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German-Spanish Conference on Optimization). Universidad de Oviedo.

La autorı́a de cualquier artı́culo o texto utilizado del libro deberá ser reconocida complementariamente.
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PRESENTATION

The first edition of the of the French-German Congress of Optimization started back in 1980 in Ober-
wolfach (Germany) as a meeting of French and German mathematicians who shared a common interest
in different aspects of mathematical optimization. Since this edition, researchers of other countries
have participated in this congress and, starting in 1998 a third country is invited to participate in the
organization.

On this occasion, we have had the honour to be chosen to host it in Spain, so this is a French-German-
Spanish conference (FGS2024, https://www.unioviedo.es/fgs2024/). It takes place in the Campus of Gijón
of the Universidad de Oviedo, in the Spanish region of Asturias.

In this book you can find the one-page-abstracts of the one hundred and thirty-four talks that will
be presented along the conference. The congress includes twelve plenary speakers, thirteen mini-
symposia and six thematic sessions, where theoretical aspects, practical optimization methods and
applications are discussed. Together with the classical topics in optimization such as mixed or integer
programming, convex optimization, algorithms, or optimal control, in this edition we can also find an
increasing number of contributions dealing with machine learning, neural networks, data mining and
other applications to artificial intelligence, a field where optimization plays a crucial role in the design
and understanding of efficient algorithms.

We would like to thank all the people that have made this congress possible: all the authors and
coauthors of presentations, the scientific committee, the technical secretariat of the Foundation Uni-
versidad de Oviedo, the students that have volunteered, and our sponsors.

The local organizing committee from the Universidad de Oviedo
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Marco Antonio López Cerdá . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Double control problem: domains and coefficients for elliptic equations
Juan Casado Dı́az, Manuel Luna Laynez, Faustino Maestre . . . . . . . . . . . . . . . . . . . . . . . . . 57

Maximum Likelihood Estimation of the covariance matrix of Gaussian Markov Random Fields
over graphs of paths
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The data-weight duality for deep learning inverse problems

Christoph Brune

c.brune@utwente.nl University of Twente, The Netherlands

Scientific machine learning combines the approximation capabilities of machine learningwithmodeling and

numerical analysis of PDEs leading to digital twinswhere data-driven andmodel-driven techniques are com-

bined. In this context, deep kernel representations have the potential to form an integral link between scien-

tific computing, inverse problems, uncertainty quantification, and machine learning towards the nonlinear

analysis of deep neural operators.

Reproducing kernel Hilbert spaces (RKHS) have been successful in various areas ofmachine learning, like

kernel SVMs, relating model and feature representations. Recently, Barron spaces have been used to prove

bounds on the generalization error for neural networks. Unfortunately, Barron spaces cannot be understood

in terms of RKHS due to the strong nonlinear coupling of the weights in neural network representations [1].

This can be solved by using the more general Reproducing Kernel Banach spaces (RKBS).

Fig. 1 Barron Space Duality for Neural Networks through Reproducing Kernel Banach Spaces

 

As a key result, we can show that the dual space of such RKBSs, is again an RKBS where the roles of the

data and parameters are interchanged, forming an adjoint pair of RKBSs including a reproducing kernel [2].

The duality provides a natural construction of saddle point optimization for active learning and scale

space flows of neural networks [3] and enables sparse architecture search, model exploration, model-order

reduction, or deep kernel learning following sparse representer theorems. Impactful applications for such

deep kernel representations include high-dimensional biomedical flow imaging or structure-preserving dy-

namics in robotic systems.

This work is based on joint collaborations with Martin Burger, Tim Roith, Len Spek, Tjeerd Jan Heeringa,

and Felix Schwenninger.
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Mathematical optimization models in explainable machine learning.

Hop on / hop off tour

Emilio Carrizosa

ecarrizosa@us.es Universidad de Sevilla, Spain

1. Introduction

In the burgeoning field of Machine Learning, Mathematical Optimization is crucial to define procedures

which, on top of enjoying a high accuracy, take into account other aspects such as Transparency or Fairness.

In this talk, a personal overview of the topic, with main focus on the work being developed by our team, will

be given.

Transparency and Fairness can be induced in a classification/regression framework by appropriately

adding constraints (soft or hard) which either allows us to control the features involved or for the classifica-

tion/regression model to predict similar results, either in terms of accuracy or in terms of predicted value,

for different subgroup of individuals. Illustrations in Sparse Optimal Trees and Support VectorMachineswill

be discussed.

We will also describe new models on Counterfactual Analysis. In Supervised Classification, Counterfac-

tual Analysismeans associatingwith each record a so-called counterfactual explanation, i.e., an instance close

to the record (closeness measured by an appropriate and context-dependent metric) and whose probability

of being in the positive class, according to the classifier given, is high. While the literature focuses on the

problem of finding one counterfactual for one record, in this talk we address the more general setting in

which a group of counterfactual explanations is sought for a group of instances, or several counterfactuals

are to be defined for one record. Explainability will be addressed through sparsity, by controlling as an extra

criterion in this multiple-objective problem the number of features involved.

Interpretable models in Multiple-Objective Inverse Optimization will be also described: Assuming pairs

of contexts (parameters) anddecisions are given, one seeks the (linear) functions and their associatedweights

such that the decisions given are optimal under the context given. Identifying weights and eventually the

most relevant features in the contexts spacewill be expressedasMathematicalOptimizationproblems,whose

structure will be discussed.
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Unilateral analysis, orientation and determination

Aris Daniilidis

aris.daniilidis@tuwien.ac.at (VADOR E105-04), TU Wien, Austria

The norm of the gradient ‖∇𝑓(𝑥)‖ measures the maximum descent of a smooth function 𝑓 at 𝑥. For nons-

mooth convex functions, this is expressed by the remoteness of the subdifferential (that is, the distance of

𝜕𝑓(𝑥) to the origin), while for general real-valued functions defined onmetric spaces by the notion of metric

slope 𝑠𝑓(𝑥) due to De Giorgi. More generally, an axiomatic definition of descent modulus is possible, for func-

tions defined on general spaces (not necessarily metric), encompassing both the (metric) notion of steepest

descent as well as the (probabilistic) notion of average descent for functions defined on probability spaces.

A large class of functions are completely determined by their descent modulus and corresponding critical

values. This result is already surprising in the smooth case: a one-dimensional information (norm of the

gradient) turns out to be almost as powerful as the knowledge of the full gradient mapping. In the nons-

mooth case, the key element for this determination result is the break of symmetry induced by a downhill

orientation, in the spirit of the definition of the metric slope.
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Some questions related to geometric inverse problems

Anna Doubova

doubova@us.es Universidad de Sevilla, Dpto. EDAN and IMUS, Spain

This conference delves into geometric inverse problems for partial differential equations. Our focus lies on

determining a portion of the domain where the equations hold true, based on external measurements.

We will consider real-world applications and will explore two crucial aspects: uniqueness and numeri-

cal reconstruction. First, we will investigate how initial and boundary data influence solution’s uniqueness.

Among others, we will deal with one-dimensional inverse problems for the Burgers equation and related

nonlinear systems, where heat effects, non-constant density and fluid-solid interaction are taken into ac-

count. The goal is to determine the size of the spatial interval based on specific boundary observations of

the solution. Wewill explore both analytical and numerical solutions to these problems, employing powerful

tools like Carleman estimates and insights from existing research (see [5], [4]). Additionally, we will provide

methods to approximate the interval sizes. (This work is a collaboration with J. Apraiz, E. Fernández-Cara

and M. Yamamoto [1]).

Next, some purely numerical approaches will be presented. We will showcase recent advancements and

open questions concerning the reconstruction of the unknown domain. This involves solving a carefully

chosen optimization problem (see [2]). We will also explore meshless technique based on the method of

fundamental solutions (see [3]), demonstrating its effectiveness in tackling problems in both 2D and 3D

settings.
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Robust optimization of uncertain multiobjective problems

Gabriele Eichfelder

gabriele.eichfelder@tu-ilmenau.de Technische Universität Ilmenau, Germany

1. Introduction

In many applications one has to deal with various difficulties at the same time, like uncertain data or several

competing objective functions. For instance, for the integration of neighborhood networks into overarching

distributing energynetworks, a pureoptimizationof theneighborhoodnetworksunder an externally defined

weighting of the relevant targets does not adequately model the problem. Moreover, uncertainties in the

form of fluctuations or other disturbances can appear and a found solution has to be robust against that. A

robust approach to uncertain multiobjective optimization corresponds to solving a set-valued optimization

problem. However, it is a very difficult task to solve these optimization problems even for specific cases.

In this talk, after giving an introduction to the topic, we present a parametric multiobjective optimization

problem for which the optimal solutions are strongly related to the robust solutions of the uncertain multi-

objective problem. With this approach we can approximate the robust solution set with desired accuracy.

2. The uncertain multiobjective problem

We study uncertain multiobjective optimization problems under the following assumptions: Let Ω ⊆ ℝ𝑛

and 𝒰 ⊆ ℝ𝑘 be nonempty and closed sets, with 𝒰 compact. The set 𝒰 is called the uncertainty set. Let

𝑓 ∶ Ω ×𝒰 → ℝ𝑚 be a given continuous vector-valued objective function, i.e., we have𝑚 competing objective

functions which have to be optimized at the same time.

The uncertain multiobjective optimization problem is then defined by

�
min
𝑥

𝑓(𝑥, 𝑢)

s.t. 𝑥 ∈ Ω
� 𝑢 ∈ 𝒰� , (𝒰𝒫)

i.e., (𝒰𝒫) is formally represented as a parametric family of multiobjective optimization problems.

In the single-objective case, i.e., for𝑚 = 1, the classical robust counterpart problem in the sense of Ben-Tal

and Nemirowski is given by

min
𝑥∈Ω

sup
𝑢∈𝒰

𝑓(𝑥, 𝑢),

with the well-known epigraphical reformulation

min
𝑥,𝑦

𝑦

s.t. 𝑓(𝑥, 𝑢) ≤ 𝑦 for all 𝑢 ∈ 𝒰,

𝑥 ∈ Ω, 𝑦 ∈ ℝ.

For the uncertainmultiobjective problem, following these ideas from the single-objective case, we obtain the

so-called min-max set-based approach and thus consider the associated set-valued mapping 𝐹𝒰 ∶ Ω ⇉ ℝ𝑚

defined as 𝐹𝒰(𝑥) ∶= {𝑓(𝑥, 𝑢) ∣ 𝑢 ∈ 𝒰} . For every 𝑥 ∈ Ω, the set 𝐹𝒰(𝑥) represents the set of all possible vector

costs associated to the decision 𝑥. The robust counterpart of (𝒰𝒫) is then the set optimization problem

min
𝑥∈Ω

𝐹𝒰(𝑥). (ℛ𝒞)

Based on [2], we present a generalization of the epigraphical reformulation for the uncertain multiobjective

problem (𝒰𝒫). This will be a semi-infinite multiobjective problem which can then be studied with classical

techniques from the literature. For obtaining this reformulationweuse vectorization results developed in [1]

to characterize the optimal solutions of the set optimization problem (ℛ𝒞).
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Global solution of quadratic programs with binary variables and

extensions

Sourour Elloumi

sourour.elloumi@ensta-paris.fr UMA, ENSTA Paris, Institut Polytechnique de Paris,

and CEDRIC, Conservatoire National des Arts et Métiers, 75003 Paris, France

A quadratic program in binary variables has very special properties. It can be linearized, i.e. reformulated

into a linear program in binary variables, by increasing the number of variables. It can also be convexified,

i.e. reformulated into a convex quadratic program in binary variables, by a simple calculation of an extreme

eigenvalue. Whether linearized or convexified, the reformulated problem can then be solved by a branch-

and-bound based on continuous relaxation. These two paradigms have been known for several decades, but

neither of them can efficiently achieve the optimum, outside of small or low-density instances. In a series

of works starting from [1, 2, 4], we show that Quadratic Convex Reformulation allows the two paradigms

to be put together to strengthen both of them and allow the global resolution of much larger instances. In

these reformulations we seek a Mixed-Integer quadratic problem, equivalent to the first one, but with the

additional property that its continuous relaxation is a convex problem. Furthermore, we want the bound

by continuous relaxation of the new problem to be as tight as possible. We show that this reformulation is

acheavable from the solution of a semidefinite programming problem.

We then extend this approach to the case of polynomial (or multilinear) optimization with binary vari-

ables in [5]. We first use a usual way of transforming themultilinear to an extended quadratic reformulation.

Then, we use specific quadratic convex reformulation to this quadratic problem.

Wealsouse similar ideas in [3] formixed-integer quadratically constrainedproblemswith general integer

and bounded variables.
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Stochastic Approximation beyond gradient
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In Machine Learning, many methods rely on Optimization, including its stochastic versions introduced for

example to tackle non closed form expressions of the objective function or to reduce the computational cost.

In 1951, H. Robbins and S. Monro introduced themethod named “Stochastic Approximation” which is a root-

finding method when the objective function is defined by an intractable expectation: it defines a sequence

of iterates by using a Monte Carlo approximation of the expectation. Then, this method was generalized to

solve a root-finding problem when only stochastic oracles of the objective field are available.

Stochastic Gradient algorithms are the most popular examples of the class of  Stochastic Approximation

methods. Nevertheless, Stochastic Approximation also contains far more general algorithms said “beyond

gradient” since roughly, they consist in solving a minimization problem by using a vector field which is not a

gradient field. These “beyong gradient” Stochastic Approximation methods often come with the additional

difficulty that the stochastic oracles are biased approximations of the vector field. They occur in Computa-

tional Statistics (for example, some stochastic versions of Expectation Maximization are an instance of this

beyond gradient case) and in Machine Learning as well (for example, some Temporal Difference algorithms

for the estimation of the value function in Reinforcement Learning, are another instance).

This talk will first detail examples of such  Stochastic Approximation methods beyond gradient. We will

then present how a general theory can be derived, general enough to encompass as many as possible in-

stances of Stochastic Approximation: we will emphasize the theory devoted to finite time analysis and will

discuss how to choose design parameters of the algorithm in order to reach an epsilon-stationary point.

We will finally show how to improve the original Stochastic Approximation scheme by plugging a variance

reduction technique .
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We consider binary second order cone programs of packing typewhere a linear objective is optimized under

𝑚 second order cone packing constraints and all decision variables are binary. Specifically, we consider

mathematical programs of the form

maximize 𝑝⊤𝑥

subject to 𝑐⊤𝑘 𝑥 + �𝐴𝑘𝑥 + 𝑏𝑘� ≤ 𝑑𝑘 for all 𝑘 ∈ {1,… ,𝑚},

𝑥 ∈ {0, 1}𝑛,

where 𝑝 ∈ ℚ𝑛
≥0, and for each 𝑘 ∈ {1,… ,𝑚} we have 𝐴𝑘 ∈ ℚℓ𝑘×𝑛 and 𝑏𝑘 ∈ ℚ

ℓ𝑘
≥0 for some ℓ𝑘 ∈ ℕ as well as

𝑐𝑘 ∈ ℚ𝑛
≥0 and 𝑑𝑘 ∈ ℚ≥0. We require that 𝐴⊤𝑘𝐴𝑘 and 𝐴

⊤
𝑘𝑏𝑘 have only non-negative entries for all 𝑘 ∈ {1,… ,𝑚}.

We show that when 𝑚 is part of the input, these problems cannot be approximated within a factor of

1/(𝑚 + 1)1−𝜀 for any 𝜀 > 0, unless P = NP. We then propose approximation algorithms based on different

algorithmic principles that almost match this approximation factor: a pipage rounding technique that solves

fractional relaxations of the problems and modifies the solutions so that few fractional variables remain,

a greedy approach, and a randomized rounding technique. While all algorithms have similar theoretical

approximation guarantees in the order of 1/𝑚, we also test the algorithms on realistic instances that arise

in the context of gas transportation networks. This empirical study reveals in particular that taking the best

of the proposed algorithms produces highly competitive solutions that yield on average 96% of the value of

an optimal solution.
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Solving the Hamilton Jacobi Bellman equation of optimal control:

towards taming the curse of dimensionality

Karl Kunisch
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I consider optimal control problems on an infinite time horizon of the form

�
min

𝑢(⋅)∈𝑈𝑎𝑑
𝐽(𝑢(⋅), 𝑥) ∶=

∞

∫
0

ℓ(𝑦(𝑡)) +
𝛾

2
|𝑢(𝑡)|2 𝑑𝑡

subject to �̇�(𝑡) = 𝑓(𝑦(𝑡)) + 𝐵𝑢(𝑡) , 𝑦(0) = 𝑥.

(𝑃)

It is assumed that ℓ(0) = 𝑓(0) = 0 and thus solving (𝑃) is intimately related to optimal stabilisation of the

dynamical system �̇�(𝑡) = 𝑓(𝑦(𝑡) by means of the control u. As it stands, (𝑃), at first, might be viewed as a

special case of the abstract optimization problem

min 𝑓(𝑧) subject to 𝑒(𝑧) = 0,

where we consider the time-dependent control-state pair (𝑦, 𝑢) as the variable 𝑧with respect to which this

constrained optimization problem needs to be solved. As a result we would get the optimal control 𝑢∗ as a

function of time.

Here, however, we are interested in a closed loop representation of the optimal control, i.e. we aim for

expressing the optimal solution in feedback form as a function of the state 𝑢∗(𝑡) = 𝑢∗(𝑦(𝑡)). In engineering

practice this is motivated by the inherent stability properties of the closed loop approach.

Obtaining the optimal control in feedback form requires knowledge of the optimal value function

𝑉(𝑥) ∶= min
𝑢(⋅)∈𝑈𝑎𝑑

𝐽(𝑢(⋅), 𝑥),

which, in a viscosity sense is a solution to the Hamilton-Jacobi-Bellman (HJB) equation

min
𝑢∈𝑈𝑎𝑑

{∇𝑉(𝑥)⊤(𝑓(𝑥) + 𝐵𝑢) + ℓ(𝑥) +
𝛾

2
|𝑢|2} = 0 , 𝑉(0) = 0, ∇𝑉(0) = 0.

Once 𝑉 is available, the optimal control in feedback from is given by 𝑢(𝑡) = −𝐵∗𝑔𝑟𝑎𝑑𝑉(𝑦(𝑡)). The HJB

equation is a hyperbolic equation and its dimension is that of the state-space of the nonlinear system in (𝑃)

! Thus solving the HJB equation is a formidable task since one is confronted with a curse of dimensionality.

I give a brief survey of current solution strategies to partially cope with this challenge.

Subsequently I describe two approaches in some detail. The first one is a data driven technique, which

approximates the solution to the HJB equation and its gradient from an ensemble of open loop solves.

The second technique also circumvents the direct solution of the HJB equation. It is based on a succinctly

chosen learning ansatz, with subsequent approximation of the feedback gains by neural networks or poly-

nomial basis functions.
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On five types of Voronoi diagrams
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In addition to the classical Voronoi diagrams inℝ𝑛, we delve into other variants: higher-order cells, farthest

cells based on both Euclidean and Bregman distances, and power cells. Despite their diversity, all these

Voronoi diagrams share a common feature: their cells are closed convex sets.

For the classical case, we study theVoronoi inverse problem. Given a closed convex set𝐹 ⊆ ℝ𝑛 and a point

𝑠 ∈ 𝐹, we study the family of sets 𝑇 ⊆ ℝ𝑛 that contain 𝑠 and satisfy the condition that the corresponding

Voronoi cell 𝑉𝑇 (𝑠) of 𝑠 with respect to 𝑇 is precisely 𝐹. We explore the relationship between the elements

of this family and the linear representations of 𝐹. Additionally, we provide explicit formulas for maximal

and minimal elements within this family. Our investigation also involves studying the closure operator that

assigns to each closed set 𝑇 containing 𝑠 the largest set e𝑇 ⊆ ℝ𝑛 containing 𝑠 such that 𝑉e𝑇 (𝑠) = 𝑉𝑇 (𝑠) .

Higher order Voronoi cells associate to each 𝑘-element subset of the set of sites the set of points for which

the given subset consists of the 𝑘 closest sites. We delve into the structure of 𝑘-order Voronoi cells and

illustrate our theoretical findings through a case study involving two-dimensional higher-order Voronoi cells

for four points.

The farthest Voronoi cell of a point 𝑠, denoted as 𝐹𝑇(𝑠), comsits of all the points farther from 𝑠 than from

any other site. We explore farthest Voronoi cells and diagrams corresponding to arbitrary (possibly infi-

nite) sets. Specifically, for a given arbitrary set 𝑇, we characterize those 𝑠 ∈ 𝑇 such that 𝐹𝑇(𝑠) is nonempty

and analyze the geometrical properties of 𝐹𝑇(𝑠). Additionally, we characterize those sets 𝑇 whose farthest

Voronoi diagrams form tessellations of the Euclidean space, as well as those that can be expressed as 𝐹𝑇(𝑠)

for some 𝑇 ⊆ ℝ𝑛 and some 𝑠 ∈ 𝑇. Some of the results obtained can be extended to the case when, instead

of the Euclidean distance, the Bregman distance associated with a differentiable strictly convex function is

considered.

Finally, we study power cells. Given a set 𝑇 ⊆ ℝ𝑛 and a nonnegative function 𝑟 defined on 𝑇, the power

of 𝑥 ∈ ℝ𝑛 with respect to the sphere with center 𝑡 ∈ 𝑇 and radius 𝑟 (𝑡) is 𝑝𝑟 (𝑥, 𝑡) ∶= ‖𝑥 − 𝑡‖
2
− 𝑟2 (𝑡) ,with

‖⋅‖ denoting the Euclidean distance. The corresponding power cell of 𝑠 ∈ 𝑇 is the set

𝐶𝑟𝑇(𝑠) ∶= {𝑥 ∈ ℝ𝑛 ∶ 𝑝𝑟(𝑥, 𝑠) ≤ 𝑝𝑟(𝑥, 𝑡), for all 𝑡 ∈ 𝑇}.

We investigate the structure of these power cells and explore assumptions on 𝑟 that allow for generalizing

known results on classical Voronoi cells.

The results presented in this talk are contained in joint workswith E. Allevi, M. A. Goberna, E. Naraghirad,

R. Riccardi, V. Roshchina, M. Tamadoni Jahromi, M. I. Todorov and V. N. Vera de Serio.
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Frommicroscopic to macroscopic scale equations: mean field,

hydrodynamic and graph limits

Emmanuel Trélat
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Considering finite particle systems, we elaborate on various ways to pass to the limit as the number of

agents tends to infinity, either bymean field limit, deriving the Vlasov equation, or by hydrodynamic or graph

limit, obtaining the Euler equation. We provide convergence estimates. We also show how to pass from

Liouville to Vlasov or to Euler by taking adequatemoments. Our results encompass and generalize a number

of known results of the literature.

As a surprising consequence of our analysis, we show that sufficiently regular solutions of any quasilinear

PDE can be approximated by solutions of systems of 𝑁 particles, to within 1/ log log(𝑁).
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In this lecture we shall present some recent results of our group on the interplay between control and Ma-

chine Learning, and more precisely, Supervised Learning and Universal Approximation.

We adopt the perspective of the simultaneous or ensemble control of systems of Residual Neural Net-

works (ResNets). Roughly, each item to be classified corresponds to a different initial datum for the Cauchy

problem of the ResNets, leading to an ensemble of solutions to be driven to the corresponding targets, asso-

ciated to the labels, by means of the same control.

We present a genuinely nonlinear and constructivemethod, allowing to show that such an ambitious goal

can be achieved, estimating the complexity of the control strategies.

This property is rarely fulfilledby the classical dynamical systems inMechanics and the verynonlinear na-

ture of the activation function governing the ResNet dynamics plays a determinant role. It allows deforming

half of the phase space while the other half remains invariant, a property that classical models in mechanics

do not fulfill.

This viewpoint opens up interesting perspectives to develop new hybrid mechanics-data driven mod-

elling methodologies. We shall discuss a number of promising open problems.
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Mixed-integer non-linear programming approach for identifying

parameters inconsistencies in load flow calculations

Pierre Arvy
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For several decades, electrical networks have experienced continuous expansion in size and scale, facilitating

the transmission of electrical power from sources to end-users. The growing complexity of these networks

necessitates the use of tools like Load Flow (LF) calculations, which are crucial for power systems engineer-

ing [1], playing a critical role in ensuring grid reliability and efficiency. This numerical analysis of electric

power within interconnected systems determines steady-state voltages, currents, and power flows across

network components.

Given the significance of LF calculations, the power systems community has invested substantial efforts

in enhancing the convergence of the methods used to solve them [4], including the associated optimization

problem known as Optimal Power Flow [2]. Despite these efforts, real-world scenarios, especially in power

system planning, often involve imperfect or erroneous network parameters, leading to challenging conver-

gence issues for existing methods [3]. The physical problem studied may be mathematically infeasible due

to complex inconsistencies in the parameters, yet the divergence of methods is not a clear certificate of this.

Consequently, power systemengineers usually engage in iterative processes topinpoint themoment atwhich

divergence occurs and identify the responsible parameters, making it a time-consuming endeavor.

This research project explores a novel approach centered around Mixed-Integer Non-Linear Program-

ming (MINLP) to detect inconsistencies or errors in the parameters of a power network, on which LF cal-

culations are applied and divergent. The MINLP is obtained by utilizing the non-linear LF equations as con-

straints and transforming the various network parameters involved in these equations into penalized vari-

ables. This transformation enables parameter adjustments -or corrections-while theMINLPminimizes them

using binary variables. This introduces additional variables and constraints into the optimization problem,

following a conventional form in operations research. Solving the MINLP identifies inconsistencies in the

power network’s parameters, corresponding to the adjusted values.

The study extendswith the implementation of an open-source tool (available on GitHub here), integrated

with the PowSyBl Java framework, widely used in the power systems community for LF analyses. It relies on

an implementation of the previously discussed MINLP using the AMPL modeling language, and conducts a

solution to this non-linear and non-convex optimization problemusing the commercial solver Artelys Knitro.

Interior-point algorithms are employed for solving the non-linear relaxation of the problem, along with the

non-linear branch-and-bound algorithm of the solver for handling the non-continuous problem.

Finally, the researchproject outlines thevalidationprocedureof the implemented tool. Validation through

thedetection of inconsistencies in powernetworkparameters is based onunit testsmanually generated from

both open-source and real-world use cases. Besides, the tool successfully identifies inconsistencies in an op-

erational scenario involving a real-world case with parameter inconsistencies. The average computation

time of the tool is also analyzed, demonstrating its practical usability by power systems operators. Further-

more, based on observations and results obtained, the study presents future research directions to enhance

the detection of parameter inconsistencies in power networks. These directions include using other formu-

lations of the objective function of the presented MINLP, exploring alternative load flow formulations, and

integrating validated physical inequalities as constraints.
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On the solution of shape optimization for the Navier-Stokes problem

with the stick-slip condition
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1. Introduction

The shape optimization for the Navier-Stokes problem with the stick-slip boundary condition can be mod-

elled as a bilevel problem, where the upper-level optimization task is described as the minimization of a

given objective function with respect to the control variables that control the shape of the boundary (the

objective function also depends on state variables). The lower-level optimization task is the Navier-Stokes

problem with the boundary condition for a given boundary shape described by the control variable. Its so-

lution is the state variables (velocity and pressure). The shape optimization problem can also be modelled

as the minimization of the composite function generated by the objective and the control-state mapping. It

can be shown that this composite function is generally non-differentiable (nonsmooth).

2. Mathematical problem

To solve the nonsmooth optimization problem (2.1), we have to use methods that work with the calculus of

Clarke.

�
Find 𝛼∗ ∈ 𝒰 such that ∀𝛼 ∈ 𝒰

𝒥(𝛼∗, (u𝛼
∗
, 𝑝𝛼

∗
)) ≤ 𝒥(𝛼, (u𝛼, 𝑝𝛼))

(2.1)

First, we use the bundle trust method proposed by Schramm and Zowe. In each step of the iteration

process, we must find the solution of the state problem, i.e., the Navier-Stokes problem with the stick-slip

condition, and compute one arbitrary Clarke subgradient of the nonsmooth composite function. Finite dif-

ferences are used for the approximation of this subgradient. Second, we use the limited memory discrete

gradient bundle method, where the discrete gradient is used instead of finite differences.

The state Navier-Stokes problem is approximated by FEM P1-bubble/P1 pair and contains two nonlin-

earities. The first caused by the convective term is linearized by Oseen or Newton iterations (see [3]), and

the second caused by the nonlinear stick-slip condition is solved by a semi-smooth Newton method based

on active/inactive sets with preconditioned BiCGstab as an inner solver (see [1]).

As one of the shape optimization problems, we look for a shape Ω such that the tangential velocity on 𝛾𝑆
fits the function u𝑒(𝑥, 𝑦) (for more details see [2]).

Ω(𝛼)

𝑆(𝑚,𝑛)(𝑥)

𝛾𝑆

𝛾𝐷

𝛾𝐷
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[1] Vladimıŕ Arzt. Algorithms for flow problems with stick-slip boundary conditions in three space dimensions. Master’s the-
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In this article, we present the design of a smart electrostimulator formuscle rehabilitation or reinforcement,

using fast computations, in order to control themuscular force or to regulate to a force level. The Ding and al.

model is used to predict and to optimize themuscular force response to functional electrical stimulation [4].

