0	0	7
	75	Kningtu cumpesiris	hoverflies	0	-	0	1	1
	75	Scueva albomaculaid	hoverflies	0	0	11	1	1
	70	Sphuerophoria scripia	hoverflies	0	0	11	1	12
	70	Syrphus ribesti	novermes	0	0	4	0	4
	/8 70	Syrpnus vitripennis	noverfiles	1	0	9	0	10
	/9	Xanthandrus comtus	noverflies	0	0	3	0	3
	80	Bibio hortulanus	other flies	0	0	0	4	4
	81	Big-sized fly	other flies	5	10	3	102	120
	82	Bombylius major	other flies	0	1	1	0	2
	83	Bombylius sp.	other flies	0	17	0	2	19
	84	Dilophus sp.	other flies	0	0	0	2	2
	85	Muscidae	other flies	47	119	0	0	166
	86	<i>Empis</i> sp.	other flies	12	0	1	0	13
	87	Medium-sized fly	other flies	14	0	0	76	90

88	Sarcophaga carnaria	other flies	0	4	0	0	4
89	Small sized-fly	other flies	0	0	0	84	84
90	Macroglossum stellatarum	others	0	0	0	2	2
91	Pieris brassicae	others	0	0	0	3	3
92	Pieris napi	others	0	0	0	1	1
93	Pieris sp.	others	0	1	0	0	1
94	Polistes dominulus	others	0	0	0	4	4
95	Tenthredo koehleri	others	0	0	1	0	1
96	Vanessa cardui	others	14	0	0	5	19
97	<i>Vespula</i> sp.	others	1	0	0	0	1
98	Vespula germanica	others	0	0	0	1	1
99	Vespula vulgaris	others	0	1	0	0	1
	Total		1361	1768	1832	3292	8253

ALL POLLINATORS		r	n	Р
Body length	Hairiness ^a	0.57	98	<0.001
BEES				
Intertegular span ^a	Mouthparts length	0.79	44	<0.001
	Hairiness ^a	0.67	44	<0.001
	Forewing aspect ratio	0.16	44	0.291
Mouthparts length	Hairiness ^a	0.60	44	<0.001
	Forewing aspect ratio	-0.02	44	0.882
Hairiness ^a	Forewing aspect ratio	0.05	44	0.749

Table S4: Pearson's correlation (*r*) between numerical functional traits. Significant relationships are in bold (P < 0.05).

^a Data transformation: Log(X+1)

Table S5: Pearson's correlation (*r*) between pairs of explanatory variables. Significant relationships are in bold (P < 0.05).

Variable 1	Variable 2	r	n	Р
Agri-environmental structure cover ^a	Flower diversity	0.030	110	0.767
	% Orchard cover ^b	0.120	110	0.206
	% Pollinator-friendly habitat cover ^b	0.200	110	0.035
Flower diversity	% Orchard cover ^b	0.070	110	0.454
	% Pollinator-friendly habitat cover ^b	0.080	110	0.380
% Orchard cover ^b	% Pollinator-friendly habitat cover ^b	-0.180	110	0.055

Data transformation: ^a Square-root, ^b Log(X+1).

Table S6: Pearson's (*r*) and Spearman's rank (ρ) correlations between pairs of numerical predictors of initial fruit set (CWM of single traits, multiple-trait RaoQ, pollinator visitation rate). Significant relationships are in bold (P < 0.05).

Variable 1	Variable 2	r	ρ	n	Р
CWM hairiness	CWM body length	0.82		81	<0.001
	CWM pollinivorous larvae		0.37	81	<0.001
	CWM insectivorous larvae		-0.36	81	<0.001
	Pollinator visitation rate		0.36	81	<0.010
CWM body length	CWM pollinivorous larvae		0.42	81	<0.001
	CWM insectivorous larvae		-0.31	81	<0.010
	Pollinator visitation rate		0.47	81	<0.001
CWM pollinivorous larvae	CWM insectivorous larvae		-0.54	81	<0.001
	Pollinator visitation rate		0.06	81	0.607
CWM insectivorous larvae	Pollinator visitation rate		-0.082	81	0.466

