Genética General. Segundo control. 29 de Abril de 2010.

Apellidos	Nombre	Firma:

1/2- La siguiente tabla da las frecuencias de los distintos alelos de cuatro microsatélites en una población.

DYS18	Cromosoma Y
Alelo	Frecuencia
4	0,0900
5	0,1413
6	0,2102
7	0,2439
8	0,1344
9	0,0912
10	0,0089

TPOX	Cromosoma 2
Alelo	Frecuencia
7	0,0053
8	0,5374
9	0,1103
10	0,0534
11	0,2651
12	0,0267
13	0,0018

D3S1358	Cromosoma 3
Alelo	Frecuencia
12	0,0098
13	0,0049
14	0,0931
15	0,2549
16	0,2059
17	0,2598
18	0,1471
19	0,0245

D8S1179	8	
Alelo	Frecuencia	
8	0,0151	
9	0,0202	
10	0,0656	
11	0,0707	
12	0,1187	
13	0,3209	
14	0,2146	
15	0,1742	

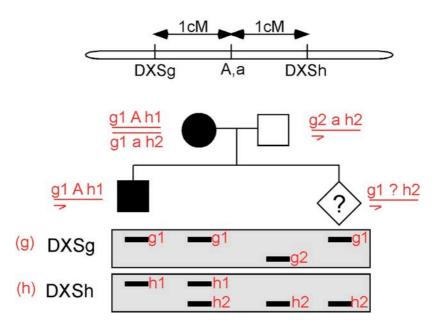
Cromosoma

A partir de esos datos, resuelva la paternidad que se indica a continuación,

Microsatélite	Madre	Hijo	Presunto padre
DYS18	-	9	9
TPOX	12,9	11,12	11,11
D3S1358	16,15	13,16	13,16
D8S1179	8,14	8,15	10,15

dada la siguiente tabla de correspondencia entre índices y expresiones verbales de consenso.

Indice de Paternidad	Paternidad:
Mayor de 399:1	Prácticamente Probada
Mayor de 99:1	Extremadamente Probable
Mayor de 19:1	Muy Probable
Mayor de 9:1	Probable
Menor de 9:1	Sin indicios


(5 puntos)

No se descarta la paternidad del presunto padre porque existe posibilidad de transmisión mendeliana de padre a hijo para todos los microsatélites incluído el del cromosoma Y. Por lo tanto se procede al cálculo del índice de paternidad:

```
X = 1 * 1 * 0.5 * 0.5 = 0.25 o, si no se fija el sexo, X = 0.5 * 1 * 0.5 * 0.5 = 0.125 Y = 0.0912 * 0.2651 * 0.0049 * 0.1742 = 2.06 <math>10^{-5} o, si no se fija el sexo, Y = 0.0912/2 * 0.2651 * 0.0049 * 0.1742 = 1.03 <math>10^{-5} IP = X / Y = 12114, que supera el límite de 399.
```

La paternidad está "prácticamente probada"

2/2- Los individuos marcados en negro presentan una variante del síndrome de *Alport* causada por el alelo DOMINANTE (A) de un gen localizado en el cromosoma X. La mujer afectada está embarazada (feto marcado con ?) y se le practicó una amniocentesis. Se secuenció parte del gen en los individuos afectados pero no se pudo determinar el cambio en el ADN responsable de la anomalía. Entonces, se decidió analizar dos microsatélites (DXSg y DXSh) que están estrechamente ligados al gen (ver mapa genético). Establezca el sexo del feto y la probabilidad de que lleve el alelo A responsable del síndrome. **(5 puntos)**

El feto es un niño porque no tiene el alelo g2 del padre.

El microsatélite DXSg no da información sobre la transmisión del gen A porque la mujer es homocigótica glg1.

Lo más probable (99%) es que la madre tenga constitución A_h1/a_h2 ya que su primer hijo es A_h1. Si esto es así, la probabilidad de que el feto sea A llevando h2 es del 1%.