We analyze the estimation of the Ding and al. parameters using an approximation of the force response [1]

which depends upon the 6 parameters of the Ding’s model andwe derive optimization schemewhich bypass

the time computational expensive integration of the dynamics of the Ding and al. equations. Two of the pa-

rameters are depending upon the fatigue and we present a numerical sensor for their estimation.

References

[1] Toufik Bakir, Bernard Bonnard, Sandrine Gayrard, Jeremy Rouot. Finite Dimensional Approximation to Muscular Response in

Force-Fatigue Dynamics using Functional Electrical Stimulation. Automatica, 2022.

[2] Toufik Bakir, Bernard Bonnard, Loı̈c Bourdin, Jeremy Rouot. Pontryagin-typeconditions for optimal muscular force response to

functional electrical stimulations. Journal of Optimization Theory and Applications, pp. 184:581–602, 2020.

[3] Toufik Bakir, Bernard Bonnard, Loı̈c Bourdin, Jeremy Rouot. Direct and indirect methods to optimize the muscular force response

to a pulse train of electrical stimulation. ESAIM : Proceedings and Survey, EDP Sciences, vol. 71, pp. 1–10, 2021.

[4] Jun Ding, Anthony S Wexler, and Stuart A Binder-Macleod.. Development of a mathematical model that predicts optimal muscle

activation patterns by using brief trains. Journal of applied physiology, vol. 88, pp 917–925, 2000.

[5] EmmaWilson. Force response of locust skeletal muscle. Southampton University, Ph.D. thesis, 2021.

[6] Brian D Doll ,Nicholas A Kirsch, and Nitin Sharma. Optimization of a stimulation train based on a predictive model of muscle force

and fatigue. IFAC- PapersOnLine, vol. 48(20), pp. 338-342, 2015.

[7] Sandrine Gayrard. Fast Optimization Scheme for the Muscular Response to FES Stimulation to Design a Smart Electrostimulator.

Phd Thesis, Université de Bourgogne, 2023.
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In this presentation, we consider the so-called chemostat system with mutation

�
�̇�𝑖(𝑡) = (𝜇𝑖(𝑠(𝑡)) − 𝑢)𝑥𝑖 + 𝜀(𝑇𝑥(𝑡))𝑖, 1 ≤ 𝑖 ≤ 𝑛,

�̇�(𝑡) = −∑
𝑛
𝑗=1 𝜇𝑗(𝑠(𝑡))𝑥𝑗(𝑡) + 𝑢(𝑠𝑖𝑛 − 𝑠(𝑡)).

(1)

This system describes the evolution of 𝑛 species (with concentrations 𝑥𝑖(𝑡)) that compete over a same re-

source (called substrate with concentration 𝑠(𝑡)). Each species grows over the common resource according

to its own kinetics 𝜇𝑖 which is a real-valued non-negative continuous functions overℝ+ satisfying 𝜇𝑖(𝑠) = 0.

In this system, 𝑢 is a constant and denotes the dilution rate (but it also often taken as a control like in biotech-

nology) and 𝑠𝑖𝑛 is the input substrate concentration (that can also be controlled in practice). The main new

feature that interests us (w.r.t. the chemostat system [5]) is the possible mutation between species (like in

gene tranfer) that is modeled in (1) via the so-called transition matrix 𝑇 (quasi-positive irreducible) corre-

sponding to these interactions. The parameter 𝜀 > 0 then corresponds to the mutation rate for these inter-

actions between species. One key issue is to predict the asymptotic behavior as time 𝑡 → +∞. This question

appears to be central in the study of the optimal control of (1) given some objective function. Remind that

without mutation effect, i.e., when 𝜀 = 0, the competitive exclusion principle predicts that, generically, only

one species survives as 𝑡 → +∞ since (1) reduces to the classical chemostat system (see [3,5]).

Mutations between species in the chemostatmodel are important tomodelwhenever𝑛 ≫ 1. This leads to

a system like (1), butmore generalmutation terms can also be considered. Mutation is encountered typically

in cultured microalgae that serve for biofuels. Whenever mutation is taken into account, (1) is called a reg-

ular perturbation of the original chemostat system without mutation. However, the study of the asymptotic

analysis of (1) is more involved than for the chemostat system : in general, even if 𝜀 > 0 is arbitrarily small,

the asymptotic behavior of a regular perturbation of a dynamical system may differ a lot from the asymp-

totic behavior of the original system (without perturbation). In [1], it has been shown that (1) has a unique

coexistence steady-state1 globally asymptotically stable (apart the wash-out equilibrium corresponding to

extinction of species, i.e., 𝑥 = 0 and 𝑠 = 𝑠𝑖𝑛) provided that the dilution rate 𝑢 is small enough.

Here, we analyze another (and more realistic) issue corresponding to the case where the mutation rate

𝜀 is such that 𝜀 ↓ 0. The goal of this presentation is to show new results toward this direction. Global

stability of the coexistence steady-state is obtained provided that the mutation parameter is small enough.

Our analysis is based on theMalkin-Gorshin Theorem (see [4]) and a global stability result related to regular

perturbations of dynamical systems [6]. We shall also give preliminary results concerning a similar study for

the PDE-based model when a pool of species is considered (corresponding to a trait) and also some results

concerning the optimization of microbial production when mutation is taken into account and 𝑡 ↦ 𝑢(𝑡) is

taken as a control function in (1). The results that are proposed in this presentation are based on undergoing

works extending the recent articles [1,2].
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1. Introduction

This contribution introduces a digital twin of an industrial camera for the calibration of roboticmanipulators

in manufacturing processes. We approximate the camera’s characteristics to facilitate precise calibration by

using a full camera model (for more details, see to [1]). The main goal of the contribution is to present

optimizationmethods for finding a camera’s location based on the captured image of the calibration pattern.

Such coordinates are then used to navigate the camera back to the prescribed position.

2. Mathematical problem

The calibration uses a predefined calibration square with five significant points, see Fig. 1, to locate the cam-

era accurately in 3D space.

Fig. 1 Geometric pattern displayed by the camera and the robot.

The objective is to determine a position and orientationwhere the points computed by the cameramodel

closely match the significant points in the captured image. This problem translates to an unconstrained

quadratic programming problem

min
�⃗�∈ℝ6

𝑓(�⃗�) ∶= min
�⃗�∈ℝ6

10

�

𝑖=1

(𝐹𝑖(�⃗�) − 𝐹𝑖)
2.

Here, the mapping 𝐹 ∶ ℝ6 → ℝ10 describes the function assigning the camera’s position and orientation

to the image of the calibration square on the camera display chip, as determined by the camera model. 𝐹

represents the vector of prescribed 𝑥 and 𝑦-coordinates of the calibration points.

This contribution presents and compares solutions to this industrial problem using Newton’s method,

hybrid Newton’s methods, and a combination of neural networks and Newton’s method.

While Newton’smethod offers local convergence, its limitation is requiring an initial iteration close to the

solution. Thus, combining Newton’s method with metaheuristic methods like differential evolution proves

beneficial. Alternatively, approximating the inversion of the function 𝐹 for a given image with a neural net-

work and employing the resulting value of the inverse as the starting iteration for Newton’s method is an-

other possibility to solve the problem.

The main advantages of these methods are their robustness and speed.
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The main goal of this talk is to provide a point-based (only involving the problem’s data) formula for the

Hoffman constant of the argmin mapping in linear optimization, understood as the sharp Lipschitz constant

restricted to its domain. The work is developed in the parametric context of right-hand side perturbations

of the constraint systems. Historically, this constant has been of general interest to the scientific community,

which is evidenced by the outstanding research on it. Although we can find some upper estimates of such

quantity in the literature, we provide in this talk the first exact expression of it.

To achieve the main objective, we introduce new general tools of their own interest, as the concept of

well-connected piecewise convex mappings. We isolate the nice behavior of such mappings to derive a cru-

cial equality between theHoffman constant (which is a global stabilitymeasures) and the supremumof calm-

ness moduli (which are of local nature). Additionally, a directional stability approach will be introduced for

computational purposes.
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For an initial state 𝑥0 ∈ ℝ𝑛, a target 𝑥1 ∈ ℝ𝑛 and a final time 𝑇 > 0 given, we consider the problem of state

transfer for linear time-invariant systems whose plant model is given by

�
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),

𝑥(0) = 𝑥0, 𝑥(𝑇) = 𝑥1.

When 𝑥1 is reachable from 𝑥0 in time 𝑇, it is common to look for maximum hands-off controls [4, 8, 9],

i.e. feasible control(s) whose support is of minimal Lebesgue measure. We call this problem (𝑃0). Here, we

authorize controls in the set of Radonmeasures and, more precisely, impulsive controls [2,7] whose support

is of null Lebesgue measure. Thus, we can discredit the problem (𝑃0) by showing that there always exists a

feasible impulsive control that we can approach with a sequence of feasible controls in 𝐿1([0, 𝑇], ℝ𝑚).

For optimization purposes, we want to minimize the weights of impulses of a such control and we show

that this new problem is linked to the problem (𝑃1) of 𝐿
1-minimization for controls in 𝐿1([0, 𝑇], ℝ𝑚). In

particular, optimal impulsive controls steer 𝑥0 to 𝑥1 in time 𝑇with a smaller (or, at least, the same) ”𝐿1-cost”

than optimal piecewise continuous controls. As with (𝑃0), there is no gap between these two problems and

an optimal impulsive solution can be approached by a sequence of feasible controls of 𝐿1([0, 𝑇], ℝ𝑚). The

main result of this talk is that there exists an impulsive solution which is a linear combination of at most 𝑛𝑚

Dirac impulses (where 𝑛 and𝑚 are respectively the dimension of the state and of the control).

Then, by using the Pontryagin’s maximum principle [1, 5], we show that any minimizer of (𝑃1) is neces-

sarily of purely impulsive form as soon as 𝐴 is nonsingular and all pairs (𝐴, 𝐵𝑖) are controllable (where 𝐵𝑖 is

the 𝑖-th column of 𝐵).

The remainder of this talk is dedicated to the implementation of an algorithm to approach an optimal

impulsive control. We build it by using the coordinate descent method [6] and Bregman iterations [3].
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1. Introduction

The Bang-Bang Principle is well established for non-autonomous linear time-optimal problems (see for ex-

ample [3]). In this work, we revisit this result for problems with non-smooth dynamics, but continuous with

respect to the state variable. In this context, we show that there exists an optimal trajectory composed of

bang-bang arcs where the dynamics is differentiable, and singular arcs may occur at non-differentiable lo-

cus of the dynamics. Moreover we can characterize these singulars arcs using the Pontryagin Principle for

non-smooth dynamics (see [2]).

2. Some details

More precisely we consider the following dynamics in a region 𝐷𝑖 :

�̇�(𝑡) = 𝑓(𝑡, 𝑋(𝑡), 𝑢(𝑡)) = 𝐴𝑖(𝑡)𝑋(𝑡) + 𝐵(𝑡)𝑢(𝑡) (2.1)

for some partition⨆𝑖∈ℐ 𝐷𝑖 ofℝ
𝑛 with �̊�𝑖 ≠ ∅, where 𝐴𝑖 and 𝐵 are 𝑛×𝑛− and 𝑛×𝑟−matrix-valued functions,

and 𝑢(⋅) is a mesurable control taking values in a compact set of ℝ𝑟. We also assume that for all (𝑡, 𝑢) the

function 𝑥 ↦ 𝑓(𝑡, 𝑥, 𝑢) is continuous.

We consider a compact target set 𝐶 ⊂ ℝ𝑛, and we investigate the minimal time problem to reach 𝐶 from an

initial state 𝑋(0) = 𝑋0 ∈ ℝ
𝑛 that belongs to the attainability set of 𝐶.

We shall show that there is an optimal solution of the minimal time problem subject to (2.1) composed

of a succession of bang-bang arcs over time intervals where the state trajectory belongs to a region 𝐷𝑖, and

possible singular arcs over time intervals where the state trajectory evolves in a boundary of a region 𝐷𝑗.

2.1. Example

We will highlight this result with an example coming from an optimization problem for an irrigation model

withwater scarcity (see [1]). In this example, we provewith the help of the non-smooth PMP that an optimal

solution must contain a singular arc for a subset of initial conditions.

Fig. 1 Optimal ”bang - singular - bang - singular - bang” trajectory for the soil moisture.
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Renewable energy systems are the basis for the current endeavor of eliminating CO2 emissions and the ex-

pansion and construction of new systems is an indispensable action within this process. Therefore, finding

the optimal design of renewable energy systems and related process components represents an interesting

task that can be tackled by optimization techniques.

Many energy system descriptions based on renewable energy sources rely on location-specific weather

data to account for the renewable energy potential at different sites. However, the optimal design of renew-

able energy systems should also be robust with respect to fluctuations of these meteorological parameters

due to the inherent volatility of natural phenomena. Therefore, robust optimization techniques are employed

to compute robust optimal system designs.

The source of complexity of such optimization problems is two-fold. On the one hand, depending on the

level of detail of the process description, nonlinearities may arise. On the other hand, incorporating hourly

resolved weather data over longer periods into the model description results in large-scale optimization

problems. Therefore, finding efficient ways of computing the robust optimal system design is crucial.

In this work, we investigate the computation of robust optimal solutions for renewable energy system

models of different levels of detail. Strategies for improving the efficient computation of the robust counter-

part are based on time-series aggregation methods in order to reduce the model size of the system descrip-

tion.

Furthermore, the impact of incorporating knowledge gained from time-series data on the choice of the

uncertainty set will be investigated.

Finally, numerical resultswill be presented in order to showcase the investigated approach using realistic

data for various locations.
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Investigating competition among various cell populations, especially differentmicroorganisms sharing same

environment and nutrients, constitutes a major area of research (see [1]). This is particularly relevant for

cultures where implementing an optimal control strategy can significantly influence the outcome, favoring

species with desirable characteristics [2, 3]. For instance, selecting microalgae species with the higher lipid

content for biofuel production, or those that enhance light penetration in dense cultures, can significantly

improve the culture yields.

In this presentation,we shall discuss somenovel challenges in species selectionwithin chemostat systems

(photobioreactors), involving one or two control variables. More precisely, we consider a chemostat system

involving two species and two substrates. We are interested in studying the selection of the first species in

minimal time : given a threshold (contamination rate), our goal is to drive the system in a minimum time

from any initial condition to a target where species two is negligible w.r.t. the first one (while keeping the

proportion of the first species significant). Such an optimal control problem is in the spirit of [4–8], but,

here, the main novelty is that two substrates are considered, thus extending the study in [4]. Moreover, sev-

eral control variables are considered which correspond to parameters that can be controlled in practice : in

addition to the usual control variable representing the dilution rate, two scalar controls are also considered

representing the input substrate concentrations associated with both substrates present in the culture.

We investigate the minimum time control problem where only the dilution rate varies (while the two

other controls are fixed to a constant value). We first discuss the reachability of the target under hypotheses

on the data defining the control system. Next, our goal is to synthesize an optimal control in open loop and

if possible in a feedback form (robust w.r.t. uncertainties inherent in the control of bioprocesses).

By applying the Pontryagin Maximum Principle (PMP), we characterize optimal trajectories under sev-

eral conditions showing in particular the occurrence of singular arcs and highlighting some turnpike-like

features. These conditions are validated through numerical simulations based on direct optimization meth-

ods, implemented in the bocop software. In particular, numerical simulations are used to check second-order

necessary conditions along singular arcs in order to confirm the solution found theoretically, thanks to the

PMP.

Finally, we also discuss another minimum time control problem where now the control is the input sub-

strate concentration associated with both substrates (and the dilution rate is fixed to a constant value). Sim-

ilar results concerning the minimum time synthesis are obtained using numerical simulations via a direct

optimization method. Comparisons between the two problems are also provided.
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1. Introduction

In 3D printing, the importance of optimizing the process becomes evident as it leads to both energy savings

and increased productivity. For this reason, being a highly costly process, a metallurgical company reached

out to us to conduct a study on the optimization of this type of printing. Generally, existing studies model the

process based on finite elements [3, 5]. However, we now propose a new approach to modeling by working

with total order relations compatible with a given order relation defined over the set of parts to be printed.

A total order relation is said to be compatible with an order relationwhen the former is containedwithin the

latter. Building upon this compatibility between relations, the 3D printing process is significantly simplified

as the order of printing parts is fundamental. The underlying motivation lies in the necessity of applying

genetic algorithms to a series of total order relations during the process to find more efficient relations,

making it essential to generate those that are compatible with a given order relation. This work presents

results to demonstrate the existence of these orders and several algorithms are shown to generate them. One

of the most significant allows us to quickly and efficiently generate compatible total orders from a randomly

generated total order, which is a crucial aspect when employing genetic algorithms.

2. Some relevant results

Concepts related to order relations can be found in classic texts such as [1] or more contemporary ones

like [2] or [4].

Given that total order relations defined on a set can be characterized by a permutation of the elements of

the set or their adjacency matrices, results are obtained in terms of permutations of these elements. Among

the most relevant results of this work, we can highlight:

Theorem 2.1 Let (𝑆, 𝑅) be an ordered indexed set and 𝜎 a permutation of elements of 𝐼. The following state-

ments are equivalent:

a) 𝜎 is compatible with the relation 𝑅.

b) 𝑀𝜎
𝑅 ⊗𝑀𝜎

𝑇𝜎
= 𝑀𝜎

𝑅 .

c) 𝑀𝜎
𝑅 is lower triangular.

d) All elements 𝑎𝑖 are totally compatible in the permutation 𝜎.

Theorem 2.2 Given an indexed POSet (𝑆, 𝑅) with 𝑛 elements, there is always a compatible permutation.

Theorem 2.3 Given an indexed ordered set (𝑆, 𝑅) with 𝑛 elements, if 𝑁𝑖 = 𝐶𝑎𝑟𝑑{𝑎𝑗 / 𝑎𝑗𝑅𝑎𝑖} for 𝑖 ∈ {1, …𝑛},

a permutation 𝜎 = (𝜎(1), 𝜎(2), … , 𝜎(𝑛)) such that 𝑁𝜎(𝑗) ≤ 𝑁𝜎(𝑖) if 𝑖 < 𝑗 is compatible with the relation 𝑅.
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We investigate the behavior of an integer linear programwhen the objective function changes. We are inter-

ested in determining the set of objective vectors under which the given integer solution stays optimal. The

set of all such objective vectors forms the normal cone at the solution, i.e., for all objectives in this cone, the

solution stays optimal. This cone is described by all active constraints of the integer hull. Since the integer

hull is not known in general and expensive to calculate, we are looking for an efficient way to calculate such

cones or rather its polar, the radial cone. Therefore, the efficient calculation of radial cones at given vertices

can be valuable tool for analyzing the stability of integer solutions and in general integer programs.

We will present an approach which guarantees to calculate all facet-defining inequalities of the radial

cone. The algorithm combines existing algorithms modified to fit the purpose. Specifically, it uses ‘Investi-

gating Polyhedra byOracle’ fromMatthiasWalter [5] and theBeneath-BeyondMethod [1,3]which incremen-

tally calculate convex hulls. Similar ideaswere presented for the analysis of linear programs fromHuggins [2]

and the calculation of convex hulls from Lassez [4], but, as far as we know, not extended to integer programs.

The general idea of our algorithm is to utilize an optimization oracle to calculate – preferably neighboring

– solutions and incrementally extend a current sub cone of the radial cone with these solutions. Initially, this

cone consist solely of the solution of interest as its origin. To avoid exhaustive calculation of vertices of the

integer hull, we choose the linear objective vectors in such a way that we only extend our cone with relevant

vertices. This process is repeated until no further relevant vertex can be found andwe obtain the radial cone

For the extension of the sub cone, similar to the Beneath-Beyond Method, we need incidence informa-

tion in form of its incidence/facial graph. The rules for updating the graph to correctly mimic the extension

will be discussed and needed modification to the original Beneath-Beyond update steps will be clarified.

Furthermore, we address the handling of potential problematic cases such as unbounded directions and

non-full-dimensional polyhedra.

Since we only require the existence of an optimization oracle, we can calculate the radial cone for all

linear optimization problems over polyhedra. This extends the algorithm’s utility tomixed-integer problems

as well. As we have to expect up to exponential many oracle calls for degenerate vertices of the integer

hull, we discuss the utilization of gathered information for decreasing computation time and present general

computational results.
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1. Introduction

The homogenized model of Doyle, Fuller and Newman [4] (DFN) - serves as the foundation for numerous

academic and industrial softwares [5] used to simulate the operation of lithium-ion batteries during charg-

ing and discharging. Studying a battery cell Ω = Ωanode ∪ Ωseparator ∪ Ωcathode subject to a constant current

discharge, our goal is to optimize each electrode interface by minimizing a shape dependent objective func-

tion.

2. Some details

The multiscale equations of the DFN-model, derived from the theory of porous electrodes, form a coupled

system of two unsteady diffusion equations for the macroscale lithium-ion concentration in the liquid elec-

trolyte (𝑐𝑒) and the microscale solid-phase lithium concentration (𝑐𝑠),

𝜖𝑒
𝜕𝑐𝑒

𝜕𝑡
− ∇ ⋅ �D𝑒,eff∇𝑐𝑒� = −

𝑡0+

𝐹
∇ ⋅ i𝑒 +

𝑎𝑠𝑖𝑠𝑒

𝐹
in Ω × [0, 𝑇max] (2.1)

𝜕𝑐𝑠

𝜕𝑡
=

1

𝑟2
𝜕

𝜕𝑟
�𝐷𝑠𝑟

2
𝜕𝑐𝑠

𝜕𝑟
� in 𝐵𝑅 × [0, 𝑇max] (2.2)

along with two steady-state elliptic equations for the macroscale ionic potential of electrolyte (𝜑𝑒) and the

macroscale solid-phase electric potential (𝜙𝑠),

−∇ ⋅ i𝑒 + 𝑎𝑠𝑖𝑠𝑒 = 0, i𝑒 = −𝚲𝑒,eff∇𝜑𝑒 +
2𝑅𝑇(1 − 𝑡0+)(1 + 𝛿𝑒)

𝐹
𝚲𝑒,eff∇ ln 𝑐𝑒 in Ω × [0, 𝑇max] (2.3)

∇ ⋅ �𝚲𝑠,eff∇𝜙𝑠� = 𝑎𝑠𝑖𝑠𝑒 in Ωanode ∪ Ωcathode × [0, 𝑇max] (2.4)

The source term of these equations 𝑖𝑠𝑒 is a function depending on all aforementioned variables and is

expressedwith the Butler-Volmer relation. To these equations, boundary conditions [5] are added, aswell as

continuity conditions at the interfaces. The solid-phasemicrostructure of each porous electrode is composed

of an active material that is simply represented by a ball 𝐵𝑅 of radius 𝑅. Finally, 𝜖𝑒, 𝑎𝑠, 𝚲𝑒,eff, 𝚲𝑠,eff and D𝑒,eff

are the homogenized coefficients of the model, and 𝐷𝑠, 𝑡
0
+ and 𝛿𝑒 are some intrinsic material parameters.

We propose here an implementation of the so-called pseudo-3D (P3D) version of the DFN model, which

combines finite-element and finite-difference methods using the FreeFem and C++ languages. Coupled with

the application of geometric optimization tools [1] to the electrode interfaces, this implementation allows

us to compute a shape gradient through the adjoint method and to apply a gradient flow algorithm [2] to

minimize a performance function under geometric constraints. We impose for instance in this minimization

process the non-mixing constraint [3] between the anodic domain and the cathodic domain.

These computations represent a first step towards a complete geometric and topological optimization of

the battery cell, including the optimization of the porous microstructure within each electrode.
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[1] Grégoire Allaire, Charles Dapogny, and François Jouve. Shape and topology optimization. In Handbook of numerical analysis,

volume 22, pages 1–132. Elsevier, 2021.
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The bipartite version of thewell-knownboolean quadric polytope [3]was studied in [5]. This polytope arises

in bilinear programming contexts, i.e. in quadratic pograms with two distinct sets of variables 𝑋 and 𝑌, such

that only products between 𝑋- and 𝑌-variables are present. We study a similar, but more structured ver-

sion of the latter polytope, which we call the bipartite quadric polytope with partitioned subtotal constraints.

Among others, we further involve a subdivision on the 𝑋-variables as in [1] and introduce several additional

constraints. In particular, we require the sum of the variables of a subdivided 𝑋-variable set to be in a given

interval and we require the total sum of the 𝑋-variables to be equal to one. Elementary polyhedral proper-

ties are discussed, including vertex characteristics and valid resp. facet-defining inequalities. Besides the

adaption of the known RLT-inequalities [4] we find a new class that we call subset-𝑚 inequalities. Further-

more, we investigate certain variants of the pooling problem [2] that contain the mentioned polytope as a

substructure and demonstrate the potential of found cutting planes in these applications.
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Abstract

The main objective of this presentation is to explore mathematical programs that incorporate data un-

certainty in the vanishing constraints (UMPVC) and to solve them by using a robust optimization frame-

work to deal with the worst-case scenario. To begin with, we derive robust Fritz-John conditions for the

UMPVCs and introduce extended no nonzero abnormal multiplier constraint qualification to obtain robust

Karush-Kuhn-Tucker conditions. We also identify the robust strong stationary points of the UMPVC and

attain sufficient optimality conditions under generalized convexity assumptions. We also identify robust

weak stationary points of the UMPVC using a tightened nonlinear programming approach to seek neces-

sary and sufficient robust optimality conditions. The robust version of several constraint qualifications

(CQ), like Abadie CQ, Mangasarian-Fromovitz CQ, and linearly independent CQ, are introduced to handle

the uncertainties associated with the special structure of the vanishing constraints. Several algorithms are

given to apply the results and various examples are presented to illustrate the algorithms.
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We start by providing alternative characterizations of the normal cone to the effective domain of the supre-

mum of an arbitrary family of convex functions. These results are then applied to give new formulas for the

subdifferential of the supremum function, which use both the active and nonactive functions at the reference

point. In contrast with previous works, the main feature of our subdifferential characterization is that the

normal cone to the effective domain of the supremum (or to infinite-dimensional sections of this domain)

does not appear. The talk also includes a new type of optimality conditions for convex optimization. The

results presented in this talk were established in a joint research project with R. Correa and A. Hantoute.
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A classical problem in the optimal design ofmaterials consists in finding the optimal arrangement of twoma-

terials in the sense that it minimizes a certain cost functional [1,6,7]. We consider two isotropic conductive

materials with diffusion constants 0 < 𝛼 < 𝛽. Frommathematical point of view the problem is given by

min
𝜔⊂Ω measurable

�
𝜔

𝐹(𝑥, 𝑢) 𝑑𝑥, �
−div�(𝛼𝜒𝜔 + 𝛽𝜒Ω∖𝜔)∇𝑢� = 𝑓 in Ω

𝑢 = 0 on 𝜕Ω
(1)

where Ω is a bounded open set ofℝ𝑁, 𝑓 a given source and the measurable set 𝜔 ⊂ Ω is the control variable

which determines where the material 𝛼 is placed.

Another classical problem inoptimal design iswhenweonlyhaveone conductivematerial, but the control

variable is the open set where the diffusion equation is posed. Similarly to (1), the problem can be written

by

min
𝜔⊂Ω open

�
𝜔

𝐹(𝑥, 𝑢) 𝑑𝑥, �
−Δ𝑢 = 𝑓 in 𝜔

𝑢 = 0 on 𝜕𝜔.
(2)

In this work we are interested in considering the couple problemwhere as in (1), we look for the optimal

distribution of two conductivematerials and, similarly to (2), we search the setwhere the diffusion equations

holds. If we consider a constraint on the amounts of the materials used in the mixture, the problem can be

formulated as

min
𝜔𝛼,𝜔𝛽

�
𝜔𝛼∪𝜔𝛽

𝐹(𝑥, 𝑢) 𝑑𝑥

⎧

⎨
⎩

−div�(𝛼𝜒𝜔𝛼 + 𝛽𝜒𝜔𝛽)∇𝑢� = 𝑓 in 𝜔𝛼 ∪ 𝜔𝛽

𝑢 = 0 on 𝜕(𝜔𝛼 ∪ 𝜔𝛽)

𝜔𝛼, 𝜔𝛽 ⊂ Ω measurable, 𝜔𝛼 ∪ 𝜔𝛽 open, |𝜔𝛼| ≤ 𝜅𝛼, |𝜔𝛽| ≤ 𝜅𝛽,

(3)

with 𝜅𝛼, 𝜅𝛽 two positive constants.