Table S7: Statistical outputs of model averaging (average of best-fit models; $\Delta AICc < 2$) relating wild pollinator and wild bee functional composition metrics (response variables) to local and landscape features (predictor variables) without outlier exclusion. Response variables of models in which a null model was selected among the best-fit model are not shown. Estimated coefficients, their 95% intervals (in parentheses) and relative importance (in brackets) are provided. Variables not appearing in the model average are indicated with "-". R²m and R²c are the range values of marginal and conditional R² of the best-fit models, respectively. R² of the best model is indicated in parentheses. "Sites" indicates the number of orchards included in the model. Significant terms are in bold.

Response variable	Management*	Flower diversity	AE structure cover	% orchard cover	% Pollinator friendly habitat cover	R ² m	R ² c	Sites
ALL POLLINATORS								
CWM Body length	0.404 [0.21] (-0.444, 1.252)	0.103 [0.16] (-0.288, 0.494)	-	-0.454 [0.81] (-0.872, -0.035)	0.585 [1] (0.190, 0.981)	0.08-0.16 (0.14)	0.18-0.19 (0.18)	109
CWM Hairiness ^a	-	-	-0.451 [0.56] (-1.035, 0.134)	-0.641 [0.84] (-1.258, -0.024)	0.552 [0.69] (-0.022, 1.125)	0.06-0.11 (0.11)	0.12-0.17 (0.17)	109
CWM Pollinivorous larvae	-	-	-	-0.037 [0.41] (-0.096, 0.023)	0.114 [1] (0.060, 0.167)	0.12-0.14 (0.12)	0.38 (0.38)	109
CWM Insectivorous larvae ^a	-	0.037 [0.66] (-0.005, 0.079)	0.070 [1] (0.028, 0.112)	-	-0.011 [0.18] (-0.053, 0.032)	0.09-0.11 (0.10)	0.22-0.24 (0.24)	109
BEES								
RaoQ	6.805 [1] (1.303, 12.308)	_	-	-2.885 [1] (-5.552, -0.217)	1.672 [0.41] (-0.980, 4.325)	0.13-0.14 (0.13)	0.13-0.14 (0.13)	110

Data transformations: ^aSquare-root

*Low-Intensity is the reference level of management

Table S8: Statistical outputs of model averaging (average of best-fitted models; $\Delta AICc < 2$) relating initial fruit set to management (low-intensity vs high-intensity), functional composition metrics, the interaction between management and functional composition metrics and pollinator visitation rate. The first model includes single-trait metrics (CWM: hairiness, pollinivorous larvae) and the second includes functional diversity (multi-trait RaoQ) without excluding outliers. Estimated coefficients, their 95% intervals (in parentheses) and relative importance (in brackets) are provided. Variables not appearing in the model average are indicated with "-". R²m and R²c are the marginal and conditional R² range values of the best-fitted model, respectively. R² of the best model is indicated in parentheses. "Sites" indicates the number of orchards included in the model. Significant terms are in bold.

ALL POLLINATOR	RS								
Response variable	Management*	CWM hairiness	CWM pollinivorous larvae	CWM hairiness x management	CWM pollinivorous larvae _x management	Visitation rate	R ² m	R ² c	Sites
Inital fruit set ^a	-1.399 [1] (-2.073, -0.726)	-	-0.019 [0.62] (-0.532, 0.495)	-0.572 [0.37] (-1.209, 0.065)	-	-	0.17-0.22 (0.17)	0.17-0.22 (0.17)	81
	Management*	RaoQ	RaoQ x management			Visitation rate	R ² m	R ² c	Sites
Inital fruit set ^{a **}	-1.412 (-2.047, -0.776)	-0.177 (-0.680, 0.327)	0.838 (0.207, 1.470)			-	0.28 (0.28)	0.28 (0.28)	81

Data transformations: ^a Square-root

*Low-Intensity is the reference level of management

**Only one best model was selected

Table S9: Moran's I autocorrelation test of model residuals. Values of observed and expected (assuming no spatial autocorrelation) Moran's I are shown. P-values (P) < 0.05 indicate lack of spatial autocorrelation.

