Genética General. Grupo A. Segundo parcial. 5 de Febrero de 2016.

Apellidos Nombre Firma:

1/4- Ud. trabaja en un laboratorio de genética forense que realiza miles de pruebas de paternidad al año con fiabilidad absoluta. Se le presenta un caso en el que se duda de la paternidad biológica del padre y se toman muestras de la mucosa del lado derecho de la boca que se analizan con los siguientes resultados:

FRECUENCIAS EN LA POBLACION DE REFERENCIA:

DXS215	Crom. X		
Alelo	Frecuencia		
4	0,0900		
5	0,1413		
6	0,2102		
7	0,2439		
8	0,1344		
9	0,1113		
10	0,0690		

TPOX	Crom 2			
Alelo	Frecuencia			
7	0,0053			
8	0,5374			
9	0,1103			
10	0,0534			
11	0,2651			
12	0,0267			
13	0,0018			

Frecuencia
0,0098
0,0049
0,0931
0,2549
0,2059
0,2598
0,1471
0,0245

D8S1179	Crom 8
Alelo	Frecuencia
8	0,0151
9	0,0202
10	0,0656
11	0,0707
12	0,1187
13	0,3209
14	0,2146
15	0,1742

RESULTADOS:

Microsatélite	Madre	Hija	Presunto padre	
DXS215	5,10	7,7	7	
TPOX	9,12	12,12	12,12	
D3S1358	15,16	13,17	13,16	
D8S1179	8,14	9,12	9,10	

EXPRESIONES DE CONSENSO:

Indice de Paternidad	Paternidad:
Mayor de 399:1	Prácticamente Probada
Mayor de 99:1	Extremadamente Probable
Mayor de 19:1	Muy Probable
Mayor de 9:1	Probable
Menor de 9:1	Sin indicios

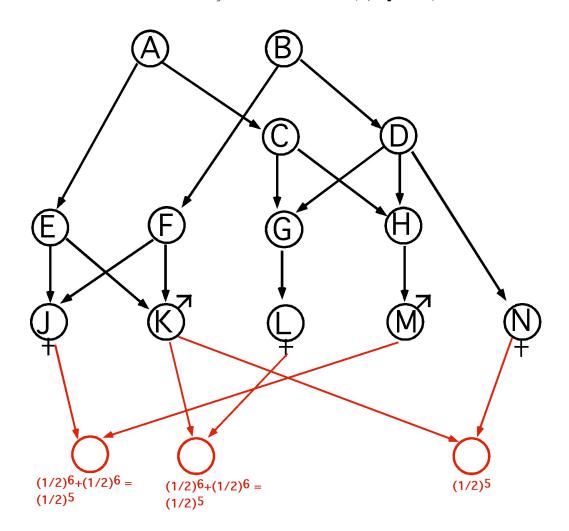
- a) Resuelva la paternidad. (0,2 puntos)
- La mujer no es la madre biológica.
- Prueba del padre:

X:=1*1*(1/2*0+1/2*1/2)*(1/2*0+1/2*1/2) = 1/16 $Y:=0,2439*0,0267*(0,2598/2+0,0049/2)+(0,1187/2+0,0202/2) = 5,99 10^{-5}$ $IP:=1044 \Rightarrow PRACTICAMENTE PROBADA$

b) Ante la negativa de la madre a aceptar el resultado, se repite el análisis usando en este caso muestras de un raspado de piel de una zona de la mano izquierda. Además, se realizan otros análisis que indican que todos los individuos son de aspecto fenotípico y cariotipos normales. Resuelva definitivamente la paternidad explicando su conclusión en relación a estos resultados tan extraños. (1,8 puntos)

Microsatélite	Madre	Madre Hija	
DXS215	5,7	7,7	7
TPOX	9,12	12,12	12,12
D3S1358	15,17	13,17	13,16
D8S1179	8.12	9.12	9.10

- La mujer si es la madre biológica


X:=1*1*1/2*1/2 = 1/4

 $Y := 0,2439*0,0267*0,0049*0,0202 = 6,45 \cdot 10^{-7}$

IP:= 387855 => Prácticamente probada

La madre es probablemente una quimera resultado de la fusión de dos embriones distintos.

2/4- Un criador de perros dispone este año de cinco reproductores que están emparentados. Son los cinco individuos de la última generación de la genealogía que se indica (J-N). Preocupado por las consecuencias negativas de la endogamia, le pide que a Ud. que le indique cuales son los cruzamientos recomendados para obtener una camada de cada hembra. **(0,5 puntos)** Calcule también los coeficientes de endogamia resultantes. **(1,5 puntos)**

3/4- Se dispone de cuatro cepas mutantes (S1, S2, S3 y S4) de *Sordaria fimicola* que se caracterizan por producir esporas sexuales de color claro muy distintas del color oscuro normal. El color de la espora depende del genotipo de la propia espora. Cuando se cruza cada una de las cuatro cepas con una cepa normal se obtienen siempre proporciones 1/2:1/2 de claros frente a oscuros. También se realizaron cruzamientos entre las cuatro cepas obteniéndose los resultados que se indican. Dé una explicación completa indicando los genotipos de acuerdo a la hipótesis que plantee. **(2 puntos)**

```
S1 x S2  
a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b c x a b
```

Cada cepa lleva una sola mutación que afecta al color de la espora. Habría tres genes (a, b y c) siendo S1 y S2 mutantes para el mismo gen probablemente. Las mutaciones de las cepas S3 y S4 están ligados (r=0,14)

4/4- En la alubia (*Phaseolus vulgaris*) existen 3 genes (A, B y C) que controlan tres caracteres distintos. Los respectivos alelos recesivos (a, b y c) determinan fenotipos diferentes del normal. Plantas triples heterozigóticas para estos genes procedentes de una F_1 se cruzaron con plantas triples homozigóticas recesivas. Los fenotipos de la descendencia de este cruzamiento se da en la siguiente tabla:

Fenotipo:	(ABC)	Total							
Número:	2	25	51	430	424	45	20	3	1000

Los mismos individuos agrupados por pares de caracteres son los siguientes:

	(A)	(a)
(B)	27	469
	252,0	244,0
(b)	481	23
	256,0	247,0

x2 = 637 >> 3,84

	(B)	(b)
(C)	426	71
	246,5	250,5
(c)	70	433
	249,5	253,5

X2 = 516>>3,84

$$X2 = 810>>3,84$$

Determine si están ligados y elabore un mapa genético. (2 puntos)

Grados de libertad		Probabilidad						Distribución χ^2	
libertad	0.70	0.50	0.30	0.20	0.10	0.05	0.01	0.001	
1 2 3	0.15	0.46	1.07	1.64	2.71	3.84	6.64	10.83 13.82 16.27	
2	0.71	1.39	2.41	3.22	4.60	5.99	9.21	13.82	
3	1.42	2.37	3.66	4.64	6.25	7.82	11.34	16.27	