The lack of classical solutions of (1) and (2) is well-known [5]. In this work, we obtain a relaxed formula-

tion of (3), optimality conditions, andwe provide a numerical algorithm to solve it. We show some numerical

experiments [4].
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Maximum Likelihood Estimation (MLE) is a paramount technique in statistics for the estimation of an un-

known parameter of a probability distribution. This technique selects as the estimation of the parameter

the value that maximizes the so-called likelihood function, which simply is the joint density at the observed

sample as a function of the unknownparameter. In themost didactical examples shown in statistical courses,

this maximization is oftentimes an easy-to-solve optimization process that is usually addressed by solving

the likelihood equations (derivating the logarithm of the likelihood function and finding the values where

the derivative is equal to zero) and/or searching the boundaries of the parametric space. However, there ex-

ist more involved scenarios in which the maximization of the likelihood function is not straightforward and

dedicated optimization techniques need to be developed. A common example arises in the context of finite

mixture models [5], in which the Expectation-Maximization (EM) algorithm was developed in order to find

the MLE of the parameters in a mixture model.

As another apparently-unrelated research problem, algebraic operations with covariance matrices are

commonly addressed in the field of statistics. For example, Principal Component Analysis (PCA) [3] is an

example of a widely used multivariate technique for data reduction that is based on identifying the eigen-

values of the (sample) covariance matrix. If these algebraic operations are not performed symbolically, it

becomes inevitable that a certain approximation error arises. Interestingly, as shown by Koev [4], for some

specific matrices several algebraic computations (e.g., the computation of the inverse matrix, triangular fac-

torization, determination of eigenvalues and singular values, and resolution of certain linear systems) may

be performed with High Relative Accuracy (HRA), meaning that the relative error of the computations is of

the order of machine precision. In particular, this is possible whenever thematrix is non-singular and totally

positive [1] (i.e., a matrix such that all its minors are non-negative), assuming a bidiagonal factorization is

available.

Recent work [2] has studied population covariance matrices that are totally positive, thus opening the

door for the use of HRA techniques. Unfortunately, a sample covariance matrix is not necessarily totally

positive even if the sample comes from a random vector with a totally positive population covariance ma-

trix. This implies that all the developed work may not be applicable when dealing with real-life data if the

sample covariance matrix turns out not to be totally positive. A possible solution is to resort to the MLE of

the population covariance matrix under a restriction that assures that this population covariance matrix is

totally positive. In particular, the considered restriction is that presented in [2] requiring that the random

vector is a Gaussian Markov Random Field over a graph of paths such that all covariances between adjacent

variables on the graph are either (1) non-positive or (2) non-negative. The aforementioned MLE problem

requires to solve a constrained optimization problem that turns out to be difficult to solve. A naive solution

is to subdivide this optimization problem into 𝑛! subproblems (where 𝑛 is the number of nodes in the graph

associated with the Gaussian Markov Random Field), one per each possible graph of paths. Obviously, its

computational complexity makes this solution not to be very appealing. Here, some results allowing to ex-

press the optimization problem as a shortest Hamiltonian path problem are presented. As a result of the

present work, popular statistical techniques such as PCA can be performed with HRA.
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To reduce carbon emissions the transformation of the heating sector is of great importance. In particular,

district heating networks in combinationwith renewable energy generation andwaste heat play amajor role.

This includes lowering the operating temperatures and transforming the existing networks to decentralized

structures. Incorporating this, new operating strategies are needed.

We consider a global optimization approach that aims at finding cost-optimal operating strategies. The

optimization problem is based on nonlinear physical equations for describing the network state and binary

variables to determine flow directions in the network pipes. The resulting optimization problem is solved

with the solver SCIP. For district heating networks of a practically relevant size the solving process of this

mixed-integer nonlinear optimization problem leads to high computational costs. To lower the computa-

tional costs we include methods that make use of the underlying network structure to reduce the number of

binary variables and the number of nonlinear equations.

To absorb fluctuations in the availability of renewable energy generation and waste heat and ensure a

reliable heat supply, the usage of heating storages offers great potential. Including heating storages to the

optimization problem leads to a coupling of the complex optimization problem over multiple time steps and

an additional increase of the complexity. Therefore we consider a two-stage optimization approach which

aims at decomposing the time-coupled problem in two optimization problems, that can be solved more ef-

ficiently. In the first step the mixed-integer nonlinear optimization problem is solved for every time step

separately. In the second step the costs over all time steps are minimized and the optimal storage strategies

are determined.

The developed methods are evaluated with numerical results based on a real district heating network.
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1. Introduction

We consider the optimization of functions where the design variables are clouds of points (or equivalently,

bags of vectors). The clouds can have different sizes and the objective functions are invariant under arbitrary

permutations of the points within the cloud. Furthermore, no information related to the convexity and/or

smoothness of the functions is available. Such functions are of practical interest as they appear in several

real-life optimization problems, such as the design of a wind farm, where the design variables are the set of

turbine positions.

2. Evolutionary algorithm based onWassertein barycenter

The characteristics mentioned above make it hard to use off-the-shelf algorithms, such as gradient-based

methods. For these reasons, in this work we introduce a generic approach for such black-box optimization

problems where each cloud is modeled as a discrete uniform measure supported by the cloud points. This

allows to define stochastic evolutionary optimization algorithms whose transition operators (crossover and

mutation) rely on the use of Wasserstein distances and associated barycenters (see [1] for a review). The

crossover operator interpolates between two clouds of points, by calculating their average in theWasserstein

sense. We give an illustration of such an interpolation on clouds in Figure 1. We prove that the Wasserstein

barycenter has a contracting effect in the sense that the support of the barycenter is included in the closed

convex set of the unions of the initial two supports. The latter effect can lead to a premature convergence

to degenerated solutions. Specific mutations, once again based onWasserstein barycenters, are designed to

counteract this effect.

We investigate the performance of variants of ourWasserstein-based optimizers by comparing them to clas-

sical evolutionary algorithms on a family of test functions including wind farm layout optimization proxies.

We first consider point domains under the form of convex polygons, such as squares and trapezes. Subse-

quently, the points optimization domain is generalized to involve exclusion zones, defined as subdomains

which must not include any point of the optimal solution. Exclusion zones constitute a specific type of

constraint which is handled by penalization of the functions or in the definition of the algorithm operators

(crossover andmutation). Thedevelopedoptimizationmethod canalsobe combinedwith a surrogatemodel,

for instance a Gaussian process, when the objective function is costly. In this case our approach can be used

to optimize the acquisition criterion when the latter is defined over clouds of points.
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Fig. 1 𝑋1 and 𝑋2, respectively on bottom left and bottom right, are two initial clouds and 𝑋 (in the middle) represents

their Wasserstein barycenter.
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The analysis and solution of inverse problems has recently increased a lot because of their importance in

many applications: elastography and medical imaging, seismology, potential theory, ion transport problems

or chromatography and other similar fields.

In this talk we will consider a one-dimensional fluid-solid interaction model governed by the Burgers

equation with a time varying interface. It is a preliminary simplified version of other more complicate and

more realistic models in higher dimensions. For example, we could consider a system governed by the

Navier-Stokes equations around a moving sphere that interacts with the fluid.

Wewill see the resultswe have obtained for the inverse problemof determining the shape of the interface

from Dirichlet and Neumann data at one end point of the spatial interval. In particular, we will establish

uniqueness results and some conditional stability estimates. For the proofs, we have used and adapt some

lateral estimates that, in turn, rely on appropriate Carleman and interpolation inequalities (following results

in [5]).

The results that will be shown in this talk have been written in a preprint and submitted for publica-

tion, [1]. Other related works are [3] about control results for simplified one-dimensional models of fluid-

solid interaction and [4] about large time behavior for a simplified n-dimensional model of the same type

interaction.

On the other hand, in order to understand the research group’s background and approach to this kind of

problems, [2] can be read.

This is a joint researchproject in collaborationwithAnnaDoubova, EnriqueFernández-Cara andMasahiro

Yamamoto.
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In this talk, we study the optimal control, in a long time horizon, of neural ordinary differential equations

which are control-affine or whose activation function is homogeneous. When considering the classical reg-

ularized empirical risk minimization problem we show that, in long time and under structural assumption

on the activation function, the final state of the optimal trajectories has zero training error if the data can be

interpolated and if the error can be taken to zero with a cost proportional to the error. These hypotheses

are fulfilled in the classification and ensemble controllability problems for some relevant activation and loss

functions. Our proofs are mainly constructive combined with a proof by contradiction: we find that in long

time horizon if the final error is not zero, we can construct a less expensive control which takes the error to

zero. Moreover, we prove that the norm of the optimal control is constant. Finally, we show the sharpness of

our hypotheses by giving an example for which the error of the final state of the optimal trajectory, even if it

decays, is strictly positive for any time.

The talk is based on the paper [1], and provides answers to open problems posed in [2–4].
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We analyze the use of two different numerical methods to approximate the solutions of inverse source prob-

lems associated to the wave equation. The inverse problem consists in recovering the source term from

known boundary information of a single solution for sufficiently large time. It is well-known that a suitable

boundary observability inequatity gives the stability of such inverse problems. However, natural discretiza-

tions of these inverse problems (as finite elements or finite differences) may not inherit the observability

inequality, uniformly with respect to the discretization parameter. In this case, the solution of the discrete

inverse problem cannot be used to approximate the solution of the continuous one. In this talk we present

two numerical methods that overcome this difficulty. The first one is based on a mixed finite element for-

mulation and can be extended to variable coefficients in one dimension. This extension is delicate and it is

based on nonstandard uniform spectral properties of the associated discrete operator. The second is based

on a polynomial spectral collocation method and can be extended to the elasticity system. The first part of

this work is done in collaboration with S. Micu and the second one with S. Boumimez.
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Probability theory has had a significant impact on various areas of mathematics, particularly in algorithms

and combinatorics. The use of randomness in algorithms dates back to the Monte Carlo methods [6, 7]. In

subsequent years, random algorithms gained strength in optimization, notably with the emergence of tech-

niques such as simulated annealing [5] and genetic algorithms [4], whichwere used in complex optimization

problems. In recent years, stochastic gradient descent has attracted attention inmachine learning and artifi-

cial intelligence; its development has been crucial in training large-scale models, specially machine learning

algorithms, see [1,2].

In this talk, we discuss a random domain decomposition scheme for parabolic optimal control problems,

inspired by mini-batch algorithms used in machine learning. This scheme is based on the papers [3, 8] The

method discretizes the parabolic equation using the explicit Euler scheme and replaces the full elliptic op-

erator with a randomly selected elliptic operator acting on a part of the domain at each step. This approach

aims to reduce computational time. We will demonstrate the convergence of the scheme, highlighting the

trade-off between speed and accuracy. Special attention is paid to optimal control problems with bang-bang

minimizers.
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This contribution deals with the numerical solution of null controllability problems for heat-like equations

and systems. In each case, we start from a well known formulation due to Fursikov and Imanuvilov and we

apply duality-penalty techniques that lead to an augmented Lagrangian and several iterative algorithms. We

prove several convergence results and we illustrate the situation with some numerical experiments.
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Analysis and approximation.
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Chemotaxis PDE problems appear for modeling spatial movement of live populations (cells for instance)

which are attracted or repulsed by chemical signals. Other possible effects are also considered as self-

diffusion (of cells and chemical), chemical production or consumption by cells, etc. The mathematical anal-

ysis of Chemotaxis PDE systems has been largely developed in the last twenty years, with results highly

dependent of each system. These results are mainly: finite or infinite time blow-up versus bounded clas-

sical solutions, and large time stability of constant states versus pattern formation phenomena. The great

part of these results use existence and uniqueness of local in time classical solutions (using Amann’s argu-

ment [1]), extensibility criteria and a priori estimates (from below for blow-up or from above for global in

time solutions), see [2] and the references therein cited.

In the last years, we have considered optimal control problems subjected to chemotaxis PDE problems,

where the control acts directly on the chemical signal equation by means of a bilinear term (and only in-

directly on the cells equation). In particular, from a mathematical point of view, the bilinear control adds a

reaction termwith a non-regular coefficient, hence in general the previous classical solution arguments ( [1])

cannot be used. Instead, the generalized or weak solutions setting must be considered. From the analytical

point of view, three main results have been studied: existence of global optimal solution (via minimizing se-

quence), first-order necessary optimality conditions (based on a generic Lagrange multiplier Theorem) and

regularity of the Lagrange Multiplier problem (via a very-weak vs strong uniqueness result). These results

were obtained with some collaborators: M.A. Rodriguez-Bellido [3, 4, 6] (Universidad de Sevilla, Spain), E.

Mallea Zepeda [3–5] (Universidad Tarapaca, Chile), E.J Villamizar Roa [5] (Universidad Industrial de San-

tander, Colombia), P. Braz and C. Perusato [6] (Universidade Federal de Pernambuco, Brazil) and A.L.Correa

Vianna Filho [7,8] (Universidade Federal do Paraná, Brazil).

In the first part of this talk, we will explore the possibility to have local uniqueness of state with respect

to the control and the derivate of the corresponding local control-to-state operator, by applying the Implicit

Function Theorem in Banach spaces. In these cases, the gradient of the reduced cost functional can be identi-

fied, which is applied to arrive at necessary optimality conditions and to describe gradient descent methods.

In the second part, the numerical approximation of Keller-Segel-constrained optimal control is studied,

by using the discretize-then-optimize approach. Three type of controls are considered always acting directly

on the chemical equation: distributed bilinear control, a linear Neumann or Robin boundary control and a

bilinear boundary control. Our aim is to minimize a tracking cost functional driving the cell density near

of a given target state. We use an upwind finite volume numerical scheme to approach the state and the

corresponding discrete adjoint system, computing the discrete gradient exactly. Then, to minimize the cost

functional we employ the so-called ADAMmethod, which is a descent gradient adapting the pass via the first

and second moment.
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[3] F. Guillén-González, E. Mallea-Zepeda, M.A. Rodriguez-Bellido. Optimal bilinear control problem related to a chemo-repulsion sys-

tem in 2D domains. ESAIM-Control Optim. Calc. Variat., 26 (2020) 29.
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1. Introduction

In this talk, we are concerned with error estimates for the numerical approximation of affine optimal con-

trol problems subject to semilinear elliptic PDEs. For the error estimates, we focus on local minimizers that

satisfy certain local growth conditions. The local growth conditions we consider appeared recently in the

context of solution stability and encompass the joint growth of the first and second variations of the objec-

tive functional. These types of growth conditions are especially meaningful for affine control constrained

optimal control problems because the first variation can satisfy a growth condition, which is not the case for

unconstrained problems. Themain results of this talk are the achievement of error estimates for the numer-

ical approximations generated by a finite element scheme with piecewise constant controls or a variational

discretization scheme. Even though the considered growth conditions are weaker than the ones appearing

in the recent literature on finite element error estimates for affine problems, we can substantially improve

the existing error estimates for both the optimal controls and the states.
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We propose a novel methodology to accomplish the optimal performance of a raceway: an open-channel

pond with a rotating paddlewheel, where circulating wastewater is used for the cultivation of algae that will

be employed as source for bioenergy production [1,4].

Algal productivity maximization is addressed here by means of optimal control techniques for partial

differential equations, within a simulation-based optimization framework. So, we introduce a rigorously

detailed mathematical formulation of the optimal control problem (where the state system couples Navier-

Stokes equations on a free surface domain with a large system of nonlinear convection-diffusion-reaction

equations for the evolution of algae, nutrients and oxygen, where the design variables are the initial height of

water and the velocity of the paddlewheel, andwhere the objective function corresponds to themaximization

of algal concentration at the process final time -under some geometric and technological constraints) [2,3].

Then, we suggest a numerical algorithm for its computational resolution where, within an ALE strategy,

we use finite element techniques for the simulation step and a gradient-free algorithm for the maximization

one.

Finally, we show some preliminary results related to the numerical optimization of the problem.
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1. Introduction

The presentation wil be concerned with the growth-driven shape-programming problem, which involves

determining a growth tensor that can produce a deformation on a hyperelastic body reaching a given target

shape. We consider the two cases of globally compatible growth, where the growth tensor is a deforma-

tion gradient over the undeformed domain, and the incompatible one, which discards such hypothesis. We

formulate the problem within the framework of optimal control theory in hyperelasticity. The Hausdorff

distance is used to quantify dissimilarities between shapes; the complexity of the actuation is incorporated

in the cost functional as well. Boundary conditions and external loads are allowed in the state law, thus ex-

tending previous works where the stress-free hypothesis turns out to be essential. A rigorous mathematical

analysis is then carried out to prove the well-posedness of the problem. The numerical approximation is

performed using gradient-based optimisation algorithms. Our main goal in this part is to show the possibil-

ity to apply inverse techniques for the numerical approximation of this problem, which allows us to address

more generic situations than those covered by analytical approaches. Several numerical experiments for

beam-like and shell-type geometries illustrate the performance of the proposed numerical scheme.

2. Some details

Growth is biological process susceptible to being mimicked by artificial soft materials. However, the topic of

mathematical analysis and numerical simulation of growth control is in its infancy, insofar as themathemati-

cal analysis of softmaterials actuated by growth ismissing in the literature. This study sets up the problemof

optimal growth within the framework of optimal control theory in nonlinear elasticity. The control variable

is a growth tensor. The state variable is the deformation of the actuated soft continuum. As usual in hyper-

elasticity theory, that deformation is a minimiser of a polyconvex energy functional. The cost function uses

the Hausdorff distance to account for dissimilarities between the desired shape and the final configuration.

It also includes a term to deal with the complexity of the activation. More details may be found in [1].
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Matching ensembles of measures with Transformers
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Transformers have been one of the keys for the success of large language models such as ChatGPT (among

others). In this talk, we will first introduce Transformers together with the attention mechanism. Later, we

will consider the problem of matching an ensemble of𝑁 input probability measures with𝑁 output probabil-

ity measures via a mean-field continuity equation direcly derived from Transformers.
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The geometric design process of a linear transport infrastructure, such as a highway or railway line, is a very

time-consuming task. Usually, this process is done in two different phases that are carried out consecutively.

In the first stage, a corridor is determined considering economical aspects ( [3]), environmental aspects ( [1])

and so on. In the second stage, the final layout is designed within this corridor, also considering aspects of

functionality that must include all safety and comfort conditions required by the legislation of each country.

In recent years, many scientific works have proposed different models and optimization methods to auto-

mate this second stage (see, for instance, [2] and [5]), but today it is still carried out manually by the civil

engineer, who only uses some commercial road design software and relies mainly on his own experience.

Considering economical, enviromental, social, comfort, security, etc. aspects, and prioritizing infrastruc-

ture costs, in this work we present a new mathematical approach ( [4]) to simultaneously address the two

stages discussed above. In the framework of Mixed Integer Non Liner Programming (MINLP), a model is

proposed to minimize the main infrastructure costs under all comfort and safety constraints included in the

current Spanish legislation. This model is solved with an algorithm based on an exhaustive search into the

integer variables, combinedwith a randommulti-start of a sequential quadratic programming (SQP)method

to deal with the continuous ones. The local minima provide by this algorithm is used to determine all possi-

ble corridors by means of a clustering technique. Finally, a decision-making aid module is also proposed to

choose (i) a layout alternative within each corridor and (ii) the best of this alternatives resulting in the final

layout. The usefulness of this tool is shown in a real life study: the design of a bypass on the Spanish road

N-640, circumventing the urban area of Meira (Lugo) and avoiding other small villages, isolated buildings

and environmentally protected areas.
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The use of optimization techniques for the optimal design of roads and railways has increased in recent

years. The environmental impact of a layout is usually given in terms of the land use where it runs (avoiding

some ecologically protected areas), without considering air pollution (in these or other sensitive areas) due

to vehicular traffic on the road [1–3].

This work addresses this issue and proposes an automatic method for obtaining a specific corridor (op-

timal in terms of air pollution), where the economically optimized road must be designed in a later stage. In

particular, we introduce a novel methodology in order to obtain the optimal design (length and location) for

a road corridor to be connected to an already existing urban road network, avoiding a set of restricted zones,

and reducing the undesirable effects of air pollution at some sensitive areas that need to be protected. The

usefulness of this approach is shown in a real case study posed in a region that suffers from serious episodes

of environmental pollution: the Guadalajara Metropolitan Area (Mexico).

Combining a 1D traffic simulation model with a 2D air pollution model and using classical techniques for

optimal control of partial differential equations, the problem is formulated and solved in the framework of

Mixed Integer Nonlinear Programming. So, after a rigorous mathematical formulation of the environmental

problem, we propose a full algorithm for computing the ecologically optimized design of the road corridor.

The efficiency of our methodology has been assessed through several computational experiences for a

real-world case study. By a direct analysis of the numerical results obtained there, we can deduce that some

issues in the model present a low sensitivity when computing the optimal design (as could be, for instance,

the volume of traffic expected for the road corridor), but other ones show amuch higher sensitivity (mainly,

the total length of the corridor).

Finally, the achieved results also indicate a simple (expected) fact: if the decision-maker does not have

enough resources to maintain a sufficiently large road corridor, it will be very hard to hold the objective of

dropping down the pollution levels in those sensitive areas.

Last but not least, we should also mention that, although our study focuses on the optimal design of an

urban road corridor, the novel methodology presented here can be used in many other different scenarios,

for example, the construction of a road through protected forest reserves (not necessarily within a city), or

even the design of a trainway.
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Superlinear convergence of a semismooth Newton method for some

optimization problems with applications to control theory
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Let (𝑋, 𝒮, 𝜇) be a measure space with 𝜇(𝑋) < ∞. In this paper, we prove the superlinear convergence of a

semismooth Newton method to solve the following abstract optimization problem:

(P) min
𝛼≤𝑢(𝑥)≤𝛽 a.e.[𝜇]

𝒥(𝑢) +
𝜅

2
‖𝑢‖2

𝐿2(𝑋)

where 𝜅 > 0, −∞ ≤ 𝛼 < 𝛽 ≤ +∞, and 𝒥 ∶ 𝐿𝑝(𝑋) ⟶ ℝ is a function of class 𝐶2 for some 𝑝 ∈ [2, +∞).

Many control problems fit this abstract formulation. In particular, we apply this abstract result to distributed

control problems of a semilinear elliptic equation, to boundary bilinear control problems associated with a

semilinear elliptic equation, and to distributed control of a semilinear parabolic equation. The superlinear

convergence to a local minimizer �̄� is proved assuming that the no-gap second order sufficient optimality

condition and the strict complementarity condition are fulfilled at �̄�.
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We study infinite-dimensional optimization problems of the form

Minimize
1

2
‖𝑦 − 𝑦𝐷‖

2
𝐿2(Ω)

+ 𝜈1‖𝑔
′‖𝐿1(ℝ) +

𝜈2

2
‖𝑔′ − 𝑢𝐷‖

2
𝐿2(ℝ)

w.r.t. 𝑦 ∈ 𝐻1(Ω), 𝑔 ∈ 𝐻1
𝑙𝑜𝑐(ℝ),

s.t. − Δ𝑦 + 𝑔(𝑦) = 𝑓 in Ω, 𝑦 = 0 on 𝜕Ω,

and 𝑔′ ≥ 0 a.e. inℝ,

and 𝑔(0) = 0,

⎫
⎪
⎪

⎬
⎪
⎪
⎭

(P)

that aim to identify the Nemytskii operator𝑔 in the nonlinear part of a prototypical semilinear elliptic partial

differential equation which minimizes the 𝐿2(Ω)-distance between the PDE-solution 𝑦 and a given desired

state𝑦𝐷. Here,Ω ⊂ ℝ𝑑, 𝑑 ∈ {1, 2, 3}, is a bounded domainwhich is convex or possesses a𝐶1,1-boundary; 𝑦𝐷 ∈

𝐿2(Ω), 𝑓 ∈ 𝐿2(Ω) ∖ {0}, and 𝑢𝐷 ∈ 𝐿2(ℝ) are given; 𝑔′ denotes the weak derivative of 𝑔; 𝜈1 ≥ 0 and 𝜈2 > 0 are

(small) regularization parameters; Δ denotes the Laplace operator; and the objective function is understood

as an extended real-valued function on𝐻1(Ω)×𝐻1
𝑙𝑜𝑐(ℝ)with values in [0,∞]. The salient feature of (P), that

distinguishes our analysis from previous works, is that the function 𝑔 inducing the Nemytskii operator is

a-priori only assumed to be an element of𝐻1
𝑙𝑜𝑐(ℝ). This low regularity of 𝑔makes the problem (P) a suitable

point of departure for the rigorous analysis of training problems for learning-informed PDEs in which an

unknown superposition operator is approximated bymeans of a neural network with nonsmooth activation

functions (ReLU, leaky-ReLU, etc.). We establish that, despite the low regularity of the controls𝑔, it is possible

to derive a classical stationarity system for local minimizers of (P) and to identify the solutions of (P) by

means of a gradient projectionmethod. It is also shown that the established first-order necessary optimality

conditions imply that locally optimal superposition operators of (P) share various characteristic properties

with commonly used activation functions: They are always sigmoidal, continuously differentiable away from

the origin, and typically possess a distinct kink at zero. The talk concludes with numerical experiments that

confirm the theoretical findings.
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Fig. 1 Optimal superposition operators for an instance of (P) with fixed 𝜈2 and varying 𝜈1.
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Error estimates for the discretization of the velocity tracking

problemwith pointwise-integral control constraints in time-space
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Thevelocity tracking control problemassociated to the evolutionaryNavier-Stokes equations for two-dimensional

flows is studied. The Navier-Stokes equations are written as:

�
y𝑡 − 𝜈Δy+ (y ⋅ ∇)y+ ∇𝑝 = f+ u𝜒𝜔 in 𝑄 = Ω × (0, 𝑇),

div y = 0 in 𝑄, y(0) = y0 in Ω, y = 0 on Σ = Γ × (0, 𝑇),
(0.1)

where, y = (y1, y2) is the velocity field of the fluid, 𝑝 is the pressure, 𝜈 > 0 is the viscosity, f and u represent

the body forces, and y0 denotes the initial velocity. The goal of this work is to control the system through the

forces u acting on𝑄𝜔 = 𝜔×(0, 𝑇)with 0 < 𝑇 < ∞where𝜔 a subdomain ofΩ of positive Lebesguemeasure.

The optimal control problem under consideration is formulated as follows

(P) �
min 𝐽(u) ∶=

1

2
�
𝑄

|yu − y𝑑|
2𝑑𝑥𝑑𝑡

u ∈ 𝒰𝑎𝑑

where𝒰𝑎𝑑 = {u ∈ 𝐿∞(0, 𝑇; L(𝜔)) ∶ ‖u(𝑡)‖2L(𝜔) ≤ 𝛾 a.e. in (0, 𝑇)}with 0 < 𝛾 < ∞.

Our aim is to study the minimization of the tracking functional 𝐽 in 𝒰𝑎𝑑, without using a regularizing

𝐿2(0, 𝑇; L2(𝜔)) term in the functional, often called Tiknonov regularizing term, and under the physical con-

straints imposed by the structure of the admissible set𝒰𝑎𝑑 (see, e.g., [1]). Here, (u, y) satisfies (0.1), and the

tracking profile y𝑑 is chosen in a suitable Banach space.

The regularizing Tikhonov term is not involved in the cost functional and pointwise-integral control con-

straints in time-space are considered. First and second order optimality conditions are established using a

suitable extended cone for the sufficient ones. The emphasis of the presentation will be given in the numer-

ical approximation of the control problem, proving the convergence of the discrete problems and establish

error estimates between the optimal discrete and continuous states (see, e.g., [1]).
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For the Dirichlet Boundary Control of the Stokes equation, it must first be discussed how to understand the

solution of the Dirichlet problem for the Stokes equations when the Dirichlet data are not smooth, i.e. when

they are only in 𝐿2(Γ).

A weak solution (𝑦, 𝑝) ∈ 𝐻1(Ω)2 × 𝐿2(Ω) cannot be expected. Instead, the very weak formulation is

considered and a solution is seeked in 𝐿2(Ω)2 × 𝐻−1(Ω). Previous results on that topic are restricted to

convex domains where the dual problem has a solution in𝐻2(Ω)2 ×𝐻1(Ω)which is not true for non-convex

domains. Existence and uniqueness results for the very weak solution are provided.

To obtain a little more regularity than 𝐿2(Ω)2×𝐻−1(Ω) the corner singularities are studied such that the

approximation error decreases when the mesh size tends to zero.
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Regularization and outer approximation for optimal control

problems with controls in BV
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We consider a convex elliptic optimal control problem with a constraint on the TV-seminorm of the control.