		Moran's I	Moran's I	
Pollinator group	Model ID	observed	expected	Р
All pollinators	Multi-trait RaoQ	-0.03	-0.04	0.44
•	Multi-trait FDiv	0.05	-0.01	0.08
	CWM body length	0.04	-0.04	0.08
	CWM hairiness	-0.14	-0.04	0.95
	CWM pollenivorous larvae	-0.06	-0.04	0.65
	CWM insectivorous larvae	-0.06	-0.05	0.60
	FDiv body length	-0.03	-0.04	0.40
	FDiv hairiness	-0.09	-0.04	0.81
	FDiv larval feeding habits	-0.04	-0.04	0.46
Only bees	Multi-trait RaoQ	-0.03	-0.04	0.42
	Multi-trait FDiv	-0.05	-0.04	0.53
	CWM ITS	-0.08	-0.05	0.69
	CWM forewing aspect ratio	-0.04	-0.05	0.46
	CWM hairiness	-0.08	-0.05	0.72
	CWM solitary/social	0.01	-0.05	0.21
	CWM multivoltine	-0.12	-0.05	0.88
	CWM univoltine	-0.08	-0.05	0.72
	CWM above-ground nesters	-0.11	-0.05	0.79
	CWM below-grownd nesters	-0.12	-0.05	0.82
	FDiv Intertegular-span	-0.06	-0.05	0.56
	FDiv forewing aspect ratio	-0.06	-0.04	0.64
	FDiv hairiness	-0.04	-0.04	0.51
	FDiv sociality	-0.07	-0.04	0.68
	FDiv voltinism	0.07	-0.04	0.04
	FDiv nesting site	-0.11	-0.04	0.88
All pollinators	-			
(including honeybees)	RaoQ Initial fruit set	-0.11	-0.05	0.85
,	FDiv Initial fruit set	-0.08	-0.05	0.69

Table S10: Linear mixed models (with region as a random effect) testing differences between low- (LI) and high-intensity orchards (HI) in visitation rate and abundance of honeybees and of all pollinators.

Response variable	Fixed effect	estimate	SE	t	df	Р
Honor has relation rate	Intercept	0.93	0.48	1.93	3.04	0.148
noney dee visitation rate	Management (LI)	0.08	0.07	1.18	104.2	0.239
Honoy boo obundanco	Intercept	6.87	0.75	9.12	5.85	<0.001
noney dee adundance	Management (LI)	0.10	0.66	0.15	104.9	0.879
All pollingtors visitation rate	Intercept	1.16	0.65	1.81	3.01	0.168
All politilators visitation rate	Management (LI)	0.15	0.59	2.53	105.1	<0.05
All pollingtors abundance	Intercept	8.18	0.81	10.14	4.99	<0.001
All polititators abundance	Management (LI)	0.38	0.64	0.60	107.5	0.552

Data transformations: a Square-root

Table S11: Linear mixed models (with region and variety as random effect) testing the effect of functional diversity (multi-trait RaoQ) on initial fruit set in low- and high-intensity orchards.