We apply a dual regularization of the TV seminorm and solve the resulting optimization problems with an

outer approximation algorithm. We prove the convergence of the algorithm to the global optimal solutions,

which in turn converge to the optimal solution to the original problem as the regularization parameter tends

to zero. The theoretical findings are confirmed by numerical experiments.
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fracture control problem
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This talk is concernedwith an optimal control problemgoverned by the quasilinear Euler-Lagrange equation

of a time-discrete regularized phase-field fracture or damage energy minimization problem, where the con-

trol enters as aNeumannboundary force. Theproblem formulation includes inparticular apenalization term

for the fracture irreversibility and a viscous regularization. While the latter guarantees unique solvability of

the Euler-Lagrange equations under certain conditions since the associated energy minimization problem

is then striclty convex, the overall control problem remains nonconvex. We will focus on second order suf-

ficient optimality conditions for the control problem, see [2] for details and further reference. Convergence

of the sequential quadratic programming method will be briefly addressed, cf. [1], based on arguments as in

e.g. [4] as well as [3].
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polyhedral domains
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This presentation is concerned with the error analysis for finite element discretizations of Dirichlet bound-

ary control problems. In contrast to most of the publications from the literature the underlying domain is

assumed to be convex and polyhedral but not only polygonal. For the first time, optimal discretization error

estimates are established in this case using the concept of variational discretization or using the approach

of full discretzation each based on standard linear finite elements. The convergence rates, which are proven,

solely depend on the size of the largest interior edge angle. To be more precise, below the critical angle of

2𝜋/3, a convergence rate of one (times a log-factor) can be achieved for the discrete controls in the 𝐿2-norm

on the boundary. For larger interior edge angles the convergence rates are reduced depending on the size

of this angle, which is due the impact of singular (domain dependent) terms in the solution. The results are

comparable to those for the two dimensional case. However, the theoretical approaches from the two dimen-

sional setting seem not to be directly extendable such that new techniques have to be used. At the end of the

talk, the theoretical results are confirmed by numerical experiments. More details can also be found in [1].
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Non-coercive Neumann boundary control problems
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We examine a linear-quadratic Neumann control problem that is governed by a non-coercive elliptic equa-

tion. Due to the non-self-adjoint nature of the linear control-to-state operator, it is necessary to indepen-

dently study both the state and adjoint state equations. We establishe the existence and uniqueness of solu-

tions for both equations, with minimal assumptions made about the problem’s data. Next, the regularity of

these solutions is studied in different types of spaces. These regularity results enable a numerical analysis of

the finite element approximation of both the state and adjoint state equations. The results cover both convex

and non-convex domains and quasi-uniform and gradedmeshes. Finally, the optimal control problem is ana-

lyzed and discretized. Existence and uniqueness of the solution, first-order optimality conditions, and error

estimates for the finite element approximation of the control are obtained. A significant highlight is that the

discretization error estimates known from the literature, are improved even for the coercive case.
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1. Introduction

We consider convergence analysis for a coefficient controlled optimal control problem on a bounded domain

Ω ⊂ ℝ2 that is regular in the sense of Gröger and subject to variational inequality constraints. The constraint

is an obstacle problem, such that the optimal control problem is given by

min
𝑞∈𝑄ad,𝑢∈𝐾

𝐽(𝑞, 𝑢) =
1

2
‖𝑢 − 𝑢𝑑‖

2 +
𝛼

2
‖𝑞‖2

s.t. (𝑞∇𝑢, ∇(𝑣 − 𝑢)) ≥ (𝑓, 𝑣 − 𝑢) ∀𝑣 ∈ 𝐾

(1.1)

with 𝑢𝑑, 𝑓 ∈ 𝐿2(Ω). The state is subject to an obstacle𝜓 ∈ ℝwith𝜓 < 0 and the control is subject to bounds

0 < 𝑞min < 𝑞max ∈ ℝwith

𝐾 = �𝑣 ∈ 𝐻1
0 (Ω)| 𝑣 ≥ 𝜓 q.e.�

and 𝑄ad = �𝑞 ∈ 𝐿2 �Ω,ℝ2×2
sym� � 0 ≺ 𝑞min𝐼 ≼ 𝑞(𝑥) ≼ 𝑞max𝐼 a.e. � .

(1.2)

Note that 𝑞min𝐼 ≼ 𝑞 describes a semidefinite ordering in the sense that 𝑞 − 𝑞min𝐼 is a positive semidefinite

matrix.

2. Convergence Analysis

In this talk, we will discuss an approach to convergence analysis where we combine convergence results

for a regularization of Problem (1.1) with convergence analysis for the regularized problem, see, e.g., [4]

for such an approach. Introducing a regularization function 𝑟(𝛾, 𝑢𝛾) into the constraints of (1.1), we get the

regularized constraint

−∇ ⋅ �𝑞𝛾∇𝑢𝛾� + 𝑟(𝛾, 𝑢𝛾) = 𝑓 in 𝐻−1(Ω), (2.1)

which removes the obstacle and results in a coefficient controlled PDE-constraint. By utilizing existing re-

sults for the convergence analysis of such PDE-constrained problems, see [1], in conjunction with conver-

gence results for the regularization of the original problem, see [2], we will discuss convergence results for

the obstacle problem with control in the coefficients.

During this talk we will focus on the utilization of H-convergence techniques, see, e.g., [1, 3], to handle co-

efficient control. The novelty of this talk will be the introduction of a coefficient control in the variational

inequality setting.

Acknowledgements

Funded by the Deutsche Forschungsgesellschaft (DFG) - Projektnummer 314067056 within SPP 1962.

References

[1] K. Deckelnick and M. Hinze. Identification of matrix parameters in elliptic PDEs. Control Cybernet., 40(4):957–969, 2011.

[2] A. Hehl, D. Khimin, I. Neitzel, N. Simon, T.Wick, andW.Wollner. Coefficient control of variational inequalities. Preprint 2307.00869,

arXiv, 2023. URL: https://doi.org/10.48550/arXiv.2307.00869.

[3] F. Murat and L. Tartar. H-convergence. In A. V. Cherkaev and R. Kohn, editors, Topics in the mathematical modelling of composite
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On the bang-bang principle for parabolic optimal control problems
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We discuss the construction of parabolic optimal control problems with time-dependent control, such that

the optimal control has a desired switching structure. Our main result is that, for each given set of real

numbers 0 < 𝑠1 < … < 𝑠𝑘 < 𝑇, there is a target state such that the optimal control of the boundary control

problem below has the switching points 𝑠1, … , 𝑠𝑘. Even though the method is constructive, its numerical

application is limited to a small number 𝑘 of switching points. We present numerical examples for 𝑘 = 2, 3.

In the main part of the talk, the following spatially one-dimensional optimal boundary control problem

is considered:

min�
1

0

|𝑦(𝑥, 𝑇) − 𝑦Ω(𝑥)|
2𝑑𝑥

subject to

𝜕𝑡𝑦(𝑥, 𝑡) − 𝜕𝑥𝑥𝑦(𝑥, 𝑡) = 0 in (0, 1) × (0, 𝑇)

𝜕𝑥𝑦(0, 𝑡) = 0 in (0, 𝑇)

𝜕𝑥𝑦(1, 𝑡) + 𝜆 𝑦(1, 𝑡) = 𝑢(𝑡) in (0, 𝑇)

𝑦(𝑥, 0) = 0 in (0, 1),

and

|𝑢(𝑡)| ≤ 1 a.e. in (0, 𝑇).

Here, 𝑇 > 0 and 𝜆 > 0 are given constants, while 𝑦Ω ∈ 𝐿2(0, 1) is the given target state. Let us set for

convenience Ω ∶= (0, 1).

We will also briefly sketch the case of distributed and boundary control in higher dimension. For details,

we refer to [1].
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A numerical solution approach for non-smooth optimal control

problems based on the Pontryagin maximum principle
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We consider optimal control problems of the following type:

min�
Ω

𝑔(𝑥, 𝑦(𝑥)) + ℎ(𝑥, 𝑢(𝑥))𝑑𝑥

subject to the semilinear elliptic partial differential equation

−Δ𝑦 + 𝑑(𝑦) = 𝑢

with homogeneous Dirichlet boundary conditions. We assume that 𝑑 and𝑔 give rise to Fréchet differentiable

operators, whereas ℎ ∶ Ω × ℝ → ℝ̄ is merely assumed to be lower semicontinuous. In particular, we do not

assume convexity of ℎ.

It is well-known that local solutions satisfy the celebrated Pontryagin maximum principle. In this talk,

we will investigate an optimization method that is based on the maximum principle. The discrepancy in the

maximum principle vanishes along the resulting sequence of iterates. Numerical experiments confirm the

theoretical findings.
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This talk presents recent results on the SQPmethod for hyperbolic PDE-constrained optimization in acoustic

full waveform inversion. The analysis of the SQPmethod is mainly challenging due to the involved hyperbol-

icity and second-order bilinear structure. This notorious character leads to undesired effects of regularity

loss in the SQP iteration calling for a substantial extension of developed parabolic techniques. We propose

and explore a novel strategy for the well-posedness and convergence analysis of the SQP method based on

the use of a smooth-in-time initial condition, a tailored self-mapping operator, and a two-step estimation

process along with Stampacchia’s method. Our final theoretical result is the R-superlinear convergence of

the SQP method.
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Control-toolbox: solving control problems within Julia
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There is a strong trend to use Julia in scientific computing, so as to take advantage not only of the perfor-

mance but also of the high level traits of the language. These features allow to cast problems and algorithms

in a form close to their mathematical definitions. As powerful Julia libraries to solve ODE’s and optimisation

problems are now available, it is possible to attack efficiently optimal control problems. Several methods

will be presented, including direct transcription and shooting. While the first approach consists in a brutal

approximation of the infinite dimensional control problem by a nonlinear program with sparse constraints,

the second one leverages Pontrjagin maximum principle to ensure a very precise computation of optimal

controls. Rather than competing methods, these two approaches must be made to collaborate: direct codes

capture the structure of the solution (typically made of bang and singular arcs), which then allows to de-

vise and initialise a tailored shooting function. These points will be illustrated in the framework of ongoing

developments of Julia packages from the ct: control-toolbox suite.
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to preparative chromatography
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In this talk, we provide a live demonstration on how mixed-integer optimal control problems (MIOCPs) can

be solved with a discretize-then-optimize approach using CasADi—a tool for nonlinear optimization and

algorithmic differentiation.

Mathematically, we first transform theMIOCP in a continuous optimal control problem (OCP) bymeans of

partial outer convexification and relaxation. The obtained OCP is then transformed into a nonlinear program

(NLP) with, e.g., direct shooting or collocation methods. With a solution of the NLP at hand, we apply the

so-called sum-up rounding strategy to obtain 𝛿-feasible and 𝛿-optimal controls with respect to the original

mixed-integer formulation.

Using an illustrative example, we demonstrate how the abovementioned steps can be easily implemented

using CasADi. To also underline the real-world applicability of the presented procedure, we briefly show

results from the optimization of a real-world chromatographic separation process, where the underlying dy-

namics are given by a parabolic partial differential equationwith high nonlinearities. Even in this challenging

setting, the presented methodology works satisfactorily.
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WORHP Lab: teaching and showcasing numerical methods of

optimization and optimal control
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In a wide range of industrial applications, modeling and simulation are used to better understand processes.

In order for the industry to take the next step towards optimization and recognize their benefits, a lot of

educational work is still needed. With the graphical user interface WORHP Lab, we develop an easy-to-use

software tool to explain concepts of optimization and optimal control to industrial partners. In our MINT

activities with schools we learned, that also students can work with the software to learn about useful appli-

cations of mathematics.

1. Optimization

TheESANLPsolverWORHP [1]wasdesigned to solvenonlinearprogrammingproblemsusing anSQPmethod

or an interior point method. WORHP exploits the sparsity patterns of the occurring derivative matrices of

the user-defined functions (for objective and constraints). Typically for structured problems each function

only depends on few variables, and hence large numbers of variables and constraints can be considered.

After a successful optimization with WORHP, a parametric sensitivity analysis can be performed using

the module WORHP Zen [4] to find out, how the solution would change if the problem is changed slightly.

2. Optimal Control

The transcription method TransWORHP [2] was developed to solve general optimal control problems using

direct methods. After a full discretization (with Trapezoidal method, Hermite-Simpson, etc.) or application

of a multiple shooting method the problem is solved using WORHP, taking into account the problem spe-

cific derivative structures and values, if available. In this way we can also receive the valuable sensitivity

information for the discretized optimal control problem.

3. Graphical User Interface

The graphical user interfaceWORHPLab allows an easy access to formulate problems for the solversWORHP

and TransWORHP. Optimization variables can be declared and ranges can be provided easily. The functions

for the objective and the constraints can be provided in the interface as C++ code, which will be converted to

executable code during run-time for faster evaluations.

The optimization output and the results (including sensitivity derivatives) can be analyzed and visualized

easily. In the context of TransWORHP, techniques for an adaptive grid refinement ormodel predictive control

[3] can be tried out.

The software (including various versions of training material) was already used successfully in various

lectures, industrial workshops, and STEM activities.
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1. Introduction

Interior point methods and their primal-dual implementation are widely and successfully used to solve op-

timal control problems in a first-discretize-then-optimize fashion. However, their adaptation to the first-

optimize-then-discretize framework is not straightforward. In recent contributions [2, 3], we established a

proof of convergence of function space interior-point methods for a general class of optimal control prob-

lems. This convergence proof allows for adapting primal-dual methods in the first-optimize-then-discretize

framework. The primal-dual optimal control solving algorithm solves differential and algebraic equations

with initial and final conditions. The proposed method is fast, accurate, and easy to use.

2. Some details

The problem we are interested in consists in finding a solution (𝑥, 𝑢) of the following Constrained Optimal

Control Problem (COCP)

min
(𝑢,𝑥)

𝐽(𝑥, 𝑢) ∶= 𝜑(𝑥(𝑇)) + �
𝑇

0

ℓ(𝑥(𝑡), 𝑢(𝑡))d𝑡 (2.1a)

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) (2.1b)

0 = ℎ(𝑥(0), 𝑥(𝑇)) (2.1c)

0 ≥ 𝑔(𝑥(𝑡)) (2.1d)

0 ≥ 𝑐(𝑥(𝑡), 𝑢(𝑡)) (2.1e)

The main convergence result for primal-dual methods in the first-optimize-then-discretize framework is as

follows.

Theorem 2.1 Let (𝜖𝑛)𝑛 be a sequence of decreasing positive parameters with 𝜖𝑛 → 0 and let

(�̄�𝜖𝑛 , �̄�𝜖𝑛 , �̄�𝜖𝑛 , �̄�
𝑔
𝜖𝑛 , �̄�

𝑐
𝜖𝑛
, �̄�𝜖𝑛)𝑛 be a solution of

̇�̄�𝜖𝑛(𝑡) =𝑓(�̄�𝜖𝑛(𝑡), �̄�𝜖𝑛(𝑡)) (2.2a)

̇�̄�
𝜖𝑛

=−
𝜕𝐻

𝜕𝑥
(�̄�𝜖𝑛(𝑡), �̄�𝜖𝑛(𝑡), �̄�𝜖𝑛(𝑡)) −

𝜕𝑔

𝜕𝑥
(�̄�𝜖𝑛(𝑡))

⊤.�̄�
𝑔
𝜖𝑛(𝑡) −

𝜕𝑐

𝜕𝑥
(�̄�𝜖𝑛(𝑡), �̄�𝜖𝑛(𝑡))

⊤.�̄�𝑐𝜖𝑛(𝑡) (2.2b)

0 =
𝜕𝐻

𝜕𝑢
(�̄�𝜖𝑛(𝑡), �̄�𝜖𝑛(𝑡), �̄�𝜖𝑛(𝑡)) +

𝜕𝑐

𝜕𝑢
(�̄�𝜖𝑛(𝑡), �̄�𝜖𝑛(𝑡))

⊤.�̄�𝑐𝜖𝑛(𝑡) (2.2c)

0 =FB(�̄�
𝑔
𝜖𝑛(𝑡), 𝑔(�̄�𝜖𝑛(𝑡)), 𝜖𝑛) (2.2d)

0 =FB(�̄�𝑐𝜖𝑛(𝑡), 𝑐(�̄�𝜖𝑛(𝑡), �̄�𝜖𝑛(𝑡)), 𝜖𝑛) (2.2e)

0 =ℎ(�̄�𝜖𝑛(0), �̄�𝜖𝑛(𝑇)) (2.2f)

0 =�̄�𝜖𝑛(0) +
𝜕ℎ

𝜕𝑥(0)
(�̄�𝜖𝑛(0), �̄�𝜖𝑛(𝑇))

⊤.�̄�𝜖𝑛 (2.2g)

0 =�̄�𝜖𝑛(𝑇) − ∇𝜑(�̄�𝜖𝑛(𝑇)) −
𝜕ℎ

𝜕𝑥(𝑇)
(�̄�𝜖𝑛(0), �̄�𝜖𝑛(𝑇))

⊤.�̄�𝜖𝑛 (2.2h)

where FB ∶ R ×R, ×R+ ↦ R+ is the Fisher-Burmeister complementarity function defined as follows

FB(𝑥, 𝑦, 𝜖) ∶= 𝑥 − 𝑦 − �𝑥2 + 𝑦2 + 2𝜖 (2.3)

Then (�̄�𝜖𝑛 , �̄�𝜖𝑛 , �̄�𝜖𝑛 , �̄�
𝑔
𝜖𝑛 , �̄�

𝑐
𝜖𝑛
, �̄�𝜖𝑛)𝑛 contains a subsequence converging to a point satisfying the first-order opti-

mality conditions [1] for problem (2.1).
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We study deterministic optimal control problems for differential games with finite horizon [2]. We propose

new approximations of the strategies in feedback form and show error estimates and a convergence result of

the value in someweak sense for one of the formulations. This result applies in particular to neural network

approximations. This work follows some ideas introduced in Bokanowski, Prost and Warin [1] for deter-

ministic optimal control problems, yet with a simplified approach for the error estimates, which allows to

consider a global optimization scheme insteadof a time-marching scheme. Wealso give a newapproximation

result between the continuous and the semi-discrete optimal control value in the game setting, improving

the classical convergence order 𝑂(Δ𝑡1/2) to 𝑂(Δ𝑡) (where Δ𝑡 is the time step) under some assumptions on

the dynamical system. In order to validate the approach, numerical examples are shown on some academic

two-player game problems related to backward reachability, in presence of state constraints, using the level

approach to represent the regions of interests. Stochastic gradient-type algorithms are used to deal with the

minimax problem.

Fig. 1 A very elementary example of a controlled front propagation with an adverse control (left: initial data, cen-

ter/right: reachable region after some time evolution) Up: no obstacle. Down: with disk obstacle.
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1. Introduction

The construction of stabilizing feedback controls for nonautonomous parabolic-like equations is addressed.

The discussion includes stabilizing feedbacks either given explicitly, based on suitable oblique projections,

or given by operators constructed by using optimization tools.

2. Controlled nonautonomous parabolic-like systems

We are given a control system as

�̇� = −𝐴𝑦 − 𝑁(𝑦) − 𝐵𝑢, 𝑦(0) = 𝑦0 ∈ 𝐻,

with state 𝑦(𝑡) ∈ 𝐻 (where 𝐻 is a Hilbert space) and control input 𝑢(𝑡) ∈ ℝ𝑀, at time 𝑡 ≥ 0. The operator 𝐴

is a linear diffusion-like time-independent operator, and 𝑁(𝑦) = 𝑁(𝑡, 𝑦(𝑡)) is a time-dependent, possibly

nonlinear, reaction–convection-like operator.

The control force 𝐵𝑢(𝑡) = ∑
𝑀
𝑗=1 𝑢𝑗(𝑡)Φ𝑗 is a linear combination of a finite number 𝑀 of apriori given

linearly independent actuatorsΦ𝑗 ∈ 𝐻, 1 ≤ 𝑗 ≤ 𝑀.

We assume that the free dynamics (i.e., with 𝑢 = 0) is not stable. The goal is to find the control input in

feedback form 𝑢(𝑡) = 𝐾(𝑡, 𝑦(𝑡)), so that the resulting system

�̇� = −𝐴𝑦 − 𝑁(𝑦) − 𝐵𝐾(𝑦), 𝑦(0) = 𝑦0 ∈ 𝐻,

is stable. In other words we are looking for a stabilizing feedback control operatot 𝐾.

3. Strategy

For a general class of nonlinearities, we showhow the feedback control input can be taken in the form 𝑢(𝑡) =

𝐾(𝑃𝑀𝑦(𝑡)), depending on an𝑀-dimensional component 𝑧(𝑡) = 𝑃𝑀𝑦(𝑡) of the state, for example, the orthog-

onal projection of 𝑦(𝑡) onto the linear span𝒰𝑀 of the set of actuators.

In this case we have that 𝐾 ∶= 𝒰𝑀 → ℝ𝑀 can be identified with a mapping 𝐾 ∶= ℝ𝑀 → ℝ𝑀.

We show firstly that 𝐾 can be found in explicit form. Then, we address the problem of finding an opti-

mal𝐾 among (nonlinear) functions𝐾 ∶= ℝ𝑀 → ℝ𝑀, where we use techniques inspired bymachine learning.

Results of simulations are presented showing the stabilizing performance of the proposed feedback con-

trols [1].

Appendix: detectability, observer design

We show how this type of explicit feedback operators can be used as an output injection operator in the

context of observer design (i.e., state estimation; continuous data assimilation), and present results of cor-

responding simulations [2].
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We consider an infinite horizon optimal control problem of the form

minimize 𝐽(𝑥0, 𝑢) = �
∞

0

𝑒−𝛿𝑡ℓ(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡,

subject to �̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)), 𝑥(0) = 𝑥0.

(1)

For such a problem, an (approximately) optimal feedback control 𝑢∗(𝑡) = 𝐹(𝑥∗(𝑡)) can be computed

from (an approximation of) the optimal value function 𝑉(𝑥0) ∶= inf𝑢 𝐽(𝑥0, 𝑢). However, conventional grid-

or mesh-based numerical methods encounter the curse of dimensionality for the computation of 𝑉 as solu-

tion of the Hamilton-Jacobi-Bellman equation. This results in an exponential growth of the computational

effort in the dimension of the state 𝑥, making the methods impractical for higher dimensions. In this pre-

sentation, we show that neural networks are able to mitigate the curse of dimensionality for interconnected

optimal control problems exhibiting a decaying sensitivity property among their subsystems.

Initially, we introduce a feedforward neural network architecture, demonstrated in [1], which provably

only requires a polynomial growth of neurons in the dimension 𝑛 to approximate so-called 𝑑-separable func-

tions. A function 𝐹∶ ℝ𝑛 → ℝ is called 𝑑-separable if it can be written as 𝐹(𝑥) = ∑
𝑠
𝑗=1 𝐹𝑗(𝑧𝑗), where 𝑧𝑗 ∈ ℝ𝑑𝑗

represent lower-dimensional components of the whole state 𝑥 with 𝑑𝑗 ≤ 𝑑 for all 𝑗 = 1,… , 𝑠. We then con-

sider an optimal control problem (1) that can be decomposed into 𝑠 subsystems whose interconnection is

expressed via a directed graph. For such a problem we propose a decaying sensitivity assumption stating

that the sensitivity between two subsystems on the optimal value function is decreasing with an increasing

distance of the subsystems in the graph. In the context of linear quadratic problems with 𝑉(𝑥) = 𝑥𝑇𝑃𝑥 for

some 𝑃 ∈ ℝ𝑛×𝑛, this sensitivity assumption corresponds to a decrease of the entries in 𝑃 with an increas-

ing graph distance between the respective subsystems and has been utilized in [2] for approximating the

optimal feedback matrix. In this presentation, we introduce a decaying sensitivity formulation tailored for

nonlinear problems and demonstrate how to leverage overlapping neighborhoods in the graph to construct

a separable approximation of the optimal value function, as discussed in [3]. Furthermore, we provide error

bounds based on the type of decay and the structure of the underlying graph. Altogether, this establishes a

condition for interconnected optimal control problems that enables avoiding the curse of dimensionality us-

ing neural networks. To provide empirical validation of our theoretical framework, we present results from

a numerical test case.

Acknowledgements

This research has been supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-

dation) under project number 463912816 within the priority program 441826958.

References
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1. Introduction

Neural ordinary differential equations (ODEs) have emerged as a natural tool for data-driven supervised

learning, particularly for modeling dynamical processes. They represent the continuous-time limit of neural

networks:

�̇� =

𝑝

�

𝑖=1

𝑤𝑖(𝑡)𝜎(𝑎𝑖(𝑡) ⋅ 𝑥 + 𝑏𝑖(𝑡)), 𝑡 ∈ (0, 𝑇), (1.1)

where 𝑥 ∈ ℝ𝑑, 𝜃𝑖 ≔ (𝑤𝑖, 𝑎𝑖, 𝑏𝑖) ∈ 𝐿∞((0, 𝑇); ℝ𝑑 × ℝ𝑑 × ℝ) are piecewise constant controls, 𝜎 ∶ ℝ𝑝 → ℝ𝑝 is

the component-wise ReLU function, defined for each component by 𝜎(𝑧) = max{𝑧, 0} for 𝑧 ∈ ℝ, 𝑝 ≥ 1 is the

width, and thenumberof discontinuities𝐿 ≥ 1of every𝜃𝑖 is thedepth. Oneof themain advantages that neural

ODEs offer is the possibility to reinterpret several machine learning paradigms from a control perspective

using the tools fromdifferential equations. For example, the problemof data classification can be understood

in terms of the property of simultaneous controllability that the system (1.1) exhibits to interpolate𝑁 points

inℝ𝑑.

2. Results

In this work, I present two results in this direction. They focus on identifying the optimal architecture of the

model describedby (1.1), determinedby its depth andwidth, andonmeasuring its finite-sample expressivity.

First, we estimate the required number of neurons for efficient cluster-based classification, especially in

the worst-case scenario where points are independently and uniformly distributed in [0, 1]𝑑. It has been

shown in [3] that this task can be accomplished using 𝑂(𝑁) neurons. In [1], we propose an algorithm that

classifies clusters of 𝑑 points from any initial configuration, provided they are in general position, resulting

in a complexity of 𝑂(𝑁/𝑑) neurons.

Second, we explore in [2] the interplay between the width 𝑝 and depth 𝐿 in interpolating a dataset of 𝑁

pairs of points. Our findings reveal a balancing trade-off, with 𝐿 scaling as 𝑂(1 + 𝑁/𝑝). In the autonomous

case, where 𝐿 = 0, a separate study is required. We address the relaxed problem of 𝜀-approximate control-

lability of𝑁 pairs of points and establish an error decay of 𝜀 ∼ 𝑂(log(𝑝)𝑝−1/𝑑). This decay rate results from

applying a universal approximation theorem to a custom-built Lipschitz vector field that interpolates 𝒟. In

the high-dimensional setting, we further demonstrate that 𝑝 = 𝑂(𝑁) neurons are likely sufficient to achieve

exact control. To conclude, we consider the natural extension of the problem to 𝜀-approximate control of two

measures in the Wasserstein-1 space, obtaining 𝐿 = 𝑂�1 + (𝑝𝜀𝑑)−1� discontinuities.

Fig. 1 Left: Algorithm for cluster-based classification. Right: Algorithm for𝑁-point interpolation (in two steps).
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In this paper, we consider an optimal control problem in Lagrange form on an unbounded time interval with-

out convexity assumptions. A relaxation method of Gamkrelidze [2] is adapted to the infinite time horizon

and weighted Sobolev spaces are used as state spaces (compare [1]):

𝐽(𝑥, 𝜇) = �
Ω

⟨𝜇𝑡, 𝑟(𝑡, 𝑥(𝑡), v)⟩𝑑𝜁 ⟶ 𝑀𝑖𝑛

𝑥 ∈ 𝑊
1,𝑛
𝑝 (Ω, 𝜈)

𝜇 ∈ ℳ𝑈, 𝑈 ⊆ ℝ𝑚

�̇�(𝑡) = ⟨𝜇𝑡, 𝑓(𝑡, 𝑥(𝑡), v)⟩ a.e. on Ω,

𝑥(𝑡0) = 𝑥0, 𝑡0 ∈ Ω

The product topology consisting of the weak topology on Sobolev space and the tight topology on ameasure

space is used. To obtain the closedness of the admissible set, one type of growth condition is used, in which

a continuous weight function 𝜓 acts as a decay factor for the right-hand sides of the state equations:

𝑓(𝑡, 𝜉, v)𝜓−1(v) ∈ 𝐶𝑏(𝐾 × ℝ𝑛 × 𝑈), ∀𝐾 ∈ comp(Ω).

The compactness of the admissible set is achieved by a variant of the Prokhorov condition.
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We study the dynamics of the exploitation of a natural resource, distributed in space and mobile, where

spatial diversification is introduced by a via a weighted, directed network. The network represents both the

locations and the interactions of the resource nodes. A regulator decides to designate some of the nodes as

natural reserveswhere no exploitation is allowed. The remaining nodes are assigned (one-to-one) to players,

who will exploit the resource at the node, maximizing their own utility.

We show existence of a Nash equilibrium, as well as its uniqueness among linear Markovian equilibria,

providing an explicit formula for the solution.

We show how the Nash equilibrium and the resource stocks depend on the productivity of the resource

sites, on the structure of the connections between the sites, and on the number and the preferences of the

agents. The best locations to host nature reserves are identified according to the model’s parameters, and

we find that they correspond to the most central (in the sense of eigenvector centrality) nodes of a suitably

redefined network that considers the nodes’ productivity.

A variety of possible generalizations and relative applications are also analyzed.

References

[1] Giorgio Fabbri, Silvia Faggian, Giuseppe Freni. On competition for spatially distributed resources on networks. Theor. Econ., in

press.

[2] Giorgio Fabbri, Silvia Faggian, Giuseppe Freni. Growth Models with Externalities on Networks. Working Papers from Department of

Economics, University of Venice ”Ca’ Foscari”, vol. 23/WP/2023, pp. 1-18 (ISSN 1827-3580)

[3] Giorgio Fabbri, Silvia Faggian, Giuseppe Freni. Policy effectiveness in spatial resource wars: a two-region model. J Econ. Dyn.

Control, vol. 111, pp. 1-30 (ISSN 0165-1889).

FGS2024 French-German-Spanish Conference on Optimization

96 Universidad de Oviedo, 18-21 June 2024



Optimal control of ODEs: theory and applications

On the use of Henstock-Kurzweil integral in optimal control problems

Valeriya Lykina

valeriya.lykina@b-tu.de Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany

1. Introduction

In this talk we consider a class of infinite horizon optimal control problems involving an integral functional

and ordinary differential equations describing the dynamics of the process. The integral is interpreted in the

sense of Henstock-Kurzweil, see [1], [2]. The chosen interpretation of the integral results fromunsatisfactory

points in using Lebesgue or improper Riemann integrals for handling control problemswith infinite horizon,

cf. [3]. Due to the fact that Henstock-Kurzweil integrals generalize both Lebesgue and Riemann integrals, it is

possible to formulate optimality results formore general class of optimal control problems. Here, we discuss

the advantages and challenges of using the HK integral in the problem setting.

2. Some details

It is considered the infinite horizon control problem of minimizing the integral objective

𝐽𝐻𝐾∞ (𝑥, 𝑢) = HK -
∞

∫
0

𝑟(⋅, 𝑥(⋅), 𝑢(⋅)) e𝜈(⋅) (2.1)

with respect to all pairs

(𝑥, 𝑢) ∈ 𝐻𝐾1,𝑛(ℝ+, 𝜈) × 𝐻𝐾𝑚(ℝ+, 𝜈) ; (2.2)

governed by differential equation of the form

�̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) a.e. on ℝ+ ; (2.3)

𝑥(0) = 𝑥0 ; (2.4)

and satisfying the control constraints

𝑢(𝑡) ∈ 𝑈 a.e. on ℝ+ (2.5)

Hereby 𝑈 denotes a compact convex subset ofℝ𝑚, 𝜈 and e𝜈 are weight functions.

A first result concerning sufficient optimality conditions for the new class of optimal control problems

is obtained. Relations between admissible sets and optimal solutions of the new control problem and the

problems involving Lebesgue or improper Riemann integrals are discussed by means of an example. The

applicability of sufficient optimality conditions is also shown.
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1. Overwiev

Integer optimal control problemswith vector-valued controls pose challenges in ensuring solution existence

andpreventing undesirable chattering behavior. A common tool to address these issues effectively is the total

variation functional. Our approach involves adapting the total variation functional to accommodate any 𝑝-

vector norm, providing greater flexibility in shaping the solution properties.

We observe optimality conditions of first and second order via a switching time optimization problem.

Furthermore, we present a trust region algorithm grounded in Bellman’s optimality principle, which offers

a systematic framework for tackling such problems. The efficacy of our method is illustrated by two ODE-

constrained examples from the benchmark library mintoc.de.

2. Problem Formulation and details

We investigate problems of the form

Minimize 𝐹(𝑢) + 𝛽TV𝑝(𝑢)

such that 𝑢(𝑡) ∈ 𝒱 ⊂ ℤ𝑀 for a.a. 𝑡 ∈ (0, 𝑇).
(P)

Here, 𝑢 ∈ BV(0, 𝑇)𝑀, 𝛽 > 0 and the set 𝒱 is assumed to be finite. The term TV𝑝 is defined by

TV𝑝(𝑢, 𝐽) ∶= sup ��
𝐽

𝑢⊤𝜑′ d𝑡 | 𝜑 ∈ 𝐶1𝑐 (𝐽)
𝑀, ‖𝜑(𝑡)‖𝑝′ ≤ 1∀𝑡 ∈ 𝐽�

where 𝑝′ is the Hölder conjugate of 𝑝 and 𝐽 ⊂ (0, 𝑇) is open. Also, we write TV𝑝(𝑢) ∶= TV𝑝(𝑢, (0, 𝑇)).

Finally,𝐹 is assumed tobe lower semicontinuos, bounded frombelowandGâteaux-differentiable. Itmight

contain the solution operator of a differential equation, i.e. 𝐹(𝑢) = �̂�(𝑆(𝑢), 𝑢), where 𝑆 is a control-to-state

operator, e.g. mapping 𝑢 to a state satisfying some ODE or PDE.
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The Paris 2015 agreement on climate change is aiming at reducing the temperature increase to below 2𝑜 𝐶.

This implies that effective mitigation policies need to be pursued that not only prevent the 𝐶𝑂2 emission

from rising further but reduce the annual emission substantially. The modeling strategy presented in Atolia,

Loungani,Maurer, Semmler [1] attempts to answer threequestions: First, what are thebest strategies to keep

the 𝐶𝑂2 emission bounded by a predefined upper bound. Second, what resources should be allocated to the

adaptation effort when climate risk, due to a lack of emission reduction, is rising and future economic, social,

and ecological damages can be expected. A third issue is of how the efforts of mitigation and adaptation

are funded and how the funds should efficiently be allocated between traditional infrastructure investment,

mitigation and adaptation efforts.

The control model [1] has 5 state and 8 control variables that allows to consider the specific policies of

infrastructure investment, mitigation and adaptation. A numerical challenge arises from the fact that the

optimal control model involves a nonlinear mixed control-state constraint. Optimal control policies for var-

ious initial conditions and terminal constraints are obtained via discretization and nonlinear programming

methods. The difficulty of determining appropriate weights in the cost functional measuring, eg., the nega-

tive externality of the use of brown energy leads us to consider twodifferent sets of parameters in thewelfare

functionals. We use the numerical methods developed in Kaya, Maurer [2,3] to determine the Pareto front of

optimal solutions.
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We consider relaxed control problems whose objective functional is in the economic context a discounted

utility functional or an energy functional in mechanical or quantummechanical systems. The objective func-

tional can also be chosen in such a way that the asymptotic controllability of the system is guaranteed.

The following problem ̄(𝑃) is considered:

𝐽(𝑥, 𝜇) = �
∞

0

�
𝑈

𝑟(𝑡, 𝑥(𝑡), v) 𝑑𝜇𝑡(v)𝑒
−𝜚𝑡 𝑑𝑡 ⟶ 𝑀𝑖𝑛, 𝜚 ≥ 0

𝑥 ∈ 𝑊
1,𝑛
2 ((0,∞), 𝜈), 𝜇 ∈ ℳ𝑈, 𝑈 ∈ 𝑐𝑜𝑚𝑝(ℝ𝑚)

�̇�(𝑡) = �
𝑈

𝑓(𝑡, 𝑥(𝑡), v)𝑑𝜇𝑡(v) a.e. on (0,∞), 𝑥(𝑡0) = 𝑥0.

All integrals are to be understood in the Lebesgue sense. The relaxed controls 𝜇 are taken from a regular

family of probability measuresℳ𝑈. A weighted Sobolev space𝑊
1,𝑛
2 ((0,∞), 𝜈) with a suitable weight func-

tion 𝜈 is chosen as the state space.

In comparison to the literature, see [1], [2], where overtaking or weakly overtaking optimality is mainly

used as optimality criterion, the classical comparison of Lebesque integrals in the objective of ̄(𝑃) is used

here.

Under conditions that ensure the existence of the solution, cf. also the contribution by I. Dikariev, entitled

Existence Theorem for Relaxed Control Problems on Infinite Time Horizon Utilizing Weight Functions,

we treat the problem with dual methods. Here, we mainly refer to the ideas of Caratheodory and Klötzler

for the construction of a dual problem. This dual based approach has already been used for special optimal

control problems with infinite horizon in [3], [4].
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1. Introduction

In this talk, we present some results pursuing the investigation in [2, 3] and consider some affine optimal

control problems where a term, 𝑓(𝑥), is partially unknown. We assume that the admissible functions 𝑓 vary

in a space of functions𝒳 for which we know a probability distribution 𝜋. We prove some convergence prop-

erties for the optimal policies and themultipliers of the problemas a family ofmeasures𝜋𝑛weakly converges

to 𝜋. The proofs strongly rely on Γ-convergence techniques (see the book [1] for details on Γ-convergence).

2. Some details

We consider an affine optimal control which does not require the exact knowledge of the drift term 𝑓, but

merely a probability distribution defined on a space of functions containing 𝑓. The space of such distribution

is denoted byℳ(𝒳), while the set𝒳 satisfies certain conditions which will be later specified. Let 𝑇 > 0 be

given. For each 𝑠 ∈ [0, 𝑇], 𝑥0 ∈ ℝ𝑛 and 𝜋 ∈ ℳ(𝒳), consider the following optimal control problem, which

we will refer to as Problem (𝐵𝜋):

⎧

⎨
⎩

minimize 𝐽𝑠,𝜋[𝑢]

over �(𝑥𝑓, 𝑢)(⋅) ∶ 𝑓 ∈ 𝒳� such that 𝑢 ∈ 𝒰 and

�̇�𝑓(𝑡) = 𝑓(𝑥𝑓(𝑡)) + 𝑔(𝑥𝑓(𝑡))𝑢(𝑡), 𝑓 ∈ 𝒳, 𝑡 ∈ [𝑠, 𝑇],

𝑥𝑓(𝑠) = 𝑥0, 𝑓 ∈ 𝒳,

where𝒰 ∶= {𝑢 ∶ [𝑠, 𝑇] → ℝ𝑚 Lebesgue measurable} and

𝐽𝑠,𝜋[𝑢] = 𝔼𝜋 ��
𝑇

𝑠

�𝐺 �𝑥𝑓(𝑡)� +
1

2
𝑢(𝑡)𝑇𝑅𝑢(𝑡)� 𝑑𝑡 + Φ�𝑥𝑓(𝑇)��

= �
𝒳

��
𝑇

𝑠

�𝐺 �𝑥𝑓(𝑡)� +
1

2
𝑢(𝑡)𝑇𝑅𝑢(𝑡)� 𝑑𝑡 + Φ�𝑥𝑓(𝑇)�� 𝑑𝜋(𝑓) .

We address the following research question. Let us suppose that we have a family of measures {𝜋𝑛}𝑛 weakly

convergent to 𝜋 as 𝑛 → ∞. If we are able to solve Problem (𝐵𝜋𝑛) and compute optimal controls 𝑢𝑛, we

wonder if a cluster point of 𝑢𝑛, 𝑢∞, is a minimizer of Problem (𝐵𝜋) and if there is convergence also of the

optimal values of the cost functions.

Problem (𝐵𝜋𝑛) Problem (𝐵𝜋)

𝑢𝑛 minimizers
?
→ 𝑢minimizers

as 𝜋𝑛 ⇀ 𝜋, 𝑛 → ∞.

The results presented in this talk are contained in a manuscript currently under revision.
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In this work, we consider a controlled complex network of Lotka-Volterra systems, first proposed in [1],

where the strength of the migrations of biological individuals is replaced by control functions, reproducing

the implementation of ecological corridors We prove that a solution of the controlled complex network can

reach a near-synchronization state, under sufficient conditions which highlight the importance to consider

a positive lower on the controls functions. After, we study optimal control problems where the main goal

is the minimization of the default of synchronization in the complex network. We consider different cost

functionals taking into account that the dynamics of the controlled complex network ensure the conservation

of both species, namely, our goal is to impose synchronization or synchronization of limit cycles. Therefore,

the solutions of the optimal control problems lead to a restoration of the biodiversity of life species in a

heterogeneous habitat by reaching at least a global coexistence equilibrium, or in a better scenario, a global

limit cycle which would guarantee biological oscillations, which means rich life dynamics [2].
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The talk is devoted to certain extensions of the properties of strong metric regularity and sub-regularity

of mappings, focusing on mappings associated with optimal control problems. Namely, for control con-

strained optimal control problems, the first order necessary optimality conditions can be recast as an inclu-

sion 0 ∈ 𝐹(𝑦) (often in the form of a variational inequality), where 𝑦 includes the state, co-state and control

variables, and 𝐹 is a mapping between subsets of Banach spaces (the so-called optimality mapping). Various

types of regularity properties of the optimality mapping are of interest, but often the standard definitions of

regularity have to be modified in order to capture in a relevant way the mappings into question.

The regularity properties we discuss in the talk are the so called Strong Metric sub-Regularity (SMsR)

and Strong Metric Regularity (SMR), where, however, two metrics are used in each of the domain and image

spaces. Validity of these two regularity properties of the optimality mapping have been established for vari-

ous optimal control problems. In the talk we focus on problems that satisfy the Legendre-Clebsch condition

and on affine optimal control problems, which will be considered separately.

Two applications will be briefly presented:

(i) existence of Lipschitz continuous optimal feedback control;

(ii) convergence with error estimates of discretization and Newton-like methods for optimal control.

The talk is partly based on results obtained in the papers given in the reference list below.
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Optimal control problems involving parameters appear a natural framework for some models arising in ap-

plications such as aerospace engineering, biology, among many others. These comprise minimax optimiza-

tion problems, and bi-level problems in which an optimal control problem is coupled with a nonlinear pro-

gramming problem. We shall provide necessary optimality conditions for a class of optimal problems which

involve parameters, and showhow these conditions can be applied to derive necessary optimality conditions

for problems having a bi-level structure.
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In this presentation, we address optimal control problems involving loss control regions. In this context, the

state space is partitioned into disjoint sets referred to as regions:

ℝ𝑛 =

𝑁

�

𝑘=1

𝑋𝑘,

where𝑋𝑘 are non-empty, open, disjoint open sets. These regions are classified into two types: control regions

and loss control regions. We introduce an indexation 𝑞𝑘 ∈ {0, 1} allowing us to separate control regions and

loss control regions as follows

𝑞𝑘 ∶= �
1 if 𝑋𝑘 is a control region,

0 if 𝑋𝑘 is a loss control region,

for all 𝑘 = 1,… ,𝑁. When the state belongs to a control region, the control is permanent (i.e., the control

value can be modified at any time 𝑡). In this case, the control system is given by

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)), if 𝑞𝑘 = 1.

On the other hand, when the state belongs to a loss control region, the control must remain constant, equal

to the last assigned value 𝑢𝑘 before the state enters the loss control region, and this value is kept until the

state exits this region. In this case the control system is given by

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢𝑘), when 𝑞𝑘 = 0.

The goal of this presentation is twofold. First, we derive a corresponding Pontryagin maximum principle

based on an augmentation technique (allowing to reduce an optimal control problem with loss control re-

gions to a (classical) optimal control problem). Second, we propose a two-step numerical scheme to solve

optimal control problems with loss control regions. The approach is based on a direct numerical method

applied to a regularized problem, which initializes an indirect numerical method based on the previously

mentioned optimality conditions and applied to the original problem. Lastly, we apply this numerical ap-

proach to several illustrative examples.
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We are interested in the hybrid electric vehicle torque split and gear shift problem, which can be formulated

as a classical Lagrange optimal control problem with fixed initial condition. The Pontryagin’s maximum

principle gives necessary optimality conditions adjoining to the state a covector called costate. Thus, the

optimal state trajectory has to be found among the projections of the lifted trajectories, called Pontryagin ex-

tremals, given by the maximum principle. The indirect simple shooting method aims to compute Pontryagin

extremals reducing the resolution to the research of the initial costate.

Classically, a Newton-like solver is used to compute zeros of the so-called shooting equations. The main

drawback of this method is its sensitivity to the initial guess. Therefore, a good initial guess need to be given

to make the Newton solver converge, which is not an easy task in practice.

We propose a preconditioning method [2] of the shooting function based on two main results. The first

one is a geometrical interpretation of the costate that connects the final costate of the augmented system

to the normal cone of the reachable set of the augmented system. The second result is well known as the

Mathieu transformation, which gives the lifted canonical diffeomorphism on state-costate space from a dif-

feomorphism on the state space, and is related to the underlying symplectic structure.

For the considered application, we construct a preconditioner based on the affine transformation of an

ellipse into the unit circle. We numerically show that the proposed preconditioning method reduces the

number of iterations of our solver. Remarkably, in our experiments, it is better to use the preconditioner

than to provide a good initial guess [1] for the shooting function.
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1. Introduction

Near-Earth space is becoming increasingly congested with man-made space debris, resulting in the need for

satellites to perform a collision avoidance manoeuvre (CAM) whenever a space debris object is predicted to

comedangerously close to their orbit. Through this CAM, the satellite reaches a safe separation distancewith

the secondary object, assumed uncooperative. While high-thrust (≈ 1−100𝑁) CAM’s on large, conventional

satellites are relatively straightforward to approach, low-thrust (≈ 0.1 − 10𝑚𝑁) CAM’s are more challeng-

ing to optimise due to the long time scales involved. Typically, they are optimised for fuel consumption of

orbital energy loss [2]. This work instead focuses on optimising low-thrust CAM’s for minimum time taken

to perform the CAM, an objective which is pertinent for late conjunction alerts and when satellite operation

time is valuable. As the encounter is assumed to be fast, an analysis is required only at one time instance;

moment of closest approach 𝑡𝐶𝐴.

The research is comparable to the reachable set analysis of Evans et al., with the addition of a constraint

characterising a closest approach [3]. Like their work, the CAM optimisation is investigated as a two-point

boundary valueproblem (TPBVP) andoptimal control is applied in first-order approximation. Their assump-

tion of optimal steering direction is proven in this work in the same first-order approximation.

2. Methodology

Given the satellite state at closest approach 𝑦, a relative position Δ𝑟 and a relative velocity Δ𝑣, there are two

constraints characterising the problem which are valid at the final time 𝑡𝑓:

𝑔(𝑦𝑓, 𝑡𝑓) = ⟨Δ𝑟(𝑦𝑓, 𝑡𝑓), Δ𝑣(𝑦𝑓, 𝑡𝑓)⟩ = 0, (2.1)

fixing the characterising the conjunction as a closest approach and

𝑠(𝑦𝑓, 𝑡𝑓) = |Δ𝑟(𝑦𝑓, 𝑡𝑓)|
2 − 𝑟2safe = 0, (2.2)

ensuring a safe outcome of the CAM. As the thrust duration 𝑡0 is to be minimised, the initial conditions of

the TPBVP are not fully characterised. Developing purely Keplerian dynamics with 𝑡𝐶𝐴 as a state variable,

linearising the TPBVP and employing the necessary conditions of Pontryagin’s Maximum Principle [1] lead

to the result that the co-state 𝜆 is constant for this problem. This finding allows for a formulation of the

linearised TPBVP involving only a single integral, hereby coupling the minimised 𝑡0 with the small thrust

magnitude and safe separation distance. Through backward integration starting from a safe outcome of the

encounter, minimum-time trajectories can be found for any initial condition up until a perfect collision with

zero initial separation distance. In first-order approximation, it is shown that these trajectories are confined

to a two-dimensional plane called the conjunction plane or B-plane.

Special attention in results analysis is given for cut points for varying 𝑡0 inminimum-time contours found

through backward integration, as these points represent different minimum-time trajectories originating

from the same initial condition. The control found through solving this linearised TPBVP can be used further

serving as initial guesses in a true optimal control problem.
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The construction of feedback-like control fields for a kinetic model in phase space is investigated. The pur-

pose of these controls is to drive an initial density of particles in the phase space to reach a desired cyclic

trajectory and follow it in a stable way. For this purpose, an ensemble optimal control problem governed

by the kinetic model is formulated in a way that is amenable to a Monte Carlo approach. The proposed for-

mulation allows to define a one-shot solution procedure consisting in a backward solve of an augmented

adjoint kinetic model. Results of numerical experiments demonstrate the effectiveness of the proposed con-

trol strategy.

1. Setting

Our kinetic model consists of a Liouville-type non-homogeneous streaming operator and a linear collision

term 𝐶[𝑓] as follows:

𝜕𝑡𝑓(𝑥, 𝑣, 𝑡) + ∇𝑥 ⋅ �𝑣 𝑓(𝑥, 𝑣, 𝑡)� + ∇𝑣 ⋅ �𝐹(𝑥, 𝑣, 𝑡; 𝑢) 𝑓(𝑥, 𝑣, 𝑡)� = 𝐶[𝑓](𝑥, 𝑣, 𝑡), (1.1)

with a control function 𝑢 = 𝑢(𝑥, 𝑣, 𝑡)within the force term 𝐹.

We consider an initial- and boundary-value problem with this model in the phase space Ω × ℝ𝑑, where

𝑥 ∈ Ω ⊂ ℝ𝑑 represents the position space coordinate and 𝑣 ∈ ℝ𝑑 represents the velocity. On the inflow part

of the boundary 𝜕Ω, we require (partial) specular reflection boundary conditions. Our objective function is

given by

𝐽(𝑢, 𝑓) = �
𝑇

0

�
Ω×ℝ𝑑

�𝜃(𝑥, 𝑣, 𝑡) +
𝜈

2
|𝑢(𝑥, 𝑣, 𝑡)|2� 𝑓(𝑥, 𝑣, 𝑡) 𝑑𝑥 𝑑𝑣𝑑𝑡 + �

Ω×ℝ𝑑
𝜑(𝑥, 𝑣)𝑓(𝑥, 𝑣, 𝑇) 𝑑𝑥 𝑑𝑣, (1.2)

where 𝜃 encodes the task of the control to drive the particles along a desired trajectory in phase space; sim-

ilarly, in 𝜑 the desired configuration at final time is encoded.

2. Optimization

Introducing anadjoint variable𝑞 = 𝑞(𝑥, 𝑣, 𝑡) andexploiting theLagrange framework,wederive the following

first-order optimality condition

𝑓(𝑥, 𝑣, 𝑡) �𝜈 𝑢(𝑥, 𝑣, 𝑡) − 𝜕𝑢𝐹(𝑥, 𝑣, 𝑡; 𝑢)∇𝑣𝑞(𝑥, 𝑣, 𝑡)� = 0. (2.1)

Assuming that the density 𝑓 is positive everywhere, a necessary and sufficient condition for (2.1) is to set

𝑢(𝑥, 𝑣, 𝑡) =
1

𝜈
𝜕𝑢𝐹(𝑥, 𝑣, 𝑡; 𝑢)∇𝑣𝑞(𝑥, 𝑣, 𝑡). (2.2)

This is an essential step in our development because the 𝑢 given by (2.2) does not depend on 𝑓 but solely on

the optimization functions 𝜃 and 𝜑 that define the control tasks. These are the characterizing features of a

feedback control. It is now sufficient to solve an augmented adjoint model once in order to derive a control,

that performs given tasks for any initial condition. In Fig. 1, we present results showing the ability of our

control field to drive an initial density of particles distributed in the phase-space to reach and maintain a

desired cyclic trajectory 𝑧𝐷.

Fig. 1 Time-Snapshots of the evolution of particles in phase space (ord.: velocity, abs.: position, dashed red: 𝑧𝐷)
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We consider a chemical system composed of 𝑑 species X1, … ,X𝑑 interacting via 𝑅 reactions,

for 1 ≤ 𝑟 ≤ 𝑅, R𝑟 ∶ 𝛼𝑟 ⋅ X
𝑎𝑟(𝑡,𝑥)
−−−−−→ 𝛽𝑟 ⋅ X, with X = (X1, … ,X𝑑).

Each reaction R𝑟 is characterized by its stoichiometric coefficients 𝛼𝑟, 𝛽𝑟 ∈ ℕ𝑑 and its reaction rate 𝑎𝑟(𝑡, 𝑥).

This reaction rate may depend on time 𝑡 ≥ 0 and on the state 𝑥 ∈ ℕ𝑑 of the system. Being in state 𝑥 =

(𝑥1, … , 𝑥𝑑) means that there are 𝑥𝑖 molecules of species X𝑖, for all 1 ≤ 𝑖 ≤ 𝑑. Such a chemical system may

be described by a continuous-time Markov chain 𝑋(𝑡), with law 𝑝(𝑡, 𝑥) = ℙ[𝑋(𝑡) = 𝑥], the probability to be

in state 𝑥 at time 𝑡. This law satisfies a Kolmogorov equation, called the Chemical Master Equation (CME) in

this context,

𝜕𝑝

𝜕𝑡
(𝑡, 𝑥) =

𝑅

�

𝑟=1

�𝑎𝑟(𝑡, 𝑥 − 𝜈𝑟)𝑝(𝑡, 𝑥 − 𝜈𝑟) − 𝑎𝑟(𝑡, 𝑥)𝑝(𝑡, 𝑥)�, with 𝜈𝑟 = 𝛽𝑟 − 𝛼𝑟. (CME)

This equation is used in biology (cf. [1]) tomodel chemical reactions taking place inside cells, in order to take

into account the randomness of these reactions, in a context where the number of molecules involved is too

low to make a continuous approximation of the state space 𝒮 = ℕ𝑑. Thus, the CME is a countable collection

of ordinary differential equations.

In the simple case of bounded reaction rates 𝑎𝑟, the Cauchy-Lipschitz theorem ensures the existence and

uniqueness of the solution, while the implicit function theorem allows to conduct a sensitivity analysis of

this solution with respect to the data (initial condition, reaction rates, …). However, practical applications

in biology lead to consider reaction rates that are proportional to the number of reactants and therefore

unbounded. In this framework, theuniqueness of the solution is no longer guaranteed. Onemaynevertheless

use the appropriate (in a physical sense) notion of minimal solution (cf. [2]).

Using stability estimates for the minimal solution, we establish la differentiability of this solution with

respect to the data. We then give an expression for the directional derivative involving an adjoint equation,

for which we also define a concept of minimal solution. This allows us to derive optimality conditions (in

the form of a Pontryagin’s principle) for a class of optimization problems for which we control the reaction

rates.
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This work aims to control the dynamics of certain non-Newtonian fluids in a bounded domain ofℝ𝑑, 𝑑 = 2, 3

perturbed by a multiplicative Wiener noise, the control acts as a predictable distributed random force, and

the goal is to achieve a predefined velocity profile under aminimal cost. Due to the strong nonlinearity of the

stochastic state equations, strong solutions are available just locally in time (cf. [1]), and the cost functional

includes an appropriate stopping time. First, we show the existence of an optimal pair. Then, we show

that the solution of the stochastic forward linearized equation coincides with the Gâteaux derivative of the

control-to-statemapping, after establishing some stability results. Next, we analyse the backward stochastic

adjoint equation; where the uniqueness of solution holds only when 𝑑 = 2. Finally, we establish a duality

relation and deduce the necessary optimality conditions. For further information, we address the reader

to [2].

Acknowledgements

Thiswork is fundedbynational funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the

scope of the projects UIDB/00297/2020 andUIDP/00297/2020 (Center forMathematics and Applications).

References

[1] Y. Tahraoui, F. Cipriano. Local strong solutions to the stochastic third grade fluid equations with Navier boundary conditions.

Stoch PDE: Anal Comp (2023). https://doi.org/10.1007/s40072-023-00314-9.

[2] Y. Tahraoui, F. Cipriano. Optimal control of third grade fluids with multiplicative noise

https://doi.org/10.48550/arXiv.2306.13231.

FGS2024 French-German-Spanish Conference on Optimization

110 Universidad de Oviedo, 18-21 June 2024



Optimization and stabilization of infinite-dimensional dynamical
systems

Designing the monodomain model with artificial neural networks

Sébastien Court1, Karl Kunisch2

1. sebastien.court@uibk.ac.at University of Innsbruck, Austria

2. karl.kunisch@uni-graz.at University of Graz & RICAM Linz, Austria

1. Introduction

We propose a data-drivenmethod in order to identify the nonlinearity in the monodomainmodel. Themon-

odomain model is a system coupling a semilinear parabolic PDE with an ODE, describing the time evolution

of an electric potential. Our approach provides a general answer to the problem of selecting themodel when

studying phenomena related to cardiac electrophysiology: Frommeasurements, instead of determining coef-

ficients of a prescribednonlinearity (like the FitzHugh-Nagumomodel for instance), wedesign thenonlinear-

ity itself, in the form of an artificial neural network (ANN), more specifically a feedforward residual network.

The relevance of this approach relies on the approximation capacities of neural networks. Training the ANN

corresponds to solving an identification problem constrained by the monodomain model so parameterized.

We formulate this inverse problem as an optimal control problem, and provide mathematical analysis and

derivation of optimality conditions for identifying the weights of the ANN. One of the difficulties comes from

the lack of smoothness of activation functions which are classically used for training deep neural networks.

Wewill also present numerical results that demonstrate the feasibility of the strategy proposed in this work.

This is joint work with Prof. Karl Kunisch (RICAM & University of Graz), published in [1].

2. State equations

Consider a bounded domain ofℝ𝑑 (𝑑 = 2 or 3). The monodomain model writes as follows

𝜕𝑣

𝜕𝑡
− 𝜈Δ𝑣 + 𝜙𝑣(𝑣, 𝑤) = 𝑓𝑣 in Ω × (0, 𝑇),

𝜕𝑤

𝜕𝑡
+ 𝛿𝑤 + 𝜙𝑤(𝑣, 𝑤) = 𝑓𝑤 in Ω × (0, 𝑇),

𝜕𝑣

𝜕𝑛
= 0 on 𝜕Ω × (0, 𝑇),

(𝑣, 𝑤)( ⋅ , 0) = (𝑣0, 𝑤0) in Ω,

(∗)

where z = (𝑣,𝑤) is the state variable, (𝑓𝑣, 𝑓𝑤) are given right-hand-sides, (𝑣0, 𝑤0) are given initial conditions,
and the nonlinearities (𝜙𝑣, 𝜙𝑤) are designed from data in the form of a feedforward neural network with 𝐿
layers parameterized with affine functions (weights)𝑊1, … ,𝑊𝐿:

Φ(z) = �
𝜙𝑣(z)

𝜙𝑤(z)
� = �

𝑊2(𝜌(𝑊1(z))) if 𝐿 = 2,

𝑊𝐿(𝜌(𝑊𝐿−1(𝜌(…𝜌(𝑊1(z)))))) if 𝐿 ≥ 3.