Response variable	Fixed effect	estimate	SE	t	df	Р
Initial fruit set ^a	Intercept	3.01	0.12	24.31	1.56	0.006
	RaoQ	0.19	0.09	2.03	46.81	0.048
Initial fruit set ^a	Intercept	3.62	0.08	45.6	25.00	<0.001
	RaoQ	-0.11	0.08	-1.28	25.00	0.213
	Response variable Initial fruit set ^a Initial fruit set ^a	Response variableFixed effectInitial fruit setaIntercept RaoQInitial fruit setaIntercept RaoQ	$\frac{\text{Response}}{\text{variable}} \begin{array}{l} \text{Fixed effect} \\ \text{estimate} \\ \hline \text{Intercept} \\ \hline \text{RaoQ} \\ \hline \textbf{0.19} \\ \hline \text{Intercept} \\ \hline \textbf{3.62} \\ \hline \text{RaoQ} \\ \hline \textbf{-0.11} \\ \end{array}$	$\frac{\text{Response}}{\text{variable}} + \frac{\text{Fixed effect}}{\text{RacQ}} + \frac{\text{estimate}}{3.01} + \frac{\text{SE}}{0.09}$ $\frac{\text{Intercept}}{\text{RacQ}} + \frac{3.01}{0.09} + \frac{0.09}{0.09}$ $\frac{\text{Intercept}}{\text{RacQ}} + \frac{3.62}{0.08} + \frac{0.08}{0.08}$	$\frac{\text{Response}}{\text{variable}} \begin{array}{l} \text{Fixed effect} \text{estimate} SE t \\ \hline \\ \text{Initial fruit set}^a \begin{array}{l} \text{Intercept} \textbf{3.01} \textbf{0.12} \textbf{24.31} \\ \hline \\ \text{RaoQ} \textbf{0.19} \textbf{0.09} \textbf{2.03} \\ \hline \\ \text{Initial fruit set}^a \begin{array}{l} \text{Intercept} \textbf{3.62} \textbf{0.08} \textbf{45.6} \\ \hline \\ \text{RaoQ} -0.11 0.08 -1.28 \end{array} \right.$	

Data transformations: a Log (X+1)

Table S12: Statistical outputs of model averaging (average of best-fit models; $\Delta AICc < 2$) relating wild pollinator and wild bee functional composition response variables (FDiv) to local and landscape features. Response variables of models in which a null model was selected among the best-fit models are not shown. Estimated coefficients, their 95% intervals (in parentheses) and relative importance (in brackets) are provided. Significant terms are in bold. "-" denotes variables not appearing in the model average. R²m and R²c are the range of marginal and conditional R² of the best-fit models, respectively. R² of the best model is indicated in parentheses. "Sites" indicates the number of orchards included in the model.

Response variable	Management*	Flower diversity	AES cover	% Orchard cover	% Pollinator friendly habitat cover	R ² m	R ² c	Sites
BEES								
¹ FDiv	0.096 [0.35] (-0.048, 0.241)	-	-0.024 [0.19] (-0.093, 0.045)	-0.116 [1] (-0.185, -0.046)	0.109 [1] (0.040, 0.177)	0.22-0.23 (0.22)	0.22-0.23 (0.22)	106
² FDiv	0.077 [0.28] (-0.068, 0.221)	-	-0.026 [0.22] (-0.095, 0.043)	-0.108 [1] (-0.178, -0.039)	0.093 [1] (0.024, 0.163)	0.17-0.18 (0.17)	0.17-0.18 (0.17)	110

Outlier exclusion: Applied¹; Not applied²

*Low-intensity is the reference level of management

Table S13: Statistical outputs of model averaging (average of best-fit models; $\Delta AICc < 2$) relating initial fruit set to management (low-intensity vs high-intensity), functional composition metrics, the interaction between management and functional composition metrics (FDiv) and pollinator visitation rate. Response variables of models in which a null model was selected among the best-fit models are not shown. Estimated coefficients, their 95% intervals (in parentheses) and relative importance (in brackets) are provided. Significant terms are in bold. "-" denotes variables not appearing in the model average. R^2m and R^2c are the range of marginal and conditional R^2 of the best-fit models, respectively. R^2 of the best model is indicated in parentheses. "Sites" indicates the number of orchards included in the model.

ALL POLLINATO	ORS						
	Management*	FDiv	FDiv x management	Visitation rate	R ² m	R ² c	Sites
¹ Inital fruit set ^{a*}	-1.398 [1] (-2.029, -0.767)	-0.109 [1] (-0.898, 0.679)	0.818 [0.78] (0.045, 1.591)	-0.185 [0.27] (-0.520, 0.150)	0.27-0.33 (0.31)	0.27-0.33 (0.31)	74
² Inital fruit set ^a *	-1.385 [1] (-2.052, -0.717)	-0.297 [0.67] (-0.754, 0.159)	0.773 [0.67] (0.141, 1.405)	-	0.17-0.23 (0.23)	0.17-0.23 (0.23)	81
Outlier exclusion:	Applied ¹ ; Not applie	d^2					

Data transformations: ^aSquare-root

*Low-intensity: reference level of management