3. Illustrations

After training the ANN represented by mapping Φ with measurements based on the Aliev-Panvilov model,

we illustrate the time evolution of the corresponding state variables in Figure 1.

Fig. 1 Values of the state variables (𝑣AP, 𝑤AP) of the Aliev-Panvilov model in dashed blue and green respectively. In

red and magenta respectively the values of the solution (𝑣,𝑤) of the monodomain model (∗) with the trained ANN as

nonlinearity. Left: with Architecture 1. Right: with Architecture 2.
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1. Introduction

Stabilization of linear control systems with uncertain parameters is investigated. A Riccati based feedback

mechanism is analyzed, constructed using an ensemble of candidate parameters from an a-priori chosen

training set. This feedback stabilizes all systems of the training set and also systems in its vicinity. Moreover,

for optimal control problems of tracking type the described strategy results in an affine tracking feedback

control input. The suboptimality with respect to optimal feedback for each single parameter from the train-

ing set can be quantified. Numerical results are presented to demonstrate the robust performance of the

proposed feedback mechanism for trained as well as untrained parameters.

2. Some details on the construction of the feedback

Optimal control problems subject to linear dynamical systems with uncertain parameters are considered,

where the uncertain parameter 𝜎 enters the system via𝒜𝜎 as

�̇�𝜎(𝑡) = 𝒜𝜎𝑥𝜎(𝑡) + 𝐵𝑢(𝑡), (2.1)

for 𝑡 > 0 and given 𝑥𝜎(0) = 𝑥∘. Based on an a-priori chosen training ensembleΣ ≔ {𝜎1, … , 𝜎𝑁} of potential

realizations of the unknown parameter 𝜎, an auxiliary system is construct as

ẋΣ(𝑡) = AΣxΣ(𝑡) + B𝑢(𝑡), (2.2)

for 𝑡 > 0 and xΣ(0) = ℰ𝑥∘, where ℰ ∶ 𝑥 ↦ (𝑥⊤, … , 𝑥⊤)⊤, B ≔ ℰ𝐵, and where AΣ ≔ diag(𝒜𝜎1
, … ,𝒜𝜎N

) is

block diagonal. Given a quadratic cost functional, the optimal feedback law KΣ for (2.2) is obtained by solv-

ing an associated Riccati equation. The corresponding optimal feedback control coincides with the optimal

open-loop control for a robust formulation of the optimal control problem based on the sample average over

the training ensemble. This motivates the use of the feedback control

𝑢(𝑡) = −𝐵⊤ℰ⊤KΣℰ𝑥𝜎(𝑡)

in (2.1). This presentation is based on [1–3].
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Interacting particle systems have emerged as a powerful tool formodeling collective behavior across various

disciplines, from physics and biology to social dynamics and machine learning. As the number of particles

grows large, the system can be described by a probability density distribution that evolves according to a

McKean-Vlasov partial differential equation (PDE). This mean-field limit often exhibits complex phenomena

such as phase transitions andmultistability, which are linked to the underlyingmicroscopic interactions, the

noise amplitude, and the interaction strength.

In this talk, we present a numerical framework for studying the steady states of the McKean-Vlasov PDE

and designing control strategies to stabilize the system around desired configurations. We first discuss a

spectral Galerkin approximation of the PDE, which leads to a finite-dimensional root-finding problem. To

systematically identify distinct steady states, we employ a deflated Newton’s method [1] that iteratively

eliminates known solutions from consideration. The stability of the obtained stationary solutions is then

analyzed using free energy arguments and self-consistency conditions, enabling a characterization of the

system’s phase transitions [2].

Building upon the knowledge of the steady states, we formulate an optimal control problem to stabi-

lize the particle ensemble around unstable configurations of interest. The control enters as an additional

drift term in the McKean-Vlasov dynamics, and a feedback law is computed by solving a PDE-constrained

optimization problem [3]. We derive optimality conditions using the Pontryagin’s Maximum Principle and

propose a gradient-based algorithm for numerical solution. To achieve stabilization in the presence of insta-

bilities, we employ a model predictive control strategy that solves the finite-horizon problem in a receding

horizon fashion.

Throughout the talk, we highlight the interplay between the particle dynamics and their mean-field limit,

illustrating how the micro-scale interactions shape the emergent macro-scale behavior. We present numer-

ical examples that demonstrate the effectiveness of the proposed deflation technique in capturing phase

transitions and the ability of the optimal control framework to steer the system towards desired states. The

computational tools developed here offer valuable insights into the multiscale nature of interacting particle

systems and open up new avenues for their analysis and control.
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1. Setting

In this contribution [1] we consider optimal control problems subject to control– and state constraints 𝑢 ∈

𝑈ad and 𝑦 ∈ 𝑌ad, with the governing equation being of abstract quasilinear parabolic type

𝜕𝑡𝑦 +𝒜(𝑦)𝑦 = 𝐵𝑢 + ℱ(𝑦) in 𝑋, 𝑦(0) = 𝑦0, (QL)

on a finite time interval (0, 𝑇), with some Banach space 𝑋. The underlying actual PDE formulation is posed

on a bounded domainΩ ⊂ ℝ𝑑withminimal smoothness assumptions, essentially a Lipschitz manifold. It in-

cludesmixed boundary conditions on boundary parts𝐷 ∪̇𝑁 = 𝜕Ωwhere it is allowed that𝐷∩𝑁 ≠ ∅, so that

there is an actual interface between boundary conditions, for which we have further minimal assumptions.

The quasilinear operator 𝒜(𝑦)𝑦 is of the form − div(𝜉(𝑦)𝜇∇𝑦), so with a “zero-order” nonlinearity in-

duced by a real Lipschitz function 𝜉 and a merely bounded and measurable coefficient matrix function 𝜇; in

contrast, we allow that the nonlinear function ℱ also depends on first derivatives of 𝑦, with the prototype

ℱ(𝑦) = |∇𝑦|2. Such nonlinearities are interesting in several practical applications, but they are also notori-

ously hard to deal with in the analysis of (QL), in particular in a nonsmooth setup as we consider where one

cannot expect, say, 𝐻2(Ω) regularity for the solution. The control operator 𝐵 incorporates the control into

the equation in a linear and continuous fashion.

We further consider also the particular casewhere 𝑌ad is notmerely a classical state constraint but in fact

a constraint on the gradient of the state.

2. Results

In principle, the general way to do optimal control theory for the problems considered is well known when-

ever the equation admits the usual wellposedness and regularity results for its solutions. However, the reg-

ularity requirements are nontrivial to obtain in the nonsmooth setting. In particular, the established argu-

ments for the weak setting 𝑋 = 𝑊
−1,𝑞
𝐷 (Ω)—under the assumption that there is a 𝑞 > 𝑑 such that there is

optimal elliptic𝑊
1,𝑞
𝐷 (Ω) regularity for the operator−∇⋅𝜇∇ on𝑋—are not sufficient for the present casewith

gradient nonlinearities and/or gradient constraints, whereas the strong setting 𝑋 = 𝐿𝑞(Ω) is generally not

tractable in the given setting.

We thus derive amost flexible theory for (QL) in the scale𝑋 = 𝑋𝜃 = [𝑊
−1,𝑞
𝐷 (Ω), 𝐿𝑞(Ω)]𝜃 between theweak

and strong setting, based nonautonomous maximal parabolic regularity, using on a bilinear interpolation

technique to determine the needed multiplier regularity [2]. The upper limit for 𝜃 depends on the degree

of Hölder regularity 𝜅 for the elliptic 𝐿𝑞(Ω) problem for −∇ ⋅ 𝜇∇. Based on the𝑊
−1,𝑞
𝐷 (Ω)-setting, this allows

to deal with the prototype nonlinearity ℱ(𝑦) = |∇𝑦|2 and a spatially integrated gradient constraint 𝑦 ∈ 𝑌ad
without further assumptions, generalizing earlier results [3]. In the optimal case, 𝜅 > 1—which is to be

expected under stronger assumptions only—, and we get that ∇𝑦 ∈ 𝐶(𝑄) which in fact allows to consider

even pointwise bounds on the gradients in the state constraints.

The theory developed thus gives a comprehensive and flexible framework to deal with the quasilinear

equation (QL) and associated optimal control problems, which falls back to the expected “classical” results

whenever the data admits it.
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We consider a class of potential mean-field games (MFGs) with a potential structure: they are equivalent to

certain convex optimal control problems of the Fokker-Planck equation. The Fokker-Planck equationmodel-

ing the evolution of the distribution of a stochastic differential equation, the problems that we will consider

also encompass a large class of nonlinear stochastic optimal control problems.

It was recently shown that the Generalized Conditional Gradient (GCG) algorithm (also called Generalized

Frank-Wolfe algorithm) is a method of choice for the resolution of convex and potential second-order MFGs

as it exhibits a linear rate of convergence, when applied to the continuous model [2].

We will discuss in the talk the application of the GCG method to a discretized MFG model and show that

the initial convergence properties of the algorithm are preserved at the discrete level, a property referred

to as mesh-independence [3]. The discrete model under consideration is obtained with the theta-scheme, a

finite-difference method which we introduced in [1]. Numerical results will be presented.
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1. Abstract

In this talk, we present an abstract maximal 𝐿𝑝-regularity result for linear partial differential equations of

parabolic type defined on a bounded domain and subject to finite-dimensional stabilizing feedback controls

applied to a portion of the boundary, extending the analysis to 𝑇 = ∞. Our aim is to provide a compre-

hensive framework that accommodates various scenarios, including both classical and more contemporary

examples.

Firstly, we examine the application of our framework to the classical boundary parabolic setting, illus-

trating howmaximal 𝐿𝑝-regularity can be effectively utilized in this context.

Secondly, we delve into more recent developments by considering specific systems. One such system is

the 3D Navier-Stokes Equations, where we explore the integration of finite-dimensional, localized, bound-

ary tangential feedback stabilizing controls. This investigation is crucial for understanding how boundary

controls can influence the stability and behavior of fluid flows governed by the Navier-Stokes equations.

Additionally, we investigate Boussinesq Systems, focusing on the integration of finite-dimensional, lo-

calized feedback for stabilizing Dirichlet boundary control within the thermal equation component of these

systems. This exploration sheds light on the interplay betweenboundary control strategies and the dynamics

of thermally driven flows.

Our study not only contributes theoretical insights into the abstract theory of maximal 𝐿𝑝-regularity for

parabolic PDEs but also offers practical implications for the design and implementation of control strategies

in fluiddynamics and related fields. By extendingour analysis to infinite timehorizon (𝑇 = ∞), weemphasize

the long-term stability and effectiveness of the proposed control frameworks.

FGS2024 French-German-Spanish Conference on Optimization

116 Universidad de Oviedo, 18-21 June 2024



Optimization and stabilization of infinite-dimensional dynamical
systems

MOR based RHC for stabilization of time-varying linear parabolic

PDEs

Behzad Azmi1, Jan Rohleff2, Stefan Volkwein3

1. behzad.azmi@uni-konstanz.de University of Konstanz, Germany

2. jan.rohleff@uni-konstanz.de University of Konstanz, Germany

3. stefa.volkwein@uni-konstanz.de University of Konstanz, Germany

This talk deals with the stabilization of a class of time-varying parabolic partial differential equations us-

ing Receding Horizon Control (RHC) based on Model Order Reduction (MOR). Here the control is finite-

dimensional, i.e. it appears as a time-dependent linear combination of finitely many indicator functions

whose total support covers only a small part of the spatial domain. We also include the squared ℓ1 norm

the control cost. This leads to an infinite-horizon nonsmooth problem, which allows for stabilizing optimal

control with a low number of active actuators over time. First, the stabilizability of RHC is discussed. Then,

to speed up the numerical computation, the data-driven MOR approaches are appropriately integrated into

the RHC framework. Numerical experiments illustrating the advantages of our MOR approaches are also

reported.
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In this presentation the analytical background of nonlinear observers based onminimal energy estimation is

discussed. Originally, such strategies were proposed for the reconstruction of the state of finite dimensional

nonlinear dynamical systems by means of a measured output where both the dynamics and the output are

subject to white noise. For a realization of the output given by real life measurements the energy of distur-

bances is minimized over a deterministic interpretation of the system disturbance. This perspective allows

the application of well developed techniques from optimal control theory.

The resulting observer is also referred to as theMortensen observer and offers an alternative to thewidely

used extended Kalman filter. While in practice the latter yields good results at reasonable computational

effort for many systems its derivation is purely heuristic and no optimality properties can be expected.

Our work aims at lifting this concept to a class of partial differential equations using the example of a

wave equation with a cubic defocusing term in three space dimensions. In this setting infinite dimensional

state spaces introduce new challenges. Even the well-posedness of the Kalman filter for linear systems is

not immediately clear and showingwell-posedness of the extended Kalman filter for nonlinear systems is an

open field of research for many PDEs. In a pursuit of the rigorous derivation of the Mortensen observer for

the aforementioned wave equation we discuss local regularity of the corresponding value function which is

defined on an infinite dimensional Hilbert space. Furthermore, operator Riccati equations are considered in

order to characterize the second order spatial derivative of said value function.
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This is an extended abstract summarizing the paper [1].

1. Introduction

Markov decision processes (MDPs) form the backbone of reinforcement learning and dynamic decision-

making. ClassicalMDPs operate in a time-invariant stochastic environment represented by a known constant

transition kernel. In most applications, however, the transition kernel is only indirectly observable through

a state-action trajectory generated under a fixed policy. In these setting it is expedient to work with robust

MDPs [3], which assume that the unknown true transition kernel falls within a known uncertainty set and

aim to identify a policy that exhibits the best performance under the worst-case transition kernel in this

uncertainty set.

The literature on robust MDPs distinguishes rectangular and non-rectangular uncertainty sets. An un-

certainty set is called (𝑠)-rectangular (or (𝑠, 𝑎)-rectangular) if it is representable as a Cartesian product of

separate uncertainty sets for the transition probabilities associated with the different current states 𝑠 (or

current state-action pairs (𝑠, 𝑎)). Otherwise, the uncertainty set is called non-rectangular. Rectangularity

is intimately related to computational tractability. Indeed, robust MDPs with rectangular polyhedral uncer-

tainty sets can be solved in polynomial time, whereas robust MDPs with non-rectangular polyhedral uncer-

tainty sets are NP-hard [3]. Most existing papers on robust MDPs focus on rectangular uncertainty sets.

However, statistically optimal uncertainty sets often fail to be rectangular. Robust MDPs with rectangular

uncertainty sets are usually addressed with value iteration, policy iteration, convex reformulation, or policy

gradient methods. These solution methods, however, become inefficient or converge to strictly suboptimal

solutions of the robust MDP if the uncertainty set fails to be rectangular.

2. Contributions

We propose policy gradient algorithms for robust infinite-horizon Markov decision processes (MDPs) with

non-rectangular uncertainty sets, thereby addressing an open challenge in the robust MDP literature. The

main contributions of our paper can be summarized as follows.

1. We show that robust policy evaluation problems with non-rectangular uncertainty sets can be solved

to global optimality with a projected Langevin dynamics algorithm. Numerical results suggest that

if the uncertainty set happens to be rectangular, then this randomized algorithm is competitive with

state-of-the-art deterministic first-order methods in terms of runtime.

2. We present a conservative policy iteration algorithm that solves robust policy evaluation problems

approximately. The approximation error is shown to scale with a new measure of non-rectangularity

of the uncertainty set. We prove that the same method solves robust policy evaluation problems with

rectangular uncertainty sets to any accuracy 𝜖 > 0 in𝑂(𝑆2/𝜖2) iterations, where 𝑆 denotes the number

of states. In contrast, the iteration complexity of the state-of-the-art policy gradient method for this

problem class developed in [2] includes an extra factor 𝑆3𝐴, where 𝐴 denotes the number of actions.

3. Wepresent anactor-criticmethod that solves robust policy improvementproblemswithnon-rectangular

uncertainty sets to any accuracy 𝜖 > 0 in𝑂(1/𝜖4) iterations. This is the first complete solution scheme

for robustMDPswith non-rectangular uncertainty sets offering global optimality guarantees. A similar

projected gradient descent algorithm with access to an abstract approximate robust policy evaluation

oracle is described in [2]. However, the policy evaluation oracle is is not made explicit for general non-

rectangular uncertainty sets. In addition, the convergence proof in [2] relies on the implicit assumption

that the set of worst-case transition kernels for any given policy is finite, which would be difficult to

certify in practice.
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Numerical simulations have proved in the past decades to be an important tool to provide additional clinical

insight in several cardiovascular pathologies [1,2]. Some of the remaining challenges are related to the per-

secution of precise and personalized descriptions of blood flow. Integrating measured data into the simula-

tions represents ameans to achieve such a goal. Among several techniques, variational approaches havebeen

testedwith partial success [3,4]. These approaches consist of trying to obtain, as a control variable, meaning-

ful boundary conditions at artificial boundaries. Here we are going to present several new advances in this

direction. In particular, we address the cases of Dirichlet control, mixed with different stress-type bound-

ary conditions. For the time-dependent case, we will present some numerical results for a semi-discrete

approach which may substantially reduce the computational cost while still achieving good results.
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The usage of machine learning methods for synthesizing feedback laws in the context of infinite horizon

control problems has been a topic of increased interest, replacing, in part, the use of classical methods. This

is due to the fact that the later suffer from the curse of dimensionality. Although numerical examples provide

promising results, theoretical guarantees are still needed. In this regard, there are two types of methods

which will be addressed in this talk.

Regarding the first type of methods, they consist in finding a feedback law in a finite dimensional func-

tional space (polynomials, neural networks, RKHS) byminimizing the averaged cost functional of the control

problem with respect to a set of initial conditions. In the case of the second type, the minimization is per-

formed byminimizing the 𝐿2 distance in the control space. Thanks to the results in [1] we are able to provide

a convergence result which relies on the Hölder continuity of the value function and the existence of a Lya-

punov type function. In the case of regression methods we are able to prove convergence, provided that the

value function is smooth enough.

In addition, we present a family of infinite horizon optimal control problem for which the degree of

smoothness of the value function depends on a penalty parameter. This dependence is such that the value

function is 𝐶2 if the penalty parameter is close to 0 and it is non-differentiable but Lipschitz if it is large. This

allows us to study and compare the behavior of the methods, depending on the degree of smoothness of the

value function by performing numerical realizations for both approaches for different penalty parameters.
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1. Introduction

Total variation regularization has proven to be a valuable tool in the context of optimal control of differential

equations. This is particularly attributed to the observation that TV-penalties often favor piecewise constant

minimizerswithwell-behaved jumpsets. On the downside, their intricate properties significantly complicate

every aspect of their analysis, from the derivation of first-order optimality conditions to their discrete ap-

proximation and the choice of a suitable solution algorithm. In this talk, we discuss these topics for a general

class of minimization problems of the form

min
𝑢∈𝑉

[𝐹(𝐾𝑢) + TV(𝑢, Ω)]

where 𝑉 ⊂ 𝐿𝑞(Ω) is a weakly closed linear subspace of 𝐿𝑞(Ω), 𝑞 = 𝑑/(𝑑 − 1), 𝐹 is a smooth fidelity term

and𝐾 denotes a linear continuous but potentially costly to evaluate forward operator, e.g. stemming back to

a PDE.

A possible approach to alleviating some of the difficulties caused by the TV-term can be found in its in-

terpretation as the Minkowski functional of the set

𝐵�̊� = �𝑢 ∈ 𝑉 � TV(𝑢, Ω) ≤ 1, �
Ω

𝑢(𝑥) d𝑥 = 0 �

and studying the convex geometry of the latter, in particular its set of extremal points Ext(𝐵�̊�). This leads to

a variety of novel theoretical insights on minimization problems with total variation regularization as well

as tools for their practical realization.

2. Contribution

We characterize the extremal points of the respective total variation unit balls for different choices of 𝑉, e.g.

the “continuous” case, 𝑉 = 𝐿𝑞(Ω), as well as piecewise linear continuous, 𝑉 = 𝑃1(𝒯ℎ), and piecewise con-

stant, 𝑉 = 𝑃0(𝒯ℎ), discretizations on triangulations 𝒯ℎ of Ω. This enables the efficient solution of Problem

by geometry exploiting fully-corrective generalized conditional gradient methods. Loosely speaking, this

type of algorithms operates on two variables, an “active set”𝒜𝑘 comprising a finite number of characteristic

functions as well as a sparse iterate 𝑢𝑘 in the cone spanned by𝒜𝑘. Each iteration then consists of two sub-

problems, the solution of a linear minimization problem over a superset of Ext(𝐵�̊�) in order to update𝒜𝑘

and a finite dimensional ℓ1-type problem to improve the iterate.

A detailed account on the practical realization of such a method is given for piecewise constant finite

element approximations. Second, in the same setting and for suitable sequences of uniformly refinedmeshes,

it is shown that minimizers to discretized PDE-constrained optimal control problems approximate solutions

to a continuous limit problem involving an anisotropic total variation reflecting the fine-scale geometry of

the mesh.
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1. Introduction

In this talk, we present the results obtained in [2], where we developed a general theory for recovering the

sparse representation of solutions to infinite-dimensional inverse problems regularized via convex function-

als. We consider the minimization of a functional made of a fidelity term, penalizing the difference between

the unknown and a noisy measurement, and a general convex, positively 1−homogeneous, coercive regu-

larizer, that is responsible for enforcing sparsity on the solution. We will show that under a suitable non-

degeneracy condition on the problem, for small regularization parameters and low noise levels, the mini-

mizer is unique and sparse, namely it is uniquely represented as a linear combination of 𝑛 extreme points of

the ball of the regularizer, denoted by Ext(𝐵) [1].

2. A metric non-degenerate source condition (MNDSC)

The key non-degeneracy condition that allows for exact sparse representation recovery extends the classical

non-degeneracy source condition (NDSC) for total variation regularized inverse problems in the space of

measures introduced in [3]. More precisely, our non-degeneracy condition is connected to the behaviour

of the solution of the dual problem when tested against elements in Ext(𝐵)
𝑤∗

, seen as a metric space when

metrized by the weak* topology. This justifies the nameMetric Non-Degenerate Source Condition (MNDSC).

In particular, we require that for any pair of extreme points that are close enough, there exists a curve 𝛾 ∶

[0, 1] → Ext(𝐵)
𝑤∗

that is connecting them and such that

𝑑2

𝑑𝑡2
⟨𝜂0, 𝛾⟩ < 0

for every 𝑡 ∈ [0, 1] and uniformly in the space of curves.

3. Applications

To showcase the generality of approach, in [2], we obtain explicit formulations of the MNDSC, which lead us

to specific results of sparse recovery for three inverse problems of interest:

i) Total variation regularized deconvolution problems, where we show that the classical NDSC implies

our MNDSC;

ii) 1-dimensional BV functions regularized with their BV-seminorm;

iii) Pairs of measures regularized with their mutual 1-Wasserstein distance.
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Online optimization generally studies the convergence of optimization methods as more data is introduced

into the problem; think of deep learning as more training samples become available. We adapt the idea

to dynamic inverse problems that naturally evolve in time. We introduce an improved primal-dual online

method specifically suited to these problems, and demonstrate its performance on dynamic monitoring of

electrical impedance tomography.
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Piezoelectric components are essential in various electronic devices, ranging from everyday items such as

electronic toothbrushes and headphones to advancedmedical and industrial applications such as ultrasound

imaging and power generation systems. Thoroughly understanding the behaviour of these materials is es-

sential, especially given their temperature-dependent characteristics.

Simplistically, the piezoelectric material is described by a linearly coupled PDE system for the mechani-

cal displacement and the electrical potential, which can then be extended by non-linear constitutive laws in

order to take its temperature-dependent behavior into account. Since many applications require high preci-

sion andmaterial data provided by themanufacturers often deviate significantly from real data, a consistent

and reproducible characterization of the temperature-dependentmaterial parameter functions is of decisive

importance to properly determine the material behavior.

Therefore, wewill focus on the temperature-dependent inverse parameter identification problem for the

system of piezoelectric partial differential equations based onmeasured and simulated observation data. In

this context, we will analyze the underlying PDE system and discuss a generalized existence and uniqueness

result, which also applies on the adjoint PDE. Based on that, we will investigate the forward operator of the

inverse problem using the classical reduced approach. Finally we employ adapted optimization and regular-

ization techniques for solving our linearized parameter identification problem. Thus, modeling, analyzing

and solving this linearized inverse problem will be the main focus including numerical results.
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1. Introduction

The recovery of a signal from themagnitudes of its transformation, like the Fourier transform, is knownas the

phase retrieval problem and is of big relevance in various fields of engineering and applied physics. In this

talk, we present a fast inertial/momentum based algorithm for the phase retrieval problem. Our method

can be seen as an extended algorithm of the Griffin-Lim Algorithm [?] and Fast Griffin-Lim Algorithm [?],

methods originally designed for phase retrieval in acoustics. The new numerical algorithm can be applied

to a more general framework than acoustics, and as a main result, we prove a convergence guarantee of the

new scheme. Consequently, we also provide an affirmative answer for the convergence of its ancestor Fast

Griffin-Lim Algorithm, whose convergence remained unproven in the past decade.

2. Contribution

A linear and injective transformation from ℂ𝐿 → ℂ𝑀 with𝑀 ≥ 𝐿 can be written as a transformation matrix

𝑇 in ℂ𝑀×𝐿 with full column rank, for example, the discrete Fourier transform. The vector 𝑠 ∈ [0, +∞)𝑀 will

denote the measured magnitudes of the coefficients of the transform. The phase retrieval problem can be

expressedmathematically as finding the signal 𝑥∗ ∈ ℂ𝐿, whose transform coefficients match the magnitudes

𝑠, that is |𝑇𝑥∗| = 𝑠, where | ⋅ | is understood as the absolute value applied componentwise. In [?] it was

proposed to consider this problem, as the task in finding a vector 𝑐∗ in the set of coefficients admitted by

the transformation matrix 𝑇, namely its range, which is as close as possible to the set of coefficients, whose

magnitude match with 𝑠, which can be written as

min
𝑐∈𝐶1

dist(𝑐, 𝐶2)
2, (2.1)

where 𝐶1 is a linear subspace defined as 𝐶1 = {𝑐 ∈ ℂ𝑀 ∣ ∃𝑥 ∈ ℂ𝐿 ∶ 𝑐 = 𝑇𝑥} and 𝐶2 is the compact nonconvex

set 𝐶2 = {𝑐 ∈ ℂ𝑀 ∣ |𝑐𝑖| = 𝑠𝑖 ∀𝑖 ∈ {1, … ,𝑀}}.

We propose the Accelerated Griffin-Lim Algorithm for this optimization problem and analyze its conver-

gence.

Algorithm 1 Accelerated Griffin-Lim algorithm

Initialize 𝑐0 ∈ ℂ𝐿, 𝑡0, 𝑑0 ∈ 𝐶1 and 𝛼, 𝛽, 𝛾 > 0

Iterate for 𝑛 = 1,… ,𝑁

𝑡𝑛 = (1 − 𝛾)𝑑𝑛−1 + 𝛾𝑃𝐶1(𝑃𝐶2(𝑐𝑛−1))

𝑐𝑛 = 𝑡𝑛 + 𝛼(𝑡𝑛 − 𝑡𝑛−1),

𝑑𝑛 = 𝑡𝑛 + 𝛽(𝑡𝑛 − 𝑡𝑛−1)

Return 𝑇†𝑐𝑁

For 𝛾 = 1 this algorithm coincides with the Fast Griffin-Lim algorithm and for 𝛾 = 1 and 𝛼 = 0 it reduced

to the Griffin-Lim algorithm.
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Combining classical model-based variational methods for image reconstruction with deep learning tech-

niques has attracted a significant amount of attention during the last years. The aim is to combine the inter-

pretability and the reconstruction guarantees of a model-based method with the flexibility and the state-of-

the-art reconstruction performance that the deep neural networks are capable of achieving. We introduce a

general novel image reconstruction approach that achieves such a combinationwhichwemotivate by recent

developments in deeply learned algorithm unrolling and data-driven regularisation as well as by bilevel op-

timisation schemes for regularisation parameter estimation. We consider a network consisting of two parts:

The first part uses a highly expressive deep convolutional neural network (CNN) to estimate a spatially vary-

ing (and temporally varying for dynamic problems) regularisation parameter for a classical variational prob-

lem (e.g. Total Variation). The resulting parameter is fed to the second sub-network which unrolls a finite

number of iterations of a method which solves the variational problem (e.g. PDHG). The overall network is

then trained end-to-end in a supervised fashion. This results to an entirely interpretable algorithm since the

“black-box” nature of the CNN is placed entirely on the regularisation parameter and not to the image itself.

We prove consistency of the unrolled scheme by showing that, as the number of unrolled iterations tends

to infinity, the unrolled energy functional used for the supervised learning Γ-converges to the correspond-

ing functional that incorporates the exact solution map of the TV-minimization problem. We also provide

a series of numerical examples that show the applicability of our approach: dynamic MRI reconstruction,

quantitative MRI reconstruction, low-dose CT and dynamic image denoising.
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[1] Andreas Kofler, Fabian Altekrüger, Fatima Antarou Ba, Christoph Kolbitsch, Evangelos Papoutsellis, David Schote, Clemens

Sirotenko, Felix Frederik Zimmermann, Kostas Papafitsoros. Learning Regularization Parameter-Maps for Variational Image Re-

construction using Deep Neural Networks and Algorithm Unrolling, SIAM Journal on Imaging Sciences, 16(4):2202–2246, 2023.

FGS2024 French-German-Spanish Conference on Optimization

Universidad de Oviedo, 18-21 June 2024 127



Optimization methods for inverse problems and beyond

The impact of adjoint mismatches in the primal-dual

Douglas-Rachford method – Existence of stationary points and

convergence

Felix Schneppe1, 2, Dirk A. Lorenz1

1. {schneppe,d.lorenz}@uni-bremen.de Universität Bremen, Germany

2. f.schneppe@tu-braunschweig.de Technische Universität Braunschweig, Germany

The primal-dual Douglas-Rachford method is a well known method to solve saddle-point problems of the

form

min
𝑥

max
𝑦

𝐺(𝑥) + ⟨𝐴𝑥, 𝑦⟩ − 𝐹∗(𝑦).

However, in practical applications like computed tomography the adjoint operator is often replaced by a

computationally more efficient approximation. This leads to an adjoint mismatch in the algorithm, which

translates to a replacement of 𝐴∗ with some linear operator 𝑉∗ in the algorithm and to it being changed to

𝑥𝑘+1 = prox
𝜏𝐺

�𝑝𝑘�

𝑧𝑘+1 = prox
𝜎𝐹∗

�𝑞𝑘�

�
𝑢𝑘+1

𝑣𝑘+1
� = �

𝐼 𝜏𝑉∗

−𝜎𝐴 𝐼
�

−1

�
2𝑥𝑘+1 − 𝑝𝑘

2𝑧𝑘+1 − 𝑞𝑘
�

𝑝𝑘+1 = 𝑝𝑘 + 𝜃 �𝑢𝑘+1 − 𝑥𝑘+1�

𝑞𝑘+1 = 𝑞𝑘 + 𝜃 �𝑣𝑘+1 − 𝑧𝑘+1� .

In this talk, we analyze the convergence properties of the primal-dual Douglas-Rachford method with the

adjoint mismatch and prove conditions, under which the existence of a solution can still be guaranteed. Ad-

ditionally, we observemethods to calculate the step sizes of the algorithm. Furthermorewe discuss, how the

adjoint mismatch affects the implementation of the algorithm.
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PDE-constrained optimisation problems, as well as bilevel optimisation problems—which cover nonsmooth

PDE constraints, such as Bingham flow—have traditionally been solved with one of two approaches: (a)

Newton-type methods applied to sufficiently smooth optimality conditions for a constrained problem for-

mulation, or (b) through treating the inner problem/PDE through its solution mapping, always calculating

the solutionmapping and its derivative near-exactly. Recently in bilevel optimisation, single-loop approaches

havebeen introduced,which only take a single step of a conventional optimisationmethod for the inner prob-

lem, bridging the gap between the two approaches. The same principle can be applied to PDE-constrained

optimisation, where we have recently obtained significant performance improvements by interweaving the

steps of a conventional iterative solver (Jacobi, Gauss–Seidel, conjugate gradients) for the PDEwith the steps

of the optimisationmethod. Moreover, in this talk, we demonstrate how the adjoint equation in bilevel prob-

lems can also benefit from such interweaving with conventional linear system solvers.
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Optimization methods with worst-case complexity guarantees

A derivative-free trust-region method based on finite-differences for

composite nonsmooth optimization

Dânâ Davar

dana.davar@uclouvain.be UCLouvain, Belgium

We present a derivative-free trust-region method based on finite-difference gradient approximations for

minimizing composite functions of the form 𝐹(𝑥) = ℎ(𝑐(𝑥)), where ℎ is a convex Lipschitz function, pos-

sibly nonsmooth, while 𝑐 is a blackbox function with Lipschitz continuous Jacobian. The proposed method

approximates the Jacobian of 𝑐 by forward-finite differences with stepsizes depending on an estimate of its

Lipschitz constant. Such estimate is also used in the definition of the trust-region radius, allowing natural

update rules to enforce sufficient decrease of the objective function. It is shown that the method needs at

most 𝒪(𝑛𝜖−2) function evaluations to find a 𝜖-approximate stationary point. In addition, if the components

of 𝑐 are convex and ℎ is monotone, the worst-case evaluation complexity is improved to 𝒪(𝑛𝜖−1). Numerical

results are also reported, showing the relative efficiency of the newmethodwith respect existing derivative-

free solvers.
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Optimization methods with worst-case complexity guarantees

Polynomial preconditioning for Gradient Methods

Nikita Doikov

nikita.doikov@epfl.ch EPFL, Switzerland

We study first-order methods with preconditioning for solving structured nonlinear convex optimization

problems. We propose a new family of preconditioners generated by symmetric polynomials. They provide

first-order optimization methods with a provable improvement of the condition number, cutting the gaps

between highest eigenvalues, without explicit knowledge of the actual spectrum. We give a stochastic inter-

pretation of this preconditioning in terms of coordinate volume sampling and compare it with other classical

approaches, including the Chebyshev polynomials. We show how to incorporate a polynomial precondition-

ing into the Gradient and Fast Gradient Methods and establish the corresponding global complexity bounds.

Finally, we propose a simple adaptive search procedure that automatically chooses the best possible poly-

nomial preconditioning for the Gradient Method, minimizing the objective along a low-dimensional Krylov

subspace. Numerical experiments confirm the efficiency of our preconditioning strategies for solving various

machine learning problems.
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Decentralized local stochastic extra-gradient for variational

inequalities

Pavel Dvurechensky
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We consider distributed stochastic variational inequalities (VIs) on unbounded domains with the problem

data that is heterogeneous (non-IID) and distributed across many devices. Wemake a very general assump-

tion on the computational network that, in particular, covers the settings of fully decentralized calculations

with time-varying networks and centralized topologies commonly used in Federated Learning. Moreover,

multiple local updates on the workers can be made to reduce the communication frequency between the

workers. We extend the stochastic extragradient method to this very general setting and theoretically ana-

lyze its convergence rate in the strongly-monotone, monotone, and non-monotone (when a Minty solution

exists) settings. The provided rates explicitly exhibit the dependence on network characteristics (e.g., mix-

ing time), iteration counter, data heterogeneity, variance, number of devices, and other standard parameters.

As a special case, our method and analysis apply to distributed stochastic saddle-point problems (SPP), e.g.,

to the training of Deep Generative Adversarial Networks (GANs) for which decentralized training has been

reported to be extremely challenging. In experiments for the decentralized training of GANswe demonstrate

the effectiveness of our proposed approach.
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Adaptive first-order methods with enhanced worst-case rates
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mihai.florea@uclouvain.be UCLouvain, Belgium

The Optimized Gradient Method (OGM), its strongly convex extension, the Information Theoretical Exact

Method (ITEM), as well as the related Triple Momentum Method (TMM) have superior convergence guar-

antees when compared to the Fast Gradient Method but lack adaptivity and their derivation is incompatible

with composite problems. In this work we introduce a slightly modified version of the estimate sequence

that can be used to simultaneously derive OGM, ITEM and TMMwhile adding memory along with the ability

to dynamically adjust the convergence guarantees at runtime. Our framework can be extended to the com-

posite setup andwe use it to construct an Enhanced Accelerated Composite Gradient Method equipped with

fully-adaptive line-search.
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Optimization methods with worst-case complexity guarantees

First and zeroth-order implementations of the regularized Newton

method with lazy approximated Hessians

Geovani Grapiglia
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We develop first-order (Hessian-free) and zeroth-order (derivative-free) implementations of the Cubically

regularized Newton method for solving general non-convex optimization problems. For that, we employ

finite difference approximations of the derivatives. We use a special adaptive search procedure in our algo-

rithms, which simultaneously fits both the regularization constant and the parameters of the finite difference

approximations. It makes our schemes free from the need to know the actual Lipschitz constants. Addition-

ally, we equip our algorithms with the lazy Hessian update that reuse a previously computed Hessian ap-

proximationmatrix for several iterations. Specifically, we prove the global complexity bound of𝒪(𝑛1/2𝜖−3/2)

function and gradient evaluations for our new Hessian-free method, and a bound of 𝒪(𝑛3/2𝜖−3/2) function

evaluations for the derivative-free method, where 𝑛 is the dimension of the problem and 𝜖 is the desired ac-

curacy for the gradient norm. These complexity bounds significantly improve the previously known ones in

terms of the joint dependence on 𝑛 and 𝜖, for the first-order and zeroth-order non-convex optimization.
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Universal gradient methods for Stochastic Convex Optimization

Anton Rodomanov

anton.rodomanov@cispa.de CISPA, Germany

We propose a new rule for adjusting the step size in the Stochastic Gradient method (SGD). This rule is re-

lated to that of the AdaGrad method but there are some significant differences. Most importantly, instead of

using the norms of stochastic gradients, we use a stochastic approximation of the Bregman distance of the

objective function. The resulting algorithm turns out to be the first universal method for Stochastic Convex

Optimization in the sense that it automatically adjusts not only to the oracle’s noise level but also to the level

of smoothness of the objective function. More specifically, our method has state-of-the-art worst-case con-

vergence rate guarantees for the entire Hölder class of convex functions including both nonsmooth functions

and those with Lipschitz continuous gradient. We also show how to use our approach for constructing an

accelerated version of the Universal SGD with even better efficiency estimates.
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Non-convex stochastic composite optimization with Polyak

momentum

Sebastian U. Stich

stich@cispa.de CISPA, Germany

The stochastic proximal gradient method, a powerful generalization of the widely used stochastic gradient

descent (SGD) method, has numerous applications in Machine Learning. However, this method can fail to

converge in non-convex settings with high stochastic noise. Unlike in unconstrained optimization scenarios,

these convergence issues cannot be resolved by simply reducing the step size. The practicable countermea-

sures are limited to using variance reduction techniques or increasing the batch size, leading to increased

costs per iteration. In this talk, we focus on the stochastic proximal gradient method with Polyak momen-

tum. We show that this method attains an optimal convergence rate for non-convex composite optimization

problems, regardless of the batch size. Furthermore, we discuss extension with inexact proximal steps and

applications in distributed optimization.
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Safe primal-dual optimization with a single smooth constraint

Ilnura Usmanova

ilnura94@gmail.com Paul Scherrer Institute, Switzerland

We address the problem of safe learning in a specific setting of a single smooth constraint. In particular, the

goal is to solve a black-box minimization problem without constraint violation during the learning process.

Unfortunately, most existing approaches addressing this problem are slow or noise-sensitive, even for sim-

ple settings. We propose a new primal-dual safe learning method to effectively minimize a smooth objective

subject to a single smooth constraint. Despite its simplicity, this particular case covers a wide range of appli-

cations, such as robotics, adversarial learning, or empirical parameter tuning. We show that our primal-dual

algorithm can achieve a convergence rate significantly better than current state-of-the-art approaches. We

demonstrate its performance on simulations.
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Optimal control of anisotropic Allen-Cahn equations

Luise Blank1, Johannes Meisinger2
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Anisotropic Allen-Cahn equations model for example the interface evolution in crystal growth. The diffuse

interface approach allows for topology changes. The focus of the talk is the control of such an evolution, e.g.

controlling the evolution of a hexagon such that it splits into two prescribed ones.

state

control

This leads to an optimization problem with a given end time goal function 𝑦Ω

min
1

2
‖𝑦(𝑇) − 𝑦Ω‖

2
𝐿2(Ω)

+
𝜆

2𝜀
‖𝑢‖2

𝐿2(𝑄)

subject to the quasilinear nonsmooth parabolic equation

�
𝑄

𝜀𝜕𝑡𝑦𝜂 + 𝜀𝐴′(∇𝑦)𝑇∇𝜂 +
1

𝜀
𝜓′(𝑦)𝜂 = �

𝑄

𝑢𝜂 ∀𝜂 ∈ 𝐿2(0, 𝑇; 𝐻1(Ω)), 𝑦(0) = 𝑦0 in Ω,

where Ω ⊂ ℝ𝑑 is a bounded Lipschitz domain and 𝑄 ≔ [0, 𝑇] × Ω.

Due to the anisotropy 𝐴 nondifferentiable terms occur in the state equation which have to be treated

appropriately to obtain an efficient optimization solver. Here we propose a particular regularization. The

function𝜓 is nonconvex and e.g. a smooth double well potential. Moreover, the issue of differentiability also

leads us to choose the implicit time discretization dG(0) where in addition energy stability is obtained. In

this case ’first optimize then discretize’ commutes.

First the existence of the control-to-state operator and its Lipschitz-continuity is shown for the time dis-

cretized as well as for the time continuous problem. The existence of a global minimizer of the original and

of the regularized problem is provided in the time discretized as well as in the continuous setting. Also the

convergence with respect to regularization and to discretization is considered. Furthermore the Fréchet

differentiability of the regularized problem is studied and optimality conditions are obtained.

Subsequently the trust-region Newton Steihaug-cg method is applied to the time discretized problem

which is then discretized in space. This provides us with iteration numbers bounded independently of the

discretization level, where evidence is givennumerically. Finally numerical exampleswithvarious anisotropies

and configurations are presented.
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Recent trends in nonsmooth optimization

First- and second-order models for nonsmooth functions based on

derivative sampling

Bennet Gebken

bgebken@math.upb.de Paderborn University, Germany

In optimization, many solutionmethods are based on iteratively building a local model of the objective func-

tion and then minimizing the model instead of the original function. In the smooth case, such models can be

derived from the Taylor expansion based on derivatives of different orders, leading to the gradient descent

method and Newton’s method as examples. In the nonsmooth case on the other hand, models aremore chal-

lenging to construct: The first issue is the lack of a Taylor expansion. While replacing the gradient in smooth

first-order methods by the Clarke subdifferential from nonsmooth analysis yields a way to characterize de-

scent directions, there is no simple way to derive higher-order models. The second issue is that generalized

derivatives like the Clarke subdifferential are difficult to work with in practice, since they can be unstable

and impossible to evaluate numerically in the general case.

In this talk, I will present two models for (unstructured) locally Lipschitz continuous functions. The first

model is a simple first-order model, which is based on approximating the Clarke subdifferential by the Gold-

stein 𝜀-subdifferential which, in turn, can be approximated in practice by a deterministic gradient sampling

approach. The secondmodel is based on the idea of sampling the Hessian matrix in addition to the gradient.

More precisely, it is defined as themaximumof (existing) second-order Taylor expansions in a neighborhood

of a given point. After introducing each model, I will present ways to generate them in practice and discuss

the behavior of the resulting descent methods.
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Recent trends in nonsmooth optimization

Spatially sparse optimization problems in fractional order Sobolev

spaces

Anna Lentz1, Daniel Wachsmuth2
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2. daniel.wachsmuth@uni-wuerzburg.de Universität Würzburg, Germany

We consider time-dependent optimization problems in fractional Sobolev spaces 𝐻𝑠 for 𝑠 ∈ (0, 1)with spa-

tially sparse solutions. For a time-space cylinder 𝐼 × Ω, the optimization problem reads

min
𝑢∈𝐿2(𝐼×Ω),𝑤∈𝐻𝑠(Ω)

𝑓(𝑢) +
𝛼

2
‖𝑢‖2

𝐿2(𝐼×Ω)
+
𝛽

2
‖𝑤‖2𝐻𝑠(Ω) + 𝛾‖𝑤‖

𝑝
𝐿𝑝(Ω) (1)

subject to

|𝑢(𝑡, 𝑥)| ≤ 𝑤(𝑥) for a.a. (𝑡, 𝑥) ∈ 𝐼 × Ω (2)

for some 𝛼, 𝛽, 𝛾 > 0 and 𝑝 ∈ (0, 1) [3]. Due to the compact embedding of 𝐻𝑠(Ω) into 𝐿2(Ω), one can deduce

existence of solutions by standard methods. This is not possible if the problem was set only in 𝐿2 [2].

The formulation with two functions 𝑢 and𝑤 coupled by the constraint (2) is used to avoid the computation-

ally more expensive regularization in 𝐻𝑠 over the whole time-space cylinder 𝐼 × Ω. The non-smooth and

non-convex 𝐿𝑝-pseudonorm leads to sparsity of solutions𝑤which in turn implies spatially sparse solutions

𝑢.

To obtain a necessary optimality condition, a sequence of auxiliary problems is analysed. These auxiliary

problems are unconstrained with differentiable objective as a consequence of penalizing the constraint (2)

and replacing the 𝐿𝑝-pseudonorm by a smooth approximation [1]. Passing to the limit in the optimality con-

dition of the auxiliary problem results in a necessary optimality condition for the original problem (1).

This optimality condition states that for a local solution (�̄�, �̄�) of problem (1) there are �̄� ∈ 𝐻𝑠(Ω)∗ and

�̄�1, �̄�2 ∈ 𝐿2(𝐼 × Ω) such that

𝑓′(�̄�)𝑣 + 𝛼(�̄�, 𝑣)𝐿2(𝐼×Ω) + 𝛽(�̄�, 𝑧)𝐻𝑠(Ω) + 𝛾⟨�̄�, 𝑧⟩𝐻𝑠(Ω)∗ + (�̄�1, 𝑧 − 𝑣)𝐿2(𝐼×Ω) + (�̄�2, 𝑧 + 𝑣)𝐿2(𝐼×Ω) = 0

for all (𝑣, 𝑧) ∈ 𝐿2(𝐼 × Ω) × 𝐻𝑠(Ω) and it holds

⟨�̄�, �̄�⟩𝐻𝑠(Ω)∗ = 𝑝�
Ω

|�̄�|𝑝d𝑥.

Furthermore, the following complementarity system is satisfied:

�̄�1 ≤ 0, �̄� − �̄� ≥ 0, (�̄�1, �̄� − �̄�)𝐿2(𝐼×Ω) = 0

and �̄�2 ≤ 0, �̄� + �̄� ≥ 0, (�̄�2, �̄� + �̄�)𝐿2(𝐼×Ω) = 0.

Problem (1) is solved numerically with a DC-like algorithm. Weak accumulation points of the sequence of

iterates of that algorithm satisfy a slightly weaker stationarity system than the one stated above.
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Recent trends in nonsmooth optimization

On solving complementarity-constrained problems
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In this talk, we consider finding global minima for constrained piecewise linear optimization problems. One

particular type of problem that fits this setting is complementarity-constrained problems. Because they can

be expressed in terms of the absolute value function, they can also be represented in the so-called abs-linear

form - a matrix-vector representation [2, 3]. This allows us to handle them with the Constrained Active Sig-

nature Method, a solver for constrained piecewise linear optimization problems [4].

We present the incorporation of this algorithm into a global solver like SCIP to determine not only local

minima, but also global minima, utilizing a branch-and-cut approach on so-called SOS1-constraints [1].
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Eigenvalue optimization with respect to shape-variations in

electromagnetic cavities
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1. Introduction

Particle accelerator cavities transfer energy to a charged particle beam, where the final performance of accu-

rate simulation results is sensitive to small deformation changes. To find the optimal geometry, we consider

a freeformoptimization problemof eigenvalues in such a cavity bymeans of shape-variationswith respect to

small deformations. As constraint we utilize the mixed variational formulation by Kikuchi of the normalized

Maxwell’s time-harmonic eigenvalue problem, where we control the deformation of the domain by applying

the method of mappings.

2. Shape Optimization Problem

We consider a simply connected Lipschitz domain bΩ ⊂ ℝ𝑑, 𝑑 ∈ {2, 3}, and we define the physical domain

Ω𝑞 = 𝐹𝑞(bΩ) ⊂ ℝ𝑑, where 𝐹𝑞 ∶ bΩ → ℝ𝑑 is given by 𝑥 ↦ 𝑥 + 𝑞(𝑥) for a to be determined 𝑞 ∈ 𝑄 = 𝑊1,∞(bΩ).

By that, we define the following shape optimization problem constrained by the variational formulation by

Kikuchi of Maxwell’s eigenvalue problem: Find 𝜆 ∈ ℝ, 0 ≠ 𝑢 ∈ 𝐻0(curl; Ω𝑞) and 𝜓 ∈ 𝐻1
0 (Ω𝑞), such that

min
(𝜆,𝑞)

𝐽(𝜆, 𝑞) ∶=
1

2
|𝜆 − 𝜆∗|

2 +
𝛼

2
�‖𝑞‖2 +‖∇𝑞‖2� − 𝛽�

Ω𝑞

ln(det(DF𝑞) − 𝜀)

s.t. (∇ × 𝑢, ∇ × 𝑣)Ω𝑞 + (∇𝜓, 𝑣)Ω𝑞 = 𝜆(𝑢, 𝑣)Ω𝑞 ,

(𝑢, ∇𝜑)Ω𝑞 = 0,

𝜒 �(𝑢, 𝑢)Ω𝑞 − 1� = 0,

(2.1)

for all 𝑣 ∈ 𝐻0(curl; Ω𝑞), 𝜑 ∈ 𝐻1
0 (Ω𝑞) and 𝜒 ∈ ℝ. Further (⋅, ⋅)Ω𝑞 denotes the scalar product depending on the

domainΩ𝑞, ‖⋅‖ is the usual 𝐿
2 normon bΩ, 𝜆∗ ∈ ℝ is the target eigenvalue and𝛼, 𝛽 ∈ ℝ+ are the regularization

parameters and DF𝑞 is a deformation gradient.

3. Contribution and Outlook

We show results on the analysis of the time-harmonic Maxwell’s eigenvalue problem in order to prove conti-

nuity and differentiability properties depending on a domain mapping. Further, to find an optimal solution,

we compute the derivative of the reduced cost functional by using adjoint calculus. We solve the considered

optimization problem by using a damped inverse BFGS method. We conclude with a numerical example,

which show the functionality of the optimization method.

Open tasks on the application are e.g. an optimization with respect to the corresponding eigenvector of

the particular eigenvalue which will be relevant for an optimization of the field flatness, see e.g. [1]. Further,

the extension of the implementation of a three-dimensional Maxwell’s eigenvalue problem is an area of in-

terest, which is either possibly by extending the domain itself to 3D or by taking the advantage of rotation

symmetry of the two-dimensional geometry.
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1. Introduction

Optimal actuator and control design is studied as a multi-level optimization problem, where the actuator

design is evaluated based on the performance of the associated optimal closed loop. The evaluation of the

optimal closed loop for a given actuator realisation is a computationally demanding task, for which the use

of a neural network surrogate is proposed. The use of neural network surrogates to replace the lower level

of the optimization hierarchy enables the use of fast gradient-based and gradient-free consensus-based op-

timization methods to determine the optimal actuator design. The effectiveness of the proposed surrogate

models and optimization methods is assessed in a test related to optimal actuator location for heat control.

2. Problem formulation

We consider parameter-dependent linear dynamical systems described by

d𝑧

d𝑡
= 𝐴𝑧(𝑡) + 𝐵(𝑟)𝑢(𝑡), 𝑧(0) = 𝑧0 (2.1)

where 𝐴 ∈ ℝ𝑛×𝑛, and 𝐵(𝑟) ∈ ℝ𝑛×𝑚 is matrix-valued function depending on a parameter 𝑟 ∈ ℝ𝑚. Such

systemsnaturally arise after semi-discretization in spaceof systemsgovernedbyPDEs,where 𝑟parametrizes

the location of 𝑚 actuators. We assume that each parameter coordinate can be varied over some compact

set Ω ⊂ ℝ.

The linear quadratic controller design aims at finding a minimizing control 𝑢(𝑡) ∈ ℝ𝑚 to the cost func-

tional

𝐽 (𝑢; 𝑧0, 𝑟) = �
∞

0

𝑧(𝑡)⊤𝑄𝑧(𝑡) + 𝑢(𝑡)⊤𝑅𝑢(𝑡), (2.2)

where 𝑄 ∈ ℝ𝑛×𝑛, 𝑄 ⪰ 0, 𝑅 ∈ ℝ𝑚×𝑚, 𝑅 ≻ 0, and 𝑧(𝑡) ∈ ℝ𝑛 is determined by the dynamics (2.1).

The optimal cost-to-go or value function for a given initial condition 𝑧0 and parameter 𝑟 is

𝑉 (𝑧0, 𝑟) ≔ inf
𝑢∈𝒰

𝐽(𝑢; 𝑧0, 𝑟) = 𝑧⊤0 Π(𝑟)𝑧0, (2.3)

with 𝒰 = 𝐿2 ((0, +∞);ℝ𝑚), and where Π(𝑟) solves the parameter-dependent Algebraic Riccati Equation

(ARE)

𝐴⊤Π(𝑟) + Π(𝑟)𝐴 − Π(𝑟)𝐵(𝑟)𝑅−1𝐵(𝑟)⊤Π(𝑟) + 𝑄 = 0. (2.4)

The simultaneous optimization of the control signal and theparameter, togetherwith anoptimality-based

characterisation of the space of initial conditions of interest, induces a hierarchy of costs which are cast as a

multi-level optimization problem

max
𝑧0∈ℝ

𝑛
min
𝑟∈Ω𝑚

min
𝑢∈𝒰

𝐽(𝑢; 𝑧0, 𝑟) = max
𝑧0∈ℝ

𝑛
min
𝑟∈Ω𝑚

𝑉(𝑧0, 𝑟). (2.5)

To alleviate the need for recurrently computing the solution of the Algebraic Riccati Equation (ARE) given

by (2.4) at every evaluation of 𝑉(𝑧0, 𝑟) within an algorithm for the outer max-min problem, we propose to

build a closed-form surrogate for 𝑉(𝑧0, 𝑟) using neural networks. We consider the construction of both un-

structured and structured surrogates and assess their efficacy through a representative example. Subse-

quently, we aim to tackle the multi-level optimization problem by employing projected gradient descent as-

cent and a consensus-based approach for handling saddle point problems.
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Distributionally robust shape optimization withWasserstein

distance and applications

Charles Dapogny , Julien Prando1, Boris Thibert

julien.prando@etu.univ-grenoble-alpes.fr Université Grenoble Alpes, France

Shape optimization is about finding the best design of a mechanical structure according to a performance

criterion. Those problems are described with the help of physical parameters such as material coefficients

or viscosity which are difficult to estimate. It is an issue because the optimal design for a set of parameters

may worsen under a slight perturbation of these parameters.

Severalmodels have beendeveloped to handle this type of instability starting fromworst case approaches

[1] where the uncertain parameters are known up to a certain amplitude. One of the issues of these ap-

proaches is the min-max structure which is theoretically difficult to handle. Also, the robust optimal design

performancewith respect to the reference parametersmay be too pessimistic becauseworst-case situations

will usually be unlikely. Hence, stochastic approaches have been considered [4] by assuming these parame-

ters to be random. However, these stochastic models rely on the precise knowledge of the probability distri-

bution of the uncertain parameters which is usually unavailable.

In the context of convex optimization, methods have been developed to overcome the lack of knowledge

of this probability distribution. In the distributionally robust optimization approach, the optimization is

usually done with respect to a worst case distribution close to the empirical law built from observations.

The Wasserstein distance has been used to characterize the notion of proximity [5] leading to an efficient

tractable formulation under reasonable assumptions [2].

In this talk, we will explore the use of distributionally robust optimization approaches in the context of

shape and topology optimization [3]. Numerical examples will be discussed illustrating that optimal distri-

butionally robust solutions indeed yield good performances with respect to the reference parameters while

handling likely worst-case realisations.
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Abstract spaces, where each point describes some arbitrary shape, are called shape spaces. Often, these

shapes aredescribedby smooth2Dcurves on𝑆1 and the corresponding shape space is denotedby𝐵𝑒(𝑆
1, ℝ2).

Shape spaces are commonly used for applications in image processing, flag algebra and shape optimization,

to only name a few. In this talk, we mainly focus on shape optimization, whose applications include the

design of medical devices, such as cardiovascular stents and engineering applications, like the construction

of aerodynamic wings. The structure of the underlying shape space has a great impact on the outcoming

shape optimization algorithm. Often, the shape space is equipped with a Riemannian structure. In this talk,

we consider various Riemannianmetrics and look into the inherited geodesic equation. Hereby, we focus on

the Steklov-Poincaré metric.

Important extensions of shape optimization methods on 𝐵𝑒(𝑆
1, ℝ2) include the optimization of multiple

shapes and theoptimizationof piecewise-smooth shapes. Therefore,we introduce anovel shape spacewhich

can be indentified with a Riemannian product manifold. Finally, we provide a numerical result regarding a

fluid-mechanical problem constrained by the Navier-Stokes equations.
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1. Introduction

Nonlocal operators are typically integral operators and therefore allow interactions between two distinct

points in space. Moreover, the solution of a nonlocal problem in general needs to fulfill less regularity re-

quirements compared to the solution of a system of partial differential equations. Thus, some physical phe-

nomena like fracture propagation in continuum mechanics or anomalous diffusion effects can be modeled

more accurately by nonlocal equations compared to their ’classic’ description by partial differential equa-

tions(see, e.g., [1, 3]). Since shape optimization methods have been proven useful for identifying interfaces

inmodels governed by partial differential equations, we show in this talk how shape optimization techniques

can also be applied to an interface identification problem constrained by a nonlocal Dirichlet problem. Here,

we focus on deriving the second shape derivative of the corresponding reduced functional and we further

investigate a second order optimization algorithm.

2. Problem Description

We assume that the domain Ω is divided in two subdomains Ω1 and Ω2 with Ω = Ω1∪̇Γ∪̇Ω2, where Γ ∶=

𝜕Ω1 ∩ 𝜕Ω2 is the so-called interface. Furthermore, Γ is supposed to be an element of a suitable shape space.

Then, given 𝑓Γ, �̄� ∈ 𝐻2(Ω) and appropriate boundary data 𝑔, we are considering the following tracking type

problem:

min
𝑢Γ, Γ

||𝑢Γ − �̄�||𝐿2(Ω) + 𝛼𝑅𝑒𝑔(𝑢Γ, Γ)

s.t. − ℒΓ𝑢Γ = 𝑓Γ on Ω, (2.1)

𝑢Γ = 𝑔 on ℐ,

where 𝑅𝑒𝑔(𝑢Γ, Γ) is a regularization term and the nonlocal convection-diffusion operator−ℒ is defined as

−ℒΓ𝑢Γ(𝑥) = �
ℝ𝑑

𝑢Γ(𝑥)𝛾Γ(𝑥, 𝑦) − 𝑢Γ(𝑦)𝛾Γ(𝑦, 𝑥) 𝑑𝑦.

As a consequence, the nonlocal boundary ℐ ∶= {𝑦 ∈ ℝ𝑑 ∖ Ω ∶ ∫
Ω
𝛾Γ(𝑥, 𝑦) + 𝛾Γ(𝑦, 𝑥) 𝑑𝑥 > 0} is usually a

domain with nonzero measure and is relying on the so-called kernel 𝛾Γ ∶ ℝ𝑑 × ℝ𝑑 → [0,∞). Further, we

assume that the kernel 𝛾Γ and therefore the corresponding nonlocal operator−ℒΓ aswell as the forcing term

𝑓Γ are dependent on Γ as follows

𝛾Γ = �

𝑖,𝑗=1,2

𝛾𝑖𝑗𝜒Ω𝑖×Ω𝑗
+ �

𝑖=1,2

𝛾𝑖ℐ𝜒(Ω𝑖×ℐ)∪(ℐ×Ω𝑖)
and 𝑓Γ = 𝑓1𝜒Ω1

+ 𝑓2𝜒Ω2
,

where 𝛾𝑖𝑗, 𝛾𝑖ℐ ∶ ℝ
𝑑 × ℝ𝑑 → [0,∞) are again nonnegative functions and 𝑓1, 𝑓2 ∈ 𝐻2(Ω). Thus, problem (2.1)

tries to find a shape Γ such that the corresponding solution 𝑢Γ of the nonlocal Dirichlet problem approxi-

mates the given data �̄� as good as possible.

In this talk, we describe how the second shape derivative of the corresponding reduced functional can be

computed by applying the averaged adjoint method [2]. As we will see, this approach in combination with

the finite element method naturally yields an optimization algorithm, which will also be presented and in-

vestigated in numerical experiments.
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Using concepts from differential geometry to formulate (multi-)shape optimization problems as optimiza-

tion problems on Riemannianmanifolds is an idea that has only come up in the current millenium. However,

it enables the analysis of these types of problemsalso froma theoretical point of viewand thus allowsbenefit-

ting from algorithmswith established convergence properties. Practically-motivated optimization problems

frequently contain some physical behavior of a system, which can often be described by a partial differen-

tial equation (PDE) constraint on the optimization problem. If uncertainties have to be accounted for, then

even more sophisticated algorithms have to be employed for the optimization of the non-deterministic opti-

mization problem. A further challenge arises if the physical behavior, instead of a PDE constraint, has to be

represented by a variational inequality (VI).

This presentation aims to present an algorithm for optimization on Riemannian shape manifolds while

being able to incorporate inequality constraints enforced by an Augmented Lagrange approach, which we

call the stochastic augmented Lagrangian method in shape spaces. This algorithm is then applied to the

problem of minimizing viscous energy dissipation with the Navier-Stokes equations as the PDE constraint.

These problems yield non-smooth shapes as an optimal solution, whichmotivates the usage of a Riemannian

shape manifold that contains these types of shapes.

On the topic of VIs, the incorporationof VI constraints on the optimizationproblem is often addressedby a

regularization of the resulting non-differentiability to again obtain a differentiable problem. Wedemonstrate

a method that avoids regularization of the non-differentiability using a similar example as before, however

with a VI constraint of the second kind instead of a PDE constraint.
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The problem of modelling processes with partial differential equations posed on randomly moving domains

arises in various applications like biology or engineering. We will consider the case when such a random

domain is generated by the evolution of some initial domain driven by a random velocity field over a fixed

time interval.

Since the domain is random it is not straightforward to define notions like the expectation of the PDE so-

lution. Away to deal with this setting is to pull-back the considered equation to a fixed reference domain and

to study the solution of the reformulated problem. In order to approximate the expectation of the solutionwe

will use quasi-Monte Carlo methods. For that reason, we will present the needed regularity analysis on the

weak formulation of the pull-back of the Poisson equation based on the assumption of a certain parametric

regularity of the given velocity field. Our theoretical results will be illustrated by numerical examples, which

will also be presented.
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In this talk, I will discuss some of the results of [4], obtained in collaboration with C. Cipriani, M. Fornasier,

and H. Huang, in which we propose a reformulation of a certain class of deep learning problems as optimal

control problems in the space of probability measures. The roots of our work trace back to the pioneering

articles of Weinan E and co-authors [7, 8]. The incentive for developing such a point of view is twofold.

Firstly, the latter builds on the so-called residual block regularisation of neural networks proposed in [10],

which has since been known to improve the stability thereof as the number of layers increases. Secondly,

embedding residual networks into continuous-time dynamical systems grants access to the broad literature

of mathematical control theory, with the help of which onemay hope to improve the overall explainability of

learning algorithms (see e.g. the works [1,9,11,13,14] in this direction and the recent survey [12]).

After exposing the conceptual path leading to the reformulation of deep residual learning procedures as

mean-field optimal optimal control problems, I shall present a general family of first-order optimality con-

ditions that we derived for this class of problem, and show that the latter can be established by following

either of two possible paths. On the one hand, one can derive such optimality extrinsically as a consequence

of an abstract Lagrange multiplier rule in the Banach space of Radon measures following [2], in which the

subspace of probability measures appears as a convex constraint set. On the other hand, onemay also adopt

the intrinsic viewpoint developed in [3,5,6], where amean-field counterpart of the classical PontryaginMax-

imum Principle – involving the existence of a state-costate pair solution of an Hamiltonian flow in Wasser-

stein spaces – is derived. We then show how these optimality conditions may be used to derive quantitative

generalisation bounds for quadratically regularised learning problems in the convex regime.
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1. Introduction

The introduction of Transformers in 2017 marked a milestone in the development of neural network archi-

tectures. Central to this is self-attention, a novel mechanism which distinguishes Transformers from tradi-

tional architectures, and which plays a substantial role in their superior practical performance. We present

a mathematical framework for analyzing Transformers based on their interpretation as interacting parti-

cle systems, in which time plays the role of layers. Our analysis reveals that clusters emerge in long time,

confirming previous empirical findings, and shedding light on the role of the attention mechanism.

2. Main result

As first done in [3], we define an idealizedmodel of the Transformer architecture that consists in viewing the

discrete layer indices as a continuous time variable, and which focuses exclusively on two key components

of the Transformers architecture: self-attention and layer-normalization. This results in the dynamics

�̇�𝑖(𝑡) = P⟂𝑥𝑖(𝑡) �
1

𝑍𝛽,𝑖(𝑡)

𝑛

�

𝑗=1

𝑒𝛽⟨𝑥𝑖(𝑡),𝑥𝑗(𝑡)⟩𝑥𝑗(𝑡)� (SA)

for 𝑖 ∈ [𝑛] and 𝑡 ≥ 0, where

𝑍𝛽,𝑖(𝑡) =

𝑛

�

𝑘=1

𝑒𝛽⟨𝑥𝑖(𝑡),𝑥𝑘(𝑡)⟩ (2.1)

and P⟂𝑥 = 𝐼𝑑 − 𝑥𝑥⊤ is the orthogonal projector to T𝑥𝕊
𝑑−1. We prove the following result (see [1,2]).

Theorem 2.1 Let 𝑑, 𝑛 ≥ 2 and 𝛽 ≥ 0, and suppose that either 𝑑 ≥ 𝑛, or 𝛽 ≳𝑑 𝑛2, or 𝛽 ≲ 𝑛−1. Consider

the unique solution (𝑥𝑖(⋅))𝑖∈[𝑛] ∈ 𝐶0(ℝ≥0; (𝕊
𝑑−1)𝑛) to the Cauchy problem for (SA), corresponding to an initial

sequence of points (𝑥𝑖(0))𝑖∈[𝑛] ∈ (𝕊𝑑−1)𝑛 distributed uniformly at random. Then almost surely there exists

𝑥∗ ∈ 𝕊𝑑−1 such that

lim
𝑡→+∞

𝑥𝑖(𝑡) = 𝑥∗

for all 𝑖 ∈ [𝑛].

t = 0.0 t = 15.0

Fig. 1 The evolution of trajectories can be fully described in very large dimension (𝑑 ≫ poly 𝑛), beyond solely long

time asymptotics with rates, as seen in the phase diagram above. See [1].
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Sampling from a target distribution is a ubiquitous task at the heart of various methods in machine learning,

optimization, and statistics. Increasingly, sampling algorithms rely on iteratively applying large-scale param-

eterized functions (e.g. neural networks with trainable weights) to samples, such as in denoising diffusion

models [2]. This iterative sampling operation implicitly maps a parameter 𝜃 ∈ ℝ𝑝 to a distribution 𝜋⋆(𝜃).

In this work, our focus is on optimization problems over these implicitly parameterized distributions. For a

space of distributions 𝒫 (e.g. overℝ𝑑), and a function ℱ ∶ 𝒫 → ℝ, our main problem of interest is

min
𝜃∈ℝ𝑝

ℓ(𝜃) ∶= min
𝜃∈ℝ𝑝

ℱ(𝜋⋆(𝜃))

This setting encompasses for instance learning parameterized Langevin diffusions, contrastive learning of

energy-based models or finetuning denoising diffusion models, as illustrated by Figure ??.

Applying first-order optimizers to this problemraises the challengeof computing gradients of functionsof

the target distribution with respect to the parameter: we have to differentiate through a sampling operation,

where the link between 𝜃 and 𝜋⋆(𝜃) can be implicit. To this aim, we propose to exploit the perspective of

sampling as optimization over the space of probability distributions 𝒫 [3].

Fig. 1 Optimizing through sampling with Implicit Diffu-

sion to finetune denoising diffusion models. The reward

is the average brightness for MNIST and the red channel

average for CIFAR-10.

This allows us to draw a link between optimization through stochastic sampling and bilevel optimization

[1]. These motivating similarities, while useful, are not limiting, and we also consider settings where the

sampling iterations are not readily interpretable as an optimization algorithm.

Main Contributions. In this work, we introduce the algorithm of Implicit Diffusion, an effective and prin-

cipled technique for optimizing through a sampling operation. Our main contributions are the following:

- We present a general framework describing parameterized sampling algorithms, and introduce Im-

plicit Diffusion optimization, a single-loop optimization algorithm to optimize through sampling.

- We provide theoretical guarantees under various conditions, in the continuous and discrete time

settings.

- We showcase its performance in experimental settings.
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Theoretical approaches to modern machine learning methods

Residual Networks: from infinitely deep neural ODEs to
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1. Introduction

From convolutional ResNets to Transformers, residual connections are ubiquitous in state-of-the-art deep

learning models. The continuous depth analogues of residual networks, neural ODEs, have been widely

adopted, but the connection between the discrete and continuous models still lacks a solid mathematical

foundation. We will show that for a formal correspondence between residual networks and neural ODEs to

hold, the residual functionsmust be smoothwith depth, andwewill present an implicit regularization result

of deep residual networks towards neural ODEs. We will then present two applications of this analogy to

the design and study of new architectures. First, we will introduce a drop-in replacement for any residual

network that can be trained with the same accuracy, but with much less memory. Second, by viewing the

attention mechanism as an interacting particle system, where the particles are the tokens, we will study the

impact of attention map normalization on the Transformer model.

2. Residual Neural Networks and Neural ODEs

A ResNet [2] of depth 𝑁 iterates, starting from 𝑥0 ∈ ℝ𝑑

𝑥𝑛+1 = 𝑥𝑛 +
1

𝑁
𝑓(𝑥𝑛, 𝜃

𝑁
𝑛 ), (2.1)

and outputs a deep representation 𝑥𝑁 ∈ ℝ𝑑 where 𝑓 is a neural network called residual function, which can

typically be a convolutional neural network [2] or, more recently, a Transformer layer [7]. On the other hand,

a Neural ODE [1] uses a neural network𝜙Θ(𝑥, 𝑠), that takes time 𝑠 into account, to parameterise a vector field

in a differential equation, as follows,

𝑑𝑥

𝑑𝑠
= 𝜙Θ(𝑥(𝑠), 𝑠) with 𝑥(0) = 𝑥0. (2.2)

It outputs a deep representation 𝑥(1) ∈ ℝ𝑑, the solution of Eq.(2.2). Neural ODEs enable learning without

storing the trajectory 𝑥(𝑠), significantly reducing the memory needed for backpropagation, which is fre-

quently the main bottleneck when training deep models.

From a theoretical perspective, we will show that for a formal correspondence between (2.1) and (2.2) to

hold as 𝑁 → +∞, the 𝑓(𝑥, 𝜃) must be smooth with depth [4]. Moreover, we will show that, under proper

assumptions on 𝑓, such a smoothness property holds during training if it is imposed at initialization of gra-

dient flow. This corresponds to an implicit regularization result of ResNets towards neural ODEs [3]. From a

practical viewpoint, we will use the analogy between (2.1) and (2.2) to introduce a drop-in replacement for

any ResNet that can be trainedwith the same accuracy, butwithmuch lessmemory [5], based onmomentum

updates. Second, we will view the attention mechanism as an interacting particle system over tokens, in or-

der to study the impact of attention map normalization on the Transformer model using partial differential

equations [6].

Acknowledgements. Joint works with Pierre Ablin, Gérard Biau, Mathieu Blondel, Pierre Marion, Gabriel

Peyré and YuHanWu.
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Uncertain optimization and related topics

Application of random ordinary differential equation in smart
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1. Description

This work aims to study the thermal behavior of residential buildings by using the data provided by smart
thermostats and weather forecast data. For this, we consider an equivalent ODE circuit model depending
on four parameters related to the heater power, the solar energy, heat capacity, and the thermal resistance
of the building. We consider a random version of the model to overcome natural model uncertainty. More
specifically we consider the following Ordinary Differential Equationwith randomdatawichwas introduced
in [1]

𝑑𝑇

𝑑𝑡
(𝑡, 𝜔) +

1

𝑅(𝜔)𝐶(𝜔)
𝑇(𝑡, 𝜔) =

1

𝑅(𝜔)𝐶(𝜔)
𝑇𝑒(𝑡) +

1

𝐶(𝜔)
[𝑃(𝜔)𝑑𝑈(𝑡) + 𝐴(𝜔)𝐼𝑐(𝑡)] a.e 𝜔 ∈ Ω

Here:

• 𝑇(𝑡, 𝜔): indoor temperature.

• 𝑇𝑒(𝑡): exterior temperature.

• 𝐼𝑐(𝑡): corrected solar radiation.

• 𝑑𝑈(𝑡): heater usage time fraction.

While the random parameters to be identified have the following physical intepretation

• 𝑅(𝜔): thermal resistance.

• 𝐶(𝜔): heat capacity.

• 𝑃(𝜔): effective boiler power.

• 𝐴(𝜔) factor of solar radiation.

Based on the data available we show how to solve effectively this model.
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Uncertain optimization and related topics

Optimal portfolios with asymmetric information and the meaning of

noise for risk-averse traders
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We will study the problem of portfolio optimization in a financial market in which traders with asymmetric

information are present. We will summarize some of our results on the mathematical formalization of such

an economic problem [1–4]. Our main goal is to compare the utilization of different anticipating stochastic

calculi in this context. Precisely, we will employ the Russo-Vallois forward and Skorokhod stochastic inte-

grals to interpret the noise of the stochastic differential equations that model the asymmetrically informed

investors. Theoretical analyses and illustrative numerical examples showcase the critical role that risk aver-

sion has on the wealth dynamics. In particular, we will see that the results that follow in the case of risk

neutrality become invalid if we assume a convex utility modeling risk aversion. This latter case produces

other unexpected outcomes such as, for instance, the fact that less-informed-traders could surpass more-

informed-traders in certain market conditions. Our findings signal the intricate interplay between the an-

ticipating interpretation of noise and nonlinear utilities, whichmight produce counter-intuitive results from

the financial viewpoint.
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In response to the global efforts towards cleaner practices, ArcelorMittal, a leading steel manufacturer op-

erating in over 60 countries, is adapting its production strategies. One pivotal move in this transition is the

adoption of Electric Arc Furnace (EAF) technology, which emphasizes using recycled scrap metal instead of

the more polluting Blast Oxygen Furnace route. This shift is primarily driven by the global decarbonization

strategy, which is promoting an increased demand for scrap metal across the world. This trend is reshaping

market dynamics and significantly impacting production costs.

Unlike the traditional method of using hot metal, incorporating scrap metal introduces complexity to

the production process due to variations in chemical composition, including residual elements like copper.

Managing these variations carefully is crucial to maintain the quality standards of the liquid steel produced

in each heat.

Decision support models in steelmaking commonly overlook variability in compound content, relying

solely on nominal values. However, neglecting this variability can lead to two main issues. Firstly, inaccu-

rate estimates of compound content may result in unmet production requirements. Secondly, when utilizing

scrap, overly conservative solutions may prioritize costly high-quality input materials, leading to excessive

costs. In this context, stochastic optimization techniques appear as a valuable tool to address with the men-

tioned situation. To address the blending problem, stochastic optimization techniques such as Robust Op-

timization, Probabilistic Constraints, and Stochastic Programming can be valuable tools, each with its own

pros and cons worth exploring.

Incorporating uncertainty into decision-making can provide valuable insights aligned with risk profiles,

therebyminimizingproduction costs and supporting the scrappurchasingprocess. The introductionof prob-

abilistic scrap characterization represents a significant advancement inmanaging compositional uncertainty

within the steelmaking process.
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Uncertain optimization and related topics

Nondominated solutions of uncertain optimization problems
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This talk concerns an uncertain unconstrained optimization problemwith countably many scenarios, which

is dealt with the robust approach. Specifically, a new class of solutions is introduced that generalizes the

so-called pointwise efficient solutions (see [2–4] and the references therein). In addition, necessary and

sufficient optimality conditions are derived in convex problems. These characterizations extend and clarify

some recent results in [1].
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After a review on differentiability notions for interval-valued functions you can find in the literature, we

present necessary and sufficient conditions for generalized Hukuhara differentiability of interval-valued

functions and counterexamples of some equivalences previously presented in the literature, for which im-

portant results are based on.

Differential Calculus is a branch of Mathematics that allows us to solve problems where the change of

variables can be modeled in a numerical continuum to determine, from it, the variation of these elements

in specific moment or interval. The Optimization Theory is a basic part of Applied Mathematics, and the

development of differential calculus has enabled powerful mathematical tools for this area.

The Differential Calculus has provided essential mathematical tools to areas as physics, biology, engi-

neering, economics, among others. In particular, since Fermat and Lagrange’s work, Differential Calculus

has played a leading role in the Optimization Theory. In order to optimize a differentiable function or to

solve an optimization problem with constraints, derivative is crucial in both situations and numerical algo-

rithms for computing approximately optimal solutions because the main iterative optimization methods are

based on the evaluation of hessian matrices or gradients.

Under the hypothesis that observations and estimates in the real world are incomplete to accurately rep-

resent the actual data, the Interval Analysis was introduced byMoore with the aim of managing the impreci-

sion or lack of accurate information that appears on many mathematical models or computational of some

real-world deterministic phenomena.

Moreover, interval differentiability and its application in fuzzy environment is an active research area as

you can see in literature. But it has not been developed without problems, in order to define correctly the

operations between intervals and to establish the appropriate differentiability concept due to the no linearity

of the space of intervals. Therefore, it is of interest to establish the definitions and equivalences correctly,

such that they allow a successful development of the theory and applications based on them.

So, in this talk we present necessary and sufficient conditions for generalized Hukuhara differentiability

of interval-valued functions and counterexamples of some equivalences previously presented in the litera-

ture, for which important results are based on.
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In this talk we study several notions of stability of set-valued discrete-time dynamical systems. More exactly,

we develop a general framework in order to unify several results existing in the literature and we general-

ize dynamical results of the unidimensional case. We start by reviewing the preliminary results. Then, we

formulate appropriate notions of set dynamical systems as attractor, stability and invariant sets. To obtain

stability results we prove some properties of the Lyapunov mappings.

Acknowledgements

The author is supported by the Ministerio de Ciencia e Innovación of Spain under the project PID2021-

122442NB-I00.

FGS2024 French-German-Spanish Conference on Optimization

158 Universidad de Oviedo, 18-21 June 2024



Uncertain optimization and related topics

Stability of interval optimization problems
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We study the stability of interval optimization problems; i.e., optimization problems with interval-valued

objective functions. We focus on set-type solutions that are defined by means of the Kulisch-Miranker order

between intervals. To this end, we use a suitable notion of variational convergence for vector functions. We

provide geometric and metric characterizations of this convergence notion. We describe the behavior of

level, colevel and solution sets under perturbations of the data of the problem. We show that the coercivity

properties and coercive existence conditions for these problems are preserved locally within certain classes

of functions. We compare the variational convergence with other convergence notions from the literature.

Finally, we study the behavior of operations with interval functions under perturbations.
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[3] Rubén López. Global stability of interval optimization problems. Optimization, 69:2431-2451, 2020.
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The notion of robustness has been extended to uncertain multicriteria games in [4] where, at each strategy

profile, an uncertain parametric vector payoff is replaced by a vector collecting the componentwise worst

cases. By the componentwise approach to robustness, possible interdependences among vector components

are neglected. As a consequence, the componentwise worst case may be unachievable as uncertain param-

eters vary and componentwise robustness may induce an unduly pessimistic behavior of decision makers.

A further extension of the notion of robustness to uncertain vector games is presented in [3]. The authors

obtain a deterministic set-valued robust counterpart of an uncertain vector game by replacing uncertain

parametric payoffs by set-valued payoffs where all the parameters’ occurrences are considered. At a given

strategy profile, the set-valued payoff of player 𝑖 is the set that includes all possible realizations of 𝑖’s pay-

off as uncertain parameters vary in their domains. As a consequence, the drawbacks of the componentwise

approach are addressed, even in the special case of multicriteria games. We extend to noncooperative game

theory the abstract scalarization scheme presented in [2] for the special case of vector optimization prob-

lems andwe provide necessary and sufficient robust equilibrium conditions through scalarization. Interest-

ingly, we highlight that any scalarization scheme that can be applied to the set-valued robust counterpart of a

vector game providing necessary and sufficient robust equilibrium conditions is encompassedwithin the ax-

iomatic approach introduced in [2]. In order to avoid the use of set-valued analysis, an alternative approach

to robustify a vector game can be introduced. One can scalarize the original parametric vector-valued payoff

functions of the original game and subsequently consider the associated parametric scalar game where the

uncertainty on parameters can be treated by considering a robust counterpart built according to the classical

approach introduced in [1]. This approach, more suitable for applications, where scalarizations are often

implicitely considered in the model, does not consider the coherence with the robustness notion defined on

the original uncertain vector game. We investigate the commutativity of scalarization and robustification of

uncertain vector games obtaining equivalent robust equilibrium conditions that rely on the application of the

standard notion of robust equilibrium on the parametric scalar game obtained by appropriately scalarizing

the original vector parametric game.
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Uncertainty quantification in partial differential equations with
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1. Description

Partial differential equations (PDEs) involving random parameters are useful models in science since they

allow tomodel natural uncertainties. Wewill discuss the nonlinear inverse problem of estimating stochastic

parameters in elliptic partial differential equationswith randomdata. More specifically, in this talk, we focus

on the following specific model studied in [1].

Let (Ω, 𝔽, ℙ) be a complete probability space, where Ω is a nonempty set of elementary events, 𝔽 is a 𝜎-

algebra of subsets of Ω, and ℙ ∶ 𝔽 → [0, 1] is a probability measure. Let 𝐷 ⊂ ℝ2 be a bounded domain

and let 𝜕𝐷 be its sufficiently smooth boundary 𝜕𝐷 = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 = ∅. The following stochastic

linear elasticity systemmodels the displacement in the elastic body induced by the stochastic load 𝑓 and the

stochastic boundary traction ℎ:

−∇ ⋅ [2𝜇(𝜔, 𝑥)𝜖𝑢 + 𝜆(𝜔, 𝑥)tr (𝜖𝑢) 𝐼] = 𝑓(𝜔, 𝑥), in 𝐷, (1.1a)

𝑢(𝜔, 𝑥) = 0, on Γ1, (1.1b)

[2𝜇(𝜔, 𝑥)𝜖𝑢 + 𝜆(𝜔, 𝑥)tr (𝜖𝑢) 𝐼] 𝑛 = ℎ(𝜔, 𝑥), on Γ2. (1.1c)

Here the random field 𝑢(𝜔, 𝑥) is the displacement vector, 𝐼 is the identitymap, 𝑛 is the outward-pointing unit

normal to 𝜕𝐷, and the random fields 𝜇 ∶ Ω × 𝐷 → ℝ and 𝜆 ∶ Ω × 𝐷 → ℝ are the Lamé parameters. Denoting

by ∇𝑢, the gradient of the vector-valued random field 𝑢, the linearized strain tensor

𝜖𝑢 ∶=
1

2
�∇𝑢(𝜔, 𝑥) + ∇𝑢(𝜔, 𝑥)⊤� ,

is the local deformation of the elastic body, whereas tr(𝜖𝑢) is the trace of 𝜖𝑢.We note that the derivatives in

the elasticity system are with respect to 𝑥. The stress tensor 𝜎 measures the response of the elastic object

described by the strain.

In the context of (1.1), our focus will be on the stochastic inverse problem of estimating the stochastic

Lamé parameters 𝜇(𝜔, 𝑥) and 𝜆(𝜔, 𝑥) from some statistical information concerning the corresponding solu-

tion 𝑢.
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On some stochastic aspects of stochastic elliptic inverse problems
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Stochastic elliptic problems arisemainly by substituting deterministic parameters in elliptic problems, as for

example coefficients, forcing terms or boundary conditions, by certain random parameters. Then one issue

in the consideration of random equations is the measurability of desired solutions. Based on the fact that

there exist different measurability concepts it is important to use the appropriate measurability concept for

each problem. Hereby the Borel, weak and strong measurability concepts are of main interest.

In the talk these measurability concepts are presented and some of the relations between them are dis-

cussed. This is important, because in elliptic problems also non-separable Banach spaces play a certain role

and in these spaces themeasurability conceptsmentioned above do not necessarily coincide. Based on these

findings measurability properties of solutions of elliptic problems are investigated.

Furthermore it will be shown exemplarily, which stochastic elliptic inverse problems can be treated as

abstract elliptic inverse problems and which such stochastic inverse problems require a specific stochastic

investigation.

FGS2024 French-German-Spanish Conference on Optimization

162 Universidad de Oviedo, 18-21 June 2024



Uncertain optimization and related topics

A review on the radius of robust feasibility of uncertain

mathematical programs
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The radius of robust feasibility provides a numerical value for the largest possible uncertainty set that guar-

antees feasibility of a robust counterpart of a mathematical program with uncertain constraints. The ob-

jective of this review of the state-of-the-art in this field is to present this useful tool of robust optimization

to its potential users and to avoid undesirable overlapping of research works on the topic as those we have

recently detected. In this talkweoverview the existing literature on the radius of robust feasibility in continu-

ous andmixed-integer linearly constrained programs, linearly constrained semi-infinite programs, convexly

constrained programs, and conic linearly constrained programs. We also analyze the connection between

the radius of robust feasibility and the distance to ill-posedness for different types of uncertain mathemati-

cal programs.
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Álvarez López, Antonio, Universidad Autónoma de Madrid, 94
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